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Abstract

Dimensionality reduction is widely used in many statistical applications, such as image

analysis, microarray analysis, or text mining. This thesis focuses on three problems that

relate to the robustness in dimension reduction.

The first topic is the performance analysis in dimension reduction, that is, quantita-

tively assessing the performance of a algorithm on a given dataset. A criterion for success

is established from the geometric point of view to address this issues. A family of good-

ness measures, called local rank correlation, is developed to assess the performance of

dimensionality reduction methods. The potential application of the local rank correlation

in selecting tuning parameters of dimension reduction algorithms is also explored. The

second topic is the sensitivity analysis in dimension reduction. Two types of influence

functions are developed as measures of robustness, based on which we develop graphical

display strategies for visualizing the robustness of a dimension reduction method, and flag-

ging potential outliers. In the third part of the thesis, a novel robust PCA framework,

called Performance-Weighted Bagging PCA, is proposed from the perspective of model

averaging. It obtains a robust linear subspace by weighted averaging a collection of sub-

spaces produced by subsamples. The robustness against outliers is achieved by a proper

weighting scheme, and possible choices of weighting scheme are investigated.
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Chapter 1

Introduction and Overview

1.1 Review of robustness

Robust statistics are a class of statistical procedures which are created to deal with an in-

stability problem of the optimal procedures of classical methods. The use of term “robust-

ness” can be traced back to George Box [1953], who discussed in his paper the sensitivity

to non-normality of some statistical tests. Subsequently, John Tukey [1960; 1962], Peter

Huber [1964; 1965; 1981], and Frank Hampel [1968] gave respective contributions toward

the foundations of robust statistics. Since then it has been systematically investigated

and developed by many other researchers. Nowadays robust statistics are an important

alternative to the classical approaches. To better understand this concept, three questions

must be answered: What is robustness? Why use robust procedures? And how does one

measure robustness?
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1.1.1 What is robustness and why it is needed

All statistical models and methods include assumptions on the underlying distribution,

such as normality, linearity, independence, etc. These assumptions are either for mathe-

matical convenience or based on previous experience, and an inference one makes relies not

only on the observed data, but also on these assumptions. Most of traditional statistical

methods are optimal only when their assumptions are satisfied.

However, it is generally understood that these assumptions are at most an approxima-

tion to reality. In practice, the appearance of outlying data caused by either gross error

(large errors in measurement, see Dixon [1953]; Grubbs [1969]) or flaws in model assump-

tions often occur. Thus, besides considering criteria of optimality, it is natural for one to

expect that a statistical procedure is stable in the sense that a small departure from the

model assumptions or a small proportion of outlying data will only cause a small error in

the final conclusion, so that the procedure can still provide a good result.

Unfortunately, statistical procedures are not always stable. In the 19th and 20th cen-

turies, statisticians (such as S. Newcomb, K. Pearson, H. Jeffreys, and E. S. Pearson) were

aware of the instability of some traditional methods, and in recent decades, studies point

to the fact that even some commonly used statistical procedures are excessively sensitive

to seemingly minor deviations from model assumptions. Sometimes these deviations will

even cause the breakdown of the procedure (Hampel [2001]).

In many location parameter estimation problems, the sample mean is a common choice.

The following example illustrates the performance of the sample mean when model assump-

tions are violated.

Example 1.1. Robustness of sample mean: Suppose we have a sample of observations xi,

i = 1 . . . n. We assume they are iid from N(µ, σ2). In order to estimate the location µ, the
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traditional choice is the sample mean, which is unbiased and attains the smallest variance

at the assumed model. However, if the normality assumption is not exactly correct, the

performance of the sample mean might not be good (as measured by the variance and

bias).

Let the observations come from the following distribution:

Xi ∼


N(µ, σ2) with probability 1− ε

f(x) with probability ε
,

where f(x) is some non-Normal distribution with mean θ and variance τ 2. Then it is easy

to calculate that

Bias(X) = ε(θ − µ) ,

Var(X) = (1− ε)σ
2

n
+ ε

τ 2

n
+ ε(1− ε)(θ − µ)2

n
.

Even if ε is very small (i.e. Xi is approximately Normal), the variance and bias of X

could become arbitrarily large or even infinite (e.g. when f(x) is the Cauchy pdf).

As illustrated in the above example, the optimal estimator (in the sense of efficiency)

for the Normal location parameter, will provide a poor result even under a slightly con-

taminated model.

This fact motivates statisticians to create the concept of “robustness” to study the ef-

fect of wrong assumptions on a given statistical method. Robustness is considered to be

a property of a statistical procedure, which describes its behavior under violations of the

3



model assumptions. As stated by Huber [1981], “robustness signifies the insensitivity to

small deviations from assumptions”. The effect of wrong assumptions is not limited to the

parameter estimation problem (Example 1.1), the importance of studying robustness of

statistical procedures is recognized by statisticians in hypothesis tests (Gastwirth and Ru-

bin [1971]; He et al. [1990]; He [1991]), regression (Rousseeuw [1984]; Ruppert and Carroll

[1971]), mixed models (Welsh and Richardson [1997]), and almost all areas of statistical

research. Furthermore, many robust procedures were proposed as reliable alternatives to

traditional procedures, aiming to provide reasonable results when the model assumptions

are not exactly satisfied.

Alternatively, to avoid the study of robustness, it might be possible to build up a

diagnostics system to test the model assumptions and clean the data before applying

the traditional methods. Based on this idea, many detection techniques were developed

(e.g. outlier rejection, normality tests. See Hawkins [1980]; Hodge and Austin [2004]),

but unfortunately these rules are not enough to replace the role of robustness for several

reasons.

First of all, traditional outlier detection methods have difficulties in dealing with mask-

ing and swamping (See Fieller [1976]; Barnett and Lewis [1984]). It is discussed by some

researchers that even the best rejection rules do not achieve the expectation of completely

identifying the violation of model assumptions (Hampel et al. [1986]; Hampel [1974]). Sec-

ondly, the criteria for detection and rejection are usually subjective so these rules often

suffer from false rejection and false retention error, which will cause a significant loss of ef-

ficiency (Hampel [1985]). Thirdly, lots of diagnostics approaches are closely related or even

based on robust methods (Barnett and Lewis [1984]; Gather and Becker [1997]). Moreover,

when the diagnostics show that some assumptions do not hold (e.g. independence), there

does not always exist a well-established alternative approach to deal with the violation.
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Thus, robustness provides a safeguard against the situation when the model is not exactly

true but this fact is difficult to be detected.

1.1.2 Contamination models and outliers

The uncertainty in the model assumption results in the discordant observation in the

sample, usually referred as “outlier” (Beckman and Cook [1983]). An outlier is defined

as “one that appears to deviate markedly from other members of the sample in which it

occurs” (Grubbs [1969]). There are two main reasons for the appearance of outliers.

• Case I. The presence of gross error. In this case, one believes that the majority of

the observations comes from the assumed model, while the remaining observations

are from outside the population being examined. These contaminated observations

are considered to be bad for the inference because they are non-informative for the

assumed model and may corrupt the clean data.

• Case II. The model misspecification. In this case, the assumed model oversimplifies

or provides an incorrect description of the data. For example, normality is a key

assumption for many traditional methods in regression, analysis of variance and

multivariate analysis. However this assumption is invalidated if the error distribution

has heavy tails (Newcomb [1886]). Mistakenly assuming the normality might have a

serious effect on the conclusion.

These two cases lead to two different types of robustness: firstly the robustness against

the gross error, and secondly the robustness against the model misspecification (Maronna

et al. [2006]). They share the term robustness but represent different philosophies. The

first one is based on the faith that the model is close enough to the underlying truth, and
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focuses on the effect of suspicious points on the result, whereas the second one believes the

cleanliness of the data, and tries to check the adequacy of model assumptions.

Thus, although outliers can occur due to both gross errors and model misspecification,

we will only use the term “outlier” in the first case (i.e. the gross error case) to avoid

confusion.

A commonly used tool to formalize the uncertainty of the model assumptions in the

distributional setup is the ε-contamination model (introduced by Tukey [1962]; Huber

[1964]). Let Xi (i = 1 . . . n) be independent random variables with common distribution

H such that

H(x) = (1− ε) · F(x) + ε · G(x) (1.1)

where F is the assumed distribution in the model, G is a unknown contaminating distribu-

tion (possibly with some restrictions), and 0 ≤ ε < 1 is a real number. The contamination

level of model (1.1) is usually measured by ε, which measures the difference between as-

sumed model F and true model H. Example 1.1 is an application of the ε-contamination

model. In addition to ε in equation (1.1), one can also use other distance functions defined

on distribution space to measure the difference between the assumed model and the true

model (See Vı́̌sek [1997]; Huber [1981]).

Instead of considering contamination in the distributional sense, we can also define

contamination models in a finite sample setup (Donoho and Huber [1983]). Let xn =

(x1, . . . , xn)′ be a column vector representing a fixed sample of size n, where x′ denotes the

transpose of the matrix or vector x. There are two ways to model the sample contamina-

tion:

(i) ε-replacement: we replace an arbitrary subset of size m of the original data xn by

6



arbitrary values ω1, . . . , ωm. Let x(n,m) denote the contaminated sample, and the

contamination level is ε = m/n.

(ii) ε-corruption: we adjoin m arbitrary additional points ωωωm = (ω1, . . . , ωm)′ to the orig-

inal xn. Let xn,m = xn∪ωωωm denote the contaminated sample, and the contamination

level is ε = m/(n+m).

Note that although outliers can occur due to both gross errors and model misspecifica-

tion, we will only use the term “outlier” in the first case, i.e. the gross error case.

1.1.3 Measures of robustness

Considering both optimality and robustness, as argued by Huber [1981] and Hampel et al.

[1986], an ideal statistical procedure should satisfy three criteria:

• It should have a high (optimal or nearly optimal) efficiency when the model assump-

tions hold.

• It should be resistant to slight contamination to the model, i.e. the loss of efficiency

due to the variation of assumptions should be as low as possible.

• A small violation of model assumptions will not completely spoil the procedure.

To investigate the second and third points in detail, many different types of measures

have been proposed to monitor the decrease of performance of a statistical method due to

the contamination. We now discuss these criteria.
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Influence function

A widely used and well accepted robust measure is the influence function (IF). This concept

was introduced by Hampel in his Ph.D. thesis (Hampel [1968]), and further developed in

1974 (Hampel [1975]). In the paper Hampel considers a statistical estimator as a functional

T mapping from the space of probability distributions F to a parameter space of interest,

T : F → R .

The influence function is defined as the Gâteaux derivative of the functional T , at

the assumed distribution F ∈ F and a certain point x ∈ Rd based on one-step Taylor

expansions of T . It is defined by

IF(x; T, F) = lim
ε↓0

T ((1− ε)F + εδx)− T (F)
ε

= ∂

∂ε
T ((1− ε)F + εδx)|ε↓0 , (1.2)

where δx is the point-mass at x.

The influence function is a local concept since it measures quantitatively the change

of T according to the point-mass contamination at a certain x. A procedure T is more

sensitive (than others) to the contamination δx if it has a larger (in absolute sense) value

of the influence function at x. Thus, for the sake of robustness, the influence function of a

procedure is desired to be bounded. For instance, the classical mean functional

T (F) =
∫
xdF ,

has an unbounded IF and is therefore regarded as non-robust.

8



Hampel also proposed a way to find estimators with optimal efficiency given an upper

bound on the influence function (Hampel et al. [1986]). General discussion of influence

functions can be found in Serfling [1980], Huber [1981] and Hampel [1974]; Hampel et al.

[1986].

Several different types of the finite sample influence function have been developed for

use in practice. A direct sample version of influence function, usually called the empirical

influence function (EIF), is defined similar to the influence function, where the probability

distribution F is replaced with the empirical distribution F̂n of the sample. Another finite-

sample version is defined in Tukey [1970], called the sensitivity curve, or sometimes also

called the empirical influence function or sample influence function. One adds a virtual

observation x to the sample X = {x1 , . . . , xn} and assesses its influence on the estimate T

by

SC(x; T, X) = (n+ 1) {T (x1 , . . . , xn , x)− T (x1 , . . . , xn)} .

Both the empirical influence function and the sensitivity curve are to evaluate the effect

on an estimate of perturbing an observation at a finite sample. Mallow [1975] discussed

different definitions of the sensitivity curve under different types of contamination when

a new observation is added, the i-th observation is replaced, or deleted. The sensitivity

curve is essentially equivalent to the empirical influence function, and it converges to the

influence function as n→∞ (Hampel et al. [1986]; Maronna et al. [2006]).

Breakdown point

The influence function is a useful tool to assess the robustness of a statistical procedure.

However, as pointed out in Lindsay [1994], considering only local measures might poorly

assess the robustness of some types of estimators. Thus, besides the information about
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the local behavior of a procedure near the assumed model, one may also want to investi-

gate a global measure which indicates how much assumptions may be violated before the

statistical procedure becomes invalid.

The breakdown point (or breakdown value) is a global robustness measure, concerning

the extreme situation when the procedure is ruined (called “breakdown”). The concept

was first proposed by Hodges [1967] (as “the tolerance of extreme value”) in the location

estimation problem. Hampel provided the formal definition of asymptotic breakdown point

(Hampel [1968, 1971, 2005]). Donoho [1982] and Donoho and Huber [1983] proposed the

finite-sample version breakdown point, and had a general discussion on the application of

breakdown points. The intuition beneath the breakdown point is to measure the minimum

proportion of contamination in the sample (or in model assumption) that can cause the

breakdown of the procedure.

In the framework of Huber’s functional analytic approach to robustness, breakdown is

related to the boundedness of statistical functionals. Donoho and Huber [1983] mathemat-

ically formalized the “breakdown” phenomenon as that for which the functional is carried

beyond the bounds of the parameter space (if it is bounded).

Consider a measurable sample space (Ω,B(Ω)) where Ω is the sample space and B(Ω)

is the Borel σ-algebra. Let F be the family of all nondegenerate probability measures (or

distributions) on (Ω,B(Ω)), with a metric d on F such that

sup
F,H∈F

d(F,H) = 1 (1.3)

Let T : FT → Θ be a statistical functional, mapping a subspace FT ⊆ F into some

metric space (Θ, D), whereas the metric D satisfies
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sup
θ1,θ2∈Θ

D(θ1, θ2) =∞ (1.4)

Definition 1.1. Asymptotic breakdown point: For a given functional T , and appropriate

metrics D and d on Θ and F respectively that satisfying (1.3) and (1.4), the asymptotic

breakdown point of T at a given distribution F ∈ FT is defined by

ε∗(T,F) = inf
{
ε > 0 : sup

d(F,H)<ε
D(T (F), T (H)) =∞

}
(1.5)

Example 1.2. Asymptotic breakdown point of mean: Let T be the expectation functional

TE(F) =
∫

Ω
xdF(x).

Choose d to be the Kolmogorov-metric

d(F,H) = sup
x∈Ω
|F(x)−H(x)| ,

and D to be the Euclidean metric on Θ (Θ = R). Then it can be verified (Davies and

Gather [2007]) that

ε∗(TE,F) = 0,

for any F ∈ FT , where FT = {F : TE(F) <∞}.

The asymptotic breakdown point is defined on the probability distribution of the as-

sumed model. Similarly, the finite sample version of breakdown point can be defined on

the empirical distribution of the sample.

Definition 1.2. Finite sample breakdown point: Given an appropriate metric D, and a

sample xn = (x1, . . . , xn) of size n, the empirical distribution of xn is denoted by F̂n =
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1
n

∑n
i=1 δxi , where δxi is the Dirac measure. The finite sample breakdown point of T at the

sample xn (or at empirical distribution F̂n), is defined by

fsbp(T,xn) = 1
n

min
{
m ∈ {1, . . . , n} : sup

x(n,m)
D(T (F̂n), T (Q̂(n,m))) =∞

}
(1.6)

where x(n,m) is the sample xn with m points replaced by arbitrary value, and Q̂(n,m) ∈ FT
is the empirical distribution of xn,m.

Example 1.3. Finite sample breakdown point of median: Given a sample xn = (x1, . . . , xn)

of size n (assume n is odd for convenience), and let T be the sample median functional

Tmed(xn) = x((n+1)/2), and Θ, D be the same as in example 1.2. Then it can be verified

(Davies and Gather [2007]) that

fsbp(Tmed,xn) = n+ 1
2n

In above definitions, the usual choice of metric D is the Euclidean metric, d is Kol-

mogorov metric or Prohorov-metric (Huber [1981]), and the statistical functional T rep-

resents a particular estimator. Davies and Gather discuss the choice of metric D and d

(Davies and Gather [2007]), and also emphasize the importance of affine groups structure

(Davies and Gather [2005]) in comparing statistical functionals in terms of breakdown

points.

Definition 1.1 and 1.2 are well accepted because of their simplicity and intuition. They

have been applied in location and scale parameter estimation and linear regression prob-

lem (Yohai [1987]; Donoho and Gasko [1992]; Ellis and Morgenthaler [1992]; Davies [1993];

Müller and Uhlig [2001]). The concept of breakdown point is also generalized to cope with

other statistical problems including testing (He [1991]; He et al. [1990]), multivariate anal-

ysis (Rousseeuw [1985]; Gordaliza [1991]; Lopuhaä [1992]; He and Fung [2000]), directional
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data (He and Simpson [1992]), nonlinear regression (Stromberg and Ruppert [1992]), and

time series (Lucas [1997]; Mendes [2000]; Ma and Genton [2000]; Genton [2003]).

However, the standard definition has some limitations (Genton and Lucas [2003]), and

attempts have been made to obtain a more general definition of breakdown points by

formalizing the concept of “breakdown” from different perspectives (Sakata and White

[1995]; He and Simpson [1993]; Genton and Lucas [2003]).

Among the affine equivariant estimators, it is possible to calculate the upper bound

of the breakdown point in many statistical problems (Davies and Gather [2007]), and

estimators with highest possible breakdown points are develeped. However, to fully under-

stand the robustness of a statistical procedure requires the combination of different types

of robustness measures. Simply pursuing the highest possible breakdown point may be

misguided (see Huber and Ronchetti [2011]; He and Portnoy [2000]).

Other robustness measures

The influence function and breakdown point consider the extreme situations of contami-

nation. The influence function considers infinitesimal values of ε and the breakdown point

seeks for the smallest contamination level ε? under which a procedure becomes invalid. Hu-

ber [1964] proposed another measure which allows one to study the behavior of a procedure

under a fixed contamination level ε (before breakdown). He introduced several distance-

based neighborhoods to model the deviation from assumptions, and further considered the

worst asymptotic performance (in the sense of variance or bias) of a procedure under a

certain contamination level. These measures are known as minimax asymptotic variance

(MV) and minimax bias (MB), or sometimes referred as maximum asymptotic variance

and maximum bias (Huber [1964, 1981]). Using the contamination model (1.1), the MB
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and MV of the statistical functional T at a distribution F ∈ F are defined as

MB(F, T, ε) = sup
G∈F
|T ((1− ε)F + εG)− θ| (1.7)

MV(F, T, ε) = sup
G∈G

Var [T ((1− ε)F + εG)] (1.8)

Based on this idea, Huber developed a class of robust procedures whose worst asymp-

totic performance is minimized (called the minimax approach). It has been shown that

these approaches have some good finite sample properties (see Andrews et al. [1972]).

Other similar measures based on the same idea include the bias curve (Rousseeuw and

Croux [1994]), contamination sensitivity and gross-error sensitivity (Hampel [1968]).

Besides these quantitative measures, Hampel [1971] also introduced the concept of

qualitative robustness which is closely related to the influence function and the breakdown

point. Since Hampel, further theoretical development has been made by Cuevas [1988], and

applications can be found in Lambert [1982]; Rieder [1982]; Boente et al. [1987]; Papantoni-

Kazakos [1984].

1.2 Introduction to dimensionality reduction

With the development of data collection and storage capabilities, researchers across a wide

variety of fields are facing larger and larger datasets with increasing dimensionality, such as

images, videos, fingerprints, text documents, etc. Higher dimensionality brings challenges

together with benefits. More variables provide more information for inference, but at

the same time, the size of data needed for a reliable result increases exponentially with

the dimensionality (See Bellman [1961]; Donoho [2000]), therefore traditional statistical

methods have difficulties to cope with the explosive growth of dimensionality.
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To solve this, dimensionality reduction methods have been developed and applied as

pre-processing tools to deal with such high-dimensional datasets. The foundation of di-

mensionality reduction is the belief that there exists some underlying (unknown) geometric

structure in the observed high-dimensional data which allows us to use a lower dimensional

representation to characterize the data without losing this structure. Thus, the purpose of

the dimensionality reduction methods is to reveal this structure.

Revealing the low-dimensional representation not only improves the efficiency of com-

putation, but also enhances the understanding of the nature of the data. Over the last

few decades, many dimensionality reduction algorithms have been proposed. Summaries

and surveys can be found in many books and papers (Carreira-Perpinan [1997]; Friedman

et al. [2009]; Fodor [2002]) and new ideas are still being contributed to the area. To better

illustrate these ideas, we need to first introduce some geometric concepts and notations.

1.2.1 Topology and manifolds

We assume the readers have enough background knowledge about topology, topological

space and geometry, and are familiar with basic concepts (such as open sets, neighborhood,

C∞ maps, connected spaces, homeomorphism, tangent spaces, etc. Mathematical details

can be found in Kelley [1955]; Armstrong [1979]; Lee [2000, 2003]) .

Manifold

Suppose M is a topological space. We say M is a topological d-manifold if it satisfies

the following conditions:

• M is a Hausdorff space: For all p, q ∈M, there exist disjoint open subsets U, V ⊂M

such that p ∈ U and q ∈ V .
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• M is second countable: There exists a countable basis for the topology of M.

• M is locally Euclidean of dimension d: For all p ∈M, there exist open sets U ⊂M,

Ũ ⊂ Rd such that p ∈ U and there exists a homeomorphism φ : U → Ũ .

The dimensionality ofM is d, and the manifold is denoted asMd in this paper if we want

to emphasize its dimensionality.

A chart for a topological spaceM is a homeomorphism φ from an open subset U ⊂M

to an open subset in Euclidean space, it is usually denoted as (U, φ). Based on this notion,

we can define two important concepts:

• Atlas: An atlas A for a topological spaceM is a collection of charts A = {(Uα, φα)}

on M such that ⋃Uα =M.

• Transition maps: Provide two charts (Uα, φα) and (Uβ, φβ) for a topological space

M such that Uα ∩ Uβ 6= ∅, the transition map τα,β : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is

defined as:

τα,β = φβ ◦ φ−1
α .

A topological manifoldM is said to be a differentiable manifold if it is equipped with an

atlas A = {(Uα, φα)} such that for all φα, φβ ∈ A, the transition map τα,β is differentiable.

An atlas satisfies such conditions is called a differentiable structure on M. A simple

example of differentiable manifold is the Euclidean space Rd.

Embedding and embedded submanifolds

Given a differentiable manifold ND, a d-submanifold Md ⊂ ND (0 < d ≤ D) is

called an embedded submanifold of ND if for every point p ∈ M, there exists a chart
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(U ⊂ N , φ : U → RD) such that p ∈ U , φ is a diffeomorphism, and φ(M∩ U) is a d-flat

in RD.

In dimensionality reduction problems, manifolds can be characterized as embedded

submanifolds of Euclidean space by Whitney embedding theorem (Whitney [1936]). A

simple example is that a m-sphere Sm is an embedded submanifold of Rm+1. In this paper,

we use the term “manifold” to refer the (differentiable) embedded submanifold of some

Euclidean space unless specified otherwise, i.e. M means Md ⊂ RD (for some d ≤ D).

Suppose M and N are two differentiable manifolds, and f : M → N is a C∞ map.

The mapping f is said to be an embedding if it satisfies:

• f is an immersion: the derivative of f is injective at every point p ∈M.

• f is a homeomorphism onto its image f(M) ⊂ N in the subspace topology.

The image f(M) is called an immersed submanifold of N , andM is said to be embedded

in N by the mapping f .

Riemannian manifold and geodesics

Consider a point p on a differentiable manifoldM. All vectors that are tangent toM at

the point p will form a vector space Tp(M) called tangent space at p. Suppose that for every

point p on M, the tangent space has an inner-product gp = 〈·, ·〉 : Tp(M)× Tp(M) → R.

The collection of inner-products g = {gp|p ∈M} is called a Riemannian metric on M,

and the manifold equipped with a Riemannian metric is called a Riemannian manifold,

denoted as (M, g).

Given a manifold M, and two points p, q ∈ M, a smooth curve on M from p to q

is defined as a continuous map ζ : I → M ⊂ RD, where I = [a, b] ⊂ R, ζ(a) = p and
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ζ(b) = q. The smooth curve joins points p and q are not unique, let Cpq be the collection

of all such curves. With the metric g defined on M, we can calculate the length of any

smooth curve on the manifold:

L(ζ) =
∫ b

a

√
g(ζ ′(t), ζ ′(t))dt,

and the distance between p and q on M is defined as

dM(p, q) = inf
ζ∈Cpq

L(ζ).

The distance dM(p, q) is called the geodesic distance on the manifold M. If M is a

Euclidean space, the geodesic distance would be the Euclidean distance.

1.2.2 Problem setup

In dimensionality reduction, we assume that the observed data in high-dimensional space lie

on (or near) an embedded submanifold with lower dimensionality. With this fundamental

assumption, it is possible to represent the high-dimensional data in a lower-dimensional

space. Formally, we state the problem as following: suppose that there are n data points in

a q-dimensional space Rq, denoted by a set of column vectors {y1, . . . ,yn}, or together by an

n×q matrix Y with j-th row being the transpose of the j-th data point y′j. Further assume

yj are mapped into a higher-dimensional space Rp by an unknown smooth embedding

ϕ : Rq →Mq ⊂ Rp (p > q) possibly with noise:

xj = ϕ(yj) + εj, (1.9)

where εj ∈ Rp, j = 1, . . . , n is the noise with mean 0. We refer “case j” as the index of the

correponding points xj and yj in the input and output spaces.
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We only observe {x1, . . . ,xn} in Rp, together denoted by an n × p matrix X. We say

{x1, . . . ,xn} lie on (or near) the manifoldM with intrinsic dimensionality q, or we say the

intrinsic dimensionality of X is q. The purpose of dimensionality reduction algorithms are

essentially trying to reconstruct the inverse mapping ψ = ϕ−1, and to recover y by ŷ = ψ̂(x)

(sometimes we only recover ŷ with implicit ψ̂). We denote a given dimensionality reduction

method as a mapping ψ : Rp → Rq in the rest part of the thesis. In many methods, ψ is a

function of the entire observed dataset, so we also write the low-dimensional configuration

Y as Y = ψ(X) for convenience.

This type of dimensionality reduction can be also viewed as learning the structure of

embedded submanifold Mq, so it is also called manifold-learning. In this thesis, we shall

restrict our attention to manifold-learning. Different algorithms have different assumptions

on ψ. According to these assumptions we can roughly classify the dimensionality reduction

algorithms into two major types: linear methods and non-linear methods.

1.2.3 Linear methods

In general, linear dimensionality reduction methods assume that the embedded subspace

is a linear subspace, and look for a linear projection to recover y:

ŷ = ψ̂(x) = W′x (or directly Ŷ = X W) (1.10)

where W is a p × q projection matrix. Choosing W due to different criteria determines

different algorithms.

Principal component analysis (PCA) is a popular and well-known linear method. It was

introduced by K. Pearson [1901], and also known in different fields of application as singular
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value decomposition (SVD), empirical orthogonal functions (EOF), the Karhunen-Loève

transform, and the Hotelling transform.

In essence, PCA seeks a linear subspace formed by a set of orthogonal vectors called

“principal components” in such a way that the variability of the data is kept as much as

possible in the subspace. Given observed data points X and assuming zero empirical mean,

the orthogonal basis (principal components) {wj} are a set of p× 1 unit vectors that are

obtained by

w1 = arg max
‖w‖=1

{‖Xw‖} ,

and for 2 ≤ k ≤ p

w
k

= arg max
{
‖Xw‖

∣∣∣ ‖w‖ = 1, w⊥wj,∀1 ≤ j ≤ k
}
,

where ‖w‖ is the Euclidean norm of the vector w. In practice, the principal components{
w
j

}
are calculated by the eigendecomposition of the empirical covariance matrix of the

observed data (assuming that the data are centered on the origin, i.e. ∑n
j xj = 0):

C = 1
n

n∑
j=1

xjx′j = 1
n

X′X.

The k-th principal component is the eigenvector of C corresponding to its k-th largest

eigenvalue. If the essential assumption that the data actually lie on or near a q-dimensional

linear subspace holds (assuming q is known here), we would find that the first q principal

components carry most of the variability and then we can disregard the remaining principal

components, and project the data onto a low-dimensional space spanned by the orthogonal

basis W = (w1,w2, · · · ,wq).
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PCA can be also solved in a dual form. The singular value decomposition (SVD) of X

gives

X = UΛΛΛW′ ,

where columns of U are top q eigenvectors of X X′, columns of W are top q eigenvectors of

X′X, and the diagonal matrix ΛΛΛ contains the square roots of eigenvalues of both X′X and

X X′. Note that there exists a one-to-one correspondence between U and W. Therefore,

obtaining Un×q and ΛΛΛq×q from the eigendecomposition of X X′ will also lead to the low-

dimensional representation of PCA,

W = X′UΛΛΛ−1

Ŷ = X W = UΛΛΛ.

This dual form is typically helpful when the dimensionality p of the input data X is

very large (p� n).

Multidimensional scaling (MDS) is another classical linear technique which encompasses

a collection of methods (Cox and Cox [1994]). Whereas PCA tries to preserve the vari-

ability of the data in low-dimensional space, MDS focuses on the pairwise relations (called

distance, proximity or dissimilarity) and attempts to provide a geometrical representation

of these relations.

MDS takes a pairwise proximity matrix D = [dij]n×n as input, where dij is a measure

of closeness between objects xi and xj, and is trying to construct a configuration by mini-

mizing some loss function. There are many versions of MDS algorithm depending on the

choice of dij and loss function, two major classes are metric and non-metric MDS.

Metric MDS chooses dij to be a metric of the original space (not necessarily Euclidean

space), and tries to reconstruct Y in Rq by
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Ŷ = arg min
Y

∑∑
1≤i<j≤n

(
dij − d̂ij

)2
,

where d̂ij = ‖yi − yj‖2, and ‖·‖ is the Euclidean norm. Choosing dij as Euclidean distance

in Rp will obtain the same result as PCA. In general, MDS can be solved by eigendecom-

position of the matrix D, defined by the squared pairwise metric.

In contrast, non-metric MDS tries to preserve the ordinal property of the data rather

than the proximity, and the loss function called Stress (Cox and Cox [1994]) is applied.

Stress =

√√√√√√√
∑∑

1≤i<j≤n

(
f(dij)− d̂ij

)2

∑∑
1≤i<j≤n

d̂2
ij

,

where f(dij) is a monotonic transformation. An iterative algorithm was proposed by R.

Shepard [1962] and then refined by J. Kruskal [1964] to minimize Stress and obtain the

solution of non-metric MDS.

PCA and MDS are both widely used linear algorithms. However their usefulness is

limited by the global linearity of the submanifold. Other linear methods such as factor

analysis, projection pursuit, independent component analysis, also share this limitation

and cannot provide a satisfactory result if the underlying submanifold does not have the

global linearity.

1.2.4 Nonlinear methods

Motivated by the inability of linear methods to capture the nonlinear structure, many

nonlinear methods have been developed, including ISOMAP (Tenenbaum et al. [2000]),

Local Linear Embedding (Roweis and Saul [2000]), Laplacian Eigenmap (Belkin and Niyogi
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[2001, 2003]), Local Tangent Space Alignment (Zhang and Zha [2005]), Self-organizing

map (Kohonen [1982, 1990]), Kernel PCA (Schölkopf et al. [1998]), Maximum Variance

Unfolding (Weinberger and Saul [2006b,a]), Diffusion Maps (Nadler et al. [2005]), and many

different versions of nonlinear PCA (Gnandesikan and Wilk [1969]; Hastie and Steutzle

[1989]; Kramer [1991]).

Comparing to the linear methods, the nonlinear methods relax the global linearity

assumption about the submanifold, and instead adopt two additional assumptions:

• The embedding ϕ : Rq → M is a local isometry: for each z ∈ Rq, there exists a

neighborhood U of z such that

dq(y1,y2) = dM(ϕ(y1), ϕ(y2)), y1,y2 ∈ U

where dq is the Euclidean distance in Rq, and dM is the geodesic distance on M.

• The observed data points are dense enough on the manifold: for each x ∈ {xj}, there

exists a set Nx of neighboring points such that

dM(x,xi) ≈ dp(x,xi), xi ∈ Nx,

where dp is the Euclidean distance in Rp. The set Nx is called the neighborhood of

x.

Given above two assumptions, and equation (1.9), we can have dq(yi,yj) ≈ dp(xi,xj)

if xi and xj are neighboring points. Most of the nonlinear methods are considered to be

local methods because they focus on the local geometry of the submanifold, and try to

recover {yj} by preserving the neighborhood relationship. These methods usually consist

of a three-step algorithm:
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• Step 1 : Identify the neighborhood Nx for each data point. Usual ways of identifying

the neighborhoods are

K-nearest neighbors Nx,K (measured by Euclidean distance)

ε-ball: Nx,ε = {xi ∈ {xj} |dp(x,xi) ≤ ε}

where k and ε are tuning parameters (usually called neighborhood size). Note that

in general, xi ∈ Nxj does not necessarily imply xj ∈ Nxi .

• Step 2 : Characterize the neighborhood relationship (the relationship is formalized

differently in different methods).

• Step 3 : Construct the low-dimensional configuration that optimally preserve the

specified neighborhood relationship.

A typical local method is Local Linear Embedding (LLE). After assigning the neigh-

borhood to each point, LLE characterizes the neighborhood relationship by a set of linear

coefficients that reconstruct each data point from its neighbors. The linear coefficients

{wij} are obtained by minimizing the reconstruction error:

Ŵ = arg min
W

n∑
i

xi −
n∑
j

wijxj

2

,

where wij satisfies wij = 0 if xj /∈ Nxi , and ∑n
j wij = 1.

Assuming that the coefficients Ŵ are invariant to the mapping ϕ, the same weights

{ŵij} that reconstruct the data point xi should also be able to reconstruct the corre-

sponding point yi in the embedding space. Thus, the low-dimensional representation Ŷ is

constructed by minimizing the embedding cost function:

Ŷ = arg min
Y

n∑
i

yi −
n∑
j

ŵijyj

2

,
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The properties and limitations of LLE and the complexity of the algorithm are discussed

in Roweis and Saul [2000].

Besides the local methods, there is another class of nonlinear methods which consider

the global geometry of the submanifold (usually referred as global methods). A typical one

in this class is ISOMAP.

ISOMAP considers the global geometry by assuming the mapping ϕ is an isometry, i.e.

dq(y1,y2) = dM(ϕ(y1), ϕ(y2)), y1,y2 ∈ Rq,

ISOMAP can be viewed as a generalization of metric MDS because it carries the idea of

MDS, and tries to preserve the pairwise geodesic distances (instead of Euclidean distances).

The algorithm also starts with identifying the neighborhood for each point. This results

in a weighted neighborhood graph G = (V , E), where the set of vertices V = {xj} are the

observed data, and the set of edges E = {eij} indicate the connection between two points. If

xi and xj is assigned as neighboring points (i.e. at least one of them is in the neighborhood

of the other), the edge eij has a weight wij = dp(xi,xj).

The next step is to approximate the pairwise geodesic distance based on the graph G.

A path P in the graph is defined as a sequence of vertices P = (v1, . . . , vm) such that for

all 1 ≤ i ≤ m− 1, vi and vi+1 are neighboring points. The length of the path P is defined

as

dG(P ) =
m−1∑
i=1

wi,i+1.

Non-neighboring vertices xv and xu are connected by any path Puv = (v1, . . . , vm) such

that v1 = xv and vm = xu. The graph distance (also called shortest path distance) between

xv and xu is defined as

dGuv = min
Puv

dG(Puv).
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The graph distance can be efficiently calculated by Floyd’s algorithm (Floyd [1962]) or

Dijkstra’s algorithm (Dijkstra [1959]). Then the geodesic distances are approximated by:

d̂Mij ≈


dp(xi,xj) if xi,xj are neighbors,

dGij if xi,xj are not neighbors.

The final step is to apply metric MDS to reconstruct the low-dimensional configuration

Ŷ, with the input being the pairwise geodesic distance matrix DG =
[
d̂Mij

]
n×n

.

It has been shown that with some regularity conditions, the graph distance converges

to the true geodesic distance as the sample size n → ∞ (Bernstein et al. [2002]). It

worth mentioning that ISOMAP additionally assumes convexity on the submanifold M.

This assumption is important for approximating the geodesic distances, but it appears to

be too restrictive in many instances (Donoho and Grimes [2003]). The performance of

ISOMAP is discussed in Donoho and Grimes [2002b], and several modified versions have

been developed in order to relax the model assumptions (Donoho and Grimes [2002a]; Silva

and Tenenbaum [2002]).

1.2.5 Kernel PCA and a unified framework

Kernel PCA (Schölkopf et al. [1997]) is another type of nonlinear dimensionality reduction

method. The Kernel PCA performs principal component analysis in a feature space which

is related to the original input space by some implicit nonlinear mapping. It is hoped

that the structure of the observed data can be unfolded as linear in this high-dimensional

feature space.

Assume that there exists a map Φ : Rp → H, transforming the observed data into a
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Hilbert space. Define an n× n matrix K by

Kij = 〈Φ(xi),Φ(xj)〉 ,

where 〈·, ·〉 is the inner product in the space H. The matrix K is positive semidefinite, and

it is called a kernel matrix.

The traditional PCA is then applied on the transformed data {Φ(x1), . . . ,Φ(xn)}. To

this end, we consider the eigendecomposition of the covariance operator:

CΦ = 1
n

n∑
j=1

Φ(xj)Φ(xj)′, (1.11)

assuming that ∑n
j=1 Φ(xj) = 0. The low-dimensional subspace is the space spanned by the

top q eigenvectors of CΦ. The eigenvalue λ and the corresponding eigenvector v of CΦ are

the solutions to the equation

CΦv = λv. (1.12)

Note that all eigenvectors v satisfying equation (1.12) and corresponding to eigenvalues

λ > 0 lie in the span of {Φ(x1), . . . ,Φ(xn)}. Thus, rewrite v as

v =
n∑
i=1

αi Φ(xi), (1.13)

and the problem becomes finding the λ and ααα = (α1, . . . , αn)′.

Substituting equations (1.11) and (1.13) into (1.12), we observe that λ and ααα satisfy

nλααα = Kααα. (1.14)

Then, the problem is equivalent to the eigendecomposition of the kernel K. The so-

called “kernel trick” allows one to obtain the low-dimensional representation Ŷn×q without

specifying the nonlinear map Φ:

Ŷ = AΛΛΛ 1
2 ,
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where ΛΛΛ is a diagonal matrix of the top q eigenvalues of K, and A = [ααα1, . . . ,αααq] is an n×q

matrix with αααj being the eigenvetor of K corresponding to the j-th largest eigenvalue.

Also note that, in equation (1.12) we implicitly assume that the transformed data

{Φ(x1), . . . ,Φ(xn)} have a zero mean. Thus, to validate the above derivation, the trans-

formed data should be centered. This can be guaranteed by an additional centering step

on the chosen kernel matrix K, i.e. instead of the chosen kernel K, the eigendecomposition

is performed on

K̃ = (I− ee′)K(I− ee′),

where e = n−1/2(1, . . . , 1)′ is the uniform vector of unit length.

Different choices of the kernel K will result in different low-dimensional representations.

It has been shown that many dimensionality reduction methods, such as MDS, ISOMAP,

LLE, Laplacian Eigenmap, and Diffusion maps, can all be described as special cases under

the framework of Kernel PCA (Ham et al. [2004]).

For example, ISOMAP is equivalent to Kernel PCA by choosing the kernel

K̃ = −1
2(I− ee′)DG(I− ee′),

where DG is the matrix of squared pairwise geodesic distances. LLE is equivalent to Kernel

PCA by choosing the kernel

K = λmaxI− (I− Ŵ)′(I− Ŵ),

K̃ = (I− ee′)K(I− ee′),

where Ŵ is the coefficients matrix in LLE algorithm, and λmax is the largest eigenvalue of

(I− Ŵ)′(I− Ŵ).

Kernel PCA provides the unified framework of dimensionality reduction, it also provides

an interesting insight. The kernel matrix K is essentially generalized dissimilarity measures
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between each pair of data points. If one believes that the hidden geometric structure of

the observed data can be characterized by the kernel, then different algorithms are simply

estimating this kernel in different ways.

1.3 Outline and contributions of the thesis

This thesis covers three topics concerning the robustness in dimension reduction.

In Chapter 2, we tackle the problem of how can we assess the success of a dimension

reduction method. The challenge comes from the fact that dimension reduction is stated

as an unsupervised problem. A local rank correlation measure is proposed to quantify

the performance of dimension reduction methods. The criterion for success in dimension

reduction is considered to be the preservation of local isometry in low-dimensional represen-

tations. The local rank correlation is easily interpretable, and robust against the presence

of outliers. An adjustment is available so that the proposed measure is applicable on the

family of output-normalized methods. It is demonstrated in some benchmark datasets

that the local rank correlation correctly reflects the performance of a given method. The

material in this chapter appears in our submitted paper Liang et al. [2015].

Robustness of any method can be considered against outliers, manifold misspecifica-

tion, or noise in the data. In Chapter 3 and onwards, we shall focus on robustness against

outliers. Specifically, in Chapter 3, the sensitivity analysis in dimension reduction is stud-

ied. Two types of influence measures are introduced as tools for studying the robustness

of dimension reduction methods. We first define traditional PCA as a functional map-

ping from the space of p-dimensional distributions to a q-dimensional linear subspace. An

empirical influence function of PCA is introduced as the Gâteaux derivative based on a

subspace distance measure. This result is generalized to Kernel PCA framework to cope
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with nonlinear dimension reduction methods. Then, a sample influence function is defined

as a supplement based on the local rank correlation from Chapter 2. Chapter 3 also dis-

cusses the graphical display strategies for visualizing the influence of a certain point on a

given method, and the potential application of influence measures in detecting influential

observations.

In Chapter 4, we propose a novel approach, called Performance-Weighted Bagging PCA,

to robustify traditional PCA from the perspective of model averaging. Unlike other robust

PCA methods which obtain the result from some modified loss functions, the proposed

Performance-Weighted Bagging PCA performs traditional PCA on a set of subsamples,

and uses the weighted average over subspaces produced by these subsamples. The weight-

ing scheme is the key to make the procedure robust. The local rank correlation from

Chapter 2 is a natural but not only candidate. The choice of weighting function is very

flexible, and can potentially connect to other robust PCA methods. It is computationally

convenient, and robust against outliers. In both simulation studies and surveillance video

data, Performance-Weighted Bagging PCA yields competitive results compared to some

traditional robust PCA methods.
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Chapter 2

Performance Analysis for

Dimensionality Reduction

2.1 Introduction

2.1.1 Review of previous work

How to assess and compare the performances of different dimension reduction methods

is a challenging issue, and this issue is not yet well explored in the literature. In the

supervised learning problems, such as regression or classification, a natural criterion to

measure the performance of a given method is defined as the difference between true values

and estimated values of response variable, for example prediction error or classification

error. However dimensionality reduction, as we state here, is a unsupervised learning

problem, which cannot directly use such a criterion to quantify the performance of different

dimension reduction algorithms. In order to complete the task, a difference type of goodness

31



measure is needed. This measure is expected to be

• easily interpretable,

• applicable to most algorithms and datasets,

• robust against the presence of outliers,

• robust against misspecification of tuning parameter of the measure.

Many dimension reduction algorithms obtain their results by optimizing given objective

functions. One way to assess the performance of a method is to check the value of the

corresponding objective function for the output Ŷ. It is only fair, however, to compare

different values of tuning parameters of one method, but not appropriate to compare the

performance of different methods.

A second possibility is via the residual variance. In PCA, MDS and ISOMAP, the

residual variance is usually used in determining the intrinsic dimensionality. It is defined

as

RV(X,Y) = 1− r2(DX ,DY ),

where DX and DY are the matrices of pairwise distances in X and Y, respectively, and

r is the standard linear correlation coefficient, taken over all entries of DX and DY . The

lower the residual variance, the better input data X are represented in the embedded

space. However, the major concern about this measure is that in nonlinear dimensionality

reduction, DX is difficult to determine, potentially resulting in an unfair comparison. For

example, if DX is obtained by the graph distance in ISOMAP, it would automatically

imply that ISOMAP is the best algorithm for all datasets.
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Another choice is to use the reconstruction error. Recall the problem setup in equation

(1.9). For a given method ψ : Rp → Rq, the reconstruction error can be written as

Errrec = E


n∑
j=1

(
xj − ψ−1(ψ(xj))

)2
 .

This requires the explicit form of the map ψ and its inverse, which is not available for

many nonlinear methods.

Recent research focuses on assessing dimensionality reduction methods from the geo-

metric point of view. In the problem setup in Section 1.2.2, we assumed that ϕ is a local

isometry. This assumption implies that the neighboring points in the input space should

be mapped to neighbors in the output space, and vice versa for the inverse mapping ψ.

This phenomenon can be called “topology preservation”. In order to quantify topology

preservation, the following notation will be useful.

Notation

For an observed high-dimensional dataset {x1, . . . ,xn} ⊂ M and a low-dimensional

representation {ŷ1, . . . , ŷn}, we have the following notation:

• ‖·‖: the Euclidean norm.

dM(·, ·): the geodesic distance on the Riemannian manifold M.

• |A|: the cardinality of the set A.

• s
ij

: the rank of ‖xi − xj‖ in ascending order, i.e.

s
ij

= |{k : ‖xi − xk‖ ≤ ‖xi − xj‖ , 1 ≤ k ≤ n}| .

rij: the rank of ‖yi − yj‖ in ascending order.

r̂
ij

: the rank of ‖ŷi − ŷj‖ in ascending order.
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• N I

J
(i): the index set of J-nearest neighbors of xi, that is N I

J
(i) =

{
j | 1 ≤ s

ij
≤ J

}
.

N
O

J
(i): the index set of J-nearest neighbors of yi, that is NO

J
(i) =

{
j|1 ≤ r̂

ij
≤ J

}
.

• N
J
(i) = N

I

J
(i)⋂NO

J
(i).

N ∗
J
(i) = N

I

J
(i)⋃NO

J
(i).

Early attempts to quantify the topology preservation of a dimension reduction method

were made in the study of Self-Organizing Maps [Kohonen, 1982]. In order to measure the

performance of Self-Organizing Maps, measures such as the topographic product [Bauer and

Pawelzik, 1992], topographic function [Villmann et al., 1997] and quantization error [Kaski

and Lagus, 1996] have been developed. Advantages and disadvantages of each method are

discussed in detail by Pölzlbauer [Pölzlbauer, 2004].

More recently, a few rank-based measures have been proposed, with broader applica-

bility. These include mean relative rank errors [Lee and Verleysen, 2007], trustworthiness

and continuity [Venna and Kaski, 2001], local continuity meta criterion [Chen and Buja,

2009], and the agreement rate metric [France and Carroll, 2007].

Trustworthiness and continuity (T&C) measures [Venna and Kaski, 2001] are defined

by

T
J

= 1− 1
G
J

n∑
i=1

∑
j∈NO

J
(i)\NI

J
(i)

(s
ij
− J),

C
J

= 1− 1
G
J

n∑
i=1

∑
j∈NI

J
(i)\NO

J
(i)

(r̂
ij
− J),

where

G
J

=


nJ(2n−3J−1)

2 , if J < n/2
n(n−J)(n−J−1)

2 , if J ≥ n/2
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is the normalizing factor.

The mean relative rank errors (MRREs) [Lee and Verleysen, 2007] are defined by

M
O

J
= 1− 1

H
J

n∑
i=1

∑
j∈NO

J
(i)

∣∣∣s
ij
− r̂

ij

∣∣∣
s
ij

,

M
I

J
= 1− 1

H
J

n∑
i=1

∑
j∈NI

J
(i)

∣∣∣s
ij
− r̂

ij

∣∣∣
r̂
ij

,

where H
J

= n
∑J
m=1

|n−2m+1|
m

is the normalizing factor.

Both T&C and MRREs are restricted to the interval [0, 1]. Furthermore, higher values

of these measures are desirable properties of algorithms. These two measures try to quantify

distinguishably two types of topological errors that occur during the dimension reduction

procedures,

(i) non-neighboring points in Rp are mapped by ψ̂ to be neighboring points in Rq,

(ii) neighboring points in Rp are mapped by ψ̂ to be non-neighboring points in Rq.

These two types of errors create a discrepancy between nearest neighbor ranks in the

input and output spaces. Therefore they can be measured by calculating the change of

nearest neighbor ranks.

The agreement rate metric (AR) [France and Carroll, 2007] and local continuity meta

criterion (LCMC) [Chen and Buja, 2009] are defined similarly:

AR
J

= 1
n

n∑
i=1

∣∣∣NO

J
(i) ∩N I

J
(i)
∣∣∣

J
,

LCMC
J

= 1
n

n∑
i=1


∣∣∣NO

J
(i) ∩N I

J
(i)
∣∣∣

J
− J

n− 1

 .
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As can be seen, AR
J

is the average size of the overlap of J-nearest neighborhoods

between the low-dimensional reconstruction and the original data. The adjustment in

LCMC
J

accounts for the expected random overlap. Lee and Verleysen [2009] proposed a

co-ranking framework, which includes MRREs, T& C, and LCMC as special cases. Lueks

et al. [2011] discussed the co-ranking framework in detail, and provided an extension of

the co-ranking framework by introducing an extra tuning parameter to weight rank errors.

Besides the topology preservation measures, Goldberg and Ritov [2009] proposed a Pro-

crustes measure that evaluates how well each local neighborhood matches its corresponding

embedding under an optimal linear transformation. It is defined as

R(X,Y) = 1
n

n∑
i=1

∑
j∈NI

J
(i)

‖xi −Aiyi − bi‖2 .

The rotation matrix Ai is a columns-orthogonal p × q matrix and the translation vector

bi is p× 1 vector. They are obtained by solving

arg min
A′A=I,b∈Rq


∑

j∈NI

J
(i)

‖xi −Ayi − b‖2

 ,

where I is the p× p identity matrix.

In this definition, R(X,Y) measures the average local reconstruction error in each

neighborhood. A lower value of R(X,Y) indicates a better low-dimensional representation

Ŷ. However, as pointed out in Goldberg and Ritov [2009], a main drawback of R(X,Y) is

that it focuses only on the preservation of distances between neighboring points in X. If

more distant points in X are mapped as neighbors in Y, a relatively low value of R(X,Y)

is obtained as long as distances between neighboring points in X are generally preserved.
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2.1.2 Room for improvement

Although existing topology preservation measures perform reasonably well in many cases,

there are certain circumstances which suggest that there is still room for new goodness

measures.

The strength of T&C and MRREs is in their ability to distinguish two sorts of undesired

errors discussed above. However, as we shall see in Section 2.4, it is hard to calibrate the

values of these measures with our visual intuition. There exist examples with similar values

for these measures for which some are visually more successful than the others. In addition,

as stated in Lueks et al. [2011], in the co-ranking matrix framework, the interpretation

of the tuning parameter J is unintuitive, and the evaluation depends dramatically on the

choice of J . In the extension of the co-ranking framework (Lueks et al. [2011]), an additional

tuning parameter is introduced to achieve a clearer interpretation of tuning parameters.

However, the example in the paper shows that the quality assessment still depends heavily

on the choice of two tuning parameters, and how to choose values for parameters is not

discussed.

Compared to T&C and MRREs, the values of AR and LCMC have a more intuitive

interpretation. However, as stated in Lee and Verleysen [2009], AR and LCMC provide less

information about the topology preservation in each neighborhood, as illustrated in Figure

2.1. In this plot, 6-nearest neighbors of x1 are marked with squares, and 6-nearest neighbors

of x2 are marked with diamonds. If we change the neighborhood of x1 by interchanging

positions of x3 and x4, the values of AR and LCMC in the neighborhood of x1 remain the

same. This change can only be captured in the neighborhood of x2.

In addition, a common disadvantage shared by all aforementioned measures arises when

we evaluate the performance of output normalized methods, such as Local Linear Embed-
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Figure 2.1: Illustration of AR and LCMC.

ding (Roweis and Saul [2000]), Laplacian Eigenmap (Belkin and Niyogi [2001]), and Local

Tangent Space Alignment (Zhang and Zha [2005]). Normalization of the output distorts

the structure of neighborhoods, and the topological structure will not typically be pre-

served by the output configuration (Sha and Saul [2005]). As shown in Figure 2.2, the top

panels show the configurations before and after normalization. The bottom panels show

the neighborhood of the i-th case in two configurations, respectively. Neighboring cases

of xi are marked with squares, and neighboring cases of yi are marked with diamonds.
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As can be seen, although two configurations seem to be very similar apart from the fact

that the normalization shortens the horizontal distances, it leads to the change of nearest

neighbors. Therefore the topology preservation measures typically provide low values for

an output normalized method. The Procrustes measure also has difficulties in evaluating

output-normalized-methods for the same reason (Goldberg and Ritov [2009]). Goldberg

et al. [2008] have pointed out that the low-dimensional configuration Ŷ from an output-

normalized-method can only preserve the topological structure of the input data X up to

an affine transformation. Therefore, if we want to use topology preservation measures to

evaluate the performance of output-normalized-methods, an extra adjustment is needed to

recover such an affine transformation.

2.2 Naive measures

We first introduce two naive measures, and illustrate why these two measures are not good

ways to quantify the performance of dimension reduction methods.

In addition to assumptions in the problem setup (1.9), we assume that for any point

xi, there exists a set N(i) of neighboring cases such that the nearest neighbor ranks of the

latent low-dimensional data Y are preserved in X, i.e.

r
ij

= s
ij
.

Therefore, a low-dimensional representation Ŷ can be said to have rank fidelity if Ŷ

also preserves such ranks, i.e.

r̂
ij

= s
ij
.

Two types of errors could occur due to the mapping ψ̂.
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Figure 2.2: Illustration of output normalized methods.
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• Output error: The changes of nearest neighbor ranks r̂
ij

from the output space to

the input space.

• Input error: The changes of nearest neighbor ranks s
ij

from the input space to the

output space.

These two types of errors can be measured by the local rank correlation between the

nearest neighbor distances in the input and output spaces. The question is that among all

cases in corresponding neighborhoods N I
J

and NO
J

, which cases shall we compare?

One possible way is to consider cases in the union of corresponding neighborhoods. For

all j in N ∗
J

(i) = N I
J

⋃
NO
J

, define the adjusted ranks

S
ij

=


s
ij
, j ∈ N I

J
(i)⋂NO

J
(i)

γ+J+1
2 , j /∈ N I

J
(i)⋂NO

J
(i)

R̂
ij

=


r̂
ij
, j ∈ N I

J (i)⋂NO
J

(i)
γ+J+1

2 , j /∈ N I
J (i)⋂NO

J
(i)

where γ =
∣∣∣N I

J
(i)⋃NO

J
(i)
∣∣∣. Then the topology preservation in the neighborhood of the

i-th case is quantified by Spearman’s rank correlation within N ∗
J

(i),

ρ
J
(i,X, Ŷ) = 1−

∑
j∈N ∗

J
(i)

{(
S
ij
− R̂

ij

)2
}

1
6(γ3 − γ) . (2.1)

A higher value of ρ
J
(i) indicates a better resemblance between the neighborhood N I

J
(i)

and NO
J

(i). The drawback about this measure is that it does not behave as a correlation.

When the output Ŷ is generated independently from X, we can show that the expected

value of the local Spearman correlation is not zero, which makes its interpretation counter-

intuitive.
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Another possible choice is to only consider cases in the intersection of corresponding

neighborhood. For all j in N I
J

⋂
NO
J

, define the adjusted rank

δ
ij

=
∣∣∣{k ∈ N I

J

⋂
NO
J

: ‖xi − xk‖ ≤ ‖xi − xj‖
}∣∣∣

δ̂
ij

=
∣∣∣{k ∈ N I

J

⋂
NO
J

: ‖ŷi − ŷk‖ ≤ ‖ŷi − ŷj‖
}∣∣∣ (2.2)

The topology preservation in the neighborhood of the i-th case is quantified by Kendall’s

rank correlation within N I
J

⋂
NO
J

,

τ
J
(i,X, Ŷ) =



∑
j<k∈NI

J

⋂
NO
J

sign{(δij−δik )(δ̂ij−δ̂ik )}
1
2 ζ(ζ−1) , ζ > 1

0, ζ ≤ 1
(2.3)

where ζ =
∣∣∣N I

J

⋂
NO
J

∣∣∣. This measure does behave as a correlation, i.e. when the output

Ŷ are generated independently from input X, E(τ
J
(i)) = 0 for all i. However, it fails to

detect the distortion of topology when outsiders enter the neighborhood while ranks of

original neighbors remains the same. As illustrated in Figure 2.3, applying PCA on the

V-shaped input data could result in a complete overlap of left and right wings. However,

it can be easily seen that the ranking within N I
J

⋂
NO
J

for all cases does not change and

therefore leads to a value of τ
J

close to 1, which is against our visual intuition.

These two naive measures are not ideal because measure (2.1) tries to combine the

output error and input error, while measure (2.3) considers only the rank discrepancy

between N I
J
(i) and NO

J
(i) but ignores the discrepancy in overlapping.
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Figure 2.3: Failure of the naive measure.

2.3 Local rank correlation

2.3.1 Definition

In this section, we use local rank correlations to define a family of performance measures

that quantify the output and input error separately. For all j in N I
J (i)⋃NO

J (i), define the

adjusted rank

S
ij

=


δ
ij
, j ∈ N I

J (i)⋂NO
J (i)

ζ+J+1
2 , j /∈ N I

J (i)⋂NO
J (i)

(2.4)

R̂
ij

=


δ̂
ij
, j ∈ N I

J (i)⋂NO
J (i)

ζ+J+1
2 , j /∈ N I

J (i)⋂NO
J (i)

(2.5)
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where ζ =
∣∣∣N I

J (i)⋂NO
J (i)

∣∣∣, δ
ij

and δ̂
ij

are defined in (2.2). The adjustment in (2.4) and

(2.5) is to make the ranks comparisons local. Those cases that are not in N I
J (i) will be

considered as rank tied in the input space, and vice versa.

To measure the output error, we can define local rank correlation measures in the

neighborhood of each data point in the output space.

Definition 2.1. Local rank correlation for output error : Given an input dataset X and a

low-dimensional representation Ŷ, define the local Spearman correlation at the i-th case

as

ρO
J

(i,X, Ŷ) = 1−

∑
j∈NO

J (i)

{(
S
ij
− r̂

ij

)2
}

+ U

1
6(J3 − J) , (2.6)

where U = [(J − ζ)3 − (J − ζ)] /12 is the adjustment made for the appearance of ties

(Kendall [1948]). We can also define a local Kendall correlation as

τO
J

(i,X,Y) =

∑
j<k∈NO

J (i)
sign

{
[S

ij
− S

ik
] · (r̂

ij
− r̂

ik
)
}

1
2J(J − 1) . (2.7)

For a given input dataset X and a given dimensionality reduction method ψ̂ : X 7→

ψ̂(X), an overall goodness measure can be defined by averaging the local correlation over

all cases in the sample.

GO
J

(ψ̂,X) = 1
n

n∑
i=1

ΓOJ
(
i,X, ψ̂(X)

)
, (2.8)

where ΓOJ can be either ρO
J

, or τO
J

.

The local rank correlations ρO
J

(i) or τO
J

(i) measure the similarity, in terms of output

errors, between the corresponding neighborhoods, N I
J (i) and NO

J (i). Similarly, we can

define local rank correlations to measure the input error.
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Definition 2.2. Local rank correlation for input error : Given an input dataset X and

a low-dimensional representation Ŷ, the local Spearman correlation and local Kendall

correaltion for the input error at the i-th case are defined as

ρI
J
(i,X, Ŷ) = 1−

∑
j∈NI

J (i)

{(
s
ij
− R̂

ij

)2
}

+ U

1
6(J3 − J) , (2.9)

τ I
J
(i,X, Ŷ) =

∑
j<k∈NI

J (i)
sign

{
[R̂

ij
− R̂

ik
] · (s

ij
− s

ik
)
}

1
2J(J − 1) . (2.10)

The overall goodness measure of a given method ψ̂ and input data X is defined as

GI
J
(ψ̂,X) = 1

n

n∑
i=1

ΓIJ
(
i,X, ψ̂(X)

)
, (2.11)

where ΓIJ can be either ρI
J
, or τ I

J
.

2.3.2 Remark

The proposed local rank correlations have some nice properties. The higher values of local

measures ΓI
J
(i) and ΓO

J
(i) indicate a higher degree of similarity between the original data

and the low-dimensional configuration in the neighborhood of case i, while values close to

0, or negative values indicate that low-dimensional configuration fails to preserve the local

structure of the input data in certain neighborhoods. Two special situations are:

• ΓI
J
(i) = ΓO

J
(i) = 1 if all the ranking relationships of the observed data X in the

neighborhood of case i are preserved exactly in the corresponding neighborhood in

the output data Ŷ.

• The expected values E
[

ΓI
J
(i)
]

and E
[

ΓO
J

(i)
]

are both zero, for any case i, where

the output Ŷ is generated by an algorithm which is stochastically independent of the

input data X.
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These two facts hold for both local Spearman and Kendall correlations. Notice that the

second situation is worse than we can have in practice. Moreover, the local measures

ΓI
J
(i) and ΓO

J
(i), can achieve negative values for some i. Nevertheless, the overall goodness

measures GO
J

and GI
J
, for sensible algorithms, will take values between 0 and 1. Note that,

the ranks and rank correlations are being used to achieve robustness against the presence

of outliers. The distributions of both local Spearman and Kendall correlations when X

and Ŷ are independent are derived in Appendix B.

The computational complexity is also of interest. To calculate the goodness measure,

we first construct the J-nearest neighbor graph for both X and Ŷ. This step scales as

O(n2p). In the next step, we calculate the local rank correlation in each neighborhood.

This scales (in each neighborhood) as O(J) for Spearman ρ
J

and O(J log J) for Kendall

τ
J
. Therefore, since J ≤ n, the total complexity of calculating GI

J
(or GO

J
) for ρ

J
scales as

O(n2p). The total complexity of calculating GI
J

(or GO
J

) for τ
J

scales as O(n2p+nJ log J).

To use the proposed goodness measure G
J

for assessing the performance of a dimension

reduction method, four local measures can be chosen. We may choose either ΓI
J

or ΓO
J

,

and we may also choose to use either Spearman ρ
J

or Kendall τ
J
. The measures ΓI

J
and

ΓO
J

quantify different types of errors in dimension reduction. Although these two types of

errors usually occur together, having both GI
J

and GO
J

provide more complete information

about the performance of a given method.

2.3.3 Choice of J

In the proposed measures, J is a user-specified tuning parameter, which specifies the neigh-

borhood size for local rank comparisons. Notice that some nonlinear dimensionality re-

duction methods start with a K-nearest neighbors graph, and K is also a user-specified
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parameter. The choice of J in the local rank correlation does not have to depend on the

value of K. Ideally, J needs to be selected small enough that in each neighborhood the

underlying manifold is approximately Euclidean. One strategy to choose J is to plot J

versus G
J
(ψ̂,X) as shown for example in Figure 2.7 and Figure 2.8. A value of J which

is chosen from an interval over which G
J
(ψ̂,X) is stable, is a reasonable candidate for the

algorithm.

2.3.4 Adjustments for output-normalized methods

As mentioned in Section 2.1.2, normalizing the output Ŷ of a dimension reduction method

will distort the structure of neighborhoods, so that the topological structure will not typ-

ically be preserved by the output configuration. It is not adequate to check the topology

preservation between X and ψ̂(X) for those output-normalized methods. Instead, we will

look for a transformation matrix Âq×q, and assess the performances of output-normalized

methods by an adjusted measure

GA
J (ψ̂,X) = 1

n

n∑
i=1

Γ
J
(i,X, ψ̂A(X)) , (2.12)

where ψ̂A(X) = ψ̂(X) · Â, and Γ
J

can be ρI
J
, ρO

J
or τ I

J
, τO

J
.

It is hoped that after the affine transformation Â, ψ̂A(X) can preserve the proximities

between neighboring points as much as possible, i.e. Â will minimize the least squared

error
n∑
i

∑
j∈NI

J
(i)

[(xi − xj)′(xi − xj)− (yi − yj)′A′A(yi − yj)]2 ,

where xi and yi be the corresponding point in the original data and in the output of the

algorithm ψ̂, respectively.
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However, to make GA
J

(ψ̂,X) robust against outlying points, we will find the transfor-

mation matrix Â that minimizes the least squared error over an outlier free subset I, so

that

Â = arg min
A∈Cq

∑
i∈I

∑
j∈NI

J
(i)

[(xi − xj)′(xi − xj)− (yi − yj)′A′A(yi − yj)]2 . (2.13)

The detailed procedure to select the subset I and solve equation (2.13) is provided in

Appendix A. The complexity of the procedure scales as O(n2).

2.4 Numerical experiments

In this section, we conduct numerical examples on three benchmark datasets to illustrate

the usefulness of the local rank correlation.

Example 2.1. The Swiss roll and the S-curve: In this experiment, n = 1000 data points

are generated randomly from two manifolds, the Swiss roll and the S-curve. They are both

2-dimensional manifolds embedded into R3 (Figure 2.4). The data points are colored to

help readers recognize the structure of the manifolds. Among many dimension reduction

methods, we choose four diverse methods, namely ISOMAP, LTSA, MVU, and PCA.

Figure 2.5 and Figure 2.6 show four output configurations in R2 from these methods for

the Swiss roll and the S-curve, respectively. We evaluate the performance of four methods

by the local rank correlations GI
J
(ψ̂,X) and GO

J
(ψ̂,X) with both Spearman ρ

J
and Kendall

τ
J
. Notice that LTSA is an output-normalized method, and therefore, its performance is

assessed by the adjusted measures (2.12). All details about tuning and computation can

be found in Appendix A.

The goodness measures are calculated under different values of J . Figure 2.7 and Figure
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2.8 show the values of G
J
(ψ̂,X) for each method as functions of J . Figure 2.9 and Figure

2.10 show the histogram of ρO
J

and ρI
J

in the Swiss roll data.
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Figure 2.4: The Swiss roll and the S-curve

As can be seen from Figure 2.5 and Figure 2.6, in the 2-dimensional configurations

from PCA in both the Swiss roll and the S-curve, the points with different colors are

mixed together, because PCA fails to recover the nonlinear structure of the embedded data.

Among three nonlinear methods, the configurations from MVU preserve the structure to

some extent. Points with different colors are reasonably separated in the middle, but

they mix a little at boundaries. Both LTSA and ISOMAP preserve the color level well,

indicating a better embedding than MVU and PCA. These facts are all correctly reflected

by the four goodness measures G
J
(ψ̂,X) in Figure 2.7 and Figure 2.8. Also, both figures

show that all the four measures are stable within a reasonable range of J .

We also compare the local rank correlation (LRC) with the goodness measures, MRREs,

T&C, and LCMC (all with J = 6) described in Section 2.1.1. The results are reported in
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Figure 2.5: Two-dimensional output configurations of different methods for the Swiss roll

Table 2.1 and Table 2.2.

We can see from Table 2.1 and Table 2.2, MRREs and T& C tend to have high values

for all methods with little separation. This makes them difficult for users to interpret. The

measure LCMC has better separation on different algorithms. However, in the Swiss roll

(Table 2.1), its value cannot correctly reflect the performance of LTSA, because the output

of LTSA has a normalization constraint, which only preserves the neighborhood geometry

of the input data up to an affine transformation.
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Figure 2.6: Low-dimensional configurations of different methods for S-curve

Example 2.2. Sculpture face images: The sculpture face dataset (Tenenbaum et al. [2000])

includes 698 images, each image having 64 × 64 pixels of a sculpture face while varying

three free parameters: left-right pose, up-down pose, and lighting direction. So the data

are originally in R64×64. We apply ISOMAP, LTSA, MVU, and PCA on the data to obtain

2-dimensional representations. Figure 2.11 shows 2-dimensional configurations from these

four different methods. In the figure, each point represents an image and we have selected

12 images for display. A common pattern appears in all three nonlinear methods (ISOMAP,

LTSA, MVU), namely that the horizontal axis roughly represents the left-right pose, and
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Figure 2.7: Local Spearman correlation as functions of J in the Swiss roll

the vertical axis represents the up-down pose. The linear method PCA does not show any

clear pattern.

We use local rank correlations, with both ρ
J

and τ
J
, to assess the performance of

the four different methods. Figure 2.12 shows the goodness measures as functions of J .

The comparisons between local rank correlation, MRREs, T& C, and LCMC (all with
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Figure 2.8: Local Spearman correlation as functions of J in the S-curve

J = 6), are summarized in Table 2.3. As can be seen, local rank correlation suggests that

ISOMAP and MVU in this dataset outperform LTSA, and all three nonlinear methods,

ISOMAP, MVU and LTSA, outperform the linear method PCA. This result coincides with

my personal visual intuition from Figure 2.11.
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Figure 2.9: Histogram of ρO
J

(J = 6) in the Swiss roll

2.5 Choosing tuning parameters for algorithms

In addition to assessing the performance of dimension reduction methods, local rank corre-

lations can be used in some other issues in dimension reduction. In this section, we discuss

how can we use local rank correlations to help choosing tuning parameters for dimension re-

duction algorithms. Many nonlinear dimension reduction methods start with constructing

the K-nearest neighbor graph, and the neighborhood size K is usually a tuning parameter
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Figure 2.10: Histogram of ρI
J

(J = 6) in the Swiss roll

in the algorithm. The success of graph-based nonlinear dimensionality reduction methods

depends heavily on the selection of K. If K is chosen to be too small, the local geometric

structure cannot be accurately represented in the neighborhood graph. On the other hand,

if K is chosen to be too large, the K-nearest neighbor graph will contain shortcuts, i.e.

two points will be mistakenly considered as neighbors when they are in fact far away on

the manifold (See Figure 2.13).

This problem often appears in noisy data, and will cause a serious damage on the
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Methods
LRC MRREs T & C

LCMC
ρI
J

ρO
J

τ I
J

τO
J

MO MI T C

ISOMAP 0.787 0.782 0.701 0.698 0.999 0.999 0.999 0.999 0.894

LTSA 0.988 0.978 0.981 0.975 0.999 0.998 0.993 0.998 0.609

MVU 0.703 0.623 0.653 0.578 0.999 0.999 0.996 0.999 0.828

PCA 0.594 0.198 0.483 0.171 0.998 0.997 0.883 0.995 0.415

Table 2.1: Assessing ISOMAP, LTSA, MVU, PCA in Swiss Roll data (J = 6)

Methods
LRC MRREs T & C

LCMC
ρI
J

ρO
J

τ I
J

τO
J

MO MI T C

ISOMAP 0.816 0.804 0.763 0.803 0.999 0.999 1.000 1.000 0.891

LTSA 0.994 0.993 0.983 0.979 0.999 0.999 0.999 0.999 0.867

MVU 0.721 0.646 0.695 0.617 0.999 0.998 0.993 0.997 0.754

PCA 0.673 0.375 0.388 0.369 0.998 0.998 0.963 0.998 0.584

Table 2.2: Assessing ISOMAP, LTSA, MVU, PCA in S-curve data (J = 6)

performance of graph-based methods Saul and Roweis [2003]; Chen and Buja [2009]. Sev-

eral methods have been proposed in order to select the optimal value of K. For example

Shao and Wan [2012] also proposed a strategy to detect the appearance of the shortcuts

via local PCA reconstruction error, and used the Bayesian Information Criterion to ob-

tain the optimal value of K. Another method is proposed in Zhang et al. [2012] that it

adaptively selects the neighborhood size Ki for each point. In this method, the manifold

is parameterized and then the first-order Taylor expansion is applied at each input data

point to analyze the relationship between neighboring points, based on which a criterion is
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Figure 2.11: 2-dimensional configurations from ISOMAP, LTSA, and PCA for sculpture

face image

defined to help in identifying the neighborhood. In Pavan and Pelillo [2007] and Yang and

Latecki [2011], authors introduced an additional sparsification parameter and used clus-

tering techniques to select the dominant subset of the K-nearest neighbors. Other related

work include Shao et al. [2007], Mekuz and Tsotsos [2006], Premachandran and Kakarala
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Figure 2.12: Local rank correlation as functions of J in sculpture face image

[2013] and Kouropteva et al. [2002]. However, there is yet no standard way of selecting the

optimal value of K and in practice, K is usually chosen by experience or trial and error.

The local rank correlation provides us a reliable criterion in choosing K. For a given

input dataset and a dimension reduction algorithm, we may apply the algorithm over a

range of values of K, and calculate G
J
(ψ̂,X) as a function of K (as shown in Figure 2.15).
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Methods
LRC MRREs T & C

LCMC
ρI
J

ρO
J

τ I
J

τO
J

MO MI T C

ISOMAP 0.379 0.116 0.301 0.096 0.997 0.995 0.825 0.991 0.394

LTSA 0.284 0.158 0.208 0.128 0.997 0.993 0.898 0.979 0.348

MVU 0.338 0.149 0.287 0.128 0.997 0.994 0.847 0.987 0.391

PCA 0.189 0.028 0.162 0.017 0.997 0.989 0.905 0.960 0.233

Table 2.3: Assessing ISOMAP, LTSA, MVU, PCA in sculpture face image data (J = 6)
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Figure 2.13: Presence of shortcuts in K-NN graph

Since G
J
(ψ̂,X) measures the performance of ψ̂, we can pick the K that corresponds to the

largest G
J
(ψ̂,X).

Example 2.3. Selecting neighborhood size K in ISOMAP: Here we consider the perfor-
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mance of ISOMAP on the Swiss roll manifold. We demonstrate that it is risky to make a

desultory choice of K, and how local rank correlation can solve this problem.

The data are generated randomly on the Swiss roll manifold with sample size n = 1500.

The ISOMAP algorithm is applied on the data with different values of K, and Figure 2.14

shows the respective low-dimensional configurations. In each case, the performance is

evaluated by the local rank correlation and displayed as a function of K in Figure 2.15.
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Figure 2.14: Low-dimensional configurations with different values of K

In Figure 2.15, the left panel shows GI
J

and GO
J

with Spearman ρ
J
, and the right panel

shows GI
J

and GO
J

with Kendall τ
J
. As can be easily noticed in Figure 2.14, the performance

of ISOMAP gets better as K increases from K = 7 to K = 13. A crucial change has
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Figure 2.15: Local rank correlation as a function of K (J = 6)

happened at points K = 13 and K = 14. In these two situations, the neighborhood sizes

only differ by 1 but the corresponding configurations suddenly become unsatisfactory (at

K = 14). The fact is correctly captured by the local rank correlation and reflected in

Figure 2.15. In all four measures, we observe a peak at K = 13, and a steep drop at

K = 14.

The phenomenon is certainly not limited to this example and to ISOMAP. For nonlinear

methods which contain the neighborhood size K as a tuning parameter, it is often desirable

to choose a relatively large value of K to get a better embedding. On the other hand, a

too large K will invalidate the procedure. The local rank correlations can be good criteria

for users to select a good value of the parameter K. If an algorithm contains other tuning

parameters, this idea can be also applied.
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2.6 Estimating the intrinsic dimensionality of a man-

ifold

Another key parameter in dimension reduction algorithms is the intrinsic dimensionality

q. Previous work on intrinsic dimensionality estimation includes two main categories,

eigenvalue methods and geometric methods. Eigenvalue methods are based on PCA or the

nonlinear generalization of PCA. The intrinsic dimension is determined by thresholding

the eigenvalues. Methods in this category includes Fukunaga and Olsen [1971]; Bruske

and Sommer [1998]; Verveer and Duin [1995]. Geometric methods are based on fractal

dimensions. Methods in this category includes Levina and Bickel [2004]; Grassberger and

Procaccia [2004]; Camastra and Vinciarelli [2002]; Kégl [2002]. A detailed review can be

found in Lee and Verleysen [2007].

The local rank correlation can be also applied to help in estimating the intrinsic di-

mensionality. The idea is that if the dimensionality of the low-dimensional representation

is chosen to be too small, important features of the original data might be “collapsed”

onto the same dimensions so that the topological structure cannot be preserved very well.

In this case, the local rank correlation, as a function of q, should rapidly increase as q

increases. On the other hand, when all important dimensions have been chosen, the re-

maining dimensions are assumed to contain only noise. Therefore the local rank correlation

would become stable once we achieve a sufficiently large q.

In practice, for a given dataset X and a chosen method ψ̂, one may apply the method

with different values of q, and evaluate the performances of ψ̂ by G
J
(ψ̂,X). We estimate

the intrinsic dimensionality by plotting G
J
(ψ̂,X) as a function of q, and choosing the value

q, beyond which G
J
(ψ̂,X) becomes stable.
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Example 2.4. Estimating the intrinsic dimensionality of the sculpture face data: The

sculpture face images are recorded as 64 × 64 vectors. Since images are taken from the

same sculpture face by varying three parameters, i.e. left-right pose, up-down pose, and

lighting direction, the intrinsic dimensionality of the manifold on which these data vectors

lie is three. We apply the ISOMAP algorithm with different values of q having chosen the

neighborhood size K = 8. The local rank correlations are calculated as functions of q. In

Figure 2.16, the left panel shows GI
J

and GO
J

with Spearman ρ
J
, and the right panel shows

GI
J

and GO
J

with Kendall τ
J
. As can be seen, all four curves become stable beyond q = 3,

based on which we estimate the intrinsic dimensionality to be q̂ = 3. Note that in this

example, the choice of the tuning parameter K in ISOMAP clearly affects the estimate.

For this procedure to work well, a reasonably good choice of K is needed.
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Figure 2.16: Local rank correlation as a function of dimensionality q (J = 6)
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2.7 Discussion and future work

In this chapter, we developed a local rank correlation measure which quantifies the per-

formance of dimension reduction methods by assessing the preservation of the topology

in low-dimensional representations. An adjustment is available so that the measure can

correctly assess the performance of the output-normalized methods. The local rank corre-

lation is easily interpretable, and robust against the presence of outliers. The distribution

of both local Spearman and Kendall correlation when X and Ŷ are independent were de-

veloped. A potential future research topic is to further investigate properties of local rank

correlations. In addition to the chosen method, values of local rank correlations generally

depend on the dimension p and the intrinsic dimension q of X, and also depend on how

noisy X are (can be represented by the variance of random error σ). Two extreme values

0 and 1 are not always achievable in any case. It is of our interest to get upper or lower

bounds of local rank correlations given certain p, q and σ, and that would be a benchmark

for us to better interpret values of local rank correlations. Besides, a more challenging task

is to derive general distributions of local rank correlations, based on which we can develop

a goodness-of-fit test of dimension reduction methods.
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Chapter 3

Sensitivity Analysis in Dimension

Reduction

3.1 Review of related work

Generally, the purpose of the sensitivity analysis in the study of robustness is two-fold.

The first goal is to understand the robustness of a statistical method, and the second goal

is to flag potential outliers. Within the dimensional reduction framework, the sensitivity

analysis first appeared in the study of principal component analysis. The major tool in

studying the robustness of PCA is the influence function introduced by Hampel [1968].

The influence function of PCA has been developed from two different perspectives. Since

PCA and its robust variants are usually based on the eigendecomposition of some scatter

matrix, the robustness of PCA can be measured via the robustness of scatter matrix

estimators. The first type of influence functions for PCA (or variants of PCA) are defined

on top q eigenvalues λi and eigenvectors e
i

of the corresponding scatter matrix estimator.
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Critchley [1985] derived influence functions for eigenvalues and eigenvectors of sample

covariance matrix, and treated them as influence measures for traditional PCA. Three

sample versions of influence measures are also given in that paper. Influence functions

for eigenvalues and eigenvectors of the sample correlation matrix have been derived in

Calder [1986], and considered as influence measures of PCA. Influence functions of robust

PCA based on robust scatter matrix estimators have also been developed, including Huber

[1981] for M-estimator, Lopuhaa [1989, 1999] for S-estimator and Croux and Haesbroeck

[1999] for MCD-estimator. Croux and Haesbroeck [2000] provided a general definition of

influence functions for any robust PCA based on some consistent and affine equivariant

scatter matrix estimate. Huang et al. [2009] and Debruyne et al. [2010] generalized this

type of influence functions into Kernel PCA framework. Notice that in all aforementioned

work the influence function of each eigenvalue is defined as a real-valued function, and of

each eigenvector is defined as a vector-valued function. A main drawback of this type of

influence functions is that one needs to check totally 2q functions for all top eigenvalues

and eigenvectors to understand the sensitivity of a method, and vector-valued functions

can be hard to interpret.

Another type of influence functions measure the robustness of PCA via the perturbation

of the subspace spanned by top eigenvectors of scatter matrix estimators. In this type,

instead of defining several influence functions for each eigenvalue and eigenvector, only one

influence function is defined on the resulting subspace. Tanaka [1988]; Tanaka and Castaño-

Tostado [1990] considered the projection matrix P associated with the PCA subspace. Both

theoretical and sample versions of influence functions of P are defined for PCA, which are

matrix-valued measures. This type of matrix-valued influence functions are generalized to

Kernel PCA framework by Yamanishi and Tanaka [2006]. A similar definition is proposed

by Bénasséni [1990]; Castaão-Tostado and Tanaka [1990]; Prendergast et al. [2008]. A real-
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valued influence function is defined based on the RV-coefficient (Escoufier [1973]), which

is a multivariate generalization of the squared correlation coefficient, between the original

subspace and the perturbed subspace.

In Section 3.2.2, we re-derive the influence measure in Prendergast et al. [2008] from the

perspective of subspace distances. In Section 3.2.3, we will extend these results to Kernel

PCA framework to include nonlinear dimension reduction methods. In Section 3.2.4, we

will discuss the application of proposed influence measures in visualizing the sensitivity of

a method, and detecting potential influential observations. In Section 3.3 we will define a

sample influence function based on local rank correlations.

3.2 Empirical influence function

3.2.1 Subspaces and distance measures

We first define the subspaces and distance measures between subspaces. In Rp , a q-

dimensional linear subspace (1 ≤ q ≤ p) can be uniquely determined by an orthogonal

projection matrix P with rank q. We can denote a subspace by

SP =
{
P x : x ∈ Rp

}
.

All q-dimensional linear subspaces in Rp form a Grassmannian manifold (Milnor and

Stasheff [1974]),

Gr(q,Rp) =
{
SP ⊂ Rp : rank(P) = q

}
.

A metric on this Grassmannian manifold is provided by Crone and Crosby [1995] as

follows.
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Definition 3.1. Distance between subspaces with the same dimension: Suppose SP1 , SP2 ∈

Gr(q,Rp), the distance between SP1 and SP2 is define by

D (SP1 ,SP2) = 1√
2
‖P1 −P2‖F (3.1)

= [q − trace(P1 P2)]1/2 . (3.2)

It has been shown in Crone and Crosby [1995] that this distance measure obeys the

triangle inequality, and 0 ≤ D2 (SP1 ,SP2) ≤ min {q, p− q}.

3.2.2 EIF for PCA

Recall that any variant of PCA seeks a linear subspace formed by a set of orthogonal

vectors. The task of sensitivity analysis in PCA is essentially to evaluate the change of

resulting subspace due to the small contamination to the underlying distribution, or input

data. To measure such changes, we can use the subspace distance provided in Definition

3.1 as a tool. The following notation will be useful in later discussions.

Notation

• F: A cumulative distribution function defined on Rp.

• {x
i
∼ F, i = 1, . . . , n}: Observed data, together denoted by Xn = [x1 · · ·xn ]′.

• µµµ, ΣΣΣ: Expected value and covariance matrix of F,

µµµ(F) =
∫

xdF(x)

ΣΣΣ(F) =
∫

[x− µµµ(F)] [x− µµµ(F)]′dF(x)

• λi(F), e
i
(F): The i-th largest eigenvalue of ΣΣΣ(F) and corresponding eigenvector.
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• U(F) = [e1 e2 · · · eq ]: p× q matrix whose i-th column is e
i
(F).

• P(F) = U(F) · U(F)′: Projection matrix onto the linear subspace spanned by or-

thogonal columns of U(F).

• SP: The linear subspace characterized by the projection matrix P.

• δωωω: The distribution giving point mass to ωωω ∈ Rp.

• Xn,ωωω: The contaminated sample Xn,ωωω = [x1, . . . ,xn,ωωω]′.

Define PCA procedure as a statistical functional

T
PCA

: F 7−→ SP(F) ,

which maps a multivariate distribution into a linear subspace. Unless specified otherwise,

in the rest of the chapter we assume F is a p-dimensional distribution and SP(F) is a

q-dimensional subspace, where q is known. Consider the contaminated model

Fε,ωωω = (1− ε) · F + ε · δωωω .

An influence function of T
PCA

measures the changes of subspaces caused by the con-

tamination, and it can be defined as

IF(ωωω; T
PCA

, F) = lim
ε→0

D (T
PCA

(F), T
PCA

(Fε,ωωω))
ε

= lim
ε→0

[q − trace(P(F) ·P(Fε,ωωω))]1/2

ε
.

The explicit form of this influence function is provided in the following lemma. It is

similar to the result in Bénasséni [1990] and Prendergast et al. [2008], but we will derive

it from a different perspective.
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Lemma 3.1. Let F be a cumulative distribution function defined on Rp. Assuming µµµ(F)

and ΣΣΣ(F) exist, and ΣΣΣ(F) has distinct eigenvalues λ1 > · · · > λp, and associated eigenvec-

tors e1 , . . . , ep . The influence function IF(ωωω; T
PCA

, F) is given by

IF(ωωω; T
PCA

, F) =


q∑
i=1

p∑
k=q+1

(
a
i
· a

k

λi − λk

)2


1/2

, (3.3)

where a
j

= e′
j
· (ωωω − µµµ).

Proof. Under the contaminated distribution

Fε,ωωω = (1− ε) · F + ε · δωωω ,

the covariance matrix ΣΣΣ(Fε,ωωω) can be expressed as

ΣΣΣ(Fε,ωωω) = ΣΣΣ(F) + ε ·
{

[ωωω − µµµ(F)] [ωωω − µµµ(F)]′ −ΣΣΣ(F)
}
− ε2 ·

{
[ωωω − µµµ(F)] [ωωω − µµµ(F)]′

}
.

Using the result in Sibson [1979] and Critchley [1985], we can write the j-th eigenvector

of ΣΣΣ(Fε,ωωω) as

e
j,(ε,ωωω) = e

j
− ε · βββ

j
+ 1

2ε
2 · γγγ

j
+O(ε3),

where

βββ
j

= −a
j
·
∑
k 6=j

{
a
k

λk − λj
· e

k

}
,

a
j

= e′
j
· (ωωω − µµµ),

γγγ
j

= −a2
j
·

∑
k 6=j

a2
k

(λk − λj)2

 · ej − 2

∑
k 6=j

a2
k

λk − λj

 · βββj − 2a3
j
·
∑
k 6=j

{
a
k

(λk − λj)2 e
k

}
.

The distance between original subspace and perturbed subspace is calculated by

D2 (T
PCA

(F), T
PCA

(Fε,ωωω)) = q − trace(P(F) ·P(Fε,ωωω))

= q −
q∑
i=1

q∑
j=1

(
e′
i
· e

j,(ε,ωωω)

)2
,
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where

e′
i
· e

j,(ε,ωωω) =


1 + 1

2ε
2 · e′

j
· γγγ

j
+O(ε3), i = j

−ε · e′
i
· βββ

j
, i 6= j

=


1− 1

2ε
2 · ∑

k 6=j

(aj ·ak )2

(λk−λj)2 +O(ε3), i = j

−ε · ai ·aj
λi−λj +O(ε2), i 6= j.

Using this relation, we have
q∑
j=1

(
e′
i
· e

j,(ε,ωωω)

)2
= 1− ε2 ·

∑
k 6=i

(
a
i
· a

k

λi − λk

)2
+ ε2 ·

q∑
j=1
j 6=i

(
a
i
· a

j

λi − λj

)2

+O(ε3)

= 1− ε2 ·
p∑

k=q+1

(
a
i
· a

k

λi − λk

)2
+O(ε3),

and
q∑
i=1

q∑
j=1

(
e′
i
· e

j,(ε,ωωω)

)2
= q − ε2 ·

q∑
i=1

p∑
k=q+1

(
a
i
· a

k

λi − λk

)2
+O(ε3).

This implies that

D
(
SP(F), SP(Fε,ωωω)

)
=

ε2 ·
q∑
i=1

p∑
k=q+1

(
a
i
· a

k

λi − λk

)2
+O(ε3)


1/2

,

and subsequently

IF(ωωω; T
PCA

, F) =


q∑
i=1

p∑
k=q+1

(
a
i
· a

k

λi − λk

)2


1/2

.

From what we derived above an empirical influence function can then be obtained by

replacing F with the empirical distribution F̂ of observed data. Similarly, we can also

obtained an empirical influence function with a certain case deleted from the sample. The

results are given in the following two corollaries.
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Corollary 3.1. Let F̂ be the empirical distribution of observed data Xn. Assuming ob-

served data are centered, i.e. µ̂µµ = 0, the empirical influence function of T
PCA

is

EIF(ωωω; T
PCA

, F̂) =


q∑
i=1

p∑
k=q+1

(
â
i
· â

k

λ̂i − λ̂k

)2


1/2

, (3.4)

where â
i

= ê′
i
· ωωω, λ̂i and ê

i
are associated eigenvalues and eigenvectors of the sample

covariance matrix Σ̂ΣΣ.

Corollary 3.2. Let F̂ be the empirical distribution of observed data Xn. Assuming ob-

served data are centered, i.e. µ̂µµ = 0, the empirical influence function of T
PCA

with the j-th

case deleted is

EIF(j)(TPCA , F̂) =


q∑
i=1

p∑
k=q+1

( ê′
i
x
j
x′
j
ê
k

λ̂i − λ̂k

)2


1/2

, (3.5)

where λ̂i and ê
i

are associated eigenvalues and eigenvectors of Σ̂ΣΣ.

As can be easily seen from equation (3.1) and (3.3), both theoretical and empirical

influence measures of PCA are unbounded, indicating the non-robustness of the traditional

PCA. Influence measures can be generally defined on robust PCA variants based on some

robust scatter matrix estimators.

Consider a PCA variant which is based on the eigendecomposition of an affine equiv-

ariant scatter matrix functional C(F). The resulting subspace is spanned by the top q

eigenvectors of C(F), and we denote this subspace by SC(F). Define the functional

T
C

: F 7→ SC(F) .

Assume that under the contamination model Fε,ωωω, the functional C has a perturbation

of form

C(Fε,ωωω) = C(F) + ε ·C1 +O(ε2) .
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Using the result of perturbation expansions of the projector matrix in Tanaka and

Castaño-Tostado [1990], it can be shown that the influence function of T
C

has an explicit

form

IF(ωωω; T
C
, F) =


q∑
i=1

p∑
j=q+1

(
v′
i
·C1 · vj

κ
i
− κ

j

)2


1/2

, (3.6)

where κ
i

and v
i

are associated eigenvalues and eigenvectors of C(F). A similar result is

provided in Prendergast et al. [2008], which was derived from RV-coefficient.

3.2.3 EIF for Kernel PCA

As reviewed in Section 1.2.5, Kernel PCA provides a unified framework of dimension reduc-

tion. The sensitivity analysis of nonlinear dimension reduction methods can be performed

under this framework.

Kernel PCA assumes a feature map

Φ : Rp → H ,

which transforms the observed data into a Hilbert space whose dimension t can be ar-

bitrarily large, and possibly infinite. The transformed data {Φ(x
i
)t×1 ∈ H; i = 1, . . . , n}

together are denoted by a matrix Φ(X)n×t = [Φ(x1) · · ·Φ(xn)]′. The kernel function

k(·, ·) : Rp × Rp → R

defines the inner product in H, i.e. k(x,y) = 〈Φ(x),Φ(y)〉. The n × n matrix K, whose

(i, j) element is Kij = k(x
i
,x

j
), is called the kernel matrix. Traditional PCA is then

performed in the feature space via the eigendecomposition of the kernel matrix to obtain

the low-dimensional representation.
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Assuming the transformed data are centered, i.e. ∑n
i=1 Φ(x

i
) = 0, the resulting subspace

in H is spanned by the top q eigenvectors
{
v̂1 , · · · , v̂q

}
of the covariance operator

CΦ = 1
n

n∑
i=1

Φ(x
i
) · Φ(x

i
)′ .

Define Kernel PCA as a statistical functional

T̂
KPCA

: F̂ → span
{
v̂1 , · · · , v̂q

}
,

and the result in Corollary 3.1 can be directly generalized to obtain the empirical influence

function of Kernel PCA, i.e.

EIF(ωωω; T̂
KPCA

, F̂) =


q∑
i=1

t∑
j=q+1

(
â
i
· â

j

λ̂i − λ̂j

)2


1/2

, (3.7)

where â
j

= v̂′
j
· Φ(ωωω), λ̂j and v̂

j
are associated eigenvalues and eigenvectors of CΦ. How-

ever, this result cannot be directly used because in practice the feature map Φ is usually

implicit and therefore CΦ, λ̂j and v̂
j

are also implicit. Recall equation (1.13) and (1.14),

for any positive eigenvalue λ̂j > 0, the corresponding eigenvector v̂
j

lies in the span of

{Φ(x1), . . . ,Φ(xn)}, which allows us to rewrite λ̂j and v̂
j

as

v̂
j

= c
j
· Φ(X)′ α̂ααj ,

n λ̂j = ξ̂j ,

where ξ̂j and α̂ααj = [α̂j1, · · · , α̂jn]′ are the j-th eigenvalue and eigenvector of the kernel

matrix K respectively, and c
j

is the normalizing factor. Therefore we have

â
j

= v̂′
j
· Φ(ωωω)

= c
j
· α̂αα′j

1×n
Φ(X)
n×t

Φ(ωωω)
t×1

= c
j
·

n∑
k=1

α̂jk · k(x
k
,ωωω) . (3.8)
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The normalizing factor c
j

is obtained by

v̂′
j
· v̂

j
= 1

⇒c2
j
· α̂αα′j Φ(X) Φ(X)′ α̂ααj = 1

⇒c2
j
· α̂αα′j K α̂ααj = 1

⇒c2
j
· ξ̂j = 1

⇒c
j

= 1/
√
ξ̂j . (3.9)

Substituting equation (3.8) and (3.9) into (3.7), the respective empirical influence func-

tion can be written as

EIF(ωωω; T̂
KPCA

, F̂) =


q∑
i=1


n∑

j=q+1

(
n · â

i
· â

j

ξ̂i − ξ̂j

)2

+
t∑

s=n+1

(
â
i
· âs

λ̂i − λ̂s

)2

︸ ︷︷ ︸
(∗)





1/2

, (3.10)

where

â
j

=


∑n
k=1 α̂jk · k(x

k
,ωωω)/

√
ξ̂j j ≤ n

v̂′
j
· Φ(ωωω) j > n.

Note that only top n eigenvalues of CΦ are positive, and all remaining eigenvalues are

0. Equation (3.10) can still not be used because the kernel trick can only be applied on

eigenvectors corresponding to positive eigenvalues, and â
j

for any j > n+1 is still implicit.

Therefore, part (∗) in equation (3.10) is not available. If we assume zero eigenvalues and

corresponding eigenvectors carry no information about the resulting subspace, then we

can truncate the summation, and approximate the empirical influence function in equation

(3.10) by only top n terms, i.e., it is redefined as

EIF(ωωω; T̂
KPCA

, F̂) =


q∑
i=1

n∑
j=q+1

(
n · â

i
· â

j

ξ̂i − ξ̂j

)2


1/2

, (3.11)
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where

â
j

= 1√
ξ̂j

n∑
k=1

α̂jk · k(x
k
,ωωω).

Equation (3.11) suggests that if an unbounded kernel k(·, ·) is used, the Kernel PCA

would have an unbounded empirical influence function, which implies the non-robustness

of the method.

As reviewed in Section 1.2.5, many nonlinear dimension reduction methods can be

described as special cases under the Kernel PCA framework, where these methods only

specify some kernel matrix K without an explicit kernel k(·, ·). For example, given n data

points, ISOMAP first constructs an approximated squared geodesic distance matrix DG

from the Dijkstra’s algorithm, and then obtains the kernel matrix KISO
n as

KISO
n = −1

2(In − ene′n)DGn(In − ene′n),

where en = n−1/2(1, . . . , 1)′ and In is the identity matrix. In this case, we can rebuild the

kernel matrix KISO
n+1,ωωω based on the contaminated sample {x1 , . . . ,xn ,ωωω}, and the terms

k(x
k
,ωωω) in equation (3.11) can be approximated by the last column of KISO

n+1,ωωω.

Also note that in Kernel PCA framework, theoretically the kernel matrix K is required

to be positive semidefinite. However in some methods, for example ISOMAP, which do

not specify a kernel k(·, ·), there is no guarantee that KISO is positive semidefinite (Ham

et al. [2004]). In other words, some eigenvalues of KISO could be negative. In this case,

we will discard any terms that involve negative eigenvalues in equation (3.11).

Similarly, we can obtain the empirical influence function of Kernel PCA with the s-th

case deleted. It is

EIF(s)(T̂KPCA , F̂) =


q∑
i=1

n∑
j=q+1

(
n · â

i
· â

j

ξ̂i − ξ̂j

)2


1/2

, (3.12)
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where

â
j

= 1√
ξ̂j

∑
k 6=s

α̂jk · k(x
k
,xs).

3.2.4 Visualizing the influence measure and detecting influential

observations

In this section, we discuss some graphical display strategies for visualizing influence mea-

sures and for flagging potential influential observations.

First we discuss how to plot the influence function of PCA. When we display the

influence function IF(ωωω; T
PCA

, F), at each graph we can at most see ωωω from a plane in Rp.

An immediate question is that for a large value of input dimension p, which plane shall

we choose to display the influence function. Note that in a given direction, the influence

measure IF(ωωω; T
PCA

, F) is proportional to the squared length of ωωω, i.e. if ωωω1 = c · ωωω2, we

have

IF(ωωω1; T
PCA

, F) = c2 · IF(ωωω2; T
PCA

, F) ,

assuming µµµ(F) = 0. Therefore, we are interested to find the most influential direction

in PCA for graphical display. The following lemma provides a guideline for plotting the

influence function.

Lemma 3.2. Let F be a cumulative distribution function defined on Rp. Assume µµµ(F) = 0

and ΣΣΣ(F) exist. Also assume ΣΣΣ(F) has distinct eigenvalues λ1 > · · · > λp, and associated
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eigenvectors e1 , . . . , ep . The most influential direction z∗ in PCA can be defined as

z∗ = arg max
‖z‖=1

{IF(z; T
PCA

, F)}

= arg max
‖z‖=1


q∑
i=1

p∑
j=q+1

(
e′
i
· z z′ · e

j

λi − λj

)2
 . (3.13)

The solution to equation (3.13) is

z∗ = ± 1√
2
eq ±

1√
2
eq+1 .

Proof. The eigenvectors
{
e1 , . . . , eq

}
form an orthogonal basis of Rp, therefore any unit

vector z can be expressed as z = ∑p
i=1 ai · ei . Let b

i
= a2

i
, and λ(i,j) = (λi − λj)2, then the

maximization problem in (3.13) is equivalent to

max


q∑
i=1

p∑
k=q+1

b
i
· b

j

λ(i,j)

 ,

s.t.
p∑
i=1

b
i

= 1 ,

b
i
≥ 0, i = 1, . . . , p .

Since λ1 > · · · > λp, for any 1 ≤ i ≤ q and q + 1 ≤ j ≤ p, we have

λ(q,q+1) ≤ λ(i,j) .

Then we have
q∑
i=1

p∑
k=q+1

b
i
· b

j

λ(i,j)
≤ 1
λ(q,q+1)

q∑
i=1

p∑
k=q+1

b
i
· b

j

= 1
λ(q,q+1)

( q∑
i=1

b
i

)
·

 p∑
k=q+1

b
j


≤ 1

4λ(q,q+1)
.
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The equality holds if bq = bq+1 = 1/2 and b
j

= 0 for any other j. Thus, the solution to

equation (3.13) is

z∗ = ± 1√
2
eq ±

1√
2
eq+1 .

Lemma 3.2 suggests that adding a vector ωωω of a fixed length through the direction of

z∗ will affect the PCA subspace the most. Thus, to visualize the effect of an added point

to PCA or robust PCA variants, the plane spanned by
{

1√
2eq + 1√

2eq+1 ,
1√
2eq − 1√

2eq+1

}
is

the most appropriate for displaying the influence measure. We illustrate our strategy via

a simple example.

Example 3.1. Influence function of PCA: We consider a 5-dimensional multivariate nor-

mal distribution F = N5(0,ΣΣΣ), where ΣΣΣ = diag([8, 6, 4, 0.5, 0.1]). In this case, q = 3 and

the true subspace is spanned by the top three eigenvectors v1 , v2 , v3 , where the i-th eigen-

vector v
i

of ΣΣΣ is a p × 1 vector whose i-th element equals 1 and all other elements equal

0. We display the influence function IF(ωωω; T
PCA

, F) on four planes spanned by different

combinations of eigenvectors. As can be seen from Figure 3.1, the top left panel shows

the most influential directions, which coincides with the result in Lemma 3.2. On the

other hand, adding a point to the plane spanned by v2 and v3 will not affect the resulting

subspace and therefore have 0 influence measure.

We can also plot the empirical influence function of Kernel PCA for visualization.

Consider the same distribution F = N5(0,ΣΣΣ) in Example 3.1, a sample of size n = 100 is

generated from F. In Figure 3.2 we plot the empirical influence function of Kernel PCA

with a polynomial kernel

k(x,y) = (x′ y + 1)2 .
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Figure 3.1: Visualizing the influence function of PCA

In Figure 3.3, we plot empirical influence functions of LLE and ISOMAP as special

cases of Kernel PCA. As can be seen, both Kernel PCA with the polynomial kernel and

ISOMAP have an unbounded empirical influence measure since their associated kernels

are unbounded. On the other hand, LLE, whose associated kernel matrix is bounded, has

a bounded empirical influence measure. It suggests that LLE is more resistant to outliers

than ISOMAP and Kernel PCA with the polynomial kernel. However, the idea of finding

the most influential direction for displaying the influence function is more challenging to

formulate in Kernel PCA. It is much more difficult to obtain an explicit result such as

80



Lemma 3.2 as a guideline. A different strategy for plotting influence measures of Kernel

PCA will be discussed in Section 3.3.
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Figure 3.2: The empirical influence function of Kernel PCA with a polynomial kernel

A second task of sensitivity analysis in PCA is to flag influential observations based

on the empirical influence function EIF(j)(TPCA , F̂). A simple way is to plot EIF(j) for

each case j, and select those with high values of influence as candidates. However, since

sample estimates of eigenvalues and eigenvectors, which are not robust against outliers, are

used in EIF(j)(TPCA , F̂), the sensitivity measure EIF(j) itself might be heavily influenced

by outliers. Thus, this simple strategy could fail when several outliers appear at the same
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Figure 3.3: The empirical influence function of LLE and ISOMAP

time, and this can be understood as a masking effect, where multiple outliers may affect the

sensitivity measure enough such that no points are declared as outliers. A more practical

strategy is to replace the sample estimates of λ̂i and ê
i

in EIF(j)(TPCA , F̂) by some robust

alternatives. We illustrate this argument in the following example.

Example 3.2. Detecting influential observations: We generate a sample of size n = 50

from a contaminated multivariate normal distribution,

x
i
∼ (1− ε) · N5(0,ΣΣΣ) + ε · N5(µµµ1,ΣΣΣ1)

where ΣΣΣ = diag([8, 6, 4, 0.5, 0.1]), µµµ1 = [0, 0, 5, 5, 0]′, ΣΣΣ1 = 0.5 · I, and the contamination

level ε = 0.1. In Figure 3.4, we plot in the left panel the empirical influence function
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EIF(j)(TPCA , F̂) defined in equation (3.5), and in the right panel we plot EIF(j)(TPCA , F̂)

with λ̂i and ê
i

replaced by true values λi and e
i

from N5(0,ΣΣΣ). Outliers generated

from N5(µµµ1,ΣΣΣ1) are marked by red in both bar plots. As can be seen, directly using

EIF(j)(TPCA , F̂) will suffer from masking effect and possibly no outliers would get picked

out. On the other hand, all outliers could be flagged when we cheated by using true values

of eigenvalues and eigenvectors. It can be expected that if robust estimates of eigenvalues

and eigenvectors are used, the result would be close to that in the right panel. Note that

the same strategy can be played in Kernel PCA to detect the influential observations.
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Figure 3.4: Detecting influential observations. (a) EIF(j) with sample estimates of eigen-

values and eigenvectors. (b) EIF(j) with true values of eigenvalues and eigenvectors.
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3.3 Sample influence functions based on local rank

correlations

There is an interesting phenomenon in influence functions provided in the previous section.

Take equation (3.3) for example, the influence function of PCA has an explicit form

IF(ωωω; T
PCA

, F) =


q∑
i=1

p∑
k=q+1

(
a
i
· a

k

λi − λk

)2


1/2

,

where a
j

= e′
j
· (ωωω − µµµ). Now suppose µµµ = 0 and we add a point ωωω through the direction

of the bottom eigenvector ep , i.e. ωωω = c · ep . Clearly, in this case ap = c and a
j

= 0 for

any j 6= p. Therefore the influence function IF(c · ep ; TPCA , F) = 0, suggesting that there

is no influence by adding ωωω = c · ep , which is obviously not true. The reason is that adding

ωωω = c · ep will not change the direction of any eigenvector, but potentially the order of

them. The resulting PCA subspace spanned by top eigenvectors will not change until the

length c is large enough to make the old bottom eigenvector ep into top q. In other words,

the change of PCA subspace due to ωωω = c ·ep is not continuous in c. However, the influence

function (or empirical influence function) is defined as the Gâteaux derivative of the PCA

functional, therefore it cannot capture this discontinuous change.

Besides, empirical influence functions are not applicable for those dimension reduction

methods without explicit expressions, or cannot be described as Kernel PCA, especially

some robust dimension reduction methods obtained from iterative algorithms. These facts

suggest that although the empirical influence function is a useful tool in the sensitivity

analysis of dimension reduction methods, there is still room for other types of influence

measures to be developed. In this section, we will define another type of influence measure

for dimension reduction methods with broader applicability. The proposed measure is de-
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fined without any assumption of underlying distribution, and it is based on the performance

measure GJ(ψ,X) provided in Chapter 2.

The local rank correlation measures the resemblance between the original data and an

output low-dimensional representation of a given method. The change of the output of

the given method due to an added (or deleted) case can be quantified by the decrease (or

increase) of the local rank correlation. Motivated by the definition of the sensitivity curve,

we can define a finite sample version of influence measure. Since this influence measure is

defined from a pure sample aspect, we name this measure “sample influence function”.

Definition 3.2. Sample influence function: For a given dataset Xn in Rp of size n, denoted

by

Xn,ωωω = [x1 , . . . ,xn ,ωωω]′,

the original data adjoined to a new data point ωωω ∈ Rp. Also denote by

X(−i) = [x1 , . . . ,xi−1 ,xi+1 , . . . ,xn ]′ .

For a given dimensionality reduction method ψ̂ : Rp → Rq, the sample influence func-

tion of ψ̂ with adding ωωω and the sample influence function of ψ̂ with deleting x
i

are defined

as

SIF(ωωω; ψ̂, Xn) = G
J
(ψ̂,Xn,ωωω)−G

J
(ψ̂,Xn) , (3.14)

SIF(i)(ψ̂, Xn) = G
J
(ψ̂,X(−i))−GJ

(ψ̂,Xn). (3.15)

where G
J

can be any local rank correlation defined in Definition 2.1 and 2.2.

Unlike the empirical influence function, the sample influence function SIF(ωωω; ψ̂, Xn)

directly measures the change of the quality of a given method caused by an added (or
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deleted) point. It takes values between -1 and 1, where SIF(ωωω; ψ̂, Xn) = 0 indicates

that the point ωωω is not influential to the embedding. The positive value of SIF(ωωω; ψ̂, Xn)

indicates that the performance of ψ̂ is improved by adding ωωω, and the negative value

indicates the decrease. Note a key difference between the use of the empirical influence

function and the sample influence function is that, the empirical influence function of a

robust dimension reduction method should be bounded, while according to the sample

influence function, a robust method ψ̂ is desired to have influence measure SIF(ωωω; ψ̂, Xn)

uniformly close to 0.

We will illustrate in the following example that how one can use the sample influence

function to compare the robustness of different dimensionality reduction methods.

Example 3.3. Sample influence function of PCA, ROBPCA, LLE, and ISOMAP: Con-

sider the 5-dimensional multivariate normal distribution F = N5(0,ΣΣΣ) in Example 3.1. We

generate a sample of size n = 50 from F, and apply four different methods, PCA, ROBPCA

(Hubert et al. [2005]), LLE and ISOMAP. The outlier ωωω is added on the plane spanned

by the third and fourth eigenvector v3 and v4 of ΣΣΣ(F). The sample influence functions

SIF(ωωω; ψ̂, Xn) are calculated, respectively, and plotted over [−1000, 1000]× [−1000, 1000]

in Figure 3.5.

As can be seen from Figure 3.5, among these four methods, PCA is the one that affected

by the outlier most easily. We can observe an obvious decrease in the sample influence

function of PCA when the outlier appears through the direction of v4 . ISOMAP is also in-

fluenced by the outlier, but is slightly more stable than PCA. On the other hand, ROBPCA

and LLE are much more insensitive to the outlier. The change of SIF(ωωω; ψ̂
LLE

, Xn) is

smaller compared to PCA and ISOMAP, and the performance of ROBPCA barely drop as

indicated by the sample influence functions. Note that the resulting subspace in ROBPCA

does not have an explicit expression, and thus the empirical influence function of ROBPCA
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Figure 3.5: Sample influence functions of (a) PCA, (b) ROBPCA, (c) LLE, and (d)

ISOMAP.

can not be calculated. The sample influence function in this case provides a supplementary

tool in studying the sensitivity of ROBPCA.

In practice, when the observed data x
i
∈ Rp, the outlier ωωω can be added through

p orthogonal directions, and potentially there will be
(
p
2

)
planes to display the sample

influence function. Similar to the empirical influence function of Kernel PCA, selecting a
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most influential plane to plot the sample influence function is also a challenge due to the

difficulties of deriving theoretical results. One alternative strategy is to use the symmetry

of the sample to find several important directions for plotting. Regardless of any latent

curvature structure in the observed data X, we can perform traditional PCA on X. The

eigenvectors corresponding to 0 eigenvalues (or close to 0) are symmetric to the sample,

and adding a point ωωω on the subspace spanned by those eigenvectors should give us similar

values of the sample influence function. By doing so, we can reduce the number of planes to

be checked. Figure 3.6 shows the sample influence function of ISOMAP on four different

planes, based on the sample generated in Example 3.3. In this example, bottom two

eigenvectors v4 and v5 correspond to eigenvalues that close to 0. As can be seen from the

upper left panel (a) and the lower left panel (c), using v4 or v5 provides similar graphs.

The upper right panel (b) also suggests that adding ωωω on the plane spanned by v4 and v5

will affect ISOMAP in a similar way.

3.4 Discussion and future work

In this chapter, we developed two influence measures, the empirical influence function and

the sample influence function, to analyze the sensitivity of dimension reduction methods.

We discussed the strategy of plotting these influence measures, and the possible application

of influence measures in outlier detection. There are many research ideas on the sensitivity

analysis of dimension reduction that can be studied in the future.

First, we need to further investigate the properties of the empirical influence function

for Kernel PCA. It would be practically useful if we can find out a plane on which an added

point has the largest influence on a given method. The same problem is also needed to be

solved in the sample influence function, where we are interested in searching for the most
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Figure 3.6: Sample influence functions of ISOMAP

influential point (or direction) for a given method.

Another future research topic is to develop other types of robustness measures, such

as the breakdown point. Formalization of the concept of “breakdown” is a challenge in

dimensionality reduction. One possible solution is to employ the local rank correlation as

a criterion. Since the extreme value G
J
(ψ̂,X) = 0 is not always achievable, we can define

the breakdown point for a method ψ̂ as

BP(ψ̂,Xn) = min
{

m

n+m
: inf
ωωωm∈⊗mRp

G
J
(ψ̂,Xn,m) ≤ c

}
,
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where Xn,m = [x1 , . . . ,xn ,ωωω1, . . . ,ωωωm]′ denotes the contaminated sample, and c is a critical

value for breakdown. The first challenge in this definition is to find a proper value of c,

and the second is to calculate the breakdown point.
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Chapter 4

Performance-Weighted Bagging

PCA: A New Approach to Robust

Principal Component Analysis

4.1 Introduction

4.1.1 Review of robust PCA

As reviewed in Section 1.2.3, principal component analysis (PCA) is a widely-used method

in dimensionality reduction. It seeks a linear subspace onto which the projected data have

the largest variance. It is typically performed via the eigendecomposition of the sample

covariance matrix of the observed data X. Unfortunately, PCA is known to be sensitive to

the presence of outlying observations because both the variance and the sample covariance

matrix can be heavily influenced by outliers. To overcome the non-robustness, many robust
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variants of PCA have been proposed over decades. Robust PCA methods can be roughly

classified into three groups. In this section, we give a review of these three groups of robust

PCA methods (Chenouri et al. [2015]).

The first group of methods achieves the robustness by replacing the sample covariance

matrix by a robust alternative. This approach dates back to Maronna [1976] and Campbell

[1980] who proposed using affine equivariant M-estimators of the covariance matrix. The

M-estimator is shown to be consistent and asymptotically normal under some general as-

sumptions, and has a bounded influence function. However, it has been shown in Donoho

[1982] and Rousseeuw and Leroy [1987] that the M-estimators have breakdown value at

most 1/p. Therefore they can only handle a small proportion of outliers when the dimen-

sion p of the input data space is sufficiently large. See also Devlin et al. [1981]. Croux

and Haesbroeck [2000] proposed using high-breakdown affine equivariant estimators of the

covariance matrix such as the minimum volume ellipsoid (MVE) and minimum covariance

determinant (MCD) methods of Rousseeuw [1984, 1985] as well as S-estimators of Davies

[1987] and Rousseeuw and Leroy [1987]. Although they are very robust, the problem of

these methods is that they cannot handle the case when p > n, and they are usually com-

putationally expensive. Therefore these methods are applicable only on data with small

to moderate dimensions. The fastest algorithms to date can only handle up to about 100

dimensions. See Hubert et al. [2005].

A second approach to make PCA robust is projection pursuit. In this approach, instead

of maximizing the variance of projected data, one maximizes a robust measure of dispersion

in successive orthogonal directions. Doing this, we bypass the need to robustly estimate the

covariance matrix. Some papers on this approach are Li and Chen [1985]; Croux and Ruiz-

Gazen [1996]; Hubert et al. [2002a]; Boente et al. [2002]; Maronna [2005]. A fast algorithm

is proposed in Croux and Ruiz-Gazen [1996] to overcome the complexity of the traditional
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projection pursuit method. Hubert et al. [2005] developed a hybrid method which combines

advantages of both projection pursuit and high-breakdown covariance estimators. They

proposed to first use projection pursuit to reduce the dimensionality to some moderate size

and then to apply PCA using MCD estimators of the covariance matrix.

A more recent group of methods consider PCA from the perspective of matrix comple-

tion. Suppose the observed data matrix X is the superposition of a low-rank component

and a noisy perturbation, i.e.

X = L0 + N0 ,

where L0 is a low-rank matrix representing the linear subspace, and N0 represents the

noise. In this setting, the traditional PCA procedure solves a constrained minimization

problem

argmin
L
‖X− L‖

F
subject to rank(L) = d ,

where ‖A‖
F

=
√

trace(A′ ·A) is the Frobenius norm of the matrix A. This setup can be

also understood as minimizing the reconstruction error. The Frobenius norm is known to

be sensitive to outliers, therefore the robustness of PCA could be achieved by replacing

the Frobenius norm by a norm less sensitive to outliers. Candès et al. [2011] and Chan-

drasekaran et al. [2011] independently proposed a robust PCA framework (called principal

component pursuit in Candès et al. [2011]). In addition to the assumption that L0 is low-

rank, they assume the noise matrix N0 is sparse, and the matrix completion is obtained

via a convex optimization problem

argmin
L,N

{ ‖L ‖∗ + λ ‖Z ‖1 } subject to L + N = X ,

where ‖·‖∗ is the nuclear norm which encourages the low-rankness, and ‖·‖1 is the `1-

norm which encourages the sparsity. With a few extra conditions, this problem can be
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efficiently solved when the dimension is reasonably small (Lin et al. [2009]; Ma et al.

[2011]; Candès and Recht [2009]). Many robust PCA variants based on similar idea but

with different assumptions have been developed since then, including Zhou et al. [2010];

Zhou and Tao [2011]; Xu et al. [2010]; Wohlberg et al. [2012]; Tang and Nehorai [2011];

Mateos and Giannakis [2010]; Hsu et al. [2011]; Becker et al. [2011]; Podosinnikova et al.

[2014]. Although computational challenges still exist when handling large data with high

dimensionality, this group of robust PCA variants are now widely applied on many areas

such as web data analysis, image and video processing, and background modeling.

In this chapter we will develop a new approach to robustify PCA against outliers from

the viewpoint of model averaging, which is potentially compatible with some other robust

PCA methods.

4.1.2 Bootstrap aggregating

Model averaging techniques are often employed to improve the accuracy of estimations or

predictions in supervised learning problems. One of the most widely known approaches

of model averaging is developed by Breiman [1996], called “Bootstrap aggregating” or

“Bagging”.

Consider a simple regression problem. Suppose we have observed data

Z = {(x1 , y1), . . . , (xn , yn)} , x
i
, y

i
∈ R ,

and we have a prediction model

f̂(·, Z) : R→ R

such that based on observed data Z, the outcome y0 at input x0 is predicted by

ŷ0 = f̂(x0 , Z).
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If we generate a bootstrap sample Z1 from Z (Efron and Tibshirani [1994]), the pre-

diction based on Z1 is given by f̂(x0 , Z1). The bagging predictor f̂
B

(x0) is an average over

a collection of K predictors based on bootstrap samples Z1, . . . , ZK of Z, i.e.

f̂
B

(x0) = 1
K

K∑
k=1

f̂(x0 , Zk).

In bagging, instead of bootstrap sample, it is also possible to use subsampling, i.e.

sampling without replacement. This is known as “Subagging”. Properties of subagging

and comparison between bagging and Subagging are discussed in Büchlmann and Yu [2002]

and Buja and Stuetzle [2006].

The main purpose of bagging predictor is to reduce the variance of a given procedure.

It is stated in Breiman [1996] and Kuncheva [2004] that applying bagging can significantly

improve the accuracy of unstable procedures such as regression trees, while stable proce-

dures such as nearest neighbor classifiers are typically not affected much. The performance

of bagging, and comparison to other ensemble methods are carried out via experimental

studies in Dietterich [2000]. The connection between bagging and Bayes approaches are

explored in Friedman et al. [2009].

4.2 Performance-Weighted Bagging PCA

4.2.1 Method description

The basic idea of proposed Performance-Weighted Bagging PCA (PWBPCA) is straight-

forward. Given a set of p-dimensional data, we employ PCA to obtain a q-dimensional

subspace from any subsample of observed data of size larger than q . From the viewpoint

of bagging, the subspace produced by traditional PCA based on the entire observed data
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set can be considered as an average over all subsample subspaces. As shown in Figure 4.1

left panel, the blue line represents the traditional PCA subspace, and black dashed lines

represent subsample subspaces.

When outlying points appear in the observed data, although the average subspace can

be easily influenced by outliers, only subsamples that contain outliers would produce “bad”

subspaces. As shown in Figure 4.1 right panel, red dashed lines represent “bad” subspaces

produced by subsamples that contain outliers. If we can find a proper weighting scheme,

which assigns lower weights to “bad” subspaces, then we can expect the respective weighted

average subspace to be resistant to the presence of outliers.
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Figure 4.1: PCA from the viewpoint of bagging

First we consider a relatively simpler case, that the intrinsic dimension q, i.e. the

number of principal components is given. In this case, the proposed Performance-Weighted

Bagging PCA procedure consists of three steps.
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(i) Generate K subsamples of size m from original data, where K and m are tuning

parameters. For each subsample, obtain the respective q-dimensional subspace.

(ii) Determine the weight w
k

for each subsample subspace.

(iii) Obtain the weighted average subspace as the final result.

In step (iii), the weighted average of a set of subspaces can be defined via the distance

measure between linear subspaces provided in Definition 3.1.

Definition 4.1. Weighted average subspace: Given a set of q-dimensional linear subspaces

SP1 , . . . ,SPK ⊂ Rp , and associated weights w1 , . . . , wK
, a distance measure D between

subspaces is given by

D(SP1 , SP2) = [q − trace(P1 P2)]1/2 ,

and the weighted average subspace S̄ with respect to the distance measure D is defined by

S̄ = arg min
SP∈Gr(q,Rp )

{
K∑
k=1

w
k
·D2(SPk ,SP)

}
. (4.1)

To find the solution to equation (4.1), we can use the following result.

Lemma 4.1. The weighted average subspace S̄ is spanned by the orthonormal columns

of the p× q matrix U =
[
u1 · · · uq

]
, where u

i
is the eigenvector of the matrix

P =
K∑
k=1

w
k
·Pk

corresponding to the i-th largest eigenvalue.

Proof. The solution S̄ to equation (4.1) is uniquely determined by the orthogonal projection
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matrix P̂ such that

P̂ = arg min
rank(P)=q

{
K∑
k=1

w
k
· [q − trace(Pk P)]

}

= arg max
rank(P)=q

{
K∑
k=1

w
k
· trace(Pk P)

}
. (4.2)

Solving equation (4.2) is equivalent to solving a p× q matrix Û such that

Û = arg max
U′U=Iq

{
K∑
k=1

w
k
· trace(U′ ·Pk ·U)

}
, (4.3)

and then P̂ can be obtained by P̂ = Û · Û′. Equation (4.3) can be solved by the Lagrange

multiplier.

L(U, λ) =
K∑
k=1
{w

k
· trace(U′ ·Pk ·U)}+ λ · (U′U− Iq) ,

∂L

∂U
= 2 ·

K∑
k=1
{w

k
·Pk ·U}+ 2λ ·U.

Let P = ∑K
k=1wk

·Pk, and set ∂L
∂U = 0, we have

P ·U = λ ·U . (4.4)

Clearly, equation (4.4) implies that the orthonormal columns
{
u1 , . . . ,uq

}
of the matrix

Û are eigenvectors of P corresponding to the q largest eigenvalues.

A key step in PWBPCA procedure is step (ii), determining the weight for each subspace.

We want to lower the effect of “bad” subspaces via a proper weighting scheme to achieve

robustness. Intuitively, when we project the data onto a subspace, if the geometric structure

of the data is not well preserved, then we would call the subspace “bad”. Therefore a natural
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choice of the weight function is local rank correlations proposed in Chapter 2. Given a

subspace Sk spanned by orthogonal columns of Uk, denote

ψ̂
k

: X 7−→ X ·Uk .

The low-dimensional representation projected onto Sk is denoted by Ŷk = ψ̂
k
(X). Using

the notation in Section 2.3, the weight w
k

for the subspace Sk is obtained by

w
k

= G
J
(ψ̂

k
,X) = 1

n

n∑
i=1

Γ
J
(i,X, ψ̂

k
(X)) ,

where one can choose Γ
J

to be either one of ρO
J

, ρI
J
, τO

J
or τ I

J
. It is also possible to choose the

weight w
k

to be a combination of local rank correlations, such as (ρO
J

+ ρI
J
)/2 or

√
ρO
J
· ρI

J
.

In numerical examples in the following sections, unless specified otherwise we choose the

weight w
k

to be

w
k

= 1
n

n∑
i=1

ρO6 (i,X, ψ̂
k
(X)) .

Note that the weight w
k

does not need to be normalized, i.e. it is not necessary to have∑
k wk

= 1. Because the normalization

P̃ =
K∑
k=1

(
w
k∑

k wk

)
·Pk = P/(

∑
k

w
k
)

is simply a scaling transformation on the matrix P, and scaling does not change the

eigenvector of P. Later in Section 4.2.3, we will further discuss more possible ways to

choose the weighting scheme in Performance-Weighted Bagging PCA.

Algorithm 1 provides the procedure of Performance-Weighted Bagging PCA, with a

given number of components q.
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Algorithm 1 Performance-Weighted Bagging PCA (with q known)
Input: X = [x1 · · ·xn ]′ , q, m, K

1: Generate K subsamples X1, . . . ,XK of size m from the original data X by resampling

without replacement.

2: for k = 1 to K do

3: Perform traditional PCA procedure with Xk, and obtain a p× q column orthogonal

matrix Uk and corresponding projection matrix Pk = Uk U′k.

4: Obtain Ŷk = X·Uk and calculate the weight w
k

for Pk based on local rank correlation

between X and Ŷk.

5: end for

6: Calculate the weighted average

P =
K∑
k=1

w
k
·Pk .

7: Select top q eigenvectors of P to form Û =
[
û1 · · · ûq

]
.

8: Obtain q-dimensional representation by Ŷ = X · Û.

Output: Ŷ = [ŷ1 · · · ŷn ]′
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4.2.2 Remarks

The first remark is on the computational complexity of the proposed algorithm. The

algorithm consists of three major steps, and the complexity of each step scales as

• Perform PCA on each subsample: O(mp2 + p3).

• Calculate the weight: O(n2p).

• Obtain weighted average subspace: O(Kp2).

When m is fixed, the total complexity scales as O(K(n2p+ p3)). When dealing with a

large value of p, solving PCA in the first step can be done in its dual form, i.e.

• Perform eigendecomposition on Xk ·X′k and obtain a q× q eigenvalue matrix ΛΛΛk and

a m× q eigenvector matrix Vk. This step scales as O(m2p+m3).

• Obtain Uk = X′k ·Vk ·ΛΛΛ−1/2
k . This step scales as O(q3m2p).

• Obtain Pk = Uk U′k. This step scales as O(q2p2).

Note that when the number of components q is small, the total complexity can be re-

duced to O(K(n2p + p2)). The computational complexity of PWBPCA does not increase

dramatically as the dimension p increases, which is an advantage compare to some tra-

ditional methods. For example, the complexity of robust PCA based on MCD-estimator

scales as O(np(p+3)/2) (Bernholt and Fischer [2004]).

The second remark is on tuning parameters m and K. A typical choice of the subsample

size m in traditional bagging procedures is a fraction of n, i.e. m = a · n with 0 < a < 1.

It is suggested in Büchlmann and Yu [2002] that a reasonable choice of a is a = 1/2.
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In our Performance-Weighted Bagging PCA procedure, the subsample size m controls

the trade-off between efficiency and robustness. Intuitively, when there is no outlier in

the input data, a larger value of m will make better use of the sample and therefore

produce a better result in the sense of efficiency. On the other hand, when the input data

contain outliers, a relatively large value of m does not seem to be a good choice. The

key idea in the Performance-Weighted Bagging PCA is that via subsampling, a decent

part of subsamples will produce good subspaces, while subsamples containing outliers can

be handled by down-weighting. However, as m increases, the chance that a subsample

contains at least one outlier also increases. For example, if we have a sample with size

n = 50, and 10% of the data are outliers, choosing m = 20 would lead to the result that

roughly 93.27% of subsamples contain at least one outlier. In this case, although being

down-weighted, cumulatively “bad” subspaces can still heavily affect the final result. This

argument is illustrated in Example 4.1 below.

Example 4.1. Effect of subsample size m: We generate a sample of size n = 100 from a

contaminated multivariate normal distribution,

xi ∼ (1− ε) · N5(0,ΣΣΣ) + ε · N5(µµµ1 , 0.1 · I5), i = 1, . . . , 100,

µµµ1 = 50 · e5 ,

ΣΣΣ = diag([8, 6, 4, 0.5, 0.1]) .

where I is the identity matrix and e
i

is a p × 1 vector whose i-th element equals 1 and

all other elements equal 0. In this case, the intrinsic dimension q = 3, and the true

subspace S is spanned by {e1 , e2 , e3}. We apply Performance-Weighted Bagging PCA

with different values of subsample size m, different values of contamination level ε, and

number of subsamples K = 50. At each pair of (m, ε), the procedure is repeated 1000

times, and the mean square distance (MSD) between the true subspace and the subspace
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obtained from Performance-Weighted Bagging PCA is evaluated by,

MSD = 1
1000

1000∑
i=1

D2(S, Ŝ(i)
BPCA

) .
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Figure 4.2: Effect of subsample size m (K = 50)

Figure 4.2 left panel plots the mean square distance as a function of m when ε = 0 (no

contamination). The blue solid line represents the expected value of the squared distance

between true subspace and traditional PCA subspace (Crone and Crosby [1995]),

E(D2(S, Ŝ
PCA

)) =
q∑
i=1

p∑
j=q+1

λ
i
· λ

j

n(λ
i
− λ

j
)2 ,

where λ
i

is the i-th largest eigenvalue of ΣΣΣ. As can be seen, as m increases, the performance

of Performance-Weighted Bagging PCA, in terms of the MSD, is getting better. Figure

4.2 right panel plots the mean square distance (in log scale) as a function of ε. Clearly, a

smaller value of m is more resistant to the presence of outliers.

103



The number of subsamples K controls the trade-off between the efficiency and the

computational cost. When m is large, for instance m = n/2, it seems like the value of K

does not have much effect. However, when m is small, a larger value of K could improve

the efficiency of Performance-Weighted Bagging PCA (as illustrated in Figure 4.3). Using

the same setting in Example 4.1, Figure 4.3 plots the mean square distance as a function

of K with m = 5. As can be seen, the mean square distance decreases as K increases. On

the other hand, as we mentioned above, the computational complexity for Performance-

Weighted Bagging PCA is linear in K. Therefore a large value of K would increase the

computational cost.
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Figure 4.3: Effect of number of subsample K (m = 5)
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In practice, a reasonable strategy is to choose a small value of the subsample size m,

for example m = q + 1, to achieve robustness, and relatively large values of K to remedy

the loss of efficiency. The increase in the computational cost due to a large K can be made

up by parallel computing.

Note that the idea of applying bagging in PCA has been used a few times in the

literature. Gabrys et al. [2006] developed a method called PCA ensembles. The proposed

procedure starts from generating subsamples from the original dataset and performs PCA

on each subsample to obtain respective top eigenvectors. Then these eigenvectors are

clustered, and the average of the largest cluster is calculated as a principal component.

Leng et al. [2014] proposed bagging in combination with PCA to learn effective binary

codes. A short code is generated by performing PCA on each subsample of training set,

and then a set of short codes is concatenated into one piece of long code. The key difference

between these previous bagging methods and the proposed Performance-Weighted Bagging

PCA lies in the use of weighting scheme. A proper choice of weighting scheme adjusts the

contribution of each subsample subspace according to its performance, making the weighted

average subspace more robust than unweighted average subspace.

It is also worth mentioning that another possible way to perform PCA from the per-

spective of model averaging is proposed in Liski et al. [2012]. The idea is to perform several

different PCA variants, and take the average of resulting subspaces to obtain a compro-

mise estimate. For each PCA variant, the entire input data X are used to calculate the

corresponding subspace. The main difference between this method and our Performance-

Weighted Bagging PCA is that the Performance-Weighted Bagging PCA is averaging over

a set of subsamples, but for each subsample only traditional PCA is performed. The ro-

bustness of the Performance-Weighted Bagging PCA is gained from a proper weighting

scheme.
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4.2.3 Weighting scheme

The robustness of Performance-Weighted Bagging PCA is achieved by down-weighting

subsamples containing outliers. A subsample subspace is an estimate of the underlying

subspace, and a candidate weight function w
k

should reflect the accuracy of this estimation.

Besides the performance measure, it is also possible to obtain a proper weighting scheme

from the loss function in other robust PCA methods. In this section, we will discuss other

possible ways to select the weight w
k
, which will potentially make connections between

Performance-Weighted Bagging PCA and other robust PCA methods.

If we formulate PCA from the viewpoint of maximizing the variance of projected data,

one way to robustify PCA, as reviewed in Section 4.1.1, is via projection pursuit. The pro-

jection pursuit approach searches a subspace that maximizes a robust measure of dispersion

of projected data. In other words, a robust measure of dispersion is used to evaluate the

accuracy of an estimated subspace. Thus, in the performance-weighted bagging framework,

the weight w
k

of a subsample subspace Sk can be chosen as

w
k

= σ̃(ψ̂
k
(X)) ,

where σ̃(·) is a robust measure of dispersion. The subspace that preserves less variability,

in terms of σ̃, will receive a lower value of weight. For example, a possible choice of σ̃ is

the sum of robust singular values of ψ̂
k
(X) (Ammann [1993]).

If we formulate PCA from the viewpoint of minimizing the reconstruction error, PCA

can be robustified by minimizing a robust measure of reconstruction error. Each subsample

subspace reconstructs the input data by X̂(k) = X ·Pk, and the weight w
k

in this case can

be chosen as

w
k

= 1
Rerr(X, X̂(k))

,
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where Rerr(X, X̂(k)) is a robust measure of reconstruction error between X and X̂(k). For

example, a possible choice of robust reconstruction error is provided in Podosinnikova et al.

[2014].

In these two viewpoints, the advantage of performing weighted bagging instead of solv-

ing the optimization problem directly is in computation. Some robust measures, for in-

stance median absolute deviation, is difficult to optimize, but is easy to calculate. There-

fore, the optimal subspace characterized by these robust measures can be computationally

challenging. Performance-Weighted Bagging PCA in these cases provides an alternative

way by incorporating the chosen robust measure in the weight w
k
. These two examples sug-

gest the potential of connecting other robust PCA methods with the Performance-Weighted

Bagging framework.

Another possible extension on the weighting scheme is that one can employ a monotonic

increasing transformation on the weight w
k
,

w̃
k

= g(w
k
) ,

where g(·) is a monotonic increasing function. The purpose of employing g(·) is to magnify

the different contributions between “good” subspaces and “bad” subspaces.

This strategy can be useful when the contamination level ε is large. In this case, most of

subsamples will contain outliers and produce “bad” subspaces. As we discussed in Section

4.2.2, one way to deal with this situation is to choose a small value of subsample size m to

make Performance-Weighted Bagging PCA more resistant to outliers. On the other hand,

however, m has to be larger than q to fit a q-dimensional subspace. Therefore, if one wants

to choose a relatively large value of m without losing the robustness, it could be done via

a proper transformation g(·). Figure 4.4 shows some choices of g(·).

Consider the contaminated multivariate normal distribution in Example 4.1. We apply

107



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wk

g(
w

k)

 

 

Beta function
exponential function
None

Figure 4.4: Monotonic transformation of weights w
k
.

Performance-Weighted Bagging PCA with m = 10 and K = 100. The weight w
k

is first

calculated by the local rank correlation. We then employ an exponential transformation

g(w
k
) = e5·w

k ,

to obtain a new weighting scheme. Figure 4.5 plots the histogram of weights w
k

in the

left panel and g(w
k
) (after normalization) in the right panel, when the contamination level

ε = 0.2. Clearly, after the transformation, subsamples with outliers are further down-

weighted, and nearly have no contributions to the final average. Figure 4.6 shows the

mean square distance (in log scale) between the true subspace and the weighted average

subspaces as functions of ε. As can be seen, this exponential transformation on the weights

makes Performance-Weighted Bagging PCA more resistant to outliers in this example.
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4.3 Selection of the number of components

Determining the number of principal components q is an important problem in PCA.

A variety of stopping rules to estimate q has been proposed over decades. A stopping

rule q(·) : Rp → N is a mapping which takes the observed high-dimensional data X as the

input, and produce an estimate q̂ as the output. Some reviews and comparisons of different

stopping rules can be found in Ferré [1995]; Jackson [2005]; Peres-Neto et al. [2005].

In Performance-Weighted Bagging PCA, when the dimension q is not given but to be

estimated, one obvious choice is to obtain an estimate q̂ based on the entire sample and

plug q̂ into algorithm 1. Another choice is to estimate q during the procedure of bagging.

To apply this idea, the first task is to determine the dimension for each subsample subspace.

Our strategy is to adopt any feasible stopping rule and individually estimate the dimension

q
k

of each subsample subspace Sk. We allow the dimension q
k

to be different from each

other. After obtaining a set of subsample subspaces with different dimensions, our second

task is to define the weighted average subspace. The concept of distance has been extended

by Liski et al. [2012] to measure the dissimilarity between two subspaces with arbitrary

dimensions.

Definition 4.2. Distance between subspaces with arbitrary dimensions: Given two linear

subspaces SP1 , SP2 in Rp , with rank(P1) = q1 and rank(P2) = q2 . The weighted distance

between SP1 and SP2 is define by

Dh (SP1 ,SP2) = 1√
2
‖h(q1)P1 − h(q2)P2‖F (4.5)

=
[
h2(q1)q1 + h2(q2)q2

2 − h(q1)h(q2) · trace(P1 P2)
]1/2

, (4.6)

where h(·) is a positive weight function.
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Some possible choices of h(·) include

(a) h(q) = 1,

(b) h(q) = 1/q,

(a) h(q) = 1/√q.

The weight function in (a) is the direct generalization of distance measure by Crone and

Crosby [1995], while (b) and (c) standardize the projection matrix. The interpretation and

properties of the weighted distance measure are discussed in Liski et al. [2012].

Similar to Lemma 4.1, the weighted average subspace can be defined by the weighted

distance measure provided in Definition 4.2.

Definition 4.3. Given a set of subspaces SP1 , . . . ,SPK ⊂ Rp with ranks q1 , . . . , qK , and as-

sociated weights w1 , . . . , wK
, the weighted average subspace S̄ with respect to the weighted

distance measure Dh is defined by

S̄ = arg min
SP⊂Rp

{
K∑
k=1

w
k
·D2

h(SPk ,SP)
}
. (4.7)

To find the weighted average subspace S̄, we can use the following lemma.

Lemma 4.2. Given an integer 1 ≤ q ≤ p, the q-dimensional weighted average subspace

S̄(q) is defined as

S̄(q) = arg min
SP∈Gr(q,Rp )

{
K∑
k=1

w
k
·D2

h(SPk ,SP)
}
.

The solution S̄(q) is spanned by the orthonormal columns of the p × q matrix U =[
u1 · · · uq

]
, where u

i
is the eigenvector of the matrix

P =
K∑
k=1

w
k
h(q

k
)Pk
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corresponding to the i-th largest eigenvalue. The solution S̄ to equation (4.7) is then

obtained by

S̄ = arg min
1≤q≤p

{
K∑
k=1

w
k
·D2

h(SPk , S̄(q))
}
.

Since the subsample size is chosen to be m, the dimension of subsample subspace q
k

takes value between 1 and m− 1. Therefore, to obtain S̄, we only need to search q from 1

to m− 1. In other words, if we define the weighted mean square distance between S̄(q) and

each subsample subspace as

WMSD(q) = 1
K

K∑
k=1

w
k
·D2

h(SPk , S̄(q)) ,

the final estimated number of components q̂ is the one that minimizes the weighted mean

square distance, i.e.

q̂ = arg min
1≤q<m

{WMSD(q)} .

The success of the proposed procedure obviously depends on the stopping rule we

choose. However, one advantage of selecting q during bagging is that it not only robustifies

PCA, but also robustifies the stopping rule against the presence of outliers. Because sub-

samples with outliers will be down-weighted, as long as the dimension of most subsamples

without outliers can be estimated correctly from the chosen stopping rule, we can expect

the final q̂ to be correct. Therefore even applying a non-robust stopping rule to subsamples

will result in a robust final estimate q̂. Also note that the function h(q) is used to make

subspaces with different dimensions comparable. The choice of h(q) does not affect the

final estimate q̂. In all the simulations and real data analysis, we choose h(q) = 1 unless

specified otherwise.

Algorithm 2 provides the procedure of PWBPCA, with the number of components q

unknown.
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Algorithm 2 Performance-Weighted Bagging PCA (with q unknown)
Input: X = [x1 · · ·xn ]′ , q(·), m, K

1: GenerateK subsamples X1, . . . ,XK ⊂ X of sizem from the original data by resampling

without replacement.

2: for k = 1 to K do

3: Perform traditional PCA procedure with Xk, and obtain a p× q
k

column orthogonal

matrix Uk and corresponding projection matrix Pk = Uk U′k, where q
k

is determined

by the stopping rule q
k

= q(Xk).

4: Obtain Ŷk = X·Uk and calculate the weight w
k

for Pk based on local rank correlation

between X and Ŷk.

5: end for

6: Calculate the weighted average

P =
K∑
k=1

w
k
·Pk .

7: Select top q̂ eigenvectors of P to form Û, such that

Û = arg min
1≤q≤p

{
K∑
k=1

w
k
·
∥∥∥Û(q) Û′(q) −Pk

∥∥∥2

F

}
,

where Û(q) =
[
û1 · · · ûq

]
.

8: Obtain q̂-dimensional representation by Ŷ = X · Û.

Output: Ŷ = [ŷ1 · · · ŷn ]′.
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In the following example, we illustrate how this procedure selects the number of com-

ponents.

Example 4.2. We generate the input data X in R10 from a contaminated multivariate

normal distribution,

xi ∼ (1− ε) · N10(0,ΣΣΣ) + ε · N10(µµµ1 , 0.1 · I10), i = 1, . . . , 100

µµµ1 = 100 · e10

ΣΣΣ = diag([8, 6, 4, 0.1, . . . , 0.1︸ ︷︷ ︸
7

]) .

In this case, the true number of components is q = 3. We apply Performance-Weighted

Bagging PCA in algorithm 2 with m = 10, K = 500, and we choose the stopping rule to

be

q
k

= q(Xk) = min
{
q :

∑q
j=1 λ(k),j∑p
j=1 λ(k),j

> 0.9
}
,

where λ(k),j is the j-th largest eigenvalue of the covariance matrix of Xk. In other words,

for each subsample subspace, the dimension q
k

is chosen to be the smallest number of

components that accounts for more than 90% of the total variance of the subsample. We

examine two cases where ε = 0 and ε = 0.2. Figure 4.7 plots the histogram of the estimated

subspace dimension q
k

and Figure 4.8 plots the weighted mean square distance as a function

of q. Note that when there are 20% of outliers in the input data, most of subsamples contain

outliers (roughly 90%). Although the stopping rule we chose is non-robust and it provides

a wrong estimate for these subsample subspaces, i.e. q
k

= 1 (as shown in the right panel

in Figure 4.7), the proposed procedure still selects the correct number of components, i.e.

q̂ = 3 (as shown in the right panel in Figure 4.8).
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Figure 4.7: Histogram of estimated subspace dimension q
k

4.4 Simulation study

In this section, we conduct a simulation study to compare the performance and the ro-

bustness of Performance-Weighted Bagging PCA. We generate the input data X from a

contaminated multivariate normal distribution,

xi ∼ (1− ε) · Np(0,ΣΣΣ) + ε · Np(µµµ1 , 0.1 · Ip), i = 1, . . . , 100.

with different values of p, ΣΣΣ, ε, and µµµ1 . We apply four different robust PCA methods

• Performance-Weighted Bagging PCA (PWBPCA),

• ROBPCA,
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Figure 4.8: Select the number of components

• Projection Pursuit,

• Robust PCA based on MCD estimator.

For each method, the procedure is repeated 1000 times, and the mean square distance

(MSD) between the true subspace and estimated subspace is evaluated by,

MSD = 1
1000

1000∑
i=1

D2(S, Ŝ(i)) .

Performance-Weighted Bagging PCA is calculated by algorithm 1 with m = 10, K =

500, q = 3. The weight w
k

is calculated by the local rank correlation, with an exponential

transformation g(w
k
) = exp(5 · w

k
). The algorithm for calculating Projection Pursuit

is provided in Hubert et al. [2002b] (RAPCA), and the MCD estimator is calculated by

the FAST-MCD algorithm provided in Rousseeuw and Driessen [1999]. The simulation
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is conducted in MATLAB using the LIBRA library (Verboven and Hubert [2005]). In

ROBPCA and MCD, the tuning parameter α, which specifies the fraction of outliers the

algorithm should resist, is set to be α = 0.5.

We report some results obtained from the following situations:

(i). p = 5, µµµ1 = c · e5 , ΣΣΣ = diag([8, 6, 4, 0.5, 0.1]), ε = 0, . . . , 0.45, c = 10, or 100. In this

case, the true subspace S = span(e1 , e2 , e3).

(ii). p = 50, µµµ1 = c · e50 , ΣΣΣ = diag([25, 20, 18, 16, 15, 0.1, . . . , 0.1]), ε = 0, . . . , 0.45, c =

10, or 100. In this case, the true subspace S = span(e1 , · · · , e5).

Case (i) considers the low-dimensional input data. The parameter c specifies how far

the contaminated data are shifted from the clean data, c = 10 implies subtle outliers and

c = 100 implies obvious outliers. The mean square distances are plotted in log scale in

Figure 4.9.

From Figure 4.9, we can see that when the contamination level is low (0 ≤ ε < 0.1),

Performance-Weighted Bagging PCA provides the best result no matter outliers are subtle

or obvious. When the contamination level is high (ε > 0.4), Performance-Weighted Bagging

PCA also provides the best result in both situations. Notice that, although the resistance

level for MCD and ROBPCA are set to be α = 0.5, both methods are heavily influenced

by outliers prior to the resistant level α = 0.5. In this low-dimensional case, Performance-

Weighted Bagging PCA yields a very robust subspace estimate against the presence of

outliers.

Case (ii) considers the high-dimensional input data. The mean square distances are

plotted in log scale in Figure 4.10. As can be seen in the left panel, Performance-Weighted

Bagging PCA again produces a robust subspace estimate. When the contamination level
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Figure 4.9: Simulation case (i).

is high, i.e. ε > 0.3, Performance-Weighted Bagging PCA is the best among four robust

methods. In the right panel, when c = 100, ROBPCA provides the best result, but

Performance-Weighted Bagging PCA still outperforms RAPCA and robust PCA based on

MCD estimator.

4.5 Background modeling from surveillance video

Analysis of video data is an active research field. In this section, we apply Performance-

Weighted Bagging PCA on the background modeling problem (Bouwmans et al. [2014])

in surveillance video data analysis. In a surveillance video, every scene usually consists

of a relatively static background, and some moving objects. A basic task is to separate

the background and foreground objects. This problem is appealing in computer vision,

and it is usually referred as background modeling or foreground detection. Background
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Figure 4.10: Simulation case (ii).

modeling can be challenging in practice due to changes of background, for example changes

in illumination condition, presence of shadows, or due to a poor quality video source. In

such situations, one way to tackle the problem is via subspace learning models (Bouwmans

[2009]).

We stack the sequence of image frames from a video as column vectors {x1 , . . . ,xn},

where n is the number of frames and the dimensionality p of x
i

is the resolution of each

frame. The background can be modeled by a low-dimensional subspace SP ⊂ Rp . For the

i-th frame, the background are represented by the mean image m and projection matrix P

associated with the subspace SP, and the foreground objects is represented by the difference
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between the original image and its reconstruction, i.e.

mean image: m = 1
n

n∑
i=1

xi ,

background: x̂j = m + P · (xj −m) ,

foreground: r̂j = xj − x̂j .

Here we will apply Performance-Weighted Bagging PCA to obtain a subspace SP and

investigate its performance. Three surveillance video datasets are considered here as illus-

tration, and all calculations are conducted in MATLAB. The first dataset is introduced in

Li et al. [2004]. It is a sequence of n = 1500 grayscale image frames of a escalator recorded

by a CCTV surveillance system, and each frame has resolution p = 130×160. The moving

objects in the scene are walking people and escalator steps. This dataset is challenging

for three reasons. First, there are many more moving objects in the scene, including three

escalators and busy flow of human crowds. Another challenge is due to the significant

change in the background lighting conditions. In addition, the video is noisy because of

the old video recording device used. We first apply Performance-Weighted Bagging PCA in

algorithm 1, with m = 50, K = 300, and q = 3. The result is shown is Figure 4.11. Three

frames are randomly chosen from the original video and displayed in the left column, and

the middle and right columns show the segmentation of the background and the foreground

objects.

Secondly, we do not specify the number of components q, and apply Performance-

Weighted Bagging PCA in algorithm 2, with m = 50, K = 300, and the stopping rule is

chosen to be

q
k

= q(Xk) = min
{
q :

∑q
j=1 λ(k),j∑p
j=1 λ(k),j

> 0.75
}
,

where λ(k),j is the j-th largest eigenvalue of the covariance matrix of Xk. We also apply

principal component pursuit (Candès et al. [2011]), which is a state-of-the-art technique, for

120



Original frames Background frame Foreground Object

Figure 4.11: Background modeling in escalator surveillance video data by Performance-

Weighted Bagging PCA (algorithm 1).

comparison. We use the MATLAB code package downloaded from http://perception.

csl.illinois.edu/matrix-rank/sample_code.html. The result is shown in Figure 4.12.

Image frames from the original video are displayed in column (a), column (b) and
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(a) Original frames (b) Background (c) Foreground (d) Background (e) Foreground

PWBPCA Principal component pursuit

Figure 4.12: Background modeling in escalator surveillance video data by Performance-

Weighted Bagging PCA (algorithm 2) and principal component pursuit.

(c) show the segmentation of the background and foreground obtained from Performance-

Weighted Bagging PCA, whereas column (d) and (e) show the segmentation of the back-

ground and foreground obtained from principal component pursuit. As can be seen from

Figure 4.12 column (b) and (d), the main difference between Performance-Weighted Bag-

ging PCA segmentation and principal component pursuit segmentation is that escalator

steps are treated as moving objects in Performance-Weighted Bagging PCA while princi-

pal component pursuit identifies them as background. In general, Performance-Weighted
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Bagging PCA provides a visually satisfactory result in spite of the illumination changes in

the background and the poor quality of the video.

The second dataset is from CVLAB-EPFL (http://cvlab.epfl.ch/data). It is a

sequence of n = 1000 grayscale image frames filmed by a static camera at a training session

of a local basketball team, and each frame has resolution p = 144×180. The moving objects

are basketball players and the basketball. The goal is to track players by separating them

from the background basketball court. The difficulty in dealing with this dataset is due to

frequent and complicated movements of players. We again apply Performance-Weighted

Bagging PCA and principal component pursuit with the same parameter setting in the

escalator surveillance data example. The result is shown in Figure 4.13, and Figure 4.14.

As can be seen from Figure 4.14, all players in the scene are successfully captured by

both Performance-Weighted Bagging PCA and principal component pursuit. However,

both methods treat some of the player motion as background, causing the presence of

“ghost” in some background frames. In these two challenging video datasets, Performance-

Weighted Bagging PCA gives a competitive result, compared to the state-of-the-art tech-

nique.

The third example illustrates the performance of the proposed method on a contami-

nated dataset. The dataset is also introduced in Li et al. [2004]. It is a surveillance video

taken in a lobby with resolution p = 96× 120. The scene contains several moving people,

as well as several drastic illumination changes. We select a sequence of n = 230 grayscale

images, and then we contaminated the dataset by adding three random noise images. As

shown in Figure 4.15, the upper row (a) shows three frames from the original video, and

lower row (b) shows three noisy images. Note that pixels of three added images have

magnitude approximately 4 times more than other clean images.
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Original frames Background frames Foreground objects

Figure 4.13: Player detection in basketball video data by Performance-Weighted Bagging

PCA (algorithm 1).

The goal is to identify the moving people from each frame as foreground objects and

illumination changes as a part of the background. The main challenge comes from three

added noisy images. We apply four different PCA variants for comparison. They are tradi-

tional PCA, principal component pursuit, ROBPCA, and proposed Performance-Weighted

Bagging PCA. The number of components for PCA, ROBPCA, and Performance-Weighted

Bagging PCA is chosen to be q = 3, and the resistant level for ROBPCA is chosen to be
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(a) Original frames (b) Background (c) Foreground (d) Background (e) Foreground

PWBPCA Principal component pursuit

Figure 4.14: Player detection in basketball video data by Performance-Weighted Bagging

PCA (algorithm 2) and principal component pursuit.

α = 0.6. First we apply these four methods on the clean dataset, and the result is shown in

Figure 4.16. Three frames from the original video are randomly selected, and displayed in

column (a). Column (b)-(e) display the foreground detection from four methods, respec-

tively. As can be seen, PCA, principal component pursuit, and Performance-Weighted Bag-

ging PCA all yield reasonably good results, while ROBPCA, a traditional robust method,
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(a) Original image frames

(b) Contaminated frames

Figure 4.15: Three frames from the original video (upper row), and three random noise

images (lower row).

fails to separate the moving people from the background.

Then we apply these four methods on the contaminated dataset, and the result is shown

in Figure 4.17. As can be seen, when outlying images are included in the dataset, the sub-

space obtained from PCA can no longer capture the illumination changes. Compared to

PCA, ROBPCA also fails to provide a reasonable result, while principal component pursuit

(PCP) successfully recovers the moving objects from the contaminated data. Our proposed

Performance-Weighted Bagging PCA works reasonably well. Although a part of illumina-

tion changes is mistakenly considered as foreground objects, overall the segmentation is

robust against outliers, compared to PCA and ROBPCA.
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(a) Original images (b) PCA

                                Foreground objects

(c) PCP (d) ROBPCA (e) PWBPCA

Figure 4.16: Foreground objects detection with clean data.

4.6 Discussion and future Work

In this chapter we developed a new robust PCA approach from the viewpoint of model

averaging. The proposed method is robust and computationally convenient. It yields com-

petitive results in numerical examples compared to some traditional robust PCA methods,

and it also shows the applicability in the analysis of video data. There are still several

interesting problems in Performance-Weighted Bagging PCA which can be future research

topics.
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(a) Original images (b) PCA

                            Foreground objects

(c) PCP (d) ROBPCA (e) PWBPCA

Figure 4.17: Foreground objects detection with contaminated data.

An immediate goal is to extend Performance-Weighted Bagging PCA to handle data

with a nonlinear structure via Kernel PCA framework. Kernel PCA first transforms the

input data into a feature space H by a feature map Φ, and traditional PCA is then applied

in H to find a subspace for projection. It is difficult to directly generalize the idea of

averaging subsample subspaces in the feature space due to the implicitness of Φ. An

alternative way of performing model averaging in Kernel PCA is to average over a set of

candidate kernel matrices. Some methods contain tuning parameters in constructing kernel

matrices, for example the neighborhood size K in LLE and ISOMAP, and parameter σ
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in Gaussian kernel PCA. Instead of choosing a optimal value for the tuning parameter,

we can use the idea of bagging. First construct kernel matrix for a set of different values

of tuning parameter, and then assign a proper weight for each kernel matrix based on

the performance of the corresponding output configuration. The weighted average kernel

matrix will produce an outcome that is robust against the tuning parameter.

A second topic to be explored is the weight function w
k
. In general, the various choices

in the weighting scheme introduce more flexibility and potential in this framework. A

further study is needed to better understand the behavior of weighting function, and to

choose the optimal family of weighting functions. Also, as we have seen in the example

in Section 4.2.3, the transformation plays another important role. A proper increasing

transformation can magnify the effect of “good” subsample subspaces, and improve the

robustness of Performance-Weighted Bagging PCA. However, a sharply increasing trans-

formation might force a large proportion of subsample subspaces to have nearly 0 weights,

causing the loss of efficiency. It seems like the transformation g(·) and the subsample size

m together controls the trade-off between the efficiency and robustness of Performance-

Weighted Bagging PCA. How can we find the optimal subsample size and the optimal

transformation to balance between the efficiency and the robustness is an important issue

in the future research.

In addition, it is also of our interest to derive some theoretical properties of Performance-

Weighted Bagging PCA. For example under some distributional assumptions, we would like

to investigate the asymptotic property of the distance D(Ŝ
Bag
, S) between Performance-

Weighted Bagging PCA subspace Ŝ
Bag

and underlying subspace S.
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Appendices

A The procedure for solving the transformation matrix

In this appendix we discuss procedures for computing the transformation matrix Â de-

fined in (2.13). Given the input data {x1, . . . ,xn} and the low-dimensional representation

{ŷ1, . . . , ŷn}. We obtain the affine transformation matrix Â as the solution to equation

(2.13). It is solved by the following procedure.

(i) To find a proper subset I:

For all cases i, calculate

dij = (xi − xj)′(xi − xj),

di =
∑

j∈NI

J
(i)

dij.

Sort d1, . . . , dn, and choose a permutation π such that

dπ(1) ≤ dπ(2) ≤ · · · ≤ dπ(n).

Let m < n be a tuning parameter. We choose the subset I = {π(1), . . . , π(m)}. In the

numerical experiments in this paper, the tuning parameter is set to be m = b0.75nc.
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(ii) Let Cq be the set of all q × q matrix. Given I, we solve the LS solution:

Â = arg min
A∈Cq


∑
i∈I

∑
j∈NI

J
(i)

[dij − (ŷi − ŷj)′A′A(ŷi − ŷj)]2


as follows.

– Let M = A′A. Define

f(M) =
∑
i∈I

∑
j∈NI

J (i)
[dij − (yi − yj)′M (yi − yj)]2 ,

so that

∂f

∂M
=
∑
i∈I

∑
j∈NI

J (i)
{2 [dij − (ŷi − ŷj)′M (ŷi − ŷj)] (ŷi − ŷj)(ŷi − ŷj)′}

– Let Dij = (ŷi − ŷj)(ŷi − ŷj)′, and set ∂f/∂M = 0, so that

∑
i∈I

∑
j∈NI

J (i)
dijDij =

∑
i∈I

∑
j∈NI

J (i)
Dij M Dij. (4.8)

– The matrix M is symmetric, and equation (4.8) can be solved for M by a linear

system.

– Then a proper solution of Â is Â = M 1
2 .

The computational complexity for step (i) scales as O(n2J), and for solving the linear

system in step (ii) scales as O
(
n
(
q(q+1)

2

)3
)

, where q is the dimensionality of the output

data Ŷ.
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B Distributions of local rank correlations when X and Ŷ are

independent

Local Kendall correlation τ
J

In this appendix we derive the distribution of local kendall correlation τ
J

when the output

Ŷ are generated independently from the input X. Notice that in this case, the distributions

of τ I
J

and τO
J

are the same. Therefore we only consider τ I
J

here.

• Distribution of ζ:

We first model the overlap size ζ =
∣∣∣N I

J (i)⋂NO
J (i)

∣∣∣ by a hypergeometric distribution

with J defectives out of n− 1 items and J draws, i.e.

Pr(ζ = r) =

(
J
r

)(
n−J−1
J−r

)
(
n−1
J

) .

• Conditional distribution of τ I
J
|ζ = r:

Conditioning on the random overlap, the distribution of τ I
J

can be derived using the

result from Sillitto [1947]. Suppose we have two samples {x1 , . . . , xJ} and {y1 , . . . , yJ}

from independent random variables X and Y , respectively. Denote

S
J

=
∑
j<k

sign
{

(x
j
− x

k
)(y

j
− y

k
)
}
.

To derive the general probability mass function of S
J
, let

g(s, p1 , p2 , . . . , pm) = Pr(S
J

= s|p1 , p2 , . . . , pm)

be the distribution function of S
J

when a ranking of J members containing p1 distinct

values, p2 pairs, p3 triplets, ... , and pm m-tuplets. The exact pmf of S
J

for sample
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size J from 3 to 7, and for ranking containing only distinct values and p2 pairs is

provided (in a table) in Sillitto [1947]. It also provided a recursive formula

g(s, p1 , p2 , . . . , pm) = g(s− (m− 1), p1 − 1, p2 , . . . , pm−1 − 1, pm + 1)

+ g(s− (m− 3), p1 − 1, p2 , . . . , pm−1 − 1, pm + 1)

· · ·

+ g(s+ (m− 1), p1 − 1, p2 , . . . , pm−1 − 1, pm + 1) .

Now, we get back to the definition of τ
J
. Let

T (i) =
∑

j<k∈NI
J (i)

sign
{

[R̂
ij
− R̂

ik
] · (s

ij
− s

ik
)
}
.

Conditioning on ζ = r, {s
i1 , . . . , siJ} contains no ties, and there is one (J − r)-tuplet

in
{
R̂
i1 , . . . , R̂iJ

}
. Thus, the conditional pmf of T (i)|ζ = r is a special case of the

above result, and it can be calculated from the recursive formula.

Pr(T (i) = t|ζ = r) = g(t, p1 , p2 , . . . , pJ−r) ,

where p1 = r, p
J−r = 1, and pm = 0 for m = 2, . . . , J − r − 1. Recall that

τ I
J
(i) = T (i)

1
2J(J − 1) .

Since 1
2J(J − 1) is a constant for a fixed J , the conditional distribution of τ I

J
|ζ = r

can be easily obtained from Pr(T (i) = t|ζ = r). We denote the conditional pmf by

fr(z) = Pr(τ I
J

= z|ζ = r) .

• Distribution of τ I
J
:
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Denote f(z) = Pr(τ I
J

= z).

f(z) =
J∑
r=0

Pr(τ I
J

= z|ζ = r) · Pr(ζ = r)

=
J∑
r=0

fr(z) ·

(
J
r

)(
n−J−1
J−r

)
(
n−1
J

)
 .

• Expectation and variance of τ I
J
:

Assuming independence between X and Ŷ, it can be easily seen that E(T (i)|ζ =

r) = 0. This implies that E(τ I
J
) = 0.

Now applying the result in Sillitto [1947], we can obtain the conditional variance

Var(T (i)|ζ = r) =


r(6J2 − 6Jr + 6J + 2r2 − 3r − 5)/18, 0 ≤ r ≤ J − 2

J(J − 1)(2J + 5)/18, r = J − 1, J

Var(τ I
J
|ζ = r) =


2r(6J2−6Jr+6J+2r2−3r−5)

9J2(J−1)2 , 0 ≤ r ≤ J − 2
2(2J+5)
9J(J−1) , r = J − 1, J.

Thus

Var(τ I
J
) = E

{
Var(τ I

J
|ζ = r)

}
+ Var

{
E(τ I

J
|ζ = r)

}
= E

{
Var(τ I

J
|ζ = r)

}
=

J∑
r=0

Var(τ I
J
|ζ = r) ·

(
J
r

)(
n−J−1
J−r

)
(
n−1
J

)
 .

Local Spearman correlation ρ
J

Similar to Kendall’s τ
J
, we can derive the distribution of the local Spearman correlation

ρ
J
. Again we will consider only the case ρI

J
because when Ŷ is generated independently

from X, the distributions of ρI
J

and ρO
J

are the same.
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• Conditional distribution of ρI
J
|ζ:

Rewrite ρI
J

as

ρI
J
(i,X,Y) = 1−

∑
j∈NI

J
(i)

(
s
ij
− R̂

ij

)2
+ U

1
6(J3 − J)

= 1− 4J + 2
J − 1 +

∑
j∈NI

J (i)

(
s
ij
· R̂

ij

)
1
12(J3 − J) .

Let

Tρ(i) =
∑

j∈NI
J (i)

(
s
ij
· R̂

ij

)
.

The conditional distribution of Tρ(i)|ζ can be calculated via its probability generating

function using the result in Van de Wiel and Di Bucchianico [2001]. However, it is

difficult to write out the explicit form of the conditional distribution of ρI
J

because

there is no recursive formula available.

• Expectation and variance of ρI
J
:

Conditioning on ζ = r, s
ij

takes value from 1 to J , and R̂
ij

takes value in1, . . . , r, r + J + 1
2 , . . . ,

r + J + 1
2︸ ︷︷ ︸

J−r

 .

Therefore we can write

Tρ(i) =
∑

j∈NI
J (i)

(
s
ij
· R̂

ij

)

=
J∑
k=1

(k · σ(k)) .
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where

σ(k) ∈

1, . . . , r, r + J + 1
2 , . . . ,

r + J + 1
2︸ ︷︷ ︸

J−r

 .

Assuming independence between X and Ŷ, for any k, we have

Pr(σ(k) = j|ζ = r) = 1/J, j = 1, . . . , r

Pr(σ(k) = (r + J + 1)/2|ζ = r) = (J − r)/J.

Thus, we can show that

E (Tρ(i)|ζ = r) = 1
J

J∑
k=1

k ·
(J − r) · r + J + 1

2 +
r∑
j=1

j


= 1

4J(J + 1)2.

Similarly we have

E
(
T 2
ρ (i)|ζ = r

)
= 1

144J(J + 1)(9J4 + 27J3 + 3rJ2 + 9J − 3r2J − r + r3).

Then the expected value of ρ
J
(i) can be obtained by

E (ρ
J
(i)) = 1− 4J + 2

J − 1 −
E (Tρ(i))
1
12(J3 − 1)

= 1− 4J + 2
J − 1 −

1
4J(J + 1)2

1
12(J3 − J)

= 0,
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and the variance of ρ
J
(i) is obtained by

Var (Tρ(i)|ζ = r) = E
(
T 2
ρ (i)|ζ = r

)
− {E (Tρ(i)|ζ = r)}2

Var (ρ
J
(i)|ζ = r) = Var (Tρ(i)|ζ = r)(

1
12(J3 − J)

)2

= r(3J3 − 3rJ + r2 − 1)
J(J + 1)(J − 1)2

Var (ρ
J
(i)) =

J∑
r=0

Var (ρ
J
(i)|ζ = r) ·

(
J
r

)(
n−J−1
J−r

)
(
n−1
J

)
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