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Abstract 

Endocrine disrupting compound (EDC) pollutants raise a concern among researchers 

as these pollutants are implicated in the increasing incidence of testicular, breast and thyroid 

cancers. Some of these chemicals are widely used for plastics production and discharged into 

the water system as industrial effluents that could harm the ecosystem as well as plant,  

animal and human life. Thus, rapid detection and quantification of EDCs in water is desired 

for screening and investigative purposes. For this purpose, nanoparticle-based methods 

appear to be potentially efficient, quick and cost-effective techniques to rapidly assess this 

toxic pollutant.  

The main focus of this study was to synthesize heterogeneous nanoparticles, iron 

oxide/gold nanoparticles (IONPs/AuNPs) and to manipulate their synergistic effects for the 

development of a nanoparticles-based assay, specifically for the EDC compound, 17β-

estradiol. As the first step, IONPs and AuNPs were synthesized separately and heterogeneous 

nanoparticles were formed by a simple electrostatic- self- assembly technique. The unique 

physiochemical properties of this hybrid nanoparticle were investigated as a supporting 

material for biomolecules, as well for its intrinsic peroxidase- like activity using a hydrogen 

peroxidase dependent system.  

The formation of the IONPs/AuNPs was verified using several characterization tools 

such as UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Transmission Electron 

Microscope (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy 

(XPS). The diameter calculated from TEM was 16.1 ± 11.1 nm and EDX confirmed the 

presence of the Fe and Au elements. From a heterostructural analysis using HRTEM and 
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XPS data, an alloy- like morphology (Fe/Au) was suggested for the heterogeneous 

nanoparticles, rather than a core-shell structure. The Fe/Au nanoparticles showed good 

potential for the basis of a colorimetric assay for glucose detection using glucose oxidase 

immobilized on the Fe/Au surface. In addition, the Fe/Au nanoparticles also showed a 

significant peroxidase-like activity. A nanocatalytic-based assay was developed by 

modifying the nanoparticles surface with an aptamer in order to specifically “capture” the 

target molecule, 17β-estradiol. The formation of a Fe/Au-17β-estradiol complex significantly 

hampered the peroxidase- like catalytic activity resulting in the development of a unique 

nanosensor system based on the extent of loss of peroxidase activity.  

Development of the nanocatalytic-based assay suggests the potential application of 

Fe/Au nanoparticles to capture, separate and detect a selective target as well as a basis for the 

development of a rapid, simple and reliable detection tool. The heterogeneous Fe/Au 

nanoparticles show a remarkable synergistic property for application in nanosensor system. 

Therefore, some of the work presented here can be extended in certain major directions such 

as heterostructure formation and optimization of nanocatalytic-based assay. 
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Chapter 1 

Introduction 

1.1  Motivation: 

Environmental pollution is one of the main contributors towards health hazards in 

humans. With the constant and continuous development of modern industrial processing, 

environmental pollution seems unavoidable. Industrial processing activities such as the 

production of synthetic plastics, dyes, drugs, antioxidants, polymers, detergents, oil refinery and 

pulp and paper tends to release highly toxic compounds, for example endocrine disrupting 

chemicals (EDCs) as industrial effluents. Many of the EDCs are known to cause toxic effects to 

animals and plants as they easily penetrate the skin and cell membranes, resulting in a wide 

range of genotoxicity, mutagenicity, hepatotoxic effects and affecting the rate of biocatalyzed 

reactions, and the processes of respiration and photosynthesis (Rodriguez-Mozaz et al., 2004). 

The focal urge for environment quality monitoring is based on the main concern that the EDCs 

are found to accumulate in the environment and subsequently harm plant, animal and human life. 

Thus, an efficient, rapid and cost-effective analytical technique for screening for these toxic 

pollutants is highly desirable.  

The expansion of the nanotechnology field into biotechnology and material technology 

has made possible research into magnetic materials and new technology applications. The 

utilization of nanoparticles for monitoring systems is extensively adapted to biosensor 

applications. It has become an interesting multidisciplinary area for applications in bioscience 

and biotechnology, biomedical and environment technology. A number of studies have focused 

on the hybrid nanoparticles, iron oxide-gold nanoparticles (IONPs-AuNPs). IONPs are 

favourable particles due to their remarkable material properties with functional versatility. They 
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are known to be inexpensive to produce, physically and chemically stable, biocompatible and  

environmentally safe (Haun et al., 2010). The unique properties of magnetic nanoparticles also 

show new phenomena such as superparamagnetism (Beveridge et al., 2011). However, the pure 

magnetic nanoparticles themselves may not be very useful in practical applications (Zhao et al., 

2005) as they easily aggregate and have limited available groups for biofunctionalization. The 

addition of gold nanoparticles (AuNPs) will provide a platform for surface modification, 

functionalization, tuning magnetic properties and biocompatibility (Cho et al., 2005).  

The IONPs-AuNPs show unique physiochemical properties as they have been 

demonstrated to exhibit improved catalytic performance, better selectivity and stability for the 

synergistic effect (Duan and Wang, 2013; Ferrando et al., 2008). It is known that IONPs-AuNPs 

can be manipulated for interfacial interaction between nanoparticles and biomolecules such as 

enzymes, DNAzymes, antibodies and aptamers. These biomolecules can be immobilized on the 

modified nanoparticle surfaces by several conjugation methods. For examples, direct conjugation 

to the surface and to surface-bound stabilizing ligands or coatings, either directly or using small 

cross- linking molecules and other intermediaries (Sapsford et al., 2013). In recent years, 

nanoparticles have been discovered to have intrinsic peroxidase- like catalytic activity (Chen et 

al., 2013, Sun et al., 2013, He et al., 2011, Kwon et al., 2011, Chen et al., 2011). Therefore, the 

combination of both interesting properties could provide a useful platform for biosensing 

purposes, particularly; nanoparticles-based assays for easy handling of samples as well as 

selective detection of EDCs.  
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1.2  Research objectives: 

The first objective of this thesis was to construct and acquire a qualitative understanding 

of the formation of heterogeneous nanoparticles of iron oxide/gold nanoparticles (IONPs-

AuNPs) by using an electrostatic- self- assembly technique of the positively charged IONPs and 

negatively charged citrate coated AuNPs. 

The second objective was to study the physiochemical property of the hybrid IONPs-

AuNPs. To investigate the nanoparticles as a biomolecule supporting material, glucose oxidase 

was immobilized on the carboxylate-modified IONPs-AuNPs and tested for glucose detection. 

Then, to investigate the intrinsic peroxidase- like catalytic activity of IONPs-AuNPs, a steady-

state kinetic analysis using a hydrogen peroxidase dependent system was carried out. 

Finally, to assess the application of IONPs-AuNPs as supporting materials and their 

catalytic activity, development of a nanocatalytic-based assay was performed, specifically to 

detect an endocrine disrupting chemical; 17β-estradiol.  

1.3  Thesis structure 

This thesis consists of five chapters. Chapter 1 focuses on the research motivation and 

objectives. Chapter 2 summarizes the literature on iron oxide nanoparticles and the 

heterogeneous nanoparticles of IONPs-AuNPs, endocrine disrupting chemicals (EDC) and 

application of heterogenous nanoparticles in nanosensor systems. Chapter 3 explains in detail the 

heterostructure of IONPs-AuNPs and their application for glucose detection as a model system. 

Chapter 4 explains the manipulation of the nanoparticles peroxidase- like activity for 

development of a nanocatalytic-based assay. Finally, Chapter 5 summarizes the main 

conclusions and recommendations for future directions.  
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Chapter 2 

Literature review 

2.1  Magnetic nanoparticles 

In the past two decades, nanoparticles have received considerable attention among 

researchers in multidisciplinary areas such as biotechnology, medical, environmental technology 

and metallurgy technology due to the interesting properties related to their size (Racuciu et al., 

2008). Nanoparticles can be divided into certain categories such as metallic nanoparticles 

including gold, silver, alloy and other metal nanoparticles, oxide nanoparticles consisting of 

magnetic and nonmagnetic oxide nanoparticles, sulfide nanoparticles, and other miscellaneous 

nanoparticles.  

Magnetic nanoparticles show importance as they have been developed into a new entity, 

due to their finite size and surface effects which dominate the magnetic behavior of the 

individual nanoparticles (Batlle and Labarta, 2002). Due to this composition, the particles attain 

superparamagnetism, high field irreversibility, high saturation field, extra anisotropy 

contributions or shifted loops after field cooling (Tartaj et al., 2003). Superparamagnetic 

properties, which means the magnetic nanoparticles have no “magnetic memory” is 

advantageous because they can be easily dispersed in solvent without attractive magnetic forces 

inducing particle aggregation (Beveridge et al., 2011).  

Many types of magnetic nanoparticles can be synthesized such as iron oxide, ferrites of 

cobalt, manganese, nickel, and magnesium. The most commonly employed magnetic 

nanoparticles are made from iron oxide as they are easily synthesized with size-monodisperse 

products with high magnetic moments (Beveridge et al., 2011) and also are known to be 

biocompatible (Li et al., 2011). Magnetic iron oxides come in several forms, including 
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maghemite (γ-Fe2O3) and magnetite (Fe3O4), but these can be difficult to distinguish in particles 

that are not single crystals. These particles are also known to be spherical in shape (Beveridge et 

al., 2011), which may be an advantage for applications.  These ferrite colloids are characterized 

by a spinel crystal structure with oxygen ions forming a close-packed cubic lattice and iron ions 

located at the interstices (Figure 2.1). The magnetization of Fe3O4 arises from antiferromagnetic 

coupling (super-exchange through oxygens) between the Fe3+ ions in octahedral and tetrahedral 

interstices, leaving the magnetic moments of the Fe2+ ions (in octahedral positions) as 

responsible for the magnetization of the unit cell (Reddy et al., 2012).  

 

 

  

 

 

 

 

 

Figure 2.1 Inverse spinel structure of Fe3O4. The large spheres represent the oxygen atoms, the 

small dark spheres the A-site and the small bright spheres denote the B-site (from 

Jeng and Guo, 2002). 
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The characteristic of magnetic nanoparticles which exhibit responses to the external magnetic 

field supports diverse application and several important properties of magnetic materials are 

crucial for these applications, namely (Safarik and Safarikova, 2009; Arruebo et al., 2007) :  

1) For selective separation (removal) of magnetic nano- and micro- particles and 

composites from the complex samples using an external magnetic field (e.g. using an 

appropriate magnetic separator, permanent magnet, or electromagnet). This process is 

very important for bioapplication and environmental technology because most of the 

biological materials and contaminants have diamagnetic properties or no magnetic 

properties. When this biological material is magnetically modified, an efficient 

selective separation from the complex mixture is enabled. 

2) For mobility purposes, where the magnetic particles are able to move to a desired 

place and making sure they remain there, using an external magnetic field. This 

property is beneficial especially for magnetic drug targeting applications.  

3) For generation of heat when magnetic particles are subjected to an alternating 

magnetic field. This phenomenon can be efficiently employed especially for cancer 

therapy using magnetic fluid hyperthermia.  

4) For generation of negative T2 contrast during magnetic resonance imaging in the 

presence of magnetic iron oxides nanoparticles.  

5) For magnetic modification of diamagnetic biological materials (e.g. cells) and 

magnetic labeling of biologically active compounds by magnetic nano- and 

microparticles. 
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2.1.1 Synthesis of magnetic nanoparticles 

One of the latest tendencies in materials science is to tailor-make classical products with 

controlled properties for special uses (Tartaj et al., 2003). It is important to carefully synthesize 

the magnetic nanoparticle since it could modify the magnetic physicochemical properties that 

might affect the final application, and particle aggregation must be minimized. Many chemical 

procedures have been used such as classical co-precipitation, microemulsion, sol-gel syntheses, 

sonochemical, microwave reaction, hydrothermal reactions, hydrolys is and thermolysis (Safarik 

et al., 2011). Generally, most of the methods aim to synthesize a uniform nanoparticles size and 

shape; however this is a complex process because of their colloidal nature (Laurent et. al., 2008). 

There are two main challenges that need to be taken into consideration in order to produce a 

good nanoparticle. The first main chemical challenge consists of defining experimental 

conditions, leading to a monodisperse population of magnetic grains of suitable size. The second 

critical point is to select a reproducible process that can be industrialized without any complex 

purification procedure, such as ultracentrifugation (Sjogren et al., 1997), size-exclusion 

chromatography (Nunes and Yu, 1987), magnetic filtration (Babes et al., 1999), or flow field 

gradient (Thurm and Odenbach, 2002). These methods have been used to prepare particles with 

homogeneous composition and narrow size distribution. However, the most common method for 

the production of magnetite nanoparticles is the chemical co-precipitation technique of iron salts.  

2.1.1.1 Solution co-precipitation method 

The solution co-precipitation offers a simple and most efficient approach. It shows the 

potential for rigorous control of the nanoparticles size and shape. However the control of the 

particle size is difficult sometimes and tends to generate a broader size of distribution.  
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In principle, there are two main mechanisms for formation of particles in solution; 

nucleation and growth. LaMer and Dinegar (1950) first explained this mechanism in sulfur 

colloids experiments. In a homogenous precipitation, a short single burst of nucleation occurs 

when the concentration of constituent species reaches critical supersaturation. Then the nuclei 

obtained are allowed to grow uniformly by diffusion of solutes from the solution to their surface 

until the final size is attained. To achieve size monodispersity, nucleation should be avoided 

during the period of growth. In general, the co-precipitation process involves the precipitation of 

iron salts such as iron precursors Fe2+ and Fe3+ in the ratio of 1: 2 in aqueous alkaline medium. 

Most commonly, sodium hydroxide (NaOH) or ammonium hydroxide (NH4OH) is used, which 

leads to the formation of green rust at the early stage of precipitation, followed by the black 

precipitation as the process is completed. Different wet-chemical synthesis parameters such as 

the Fe2+/Fe3+ ratio, ionic strength, ions concentration and pH value affect the resulting iron oxide 

characteristics. The overall reaction equation may be indicated as follows:  

Fe2+ + 2 Fe3+ + 8OH− → Fe3O4 + 4H2O 

However, magnetite (Fe3O4) is not very stable and is sensitive to oxidation which results in 

the formation of maghemite (γ-Fe2O3) (Safarik et al., 2011). In this co-precipitation method, the 

pH value of the solution changes rapidly and locally. Accordingly, it is difficult to synthesize 

the smaller and more uniform-shaped products that are desirable for practical uses (Mizukoshi 

et al., 2009). Thus, to achieve a good monodispersity, reaction parameters such as solution pH 

and temperature, the stirring mixing rate, the anion salt, and the concentration of metal ions 

need to be strictly control because these reactions are governed by thermodynamic (e.g., 

temperature, reduction potential) and kinetic parameters (e.g., reactant concentration, diffusion, 

solubility, reaction rate) (Beveridge et al., 2011).  
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Since the nanoparticle size is crucial for its final app lication, several modification 

strategies have been carried out. The addition of chelating organic anions (carboxylate, citric, 

gluconic and oleic acids) or polymer surface complexing agents (dextran, carbodextran, starch, 

or polyvinyl alcohol) during the formation of magnetite can help to achieve more uniform 

nanoparticle size and shape (Safarik et al., 2011). According to the molar ratio between the 

organic ion and the iron salts, the chelation of these organic ions on the iron oxide surface can 

either prevent nucleation and then lead to the larger particles or inhibit the growth of the crystal 

nuclei, leading to small nanoparticles (Laurent et al., 2008; Berger et al., 1999). Other strategies 

could be applied such as performing the synthetic and biologica l nanoreactors. For instance, 

water-swollen reversed micellar structures in non-polar solvents, apoferritin protein cages, and 

formation of dendrimers, cyclodextrins and liposomes (Laurent et al., 2008). 

2.1.1.2  Reverse co-precipitation method 

The main drawback of classical co-precipitation is the difficulty of size and shape 

control; hence researchers introduced a new technique which utilizes the basic fundamentals of 

the co-precipitation technique with slight modifications (Kazemzadeh et al., 2012; Mahmed et 

al., 2011; Aono et al., 2005; Teraoka et al., 1995). Teraoka et al. (1995) explored the reverse co-

precipitation method to synthesize fine powders of poly-metallic oxides. The reverse co-

precipitation method is opposite from the classical co-precipitation system. In the classical 

method the basic alkaline solution is added drop-wise to the solution mixture of iron salts then 

the pH increases gradually over time and after increasing to pH 3, Fe3+ ions are immediately 

precipitated as ferrihydrite, which then reacts with the existing Fe2+ ions in the solution to form 

magnetite (Kazemzadeh et. al., 2012). The electron transfer between Fe2+ and Fe3+ plays an 
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important role in the crystallization process and more than 10 % (mol) of Fe2+ ions persuade the 

crystallization of all the iron into spinel (Gnanaprakash et al., 2007).  

For co-precipitation method, Aono et al. (2005) reported that with the gradual increase in 

pH value, it would cause an increase in the mean crystallite and particle size. In contrast, for the 

reverse co-precipitation method, the mixture of iron salts solution is added drop-wise into an 

alkaline solution and causes a small pH value changes in the alkaline solution and it allows a 

short and rapid nucleation of magnetite. Thus, the pH of the solution can be maintained during 

the precipitation process and it is also suggested that the magnetic nanoparticles do not grow in 

the reverse method (Aono et al., 2005) which is good for producing particles with monodisperse 

distribution. Since the pH of the alkaline solution plays an important role in controlling the 

growth and size of the synthesized nanoparticles (Tang et al., 2009), the reverse co-precipitation 

method was found to be preferable over the normal method.  

Furthermore, a study reported that water dispersible carboxylate-functionalized 

superparamagnetic magnetite nanoparticles had been synthesized with the aid of biocompatible 

sodium citrate salt (Jing et al., 2012). It used commercially available, inexpensive, and 

environmentally acceptable raw reaction materials (water is the solvent), and represents an 

economic and green approach for the controlled synthesis of magnetite nanoparticles. More 

importantly, the as-prepared magnetite nanoparticles exhibit high water-dispersible stability and 

a superparamagnetic property with relatively high saturation magnetization at room temperature.  

Many studies have been adapted using this method for example, ultrasonic assisted 

reverse co-precipitation of ferrous sulfate (FeSO4•7H2O) in NaOH solution with the addition of 

surfactant in various types of atmospheres (Mizukoshi et al., 2009) and a study of reverse co-

precipitation in ambient atmosphere (Mahmed et al., 2011). In addition, this method also allows 
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utilization of a single source of salt ion which is ferrous salt (Fe2+) to synthesize magnetite 

nanoparticles (Alibeigi and Vaezi, 2008). The microwave- assisted method to synthesize 

magnetic iron oxides was utilized by applying heating to the co-precipitation process and is 

based on the microwave treatment of a mixture Fe3+ and Fe2+ salts at high pH (Hong et al., 

2008). In comparison with conventional heating methods, reactions under microwave irradiation 

usually have higher reaction rates and the product can be obtained in a shorter period of time. In 

general, microwave irradiation can accelerate many chemical reactions in organic and inorganic 

syntheses.  

2.1.2 pH-dependent surface charge of magnetic nanoparticles  

In theory, metal ions such as Fe3+ occur at the top layer of the oxides surface and react 

with water molecules to form hydroxyl (OH) groups in an attempt to complete their coordination 

sphere. Due to the formation of chemically reactive surface hydroxyl (S-OH sites) groups, 

charge development could occur by direct proton transfer in surface protonation and 

deprotonation processes (Tombácz, 2009). Generally, this process is associated with chemical 

reactions with H+ or OH- ions. Surface protonation and deprotonation reaction for the amphoteric 

solid such as magnetite, show as follows: 

   

 

 

An experimental work to determine the magnetite nanoparticles point of zero charge 

(PZC) by potentiometric acid-base titration was conducted and presented as in Figure 2.2 

(Illés and Tombácz, 2003). Herein, the PZS of magnetite was measured to be pH 7.0 ± 0.1 and 

Fe-OH + H+               Fe-OH2
+ (protonation)           Eqns. (1) 

Fe-OH                     Fe-OH- + H+ (deprotonation)   Eqns. (2) 
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show that at pHs lower than the PZC, the surface charge is positive due to the accumulation of 

the H+- ions on the surface, while oxide particles are negatively charged above the pH of PZC.  

 

 

 

 

 

 

 

 

Figure 2.2 Experimental charge potential curves of magnetite dispersed in different ionic 

strengths, the points of zero charge (PZC) was identified at the pH values of 

common intersection points (from Illés and Tombácz, 2003) 

 
The newly synthesized magnetic nanoparticles, particularly IONPs, have unstable 

colloidal and physical properties. With this pH-dependent characteristic, adhesion of colliding 

particles can be controlled by covering particles with an adsorption layer to avoid particles 

aggregation and a stable nanoparticles can be achieved. The surface is extremely reactive toward 

oxidizing agents and in the presence of water or humid air.  Thus, protection of magnetic 

nanoparticles is of prime importance for obtaining physically and chemically stable collo idal 
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systems (Reddy et. al., 2012). Such protection can be achieved by surface coating of the 

magnetic nanoparticles. 

 In addition, this property had been manipulated to fabricate superparamagnetic 

multilayer hybrid hollow microspheres using a layer-by- layer technique (Mu et al., 2010). Their 

work demonstrated that the polyelectrolyte cation chitosan (CS) and the hybrid anion citrate 

modified ferroferric oxide nanoparticles (Fe3O4-CA) onto polystyrene sulfonate microspheres 

templates were assembled using electrostatic interaction. The layer-by- layer technique or known 

as LbL was adapted from the concept of the Langmuir or Langmuir-Blodgett deposition method 

(Bishop and Nuzzo, 1996). It consists of the transfer of amphiphilic molecules from the water-air 

interface, to a solid-air interface allowing for the transfer of multiple layers.  

Polyelectrolytes (ionic polymers) have been introduced in the LbL assembly technique as 

an alternating adsorption of oppositely charged polymers. It modifies surfaces and colloids by 

exploiting electrostatic attraction for their deposition. This approach, in its simplest form, uses 

two solutions of oppositely charged polymers into which the substrate can be dipped (surface) 

(Hammond, 2000; Decher, 1997) or particles mixed (colloids) (Caruso, 2001). Once deposited, 

the layer of polyelectrolyte inverts the surface charge of the material it is adsorbed to, enabling a 

subsequent layer of polymer to be deposited from the second solution (Gittins and Caruso, 2001). 

This process is versatile as it can be deposited repeatedly and is able to generate a multilayered 

coating. In addition, one of the polyelectrolyte solutions can be replaced with a similarly charged 

species such as proteins, dyes, clays and nanoparticles to form composite multilayers 

(Hammond, 2000; Caruso, 2000; Decher, 1997).  
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2.2  Fabrication of bimetallic nanoparticles  

Bimetallic nanoparticles consist of magnetic metals and noble metals and show a 

promising potential in fields such as magnetic sensors, catalysts, optical detection and 

biomedical applications (Duan and Wang, 2013). Generally, bimetallic nanoparticles are 

composed of two distinct metal elements by a certain mixing pattern and geometry architecture.  

Iron oxide nanoparticles (IONPs) that contain magnetic metal elements, are frequently 

used for fabrication of a bimetallic structure with other noble metal due to their difficulty for 

bioanalytical purposes as bare magnetic nanoparticles tend to easily aggregate (Lia et al., 2009) 

and have limited available groups for surface functionalization. Gold nanoparticles (AuNps) is a 

noble metal that contains 5d metals (Duan and Wang, 2013). It is also known as an adequate 

shell coating for magnetic nanoparticles because it adds functionality to magnetic nanoparticles 

as well as to improve their stability in aqueous dispersions (Laurent et. al., 2008). Furthermore, 

AuNPs can be prepared with a high degree of monodispersity using the well-known citrate 

reduction technique or the Turkevich method. A study by Kimling et al. (2006) shows that gold 

particles can be produced in a wide range of sizes, from 9 to 120 nm, with defined size 

distribution, following the earlier work of Turkevich and Frens (the Turkevich method).   

The bimetallic nanoparticles of magnetic and gold nanoparticles help to reduce particle 

agglomeration by steric or electronic repulsion and improve biocompatibility (Daniel and Astruc, 

2004). Gold-coating are generally stable under acidic and neutral pH in aqueous media (Reddy 

et. al., 2012). Additionally, gold-coating also provides the opportunity for surface 

functionalization with a wide variety of ligands of interest (Sapsford et al., 2013; Netto et al 

2013).  
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2.2.1 Synthesis of magnetic/gold nanoparticles and their morphologies 

There are several strategies to fabricate magnetic/gold nanoparticles for example, gamma 

ray radiation, laser ablation, sonochemical reaction, layer-by- layer electrostatic deposition, 

chemical reduction, and micelle methods (Zhang et al., 2006; Kinoshita et al., 2005; Caruntu et. 

al., 2005; Spasova et al., 2005; Stoeva et al., 2005; Lyon et al., 2004; Mandal et al., 2005).  

Water-soluble Au-coated magnetite nanoparticles with diameters of about 60 nm were 

synthesized by the reduction of Au III onto the surface via iterative hydroxylamine seed ing 

(Lyon et al., 2004). Magnetite nanoparticles stabilized by oleic acid and 2-bromo-2-propionic 

acid and gold seed nanoparticles were covalently attached to amino-modified silica particles, and 

then, the growth of a complete gold shell provided superparamagnetic gold nanoshells (Kim et 

al., 2006).  

Chemical reduction and deposition of AuNPs onto IONPs surfaces coupled with thermal 

processing is a favourable approach because it offers simple and effective size controllability. 

For example, a study reported a sequential synthesis method to produce gold-coated iron oxide 

core-shell nanoparticles by the reduction and deposition of gold onto pre-synthesized iron oxide 

nanoparticles and applied thermal processing strategy for the fabrication of Fe2O3/AuNPs (Park 

et al., 2007). Based on this study, the synthesized Fe2O3 nanoparticles were first capped with 

oleic acid (OA) then the Fe2O3/AuNPs assembled using a modified thermally activated 

processing strategy (Park et al., 2007). As a result, they showed that this method could produce 

highly monodisperse Fe2O3/AuNps with controllable sizes ranging from 5 to 100 nm. The 

thermal processing treatment of AuNps involved molecular desorption, nanocrystal core 

coalescence, and molecular re-encapsulation processes in the evolution of nanoparticle 

precursors at elevated temperatures (149 °C). The thermal processing of small monolayer-

protected nanoparticles as precursors (Schadt et al., 2006; Maye et al., 2000; Zhong et al., 1999) 
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showed an ability to produce uniform particles. The inverse micelles were formed with 

cetyltrimethylammonium bromide as the surfactant, 1-butanol as a co-surfactant and octane as 

the continuous oil phase. FeSO4 was then reduced using NaBH4, followed by the addition of 

HAuCl4 to coat the iron particles (Liu et al., 1998) but it is undesirable to use such organic 

solvents and strong reducing agents, for safety and environmental reasons.  

In situ growth of AuNPs on the surface of IONPs also offers an interesting strategy for 

reusability purposes. In a recent study, a simple and green method for the in situ growth of 

AuNPs on the surface of polydopamine (PDA)-encapsulated iron oxide nanoparticles have been 

developed (Zeng et al., 2013). The iron oxide core with 400 nm diameter was enveloped with 

PDA/AuNPs shell layer. In this study PDA serves as a reductant as well as stabilizer, thus no 

additional reagent and thermal treatment are needed. Thus, the formation of IONPs/PDA/AuNPs 

facilitates an excellent nanocatalysts activity that shows an excellent recyclability for reduction 

of nitrobenzene.  

Bimetallic nanoparticles morphologies can be categorized into three main types which are 

core-shell nanoparticles, dumbbell nanoparticles and alloyed nanoparticles. These three different 

morphologies are illustrated in Figure 2.3. According to Duan and Wang (2013), the formation 

of these different morphologies is based on the mixing pattern in wet-chemical synthesis. Core-

shell nanoparticles are formed when one type of metal forms a core and then is fully coated by 

another kind of metal, thus, the core layer is protected from the environment. For dumbbell 

shape, two parts of the bimetallic nanoparticles only share a mixed interface. In this type, both 

metal parts are exposed to the environment. Different from core–shell or dumbbell structures, the 

elements of the alloyed nanoparticles are homogeneously mixed randomly or in an ordered 

manner. 
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Figure 2.3 Three types of bimetallic nanoparticles a) core-shell nanoparticles, b) dumbbell 

nanoparticles and c) alloyed nanoparticles (from Duan and Wang, 2013). 

2.2.2 Bimetallic nanoparticles physicochemical property 

The fabrication of magnetic-noble multifunctional nanostructures could lead to the 

formation of a new physiochemical property. For examples, bimetallic nanoparticles have been 

demonstrated to exhibit improved catalytic performance, better selectivity and stability for the 

synergistic effect (Duan and Wang, 2013; Ferrando et al., 2008). This might be due to magnetic 

and noble metals have complex electron structures, thus, exhibiting promising potential in the 

field of catalysis containing electrochemical catalysis, heterogeneous catalysis, and 

photochemical catalysis.  

In recent years, researchers have reported that bimetallic nanoparticles exhibit intrinsic 

peroxidase- like activity for examples Fe/Co (Chen et al., 2013), Fe3O4-Au (Sun et al., 2013), 

Au/Pt nanoparticles (He et al., 2011), Au/PdPt -nanorods(Zhang et al., 2011), CuPt nanorods 

(Kwon et al., 2011) and AucorePdshell–graphene hybrids (Chen et al., 2011). Based on the strong 

metal–metal interactions and the extra stabilization of the transition state on the alloy -catalysts, 

their catalytic performance is different from a monometallic catalyst (Chen et al., 2013).  

In general, the nanoparticles that show peroxidase- like activity are linked with reactive 

oxygen species (ROS)-related redox process. Reactive oxygen species (ROS), resulting from the 

javascript:popupOBO('CHEBI:36973','C3CC41569D','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=36973')
javascript:popupOBO('CHEBI:35223','C3CC41569D','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=35223')
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transfer of energy or electrons to oxygen, such as singlet oxygen, superoxide, hydrogen peroxide, 

and hydroxyl radical, are essential intermediates in certain physiological processes (e.g., 

photosynthesis, respiration, and cell signaling), and their levels within cells are tightly controlled  

via enzymes (e.g., superoxide dismutase, glutathione peroxidase, and catalase) or antioxidants 

(e.g., ascorbic acid, cysteine, glutathione, bilirubin, carotenoids, and bilirubin) (Wu et al., 2014). 

For example, the peroxidase-like activity for magnetic iron oxide nanoparticles originates from 

ferrous ions at the surface of nanoparticles. The mechanism follows the Fenton reaction which 

involves one-electron reduction of hydrogen peroxide by soluble ferrous iron species, generates 

hydroxyl radicals as follows (Zhang et al., 2010): 

Fe2+ + H2O2           Fe3+ + .OH + OH-   (1) 

Fe3+ + H2O2           Fe2+ + .OOH + H+   (2) 

The formed hydroxyl radical is important in oxidation of chromogenic substrate such as 

2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3,3,5,5-tetramethylbenzidine 

(TMB).  In addition, the formation of multiple enzyme-mimetic properties have been reported 

can catalyze the rapid decomposition of H2O2 for instance Ag and Au nanoparticles (Li et al., 

2015). 

Many studies have been conducted for application of enzyme mimetic properties for 

analytical tools. A study by Guo et al. (2011) demonstrated that hemin-graphene hybrid 

nanosheets (H-GNs) have intrinsic peroxidase- like activity, which can catalyze the reaction of 

peroxidase substrate, due to the existence of hemin on the graphene surface. H-GNs exhibit the 

ability to differentiate ss- and ds-DNA in optimum electrolyte concentration, owing to the 

different affinities of ss- and ds-DNA to the H-GNs. Guo group have successfully developed a 

label- free colorimetric detection system for single-nucleotide polymorphisms (SNPs) in disease-
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associated DNA. A recent study shows that incorporation of graphene oxide (GO) and gold 

nanoclusters shows high peroxidase- like activity over a broad pH range, even at neutral pH (Tao 

et al., 2013). In this study, the folic acid conjugated GO-AuNPs hybrid was used to design and 

develop a simple, cheap and highly selective and sensitive colorimetric assay to detect cancer 

cells.  

2.3  Endocrine disrupting chemicals  

The endocrine system is a complex system consisting of many interacting tissues 

connected by hormones. The hormones produced by endocrine glands are responsible for 

controlling a large number of processes in the body and it regulates a diverse set of physiological 

responses which are involved in early development and throughout adulthood. Hence, endocrine 

disruptors can be defined as a compound that can alter the normal functioning of the endocrine 

system, thereby having the potential to affect growth, development, and reproductive potential of 

both aquatic biota and humans (Frye et al., 2011). Endocrine disrupting chemicals (EDCs)  can 

act by several mechanisms such as by inhibiting enzymes related to hormone synthesis, altering 

free concentrations of hormones by interaction with plasmatic globulins, altering expression of 

hormone metabolism enzymes, interacting with hormone receptors, acting as agonists or 

antagonists and altering signal transduction resulting from hormone action (Salgado et al., 2011).  

2.3.1 Source, transportation and fate of contaminant 

Identifying the chemicals with endocrine activity is a major challenge due to the fact that 

EDCs have heterogeneous structures and are distributed from varied sources. But with an 

extensive study, hundreds of chemicals, as well as persistent organic pollutants, have been 

identified as EDCs (Birnbaum, 2013). EDCs can be found in the natural or synthetic chemicals 

ranging from industrial processing effluents to the household product. Natural chemicals found 
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in human and animal food can also act as endocrine hormones (Diamanti-Kandarakis et al., 

2009). Phytoestrogen, daidzein (Dai) and genistein (Gen) are soy-derived isoflavones found in a 

number of plants, including lupin, fava beans, soybeans, kudzu, and psoralea (Dang, 2009). A 

pilot study to examine children's exposure to isoflavones from different feeding methods showed 

that urinary concentrations of the phytoestrogens, genistein and daidzein were about 500-fold 

higher in infants fed soy formula compared with those fed cow’s milk formula (Cao et al., 2009). 

According to Patisaul and Jefferson (2010), the effects of phytoestrogens-rich formula that might 

impact the infant’s future reproductive health remain unknown. Therefore, the potential for 

endocrine disruption activity needs to be considered. Estrogenic compounds, for example estrone 

(E1), 17β-estradiol (E2) and estriol (E3), have been reported mainly in river water and sediments 

due to the inevitable link to WWTP effluents discharging into the receiving waters. The 

occurrence of 17β-estradiol (E2) in high concentration can have adverse health effects (renal 

failure, necrosis, and liver damage) in fish, even at very low concentrations (Gustavo et al., 

2014) since low concentrations (e.g., a few ng L−1) of this estrogenic compounds in the 

environment may have adverse effects on the endocrine system in wildlife and humans (Wang et 

al., 2011).  

It is not surprising that most of the hazardous effects of EDCs are from synthetic chemicals 

where high production volume is found in a myriad of industrial processing activity and 

household products. For example, bisphenol A (BPA) is used as the monomer for the production 

of polycarbonate plastics and is a major component of epoxy resins (Julinová and Slavík, 2012). 

HPTE (2,2-bis(p-Hydroxyphenyl)-1,1,1-trichloroethane), an estrogenic metabolite of the 

pesticide methoxychlor, has estrogenic effects similar to that of BPA (Li et al., 2013). Phthalates 

or phthalic acid esters (PAEs) are used as plasticizers for polyvinyl chloride (PVC) resins, 
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cellulose film coatings, styrene, adhesives, cosmetics, as well as in pulp and paper manufacturing 

(Julinová and Slavík, 2012) and the by-products polychlorinated biphenyls (PCBs), 

polybrominated biphenyls (PBBs), and dioxins from synthetic chemicals of industrial 

solvents/lubricants (Diamanti-Kandarakis et al., 2009). In addition, alkylphenolethoxylates 

(APEOs) which are non- ionic surfactants are extensively used for detergent production 

comprising a hydrophobic part, usually an alkyl or alkylaryl chain, and a hydrophilic part, which 

can vary greatly. Both the surfactants and their metabolites, octylphenol (OP) and nonylphenol 

(NP) are relatively persistent and have been shown to cause endocrine disruption (Wille et al., 

2012). A further source of EDCs is from agricultural activity, for example the pesticides 

methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane (DDT), organophosphorous 

insecticides (OPs) (Frye et al., 2011) and the fungicide vinclozolin (Diamanti-Kandarakis et al., 

2009). The chemical structures of several environmentally important EDCs are shown in Figure 

2.4. 

 

 

 

 

 

 

 

Figure 2.4 Chemical structures of environmentally important endocrine disrupting compounds 

(EDCs) (from Wille et. al., 2012). 
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It is known that the highest occurrence of EDCs in the environment is mostly from 

natural water courses and in fish (Poiger et al., 2004). For humans, exposure to EDCs can occur 

through air, contaminated water or food intake, dermal contact and even through medical 

consumables and devices such as catheters, breathing and respiratory equipment and blood bag 

(Ponzo et al., 2013). The mechanism by which they end up in the environment is uncertain and a 

better understanding of the transportation and fate mechanism. Advances in analytical 

capabilities have contributed to recent increases in the understanding of the routes of exposure 

for pharmaceuticals in wastewater and their fate and behaviour in the environment. However, 

there are currently no guidelines for acceptable concentrations for most of these emerging 

contaminants (Holeton et al., 2011).  

 The most common route of nonylphenol ethoxylate (APnEOs) entry into the environment 

is through municipal wastewater treatment plants (WWTP). Although advanced oxidation steps 

are often used in the drinking water treatment process, these technologies are no guarantee for 

the complete removal of such compounds. It was estimated that 60-65% of all nonylphenolic 

compounds introduced into WWTPs are discharged into the environment (Eric, 2007). It can 

move up to the food chain, but does not bio magnify to any great degree (Carlisle et al., 2009). 

Based on a pilot study on estrogenic compound conducted in Queensland, Australian Capital 

Territory and South Australia, the survey showed that BPA and OP had the lowest levels with 

median concentrations of 21.5 and 39.5 ng/L, respectively. NP ranged from 514 to 2991 ng/L  

with a median value of 1113 ng/L., NP1EO and NP2EO were within the same order of 

magnitude with median concentrations of 1484 and 782 ng/L. The steroidal estrogens were found 

at low ngL-1
 concentrations, with E1 consistently found at higher concentrations (ranging from 

3.1-39.3 ngL-1
 with a median concentration of 23.9 ngL-1) than E2 (ranging from 0.05-6.3 ngL-1 

http://www.sciencedirect.com/science/article/pii/S0300483X13001443#bib0570
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with a median concentration of 3.8 ngL-1), and EE2 (ranging from 0.01-1.30 ngL-1 with a median 

concentration of 0.45 ngL-1) (Williams et al., 2007). Regardless, it does not exclude negative 

impacts because of a lack of bioaccumulation due to the fact that it act more like hormones 

instead of toxicants. Thus its occurrence at low amounts can possibly give an impact to the 

endocrine system and surprisingly, at low doses EDCs may even exert more potent effects than 

higher doses (Diamanti-Kandarakis et al. 2009).  

2.3.2 Effect of contaminants 

 The endocrine society has presented some evidence that EDCs are associated with the 

effect of male and female reproduction, breast development and cancer, prostate cancer, 

neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology 

(Diamanti-Kandarakis et al. 2009). An overview by Frye et al. (2011) addresses the concern that 

EDCs may alter reproductively-relevant or non-reproductive, sexually-dimorphic behaviours and 

may also have significant effects on neurodevelopmental processes, influencing the morphology 

of sexually-dimorphic cerebral circuits. In addition, exposure to EDCs can effect adulthood and 

during specific ‘critical periods’ of life such as intrauterine, perina tal, juvenile or puberty 

periods. Table 2.1 lists the common EDCs with their effects and possible mechanisms.
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Table 2.1 Some of the common chemicals that show health effects with the possible mechanism.  

EDCs Effects Possible mechanism Reference 

17β-estradiol  fishes inhabiting waters that receive 
untreated municipal wastewaters or 

effluents from municipal wastewater 
treatment plants (MWTPs) are exposed 

to chemicals that affect reproductive 
endocrine function  

male fish downstream of some wastewater 
outfalls produce vitellogenin (VTG) 

mRNA and protein, associated with 
oocyte maturation in females, and early-

stage eggs in their testes  

 

Kidd et al., 2007 

Phthalates exposure at early development can 

cause birth defects in male reproductive 
tract 
 

act as an anti-androgen at high dose 

exposure 

Andrade et al., 

2006 

 exposure to diethyl phthalate may be 
associated with increased risk of  

breast cancer 

potentially induce DNA damage and 
increase cancer risk human breast cells 

López-Carrillo et 
al., 2010 

      
Nonylphenol 

(NP) 

observed in the fetal serum after 

administration at the last stage of 
gestation and present in the central 

nervous system and accumulates in the 
brain 

alterations in the hypothalamic regulation 

of the excitatory/inhibitory amino acids–
GnRH–gonadotropins of the reproductive 

system 

Doerge et al., 

2002 
 

Ponzo and Silvia, 
2013 

Bisphenol A 

(BPA) 

interferes with thyroid hormone 

pathways 

binds to thyroid hormone receptor and can 

act as an antagonist to inhibit 
transcriptional activity stimulated by 

thyroid hormone 

Moriyama et al., 

2002 
 

Zoeller, 2005 
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2.4  Application of magnetic/gold nanoparticles 

For environmental application, a rapid processing of multiple samples and real-time 

detection with possibility for portability is desired.  Thus, biosensors appear as a reliable and 

efficient method to occupy this requirement. Biosensors are usually classified according to the 

bioreceptor element involved in the biological recognition process such as enzymes, 

immunoaffinity recognition elements, whole cells of microorganism, plants or anima ls or DNA 

fragment (Salgado et al., 2011).  

Biosensors, as defined by IUPAC, are an integrated device that is capable of providing 

specific quantitative or semi-quantitative analytical information using a biological recognition 

element such as enzymes, immunoaffinity recognition molecules, whole cells of microorganisms, 

plants or animals or DNA fragments (Salgado et al., 2011). The utilization of nanoparticles for 

monitoring systems is extensively adapted to biosensor applications.  

The fascinating discovery of nano- interfacial phenomena had a huge impact on 

biosensors technology since it enables manipulation of the biophysical interface between 

nanomaterials and biomolecules, thus paving the way for the bioconjugation process. 

Subsequently, a nanoparticle that poses a good bioconjugation property make a great match for 

biosensing purposes.  

2.4.1 Nanoparticle bioconjugates strategy 

Nanoparticle bioconjugates are a conjugation between the modified nanoparticles’ surface 

with the specific target biomolecules, for example biorecognition motifs (i.e. antibodies, or 

aptamers). They may also give the composite a bioderived activity such as catalysis ( i.e. 

enzymes, DNAzymes). Biomolecules can be conjugated directly to the surface of some 
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nanoparticles and to surface-bound stabilizing ligands or coatings, either directly or using small 

cross- linking molecules and other intermediaries (Sapsford et al., 2013). Within the nano-bio 

interface, conjugation strategies are important in order to generate nanoparticle bioconjugates 

and achieve the desired final application. These strategies include nanoparticles size, shape, 

surface chemistry, and structure, the intrinsic nanoparticle itself, the nature of the nanoparticles 

surface ligands and their available functional groups, the type of biological molecules, its size 

and its chemical composition (Sapsford et al., 2013).   

The main key to binding an enzyme or antibody to a gold surface is the ability to 

covalently attach it to the surface particles. The most common and simple conjugation strategy is 

to utilize specific chemical handles introduced by the coating of stabilizing ligands or polymer. 

The choice of conjugation strategy is dictated from the selection of AuNPs coated on magnetic 

nanoparticle surfaces. Gold nanoparticles, in particular, are excellent candidates for 

bioconjugation with proteins because amine groups and cysteine residues in the proteins are 

known to bind strongly with gold colloids (Gole, et. al., 2002; Gole et al., 2001a; Gole et. al., 

2001b). This chemistry is almost always enabled by the formation of an intermediate monolayer 

coating of bifunctional thiol ligands on the surface of the Au (Sapsford et al., 2013). Mainly, 

chemisorption occurs between thiols and Au with reductive elimination of the thiol hydrogen as 

either H2 or, with subsequent oxidation, as H2O.  

For example, antibodies have been immobilized on IONP/AuNps after an initial 

funtionalization step with the heterobifunctional linker -dithiobis(succinimidylpropionate) which 
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introduced amine-reactive succinimidyl moieties via thiolation of the Au surface (Lim et. al., 

2008). In particular, the gold surface facilitates the attachment of biological molecules with 

inherent self-assembly properties onto the surface of NPs. This opens up new ways for 

assembling magnetic NPs rationally into well-organized and functional complexes through the 

lock-and-key functionality provided by the biological molecules on the surface (Robinson et al., 

2010). According to Al-Aribe et al. (2011), during the biochemical immobilization process, the 

biotinylated alkylthiols modify the Au surface using HS terminals of the thiols and affix the 

labeled bacteriorhodopsin (bR) to the functionalized surface and a dry ultrathin photoelectric 

layer was successfully fabricated. The self-assembled monolayer of oriented purple membrane 

(PM) patches from bR is created on a bio-functionalized gold (Au) surface using a biotin 

molecular recognition technique. A study by Masereel et al. (2010) showed that the gold 

nanoparticle was coated covalently with anti-bovine serum antibody using a layer-by- layer 

technique. This study contributes to a simple and reliable method for cancer treatment and 

imaging.  

In addition, N-hydroxysuccinimide (NHS) ester modification of amines along with 

carbodiimide-mediated condensation (EDC-linker) of carboxyls with amines and cross- linkers 

can be used to bioconjugate AuNPs with multifunctional ligands. Kim et al. (2011) used SMCC 

to couple cRDGyC (c = cyclic) peptides to AuNPs coated with an amino-PEG−thiolate ligand. 

They have proven that the AuNP−cRDGyC conjugates were stable from pH 2 to 8 and at salt 

concentrations ≤1 M, selectively targeted and were taken up by tumor cells through integrin αvβ3 

receptor-mediated endocytosis without appreciable cytotoxicity.   
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Another possible strategy that can be applied is to modify enzymes and antibodies for 

conjugation purposes. It is now very common to modify the bioconjugate to display a unique 

functional group such as thiol. Furthermore, the thiolated enzyme or antibody will allow a direct 

adsorption to the AuNPs surface. Alternatively, a site specific immobilization strategy can be 

explored where it provides a favorable orientation for biorecognition events while avoiding 

conformational changes (Stanciu et al., 2009). This method allows a site specific attachment at a 

pre-determined position for selected enzymes which eliminates the diffusion barriers or chemical 

bond formation that could affect the biological activity and therefore a lower detection limit and 

a fast response time could be expected. Johnson et al., (2008) used clone dehalogenase (Dh1A) 

fusion proteins with an affinity for either silica or iron oxide surfaces (Naik et al., 2002; Brown, 

1992) and suggested that three different Dh1A recombinant enzyme were able to specifically 

bind to either iron oxide or silica.  

Several conjugation strategies for nanoparticles-bioconjugates particularly to detect 

endocrine disrupting chemicals (EDCs) are listed in Table 2.1. 
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Table 2.2 List of several bioconjugation strategies for nanoparticle-based biosensor 

application to detect EDCs. 

 

 

 

 

 

 

 

Nanoparticle-bioconjugate Bioconjugation 

strategy 

Target chemical 

compounds 

       References 

MgFe2O4–SiO2-Tyr glutaraldehyde cross-

linking 
 

phenolic compound Liu et al., 2005 

Magnetic particles- 

secondary antibody 

commercial RIA kit 

for E2 
 

17β-estradiol Xin et al., 2008 

Rabbit polyclonal anti EE2- 

magnetic microbeads 

glutaraldehyde cross-
linking 

 

ethinylestradiol (EE2)  Martinez et al., 
2010 

SWCNTs-AuNPs-Tyr glutaraldehyde cross-
linking 

 

phenolic compound Li et al., 2012 

Goat anti rabbit IgG- thiol-capped DNA  
and antibody  thiol-

tagged   
       

3,4,3’,4’-
tetrachlorobiphenyl  

(PCB77) 

 
Yang et al., 2014  

AuNPs-DNA aptamer-

CoS/AuNPs 

17β-estradiol aptamer    17β-estradiol Huang et al., 2014 
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2.4.2 Magnetic/gold nanoparticles in nanosensor  

The development of various nanosensor schemes can be classified by conjugation of 

nanoparticles with different types of specific target biomolecules such as enzyme, immuno- and 

aptamer. 

2.4.2.1 Enzyme-based nanosensor 

Enzymes are known as highly efficient catalysts that are useful for bioremediation 

processes and also the detection of targeted pollutants. There is an extensive study for 

development of enzyme-based nanosensors which utilize enzyme immobilization on the 

nanoparticle surface. Many types of nanosensor have been explored and electrocatalysis shows a 

significant promise as many researchers use nanoparticles to enhance the conventional 

electrochemical method.  

An electrochemical sensor is commonly comprised of two major components; (i) a 

chemical or biorecognition element; and (ii) a physical transducer (electrode) that transduces the 

analytical signal of the sensing event to an electronic circuit. They are known for their self-

contained, compact and low cost with minimal power requirement (Govindhan et al., 2014). 

Advanced nanoparticle-based electrocatalysis methodologies employ the nanoparticle’s unique 

chemical and physical properties by improving the electrode surfaces. For example a study on 

modified sulfite oxide/ Fe3O4@Au nanoparticle electrocatalyst proved that it is a good 

nanoparticle bioconjugate for sulfite determination (Rawal et al., 2012). They concluded that this 

modification improved analytical performance with low response time, lower detection limit, 

higher storage stability, wider linear range and lack of interferences. The presence of gold coated 
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magnetite is of special interest, since the gold nanoparticle helps to improve their stability in 

aqueous dispersions (Laurent et al., 2008).  

Furthermore, a study on the immobilization of tyrosinase on the surface of modified 

magnetic MgFe2O4 nanoparticles was developed. It is important to note that tyrosinase is known 

to catalyze the oxidation of phenolic compounds typically monophenols and ortho-diphenols to 

ortho-quinones (Gamella et al., 2006). The tyrosinase was first covalently immobilized on core–

shell (MgFe2O4–SiO2) magnetic nanoparticles, which were modified with an amino group on the 

surface. The resulting magnetic bio-nanoparticles were attached to the surface of a carbon paste 

electrode with the use of an external magnetic field (Liu et al., 2005). With this advancement, the 

recognition element can be renewed and provides an in-situ biosensing surface (Xu and Wang, 

2012). Li et al. (2012) successfully fabricated a disposable biosensor using single-walled carbon 

nanotubes (SWCNTs), gold nanoparticles and tyrosinase and obtained a rapid determination of 

phenolic contaminants within 15 min with excellent repeatability and stability. This study 

revealed that SWCNTs lead to a high loading of tyrosinase and gold nanoparticles retained the 

bioactivity of tyrosinase and enhanced the sensitivity. The schematic and configuration of this 

electrochemical analysis can be seen in Figure 2.5. Based on extensive studies, the integration of 

a nanoparticle greatly enhances enzyme based nanosensor performance. For instance, the adding 

of superparamagnetic nanoparticles in electrocatalysis increases the enzyme concentration at the 

electrode surfaces, improving the electrochemical response and the efficiency of the 

electrocatalytic processes (Netto et al., 2013). It also demonstrates that nanoparticles are feasible 
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for many chemical contaminants detection and have the potential to be integrated into portable 

and rapid detection tools with quick response that show more economical value.  

 
 

 

 

Figure 2.5 Diagram and configuration of the disposable biosensor using single-walled carbon 

nanotubes (SWCNTs), AuNPs and tyrosinase for determination of phenolic 

contaminant (from Li et al., 2012). 
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2.4.2.2 Immuno-based nanosensors 

Since the early 1970s, many researchers have proposed the possibility of using 

immunosensors for environmental study and analysis because of their sensitivity towards specific 

analytes. This method emphasizes both screening and analytical purposes and it has proven to be 

a reliable, sensitive and selective method (Safarik et al., 2012). For instance, different types of 

EDCs were successfully detected using this method. A study by Zacco et al. 2006, successfully 

detected Arochlor 1248 (PCB) with detection limits of 0.4 ng/mL as well as atrazine with 

detection limits of 0.027 nmol L-1 by using anti-atrazine-specific antibody. In another study, Hu 

et al. (2003) reported that paraoxon was measured at a low detection limit at 12 µg/L and with a 

linear range within 24–1920 µg/L, which was achieved with an electrochemical immunosensor 

based on antibody- labeled gold nanoparticles on a glassy carbon electrode. Immuno-based 

nanosensors can be classified into immunosensors and immunoassays. “Immunosensor” is 

usually employed to describe the whole instrument, i.e an electrochemical devise, while 

“immunoassay” is commonly used to describe tests based immunoreaction e.g ELISA (Pei et al., 

2013). 

Similar to enzyme-based nanosensors, immuno- based nanosensor approaches also 

concentrate on the enhancement of the electrode surface. Antibody or antigen molecules are 

directly immobilized at the sensor surface (transducer) and the signal change is measured before 

and after the antigen-antibody interaction (Centi et al., 2007). An interesting study by this group 

used an estrogen receptor immobilized on a bilayer lipid membrane (s-BLM) modified with gold 

nanoparticles to selectively detect 17β-estradiol, bisphenol A (BPA) and nonylphenol (NP) (Xia 

et al., 2010). An estrogen receptor (ER) is used to detect estrogenic substances, which can be 



 

 

 

36 

found widely in EDCs and can interfere with endocrine system function (Kerdivel et al., 2013). 

The presence of gold nanoparticles produced a better microenvironment for s-BLM since it 

absorbs larger amounts of ER, contributing to increased sensitivity and longer time stability of 

the biosensor. 

Although electrochemical analysis has been widely studied and used, immunoassays have 

receivesd a great amount of attention and a variety of analysis methods are currently available. 

The classical immunoassays exhibit a conversion to the new immunomagnetic assay where an 

appropriate antibody is immobilized on a magnetic carrier. Safarik et al. (2012) defines 

immunomagnetic separation (IMS) as the immobilization of antibodies specific against the target 

(micro) organism or virus to the magnetic particles. IMS has been used widely in environmental 

analysis for detection of bacteria (Bushon et al., 2009; Lee and Deininger 2004). Due to its 

competency, it also has been adapted for detection of EDCs. A study by Xin et al. (2009) 

presents a simple, fast and highly sensitive chemiluminescence enzyme immunoassay (CLEIA) 

for 17β-estradiol using magnetic particle labeled antibodies, which exhibited high performance 

with a detection limit of 2.0 pg/mL, linear range of 20–1,200 pg/mL, and total assay time of 45 

min. Interestingly, they discovered that the mass transfer distance of analytes and reagents to the 

immobilized antibody is greatly reduced and antigen-binding equilibrium can be achieved rapidly 

with easy handling of samples since the immunocomplex was efficiently separated from a 

complex mixture under the influence of a magnetic field. A study by Gao et al. (2008) developed 

a magnetic nanoparticle- linked immunosorbent assay. In this study, the as-synthesized chitosan 

(CS)-MNPs had amine groups on their surface which provided good dispersibility in aqueous 
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solutions and convenient sites for covalent linking of antibodies with the MNPs. This assay 

showed the capability to catalyze color reactions in immunoassays and the magnetic properties 

could be used to capture, separate, and enrich antigens prior to the assay procedure. By 

employing both the catalytic and magnetic properties of the CS-MNPs, a capture-detection 

immunoassay was developed, where antigens can be captured, separated, and enriched prior to 

the assay procedure.   

The unique properties of magnetic nanoparticles have also been utilized in microfluidic 

devices. A study to selectively quantify ethinylestradiol (EE2) using modified paramagnetic 

beads in a microfluidic system was successfully performed (Martinez et al., 2010). The increased 

reactive surface area and the reduced diffusion distance permitted a faster time of analysis and 

less sample consumption. Through this invention, the miniaturization of magnetic 

immunosensors is possible. In addition, other strategies such as immuno-polymerase chain 

reaction (IPCR) have been studied. Bu’s group successfully fabricated a functionalized gold-

nanoparticle bio-barcode assay, based on a real time IPCR system (Yang et al., 2014). This 

modified IPCR was designed to determine 3,4,3’,4’-tetrachlorobiphenyl (PCB77) from water 

samples and showed an enhanced analyte signal since the gold nanoparticles in this immunoassay 

conferred a high ratio of signal DNA to the goat anti-rabbit IgG. Figure 2.6 shows the concept for 

this immunoassay.  
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Figure 2.6 Illustration of real time immuno-PCR based nanosensor to determine 3,4,3’,4’-

tetrachlorobiphenyl (PCB77).  Initially, the antibody was captured by PCB77 

hapten–OVA (coating antigen) coated on PCR tubes and followed by the addition of 

gold-nanoparticle probes, which were modified by goat anti-rabbit IgG and 

thioldsDNA to form sandwich immunocomplexes. Signal DNA was released from the 

probes by the initial heating procedure of realtime PCR. Signal DNA was used as 

the marker for PCB77, and was quantified by real-time PCR (from Yang et al., 

2014).  
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2.4.2.3 Aptamer-based nanosensor 

In recent years, aptamer-based biosensors, particularly for detection of EDC compounds, 

were successfully developed (Long et al., 2014; Yildirim et al., 2012; Lin et al 2012; Olowu et 

al., 2010; Kim et al., 2007). Aptamers are short synthetic oligonucleotides that could be produced 

for any targets such as proteins, peptides, amino acids, nucleotides, drugs, carbohydrates, and 

other small organic and inorganic compounds (Ellington and Szostak, 1990; Luzi, et al., 2003). 

Since the screening process for aptamers synthesis was simplified using Systematic Evolution of 

Ligands by Exponential Enrichment (SELEX), aptamers-related analytical research has 

experienced explosive growth (Guo and Dong, 2009). SELEX technique enabling selection of 

specific oligonucleotides from libraries of randomized molecules whereas aptamer species 

consist of a randomized region of 30–50 nucleotides flanked by constant sequences that enable 

PCR amplification (Radom et al., 2013). As compared to antibodies, aptamers can be chemically 

synthesized, have a strong affinity for the target molecules, are easy to modify and show high 

stability (Sun and Zu, 2015). Furthermore, chemically synthesized aptamers are cost-effective 

and generally do not require complicated and expensive purification steps (Yildirim et al., 2012). 

Because of these advantages, aptamers have been used widely as a biorecognition element in 

biosensor applications.  

However, there are still a very limited number of publications on the integration of 

nanoparticle to this biosensor. Huang’s group is currently doing a progressive work on the 

detection of 17β-estradiol using aptamer-based nanosensor. In their studies, they utilized two-

dimensional (2D) transition-metal chalcogenides, aptamer and AuNPs. Two-dimensional 

transition-metal chalcogenides such as cobalt sulfide (CoS), tungsten disulfide (WS2) and copper 



 

 

 

40 

sulfide (CuS); are the material composed of the metal layer and sulfur layer and stacked together 

by weak Van der Waals interactions and is expected to act as an excellent functional material 

because the 2D electron–electron correlations among metal atoms would be helpful in enhancing 

planar electric transportation (Huang et al., 2014a; 2014b).  

As discussed before, the addition of AuNPs are mostly recommended owing to the fact 

that they show a great hybridization property with biomolecules, as well as the possibility that 

they can greatly increase the current response of the modified sensor with good conductivity (Hai 

et al., 2014). Their work includes the construction of electrochemical-based biosensor using CoS 

and AuNPs (Huang et al., 2014a) and layered WS2 nanosheets and AuNPs amplification (Huang 

et al., 2014b). The thiol group tagged 17β-estradiol aptamer was covalently bound on CoS and 

AuNPs modified electrodes. Besides exhibiting good selectivity, the CoS/AuNPs formed on the 

biosensor surface appeared to be a good conductor which is important for accelerating the 

electron transfer. In the most recent publication, they reported that combining CuS and AuNPs in 

the construction of modified electrodes efficiently accelerated the electron transfer and enhanced 

the detection signal with a detection limit of 60 fM (Huang et al., 2015). Based on their findings, 

this approach greatly enhanced the electrochemical assays by improving its sensitivity and signal 

amplification.  

Therefore, the development and characterization of the aptamer-based nanosensor could 

lead to a more sophisticated analytical chemistry with the capacity to improve qualitative and 

quantitative measurements, with high sensitivity, speedy analysis, and importantly shows good 

stability. 
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Chapter 3 

Analysis of the heterogeneous structure of iron oxide/gold 

nanoparticles and their application in a nanosensor  

3.1 Summary 

Purpose: The aim of this study was to investigate the formation of iron oxide nanoparticles-gold 

nanoparticles (IONPs-AuNPs) with heterogeneous structure using a simple electrostatic -self -

assembly technique, and the application of these nanoparticles in a nanosensor system for an 

analyte in aqueous solution. 

 

Methods : IONPs and AuNPs were synthesized separately, where IONPs were synthesized using 

a reverse co-precipitation method and then treated with HNO3 while AuNPs were synthesized 

using the Turkevish method followed by microwave-assisted irradiation. Then, both 

nanoparticles were allowed to interact to form IONPs-AuNPs heterogeneous structure. This 

interaction is based on the manipulation of the opposite interfacial charges exhibited between 

them. For a nanosensor application, a colorimetric assay to detect glucose was studied as a model 

system. Glucose oxidase (GOx) was immobilized on IONPs-AuNPs using a carbodiimide-

coupling technique and the bioactivity of the nanoparticles-GOx for glucose detection was 

measured using an ABTS assay. For characterization, UV-Vis spectrophotometer, DLS, zeta 

potential, TEM, EDX, XPS and FTIR techniques were used.  

 



 

 

 

54 

Results: A simple analytical signal using a UV-Vis spectrophotometer successfully determined 

the formation of IONPs-AuNPs, and this was further verified by other characterization methods. 

The particle diameter obtained from TEM was 16.1± 11.1 nm and EDX confirmed the presence 

of Au and Fe elements. It is suggested that the IONPs nanostructure species is maghemite (γ-

Fe2O3) and that alloy-like morphology (Fe/Au) was formed, as was observed in HRTEM and 

XPS analysis. In addition, FTIR results exhibited strong vibrational modes around 1655, 1545 

and 3290 cm-1 that appeared to be primarily due to immobilization of GOx onto Fe/Au. The 

colorimetric assay also showed a significant increase in green color intensity (due to oxidation of 

ABTS) with increasing glucose concentrations ranging from 20 µM to 100 µM.  

 

Conclusions: The direct deposition technique used in this study suggested the formation of a 

metastable alloy-like morphology, Fe/Au. Moreover, these nanoparticles also showed a good 

potential for application in a colorimetric assay to detect glucose in aqueous solution, thus 

suggesting an excellent basis for a nanosensor system using these particles.  
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3.2 Introduction 

In recent years, a large number of studies have focused on the construction of magnetic 

nanoparticles coated with gold nanoparticles as it provides an excellent platform for 

multifunctionality. In the nanosized scale, both nanoparticles develop into a new material where 

the surface effect dominates and contributes to a superparamagnetism phenomenon for the 

magnetite phase (Batlle and Labarta, 2002) and a high plasmon field and surface 

functionalization for the gold nanoparticle portion (Sapsford et al., 2012). Based on these special 

characteristics, the selective separation or removal of magnetic nano- and micro- particles and 

composites from the complex samples is easily performed. This process is very important for 

bio-application and environmental technology because most of the biological materials and 

contaminants have no magnetic properties. When this biological material or contaminant is 

magnetically modified, an efficient selective separation is enabled from the complex mixture 

(Safarik and Safarikova, 2009; Arruebo et al., 2007). 

Gold nanoparticles (AuNPs), a nanosized metal particle that have a high plasmon field 

upon receiving optical energy (Kang et al., 2011), are used widely for analytical signals. The 

AuNPs capability for surface functionalization receives a great attention as it exhibits a strong 

interaction with thiolated linkers or biomolecules. Amine groups and cysteine residues in 

proteins are known to bind strongly with gold colloids (Gole et al., 2001a; Gole et al., 2001b; 

Gole, et al., 2002) due to chemisorptions occur between thiol group and AuNPs. 

It is known that iron oxide nanoparticles (IONPs) coated with AuNPs is a versatile 

approach particularly for biodiagnostic applications. Since IONPs are not stable, easily oxidized 

and have limited options for bio-functionalization, hence, further chemical functionalization 
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needs to be made to form biocompatible nanoparticles. AuNPs are known as an adequate shell 

coating for magnetite as it adds functionality to magnetite as well as improves its stability in 

aqueous dispersions (Laurent et. al., 2008). The composition of the core, shell and interface 

structure exhibits a unique physiochemical property and makes them suitable in many nano-

biotechnology research applications.  

However, the formation of core-shell nanoparticles is quite challenging as the Au shell 

forms a poor diffusion barrier against the core layer and there are significant difficulties in 

controlling the uniformity and thickness of the metal coating (Dahal et al., 2008). Therefore, 

some researchers have suggested the formation of alloy nanoparticles or nanoalloys. A few 

studies have reported the preparation of nanoalloys using pulsed laser deposition (Chang et al., 

2006), carbon film deposition at very high temperature (1600 K) in the presence of helium flow 

(Saha et al., 1999) and electrodeposition (Lu et al., 2002). A study by George and coworkers 

used high-temperature colloidal synthesis to decompose iron pentacarbonyl in the presence of 

gold nanocrystals (George et al., 2011). In addition, dumbbell- like Au–Fe3O4 exhibit 

bifunctional properties with high magnetization and excellent catalytic activity toward 

nitrophenol reduction (Lin and Doong, 2011). They fabricated Au–Fe3O4 using thermal 

decomposition of the iron-oleate complexin the presence of Au seeds.  

Some studies have provided information on the interfacial reactivity, the structural and 

electronic properties of various morphologies of Au–Fe3O4 heterostructures and an 

understanding of the interaction between the magnetite and the gold (III) nanoparticle surfaces 

(Odio et al., 2014; Lin and Doong 2013; Wang et al., 2005). However, the information on 
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IONPs-AuNPs fine heterostructure, charge transfer and their interfacial relationship are still 

limited and ongoing investigation needs to be done. In addition, it is also of interest to investigate 

this heterogeneous nanoparticles application as a supporting material for biomolecules such as 

enzymes. Several enzymes and biomolecules have been successfully immobilized onto IONPs-

AuNPs nanoparticles for examples glucose oxidase (Samphao et al., 2015), sulfite oxidase 

(Rawal et al., 2012) and tyrosinase (Li et al., 2012).  

In our work, the heterogeneous structure of hybrid iron oxide nanoparticles- gold 

nanoparticles (IONPs-AuNPs) was investigated, as well as their potential application in 

nanosensors. The IONPs surface allowed for interaction with AuNPs using a simple and easy 

electrostatic -self -assembly technique. This strategy was adapted from the layer-by- layer 

deposition technique which exploits the surface layer electrostatic attractions for a quick and easy 

deposition of heterogeneous nanoparticles. Instead of using polyelectrolyte, we manipulated the 

interfacial charge exhibited between IONPs and AuNPs since IONPs surface charge can easily be 

tuned to positive charge or negative charge by a simple pH adjustment. For this study, we used 

acidic solution to gain positively charged IONPs. Then, these nanoparticles were used to 

immobilize glucose oxidase on the surface, and these were then used for the colorimetric 

detection of glucose in aqueous solution using an ABTS assay.  
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3.3 Materials and methods 

3.3.1 Chemicals 

The chemical reagents used in this work were ferrous sulfate heptahydrate (FeSO4.7H2, 

ReagentPlus®, > 99%), hydrogen tetrachloro-aurate (III) (HAuCl4.3H2O, ≥ 99.9%), sodium 

hydroxide (NaOH, ACS Reagent, ≥ 97%), trisodium citrate (Na3C6H5O7, anhydrous, ≥ 98%, GC), 

nitric acid (HNO3, ACS Reagent 70%) diluted to 65%, 2,2’-azino-bis(3-ethylbenzthiazoline-6-

sulfonic acid) diammonium salt (ABTS, 10 mg/tablet), N-ethyl-N’- (3-dimethylaminoprophyl) 

carbodiimide hydrochloride linker (EDC-linker, commercial grade, powder), N-

hydroxysuccinimide (NHS, 98%), D-glucose (≥ 99.5%, GC), glucose oxidase Type VII from 

Aspergillus Niger (GOx), horseradish peroxidase lyophilized powder (HRP), 11-

Mercaptoundecanoic acid (11-MUDA, Mw : 218.36 g/mol), PBS buffer (tablet), Tween 20 

(viscous liquid), 2-(N-morpholino)ethanesulfonic acid buffer (MES buffer, ≥ 99.5%) and sodium 

acetate anhydrous buffer (NaAc). All reagents were purchased from Sigma Aldrich and were 

used as received without further purification.  

3.3.2 Synthesis of IONPs 

IONPs were synthesized using a reverse co-precipitation method. This method was 

adapted from Mahmed et al. (2011) with slight modification. Firstly, 50 mL NaOH (1 M) and 1 

mL Na3C6H5O7 (1 mM) were mixed in 50 mL deionized water. Then, ±55.6 mg of FeSO4.7H2O 

was added into the mixture with vigorous stirring for 10 min at room temperature. After adding 

the salts into the alkaline solution, black precipitates were observed, suggesting the formation of 

IONPs. The resulting precipitate was then immediately microwave irradiated for up to 30 s and 
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then was readily collected by a permanent magnet when the solution cooled down to room 

temperature. After that, the black precipitates were air-dried overnight. 12 mg of this black 

precipitates were treated with 10 mL HNO3 (6 M) by stirring vigorously for 10 min and the color 

immediately changed to brown-reddish. IONPs were resuspended in deionized water, were 

centrifuged for 10 min at 6.5x1000 rpm, and separated using a permanent magnet. The separated 

IONPs were then added to 1 mL deionized water with the IONPs final concentration of 12 

mg/mL and were stored at room temperature until use.  

3.3.3 Synthesis of AuNPs  

AuNPs were synthesized using the Turkevish method by mixing 500 µL HAuCl4.3H2O 

(10 mM) in a solution containing 300 µL Na3C6H5O7 (100 mM) and 10 mL deionized water. The 

solution was microwave irradiated for 45 s with 10 s interval mixing and the formation of AuNPs 

was observed as the solution color changed to dark red.  

3.3.4 Synthesis of IONPs-AuNPs 

AuNPs were coated on the IONPs surface using a layer-by- layer deposition technique. A 

preliminary study to construct IONPs-AuNPs using polyelectrolytes (ionic polymer) was 

explained in Appendix A. For electrostatic-self assembly methodology, 12 mg/mL of IONPs 

treated with HNO3 were mixed with 2.5 mL citrate-capped AuNPs for 1 hr. Then, the 

nanoparticles were separated by a permanent magnet overnight. The separated IONPs-AuNPs 

were stabilized with 3.5mL of PBS-T (10mM, pH 4) by vigorous mixing for 1 hr. Subsequently, 

the solution was centrifuged for 10 min at 6.5x 1000 rpm and the IONPs-AuNPs were separated 
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using a permanent magnet and washed several times with PBS-T and were stored at 4oC until 

use.  

3.3.5 Detection of glucose 

3.3.5.1 Carbodiimide-coupling strategy  

IONPs -AuNPs were weighed out to approximately 29 mg and added to 950 µL MES 

buffer, (10 mM, pH 4). In a separated falcon tube, 28.85 mg of 11-MUDA was dissolved in 10 

mL methanol. 50 µL of this freshly prepared solution was then added to the IONPs-AuNPs 

solution and this was mixed at room temperature for 1 hr. In order to remove the unbound 11-

MUDA, the solution was washed several times and IONPs-AuNPs were separated using a 

permanent magnet. Finally, 1mL of MES buffer (10mM, pH 4) was added to the nanoparticles. 

In a separate tube, 0.312 mg of EDC-linker and 1.24 mg of NHS were mixed in 1 mL MES 

buffer (10 mM, pH 4). Subsequently, this solution was added to the carboxylate-modified 

nanoparticles (IONPs-AuNP-COOH) and this was incubated at 4oC for 30 min without mixing. 

To remove excess EDC-linker and NHS, the solution was centrifuged for 10 min at 6.5x1000 

rpm and washed several times with PBS-T (10 mM, pH 4).  The nanoparticles were separated 

using a permanent magnet and 1 mL MES buffer (10 mM, pH 4) was added to the nanoparticles 

which were then stored at 4oC until use.  

3.3.5.2 Immobilization of glucose oxidase (GOx) 

180 µL of the carboxylate-modified nanoparticles was mixed with 20 µL of GOx (1 

mg/mL) and was incubated at 4oC for 1 hr. Subsequently, the nanoparticles-bioconjugate 

(IONPs-AuNP-GOx) was centrifuged for 10 min at 6.5x1000 rpm and separated using a 
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permanent magnet. The unbound GOx was carefully pipetted from the separated nanoparticles-

bioconjugate. Then, the nanoparticles-bioconjugate was added into 200 µL MES buffer (10 mM, 

pH 4) and this was stored at -20oC until use.  

3.3.5.3 Colorimetric detection 

 In order to detect glucose using immobilized GOx on IONPs-AuNP, the ABTS assay was 

used. 100 µL of each sample, including a positive control, negative control and the nanoparticles-

bioconjugate (IONPs-AuNP-GOx), were mixed in 1650 µL NaAc buffer, (10 mM, pH 5). Then, 

to the mixture was added 100 µL of various glucose concentrations (20 µM, 40 µM, 60 µM, 80 

µM and 100 µM) and this was incubated for 15 min. At the end of incubation, 50 µL of 

horseradish peroxidase (HRP) enzyme was added and the mixture was subsequently measured 

using UV-vis spectrophotometer. Then, 100 µL of ABTS reagent was added and incubated for 

another 15 min. The reaction solution was adjusted by 2 fold dilution using dH2O and measured 

using UV-Vis spectrophotometer.  

3.3.6 Characterization  

 For morphology and heterostructural analysis, the nanoparticle samples were s ent to the 

Canadian Centre for Electron Microscopy (CCEM), McMaster University, where high-resolution 

transmission electron microscopy (HRTEM, JEOL) was used at an accelerating voltage of 200 

kV, and the Energy Dispersive X-Ray Analysis (EDX) technique was used to identify the 

elemental composition of the materials. Dynamic light scattering (DLS) and zeta potential was 

employed using a Malvern Zetasizer to obtain information on the hydrodynamic size of 

nanoparticles and the nanoparticles surface charge. A UV-Vis spectrophotometer using a 1 cm 
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path length quartz cuvette was used to determine the surface plasmon resonance shifted bands. 

X-ray photoelectron spectroscopy (XPS) analysis was performed at the Waterloo Advanced 

Technology Lab (WATLab) using a multi-technique ultra-high vacuum Imaging XPS 

Microprobe system (Thermo VG Scientific ESCA Lab 250). Fourier transform infrared 

spectroscopy (FTIR) was performed using FTIR equipment (Tensor 27). The samples were 

previously prepared by grinding the dry nanoparticles and KBr into a fine powder using pestle 

and mortar. Then this powder was pressed to form a pellet and further investigate with FTIR.  
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3.4  Results and discussion 

3.4.1  Investigation of magnetic and plasmonic properties of IONP-AuNPs  

IONP-AuNPs shows both magnetic and plasmonic properties since they are fabricated 

from heterodimers structures. Interestingly, both properties can easily be detected using simple 

analysis methods. For a simple detection of magnetic property, the prepared IONPs-AuNPs was 

observed by separating the nanoparticles from the solution using a permanent magnet as shown 

in Figure 3.1. It illustrates the non-magnetic effect of AuNPs and the movement of IONPs-

AuNPs towards the external magnet field. As shown in Figure 3.1 (a), the synthesized AuNPs did 

not show any magnetic property since it did not showing any response towards the permanent 

magnet. After the IONPs were allowed to interact with the AuNPs, the color of the solution 

changed from bright red to purplish color and they were well dispersed in PBS buffer at pH 4 as 

shown in Figure 3.1 (b). When a magnetic field was applied, the suspended IONPs-AuNPs 

gradually moved toward the wall near the permanent magnet, eventually leaving a clear solution. 

This is the first indicator that the prepared IONPs-AuNPs exhibited superparamagnetic properties 

where they aggregates towards the applied magnetic field and remained well dispersed in the 

buffer solution when the permanent magnet was removed.  
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Figure 3.1 Illustration of (a) the lack of effect of a magnetic field on AuNPs and (b) the 

movement of IONPs-AuNPs towards the external magnetic field after approximately 

1 hr of mixture separation. 
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With the presence of the AuNPs plasmonic property, a simple analytical signal to observe 

the interaction between IONPs and AuNPs can be used. Small changes in the local refractive 

index that converts into spectral shifts in the extinction and scattering spectra can give an 

indication of the interaction that occur between IONPs and AuNPs. Measurements of the surface 

plasmon resonance band of the nanoparticles provided an indirect piece of evidence supporting 

the formation of IONPs-AuNPs. Furthermore, identification of plasmon resonance is important 

for sensing applications such as colorimetric or fluorescence detection. This localized surface 

plasmon resonance can be utilized for AuNP size and shape determination as well as the 

dielectric properties of the medium surrounding the nanoparticle (Sapsford et al., 2013). For 

example, spherical AuNPs are often characterized by a bright red or purple color and an 

absorption maximum between 517 nm and 575 nm for particle diameters between ~9 and 99 nm 

(Daniel and Astruc, 2004).  

Figure 3.2 (a) shows UV-Vis spectrophotometer absorbance measurements comparing the 

control, pure AuNP, pure IONPs, and IONPs-AuNPs dispersed in aqueous solution at 60 min. 

For IONPs-AuNPs, different interaction times from 1 min to 60 min were observed. The 

absorbance measurement for pure AuNPs showed a sharp peak at 520 nm, which is a peculiar 

characteristic of the gold surface plasmon band, whereas for pure IONPs, there was no obvious 

peak observed in the visible region. IONPs showed magneto-optical (MO) effects which are 

typically small in most media and these effects provide physical information on electronic and 

spin structure of the materials (Jain et al., 2009) and can be enhanced by integration with 

phototonic crystal (Diwekar et al., 2004; Kahl and Grishin, 2004) and metal films (Khanikaev et 
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al., 2007; Belotelov et al., 2007). As reported by Jain group, the MO effects of IONPs are greatly 

enhanced by coating with AuNPs and are known as surface plasmon resonance-enhanced 

magneto-optical (SuPREMO) effects (Jain et al., 2009).  

Measurement by UV-Vis spectrophotometry of the heterogeneous nanoparticles (IONPs-

AuNPs) demonstrated blue shift phenomenon after allowing interaction fo r 60 min. As shown in 

Figure 3.2 (b), the initial maximum wavelength of AuNPs, 520 nm shifted towards a lower 

wavelength after 10 min of interaction and were consistent at 516 nm from 40 to 60 min. Several 

factors could contribute to this phenomenon, such as changes of materials to a more spherical 

shape and filling the initial hollow shell (Lyon et al., 2004), an increment of shell thickness due 

to further deposition of AuNPs coating (Jain et al., 2009) and the core dielectric permittivity that 

controlled the core-shell plasmon resonance (Levin et al., 2009).  
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Figure 3.2 UV-Vis spectra of (a) pure IONPs (small dashed line) at 1 hr, pure AuNPs (big 

dashed line) at 1 hr and IONPs-AuNPs from 1 min to 60 min (b) IONP-AuNPs 

wavelength of the peak maximus versus the different interaction times. 
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3.4.2  Size and morphological characterization of IONPs-AuNPs  

In this subsection, information on the size, morphology, surface charge and elemental 

composition of the prepared nanoparticles is discussed. Based on the DLS measurement in Table 

3.1, significant changes in nanoparticle size were obtained. The IONPs treated with HNO 3 

showed a smaller hydrodynamic diameter (dh) as compared to as-synthesis IONPs. A study by 

Nurdin et al. (2014) revealed that by increasing the HNO3, concentration, the nanoparticles were 

produced as smaller size particles, with lower magnetization, better thermal stability and a more 

stable nanoparticle suspension. Since the IONPs were dissolved in acidic solution, they went 

through a dissolution processes that caused nanoparticle size reduction. HNO3 also acts as an 

oxidizing agent to produce maghemite (γ-Fe2O3) nanoparticles as presented in the chemical 

reaction of the precipitation process below: 

Fe2+ + 2 Fe3+ + 8OH− → Fe3O4 + 4H2O  (1) 

 2Fe3O4 + HNO3 → γ-3Fe2O3 + HNO2   (2) 

Thus, IONPs produced using this precipitation method mainly produced maghemite (γ-

Fe2O3) since Fe3O4 colloid undergoes oxidation via Fe cation diffusion (Joliviet et al., 1988 and 

Swaddle et al., 1980 as cited in Lyon et al., 2004). Alibeigi and coworkers suggested that reverse 

co-precipitation of ferrous or ferric mixed salts in sodium hydroxide (NaOH) solution in an 

oxidizing environment resulted in the formation of maghemite instead of magnetite particles due 

to the oxidation of Fe2+ to Fe3+ (Alibeigi et al., 2008). Supporting data from XPS analysis to 

verify the iron oxide nanoparticles speciation will be described in a later subsection (3.4.3). 

Results from the zeta potential analysis of the as-synthesized IONPs shifted from negative charge 
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to positive charge due to changes of solution environment after the sample was treated with 

HNO3. This phenomenon confirms the amphoteric nature of IONPs that can develop charges in 

the protonation and deprotonation reaction of Fe.OH sites on the surface  (Illés and Tombácz, 

2006). A detail explanation of this phenomenon is discussed in Chapter 2.0 (subsection 2.1.2).  

Characterization with DLS also indicated that the heterostructured nanoparticles, IONPs-

AuNPs, achieved colloidal stability and become more uniform as the nanoparticles size and 

polydispersity index (PDI) value decreased. In addition, we can also assume that the formation of 

IONPs-AuNPs become moderately polydisperse (PDI values between 0.1- 0.4). PDI is a number 

calculated from a simple two parameter fit to the correlation data (the cumulants analysis). In the 

Cumulants analysis, a single particle size mode is assumed and a single exponential fit is applied 

to the autocorrelation function and the polydispersity describes the width of the assumed 

Gaussian distribution (Malvern Instruments Limited, 2011).  

Furthermore, zeta potential measurements revealed that the nanoparticles’ net surface 

charge become negative due to the presence of citrate anions on the AuNPs surface and achieved 

incipient stability at -24.70 mV. It is generally held that nanoparticles suspension becomes stable 

with a zeta potential value greater than ± 30 mV (Nurdin et al., 2014).  
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Table 3.1 DLS measurement of the dh size of nanoparticles’ and their surface charge. PDI 

represent the nanoparticles’ size distribution.  

 

Transmission electron microscopy (TEM) is another analysis method that has been used 

to characterize particle size distribution and morphologies. The particle size distribution for 

IONPs, AuNPs and IONPs-AuNPs are presented in Figure 3.3 (a, b and c) as determined by 

taking approximately 90 particles for each sample and analyzing using ImageJ software. As 

compared to TEM measurement, particle sizes obtained from DLS results are expected to be 

larger due to the presence of surfactants and a hydration layer around IONPs and AuNPs. 

Another plausible factor is because the nanoparticles aggregation presence in the samples. The 

hydrodynamic diameter (dh) from DLS analysis measures the nanoparticles sphere that has the 

same translational diffusion coefficient with their surrounding solvent layers while the diameter 

(d) obtained from TEM is based on the measurement of the nanoparticles’ image area. Thus, the 

estimated size was smaller and more physically accurate when observed by TEM compared to 

the DLS technique. 

  Size  

dh (nm) 

PDI 

 

Zeta potential 

(mV) 

as-synthesized  IONPs                409.10 0.68 -16.00 

IONPs treated with HNO3 223.60 0.42 17.80 

AuNPs 221.50 0.53 -28.90 

IONPs-AuNPs  93.62 0.38 -24.70 
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Based on the image presented in Figure 3.3 (a), IONPs were formed with an irregular 

spherical shape and these nanoparticles were mostly aggregated which may be due to long-range 

magnetic dipole-dipole interactions (Nurdin et al., 2014). The average diameter for IONPs was 

7.1 ± 5.1 nm and is slightly smaller as compared to a study conducted by the Nurdin group which 

synthesized IONPs with the same preparative route. In contrast to IONPs, AuNPs were formed 

with a spherical shape with average diameter 11.3 ± 5.5 nm (Figure 3.3 (b)). AuNPs were a 

stable colloid as they appeared well separated between each other, and this is in agreement with 

the zeta potential results as AuNPs achieved colloidal stability at -28.9 mV. The average 

diameter for heterostructured, IONPs-AuNPs was 16.1 ± 11.1 nm and this showed a slight 

change in particle size (Figure 3.3 (c)).                                
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Figure 3.3 TEM images of sample (a) IONPs (b) AuNPs and (c) IONPs-AuNPs and the   

  histograms representing the particle size distributions for each sample. 

 

(a) 

d = 7.1 ± 5.1 nm 

(b) 

d = 11.3 ± 5.5 nm 

(c) 

d = 16.1 ± 11.1 nm 



 

 

 

73 

As reported by Lyon et al., (2004), they suggested that iterative addition of Au layers 

contributed to a constant average particle diameter but the particles become more uniform in size 

as Au3+ preferentially reduces onto γ-Fe2O3 surfaces, and this occurred at more oxidized sites. 

Thus, the surface coating thickness was difficult to detect and define clearly, suggesting the 

formation of morphologies such as dumbbell- like or alloy- like. 

The Energy Dispersive X-Ray Analysis (EDX) technique was used to identify the 

elemental composition of the nanoparticles. As shown in the EDX analysis in Figure 3.4, the 

appearance of various prominent peaks for Au and Fe confirmed the presence of these elements. 

Furthermore, the presence of oxygen indicates that the iron particles were oxidized to iron oxide, 

and this result was further validated using XPS analysis. As presented in this result in Figure 3.4 

(c), the Fe element relative intensity is higher compared to Au element. This finding indicates 

that the nanoparticles were dominated by the Fe character rather than Au.  

HRTEM analysis was performed on an individual nanoparticle where the arrangement of 

atoms in the crystallographic planes can be observed. Thus, the epitaxial relationship between 

IONPs and AuNPs in heterostructured nanoparticles can be fully understood. The calculated Fast 

Fourier Transform (FFT) were taken from individual nanoparticles images and analyzed using 

ImageJ analytical software. Analysis of the FFT patterns allowed us to identify the nanocrystal 

structure and it is then similar to indexing an electron diffraction pattern. Insets in Figure 3.5 (a 

and b) show that the crystal lattice of IONPs is closely oriented to γ-Fe2O3 {211} with estimated 

interplanar spacing (d-spacing) value, 0.34 nm and has a similar value as reported in Liu et al., 

(2014). For AuNPs, the estimated d-spacing value is 0.24 nm and is well indexed to Au {111} 
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plane of face center cubic (fcc) as in Ban et al., (2005). All lattice planes can be describes by a 

set of indices (Miller indices hkl) and the distance d between two parallel planes is called 

interplanar spacing (Weidenthaler, 2011).  

A distinct separation between heterostructure is presented by a large lattice mismatch at 

the nanoparticle boundary as observed in Figure 3.5 (c). The lattice mismatch was observed at 

different grains since Au is easily identified due to the formation of dark contrasts while Fe is 

recognized by the light contrast. Interestingly, a similar FFT pattern was observed at the 

boundary and might correspond to the formation of mixed Fe and Au atom at the interface, thus 

dumbbell shape is suggested for IONPS-AuNPs. Furthermore, the lattice value constant of γ-

Fe2O3 {211} is reduced to 0.31nm and Au {111} is increased to 0.27 nm. The reason for the 

changes of lattice value after formation of heterostructure is most likely the Fe filled into Au 

vacancy spaces at the interfaces and causes nanoparticle coalescence and recrystallization. 

However, the HRTEM technique was unable to provide a sufficiently precise d-spacing 

measurement in order to explain the Fe/Au morphology mechanism. More detailed information 

of this finding was carried out using XPS analysis.  
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Figure 3.4 EDX analysis of (a) IONPs treated with HNO3 (b) AuNPs and (c) IONPs-

AuNPs. Insets are the TEM images of the analyzed sample. 
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Figure 3.5 HRTEM images of (a) IONPs, (b) AuNPs and (c) IONPs -AuNPs. Inset images show 

the FFT analysis to identify the nanocrystal structure. 
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3.4.3 Quantitative measurement of IONPs-AuNPs surface  

In this subsection, detailed information of the IONPs nanostructure, heterostructure 

change, and the surface functionalization effect on IONPs-AuNPs was investigated and 

explained using XPS analysis. Collected XPS spectra were analysed using CasaXPS software 

where all spectra were calibrated using the adventitious C1s peak with a fixed value of 284.5eV 

and the background from each spectrum was subtracted using a  Shirley-type background to 

remove most of the extrinsic loss structure (Grosvenor et al., 2004).  

In this study, IONPs were synthesized at ambient temperature where it is known that 

IONPs are sensitive to the oxidizing conditions. In addition, the IONPs were treated with HNO3 

resulting in reduction of Fe3O4 to γ-Fe2O3, and, thus the sample may contain a mixture of both 

IONPs species. XPS analysis was conducted in order to confirm the formation of IONPs 

nanostructured species and as supporting evidence for the production of maghemite (γ-Fe2O3) 

nanoparticles, as discussed previously in the chemical reaction of the precipitation process in 

Subsection 3.4.2. The XPS spectrum for pure IONPs in Figure 3.6 (a) shows a pair of peaks at 

713.50eV and 725.5eV, which are attributed to the Fe2p3/2 and Fe2p1/2, spin-orbital coupling, 

respectively. For studies involving IONPs, only the region corresponding to the 2p3/2 peak are 

discussed. This peak is generally attributed to high spin Fe3+ and Fe2+ compounds and is 

broadened compared with Fe(0) metal or low spin Fe2+1 (Grosvenor et al., 2004).  

The de-convoluted 2p3/2 peak in Figure 3.6 (b) shows two main spectra at 713 eV and 

715.4 eV, assigned to the Fe3+ octahedral and Fe3+ tetrahedral, respectively, and one satellite 

peak at 721 eV. It is known that γ-Fe2O3 contain the Fe3+ ions that occupy both octahedral and 

tetrahedral sites with an unequal frequency of 5:3 (Fujii et al., 1999). The observed main peak in 

0.24 nm 
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this study is slightly higher compared to the reported values located at 710.6 and 713.4eV for 

Fe3+ octahedral and Fe3+ tetrahedral. The plausible reason for this phenomenon is the presence of 

excess oxygen on the metal oxide as oxygen act as electronegative adsorbents can induce 

positive binding energy shifts of approximately 1eV (Parkinson et al., 2003). This seems to be a 

reasonable interpretation since the precipitation process was done under oxidizing conditions. 

The absence of Fe2+ compound around 709.1eV further confirms the complete oxidation of Fe3O4 

to γ-Fe2O3 as a result of the accelerating oxidation of Fe2+ to Fe3+. Furthermore, the satellite peak 

obtained at 721 eV is clearly distinguishable and does not overlap either Fe2p3/2 or Fe2p1/2 and is 

located 8 eV higher than the main Fe2p3/2. This result is in agreement with a study conducted by 

Fujii et al. (1999).  
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Figure 3.6 (a) The XPS spectrum of Fe2p from the fractured surface of the γ-Fe2O3 sample and 

(b) the de-convoluted Fe2p3/2 region 
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It is of interest to examine in detail the formation of the heterostructured nanoparticles. 

As mentioned beforehand, the EDX analysis shows that the particles are largely Fe in character 

and results from the XPS spectra also show that the average peak height intensities for Fe2p 

(Figure 3.7 (a)) are higher after the deposition process. This indicates that Fe dominates at the 

surface instead of Au, since the peak intensities measure the materials conce ntration at the 

surface. On the other hand, the average height intensities for Au4f decrease as shown in Figure 

3.7 (b). The proposed mechanism for this finding may indicate the nanoparticles coalescence and 

recrystallization as reported by Dahal et al. (2010), where the clusters undergo a spontaneous 

shape deformation in order to lower their surface energy. This mechanism is also concomitant 

with the observations from TEM images in Figure 3.4, as the γ-Fe2O3 shape transformed from an 

irregular spherical shape to become more spherical and increased in stability as Fe atoms filled 

some of the Au vacancy lattice. This result further corroborates the formation of alloy- like 

morphology instead of pure core-shell nanoparticles.  

A distinct spectral change is observed in the Fe2p3/2 and Fe2p1/2 regions in Figure 3.7 (a), 

which are shifted towards the lower binding energy signal at 712.1 eV and 724.2 eV, hence 

indicating the addition of Au atoms. The de-convoluted peak for Fe3+ octahedral and Fe3+ 

tetrahedral also shifted towards the reported values assigned at 711.3 and 713.5 eV and suggested 

the removal of excess oxygen with coating material, as supported by the difference in the 

intensity ratio after Au deposition. Both findings suggest the strong interaction between Au and 

γ-Fe2O3 and most likely Au helps to stabilize the iron oxide domains. This further supports the 

zeta potential results in Subsection 3.4.2, which showed an increase in the nanoparticle stability.  
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A similar finding was observed for AuNPs in Figure 3.7 (b), as the Au4f core level of 

pure AuNPs centred at 88.1 eV and 91.7 eV assigned as Au4f7/2 and Au4f5/2 respectively, and the 

position and difference between the two peaks (3.6  eV) almost exactly matched the value 

reported for Au0 (Annadhasan et al., 2015). As can be seen, the Au4f peaks were located at 

comparatively higher binding energy and this could be attributed to the binding of a trisodium 

citrate (Na3C6H5O7) layer on the AuNPs surface that acted as capping agent. After Au deposition 

to the γ-Fe2O3 surface, the Au4f peaks decreased to 84.4 and 88.1 eV indicating metallic Au0 as 

reported in many studies. For example, a study by Amendola et al. (2014) stated that the binding 

energy centered at 84.4 eV is the typical value of metal Au and is also expected for Fe/Au alloys. 

Interestingly, a new intense peak was observed for the Au4f spectra at 94 eV in Figure 3.7 (b). 

As proposed by Sohn et al. (2015), this peak might indicate the formation of a new cationic Au 

species, for example Au-O bonding, since the O atoms at the topmost layer of γ-Fe2O3 indeed 

react with deposited Au atoms, producing the Au-O bonding at the interface. A study by 

Khoudiakov et al. (2005) reported that they found a mixed metallic (major) and cationic (minor) 

Au species in their Au4f XPS study for Au prepared by a deposition-precipitation method. In 

contrast, our XPS analysis showed that the cationic Au species is the major and broad peak 

compared to metallic Au, hence, revealing a strong interaction between γ-Fe2O3 and Au atoms.  
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Figure 3.7 XPS spectrum of (a) Fe2p (blue line: γ-Fe2O3; red line: Fe/Au) and (b) Au4f for pure 

and coalesced nanoparticles (blue line: AuNPs ; red line: Fe/Au). 
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Based on the heterogeneous nanoparticles characterization analysis, the formation of 

alloy- like morphology is suggested. A proposed mechanism for electrostatic -self -assembly 

performed in this study is illustrated in Figure 3.8. According to the literature, metal ions such as 

Fe3+ are reactive towards water molecules and subsequently form a chemically reactive surface 

hydroxyl (Fe-OH) group that easily been replaced (Tombácz, 2009). Therefore, the addition of 

nitric acid into the solution would develop a positively charge IONPs at the Fe-OH site supported 

by the result from zeta potential data. After the negatively charged citrated-capped AuNPs were 

mixed into IONPs solution, the inter-particles interaction was initiated by electrostatic driving 

force followed by magnetic interaction and subsequently formed a dumbbell- like morphology as 

observed in HRTEM image in Figure 3.8. However, the hybrid metallic nanoparticles further 

undergo coalescence and recrystallization and metastable alloy-like morphology was then 

observed. This fact is supported with the results analysis of the blue-shift phenomena, more 

spherical heterogeneous nanoparticles, increase in nanoparticles stability as well as a slight 

change in the nanoparticles’ diameter.  
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Figure 3.8 Illustration of heterogeneous nanoprticles, Fe/Au formation using electrostatic –self 

-assembly technique. 
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3.4.4 Colorimetric sensing for glucose detection 

To investigate the application of Fe/Au nanoparticles in a nanosensor system, a 

colorimetric assay to detect glucose was studied, based on the use of the enzyme glucose oxidase 

(GOx). The fabrication of Fe/Au-GOx is shown in Figure 3.9, where the carbodiimide-coupling 

technique was utilized to covalently attach GOx onto the Fe/Au surface. An amide bond was 

formed from carboxylic acid by activation of N-ethyl-N’- (3-dimethylaminoprophyl) 

carbodiimide hydrochloride linker (EDC-linker) with the assistance of additives such as N-

hydroxysuccinimide (NHS) and followed by the addition of an amine (i.e the enzyme) 

sequentially in one-pot or in stepwise reactions (Yan et al., 2015). Therefore, to functionalize 

Fe/Au surface with a carboxyl functional group to self-assemble with the enzyme, 11-

Mercaptoundecanoic acid (11-MUDA), a ligand with thiolated-carboxylic functional groups was 

used in this study. Carboxyl-terminated Fe/Au was obtained by the attachment of the thiol group 

(-SH) in 11-MUDA based on the well-established Au-SH chemisorptions process. Subsequently, 

the carboxylate groups were activated by EDC-linker/NHS crosslinking and were reacted with 

GOx in solution. The side-chain amino groups on the GOx surfaces displaced the terminal NHS 

group of Fe/Au in phosphate buffer and thus formed Fe/Au-GOx.  

3.4.4.1 Surface functionalization with 11-MUDA 

The effect of surface functionalization with 11-MUDA on the alloy- like morphology was 

investigated. The XPS spectra for Au4f in Figure 3.8 (a) show many shake-up peaks and no 

intense peak can be observed. However, the de-convoluted peaks show that three main spectra 

assigned as metallic Au (Au4f7/2 and Au4f5/2) and cationic Au species (Au4f) were still present 
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after surface functionalization and were slightly shifted to a higher binding energy. Based on this 

analysis, 11-MUDA can still access to Au since the scattered peaks are attributed to charge 

transfer between Au and thiol groups. Xie et al., (2011) used the two-dimensional TEM image 

for flower- like Au-Fe3O4 morphology and identified that the gold core was accessible by SH-

PEG5000 even though Fe3O4 surrounded the Au.  

Furthermore, the C1s shifted to a higher binding energy after carboxyl functionalization 

as seen in Figure 3.10 (b) where the main peak assigned to 285.5 shifted to 287.5 eV and is 

attributed to the C-S peak since differing binding energies of ~2 eV confirmed the addition of 

thiol groups to the surface as reported in G zel et al. (2010). The increase in peak intensity of the 

shoulder peak at 289.4 eV which is assigned to O-C=O of carboxylate carbon indicates that the 

11-MUDA was attached to the nanoparticles.  

FTIR was utilized in order to analyze the immobilization of GOx onto Fe/Au 

nanoparticles surface. With this characterization method, the chemical bonds present on the 

nanoparticles surface can be determined. In Figure 3.11, the fabrication of Fe/Au-GOx is 

presented by several characteristic peaks, two peaks at ~1654 cm-1 and 1546 cm-1 corresponding 

to the secondary amide or amide I (red curve) (de Jesus et al., 2013). The peak at 3369 cm-1 is 

assigned to NH deformation (amide II band) (Pandey et al., 2007). As a comparison, these peaks 

were absent before GOx immobilization, as shown by unmodified Fe/Au (purple curve) and 

carboxylate-modified Fe/Au (blue curve). Therefore, this result confirmed that GOx was 

successfully immobilized on the Fe/Au surface.  
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Figure 3.9 (a) A schematic mechanism illustrates the fabrication of Fe/Au-GOx using the 

carbodiimide-coupling technique.  
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Figure 3.10 XPS spectra (a) Au4f and (b) C1s of Fe/Au functionalized with 11-MUDA (blue line: 

Fe/Au; red line: Fe/Au -11-MUDA). 
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Figure 3.11 FTIR spectra of Fe/Au (purple curve), Fe/Au-11-MUDA (blue curve) and Fe/Au-

GOx (red curve). 
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3.4.4.2 Glucose detection 

  After the Fe/Au-GOx was successfully prepared and confirmed by FTIR measurements, 

a colorimetric sensing system was prepared. As shown in Figure 3.12 (a), analysis with the UV-

Vis spectrophotometer revealed increased absorbance at around 414 nm, corresponding to 

oxidized ABTS, thus confirming the catalytic activity of GOx immobilized on the Fe/Au 

nanoparticles. In principle, hydrogen peroxide (H2O2) evolved from GOx oxidation of glucose 

can directly oxidize ABTS in the presence of peroxidase, for example horseradish pe roxidase or 

HRP (Yu et al., 2009). The solution color changed from colorless to green due to the oxidized 

ABTS and this can easily be measured using the spectrophotometer. The catalytic reaction of this 

ABTS assay is as follows: 

             GOx 
   D-glucose + H2O +O2             Gluconic acid + H2O2 

              HRP 
H2O2 + reduced ABTS   H2O + oxidized ABTS  

 

Based on this fact, the increase in absorbance correlates with the glucose concentration as 

shown in Figure 3.12 (a) inset with a linear range from 20 µM to 100 µM. These absorbance data 

indicate that GOx immobilized on Fe/Au retained its catalytic activity and suggesting the good 

stability of immobilized enzyme on the Fe/Au nanoparticles’ surface. Furthermore, the increase 

of green color intensity with increasing amounts of glucose, shown in Figure 3.12 (b), shows a 

significant potential for application as a colorimetric sensing system.  
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Figure 3.12 (a) UV-Vis spectrophotometer analysis for detection of glucose using Fe/Au-GOx. 

Inset: A linear increase of absorbance at 414 nm as a function of glucose 

concentration (b) Image of solution color change with different concentrations of 

glucose (20 µM to 100 µM). 
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3.5 Conclusions 

In this study, we have demonstrated the feasibility of depositing AuNPs onto IONP 

surfaces by manipulation of the opposite interfacial charges exhibited between these two metallic 

nanoparticles and resulting in a strong interaction. The UV-Vis spectrophotometer absorbance 

for the formation of IONPs-AuNPs show a blue-shift in contrast with many reported studies due 

to the nanoparticles coalescence and recrystallization as the nanoparticles become more spherical 

with a low PDI, and shows a slight change in the nanoparticles’ diameter. The XPS analysis also 

reveals the formation of maghemite (γ-Fe2O3) as the IONPs species. In addition, deposition of 

AuNPs onto γ-Fe2O3 formed alloy- like morphology instead of core-shell nanoparticles. This is 

supported by the HRTEM and XPS analysis, which also shows that there is a strong interaction 

between Au and Fe atoms at the interface. Moreover, results from zeta potential analysis also 

indicate that the heterogeneous nanoparticles increase in stability.  

In conclusion, we can assume that the direct deposition technique used in this study 

formed metastable alloy- like morphology, Fe/Au, with lack of bimetallic nanoparticles synthesis 

controllability. However, it does not significantly affect the potential attachment of ligands (11-

MUDA) and shows that Au still can be accessible for surface modification. Furthermore, Fe/Au 

nanoparticles also appear to be excellent candidates as a supporting material for biomolecules 

and this was further demonstrated by use in a potential nanosensor system based on glucose 

oxidase. 
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Chapter 4 

Manipulation of Fe/Au peroxidase-like activity for development of a 

nanocatalytic-based assay 

4.1 Summary 

Purpose: The aim of this study is to investigate the synthesized Fe/Au nanopart icles’s 

peroxidase- like activity and further evaluate them for development of a nanocatalytic-based 

assay particularly designed to detect 17β-estradiol. 

 

Methods : The peroxidase- like activity of the synthesized Fe/Au nanoparticles was optimized 

using the H2O2-ABTS system and was analyzed using Michaelis-Menten kinetics. Initially, the 

nanoparticles surface was functionalized with aptamers in order to confer a specific conjugation 

with the target analyte, 17β-estradiol. Development of a nanocatalytic-based assay is based on 

two fundamental steps, which are the immobilization process and the catalytic reaction process. 

For the immobilization process, the analytes were conjugated at the aptamer-tagged nanoparticles 

and formed nanoparticles-analytes complexes (Fe/Au-17β-estradiol). Then the catalytic reaction 

of this complex was measured using the H2O2-ABTS colorimetric system. The feasibility of this 

assay was tested at different concentration of aptamer-tagged Fe/Au nanoparticles and 17β-

estradiol. Also, a cross-reactivity study was conducted with potentially interfering materials for 

assessment of assay selectivity.  
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Results: Fe/Au nanoparticles showed a good peroxidase- like activity that followed Michaelis-

Menten kinetics. Results obtained from absorbance data reveal that the Fe/Au-17β-estradiol 

complex significantly hampered the catalytic activity. The absorbance intensity declined 

drastically after aptamer-tagged nanoparticles (Fe/Au-fl-apt) “captured” the targets and formed 

nanoparticles-analytes complexes. Serial dilution of 17β-estradiol was tested using this assay and 

showed that the absorbance intensity was inversely proportional to the 17β-estradiol 

concentrations. It is suggested that steric effects are a plausible reason for this phenomenon. In 

addition, this assay shows considerably high accuracy and reproducibility for detection of 17β-

estradiol concentration ranging from 0.01 nM to 1 nM when low concentration of aptamer-

tagged nanoparticles is used. Furthermore, the aptamers used in this study are selective towards 

the target analyte, 17β-estradiol. 

 

Conclusions: A simple, rapid and sensitive detection assay, specifically to detect 17β-estradiol 

was developed using a new detection strategy by manipulation of nanoparticles’ peroxidase- like 

activity.  
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4.2 Introduction 

Recently, nanoparticles that exhibit a peroxidase- like activity have attracted considerable 

attention since it shows a fascinating research discovery and potential for multiple applications. 

Many nanoparticles have been reported to show enzyme mimetic activity such as magnetite 

(Liang et al., 2013; Gao et al., 2007), Au nanoparticles (Jv et al., 2010), CuO (Chen et al., 2012), 

Fe3O4-Au (Sun et al., 2013) and Ag3PO4 (Liu et al., 2014a). This enzyme-like nanoparticles 

display a beneficial property as they could potentially replace peroxidase in various applications, 

including hydrogen peroxide dependent systems. 

Besides the growing interest in nanoparticles’ catalytic property, nanoparticles have long 

been known for their excellent ability to conjugate with biomolecules such as enzymes, 

DNAzymes, antibodies and aptamers. These biomolecules can be immobilized on the modified 

nanoparticle surfaces by direct conjugation to the surface of some nanoparticles and to surface-

bound stabilizing ligands or coatings, either directly or using small cross-linking molecules and 

other intermediaries (Sapsford et al., 2013). Aptamers are short synthetic oligonucleotides that 

could be synthesized for any targets and show many advantages as discussed in Section 2.4.2.3. 

Therefore, in this study, the nanoparticles were conjugated with aptamers in order to confer a 

specific detection with the target analytes.  

Analytical assays that utilize a hydrogen peroxide dependent system by catalyzing the 

oxidation of certain substrates have been extensively used for numerous applications. This 

analytical assay has become a powerful detection tool especially in immunoassay studies. 

Recently, replacement of horseradish peroxidase with nanoparticles as a peroxidase mimetic  
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has demonstrated improvement in biosensors. Zhang’s group presented work with γ-Fe2O3 

nanoparticles modified by Prussian blue (PBMNPs) that were further conjugated with 

staphylococcal protein A (SPA) and showed a potential application in bio-detection. Here, the 

PBMNPs served as an inexpensive horseradish peroxidase, HRP (Zhang et al., 2010). A recent 

study conducted by Liu et al., (2014b) reported an efficient colorimetric biosensor for glucose 

based on a peroxidase- like protein-Fe3O4 complex. The incorporation of casein on magnetic 

nanoparticles helped to improve the affinity towards both H2O2 and 3,3’,5,5’- 

tetramethylbenzidine (TMB) thus resulting in a simple, inexpensive, highly sensitive and 

selective method for glucose detection. The peroxidase substrate, TMB commonly used for 

hydrogen peroxide dependent system. The observed oxidation product produced two colored 

products which is blue-charged-transfer complex of diamine and yellow diimine (Liu et al., 

2014b).  

While prior work has demonstrated the capability of nanoparticles to conjugate with the 

target analytes and has utilized nanoparticles’ peroxidase- like activity for an analytical assay, we 

observed that a similar strategy could be adapted for development of a nanocatalytic-based assay. 

It has been reported that peroxidase- like activity of iron oxide nanoparticles is dependent on the 

surface attributes of the nanoparticles (Yu et al., 2009). Therefore, in this study we report on a 

detection strategy formulated by the nanoparticles capability to conjugate with analytes and then 

the surface modified-nanoparticles or nanoparticles-analytes catalytic activity was evaluated 

using a hydrogen peroxide dependent system. We envisaged that the conjugation of target 

analytes to the Fe/Au nanoparticles would hinder the peroxidase activity resulting in an assay 
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response that was inversely proportional to the analyte concentration. This is based on the fact 

that the formation of this complex would create a gap with substrate molecules and lower the 

nanoparticles catalytic activity by reducing the affinity of nanoparticles for substrate molecules.  

To evaluate the feasibility of this assay, the synthesized nanoalloy, Fe/Au nanoparticles 

was initially assessed for its peroxidase- like activity using the hydrogen peroxide dependent 

system, H2O2-ABTS. A specifically modified aptamer was attached to the Fe/Au nanoparticles to 

confer specific conjugation abilities with the target analyte. For this study, 17β-estradiol is 

selected as our target analyte. It is known as an endocrine disrupting chemical (EDCs) that has 

the greatest estrogenic activity (Liu et al., 2014c). When 17β-estradiol was successfully 

“captured” by aptamer-tagged nanoparticles and formed Fe/Au-17β-estradiol complex, the 

catalytic activity of this complex was measured using the hydrogen peroxide dependent system.  

This is the first work reported, to our knowledge, to use this approach for development of 

detection assay. Hence, it is hoped that this study would initiate a comprehensive research 

exploration of nanoparticles’ peroxidase- like activity in nanosensor systems and further develop 

a simple, reliable and sensitive detection assay.  
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4.3 Materials and methods 

4.3.1  Chemicals 

Chemical reagents used in this experiment were 2,2’-azino-bis(3-ethylbenzthiazoline-6-

sulfonic acid) diammonium salt (ABTS, 10 mg/tablet), 30% H2O2, PBS buffer (tablet), Tween 20 

(viscous liquid), sodium acetate anhydrous (NaAc), MES buffer (≥ 99.5%), 17β-estradiol (98%), 

estriol (≥ 97%), nonylphenol (99.8%) and carbaryl (99.8%). These chemical reagents were 

purchased from Sigma Aldrich. Thiolated aptamer (SH-apt) was adapted from Wang et al., 2009 

with slight modification and was synthesized at Alpha DNA (Montreal, Quebec)  and the probe 

aptamer (fl-apt) was adapted from Kim et al., (2007) with slight modification and was 

synthesized from Eurofins MWG Operon LLC (Hunstville, AL). All reagents were analytical 

grade and were used as received without further purification.  

4.3.2  Preparation of Fe/Au nanoparticles  

AuNPs were coated on the γ-Fe2O3 surface using a simple deposition technique as 

presented previously in Chapter 3.2.4.  

4.3.3  Measurement of Fe/Au peroxidase-like activity 

To investigate the Fe/Au nanoparticles peroxidase- like activity, a hydrogen peroxide 

dependent system was used. The chromogenic substrate, ABTS(red) was oxidized in the presence 

of Fe/Au nanoparticles and H2O2. The prepared Fe/Au nanoparticles weighed to approximately 

50 mg and were added into 1 mL PBS buffer (10 mM, pH 4). Then, the Fe/Au nanoparticles 

catalytic reaction was observed in different pH buffer (10 mM NaAc at pH 2, 3, 4, 5 and 6) and 

in different concentration of Fe/Au nanoparticles (0.5 mg/mL, 1.25 mg/mL, 2.5 mg/mL and 12.5 
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mg/mL). The extent of reaction was indicated by a green colour development and was measured 

by absorbance at 414 nm based on the presence of the oxidized ABTS (ABTSox) in the solution, 

using microplate reader (Multiskan Ascent, Labsystems). The catalytic reaction by Fe/Au is as 

follows: 

  

                             Fe/Au 

 H2O2  +                H2O +  

 

4.3.3.1 Steady-state kinetic analysis 

 The kinetic analysis of Fe/Au and γ-Fe2O3 nanoparticles with ABTS as the substrate was 

performed by adding 10 µL of nanoparticles aliquot, 10 µL of H2O2 (100 mM) and different 

concentrations (0.9 mM, 1.8 mM, 3.6 mM and 4.5 mM) of ABTS reagent. For kinetic analysis 

with H2O2 as the substrate, 10 µL of nanoparticles aliquot, 30 µL of ABTS (18.2 mM) and 

different concentrations (0.5 mM, 1.5 mM, 2.5 mM and 5.0 mM) of H2O2 were used. Both 

kinetic analyse were performed in 165 µL reaction buffer (10 mM NaAc, pH= 5). The green 

color developed as the reactions proceeded was monitored kinetically in a 96-well microplate at 

room temperature for 300 sec with 60 sec of time interval. The Michaelis-Menten constant was 

calculated based on a Hanes-Woolf plot: 
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where v is the initial velocity, Vmax is the maximal reaction velocity, [S] is the concentration of 

substrate and Km is Michaelis constant for  the particular enzyme being investigated.  

4.3.4  Development of nanocatalytic-based assay 

 In order to develop a nanocatalytic-based assay that can specifically detect 17β-estradiol, 

the Fe/Au nanoparticles’ surface was functionalized with aptamers. Then, Fe/Au-17β-estradiol 

formation was evaluated using the peroxidase dependent system.  

4.3.4.1 Surface functionalization with aptamer  

Fe/Au nanoparticles were weighed to approximately 50 mg and were added to 1 mL MES 

buffer (10 mM, pH 4). Subsequently, 5 µM of the thiolated aptamer (SH-apt) was added to the 

solution and this was incubated by mixing at room temperature for 1 hr. To remove the unbound 

SH-apt, the solution was centrifuged for 5 min and was washed twice with PBS-T, pH 4 and was 

further separated using a permanent magnet. 1 mL MES buffer, pH 7 was added to the Fe/Au-

SH-apt nanoparticles. The next step of this strategy was to attach the probe aptamer (fl-apt) to the 

Fe/Au-SH-apt nanoparticles, where 5 uM of fl-apt was added to the solution. The interaction was 

allowed at room temperature for 1hour. To remove the unbound fl-apt, the solution was 

centrifuged for 10min and was washed twice with PBS-T, pH 4 and was separated using 

permanent magnet.  Finally, 1 mL PBS buffer, pH 4 was added to the aptamer-tagged 

nanoparticles (Fe/Au-fl apt) and stored at 4oC until use. The presence of bound aptamers on the 

nanoparticles surface was evaluated using a UV-VIS spectrophotometer (Diode Array 

spectrophotometer, HP) based on the presence of fluorescent molecules, cyanine dye (Cy5.5). 

The two types of aptamers, that is SH-apt and fl-apt, used in this study are presented in Table 4.1.  
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Table 4.1 The synthesized sequences for thiolated-aptamer (SH-apt) and probe aptamer (fl-

apt) for functionalization and conjugation purpose. 

 

4.3.4.2  Assessment of nanocatalytic-based assay 

 The basic principle of the nanocatalytic-based assay is based on the evaluation of the 

complexed nanoparticles-analytes catalytic activity. Therefore, 10 µL of the prepared Fe/Au-fl-

apt nanoparticles (approximately 50 mg) was incubated with 100 µL of 17β-estradiol (100 nM) 

and 890 µL PBS buffer (10 mM, pH 4) at room temperature for 1 hr to allow Fe/Au-17β-

estradiol complex formation. To remove the unbound 17β-estradiol, the solution was centrifuged 

for 10 min and was washed twice with PBS-T, pH 4, and was further separated using a 

permanent magnet. Then, the nanoparticles-analytes catalytic activity was measured by adding 

50 µL of Fe/Au-17β-estradiol aliquot, 10 µL of H2O2 (100 mM), 30µL of ABTS reagent (18.2 

mM), and 110 µL reaction buffer (10 mM NaAc, pH 5) in 96-wells microplate. The absorbance 

signal at 414 nm was measured using the microplate reader after 5 min of interaction. High 

absorbance intensity (or green colour development) indicated that a strong catalytic activity was 

present.  

Aptamer Sequences  (3’-5’) 

SH-apt SH-C6-TCTCTTGGACCC 
fl-apt AGAGAACCTGGG-GCT-TCC-AGC-TTA-TTG-AAT-TAC-ACG-

CAG-AGG-GTA-GCG-GCT-CTG-CGCATT-CAA-TTG-CTG-
CGC-GCT-GAA-GCG-CGG-AAG-C- (Cy5.5) 
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Further assessment was done by testing a serial dilution of 17β-estradiol (0.01 nM, 0.1 

nM, 1.0 nM and 10 nM) at different Fe/Au-fl-apt nanoparticles concentrations (33 mg/mL, 17 

mg/L and 2.5 mg/mL) in PBS buffer (10 mM, pH 4) with total volume of 1 mL. To remove the 

unbound 17β-estradiol, the solution was centrifuged for 10 min and was washed twice with PBS-

T, pH 4, and was further separated using a permanent magnet. Then, the nanoparticles-analytes 

catalytic activity was measured as discuss previously.  

In this study, the experimental assay was measured in triplicate (n = 3) for inter- assay 

and two assays run (n = 2) for determination of intra-assay variability. The coefficient of 

variation (CV) for inter- and intra assay was determined by the following formulae: 

Inter-assay CV(%) = Standard deviation of mean x 100/ Mean 

 
Intra-assay CV(%) = Mean of standard deviation x100/ Mean 

 
To assess the selectivity of this assay, a cross-reactivity study was conducted with 

potentially interfering materials such as estriol, nonylphenol (4NNP) and carbaryl and was 

evaluated at 100 nM concentrations for each EDCs.  

To further test this assay in real water sample, different concentration of 17β-estradiol 

were detected in tap water samples using Fe/Au-fl-apt nanoparticles. This test was conducted by 

adding different concentration of 17β-estradiol (0.1 nM, 1 nM and 10 nM) into filtered tap water 

(F) and non-filtered tap water (NF). Then, 10 µL prepared Fe/Au-fl-apt nanoparticles 

(approximately 50 mg) was added into the contaminant aqueous solution (17β-estradiol in both 

tap water) with total solution volume is 1 mL. The detection was conducted at room temperature 

for 1 hr. To remove the unbound 17β-estradiol, the solution was centrifuged for 10 min and was 
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washed twice with PBS-T, pH 4, and was further separated using a permanent magnet. Then, the 

nanoparticles-analytes catalytic activity was measured as discussed previously and detection 

efficiency was calculated as follows:  

Detection efficiency :   (A0 – A)/ A0 

whereas A0 and A are absorbance intensity at 414 nm before and after  various concentration of 

17β-estradiol are added in tap water samples.  
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4.4 Results and discussion 

4.4.1  Analysis of Fe/Au peroxidase like activity 

As presented in Chapter 3, Fe/Au nanoparticles are prepared by a strong electrostatic 

interaction between γ-Fe2O3 and AuNPs that subsequently formed a metastable heterogeneous 

structure. Due to the fact that both nanoparticles (γ-Fe2O3 and AuNPs) exhibit a good peroxidase-

like activity, it is of interest to investigate the catalytic activity of the synthesized Fe/Au 

nanoparticles. The catalysis performance of the synthesized nanoparticles was examined using 

ABTS, which is a chromogenic substrate. ABTS has been proven to be a non-carcinogenic 

derivative and is oxidized in the presence of peroxidase and H2O2 to a green reaction product 

with maximum absorbance at approximately 414 nm. Figure 4.1 (a) shows the UV-VIS 

absorption spectra of the Fe/Au catalytic reaction systems upon 5 min of reaction and a single 

peak is observed around 414 nm, indicating that ABTS was successfully oxidized. We can also 

notice that ABTS is able to react with H2O2 alone due to the oxidative environment. Therefore, to 

identify the amount of absorption that is contributed by the Fe/Au catalytic reaction, the obtained 

absorbance needed to be subtracted from the control absorbance. The absorbance measurement at 

414 nm at different time was observed as shown in Figure 4.1 (b) with high absorbance observed 

at 5 min of reaction and confirming that Fe/Au behaves as a catalyst.  

Since Fe/Au exhibits intrinsic peroxidase- like activity, the effect of pH buffer on the 

catalytic properties was investigated. The catalytic experiment was observed in NaAc buffer with 

different pH values. In Figure 4.2 (a), the optimum pH value was found at pH 5 was selected for 

subsequent study. A study by Liu et al. (2014) suggested that the catalytic activity of the 
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modified magnetite particles (casein-MNPs) is faster in acidic solution than that in neutral or 

basic solutions and shows a similarity to many other peroxidase- like nanomaterials. They also 

ruled out the possibility that the observed activity is caused by leaching of iron io ns into an acidic 

solution.  

In addition, the effect of Fe/Au nanoparticle concentration on the catalytic activity was 

also investigated as the results show in Figure 4.2 (b). There was a linear absorbance increase 

with a correlation coefficient of 0.995 as a function of Fe/Au concentration. This finding strongly 

suggests that due to the high Fe/Au atoms presence in the solution and the nanoparticles’ surface 

area increase, which is known as the source of catalytic activity or active site, the peroxidase- like 

activity would significantly increase.  However, we also observed that increase of nanoparticles 

concentration also contribute to nanoparticles aggregation represent by high standard deviation 

(S.D) for 12.5mg/mL. We can speculate that due to the increase of nanoparticles-substrate 

interaction that lead to surface modification, the nanoparticle tends to aggregate since Fe/Au 

shows metastable structure.  
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Figure 4.1 (a) UV-Vis spectrophotometer measurement of H2O2 (blue), ABTS + H2O2 (red) and 

ABTS + H2O2 + Fe/Au nanoparticles (green) (b) Absorbance measurement at 414 

nm at different times for Fe/Au nanoparticle catalytic reaction. (Error bars 

represent S.D of the absorbance mean) 
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Figure 4.2 (a) Effect of different pH value on Fe/Au peroxidase-like activity (b) Effect of 

different concentration of Fe/Au on peroxidase-like activity. (Error bars represent 

S.D of the absorbance mean) 
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4.4.1.1 Steady-state kinetic analysis 

To further investigate the peroxidase- like activity of Fe/Au nanoparticles, the steady-state 

kinetics were determined. The steady-state reaction rates at different concentrations of substrate 

and co-substrate (ABTS and H2O2) were obtained by calculating the slopes of initial absorbance 

changes with time. The reaction was determined in 10 mM NaAc buffer, pH 5 at room 

temperature for 300 sec. Absorbance data were back-calculated to concentration by the Beer–

Lambert Law using a molar absorption coefficient of 36, 000 M-1cm-1 (Liu and Yu, 2011) for 

ABTS-derived oxidation products at 414 nm. As a comparison, the steady state kinetics for γ-

Fe2O3 nanoparticles were also examined to investigate the surface modification impact on 

catalytic activity.  

The curves shown in Figure 4.3 (a) and Figure 4.4 (a) indicate that the reaction catalyzed 

by Fe/Au and γ-Fe2O3 nanoparticles displayed Michaelis–Menten kinetics. The Michaelis 

constant (Km) and maximal reaction velocity (Vmax) were obtained from the slope and intercept 

of the extrapolated straight line with the horizontal axis in the Hanes-Woolf plot as shown in 

Figure 4.3 (b) and Figure 4.4 (b). The Km value is an indicator of enzyme affinity for its substrate 

(Yu et al., 2009). A high Km value represents a weak affinity whereas a low Km value suggests 

high affinity (Liu et al, 2014d). As presented in Table 4.2, the Km value of Fe/Au with H2O2 as 

the substrate was significantly lower than γ-Fe2O3. Thus, this finding shows that Fe/Au 

nanoparticles have a strong affinity towards H2O2. The corresponding Km values of the Fe/Au 

nanoparticles also indicate that the catalytic reaction can reach the maximum rate at a lower 

concentration of H2O2. According to Voinov et al. (2011), Fe3O4 nanoparticles were significantly 
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more effective in producing hydroxyl radicals (.OH) than the γ-Fe2O3 nanoparticles at the same 

ratio of the nanoparticle total surface and reaction volume. Since γ-Fe2O3 nanoparticles contain 

only ferric ions (Fe3+) that occupy both octahedral and tetrahedral sites (Fujii et al., 1999), the 

peroxidase- like activity mostly originates from ferric ions which have a low rate constant and is 

thus a rate- limited reaction process (Zhang et al., 2010).  

As confirmed by EDX and XPS data analysis shown in Chapter 3, the prepared Fe/Au 

nanoparticles contain both Fe and Au elements. Considering the limitation of Fe3+ ions from γ-

Fe2O3, Au deposition on the nanoparticles surface helped to enhance Fe/Au affinity towards 

H2O2. He et al. (2010) reported that formation of bimetallic nanoparticles successfully improved 

the nanoparticles’ catalytic performance. Another study conducted by Sun et al. (2013) 

demonstrated that Fe3O4-Au nanocomposites exhibited better catalytic activity than pure Fe3O4 

resulting from the specific electronic structure at the nanoparticles interfaces. They proposed that 

the AuNPs changed the electron structure at the interface, which may accelerate the electron 

transfer. Moreover, the partial electron transfer from Fe3O4 to Au facilitates H2O2 adsorption and 

activation. Hence, it is most likely the synthesized γ-Fe2O3 catalytic activity in this study was 

enhanced upon surface modification with AuNPs as proven by the strong affinity of Fe/Au 

nanoparticles towards H2O2.  

Conversely, the Km value for Fe/Au nanoparticles with ABTS as the substrate was 

slightly higher than γ-Fe2O3 (Table 4.2), suggesting that the Fe/Au nanoparticles had a slightly 

lower affinity for ABTS. The plausible reason for this phenomenon is due to the difference in 

charges present on the Fe/Au and γ-Fe2O3 nanoparticles’ surface. Results obtained from zeta 



 

 

 

115 

potential measurements in Chapter 3 showed that the γ-Fe2O3 nanoparticles have a positive 

surface charge (+17.80 mV) while Fe/Au nanoparticles have a negative surface charge (-24.70 

mV) in an acidic environment. It is known that ABTS contains two negatively charged sulfonic 

groups, thus, exhibiting higher affinity toward a positively charged nanoparticles surface (Yu et 

al., 2009). Due to this reason, γ-Fe2O3 nanoparticles with a positive surface charge would show a 

stronger affinity towards ABTS through electrostatic interactions between the particle and 

substrate molecules. On the other hand, the Fe/Au nanoparticles would show an electrostatic 

repulsion with ABTS. However, the effect of charge difference was relatively small because of 

the slight difference in Km values, and suggested that the surface modification by Au deposition 

help to enhance the interaction between nanoparticles and ABTS. As an alternative, a positively 

charged chromogenic substrates such as 3,3’,5,5’- tetramethylbenzidine (TMB) can be used. 

TMB is a polyamino compound and becomes protonated in acidic solution, so it has a stronger 

affinity towards negatively charge nanoparticles (Sun et al., 2013).  

Based on the aforementioned findings, the intrinsic peroxidase- like activity of Fe/Au 

nanoparticles is largely influenced by surface modification. From this information, we could 

utilized the nanoparticles surface modification flexibility and manipulate the catalytic property to 

develop an analytical assay. Development of the detection assay is further discussed in the next 

subsection. 
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Figure 4.3 (a) Steady-state kinetics of γ-Fe 2O3 (dashed line) and Fe-Au nanoparticles (black 

line) with ABTS concentration at 1.8 mM and varied H2O2 concentration. (b) Hanes-

Woolf plot of γ-Fe2O3 (blue) and Fe/Au nanoparticles (red). (Error bars represent 

S.D of the velocity mean) 
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Figure 4.4 (a) Steady-state kinetics of γ-Fe 2O3 (dashed line) and Fe-Au nanoparticles (black 

line) with H2O2 concentration at 5mM and varied ABTS concentration. (b) Hanes -

Woolf plot of γ-Fe2O3 (blue) and Fe/Au nanoparticles (red). (Error bars represent 

S.D of the velocity mean) 
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Table 4.2 Comparison of the kinetic parameters of γ-Fe2O3 and Fe/Au nanoparticles. 

 

Nanoparticles Substrate Km (mM) Vmax (Ms-1) 

γ-Fe2O3 H2O2 0.137 2.892 x10-7 

 ABTS 0.674 9.400 x10-8 

Fe/Au H2O2 0.021 5.935 x10-8 

 ABTS 1.019 9.226 x10-8 
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4.4.2 Development of nanocatalytic-based assay  

In this subsection, development of a nanocatalytic-based assay is explored, particularly to 

detect 17β-estradiol in aqueous solution. It involves surface functionalization with an aptamer 

and surface modification with analytes by formation of a nanoparticles-analytes complex. The 

practicality of this assay was evaluated at different concentration of aptamer-tagged Fe/Au 

nanoparticles and 17β-estradiol. Then this assay was further tested for cross-reactivity analysis 

with related compounds and detection in tap water samples.  

4.4.2.1 Analysis of aptamer-mediated conjugation 

 To introduce a probe aptamer that specifically binds to 17β-estradiol, the Fe/Au 

nanoparticle surface was initially modified with a thiolated aptamer (SH-apt). The probe aptamer 

that contained a fluorescent dye- labeled 17β-estradiol (fl-apt) was easily attached at the SH-apt 

complementary site as show by the underlined sequences in Table 4.1. This complementary site 

would help fl-apt to self-construct with thiolated-tagged nanoparticles by interaction between the 

nucleobases (A = T, G = C). After nanoparticles were successfully functionalized with the probe 

aptamer, Fe/Au-fl-apt would be able to “capture” the 17β-estradiol molecules in solution by 

conjugation at site-specific sequence, and subsequently form Fe/Au-17β-estradiol complexes. A 

schematic diagram of the surface functionalization with aptamers and formation of Fe/Au-17β-

estradiol complex is shown in Figure 4.5.  

To test the conjugation feasibility, two types of aptamer were introduced since each 

aptamer was tagged with unique labels; a thiol group for SH-apt and fluorescent dye; cyanine 

(Cy5.5) for fl-apt. The SH-apt would covalently attach to the Fe/Au nanoparticles based on the 
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Au-SH chemisorption interaction where the sulfur atom of a thiol contributes a lone pair of 

electrons to the empty orbitals of Au atoms at an interface (Sapsford et al., 2013). Detailed 

discussion on the charge transfer of the Au and -SH at the Fe/Au nanoparticles interface can be 

found in Chapter 3 (3.3.3). Another advantage of introducing a thiolated-aptamer is to avoid 

aptamer desorption from the nanoparticle’s surface and loss the nanoparticle functionality. It had 

been reported that in the presence of targets, the aptamers become folded by binding to the 

targets and being desorbed from the surface of AuNPs (Liu et al., 2014c). Because of the strong 

interaction (covalent bond) between aptamer and nanoparticles (thiol-gold chemistry), the 

thiolated-aptamer will tightly bind at the surface, even though in the presence of targets. Thiol-

gold bonds show high stability as reported by Krüger et al. (2001). They suggested that pulling a 

thiol attached to the Au surface could lead to Au-Au bond breakage. On the other hand, the 

attachment of the fl-apt would facilitate the conjugation process between nanoparticles and 17β-

estradiol molecules due to the presence of 17β-estradiol site-specific sequence.  

The attachment of the fl-apt to thiolated-tagged nanoparticles can be determined using 

cyanine dye, Cy5.5. This dye excites at 675 nm and emits at 695nm (Umezawa et al., 2009). The 

fluorescence emission intensity at 695nm was measured from the visible light absorption 

spectrum. Based on the results show in Figure 4.6, a low intensity was observed for Fe/Au-fl-apt 

at around 695nm as compared to the sample control (probe aptamer only). Still, we could observe 

a broad band ranging from 600 nm to 700 nm suggesting that the fl-apt was successfully attached 

to the thiolated-tagged nanoparticles and no obvious peak was observed for Fe/Au nanoparticles. 

The possible reason for its low absorbance intensity might be due to the quenching effect of 
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Fe/Au nanoparticles, as both Fe and Au nanoparticles can be efficient fluorescence quenchers as 

demonstrated by many analytical analysis studies (Raikar et al., 2011; Kang et al., 2011; 

Schneider and Decher, 2006).  
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Figure 4.5 A sequential attachment of thiolated aptamer (SH-apt) and probe aptamer (fl-apt) 

to functionalize Fe/Au nanoparticle surfaces followed by conjugation of 17β-

estradiol at the site-specific sequence to generate Fe/Au-17β-estradiol complex. 

       Au  Fe SH-C6-TCTCTTGGACCC 

AGAGAACCTGGG-GCT-TCC-AGC…… Cy5.5 

 

       Au  Fe SH-C6-TCTCTTGGACCC 

17β-estradiol 

AGAGAACCTGGG-GCT-TCC-AGC…… Cy5.5 

 

       Au  Fe SH-C6-TCTCTTGGACCC 
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Figure 4.6 UV-Vis spectrophotometer measurement of Fe/Au nanoparticles (black dots), 

Fe/Au-fl-apt (solid black) and probe aptamer, fl-apt as a sample control (solid red). 
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4.4.2.2 Detection of 17β-estradiol  

 A simple nanocatalytic-based assay to detect 17β-estradiol was devised as illustrated in 

Figure 4.7. In general, this assay requires two simple steps, which are an immobilization process 

and a catalytic reaction process. The immobilization process is based on the conjugation of 

aptamer-tagged nanoparticles with 17β-estradiol. The bound 17β-estradiol formed a complex at 

the nanoparticle surface and this was easily separated from the solution using a permanent 

magnet due to the Fe/Au superparamagnetic property. Then, the catalytic property of Fe/Au-17β-

estradiol was measured using the H2O2-ABTS system in a 96-well microplate. The absorbance 

signal was measured at 414nm as an indicator that oxidized ABTS (ABTSox) was present in the 

solution.  

Results from Figure 4.8 present the absorbance intensity for Fe/Au nanoparticles, 

aptamer–tagged nanoparticles (Fe/Au-fl-apt) and nanoparticles-analytes complex (Fe/Au-17β-

estradiol) within 5 min of the catalytic reaction. From this result, we can observe that a slight 

difference could be found after Fe/Au nanoparticles were functionalized with probe aptamer 

(Fe/Au-fl-apt). Inversely, the absorbance intensity was significantly decreased after 

nanoparticles-analytes complex was formed. Low absorbance intensity indicates that weak 

catalytic activity is involved. Thus, it clearly shows that the peroxidase activity of Fe/Au 

nanoparticles is disrupted or hindered by Fe/Au-17β-estradiol complex formation. This forms the 

basis of the assay, where a reduced signal should be proportional to an increase in 17β-estradiol 

concentration, and vice-versa.  
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The precision of this assay was evaluated by determination of the inter-batch coefficient 

of variability (CV) and this is presented in Table 4.3. Experimental results show that the CV for 

the nanoparticles-analytes complex was high, and this might be due to the heterogeneous 

attachment on the nanoparticles surface because the attachment of analytes to nanoparticles 

driven by the site-specific conjugation of aptamer at the nanoparticles surface.  

The effect of surface functionalization with probe aptamer is negligible due to its low 

impact on the nanoparticles catalytic activity. Therefore, we could suggest that steric hindrance 

effects are most likely contributing to the disruption of nanoparticles catalytic activity. According 

to the literature, for small-molecules targets like 17β-estradiol, aptamers often form a cage 

surrounding the ligand (Long et al., 2008; Huang et al., 2003). Thus, it is speculated that when 

aptamer-tagged nanoparticles “captured” 17β-estradiol, the aptamer became folded and formed a 

cage surrounding the target. Assuming many cages were formed at the Fe/Au nanoparticles 

surface resulting in molecular crowding, its effect on the nanoparticles’ catalytic activity is 

substantial. A study by Pitulice et al. (2013) revealed that the volume occupied by the crowding 

agent has a significant impact on the rate of ABTS reaction by H2O2 and catalyzed by HRP. The 

Vmax and Km of the Michaelis-Menten plot decay along with the growth of obstacle 

concentration.  

It is known that interaction between the nanoparticles and substrate is important to ensure 

the catalytic process can occur, similar to enzyme-substrate interaction principals. The 

intermolecular steric hindrance considerably affects the catalytic activity of nanoparticles 

because the active center (catalytic site) is less accessible to the substrate molecules. Since the 
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substrates are unable to move into close proximity, interaction between nanoparticles and 

substrate molecules is interrupted causing weak apparent catalytic activity.  

To further evaluate the feasibility of this assay, a serial dilution of 17β-estradiol (0.01 

nM, 0.1 nM, 1.0 nM and 10 nM) was tested at different concentrations of aptamer-tagged 

nanoparticles (33 mg/mL, 17 mg/mL and 2.5 mg/mL). As expected, the absorbance intensity was 

inversely proportional to the 17β-estradiol concentrations as shown in Figure 4.9. This result 

suggested that increasing 17β-estradiol concentration would decrease the absorbance intensity 

causing by larger steric effects. We can also observe that, high absorbance intensity was obtained 

when aptamer-tagged nanoparticle concentrations were increased up to 33 mg/mL, which is 

similar with finding in Section 4.4.1 (Figure 4.2). At the same time, the inter-assay CV (%) for 

this concentration is comparabe to other concentrations (2.5 mg/mL and 17 mg/mL) resulting in 

low assay accuracy and precision.  
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Figure 4.7 Illustration of the detection strategy for a nanocatalytic-based assay that consists of 

two main steps i.e. an immobilization process and a catalytic reaction process, 

measured at 414 nm wavelength for 5 min of reaction.  
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Figure 4.8 Absorbance intensity at 414 nm for unmodified (Fe/Au) and modified nanoparticles 

(Fe/Au-fl-apt; Fe/Au-17β-estradiol) with each nanoparticles concentration 

approximately 12.5mg/mL. (Error bars represent S.D of the absorbance mean) 

 

 

Table 4.3 Inter-assay of coefficient of variations (CV) for the unmodified and modified Fe/Au 

nanoparticles for absorbance at 414 nm 

 
 

 
 
 

 

 

 

Nanoparticles Mean (n=3) S.D CV (%) 

Fe/Au 
0.175 0.013 8 

Fe/Au-fl-apt 
0.129 0.007 6 

Fe/Au-17β-estradiol 
0.007 0.002 22 
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In addition, to further analyze the assay sensitivity as well as the linear range of 17β-

estradiol, the absorbance intensity at 414 nm was plotted with the log 17β-estradiol concentration 

as presented in Figure 4.10. Interestingly, absorbance data show that when lower amounts of 

aptamer-tagged nanoparticles are used, the detection assay shows high linearity. At low 

concentrations, a linear correlation coefficient of 0.999 was obtained as compared to other 

concentrations, suggesting a better sensitivity for 17β-estradiol detection. Due to its good 

sensitivity and detection, further evaluation for batch-to-batch reproducibility for two assay runs 

within different days for triplicate measurement was conducted and the results are shown in 

Table 4.5. A low CV (%) can be observed for 17β-estradiol concentration ranging between 0.01 

nM to 1 nM indicating that the developed assay could be used repeatedly, and further revealed 

the possibility of batch preparation. However, when high concentrations (>10 nM) of 17β-

estradiol was added into the solution, the detection assay show low accuracy and sensitivity due 

to the high inter- and intra-assay CV (%). A study by Atkinson et al., (2012) reported that 17β-

estradiol was found at maximum concentrations in raw sewage (Ottawa and Cornwall, Ontario, 

Canada) at 66.9 ng/L. For this assay, the detection limit is ranging from ~3 ng/L to 272 ng/L 

(0.01 nM to 1nM) based on the calculation of 17β-estradiol molecular weight (272.4). Therefore, 

this assay shows a practical use for detection of 17β-estradiol in environment particularly in 

wastewater.  

Based on the findings discussed above, we could draw a few conclusions on this newly 

developed nanocatalytic-based assay. The experimental results might indicate that this assay 

probably shows drawbacks when high concentrations of aptamer-tagged nanoparticles are used. 
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Notably, low concentrations of the aptamer-tagged nanoparticles used for detection of 17β-

estradiol may ensure a higher sensitivity. It is most likely because of the excess aptamer 

concentration present in the solution results in a homogenous interaction between analytes and 

aptamer-tagged nanoparticles. Since the analyte is dependent on aptamer presence on the 

nanoparticles surface, optimization of the aptamer concentration is required for nanoparticles in 

higher concentration. We also suggest that 17β-estradiol concentrations ranging between 0.01 

nM to 1 nM show considerably higher accuracy and reproducibility when tested with the assay. 

However, a study of optimized sensing conditions needs to be done, in order to improve the 

assay performance, as this is our first attempt to investigate the practicality of this assay.  
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Figure 4.9 Serial dilution of 17β-estradiol at different aptamer-tagged nanoparticles 

concentration, 33 mg/mL (blue), 17 mg/mL (red) and 2.5 mg/mL (green). (Error 

bars represent S.D of the absorbance mean) 
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Table 4.4 Inter-assay coefficients of variation (CV) of 17β-estradiol serial dilution at different 

aptamer-tagged nanoparticle concentrations.  

 

 

 
 
 

 
 

 

[Fe/Au-fl-apt] 

mg/mL 

[17β-estradiol] 

(nM) 

Mean (n=3) S.D CV (%) 

 0.01 0.280 0.044 16 

33 0.10 0.188 0.111 59 

 1 0.200 0.150 75 

 10 0.171 0.195 114 

 0.01 0.121 0.014 12 

17 0.10 0.111 0.020 18 

 1 0.110 0.003 2 

 10 0.093 0.024 26 

 0.01 0.045 0.007 15 

2.5 0.10 0.034 0.004 11 

 1 0.019 0.004 20 

 10 0.006 0.006 97 
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Figure 4.10 The linearity of the detection assay for aptamer-tagged nanoparticle concentrations 

(a) 33 mg/mL, (b) 17 mg/mL and (c) 2.5 mg/mL. (Error bars represent S.D of the 

absorbance mean) 
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Table 4.5 Intra-assay coefficients of variation (CV) for serial dilutions of 17β-estradiol at 2.5 

mg/mL of aptamer-tagged nanoparticles for batch-to-batch reproducibility 

determination. 

 

 
 

 
 
 

 
 

 
 
 

 
 

 

[17β-estradiol] 

(nM) 

Mean (n=2) S.D CV (%) 

0.01 0.047 0.003 7 

0.10 0.029 0.008 26 

1 0.018 0.001 4 

10 0.012 0.009 77 
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4.4.2.3 Specificity test 

To determine the specificity of the probe aptamer used in this study, several related 

endocrine disrupting chemicals (EDCs) such as carbaryl, 4NNP and estriol were studied by 

incubation with the Fe/Au nanoparticles. Then, the nanocatalytic-based assay was measured for 

each EDCs sample. As shown in Figure 4.11, the results from this assay show a slight absorbance 

difference between the blank control (Fe/Au-fl-apt) and ones containing other EDCs. In contrast, 

the absorbance declined substantially when 17β-estradiol was incubated with the nanoparticles, 

indicating a good selectivity of this assay. Therefore, the nanocatalytic-based assay using the 

probe aptamer attached on Fe/Au nanoparticles surface could specifically detect 17β-estradiol.  

4.4.2.4 Tap water testing 

As a preliminary study to evaluate the detection efficiency in real water samples, Fe/Au-fl-apt 

nanoparticles were tested with various concentrations of 17β-estradiol in tap water samples. For this 

experiment, two types of tap water were tested, non-filtered tap water (NF) and filtered tap water (F). The 

detection efficiency was calculated as shown previously in subsection 4.3.4.2. Based on this finding 

presented in Figure 4.12, the detection efficiency of Fe/Au-fl-apt nanoparticles show considerably good 

responses towards 17β-estradiol in filtered tap water compared to non-filtered tap water. The plausible 

reason is because the presence of other particles in non-filtered tap water that possibly interfere 

significantly the Fe/Au nanoparticles catalytic activity. Surprisingly, high detection efficiency of 17β-

estradiol at concentration 10 nM was obtained for non-filtered tap water. Thus, this preliminary testing in 

tap water provides a good starting point for detection of 17β-estradiol in real water samples using Fe/Au-

fl-apt nanoparticles.  
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Figure 4.11 Cross-reactivity study with estriol, carbaryl and nonylphenol (4NNP). All the 

samples were evaluated at 100 nM of each EDCs with approximately 12.5 mg/mL of 

Fe/Au-fl-apt nanoparticles concentration. (Error bars represent S.D of the 

absorbance mean) 

 

 



 

 

 

137 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Detection efficiency ((A0-A)/A0) of Fe/Au-fl-apt nanoparticles with various 

concentration of 17β-estradiol in tap water samples. Two types of tap water samples 

were tested, non-filtered tap water (NF) and filtered tap water (F). All the samples 

were evaluated with approximately 12.5 mg/mL of Fe/Au-fl-apt nanoparticles 

concentration. (Error bars represent S.D of the absorbance mean) 
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4.5 Conclusions 

 In summary, we investigated the synthesized Fe/Au nanoparticles’ intrinsic peroxidase-

like activity and the potential manipulation of this interesting property for development of a 

nanocatalytic-based assay. A catalytic reaction by the Fe/Au nanoparticles for the oxidation of 

ABTS by H2O2 showed a typical Michaelis-Menten kinetic form and exhibited a good catalytic 

efficiency. We also functionalized the nanoparticles by attachment of a specific aptamer to 

“capture” a target analyte, 17β-estradiol that would form a nanoparticles-analytes complex. The 

formation of this complex significantly influenced and decreased the nanoparticles’ catalytic 

activity as shown by drastic declines in the absorbance intensity. We suggest that steric effects 

might be a plausible reason for this phenomenon since the active center, which is the catalytic 

site, is less accessible to the substrate molecules once the target analyte has complexed with the 

nanoparticle. Our study provides a new way of utilization of the nanoparticles’ peroxidase- like 

activity for development of a simple, rapid and sensitive detection assay that appears to 

specifically detect 17β-estradiol in aqueous solution.  
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Chapter 5 

Overall Conclusions and Recommendations  

5.1  Conclusions 

The work in this thesis highlighted the manipulation of heterogeneous Fe/Au 

nanoparticles’ physiochemical property for application in nanosensor systems. Furthermore, the 

synergetic effect of this nanoparticle greatly enhanced the individual nanoparticle property and 

lead to multifunctionality. In this study, Fe/Au nanoparticles showed a useful ability as 

biomolecules supporting materials as well as a good peroxidase- like catalytic activity, leading to 

the development of a nanocatalytic-based assay. The marked features of this work are as follow:  

1. The IONPs surface charge was easily tuned using pH adjustment, thus making it possible 

for electrostatic -self -assembly technique with AuNPs. The electrostatic, combined with 

the magnetic, interaction was the main driving force for the formation of heterogeneous 

nanoparticles, IONPs-AuNPs.  

2. The formation of IONPs-AuNPs show a blue-shift phenomenon as observed for localized 

plasmon resonance of AuNPs. It might be due to the particles coalescence and 

recrystallization as the nanoparticles became more spherical. Furthermore, 

characterization analysis reveals the formation of a metastable alloy-like morphology 

(Fe/Au). 

3. The colorimetric assay for detection of glucose using immobilized glucose oxidase (GOx) 

on the Fe/Au surface showed that an increase in absorbance correlates with the glucose 

concentration with a linear range from 20 µM to 100 µM.  
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4. The synthesized Fe/Au nanoparticles show intrinsic peroxidase- like activity that follows 

typical Michaelis-Menten kinetic. The catalytic activity was measured 

spectrophotometricly at 414 nm using H2O2-ABTS colorimetric system. 

5. A nanocatalytic-based assay was developed based on two fundamental steps, the 

immobilization and the catalytic reaction process. A specific aptamer was attached at the 

Fe/Au nanoparticles’ surface in order to form a nanoparticles-analytes complex (Fe/Au-

17β-estradiol). The catalytic activity was significantly inhibited with an increase of 

Fe/Au-17β-estradiol concentration, and this could be used as the basis for a simple 

colorimetric assay. 

6. The utilization of the nanoparticles’ peroxidase-like activity provides a new way for 

development of a simple, rapid and sensitive detection assay that appears to specifically 

detect 17β-estradiol in aqueous solution ranging from 0.01nM to 1nM with considerably 

higher accuracy and reproducility without interference from other selected EDCs (i.e. 

estriol, carbaryl, and 4NN).  

7. In addition, detection efficiency ((A0-A)/A0) of Fe/Au-fl-apt nanoparticles show considerably 

good responses towards 17β-estradiol in filtered tap water compared to non-filtered tap water and 

provides a good basis for detection of 17β-estradiol in real water samples using Fe/Au-fl-apt 

nanoparticles.  
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5.2  Recommendation for future work 

The heterogeneous Fe/Au nanoparticles undoubtedly provide an interesting 

physiochemical property, especially the peroxidase- like catalytic activity for application in 

nanosensor systems. Therefore, some of the work presented here can be extended in certain 

major directions, such as heterostructure formation and optimization of nanocatalytic-based 

assay.  

The Fe/Au nanoparticles’ ca talytic activity is a structure-sensitive property. Hence, the 

nanoparticle morphology might affect the catalytic activity. To investigate this phenomenon, 

other nanoparticle morphologies such as core-shell and dumbbell, should be explored. The 

electrostatic -self -assembly technique is still in its infancy stage, and thus an optimized condition 

with controllability of the synthesis should be investigated. Furthermore, modification of γ-Fe2O3 

is needed since it shows a weak catalytic activity. A surface modification agent like Prussian blue 

(PB) can be utilize in order to increase the catalytic activity, thus adding of PB into Fe/Au 

nanoparticles might enhance the catalytic activity. In addition, a study on size-dependent 

nanoparticles and their impact on catalytic activity can also be carry out.  

An optimized condition for surface functionalization using aptamer needs to be carried 

out since this specific handle was Au dependent. This is the first attempt for development of 

nanocatalytic-based assay, thus, characterization and assay optimization on the sensing capability 

and efficiency need to be extensively performed.  
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Appendix A 

Optimization of IONPs coated with AuNPs using poly (allylamine 

hydrochloride)  for layer by layer assembly technique 

Summary 

Background: Polyelectrolytes (ionic polymers) have been introduced in the LbL assembly 

technique as an alternated adsorption of oppositely charged polymers. It modifies surfaces and 

colloids by exploiting electrostatic attraction for their deposition. This process is versatile as it 

can be deposited repeatedly and is able to generate a multilayered coating. In this optimization 

study, a weak cationic polyelectrolytes poly (allylamine hydrochloride) (PAH) with molecular weight, 

~ 65 000 are selected for LbL assembly technique and it can be easily tuned by simple pH 

adjustments. The PAH chemical structure is shown in Figure A1.  

 

 

 

 

 

Figure A1  Chemicals structure of the weak polyelectrolyte, PAH 

 

Methods: IONPs were synthesized using a reverse co-precipitation method and then were treated 

with PAH and were incubated overnight in dark. AuNPs were synthesized using the Turkevish 

method followed by microwave-assisted irradiation. Then, AuNPs were added into the 
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IONPs/PAH solution and were incubated overnight in dark. Finally, the IONPs/PAH/AuNPs 

were incubated with another layer of PAH and were incubated overnight in dark to form 

IONPs/PAH/AuNPs/PAH. This interaction is based on the opposite interfacial charges exhibited 

between the anionic nanoparticles (citrate-capped IONPs and citrate-capped AuNPs) and cationic 

polyelectrolytes. 

 

Results: For this study, the magnetic (IONPs) and plasmonic properties (AuNPs) were observed. 

A simple analytical signal using a UV-Vis spectrophotometer was used based on the deposition 

of AuNPs into the IONPs nanoparticles. However, in this study, we are unable to observe any 

magnetic and plasmonic properties for IONPs/PAH/AuNPs/PAH. The nanoparticles show 

aggregation and no interaction was observed with the permanent magnet. In addition, no blue or 

red shift was observed as an indicator of the deposition of multilayer coatings on AuNPs. 

 

Conclusions: The LbL technique using cationic polyelectrolyte (PAH) with the alternate 

deposition of citrate-capped IONPs and citrate-capped AuNPs was unsuccessful. This might be 

due to the pH of weak polyelectrolyte solutions (PAH). A controlled pH is an extremely 

important parameter when assembling the core and shell structure. Unlike strong 

polyelectrolytes, which remain charged over the entire pH range, the degree of ionization of 

weak polyelectrolytes depends greatly on solution pH. Furthermore, the deposition of PAH 

induced particles aggregation due to the surface modification with polyelectrolytes, hence 

magnetic and plasmonic properties of IONPs and AuNPs unable to be observed. 


