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The Self-Assembly of Particles with Isotropic Interactions:

Using DNA Coated Colloids to Create Designer


Nanomaterials
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Abstract. Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA 
coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations 
are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-
grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, 
preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock 
copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale 
modelling techniques are discussed. 
Keywords: self-consistent field theory, DNA, colloids, self-assembly 
PACS: 81.16.Dn, 64.70.pv, 64.75.Yz, 81.16.Rf 

INTRODUCTION 

Self-consistent field theory (SCFT) has a long track 
record of significant contributions to the understand­
ing of block copolymer self-assembly [1, 2, 3]. Block 
copolymers are an archetypal self-assembling system, 
but research continues to explore other methods of de­
veloping nanometre length-scale structures through self-
assembly. DNA-mediated colloidal organization, first in­
troduced in 1996 by Mirkin et al. [4] and Alivisatos et 
al. [5], held the promise of allowing the self-assembly 
of pre-determined three dimensional nanometre and mi­
cron length-scale structures. Enthusiasm has faded how­
ever due to limitations of the approach and complications 
of design [6]. In DNA coated colloid (DNACC) systems, 
colloids are covered with DNA molecules such that se­
lective and mutually exclusive interactions can take place 
depending on the coatings. For desired structures to be 
formed however, many different and mutually exclusive 
interactions are required. It is not presently possible to 
predict which structures will be formed from given sur­
face treatments, nor if target structures will ultimately be 
the stable equilibrium. This is related to further compli­
cations concerning kinetic traps due to strong bonding 
[6]. 

In this perspective, we review the possibility of using 
SCFT to predict the morphologies of DNACCs and re­
lated systems. To a first approximation, DNA-mediated 

1 Corresponding author: thompson@uwaterloo.ca 

colloids have isotropic interactions [7] and are thus just 
one example of a class of selectively and isotropically in­
teracting potentials that also includes single species col­
loids with two length-scale interactions [8, 9] and self-
assembling polymer stabilized colloids [10, 11]. SCFT 
has been successful in block copolymer self-assembly 
due to its coarse-grained approach which allows for nu­
merical tractability, so a similar approach is followed 
here. Specifically, we regard the colloids as particles 
that interact isotropically and selectively through effec­
tive pair potentials. We provide very simple generalized 
SCFT equations for an arbitrary number of species of 
DNACCs and we outline the advantages and limitations 
of viewing complicated DNACC systems in this simple 
way. Our preliminary work on this topic revealed paral­
lels with block copolymer self-assembly despite signifi­
cant differences in architecture and microscopic physics 
between copolymers and DNACCs [12]. In this perspec­
tive we provide further evidence that deepens this cor­
respondence. Lastly, we suggest ways in which this ap­
proach can be extended to include dynamics, crystalliza­
tion, inverse statistical mechanics and multiscale simula­
tions. 

FORMALISMS 

We wish to represent mathematically, in the spirit of 
SCFT, a system of particles in a suspension. Equations 
for the case of a single particle type in suspension were 
given in reference [12]. The generalization of these for­
mulae for multiple particle types, i = 0, 1 · · ·N in a vol-
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ume V is 
fiV −αiwi(r)ϕi(r) =  e

vrQi 
(1) 

N dr ′ 
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αiα jkBT ∑
ϕ j(r ′)wi(r) =

j=0 
j i=
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∑
+κ( ϕi(r)− 1). 
i=0 

J

(2) 

We might assign i = 0 to be the suspension molecules and 
i = 1 · · ·N to be the various colloids. Equations (1) and 
(2) give the position dependent volume fractions ϕi(r) 
and position dependent chemical potential fields wi(r) 
for species i, respectively. αi is the ratio of the volume of 
the ith species to a reference volume vr, fi is the overall 
volume fraction of the ith species, kB is Boltzmann’s 
constant and T is the temperature. Partition functions for 
each species i are given by 

 dr −αiwi(r)Qi = e . 
vr 

J
(3)

Equations (1), (2) and (3) are non-linear and coupled, 
and so are solved numerically through iteration. The 
result is the position dependent volume fractions ϕi(r), 
which is the predicted morphology for the system. It may 
be that multiple competing morphologies can be found 
for separate numerical iterations depending on starting 
conditions. In order to discriminate the stable phase from 
meta-stable phases, the morphology with the lowest free 
energy is selected. This free energy is given by 2 
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 ⎫ 
(4)

In equations (2) and (4), κ is a numerical parameter 
that is chosen sufficiently large so as to enforce incom­
pressibility. The resulting overall constant volume of the 
mixture provides an ensemble average excluded volume. 
Since the excluded volume is not enforced at the particle 
level, the details of colloidal packing are lost – see figure 
1. On the other hand, the formalism is greatly simplified 

and the essential larger scale morphological details are 
preserved. 

There are many possible choices for the potentials 
Ui j(r). We choose them to be isotropic, differentiable 
over their domains, and to be short range repulsive and 
longer range attractive. Specifically, we use simple piece­
wise functions that combine Gaussians with trigonomet­
ric functions – see for example equation (8) of reference 
[12]. 3 Another common choice involves using a combi­
nation of exponentials [13, 14]. The use of short range 
repulsive and longer range attractive potentials for mod­
elling DNACCs can be justified as follows. First, there 
is a shortest range repulsion from the excluded volume 
of the colloids or the compression of DNA coatings, but 
this is not part of the potentials Ui j(r). Rather, excluded 
volume is enforced in an average way through the in­
compressibility condition as previously mentioned. The 
short range repulsions in Ui j(r) correspond to DNA me­
diated attractions between DNA coated colloids of the 
same type (i = j), which gives rise to effective repul­
sions for DNACCs of different types (i = j), for which 
Ui j(r) are defined. The longer range attractions corre­
sponds to the saturation of complementary ends between 
like DNA coated colloids, and therefore effective attrac­
tions between unlike DNACCs. The overall pair poten­
tials as described can give a rough, phenomenological, 
effective pair interaction, consistent with the level of de­
tail of the coarse-grained model. 

One can choose to solve equations (1), (2) and (3) nu­
merically, as we have done [12], or one might consider 
re-phrasing the equations to remove the chemical poten-
tial fields wi(r). Since the particles have no connectivity, 
these chemical potential fields can be removed from the 
free energy (4) by solving equations (1) for the wi(r) and 
substituting these back into (4). This algebra gives 

N ϕi(r)ln − 1
fi

J dr 
vr

ϕi(r)vrF vr ∑
= 
kBTV αiV i=0
J N N |r − r ′ |) 

αiα jkBT 

[
ϕ j(r ′)− f j

]dr ′ Ui j(1 ∑
∑
 [ϕi(r)− fi]+
2 vr i=0 j=0

j i = ⎫
2⎬Nκ ∑
ϕi(r)− 1 . +

2 ⎭i=0 

  

 [ ( ) ]

̸

̸

̸

̸

(5)

The formalism now has the character of a classical den­
sity functional theory (DFT). The -1 in the first term on 
the right hand side of (5) has been added and changes the 
zero of free energy but has no physical effect. It makes 

2 Equation (4) is a generalization of equation (1) of reference [12]. 
Note the typo there, in that the factor of 1/2 in equation (1) of [12] 
should be inside the curly brackets. That is, it compensates for double 
counting only on the first term inside the curly brackets. We have also 
chosen a different zero of free energy for (4), thus some factors of αi 
and fi are different from reference [12]. 

3 Equation (8) of reference [12] is reversed, that is, short range attrac­
tive and longer range repulsive due to a difference of convention. The 
physical type of interaction is however the same. 
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this term recognizable as the translational entropy of the 
particles. The second term on the right hand side is the 
mean field effective pair potentials. In most expressions 
of classical DFT, there would normally be a term Fex in 
the energy (5) to account for excluded volume. Instead, 
we have, in the third term, the incompressibility condi­
tion to account for ensemble averaged excluded volume. 
Obviously the formalism could be changed to a more tra­
ditional excluded volume if packing effects were of inter­
est, but this would also reduce the simplicity of form and 
complicate the numerical solution. 

DISCUSSION 

There are advantages to using an incompressibility con­
straint to enforce an averaged excluded volume rather 
than using a DFT prescription for Fex, or other simu­
lation methods such as Monte Carlo or molecular dy­
namics, to model complicated DNACC systems. To en­
gineer desired three dimensional nanostructures using 
DNACCs, it is assumed to be necessary to have many 
component mixtures of mutually exclusive interactions 
[15]. The DFT formalism for such many component mix­
tures would be more involved than equations (1), (2) and 
(3). More importantly, much of the computational bur­

den in a DFT approach would be devoted to how the 
colloids crystallize. This would limit the simulation size 
of the calculation and would provide, as primary infor­
mation, packing results that are not necessarily of inter­
est. Rather, it is the gross morphological patterns that are 
of concern for much of nanotechnology, and it is this 
data that SCFT is ideally suited to providing at relatively 
low computational cost – see the schematic in figure 1. 

FIGURE 1. A schematic showing the loss of packing information resulting from using an incompressibility constraint to enforce 
excluded volume. Note that although colloidal detail is lost, morphological detail should be approximately retained. 

Monte Carlo simulations and molecular dynamics type 
simulations, such as Brownian dynamics and dissipative 
particle dynamics, are both more complicated than the 
SCFT described here and cannot obtain the equilibrium 
structure as readily and simply as does SCFT. Frenkel 
and Wales suggest design rules for useful DNACC self-
assembly, the first of which is that a target structure 
needs to be thermodynamically the most stable among 
all possible arrangements [16]. SCFT is perfectly suited 
to checking this condition. Of course, the simplicity of 
the SCFT approach described here is also its limitation. 
It will always be a complementary approach to DFT and 
simulations, in that DFT can provide crystallization data 
and simulations can describe the dynamic evolution of 
systems. The second design rule of Frenkel and Wales is 
that a target morphology should be kinetically accessi­
ble in order to avoid getting trapped in unwanted, meta­
stable structures [16]. The SCFT described has no dy­
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namic information at all. On the other hand, SCFT is re­
markably scalable. One can add dynamics to SCFT, for 
example using the dynamic density functional theory ap­
proach [17], or one can add packing effects by directly 
incorporating DFT terms in the SCFT free energy. 

A present disadvantage of using an incompressibility 
constraint to incorporate an ensemble average excluded 
volume is the size asymmetry between DNA coated col­
loids and the surrounding suspension molecules. For ex­
ample, Mirkin et al. used colloids of a 13 nm diameter 
in water [4]. A rough value for the diameter of a wa­
ter molecules is 2.74Å. A quantitatively realistic value 
for the αi volume ratio between a suspension molecule 
and a reference colloid for the SCFT equations for the 
Mirkin et al. case should then be about 10−6. This is 
not computationally feasible. One obvious approxima­
tion that can be used to get around this is to treat the 
suspension molecules as an implicit solvent. This how­
ever means that an incompressibility constraint cannot 
be used, and that another form of excluded volume must 
be included. One arrives back therefore at standard DFT. 
If one wants complementary information to DFT meth­
ods, or indeed any other method that uses implicit sol­
vents, then one must keep the explicit solvent. After all, 
one of the advantages of SCFT in complementing other 
approaches is that it keeps the translational entropy infor­
mation of the solvent. In the future, new approximations 
or computational techniques can be explored to find ways 
of approaching realistic solvent volumes, and therefore, 
correct solvent entropies. Anderson mixing techniques 
could be helpful in this regard [18, 19, 20, 21]. 

Even without realistic solvent volumes, the SCFT 
method described here holds promise in other areas out­
side of DNACCs. For the case of only two species of 
equal molecular size, it was found that upon varying vol­
ume fractions, the range of phases produced is exactly 
the same as a diblock copolymer, namely, lamellar, gy­
roid, hexagonally packed cylinders and body-centered 
cubic spheres [12]. If one examines three species, again 
of equal size, preliminary results show phases matching 
those of an ABC triblock copolymer system. An exam­
ple of this is shown in figure 2. The majority species form 
hexagonal tiles in a two dimensional calculation, match­
ing the results of Fredrickson et al. [2]. Given the sim­
plicity of the present SCFT equations, it may be possi­
ble to perform inverse statistical mechanics. That is, one 
could choose a morphology of interest, assume a num­
ber of chemical components, and then iterate the SCFT 
equations to seek the potentials Ui j(r) necessary to self-
assemble the chosen morphology. One could then at­
tempt to map the discovered pair potentials onto block 
copolymer architectures, and then run the true block 
copolymer SCFT equations for that architecture to see 
if something similar to the desired morphology will self-
assemble. 

As the volume of one species is made smaller, so that it 
starts to behave more like a solvent, the morphologies be­
come different from block copolymer phases. Although 
realistic volumes for suspension molecules cannot yet be 
reached, the trend shown in reference [12] hints at what 
one might expect to find. As solvent molecules become 
smaller, phases become more defected and distinct from 
diblock phases. In particular, the sheets and cylinders 
formed begin to resemble more those self-assembled by 
polymer coated nanoparticles in suspension [10]. This 
is not surprising since, to an approximation, polymer 
grafted nanoparticles are also a system with isotropic in­
teractions. 

Although SCFT holds promise for modelling self-
assembly with isotropic interactions, there are some as­
pects in which it is unlikely to succeed. The details 
for the polymer grafts for polymer coated nanoparti­
cles, for example, could be represented, but this might 
be clumsy. Similarly, the DNA bondings for DNACCs 
would not be easily represented in SCFT. On the other 
hand, the effective pair potentials in the present formal­
ism are amenable to multi-scale modelling. For example, 
one could simulate, calculate or measure, as Rogers and 
Crocker have done [22], the potential of mean force be­
tween DNACCS, and input this into SCFT. Strong bond­
ing effects would still be difficult to model, but then 
again, stronger DNA binding that prevents kinetic evolu­
tion to predictable equilibrium morphologies is not desir­
able in any case. Experimental techniques such as lower 
density DNA coatings or using nanoparticles instead of 
micron sized particles are experimental attempts to avoid 
stronger bonding [6]. Even SCFT itself, phrased with 
more detail and studying only pair potentials, could be 
used as the input for this larger scale SCFT. 

OUTLOOK 

There is a good prospect for SCFT models of isotrop­
ically interacting particles to find a niche in the soft 
matter theory landscape as a complementary tool to 
DFT and simulations. The natural inclusion of solution 
molecule translational entropy, morphological free en­
ergies, and larger scale phases beyond the crystalliza­
tion level are all advantages of the SCFT method. The 
simplicity of the equations and iterative algorithm are 
also attractive. Nonetheless, difficulties with molecular 
volume asymmetries and potential algorithmic compli­
cations that might arise in numerically solving highly 
asymmetric systems are present limitations. Still, the 
possibility of performing inverse statistical mechanics as 
a supplement to traditional block copolymer SCFT is in­
triguing. Also, extra DFT terms can be included if pack­
ing effects are of interest, and the techniques of dynamic 
density functional theory or other dynamics can be eas­
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ily transferred to this formalism. Lastly, multiscale mod­
elling through the effective pair potentials can link this 
approach with more detailed methods. 

FIGURE 2. Hex pattern predicted to self-assemble from a three component, symmetric mixture of particles with isotropic 
interactions. The different shades correspond to the majority components of each species. The reader may note that this is the 
same pattern found by Fredrickson et al. for symmetric ABC triblock copolymers [2]. 
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