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A bidirectional mapping scheme that bridges particle-based and field-based descriptions for 
polymers is presented. Initial application is made to immiscible homopolymer blends. The forward 
mapping (upscaling) approach is based on the use of molecular dynamics simulations to calculate 
interfacial density profiles for polymer molecular weights that can be readily relaxed using standard 
simulation methods. These profiles are used to determine the optimal, effective interaction 
parameter that appears in the one-parameter self-consistent field theory treatment employed in the 
present work. Reverse mapping from a field representation to a particle-based description is 
accomplished by the application of a density-biased Monte Carlo method that generates 
representative chain configurations in the blend using statistical weights derived from fields 
obtained from self-consistent field theory. © 2007 American Institute of Physics. 
[DOI: 10.1063/1.2776261] 

I. INTRODUCTION

Based on generally accepted defining characteristics of a 
complex system, most polymers or polymer-containing ma­ 
terials of any practical interest are complex, multiscale ob­ 
jects. Indeed, most of the hallmarks of complexity apply to 
individual polymer chains of any significant length and/or 
interesting topological structure; let alone polymer blends, 
di-, tri-, or multiblock copolymers, or composite materials 
containing such constituents. Nevertheless, the application of 
theoretical scaling and renormalization group concepts have 
been quite useful in providing a theoretical basis for under­ 
standing the generic static and dynamic properties of poly­ 
mers and polymer-containing systems. A much more difficult 
challenge, even for “simple” polymers, is to include the 
subtle differences between, say, poly(ethylene) and poly(deu­ 
teroethylene) which are known experimentally1 to undergo 
phase segregation. Useful reviews that emphasize various as­ 
pects of this scientifically challenging and technologically 
relevant problem have been written in recent years.2,3

Any practical, yet chemically specific, description of the 
constitutive response of a given polymeric material requires 
a sequence of upscaling or homogenization steps, each of 
which entails capturing in a physically consistent manner the 
information that must be included in the successively larger-
scale abstraction of the material. Among these are three up-
scalings that, in order of increasing spatiotemporal scale, (1) 
retain much of the “chemical” features of the system while 
significantly reducing the number of explicit degrees of 
freedom,4,5 (2) resort to coarse graining on the scale of the 
persistence length of the chains,6,7 (3) yield a mesoscopic

continuum level, yet reversible-mappable (explicitly or sta­ 
tistically) description of the system (e.g., self-consistent field 
theory8), and finally, (4) a homogenization process that aver­ 
ages over the short-to-medium wavelength properties ob­ 
tained from these “subscale” descriptions to yield an effec­ 
tive, macroscopic constitutive model suitable for use in 
engineering-scale calculations. Clearly, a convincing applica­ 
tion of any such multiscale modeling methodology must in­ 
clude both self-consistent validation and verification among 
the various levels abstraction,9 as well as comparison to ex­ 
periment. 

In general, ab initio generation of realistic chain con­ 
figurations within nontrivial microphase segregated mor­ 
phologies is restricted to simple primary chain structures and 
molecular weights below the entanglement length, due to the 
enormous disparity in physical relaxation/equilibration times 
for systems that do not satisfy those restrictive criteria and 
the time scales accessible to present particle-based simula­ 
tion tools (i.e., molecular dynamics or Monte Carlo). Thus, if 
we are to use particle-based methods to study entangled 
polymeric systems and/or complicated morphologies, we 
must develop reverse mapping (downscaling) methods that 
project mesoscopic morphology and chain statistical proper­ 
ties onto specific initial conditions. Considerable progress 
has been made in this regard.10–12 However, in order to be 
practically useful, one must also possess the means to per­ 
form forward mapping,13 in which the essential information 
required by the next-higher-scale description is extracted 
from the results of a finer-scale simulation. Thus, what is 
really needed is a bidirectional mapping methodology, with 
sufficient validation for conditions amenable to direct 
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simulation/prediction at both scales to yield confidence in 
predictions made using the higher-scale theory for input to 
the finer-scale treatment.14,15

In the present work, we focus on the development of a 
particular bidirectional scale bridging, namely, the one be­
tween coarse-grained molecular dynamics (MD) simulations 
and self-consistent field theory (SCFT) in which the only 
adjustable parameter is the effective “Flory-Huggins” inter­
action parameter x.16 The objectives of our work are (1) to
develop and demonstrate a practical means for extracting 
information from MD simulations to define an effective x 
value for use in SCFT that reproduces the salient features 
obtained from the MD simulations (forward mapping), (2) to 
use this MD-based effective x parameter to generate en­
sembles of representative chain configurations based on 
Monte Carlo sampling from the SCFT field monomer densi­
ties (reverse mapping), and (3) to validate the system con­
figurations thus generated by direct comparison to the results 
of well equilibrated MD simulations. 

We focus in the present work on immiscible homopoly­
mer blends and, for purposes of method validation, chain 
lengths below the entanglement threshold, for which MD 
simulations can reliably yield well equilibrated melt configu­
rations. The main criterion for the forward mapping is con­
currence between MD- and SCFT-based interfacial widths 
and local concentration gradients as functions of polymer 
chain length and interaction potential parameters. In the case 
of reverse mapping, the principal criterion is agreement be­
tween the statistical properties of reverse-mapped chains and 
those obtained directly from well equilibrated blends. 

II. METHODOLOGIES

A. Strategy for bidirectional mapping between MD
and SCFT

Our objective is to efficiently obtain an ensemble of well 
equilibrated, representative configurations for a homopoly­
mer blend comprised of immiscible bead-necklace polymer 
chains of large molecular weight (i.e., above the entangle­
ment molecular weight), whose generation would be imprac­
tical using conventional, brute force MD or Monte Carlo 
(MC) simulations. There are three steps in our approach:

(1) Perform MD simulations of bead-necklace homopoly­
mer blends consisting of relatively short (unentangled)
chains denoted An and Bn. Because of fast chain relax­
ation, conventional MD or MC simulations are capable
of equilibrating and correctly sampling the phase space
in these systems at reasonable computational expense.
These simulations yield interfacial properties [density
profiles PA(z) and PA(z), along the longitudinal axis Lz
in the primary simulation cell] and statistical distribu­
tions of conformational properties of polymer chains
(e.g., the radius of gyration (R2)).g 

(2) Use results obtained in (1) to parametrize SCFT such
that it optimally reproduces the interfacial width, den­
sity gradient, and chain conformational characteristics.
The resultant SCFT parameters are “effective” values
that are only valid at the thermodynamic condition and
chain length for which the fitting was performed. How­

ever, given a set of simulations over an interval of ther­
modynamic conditions and chain molecular weights, 
one can interpolate the effective SCFT parameters to 
particular conditions of interest. 

(3) Apply a density-biased MC sampling algorithm to per­
form a reverse mapping based on SCFT densities gen­
erated in (2) onto bead-necklace models. These bead-
necklace configurations can then be used as initial
conditions for MD simulations that sample short time
dynamics, viscoelastic, and mechanical properties of
the system. Presumably, the time scales accessible to
MD simulations (millions of time steps) should be suf­
ficient to validate the thermodynamic stability of the
predicted chain configurations and mesoscopic
morphologies.

Details concerning each step in the bidirectional map­
ping between MD and SCFT are provided in the following 
sections. 

B. Molecular dynamics simulations

MD simulations were performed using a bead-necklace
representation of polymer chains. Each chain consisted of n 
beads with diameter <=1.0 and connected by bonds of fixed 
length < constrained using a modified version of the SHAKE 
algorithm.17 Two types of chains (An and Bn) were used to
simulate homopolymer blends. Same-type bead-bead interac­
tions (A-A and B-B) were represented by a truncated and 
shifted (at rc =2.5) Lennard-Jones potential such that both the 
energy and force are zero at rc. 

 dULJ(r)
 
ULJ(r) − (r − rc dr 

− lULJ(r)lr=rc,)I I r < rc 
r=rc 

0,  r > rc, 
l= 

U(r) 

ULJ(r) = 4e[(</r)12 − (</r)6] . (1) 

The bead diameter < =1.0 and homopolymer interaction 
strengths eAA =eBB =e=1.0 define our fundamental length 
and energy scale, respectively. For the A-B bead-bead inter­
actions, the Lennard-Jones interaction described above was 
augmented by a short range repulsion term given by 

 
eABUc(r) = − f(rc,r) , 
r 

[1 − (r/rc)2]2, r < rcf(rc,r) =
0,  r > rc. 

(2)

144901-2 Sewell et al. J. Chem. Phys. 127, 144901  (2007)

We restricted our study to eAB =−0.05. The negative sign of 
eAB reflects a repulsive A-B interaction and leads to an im­
miscible blend for a mixture with overall volume fraction 
eA =eB =0.5. 

In this work we have investigated blends with molecular 
weights n=19, 28, 38, 57, and 76 at T*=kBT / e=1.33 and
P*=Nbeads< /V=0.7. We also studied pure polymer melts for
those same thermodynamic conditions. Simulations were 
performed in a periodic, orthorhombic cell of size Lx =Ly 
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=15 and Lz =157, with the interface nominally perpendicular 
to Lz. These particular cell dimensions for the blends were 
chosen to minimize capillary wave effects that could occur at 
the interface. A reversible integration scheme18 was used to 
generate trajectories in the NVT ensemble with integration 

(e /m<2)1/2 ot ot *= =0.005. time step
Initially a pure polymer melt was set up in the primary 

simulation cell and equilibrated over several chain relaxation 
times (defined as the time required for relaxation of the end­
to-end vector). Next, chains with center-of-mass positions 
zcm <0 and zcm >0 were defined to be types B and A, respec­
tively. A short simulation with a large (negative) value of eAB
(i.e., a highly immiscible blend) led to configurations with no 
A beads in the B-rich phase and vice versa. These systems 
were slowly annealed to the desired values of eAB and then 
equilibrated over several polymer chain relaxation times. Fi­
nally, production runs of lengths of several polymer relax­
ation times were used for data collection and subsequent 
analysis. 

C. Self-consistent field theory „SCFT… methodology

A practical method for predicting the morphologies of
amphiphilic liquids and polymeric systems is self-consistent 
field theory.19 It is a coarse-grained, mean field equilibrium 
statistical mechanical approach in which polymers are con­
sidered to be composed of segments, each of which contains 
a sufficiently large number of chemical monomers so that 
adjacent segments can be treated as uncorrelated (freely 
jointed) entities. Based on a chosen segment volume −1P0 , one
can assign a segmental degree of polymerization N and a 
segment-segment interaction parameter x. The segment vol­
ume should be sufficiently small that the polymer can be 
mathematically considered a continuous space curve. For a 
homopolymer blend consisting of segment species A and B, 
each assigned the same segmental volume −1P0 , the SCFT free
energy is given by20

NF QA QB= − eA ln − eB lnP0VkBT VeA VeB 

1 
+ f dr{xN'A(r)'B(r) − wA(r)'A(r)

V 

− wB(r)'B(r)} , 

( ) ( )

(3) 

where eA and eB are the overall volume fractions of A and B 
segments, respectively. It is important to distinguish the 
volumetric volume fractions eA and eB from 'A(r) and 
'B(r), which are the spatially dependent local volume frac­
tions. It is these local densities that provide information con­
cerning the mesoscopic morphology. The functions wA(r) 
and wB(r) in Eq. (3) are fields conjugate to the densities that 
incorporate the pairwise intersegmental interactions. The par­
tition function of a single homopolymer chain subject to the 
field wA(B)(r) is given by QA(B)(r). To complete the descrip­
tion, V is the system volume, kB is Boltzmann’s constant, and 
T is the temperature. The fields and densities are obtained 
self-consistently to minimize the free energy [Eq. (3)] using 
the equations (for a homopolymer blend), 

wA(B)(r) = xN'B(A)(r) +  (r) , (4) 

aA(B)VeA(B)
'A(B)(r) = f dsqA(B)(r,s)qA(B)(r,aA(B) − s) ,

QA(B) 0 

(5) 

'A(r) + 'B(r) = 1, (6) 

with 

QA(B) = f drqA(B)(r,aA(B)) . (7) 

In Eq. (5), the space curves of the polymers A and B are 
integrated over the chain contour parameter s from one end 
s=0 to the other s=aA(B). For this work we will consider a 
symmetric polymer blend where aA =aB =1. The quantity

(r) in Eq. (4) is a Lagrangian multiplier used to enforce
incompressibility. The propagators qA(B)(r ,s) incorporate the
Gaussian statistics of the chains and are obtained as solutions
to the modified diffusion equation,

2aqA(B)(r,s) NaA(B)
= V2qA(B)(r,s) − wA(B)(r)qA(B)(r,s) ,

as 6 

(8) 

with qA(B)(r ,s =0)=1 and for which a=aA =aB is the statis­
tical segment length of the polymer chains. Note that x and 
N in Eqs. (3)–(8) always appear together as the product xN. 
If one uses the radius of gyration of a polymer Rg 

=N1/2a /{6 as the unit of distance in the theory, then Na2 /6
disappears from Eq. (8). Thus, the only remaining param­
eters are xN and eA (or eB =1−eA). Since we are consider­
ing a symmetric blend, we have eA =eB =0.5 which leaves 
xN as the only adjustable parameter, which we will use to 
map between SCFT and MD simulations. We employ a real-
space approach introduced by Drolet and Fredrickson21 to 
solve the system of equations given by Eqs. (4)–(6). Details 
of the implementation can be found in Refs. 22 and 23. 

D. Generation of representative configuration using
SCFT

From SCFT we obtain the spatial segmental distributions 
of chains in the equilibrium state. For a chain of N segments, 
the local volume fraction of segment i is 

si+1VeA(B)
'i(r) = dsq(r,s)q(r,aA(B) − s) ,

Q si 

f (9)

where si(si+1) is the beginning (end) of the ith segment. The
volume fraction can also be thought of as the probability that 
the ith segment can be found at position r. This interpretation 
can be used to generate representative chain configurations 
appropriately distributed in space using the density-biased 
Monte Carlo method, as was proposed by Aoyagi et al.10

Specifically: 

(1) The first segment of a chain is placed by randomly
choosing a point r within the simulation box, and the 
local volume fraction '1(r) for the first segment is then
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compared to a random deviate p uniformly distributed 
in the interval [0,1). If p�' 1(r), the segment is posi­
tioned at r and we proceed to (2) defined below; oth­
erwise (1) is repeated until an acceptable chain origin is 
obtained. 

(2) Assuming that the ith segment of the chain has been
placed at r', we randomly select a point r on the sphere
lr−r'l=a, where a is the segmental length defined pre­
viously. As before, the (i+1)th monomer is placed at r
if p�' i+1(r); otherwise step (2) is repeated until a sta­
tistically valid position for the (i+1)th segment is
obtained.

Steps (1) and (2) are repeated to generate any desired
number of chains within the simulation cell (with appropriate 
application of periodic boundary conditions). 

Clearly, this procedure has no mechanism to avoid over­
lapping of segments or ensure correct intermolecular corre­
lations, since segments with li− jl>1 or belonging to differ­
ent chains lack any “knowledge” of the position of 
previously placed segments. Therefore, complete neglect of 
excluded volume between segments can result in significant 
perturbation of chain conformations after the bead-spring 
model has been imposed (reverse mapped) onto these freely 
jointed chain configurations. This recently identified issue for 
mapping between freely jointed and bead-spring models in 
polymer melts24 has been overlooked in the past25 as well as 
in recent works.10 Thus, generation of representative con­
figurations using density-biased Monte Carlo should be 
modified to include (at least partially) the excluded volume 
interaction in order to avoid artificial chain configurations in 
the reverse mapping procedure. Detailed discussion of this 
issue as well as modifications of the basic chain generation 
procedure are presented in the next section. 

Finally, for a given configuration which we are mapping 
onto the bead-spring model, we consider a relatively small 
number of chains, M -O(102); it is not guaranteed that the 
resultant ensemble is representative of the underlying distri­
bution. To mitigate this possibility, we generate a number of 
Monte Carlo realizations for which we calculate the local 
volume fractions '̄i(r) for comparison to the SCFT-based 
volume fractions. The lower the root-mean-square deviation 
rms2=2i Jdr('̄i(r)−' (r))2 

i for a given realization, the more
representative we assume that configuration to be. 

III. RESULTS AND DISCUSSION

A. Forward mapping

Determination of the SCFT parameters. To parametrize
the SCFT model we need to determine two parameters: a 
statistical segment length a and an interaction parameter xN. 
The first of these can be determined from MD simulations of 
a pure homopolymer melt and reflects how many beads in 
the bead-necklace model comprise a statistical segment in 
the equivalent freely jointed (SCFT) chain. Specifically, we 
calculate the average squared radius of gyration (R2) forg 

bead-necklace polymer chains obtained from MD simula­
tions of homopolymer melts. Imposition of the constraint 
that the equivalent freely jointed chain has the same (R2) andg 

TABLE I. Parameters used to relate MD and SCFT calculations. 

n (Rg 
2)1/2 a N xN 

19 2.18 1.500 12 2.46 
28 2.73 1.578 18 3.80 
38 3.21 1.627 23 4.25 
57 3.97 1.667 34 7.60 
76 4.64 1.695 45 8.67 

contour length Lc as the bead-necklace chain in the melt, we 
obtain a pair of equations, 

Cnnl2 = 6(R ) = Na2, nl = Na ,g 
2 (10)

where Cn is the characteristic ratio of the bead-necklace 
chain (the subscript n here denotes that Cn can be molecular 
weight dependent for short chains) and l is a bond length 
equal to < (=1.0 in this work). Equations (10) allow us to 
uniquely determine a and the number of statistical segments 
N in the equivalent freely jointed chain. In Table I, we report 
for each value of n the value of (R2) calculated from MDg 

simulations and parameters for the equivalent freely jointed 
chain. Because of deviations from the n scaling of (R2) forg 

small n (or, equivalently, the molecular-weight-dependent 
Cn), the segmental length a determined using Eqs. (10) indi­
cates a slight molecular weight dependence. Figure 1 depicts 
the distributions of (R2)1/2 for a pure homopolymer melt asg 

obtained from MD simulations of bead-necklace chains and 
SCFT calculations for equivalent freely jointed chains for 
three different molecular weights (using the conformational 
mapping described above and summarized in Table I)

FIG. 1. Probability distribution of (R2)1/2 for bead-necklace chain (symbols)g 
and equivalent freely jointed chain (lines) homopolymer melts as obtained 
from MD simulations and SCFT calculations, respectively. 

. Un­
surprisingly, the agreement is the poorest for the shortest 
chain length investigated (n=19 beads, N=13 segments). 
However, the agreement between the bead-necklace and 
equivalent freely jointed chains improves significantly with 
increasing molecular weight. 

In addition to the conformational mapping described 
above we must determine an effective interaction parameter 
x or xN that adequately reproduces the interfacial properties 
in the equivalent homopolymer blend of freely jointed 
chains. Using bead-necklace MD simulation trajectories, nor­
malized density profiles P̄A(z) and P̄B(z) were calculated. 
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Normalization in the present context indicates that density 
profiles in the bulk phase (i.e., far from interface where pro­
files reach stable values) are set to zero and unity in the 
minority and majority phases, respectively, 

AinB BinAPA(z) − Pbulk PB(z) − PbulkP̄A(z) = P̄B(z) = .A B A BlPbulk − Pbulkl lPbulk − Pbulkl
(11)

The quantities PA(z) and PB(z) in Eq. (11) are the intrinsic 
density profiles of beads A and B as a function of z, where 

AinBthe interface is assumed to correspond to z=0,  Pbulk and
BinA are values to which the intrinsic density profiles of the Pbulk 

minority phases (A beads in the B-rich phase or vice versa)
A Bsaturate in the bulk phase, and Pbulk are values of and Pbulk 

intrinsic density profiles to which the majority phases satu­
rates in the bulk. Applying a well-established definition for 
the interfacial width,26

−1dPA(z)A AinBl , w = lPbulk − Pbulk dz PA(z)=PB(z)
( ) (12)

we can determine the interfacial width w for a homopolymer 
blend of bead-necklace chains. Note that, according to this 
definition of w, the interfacial width for a given blend system 
will be the same regardless of whether the normalized or 
un-normalized density profiles are used. Thus, Eq. (12) can 
also be used to define w in the SCFT calculations for the 
equivalent freely jointed chain blends if the density profiles 
are replaced with volume fraction profiles. In the SCFT ap­
proach, there is a unique correspondence between xN and w, 
as illustrated in Fig. 2 for the symmetric homopolymer 
blend. 

FIG. 2. Correlation between interfacial width (w) and interaction parameter 
xN in SCFT. 

We can use this relationship to obtain a reliable pre­
diction of the effective parameter xN for the equivalent 
freely jointed model in terms of the MD-based bead-necklace 
results. 

In Fig. 3(a) we present normalized density profiles for 
blends obtained using the bead-necklace model (MD simula­
tions) and corresponding volume fraction profiles obtained 
using the SCFT approach for the equivalent freely jointed 
chain blend employing a and xN parameters determined as 
described above. This figure clearly illustrates that the nor­
malized bead density for the bead-necklace blend and vol­
ume fractions for the equivalent freely jointed chain blend 
are in excellent agreement. Figure 3(b) contains a compari­
son between the un-normalized density profiles for the bead-

necklace model and the SCFT-based volume fraction profiles 
[in analogy to Fig. 3(a)]. 

FIG. 3. Normalized (a) and un-normalized (b) density profiles for the ho­
mopolymer blends as obtained from MD simulations (symbols) and SCFT 
calculations (lines). 

For shorter chains, the bulk densi­
ties (volume fractions) resulting from the two methods are 
not the same when the interfacial width is chosen to match, 
indicating that the SCFT model is insufficient to describe 
simultaneously the interface (characterized by width param­
eter w) and the equilibrium compositions in the bulk. This 
failure of standard SCFT for short chains is not unexpected 
and has been observed experimentally.27 For longer chains 
the bulk densities (volume fractions) are in good agreement, 
providing support for the proposed forward mapping proce­
dure in that the two different features of the immiscible blend 
(interfacial width and bulk densities) are simultaneously in 
agreement after adjustment of the single parameter xN for 
practically interesting values of N. The chain length at which 
these two features are both well represented by SCFT gives 
us a gauge of when the forward mapping procedure is to be 
trusted. 

Using xN as an adjustable parameter for mapping be­
tween MD simulations (bead-necklace model) and SCFT 
(equivalent freely jointed chain model) is not justified if one 
takes the “theoretical definition” of x as “…a strictly ener­
getic quantity, defined in the spirit of regular solution theory 
by the exchange energy required to interchange two dissimi­
lar monomers, divided by thermal energy k T.”28 

B We instead
regard x as an effective, free parameter, consistent with the 
experimental definition of “…a parameter obtained by fitting 
some experimental observations to a theoretical relation. As 
the experimental system is likely to violate one or more as­
sumptions inherent in the theory, the resulting x values re­
flect the influences of the various nonidealities present in 
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addition to the expected exchange energy contributions.”28

For any interfacial width w extracted from the MD bead-
necklace simulations, a unique xN can be assigned that will 
yield the same profile in SCFT calculations for the equiva­
lent freely jointed chain blend, provided that the chains are 
long enough so that the bulk densities agree, as discussed in 
the preceding paragraph. Obviously, there will be some un­
certainty for each width w extracted from the MD simula­
tions. This will translate into some uncertainty in xN. Uncer­
tainties in xN will increase as the interfacial width w is 
decreased, for a specified absolute uncertainty in the latter 
parameter. Unfortunately, this large error zone (regions in 
Fig. 2 corresponding to smaller widths) will occur for longer 
chains, which is precisely the region where the forward map­
ping should work best. Although we have not done a rigor­
ous error analysis here, this potential difficulty is mitigated 
by thoroughly equilibrating and sampling the bead-necklace 
blends, thereby minimizing the error in w. Further, limited 
uncertainties in xN do not present a serious problem, since 
the interfacial characteristics (width and bulk density) satu­
rate for larger xN values, as can be seen in Figs. 2 and 3, 
respectively. 

Structural properties. It is important to demonstrate that 
our approach for fitting the parameters required by SCFT 
adequately reproduces the main structural and conforma­
tional features predicted for the bead-necklace polymer 
blends. The first quantities we compare are the fractions of 
end and middle groups of chains along the z direction. In Fig. 
4 we show these results plotted as a function of z for two 
blend systems, normalized by the average fraction of the 
beads of that type in the system, as obtained directly from 
MD simulations and from SCFT using forward-mapped pa-

rameters.

FIG. 4. Normalized fractions of (a) end and (b) middle beads/segments as a 
function of position from the interface as obtained from MD (symbols) and 
SCFT (lines). 

 Fraction values greater than unity indicate a local 
excess of beads of a given type (i.e., end or middle) relative 
to their average fraction in the overall system; similarly, val­
ues less than unity are indicative of local depletion. As ex­
pected, the end beads exhibit an increased probability near 
the interface [Fig. 4(a)], due to a lower entropy penalty for 
end groups in this region relative to that for beads interior to 
the chain, for which depletion occurs near the interface [Fig. 
4(b)]. The effect becomes more pronounced with increasing 
molecular weight. Figure 4 clearly illustrates that our ap­
proach to parametrize SCFT based on MD results for specific 
chemical interactions yields accurate predictions of end- and 
middle-bead number density profiles, including the molecu­
lar weight dependence of these quantities. 

B. Reverse mapping

Conformational properties. A first check on the configu­
rations generated from SCFT by density-biased Monte Carlo 
is to compare conformational features calculated from MD 
using the bead-necklace model. In Fig. 5, the z component of 
chain radius of gyration Rz 

g, normalized by the system aver­
age of this property (Rz 

g ), is plotted with respect to individual
chain center-of-mass positions along the z direction. 

FIG. 5. Component Rz
g of chain radius of gyration as a function of position

z from the interface. Rz
g is normalized by its bulk value. Symbols: MD 

simulations of bead-necklace blends; lines: SCFT predictions for equivalent 
freely jointed chain blends. 

It is 
expected that chains tend to become flattened or “pancaked” 
near the interface in the direction parallel to the interface, 
and this is corroborated here for both the MD- and SCFT-
based results. This figure clearly illustrates that, passing from 
the bulk in the majority phase toward the interface, Rz

g for
those “majority” chains decreases, passes through a mini­
mum centered at the interface, and then increases as the 
chains of this type become the minority phase. The statistical 
uncertainty for the data in the minority region is large, espe­
cially for the MD simulation results; however, MD simula­
tions and SCFT calculations agree well in the majority phase 
and near the interface in the minority region, for all molecu­
lar weights investigated. For both systems the amplitude of 
the effect and its persistence away from z=0 increase with 
increasing molecular weight. 

Procedure for mapping a freely jointed chain onto a 
bead-necklace chain. For each chain in the ensemble gener­
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ated from an SCFT density-biased Monte Carlo realization, 
we distribute n beads of the bead-necklace chain along the 
contour of the equivalent freely jointed chain (defined by N 
segments). The first bead of each bead-necklace chain is po­
sitioned to coincide with the starting point of the first seg­
ment. The next step is to determine whether the second bead 
(separated from the first bead by a bond of fixed length <) 
can be placed between the beginnings of the first and second 
segments along the bond (of fixed length a) connecting them. 
(We emphasize that the SCFT segment length a and MD 
bead diameter < are different; for n=76, a=1.695<.) If this 
condition is satisfied we place the second bead in that posi­
tion along the vector separating segments 1 and 2 and pro­
ceed to the next bead. If a given bead i+1 cannot be placed 
on the same segmental bond as the ith bead, then we place 
the (i+1)th bead on the next segmental bond such that the 
distance between beads i and i+1 is still < [see illustration in 
Fig. 6(a)]

FIG. 6. (a) Schematic illustration of the reverse mapping of a freely jointed 
chain (defined by solid line segments) onto the equivalent bead-necklace 
model chain (large circles) with bead centers (small filled circles) positioned 
along the contour of the freely jointed chain. (b) Snapshot of an N=45 freely 
jointed chain and the corresponding n=76 bead-necklace chain. 

. Due to this last step, which “cuts the corner,” it 
would be fortuitous if the mapping protocol should yield an 
exact match between contour lengths for N segments and n 
beads. Thus, we developed an iterative procedure to achieve 
an acceptable mapping between segmental and bead-level 
descriptions of the system. Specifically, if the nth bead does 
not lie on the Nth segment, we scale that bead’s diameter < 
by 1% (increasing or decreasing < depending on the direc­
tion of the mismatch). Further, we allow beads to be placed 
outside the segmental bond (yet still along the direction of 
that bond), allowing 1% change in the segmental bond length 
a per iteration. This procedure was repeated until exactly n 
beads were mapped onto N segments, for each chain in turn. 
The largest observed deviation from the base line bead diam­
eter was 0.1<, while the largest extension outside segmental 
bond was 0.06a. A snapshot illustrating a bead-necklace 
chain mapped onto a freely jointed SCFT chain is shown in 
Fig. 6(b). 

The 20 “most representative” configurations (i.e., those 
20 characterized by the smallest mean-squared deviation be­
tween local volume fractions '̄i(r) predicted using SCFT and 
from the density-biased Monte Carlo sampling based on 200 
realizations) were generated for the largest molecular weight 
investigated (N=45 segments) and xN=8.67. (Refer to Sec. 
II D.) Each configuration consisted of 328 freely jointed 
chains in a three dimensional periodic, orthorhombic cell 
with dimensions 15�15�157 (in units of <). These freely 
jointed chain blend melt configurations were reverse mapped 
to the corresponding bead-necklace systems for n=76 beads. 

Configuration relaxation. The generation of a melt as 
described in Sec. II D and the preceding paragraphs results in 
a significant amount of aphysical overlap between beads. To 
resolve this, we performed short MD simulations of the 
reverse-mapped configurations with imposed distance-based 
upper bounds on bead-bead interaction energy and force 
magnitudes. In these simulations, if two beads were found to 
be closer than some distance rs, their interaction energy and 
force were assigned to be equal to the corresponding values 
for r=rs, thereby eliminating the large, numerically unstable 
repulsive forces associated with such contacts. During the 
first 1000 integration steps of this relaxation stage, we also 
rescaled the velocities of all beads at every time step to en­
force the system total kinetic energy corresponding to the 
desired temperature. This protocol was sufficient to remove 
most of the excess potential energy due to initial bead-bead 
overlap. The SHAKE algorithm was used to constrain bond 
length to <. Small deviations of the bond length from < 
allowed during reverse mapping procedure were corrected by 
SHAKE at the first integration step. Following 1000 initial 
integration steps, the relaxation MD simulation continued for 
another 30 000 steps in the NVT ensemble. Similar proce­
dures have been employed previously in simulations of 
homopolymer25 and block copolymer melts.10,11

While the general procedure described above is antici­
pated to work for dense polymer melts, it was shown in a 
recent study of homopolymer melts,24 as well as in the 
present simulations, that it has a significant drawback. To 
illustrate this we have calculated the local density of seg­
ments in the SCFT-based density-biased Monte Carlo freely 
jointed chain configurations. In Fig. 7 

FIG. 7. Probability distribution for statistical segments in a subvolume of 
size of 3<� 3<�3<. 

we show the distribu­
tion of the number of segments in a cubic subvolume of size 
(3<�3<�3<), calculated from configurations generated 
without inclusion of any excluded volume interactions and 
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from a fully equilibrated MD simulation run of the corre­
sponding bead-necklace model. In the equilibrium MD simu­
lation, the number of statistical segments (calculated as num­
ber of beads divided by a) per subvolume is Gaussian 
distributed around Ns -11. By contrast, the distribution from 
the configurations obtained by reverse mapping is much 
broader, with significant probability of both empty and 
densely filled subvolumes; that is, the simple reverse map­
ping procedure yields inappropriately large inhomogeneities 
in the system. 

The 1000 step MD relaxation protocol for reverse-
mapped bead-necklace chain configurations results in the 
“pushing away” of beads that are located in high density 
regions towards low density regions, leading to a more ho­
mogeneous number density distribution within the system. 
However, it also results in the “stretching” of the chains on 
intermediate length scales. To illustrate this we have calcu­
lated the average intramolecular mean-squared distance (R2 )m 

between the ith and (i+m)th beads, normalized by m. In the 
limit of large m, (R2 ) / m should be equal to a, while form 

small m the non-Gaussian nature of the bead-necklace model 
on short length scales leads to (R2 ) /m<a. In Fig. 8 

FIG. 8. (R2 ) /m as a function of m as obtained from well equilibrated MD m 
simulations, reverse-mapped (with and without excluded volume interac­
tions), and relaxed configurations. 

wem 

compare results for (R2 ) /m obtained from a well equili­m 

brated MD simulation of a blend comprised of 328 chains of 
length n=76 (open circles) to those obtained from 20 
reverse-mapped configurations, as defined earlier, after relax­
ation (1000 steps of overlap-removal MD plus 30 000 steps 
of NVT-MD) that were reversed mapped from the most rep­
resentative freely jointed chain configurations (circles), as 
defined earlier. As was observed previously for homopoly­
mer melts,24 we find that the largest perturbation of chain 
dimensions characterized by (R2 ) /m occurs at intermediatem 

length scales, m-20–30. Note that, depending on param­
eters and procedural details of the relaxation MD phase (e.g., 
values of rs and length of the initial bounded force equilibra­
tion run), one can in principle obtain configurations with 
very reasonable average global chain conformations (e.g., an 
average radius of gyration within a few percent of the ex­
pected value or, equivalently, (R2 ) /m equal to a for m=n),m 

but that deviations on the intermediate length scales still 
arise for all such variations of the protocol. Moreover, in 
order to relax these perturbations on the m-bead length scale, 

it is not sufficient to continue MD equilibration of the system 
over time scales required for relaxation of an m-bead long 
polymer melt.24 Rather, a full relaxation of the melt is nec­
essary to eliminate these intermediate-scale perturbations. 
Therefore, if one uses the method outlined above for the 
creation of long, entangled polymer melt configurations, 
complete relaxation of the system on all length scales might 
not be achievable. 

To overcome this bottleneck in the mapping between 
ideal chains (i.e., freely jointed chains) and chemically real­
istic (i.e., bead-spring) chains Auhl et al. have employed 
additional MC density homogenization procedures in combi­
nation with a double-bridging algorithm.24 We have adopted 
a simpler protocol that is described below. 

Excluded volume density-biased MC approach. In our 
approach we partially include the excluded volume interac­
tions during the density-biased Monte Carlo generation of 
the freely jointed chain configurations in the melt. When the 
ith segment of the kth chain is generated, it “feels,” in addi­
tion to the SCFT fields, the excluded volume interactions of 
all other segments (except for some number Nexcl of adjacent 
intramolecular neighbors). Each segment in this procedure is 
represented by a hard sphere of radius rexcl. If a trial place­
ment of a given segment overlaps with any other segment 
(over the set of all intermolecular segments and intramolecu­
lar ones separated by more than Nexcl segments) then the
attempt is rejected and another placement is attempted. We 
have restricted Nexcl �4. The exclusion of Nexcl intramolecu­
lar neighbors is motivated by the fact that the intramolecular 
overlap on such local scales is not important and can be 
easily annealed during the relaxation MD simulation run. 
One might expect that the inclusion of these excluded vol­
ume interactions during the density-biased MC procedure 
will affect overall chain conformations relative to the case of 
zero excluded volume. However, allowing local overlap 
minimizes this effect. Therefore, by adjusting the two (prac­
tically empirical) parameters Nexcl and rexcl, one can, in prin­
ciple, obtain both the desired chain dimensions and a suit­
ably homogeneous distribution of segments within the 
system. 

Another important issue to consider in this procedure is 
that when the first freely jointed chain is placed in the simu­
lation cell in the density-biased MC procedure, it (obviously) 
is not subject to excluded interactions with other chains, 
whereas the final chain in the configuration will be subject to 
excluded volume interaction with all chains previously gen­
erated. This certainly creates a dependence of the chain con­
formational properties (e.g., radius of gyration) on when in 
the sequence of chain generation a given chain is placed. 
Thus, while the average radius of gyration in a given situa­
tion can be “tuned” using Nexcl and rexcl, the radius of gyra­
tion for individual chains will likely have an “index depen­
dence,” specifically, increased values of Rg for chains with 
low index and reduced values for chains with high index. To 
circumvent this possibility, we initially generate M chains 
(total number of chains in the configuration), then eliminate 
the first chain and generate an (M +1)th one, then eliminate 
the second chain and generate an (M +2)th one, and so on 
until the first M chains are replaced by another M chains 
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(indexed as M +1 to 2M). By doing this the M final chains 
are generated in an essentially even-handed fashion. 

To determine optimal values for Nexcl and rexcl, we fo­
cused on the n=38 (N=23) system. In this low molecular 
weight regime, the equilibrium chain dimensions on all 
length scales can be easily obtained from MD simulations. 
Therefore Nexcl and rexcl can be determined such that the 
freely jointed chains and subsequently reverse-mapped bead-
necklace chains are in near-perfect agreement with the con­
formational characteristics of bead-necklace chains obtained 
directly from molecular dynamics. We found that Nexcl=4  
and rexcl=0.29< yield accurate matches between reverse-
mapped and equilibrium bead-necklace chains for the con­
formational properties on all length scales. These parameters, 
while empirical and adjusted for n=38 chains, are apparently 
universal for all larger molecular weights. This is evident in 
Fig. 8, where we show (R2 ) /m for reverse-mapped and re­m 

laxed configurations for chains with n=76 using Nexcl and 
rexcl determined for the n=38 system. No significant pertur­
bation of chain configurations is observed on any length 
scale. The generation of systems with even longer chains 
(n=304) also did not exhibit deviations from the (R2 ) /mm 

master curve. Examination of the distribution of the number 
of segments in 3<�3<�3< subvolumes for configurations 
generated using density-biased Monte Carlo with partial ex­
cluded volume interactions indicates a significant improve­
ment relative to configurations generated without excluded 
volume (Fig. 7, triangles). Although rexcl=0.29< is small 
compared to “real” segment dimensions (a=1.7< for long 
chains), it leads to significant narrowing of the distribution of 
the number of segments in subvolumes and hence noticeable 
homogenization of the segmental density in the system. Note 
that the primary reason for perturbed configurations in the 
unmodified approach of Sec. II D is not the intrinsic overlap 
of the mapped beads but rather their heterogeneous distribu­
tion (or incorrect intermolecular correlations) in the initial 
configurations. As the results above illustrate, if this hetero­
geneity is reduced then bead overlap on very short length 
scales can be easily relaxed on short time scales without 
perturbation of chain conformations on larger length scales. 

To ensure that a 30 000 step MD relaxation run is suffi­
cient to completely remove any excess energy introduced 
initially due to the overlap of beads during chain generation, 
we have monitored the evolution of the average energy per 
bead (total energy of the system normalized by number of 
beads in the system) during the run. The results are shown in 
Fig. 9 

FIG. 9. Time evolution of the average energy per bead for four reverse-
mapped bead-necklace configurations during relaxation MD simulations. 
Horizontal line indicates the average value obtained from well equilibrated 
MD simulations. 

for n=76, where one can see that within 10 000 inte­
gration steps the energy reaches a steady-fluctuating value, 
indicating that the chosen duration of the relaxation run is 
sufficient. To confirm that the interfacial properties of 
reverse-mapped configurations are representative for the sys­
tem of interest we compare in Fig. 10 

FIG. 10. (a) A and B phase density profiles and (b) fraction of end beads 
along z direction as obtained from well equilibrated MD simulations (line) 
and from reverse mapped with excluded volume interactions and subse­ 
quently relaxed configurations. 

A and B phase density 
profiles and fraction of end beads [panels (a) and (b), respec­
tively] along the z direction as obtained from well equili­
brated MD simulations to those of the 20 “best” reverse­
mapped/relaxed configurations. While the statistics averaged 
over single snapshots from 20 reverse-mapped configura­
tions are noisy, it is clear that the interfacial properties in 
reverse-mapped configurations are accurate. 

IV. CONCLUSIONS

We have developed a bidirectional mapping procedure
for homopolymer blends that links molecular dynamics 
simulations and self-consistent field theory (SCFT). In the 
“forward” direction molecular dynamics is used to generate 
well equilibrated interfacial density profiles for bead-
necklace systems, for chain molecular weights that can be 
successfully relaxed using standard methods. Enforcing the 
constraint that the average squared radius of gyration (R2

g )
and contour length Cn are the same for the bead-necklace 
molecular dynamics chains and freely jointed chains invoked 
in the SCFT yields well-defined relationships between the 
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number of molecular dynamics beads n and statistical seg­
ments N and bead diameter < and statistical segment length 
a. This information is used to determine an effective “Flory-
Huggins” interaction strength xN that is the only free param­
eter appearing in the version of SCFT used here.

In the “reverse” direction, a density-biased Monte Carlo 
approach is used in conjunction with the calculated density 
fields from SCFT to generate representative chain configura­
tions in the blend, based on freely jointed chains that include 
limited excluded volume interactions for all intermolecular 
contacts and for intramolecular length scales in excess of a 
specified minimum value. The partial excluded volume inter­
action is characterized by two empirical parameters rexcl and 
Nexcl that can be optimized by comparison to MD simulation 
results for well equilibrated, short chain blends. Mapping of 
the freely jointed chains thus obtained onto bead-necklace 
chains suitable for use in molecular dynamics simulations is 
performed using an efficient iterative procedure based on the 
relationships between n and N and < and a mentioned in the 
preceding paragraph. 

A straightforward MD equilibration protocol is used to 
relax initial bead-bead overlaps that result from reverse map­
ping procedure. Specifically, a very short trajectory segment 
(1000 time steps in this work), during which the large forces 
due to initial bead overlap are restricted to numerically man­
ageable values and velocities are scaled to yield the desired 
temperature at every time step, is followed by a short stan­
dard NVT-MD segment (30 000 time steps in this work). 
These short trajectory segments were found to be sufficient 
to gracefully remove initial overlaps, yield distributions of 
monomer densities in subvolumes that are in reasonable 
agreement with results from long MD runs, and provide 
stable system energies that agree well with long time MD 
simulation results. Subsequent to this efficient equilibration 
protocol, system configurations are suitable for long produc­
tion runs. 

In addition to the correspondence of the number density 
distributions and energies mentioned in the preceding para­
graph, the bidirectional approach was further validated by 
comparisons of the following properties, as obtained directly 
from well equilibrated MD runs and from the reverse map­
ping procedure, generally over a range of chain lengths ac­
cessible to molecular dynamics (i.e., below the entanglement 
molecular weight): (1) interfacial density profiles; (2) distri­
butions of “end” and “middle” groups in the vicinity of the 
interface; and (3) normalized z component of chain radius of 
gyration in the bulk majority phase, at the interface, and in 
the minority phase. In addition, we have demonstrated that 
the method yields the correct chain conformations on all 
length scales based on the behavior of (R2 /m), even form 

chain lengths well above the entanglement molecular weight. 
This latter point is a strong indicator of the validity and 

usefulness of the bidirectional mapping procedure described. 
An interesting question is the efficacy of this approach, sub­
ject to modest alterations, in the generation of initial equilib­
rium configurations for complex morphologies in mi­
crophase separated block copolymer systems. 
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