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Summary

Clinical trials are often designed to assess the effect of therapeutic interventions on the incidence
of recurrent events in the presence of a dependent terminal event such as death. Statistical meth-
ods based on multistate analysis have considerable appeal in this setting since they can incorpo-
rate changes in risk with each event occurrence, a dependence between the recurrent event and the
terminal event, and event-dependent censoring. To date, however, there has been limited develop-
ment of statistical methods for the design of trials involving recurrent and terminal events. Based
on the asymptotic distribution of regression coefficients from a multiplicative intensity Markov
regression model, we derive sample size formulas to address power requirements for both the re-
current and terminal event processes. We consider the design of trials for which separate marginal
hypothesis tests are of interest for the recurrent and terminal event processes and deal with both
superiority and non-inferiority tests. Simulation studies confirm that the designs satisfy the nom-
inal power requirements in both settings, and an application to a trial evaluating the effect of a
bisphosphonate on skeletal complications is given for illustration.
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1 INTRODUCTION

1.1 BACKGROUND

Clinical trials must be designed with appropriate power to address scientific needs, ethical demands,
and financial restrictions. In parallel group randomized trials involving failure time outcomes, power
objectives are typically met for a given model (e.g. Cox model) by specifying the event rate in the
reference arm, the clinically important effect, the censoring rate and the size of the test, and then by
deriving a suitable sample size based on large sample theory [1]. Under this general framework, a
number of authors have developed methods for planning trials based on analyses of the time to the
first event [2–5].
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Sample size formulas have been developed [6] for recurrent event outcomes based on mixed Pois-
son models with multiplicative rate functions [7, 8]. Power and sample size considerations were sub-
sequently developed for more general multiplicative models [9] using counting process theory [10].
Another approach to the analysis of recurrent event data in clinical trials is to use the robust meth-
ods for the analysis of multivariate survival data [11] under a working independence assumption and
sample size formula for this approach are available [12]. More recently there has been interest in
trial design based on covariate-adjusted log-rank statistics for recurrent event analyses and associated
sample size formula have been developed [13].

To date no methods have been developed for the design of clinical trials in which the aim was to
test treatment effects on recurrent and terminal event processes. We address this problem under the
framework of a Markov model with transient states corresponding to the recurrent events and a single
absorbing state for death. The treatment effect on the recurrent events is formulated by specifying
multiplicative intensity models with time-dependent strata based on the cumulative event history and
a common treatment effect; this formulation is in the spirit of the Prentice et al. [14] approach to the
analysis of recurrent events. Multiplicative intensity-based models are also incorporated for mortality
with the same stratification criteria. Under this formulation we derive the limiting value of partial
score statistics for the treatment effect on the recurrent and terminal event processes, along with the
asymptotic variances under the null and alternative hypotheses. Sample size criteria are then obtained
to satisfy power objectives when separate marginal hypothesis tests are of interest for the two types
of events.

Non-inferiority designs are being used increasingly often in cancer and cardiovascular research
[15, 16] since many treatments with proven efficacy are available and placebo-controlled trials are
therefore unethical. In such settings new interventions are required to have some advantages over
standard care, such as a lower cost, a lower rate of adverse events, or a less invasive mode of admin-
istration [17]. Rothmann et al. [15] provides an excellent discussion about the various approaches to
hypothesis testing in the context of non-inferiority oncology trials and extensions have recently been
made for recurrent event analyses based on mixed Poisson models or robust marginal methods [18].
We consider design issues when there are superiority or non-inferiority hypotheses for the recurrent
event and survival processes in the context of the multistate model.

The remainder of this paper is as follows. In the next subsection we give further background
information on the setting of the palliative trials for patients with cancer metastatic to bone. In Section
2 we define notation, describe the multistate model, and derive the relevant partial score statistics.
The limiting distribution of the partial score statistics are derived in Section 3 which facilitate sample
size calculation in Section 4. Simulation studies in Section 5 confirm that the empirical frequency
properties are compatible with the nominal levels under the null and that power requirements are met.
An application is given in Section 6 and general remarks and topics for further research are discussed
in Section 7.

1.2 TRIAL DESIGN FOR PATIENTS WITH SKELETAL METASTASES

Cancer patients with skeletal metastases are at increased risk of a variety of clinical events including
pathological and nonpathological fractures, bouts of acute bone pain, and episodes of hypercalcemia.
These events are typically grouped together to form a composite recurrent “skeletal related event”
which is used as a basis for the evaluation of treatments designed to reduce the occurrence of skeletal
complications in cancer patients to help maintain functional ability and quality of life and minimize
health service utilization [19]. Because the patient population has metastatic cancer, they are also
at considerable risk of death. In breast cancer, twelve month survival in recent studies has been
approximately 78.9% in treated patients; in lung, prostate and other solid tumors the 12 month survival
rates were 28.0%, 66.0% and 33.6% respectively.
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While bisphosphonate therapy is palliative and not expected to impact survival, an assessment of
the effect on survival times is warranted for a complete evaluation of the consequences of treatment.
Simultaneous consideration of treatment effects on the recurrent skeletal related events and survival
is therefore essential and analyses must accommodate a possible association between the recurrent
event and terminal death process.

2 LIKELIHOOD FOR RECURRENT AND TERMINAL EVENTS

We adopt the framework of a continuous time multistate Markov process to jointly model the recurrent
events and terminal event. Let {Zi(s), 0 < s} denote this process for individual i with a countable
number of states in the state space S = {0, 1, . . . , D} and a right continuous sample path. The
integers 0, 1, 2, . . . represent the number of recurrent events experienced over time and D represents
an absorbing death state. Figure 1 displays a multi-state diagram for the recurrent events and terminal
event process. If individual i is alive at time t and has experienced precisely j events over (0, t], then
Zi(t) = j and if individual i dies at time s, Zi(t) = D for t ≥ s. We assume that all subjects are at
state 0 at time t = 0, the time of randomization. Let vi be a binary treatment indicator for individual
i such that vi = 1 if individual i was randomized to the experimental treatment and vi = 0 otherwise.

Let Tij be the time individual i enters state j, j = 1, . . ., and T di their time of death, i = 1, . . . ,m.
Let dNij(t) = I(Zi(t

−) = j − 1, Zi(t) = j), indicate that a (j − 1)→ j transition was made at time
t for individual i, so dNij(t) = 1 at tij but is zero otherwise, j = 1, . . . . Let dNd

ij(t) = I(Zi(t
−) =

j − 1, Zi(t) = D) indicate that a (j − 1)→ D transition is made at time t (i.e. that the jth event was
death). Let Ni(t) = (Nij(t), j = 1, . . .) and Nd

i (t) = (Nd
ij(t), j = 1, . . .) jointly be the multivariate

counting process for individual i. The history of the process is the information observed up to t− and
we let Hi(t) = {Ni(s), N

d
i (s), 0 ≤ s < t, vi} denote the history for individual i, i = 1, . . . ,m. A

stochastic model for this multistate process must be assumed to derive sample size calculations. We
formulate this model by specifying the respective intensity functions [21]. The intensities for event
occurrence or death are defined as

λj(t|Hi(t)) = lim
∆t↓0

P (∆Nij(t) = 1|Zi(t−) = j − 1, Hi(t))

∆t

and

γj(t|Hi(t)) = lim
∆t↓0

P (∆Nd
ij(t)) = 1|Zi(t−) = j − 1, Hi(t))

∆t
,

respectively, where ∆Nij(t) = Nij((t+ ∆t)−)−Nij(t
−) and ∆Nd

ij(t) = Nd
ij((t+ ∆t)−)−Nd

ij(t
−)

count the number of the (j − 1)→ j and (j − 1)→ D transitions over (t, t+ ∆t) respectively.
Consider a study with planned follow-up over the interval (0, τ ], where τ is called the admin-

istrative censoring time. Individuals may withdraw prematurely from a study and so we let τ †i be
the random right censoring time and let τi = min(τ †i , τ) be the net censoring time for individ-
ual i; we let Xi = min(T di , τi) denote the total time on study and δi = I(Xi = T di ) indicate
whether the terminal event was observed. Let Yi(t) = I(t ≤ τi) indicate whether individual i
is under observation at t and Yij(t) = I(Zi(t

−) = j − 1), j = 1, . . . indicate that individual i
is at risk of a transition out of state j − 1 at time t (i.e. they are at risk for the jth event of ei-
ther type), so Ȳij(t) = Yi(t)Yij(t) indicates they are both at risk and under observation. Then
dN̄ij(t) = Ȳij(t)dNij(t) and dN̄d

ij(t) = Ȳij(t)dN
d
ij(t) are so-called the observable counting pro-

cesses for the recurrent event and terminal events respectively. The observed data can then be written
{dN̄i(s), dN̄

d
i (s), Yi(s), 0 < s, vi}, i = 1, . . . ,m. The history of the observable process is the infor-

mation observed up to t− and denoted H̄i(t) = {N̄i(s), N̄
d
i (s), Ȳi(s), 0 ≤ s < t, vi}, i = 1, . . . ,m.
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D D D D

E0 E1 E2 E3

γ01(t)e
θvi γ02(t)eθvi γ03(t)eθvi

λ01(t)e
βvi λ02(t)e

βvi λ03(t)e
βvi

Figure 1: Recurrent events with terminal event diagram representing the model formation based on
counting processes. λ0j(t) exp(βv), j = 1, 2, . . ., are the transition intensities for the recurrent events
from state (j − 1) to state j. State D represents the terminal event of death and γ0j(t) exp(θv),
j = 1, 2, . . ., are the corresponding event-dependent transition intensities; for convenience state Ej is
simply referred to as state j

Under conditionally independent censoring [22], the intensities for event occurrence and death of
the observable processes are given by λ̄j(t|H̄i(t)) = Ȳij(t)λj(t|Hi(t)) and γ̄j(t|H̄i(t)) = Ȳij(t)γj(t|Hi(t)),
respectively. Thus if individual i experienced Ji > 0 recurrent events at times ti1, . . . , ti,Ji over [0, Xi],
their likelihood contribution is proportional to

Ji∏
j=1

λ̄j(tij|H̄i(tij))[γ̄Ji(Xi|H̄i(Xi))]
δi exp

(
−

Ji+1∑
j=1

∫ tij

ti,j−1

(λ̄j(u|H̄i(u)) + γ̄j(u|H̄i(u)))du

)
,

where ti0 = 0 and for notational convenience we let ti,Ji+1 = Xi.
A specification is required for the intensity functions and here we adopt a multiplicative intensity

Markov model [1] and we set the two intensities to

λ̄j(t|H̄i(t)) = Ȳij(t)λij(t) = Ȳij(t)λ0j(t) exp(βvi) , (1)

and

γ̄j(t|H̄i(t)) = Ȳij(t)γij(t) = Ȳij(t)γ0j(t) exp(θvi) , (2)

where λ0j(t) and γ0j(t) are non-negative baseline intensity functions for the recurrent event and termi-
nal event for state j, respectively. Through the time-dependent stratification on the cumulative number
of events, this model accommodates an association between the recurrent and terminal events. The
multiplicative effect of vi is assumed to be constant (i.e. not event dependent) for the two processes to
give a parsimonious parameterization of the treatment effect. This model was discussed by Prentice
et al. [14] is sometimes referred to as the stratified Anderson-Gill model [23].

The likelihood can be factored into two parts, one part involving β and the other part involving θ.
The likelihood contribution for the recurrent event process involves β as is given by

Ji∏
j=1

λij(tij) exp

(
−

Ji+1∑
j=1

∫ tij

ti,j−1

Ȳij(u)dΛij(u)

)
, (3)
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where Λij(t) =
∫ t

0
λij(u)du is the cumulative intensity function for individual i in stratum j. The

partial likelihood for a sample of size m is then the product of m such terms.
The partial score estimating function for β is then

m∑
i=1

Ji∑
j=1

∫ τ

0

Ȳij(u)
(
dNij(u)− dΛ0j(u)eβvi

)
vi . (4)

The Breslow profile estimate of dΛ0j(u) is

dΛ̂0j(u) =

∑m
i=1 Ȳij(u)dNij(u)∑m
i=1 Ȳij(u) exp(βvi)

, (5)

and substituting (5) into (4) gives the “profile” partial score function

U(β) =
m∑
i=1

Ji∑
j=1

∫ τ

0

Ȳij(u)

(
vi −

R
(1)
j (β, u)

R
(0)
j (β, u)

)
dNij(u) , (6)

where R(a)
j (β, u) = m−1

∑m
i=1 Ȳij(u)vai exp(βvi) and a = 0, 1. Similarly, we obtain the correspond-

ing score functions for the terminal event intensities as

Ud(θ) =
m∑
i=1

Ji+1∑
j=1

∫ τ

0

Ȳij(u)

(
vi −

S
(1)
j (θ, u)

S
(0)
j (θ, u)

)
dNd

ij(u), (7)

where S(a)
j (θ, u) = m−1

∑m
i=1 Ȳij(u)vai exp(θvi) and a = 0, 1. The score functions (6) and (7) are

those of a stratified Cox regression model with one binary covariate. These two score functions form
the basis of partial score statistics we used to calculate sample size.

3 ASYMPTOTIC PROPERTIES OF PARTIAL SCORE STATISTICS

In this section, we investigate the asymptotic properties of the partial score statistic (6) and (7) under
the null and the alternative hypotheses. We focus on trials for which separate marginal hypothesis
tests are of interest for the recurrent and terminal event processes; common type I and II error rates
are assumed for the two tests but accommodation of different type I and II error rates is trivial. We
suppose here that analyses are to be based on at most J events, but note that J can be chosen to be
large enough to capture all events in any given setting with probability approaching one. Suppose
the treatment effect is β0 in (1) under the null hypothesis and βA under the alternative hypothesis.
Under regularity conditions A to D of Andersen and Gill [23] and the assumption that mP (Zi(t) =
j|Zi(0) = 0)→∞, for every j and t, as m→∞, U(β0) is asymptotically equivalent to

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

E0(R
(1)
j (β0, u))

E0(R
(0)
j (β0, u))

)
dM r

ij(u) , (8)

where E0(·) is the expectation taken under the null hypothesis and

dM r
ij(u) = dN̄ij(u)− Ȳij(u) exp(β0vi)dΛ0j(u) (9)

is the associated martingale under the null. Note that (8) is a sum of m independent and identically
distributed random variables with expectation zero, so it follows from the central limit theorem that
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m−
1
2 times (8) converges in distribution to a zero-mean normal random variable with asymptotic

variance
J∑
j=1

∫ τ

0

r(2)
j (β0, u)

r
(0)
j (β0, u)

−

(
r

(1)
j (β0, u)

r
(0)
j (β0, u)

)2
E0[Ȳij(u)eβ0vidΛ0j(u)] , (10)

where r(a)
j (β0, u) = E0[R

(a)
j (β0, u)], a = 0, 1, 2. This asymptotic variance is similar to the expected

information from a stratified Cox regression where the strata are defined by the state of the Markov
process.

Under the same set of regularity conditions as under the null hypothesis, the partial score statistic
(6) evaluated at β0 is asymptotically equivalent to

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

EA(R
(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
dN̄ij(u) , (11)

under the alternative hypothesis, where the expectation is taken under the alternative hypothesis. Note
that (11) is also a sum of m independent and identically distributed random variables and it follows
from the central limit theorem that m−

1
2 times (11) converges in distribution to a normal random

variable with mean

m∑
i=1

J∑
j=1

∫ τ

0

{
EA(Ȳij(u)vie

βAvidΛ0j(u))−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

EA(Ȳij(u)eβAvidΛ0j(u))

}
. (12)

If we let
Hij(u) = vi − EA(R

(1)
j (β0, u))/EA(R

(0)
j (β0, u)) ,

the asymptotic variance of m−
1
2 times (11) is

J∑
j=1

∫ τ

0

EA
(
Ȳij(u)[Hij(u)]2eβAvidΛ0j(u)

)
, (13)

under the alternative.
Thus we have expressions forEA(m−

1
2U(β0)) by (12), the asymptotic variance V0 = Var0(m−

1
2 U(β0))

of the score statistic under the null by (10), and the asymptotic variance of VA = VarA(m−
1
2 U(β0))

under the alternative by (13). These results will be used for the sample size calculations in the next
section. Details on how the requisite expectations can be carried out are given in Appendix.

For the terminal event under the null hypothesis, m−
1
2 times the partial score statistics can be

shown to asymptotically equivalent to

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

E0(S
(1)
j (θ0, u))

E0(S
(0)
j (θ0, u))

)
dMd

ij(u), (14)

where

dMd
ij(u) = dN̄d

ij(u)− Ȳij(u)eθ0vidΓ0j(u)

is the associated martingale process for the terminal event of subject i at the state j and Γ0j(t) =∫ t
0
γ0j(u)du is the baseline cumulative intensity function for the terminal event in stratum j. The

asymptotic variance of (14) is

J∑
j=1

∫ τ

0

s(2)
j (θ0, u)

s
(0)
j (θ0, u)

−

(
s

(1)
j (θ0, u)

s
(0)
j (θ0, u)

)2
E0[Ȳij(u)eθ0vidΓ0j(u)] , (15)
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under the null, where s(a)
j (θ0, u) = E0[S

(a)
j (θ0, u)], a = 0, 1, 2, and under the alternative hypothesis,

m−
1
2 times the partial score statistic (7) is asymptotically equivalent to

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

EA(S
(1)
j (θ0, u))

EA(S
(0)
j (θ0, u))

)
dN̄d

ij(u). (16)

The asymptotic variance of (16) is

J∑
j=1

∫ τ

0

EA
(
Ȳij(u)[Hd

ij(u)]2eθAvidΓ0j(u)
)

(17)

under the alternative, where

Hd
ij(u) = vi − EA(S

(1)
j (θ0, u))/EA(S

(0)
j (θ0, u)) .

4 SAMPLE SIZE DERIVATION BASED ON PARTIAL SCORE STATISTICS

4.1 SAMPLE SIZE FOR THE DESIGN OF SUPERIORITY TRIALS

In this section, using the partial score statistics of Section 3 we use a score test to calculate sample
size requirements for a clinical trial involving recurrent events and terminal event. We illustrate this
procedure by testing a treatment effect on the recurrent events. In superiority trials interest is in
demonstrating the effectiveness of a new therapy for both the recurrent event process and the terminal
event. In particular, we consider the case where H0 : β = β0 and HA : β 6= β0, where β0 is the null
value, and βA < β0 is the value under the alternative that represents the minimal clinically important
treatment effect we wish to detect for the recurrent event process. If we assume a follow-up period
(0, τ ], then under the null hypothesis, the partial score statistics based on (6) is

Z =
m−1/2U(β0)√

V0(β0)
(18)

which converges in distribution to a standard normal random variable.
The approximate one-sided 100α1% level partial score test involves rejecting the null if Z < zα1 ,

where zα is the 100α% percentile of the standard normal distribution. Under the alternative hypoth-
esis, if we set the power to 100(1 − α2)%, we require P (Z < zα1 |HA) = 1− α2. Straightforward
calculations show that the required sample size m to detect the effect of a reduction in the intensity of
events under the new treatment at the significance level of 100α1% with power 100(1− α2)% is

m =

(
z1−α1

√
V0(β0) + z1−α2

√
VA(β0)

)2

EA(Ui(β0))2
, (19)

where Ui(·) is the contribution of a single individual i to the partial score statistic (6).
Similarly, the required sample size for detecting superiority of the treatment on the terminal event

with power 100(1− α2)% at size 100α1% is

md =
(z1−α1

√
V d

0 (θ0) + z1−α2

√
V d
A(θ0))2

EA(Ud
i (θ0))2

. (20)

Then the minimum required sample size to detect the superiority of the new treatment on both the
recurrent events and terminal event is max(m,md).
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The asymptotic variances of the test statistics require specification of the baseline intensities,
effects of interest (e.g. βA and θA) and information regarding the censoring including the time of
administrative censoring and the rate of withdrawal. Parametric assumptions are typically made at
the design stage of clinical trials and with time-homogeneous baseline transition intensities λ0j(t) =
λ0 exp(ψβ(j − 1)) and γ0j(t) = γ0 exp(ψγ(j − 1)), j = 2, 3, . . ., a transition probability matrix can
be easily obtained for the control group which is governed by four parameters, λ0, ψβ , γ0, and ψγ
(see Appendix). Historical data on the increase in risk of death with event occurence and the increase
in risk of future events with event occurrence and inform the choice of ψβ and ψθ, leaving λ0 and γ0

to specify. Clinical researchers will typically be able to specify a mortality rate over a given period
of time (0, τ ] which represents a constraint on P0D(0, τ |v = 0) ; see equation (29) in Appendix.
Specification of the expected number of events over (0, τ ] yields the second constraint which enables
specification of the process for the control arm. Specification of the treatment effects on the event and
death intensities enables computation of the analogous transition probability matrix for the experi-
mental arm. An assumption of a constant rate of withdrawal is typical in sample size calculations for
survival endpoints which can be modeled using an exponential distribution. All calculations required
and outlined in Appendix are then possible with this specification; code is available from the authors
upon request to facilitate these calculations. The same procedure can be carried out for non-inferiority
designs described in the next section.

4.2 SAMPLE SIZE FOR THE DESIGN OF NON-INFERIORITY TRIALS

In this section we address design issues when testing for non-inferiority of a new treatment for both
recurrent events and terminal event when compared to a existing active-control. We adopt common
notation to formulate the non-inferiority hypotheses [18]. Let LRR(C1/P1) denote the log-relative
risk reflecting the effect of the active-control (C) to a placebo (P ) treatment on the risk of events. The
subscript ‘1’ on C1 and P1 to denote that this estimate must be known or estimated from historical
studies. Similarly, we let LRR(C2/P2) denote the effect of the active-control to a placebo in the
context of planned study. We also let LRR(E2/P2) denote the log-relative risk for the planned new
treatment versus a placebo. Though no placebo will be used in the planned study, it is helpful to make
indirect comparisons with the effect of the active-control to placebo. In particular, the non-inferiority
trial is intended to show that the experimental trial retains a prestated percentage of the active-control
effect against placebo with a specified power and type I error rate. We formulate the non-inferiority
hypotheses for the recurrent events as follows. Let δ0 be the percentage of the active-control effect to
placebo necessary to retain for non-inferiority claims for the new treatment. The null hypothesis can
be formulated as

H0 : LRR(E2/C2) ≥ (1− δ0)LRR(P1/C1) (21)

which is to be tested against the alternative hypothesis

HA : LRR(E2/C2) < (1− δ0)LRR(P1/C1). (22)

For the purpose of sample size calculation, it is sometime desirable to consider a particular value
of LRR(E2/C2) in the alternative hypothesis, which may be expressed as a percentage of the effect
of active-control to the placebo. We let 1 − δA denote the percentage of the active-control effect
that the experiment treatment retains once the null hypothesis is rejected so that LRR(E2/C2)=(1-
δA)LRR(P1/C1)< (1 − δ0)LRR(P1/C1). In this study, we examine different values of δA in sample
size calculations.

For testing non-inferiority of the treatment based on the recurrent event, we let β0=LRR(P1/C1)
and evaluate the partial score statistic (6) at the boundary of the null hypothesis of (21). If we further
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suppose that the follow-up duration is (0, τ ], the partial score statistic

m−1/2U((1− δ0)β0)√
V0((1− δ0)β0)

(23)

then converges in distribution to a standard normal random variable Z, where V0(·) is the asymptotic
variance of the partial score statistic under the null hypothesis according to (10). Based on a one-
sided α1 level partial score test, to reject the null hypothesis with the power 1 − α2, one can obtain
the required sample size m for a non-inferiority of the new treatment on the recurrent events as

(z1−α1

√
V0((1− δ0)β0) + z1−α2

√
VA((1− δ0)β0))2

EA(Ui((1− δ0)β0))2
, (24)

where VA(·) is the asymptotic variance of the partial score statistic under the alternative hypothesis
(13) and Ui(·) is the contribution of individual i to the partial score statistic (6). The expectation
EA(·) is taken with respect to the true model under the alternative as in (8) with βA = (1 − δA)β0.
The required sample sizemd for testing non-inferiority of new treatment on the terminal event may be
obtained by replacing the corresponding quantities in (24) by the ones from the partial score statistic
for the terminal event (7) as follows:

(z1−α1

√
V d

0 ((1− δd0)θ0) + z1−α2

√
V d
A((1− δd0)θ0))2

EA(Ud
i ((1− δd0)θ0)2

, (25)

where V d
0 (·) and V d

A(·) are the asymptotic variances for the partial score statistics for the terminal
event under the null and the alternative hypotheses, respectively; the expectation EA is taken with
respect to the model for the terminal event under the alternative with θA = (1− δdA)θ0.

The minimum requirement for testing the non-inferiority of the new treatment on both recurrent
events and terminal event is max(m,md) for one-sided test with the level of α1 and the power of
1− α2.

5 AN EMPIRICAL STUDY OF FREQUENCY PROPERTIES

We simulate the Markov process with the multiplicative model of (1) for recurrent events and (2)
for the terminal event. For planning purposes we set an upper limit to the number of states and
set the maximum number of events to J = 10; only approximately 2% patients had eight or more
skeletal complications in Hortobagyi et al. [20]. For computational convenience, we further specify
the intensity function for recurrent event (1) and for the terminal event (2) as λ0j(t) = λ0 exp(ψβ ·
(j − 1)) and γ0j(t) = γ0 exp(ψθ · (j − 1)) j = 1, . . . , 10, respectively. The constants ψβ and ψθ
represent the relative increase in the event and death intensity with the occurrence of each additional
event. In the simulation study, we consider ψβ = log 1.0 = 0 for a constant baseline intensity (rate)
which is independent of the number of previous events and ψθ = log 1.0 = 0 to correspond to the
setting where mortality is independent of event occurrence. We set ψβ = log 1.1 to reflect the setting
where the event intensity increases with each event and ψθ = log 1.1 to correspond to the case where
the mortality rate increases with event occurrence. The coefficients β and θ are the effects of the
experiment treatment on recurrent events and death, respectively, and are chosen to represent modest
improvements.

The Markov model has eleven states (0, 1, . . . , 10) corresponding to the cumulative number of
recurrent events and one absorbing state for death; we number these states 1 to 12 and consider a
12 × 12 transition intensity matrix denoted Qv for an individual with vi = v having (k, `) entry qvkl
given by λ0k exp(βv) for k = 1, . . . , 10 and ` = k + 1, γ0k exp(θv) for k = 1, . . . , 10 and ` = 12,
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−(λ0k exp(βv) + γ0k exp(θv)) for k = ` = 1, . . . , 10, and zero otherwise. The transition probability
matrix has elements P`k(t|v) = P (Z(t) = `|Z(t−) = k, v) and can be obtained as described in
Appendix. We further specify the baseline intensities λ0 and γ0 by setting the probabilities that for a
control subject the first event is a recurrent event to q = λ0/(γ0 + λ0) and setting the probability that
a control subject has died by t = 1 to q for some pre-specified values of p and q.

5.1 EMPIRICAL STUDY OF SUPERIORITY DESIGNS

For simulation studies involving superiority designs, under the null hypothesis of no treatment effect
we set β0 = θ0 = 0. Under the alternative we set βA = log 0.8 and θA = log 0.9. The duration of the
study is set to τ = 1. A random censoring time is simulated for each individual using an exponential
random variable with a probability of P (τi < 1) = 0.2. We investigate the performance of the
proposed methods for sample size calculations for different scenarios. For each setting the sample
sizes are determined according to formulae in (19) and (20). All simulations were implemented in
R, and the coxph function in the survival package was used to obtain the partial score statistics.
By setting the iter.max and init options to zero, the partial score statistics are obtained using
the function coxph.detail. Under the null hypothesis, the variance of partial score statistic was
obtained by summing up the observed information at each event time. Under the alternative, this
variance was calculated using the sample variance of the partial score statistics at each event time.
For each setting, we conducted 2000 replicates and reported the percentage of those replicates leading
to rejection of the null hypothesis as the empirical type I error rate under the null hypothesis, and as
the power under the alternative. Table 1 displays the empirical type I error rate and the power for
different settings of superiority trials. The empirical type I error rates are consistent with the nominal
level of 0.025. For testing for superiority of a new treatment with respect to both the recurrent event
and the terminal event, max(m,md) was the selected sample size which ensured the empirical powers
satisfied the nominal requirement of 80%.

Table 1: Sample sizes and empirical rejection rates for tests of superiority for recurrent and terminal
events; βA = log(0.80) and θA = log(0.9); %REJ0 and %REJA are the empirical type I error rate and
empirical power respectively; the nominal type I error rate is 2.5% and the nominal power is 80%

ψθ = 1.0 ψθ = 1.1

ψβ Endpoint† Setting‡ m %REJ0 %REJA m %REJ0 %REJA

1.0 Recurrent θ = θ0 728 2.45 84.45 771 2.00 83.10
Recurrent θ = θA 710 2.65 84.20 753 2.40 82.90
Death β = β0 6636 2.40 80.35 6673 2.30 80.85
Death β = βA 6740 2.50 80.50 6816 2.75 80.50

1.1 Recurrent θ = θ0 691 2.85 84.70 737 2.40 84.25
Recurrent θ = θA 674 2.70 84.15 719 2.10 84.25
Death β = β0 6674 2.60 79.45 6691 2.25 81.15
Death β = βA 6759 2.45 80.50 6836 2.40 83.00

† Endpoint is the outcome used for the sample size calculation
‡ Setting is the value of the parameter for the complementary outcome when testing the
corresponding endpoint
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5.2 EMPIRICAL STUDY OF NON-INFERIORITY DESIGNS

In this section we present simulation studies conducted to validate the proposed methods for sample
size calculations for testing non-inferiority of the experiment treatment on both recurrent events and
terminal event. We demonstrate that the empirical rejection rates are consistent with the nominal
levels. In particular, we set LRR(C1/P1)=log 0.6 (βA) for the effect of active-control against a placebo
for the recurrent events and LRR(C1/P1)=log 0.8 (θA) for the terminal event. We also assume the
constancy assumption so that LRR(P2/C2)=LRR(P1/C1).

We consider these designs where the aim is to demonstrate that the experimental treatment retains
at least 50 per cent of the effect of the active-control, so that δ0 = 0.5. In this simulation study,
we consider one-sized test with nominal level of type I error rate α1=0.025 and the power is set to
80 per cent (1 − α2=0.8). The effect of the experiment treatment under the alternative hypothesis is
represented by LRRA(E2/C2)=(1− δA)LRR(P1/C1) and we let δA = 0.90 and 1.00 to correspond to
a retention of 90 and 100 per cent of the active-control effect, respectively. The duration of the follow-
up τ is set to be 1. A random censoring process is simulated for each subject using an exponential
distribution with parameter ρ, which is specified so that each subject may withdraw from the study
with a probability of 0.20 (ρ = log 5/4).

For each simulation setting, the sample size is determined according to the formula (24) and
(25). The simulation was implemented in R and the partial score statistics are obtained using coxph
function in the survival package by setting the iter.max option equal to zero. The partial score
statistics was obtained by setting the init option as (1 − δ0)βA. Under the null hypothesis, the
corresponding variance was obtained by summing up the observed information of each event time.
Under the alternative hypothesis, this variance was calculated by the sample variance of the partial
score statistics at all event times.

We conducted 2000 replicates and the percentage of those replicates leading to rejection of the null
hypothesis is the empirical type I error rate under the null and the power under the alternative. Table 2
presents the empirical type I error rate and the power for different non-inferiority configurations. The
empirical type I error rates are all consistent with the nominal level of 0.025. The empirical powers
are all close to the nominal levels for modest and large sample sizes. For simultaneous detecting the
superiority of a new treatment on both recurrent events and the terminal event, max(m,md) equal
to the sample size calculated for the terminal event. The empirical powers for simultaneous testing
for the superiority are consistent with the nominal level of 80%. Additional simulation studies were
conducted with larger effect sizes yielding smaller sample sizes. These demonstrated excellent control
of the type I error rate for both the recurrent event and terminal event analyses, and slightly higher
empirical power than the nominal level.

We also examine the sensitivity of the sample size calculations to misspecification of the censor-
ing process at the request of a referee. We do this by using the sample size formula of Section 4,
simulating the response processes correspondingly, but simulating withdrawal times from a Weibull
distribution with shape and scale parameters given by a = 2 and b = 2.1199 respectively to ensure
that P (τi < 1) = 0.2 remains satisfied. The same parameter configurations adopted earlier in this
section were used here. We again evaluate the empirical type I error rate and empirical power and dis-
play these results in Table 3. In general, the results suggest the proposed method is moderately robust
to misspecification of the censoring distribution as the empirical type I error rate and empirical power
remain quite close to the previous results. There are few cases that the proposed method yielded either
lower power (as low as 75%) and higher power (over 90%) but given the degree of misspecification
this seems in line with expectations.

Additional sensitivity studies involved exploration of the effect of more general history depen-
dence through the incorporation of subject-specific frailties common to all transitions. Of course if
the variability of this frailty is small the state-dependence accommodated in the sample size calcula-
tions will be close to adequate and the resultant sample sizes will be reasonable. If this variance is
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Table 2: Sample sizes and empirical rejection rates for tests of non-inferiority for recurrent and termi-
nal events; βA = log(0.60), θA = log(0.8) and δ0 = 0.50; %REJ0 and %REJA are the empirical type
I error rate and empirical power respectively; the nominal type I error rate is 2.5% and the nominal
power is 80%

1-δdA=0.9 1-δdA=1.0

Endpoint† Setting‡ m %REJ0 %REJA m %REJ0 %REJA

ψθ = 1.0 ψβ = 1.0 1− δA = 0.9
Recurrent θ = θ0 986 2.20 83.05
Recurrent θ = θA 967 2.20 83.50 962 2.40 83.60
Death β = β0 9665 2.65 81.20 6296 2.65 80.65
Death β = βA 9850 2.65 81.40 6405 2.55 81.40

ψθ = 1.0 ψβ = 1.0 1− δA = 1.0
Recurrent θ = θ0 664 2.55 83.70
Recurrent θ = θA 657 2.65 83.35 655 2.75 82.60
Death β = βA 9904 2.75 82.10 6429 2.85 81.85

ψθ = 1.0 ψβ = 1.1 1− δA = 0.9
Recurrent θ = θ0 945 2.65 84.30
Recurrent θ = θA 934 2.85 84.85 931 2.10 84.90
Death β = β0 9669 2.30 80.15 6276 2.30 79.10
Death β = βA 9860 2.25 82.35 6401 2.40 81.60

ψθ = 1.0 ψβ = 1.1 1− δA = 1.0
Recurrent θ = θ0 639 2.60 83.75
Recurrent θ = θA 631 2.90 84.40 629 2.30 84.70
Death β = βA 9918 2.20 82.20 6438 2.75 81.55

ψθ = 1.1 ψβ = 1.0 1− δA = 0.9
Recurrent θ = θ0 1042 2.15 82.50
Recurrent θ = θA 1030 2.25 83.05 1027 2.05 82.10
Death β = β0 9761 2.05 81.75 6322 2.65 80.05
Death β = βA 9964 2.05 80.50 6475 2.75 79.35

ψθ = 1.1 ψβ = 1.0 1− δA = 1.0
Recurrent θ = θ0 701 2.05 83.75
Recurrent θ = θA 693 2.65 83.65 691 2.65 82.70
Death β = βA 10029 2.75 79.55 6507 2.35 81.05

ψθ = 1.1 ψβ = 1.1 1− δA = 0.9
Recurrent θ = θ0 1004 2.85 84.25
Recurrent θ = θA 992 2.75 83.20 990 2.95 83.9
Death β = β0 9752 2.05 80.52 6329 2.50 80.70
Death β = βA 9986 2.25 80.30 6482 2.50 80.15

ψθ = 1.1 ψβ = 1.1 1− δA = 1.0
Recurrent θ = θ0 678 2.60 83.70
Recurrent θ = θA 670 2.35 84.70 665 2.75 83.65
Death β = βA 10053 2.35 79.75 6526 2.25 80.80

† Endpoint is the outcome used for the sample size calculation
‡ Setting is the value of the parameter for the complementary outcome when testing the corresponding
endpoint
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Table 3: Sensitivity of empirical rejection rates for tests of non-inferiority for recurrent and terminal
events to non-uniform withdrawal; β0 = θ0 = 0, βA = log(0.50), θA = log(0.5) and δ0 = 0.50;
%REJ0 and %REJA are the empirical type I error rate (nominal level 2.5%) and empirical power
(nominal level 80%) respectively; random early withdrawal time generated by a Weibull distribution
with shape a = 2 and scale b = 2.1199.

1-δA=0.9 1-δA=1.0

Endpoint† Setting‡ m %REJ0 %REJA m %REJ0 %REJA

ψθ = 1.0 ψβ = 1.0 1− δA = 0.9
Recurrent θ = θ0 610 2.50 86.70
Recurrent θ = θA 594 2.40 84.45 591 2.60 85.80
Death β = β0 1304 3.00 84.20 881 2.05 85.70
Death β = βA 1346 2.05 85.30 910 2.75 69.00

ψθ = 1.0 ψβ = 1.0 1− δA = 1.0
Recurrent θ = θ0 424 2.90 86.50
Recurrent θ = θA 413 2.50 73.75 411 2.55 89.35
Death β = βA 1358 2.30 84.80 918 2.35 86.25

ψθ = 1.0 ψβ = 1.1 1− δA = 0.9
Recurrent θ = θ0 603 2.90 86.80
Recurrent θ = θA 587 2.75 87.45 584 2.30 86.65
Death β = β0 1313 2.40 83.00 887 2.55 86.10
Death β = βA 1352 2.25 85.15 913 3.00 85.30

ψθ = 1.0 ψβ = 1.1 1− δA = 1.0
Recurrent θ = θ0 421 2.20 87.75
Recurrent θ = θA 410 2.00 72.90 408 2.30 89.40
Death β = βA 1363 2.65 85.35 921 2.20 86.35

ψθ = 1.1 ψβ = 1.0 1− δA = 0.9
Recurrent θ = θ0 662 2.27 87.85
Recurrent θ = θA 645 2.15 89.00 642 2.20 88.60
Death β = β0 1317 2.40 85.30 890 2.05 86.95
Death β = βA 1366 1.90 85.25 923 2.05 85.85

ψθ = 1.1 ψβ = 1.0 1− δA = 1.0
Recurrent θ = θ0 459 2.75 75.50
Recurrent θ = θA 450 2.20 75.75 445 2.20 75.40
Death β = βA 1379 2.15 86.95 932 2.35 87.75

ψθ = 1.1 ψβ = 1.1 1− δA = 0.9
Recurrent θ = θ0 642 2.45 88.30
Recurrent θ = θA 625 2.35 88.80 622 2.15 97.20
Death β = β0 1320 2.90 87.00 926 2.85 88.25
Death β = βA 1370 2.50 86.45 891 2.35 85.35

ψθ = 1.1 ψβ = 1.1 1− δA = 1.0
Recurrent θ = θ0 447 2.40 76.60
Recurrent θ = θA 444 2.25 75.60 442 2.40 90.50
Death β = βA 1384 3.00 88.35 935 2.10 87.80

† Endpoint is the outcome used for the sample size calculation
‡ Parameter setting for the complementary outcome when testing the corresponding endpoint
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large, a stronger state dependence exists and the model is more seriously misspecified; poor frequency
properties of the design and analysis will then result.

5.3 AN EXTENSION TO TIME NON-HOMOGENEOUS TRANSITION INTENSITIES

It is apparent from Appendix that a key step in the sample size derivation is the calculation of the
transition probability matrix for a continuous time Markov process. This Markov process has a finite
state space with J + 1 states and one absorbing state D corresponding to the terminal event. Let
P (s, t|v) denote the (J + 2)× (J + 2) transition probability matrix for 0 ≤ s ≤ t, with [k, l] entry

P (Z(t) = l|Z(s) = k, v) = pkl(s, t|v) ,

for l = k+ 1 or D, k = 0, 1, . . . , J . This Markov process can be fully specified through the transition
intensity matrix as discussed in Cox and Miller [36]. Let P (s, t|v) and Q(v) denote the (J + 2) ×
(J + 2) matrix of transition probabilities pkl(s, t|v) and respective transition intensity matrix.

For a time homogenenous Markov process considered in our derivation, qkl(t|v) = qkl(v) and
pkl(s, t|v) = pkl(t− s|v) for l = k+ 1 or D, k = 0, 1, . . . , J . The transition probability matrix is then
P (t|v) = exp{Q(v)t} =

∑∞
x=0[Q(v)t]x/x! which can be evaluated through Jordan decomposition.

The proposed method can be easily extended to accommodate time nonhomogeneous Markov pro-
cesses through use of a time transform of the original time scale. Suppose there exists a transformation
of the time scale such that t = g(u; ς) defines a time scale on which the process is homogeneous with
transition intensity matrix Q0(v) given v. Then

P (u1, u2|v) = exp{Q0(g(u2; ς)− g(u1; ς)|v)} . (26)

We consider the exponential time transformation [26]

g(u; ς) = ςuς ,

under which the rate of the process may be increasing (ς > 1) or decreasing (ς < 1), and when
ς = 1 the process is time homogenenous. In the following simulation study, we set ς = 1.2 and the
transition probability matrix was calculated using (26). All sample size formula are still applicable in
this case with the specified ς following the time-transform. The simulation results in Table 4 indicate
that the sample sizes derived from the proposed method achieve the nominal type I error rate (nominal
level 2.5%) and power (nominal level 80%).

6 TRIAL DESIGN IN CANCER METASTATIC TO BONE

Hortobagyi et al. [20] report on the effectiveness of the bisphosphonate pamidronate for the prevention
of skeletal related events in breast cancer patients with skeletal metastases. Here we report on analyses
of this data to furnish information helpful for the design of a future study planned to have one year
duration.

Figure 2 displays the estimates of the cumulative transition intensities for the placebo group
for both event occurrence and death. Separate transition intensities were specified for the first to
third events (i.e. λ̄(t|H̄i(t)) = Ȳij(t)λ0j(t) where Ni(t

−) = j, j = 0, 1, 2), but the baseline
intensity was assumed to be the same for fourth and subsequent events due to sparse data (i.e.
λ̄(t|H̄i(t)) = Ȳij(t)λ

∗
03(t) if Ni(t

−) = j ≥ 3). The risk of the first event appears roughly con-
stant over two years and could be represented with a time homogeneous rate of λ0 = 1 with time
measured in years. The slope of the Nelson-Aalen estimates for the event intensities (left panel)
are increasing with event occurrence indicating increased risk of future events with each event oc-
currence. For design purposes a parsimonious representation is required, and the results of fitting a
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Table 4: Empirical properties of design based on time nonhomogeneous Markov process with ς = 1.2:
sample sizes and empirical rejection rates for tests of non-inferiority for recurrent and terminal events;
β0 = θ0 = 0, βA = log(0.50), θA = log(0.5) and δ0 = 0.50; %REJ0 and %REJA are the empirical
type I error rate (nominal level 2.5%) and empirical power (nominal level 80%) respectively.

1-δA=0.9 1-δA=1.0

Endpoint† Setting‡ m %REJ0 %REJA m %REJ0 %REJA

ψθ = 1.0 ψβ = 1.0 1− δA = 0.9
Recurrent θ = θ0 657 2.70 81.35
Recurrent θ = θA 648 2.60 80.85 647 3.10 81.10
Death β = β0 1469 2.40 81.75 985 2.40 83.75
Death β = βA 1513 1.95 82.30 1016 2.80 82.60

ψθ = 1.0 ψβ = 1.0 1− δA = 1.0
Recurrent θ = θ0 452 3.05 82.85
Recurrent θ = θA 446 2.75 83.45 445 2.60 83.55
Death β = βA 1526 2.60 82.65 1024 2.35 82.85

ψθ = 1.0 ψβ = 1.1 1− δA = 0.9
Recurrent θ = θ0 647 2.45 81.15
Recurrent θ = θA 639 2.35 81.70 637 2.05 80.35
Death β = β0 1494 2.50 82.10 1002 2.70 82.60
Death β = βA 1538 2.95 82.85 1032 3.20 83.80

ψθ = 1.0 ψβ = 1.1 1− δA = 1.0
Recurrent θ = θ0 446 2.50 82.85
Recurrent θ = θA 441 2.15 83.50 440 2.35 83.60
Death β = βA 1551 2.80 82.05 1041 2.45 81.85

† Endpoint is the outcome used for the sample size calculation
‡ Parameter setting for the complementary outcome when testing the corresponding endpoint
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regression model λ̄j(t|H̄i(t)) = Ȳij(t)λ0(t) exp(ψβNi(t
−)) gives ψ̂β = 1.41. A similar model was

specified for the death intensities and the Nelson-Aalen estimates plotted in the right panel of Fig-
ure 2 reveal increasing risk of death with the occurrence of each event. When the regression model
γ̄j(t|H̄i(t)) = Ȳij(t)γ0(t) exp(ψθNi(t

−)) was fit the estimate obtained is ψ̂θ = 1.36; based on the
mortality rate over one year we set γ0 = 0.1. The censoring rate over the course of a planned study is
assumed to be 10% over the 24 months suggesting ρ = 0.5−1 log(10/9).

SCENARIO I: Consider the planning of future study aiming to demonstrate that a new treatment is
superior with respect to the occurrence of skeletal complication and superior with respect to mortality.
We suppose that the overall type I error rate is 5% and a Bonferroni adjustment yields a 2.5% type
I error rate for each hypothesis. Suppose two two-sided tests are to be conducted, with each at the
2.5% level to control the overal type I error rate at 5%. Suppose 90% power is required to detect
a 20% reduction (βA = log 0.80) in the risk of recurrent events and a 10% reduction in mortality
(θ = log 0.90). We find minimum sample sizes of 700 and 707 individuals, respectively.

SCENARIO II: Suppose a non-inferiority design is of interest and we have margins of 50% for both
the recurrent events and death. Suppose the type I error rate for each test is controlled at 2.5% and
80% power is desired for each test. Suppose the true effect of treatment corresponds to a 20% loss of
the effect of the active control on survival and a 10% loss of effect on the recurrent event outcome.
To ensure 80% power to claim non-inferiority for the survival endpoint, 9052 individuals will be
required, and 8506 individuals will be required for the recurrent event outcome.
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Figure 2: Nelson-Aalen estimates of the cumulative transition intensities for the placebo group in
Hortobagyi et al. [20].
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7 DISCUSSION

This article has provided design criteria for randomized trials with the objective of comparing two
treatment groups with respect to the incidence of recurrent events and a terminal event. The motivat-
ing setting involves the palliative treatment of cancer patients with skeletal metastases who are at risk
of both skeletal related events and death. Recurrent and terminal events arise in many other settings
in medical research including transplant studies in which recipients may experience transient graft re-
jection episodes and total graph rejection [24]. In trials designed to investigate the effect of treatment
for advanced chronic obstructive pulmonary disease patients are at risk of recurrent exacerbations and
death [25].

The multistate framework adopted is appealing for modeling such processes because it structurally
incorporates the terminal events as an absorbing state [22]. This is in contrast to many joint models
which incorporate an association between recurrent and terminal events through shared or correlated
random effects arising from parametric models. The proposed analysis represents a compromise
between use of intensity-based models reliant on full model specification and marginal models. The
proposed recurrent event model is in line with the Prentice et al. [14] approach in which the baseline
intensity is stratified on the cumulative number of events but has the added implicit condition that
subjects must be alive to contribute to the risk set; they are sometimes called “partially” conditional
models. The terminal event state therefore enters in the asymptotic calculations by reducing the
expected size of the risk sets.

The Nelson-Aalen estimates of the cumulative transition intensities and Aalen-Johansen estimates
of the transition probability functions which are estimated under a Markov assumption, are robust in
the sense that they remain consistent estimates for non-Markov processes under independent censor-
ing [27, 28]. This is not true for the estimates of treatment effect in multiplicative intensity-based
models where there is greater reliance on the model assumptions for valid interpretation of covariate
effects. It would be of interest to study the performance of the separate and joint tests of treatment
effect in this setting, which involve no conditioning on the event history [29].

Between subject variation in risk of events routinely arises in recurrent event datasets and mixed
Poisson models are often adopted since they account for this heterogeneity. The marginal intensity of
mixed Poisson processes features a sudden change in risk following event occurrence [21]. This fea-
ture is present in the proposed multistate framework but the change in risk is not transient. Boher and
Cook [30] showed empirically that the multistate analysis based on the Prentice et al. [14] formulation
retains good control of the type I error rate even with naive (i.e. non-robust) variance estimation, so
the multistate partially conditional analysis offers some protection against heterogeneity.

Mixed models have also been proposed by several authors for modeling the association between
the recurrent and terminal events through correlated or shared random effects [31–33]. Likelihood
and semiparametric methods based on estimating functions can be used for analysis of a dataset,
but parametric assumptions could be made to derive required sample sizes. We prefer the multistate
framework however, since the terminal nature of death is reflected in its designation as an absorbing
state. Moreover, with the multistate analysis in which we adopt time-dependent stratification on the
cumulative number of events, our sample size formula is directly relevant for analyses based on the
so-called Prentice-Williams-Peterson approach [14] to analyze recurrent events in the absence of mor-
tality. While the multistate framework requires that more parameters be specified, the multiplicative
increase in risk with event occurrence is seen in a diverse range of datasets and offers some degree of
parsimony.

We have restricted attention to settings where the event times are at most right censored. Fre-
quently recurrent events are not observed directly but are only detectable under careful examination
in a clinic. Studies aiming to prevent the occurrence of skeletal metastases involve quarterly examina-
tions of patients at which bone scans are conducted to assess whether new metastases have developed.
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The same multistate model can be used to characterize the incidence of skeletal metastases and death,
but the onset times of the metastases become interval-censored. If the Markov framework remains
appropriate, the methods of Kalbfleisch and Lawless [34] may be employed with the multistate model
package msm in R/Splus. Sample size calculations must be suitably modified and this is a topic of
ongoing research.
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APPENDIX

ASYMPTOTIC EQUIVALENCE OF THE PARTIAL SCORE STATISTICS

Under the null hypothesis, m−
1
2 times the partial score statistic (6) can be written as

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

E0(R
(1)
j (β0, u))

E0(R
(0)
j (β0, u))

)
dM r

ij(u)−

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
E0(R

(1)
j (β0, u))

E0(R
(0)
j (β0, u))

)
dM r

ij(u).

Using similar arguments in the proofs of Theorem 4.2.1 and 4.3.1 of Gill [35], one can show that the
second term of the above expression converges in probability to zero as m→∞ for every β0.

Similarly,let

dMij(u) = dN̄ij(u)− Ȳij(u)eβAvidΛ0j(u)

be the associated martingale process for the recurrent event under the alternative hypothesis. One can
write the partial score statistic (6) under the alternative hypothesis as follows,

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

EA(R
(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
dN̄ij(u)−

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
dMij(u)−

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

Ȳij(u)

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
eβAvidΛ0j(u). (27)

Using similar arguments as for the null hypothesis, one can show the second term converges in prob-
ability to zero as m→∞ for every β0. We now show the last term of the above expression converges
in probability to zero as m → ∞. From the regularity conditions of Andersen and Gill [23], the
integrand is locally bounded for every u ∈ (0, τ ]. Note that the last term can be written as

J∑
j=1

∫ τ

0

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
m−

1
2

m∑
i=1

Ȳij(u)eβAvidΛ0j(u), (28)
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where R(a)
j (β0, u) converges almost surely to EA(R

(a)
j (β0, u)) at each time point u, a = 0, 1. It

follows from the Slutsky’s theorem that the first term of the integrand in (28) converges almost surely
to zero as m→∞ at every u. By the central limit theorem,

m−
1
2

m∑
i=1

Ȳij(u)eβAvidΛ0j(u) (29)

converges in distribution to a normal random variable at every u with mean µ as dΛ0j(u)P (τi > u)
times

1∑
v=0

P (Zi(u) = j|Zi(0) = 0, vi = v)P (vi = k)eβAv

and the variance

dΛ2
0j(u)P (τi > u)

1∑
v=0

P (Zi(u) = j|Zi(0) = 0, vi = v)P (vi = i)e2βAv − µ2

Then, for every u the integrand in (28) converges in probability to zero. Therefore, it follows from
the Lebesgue’s dominated convergence theorem that (28) converges in probability to zero asm→∞.

A similar approached can be used to prove the asymptotic equivalence of the partial score statistics
(7) is (14) under the null hypothesis and (16) under the alternative hypothesis.

EVALUATION OF EXPECTATIONS UNDER THE TRUE MODEL

The necessary expectations require the evaluation of the probability being in state j at time t, P (Zi(t) =
j|Zi(0) = 0), for the proposed Markov process in Figure 1. As an example, the calculation of
E0(Ȳij(u)eβ0vidΛ0j(u)) in (10), is carried out as follows:

E0[E0(Ȳij(u)eβ0vidΛ0j(u)|vi)] = E0[eβ0viP (τi > u)P (Zi(u) = j|Zi(u) = 0, vi)]

= P (τi > u)
1∑
v=0

eβ0vP (Zi(t) = j|Zi(0) = 0, vi = v)P (vi = v) .

The transition probabilities are computed as described in the following section.

EVALUATION OF THE TRANSITION PROBABILITY MATRIX

The evaluation of expectations under particular models requires the calculation of the Markov tran-
sition probability matrix; for notational convenience we suppress the dependence on i. We consider
a finite state space with J + 1 states corresponding to the cumulative number of recurrent events
from 0 to J and one absorbing state D for the terminal event. For 0 ≤ s ≤ t, let P (s, t|v) be the
(J + 2)× (J + 2) transition probability matrix with (k, `) entry

Pk,`(s, t|v) = P (Z(t) = `|Z(s) = k, v) , (30)

for ` = k + 1 or D, k = 0, 1, . . . , J . Let Qv(t) denote the transition intensity matrix for individuals
in treatment group v, the elements of which are based on the intensities λk(t|H(t)) and γk(t|H(t))
defined in Section 2.

For a time-homogeneous process adopted at the design stage, let λk(t|H(t)) = λk and γk(t|H(t)) =
γk be the intensities for k − 1 → k and k − 1 → D transitions, respectively. The transition inten-
sity matrix can then be written simply as Qv and has (k, `) entry given by λk for k = 1, . . . , J and
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` = k + 1, γk for k = 1, . . . , J and ` = J + 2, −(λk + γk) for k = ` = 1, . . . , J , and zero otherwise.
Under such a time-homogeneous Markov model, P (s, s+t) = P (0, t) = P (t) and P (t) = exp(Qvt).

There are several approaches available to compute P (t) for a given transition intensity matrix Qv.
If Qv has J + 2 linearly independent eigenvectors, let A be a matrix of eigenvectors, and note that
AQvA−1 is a diagonal matrix with the eigenvalues d1, d2, . . . , dJ+2 of Qv along its diagonal. Then by
the spectral value decomposition [34],

exp(Qvt) = A diag(ed1t, . . . , edJ+2t)A−1 .

If Qv does not have J + 2 linearly independent eigenvectors, the Jordan canonical form can be used
instead [36]. For some nonsingular matrix B, the Jordan canonical form of Qv is BQvB−1 = J =
diag(J1(d1),J2(d2), . . . ,Jp(dp)) and

Jk(dk) =


dk 1

dk
. . .
. . . 1

dk

 (31)

is a nk × nk matrix and n1 + n2 + . . . + np = J + 2. The matrix exponential exp(Qvt) can be
computed [37] as

exp(Qvt) = Bf(J )B−1 = Bf(Jk(dk))B−1,

and in this case f(Jk(dk)) takes the form
edkt dke

dkt . . .
d
nk−1

k edkt

(nk−1)!

edkt
. . . ...
. . . dke

dkt

edkt

 .

Numerically, the Jordan decomposition can be obtained through the MATLAB function jordan
for a given Qv and the construction of (31) and hence the transition probability matrix P (t) can be
easily computed in MATLAB. Other methods for computing matrix exponentials are reviewed in Moler
and Van Loan [38]. Another numerically stable approach is the method of scaling and squaring [39],
which has been employed by MATLAB function expm based on an optimal approach [40]. We used
this function in sample size calculations for the trial design in cancer metastatic to bone in Section 6.

SUPPLEMENTARY MATERIALS

The software for sample size calculations using the proposed method is available from the authors
upon request.
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