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Summary

Interval-censored recurrent event data arise when the event of interest is not readily observed
but the cumulative event count can be recorded at periodic assessment times. In some settings,
chronic disease processes may resolve, and individuals will cease to be at risk of events at the
time of disease resolution. We develop an expectation-maximization algorithm for fitting a dy-
namic mover-stayer model to interval-censored recurrent event data under a Markov model with
a piecewise-constant baseline rate function given a latent process. The model is motivated by set-
tings in which the event times and the resolution time of the disease process are unobserved. The
likelihood and algorithm are shown to yield estimators with small empirical bias in simulation
studies. Data are analysed on the cumulative number of damaged joints in patients with psoriatic
arthritis where individuals experience disease remission.
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1 INTRODUCTION

1.1 LITERATURE REVIEW AND GENERAL MOTIVATION

There are many chronic diseases for which affected individuals experience recurrent adverse events.
Often it is apparent when the events occur, as is the case in respiratory disease when individuals
experience exacerbations of symptoms (Grossman et al., 1998), neurologic disease where the events
may be epileptic seizures (Pledger et al., 1994), migraine where the events are headaches (Pascual
et al., 2000), and cardiology where the events may be acute angina attacks (Peters et al., 2003).
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Statistical methods for recurrent event analysis in such settings include those reliant on intensity-
based models (Andersen et al., 1993), random effect models (Lawless, 1987), and marginal methods
(Lawless and Nadeau, 1995, Lin et al., 2000). Cook and Lawless (2007) give an account of the various
frameworks for analysis.

The occurrence of an event is not evident in settings where they are not immediately symptomatic,
but often they can be determined to have occurred at a subsequent clinic visit, radiographic exami-
nation, or blood test. Examples of such events include the development of new superficial tumours
in bladder cancer patients (Byar et al., 1986), the occurrence of asymptomatic fractures in patients
with osteoporosis (Riggs et al., 1981), or the development of new skeletal metastases in patients with
cancer metastatic to bone (Hortobagyi et al., 1996). A considerable amount of statistical research has
taken place in recent years on the analysis of this type of data which is referred to as panel count data,
grouped recurrent event data, or interval-censored recurrent event data. Two-sample tests were devel-
oped by a number of authors including Thall and Lachin (1988), Sun and Fang (2003), Zhang (2006),
Park et al. (2007) and Balakrishnan and Zhao (2009). Mean function estimation was considered by
Sun and Kalbfleisch (1995), and their estimator was later shown by Wellner and Zhang (2000) to
be a pseudo-maximum likelihood estimator under a nonhomogeneous Poisson model; these authors
proved consistency, along with their proposed maximum likelihood estimator which did not depend
on the Poisson assumption. Sun and Wei (2000), Cheng and Wei (2000), Zhang (2002) and Wellner
and Zhang (2007) developed methods for semiparametric regression with interval-censored recurrent
event data. Lawless and Zhan (1998) consider multiplicative recurrent event models with piecewise-
constant baseline rate functions fitted via estimating functions as well as fully specified random effect
models fitted using maximum likelihood. Such piecewise-constant models share the advantages of
parametric models and yet provide some robustness to misspecification of the parametric form of rate
functions. Chen et al. (2005) extend these methods to deal with multi-type recurrent events. Sun
and Zhao (2013) give an excellent account of the recent developments on methods for recurrent event
analysis when data are subject to interval-censoring.

In some settings the chronic condition generating the events can resolve and from the point of
resolution individuals will no longer be at risk of events. Establishment of suitable medications,
removal of stressors in mental health studies (Kessing et al., 2004), or other lifestyle changes may
minimize risk of future events, but it can be difficult to determine if and when such changes have taken
place. In other settings, the disease process resolves naturally. Polymyalgia rheumatica (Salvarani
et al., 2002), for example, is an autoimmune disease and in the most active phase patients experience
recurrent acute episodes of pain in the shoulder and pelvic joints. This active phase is of variable
length but upon completion the acute episodes cease to arise (Healey, 1984). Patients with systemic
lupus erythematosus experience flares of lupus nephritis, but this condition can go into remission such
that patients stop experiencing acute flares (Barber et al., 2006). The disease in many rheumatological
conditions can go into remission (Gladman et al., 2001, Zochling and Braun, 2006). In these and other
settings one is faced with the challenge of interval-censored recurrent event times with the need to
accommodate the possibility that the underlying condition has resolved. In the next sub-section, we
describe a registry of patients with psoriatic arthritis and the scientific objectives of the associated
research program which motivated the developments in this paper.

1.2 DIEASE PROGRESSION AND THE UNIVERSITY OF TORONTO PSORIATIC ARTHRITIS CO-
HORT

Psoriatic arthritis is an inflammatory arthritis and an autoimmune disease that commonly occurs
among patients with psoriasis. Patients with psoriatic arthritis may experience swelling, pain and
inflammation in the affected joints. The University of Toronto Psoriatic Arthritis Clinic is the largest
center in the world for specialized care and research in this disease. The clinic, started in 1978, has
been recruiting and following patients continuously since then. Data collected at clinic entry and reg-
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ular follow-up clinic visits arise from a complete history, physical examination, blood and urine tests,
and radiographic examination. Over 1100 patients have been closely followed over the years.

The development of joint damage is of primary interest to clinicians since this damage impairs
functional ability and quality of life. Much of the scientific research on this condition is directed at
understanding the risks of rapid onset and accumulation of damage (Gladman et al., 1995). Factors
studied include information on family history of psoriatic arthritis and genetic information based on
human leukocyte antigen (HLA) markers, for example. Radiological examinations of the hands, feet
and spine are scheduled every two years, but the actual assessment times vary considerably. Moreover,
there are some patients who experience no joint damage over the entire course of follow-up, and others
who develop damaged joints for some time but then have long periods of time in which no further
damage is observed. One possible explanation for the latter scenario is that these patients experience
remission and hence are no longer at risk for further damage. A key point is that individuals may
transition from the mover (susceptible to damage) to stayer (remission) subgroup as time passes.
Figure 1 displays the timing of the assessments (hatch marks) and the number of additional damaged
joints detected (red numbers) over the respective intervals for a sample of 27 individuals; here we
restrict attention to patient data over the first 30 years from disease onset. The variability in the
frequency of visits is apparent, as is the variation in the event counts between patients and within
patients overtime.
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Figure 1: Plot of assessment times (hatch marks) and the number of damaged joints determined to
have arisen between assessments (red numbers) by radiological examination for a selected sample of
patients in the University of Toronto Psoriatic Arthritis Clinic; follow-up is restricted to the first 30
years following disease onset

HLA-B27 (human leukocyte antigen B27) is a protein found on the surface of white blood cell that
has been found to be strongly associated with inflammatory autoimmune diseases such as ankylosing
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spondylitis and psoriatic arthritis. Interest here lies in examining the effect of this HLA marker on the
occurrence of damage as determined by radiographic examination of patients with psoriatic arthritis.
When radiographs are taken, the extent of damage is assessed in each of 42 joints, including 30 hand
joints (wrists, metacarpophalangeals, proximal interphalangeals and distal interphalangeals) and 12
joints in the foot (metatarsophalangeals and interphalangeal fist toes). The extent of damage in each
joint is recorded on a six-point scale with numeric scores of 0 (normal), 1 (soft tissue swelling), 2
(surface erosions), 3 (joint space narrowing), 4 (disorganization, including subluxation, pencil-in-cup
deformity and ankylosis), or 5 (damaged to the point of requiring surgery). A joint scoring 2 or higher
is counted to be damaged to the point of impacting functional ability so the numbers in Figure 1 reflect
the number of joints with at least grade 2 damage. Following the development of the proposed model
and the algorithm for estimation, we return to this study in Section 3.2.

The remainder of this paper is organized as follows. In Section 2.1, the dynamic mover-stayer
model is formulated. The complete data likelihood is constructed for the setting with interval-
censored event times in Section 2.2 for a conditional Markov process for event occurence, and the
requisite conditional expectations are derived in Section 2.3; details on how to implement the EM
algorithm are given in the Appendix. The performance of the proposed model and algorithm are eval-
uated empirically in Section 3.1 and data from a psoriatic arthritis cohort are analysed in Section 3.2.
General remarks and areas of further research are given in Section 4.

2 A DYNAMIC MOVER-STAYER MODEL UNDER INTERVAL-CENSORING

2.1 FORMULATION OF THE DYNAMIC MOVER-STAYER MODEL

Shen and Cook (2014) recently proposed a dynamic mover-stayer model for the analysis of right-
censored recurrent event data that accommodates unusually long times from the last observed event
to the right censoring time. If T0 = 0 denotes the time of an initiating event such as the onset of a
chronic disease, then Tj represents the time of the j-th subsequent event, j = 1, 2, . . .. If N(t) =∑∞

j=1 I(Tj ≤ t) denotes the number of events over (0, t], then {N(s), 0 ≤ s} is a counting process.
The possible resolution of the process is accommodated by the introduction of Zj , a time-dependent
indicator, such that Zj = 1 if the individual remains at risk of events following the occurrence of
the jth event, and Zj = 0 otherwise, j = 0, 1, . . .. The resolution of the chronic condition upon the
j-th event is reflected by a realization Zj = 0 when Zj−1 = 1. Figure 2 is a schematic relating the
random event times and random mover-stayer indicators for a hypothetical individual experiencing
six events before resolution of the condition at T6; the dashed line following T6 relects the fact that
this individual is no longer at risk of events. In general Zj is a latent variable, but it is apparent that
Zj = 1 as soon as the (j + 1)-st event occurs, j = 0, 1, . . .. As a consequence when events are
observed in continuous time (or subject to right-censoring) the only unknown mover-stayer indicator
is the one corresponding to the last observed event.

We letX denote a fixed covariate vector containing information on the characteristics of each indi-
vidual observed upon recruitment to a cohort. We let Z̄(t) = {Z0, . . . , ZN(t)} denote the history of the
mover-stayer indicators for all events arising over [0, t] and Z̄j = {Z0, . . . , Zj} denote the analogous
history when viewed as a function of the event count. The complete process history is then denoted
byH(t) = {N(s), 0 ≤ s ≤ t, Z̄(t), x}, which includes the values of the latent variables realized over
[0, t], and the history excluding the partially latent Z̄(t) is denoted by H(t) = {N(s), 0 ≤ s ≤ t, x}.
We let t− denote an infinitesimal amount of time before t, N(s, t) = N(t−) − N(s−) denote the
number of the events over [s, t), and ∆N(t) = N(t, t+ ∆t) denote the number of the events over the
interval [t, t+ ∆t). The complete data intensity function is then

λ(t|H(t−)) = lim
∆t↓0

P (∆N(t) = 1|H(t−))

∆t
= ZN(t−)λ(t|H(t−)) , (1)
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Figure 2: Schematic relating the observed and latent random variables in the dynamic mover-stayer
model for a hypothetical individual experiencing six events before resolution at T6

and the canonical event intensity function is

λ(t|H(t−)) = lim
4t↓0

P (4N(t) = 1|H(t−))

4t
. (2)

The intensity function for the observable process (in the absence of censoring) is given by

E{λ(t|H(t−))|H(t−)} = E(ZN(t−)|H(t−)) · λ(t|H(t−)) .

The probability of remaining at risk following the j-th event can depend upon H(t−j ), so at tj we
write this as

P (Zj = 1|H(t−j ), dN(tj) = 1) = P (Zj = 1|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1) , (3)

where dN(t) = lim∆t↓0 ∆N(t) indicates whether an event occurred at time t and 1j−1 is a j×1 vector
of ones. This probability may therefore depend on the times of previous events and the history of the
observable covariates over [0, tj] and is only relevant if Z̄j−1 = 1j−1. Here j = 0, 1, . . ., H(t−0 ) = ∅
and Z̄−1 = ∅.

2.2 THE COMPLETE DATA LIKELIHOOD FOR INTERVAL-CENSORED DATA

We now consider the setting in which individuals are only seen intermittently but continue to fo-
cus on the contributions from a single individual. While the general formulation of the model in
the previous section can be exploited for right-censored data, as in most settings involving interval-
censored life history processes (Kalbfleisch and Lawless, 1985), we focus here on processes which
are Markov given the mover-stayer indicators. We let a0 = 0 denote the time of a baseline as-
sessment at which a fixed covariate vector x is observed, and let a1 < · · · < aR denote the times
of the follow-up assessments. At the r-th follow-up assessment at time ar, the number of events
over interval Ar = [ar−1, ar) is recorded and we denote this more compactly at times by nr =
N(ar−1, ar), r = 1, . . . , R, where n =

∑R
r=1 nr. At any time t ∈ Ar+1 the observed history is
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denoted by Hr = {(a`, n`), ` = 1, 2, . . . , r, x}. The full data for an individual is then D = HR =
{(ar, nr), r = 1, . . . , R, x}.

We assume individuals are observed from the time of disease onset in which case N(0) = 0 and
H0 simply contains the covariate data. In the present setting, this is reasonable because individuals
invariably seek medical care when joints become inflamed, which occurs considerably earlier to the
development of joint damage. Since the times of the assessments are random, the observed data
likelihood is

L ∝
R∏

r=1

P (Nr = nr, Ar = ar|Hr−1) .

The assessment process is sequentially ignorable (Hogan et al., 2004, Lawless, 2013) in a likelihood
based analysis if given Hr−1, the probability an assessment is made at ar is independent of event
occurence over [ar−1, ar). Under this assumption (i.e. Ar⊥N(ar−1, ar)|Hr−1), we can write

P (Nr, Ar = ar|Hr−1) = P (Nr|Ar = ar, Hr−1)P (Ar = ar|Hr−1) ,

(Cook and Lawless, 2014). Furthermore, if the inspection process is non-informative, we can disre-
gard the contributions of the form P (Ar = ar|Hr−1) and work with the resulting partial log-likelihood

logL =
R∑

r=1

logP (Nr = nr|Ar = ar, Hr−1) (4)

without any loss of efficiency. Maximization of (4) is challenging however, since the expression
for the necessary conditional probabilities are complicated and existing software cannot be used for
maximization of this objective function. We develop an expectation-maximization algorithm in what
follows.

Let θ1 index the canonical event intensity (2), θ2 index the mover-stayer model (3), and θ =
(θ′1, θ

′
2)′. A complete data log-likelihood corresponding to (4) can be constructed by considering

the event times and the latent mover-stayer indicators as observed. The contribution to such a log-
likelihood from an individual is then

`C(θ) = `C1(θ1) + `C2(θ2) (5)

where
`C1(θ1) =

∫ ∞
0

Y (u)
[
dN(u) log λ(u|H(u−))− ZN(u)λ(u|H(u−))du

]
(6)

`C2(θ2) =
n∑

j=0

logP (Zj|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1) (7)

pertain to the event process and mover-stayer model, respectively, and Y (u) = I(u ≤ aR).
Suppose interest lies in modeling data from individuals over the interval [0, τ ] where τ is fixed.

We focus here on settings with latent multiplicative Poisson processes, where λ(t|H(t−)) = ρ(t|x) =
ρ0(t) exp(x′β) and ρ0(t) is the canonical baseline rate function. Given a set of cut-points 0 = b0 <
b1 < · · · < bK = τ , a piecewise-constant baseline rate function is obtained by letting ρ0(t) = ρk
for t ∈ Bk = [bk−1, bk), k = 1, . . . , K. Let ujk = I(j = k), j = 1, 2, . . . , K, k = 1, 2, . . . , K,
xk = (u1k, . . . , uKk, x

′)′, uk(t) = I(t ∈ Bk), k = 1, 2, . . . , K, and x(t) = (u1(t), . . . , uK(t), x′)′.
One can then write

ρ(t|x; θ1) = ρ0(t;α) exp(x′β) = exp(x′(t)θ1) =
K∏
k=1

[exp(αk + x′β)]uk(t) .
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Figure 3: A two-way plot of the cut-points (horizontal axis), assessment times (vertical axis) and
events (dots on the diagonal timeline); this hypothetical individual experienced six events before
disease resolution at T6

where αk = log ρk, k = 1, . . . , K, α = (α1, . . . , αK)′ and θ1 = (α′, β′)′. Figure 3 illustrates the
observed counts and time intervals using this notation for a hypothetical individual experiencing six
events before disease resolution at T6.

We let Crk = Ar ∩ Bk = [Cr,k−1, Crk) and let Kr = {k : Ar ∩ Bk 6= ∅} represent the labels for
the qr (0 < qr ≤ K) pieces intersecting Ar, denoted {kr` , ` = 1, . . . , qr}. If we let nrk =

∫
I(u ∈

Crk)dN(u) denote the number of events over Crk and wk(t) =
∫ t

0
I(u ∈ Bk)du denote the time at risk

in Bk over (0, t], then (6) can be rewritten as

K∑
k=1

{ R∑
r=1

nrk(αk + x′β)− [Znwk(aR) + (1− Zn)wk(tn)] exp(αk + x′β)
}
. (8)

There are many discrete waiting time models suitable for modeling the resolution of the process.
The model in (3) suggests that the conditional probability that the process resolves at tj can depend
on the history up to t−j , but this is of course not observed under an intermittent inspection process.
While such dependence could be handled by treating this as a missing covariate problem we assume
instead that

P (Zj = 1|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1) = P (Zj = 1|x, Z̄j−1 = 1j−1)

in which case we may adopt a logistic model of the form

logitP (Zj = 1|H(t−j ), dN(tj) = 1) = ẋj
′γj (9)

where ẋj = (1, j, x′)′.

2.3 DERIVATION OF THE CONDITIONAL EXPECTATIONS

Since the actual events times and the final mover-stayer indicator are not observed, the quantities
nrk, wk(aR), wk(tn), and Zn in (8) are unknown and we require expressions for their conditional
expectations (Dempster et al., 1977). We focus initially on the expectations given D and Zn, and
consider first the case in which Zn = 1. We let

η
(1)
rk = E(nrk|D,Zn = 1) =

nrµrk∑
k∈Kr µrk

, (10)
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where
µrk =

∫
I(u ∈ Crk)ρ(u|x)du = exp(αk + x′β)|Crk| ,

and |Crk| denotes the length of Crk, k ∈ Kr, r = 1, . . . , R (Lawless and Zhan, 1998). A superscript
of 1 is used in (10) to reflect the fact that the expectation is conditional on Zn = 1. Since wk(aR) =∑R

r=1wrk(aR) where wrk(aR) =
∫ aR

0
I(u ∈ Crk)du, given Zn = 1 we can write

ω
(1)
rk = E(wrk(aR)|D,Zn = 1) = |Crk| .

If s denotes the index for the inspection interval containing tn, the time of the final event observed
over (0, τ ] (i.e. tn ∈ As), then for r < s, E(nrk|D,Zn = 0) = E(nrk|D,Zn = 1) as in (10), and for
r > s, E(nrk|D,Zn = 0) = 0, k ∈ Kr, by the definition ofAs. Note that E(nsk|D,Zn = 0), k ∈ Ks,
can be obtained by conceptualizing a progressive time nonhomogeneous multistate Markov process
with a finite number of states labelled N(as−1), . . . , N(as) where only ` → ` + 1 transitions are
allowed with a common “transition” intensity ρ(u|x), ` = N(as−1), . . . , N(as)− 1 and N(as) = n is
an absorbing state. We let ns = (nsk, k = ks1, . . . , k

s
qs) denote the counts over the subintervals of As,

let n̄sk = n(as−1) +
∑

j∈Ks I(j ≤ k)nsj denote the cumulative count at Csk, and let n̄s = (n̄sk, k =
ks1, . . . , k

s
qs) denote the vector of cumulative counts. We can then write P (ns|D,Zn = 0) as

P (N(Csk) = n̄sk for all k ∈ Ks|N(as−1) = n(as−1), N(as) = n(as), x, Zn = 0) ,

where n(as−1) = n− ns and n(as) = n by the definition of As. This can in turn be written as

P (ns|D,Zn = 0) =
P (N(Csk) = n̄sk for all k ∈ Ks|N(as−1) = n(as−1), x, Zn = 0)

P (N(as) = n|N(as−1) = n(as−1), x, Zn = 0)
, (11)

where the numerator is equal to∏
k∈Ks

P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, x, Zn = 0) (12)

by the Markov property, and the denominator is∑
ns∈Ns

∏
k∈Ks

P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, x, Zn = 0) , (13)

where Ns = {ns : ns =
∑

k∈Ks nsk} is the set of all vectors ns compatible with observed total. To
determine the terms in (12), for a given vector ns consider the specific subinterval Cs` containing tn
(i.e. tn ∈ Cs`). For k ∈ Ks with k < `, we have

P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, x, Zn = 0) = µnsk
sk exp(−µsk)/nsk! ,

where µsk = exp(αk + x′β)|Csk|, and when k > `, P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, x, Zn =
0) = 1. When k = `, a time-homogeneous Markov process governors events over Cs` with allowable
transitions 0→ 1→ · · · → N` = ns` occurring with rate exp(α` + x′β).

Note that the probability of making transition from state i to state j, i, j = 0, . . . , N`, within time
t is

Pij(t) = (exp(α` + x′β) t)j−i exp(− exp(α` + x′β) t)/(j − i)! (14)

if 0 ≤ i ≤ j < N`, with PiN`
(t) = 1−

∑N`−1
j=i Pij(t) if 0 ≤ i ≤ N` − 1. Given this we can calculate

P (N(Cs`) = n̄s`|N(Cs,`−1) = n̄s,`−1, x, Zn = 0) as P0N`
(|Cs`|). Also note that (11) can be used to

compute the conditional expectation for the counts in each subinterval of As since

η
(0)
sk = E(nsk|D,Zn = 0) =

ns∑
nsk=0

nskP (nsk|D,Zn = 0) (15)
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where P (nsk|D,Zn = 0) =
∑

ns∈Ns
I(Nsk = nsk)P (ns|D,Zn = 0) for any k ∈ Ks.

For r < s,E(wrk(tn)|D,Zn = 0) = |Crk| for all k ∈ Kr and for r > s E(wrk(tn)|D,Zn = 0) = 0
for all k ∈ Kr by the definition of As. For r = s, Ks = {ks` , ` = 1, . . . , qs}, and for a given vector
of counts ns = (nsk, k ∈ Ks), we can find an ` such that tn ∈ Cs`. Once again, for k ∈ Ks, when
k < `, we have E(wsk(tn)|D,Zn = 0) = |Csk| and when k > `, E(wsk(tn)|D,Zn = 0) = 0 by the
definition of Cs`. When r = s, and k = `,

ws`(tn) =

∫ tn

0

I(u ∈ Cs`)du =

∫
Cs`
I(tn > u)du =

∫
Cs`
I(N(u) < n)du ,

and for u ∈ Cs`, the latter expression can be helpful since P (N(u) < n|D,Zn = 0,ns) is

ns`−1∑
j=0

P (N(u) = j|N(Cs,`−1) = 0, x, Zn = 0)P (N(Cs`) = ns`|N(u) = j, x, Zn = 0)

P (N(Cs`) = ns`|N(Cs,`−1) = 0, x, Zn = 0)
. (16)

Note that over Cs`, we again have a continuous time Markov process with a time homogenous
transition intensity exp(α` + x′β) and transitions from ` to ` + 1 for ` = 0, . . . , N` − 1 where
N` = ns`, we can therefore use (14) to obtain the values of the three items in (16) for given u ∈ Cs`,
and obtain

E(ws`(tn)|D,ns, Zn = 0) =

∫
Cs`
P (N(u) < n|D,ns, Zn = 0)du (17)

via numerical integration. Finally, for any k ∈ Ks,

E(wsk(tn)|D,Zn = 0) =
∑

ns∈Ns

E(wsk(tn)|D,ns, Zn = 0)P (ns|D,Zn = 0) ,

where P (ns|D,Zn = 0) is given in (11).
Let Hs = {(ar, nr), r = 1, . . . , s, x} denote the inspection times and counts up to and including

the inspection interval containing the last event known to have occurred, along with the covariate
vector. The remainder of the data are denoted by Hs+1,R = {(ar, nr), r = s+ 1, . . . , R, x}. Then

ζ = P (Zn = 1|D) = P (Zn = 1|D, Z̄n−1 = 1n−1)

=
P (Hs+1,R|Hs, Zn = 1, Z̄n−1 = 1n−1)P (Zn = 1|Hs, Z̄n−1 = 1n−1)∑1
z=0 P (Hs+1,R|Hs, Zn = z, Z̄n−1 = 1n−1)P (Zn = z|Hs, Z̄n−1 = 1n−1)

(18)

where

P (Hs+1,R|Hs, Zn = z, Z̄n−1 = 1n−1) =
R∏

r=s+1

P ((ar, nr)|Hr−1, Zn = z, Z̄n−1 = 1n−1) .

Note that P ((ar, nr)|Hr−1, Zn = z, Z̄n−1 = 1n−1) can be written as

P (nr|ar, Hr−1, Zn = z, Z̄n−1 = 1n−1)P (ar|Hr−1, Zn = z, Z̄n−1 = 1n−1) .

If ar⊥Zn|Hr−1, Z̄n−1 = 1n−1, under the conditionally (given Zn = z) sequentially missing at ran-
dom assumption (Hogan et al., 2004), the second term on the right-hand side does not depend on z.
Moreover,

P (nr = 0|ar, Hr−1, Zn = z, Z̄n−1 = 1n−1) =

{
exp(−µr) if z = 1

1 if z = 0 ,
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where µr =
∫
Ar
ρ(u|x)du =

∑
k∈Kr µrk for r = s + 1, · · · , R. Under the conditionally sequentially

MAR assumption, P (Zn = z|Hs, Z̄n−1 = 1n−1) is given by

P (ns|as, Hs−1, Zn = z, Z̄n−1 = 1n−1)P (Zn = z|Hs−1, Z̄n−1 = 1n−1)∑1
z=0 P (ns|as, Hs−1, Zn = z, Z̄n−1 = 1n−1)P (Zn = z|Hs−1, Z̄n−1 = 1n−1)

,

where P (Zn = 1|Hs−1, Z̄n−1 = 1n−1) = P (Zn = 1|x, Z̄n−1 = 1n−1) is given by (9) and P (ns|as, Hs−1, Zn =
0, Z̄n−1 = 1n−1) is given by (13).

3 EMPIRICAL STUDIES AND AN APPLICATION

3.1 DESIGN AND INTERPRETATION OF SIMULATION STUDIES

In this section, a simulation study is conducted to evaluate the performance of the method proposed
to deal with interval-censored recurrent event data with disease resolution. We let Xi denote a binary
covariate for individual i which takes on the value of 1 or 0 with equal probability to reflect, for
example, whether an individual is on an experimental or control treatment. We then generate the
initial mover-stayer indicators Zij , j = 0, · · · , ni, following the model

logitP (Zij = 1|Xi, Z̄i,j−1 = 1j−1) = γ0 + γ1j + γ2Xi ,

where ni is the total number of events observed over the entire study period (0, τ ] if there is admin-
istrative censoring only. For simplicity, we set τ = 1 for all subjects. γ1 and γ2 are set as log 0.95
and log 0.75 respectively, so that for given treatment Xi, the odds of being a mover decreases by 5%
with the occurrence of each additional event for the same treatment group, and the odds of being a
mover is 25% lower if Xi = 1 compared to when Xi = 0 for a given Ni(t). For the purpose of
illustration, we assume the events are generated according to a homogenous Poisson process among
movers, in which case the gap times follow an exponential distribution with rate λ exp(Xiβ); here λ
is the baseline intensity and β is reflects the treatment effect on the event rate. We set β = log 0.75 so
that there is a 25% reduction in the event rate among movers on treatment and solve for λ such that
the expected number of events over (0, τ ] is 6 or 12 among individuals for whom the disease process
does not resolve. We then solve for γ0 to ensure the expected number of events over (0, τ ] is 1.5,
3 or 6. A piecewise-constant baseline intensity model was adopted wherein cut-points were set by
dividing the observation period (0, τ ] evenly into K = 3 intervals.

For simplicity, we assume here that each subject has the same number of prescheduled evenly
spaced assessments with Ri = R = 4 or 8; as described in Section 2 we observe only the num-
ber of events occuring between clinic visits, along with the treatment indicator. If ϑ = (α1, α2 −
α1, · · · , αK−α1, β, γ0, γ1, γ2), we terminate the EM algorithm of the previous section when max(|ϑnew

j −
ϑold
j |) < ε, where ε = 10−6. A total of 2000 simulations were conducted for each parameter configu-

ration with a sample size of m = 500 or 2000. The empirical biases (EBIAS) and empirical standard
errors (ESE) are reported in Table 1.

The simulation results in Table 1 show that the empirical biases are generally small, and decrease
as the sample size increases. Moreover for a given sample size, the estimators have smaller empirical
biases and smaller empirical standard errors the more frequent the assessments. When the expected
numbers of events among the movers are the same, the covariate effects on the recurrent event pro-
cess have smaller empirical biases and smaller empirical standard errors when the marginal expected
number of events is larger; in such cases, the empirical standard errors in the estimates of the event
rate are also smaller. For a given marginal expected numbers of events, both the association between
the explanatory variables and the mover-stayer indicator and the covariate effect on the event process
have smaller standard errors and negligible biases. When the assessment times are governed by a
Poisson process, similar results are seen.
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Table 1: Simulation results where the gap times follow an exponential distribution by adopting a
piecewise-constant model when the data are subject to administrative censoring only, m = 500 or
m = 2000, nsim = 2000, ε = 10−6

R=4 R=8

m=500 m=2000 m=500 m=2000

Parameter Value EBIAS ESE EBIAS ESE EBIAS ESE EBIAS ESE

E(N(1)) = 1.5, E(N(1)|Zn = 1) = 6

γ0 0.7091 0.0041 0.1009 0.0001 0.0499 0.0039 0.1005 0.0002 0.0497
γ1 -0.0513 -0.0014 0.0510 0.0005 0.0256 -0.0022 0.0481 0.0000 0.0237
γ2 -0.2877 -0.0038 0.1237 0.0004 0.0628 -0.0040 0.1224 0.0001 0.0624
α1 1.9253 0.0009 0.0654 0.0004 0.0329 0.0003 0.0621 0.0000 0.0306
α2 1.9253 -0.0113 0.1035 -0.0023 0.0504 -0.0036 0.0897 -0.0006 0.0441
α3 1.9253 -0.0095 0.2668 -0.0069 0.1310 -0.0086 0.2052 -0.0043 0.1016
β -0.2877 0.0005 0.0896 -0.0019 0.0431 0.0005 0.0871 -0.0017 0.0410

E(N(1)) = 3, E(N(1)|Zn = 1) = 6

γ0 1.7331 0.0100 0.1174 0.0038 0.0584 0.0105 0.1165 0.0037 0.0580
γ1 -0.0513 0.0008 0.0424 -0.0007 0.0206 0.0002 0.0398 -0.0006 0.0192
γ2 -0.2877 -0.0068 0.1395 -0.0030 0.0684 -0.0076 0.1376 -0.0029 0.0677
α1 1.9253 -0.0017 0.0500 -0.0014 0.0252 -0.0013 0.0474 -0.0012 0.0240
α2 1.9253 -0.0004 0.0661 0.0009 0.0326 0.0001 0.0589 0.0010 0.0291
α3 1.9253 -0.0021 0.1163 0.0003 0.0594 -0.0014 0.1003 -0.0006 0.0499
β -0.2877 -0.0004 0.0641 0.0002 0.0313 -0.0001 0.0631 0.0002 0.0307

E(N(1)) = 3, E(N(1)|Zn = 1) = 12

γ0 1.4123 0.0032 0.0944 -0.0002 0.0484 0.0036 0.0938 -0.0002 0.0481
γ1 -0.0513 -0.0018 0.0221 -0.0003 0.0113 -0.0022 0.0211 -0.0003 0.0108
γ2 -0.2877 0.0010 0.1089 0.0004 0.0542 0.0005 0.1085 0.0003 0.0541
α1 2.6184 0.0032 0.0447 0.0001 0.0221 0.0024 0.0415 0.0000 0.0205
α2 2.6184 -0.0026 0.0779 -0.0000 0.0389 0.0007 0.0654 0.0004 0.0329
α3 2.6184 -0.0039 0.2066 0.0004 0.0999 -0.0004 0.1426 0.0004 0.0701
β -0.2877 -0.0042 0.0592 -0.0012 0.0289 -0.0040 0.0560 -0.0011 0.0274

E(N(1)) = 6, E(N(1)|Zn = 1) = 12

γ0 2.4275 0.0037 0.1145 0.0003 0.0575 0.0046 0.1125 0.0005 0.0568
γ1 -0.0513 -0.0005 0.0187 -0.0001 0.0091 -0.0009 0.0175 -0.0002 0.0086
γ2 -0.2877 0.0041 0.1194 0.0007 0.0599 0.0039 0.1186 0.0007 0.0591
α1 2.6184 0.0020 0.0342 0.0006 0.0168 0.0013 0.0321 0.0005 0.0157
α2 2.6184 -0.0008 0.0482 0.0003 0.0234 0.0005 0.0409 0.0004 0.0204
α3 2.6184 -0.0011 0.0783 -0.0011 0.0386 0.0004 0.0623 -0.0006 0.0312
β -0.2877 -0.0026 0.0410 -0.0008 0.0197 -0.0024 0.0402 -0.0008 0.0192
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3.2 APPLICATION TO JOINT DAMAGE IN PSORIATIC ARTHRITIS

We consider a subcohort of patients with psoriatic arthritics from University of Toronto Psoriatic
Arthritis Clinic. These 207 selected patients have disease onset time and HLA-B27 information
available. They entered the clinic and were followed-up between 1978 and 2013. The observation
period is limited to the first 30 years following disease onset. The reported age of disease onset is
taken as the time origin and dates of radiological assessments and numbers of new damaged joints
were recorded at the following assessment visits. The average time since disease onset to first radio-
logical assessment is 5.54 years (S.D. 6.02, range 0.03 to 27.23). The average number of radiological
assessments within 30 years of disease onset is 3.63 (S.D. 2.83, range 1 to 13). A total of 32 (15.5%)
patients are HLA-B27 positive.

The data suggested that some patients experience remission during the follow-up. We fit the
proposed algorithm on the interval-censored recurrent event data to study the occurrence of joint
damage. Piecewise-constant baseline rate functions are adopted to model the recurrent event process
not subject to resolution with one fixed covariate HLA-B27 (X = 1 if HLA-B27 positive, X = 0 if
HLA-B27 negative); The canonical baseline rate are assumed to be constant for every 10 years. A
dynamic mover-stayer model is fitted with the cumulative number of damaged joints (j) and HLA-
B27 (X) being the explanatory variables in the logistic regression. A recurrent event model treating
all patients as susceptible for joint damage is fitted for comparison, in which a piecewise-constant
baseline rate model is assumed as well and the effect of HLA-B27 on event rate is also of interest.

The estimation results, presented in Table 2, demonstrate that the event rate is noticeably under-
estimated when all the patients are assumed to experience joint damage over the entire observation
period. The effect of HLA-B27 on event rate is also underestimated though it is not significant in
either model. The increased number of damaged joints is associated with higher odds of continuing
to have new damaged joints.

Table 2: Results of fitting piecewise-constant baseline rate model and dynamic mover-stayer model
to study the occurrence of joint damage among patients with psoriatic arthritis whose follow-ups are
within 30 years of disease onset; m = 207, standard errors based on 100 bootstrap samples

Recurrent Dynamic
Event Model Mover-Stayer Model

EST SE EST SE

Mover-Stayer Model
γ0 — — 1.636 0.257
γ1 — — 0.153 0.107
γ2 — — -0.201 0.317
Recurrent Event Model
α1 -0.467 0.097 -0.012 0.109
α2 -0.879 0.149 -0.509 0.188
α3 -0.952 0.365 -0.133 0.537
β -0.163 0.269 -0.069 0.357
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4 DISCUSSION

We developed an expectation-maximization algorithm to analyze interval-censored recurrent event
data for disease processes subject to resolution. While there is a large class of intensity functions that
can be adopted when the event times are only right-censored, under interval-censoring the Markov
assumption for the conditional event process leads to a highly tractable model; for progressive disease
processes this is a reasonable framework for analysis. The algorithm makes use of existing softwarwe
at the maximization step and is shown to produce estimators with small empirical bias for frequent
and less frequent assessments.

Some degree of robustness to misspecification is achieved through use of a piecewise-constant
baseline rate function, but extensions to deal with semiparametric models would be worthy of de-
velopment. Possible avenues include adapting the pseudo-likelihood estimator proposed by Sun and
Kalbfleisch (1995) for the mean function, or the semiparametric maximum likelihood approach of
Wellner and Zhang (2000). Here, however, one might expect more challenges in maximization of the
observed data likelihood whether by direct maximization or an extension of the algorithm we present
here.

In this paper, we assumed the observation times and the event process are conditionally indepen-
dent. It is important to highlight that the assumption of sequential ignorability accommodates the
setting in which the next assessment is scheduled based on the observed history up to and including
the current assessment. This reflects the scenario in which physicians schedule appointments based
on the current state of the patient they are examining. Huang et al. (2006), Sun et al. (2007) and Zhao
and Tong (2011) developed methods to deal with more complex assessment processes, which could
be utilized in conjuction with the current model. These methods generally require joint modeling of
the process of interest and the assessment process and hence require stronger modeling assumptions.

Cook et al. (2002) describe a generalized mover-stayer model for multistate data under interval
censoring, which is somewhat similar in spirit to what we have described. In their model, conditional
on the mover-stayer indicators, subjects move according to time-homogeneous Markov transition
intensities. Here however, the first time an individual enters a state, a latent mover-stayer indicator
is realized which can render it an absorbing state. Thus individuals can make transitions between a
number of states before finally entering their absorbing state.

Often recurrent events arise in settings where the event process is terminated by some event. For
example in transplant studies recurrent graft rejection episodes arise when recipients are experiencing
graft versus host disease (Cole et al., 1994). This condition resolves at a latent time when the graft
is accepted, but the process can also end upon in severe cases by total graft rejection or death of the
patient. Adapting these methods to handle this situation is feasible but may again be more naturally
addressed by casting the process into a multistate framework as in Conlon et al. (2014). Extensions
of these methods would be useful for this setting as well.
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APPENDIX: THE EXPECTATION-MAXIMIZATION ALGORITHM

For the EM algorithm, we have

Q(θ; θ̃) = Q1(θ1; θ̃) +Q2(θ2; θ̃) ,

whereQ(θ; θ̃) = E(`C(θ)|D, θ̃) andQj(θj; θ̃) = E(`Cj(θj)|D, θ̃), j = 1, 2, θ1 = (α′, β′)′, θ2 = γ and
θ = (θ′1, θ

′
2)′. Given the expressions in Section 2.3, adopting the notation η̃(1)

irk = E(nirk|Di, Zini
=

1; θ̃), η̃(0)
irk = E(nirk|Di, Zini

= 0; θ̃), ω̃(1)
irk = E(wirk(aiRi

)|Di, Zini
= 1; θ̃), ω̃(0)

irk = E(wirk(tini
)|Di, Zini

=

0; θ̃) and ζ̃i = E(Zini
|Di; θ̃), we write Q1(θ1; θ̃) as

Q1(θ1; θ̃) =
m∑
i=1

{
ζ̃i

K∑
k=1

Ri∑
r=1

[
η̃

(1)
irk(αk + x′iβ)− exp(αk + x′iβ + log ω̃

(1)
irk)
]

+ (1− ζ̃i)
K∑
k=1

Ri∑
r=1

[
η̃

(0)
irk(αk + x′iβ)− exp(αk + x′iβ + log ω̃

(0)
irk)
]}

.

One can construct a pseudo-data frame for each individual as in Table A.1, which can be written more
concisely as in Table A.2, with the call

glm(n ∼ X + factor(k) + offset(log w),weight = wt, family = poisson, link = log)

used to obtain updated estimates of θ1.
In addition, the function Q2(θ; θ̃) is

Q2(θ; θ̃) =
m∑
i=1

[ ni−1∑
j=0

logP (Zij = 1|H(t−ini
), Z̄i,j−1 = 1j−1, dN(tini

) = 1)

+ ζ̃i logP (Zini
= 1|H(t−ini

), Z̄i,ni−1 = 1ni−1, dN(tini
) = 1)

+ (1− ζ̃i) logP (Zini
= 0|H(t−ini

), Z̄i,ni−1 = 1ni−1, dN(tini
) = 1)

]
.

Again we construct a pseudo-data frame as in Table A.3 and call the glm function

glm(Z ∼ j + x,weight = wt, family = quasi− binomial, link = logit)

to obtain updated estimates of θ2. Variance estimation (Louis, 1982) is described in the Supplementary
Material.
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Table A.1: Pseudo-data frame for recurrent event process for one subject using the proposed method,
where r is the index of the inspection interval, k is the index of the piece of the baseline rate, X is the
covariate, w is the expected time at risk, n is the expected number of events, and wt is the weight

r k X w n wt

1 k1
1 x ω̃

(1)

1k11
η̃

(1)

1k11
ζ̃

...
...

...
...

...
...

1 k1
q1

x ω̃
(1)

1k1q1
η̃

(1)

1k1q1
ζ̃

1 k1
1 x ω̃

(0)

1k11
η̃

(0)

1k11
1− ζ̃

...
...

...
...

...
...

1 k1
q1

x ω̃
(0)

1k1q1
η̃

(0)

1k1q1
1− ζ̃

...
...

...
...

...
...

R kR1 x ω̃
(1)

RkR1
η̃

(1)

RkR1
ζ̃

...
...

...
...

...
...

R kRqR x ω̃
(1)

RkRqR
η̃

(1)

RkRqR
ζ̃

R kR1 x ω̃
(0)

RkR1
η̃

(0)

RkR1
1− ζ̃

...
...

...
...

...
...

R kRqR x ω̃
(0)

RkRqR
η̃

(0)

RkRqR
1− ζ̃
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Table A.2: Pseudo-data frame for recurrent event process for one subject using the proposed method
(simplified version), where r is the index of the inspection interval, k is the index of the piece of the
baseline rate, X is the covariate, w is the expected time at risk, n is the expected number of events,
and wt is the weight

r k X w n wt

1 k1
1 x ω̃

(1)

1k11
η̃

(1)

1k11
1

...
...

...
...

...
...

1 k1
q1

x ω̃
(1)

1k1q1
η̃

(1)

1k1q1
1

...
...

...
...

...
...

s− 1 ks−1
1 x ω̃

(1)

s−1,ks−1
1

η̃
(1)

s−1,ks−1
1

1
...

...
...

...
...

...
s− 1 ks−1

qs−1
x ω̃

(1)

s−1,ks−1
qs−1

η̃
(1)

s−1,ks−1
qs−1

1

s ks1 x ω̃
(1)
sks1

η̃
(1)
sks1

ζ̃
...

...
...

...
...

...
s ksqs x ω̃

(1)
sksqs

η̃
(1)
sksqs

ζ̃

s ks1 x ω̃
(0)
sks1

η̃
(0)
sks1

1− ζ̃
...

...
...

...
...

...
s ksqs x ω̃

(0)
sksqs

η̃
(0)
sksqs

1− ζ̃

s+ 1 ks+1
1 x ω̃

(1)

s+1,ks+1
1

η̃
(1)

s+1,ks+1
1

ζ̃

...
...

...
...

...
...

s+ 1 ks+1
qs+1

x ω̃
(1)

s+1,ks+1
qs+1

η̃
(1)

s+1,ks+1
qs+1

ζ̃

...
...

...
...

...
...

R kR1 x ω̃
(1)

RkR1
η̃

(1)

RkR1
ζ̃

...
...

...
...

...
...

R kRqR x ω̃
(1)

RkRqR
η̃

(1)

RkRqR
ζ̃

Table A.3: Pseudo-data frame for mover-stayer model for one subject using the proposed method,
where Z is the mover-stayer indicator, j is the number of events, X is the covariate, wt is the weight

Z j X wt

1 0 x 1
...

...
...

...
1 n− 1 x 1

1 n x ζ̃

0 n x 1− ζ̃
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