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Abstract 

Lake Erie is a freshwater lake, and the most southern of the Laurentian Great Lakes in North America. 

It is the smallest by volume, the fourth largest in surface area (25,700 km2), and the shallowest of the 

Laurentian Great Lakes. The lake’s high productivity and warm weather in its watershed has attracted 

one-third of the total human population of the Great Lake’s basin. The industrial and agricultural 

activities of this huge population has caused serious environmental problems for Lake Erie namely 

harmful algal blooms, dissolved organic/inorganic matters from river inputs, and sediment loadings. If 

these sorts of water contaminations exceed a certain level, it can seriously influence the lake ecosystem. 

Hence, an effective and continuous water quality monitoring program is of outmost importance for 

Lake Erie.  

The use of Earth observation satellites to improve monitoring of environmental changes in water 

bodies has been receiving increased attention in recent years. Satellite observations can provide long 

term spatial and temporal trends of water quality indicators which cannot be achieved through 

discontinuous conventional point-wise in situ sampling. Different regression-based empirical models 

have been developed in the literature to derive the water optical properties from a single (or band ratio 

of) remote sensing reflectance (radiance). In situ measurements are used to build these regressions. The 

repeated in situ measurements in space and/or time causes clustered and correlated data that violates 

the assumption of regression models. Considering this correlation in developing regression models was 

one of the topics examined in this thesis. More complicated semi-analytical models are applied in Case 

II waters, aiming to distinguish several constituents confounding water-leaving signals more 

effectively. The MERIS neural network (NN) algorithms are the most widely used among semi-

analytical models. The applicability of these algorithms to derive chl-a concentration and Secchi Disk 

Depth (SDD) in Lake Erie was assessed for the first time in this thesis. Satellite-observations of water 

turbidity were then coupled with a 1-D lake model to improve its performance on Lake Erie, where the 

common practice is to use a constant value for water turbidity in the model due to insufficient in situ 

measurements of water turbidity for lakes globally. 

In the first chapter, four well-established MERIS NN algorithms to derive chl-a concentration as well 

as two band-ratio chl-a related indices were evaluated against in situ measurements. The investigated 

products are those produced by NN algorithms, including Case 2 Regional (C2R), Eutrophic (EU), Free 

University of Berlin WeW WATER processor (FUB/WeW), and CoastColour (CC) processors, as well 
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as from band-ratio algorithms of fluorescence line height (FLH) and maximum chlorophyll index 

(MCI). Two approaches were taken to compare and evaluate the performance of these algorithms to 

predict chl-a concentration after lake-specific calibration of the algorithms. First, all available chl-a 

matchups, which were collected from different locations on the lake, were evaluated at once. In the 

second approach, a classification of three optical water types was applied, and the algorithms’ 

performance was assessed for each type, individually. The results of this chapter show that the 

FUB/WeW processor outperforms other algorithms when the full matchup data of the lake was used 

(root mean square error (RMSE) = 1.99 mg m-3, index-of-agreement (I_a) = 0.67). However, the best 

performing algorithm was different when each water optical type was investigated individually. The 

findings of this study provide practical and valuable information on the effectiveness of the already 

existing MERIS-based algorithms to derive the trophic state of Lake Erie, an optically complex lake. 

Unlike the first chapter, where physically-based and already trained algorithms were implemented to 

evaluate satellite derived chl-a concentration, in the next chapter, two lake-specific, robust semi-

empirical algorithms were developed to derive chl-a and SDD using Linear Mixed Effect (LME) 

models. LME considers the correlation that exists in the field measurements which have been 

repeatedly performed in space and time. Each developed algorithm was then employed to investigate 

the monthly-averaged spatial and temporal trends of chl-a concentration and water turbidity during the 

period of 2005-2011. SDD was used as the indicator of water turbidity. LME models were developed 

between the logarithmic scale of the parameters and the band ratio of B7:665 nm to B9:708.75 nm for 

log10chl-a, and the band ratio of B6:620 nm to B4:510 nm for log10SDD. The models resulted in RMSE 

of 0.30 for log10chl-a and 0.19 for log10SDD. Maps produced with the two LME models revealed 

distinct monthly patterns for different regions of the lake that are in agreement with the biogeochemical 

properties of Lake Erie. 

Lastly the water turbidity (extinction coefficient; Kd) of Lake Erie was estimated using the globally 

available satellite-based CC product. The CC-derived Kd product was in a good agreement with the 

SDD field observations (RMSE=0.74 m-1, mean bias error (MBE)=0.53 m-1, I_a=0.53). CC-derived Kd 

was then used as input for simulations with the 1-D Freshwater Lake (FLake) model. An annual average 

constant Kd value calculated from the CC product improved simulation results of lake surface water 

temperature (LSWT) compared to a “generic” constant value (0.2 m-1) used in previous studies (CC 

lake-specific yearly average Kd value: RMSE=1.54 ºC, MBE= -0.08 ºC; generic constant Kd value: 

RMSE=1.76 ºC, MBE= -1.26 ºC). Results suggest that a time-independent, lake-specific, and constant 
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Kd value from CC can improve FLake LSWT simulations with sufficient accuracy. A sensitivity 

analysis was also conducted to assess the performance of FLake to simulate LSWT, mean water column 

temperature (MWCT) and mixed layer depth (MLD) using different values of Kd. Results showed that 

the model is very sensitive to the variations of Kd, particularly when Kd value is below 0.5 m-1. The 

sensitivity of FLake to Kd variations was more pronounced in simulations of MWCT and MLD. This 

study shows that a global mapping of the extinction coefficient can be created using satellite-based 

observations of lakes optical properties to improve the 1-D FLake model. 

Overall, results from this thesis clearly demonstrate the benefits of remote sensing measurements of 

water quality parameters (such as chl-a concentration and water turbidity) for lake monitoring. Also, 

this research shows that the integration of space-borne water clarity (extinction coefficient) 

measurements into the 1-D FLake model improves simulations of LSWT. 
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Chapter 1 

General Introduction 

1.1 Preface 

In addition to a general introduction, a background chapter and a general conclusion, the thesis contains 

three journal articles that examine the applicability of remote sensing observations to retrieve the bio-optical 

properties of water bodies and how these observations can improve water temperature simulations in a lake 

model. The first paper, submitted to the international journal Remote Sensing of Environment, presents an 

extensive evaluation and comparison of different existing chlorophyll-a (chl-a) retrieval algorithms that are 

intended for use with MEdium Resolution Imaging Spectrometer (MERIS) data, and made available in the 

Basic ERS & ENVISAT (A)ATSR MERIS (BEAM) toolbox. A two-step clustering method was also 

applied to derive different existing optical classes in the lake. The applicability of the algorithms for each 

water type was evaluated. The second paper, submitted to the international journal Remote Sensing, presents 

the development and assessment of a new algorithm based on a Linear Mixed Effect (LME) model to derive 

chl-a concentration and Secchi Disk Depth (SDD). The third paper, submitted to the international journal 

Hydrology and Earth System Sciences, evaluated a globally available MERIS product for water turbidity. 

The satellite-derived water turbidity was applied in a lake model, the 1-D Freshwater Lake (Flake) model, 

to improve the results of simulated lake surface water temperature (LSWT). The sensitivity of the FLake 

model to water turbidity was also investigated based on simulated LSWT, mean water column temperature 

(MWCT), and mixed layer depth (MLD).  

The work presented in this thesis was conducted under the supervision of Professor Claude Duguay who 

aided a great deal with the initial proposal of each article, and also provided funding for the research. Dr. 

Caren Binding (Environment Canada) provided the in situ data of Lake Erie and also the opportunity to 

join her research group on the Lake Erie Limnos Cruise.  Dr. Ram Yerubandi, also from Environment 

Canada, provided meteorological data for Lake Erie. All materials in composition of the original articles 

provided in the thesis are the sole production of the primary investigator listed as first author in the journal 

publications. The research presented in this thesis is the direct result of a collaboration with the listed co-

authors. Dr. Homa Kheyrollah Pour, from the “Duguay Research Group”, supported this research through 

comments and advice related to running the FLake model. Dr. Daniel Odermatt, from “Odermatt & 

Brockmann GmbH”, provided comments and advice about the algorithms available in the Basic Envisat 

and ERS (A)ATSR and MERIS toolbox (BEAM). The manuscripts were edited for content and composition 

by the co-authors. 
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1.2 Motivation 

The Laurentian Great Lakes are a vital natural resource that contains 18% of the Earth’s potable freshwater 

(Reynold, 1996). Among these lakes, Lake Erie is the smallest by volume but yet the most productive of 

them due to its shallowness and warm temperature (Munawar and Weisse, 1989; IJC. International Joint 

Commission Canada and United States, 2013). Due to the high productivity of the lake, a large population 

density is living in its watershed (11.6 million people (IJC. International Joint Commission Canada and 

United States, 2013)); and a large percentage of agricultural lands exists in its drainage basin (63% of the 

lake’s watershed (IJC. International Joint Commission Canada and United States, 2013)). Therefore, the 

local population on Lake Erie basin are in the substantial dependency on the lake for providing their 

economical, recreational and industrial needs (Gobler and Wilhelm, 2015). These human activities severely 

threaten the water quality of Lake Erie. Municipal sewage treatment plants contribute to nutrient loadings, 

particularly phosphorus. There are other anthropogenic sources as well, but diffuse runoff from rural and 

urban lands is today a leading factor among these sources (IJC. International Joint Commission Canada and 

United States, 2013). Excess nutrients enrichment, known as eutrophication, is particularly evident in Lake 

Erie. Lake Erie is experiencing profound changes due to eutrophication including severe and frequent algal 

blooms (IJC. International Joint Commission Canada and United States, 2013). It is the most subjected to 

sediment loading among the Great Lakes. The fine sediments covering the lake bottom can be easily 

distributed when the shallow lake is stirred up by winds, therefore degrading water clarity (Lake Erie LaMP 

Work Group, 2004).   

Aquatic ecosystem management can control and decrease the environmental stresses with an effective 

monitoring of water quality parameters on Lake Erie. Water temperature, suspended and dissolved 

materials, algae growth, and turbidity are among water quality parameters that can impact submerged 

ecosystem health. In situ surveys allow for measurement of these parameters along depth profiles. However, 

the most important drawback of relying only on the field work in the water quality monitoring programs is 

the technical and financial supports to operate these surveys in adequate spatial and temporal coverage. 

Remote sensing methods can complement in situ sampling. Over the last few decades, remote sensing 

observations have revolutionized research especially in remote high latitude regions. Satellite imagery 

permits water quality monitoring from local to global scales, while field measurements cannot operate the 

in situ data collection in the required temporal and spatial scales. However, field measurements are still 

vital for developing remote sensing algorithms, and also for a precise interpretation of satellite-derived 

optical data. There is an urgent need to develop retrieval algorithms of lake optical properties from recent 

and current satellite missions, and evaluate them against available in situ measurements for both lake 

monitoring and modeling purposes. 
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The MEdium Resolution Imaging Spectrometer (MERIS) on board the European Space Agency (ESA)’s 

Envisat platform collected data from March 2002 until April 2012. The observations were provided in 15 

spectral bands (spanning the reflective solar spectral range from 390 to 1040 nm), 16 bit radiometric 

resolution, 300 m full spatial resolution, and with a three-day revisit cycle at the equator. MERIS resolutions 

is more appealing than other current satellites sensors for monitoring aquatic ecosystems. The band centers 

and widths were designed for an improved insight into water optical properties. The 10-year MERIS 

archived data is an imperative source for studies on lake systems dynamics at regional and global scales. 

The in-water algorithms are developed and validated to explore the capacity of MERIS observation to 

accurately retrieve the biogeochemical properties of lakes. Although MERIS is not active anymore, the 

forthcoming Sentinel-3 Ocean and Land Colour Instrument (OLCI) will provide continuity for global 

monitoring of lakes. The validation of available MERIS products is of key importance in order to develop 

algorithms for the upcoming Sentinel-3 OLCI sensor which has MERIS heritage and improves upon the 

data collected by MERIS (Palmer et al., 2014). The motivation of this thesis is to examine the applicability 

of remote sensing methods for the identification of important water quality parameters that can assist a great 

deal with the monitoring and preserving the important ecological system of Lake Erie. This work also aims 

to improve the results of a lake model through integration of space-borne water clarity measurements.  

1.3 Objectives 

The overall goal of this research is to evaluate and improve chlorophyll-a (chl-a) concentration and water 

turbidity retrieval algorithms from MERIS satellite data on Lake Erie. It also aims to investigate how the 

lake-specific water turbidity derived from satellite observations can improve simulations of LSWT from a 

lake model (Freshwater Lake or FLake model), where the common practice is to use a constant value for 

water turbidity in FLake. The specific objectives of this thesis are to: 1) evaluate the applicability of 

different existing MERIS algorithms to derive water optical parameters of interest in different optical 

classes of lake, both individually and all together at once; 2) develop a semi-empirical algorithm using 

regression methods based on a linear mixed effect (LME) model approach to estimate chl-a concentration 

and water turbidity from MERIS satellite observations and evaluate the results against the field 

measurements; and 3) investigate the improvement of the one-dimensional (1-D) FLake model to simulate 

lake water surface temperature through integration of satellite-derived turbidity from the globally available 

satellite-based CoastColour product. 

1.4 Thesis Contribution 

In this thesis, the performance of four well-established MERIS semi-analytical NN-based algorithms to 

derive chl-a concentration in Lake Erie is evaluated. These algorithms are the most widely used of the semi-
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analytical techniques due to their availability within the publically available BEAM toolbox. The lessons 

learned from this evaluation (i.e. strengths and limitations of the algorithms) will help improve the 

processors being developed for the future Sentinel-3 OLCI sensor, which will provide continuity to MERIS 

data. 

A LME model approach is also employed to develop regression-based empirical equations for deriving 

chl-a concentration and SDD in Lake Erie. There are different band ratio (or single band) algorithms used 

in the literature for deriving water optical properties. These models are based on developing a statistical 

regression between satellite band ratios (or single bands) and the optical properties. The in situ data required 

for calibrating these regression algorithms are collected repeatedly in space and/or time, hence representing 

clustered or dependent data which violates the assumption of regression models. Therefore, in this thesis, a 

LME model approach is employed as the regression method. This approach is more robust statistically than 

the common regression-based equations developed in previous investigations on remote sensing of water 

quality parameters. 

The last significant contribution of this thesis is in the improvement of simulations with the 1-D FLake 

model. Water turbidity is one of the input parameters of the model to describe the optical properties of 

lakes. However, due to the scarcity of in situ measurements of this parameter in field monitoring programs, 

a “generic” constant value is often used to run the model. In this thesis, the potential of remote sensing 

observations to fill this data gap and improve the performance of the model is demonstrated. Satellite-

derived water turbidity is used as input in FLake model simulations. Model output shows clear 

improvements in water temperature simulations for Lake Erie. 

1.5 Thesis Structure 

This manuscript-based thesis consists of six chapters. The current chapter presents the rationale and 

objectives of the thesis, outlining the need for monitoring chl-a concentration and water turbidity in Lake 

Erie, and coupling the satellite-based observations of lake water turbidity in a lake model. 

Chapter 2 reviews a list of lake water quality parameters, and how their variations can affect lake 

ecosystems. Field measurement methods for parameters with optical properties, including chl-a 

concentration and turbidity, are covered. Different satellite-based algorithms developed to measure these 

variables over water bodies are then described. The most important available satellites that are commonly 

used to derive optical properties of water bodies are discussed. Background information about the 

requirement for a global mapping of lake turbidity in lake models and the applicability of integrating 

satellite-derived lake turbidity within 1-D lake models are provided. This chapter also reviews the 
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characteristics of the study site, Lake Erie, and how chl-a concentration and water turbidity are measured 

in the field for the lake.  

Chapter 3 addresses the first objective of the thesis by evaluating existing MERIS algorithms to derive 

chl-a concentration and also a blended algorithm using in situ measurements collected by Environment 

Canada for Lake Erie.   

Zolfaghari, K., Duguay, C.R., Odermatt, D. Evaluation of MERIS Chlorophyll-a Retrieval Algorithms 

for Optically Complex Lake Erie. 

Chapter 4 addresses the second objective by developing a Linear Mixed Effect (LME) model to derive 

chl-a concentration and water turbidity from MERIS observations and evaluate them against the field 

measurements provided by Environment Canada for Lake Erie. 

Zolfaghari, K., Duguay, C.R. Estimation of Water Quality Parameters in Lake Erie from MERIS Using 

a Linear Mixed Effect Model. 

Chapter 5 addresses the improvement of the 1-D FLake model to simulate lake surface water temperature 

by integrating satellite-based measurements of water clarity through the extinction coefficient. This optical 

property is provided from the globally available CoastColour product and was evaluated with the field 

observations provided by Environment Canada on Lake Erie. The model results were compared against in 

situ measurements of surface water temperature collected by the National Data Buoy Center (NDBC) of 

NOAA. 

Zolfaghari, K., Duguay, C.R. Kheyrollah Pour, H. Satellite-Derived Light Extinction Coefficient and its 

Impact on Water Temperature Simulations in a 1-D Lake Model. 

The final chapter provides a summary of key findings of the research. It also presents some of the 

limitations of the thesis and future research directions. 
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Chapter 2 

Background 

2.1 Introduction 

This chapter includes 5 sections, each section covering the pertinent background to the research in this 

study. Section 2.2 describes critically important physical, chemical, and biological water quality parameters 

that can be estimated using remote sensing methods. Section 2.3 is focused on field measurement methods 

of water quality parameters of interest in this thesis: chlorophyll-a (chl-a) concentration and turbidity. 

Different remote sensing satellites, and algorithms currently available to derive bio-optical properties of 

waterbodies are described in section 2.4. Section 2.5 discusses the necessity of considering the integration 

of satellite-derived optical parameter (extinction coefficient) for lake model simulations. A description of 

the general characteristics of Lake Erie and also the employed water quality in situ measurement methods 

for this research are provided in section 2.6. A summary of the key elements of this chapter is then given 

in section 2.7. 

2.2 Lake Water Quality 

Lakes play an important role in different applications including: urbanization (drinking water supplies, 

agriculture, transportation), industry (fishery, power generation), and recreation (Guan et al., 2012).  The 

water quality of lakes is vital to human activities and needs. It also plays a critical role in sustaining regional 

ecosystems (Wang et al., 2011). The physical, chemical, and biological properties of lake water and the 

aquatic ecosystem can be used to describe the water quality and its suitability for a particular purpose such 

as: drinking, protection and maintenance of aquatic life, agricultural irrigation, and recreation. The physical 

and chemical properties are considered as a “snapshot” of water condition at the moment of sampling; while 

the biological factors show the combined impact of diverse water quality factors (Water Quality Task 

Group, 2006). The selection of these physical, chemical, and biological characteristics used to measure 

water quality depends on the water quality issues and water uses of interest (Water Quality Task Group, 

2006). Dissolved organic and inorganic matters, total suspended solids, chl-a, dissolved oxygen, 

conductivity, pH, and temperature are among the parameters typically being measured (Salama et al., 2012).  

Degradation in water quality is a result of environmental stresses from natural and anthropogenic sources. 

Naturally-sourced stresses cause variations in water quality resulting from changes in seasons, climate, type 

of soils and rocks the water flows through. However, human activities such as urban and industrial 

development, farming, mining, combustion of fossil fuels, animal-feeding operations can also change the 

quality of natural waters. There are many lake water quality monitoring programs designed to keep records 
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of changes in water quality indicators. They are based on the use of different standards and guidelines to 

classify water quality for designated uses. Summary of the physical, chemical, and biological water quality 

indicators, that the Canadian Council of Ministers of the Environment (CCME) referred them as the key 

parameters, are listed in Table 2-1. In this table, variables are a surrogate measurement for the second 

variables. Some of these parameters are measurable using satellite observations (as it will be covered in 

Section 2.4). More details of these variables are provided below. Other variables such as nitrogen and 

phosphorus concentrations, which are not regularly measured by satellite imagery directly, are also outlined 

here as the critically important water quality factors.  

Table 2-1 Summary of the key variables and their inter-relationships (Protocol Manual for Water Quality Sampling in Canada, 

2011) 

Variable Second Variable Relationship 

Specific 

Conductivity (SC) 

Dissolved Solids 

(TDS) 

SC and TDS are usually related for each waterbody. TDS is the sum 

of constituents such as chloride, sulphate, etc. 

Turbidity 
Suspended Solids 

(TSS) 
Turbidity can be related to the amount of solids in suspension 

Temperature Dissoved Oxygen The amount of oxygen in water increases with cooler temperatures 

pH and 

Temperature 
Ammonia 

The toxicity of ammonia in water increases with higher pH and 

temperatures 

Secchi Disk 

Reading 
Turbidity, color, algae Measures light penetration in a lake that is reduced by these factors 

Chloride Nitrite The Toxicity of nitrite in water decreases with increased chloride 

Hardness Alkalinity Alkalinity and hardness often have similar concentrations in water 

Hardness, 

Dissolved Organic 

Carbon (DOC) 

Metals 
The toxicity of some metals (e.g., copper, zinc) decreases with 

increasing hardness and DOC 

2.2.1  Physical and Chemical Water Properties 

2.2.1.1 Temperature 

Effect on aquatic ecosystem health: Water temperature is an important factor in the aquatic ecosystem as it 

has a major influence on biological activities and growth of aquatic organisms. Different species such as 

zooplankton, phytoplankton, fish, and insects have a certain tolerance to temperature changes. Furthermore, 

temperature has a leading role in the chemical properties of water, as the chemical reactions accelerate at 

higher temperatures. Changes in water chemistry can accordingly have effects on submerged biology. As 

one of the chemical consequences of water temperature is its impact on oxygen levels. Warm water can 

hold less oxygen compared to cold water. So it may be saturated but not holding enough oxygen for living 

species. Another impact of water temperature on submerged ecosystems is that some of compounds existing 

in water, such as ammonia, are more toxic for living species at higher temperatures (Wetzel, 2001). Water 
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temperature has become an important indicator of climate change that can impact various habitats in or out 

of aquatic systems (Peters et al., 2011). 

Reasons for variations: Water temperature can change naturally in different days, and seasons. Daily 

changes are more noticeable at the surface which are warmer during the day and cooler at night. Layers of 

water with different temperatures will form in deep lakes in summer and winter, because of the unique 

relationship between water temperature and its density (water reaches its maximum density at 4oC (Figure 

2-1)). This process is called thermal stratification. In the fall, the surface water begins to cool and sink. 

Also, during spring, the increasing density of the warming water causes this surface layer to sink. 

Accordingly, when the layers reach similar temperature in spring and fall, wind forces are able to turbulently 

mix the whole layers from top to bottom. This process is referred to as lake turnover (Figure 2-2). 

Stratification and layer mixing associated with a turnover will affect the physical, and chemical 

characteristics developed in different layers, that eventually will have an effect on biological communities 

(Golterman, 1975; Illinois Environmental Protection Agency, 2014). 

Light can influence water temperature as it decreases exponentially with depth. Furthermore, lake 

temperature is affected by the lake size and temperature of inflows into the lake.  

 

Figure 2-1 Density of water (and ice) as a function of temperature. Note maximum density of water at 4ºC. (Data from Pauling 

1953 and Hutchinson 1957). 

 



 

 9 

   
 

Spring Turnover Summer Stratification Fall Turnover Winter Stratification 

Figure 2-2 Lake stratification and turnover (Redrawn after Wetzel, 1975)  

2.2.1.2 Total suspended material 

Effect on aquatic ecosystem health: Suspended materials (organic or inorganic) including silt, plankton, 

industrial materials, and sewage enter into the lake water. High concentration of total suspended materials 

reduces water clarity and prevents light penetration. As a result, photosynthesis rate and its by-product, 

oxygen, will decrease. Furthermore, as total suspended matters (TSM) absorbs heat, increasing the 

temperature is another cause for a lake to hold low levels of dissolved oxygen. Therefore, the waterbody 

will lose its ability to support living organisms. Suspended solids can disrupt natural movements and 

migration of species in water. Eventually, deposited solids will alter the bottom of the lake which can have 

an impact on fish habitat. Reduced growth rates, lowered resistance to disease, and clogged gills are direct 

harms of total suspended materials on fish (Vincent, 2008).  

Reasons for variations: Factors affecting the concentration of suspended solids in lake include: waste 

water discharges, industrial wastes, erosion from urban and agricultural lands, increased growth of 

phytoplankton, and high population of bottom feeders that can stir up the deposited suspended solids at the 

bottom of the lake. Also, turbulence caused by wind in shallow lakes or increased stream discharges can 

re-suspend them (Vincent, 2008). 

2.2.1.3 Total dissolved material 

Effect on aquatic ecosystem health: Total dissolved solids refer to any organic and inorganic material 

dissolved in water. Inorganic salts include principally calcium (ca2+), magnesium (mg2+), potassium (K+), 

sodium (Na+), bicarbonates (HCO3
-), chlorides (Cl-), and sulfates (SO4

2-). High concentration of dissolved 

solids in water can cause changes in turbidity, taste, and odor of lake water. Turbidity will cause increase 

in temperature and decrease of photosynthesis rate in water as a result of less light penetration. Thus less 

dissolved oxygen levels in water, and high temperature will lead to death of many aquatic organisms. 

Furthermore, possible changes in pH caused by dissolved ions in water can affect the overall health of 
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species. High concentration of dissolved salts can dehydrate the animal skins. Cloudy ice cubes, softer and 

faster melting ice can be other consequences of dissolved solids in water (Bronmark and Hansson, 2005). 

Reasons for variations: These ions and organic matters can originate from sedimentary rocks that water 

is flowing over, acidic rainfall, silt, sewage, urban and agricultural runoff, and industrial wastewater 

(Bronmark and Hansson, 2005). 

2.2.1.4 Turbidity 

Effect on aquatic ecosystem health: The clarity of water is defined using turbidity. Phytoplankton is the 

major source of turbidity in open water zones, whereas in areas closer to shore, detritus, and silt can also 

have an influence on water clarity. Phytoplankton is the microscopic plants living in water. The detritus 

(organic material) is from dead algae, higher plants, zooplankton, bacteria, fungi, etc. that can be produced 

within the water column, or watershed and washed into the lake. Silt (inorganic or mineral sediments) 

comes mostly from shoreline erosion and from the re-suspension of bottom sediments due to wind mixing. 

High turbidity can modify light penetration into the lake, and decrease the photosynthesis. The reduced 

photosynthesis will result in a lower food production, and oxygen release which are required for other living 

organisms. Turbidity effect on phytoplankton growth is complex and depends on the period of a specified 

turbidity status as well. For instance, very high levels of turbidity in a short period of time can be less of a 

problem compared to a lower level of turbidity that remains longer. Moreover, high concentration of 

particulate in water can fill in shallow lakes and the spaces between rocks that can be used by aquatic 

organisms as habitat (Wetzel, 2001; Canadian Council of Ministers of the Environment, 2003).  

Reasons for variations: Phytoplankton growth changes in different seasons. It starts to increase in spring 

with warmer temperature until growth peaks in summer for shallow lakes. As a result, less water clarity is 

expected in these seasons compared to winter that cooler weather will decrease phytoplankton growth. 

However, the water clarity increase in fall and winter will be decelerated due to more winds and water 

column sediments mixes in shallow lakes. Also, in deep lakes experiencing stratification in summer, 

turbidity may increase in fall turnover. As the surface water starts to cool down in fall, lake layers mix and 

the nutrients release from the lower layer of the lake may cause an algal bloom which results in decreasing 

water clarity. Furthermore, various organic and inorganic materials existing in the lake vary depending on 

the hydrological events such as storms and snowmelt to wash them into the lake, and also wind speed to 

stir up the lake bottom (Wetzel, 2001; Canadian Council of Ministers of the Environment, 2003). 

2.2.1.5 Phosphorus, Nitrogen 

Effect on aquatic ecosystem health: A limiting nutrient is a chemical necessary for plant growth, however, 

it is available in smaller amount that is required for algae to increase their abundance. Phosphorus and 
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nitrogen are major nutrients that can limit biological productivity in a waterbody; whereas other factors 

such as availability of light can also be a limiting environmental factor. These nutrients in aquatic ecosystem 

can occur in the form of organic or inorganic, dissolved or suspended in the water (Florida Lakewatch, 

2000).  

Eutrophication is a process, both natural and anthropogenic, of additional nutrients in waterbodies 

including: lakes, rivers, estuaries, and oceans. It will result in changes of primary production and species 

composition in the waterbody. The natural process of aging in lakes will result in a eutrophic status over a 

long (geological) time scale. On the other hand, industrial activities can be a reason of anthropogenic 

nutrient input to waterbodies as to raise the trophic status promptly, which is referred to as “cultural 

eutrophication”. The eutrophication process starts from poor nutrient state (oligotrophic), through 

mesotrophic state of having additional nutrients, to a final eutrophic status of waters where water quality 

decreases as a result of excess nutrients available in both water and sediments. One important consequence 

of eutrophication is the algae bloom that can oxygenate the water during the assimilation of available 

nutrients through photosynthesis. On the other hand, large quantities of dead algae sinking to the bottom of 

the lake will be decomposed by aerobic bacteria consuming oxygen. Low levels of available oxygen will 

lead to the death of fish and other aquatic organism. Moreover, oxygen depletion will establish the activity 

of anaerobic bacteria in bottom layers that can produce toxic gases harmful for lake ecosystem (Kondratyev, 

1999; Shaw et al., 2009).   

Reasons for variations: The contribution of nutrients can be from either point or diffuse as the external 

sources or from internal inputs (Table 2-2) (Shaw et al., 2009). Agriculture, domestic and industrial wastes, 

and phosphorus-rich lake bottom sediments are the most important sources of nutrient contribution into the 

lake.   

Table 2-2 Examples of point, diffuse, and in-stream sources of nutrients (Shaw et al., 2009) 

Point Sources Diffuse Sources In-stream Sources 

Sewage treatment plants Storm runoff from rural land Release of nutrients from bottom sediments 

Piggeries, Feedlots, Dairies Urban runoff Stream bank collapse 

Industrial effluents Groundwater discharge The seasonal mixing of phosphorus- enriched water  

from deeper layers in lakes or reservoirs with surface 

waters 
Irrigation drains Atmospheric fall-out 

2.2.2 Biological Water Properties 

2.2.2.1 Phytoplankton 

Effect on aquatic ecosystem health: Algae are photosynthetic aquatic organisms and the range of their size 

is from micro unicellular to giant multicellular. Lack of stems, roots, and leaves differentiate them from 
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plants. There are three main accessory pigments available in different types of algae that play a major role 

in photosynthesis: Chlorophylls, Carotenoids, and Biliproteins. The presence of each of them in algae will 

add the ability of sunlight absorption in a certain optical window. Pigment composition in different algae 

reflects the adaption to the natural light environment to make it suitable for algae to grow. Different types 

of algae are recognized based on the presence or absence of various photosynthetic pigments (Ston et al., 

2002; Greisberger and Teubner, 2007).  

Phytoplankton are a subset of algae and are the suspended aquatic microorganisms. Their biomass is one 

of the important bio-optical characteristics of waterbodies. Their distribution and population define the 

waterbody’s health, composition, and ecological status of the lake. Phytoplankton are unicellular algae 

living in both salty and fresh waters. These microorganisms use photosynthetic pigments to capture 

sunlight, carbon dioxide and nutrients available in water to produce organic food, and release oxygen. 

Phytoplankton can be further classified into three categories of green algae, diatoms, and blue-green algae 

(also called cyanobacteria). The phytoplankton community structure, and the dominance of a specific 

group, depends on the environmental factors including nutrient concentrations (Huszar and Caraco, 1998; 

Florida Lakewatch, 2000).  

Phytoplankton biomass has a critical role in bacterial life, and in the life chain of water organisms. They 

can provide the organic food for other living organisms in water. Accordingly fish production flourish in 

areas with massive phytoplankton biomass. Moreover phytoplankton population can be an indicator of 

climate change as they need a specific environmental life condition. Water temperature, salinity, and 

pollution are among factors affecting phytoplankton life. In addition, phytoplankton acts as a basis in the 

global carbon-cycle. They can absorb carbon dioxide from water to do photosynthesis using sunlight and 

release oxygen and store carbon dioxide in the form of organic material as by-product. Oceans absorb 

additional carbon dioxide available from the atmosphere to replace the reduced carbon dioxide 

concentration. The dead phytoplankton biomass sinks to the ocean floor carrying the stored carbon in their 

cells which will be covered by other sinking materials. Accordingly, ocean will create a “carbon sink” to 

store world’s excess atmospheric carbon (Golterman, 1975).  

On the other hand, a high population of phytoplankton, which is a consequence of having high 

concentration of nutrients needed for photosynthesis, is harmful for water ecosystems. The enhanced 

growth of phytoplankton, which is referred to as algal bloom, can result in production of toxins harmful for 

ecology and human health. Also, bacteria, decomposing the dead body of phytoplankton, deplete the 

oxygen in water causing low levels of oxygen required for other organisms to survive. Accordingly, the 

result will be a dead zone (Bresciani and Giardino, 2012).  
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Reasons for variations: As discussed above, various parameters including light, nutrients availability, 

temperature, salinity, turbulence, and stratification can vary in different seasons and locations of the lake 

leading to a change of lake’s environment. Consequently, the suitability of ecosystems for phytoplankton 

growth will change. Phytoplankton growth is dependent on the availability of enough nutrients, and light 

to do the photosynthesis (Deus, 2013). Temperature is an important environmental factor that can regulate 

phytoplankton growth (Binding et al., 2011a). Harris et al. (2006) conclude that a 4oC increase in water 

temperature can result in a 20% increase of primary production and a 43% increase in respiration (Harris 

et al., 2006).   

2.3 Field Measurements of Water Quality 

In situ measurements remain the most accurate solution for water quality monitoring programs (Moore et 

al., 2014). Mueller et al. (2003) provided a complete set of protocols for the measurement of 

biogeochemical, bio-optical, and optical parameters in waterbodies. In this chapter, the focus is on field 

measurement methods for chl-a and turbidity, as these are the two water quality parameters of interest in 

this thesis. Uncertainties associated with each of the methods are also summarized. 

2.3.1 Chlorophyll-a Measurement 

Chlorophyll is the green pigment found abundantly in nearly all algae. Chlorophyll allows plants and algae 

to use sunlight in the process of photosynthesis for growth (Florida Lakewatch, 2000). It has different 

forms; coded a, b, c, and d. These forms have various concentrations in different photosynthetic organisms. 

Chl-a is the most abundant form (Ston et al., 2002; Greisberger and Teubner, 2007). Thus, the monitoring 

of chl-a is an indirect measurement of phytoplankton biomass and its temporal variations; and it is a critical 

factor to measure for water quality monitoring (Moses et al., 2009). Furthermore, chl-a is empirically 

correlated to nutrients concentrations, in particular, phosphorus (Bresciani and Giardino, 2012).  

The use of chl-a for phytoplankton biomass is criticized, because chl-a content can change due to species 

composition, and the cells physiological state (DosSantos et al., 2003). In addition, the type of 

phytoplankton cannot be distinguished when chl-a concentration is used as indicator of phytoplankton 

biomass, as all of them have this photosynthetic pigment. Applying pigment analysis or using the 

microscope are the approaches can be taken to distinguish phytoplankton composition (US EPA, 1983). 

Alternatively, carbon, which is a basic currency to measure food production of phytoplankton, can be used 

as an indicator of phytoplankton biomass. It can be measured by an elemental analyzer. The disadvantage 

of this method is measuring all suspended carbon in the water sample that can be from detritus and inorganic 

sources. 
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Fine meshed phytoplankton nets (often 10 μm) can be used to collect and settle phytoplankton biomass. 

Sedimentation chambers can also be used to concentrate them. The chl-a concentration in the concentrated 

biomass is measured. This is possible due to chl-a unique spectral properties and using different methods 

with various levels of sophistication and accuracy. These methods range from simple and widely used 

spectrophotometric and fluorometric methods for chl-a, b, and c to more sophisticated chromatographic 

methods.  

It has be noted that, because chlorophyll pigments are sensitive to heat and light, the sampling have to be 

done in a dark room. This is to prevent them from growing and to avoid degradation during extraction and 

applying measurement techniques. The preferred method of keeping samples cold is storage in nitrogen 

with longer period of storage (e.g. one year) and the least degradation. It is also helpful for pigment 

extraction, as the cell walls and membrane are weakened during rapid temperature changes. Samples can 

also be kept in ultra-cold freezers (-90 ̊ C) for less than 60 days. Conventional deep freezers can hold the 

samples for less than 20 hours before transferring them to liquid nitrogen or ultra-cold freezers (Mueller et 

al., 2003).  

2.3.1.1 Spectrophotometric Measurements of Chl-a 

The first approach for chl-a measurement was spectrophotometric methods which were established 40 years 

ago and are still used today (Hydrology Project Training Module, 2000). In these set of methods, using a 

membrane filter, a known volume of water is filtered to concentrate the algal cells in sample (filter 50 ml 

to 2000 ml of water using a 0.5 μm filter pore size). An aqueous solution of acetone is used to extract 

pigments from the concentrated algal cells. The extract is then clarified by centrifugation. Absorption of 

the extract in different wavelengths is determined spectrophotometrically. The measurements are applied 

in a set of standard equations to derive chl-a concentrations (Salinas, 1988; University of South Florida, 

2010). 

Monochromatic equation: this method requires absorption at the wavelength of 665 nm before and after 

a 90-second acidification step. Chl-a concentration, which is corrected for phaeophytin (a common 

degradation product of chl-a), and the amount of phaeophytin in the sample are measured. Chl-b and c 

concentration cannot be derived using this equation. 

Trichromatic equation: this method requires absorption measurements at the wavelengths of 665, 645, 

and 630 nm to calculate the amount of chl-a, b, and c in the sample. The chl-a is uncorrected and 

phaeophytin concentration cannot be measured.  

2.3.1.1.1 Interferences  
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Over- or underestimation of chl-a in solutions containing all of the pigments is inevitable, due to spectral 

absorption overlaps (Arar, 1997a, 1997b; Arar and Collins, 1997; DosSantos et al., 2003). The spectral 

bandpass of the specterometer has to be adjusted to a band narrow enough. This adjustment avoids the 

overlap of absorption for different pigments to measure chl-a accurately at a given wavelength. The 

American Society for Testing and Materials (ASTM, 1984) reports a 40% error in estimation of chl-a 

concentration while using a spectrometer with 20 nm spectral bandpass (American Society for Testing and 

Materials, 2009). A spectral bandpass of 2 nm has been shown to work adequately to measure chl-a 

concentrations (Salinas, 1988). 

Chl-a is overestimated in the presence of phaeophytin using trichromatic equations. This is because 

phaeophytin absorbs light at the same wavelength as chl-a (665 nm); however, correction for the presence 

of it will not be considered in this method (Florida Departement of Protection Plan, 2011). However, the 

monochromatic equation with the acidification step corrects for phaeophytin interference. During the 

acidification, chl-b is converted to phaeophytin-b, which contributes in phaeophytin-a absorption. 

Therefore, the correction for phaeophytin can be potentially overestimated in the monochromatic equation 

(Florida Departement of Protection Plan, 2011). The use of the monochromatic method is preferred over 

the trichromatic equation, since the later poorly estimates chl-b and –c concentrations that leads to 

unrealistic (sometimes negative) results for chl-a. Chl-a is the most abundant component of chlorophylls in 

phytoplankton biomass, therefore the monochromatic method of measuring chl-a concentration has been 

shown to estimate most accurately the phytoplankton biomass (Salinas, 1988).   

Absorption reading at 750 nm is conducted to remove the effect of turbidity for both equations 

(Hydrology Project Training Module, 2000). High absorption at 750 nm indicates a poorly clarified solution 

which needs centrifugation or filtration before analysis.  

2.3.1.2 Fluorometric Measurements of Chlorophyll-a 

Pigments are first extracted from the sample using the same process as the spectrophotometric method. This 

method is based on the fact that chl-a fluoresces at 665 nm, when radiation at a wavelength of 430 nm 

excites it. The excitation and emission wavelengths are determined using optical filters (Hydrology Project 

Training Module, 2000). Any material that fluoresces in the red region can interfere in the chl-a 

measurement. The acidification procedure can be added to correct for the presence of phaeophytin; and the 

chl-a concentration is measured considering the decrease of fluorescence after acidification (Arar and 

Collins, 1997).  



 

 16 

A modified fluorometric method with special narrow bandpass filter can be used to nearly eliminate the 

interference of phaeophytin, and chl-b. In this case, fluorometry without performing acidification is applied; 

it causes a minimal overestimation of chl-a (Florida Departement of Protection Plan, 2011). 

Fluorometric measurements are cost-effective, easy, and fast for determining chl-a. A smaller sample 

volume is required with this method. Also, the analysis can be conducted on the ship during lengthy cruises. 

However, fluorometric methods are more appropriate for total pigments estimations due to possible 

interferers in case of having various kinds of pigments (DosSantos et al., 2003; Mueller et al., 2003). 

2.3.1.2.1 Interferences 

Depending on the type of algae, and therefore the pigments amount present in the sample source, there are 

spectral interferences using the fluorometric method that may under- or over-estimate the concentration of 

chl-a. If chl-b is present, during the acidification step, it will be converted to phaeophytin-b. Fluorescence 

contribution of phaeophytin-b to the one of phaeophytin-a will result in overestimation of phaeophytin-a 

correction and underestimation of chl-a (Arar and Collins, 1997; Florida Departement of Protection Plan, 

2011). The presence of chl-c in the sample will cause overestimation of chl-a (Arar and Collins, 1997; 

Florida Departement of Protection Plan, 2011).  

2.3.1.3 HPLC measurement of Chl-a 

The most recent method is the chromatography which separates various pigments and their degradation 

products before determining their concentration. The concentration of chl-a, b, c, and other species of 

interest can be determined after separation in the chromatography column and in a single instrument run 

using a fluorescence or absorption detector (Hydrology Project Training Module, 2000).  

Results from High-Performance Liquid Chromatography (HPLC) may be lower than those from 

spectrophotometric and fluorometric methods. This is because of the ability of chromatography methods to 

separate pigments and avoid the positive interferences happening in spectrophotometry and fluorimetry 

(Florida Departement of Protection Plan, 2011). 

Although this method is slow and requires expensive equipment to be operated by specialized 

technicians, the information gained from this method is important especially when pigment separation in 

the sample is necessary. Due to separation of diverse chlorophyll types and degradation products, this 

method is precise and is subject to low interference (DosSantos et al., 2003). 

2.3.2 Turbidity Measurement  

Turbidity is a general indicator of environmental health of waterbodies. Suspended and dissolved matters 

make water appear cloudy and muddy. Particulates such as clay, silt, finely divided organic matter, 



 

 17 

plankton, and other microscopic organisms, organic acids, and dyes affect turbidity measurements 

(Chauncey, 2005). Water clarity or optical depth is measured widely using a Secchi disk. The disk is 

attached to a rope that is lowered into the lake until it disappears from sight. Greater Secchi Disk Depth 

(SDD) indicates clearer water that lets the light penetrate more deeply into the lake (Ingram and Young, 

2010). 

Another method of measurement uses optical probes, and is based on “comparison of the intensity of 

light scattered in the sample under defined conditions with the intensity of light scattered in a reference 

suspension”. The turbidity is higher if the intensity of light is high (EPA Guidance Manual, 1999; US epa, 

2003). A wide variety of probes are available for turbidity measurement. These probes do not use the same 

wavelength, and angles of measurement to detect the scattered light. In addition, the signal processing 

strategies are different. Based on the differences in probes, various units of measurements are established 

and assigned considering the probe design (Chauncey, 2005). 

2.3.2.1 Interference  

The SDD measure is a worldwide-accepted method, easy and economic; however it still has some 

limitations. Limitations include the subjectivity of the measure due to its dependency on the ability of the 

operator’s eye. Also, the measure is influenced by environmental factors during the day such as the 

inclination of the sun, the state of the water, the time of day, and weather. SDD measurements are more 

reliable under certain conditions. Measurements should be made during calm days between 9 a.m. and 3 

p.m. on the leeward side of the boat, and with the sun at the back of the person who is measuring. Secchi 

measurements have limitations in shallow waters, where it may reach the bottom without having 

disappeared. These limitations of the Secchi disk method can be improved by using optical devices such as 

turbidimeter (Civera et al., 2013).  

In the presence of floating debris and coarse sediments that settle rapidly, the turbidity is low. Samples 

should be gently agitated by swirling to reduce particle settling. Otherwise the particles will be broken apart 

or air will be entitled into the sample when violently agitated (EPA Guidance Manual, 1999; US epa, 2003). 

Water samples always contain bubbles. They act like particles and scatter light resulting in incorrect 

measurements of turbidity (positive bias). The bubbles are generated because of chemical or biological 

processes, during filling of a sample container, or temperature fluctuations that result in a reduced solubility 

of gas in liquid. Also, temperature changes can alter particles’ behavior or create new particles. Particle 

settlement and temperature changes can lead to incorrect measurements. Therefore, measurements have to 

be done expeditiously (EPA Guidance Manual, 1999; US epa, 2003). 
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Instrument fouling, that is the result of biological growth or scratches, can also cause incorrect 

measurements. In case of scratches that block the sensor light beam, there will be a negative bias. Also, 

scratches that result in scattering of the sensor light beam will have a positive bias on turbidity 

measurements (Chauncey, 2005). Stray light will also increase the apparent light scatter and therefore will 

cause the positive bias on measurements (Chauncey, 2005). 

2.4 Satellite Remote Sensing of Water Quality 

Effective management of water resources requires monitoring water quality parameters from past to 

present. One way of achieving this is through field sampling and laboratory measurements. This 

necessitates technical and financial support to operate cruise surveys in adequate spatial and temporal 

coverage. However these efforts can still include multiple challenges, such as logistical issues, and breaks 

in sampling due to changes in funding priorities. Furthermore, field measurements are difficult to obtain in 

high-latitude remote regions due to accessibility. Given all of the above, complementary methods for water 

quality measurements are needed. Satellite remote sensing has proven to be a viable method for deriving 

bio-optical parameters, especially over lake regions where direct field measurements are difficult to obtain 

(Le et al., 2013).  

Optically significant water constituents, such as chl-a, suspended particulate matters, and colored 

dissolved organic matters, can be derived from satellite remotely sensed measurements of the reflected 

sunlight at given wavelengths in the visible and near-infrared spectrum (Cococcioni et al., 2007). This is 

due to the fact that these constituents absorb and scatter various wavelengths of the incident light in water 

(Figure 2-3). Hence, satellite remotely sensed water-leaving radiance can provide valuable information 

about changes in the aquatic environment such as algal blooms. There are two different optical properties 

associated with in-water constituents and their concentrations that is derived from satellite measurements: 

inherent optical properties (IOPs) and apparent optical properties (AOPs). AOPs are related to water 

constituents and light field, and are measured by satellite as water-leaving reflectance, whereas IOPs are 

solely a function of water constituents and their distribution and optical properties. Although IOPs are 

difficult to measure from optical studies, they can be related to AOPs. The derived IOPs can then be 

converted to constituent concentrations. Accordingly, the goal of optical studies is to measure AOPs and 

then derive IOPs from them to evaluate physical, chemical, and biological properties of water (Lee et al., 

1994).  



 

 19 

 

Figure 2-3 From left: Approximate absorption spectrum of colored dissolved organic matter (aCDOM); Absolute values for sea water 

absorption (a) and backscattering (bb); Relative values (normalized at 440 nm) of absorption (a) and scattering (b) for chl-a in 

phytoplankton (Robinson, 2004). 

According to the optical classification by Morel and Prieur, there are two different types of natural waters, 

namely Case I and Case II (Morel and Prieur, 1977). In deep ocean waters, the predominant constituent is 

phytoplankton and other constituents that co-vary with chl-a concentration. Such waters are referred to as 

Case I waters. Their optical properties are dominated by phytoplankton and the reflected light can be related 

to chl-a concentration. Case II waters contain other constituents such as suspended materials and dissolved 

materials which do not co-vary with phytoplankton biomass. Thus, the optical properties of Case II waters 

are more complex by producing overlapping, uncorrelated absorption and scattering through its components 

(Moses et al., 2009). Satellite remote sensing has been increasingly used to monitor the water quality 

parameters of Case I and II waters. The general parameters being mentioned in literature as being detectable 

from ocean color satellites are chl-a (Gower and King, 2012; Sugumaran and Thomas, 2012; Lesht et al., 

2013; Sá et al., 2015; Watanabe et al., 2015); TSM (Liu et al., 2010; L. Wang et al., 2012; Song et al., 2012; 

Tilstone et al., 2012); colored dissolved organic matter (CDOM) (López et al., 2012; Tian et al., 2012; 

Matsuoka et al., 2013); diffuse attenuation (water transparency and SDD) (Doron et al., 2011; Thayapurath 

and Talaulikar, 2012; Binding et al., 2015); cynobacterial pigment phycocyanin (Randolph et al., 2008; 

Ruiz-Verdú and Koponen, 2008; Kutser, 2012); and water surface temperature (Petrusevics et al., 2011; 

Chen et al., 2013; Zhu et al., 2013). 

In this section, different remote sensing approaches for water quality monitoring are described. The most 

common satellites used to derive optical properties of waterbodies are also mentioned. The rationale for 

employing MERIS in this thesis is also discussed. 

2.4.1 Remote Sensing Algorithms 

Morel and Gordon (1980) describe three approaches for the interpretation of water color data in order to 

derive the optical constituents’ properties: empirical, semi-analytical, and analytical. Empirical models are 
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based on statistical regressions to imply effective data optimization but they have limited transferability 

(e.g. Kabbara et al., 2008). In analytical models, radiative transfer theory is used to provide the relationship 

of upwelling irradiance (or radiance) with the water constituents. An inversion technique is applied on the 

resultant system of equations to derive constituents’ concentrations from irradiance (or radiance) values 

measured at several wavelengths (Morel, 1980). The semi-analytical approach is explained when a 

simplified solution of the radiative transfer equation is adopted which requires approximation or calibration 

of the bio-optical pieces of the model with empirical equations (e.g. Carder et al., 1999; Binding et al., 

2012). Statistical regression can be based on properties known from physics (e.g. investigating the nature 

of radiance spectral peak for chl-a concentration; Gitelson, 1992) which describes the epithet of “semi” 

from side of empirical approaches (Odermatt et al., 2012a). In this thesis, semi-empirical and empirical 

terms are used interchangeably.  

Several empirical models have been developed to establish a regression between the water quality 

parameter of interest and water-leaving reflectance or radiance in certain spectral bands, the ratio of these 

bands, or the combination of individual bands and their ratio, using different types of equations (linear or 

nonlinear) (Ruiz-Verdú and Koponen, 2008; Wang et al., 2012; López et al., 2012; Potes et al., 2012; Le et 

al., 2013). Empirical algorithms are robust, and simple to implement, especially for cases where in situ data 

is regularly collected. Regression-based algorithms generally work well for the specific lake of interest and 

for the time when the in situ data was collected; however, the applicability of the algorithms to other lakes 

and different seasons has to be verified (Gons et al., 2008). 

The empirical sensor-specific standard algorithms, which are based on using the primary chl-a absorption 

band (blue/green), exist for all medium resolution ocean color spectrometers. These algorithms are 

applicable to open ocean waters, and include the OC2, OC3, OC4, depending on the number of bands used 

(O’Reilly et al., 1998, 2000). However, O’Reilly et al. (1998) and other studies have clearly indicated that 

blue-green models do not perform well in Case 2 waters. In turbid waters, the spectral peak shifts from blue 

to green to red with increasing sediment loads. However, the blue/green band ratio algorithms interpret this 

shift solely as an increase of chl-a, leading to significant overestimation of chl-a concentration. Also, 

CDOM absorption in the blue region of spectrum is greatest. The effect of CDOM absorption decreases 

exponentially with increasing wavelengths, being near negligible in the red/NIR for the majority of waters 

(e.g. in the Great Lakes) (Binding et al., 2008). Therefore, these wavelengths offer minimal sensitivity to 

other CPAs. In optically complex Case II waters, the secondary absorption peak of chl-a in 665 nm is 

promoted due to the least variations from other water constituents apart from increasing water absorption. 

However, the major limitation of these methods is the absence of such feature in oligotrophic and some 

mesotrophic Case II waters (Odermatt et al., 2012a). Several studies have investigated the potential of using 
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red/NIR bands for estimating chl-a concentration by exploiting the absorption and fluorescence signals of 

chl-a at these wavelengths. A few recent ones are mentioned in the following. 

The solar-simulated fluorescence signal from chl-a in surface waters can be used to measure near-surface 

phytoplankton biomass. Fluorescence Line Height (FLH) is defined as the increase in radiance near 685 

nm relative to the measured radiance in a baseline band. However, some studies document that lake turbidity 

is a critical factor in the effective use of fluorescence. Gilerson et al. (2007) show non-algal and mineral 

particulates to have an elevated scattering at fluorescence emission, such that the effect of fluorescence on 

reflectance spectra in many turbid waters is almost negligible (Gilerson et al., 2007; Binding et al., 2011; 

Binding et al., 2012). Also, in intense bloom conditions, the absorption of chl-a at 685 nm dominates the 

fluorescence radiance. This leads to an absorption depth measurement instead of FLH (Gower and King, 

2012). Gons et al. (2008) report the successful use of MERIS FLH in oligotrophic waters of the Laurentian 

Great Lakes, and failure of this method (with diminishing or negative FLH) in mesotrophic or eutrophic 

lakes (Gons et al., 2008).  

The MCI is also a band-difference index similar to FLH, but it measures the height of water leaving 

reflectance peak at 709 nm relative to a baseline between bands at 681 and 753 nm (i.e. for MERIS bands). 

Binding et al. (2011) indicate that MCI is more effective solution than FLH for monitoring algal blooms in 

Lake of the Woods (a lake occupying parts of the Canadian provinces of Ontario and Manitoba, and the 

U.S. state of Minnesota with chl-a concentration ranging from 1.9 to 70.5 mg m-3) (MCI: R2= 0.72, FLH: 

R2=0.57). This study found that MCI for Lake of the Woods was fairly independent of the effect of high 

dissolved organic and suspended matters, and also the failure of atmospheric correction procedures that is 

common for MERIS in eutrophic waters (Binding et al., 2011). Binding et al. (2013) compared the potential 

of MERIS MCI product to detect algal blooms under a variety conditions for eutrophic, oligotrophic, and 

turbid waters of Lake of the Woods, Lake Ontario, and Lake Erie, respectively. The in situ measured MCI 

in Lake of the Woods showed strong logarithmic relationship with the in situ chl-a concentration ranging 

from 8.4 to 289 mg m-3 (R2=0.91). Despite the contamination of water-leaving reflectance due to other 

CPAs (TSM and CDOM), the red/NIR portion of spectrum was dominated by the effect of algal cells. The 

study suggests that MCI is fairly insensitive to CDOM, but significant sensitivity to mineral scattering. 

However, for Lake Erie, where mineral sediments often dominate the optical signal rather than chl-a, MCI 

showed a strong linear relationship with chl-a concentration in the range of 0.7-20 mg m-3 (R2=0.70). The 

apparent success of MCI in this study was attributed to the dominance remote sensing reflectance due to 

the thick cyanobacteria bloom, eliminating the contribution from the mineral turbidity below. For 

oligotrophic waters of Lake Ontario, with chl-a concentration less than 10 mg m-3, the peak near 709 nm 

shows very little sensitivity (Binding et al., 2013). 

https://en.wikipedia.org/wiki/Lake
https://en.wikipedia.org/wiki/Ontario
https://en.wikipedia.org/wiki/Manitoba
https://en.wikipedia.org/wiki/U.S._state
https://en.wikipedia.org/wiki/Minnesota
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Different blue/green band ratio regression models were tested in Witter et al. (2009) to derive chl-a 

concentration in Lake Erie using the SeaWiFS observations. The authors considered the evaluation of 

twelve globally-calibrated ocean-derived color algorithms, one regional algorithm derived for Case II 

waters of Baltic Sea, and a set of regional algorithms developed for the western, central, eastern basins of 

Lake Erie. Their results showed that none of the ocean-derived algorithms performed adequately for Lake 

Erie (1.72<RMSE<3.41 mg m-3; 0.65<correlation coefficient (R)<0.73). However, the regionally calibrated 

quadratic algorithms were promising for the eastern basin (RMSE=0.74 mg m-3, R=0.79), and possibly the 

central basin (RMSE=1.07 mg m-3, R=0.82). All the algorithms performed poorly in the western basin. 

They suggested that for the eastern and central basins of Lake Erie, a regional approach using “ocean-like” 

algorithms represents a significant improvement over direct use of globally-calibrated ocean algorithms. 

However, in the western basin, a different approach to algorithm development is required, when the 

regionally calibrated algorithms considered in that study did not produce satisfactory results. Moore et al. 

(2014) considered applying red/NIR bands in Lake Erie in addition to the blue/green bands to derive chl-a 

concentration from MERIS observations. A clustering approach was presented to manage the selection 

between the two algorithms: NASA-OC4 and MERIS 3-band algorithms. NASA’s OC4 algorithm is based 

on using the blue/green region of spectrum and is suitable for deriving low chl-a concentrations, while the 

MERIS 3-band algorithm that employs red/NIR bands becomes more important in turbid and/or eutrophic 

waters The retrieval accuracy improved from RMSE (MBE) values of 0.416 (-0.194) and 0.437 (0.115) for 

NASA OC4 and MERIS 3-band, respectively, to 0.320 (0.023) in the blending algorithm (the accuracies 

were reported in the logarithmic units).  

The western basin of Lake Erie is optically complex due to the existence of multiple CPAs, such as 

phytoplankton, suspended matters, and dissolved organic carbon. To improve the understanding of mixed 

spectral signatures, hyperspectral remote sensing technology was used in Ali and Ortiz (2014). The study 

estimated the concentration of chl-a and TSM in the optically complex waters of the western basin of Lake 

Erie. Ali and Ortiz (2014) collected upwelling radiances in visible and NIR range (400-900 nm) using a 

field-based spectroradiometer. A partial least squares (PLS) method was applied on the continuous narrow 

spectral bands. The method models the covariance between hyperspectral data and CPAs and identifies the 

optimal bands that characterize most of the variances in the CPAs. The method produced R2 (RMSE) values 

of 0.84 (1.18 mg m-3) and 0.90 (1.26 mg.L-1) for estimating chl-a and TSM concentrations. Their study 

illustrated the potential of hyperspectral data and the PSL method for extracting the absorption features of 

various CPAs in optically complex Case II waters (Ali and Ortiz, 2014). 

Other water constituents can also be estimated using satellite observations. Brezonik et al. (2015) applied 

different published band ratio models on the simulated Landsat 8, Sentinel-2 and Sentinel-3 bands from 
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field-measured reflectance spectra in several sampling sites in Minnesota and Wisconsin to estimate CDOM 

absorption at 440 nm. High R2 values were obtained (0.83-0.86). The study concluded that the broader 

Landsat 8 bands performed as well as the narrower Sentinel bands and hyperspectral bands. This is probably 

because CDOM absorption decreases exponentially with increasing wavelengths; and there is no specific 

peaks and troughs in the absorbance or reflectance spectra (Brezonik et al., 2015). Lobo et al. (2015) 

employed a non-linear empirical regression algorithm between measured TSM and reflectance of Landsat 

satellite family sensors (MSS, TM, and OLI) at red band for Tapajós River Basin in Brazil, and reported 

RMSE= 1.39 and R2 = 0.94. 

For monitoring the variations of SDD in the Laurentian Great Lakes using empirical models, Binding et 

al. (2007) merged data from the Coastal Zone Color Scanner (CZCS) and the Sea-viewing Wide Field-of-

view Sensor (SeaWiFS) over Lake Erie and Ontario. A regression equation was developed between 

coincident measurements of water transparency and remotely-sensed water-leaving radiance at ~ 550 nm 

using a power fit (Lake Erie: RMSE=24.8%, R2=0.71, N=400; Lake Ontario: RMSE= 23%, R2= 0.65, 

N=420) (Binding et al., 2007). In Binding et al. (2015), a third-order polynomial relationship was fitted 

between 1/SDD and remote sensing reflectance at ~ 550 nm, after merging the observations from the CZCS, 

SeaWiFS, and MODIS-Aqua sensors to monitor SDD variations in the Laurentian Great Lakes. An 

acceptable retrieval accuracy was derived across the three sensors (N = 1328, RMSE = 29.79 %, MBE = 

1.13 %, R2 = 0.74) (Binding et al., 2015).   

The empirical algorithms used in the investigations described above are based on using in situ data for 

training regression models. However, the correlation that stems from the repeated in situ measurements in 

space and/or time is not considered for developing the regressions. Therefore, the second objective of this 

thesis is motivated from this gap in the literature, to further improve the regression-based remote sensing 

algorithms that will enable successful retrieval of chl-a and SDD on the studied lake.  

In turbid waters, there is still significant contribution from suspended matters in the remote sensing signal 

in the red/NIR region; and the signals cannot be attributed to only chl-a absorption and fluorescence and 

water alone. In these techniques, the spatial distribution of chl-a concentration can still mirror that of known 

suspended sediments. Because of the complexity of Case II waters, approaches that employ semi-analytical 

algorithms seem more effective at distinguishing several constituents confounding water-leaving signals. 

Semi-analytical methods use the maximum information that can be gained from different bands in satellite 

images, to solve for several different parameters related to the water constituents, simultaneously. Hence, 

there is a high probability of differentiating signals coming from different in-water constituents (Matthews 

et al., 2010). More sophisticated physically based inversion methods have been used to estimate in-water 
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IOPs from water-leaving reflectance and related them to the concentrations of CPAs employing empirical 

models.  

Binding et al. (2012) used inverse modeling of water-leaving radiance to simultaneously extract chl-a 

and mineral suspended particulate matters (MSPM) concentrations for Lake Erie from red/NIR bands of 

the MODIS-Aqua sensor. The estimated concentrations were in close agreement with the in situ 

observations (chl-a: N=98, RMSE= 2.21 mg m-3, R2 = 0.95; MSPM: N=98, RMSE = 1.04 mg m-3, R2 = 

0.91) (Binding et al., 2012). Giardino et al. (2015) applied a physically based method that relies on spectral 

inversion procedures to simultaneously derive the concentrations of water constituents in Lake Trasimeno 

(Italy) from airborne imaging spectrometry. The bio-optical inversion procedure was implemented in a tool 

named BOMBER. The studied lake was characterized by both optically deep and shallow turbid waters and 

dense submerged aquatic vegetation (Giardino et al., 2015). Salama and Verhoef (2015) developed the 

2SeaColor model which is a semi-analytical model with an inversion scheme of radiative transfer equation, 

to retrieve the downwelling attenuation coefficient for Lake Naivasha in Kenya. In this study, MERIS-

derived Kd values were calculated from the bulk IOPs which were derived from inverting the observed 

atmospherically corrected remote sensing reflectance spectra. The retrieved values were compared to the 

measured ones and showed relatively high degree of accuracy with R2 value of 0.72. 

Between spectral inversion algorithms, the NN inversion techniques are more dominant. This is probably 

because of their improved availability as MERIS level 2 products, and also the lake processor within the 

publically available BEAM toolbox. The BEAM plug-ins have been demonstrated to be transferrable to 

some lakes from coastal zone settings. However, the evaluation of spectral inversion techniques has been 

conducted to a lesser extent compared to the band ratio algorithms (Odermatt et al., 2012a). The evaluation 

of the MERIS processors is still important in order to improve the existing time series, even though MERIS 

data is no longer available since April 2012. Also, the forthcoming Sentinel-3 OLCI sensor will provide 

continuity to the MERIS mission. Therefore, the learned lessons from the NN-derived products from 

MERIS in the BEAM toolbox can help improve the processors being developed for OLCI (Kallio et al., 

2015). 

Palmer et al. (2014) evaluated the performance of different MERIS spectral NN-inversion processors and 

also band–difference indices for Lake Balaton, Hungary, to derive chl-a concentration. The retrieved values 

from different processors were calibrated and validated using in situ data. Highly variable accuracy results 

from different NN-based algorithms and the robust FLH and MCI algorithms were shown. In general, both 

band-difference algorithms tested performed well (R2 values equal to 0.78 and 0.62, respectively), whereas 

the neural network algorithms were found to much less accurately retrieve chl-a concentration 

(0.36<R2<0.48). Kallio et al. (2015) also evaluated MERIS spectral inversion processors for the estimation 
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of chl-a, TSM concentrations, aCDOM (443), and SDD in four lakes in southern Finland. The lakes represent 

oligotrophic, mesotrophic, and humic (high aCDOM and low TSM) lake types. Remote sensing reflectance, 

mass-specific IOPs (SIOP), and water quality parameters were collected in the field for evaluation of the 

algorithms. The tested algorithms included Boreal, and FUB/WeW processors. FUB/WeW estimated water 

constituents with lower R2 (<0.17) than the Boreal processor, since aCDOM for most of the studied lakes was 

outside the definition range of FUB/WeW. Boreal lake processor retrieved chl-a concentrations with R2 

values of 0.64 and 0.83, and SDD with R2 values of 0.39 and 0.85 depending on the approach used to 

estimate them. Matthews et al. (2010) utilized the standard Level 2 Case II waters product and Eutrophic 

lake processors in BEAM as the semi-analytical methods to derive chl-a, TSM, SDD, and aCDOM for 

Zeekoevlei Lake in South Africa. The standard product resulted in negative reflectance values in the blue 

region, indicative of atmospheric correction failure. This is due to breakdown of the assumption of 

negligible water-leaving radiance in the NIR, as a result of high sedimentation rates in Zeekoevlei. The 

spectra produced from the Eutrophic Lake processor showed not negative but uncharacteristic spectral 

shape relative to the in situ measurement. Therefore, the NN-based products failed to produce reasonable 

comparisons with in situ data. Failure of atmospheric correction can also be explained by the discrepancies 

between the IOPs of Zeekoevlei and those used to simulate data (using radiative transfer equation) to train 

the atmospheric correction module of the NN algorithm (Matthews et al., 2010; Tilstone et al., 2012). 

The MERIS NN-based inversion processors, available as plug-in in the BEAM software, are trained using 

in situ data collected mostly from European waters. These algorithms were designed aiming to cover the 

optical properties of lakes of various types. This motivated the first objective of this thesis to test the 

applicability of MERIS processors available in the BEAM toolbox to derive water quality parameters for 

Lake Erie. However, the NN processor should be preferably trained with the conditions (water optics, water 

quality ranges, atmospheric properties, etc.) of the region of interest. Evaluation of semi-analytical spectral 

inversion algorithms is complicated as it requires in situ measurements of bio-optical parameters, in 

particular IOPs and SIOPs which have rarely been measured for water bodies, and also spectral remote 

sensing reflectance for atmospheric correction evaluation. Kallio et al. (2015) summarized the factors 

causing divergence between semi-analytically derived optical properties and the in situ measurements as 

follow:  

1) Inaccuracies in SIOPs used in the bio-optical models,  

2) Atmospheric correction accuracy and adjacency effect,  

3) IOPs estimated by the inversion algorithm,  

4) Applied conversion factors to estimate water quality concentrations from IOPs, and  
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5) Unsuitable training ranges for NNs.  

Thus, the first paper of this thesis can be considered as a pilot study to evaluate the performance of the 

MERIS NN-inversion based processors to derive chl-a concentration and SDD. However, in order to fully 

investigate the reasons for discrepancies between the in situ measurements and satellite observations, a 

more complete in situ data collection of bio-optical properties is necessary. 

In general, semi-analytical methods are advantageous over empirical methods because of the reduced 

requirement for concurrent in situ data and generalizability over spatial and temporal scales, and different 

satellite sensors. Therefore, the advantage of semi-analytical models over empirical approaches, is more 

related to their adjustability, and also the justification that arises from their physically sound procedure, 

rather than accuracy (Odermatt et al., 2012a). On the other hand, the empirical approaches are simple, 

providing rapid access to data and their correlation; however at a cost of not expressing the cause-effect 

relationship. The semi-analytical inversion approaches are more complex. Their use of many spectral bands, 

if not all of them, makes the approach very sensitive to errors in atmospheric correction (Matthews et al., 

2010; Doron et al., 2011). Some of the semi-analytical algorithms require training (re-parameterization) 

using the regional IOPs of the study area. Also, an error in any stage of procedure (e.g. atmospheric 

correction), propagate errors in the estimation of other parameters. This will complicate the validation of 

these methods, as mentioned above. 

An overview of Chl-a and SDD retrieval algorithms presented in recent studies (2007-2015) is depicted 

in Figure 2-4 and Figure 2-5 with corresponding sensors and in situ measurement ranges. The bands 

employed in the empirical models are also shown. 
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Figure 2-4 Overview of recently (2007-2014) published papers on remote sensing of chl-a for optically complex water bodies. The 

algorithms retrieve chl-a from satellite imagery using matchup-validated empirical and semi-analytical algorithms. Arrows with 

more than one color are indicative of studies that utilized more than one sensor. Starred references indicate those studies that include 

Lake Erie. C2R, EU, BL, FUB/WeW are the NN-based semi-analytical algorithms available in the BEAM software and are 

explained in more details in section 3.2.2.1.  
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Figure 2-5 Overview of recently (2007-2015) published papers on remote sensing of SDD for optically complex water bodies. The 

algorithms retrieve SDD from satellite imagery using matchup-validated empirical and semi-analytical algorithms. Arrows with 

more than one color are indicative of studies that utilized more than one sensor. Starred references indicate those studies that include 

Lake Erie. Studies in C2R, EU, BL are the NN-based semi-analytical algorithms available in the BEAM software and are explained 

in more details in section 3.2.2.1. 

2.4.2 Past and Current Remote Sensing Satellites 

Historical, current, and scheduled ocean color satellites are listed on the International Ocean Colour 

Coordinating Group (IOCCG) website (http://www.ioccg.org). Satellite sensors such as Sea-Viewing Wide 

Field-of-View Sensor (SeaWiFS), MERIS, and Moderate-resolution Imaging Spectrometer (MODIS) are 

currently being used to deliver past and current ocean color data. The characteristics of SeaWiFS, MERIS, 

and MODIS, as well as their products specific to water quality, are summarized in Table 2-3. The archive 

of SeaWiFS image data is available from 1997 to 2010. MERIS is available for a 10-year period from 2002 

to 2012. MERIS, although it stopped operating in April 2012, is still contributing significantly to the remote 

sensing of inland water color due to its high spectral, temporal, and radiometric resolutions. The large 

number of research papers published in recent years on MERIS satellite imagery, compared to other 

satellites to retrieve different optically active water constituents and other optical properties, is a testament 

of this. MODIS onboard of the Terra and Aqua satellites is still in operation; however, the red and NIR 

spectral resolution of MERIS is better suited to derive a more accurate secondary chl-a absorption 
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maximum compared to MODIS, which is especially important in Case II waters (Odermatt, Pomati, et al., 

2012). This is one of the main reasons why MERIS was retained as the remote sensing data source in this 

thesis.  

Although the Landsat Data Continuity Mission (LDCM), a collaboration between NASA and USGS, is 

primarily designed for land applications, pre-launch simulations showed its potential to provide useful 

optical properties measurements of aquatic environments (Pahlevan and Schott, 2013). It is the eighth 

satellite of the Landsat series, which was launched in February 2013. The mission carries the Operational 

Land Imager (OLI) sensor. OLI has two additional wavebands compared to Landsat 7 that can improve 

ocean color measurements and high-altitude cirrus cloud observations. The added blue band results in 

higher accuracy of water quality monitoring and the shortwave-infrared band enables detection of variations 

in atmospheric aerosols, thus eliminating the confusing signals produced by them and making more accurate 

observations of water quality parameters (Irons and Masek, 2012).  

A significant advantage of OLI over other existing ocean color capable missions is its 30 m spatial 

resolution. This resolution is at least an order of magnitude higher than ocean color capable missions 

including SeaWiFS, MERIS, and MODIS. A higher spatial resolution is beneficial for studying the 

heterogeneous coastal and inland waters to resolve the fine spatial structure of the water constituents. It is 

also important to distinguish land from water, especially in narrow rivers (Franz et al., 2014). Therefore, 

OLI on Landsat has the potential to make a valuable contribution to ocean color studies, specifically over 

coastal environments (Franz et al., 2014). However, the 16-day revisit time is still a factor that make Landsat 

8 less appealing than MERIS for water quality monitoring over Case II waters and lakes with turbid waters; 

where water quality parameters can change in order of a few days to hours. 
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Table 2-3 Most frequently used satellite data products for water quality 
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2.5 FLake Model  

Lakes are an important component of the climatic system influencing the regional and local climate 

(Martynov et al., 2010). They affect the local weather by modifying the air temperature, wind and 

precipitation in their surrounding (Eerola et al., 2010). Their influence in regions with an abundance 

small lakes or with large lakes is considerable (Martynov et al., 2012). Therefore, accounting for lakes 

in weather forecasting and climate modeling is essential for many lake-rich regions, such as Northern 

Europe and North America (e.g. Canadian Shield and the Great Lakes area) (Martynov et al., 2012). 

Samuelsson et al. (2010), for example, assessed the impact of considering the presence of lakes in 

climate model simulations in contrast to land only. Results showed that lakes induce a warming on the 

European climate for the fall and winter seasons (Samuelsson et al., 2010). By increasing the spatial 

resolution of Numerical Weather Prediction (NWP) models, it is possible to improve the handling of 

the lake influence on weather (Eerola et al., 2010). 

To account for lakes, a variable representing the exchange of water and energy between lakes and 

the atmosphere is needed in atmospheric models. The lake surface temperature, as well as ice-coverage 

and other lake surface properties influence the atmospheric boundary layer; and are used as inputs to 

NWP models to handle lake-atmosphere interactions and describe the energy exchange between the 

two mediums. These properties are obtained based on either observations or reliable simulations. 

However, real-time observations of these variables are not available in practice for operational NWP 

models (Eerola et al., 2010). Eerola and Rontu (2010) investigated three different ways to derive lake 

surface temperature: climatic information, by assimilating lake surface temperature observations, and 

by applying lake parameterization schemes for prediction of lake surface temperature. They tested these 

different approaches in the High Resolution Limited Area Model (HIRLAM) to show the differences 

in the atmospheric temperature forecast. They used Freshwater Lake (FLake) model as the lake 

parameterization scheme and produced promising results (Eerola et al., 2010). Thus, model-based 

information on lake surface properties can be used when there are limited sources of observations.  

The choice of the lake model scheme to couple with the NWP models is a challenge. There are lake 

models with different levels of complexity from simple mixed-layer models to computationally 

expensive three-dimensional models (Martynov et al., 2012). The appropriate model has to reproduce 

the behavior of surface conditions of the lakes present within the simulation domain. Also, the model 

has to compromise between adequately reproducing the lake surface properties and using the reasonable 

computational time and memory sources (Martynov et al., 2012). Another factor affecting the choice 
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of the optimized lake model is the type of lakes in the simulation domain. The type of lakes span from 

tropical lakes to temperate-zone lakes and tundra ponds (Martynov et al., 2012). One-dimensional (1-

D) lake models are often used to couple with NWP and climate models to parameterize small lakes due 

to being cheap, computationally fast and simple. For temperate or warm climatic regions, the 1-D FLake 

model has been found to perform adequately for small lakes and also for large lakes with shallow depths 

(Martynov et al., 2010, 2012).     

The FLake model (Mironov, 2005, 2008; Mironov et al., 2010), the model used in this thesis, is a 

computationally efficient model. Flake is used as a lake parameterization scheme in weather 

forecasting, climate modeling, and other numerical prediction systems for environmental purposes. 

This model is also used as a stand-alone lake model. The model is based on a two-layer water 

temperature profile. Mixed layer is at the surface and above the thermocline, which starts from the 

mixed layer’s outer edge extending to the bottom of the lake. FLake is able to predict the vertical 

temperature profile and mixing conditions in a lake. The model is applicable to lakes with various 

depths at different time scales, from a few hours to a year. The water temperature structure in the 

thermocline is described based on the concept of self-similarity (assumed shape) of the temperature-

depth curve. This concept is also used to describe the temperature profile of the thermally active layer 

of bottom sediments and the ice and snow cover. The adopted two-layer parameterization of the vertical 

temperature profile is: 

θ = {
θs, 0 ≤ z ≤ h

θs − (θs − θb)Φθ(ξ), h ≤ z ≤ D
 

Equation 2.1 

whereas θs is the temperature of the upper mixed layer of depth z = h, θb is the temperature of the 

basin bottom at z = D. Φθ(ξ) ≡  
θs−θ

θs−θb
  is a dimensionless function of dimensionless depth ξ ≡

z−h

D−h
.  

The main external parameters in the model are the lake depth and optical characteristics of the lake 

water which is parameterized via the light extinction coefficient. For deep lakes, a virtual bottom depth 

of 40-60 m is typically used in simulations, instead of the real lake depth (Mironov, 2008). A sensitivity 

study was conducted by Potes et al. (2012) to investigate the importance of the extinction coefficient 

in the development of the lake surface temperature using FLake. The results showed the significant 

sensitivity of the model to different extinction coefficient values (Potes et al., 2012). Heiskanen et al. 

(2015) also investigated the sensitivity of FLake to changes in the extinction coefficient. Their results 

revealed that the model is very sensitive to variations in the extinction coefficient when it is lower than 

0.5 m-1. Formation of the thermal stratification layer depends strongly on the extinction coefficient. 
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This study concluded that a global mapping of extinction coefficients would be most beneficial in 

regions with relatively clear waters (e.g. high altitude lakes) (Heiskanen et al., 2015). Turbidity is 

measured frequently in lakes as part of water quality monitoring programs. However, these 

measurements are spatially and temporally limited. Thus, there is no dataset with global or regional 

coverage currently available on lake extinction coefficients. This is a challenging issue for the FLake 

model to consider the optical parameter of water, extinction coefficient, in the physics of the model. At 

this time, the extinction coefficient is considered as a constant value (Mironov et al., 2010). On the 

other hand, such a global mapping of extinction coefficients could be created using satellite remote 

sensing to provide the global characterization of lake optical properties. This is one of the topics 

examined in this thesis. 

2.6 Study Site and Water Sampling Protocol  

The Laurentian Great Lakes - Superior, Huron, Michigan, Erie and Ontario (Figure 2-6) - form the 

largest system of fresh, surface water lakes on earth, that contains 18% of the world supply of surface 

freshwater (Wetzel, 2001). The system provides drinking water, food, recreation, and transportation for 

a growing population of about forty million (Shuchman et al., 2013). The ecological state of the lakes, 

on both sides of the US-Canadian border, reflects the environmental health in the heart of the continent 

(Gons et al., 2008). In recognition of the importance of the lakes as a significant resource of fresh 

surface water and the need to restore and maintain their water quality, the Great Lakes Water Quality 

Agreement was signed between the two governments of Canada and the United States in 1972 to 

enhance the water quality in the Great Lakes basin ecosystem (Herdendorf, 1984). 

Lake Erie, the study site for this thesis, is the smallest in volume (484 km3), the shallowest (mean 

depth: 19 m, maximum depth: 64 m), and the most southern of the Great Lakes (Herdendorf, 1984). 

Due to the shallowness, Lake Erie warms quickly in the spring and summer and cools quickly in the 

fall. In long, cold winters, a large percentage of lake is covered with ice, and occasionally freezes over 

completely. However, in warm winters, there may be no ice at all. The warmer temperature and 

shallowness of Lake Erie basin make this lake the most biologically productive among the other Great 

Lakes (Lake Erie LaMP Work Group, 2000). About one-third of the total population of the Great Lakes 

basin reside within Lake Erie watershed, in total 11.6 million people (Daher, 1999). Being the most 

highly populated basin of the Great Lakes, Lake Erie surpasses all other lakes in the amount of effluent 

received from sewage treatment plants. It is also the most subjected to the sediment loadings, due to 

intensive agricultural development, in particular in the southwest Ontario and northwest Ohio. The 
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shallow nature of the lake basin makes it particularly vulnerable to loadings (Lake Erie LaMP Work 

Group, 2000). 

Therefore, of all the Great Lakes, Lake Erie is exposed to the greatest stress from urbanization, 

agriculture, and industrialization. It was the first lake to demonstrate a serious eutrophication problem 

due to increased nutrient loadings beginning in the 1950s. Lake Erie has undergone considerable 

environmental changes over time due to different source of stresses, and the physical characteristics of 

the lake have a direct bearing on how the lake ecosystem react to all these various stressors (Lake Erie 

LaMP Work Group, 2000).  

 

Figure 2-6 Location map and shape of the Great Lakes 

Environment Canada Research cruises on board of the Canadian Coast Guard ship Limnos, the 

cruises that provided the in situ measurements of water quality parameters used in this thesis, collects 

water samples in different locations on Lake Erie, to provide measurements of a wide range of optical 

properties as well as concentrations of the main color-producing agents (CPA) for developing and 

validation of remote sensing algorithms as a complementary method for water quality monitoring 

programs. 

Composite water samples are collected at all stations from the surface mixed layer of the lake using 

Niskin bottles. The samples are filtered through a Whatman GF/F fiber filter (0.7 µm) in the field. The 

filtered samples are then frozen and sent to the laboratory (the National Laboratory for Environmental 

Testing (NLET)) for extraction of the CPAs concentrations including chl-a. The chl-a measurement 
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method is based on the trichromatic spectrophotometry following fixation using a 90% acetone solution 

and centrifugation. Absorption of the residue at specified wavelengths of 663 nm, 645 nm, and 630 nm 

are determined. Chl-a, b and c values are calculated using SCOR/UNESCO equations in the analytical 

range of 0.1-100 mg m-3. The following trichromatic Equations 2.2 are recommended by 

SCOR/UNESCO to measure chl concentrations: 

𝑐ℎ𝑙_𝑎 = 11.64 𝑒663 − 2.16 𝑒645 + 0.10 𝑒630 

𝑐ℎ𝑙_𝑏 = −3.94 𝑒663 + 20.97 𝑒645 − 3.66 𝑒630 

𝑐ℎ𝑙_𝑐 = −5.53 𝑒663 − 14.81 𝑒645 + 54.22 𝑒630 

Equations 2.2 

 

where chl-a (b or c) is in µg.cm-3; and e663, e645, e630 are the absorbances (cm-1) of light path at 663, 645, 

630 µm after subtracting the 750 nm reading (UNESCO, 1966). The reported chl-a concentration also 

contains phaeopigments, which are degradation products of chl-a: phaeophytin and pheophorbide 

(Environment Canada, 1997). SDD measurement, a worldwide accepted method to estimate turbidity 

in water bodies, is regularly conducted during the cruises. Chl-a and SDD measurement methods follow 

the Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (Mueller et al., 2003; Pegau et 

al., 2002). 

2.7 Summary 

In order to increase our knowledge and observing capabilities of water quality, satellite remote sensing 

is being used increasingly as a tool for monitoring waterbodies. The strength of remote sensing methods 

lies in their ability to provide both spatial and temporal views of surface water quality parameters that 

is typically not possible from in situ measurements alone. Remote sensing makes it possible to monitor 

water quality more effectively and efficiently, identifying waterbodies with significant water quality 

problems, so that it can support developing lake management strategies. MERIS satellite imagery 

measured the light emanating from the water surface at visible and near-infrared wavelengths and 

provided frequent acquisitions with sufficient spatial coverage for large lakes, such as Lake Erie. In 

particular, MERIS-type imagery is suitable for monitoring Case II waters with a sufficient (300 m) 

spatial resolution at nadir, with a 2-3 day revisit cycle, and with 15 spectral bands designed to allow for 

a more accurate retrieval of the secondary chl-a absorption maximum (e.g. at around 675 nm, more 

suitable for eutrophic waters).  
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Therefore, MERIS data was retained for this thesis to measure water quality parameters for Lake 

Erie, a complex water body with properties ranging from oligotrophic to mesotrophic/eutrophic 

(productive) and from clear to turbid in its different basins (from eastern to western basin, respectively). 

The parameters of interest include chl-a concentration and water turbidity. Chl-a is a photosynthetic 

pigment available in all kinds of phytoplankton. It is a trophic status indicator, and is used to measure 

phytoplankton biomass in waterbodies. Turbidity indicates the general environmental health of 

waterbodies, and is a measure of light penetration depth in lakes. The optical characteristics of lakes in 

lake models is parameterized using turbidity. However, no dataset with global or regional coverage is 

currently available for lake turbidity. Therefore, a constant value of this parameter is used in lake 

models. Satellite remote sensing has the potential to map lake optical properties globally, including 

extinction coefficient, and integrate it for simulations in lake models. 
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Chapter 3 

Evaluation and Blending of MERIS Chlorophyll-a Retrieval 

Algorithms for Optically Complex Lake Erie 

3.1 Introduction 

Historically, the main application of ocean color satellites and bio-optical algorithms have been 

managed for the open ocean waters (Moore et al., 2014), where the optical properties are governed by 

the concentration of algal and other co-varying materials in water (referred to as Case I waters (Morel 

and Prieur, 1977)). Optical models developed for open ocean waters fail when applied for environments 

where the optical properties are dictated by materials additional to algal particles that do not co-vary 

with each other (the so called Case II waters). Hence, algorithms designed specifically for use in turbid 

inland and coastal waters, which are highly susceptible to Case II conditions (Moore et al., 2014), have 

been developed. Some of these algorithms are intended for use with MEdium Resolution Imaging 

Spectrometer (MERIS) data and are accessible in the Basic ERS & ENVISAT (A)ATSR MERIS 

(BEAM) toolbox available from the European Space Agency (ESA). These include artificial neural 

network (NN) processors and band-ratio approaches. The NN based processors include Case 2 Regional 

(C2R) (Doerffer and Schiller, 2007), Eutrophic (EU) (Doerffer and Schiller, 2008), FUB/WeW 

(Schroeder et al., 2007), and CoastColour (CC) processors (Ruescas et al., 2014). Two linear baseline 

algorithms including maximum chlorophyll index (MCI) and fluorescence line height (FLH) are the 

band ratio approaches (Gower et al., 1999, 2005; Gower and King, 2012). 

Several studies have reported on the performance of algorithms implemented in BEAM for a variety 

of water bodies (Alikas et al., 2008; Giardino et al., 2010; Matthews et al., 2010; Odermatt et al., 2010; 

Vaiciute, 2012; Attila et al., 2013; Palmer et al., 2014; Kiefer et al., 2015; Sá et al., 2015). Palmer et al. 

(2014) applied six algorithms for the retrieval of chlorophyll-a (chl-a) over optically complex Case II 

waters of Lake Balaton, including NN and band differences algorithms. The NN processors (e.g. 

Boreal, EU, C2R, FUB/WeW processors) were found to much less accurately retrieve chl-a 

concentrations, whereas band difference algorithms of MCI and FLH performed best overall. In 

particular, FLH performed best especially for chl-a concentrations greater than 10 mg m-3 (Palmer et 

al., 2014). Sá et al. (2015) evaluated selected chl-a satellite products, including those from the CC 

processor (OC4, NN, merged). For 3-hour time intervals between in situ sampling and satellite 

overpass, CC products displayed different performance results to derive chl-a concentration for the 



 

 38 

Western Iberian coast (0.249<RMSE<0.278, 0.139<MBE<0.200, 0.78<R2<0.85, uncertainties were 

reported on the logarithmic scale). The CC_NN algorithm, suitable for coastal waters, provided better 

results than CC’s other chl-a products for Iberian West coast (Sá et al., 2015). Kiefer et al. (2015) 

applied the FUB/WeW processor to retrieve chl-a concentrations of Lake Geneva. Their study 

confirmed that this algorithm is more suitable for use over oligo- to mesotrophic lakes, as opposed to 

eutrophic lakes (Kiefer et al., 2015). A highly variable accuracy and performance is found in these 

studiess applying the processors on different lakes. The variable results underline that the processor 

performance is highly related to the optical properties of the water body, and the data range used to 

train the NNs. Although, the difference in methods used to collect in situ observations of chl-a 

concentration can also cause divergence in the results.  

Moore et al. (2014) proposed an optical water type framework for optically complex waters. In their 

study, two algorithms were considered: (1) the NASA OC4 algorithm based on blue/green bands, and 

(2) a MERIS 3-band algorithm based on red/near-infrared (NIR) bands. Higher uncertainty was found 

for the OC4 algorithm when chl-a concentration exceeded 10 mg m-3, whereas better performance was 

obtained for the MERIS 3-band algorithm for higher concentrations. The authors proposed a blending 

approach based on optical water types to manage a selection between these two chl-a algorithms. In 

this approach, different optical classes of water body are derived from a fuzzy logic classification 

scheme applied to satellite-derived water leaving reflectance (Moore et al., 2001, 2014).  

More recently, Lyu et al. (2015) analyzed different optical characteristics of five inland lakes, located 

in different basins in China, based on MERIS-derived remote sensing reflectance and applying an 

automatic two-step clustering method to derive optical water classes. The inland waters were clustered 

into three optical classes. The optical characteristics of water types I and III were dominated by chl-a 

concentration and inorganic suspended matters, respectively. Water type II had a combined optical 

characteristics of water types I and III. Four different chl-a retrieval algorithms including: two-band, 

three-band, four-band, and Synthetic Chlorophyll Index (developed by Shen et al. (2010) exclusively 

for estuaries with high total suspended matter (TSM) concentrations, and without a requirement for 

recalibration of band locations) were evaluated for the three water types. Different levels of accuracy 

were reached for each algorithm applied to different optical types, indicating that no single algorithm 

could be successfully applied to all water types.    

The present study assesses the performance of six chl-a concentration retrieval algorithms 

implemented in the BEAM software: C2R, EU, FUB/WeW, CC NN processors as well as FLH and 
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MCI indices. These algorithms represent two fundamentally different approaches to derive chl-a 

concentration in optically complex waters. The NN approaches are trained to varying ranges of 

parameter concentration and optical property; whereas the indices make use of the height of a peak 

above a baseline, related to chl-a concentration. The algorithms are evaluated for Lake Erie, an optically 

complex water body with properties ranging from oligotrophic to mesotrophic/eutrophic (productive) 

and from clear to turbid in its different basins (from eastern to western basin, respectively). The lake is 

subject to sediment re-suspension. River inputs carry colored dissolved organic matters (CDOM) into 

the lake. Floating harmful algal blooms are also characteristic of Lake Erie. Thus, there is high potential 

for a variety of optical water types to exist in the lake (Moore et al., 2014). In this paper, an extensive 

comparison of different chl-a retrieval algorithms applied to MERIS data and their performance is 

conducted for Lake Erie. A classification approach is then applied to derive clusters with different 

optical characteristics using remote sensing reflectance. Finally, a blending approach is used to combine 

the results of chl-a products derived from different algorithms assigned to each water class.  

3.2 Data and Methods 

3.2.1 Study Area 

The lake of interest in this study is Lake Erie, one of the Great Lakes of North America (Figure 3-1). 

Lake Erie has a surface area of 25,700 km2 with an average depth of 19 m. It is the fourth largest in 

surface area, the most southern, the shallowest and the warmest of the Laurentian Great Lakes 

(Anderson et al., 2015). The lake’s high productivity as well as the warm weather in its watershed has 

attracted one-third of the total human population of the Great Lakes basin. Human activities are 

responsible for several environmental problems such as floating harmful algal blooms, and chemical 

contaminations that are carried into the lake from river inputs, considered as a source of dissolved 

organic/inorganic matters (Djoumna et al., 2014). In addition, Lake Erie is subject to sediment re-

suspension due to its shallow depth, and consequently suspended particulate matters play a large role 

in Lake Erie’s low water clarity (Binding et al., 2010).  

The various dissolved and suspended water constituents of Lake Erie determine the variability of its 

water leaving reflectance. Hence, the lake is considered as optically complex and classified as a Case 

II water body. Lake Erie trophic status ranges from oligotrophic to mesotrophic/eutrophic in its 

different basins (from eastern to western basin, respectively). Total phosphorus (TP) loads from point 

and nonpoint sources result in algal blooms and poor water clarity in the lake. The contribution of TP 
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in changing the trophic state of the lake and its turbidity is different through a year. Based on forty 

years of historical data collected before 2010, Lake Erie Nutrient Science Task Group (2009) reported 

a higher correlation between the three parameters of TP, chl-a concentration (a trophic status indicator), 

and  Secchi disk depth (SDD, a water clarity indicator) in summer rather than spring. More frequent 

sediment loads and re-suspension of lake sediments (due to the shallow depth of Lake Erie) in spring 

delivers higher particulate phosphorus from soil erosion, which is not readily available for algae uptake. 

Hence, although there is low correlation between TP and chl-a concentration in Lake Erie during spring 

(R2=0.20), there is still a good overall relationship between TP concentration and SDD (R2=0.63). 

Conversely, in summer, TP concentration contains more bioavailable phosphorus, which result in 

higher correlation between all three parameters compared to spring (chl-a and TP: R2=0.71; SDD and 

TP: R2=0.75; SDD and chl-a: R2=0.65) (Lake Erie Nutrient Science Task Group, 2009).  

Phosphorus loads are highly variable in the different basins of Erie. The International Joint 

Commission, signed between Canada and the United States to protect shared water bodies such as Lake 

Erie, reports that 64% of the 2003-2011 average loads are received in the western basin, while 26 and 

11% of the loads are received in the central and eastern basins, respectively. A general trend of 

decreasing phosphorus concentration from west to east and from near-shore to the offshore is observed 

in the lake (IJC. International Joint Commission Canada and United States, 2013). 

Recent increases in total phosphorus and chl-a concentrations have been reported, especially in the 

western basin of Lake Erie (Michalak et al., 2013). This highlights the importance of ongoing 

monitoring programs that track parameters indicative of trophic state with the intent of reducing 

phosphorus loads into the lake. Research cruises on board the Canadian Coast Guard ship Limnos 

provided measurements of chl-a concentration and optical properties for this study from a total of 89 

distributed stations in Lake Erie during September 2004, May, July, and September 2005, May and 

June 2008, July and September 2011 and February 2012 (Figure 3-1). In situ chl-a measurements 

ranged between 0.2 and 70.1 mg m-3, with an average of 4.26 ± 7.84 mg m-3.  
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Figure 3-1 Location of Lake Erie in the Laurentian Great Lakes (inset), and the sampled points of the Canadian Coast Guard 

ship Limnos during 2004 to 2012, in situ data used in this study. 

3.2.2 Algorithms Evaluated 

In the present study, the performance of four NN processors including C2R, EU, FUB/WeW, CC are 

evaluated to estimate chl-a concentration. Band difference algorithms developed using FLH and MCI 

indices are also tested. The details of the algorithms are provided in the following sections. 

3.2.2.1 Neural Network Algorithms 

The relationship between the water-leaving reflectance and inherent optical properties (IOP) of water 

constituents is known from radiative transfer theory (Carder et al., 2004; A. A. Gitelson et al., 2008; 

Tilstone et al., 2012). The inversion of a radiative transfer model can be approximated with a NN 

approach. A NN approach is adopted to achieve the requirements of high accuracy and, at the same 

time, efficiency in the operational processing of MERIS satellite imagery to derive the optical 

properties (Doerffer and Schiller, 2007). The processing toolbox for MERIS (BEAM software) 

incorporates many of these NN-based methods for interpretation of remote sensing signals over Case 

II waters including: C2R, EU, FUB/WeW and CC modules.  

Doerffer and Schiller (2007) described the C2R processor, designed for more optically complex 

conditions in Case II waters. This processor is based on a coupled forward and backward NN 

architecture. A separate NN first performs atmospheric correction. Eight atmospherically corrected 

MERIS spectral bands, as well as geometric information, are then used as input in the coupled NN to 
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perform the in-water algorithm. The special feature of combining the forward and backward models 

allows to test if the measured spectrum is within the scope of the training set. The networks are trained 

using the IOPs and water constituents’ concentration data that are collected from European waters, 

mainly in the North Sea as well as the North Atlantic, Baltic Sea, and Mediterranean Sea. The 

established bio-optical dataset was followed by Hydrolight radiative transfer simulation of a large 

dataset of reflectance to use as training data. This processor results in the generation of three IOPs at 

MERIS band 2 (443 nm) including: (1) absorption coefficient of phytoplankton pigments, (2) 

absorption coefficient of yellow substance and (3) scattering coefficient of particles. The derived IOPs 

are converted to the concentration of chl-a and TSM (Doerffer and Schiller, 2007).  

The EU lake processor in BEAM replicates the atmospheric correction and the coupled NN 

architecture of the C2R processor. It also uses the same input of the water leaving reflectance of 8 

MERIS bands derived from atmospheric correction. However, it is trained using a different range of 

bio-optical data collected from eutrophic Spanish lakes (Doerffer and Schiller, 2008). The EU and C2R 

lake processors also provide the atmospherically corrected water-leaving reflectance for MERIS bands 

1-10, 12 and 13.  

The FUB/WeW processor is also based on inversion of a radiative transfer model applying NNs. 

However, unlike the C2R and EU lake processors it consists of four NNs. FUB/WeW is a one-step 

coupled atmospheric correction and in-water constituent retrieval algorithm (Kratzer et al., 2008), 

where MERIS measured radiances are used as input to all four networks. Atmospheric correction is 

performed in one network separately. Each water constituent is retrieved individually from the other 

three networks and directly from the top-of-atmosphere measured radiances. Concurrent in situ data, 

collected from North Sea, Gulf of Cadiz in the North Atlantic, Baltics Sea, and Mediterranean Sea close 

to Israel border, was used for validation of the water retrieval algorithms. This processor was 

specifically designed for European coastal waters to derive the atmospherically corrected water-leaving 

reflectance for MERIS bands 1-7 and 9; as well as the concentrations of water constituents including 

chl-a and TSM; and the absorption of yellow substance at 443 nm (Schroeder et al., 2007). 

The CC processor employs a wider range of optical properties as the training data compared to the 

other NN processors in BEAM. The BEAM NN processors’ specific training ranges for chl-a, TSM 

concentration and CDOM absorption are compared in Table 3-1. Also, the CC algorithms benefit from 

a newly developed atmospheric correction algorithm optimized for coastal areas (Sá et al., 2015) that 

represent optically-complex waters present in inland lakes. There are different chl-a products generated 
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by the CC module implemented in BEAM. One product uses NN as the inversion approach and is an 

advanced version of MERIS algal_2 product (CC_NN). Another one is based on empirical NASA-OC4 

band ratio algorithm (CC_OC4) (Sá et al., 2015). In addition, a blending of the OC4 (for clear waters) 

and NN (for turbid waters) algorithms is available as another product (CC_merged) of CC processor. 

CC_OC4 product is used when the TSM concentration is below 5 g m-3. For TSM concentration above 

10 g m-3 CC_NN is calculated. A weighting average between chl-a products from CC_OC4 and CC_NN 

is used to estimate chl-a for TSM concentrations between 5 and 10 g m-3. Thus CC_merged is a smooth 

transition between two algorithms (Ruescas et al., 2014).  

Table 3-1 Chl-a, TSM and CDOM training ranges of the NN processors (source: Palmer et al. (2014); Ruescas et al. (2014)).                                 

Processor Chl-a (mg m-3) TSM (g m-3) CDOM (a440 m-1) 

EU 1-120 0.42-50.9 0.1-3 

C2R 0.016-43.18 0.0086-51.6 0.005-5 

FUB/WeW 0.05-50 0.05-50 0.005-1 

CC 0.001-100 0.2-2000 - 

3.2.2.2 Band-Ratio Algorithms 

Band-ratio algorithms incorporating red and NIR water-leaving radiances, such as FLH and MCI, have 

been applied in coastal, oceanic and inland waters with varying degrees of success (Binding et al., 2010; 

Gons et al., 2008; Matthews et al., 2010; Palmer et al., 2015; Stumpf et al., 2012). These algorithms 

consider the shape of MERIS spectral radiances at red and NIR to measure the enhancement of radiance 

at a certain wavelength above a baseline which is drawn between the radiance values at two suitable 

wavelengths (Gons et al., 2008). This is especially useful for Case II waters in order to reduce the 

masking of pigment spectral features by concentrations of CDOM and TSM, which is stronger in blue 

and green spectral regions (Gower et al., 1999).  

FLH measures the relative spectral peak at 685 nm which is caused by solar-stimulated fluorescence 

from chl-a (Gower et al., 1999; Gower and King, 2012). FLH can be used effectively to measure near-

surface phytoplankton biomass up to a concentration of 20 mg m-3 (Gower and King, 2012). In higher 

concentrations, any further FLH increase with the concentration is prevented by absorption of 

stimulated and emitted radiation. However, a radiance relative peak will form in the wavelength range 

of 700-710 nm, measured as MERIS MCI (Gower and King, 2012). Similar to FLH, MCI measures a 

peak but near 708 nm which is a characteristics of intense surface algal blooms (Gower et al., 2005; 

Gower and King, 2012). The FLH and MCI algorithms are formulated as: 
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𝐹𝐿𝐻/𝑀𝐶𝐼 = 𝐿2 − 𝐿1 − (𝐿3 − 𝐿1) ×
(𝜆2 − 𝜆1)

(𝜆3 − 𝜆1)
 

Equation 3.1 

whereby L is the radiance or reflectance, depending on the use of MERIS Level 1b or atmospherically 

corrected Level 2 data (Palmer et al., 2014). FLH measures the peak at MERIS band 8 (680.5 nm) 

above the baseline between bands 7 (664 nm) and 9 (708 nm). MCI measures the relative peak of 

MERIS band 9 (708 nm) above band 8 (680.5 nm) and band 10 (753 nm) (Palmer et al., 2014). The 

height-above-baseline algorithms can be applied with or without atmospheric correction (Matthews et 

al., 2010; Binding et al., 2011). In this study, we investigated Level 1b (which is a product level prior 

to atmospheric correction) FLH and MCI.  

3.2.3 Processing of MERIS data  

MERIS full resolution images of Lake Erie for the period 2004-2012 were inspected to visually select 

images that are at least partially cloud free. The selected images corresponded to dates within a 2-day 

time window of in situ data collection. Thus, nine of the MERIS Level 1 images downloaded from the 

European Space Agency (ESA)’s archive were analyzed and processed within the BEAM v5.0 

(Brockmann Consult GmbH) toolbox. Quality control flags were applied on pixels prior to extract and 

use them in matchup analysis to compare chl-a products with field measurements.   

In all algorithms, Level 1 flagged pixels were excluded from matchup analysis. For C2R, EU, and 

FUB/WeW processors, the NN Level 2 flagged pixels were also excluded. Pixels flagged in Level 1P 

and Level 2 CC processing (atmospheric correction (L2R) and in-water algorithms (L2W) are applied 

in Level 2) were excluded from further processing (Table 3-2). The remaining pixels were used in the 

matchup dataset for training and evaluating the algorithms (see section 3.2.5 for details).   
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Table 3-2 Flags of excluded pixels 

Level of Data Flags 

Level 1 “invalid”, “coastline”, “land_ocean” (pixel is over land), “bright”, “suspect”, 

“glint_risk” (at risk of glint) 

Level 2-C2R/EU “land”, “cloud_ice” (cloud or ice), “atc_oor” (atmospheric correction out of range), 

“tosa_oor” (top-of-standard-atmosphere out of range), “toa_oor” (top-of-atmospheric-

reflectance out of range), “solzen” (large solar zenith angle), “wlr_oor” (water leaving 

reflectance out of scope), “conc_oor” (concentration out of training range), “ootr” 

(spectrum out of training range), “whitecaps”, “invalid” 

Level 2-FUB “Level 1b_masked”, “Chl_in” (input retrieval failure of chl-a), “Chl_out” (output 

retrieval failure of chl-a), “Yel_in” (input retrieval failure of yellow substance), 

“Yel_out” (ouput retrieval failure of yellow substance), “TSM_in” (input retrieval 

failure of total suspended matter), “TSM_out” (output retrieval failure of total 

suspended matter), “atm_in” (input retrieval failure of atmospheric correction), 

“atm_out” (output retrieval failure of atmospheric correction) 

Level 1P-CC “CC_land”, “CC_cloud”, “CC_cloud_ambigious”, “CC_cloud_buffer”, 

“CC_cloud_shadow”, “snow_ice”, “CC_mixedpixel” 

Level 2-CC “solzen” (large solar zenith angle), “c2r_whitecaps”, “aot560_oor” (atmospheric 

correction out of range), “toa_oor” (top-of-atmosphere reflectance out of range), 

“tosa_oor” (top-of-standard-atmosphere out of range), “nn-wlr_oor” (water-leaving-

reflectance out of training range), “nn_conc_oor” (water constituents out of training 

range), “nn_ootr” (spectrum out of training range with a default threshold set on chi-

square) 

3.2.4 Clustering Method Using Remote Sensing Reflectance 

The two-step clustering scheme, available in SPSS V20, is an unsupervised classifier which does not 

require a foreknowledge of the classes characteristics. The two-step clustering approach is a 

combination of the two hierarchical and relocation clustering methods. In the first step of clustering 

analysis in this method, the data is pre-clustered into many small sub-clusters. Then in the next step, 

the sub-clusters from the first step are combined together or divided into smaller clusters to produce 

the desired number of clusters. The similarity between two clusters is calculated using the log-

likelihood distance. The distance between two clusters decreases as they are combined into one cluster. 

The predictor importance, which is the relative importance of each predictor in estimating the model, 

is provided as an output of the two-step clustering approach. The predictor importance in SPSS is based 

on variable importance statistics. It indicates how well each variable can differentiate different clusters. 

Since the values are relative, the sum of all predictors’ importance values equals to one.  

The two-step clustering is capable of handling large datasets, both continuous and categorical 

variables. Also, in case of unknown desired number of clusters, the two-step clustering can determine 
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the proper number of clusters automatically (SPSS, 2001) using a combination of both the distance 

changes and either Akaike Information Criterion (AIC) (Akaike et al., 1998) or Bayesian Criterion 

(BIC) (Schwarz, 1978) methods. 

Here, we selected remote sensing reflectance in MERIS bands 1-10, 12, and 13 in the matchup data 

as the predictors for clustering. AIC was used as the method of finding the optimal number of clusters. 

The optical feature of the derived optical classes were studied. Furthermore, the performance of 

different chl-a retrieval algorithms were assessed for each single optical type. A blending approach was 

then used to choose the most appropriate algorithm for each given water optical condition.  

3.2.5 Chlorophyll-a Retrieval Algorithms Calibration and Error Definitions 

The resulted matchup dataset was randomly divided into training and testing data in 100 iterations. In 

each iteration, the data sets used for algorithms training and evaluation were kept independent, where 

70% of the matchups were used for algorithm calibration and 30% for evaluation. Ordinary least square 

regression equations were used in the calibration step of each iteration to relate the in situ measurements 

of chl-a to the derived chl-a products from C2R, EU, FUB/WeW, and CC processors and also MCI/FLH 

indices. Locally tuned equations were derived from this step and were applied on the algorithms’ 

products to predict chl-a concentration in testing matchup data. The statistical parameters of each model 

performance were derived between the predicted chl-a concentration and measured ones in the field for 

testing data. These steps were repeated for 100 iterations; and the final statistical indices, slope and 

intercept of the locally tuned algorithms were reported as the average of the ones over all iterations.   

Satellite-derived chl-a concentration estimates were evaluated against in situ data using statistical 

indices, including the index-of-agreement (I_a) and two dimensioned statistics of average model 

performance error: the root-mean-square-error (RMSE) and the mean bias error (MBE) (Willmott and 

Matsuura, 2005). The dimensionless I_a is used to report the model performance and compare it with 

the other ones. The models in this study are the chl-a retrieval processors. A refined version of I_a, the 

one adopted in this study, has recently been proposed by Willmott et al. (2012). The index is bounded 

between -1 (the worst model performance) and +1 (the best model performance) (Willmott, 1981; 

Willmott et al., 2012). RMSE is a comprehensive metric that combines the mean and variance of model 

errors into a single statistic (Moore et al., 2014). MBE is predicted (modeled) values minus the observed 

in situ data. It therefore intends to report the average bias of the model which is the average over- or 

under-prediction (Willmott and Matsuura, 2005).  
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3.3 Results and Discussion 

3.3.1 In situ Measurements 

Table 3-3 summarizes the water quality indicators collected on Lake Erie during Limnos cruises in 2004 

to 2012 for all basins combined, as well as on a per basin basis. A chl-a concentration gradient from 

the east to the west basin is apparent with an average value of 1.08 ± 0.4, 2.41 ± 2.07, and 8 ± 11.82 

mg m-3 in the east, central, and west basins respectively. SDD decreases from 6.5 ± 2.19 m in the east 

basin to 4.97 ± 2.53 m in the central basin, and 1.74 ± 1.28 m in the west basin. Therefore, there is a 

water clarity gradient from west to east that is consistent with the gradients of in situ chl-a concentration 

employed in this study, and also the TP loads reported in the International Joint Commission Canada 

and United States (2013).  

Table 3-3 Descriptive statistics of full range in situ data Limnos collected from 2004 to 2012 on Lake Erie. 

Basin Stat Chl-a (mg m-3) TSM (g m-3) CDOM (m-1) SDD (m) 

A
ll

 

N 186 186 156 113 

Min 0.20 0.18 0.04 0.20 

Mean 4.31 5.70 0.32 3.73 

Max 70.10 50.50 2.36 11.00 

S.D. 7.90 7.97 0.34 2.71 

C
en

tr
al

 

N 88.00 88.00 72.00 55.00 

Min 0.30 0.29 0.05 0.30 

Mean 2.41 3.33 0.22 4.97 

Max 12.00 38.24 0.74 11.00 

S.D. 2.07 5.50 0.14 2.53 

E
as

te
rn

 

N 28.00 27.00 19.00 10.00 

Min 0.20 0.18 0.04 4.00 

Mean 1.08 1.84 0.15 6.50 

Max 1.90 11.10 0.28 10.00 

S.D. 0.40 2.57 0.08 2.19 

W
es

te
rn

 

N 70.00 71.00 65.00 48.00 

Min 0.30 1.10 0.13 0.20 

Mean 8.00 10.09 0.48 1.74 

Max 70.10 50.50 2.36 6.00 

S.D. 11.82 9.80 0.45 1.28 

The west and central basins of Lake Erie are shallow enough to have wave-driven sediment re-

suspension (Lake Erie Nutrient Science Task Group, 2009). Table 3-3 shows higher amounts of 



 

 48 

suspended matters in the west and central basins with averages of 10.09 ± 9.8 and 3.33 ± 5.5 g m-3, 

respectively, as measured during the Limnos cruises 

3.3.2 Matchup Data Result 

Table 3-4 shows the descriptive statistics of the matchup data after removal of flags corresponding to 

different algorithms, for all basins lumped together. The total number of matchup data derived for each 

algorithm was variable due to the specific flags applied in different algorithms (described in section 

3.2.3). All algorithms were flagged similarly in level 1. Level 2 flags were the same for the EU and 

C2R lake processors. The FUB/WeW NN processor excluded more pixels compared to other NN 

processors (N=96). FLH and MCI band ratio algorithms resulted in a larger number of matchups 

(N=117) as only level 1 flags are raised by these algorithms. According to the in situ data, chl-a 

concentration varies between 0.2 mg m-3 and 70.1 mg m-3 with the average of 4.31 mg m-3 in the study 

period (Table 3-3). Therefore, FLH and MCI processors covered a larger variation of chl-a considering 

the remaining matchup data in these algorithms (chl-a: min=0.2 mg m-3, max=61.7 mg m-3). Whereas 

FUB/WeW processor, with the lowest number of matchup data, covered only chl-a concentration 

between 0.2 mg m-3 and 12 mg m-3. However, the average chl-a concentration was close in all matchup 

data for different chl-a retrieval algorithms. 
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Table 3-4 Descriptive statistics of in situ matchup subset data after removing those flagged in each algorithm. Chl-a and TSM 

concentrations are reported in mg m-3 and g m-3. CDOM absorption in m-1. 

Processor Parameter N Min Max Avg. St. Dev. 

E
U

-C
2

R
 

Chl-a 109 0.20 23.10 3.35 3.53 

TSM 108 0.18 50.50 5.46 7.94 

CDOM 78 0.04 1.75 0.28 0.31 

F
U

B
/W

e
W

 
Chl-a 96 0.20 12.00 3.16 2.63 

TSM 96 0.29 35.73 5.12 6.47 

CDOM 67 0.04 1.75 0.28 0.32 

C
C

 

Chl-a 103 0.20 23.10 3.46 3.59 

TSM 102 0.18 50.50 6.29 8.84 

CDOM 78 0.04 1.75 0.29 0.30 

M
C

I Chl-a 117 0.20 61.70 3.78 6.39 

TSM 116 0.18 50.50 5.90 8.54 

CDOM 86 0.04 1.75 0.29 0.30 

F
L

H
 Chl-a 117 0.20 61.70 3.77 6.38 

TSM 116 0.18 50.50 5.71 8.41 

CDOM 86 0.04 1.75 0.29 0.30 

3.3.3 Chlorophyll-a Products Evaluation 

The locally tuned equations relating NN chl-a products and FLH/MCI indices to in situ measurements 

of chl-a concentration were retrieved by applying a linear regression on randomly selected 70% of the 

matchup in situ data. These equations are shown in Table 3-5. The remaining 30% of matchup in situ 

data were used to derive model performance statistical indices and compare the accuracy of different 

algorithms to derive chl-a concentration. Retrieval performance of each is presented in Table 3-6. The 

C2R processor was found to perform the best in terms of I_a (0.69), with an improvement of about 6% 

over FUB/WeW processor (I_a=0.65); although the C2R processor underperformed FUB/WeW by 

about 11% based on RMSE results (C2R: RMSE = 2.21 mg m-3, FUB/WeW: RMSE = 1.99 mg m-3).  

Overall, the NN processors show a marginal difference in chl-a retrieval accuracy relative to each 

other. Variation in the performance of models can be attributed to the algorithms’ training ranges. A 

comparison of Table 3-2 and Table 3-3 reveals that the optical properties measured in Lake Erie are 

represented in the training range of the C2R processor, whereas low levels of chl-a, CDOM and TSM 

concentrations in Lake Erie are not covered in the training range of the EU processor. Also, the training 

range of FUB/WeW does not cover high concentrations of CDOM matchup in situ data.  
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Table 3-5 Locally tuned equations for the full lake derived in training step. N is the number of training data which is 70% of 

the matchup in situ data after removing those flagged by the algorithm. Chl_aprodcut is the product of each algorithm related 

to the chl-a concentration, whereas Chl_apredicted is the one derived from applying the locally tuned equations. 

Basin Processor N Locally tuned equation 

F
u

ll
 L

ak
e 

EU 75 Chl_apredicted=0.69×Chl_aprodcut + 0.10 

C2R 75 Chl_apredicted=0.70×Chl_aprodcut - 0.16 

FUB/WeW 68 Chl_apredicted=3.03×Chl_aprodcut + 1.68 

CC_OC4 71 Chl_apredicted=0.99×Chl_aprodcut  - 0.41 

CC_NN 71 Chl_apredicted=0.28×Chl_aprodcut  + 2.01 

CC_merged 71 Chl_apredicted=0.28×Chl_aprodcut  + 1.82 

FLH 80 Chl_apredicted= -6.95×FLH + 3.93 

MCI 80 Chl_apredicted= 2.97×MCI + 4.62 

Table 3-6 Chl-a retrieval performance statistical indices for each algorithm derived in testing step for the full lake. Chl_a 

predicted derived from tuning equation is compared to the in situ chl-a concentration. N is 30% of matchup in situ data after 

removing those flagged by the processor. 

Basin Processor N RMSE (mg m-3) MBE (g m-3) I_a 

F
u

ll
 L

ak
e 

EU 34 2.40 -0.01 0.67 

C2R 34 2.21 -0.02 0.69 

FUB/WeW 31 1.99 -0.01 0.65 

CC_OC4 32 2.50 0.03 0.64 

CC_NN 32 2.28 0.02 0.64 

CC_merged 32 2.32 0.03 0.63 

FLH 37 5.45 -0.15 0.44 

MCI 37 5.29 0.00 0.52 

FLH derived chl-a has the lowest accuracy (I_a = 0.44, RMSE = 5.45 mg m-3) with a negative slope 

from the derived tuning equation. Gons et al. (2008) found a strong linear relationship between chl-a 

concentration and FLH for oligotrophic waters of Keweenaw Bay (Lake Superior). However, FLH 

poorly predicted chl-a concentration for eutrophic to hyper-eutrophic waters of Green Bay (Lake 

Michigan). In mesotrophic to eutrophic and hyper-eutrophic waters, FLH diminishes to become 

negative when chl-a increases. This is because the absorption of chl-a signal becomes dominant at 681 

nm for high concentrations (Gons et al., 2008). Binding et al. (2011b) and Palmer et al. (2014) also 

found a negative correlation between in situ chl-a measurements and the FLH index in their studies. At 

high chl-a concentration, FLH is more representative of an absorption line depth instead of being a FLH 

(Binding et al., 2011b; Palmer et al., 2014). The other possibility for the reduced fluorescence is the 

contribution of cyanobacteria chl-a molecules. Most of these molecules belong to non-fluorescing 
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photosystems. This results in the absence of a distinct FLH signal (Binding et al., 2011b). MCI values 

estimated from MERIS Level 1b on Lake Erie tend to be negative. This happens when there is a 

radiance peak near 685 nm and FLH is high. But MCI has positive values when the peak shifts to longer 

wavelengths around 705 nm (Gower et al., 2005). The model results of Gower et al. (2005) show that 

MCI positive values (a peak in the wavelength range of 700-710 nm) occur in the case of an intense 

algal bloom with a chl-a concentration of above ca. 100 mg m-3 (Gower et al., 2005). The MCI-derived 

chl-a product results in a low accuracy in the present study (I_a = 0.52, RMSE = 5.29 mg m-3). This is 

due to the fact that there is not enough high concentration of chl-a to form the MCI peak. 

The predicted chl-a concentrations obtained by applying the locally tuned equations are shown in 

Figure 3-2 against the in situ measurements for all matchup data. The CC_merged product shows 

similar results to the CC_NN product. This indicates that the merging was mostly based on the CC_NN 

product, which is developed for turbid waters (e.g. Lake Erie). 

Between the C2R and the FUB/WeW processors, the former underperformed the latter (11% failure 

in RMSE values versus 6% improvement in I_a values). Thus, the FUB/WeW processor was selected 

to map chl-a concentration for a selected day in September 2011, when Lake Erie experienced the 

largest algal bloom in its recorded history before the 2015 bloom (NOAA, 2015) (Figure 3-3). The peak 

intensity was over three times greater than any observed bloom in the past in 2011 (Michalak et al., 

2013). The FUB/WeW processor captures the west-to-east gradient trend of trophic condition in Lake 

Erie. Also, the map reveals the bloom extent and spatial feature details during the bloom event in 

September 2011. It shows the bloom expanding into the central basin from the western basin. It also 

displays the second phase of bloom that was forming along the northern shorelines of the central basin 

(Michalak et al., 2013). Michalak et al. (2013) reported that the bloom in early September 2011 was at 

least 2.4 times greater than the previous largest bloom of 2008. The bloom was four times larger than 

the average bloom from 2002 to 2010. The bloom continued to grow until mid-October (Michalak et 

al., 2013). Michalak et al. (2013) stated that the record-breaking nutrient loads in Lake Erie was 

associated with the long-term trends in agricultural practices. The nutrient loads resulted in increasing 

phosphorus loading into the western basin. The high concentration of phosphorus was also coupled 

with special meteorological conditions (severe precipitations) in spring 2011. On the other hand, the 

unusual strong re-suspension immediately after the bloom onset, as well as the uncommonly warm 

condition in late spring, are hypothesized in Michalak et al. (2013) as the factors providing the ideal 
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conditions for further algal growth and bloom development on Lake Erie in that year (Michalak et al., 

2013).  
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Figure 3-2 Chl-a retrieved from each algorithm after tuning for the full lake relative to the matchup in situ data. Solid line 

corresponds to 1:1 relationship. 

 

Figure 3-3 Chl-a concentration mapping by locally tuned FUB/WeW algorithm during a bloom event in September 3, 2011. 
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resulting in the same remote sensing reflectance data. Also, the C2R processor resulted in the best 

agreement with in situ data (comparable performance with the FUB/WeW processor). Therefore, 

remote sensing reflectance derived from the C2R processor was used as input to cluster the matchup 

data by applying the two-step clustering method in the SPSS software. The relative importance of 

MERIS bands used as the predictors in the two-step clustering approach were reported above 0.5.   

Three spectrally distinct optical water types were automatically classified from applying the 

clustering algorithm on all matchup in situ data. The difference between clusters’ optical properties can 

be more readily distinguished when the reflectance mean of each cluster are plotted together (Figure 

3-4). Therefore, the optical water types (type 1, 2, and 3) are represented based on the form of the 

remote sensing reflectance means. Water types 3 through 1 show a pattern of increasing peak magnitude 

at 560 nm which is associated with the enhanced backscattering from living and nonliving sources such 

as phytoplankton and sediments, respectively (Moore et al., 2014). Water types 1 and 2 also show peaks 

around 708 nm with different magnitudes. This peak is characteristic of algal blooms with high chl-a 

concentrations (Gower et al., 2005). Type 3 has an overall low spectral magnitude with relatively flat 

features after 680 nm compared to two other types. Water types 1 and 2 have a higher spectral 

magnitude, but different from each other. A higher number of matchup data are associated with type 3 

waters. Thus, in the matchup of situ data used in this study, optical properties of type 3 waters are 

dominant. Each type is descriptive of the average optical properties that is governed in that class, 

whereas the optical properties depend on the concentration of optically active water constituents such 

as phytoplankton, suspended and dissolved matters.  

Table 3-7 shows the descriptive statistics of water quality parameters measured across the optical 

water types. These parameters include concentration of chl-a, TSM, absorption of CDOMs (aCDOM), 

and SDD, that were derived from matchup in situ data. Figure 3-5 compares the characteristics of each 

optical water type in terms of the measured matchup in situ data. Water type 3 is showing the highest 

average SDD (5.5 ± 2.37 m) compared to the two other water types (type 1: 0.9 ± 0.49 m; type 2: 1.12 

± 0.63 m). In addition, the lowest concentration of TSM, chl-a and CDOMs are measured in type 3 

(Chl-a: 2.20± 1.99 mg m-3, TSM: 1.84 ± 1.65 g m-3, aCDOM: 0.16 ± 0.1 m-1). Thus, this water type 

represents the less turbid of the two other types, which explains the relatively flat spectra after 680 nm 

in Figure 3-4. Water type 1 has the highest concentration of TSM (12.48 ± 7.51 g m-3), whereas the 

highest chl-a concentration is measured in water type 2 (5.67 ± 5.1 mg m-3). Water type 1 represents 

the most turbid among water types with a SDD average of 0.9 ± 0.49 m. 
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Figure 3-6 presents the distribution of different optical types across the lake. Turbid type 1 waters, 

with highest concentrations of suspended matters from the three types, are mostly located in the shallow 

western basin of the lake and also around Turkey/Long Point and Port Colborne. The deepest parts of 

the eastern basin, east of Long Point is identified as having the highest sedimentation rates in the lake, 

probably because of shoreline erosion (Kemp et al., 1977). Type 2 waters are still turbid but with highest 

levels of chl-a concentrations. This water type is focused mostly close to the shorelines, including Port 

Stanley which has watershed dominated by agriculture (Hiriart-Baer et al., 2013) and particularly in 

western basin. The Detroit River and the Maumee River are sources of sediment loads and nutrients to 

the western basin; they influence lake turbidity and algal biomass. West Erie is also affected by inflows 

from Sandusky Bay carrying nutrients into the lake. 

  

  

Figure 3-4 Matchup in situ data classified into three clusters from the two-step clustering approach. Black lines are the 

individual reflectance data; colorful lines are the reflectance means of the three optical water types as illustrated by the legend. 

(Rrs: Remote Sensing Reflectance). 
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Table 3-7 Descriptive statistics of in situ matchup data optical properties across three different water types. N is the number 

of matchup in situ data that is assigned to each water type. 

Type 
Water Quality 

Parameter 
N Max Min Avg. St. Dev. 

T
y

p
e 

1
 

Chl-a (mg m-3) 16 12.00 0.60 4.41 3.60 

TSM (g m-3) 15 30.42 4.49 12.48 7.51 

aCDOM (m-1) 13 1.75 0.16 0.44 0.44 

SDD (m) 7 1.50 0.30 0.90 0.49 

T
y

p
e 

2
 

Chl-a (mg m-3) 26 23.10 0.40 5.67 5.10 

TSM (g m-3) 26 50.50 1.17 10.73 11.79 

aCDOM (m-1) 20 1.49 0.13 0.46 0.39 

SDD (m) 14 2.50 0.20 1.12 0.63 

T
y

p
e 

3
 

Chl-a (mg m-3) 67 9.10 0.20 2.20 1.99 

TSM (g m-3) 67 10.74 0.18 1.84 1.65 

aCDOM (m-1) 45 0.52 0.04 0.16 0.10 

SDD (m) 30 11.00 1.50 5.50 2.37 

  

  

Figure 3-5 Comparing matchup in situ data characteristics across the three optical water types. 
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Figure 3-6 Distribution of matchup in situ data for different optical water types. 

3.3.5 Chlorophyll-a Product Evaluation in Different Water Types and Blending 

Algorithm Results 

A narrower range of optical properties and environmental conditions that each algorithm can perform 

well is revealed by testing the algorithms’ performance for each individual water type (Moore et al., 

2014). The most variation in the performance of different algorithms for each single water type was 

observed in I_a; where it ranged from 0.41 to 0.61 for type 1, 0.59 to 0.70 for type 2, and 0.13 to 0.72 

for type 3 (Table 3-8). Therefore in terms of I_a variations, type 3 was the most sensitive to applying 

different algorithms, with chl-a concentration ranging from 0.2 to 9.1 mg m-3, and with an average of 

2.20 ± 1.99 mg m-3. In this water type, FLH index had a poor performance in predicting chl-a 

concentration, probably because the concentration of chl-a in this type was not high enough to produce 

a fluorescence peak, whereas the best performing algorithm in that type was obtained from applying 

the C2R processor (C2R: RMSE=1.20 mg m-3, MBE= -0.39 mg m-3, I_a=0.72; FLH: RMSE=2.70 mg 

m-3, MBE=1.38 mg m-3, I_a=0.13). FLH had its best performance in water type 2 with highest chl-a 

concentrations compared to other types. The high concentration of TSM in water type 1 can eliminate 

the contribution of fluorescence in the water-leaving reflectance and result in a poor performance of 

FLH in estimating chl-a concentration for this water type. 

The best performing algorithm was assigned to a particular water type based on I_a values (due to 

the most range of variations observed in this model performance indictor for each water type). Type 1 

water was best predicted by the CC_merged product, type 2 by the CC_ NN product, and type 3 waters 
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by the C2R processor. The best performing algorithms were tuned to the assigned water types; and 

resulted in the blended product. The blended product is shown in Figure 3-7 against the in situ 

measurements. The overall RMSE, and I_a improved minimally for the blended chl-a product 

compared to applying the algorithms separately (RMSE: blended=1.91 mg m-3 versus FUB/WeW=1.99 

mg m-3; I_a: blended=0.73 versus C2R=0.71) (Table 3-9). 

Table 3-8 Performance of the models calibrated for each single water type. 

Statistical 

Indices 

Water 

Type 
EU C2R FUB/WeW CC_OC4 CC_NN CC_merged FLH MCI 

RMSE Type 1 3.69 3.43 3.19 3.13 2.79 2.79 4.12 4.59 

 Type 2 3.16 2.84 1.99 3.59 2.65 2.67 3.61 2.94 

 Type 3 1.23 1.20 1.34 1.42 1.66 1.80 2.70 2.12 

MBE Type 1 2.43 2.11 1.15 0.44 0.16 0.02 -2.65 2.00 

 Type 2 -0.63 -0.31 -0.18 -0.25 -0.91 -0.81 -1.64 -1.05 

 Type 3 -0.34 -0.39 -0.29 -0.11 0.21 0.22 1.38 0.45 

I_a Type 1 0.47 0.51 0.51 0.55 0.60 0.61 0.41 0.48 

 Type 2 0.65 0.68 0.61 0.65 0.70 0.69 0.59 0.66 

 Type 3 0.71 0.72 0.70 0.67 0.56 0.54 0.13 0.40 

  

 

Figure 3-7 Chl-a concentration derived from blending algorithm versus in situ measurements for all matchup in situ data over 

Lake Erie. Solid line corresponds to a 1:1 relation. 
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Table 3-9 Performance of the calibrated models for the full lake, and the blending algorithm. N is the number of matchup in 

situ data after removing those flagged ones in each algorithm. 

Full Lake EU C2R FUB/WeW CC_OC4 CC_NN CC_merged FLH MCI Blended 

N 109 109 99 103 103 103 117 117 108 

RMSE 2.31 2.13 1.99 2.44 2.15 2.22 3.19 2.81 1.91 

MBE 0.00 -0.01 -0.04 -0.06 -0.08 -0.07 0.04 0.32 -0.45 

I_a 0.69 0.71 0.67 0.68 0.67 0.66 0.47 0.59 0.73 

3.4 Summary and Conclusion 

Different NN and band ratio algorithms available in the BEAM software were evaluated against in situ 

chl-a measurements obtained during several ship cruises on Lake Erie. Matchup in situ data was divided 

into two independent subsets for calibration and evaluation purposes. Evaluation results using randomly 

selected 30% matchup in situ data shows that the C2R processor can perform marginally better than 

FUB/WeW processor in terms of I_a with an improvement of 6%. Whereas it underperformed 

FUB/WeW processor with 11% increase in RMSE values. The locally tuned equation was applied on 

FUB/WeW derived chl-a product to predict chl-a concentration on a selected day in September 2011. 

Lake Erie had experienced the largest algal bloom in its recorded history in that year before 2015. The 

National Oceanic and Atmospheric Administration (NOAA) reported that the 2015 bloom in western 

Erie was the most severe one in this century. The severity index indicates the amount of biomass in the 

bloom. The index value in 2015 is 10.5 as compared to 10 in 2011 bloom. The 2015 bloom covered a 

large area in the central basin; however, the bloom growth was disrupted and weakened by strong 

winds. The winds declined the bloom much faster than previous record-breaking blooms (NOAA, 

2015). 

The remote sensing reflectance data derived from the C2R processor was used as the input in a two-

step clustering algorithm. The clustering approach was applied to differentiate different optical classes 

in Lake Erie; and then select the best performing algorithm for each water type. The clustering 

algorithm resulted in three separate water type classes in Lake Erie, each showing distinct optical 

properties based on different reflectance characteristics. Type 1 waters were associated with high 

suspended matter concentrations and the most turbid of the three types. Type 2 was still turbid but with 

the highest chl-a concentration values. Type 3 represented the least turbid water type with the lowest 

concentrations of chl-a and TSM. Also, the highest SDD was measured in type water 3. The 

performance of locally tuned algorithms for each water type was evaluated individually. There was no 

single algorithm performing best for all water types. Results showed that, although the FUB/WeW 
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processor is the best overall, its performance was only the best for type 3 waters in terms of RMSE and 

I_a. The best performing algorithm in type 1 waters based on I_a was CC_merged product. In type 2 

waters, however, the CC_NN product resulted in a higher I_a. The C2R processor outperformed other 

algorithms for type 3 waters in terms of I_a values. 

A blending (“ensemble”) approach was applied on the results of best performing algorithms that were 

tuned for the assigned water type. The blended algorithm resulted in a slight improvement in RMSE 

and I_a compared to all other algorithms applied on all matchup in situ data collected from the full lake. 

Although there was a marginal improvement in I_a (RMSE) of about 4% (9%) versus applying the 

single C2R processor (FUB/WeW) on all basins. 

Different water bodies have specific optical properties, therefore the calibration of semi-analytical 

algorithms to the characteristics of the lake is still required. However, various concentrations of 

optically active water constituents including algae, and suspended/dissolved matters in different parts 

of a lake can result in different optical properties to exist in a single water body (i.e., optically complex 

lakes). Thus, different algorithms have varying performance for the identified optical water classes. 

The clustering approach can assign each pixel to a specific optical water type, and find the best 

performing algorithm for that water type. Therefore, a higher estimation accuracy of satellite-derived 

chl-a concentration can be obtained by developing algorithms specific to the optical properties of the 

optically complex inland and coastal waters.  

Clearly, there are still limitations associated with the satellite remote sensing of chl-a concentration 

including the time differences between in situ data collection and satellite overpass, and also different 

spatial coverage (satellite footprint versus in situ point-sampling). These factors are especially 

important for inland waters characterized by high temporal and spatial optical variability. The 

forthcoming Sentinel-2 and Sentinel-3 satellites will provide information about inland waters and 

coastal zones with improvement in satellite imagery applicability to monitor algal blooms. The future 

Sentinel-2 MSI sensor is complementary to the Landsat-8 mission with high spatial resolutions of 10, 

20, and 30 m, added channels, and also a 5-day revisit frequency. Sentinel-3 OLCI sensor has MERIS 

heritage and improves upon it with an additional 6 spectral bands. It has a more frequent revisit cycle 

compared to MSI (every 1-2 days); however a coarser spatial resolution of 300 m at nadir.  

Finally, the in situ data sampling has to be extensive enough to statistically represent the spatial and 

temporal variability in the optical properties of the inland lake. Therefore, a dataset conveying the 

dynamic range of optical variability observed in the water body is preferable for training and evaluating 
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different algorithms for the water body; however the matchup data resulted from applying flags in the 

present study did not cover the full variations captured in the field data. 
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Chapter 4 

Estimation of Water Quality Parameters in Lake Erie from MERIS 

Using a Linear Mixed Effect Model 

4.1 Introduction 

Lake Erie is the most southern and shallowest of the Laurentian Great Lakes. Total suspended matters 

(TSM) are a major contributor to the lake’s low water clarity (Binding et al., 2012). The problem of 

excess nutrients and resulting algal blooms are also threatening the ecosystem of the lake and the 

economic activities of the surrounding regions. The ecological state of Lake Erie significantly affects 

its role as a natural, social, and economic resource, considering that the lake is as an essential drinking 

water source that also offers many opportunities for recreational activities, fisheries and tourism. As a 

result, the Lakewide Management Plan was signed in 1972 to restore and maintain the ecological health 

of the lake (Daher, 1999). Ongoing efforts to support this plan require high-resolution measurements 

of the water quality parameters on a variety of spatial and temporal scales. Conventional field-based 

measurements of these parameters can be expensive and are often sparse in either space or time or both. 

Remote sensing has the potential to infer the lake bio-optical/water quality parameters overcoming 

these concerns. 

The emerging water reflectance measured by remote sensing instruments depends on the water itself 

and its constituents. The water constituents interact with the photons of light and modify the incoming 

and outgoing radiation at various wavelengths. Therefore, remote sensing measurements of water 

leaving reflectance can be related to the composition and concentration of water constituents. In Case 

I waters, chl-a concentration (phytoplankton population) and its co-varying particles are dominating 

the optical properties, which is the case in nearly all open ocean waters. However, optically complex 

inland waters and coastal waters are referred to as Case II waters, where chl-a alone is a poor predictor 

of light attenuation, and variations in TSM and colored dissolved organic matter (CDOM) appear to 

also be important in light scattering or absorption, and therefore the water leaving reflectance (Morel 

and Prieur, 1977).  

The delivery of data on water color has been explored using satellite sensors such as Landsat 

Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+) due to their relatively high spatial 

resolution of 30 m (Zhao et al., 2011; McCullough et al., 2012a; Tebbs et al., 2013). However, its 

shortcomings in other capacities such as its relatively low temporal resolution (i.e. 16 days) make the 
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use of MODIS (Moderate-resolution Imaging Spectroradiometer) and MERIS (Medium Resolution 

Imaging Spectrometer) data more attractive for water quality monitoring (Binding et al., 2011a; 

McCullough et al., 2012b; Saulquin et al., 2013). Images from these satellite sensors compensate for 

the limitations of Landsat at the expense of a lower spatial resolution (ca. 250-500 m). MERIS was 

originally designed for water quality monitoring applications. Therefore, compared to MODIS, it has a 

more suitable spectral resolution in the red and near-infrared (NIR) to derive the secondary chlorophyll-

a (chl-a) absorption maximum (Odermatt et al., 2012a). This is essential for Case II waters, as is the 

case for Lake Erie, where chl-a is not the predominant color-producing agent (CPA) and multiple CPAs 

may also confound the reflectance signal, particularly at shorter wavelengths. Hence, the traditional 

and empirical blue/green band ratio algorithms result in large uncertainties due to the limited ability to 

distinguish signals coming from the covariant water constituents.  

As a consequence of the ambiguities related to the shorter wavelengths, several authors have 

investigated the applicability of red and NIR wavelengths for estimating chl-a concentration in turbid 

optically complex waters to aim for a minimal sensitivity to other water-coloring parameters. Red-NIR 

band ratio algorithms have been found to work well in Lake Chagan (chl-a concentration: 6.4 to 58.21 

mg m-3) (Duan et al., 2010), as well as Curonian Lagoon (chl-a concentration: 44.1 to 85.3 mg m-3) 

(Bresciani and Giardino, 2012) and Zeekoevlei Lake (chl-a concentration: 61 to 247.4 mg m-3) 

(Matthews et al., 2010) that have chl-a concentration ranges typical of mesotrophic lakes and eutrophic 

waters in Lake Erie (Binding et al., 2012). Band ratio algorithms developed to derive Secchi disk depth 

(SDD) variations are making use of bands in the visible range of the spectrum. Two multiple linear 

regression models have been developed separately, based on blue and red bands of Landsat TM and 

MODIS, to predict the logarithm of SDD in Poyang Lake National Nature Reserve in China (Wu et al., 

2008). A linear regression model has also been proposed based on the logarithmic transformation of 

MERIS band ratio (490 nm to 620 nm) to estimate the natural logarithm of SDD in the Baltic Sea 

(Kratzer et al., 2008). However, the correlated errors resulting from repeated measurements in space 

and time are not considered in the regression models developed in these studies. Multiple measurements 

per variable will result in non-independency, which violates the assumptions of regression methods. 

The linear mixed effect (LME) model (Pinheiro et al., 2015) approach developed herein is appropriate 

for cases where observations are collected in time and/or space for the same parameter, and therefore 

represent clustered or dependent data. 
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The applicability of LME models is tested in this study to estimate chl-a concentration and SDD from 

the CoastColour (CC) atmospherically corrected MERIS reflectance product (Ruescas et al., 2014) in 

support of water quality monitoring in Lake Erie. Although in situ measurements remain the most 

accurate solution for water quality monitoring programs, satellite remote sensing can be added for 

routine and synoptic measurements (Moore et al., 2014). Chl-a is widely measured as an indicator of 

eutrophication and primary production. SDD is another environmental descriptor that is indicative of 

water clarity. It also provides a highly relevant measure of the extent of the euphotic layer where 

primary production is possible (Kratzer et al., 2003; Fleming-Lehtinen and Laamanen, 2012). 

Therefore, both parameters are of interest in this study. Section 4.2 of this paper provides an overview 

of the location and general chemical, physical and biological properties of Lake Erie. It also outlines 

the field methods and measurement campaigns conducted to acquire in situ water quality observations. 

The processing scheme and LME models applied to the MERIS data are described at the end of this 

section. Section 4.3 presents results from the evaluation of satellite-derived estimates of chl-a and SDD 

against in situ measurements and discusses the temporal and spatial variations in the water quality 

parameters. Finally, Section 4.4 provides concluding remarks about the study. 

4.2 Material and Methods 

4.2.1 Study Site 

Lake Erie (42° 11′N, 81° 15′W; Figure 4-1) is the smallest (by volume), the shallowest, and the warmest 

of the Great Lakes (Michalak et al., 2013). It is a monomictic lake (with occasional dimictic years). 

The shallow western basin is polymictic, since stratification is destroyed by wind-driven mixing. 

However, the central and eastern basins develop stable thermoclines in summer (Gobler and Wilhelm, 

2015). The lake is covering an area of 25,700 km2, with average and maximum depths of 19 m and 64 

m, respectively (Bootsma and Hecky, 2003). The lake is naturally divided into three basins of different 

depths: the shallow western basin, the central basin, and the deep eastern basin (Table 4-1). The basins 

are separated approximately based on the Lake Erie Islands (~ 82ᴼ 49 ́W) and the Long Point-Erie 

Ridge (~ 80ᴼ 25́ W) (Figure 4-1) (Binding et al., 2012). River discharge into Lake Erie originates mostly 

from the St. Clair River and Lake St. Clair through the Detroit River. Other smaller rivers and streams 

in the territory of Lake Erie also contribute to water inflow into the lake. Lake Erie drains into Lake 

Ontario through the Niagara River and shipping canals (Daher, 1999; Painter et al., 2000).  
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Table 4-1 Lake Erie Basins Information (source: (Painter et al., 2000)) 

Lake Erie Mean Depth (m) Maximum Depth (m) 

West Basin 7.4 19 

Central Basin 18.3 25 

East Basin 24 64 

 

 

 

Figure 4-1 Location of Lake Erie and its boundary (Canada and US). In situ sampling stations from cruises that took place in 

September 2004, May, July, and September 2005, May and June 2008, July and September 2011, and February 2012 are 

illustrated by empty triangles. 

Lake Erie is exposed to greater stress than any other of the Great Lakes due to agricultural practices 

and urbanization in its surroundings. Chemically enriched runoff from agricultural lands in the basin 

flows into the lake. In addition, the lake receives the most effluents from wastewater treatment works 

(Daher, 1999; Painter et al., 2000). Lake Erie has experienced substantial eutrophication over the past 

half century due to excess phosphorus loads from point and nonpoint sources producing algal blooms 
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(Michalak et al., 2013). In general, phosphorus concentration in Lake Erie decreases from west to east 

and from near-shore to the offshore (IJC. International Joint Commission Canada and United States, 

2013). 

4.2.2 Field Measurements of Water Quality Parameters  

Sample collection in Lake Erie was conducted on board of the Canadian Coast Guard ship Limnos 

during September 2004, May, July, and September 2005, May and June 2008, July and September 

2011, and February 2012. A total of 89 distributed stations were visited to provide measurements of a 

wide range of optical properties as well as concentrations of the main CPAs in different locations of 

the lake (Figure 4-1). 

Composite water samples were collected at all stations, during 2004 to 2012, from the surface mixed 

layer of the lake using Niskin bottles. The samples were filtered through a Whatman GF/F fiber filter 

(0.7 µm) in the field. The filtered samples were then frozen and sent to the laboratory for extraction of 

chl-a concentrations following the method of the National Laboratory for Environmental Testing 

(NLET). This method is based on spectrophotometry following fixation using a 90% acetone solution 

and centrifugation (Environment Canada, 1997). SDD measurement is a worldwide accepted method 

to estimate turbidity in water bodies. Chl-a and SDD measurement methods followed the Ocean Optics 

Protocols for Satellite Ocean Color Sensor Validation (Mueller et al., 2003; Pegau et al., 2002). 

4.2.3 Satellite Data and Processing  

Launched by the European Space Agency (ESA) on 1 March 2002, the MERIS sensor was one of the 

instruments operating on the Envisat polar-orbiting satellite platform. Contact was lost with Envisat on 

8 April 2012, which marked the end of the mission. MERIS was primarily dedicated to ocean color 

studies. MERIS was a push-broom imaging spectrometer that could measure the solar radiation 

reflected from the Earth’s surface in a high spectral and radiometric resolution (15 spectral bands across 

the range 390 nm to 1040 nm) with a dual spatial resolution (300 and 1200 m). MERIS scanned the 

Earth with global coverage every 2-3 days.  

In this study, CC L2R (Version 2) MERIS reflectance full resolution images with full or partial 

coverage of Lake Erie between September 2004 and February 2012 were acquired through the Calvalus 

on-demand processing portal. The CC MERIS Level 2R product is generated using an atmospheric 

correction algorithm applied to the Level 1P product, which is a refined top of atmosphere radiance 

product with improved geolocation, calibration, equalization, smile correction, in addition to precise 
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coastline and additional pixel characterization information (e.g. cloud, snow). The atmospheric 

correction procedure is based on two processors implemented in the Basic ERS & ENVISAT (A)ATSR 

MERIS (BEAM) software (Version 5.0): the Case II Regional (C2R) lake processor and also glint 

correction processor (Ruescas et al., 2014). A detailed description of C2R can be found in Doerffer and 

Schiller (2007).   

The MERIS images were selected to be within a 2-day time window of in situ water quality 

measurements for the study period (2004-2012). This criterion was set to maximize the number of 

possible satellite and in situ measurements match-ups; at the same time reducing the effect of time 

heterogeneity over the lake, assuming that the water quality parameters would not change significantly 

in this time frame. Atmospherically corrected MERIS L2R reflectance values were extracted from 

pixels covering the geographic location of the stations. A valid pixel expression was defined that 

excluded all pixels with properties listed in Table 4-2. Spatial averaging of pixels surrounding the 

station could be a technical solution to increase the number of resulting match-ups, when the considered 

pixel is excluded due to flags (Heim et al., 2014). However, the horizontal spatial heterogeneity of 

parameters over the lakes prevents the averaging analysis.  

Table 4-2 Flags of excluded pixels 

Level 1 Level 1P Level 2 

Glint_risk 
Land 

AOT560_OOR (Aerosol optical thickness at 550 nm out of the training 

range) 

Suspect Cloud TOA_OOR (Top of atmosphere reflectance in band 13 out of the training 

range) 

Land_ocean Cloud_ambigious TOSA_OOR (Top of standard atmosphere reflectance in band 13 out of the 

training range) 

Bright Cloud_buffer Solzen (Large solar zenith angle) 

Coastline Cloud_shadow  

Invalid Snow_ice  

 MixedPixel  

4.2.4 Water Quality Parameters Algorithms 

Semi-empirical algorithms are based on the regression between individual bands or band ratios, and the 

dependent variables, which are chl-a and SDD in this study. Different combinations can be considered 

based on the 15 MERIS spectral bands. Lakes with various optical and biological properties can 

produce different levels of correlation with these band combinations. This makes the use of semi-

empirical algorithms a robust approach that can work on the lake of interest and within the time period 

that data samples were collected. The best band combinations were determined from the highest 
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calculated Pearson correlation coefficients (R) against the logarithmic scale of in situ measurements of 

water quality parameters. It has long been known that the chl-a concentration distribution in the ocean 

is lognormal (Campbell, 1995). Also, the logarithmic function linearizes the relationship of in situ 

observations to band ratios and makes the distribution more symmetric (normal). Considering the 

optical complexity of Lake Erie (see Section 4.3.1), red and NIR bands are required to derive chl-a 

concentration. Therefore, the selected band ratio for estimating chl-a was chosen among MERIS bands 

centered at B05: 560 nm, B06: 620 nm, B07: 665 nm, B008: 681.25 nm, B09: 708.75 nm, B10: 753.75 

nm, B12: 778.75 nm, and B13: 865 nm. The band ratio for deriving SDD was selected among the visible 

bands: B01: 412.5 nm, B02: 442.5 nm, B03: 490 nm, B04: 510 nm, B05: 560 nm, B06: 620 nm, B07: 

665 nm, B08: 681.25 nm. 

Sampling-wise, the same in situ measurements are repeated in time (month) over Lake Erie during 

the study period. Multiple measurements per variable in space or time will generally result in correlated 

errors and clustered data, which violate the assumptions of regression methods. Accordingly, random 

effect of time has to be added to the error term of the general regression models to account for 

measurements being made in clusters of time. Also, the measurements for different stations are inter-

dependent. Different locations can affect each other’s measurements, depending on their distance. 

Therefore, there is spatial dependency in in situ observations. To consider both random and fixed effects 

in the regression, a LME model approach was selected to handle the repeated measurements and also 

the spatial autocorrelation of in situ observations.   

Two separate LME models were developed between the logarithmic scale of in situ chl-a and SDD 

with selected individual bands or band ratios of MERIS atmospherically corrected reflectance. The 

models were then used to predict chl-a and SDD over Lake Erie at different times. A LME model allows 

the prediction to be made at the outermost level (level=0: predictions are only based on fixed effects, 

as it would be in a standard regression model), and innermost level (Level≠0: predictions are based on 

estimated random and fixed effects).  

4.2.5 Accuracy Assessment 

Cross validation was performed to assess the accuracy of derived chl-a and SDD estimates. Repeated 

random sub-sampling was used to reduce variability due to random sampling effect. Ten rounds were 

repeated by splitting the in situ measurements into training (70%) and testing (30%) datasets. The model 

uncertainty indicators were reported as the average over the iterations. The mean bias error (MBE: the 

average difference), and the root mean square error (RMSE) were used as the model uncertainty 
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indicators to describe chl-a and SDD retrieval accuracies. The index-of-agreement (I_a) was also 

calculated as it is a statistics indicative of model performance. The refined version of I_a, the one 

adopted in this study, has recently been proposed by Willmott et al. (2012). The index is bounded 

between -1 (the worst model performance) and +1 (the best model performance) (Willmott, 1981; 

Willmott et al., 2012). The RMSE, and MBE statistics are defined as follows:  

𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛(𝑙𝑜𝑔10𝑥𝑝𝑟 − 𝑙𝑜𝑔10𝑥𝑜𝑏𝑠)2 
Equations 4.1 

𝑀𝐵𝐸 = 𝑚𝑒𝑎𝑛(𝑙𝑜𝑔10𝑥𝑝𝑟 − 𝑙𝑜𝑔10𝑥𝑜𝑏𝑠)  

where 𝑥𝑝𝑟 is the predicted value of the chl-a concentration or SDD from the algorithm, 𝑥𝑜𝑏𝑠 is the 

observed value of the quantity which is measured in the field. The RMSE is a comprehensive metric as 

it combines the mean and variance of the error distribution into a single term (Szeto et al., 2011). MBE 

also reveals the systematic errors (Moore et al., 2014). 

Statistical analyses including: (1) finding the best MERIS atmospherically corrected reflectance band 

ratios, based on correlation with in situ observations; (2) development of LME models (regression 

method) based on selected band ratios and in situ observations; and (3) cross validation were performed 

in R programming language (Version 3.2.1) (R Core Team, 2015). All significant levels are reported at 

p < 0.005. 

4.3 Results and Discussion 

4.3.1 Lake Erie as an Optically Complex Water Body 

Descriptive statistics of various bio-optical parameters measured in Lake Erie over the 2004-2012 

period are summarized in Table 4-3.  

Table 4-3. Descriptive statistics of in situ measurements for Lake Erie (2004-2012). N is the number of times samples were 

collected at stations. St. dev.  is standard deviation. Chl-a and TSM are in mg m-3, and g m-3, respectively; aCDOM in m-1, and 

SDD in m. 

 N Min Max Mean St. dev. 

Chl-a 190 0.20 70.10 4.27 7.82 

TSM 190 0.18 50.50 5.75 8.00 

aCDOM 160 0.04 2.36 0.31 0.33 

SDD 117 0.20 11.00 3.69 2.68 
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Figure 4-2 shows the contribution of different water constituents in the attenuation of light in Lake 

Erie by investigating correlations between the concentrations of chl-a and TSM, and also absorption of 

CDOM in 440 nm (aCDOM(440)) with the measured SDD. The graphs reveal that the concentrations of 

chl-a, TSM, and aCDOM(440) are correlated with SDD over the period of measurements. TSM and to a 

lesser extent CDOM are important contributors to water turbidity observed in Lake Erie with coefficient 

of determination (R2) values of 0.67 and 0.54, respectively.  

  

 

Figure 4-2 Relationships between in situ SDD and three bio-optical parameters of the water: chl-a (A), TSM (B), and 

aCDOM(440)(C). 

The relative contribution of TSM compared to CDOM can be reduced in microtidal estuaries, or 

depending on the bathymetry of the lake (Branco and Kremer 2005). In shallow Lake Erie, re-

suspension of bottom sediments leads to higher water turbidity. Also, the Detroit and Maumee rivers 

contribute large sediment loads into the western basin of the lake. Kempt et al. (1997) identified the 

regions off Long Point and the mouths of these two rivers as the points of highest sedimentation rates 
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in the lake. The study by Binding et al. (2012) identified these zones as the highest turbid areas in the 

lake, confirming that TSM plays a major role in optically complex Lake Erie (Binding et al., 2012). 

Based on the results presented in Table 4-3 and in Figure 4-2, Lake Erie can be classified as a typical 

Case II water system where other water constituents play a major and independent role in its low water 

clarity, besides chl-a concentration. Therefore, red and NIR reflectance are consistently the most 

reliable and expedient remote sensing variables in predictive algorithms for chl-a concentrations 

assessments in Lake Erie (Duan et al., 2010). 

4.3.2 Linear Mixed Effect Model Calibration 

The natural variation of the water quality parameter being measured determines the required period of 

concurrency between satellite overpass and in situ observation (Shi et al. 2014). In this study, satellite 

images were selected in a 2-day time window of in situ data collection. Using this criterion resulted in 

16 MERIS CC L2R images being available for analysis. Applying defined flags produced 117 (60) 

pairs of atmospherically corrected reflectance and in situ chl-a (SDD) observations.  

Pearson correlation (R) coefficients were calculated from MERIS bands or band ratios against the 

logarithmic scale of chl-a concentration and SDD measurements to select the best band or band ratios 

for the regression analysis of chl-a and SDD, separately. Figure 4-3 shows the range of correlation 

coefficients between the parameters of interest (chl-a and SDD) in logarithmic scale and both individual 

bands and band ratios of water-leaving reflectance. The ratio of B07:665 nm to B09:708.75 nm has the 

highest correlation with chl-a concentration (R=-0.68) and the ratio of B13:865 nm to B10:753.75 nm 

the weakest correlation (R=-0.14). The highest and lowest correlation coefficients between SDD 

measurements and individual spectral bands or the ratio of them are observed for the band ratio of 

B06:620 nm to B04:510 nm (R=-0.90) and ratio of B04:510 nm to B02:442 nm (R=-0.16), respectively. 

From this analysis, band ratio B07:665 nm to B09:708.75 nm and band ratio of B06:620 nm to B04:510 

nm were selected to investigate their predictive capability in estimating chl-a concentration and SDD, 

respectively, using LME regression models.  

Gitelson et al. (2007) applied a two-band model, as the special case of a conceptual three-band model 

(Dall’Olmo and Gitelson, 2006), to the turbid (Case II) waters of Chesapeake Bay to estimate chl-a 

concentration. The tuning process found the ratio of 720 nm to 670 nm as the optimal spectral band 

ratio, with the maximal R2 of 0.79 in a positive correlation. Water samples collected from Chesapeake 

Bay contained widely variable chl-a concentration (9 to 77.4 mg m-3), when SDD ranged from 0.28 to 
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1.5 m. Duan et al. (2010) also found the band ratio of 710/670 nm positively correlated to the chl-a 

concentration in eutrophic Lake Chagan with R2=0.70. Chl-a concentration in this lake was between 

6.40 and 58.21 mg m-3 and SDD rarely exceeded 0.50 m (Duan et al., 2010). Hicks et al. (2013) reported 

that the logarithmic scale of SDD measurements and logarithmic scale of Landsat 7 ETM+ band ratio 

of B01(0.450–0.515 nm)/B03(0.630–0.690 nm) were positively correlated with a high Pearson 

correlation (R=0.82). This study was conducted for shallow lakes (ranging from 1.8 to 8.7 m depth) in 

the Waikato region in New Zealand, with SDD in situ observations varying between 0.005 and 3.78 m 

(Hicks et al., 2013). 

  

Figure 4-3 Correlation coefficients between MERIS red/NIR water-leaving reflectance ratio and in situ chl-a (left) and between 

MERIS water-leaving reflectance ratio and in situ SDD (right). R1 and R2 represent nominator and denominator, respectively. 

Values along the diagonal line from lower left to top right indicate correlation with reflectance of a single wavelength. 

The LME models were developed from the relationships between selected band ratios and the 

logarithmic scale of chl-a and SDD. The month of in situ data collection represented the random effect 

due to repeated measurements in time. Random slopes and intercepts were considered for each group 

of measurements in a single month. Goodness of fit (r-squared; R2) for the outermost and innermost 

levels of prediction were 0.49 and 0.56 for chl-a (versus R2 value of 0.46 for a regular regression) and 

0.78 and 0.83 for SDD (versus R2 value of 0.81 for a regular regression), respectively. Therefore, the 

innermost level of predictions were used to predict chl-a concentration and SDD, with different values 

of slope and intercept for each month. The model developed for chl-a has average values of -1.16 

(standard deviation: 3e-5, standard error: 0.1) and 2.44 (standard deviation: 0.12, standard error: 0.2) 

for slope and intercept, and the model developed to predict SDD has values of -1.04 (standard deviation: 

0.09, standard error: 0.08) and 0.99 (standard deviation: 0.05, standard error: 0.08) for slope and 
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intercept. The estimated slope and intercept values for both models are significant (p < 0.005). The 

derived models are summarized using only the fixed effects as follows: 

 

log10(𝑐ℎ𝑙_𝑎) =  
𝐵07(665 𝑛𝑚)

𝐵09 (708.75 𝑛𝑚)
× (−1.16) + 2.44 

Equations 4.2 

log10(𝑆𝐷𝐷) =
𝐵06 (620 𝑛𝑚)

𝐵04 (510 𝑛𝑚)
× (−1.04) + 0.99 

 

4.3.3 Evaluation of Linear Mixed Effect Models 

The model uncertainty indicators were derived for two models (log10chl-a: N = 117, RMSE = 0.31, 

MBE = 0.018, I_a = 0.66; log10SDD: N = 60, RMSE = 0.19, MBE = 0.006, I_a = 0.79). Comparisons 

between the measured and predicted log10 (chl-a) and log10 (SDD) using the LME models show that the 

values are in close agreement with paired observations, mostly evenly distributed along the 1:1 line 

(Figure 4-4). The chl-a model is, however, not sensitive enough to detect changes in concentrations 

below 1 mg m-3 and, as a result, the predicted values are not showing the variations corresponding to 

the small amount of in situ chl-a concentration measurements. Also, there is a larger scatter for the 

predicted values corresponding to the smaller amount of SDD in situ observations. 

Moore et al. (2014) applied a blending approach, to manage the selection between two band ratio 

algorithms in blue/green and red/NIR regions, based on the optical water type classification on Lake 

Erie. RMSE and MBE values were 0.32, and 0.023 in logarithmic chl-a units (Moore et al., 2014). Sá 

et al. (2015) evaluated CC chl-a products including: OC4, NN, and merged products, for the Western 

Iberian coast. The uncertainty estimation analysis was presented on the logarithmic scale of chl-a 

(0.249<RMSE<0.278, 0.139<MBE<0.200; for 3-hour time intervals) (Sá et al., 2015). Wu et al. (2008) 

estimated SDD in Poyang Lake in China from two multiple regression models. The models were 

developed using spectral bands of Landsat TM and MODIS, separately. In both models the blue and 

red bands were used in the regression. The logarithmic scale of SDD was predicted with RMSE values 

of 0.20 and 0.37 for the models, respectively (Wu et al., 2008). Results of the present study indicate 

that the LME models can be used to derive the bio-optical quantities; the models provide accuracies 

comparable to that of other studies. A good agreement between the selected band ratios (B07/B09 for 

chl-a and B06/B04 for SDD) of atmospherically corrected CC L2R MERIS data and in situ 
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measurements of chl-a and SDD in logarithmic scale were derived for Lake Erie for the 2004-2012 

study period. 

  

Figure 4-4 Comparison between MERIS estimates of chl-a (left) and SDD (right) using LME models and in situ measurements 

for Lake Erie. The solid diagonal line is the 1:1 line. 

4.3.4 Spatial and Temporal Variability of Chl-a and SDD 

The average chl-a concentration and SDD for each month between 2005 and 2011 are shown in Figures 

5 (left) and 6 (left). In situ data in 2004 were only collected in September, and the values were not 

estimated for the months before September. Also, the Envisat satellite stopped operating in April 2012, 

hence there were no full year time series estimated for 2004 and 2012. These years were therefore 

disregarded in the time series analysis below. The statistics related to the number of available pixels 

for each month is included in Figure 4-5 (left), which are the same for SDD measurements.  

The three basins of Lake Erie are characterized by distinct physical, chemical, biological, and optical 

properties. The highest chl-a concentrations and turbidity are experienced in different times of the year 

for each basin. The western basin always experiences a more intense algal bloom compared to the two 

other basins, with the most and least concentrations in September (6.62 ± 4.67 mg m-3)-October (4.83 

± 3.67 mg m-3) and June (2.39 ± 3.68 mg m-3), respectively. Lake Erie’s central basin experiences spring 

bloom in April (2.08 ± 0.67 mg m-3) and a more intense bloom in fall (October: 2.80 ± 0.79 mg m-3). 

The eastern basin shows the least chl-a concentrations of the three basins, and its highest algal intensity 

occurs in summer (August, 1.78 ± 1.27 mg m-3). Some more specific areas of the lake are affected by 

prolonged intense algal bloom, including Maumee Bay, Sandusky Bay, Rondeau Bay and Long Point 

Bay. These specific areas are known to experience cyanobacteria blooms due to constant nutrient 
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enrichment (Binding et al., 2012). Maumee River drains a large watershed which is dominated by 

agricultural fields, and also is a tributary of the largest storm runoff within the Lake Erie basin 

(Bolsenga and Herdendorf, 1993; Morang et al., 2011).  

There is also a north-south gradient noticeable in both chl-a concentration and SDD in western Lake 

Erie. This gradient can be explained by inflows from Detroit River. The Detroit River is a major source 

of flows from the upper Great Lakes into Lake Erie, which carries contaminated sediments and nutrients 

from a highly urbanized and industrialized watershed into western Lake Erie (Marvin et al., 2002; 

Binding et al., 2012). However, the comparatively clearer water that is carried through this river from 

the upper Great Lakes can create the north-south gradient in the Lake Erie (Binding et al., 2012). Also, 

Dolan (1993) reported that municipal phosphorus loads from US sources have a higher magnitude 

compared to the Canadian ones during the period 1986-1990. Therefore, if the same trend of 

phosphorus loads in those years occurs during the time period of this study, the observed differences 

between north and south near-shore algal productivity can be enlightened (Binding et al., 2012).  

The highest SDD values for the full Lake are estimated in July (5.38 ± 1.16 m), whereas the lowest 

SDD estimates are observed in March (2.44 ± 1.20 m) and October (2.52 ± 1.13 m). Re-suspension, 

shoreline erosion and loading from different sources such as rivers are among the most important 

factors influencing SDD estimates. Wind, as the primary source of kinetic energy, affects the sediment 

redistribution in the water column in Lake Erie (Binding et al., 2010). The high-energy and short-lived 

winter storms are a characteristic of Lake Erie wave climate that interrupts a long period of relative 

calm weather (Morang et al., 2011). These strong storms usually occur before the lake freezes (in 

October, November, and December) and also in spring after ice break-up (March and April) (Binding 

et al., 2012). However, it should be noted that the depth of the lake directly affects the amount of kinetic 

energy generated by wind. In other words, the re-suspension of sediment loads generated by wind in 

the shallower areas can be more pronounced than in the deeper areas of Erie. Comparing SDD estimates 

and depths of the lake in Figure 4-7, it can clearly be seen that the deeper areas are relatively clearer, 

while the shallow areas are more turbid. The maximum depth of the western basin is only 11 m (Ortiz 

et al., 2013). Hence, being the shallowest area, the western basin is the most vulnerable to physical 

processes such as re-suspension. Therefore, re-suspension of TSM can result in a prolonged constant 

turbidity in West Erie basin, besides inflows from rivers that can carry sediments into the lake and 

reduce in SDD reduction. Fine-grained sediments come from the Detroit River (1.6 million tons/yr) and 

the Maumee River (1.2-1.3 tons/yr) (Carter, 1977). 
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Standard deviations of chl-a (Figure 4-5-right) and SDD (Figure 4-6-right) were also calculated for 

each month (March to October) to show variations of log10chl-a and log10SDD from the average values. 

Figures 5 and 6 show that the greatest variability occurs in the western basin for both log10Chl-a and 

log10SDD. This area of the lake is the estuary of the Detroit River and close to Maumee Bay and 

Sandusky Bay. The largest variability in west Erie is estimated in March (Figure 4-5-right and Figure 

4-6-right). Precipitation and runoff during this time of year, after the ice break-up period on the lake, 

cause more variations in nutrient availability and water column re-suspension effect on algal biomass 

and lake turbidity. The offshore areas and eastern basin have the least variations in chl-a concentration 

and SDD patterns. These lake sections appear to experience low fluctuations in the availability of 

required resources for algal bloom such as nutrients. Also, eastern basin of Lake Erie is the deepest 

with an average depth of 24 m (max depth = 64 m). Physical processes such as re-suspension have the 

least effect on the turbidity and its variations in the deep parts of the lake, as opposed to the shallow 

western basin.  

The meteorological forcings can also have impact on the magnitude and timing of blooms. In general, 

a temperature increase leads to higher rates of photosynthesis and therefore to a greater phytoplankton 

growth rate under adequate resource supplies such as nutrients and light. Light-limited photosynthesis 

rate is insensitive to temperature, whereas a light-saturated one increases with temperature (Winder and 

Sommer, 2012). The resource availability of light and nutrients can be accompanied by vertical mixing. 

Therefore, the seasonal cycles of stratification and wind-induced vertical mixing are the key variables 

that condition the growth rate of phytoplankton in the water column (Winder and Sommer, 2012). 

Stratification results in a nutrient-depleted condition at the water surface, when the upward flux of 

nutrients from the deep water layers is suppressed. Also, the overall impact of windiness decreases light 

availability in the lower depth due to re-suspension of sediments (Winder and Sommer, 2012). As a 

result, the balance found between meteorological forcings, which sometimes can have opposite effects, 

is one of the driving factors determining the bloom condition. Phytoplankton production is a complex 

function and can be controlled by resources dynamics, species composition, and predator-prey 

interactions in the ecosystem (Winder and Sommer, 2012).   
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Figure 4-5 Chl-a average (Avg, left) and standard deviation (St.Dev., right) (log10 scale) from March to October for the study 

period (2005-2011). 
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Figure 4-6 SDD average (Avg, left) and standard deviation (St.Dev., right) (log10 scale) from March to October for the study 

period (2005-2011). 
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Figure 4-7 Bathymetry of Lake Erie (source: NOAA). 

4.3.5 Uncertainties of the Applied Linear Mixed Effect Model on MERIS  

The influence of other existing particulates in a Case II water, such as CDOM and TSM, will be 

significantly decreased employing the selected wavelengths to develop the chl-a LME model, as 

opposed to empirical blue-to-green band ratio algorithms. The absorption of CDOM is greatest in the 

blue region and certainly decreases exponentially with increasing wavelength, being near negligible in 

the NIR for the majority of the Great Lakes waters (Binding et al., 2012). The wavelengths also have a 

minimal sensitivity to TSM, but the absorption and scattering of suspended matters can still interfere 

within the chl-a algorithm selected wavebands. Increasing sediment loads result in the reflectance peak 

to move from blue to green to red in turbid waters (Bukata et al., 1995). Therefore, the semi-empirical 

models need to be tuned for each water body of interest characterized by different optical properties, in 

order to obtain the optimized wavelengths that can discriminate algal from suspended matters, and 

result in improved retrieval accuracy. 

In addition, one has to consider that there is a relatively higher level of errors in computing water-

leaving reflectance at longer wavelengths. Water absorption in red-NIR is strong and produces less 

water-leaving reflectance and, accordingly, a lower signal-to-noise ratio. This error is even higher in 

the case of clear waters where there is a low concentration of CDOM and TSM to produce water-

leaving reflectance (Binding et al., 2012). In Lake Erie, however, the contribution of suspended and 

dissolved matters in water-leaving reflectance is high enough to allow the use of the proposed 

wavelengths in this study and produce a strong agreement between the modeled and observed values.  

In the northern part of the western basin of Lake Erie, benthic algae can be seen at the surface when 

the water is clear enough. Consequently, in some remote sensing methods, benthic algae can contribute 

to the water leaving reflectance (Binding et al., 2012). In the present study, however, there is no need 
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to distinguish benthic algae from surface algae. The rapid in-water attenuation of the wavelengths 

selected in this study for chl-a model means that the remote sensing reflectance originates mostly from 

the upper 30 cm of water column in the lake (depends on the diffuse attenuation coefficient) (Binding 

et al., 2010). Therefore, there is no contribution of reflectance from algae at the bottom of the lake or 

subsurface. The estimated chl-a concentration is attributed to the surface or near surface algae even in 

the shallow areas or sections of the lake with clear water. The in situ samples to measure chl-a 

concentration in Lake Erie were collected from the surface mixed layer. There is a constant relationship 

between chl-a concentration at the surface and the one averaged over the mixing layer, as Lake Erie is 

shallow and exposed to strong wind-driven mixing to create a mainly mixed water column condition 

(Binding et al., 2010). 

In situ data are required for algorithm evaluation purposes and also for parameterizing the LME 

models. The water quality parameters measured in the field can change at a scale smaller than that of 

the satellite image pixel resolution (300 m for MERIS), especially in Lake Erie due to different river 

inputs and wind effect. Thus, multiple measurements around stations are necessary to consider spatial 

heterogeneity. Also, the time lapse between satellite overpasses and in situ data collection may 

characterize a large change in the water quality parameter magnitude. The extent of these variations 

depends on the particular condition in the water body and defines the time window to be considered 

between satellite and in situ measurements. There are also some uncertainties associated with in situ 

data collections. Over- or underestimation of chl-a concentration measurements in the field is inevitable 

when the collected samples contain all of the pigments, due to spectral absorption overlaps (Arar, 

1997a, 1997b; Arar and Collins, 1997; DosSantos et al., 2003). SDD measurements are subjective and 

may vary depending on the operator’s ability. In shallow water bodies, disk contrast disappears at a 

shorter depth due to bottom reflections. Also, the disk can reach the bottom of the shallow parts of the 

lake without disappearing (Civera et al., 2013), which is not the case in Lake Erie as the depth measured 

in the survey was always larger than SDD (Binding et al., 2012). 

4.4 Conclusion 

This paper presented and assessed a remote sensing approach that utilizes spectral bands in the red and 

NIR portions of the spectrum to estimate chl-a concentration, and visible bands to determine SDD from 

MERIS images obtained over Lake Erie for the 2004-2012 period. LME models were developed based 

on the selected bands and in situ measurements. This method presents advantages over the traditional 

regression models that are only based on fixed effects, and that do not consider the correlation that 
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stems from repeated measurements in space and time. Also, the LME models for chl-a and SDD are 

semi-empirical models that, unlike the semi-analytical models, do not require detailed knowledge of 

the inherent optical properties (IOPs) of the CPAs in water.  

Despite the limitations of remote sensing methods, they can still be considered as providing a 

complementary approach for the estimation of parameters related to water optical properties for many 

lakes over large areas and with frequent temporal coverage. In situ measurements of water quality 

parameters at sufficient temporal and spatial resolutions are, on the other hand, also problematic due to 

field logistics and extended periods without sampling as a result of changes in funding priorities by 

agencies. Environmental managers and policy makers can use satellite-derived information in support 

of decision-making programs. These programs require synoptic measurements of water quality 

parameters that can vary significantly in time and space. Measurements at an acceptable frequency are 

required in order to discern potential water quality problems associated with the lake. Upcoming 

Sentinel-3a and b satellite missions of ESA, which will each carry the OLCI (Ocean and Land Colour 

Instrument) sensor (heritage of MERIS), will mark a new era in the measurement of lake water quality 

parameters from space. OLCI has an optimized design to minimize sun-glint and will provide 21 

spectral bands compared to the 15 bands available from MERIS.  
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Chapter 5 

Satellite-Derived Light Extinction Coefficient and its Impact on 

Water Temperature Simulations in a 1-D Lake Model  

5.1 Introduction  

There has been significant progress made in recent years in the representation of lakes in regional 

climate models (RCM) and numerical weather prediction (NWP) models. Lakes are known to be as 

important as land surface component affecting weather and climate, especially in lake-rich regions of 

the northern hemisphere (Eerola et al., 2010; Samuelsson et al., 2010; Martynov et al., 2012). They can 

influence the atmospheric boundary layer by modifying the air temperature, wind and precipitation. 

Therefore, consideration of lakes in NWP/RCM is essential (Martynov et al., 2010; Kheyrollah Pour et 

al., 2012). In order to account for lakes in NWP/RCM, a description of energy exchanges between lakes 

and the atmosphere is required (Eerola et al., 2010). Lake Surface Water Temperature (LSWT) is one 

of the key variables when investigating lake-atmosphere energy exchanges (Kheyrollah Pour et al., 

2012). There are various approaches to obtaining LSWT and integrating it in NWP models, such as 

through climatic observations, assimilation, and lake parameterization schemes (Eerola et al., 2010; 

Kheyrollah Pour et al., 2014a; Kheyrollah Pour et al., 2014b). Currently, LSWT is broadly modeled in 

NWP models using one-dimensional (1-D) lake models as lake parameterization schemes (Martynov 

et al., 2012). For instance, the 1-D Freshwater Lake (FLake) model performs adequately in various lake 

sizes, shallow to relatively deep (artificially limited to 40-60 m depth (Kourzeneva et al., 2012a)), 

located in both temperate and warm climate regions (Kourzeneva, 2010; Martynov et al., 2010, 2012; 

Mironov et al., 2010, 2012; Samuelsson et al., 2010; Kourzeneva et al., 2012a; Kourzeneva et al., 

2012b). 

One of the optical parameters required as input in the FLake model is water clarity. This variable is 

considered as an apparent optical property and is parameterized using the light extinction coefficient 

(Kd) to describe the absorption of shortwave radiation within the water body as a function of depth 

(Heiskanen et al., 2015). A global constant value of Kd is usually used to run lake models, including 

FLake. For example, Martynov et al. (2012) coupled FLake in the Canadian Regional Climate Model 

(CRCM) by specifying a Kd value equal to 0.2 m-1 (Martynov, pers. comm., 2015) for all North 

American Lakes, including Lake Erie for years 2005-2007. Heiskanen et al. (2015) evaluated the 

sensitivity of two 1-D lake models, LAKE and FLake, to the seasonal variations and the general level 
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of Kd for simulating water temperature profiles and turbulent fluxes of heat and momentum in a small 

boreal Finnish lake. Modeled values were compared to those measured for the lake during the ice-free 

period of 2013. The study found a critical threshold for Kd (0.5 m-1) in 1-D lake models. They conclude 

that for too clear waters (Kd < 0.5 m-1), the model is much more sensitive to Kd. The study recommends 

a global mapping of Kd to run FLake model for regions with clear waters (Kd < 0.5 m-1) for future use 

in NWP models. The authors suggest that this global mapping can be time-independent (i.e. with a 

constant value per lake) (Heiskanen et al., 2015), and this can be derived from satellite imagery. Potes 

et al. (2012) used empirically derived water clarity from Medium Resolution Imaging Spectrometer 

(MERIS) satellite measurements to test the sensitivity of FLake to this parameter. The sensitivity 

analysis was conducted using two Kd values, representing the expected extreme water turbidity cases 

for their study (1.0 m-1 for clear water and 6.1 m-1 for turbid water). The importance of lake optical 

properties was evaluated based on the evolution of LSWT and heat fluxes. Their results show that the 

water clarity is an essential parameter affecting the simulated LSWT. The daily mean LSWT range 

increased from 1.2 ºC in clear water to 2.4 ºC in turbid water (Potes et al., 2012). Water clarity 

measurements are included in water quality monitoring programs; however, global measurements of 

turbidity are not yet available. Satellite remote sensing can provide lake models with turbidity 

observations at higher spatial and temporal resolutions, to fill the gap of field measurements.  

In recent years, a number of algorithms have been devised to retrieve different water optical 

parameters, including water turbidity, from satellite observations for coastal (ocean) and lake waters 

(Binding et al., 2007, 2015; Wu et al., 2009; Zhao et al., 2011; Potes et al., 2012; Attila et al., 2013; 

Olmanson et al., 2013). Coastal waters are optically more complex compared to open ocean, and large 

optical gradients exist. There is more than only one component (phytoplankton species, various 

dissolved and suspended matters with non-covarying concentrations) in coastal waters and lakes that 

determines the variability of water-leaving reflectance. Considering this complexity, the development 

of algorithms for coastal waters is more challenging. MERIS, which operated from March 2002 to April 

2012, collected data from the European Space Agency’s (ESA) Envisat satellite. The spatial resolution 

and spectral bands settings were carefully selected in order to meet the primary objectives of the 

mission; addressing coastal monitoring from space. The best possible signal-to-noise ratio, additional 

channels to measure optical signatures as well as the relatively high spatial resolution of 300 m are 

some of the specific instrument characteristics (Ruescas et al., 2014). In 2010, ESA launched the 

CoastColour project to fully exploit the potential of MERIS instrument for remote sensing of coastal 

zone waters. CoastColour (CC) is providing a global dataset of MERIS full resolution data of coastal 
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zones which are processed with best possible regional algorithms to produce water-leaving reflectance 

and optical properties (Ruescas et al., 2014). 

The objectives of this study are to: 1) evaluate satellite-derived Kd values for a large lake in the Great 

Lakes region; 2) apply the evaluated satellite-derived Kd in FLake model to investigate the 

improvement of model performance to reproduce LSWTs. Three different values of Kd were used in 

the simulations: yearly average, monthly average, and a constant value to demonstrate the impact of a 

time-independent, lake-specific Kd value in simulating LSWT; and 3) understand the sensitivity of the 

FLake model to Kd values based on simulated LSWT, mean water column temperature (MWCT), and 

mixed layer depth (MLD) during the ice-free seasons of Lake Erie (from April to November). In this 

study, solar irradiance and Kd values were derived from satellite-based observations. Lake-specific 

water clarity maps were produced for Lake Erie. The value of integrating satellite-derived solar 

irradiance and Kd in the 1-D FLake model is determined. 

5.2 Data and Methods 

5.2.1 Study Site and Station Observations 

Lake Erie (42° 11′N, 81° 15′W) is a large shallow temperate freshwater lake covering a surface area of 

25,700 km2. The lake is characterized by three basins: shallow western, central, and deep eastern basins 

with maximum depths of 19 m, 25 m, and 64 m, respectively. Lake Erie is monomictic with occasional 

dimictic years. The shallow western basin is polymictic, since stratification is destroyed by wind-driven 

mixing. However, the central and eastern basins develop stable thermoclines in summer (Gobler and 

Wilhelm, 2015). It is the shallowest and smallest by volume of the Laurentian Great Lakes (Daher, 

1999). These characteristics make Lake Erie unique from the other Great Lakes.  

The meteorological forcing variables required to run the model includes solar radiation, air 

temperature, air humidity, wind speed, and cloudiness. Daily meteorological data including air 

temperature, wind speed, and water temperature were supplied by the National Data Buoy Center 

(NDBC) of NOAA, station 45005 for 2003-2012. The location of this station is shown in Figure 5-1 

(41°40' N, 82°23' W, and depth: 12.6 m). Air temperature is measured from 4 m above the water surface, 

and anemometer height is 5 m above the water surface to measure the wind speed, whereas the water 

surface has an elevation of 173.9 m above mean sea level. Water temperature is measured from 0.6 m 

below the water line. The NDBC station is selected to run the model, since water temperature 

observations collected by the buoy station can be used to evaluate the model output. Other 
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meteorological data required for model simulations at the NDBC station were obtained from additional 

nearby stations.  

Solar radiation data was supplied by the National Water Research Institute (NWRI), Environment 

Canada (EC), from a station located in the western basin of Lake Erie (see Figure 5-1). Daily 

measurements were available only for 2004 and 2008. Therefore, a daily time series of solar radiation 

data used to run FLake for the entire study period (2003-2012) at the NDBC station was provided by a 

solar irradiance model. Details on the solar irradiance model are given in section 5.2.2. 

Air humidity and cloudiness was available in a daily format, and provided by EC-Ontario Climate 

Center (OCC) from the Windsor station (climate ID: 6139525) for 2003-2012. The location of this 

station is shown in Figure 5-1, which is a near-shore station close to the NDBC station. The distance 

between OCC and NDBC stations is less than 81 km.  

 

 

Figure 5-1 Maps showing Lake Erie in Laurentian Great Lakes and the location of stations where different parameters were 

measured. 
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FLake requires information on water transparency (downward light Kd). MERIS satellite imagery is 

used to derive Kd for the NDBC station during the study period. The method is described in details in 

section 5.2.3. Available Secchi disk depth (SDD) field measurements were used to estimate lake water 

turbidity. The data was provided by EC and utilized in this study to evaluate the satellite-derived Kd. 

Research cruises on board the Canadian Coast Guard Ship Limnos visited Lake Erie at a total of 89 

distributed stations in five different years (September 2004; May, July, and September 2005; May and 

June 2008; July and September 2011; and February 2012). Locations of these stations are shown in 

Figure 5-1.   

5.2.2 Satellite Solar Irradiance Model 

The SUNY model, a satellite solar irradiance model, has been developed to exploit Geostationary 

Operational Environmental Satellites (GOES) for deriving solar irradiance using cloud, albedo, 

elevation, temperature, and wind speed observations (Kleissl et al., 2013). The state of the atmosphere 

and the Earth’s cloud cover can be monitored from geostationary satellites. The basic principles of 

solar-irradiance modeling based on inputs from geostationary satellites and atmospheric models are 

described in Kleissl et al. (2013). Data from these sources are used to generate site and time specific 

high-resolution maps of solar irradiance with the SUNY model. This model has been regularly updated. 

The first version of SUNY model was based on using the visible images from GOES. It was introduced 

in 2002 based on earlier works of Cano et al. (1986) and  Zelenka et al. (1999). To overcome the 

weaknesses of first version related to arid regions, version 2 of the model was introduced in 2004. The 

model was thoroughly validated against 10 US locations representing a wide range of climatic 

environments (Perez et al., 2002). The second version is used by the National Renewable Energy 

Laboratory (NREL) in the National Solar Radiation Database (NSRDB) (Wilcox, 2012). The model 

has been continuously improved over years. Versions 3 and 4 are also developed to improve the 

performance of the model to resolve the snow and cloud cover using both visible and infrared channels 

imagery, and across a diversity of climatological conditions (Gueymard et al., 2015).  

The second version of the SUNY model (Version 2.4) is available in SolarAnywhere® 

(https://www.solaranywhere.com), providing the daily mean solar irradiance data for this study. The 

model provides a gridded data set with a spatial resolution of one tenth of a degree (ca. 10 km). The 

solar irradiance data was extracted from a tile corresponding to the NWRI station (see Figure 5-1) for 

2004 and 2008, when observations were available for evaluation, and also for FLake model run on Lake 

Erie for the full study period (2003-2012).   

https://www.solaranywhere.com/
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5.2.3 Satellite-Derived Extinction Coefficient 

MERIS operated on-board the ESA Envisat polar-orbiting satellite until April 2012. The sensor was a 

push-broom imaging spectrometer which measured solar radiation reflected from the Earth’s surface 

high spectral and radiometric resolutions with a dual spatial resolution (300 m and 1200 m). 

Measurements were obtained in the visible and near-infrared part of the electromagnetic spectrum 

(across the 390 nm to 1040 nm range) in 15 spectral bands during daytime, whenever illumination 

conditions were suitable, and with a full spatial resolution of 300 m at nadir, with a 68.5̊ field-of-view. 

MERIS scanned the Earth with a global coverage of every 2-3 days. 

In this study, a total of 326 full resolution archived MERIS images encompassing the NDBC station 

in Lake Erie (see Figure 5-1) were acquired from CC (Version 2) products through the Calvalus on-

demand processing service for the period of 2003-2012. CC Level2W products are the result of in-

water processing algorithms to derive optical parameters from the water leaving reflectance. These 

parameters include inherent optical properties (IOPs), concentrations of water constituents, and other 

optical water parameters such as spectral vertical Kd. The IOP parameters are first derived applying 

two different inversion algorithms: neural network (NN) and Quasi Analytical Algorithm (QAA). The 

derived IOPs are then converted to estimate constituents’ concentrations and apparent optical properties 

(AOP), including diffuse Kd for different spectral bands applying Hydrolight simulations (Ruescas et 

al., 2014).    

Diffuse Kd product in CC MERIS L2W data were evaluated against SDD in situ data collected during 

Limnos cruises. The CC-derived diffuse Kd values were extracted for pixels on the same day and 

location as the Limnos cruise stations. The satellite-derived Kd values were then extracted for the pixel 

at the geographic location of the NDBC station. A valid pixel expression was defined in all pixel 

extraction steps that excluded pixels with properties listed in Table 5-1. 
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Table 5-1 Flags of excluded pixels 

Level 1 Level 1P Level 2 

Glint_risk 
Land 

AOT560_OOR (Aerosol optical thickness at 550 nm out of the training 

range) 

Suspect Cloud TOA_OOR (Top of atmosphere reflectance in band 13 out of the training 

range) 

Land_ocean Cloud_ambigious TOSA_OOR (Top of standard atmosphere reflectance in band 13 out of the 

training range) 

Bright Cloud_buffer Solzen (Large solar zenith angle) 

Coastline Cloud_shadow NN_WLR_OOR (Water leaving reflectance out of training range) 

Invalid Snow_ice NN_CONC_OOR (Water constituents out of training range) 

 MixedPixel NN_OOTR (Spectrum out of training range) 

  C2R_WHITECAPS (Risk of white caps) 

5.2.4 FLake Model and Configuration 

The FLake model is a self-similar parametric representation (assumed shape) of the temperature 

structure in the four media of the lake including water column, bottom sediments, and in the ice and 

snow. The water column temperature profile is assumed to have two layers: a mixed layer with constant 

temperature and a thermocline that extends from the base of mixed layer to the lake depth. The shape 

of thermocline temperature is parameterized using a fourth-order polynomial function of depth that also 

depends on a shape coefficient CT. The value of CT lies between 0.5 and 0.8 so that the thermocline can 

neither be very concave nor very convex. FLake has an optional scheme for the representation of bottom 

sediments layer, which is based on the same parametric concept (Martynov et al., 2012; De Bruijn et 

al., 2014). The system of prognostic equations for parameters is described in Mironov (2008).  

The prognostics ordinary differential equations are solved to estimate the thermocline shape 

coefficient, the mixed layer depth, bottom, mean and surface water column temperatures, and also 

parameters related to the bottom sediment layers (Mironov, 2008; Mironov et al., 2010; Martynov et 

al., 2012). The mixed layer depth is calculated considering the effects of both convective and 

mechanical mixing, also accounting for volumetric heating which is through the absorption of net 

shortwave radiation (Thiery et al., 2014). The non-reflected shortwave radiation is absorbed after 

penetrating the water column in accordance with the Beer-Lambert law (Mironov, 2008; Mironov et 

al., 2010; Martynov et al., 2012).  

Stand-alone FLake simulations were conducted for the NDBC station. The setup conditions of 

NDBC buoy station (height of the wind measurement: 5 m, height of the air temperature measurements: 

4 m, depth of the water temperature measurements: 0.6 m), the measured meteorological parameters, 
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as well as the geographic location and depth of this site (41°40' N, 82°23' W, and depth: 12.6 m) were 

used to configure the FLake model. A fetch value of 100 km was used to run all simulations. It was 

found that there is only little sensitivity to modifications in this parameter for Lake Erie. The same 

result found for Lake Kivu in Thiery et al. (2014).  The bottom sediments module was switched off in 

all simulations and the zero bottom heat flux condition is adopted. The ability of FLake to reproduce 

the observed temperature variations using different Kd values was tested by comparing the simulated 

LSWT to the corresponding in situ observations in the NDBC station. Also, the model sensitivity to 

variations in water turbidity was assessed studying the LSWT, MWCT, and MLD.  

5.2.5 Accuracy Assessment  

To assess the model outputs, three statistical indices were calculated: the root mean square error 

(RMSE), the mean bias error (MBE), and the index-of-agreement (I_a). RMSE is a comprehensive 

metric that combines the mean and variance of model errors into a single statistic (Moore et al., 2014). 

The MBE is calculated as the modeled values minus the in situ observations. Therefore, a positive 

(negative) value of this error shows an overestimation (underestimation) of the parameter of interest. 

I_a is a descriptive measure of model performance. It is used to compare different models and also 

modeled against observed parameters. I_a was originally developed by Willmott in the 1980s 

(Willmott, 1981) and a refined version of it was presented by Willmott et al. (2012). The refined 

version, which was adopted in this study, is dimensionless and bounded by -1.0 (worst performance) 

and 1.0 (the best possible performance). These statistical indices are considered as robust measures of 

model performance (e.g. Hinzman et al., 1998; Kheyrollah Pour et al., 2012; Willmott and Wicks, 

1980). 

5.3 Results and Discussion 

5.3.1 Evaluation of Modeled Solar Irradiance Data  

The solar irradiance data derived from SUNY model were evaluated using the corresponding available 

NWRI-EC observations for 2004 and 2008. Figure 5-2 shows daily variations of solar irradiance 

derived from NWRI-EC observations and the paired SUNY model derived values for the two years. 

These two solar radiation sources are highly correlated with coefficient of determination value (R2) 

equal to 0.93. The SUNY model has a high agreement with observed solar irradiance data with a slight 

underestimation of 2.18 Wm-2 (N = 362, RMSE = 21.58 Wm-2, MBE = -2.18 Wm-2, I_a = 0.88) (Figure 

5-3). 
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Figure 5-2 Comparison of daily variations of NWRI-EC observations versus SUNY solar irradiance model: a) April - 

September 2004, b) April - October 2008. 

The accuracy of the SUNY model significantly depends on its ability to recognize the difference 

between a cloudy and clear sky background conditions (Dise et al., 2013). A proper differentiation 

between cloud and ground reduces when the ground is highly reflective, resulting in an increase in the 

model uncertainty. For example, larger errors are produced in regions with prolonged persistent cloud 

cover, low-lying clouds, and snow cover (Vignola et al., 2007; Nottrott and Kleissl, 2010; Perez et al., 

2010). Nottrott and Kleissl (2010) compared the satellite-derived solar irradiance data from the SUNY 

modeled dataset in the NSRDB to the measurements for 27 weather stations in California during the 

years 1998-2005. The spatial and temporal differences between these two datasets were analyzed and 

related to the meteorological phenomena. Generally, for the study period, the SUNY model produced 
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accurate and high quality irradiance data with MBE of 5%, which was smaller than the sensor accuracy 

in ground stations. However, the study illustrates that the errors in SUNY-modeled solar irradiance data 

is larger near coastal stations than inland stations, particularly in the morning during summer. At coastal 

stations, year-round positive MBEs up to 18%, and monthly MBEs up to 54% in the summer months 

during morning were observed (Nottrott and Kleissl, 2010). Errors were attributed to problems with the 

model parameterization of dense cloud cover. 

 

Figure 5-3 Scatter plot of NWRI-EC and SUNY mean daily solar irradiance (data from 2004 and 2008). The obtained statistical 

indices are included. The dashed line shows the best-fit line. Solid line corresponds to 1:1 relationship. 

5.3.2 Evaluation of Satellite-Derived Kd  

5.3.2.1 Evaluation of CoastColour Kd  

The assessment of the satellite-derived Kd retrieval reliability highly depends on the comparison with 

independent in situ SDD measurements. The relation between Kd and SDD was established by the 

pioneer study of Poole and Atkins (1929): 

𝑆𝐷𝐷 × 𝐾𝑑 = 𝐾    Equation 5.1 

where K is a constant value of 1.7 (Poole and Atkins, 1929). Studies have found a high variability of 

this constant depending on the type of the lake considered (Koenings and Edmundson, 1991). Armengol 

et al. (2003) also show that Kd and SDD are negatively correlated and they developed an empirical 

relation between these two parameters using Equation 5.1.  
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In this study, applying a cross validation approach, an empirical relation based on Equation 5.1 was 

developed between in situ measured SDD and CC-derived Kd. SDD measurements were conducted 117 

times during cruises on Lake Erie from 2004 to 2012. These spatially-distributed measurements have 

minimum, maximum, mean, and standard deviation values of 0.2, 11, 3.69, and 2.68 m, respectively. 

CC L2W satellite products were acquired on the same day as the in situ measurements. Applying 

defined flags produced 49 data pairs (matchup dataset) of CC observations of Kd and SDD in situ data 

that were collected on the same day and location.  

The matchup dataset was divided into training and testing data in 100 iterations. In each iteration, 

the data used for the equation’s training and evaluation were kept independent, where 70% of the 

sample was used for equation calibration and 30% for evaluation. Ordinary least square regression was 

used in the calibration step of each iteration to relate the in situ measurements of SDD to the CC-derived 

Kd. Locally tuned equations were derived from this step and applied on SDD observations to predict 

Kd in testing matchup data. The statistical parameters of the model performance were derived between 

the estimated Kd from SDD observations and the paired CC-derived values. These steps were repeated 

for 100 iterations; and the final statistical indices, slope and power of the locally tuned equation was 

reported as the average of the ones derived over all iterations.  

Results from the above procedure show that Kd and SDD are highly correlated with R2 = 0.78. The 

extinction coefficient can be derived from equation  𝐾𝑑 = 1.64 × 𝑆𝐷𝐷−0.76. There is a good agreement 

between the satellite-derived Kd and the corresponding ones estimated from in situ measured SDD (N 

= 49, RMSE = 0.63 m-1, MBE = -0.09 m-1, I_a = 0.65) (Figure 5-4). Arst et al. (2008) obtained a similar 

regression formula between SDD and Kd for the boreal lakes in Finland and Estonia representing 

different types of water, from oligotrophic to hypertrophic. SDD is a suitable characteristics to describe 

water transparency for small values of Kd. However, for high values of Kd (ranging above 4 m-1), Arst 

et al. (2008) and Heiskanen et al. (2015) suggested that SDD is unable to describe any changes in Kd. 

Figure 5-4 also shows that SDD cannot describe the scatter of Kd for values above 4 m-1. Therefore, the 

estimation of Kd from SDD should be used with caution, motivating the investigation on the potential 

of integrating satellite-based estimations of Kd into lake models.  
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Figure 5-4 Relation between satellite-derived Kd and in situ SDD matchups 

5.3.2.2 Spatial and Temporal Variations in Kd 

This section described how the CC satellite observations can explain the spatial and temporal variations 

of Kd. Spatial variations of Kd derived from the CC algorithm are shown in Figure 5-5 for a selected 

day (3 September 2011). This particular day of 2011 is selected as the lake experienced its largest algal 

bloom in its recorded history in that year, before the new recent record of 2015 (Michalak et al., 2013; 

NOAA, 2015). The bloom was expanding from the western basin into the central basin. Algal bloom 

are one of the factors affecting the water clarity of Lake Erie (NOAA, 2015). Other parameters include 

the concentrations of suspended and dissolved matters in the lake. The western basin is the shallowest 

region of the lake; and therefore is the most vulnerable to sediment re-suspension that also results in 

reducing water clarity. The map shows that Lake Erie experienced different levels of turbidity in various 

locations with an average of 0.90±0.80 m-1 for all basins. The NDBC station is also shown on the map 

as a reference (with Kd = 0.87 m-1 on 3 September 2011). 

Since fully cloud-free MERIS satellite images for consecutive months were only available in 2010, 

four months (May-August 2010) are selected to illustrate variations in Kd on a monthly-basis for one 

year (Figure 5-6). Kd over the full lake during May, June, July, and August has average values of 

0.82±0.85 m-1, 0.72±1.10 m-1, 0.73±1.20 m-1, 0.78±0.55 m-1, respectively. The western basin is always 

experiencing the lowest levels of water clarity in comparison to other regions of the lake, with a 

maximum Kd in May. This can be the result of a spring algal bloom, and also wind-driven re-suspension 

of sediments. Kd at the NDBC station varies between 0.68 m-1, 0.62 m-1, 0.66 m-1, and 0.85 m-1 from 

May to August 2010, respectively.  
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Figure 5-5 Spatial variation of satellite-derived Kd in Lake Erie, on 3 September 2011. Location of NDBC station is shown 

on the map as a solid dot. 

  

  

Figure 5-6 Temporal and spatial variation of satellite-derived Kd in Lake Erie for different months of a year: May- August 

2010. Location of NDBC station is shown on the map as a solid dot. 

Two MERIS images with full coverage of Lake Erie were only available in May of two consecutive 

years (2008 and 2009). Hence, the MERIS image of May 2008 and May 2009 were selected to show 

variations in Kd between two years. Although the images are for the same month of the year, Kd still 

varies across the lake (Figure 5-7). In May 2008 an average value of 0.77±0.49 m-1 is estimated for the 

entire lake, while in May 2009 the average value is 0.90±0.93 m-1. Comparing the estimated maps for 

the two years suggests that the spring bloom in 2009 was stronger than the one in 2008 for the western 

25 May 2010 25 June 2010 

28 August 2010 27 July 2010 
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basin. However, algal bloom in all basins of Lake Erie for the complete year of 2008, was recorded as 

the third largest that the lake experienced before the occurrence of the breaking record blooms in 2011 

and 2015 (Michalak et al., 2013; NOAA, 2015). Kd value estimated for the NDBC station is 0.69 and 

0.62 m-1 in May 2008 and 2009, respectively.  

  

Figure 5-7 Temporal and spatial variation of Kd in Lake Erie during May of two consecutive years: 2008 and 2009. Location 

of NDBC station is shown on the map as a solid dot. 

Figure 5-8 depicts variations of Kd for the NDBC station during the study period (2003-2012). In the 

shallow section of Lake Erie, re-suspension of bottom sediments is the most important factor that leads 

to higher water turbidity. Therefore the highest Kd values are related to the turn-over times in spring 

and fall. Smith et al. (1999) measured diffuse vertical attenuation coefficient for different stations in 

Lake Erie during May to August 1997. Infrequent high values of attenuation coefficient (>16 m-1) was 

observed in very turbid waters, whereas 75% of the measured values were ≤2 m-1. Hiriart et al. (2002) 

sampled two stations in turbid western basin during months of June, July and August 1997. Values of 

1.61, 0.36, and 1.16 m-1 were observed in the months, respectively (Hiriart-Baer et al., 2002). The 

results from applying the CC algorithm on MERIS satellite imagery show that the maximum value of 

Kd is 3.54 m-1, estimated in April 2003. A minimum value of 0.58 m-1 is estimated in June 2007. The 

average value of Kd during the study period is 0.90 m-1 with a standard deviation of 0.38 m-1. Hence, 

these values, identified as the average, the lower, and the upper limits of turbidity at the NDBC station 

were used to carry out a sensitivity analysis with FLake (see section 5.3.3.2). 
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Figure 5-8 Variations of CC-derived Kd for the selected location during the study period (2003-2012). 

5.3.3 FLake Model Results 

5.3.3.1 Improvement of LSWT Simulations with Satellite-Derived Kd 

Martynov et al. (2012) focused on 2005 to 2007 to run FLake at the NDBC station using a constant 

value of 0.2 m-1 for Kd. They simulated the lake using both realistic and excessive depths of 20 and 60 

m, respectively, for a grid tile corresponding to the NDBC station. Applying a more realistic lake depth 

parameterization improved the performance of the model to reproduce the observed surface 

temperature. In this section, Kd values were derived from the CC algorithm for different months during 

the same years as in Martynov et al. (2012) (2005-2007). Table 5-2 displays the average Kd values for 

each month of these years. The monthly averaged values are only focused on the months of the year 

when both LSWT observations and CC–derived Kd values were available. The average value of Kd in 

these months in each year is considered as the average value of Kd for that year.  

Table 5-2 CC-derived average values of Kd for each month (2005-2007). The values correspond to the time of year when 

water LSWT observations, as well as the CC derived Kd values, are available. 

Year Apr. May June July Aug. Sep. Oct. Nov. Avg. 

2005  0.69 0.62 0.63 0.79 1.07 0.92 0.97 0.81 

2006 0.82 0.70 0.62 0.65 0.77    0.71 

2007 0.86 0.72 0.64 0.65 0.76    0.73 
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Figure 5-9 shows the results of different FLake simulations of LSWT at the NDBC station. The 

model was run first applying Kd = 0.2 m-1 from Martynov et al. (2012) using both the real lake depth at 

the station (12.6 m: CRCM-12.6) and also a tile depth corresponding to the station in their study (20 

m: CRCM-20). Then, simulations using the yearly average Kd for each year of study are plotted (Avg). 

The Kd values derived from the monthly average of each year were used to simulate the surface water 

temperature and produce a merged LSWT product. Results of the merged product are also plotted 

(Merged).  

Comparing LSWT in situ observations with the modeled values in Figure 5-9 demonstrate that in 

Avg and Merged simulations for 2005-2007, surface temperature in spring is modeled warmer and in 

summer-fall colder than in situ observations (spring: MBE Avg = 1.31 ºC, MBE Merged = 1.25 ºC; summer-

fall: MBE Avg Kd = -1.27 ºC; MBE Merged Kd = -1.37 ºC). CRCM-12.6 and CRCM-20 are always producing 

a colder LSWT with maximum under-prediction in July-August (for 2005-2007: -2.93 ºC <MBEJuly-

August<-0.99 ºC). Simulation with a larger depth (CRCM-20) tends to more slowly gain (lose) heat in 

spring (fall), compared to all other simulations. 

The performance of each simulation is summarized in Table 5-3 during the period of data availability. 

For all years, the average and merged simulations perform better than simulations using Kd (0.2 m-1) as 

in Martynov et al. (2012), with improvement in RMSE and MBE for both real depth and tile depth. In 

all three years, LSWT simulated from the Kd value employed in Martynov et al. (2012) results in an 

underestimation (CRCM-12.6: MBE= -1.52 ºC, -0.98 ºC, -1.08 ºC; CRCM-20:-1.54 ºC, -1.09 ºC, -1.35 

ºC; during years 2005, 2006, and 2007, respectively). In 2005, the average of for the year demonstrates 

a better performance compared to the merged results; contrary to the results of 2007. However, the 

merged results in 2006, the MBE is improved compared to the simulation using the average Kd; whereas 

its performance decreases in terms of RMSE. The extent of Kd variations in each month might not be 

captured by the available MERIS images. Therefore, the merged results cannot always perform better 

than the year average, which can be more representative of Kd variations. 
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Figure 5-9 LSWT simulation results for 2005 - 2007; from: CRCM-12.6, CRCM-20, CC-derived average for Kd during 

selected month of each year (0.81, 0.71, and 0.73 m-1; respectively), and the merged simulations based on each month average 

Kd. The corresponding observations for LSWT, and CC-derived Kd values are also plotted. 
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Table 5-3 Simulated LSWT compared to in situ observations (2005 – 2007). Period corresponds to the time of year when 

LSWT and Kd values were available. 

Period Kd RMSE MBE I_a 

2005 

May-Nov 

Avg2005 1.69 -0.86 0.87 

Merged 1.76 -0.95 0.86 

CRCM-12.6 1.88 -1.52 0.85 

CRCM-20 2.12 -1.54 0.83 

2006 

Apr-Aug 

Avg2006 1.40 0.59 0.89 

Merged 1.42 0.54 0.89 

CRCM-12.6 1.50 -0.98 0.89 

CRCM-20 1.47 -1.09 0.89 

2007 

Apr-Aug 

Avg2007 1.37 0.62 0.90 

Merged 1.35 0.57 0.91 

CRCM-12.6 1.78 -1.08 0.86 

CRCM-20 1.80 -1.35 0.87 

Figure 5-10 illustrates the evaluation of simulation results for LSWT using the yearly average, and 

monthly average values of Kd for three years 2005-2007, altogether. CRCM-12.6 and CRCM-20 LSWT 

simulation results are also evaluated versus the corresponding in situ observations of LSWT. All 

simulations result in a high agreement with in situ measurements while underestimating the LSWT. 

However, the CRCM-20 simulation tends to produce the coldest LSWT (the most under-prediction) 

with MBE = -1.37 ºC. Simulations with the yearly average Kd results in the least underestimation of 

LSWT (MBE=-0.08 ºC).  

Figure 5-10-a and -b show that the resulting LSWT from yearly average and monthly average Kd are 

not significantly different, whereas simulations with yearly average Kd reproduces LSWT with 

improved RMSE and MBE values compared to monthly average (Avg: RMSE=1.54 ºC, MBE=-0.08 

ºC; Merged: RMSE=1.57 ºC, MBE=-0.14 ºC). It is possible that the extent of Kd variations is best 

represented by the yearly average value. Therefore, using a constant annual open water season value 

for Kd seems sufficient to reproduce LSWT in 1-D lake simulations with high accuracy. The time-

dependent (monthly average) Kd does not improve simulation results for Lake Erie (Kd ranging from 

0.58 to 3.54 m-1 with average value of 0.90 m-1 during open water seasons of 2002-2012). However, 

comparing results from Figure 5-10-a and –c shows improvement in LSWT simulations when a lake-

specific value of Kd is used (Avg: RMSE=1.54 ºC, MBE=-0.08 ºC; CRCM-12.6: RMSE=1.76 ºC, 

MBE=-1.26 ºC). Under-prediction of LSWT decreases when the yearly-average CC-derived Kd values 
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are used, rather than a generic constant value (0.2 m-1). Heiskanen et al. (2015) suggest that the effect 

of Kd seasonal variations on LSWT simulations are not significant for lakes with Kd values higher than 

0.5 m-1 (e.g. Lake Erie) . Therefore, a lake-specific, time-independent, and constant value of Kd can be 

used in 1-D lake models. 

Martynov et al. (2012) conclude that applying a more realistic lake depth parameterization improves 

the FLake model performance. Using the realistic lake depth at the NDBC station slightly improves the 

model performance in reproducing LSWT compared to simulations employing the corresponding tile 

depth (20 m) (CRCM-12.6: RMSE=1.76 ºC, MBE=-1.26 ºC; CRCM-20: RMSE=1.88 ºC, MBE=-1.37 

ºC) (Figure 5-10-c and –d).  

  

  

Figure 5-10 Modeled (y-axis) versus observed (x-axis) LSWT for yearly average, merged, CRCM-12.6, and CRCM-20 

simulations during the ice-free seasons in 2005-2007. A linear fit (dashed line) and its coefficients are shown on the plot. The 

statistics related to the regression of parameters, and a 1:1 relationship (solid line) are also shown.  
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5.3.3.2 Sensitivity of FLake to Kd Variations 

The sensitivity of FLake to reproduce LSWT, MWCT, and MLD using different values of Kd is 

investigated for 2008 in this section. The in situ data collected in 2008 provided a more complete dataset 

to run the sensitivity analysis due to the availability of incoming longwave radiation measurements 

during that year, which are necessary as FLake forcing data. Figure 5-11 presents simulation results for 

LSWT and MWCT in 2008 using the lowest, average, and highest values of Kd observed in the study 

period (minimum Kd=0.58 m-1, average Kd =0.90 m-1, maximum Kd =3.54 m-1). The water temperature 

simulation from CRCM-12.6 (realistic depth at station) simulation is also plotted. 

LSWT in the extreme clear water (Kd = 0.2 m-1; CRCM-12.6) shows smoother variations during open 

water season in 2008 as opposed to the extreme turbid water simulation (maximum or Max) which 

displays more abrupt LSWT variations (Figure 5-11). This is because solar radiation is absorbed faster 

in turbid waters. It penetrates less deeply and warms up the shallow surface layer. This shallow layer 

exchanges heat faster with the atmosphere, resulting in sudden surface water temperature variations as 

opposed to clear waters. Also, the extreme turbid water simulation shows warmer LSWT in spring and 

colder LSWT in fall compared to the extreme clear water simulation results. In spring (the start of 

heating season), darker surface waters absorb heat faster than clear water because of existing particles 

in water. However, in fall the loss of energy to the atmosphere is also faster due to the shallow 

penetration of solar radiation into dark waters. On average, Max simulation resulted in 0.09 ºC higher 

LSWT compared to the average (Avg) simulation, whereas the minimum (Min) simulation produced 

on average 0.02 ºC colder LSWT during 2008. CRCM-12.6 simulation with Kd value of 0.2 resulted in 

a larger difference compared to Avg simulation, 0.55 ºC colder LSWT. Therefore, when Kd changes 

from its minimum to its average value (or from its maximum to its average value) the model is not 

significantly sensitive to reproduce LSWT, whereas a change in Kd value from its average value to 0.2 

m-1 results in a larger variation in the modeled LSWT. 

For both clear and dark waters, LSWT is warmer than the MWCT, due to being exposed to more 

intense solar radiation. Shortwave radiation is attenuated as it reaches a greater depth, particularly in 

turbid waters. In the extreme clear water simulation, the MWCT is on average 0.99º C colder than 

LSWT, whereas for the extreme dark water the average difference is 4.82º C. 

The MWCT in the extreme turbid condition (Max) is less than for all other clear water simulations. 

This is because the lower layers in dark waters accumulate less heat during the heating season as 

opposed to clear waters which results in less heat storage and lower water column temperature in turbid 
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waters (Potes et al., 2012; Heiskanen et al., 2015). The solar radiation penetrates less deeply and is 

absorbed by the surface layer, thereby heating it; where the surface layer transfers the energy faster to 

the atmosphere, resulting in a colder water column in turbid waters. The MWCT decreases by 0.94 ⁰C 

(increases by 0.63 ⁰C) when Kd changes from its average to its maximum (minimum) value during the 

study period. The increase in MWCT is even larger when Kd changes from its average to 0.2 m-1 (2.25 

⁰C). Therefore, Kd variations has a larger impact on MWCT than on LSWT, and the largest difference 

is when Kd is estimated to be extremely clear.  

Rinke et al. (2010) conclude that the thermal structure of lakes is particularly sensitive to changes in 

Kd when its value is below 0.5 m-1. More recently, Heiskanen et al. (2015) confirmed the critical 

threshold of Kd (ca. 0.5 m-1). They suggest that the response of 1-D lake models to Kd variations is 

nonlinear. The models are much more sensitive if the water is estimated to be too clear. Heiskanen et 

al. (2015) recommend to use a value of Kd that is too high rather than too low in lake simulations, if the 

clarity of lake is not known exactly.  

Figure 5-12 shows variations of the MLD in 2008 derived from simulations using the minimum, 

average, and maximum Kd values, and CRCM-12.6 simulation. In the extreme dark water simulation, 

the MLD is shallower than the other simulations with clear water (an average difference of 4.94 m in 

2008 between two simulations with extreme Kd values). In turbid waters, solar radiation does not 

penetrate as far beyond the water surface as opposed to clear waters; and it will get absorbed by the 

particles in water. Therefore, clear waters have a deeper mixed layer when the solar radiation can 

penetrate further and distribute to a larger volume in the water column. Deepening of the thermocline 

layer in dark waters is slower compared to more clear waters, as there is a less penetration of solar 

radiation into the water column and also heat is transferred more slowly between water layers to 

stabilize the temperatures in different layers.  

In all simulations, the maximum mixing depth occurs in both spring and fall. The maximum depth 

of spring mixing is at the same time for all simulations; however, fall mixing occurs at different times 

for each simulation. CRCM-12.6 reaches its maximum (fall) MLD at the end of summer, while it is 

reached in late fall, before an ice sheet forms on the water body, for all other simulations. The Min 

simulation reaches its maximum MLD in early November, before the Avg and Max MLD simulations 

(at the end of November). Therefore, the maximum fall MLD occurs earlier when the water was clearer. 

Due to the fact that the MLD is influenced by the water column thermal structure, the effect of Kd on 

the MLD is also larger when the Kd value is estimated to be less than 0.5 m-1. CRCM-12.6 produces a 
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MLD 3.47 m deeper compared to Avg simulations, whereas the Min (Max) simulations result in MLD 

1.15 m (1.47 m) deeper (shallower) compared to the Avg simulation. 

 

 

Figure 5-11 LSWT and MWCT simulation results in 2008, when using the lowest (Min), average (Avg), and the highest (Max) 

Kd values. Results from the CRCM-12.6 simulation is also plotted.  
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Figure 5-12 MLD simulation results for the lowest (Min), average (Avg), and the highest (Max) Kd values in 2008. CRCM-

12.6 results are also plotted. 

5.4 Summary and Conclusion 

Spatial and temporal variations of Kd in Lake Erie were derived from the globally available satellite-

based CC product during open water seasons 2003-2012. The CC product was evaluated against SDD 

in situ measurements. The solar irradiance data were obtained from a satellite-based solar-to-irradiance 

model and evaluated with corresponding in situ observations. There was a high agreement between the 

modeled and in situ measurements. The estimated Kd values and solar irradiance data, in addition to 

complementary meteorological observations during the study period, were used to force the 1-D FLake 

model. The model was run for a selected site (NDBC buoy station) on Lake Erie, a large shallow 

temperate freshwater lake.  

The FLake model was run for 2005-2007, the same years as in Martynov et al. (2012) who conducted 

model simulations with a constant value of Kd (0.2 m-1) at NDBC station on Lake Erie. Results 

presented herein clearly showed that employing satellite-derived Kd values improve the FLake model 

simulations. An annual lake-specific Kd value, derived from the CC satellite-based algorithm, 

reproduced LSWT with a better agreement to in situ LSWT observations compared to using the 

constant value of Kd employed in previous studies. Results also showed that, although Kd varies in time, 

a time-invariant (constant) annual value is sufficient to obtain reliable estimates of LSWT with FLake 
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for Lake Erie. This finding is in agreement with the recent study of Heiskanen et al. (2015) who 

determined that the impact of seasonal variations of Kd on the simulated thermal structure is small 

enough, for a lake with high Kd values (> 0.5 m-1), to allow use of a constant value in time.  

Sensitivity of the FLake model to the range of potential Kd variations was tested for the NDBC 

station. The model performance to reproduce LSWT, MWCT, and MLD was assessed. Different Kd 

values were used to run the model: minimum, average, maximum values of Kd that were derived from 

the satellite-based CC algorithm during the study period (2003-2012), and also the constant value used 

in Martynov et al. (2012) study. A warmer spring and colder fall was predicted running the model for 

dark water compared to clear water. The MWCT for clear water is warmer than the dark water. This is 

because solar radiation can penetrate deeper in clear water. This study also investigated the MLD for 

clear and dark waters. A shallower MLD is simulated for dark water. Therefore, the results showed that 

the 1-D FLake model is very sensitive to the variations in Kd. However, the sensitivity was even more 

significant when a Kd value less than 0.5 m-1 was used. Rinke et al. (2010) and Heiskanen et al. (2015) 

also found the critical threshold value of Kd to be 0.5 m-1. These studies suggest that simulating the 

thermal structure of lakes using 1-D lake models is particularly sensitive to Kd changes when its value 

is less than 0.5 m-1. The sensitivity of Kd variations was more pronounced in simulation results for 

MWCT and MLD compared to LSWT.  

Integrating lake specific Kd values can improve the performance of 1-D lake models. However, field 

measurements of Kd are not widely available. This study demonstrates that satellite observations are a 

reliable data source to provide lake models with global estimates of Kd with high spatial and temporal 

resolutions. The globally available CC product can be used as a source to fill gaps in Kd in situ 

observations, and improve the performance of lake models such as FLake. Although MERIS is no 

longer active, the Ocean and Land Colour Instrument (OLCI) to be operated on the ESA Sentinel-3 

satellite will provide continuity of MERIS-like data. OLCI has MERIS heritages and improves upon it 

with an additional 6 spectral bands.  
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Chapter 6 

General Conclusions 

6.1 Overall Summary 

The overall aim of this research was to test the potential of different MEdium Resolution Imaging 

Spectrometer (MERIS) algorithms to derive chlorophyll-a (chl-a) concentration and water turbidity in 

the optically complex Lake Erie. The satellite-derived water turbidity, represented as the light 

extinction coefficient, was then used to test the potential of coupling the globally available MERIS 

product of water clarity with a lake model, where usually only a constant value of this variable is used. 

Different algorithms including the neural network (NN) and band ratio methods which are available in 

the Basic ERS & ENVISAT (A)ATSR MERIS (BEAM) software were validated using the in situ data 

collected on Lake Erie in Chapter 3. The NN algorithms include Case 2 Regional (C2R), Eutrophic 

(EU), FUB/WeW, and CoastColour (CC) algorithms, and the band-ratio algorithms used in the research 

were fluorescence line height (FLH), and maximum chlorophyll index (MCI). The FUB/WeW and C2R 

algorithms outperformed other algorithms with improvement in the index-of-agreement (I_a) and root 

mean square error (RMSE). C2R algorithm underperformed FUB/WeW algorithm with 11% increase 

in RMSE value. The variable results underlines that the processors performance is highly related to the 

optical properties of the water body and also the data range used to train the NNs. Thus, a final product 

was produced as the result of blending best performing algorithm for each specific optical class in Lake 

Erie. The optical classes were derived from applying a two-step automatic clustering method. The 

blended product has an improvement of about 3% in I_a compared to C2R algorithm when applied on 

all Lake Erie basins (blended: I_a= 0.73; C2R: I_a=0.71). 

Besides the NN and band ratio algorithms investigated in Chapter 3, a semi-empirical regression 

model was also developed for Lake Erie in Chapter 4. The empirical relationships may not be 

transferrable to other locations and times. Thus, the algorithms are only applicable for Lake Erie and 

for the time when the in situ data were collected. The field measurements of the optical parameters 

were used to train the regression. A Linear Mixed Effect (LME) model was used as the regression 

method between the band ratio of MERIS-derived reflectance and in situ data of chl-a concentration 

and water turbidity (Secchi Disk Depth, SDD) in two separate models. This regression method has 

advantages over the traditional regression models which are based only on fixed effects, and not 

considering the correlation that stems from repeated measurements in space and time. The model was 
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developed between the logarithmic scale of the parameters and band ratio of B7:665 nm to B9:708.75 

nm for log10chl-a and band ratio of B6:620 nm to B4:510 nm for log10SDD. The predicted log10chl-a 

and log10SDD were in close agreement with the ones measured in the field (log10chl-a: I_a=0.67, 

RMSE=0.3; log10SDD: I_a=0.88, RMSE=0.19). The monthly spatial and temporal patterns of chl-a 

concentration and SDD were also estimated applying the derived model on the images acquired over 

Lake Erie from 2004 to 2012.  

There is also the globally available CC MERIS product for water turbidity (Kd). The archived 

globally mapped and reliable CC products for water ecosystem studies is open access and free to end-

users. In Chapter 5 the product was evaluated against the in situ measurements of SDD to estimate the 

extinction coefficient (I_a=0.65). Extinction coefficient is an essential optical input in Freshwater Lake 

(FLake) model as a lake representing scheme. However, because of the limited in situ measurements 

of water turbidity, a constant value is usually used in the lake model. Therefore there is a need to 

produce the extinction coefficient maps that are derived specifically for each lake. According to this 

research, the globally available CC product can be used as a good estimator of lake water turbidity to 

provide the lake models with high spatial and temporal resolution satellite-based measurements of this 

optical parameter. Results clearly showed that the model is sensitive to variations of extinction 

coefficient. A time-independent, yearly average, and constant extinction coefficient improved Mean 

Bias Error (MBE) and RMSE to reproduce lake surface temperature, compared to employing a constant 

Kd value (0.2 m-1) (lake-specific yearly average Kd value: RMSE=1.54 ºC, MBE= -0.08 ºC; constant 

Kd value: RMSE=1.76 ºC, MBE= -1.26 ºC). 

Overall this research has shown the potential of satellite sensors to derive water optical properties 

that are essential parameters in lake management programs to monitor lake water quality and also to 

improve lake models that are used as lake parameterization schemes in high-resolution numerical 

weather prediction models. The major advantage of employing satellite-based measurements of water 

optical parameters is to derive high spatial and temporal resolution maps which cannot be produced 

relying only on in situ measurements. 

6.2 Limitations 

The distribution of chl-a concentration range in the matchup data did not represent the full variations 

in the lake, especially for values above 10 mg m-3. There were only two measurements above 25 mg m-

3 amongst the in situ data. However, there was no corresponding satellite observations for those 
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measurements after applying flags in C2R, EU, FUB/WeW, and CC algorithms. These two 

measurements, with chl-a concentrations above 25 mg m-3, were taken at the same location in the 

western basin during July 2005 and June 2008. For chl-a concentrations between 10 and 25 mg m-3, 

there were seven in situ observations. Four of them were removed due to cloud cover detection by all 

algorithms. FUB/WeW applies a different atmospheric correction algorithm compared to other NN 

algorithms. In Chapter 3, the FUB/WeW algorithm dropped the number of matchups for chl-a 

concentrations between 10 and 25 mg m-3 to only one. SDD matchup data derived from the CC 

algorithm, which were used in both Chapters 4 and 5, produced a good distribution of SDD values in 

the data range. Both matchup data sets resulted for chl-a and SDD were collected from different location 

on the lake, with a good spatial distribution. To improve the accuracy of the developed models, 

especially for estimating high chl-a concentrations, the matchup data had to represent the magnitude 

and spatial distribution of the parameter of interest for the lake. This was required since the data was to 

be used later to calibrate the output of different algorithms used in Chapter 3 or to develop the regression 

method in Chapter 4. Also the models’ performance can be assessed better when the actual range of the 

parameter of interest in lake is used for the accuracy analysis. Therefore, additional measurements with 

high chl-a concentrations during algal blooms in Lake Erie would be useful.  

The water samples were collected from the surface mixed layer to measure chl-a concentrations in 

Lake Erie. On the other hand, André (1992) stated that as a general rule the satellite observations are 

associated with an average concentration within a surface layer of a certain depth (André, 1992). There 

is no unique method of averaging the stratified layers in a heterogeneous water column within the 

specified surface layer thickness. However, in a homogenous (well-mixed) water column, which is 

hardly the case in nature, chl-a concentrations obtained from satellites can be proportional to chl-a 

concentrations at any depth. Different studies evaluated the information that satellite observations can 

provide concerning the vertical distribution of constituents within a defined thickness of the surface 

layer (Gordon and Clark, 1980; André, 1992; Zaneveld et al., 2005; Sokoletsky and Yacobi, 2011). 

According to the study of Gordon and McCluney (1975), water-leaving reflectance measured by 

satellite is originating from a depth known as the penetration depth which can be detected by optical 

sensors (Gordon and McCluney 1975). Gordon and Clark (1980) proposed the optically weighted 

pigment concentration in the penetration depth for the purpose of interpreting satellite information and 

comparing them with in situ data (Gordon and Clark, 1980). However André (1992) showed that where 

the concentration varies strongly within the first meters of a water body, the optically weighted 

concentration is inadequate to interpret the satellite observation. Therefore, to resolve the ambiguity of 
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the vertical representativeness of remotely sensed constituent concentrations, a vertically resolved in 

situ data is required on Lake Erie (Odermatt, Pomati, et al., 2012). 

Water-leaving reflectance derived from applying atmospheric corrections in different NN algorithms 

was not validated. Atmospheric corrections are a critical step over water bodies, since the radiance 

signal emerging from the water column is much less than that of land. Atmospheric corrections become 

even more challenging in highly turbid inland and coastal waters where the ‘black pixel’ assumption 

of negligible water-leaving radiance in the near-infrared (NIR) is no longer valid due to scattering from 

suspended matters (Binding et al., 2010). Thus, typical atmospheric corrections fail and other schemes 

based on radiative transfer models or other approaches are required (Matthews et al., 2010). The 

accuracy of atmospheric correction algorithms used in different models is very important to evaluate 

the satellite-derived water quality products. In a band ratio algorithm with bands near each other, 

atmospheric effects are normalized (Matthews et al., 2010). However, for optimization methods such 

as NN algorithms, accurate atmospheric corrections are especially important. These methods use the 

water-leaving reflectance as an input to bio-optical models to derive the water constituents 

concentrations, and are based on iterations to reduce the difference between observed and predicted 

water-leaving reflectance (Matthews et al., 2010). Hence the usefulness of semi-analytical methods in 

turbid waters may be limited because of the accuracy of atmospheric corrections. The remote sensing 

measured water-leaving reflectance can be validated with concurrent field reflectance measurements.  

There are also limitations associated with the design of satellite remote sensing instruments. Some 

requirements are necessary for ocean (lake) color remote sensing instruments. Because the sea (lake) 

is a much darker object than land surfaces, the radiometric resolution associated with sensors has to be 

sensitive to low levels while maintaining a sufficient range to not saturate in case of bright pixels 

happening due to sun glint. Furthermore, in the case of spectral band features, ocean color sensors need 

to have narrowly defined wavebands. The spectral peak related to the pigment absorption or scattering 

has a bandwidth of less than 20 nm (Chen et al., 2013). Both of these features, high radiometric 

resolution with narrow spectral bands, prevent having too narrow instantaneous-field-of-view (IFOV). 

The flux of photons to detectors has to be possible with an acceptable signal-to-noise ratio (SNR). To 

compensate for this, the spatial or temporal (or both) resolutions of satellite sensors need to be degraded.  

A high spatial resolution demands a narrower swath and, consequently, the revisit interval is not 

sufficient for monitoring changes in water properties, which can occur in the matter of hours (Robinson, 

2004). Small-sized waterbodies with Case II waters are more challenging for applying water quality 



 

 110 

algorithms with remote sensing. They are more temporally dynamic with more heterogeneous areas. 

Consequently, medium to coarse spatial resolution of some satellite images (e.g. MERIS and MODIS) 

is not sufficient for monitoring small lakes and rivers, except for the very large ones. Also, 

measurements have to be performed with sufficient spectral details to detect and distinguish different 

pigments, and water components’ concentrations (e.g. colored dissolved organic matter) in Case II 

waters. Spectral bands in the NIR are required to enhance the atmospheric information, and improve 

the results of atmospheric corrections.  

Another limitation associated with optical sensors is when the lakes are covered by clouds. As a 

result, the images may not be useful for several days due to cloud coverage. Therefore, there is a need 

to upgrade cloud detection algorithms which may not detect clouds and result in anomalous errors. 

Some of these limitations are expected to be resolved following the launch of future satellites. 

6.3 Future Research Directions 

The applicability of NN algorithms over the water body of interest has to be examined in terms of 

suitability of the inherent optical properties (IOPs) and concentrations ranges. The bio-optical models 

used in the MERIS NN algorithms convert the derived IOPs to constituent concentrations based on 

measured SIOP coefficients. Because IOPs are also provided as algorithm outputs, this relationship can 

be re-parameterized. Thus, SIOP can be specified to suite the particular region of interest when in situ 

measurements of IOPs are available (Palmer et al., 2014). 

The phytoplankton species composition in Lake Erie, according to the study of Binding et al. (2008), 

range from diatoms and dinoflagellates in the spring to cyanobacteria, including significant microcystis 

blooms, in summer (Binding et al., 2008). Cyanobacteria blooms tend to be intensified at the surface. 

Remote sensing can provide a significant benefit to detect, monitor, and forecast these events (Kudela 

et al., 2015). Kudela et al. (2015) demonstrate that cyanobacteria blooms can be detected with the 

availability of high spectral resolution satellite images, and appropriate atmospheric corrections using 

spectral-shape algorithms (Kudela et al., 2015). Vincent et al. (2004) employed Landsat TM sensor 

data, despite its relatively wide range of spectral bandwidths, to detect phycocyanin as an accessory 

pigment in Lake Erie. This pigment can be used as an indicator of cyanobacterial blooms (Vincent et 

al., 2004).  

Considering that MERIS is no longer active, there are other aquatic color satellite missions that can 

provide information about inland waters and coastal zones with a tradeoff in the measurement 



 

 111 

resolutions. Their applicability to monitor algal blooms on Lake Erie can be investigated. For example, 

the Landsat 8 OLI sensor offers a spatial resolution of 30 m suitable for monitoring small freshwater 

systems, with refined heritage bands, along with three additional bands (including a deep blue band at 

443 nm which is chl-a absorption peak). However, the temporal resolution of 16-days is a drawback 

for monitoring highly dynamic processes.  

The Sentinel-2a MSI (Multispectral Imager) sensor is complementary to Landsat 8 with added 

channels (excluding the thermal bands of Landsat 8’s Thermal Infrared Sensor), with spatial resolutions 

of 10, 20, and 30 m, and a 10-day revisit frequency (initially with the one satellite launched; a 5-day 

revisit once both Sentinel-2a and 2b are in orbit). MSI covers the visible, near, and shortwave infrared 

regions of spectrum in 13 spectral bands. Landsat 8 and MSI only have four main visible and near-

infrared bands with a spatial resolution of 30 and 10 m, respectively. Thus, their spatial resolutions are 

adequate for most lakes, while it is likely for them to have suitable sensitivity for estimating chl-a 

concentration utilizing a band at approximately 665 nm. The combination of MSI on Sentinel-2a,b with 

Landsat 8 will eventually provide a coverage of better than 5 days at relatively high spatial resolution. 

The first Sentinel-3 is planned for launch in early 2016. Sentinel-3’s OLCI (Ocean and Land Color 

Instrument) sensor is designed to harvest biological information from the ocean and land surfaces. It 

has a spatial resolution of 300 m (1 km in open ocean and sea ice, 300 m over coastal zones) to provide 

an equivalent precision and level of accuracy to MERIS satellite images with 1-2 days repeat coverage 

and high spectral resolution (spanning from visible to infrared). OLCI possesses 6 additional spectral 

bands (21 bands in visible and infrared) compared to MERIS. The spectral bands are used to provide 

better cloud screening, better atmospheric corrections, and discrimination of water components, land, 

and atmospheric changes in temporal series of data. A narrow channel at 673 nm (7.5 nm width) has 

been added to improve chl-a fluorescence measurements. There is an improvement over MERIS 

observations by mitigating the impact of sun glint over the ocean with low-noise-equivalent radiances 

in all channels. Its radiometric dynamic range is compatible to both situations of low oceanic signals in 

the case of clear atmosphere and higher signals in the presence of high aerosol loading (optimized for 

ocean color measurements) (Berger et al., 2012; ESA, 2012). OLCI’s revisit cycle will be more frequent 

compared to OLI and MSI (every 1-2 days), although with a coarser spatial resolution of 300 m at nadir.  

Multi-spectral global missions have targeted band positions. Thus, selected biophysical variables of 

water column can be derived from a given sensor. Hyperspectral data provide measurements in several 

narrow bands to highlight the specific absorption features of several water column properties (Hestir et 
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al., 2015). The underlined features can be used to derive the empirically calibrated band indices for the 

water region of interest. Also, the additional spectral information can overcome the underdetermined 

problems to simultaneously deriving a large number of optical properties in the radiative transfer 

inversion algorithms used in semi-analytical methods. The Hyperspectral Infrared Imager (HyspIRI) is 

NASA’s mission for the coming decade. It has uniquely well designed spatial (60 m) and spectral 

resolutions designed to capture multiple biophysical variables including chl-a concentration in 

freshwater ecosystems. However, the temporal resolution of 19 days equatorial revisit cycle (shorter) 

can provide measurements at the seasonal time scale, but may not be able to track algal bloom dynamics 

(Hestir et al., 2015).  

Finally, the sensitivity of the 1-D FLake model to the variations of Kd for simulating other lake 

properties such as water temperature profiles, ice thickness, ice on/off days should be evaluated. More 

complex 3-D lake models are now starting to be used to reproduce large lake properties. For example, 

Environment Canada has recently implemented a fully coupled 3-D atmosphere-lake modelling system 

to represent the complex air-lake interaction over the Great Lakes region. In this system, the 

hydrodynamic lake component is based on NEMO (Nucleus for European Modelling of the Ocean; 

Madec et al. 1998) (Dupont et al., 2012). The contribution of satellite-derived water clarity in improving 

simulations with more complex 3-D lake models such as NEMO is another interesting research avenue 

to explore in the near future. 
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