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Abstract

Detecting falls is critical for an activity recognition system to ensure the well being
of an individual. However, falls occur rarely and infrequently, therefore sufficient data
for them may not be available during training of the classifiers. Building a fall detection
system in the absence of fall data is very challenging and can severely undermine the
generalization capabilities of an activity recognition system. In this thesis, we present
ideas from both classification and decision theory perspectives to handle scenarios when
the training data for falls is not available. In traditional decision theoretic approaches, the
utilities (or conversely costs) to report/not-report a fall or a non-fall are treated equally or
the costs are deduced from the datasets, both of which are flawed. However, these costs are
either difficult to compute or only available from domain experts. Therefore, in a typical
fall detection system, we neither have a good model for falls nor an accurate estimate of
utilities. In this thesis, we make contributions to handle both of these situations.

In recent years, Hidden Markov Models (HMMs) have been used to model temporal
dynamics of human activities. HMMs are generally built for normal activities and a thresh-
old based on the log-likelihood of the training data is used to identify unseen falls. We
show that such formulation to identify unseen fall activities is ill-posed for this problem.
We present a new approach for the identification of falls using wearable devices in the
absence of their training data but with plentiful data for normal Activities of Daily Living
(ADL). We propose three ‘X-Factor’ Hidden Markov Model (XHMMs) approaches, which
are similar to the traditional HMMs but have “inflated” output covariances (observation
models). To estimate the inflated covariances, we propose a novel cross validation method
to remove “outliers” or deviant sequences from the ADL that serves as proxies for the
unseen falls and allow learning the XHMMs using only normal activities. We tested the
proposed XHMM approaches on three activity recognition datasets and show high detec-
tion rates for unseen falls. We also show that supervised classification methods perform
poorly when very limited fall data is available during the training phase.

We present a novel decision theoretic approach to Fall detection (dtFall) that aims to
tackle the core problem when the model for falls and information about the costs/utilities
associated with them is unavailable. We theoretically show that the expected regret will
always be positive using dtFall instead of a maximum likelihood classifier. We present a
new method to parameterize unseen falls such that training situations with no fall data
can be handled. We also identify problems with theoretical thresholding to identify falls
using decision theoretic modelling when training data for fall data is absent, and present
an empirical thresholding technique to handle imperfect models for falls and non-falls. We
also develop a new cost model based on severity of falls to provide an operational range
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of utilities. We present results on three activity recognition datasets, and show how the
results may generalize to the difficult problem of fall detection in the real world. Under the
condition when falls occur sporadically and rarely in the test set, the results show that (a)
knowing the difference in the cost between a reported fall and a false alarm is useful, (b)
as the cost of false alarm gets bigger this becomes more significant, and (c) the difference
in the cost of between a reported and non-reported fall is not that useful.
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Chapter 1

Introduction

Activity Recognition [31] studies the actions, behaviours and goals of a subject and at-
tempts to build systems to recognize them with an aim to provide some sort of assistance.
Research in activity recognition has led to the successful realization of intelligent pervasive
environments that can provide context, assistance, monitoring and analysis of a subject’s
activities that are usually backed up by advanced machine learning and vision algorithms.
Most of the research in activity recognition is either based on sensors [31] or computer
vision [53]. A drawback with sensor-based methods is their intrusive nature; a person
has to wear sensor-based gadgets all the time which may be uncomfortable to carry and
may lead to refusal to wear them [162]. Vision-based system works well in an indoor
setting; however, when a person leaves the premises, these systems cannot provide much
help. Research in activity recognition using wearable or computer vision sensors is mostly
centred around identifying normal Activities of Daily Living (ADL) such as walking, run-
ning, standing, cycling, etc. and applied to monitor a subject’s movements, assess physical
fitness and provide feedback. Though this research is meaningful, there can be scenarios
where detection of unusual events becomes important, challenging and relevant. Missing
out such unusual activities can impose health and safety risks on an individual. Falling
is the most common type of unusual activity and the most studied [127, 74]. In real life,
most falls are caused by sudden loss of balance due to an unexpected slip or trip, or loss
of stability during movements such as turning, bending, or rising [156].

A fall can be defined in many ways depending upon the perspective of a health prac-
titioner, carer, computer scientist / analyst or the subject himself. Most studies use a
combination of topographical, biomechanical and behavioural components to define a fall
[62] and using different fall definitions can influence the results of the study. The WHO
report [139] defines a fall as
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Definition “Fall: inadvertently coming to rest on the ground, floor or other lower level,
excluding intentional change in position to rest on furniture, wall or other objects”

According to Prevention of Falls Network Europe’s definition [98], a fall is an unexpected
event in which the participants come to rest on the ground, floor or lower level. A majority
of activity recognition datasets that collect falls in controlled laboratory settings, may not
glean falls in fully naturalistic settings i.e. inclusion of intention may be present in those
datasets. This very fact makes these collected falls artificial and not true representatives
of actual falls. This issue is further discussed in section 1.3.1 and highlighted in Chapters
3, 4 and 5.

In the following sections, we discuss the reasons why detecting falls is important, the
challenges associated with detecting falls, the general description of the fall detection prob-
lem and the associated practical issues. We then identify major research problems and
present an outline of the contributions proposed in this thesis. The chapter concludes
with a brief summary of the overall structure of the thesis along with a list of publications
resulting so far from this research.

1.1 Why is Detecting Falls Important?

Falls are the major cause of both fatal and non-fatal injury among people and create
a hindrance in living independently. According to the report by SMARTRISK [169], in
Canada in 2004, falls constituted 25% of all the unintentional injuries besides transport
injuries or suicides, resulting in 2225 deaths, 105, 565 hospitalizations and 883, 676 non-
hospitalizations. The report also suggests that falls accounted for 50% of all injuries
that resulted in hospitalization, and was the leading cause of permanent partial disability
(47%) and total permanent disability (50%). Falls were the leading cause of overall injury
costs in Canada in 2004, accounting for $6.2 billion or 31% of total costs besides other
unintentional injuries. According to the WHO report [139], the frequency of falls increases
with an increase in age and frailty i.e. older adults are more prone to falling than younger
adults. Around 28 − 35% of people aged 65 and over fall each year and this increases to
around 32 − 42% for those over 70 years of age. Older people living in nursing homes
fall more often than those living in the community (around 30 − 50%) and 40% of them
experience recurrent falls [139]. The reason is that most of the older adults living in the
nursing homes are more frail and these facilities report fall incidences more accurately
[159]. According to the Public Health Agency of Canada [136], older adults in Canada
who were hospitalized due to a fall spent up to three weeks in the hospital, which is three
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times more than the average hospital stay among other age groups. They also comment
that half of falls leading to hospitalizations occurred at home and the number of deaths
resulting from falls increased with each increase in age category.

Falls can impact a person both economically and psychologically. The economic impact
can be categorized as either a Direct or Indirect cost [139]. Direct costs comprise of the
health care costs, insurance, medications, surgery, treatment, rehabilitation [22] or long
term care, whereas indirect costs include the loss of a job or income and productivity
losses. Experiencing a fall may lead to a fear of falling [74], which in turn can result in lack
of mobility, less productivity and can increase the risk of a fall. Fear of falling is identified as
a major negative consequence associated with decline in physical and mental performance,
progressive loss of mental health-related quality of life, decreased social contact and less
physical activities [161, 193]. Boyd and Steven [16] conducted a study on 1709 adults aged
65 or older and found that more than one-third of them were moderately or very afraid
of falling. An important factor in fall detection is the time spent unattended laying (on
the floor) after incurring a fall as it is a key factor in determining the severity of a fall.
Older adults, especially due to weakness and frailty, are unable to recover or get up from
a fall if living on their own. This could lead to several other complications such as loss
of consciousness, syncope, hypothermia, dehydration, broncho-pneumonia, pressure sores
and even death [158, 122, 39]. Studies show that more than 20% of patients who were
hospitalized because of a fall had been laying on the ground for an hour or more, and even
though they had no direct injury resulting from a fall, their rate of morbidity was very
high within the next 6 months [122].

To handle the issues discussed above, there is an imminent need for the development
of robust fall detection methods. Ideally speaking, a robust fall detector must accurately
detect and report falls immediately; however, in practice it may generate false alarms and
can fail to report some falls. Both of these errors have different repercussions. Reporting
excessive false alarms may lead a fall detector to be perceived as useless or ineffective
and can result in rejection of the device. Failing to identify and report a fall could have
life threatening consequences, causing a loss of confidence in the device, or increase in
fear of falling. Successful design and implementation of efficient fall detection devices are
necessary to reduce the response time for fall related injuries. These devices can also be
helpful in reducing the economic burden on public health care resulting from the treatment,
rehabilitation and longer stay of the patients at nursing homes due to falls.
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1.2 Challenges and Issues

Falls can lead to economic, physical, social and psychological complications among individ-
uals, and affects the elderly population more severely. Therefore, there is an imminent need
for the development of intelligent pervasive systems that can accurately monitor a person’s
activities and detect falls effectively. These types of systems form a major component of
the overall goal of Assistive Technology [105] to help individuals to live independently and
better integrate with the community.

Most of the studies on fall detection either use computer vision (cameras), ambient
sensors or wearable devices to capture data and employ either thresholding or machine
learning techniques [127, 74]. Computer vision-based fall detectors work better in indoor
settings and are non-intrusive; however, multiple cameras may need to be fitted in a living
compound that could raise privacy concerns and may lead to their rejection. Moreover,
a camera-based fall detection system may not be effective when a person goes outdoors,
beyond the field of vision or if the illumination changes significantly [135]. The advantage
of wearable sensors is that they are cost-effective, easy to wear and operate, and work
both indoors and outdoors. However, they can be considered invasive and intrusive. These
sensors must be worn all the time, which can also lead to their rejection [162]. Modern
smartphones are also equipped with built-in sensors (accelerometer, gyroscope and other
ambient sensors) and are considered ubiquitous, as many people carry them without con-
sidering them an additional gadget. Fall detection solutions based on smartphones may
be ineffective in indoor settings as many people don’t keep them in their pockets or do
not attach it to their body when inside their homes. Ambient sensing devices mostly use
pressure sensors to detect falls and are cost effective and less intrusive. However, they can
be highly sensitive to their surroundings, and can generate a lot more false alarms and may
be considered ineffective by both the carer and user [127]. The data from both wearable
and ambient devices can not be visually verified by a researcher or carer if the subject
under observation is out of sight or outside the laboratory or care environment, and it is
very hard to obtain labelled data for falls from the subject himself (e.g. noting the time
of the day when a fall occurred) .

There exist several commercial products for detecting falls such as Philips Lifeline [145]),
MobileHelp Fall ButtonTM[126], AlarmCare [4], Galaxy Fall Detection System [176], Vi-
sonic Fall Detector [191] and Brickhouse Alert [20]1. Recently, several mobile applications
for Android and iPhone platform have been developed that are capable of detecting falls
such as iFall [172], Fade [50], Seizario [165], and CareBeacon [24]. Many of these products

1A detailed description of several commercial fall detectors is presented in [140, 46]
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or mobile applications use fixed thresholds to detect falls, may fail to identify different
types of falls, can produce many false alarms and require manual intervention. Most of
these products are wearable (on chest, neck, waist, or in the pocket), so there are dis-
comfort and adaptability issues as well. Brownsell and Hawley [21] conducted a study to
understand the feasibility of employing fall detectors among older adults (age group 60-74).
Their research concludes that most of the users who wore fall detectors felt more confi-
dent, independent and considered that a fall detector improved their safety. This study
provides evidence of the importance of using fall detection systems in positively impacting
the lives of people (older adults in this case). Noury et al. [135] mention that there is
no wide scale deployment of fall detection devices in daily geriatric practice, largely due
to their inadequate operations, ergonomics, high incidence of false alarms and the social
stigmatization of the frailty of the older person. However, when the concept of detecting
falls is presented to older adults they find great potential in it to improve their security,
safety and well-being at home [74]. Therefore, there is a clear gap between the real utility
and actual usability of fall detectors.

Igual et al. [74] and Habib et al. [58] present several challenges and issues for the design
of fall detectors that could impede their wider usability and adaptability. Many of these
challenges are inter-linked and are discussed below:

• Robustness – Many fall detection algorithms achieve high precision and recall under
controlled laboratory settings; however, when applied to real-world situations their
performance deteriorates [135]. Many studies collect human motion data for a few
hours of ADLs, which is not sufficient to represent the actual activities carried out in
the real world. Additionally, it is very difficult to run long-term studies to monitor
the activities of people due to logistics, time, money, effort and the discomfort of the
person. A major focus of developing fall detection systems is to help older adults;
however, in most of the studies, young healthy individuals perform activities in their
place as it is difficult to involve seniors in those studies due to ethics and health
problems [140].

• Usability – Wearable devices aimed at fall detection can be uncomfortable to attach
to the waist, chest or neck all the time. Smartphones offer a viable alternative due to
their ubiquitous and pervasive nature; however, people keep smartphones in different
places, orientations and often do not even carry them. Bad ergonomics, including
the size, shape and weight of the device, can also impact the usability of such de-
vices. Other factors that can affect the usability of these devices include manual
intervention, a lack of interaction of the device with the user and a requirement of
high technical skills to operate them.
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• Acceptance – Acceptance of fall detection devices for the senior population is a
challenge because they may not be technology savvy or inclined to learn about it. A
study by Kurniawan [97] shows that older people are passive users of mobile phones,
frightened of the consequences of using new and unfamiliar technology and find it
difficult to grasp the complex designs of user interfaces (such as menus). Igual et
al. [75] also find that people with intellectual disability face difficulty in navigating
through the complicated interfaces of smartphones.

• Limitations of the devices – A major challenge for using smartphones or other
wearable devices is their battery drain time, which can be more in a smartphone as
it is generally loaded with other mobile applications that can consume energy faster.
Smartphones were not originally designed for fall detection; therefore, issues related
to their placement, orientation, sensing architecture, stability of sampling frequency
of the accelerometer and gyroscope can be a bottleneck. The camera based devices
have limitations in working outdoors and in different lighting conditions.

• Privacy Issues – Wearable devices can continuously and discreetly collect personal
information, which when combined with other information such as geographical loca-
tion, are enable to infer private information [153]. Context-aware systems including
computer vision (or cameras) based fall detection methods are more prone to privacy
concerns. Employing one or multiple cameras in a home environment may make
the person feel surveilled or monitored round the clock. There have been several
incidents of hacking into CCTV cameras at homes [77, 131], which can discourage a
prospective user from installing such systems.

• Real and Simulated Falls – Most of the papers reviewed in several survey papers on
fall detection [74, 58, 127] indicate that a majority of the researchers test their systems
using data collected through simulated falls. Klenk et al. [92] perform an experiment
with older and younger adults, who are asked to perform real and simulated falls,
and find significant variations in the acceleration and maximum number of jerks
between real and simulated falls. Kangas et al.[82] find that some characteristics
of falls that are detectable in simulated falls are not detectable in real life falls.
Huynh et al. [72] note that in their study young adults perform the ADLs for testing
purposes instead of the elderly. Since they may not fully simulate the actual activities
of seniors, such fall detection systems may require re-adjustments of classification
thresholds to perform well for the elderly. Bagalà et al. [11] compare thirteen existing
fall detection algorithms, test them on real world fall data and observe that these
algorithms perform better on simulated falls than real falls. The methods based
on thresholding on acceleration signals perform worse because thresholds are mostly
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calibrated on simulated falls and are not suitable for real falls. A fixed threshold
may not be the optimal strategy compared to a subject-specific threshold; however,
such thresholds are difficult to generalize. Furthermore, they note that real falls are
fewer in number than normal ADLs and therefore traditional metrics to measure
performance of such systems should be chosen with care.

1.3 General Description of the Problem

The role of a fall detection system is to identify falls and report them. Identification or
classification of falls is primarily a supervised classification problem, whereas falls reporting
is a decision-theoretic approach to report falls optimally using the probabilities and the
utilities used for the system. When sufficient training data for both falls and non-falls is
present, this can either be stated as:

• Classification Problem: In this case, the main challenge is to train the model for
both falls and non-falls and compute likelihoods, given a fall or non-fall class and the
prior probabilities to compute the posteriors i.e.

Pr(f |o) ∝ Pr(o|f)Pr(f)

Pr(f̄ |o) ∝ Pr(o|f̄)Pr(f̄)

where O is a random variable that represents the observations and o ∈ O is an
observation, Pr(f |o) and Pr(f̄ |o) are the posterior probabilities, Pr(o|f) and Pr(o|f̄)
are the likelihoods, and Pr(f) and Pr(f̄) are the prior probabilities for falls and non-
falls. The likelihoods can be calculated using a Maximum Likelihood (ML) approach,
and the prior probabilities for falls and non-falls are generally computed as the ratio of
falls and non-falls to the total training data. Normally, a decision is taken to classify
a test sample as a fall or a non-fall based on posterior probabilities or likelihoods.

• Decision-Theoretic Problem: In this case, apart from the probabilities, subjective
utilities of different states of the systems are also utilized. A decision to report or
not-report an action as a fall is taken based on the value of the decision function that
maximizes the expected utility for performing an action:

V (r|o) = Pr(f |o)U(TP ) + Pr(f̄ |o)U(FP )

V (r̄|o) = Pr(f |o)U(MA) + Pr(f̄ |o)U(TN)
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where V (r|o) and V (r̄|o) are the value functions to report or not-report a fall given
an observation o, U(.) is a utility function that defines the subjective utility of
True Positives (TP ), False Positives (FP ), Missed Alarms (MA) and True Negatives
(TN)2. We can define a normalized utility function (as shown in Table 5.1) s.t.
U(TP ) = p, U(FP ) = q, U(MA) = 0 and U(TN) = 1. We can, then set V (r|o) =
V (r̄|o), to get a theoretical decision function

Pr(o|f)

Pr(o|f̄)
=
Pr(f̄)(1− q)
Pr(f)p

(1.1)

and substituting Pr(f |o) = 1− Pr(f̄ |o), we get a theoretical threshold as

τ = Pr(f |o) =
1

1 + p
1−q

(1.2)

The theoretical threshold, τ , is used to report or not-report a test observation o as a
fall or a non-fall. The theoretical threshold shown in Equation 1.2 guarantees optimal
decision under uncertainty, given true models for both falls and non-falls.

The research question that is being asked by a fall detection and fall reporting system
is also different. While a fall detection approach seeks to answer ‘Is an activity a fall?’,
fall reporting seeks to answer ‘Is it good to report an activity as a fall?’.

1.3.1 Practical Issues

We now discuss some of the practical issues that can severely undermine the performance
of a fall detection method in both the classification and decision-theoretic formulation.

Lack of Availability of fall data

A fall is an unusual event; therefore, the rarity of falls leads to a lack of sufficient data
for them for training the classifiers. More than one type of fall may also occur and their
unexpectedness make it difficult to model them in advance. Yin et al. [199] mention that
due to the scarcity of abnormal activities (e.g. falls), it is a challenging problem to design
a detection system that can reduce both the false positives and false negatives. Collecting

2In this thesis, we follow the convention of treating the falls class as the positive class and the normal
activities as the negative class. More discussion about these utilities in presented in Chapter 5.
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fall data can be cumbersome because it may require the person to actually undergo a real
fall which may be harmful and unsafe. Alternatively, artificial fall data can be collected in
controlled laboratory settings; however, that may not be the true representative of actual
falls and can ‘include intention’, which contravenes the definition of a fall discussed in
Section 1. Analyzing artificially induced fall data can be good from the perspective of
understanding and developing insights into falls as an activity but it does not simplify
the difficult problem of detecting falls. As the artificial falls do not represent actual falls,
the classification models built with them are more likely to suffer from over-fitting on the
artificial falls and may poorly generalize on actual falls. The approaches that exclusively
collect fall data still suffer from their limited quantity and ethics clearances. In addition
to very few or no labelled data, the diversity and types of falls further makes it difficult
to model them efficiently. The Centers for Disease Control and Prevention (CDC), USA
[56] suggests that on an average, nursing home residents incur 2.6 falls per person per
year. If an experiment is to be set up to collect real falls and assuming an activity is
monitored every second by a sensor, then we get around 31.55 million normal activities
per year in comparison to only 2.6 falls. The data for real falls may collected by running
long-term experiments in nursing homes or private dwelling using wearable sensors and/or
video. The falls data generated from such experiments can be sufficient enough to train
supervised classifiers; however it will still be skewed towards normal activities. Stone and
Skubic [175] conducted a study to collect activities from 13 apartments that contains a
combined nine years of continuous data. In total, they obtained 9 actual falls along with
454 artificial falls. This study was done in realistic settings and highlights the rarity of falls
and the difficulty in obtaining sufficient data for falls. The order of the average number of
actual falls obtained in this study is consistent with the CDC statistic of falls per person
per year. This high skew in the training data for falls may result in learning imperfect
models and it is difficult to develop generalizable classifiers to identify falls efficiently.

Lack of Understanding of Utilities and Costs

A typical fall detection system must correctly identify and report falls; however, it may
report some false alarms and fail to report some falls. Correctly identifying falls is critical
for ensuring the safety of an individual; missing to report a fall can be considered as the
worst outcome of a fall detection system, but reporting too many false alarms is not a good
outcome either. However, both of these errors must not be given the same cost because
they both represent two different types of ‘worst’ outcomes with two different ‘magnitudes’.
Even though reporting a fall correctly is considered the best outcome of a fall detection
classifier there is still some associated cost because the person has actually fallen, which

9



can lead to a possible injury and its subsequent consequences; like emotional stress to the
subject or family and money spent on the treatment. Most fall detection methods either
give equal cost to both types of errors or attempt to find a cost matrix from the data itself
(more discussion in Section 2.5). However, both ideas are flawed because neither these costs
(or conversely utilities) are known well in advance nor easily understood. Additionally, the
relationship between these various costs (or utilities) is not clear. Deducing costs from data
is not a good idea because the costs should not be data-specific but rather domain-specific.
However, these costs may either be unavailable, hard to compute or may come from a
domain expert.

1.4 Problem Identification

We discussed in Section 1.3 that the classification or detection of a fall is the outcome of
a ML classifier that takes one uncertain state of nature to make a decision, which may
not be an optimal action to perform. Whereas reporting a fall uses decision theory such
that different outcomes combine probability of every state with their subjective utilities
and the outcome with maximum expected utility is guaranteed to be an optimal decision.
However, a fall is an abnormal activity that occurs rarely, infrequently and in diverse ways;
therefore, it is very difficult to collect sufficient training data for them [89]. In the absence
of training data for falls, we are left with the following major challenges:

1. We don’t know exactly what a fall may look like, and

2. We don’t know exactly the costs incurred during and after a fall.

Without sufficient training data for falls, we may not build a model for them. For
such cases, Pr(f̄ |o) can be estimated but not Pr(f |o); moreover, the prior probability for
falls can not be directly estimated from the training data because it may not be available.
Therefore, neither the traditional ML approach nor the decision-theoretic approach can be
applied directly to classify or report falls that were not observed before. Now, we discuss
two approaches that can be used to identify unseen falls:

(i) Setting Threshold on the Likelihood of Normal Activities

In traditional classification methods that treat a fall as an abnormal activity (i.e. no
knowledge about the parameters of unseen falls), a model is trained and parameters
learned from normal activities (θf̄ ) using an iterative method (such as Expectation

10



Maximization (EM)) by maximizing the likelihood (Pr(O|f̄)) to obtain locally opti-
mum parameters θ∗

f̄
s.t.

θ∗f̄ = argmax
θf̄

Pr(O|θf̄ ) (1.3)

Given the parameters θ∗
f̄
, the likelihood of each instance of the training set is com-

puted and a threshold is calculated from them. This threshold is generally chosen
as the maximum of negative of log-likelihood that shows the maximum deviation
for the likelihood of an observation belonging to normal activities class. Any test
observation that lies beyond this threshold can be classified as ‘not-normal’ or as a
‘fall’. However, this approach can only be used from the classification perspective to
identify falls but not in the decision-theoretic sense to report falls because it does
not provide probability estimates for falls and does not incorporate utilities.

The value of such a threshold may be affected by the presence of spurious sensor
readings or artifacts of the system. If a threshold is not set appropriately, then in
the worst case, all falls may be classified as normal activities. To circumvent this
problem, the threshold can be modified to be less sensitive to the noise in the sensor
readings. That is, instead of setting the threshold as the maximum of negative of log-
likelihood over the training set comprising of normal activities, the value of threshold
is reduced. This modified threshold may reject some normal activities as ‘not-normal’
but it should be able to identify most of falls.

(ii) Modelling Unseen Falls

Instead of directly thresholding the log-likelihood computed from the training data
containing normal activities, an alternative model for unseen falls can be built that
can provide probability or likelihood estimates. The advantage of such a method is
that it can be used both in the classification and decision-theoretic settings because
it can provide probability estimates for both the classes. However, in the absence
of training data for falls, this cannot be done directly. Quinn et al. [150] present a
general framework to deal with unmodelled and unseen variations from the normal
activities by proposing the ‘X-Factor approach’. In this method, the covariance of
the normal dynamics is inflated to determine the regions with the highest likelihood
that can be classified as ‘not-normal’. If the normal activities are assumed to follow
a Gaussian distribution (or Gaussian Mixture Model (GMM)), then the parameters
of the new distribution that represents ‘not-normal’ behaviour have the same mean
as the normal activities model but different variance. The reason to vary only one
parameter (i.e. variance or covariance) is to keep minimum assumptions about the
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model for unseen falls. Figure 1.1 shows a 1-d Gaussian model for a normal activity
class with zero mean and a corresponding X-factor that represents a ‘not-normal’
activity (or a fall class in our case) with the same mean but different variance. The
data points that are at the extremes of the normal range are more likely to be
classified as belonging to the X-factor (or falls) [150]. Therefore, using the X-Factor
approach, the parameters of unseen falls can be estimated based on the parameters
of normal activities. However, such a model may be imperfect and may not be
expressive enough because it is an approximation for real falls.
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Figure 1.1: X-Factor approach in 1 dimension [150].

By modelling unseen falls using the X-Factor approach, we can estimate the likelihood
for a test observation that can be used for their classification. This can be further extended
to report falls by using decision theory by incorporating costs in a fall detection system.
However, the costs occurring in a fall detection system are hard to compute and mostly
unknown. Nonetheless, we would still like to build fall detection systems that are able to
detect and report falls and are able to help people. The method to compute likelihood for
unseen falls depends on the underlying approach. Below, we briefly present two approaches
to estimate the likelihoods for unseen falls:
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(a) Maximum Likelihood Approach: In this approach, we train a model and learn
the parameters (θf̄ ) from the normal activities using ML, and use the X-Factor ap-
proach to compute the parameters for unseen falls (θf ). As discussed earlier, the
parameters for both falls and non-falls only differ in their covariance. The scaling
parameter for covariance can be found using cross-validation (see Chapter 3.6). The
parameters θf can be used to compute the likelihood for unseen falls, Pr(o|θf ), for
the purpose of classification.

(b) Bayesian Approach: In the Bayesian approach, we parameterize the model for
unseen falls with θf , choose a prior distribution over it (Pr(θf )) and integrate over
all the possible values of θf to determine the expected likelihood for unseen falls, i.e.

EPr(θf )[Pr(o|f, θf )] =

∫
θf

Pr(o|f, θf )Pr(θf )

This expected likelihood for unseen falls can be combined with prior probabilities and
costs to compute the expected value for reporting a fall. We present a particular case
of using GMM with a specific prior and the X-factor approach within the decision-
theoretic framework to compute expected likelihood for unseen falls in Chapter 5.

In this thesis, we identify these issues in developing a fall detection system and present
methods that

(i) Improve the traditional thresholding methods, and

(ii) Build models for falls in the absence of their training data.

1.5 Contributions

Based on the above issues, this thesis presents contributions on the development of fall
detection methods that treats a fall as an abnormal activity and builds classification and
decision theoretic models using only the normal activities. These contributions are sum-
marized below:

1. In recent years, Hidden Markov Model (HMM) have been applied to model human
actions and activities [95]. Normally, HMMs are used to model the temporal dynam-
ics of normal activities, then a threshold is placed to detect unseen falls [89]. The
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maximum of negative of log-likelihood on the training data is generally used as a
threshold to identify falls in the test set. In this thesis, we show that this approach
of choosing a threshold is ill-suited for the problem of fall detection. We propose
improvements by computing an improved threshold by rejecting spurious sensor data
from the normal activities and are able to identify most falls correctly. We then
propose three different types of X-Factor Hidden Markov Model (XHMM) that can
learn alternative models for falls in the absence of their training data and need only
sufficient normal activities data. The XHMMs are similar to HMMs with the ex-
ception that they have “inflated” output covariances in comparison to the models of
the normal activities. To estimate the inflated covariances for the models of falls, we
propose a novel cross-validation method that removes outliers from the observations
of normal ADLs and uses them as a proxy for unseen falls, allowing the learning of
XHMMs using only the data from the normal activities. These XHMMs are used
to compute likelihoods for the unseen falls and help in their classification. In some
cases, there may be few fall data to begin with; for such cases, we experimentally
show that supervised classifiers perform poorly when the training data for falls is
very limited in comparison to the XHMMs that require no training data for falls.

2. We present a decision theoretic framework for fall detection (dtFall) based on Ex-
pected Utility Theory (EUT) that introduces a global utility function to encode
our prior knowledge about falls and normal activities, and utilities of reporting/not-
reporting a fall/non-fall activity. We show that (a) the expected value of reporting/not-
reporting a fall using EUT will always be larger or same as ML, and (b) the ML
method is a special case of EUT. We also present a method to estimate the expected
likelihood for unseen falls by parameterizing falls and integrating out the effect of
the parameter for falls by using a prior distribution. We derive an expression for
the theoretical threshold to report unseen falls and show the problems associated
with it in reporting falls optimally. These problems arise because the probabilistic
models learned for non-falls and falls may not represent their true distributions and
may not be expressive enough due to limited or unclean training data, or underlying
assumptions and parameters of the algorithm. To tackle this issue, we modify an
empirical thresholding algorithms that can deduce a probabilistic threshold from the
training data to ensure that the EUT method performs better than the ML based
approach. We also developed an exploratory cost model, which is based on the sever-
ity of falls, to estimate the parameters involved in deciding the utilities for a fall
detection system.
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1.6 Thesis Structure

In Chapter 2, we first survey the existing review papers on fall detection by presenting
their major contributions and highlighting their limitations. Then we present a taxonomy
for the study of fall detection based on the availability of fall data which is independent
of the type of sensors used to capture human activities or the features extracted. We
then present a comprehensive review of literature within each category identified by the
proposed taxonomy. We conclude the chapter by proposing improvements in the existing
research on fall detection.

Chapter 3 begins with a brief discussion about traditional HMMs and discusses the
proposed approaches that uses XHMMs and improved threshold based HMM approaches
for detecting falls when their training data is not present. The chapter also discusses differ-
ent datasets used in the thesis, mechanisms for extracting features and selecting relevant
features. A novel cross-validation method is presented next, to remove outliers from the
normal activities and treat them as proxies for unseen falls to help in estimating the pa-
rameters for the proposed XHMMs. We then show an experimental comparison between
the traditional and improved threshold based HMM approaches and the XHMM methods
and show the superior results of the proposed methods.

Chapter 4 extends and compares the methods and results from Chapter 3 by consid-
ering supervised classification cases when some data for falls activity may be available for
analysis. This chapter shows extensive experiments on situations when very few fall data
are available, sufficient fall data are available or information on only one type of a fall is
present that may be helpful for fall detection.

In Chapter 5, we shift focus from classification to a decision-theoretic approach for fall
reporting in the absence of training data for falls and the utilities of taking decisions to
report or not-report falls and non-falls. This chapter builds upon the concepts of EUT to
design a decision-theoretic framework (dtFall) and shows its advantage over a ML classifier.
We present a method to parameterize unseen falls to compute likelihood for unseen fall data
using only the normal activities. We also provide a modification of a thresholding algorithm
to adjust probability thresholds to take better decisions within the dtFall framework. The
chapter further explores the concept of a new cost model that can be used in this framework
to save cost in dollars. Results are shown for different activity recognition datasets and
show the superiority of the proposed framework over a ML classifier.

Chapter 6 draws significant conclusions from this thesis, identifies and proposes future
research directions for possible extensions of this research work in a real-world setting.
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The work in this thesis resulted in the following publications:

1. dtFall - Decision Theoretic Fall Detection for Unseen Falls, Shehroz S. Khan and
Jesse Hoey, Submitted to 10th EAI International Conference on Pervasive Computing
Technologies for Healthcare, 2016.

2. Detecting falls with X-Factor HMMs when the training data for falls is not available,
Shehroz S. Khan, Michelle E. Karg, Dana Kulic and Jesse Hoey, Under Review in
IEEE Journal of Biomedical and Health Informatics, 2015.

3. X-Factor HMMs for detecting falls in the absence of fall-specific training data, Shehroz
S. Khan, Michelle E. Karg, Dana Kulic and Jesse Hoey, 6th International Work-
conference on Ambient Assisted Living (IWAAL 2014), Belfast, U.K., 2014.

4. Towards the Detection of Unusual Temporal Events during Activities Using HMMs,
Shehroz S. Khan, Michelle E. Karg, Jesse Hoey and Dana Kulic, SAGAWARE:
2nd International Workshop on Situation, Activity and Goal Awareness, UbiComp,
Pittsburgh, USA, 2012.
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Chapter 2

Literature Review

Detecting rare and abnormal human activities is a challenging task. The classification task
becomes more difficult if their data is not present during the training phase or they did
not occur earlier. Falling is one of the most notable abnormal activities that could result
in life threatening consequences and partial or permanent disability. A fall is a short-term
event and can occur in diverse ways, such as falls from walking or standing, falls from
standing on supports, ladders, stairs, falls from sleeping or lying in the bed and falls from
sitting on a chair [127]. However, falls from bed or a chair may last longer because the bed
or chair may provide partial support to the falling person [203]. These different types of
fall may bear similarities or can be significantly different from each other. A fall may also
resemble some of the normal activities such as crouching, jumping [102, 130, 2], bending
[113], sitting or lying down on the floor quickly [175] or suddenly stopping during running
or walking [1].

As discussed in Chapter 1, a fall is a rare and infrequent activity and collecting data for
falls is very difficult. Rigorous ethics clearances are required to set up experiments for fall
detection and they can lead to injuries if proper precautions are not taken. To circumvent
the issue of less availability of data for falls, researchers collect fall data either from semi-
naturalistic settings [128], from artificial falls in controlled laboratory settings[189], or
from induced falls by applying external force [137, 124]. Artificial falls may not be a
true representative of actual falls; however, they may provide important insights into the
mechanism behind the real falls.

In this chapter, we first survey the existing review papers on fall detection, present their
contributions, highlight their limitations and draw a taxonomy for fall detection based on
the availability of fall data. This taxonomy is independent of the type of sensors used to
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capture human activities and specific type of feature extraction/selection methodologies.
The taxonomy envisages the problem of fall detection from the point-of-view of learning
models from human activities data by considering the problems associated in collecting
falls data. We then present a comprehensive review of the current and significant research
in the field of fall detection using the proposed taxonomy.

2.1 Survey of Existing Literature Review on Fall De-

tection

In the last decade, several review papers on fall detection have been published that discuss
different aspects of fall detection problem involving various classification techniques and
types of sensors. These review papers of existing research share several commonalities. In
this section we survey major review papers on fall detection and highlight their focus of
research, contributions and limitations.

Noury et al. [135] report a short review on fall detection with an emphasis on the physics
behind a fall, methods used to detect a fall and evaluation criteria based on statistical
analysis. They discuss several analytical methods to detect falls by incorporating thresholds
on the velocity of sensor readings, detecting no-movements, intense inversion of the polarity
of the acceleration vector resulting from impact shock and suggest that such methods
will result in high false positive rates. They mentioned since falls are rare, unsupervised
machine learning techniques are likely to fail to identify the first fall event because it was
not observed earlier. Supervised algorithms can only classify ‘known classes’ on which
they are trained and such techniques may label a rare activity, like a fall, as ‘Others’ along
with other activities e.g. to stumble, to slip etc. Yu [203] presents a survey on approaches
and principles of fall detection for elderly patients. Yu first identifies the characteristics
of falls from sleeping, sitting and standing and categorizes fall detection methods based
on wearable, computer vision and ambient devices. These approaches were further broken
down into specific techniques such as falls detection based on motion analysis, posture
analysis, proximity analysis, inactivity detection, body shape and 3D head motion analysis
and their merits and demerits discussed. Yu mentions that a fall is a rare event and it
is important to develop techniques to deal with such scenarios. Yu further addresses the
need for generic fall detection algorithms and fusion of different sensors such as wearable
and vision sensors for providing better fall detection solutions. Perry et al. [144] present
a survey on real-time fall detection methods based on techniques that measure only the
acceleration, techniques that combine acceleration with other methods, and techniques
that do not measure acceleration. They conclude that the methods measuring acceleration
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are good at detecting falls. They also comment that placement of a sensor at the right
position on the body can impact the accuracy of fall detection techniques.

Hijaz et al. [68] present a survey on fall detection and monitoring ADL and catego-
rize them into vision based, ambient-sensor based and kinematic-sensor based approaches.
They identify kinematic-sensor based approaches that use accelerometer and/or gyroscopes
as the best among them because of their cost effectiveness, portability, robustness and re-
liability. Mubashir et al. [127] present another survey on fall detection methods with an
emphasis on different systems for fall detection and their underlying algorithms. They
categorize fall detection approaches into three main categories: wearable device based,
ambience device based and vision based. Within each category they review literature on
approaches using accelerometer data, posture analysis, audio and video analysis, vibra-
tional data, spatio-temporal analysis, change of shape or posture. They conclude that
wearable and ambient devices are cheap and easy to install; however, vision based devices
are more robust for detecting falls. Delahoz and Labrador [40] present a review of the
state-of-the-art in fall detection and fall prevention systems along with qualitative com-
parisons among various studies. They categorize fall detection systems based on wearable
devices and external sensors that includes vision based and ambient sensors. They also
discuss general aspects of machine learning based fall detection systems such as feature
extraction, feature construction and feature selection. They also summarize various classi-
fication algorithms such as Decision Trees, Naive Bayes, K-Nearest Neighbour and SVM;
compare their time complexities and discuss strategies for model evaluation. They further
discuss several design issues for fall detection and prevention systems including obtrusive-
ness, occlusion, multiple people in the scene, aging, privacy, computational costs, energy
consumption, presence of noise, and defining appropriate thresholds. They also present
a three-level taxonomy to describe the falling risks factors associated with a fall that in-
cludes physical, psychological and environmental factors and review several fall detection
methods in terms of design issues and other parameters. Schwickert et al. [163] present
a systematic review of fall detection techniques using wearable sensors. A major focus of
their survey is to determine if the prior studies on fall detection use artificially recorded
falls in a laboratory environment or natural falls in real-world circumstances, and find out
that around 94% of studies use simulated falls. This is an important finding because it
highlights the difficulty in obtaining real fall data due to their rarity. They also discuss
that accelerometers along with other sensors such as gyroscopes, photo-diodes or baromet-
ric pressure sensors can help obtain better accuracy, and the placement of sensors on the
body can be of importance in detecting falls.

Zhang et al. [208] present a survey of research papers that exclusively use vision sensors,
where they introduce several public datasets on fall detection and categorize vision based
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techniques that uses single or multiple RGB cameras and 3D depth cameras. Pannurat et
al. [140] present another review for automatic fall detection by categorizing the existing
platforms based on either wearable and ambient devices, and the classification methods are
divided into rule-based and machine learning techniques. They present a detailed overview
of different aspects of fall detection, including sensor types and placement, subject details,
ADLs and fall protocols, extracting features, classification methods, and performance eval-
uation. They also compare several fall detection products based on size, weight, sensor
type, battery, transmission range and features and comment on future trends in the area of
fall detection. Igual et al. [74] review 327 research papers on fall detection and categorize
them as either context-aware systems or wearable devices (including smartphones). The
context-aware systems are further categorized as based on cameras, floor sensors, infrared
sensors, microphones and pressure sensors. They point out that despite the use of many
feature extraction and machine learning techniques adopted by researchers, there is no
standardized context-aware technique widely accepted by the research community in this
field. The major contributions of their survey are the identification of emerging trends,
ensuing challenges and outstanding issues in the field of fall detection. They point out that
the limited availability of real life fall data is one of the significant issue which could hinder
the system performance. Ward et al. [193] present a review of fall detection methods from
the perspective of use and application of technology designed to detect falls and alert for
help from end-user and health and social care staff. They categorize the technologies for
fall detection based on manually operated devices, body worn automatic alarm systems and
devices that detect changes which may increase the risk of falling. They also comment that
the users of fall detection technologies are concerned with privacy, lack of human contact,
user friendliness and appropriate training, but they identify the importance and benefits
of such systems within the community. However, health and social care staff appear less
informed and less convinced of the benefits of fall detection technologies. There are several
other survey papers on fall detection [46, 65, 143, 171, 26, 96] that address similar ideas
and issues already covered in the review papers discussed above.

In the past few years, smart phones have becomes very popular as they are non-invasive,
easy to carry, work both indoors and outdoors and are equipped with sensors that are useful
for activity recognition. A recent comScore report [34] suggests that in the US up to 60% of
people use smart phone devices as opposed to desktops and this number is close to or more
than 50% in Canada and the UK. There has been a considerable amount of research work
done for general activity recognition and fall detection using smartphones. Luque et al.
[111] present a review of comparison and characterization of fall detection systems based
on android smart phones. They mention that most of the techniques for fall detection
based on smart phones either use machine learning (pattern matching) techniques or fixed
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threshold(s). They conduct experiments with simulated falls, compare them with several
algorithms and observe that the accuracy of the accelerometer based techniques to identify
falls depends strongly on falls patterns1. They also find difficulty in setting acceleration
thresholds to get a good trade-off between false alarms and missed alarms. They further
mention that the hardware limitations of the memory and real-time processing capabilities
of the smart phones that may not support complex fall detection algorithms. Another
major problem raised is the rate of battery consumption when mobile application for
continuous monitoring are used. Casilari et al. [25] present another survey on analysis of
android based smart phones solutions for fall detection. They systematically classify and
compare many algorithms from the literature taking into account different criteria such as
the system architecture, the employed sensors, the detection algorithms and the response
in case of false alarms. Their study emphasizes the analysis of the evaluation methods that
are employed to assess the effectiveness of the detection process.

2.1.1 Analysis

We observe several recurring themes that consistently appear among all the review papers
we discussed previously:

• There exists no standard methodology for fall detection in terms of type of sensors,
feature engineering or machine learning techniques that supersedes other methods or
perform consistently better than others.

• It is noted in many of the above survey papers that techniques based on fixed thresh-
olds on sensor readings, though simple to implement and computationally inexpen-
sive, are very hard to generalize across different people and do not provide a good
trade-off between false positive and false negatives [11, 74].

• Many of these survey papers reveal the complete lack of a reference framework,
publicly available datasets and almost no access to real fall data to validate and
compare to other methods.

• Most of the above discussed survey papers review research on fall detection that
assume sufficient data for falls and or adequate prior knowledge and understanding
of falls. A fall is a rare event that can occur in diverse ways [39]; therefore, collecting

1A fall pattern is characterized by a sudden decrease in acceleration and upon impact with the ground
there is a sudden increase in the acceleration. This pattern is important to identify falls; however, different
types of falls may lead to different values of accelerations.
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sufficient fall data is very difficult. A long term experiment is required to glean real
falls; however, such an experiment may only result in very few samples for real falls
[175].

• Some of the review papers we discussed above acknowledge the rarity of real falls
and the difficulty in generalizing results obtained from artificial or simulated falls;
however, they did not review techniques that may be capable of identifying falls when
their training data is very limited or not present.

• Since most of the above discussed research papers assume sufficient falls collected
from laboratories, we could not get useful insights about setting up long term exper-
iments for collecting real falls data. By running long-term experiments, some data
for real falls may be collected. However, recruiting the right target participants is a
major challenge. Other challenges include ethics approvals and ensuring the safety
of the participants. Since the data from these experiments will still be highly imbal-
anced, machine learning techniques that can handle this type of skewed data (such
as cost-sensitive learning) needs to be studied and developed.

2.2 Taxonomy for Studying Fall Detection

Based on the inferences drawn from the recent review work on fall detection, we present a
taxonomy for the study of fall detection methods that depends on the availability of training
data for falls (see Figure 2.1). This taxonomy is independent of the type of sensors used to
capture human motions and specific feature engineering methods employed to tackle this
problem.

The taxonomy has two high level categories: (I) and (II). The category (I) of the
taxonomy shows the case when sufficient data for falls is available. In this category, due
to the presence of sufficient falls and normal ADL data, different machine learning and
heuristic based algorithms can be used such as threshold based, supervised classification
and one-class classifiers (trained on sufficient fall data). However, in a real world scenario,
this may not be the case as either we have too few fall data or none to begin with.
Sometimes we may have few fall data along with a lot of unlabelled data. In these highly
skewed data scenarios, heuristic and traditional supervised classification algorithms will
not work and other classification frameworks based on One-Class Classification (OCC),
outlier detection and cost-sensitive learning are needed; these techniques are mentioned
in category (II) of the taxonomy. The approaches in category (I) attempt to detect the
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actions of falling directly, whereas the approaches in category (II) instead try to detect
unusual events or abnormal activities in general (as a fall is an abnormal activity).

The techniques mentioned in category (I) that directly attempt to detect falls may use
domain knowledge about the falling event [39] (e.g. sudden change in acceleration or its
short duration) and use single/multiple threshold(s) to identify them. These methods also
extract sophisticated features from the sensor readings and use supervised machine learning
classifiers for identifying falls and normal activities. The techniques in category (II) that
aim to detect falls as unusual events or abnormal activities rely on indirect evidence on the
occurrence of falls [39]. This evidence may include prolonged inactivity, unusual locations,
sudden change from normal behaviour and unknown or unseen behaviours. However, in
these techniques the definition of “what is a normal behaviour?” needs to be defined
carefully as it can vary for different people, especially for different age groups. These
techniques only need to learn the normal behaviour; therefore, the inherent data imbalance
between normal activities and falls is not an issue because they do not need samples for falls
(or their different types) during training of the classifier. However, if the normal behaviour
is not properly learned, these systems can result in large amount of false alarms because any
slight variation from the normal behaviour would be classified as a fall. Finding an optimal
threshold that can minimize both false alarms and missed alarms in these techniques is
very challenging [199]. It is important to note that every abnormal behaviour or deviation
from the normal behaviour does not imply the occurrence of a fall incident. As a result
of these problems, such techniques require a lot of training data to effectively capture the
normal behaviour or ‘normal concept’ over a long duration.

The work presented in this thesis falls in the category (II)c, (II)d because we consider
the case with no training data for falls and adopt either an outlier detection or OCC
strategy (discussed in Chapter 3). For comparison purposes, we also show supervised fall
detection method as shown in category (I)a in Chapter 4. Our work also use (II)a for
imparting cost-sensitive classification and decision-theoretic reporting of fall; however we
do not have training data for falls (discussed in Chapter 5).

In the next sections, we review the literature based on the taxonomy for fall detection
described above. We will not further discuss many supervised methods for fall detection
and interested readers may find those references in the survey papers on fall detection
discussed in the previous section. In our literature review, we present algorithms that
work with different types of sensors, use a variety of machine learning algorithms, especially
those that are known to model temporal, sequential and time series data and may work
with a small amount of training data for falls or none at all. We also review prominent
research done for unusual event / abnormal activity detection that may be well adapted
for fall detection.
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Taxonomy for the study of fall detection methods.

(I) Sufficient data for falls

(a) If sufficient fall data is available, apply supervised machine learning
techniques to identify normal activities along with falls [74].

(b) If sufficient fall data is available, apply threshold based techniques to
detect falls from normal activities [15, 36].

(c) If sufficient fall data is available, apply OCC techniques to filter out
normal activities [206, 201].

(II) Insufficient data for falls

(a) If some fall data is available, apply cost sensitive classification
algorithms or over/under-sampling techniques to identify normal
activities along with falls [70, 175].

(b) If some fall data is available along with a lot of unlabelled data, apply
semi-supervised techniques [104, 51].

(c) If sufficient fall data is not available or no fall data is available, apply
outlier / anomaly / density based detection techniques to identify
‘unseen falls’ [88, 195].

(d) If sufficient fall data is not available or no fall data is available, apply
OCC techniques to identify ‘unseen falls’ [90].

Figure 2.1: Taxonomy for the study of fall detection methods.

2.3 Fall Detection

2.3.1 Sequential Classification

Several research works in fall detection are based on thresholding techniques [15, 36, 100,
29, 2, 99, 102, 100], wherein raw or processed sensor data is compared against a single
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threshold or multiple pre-defined thresholds to detect a fall (see Taxonomy (I)b in Figure
2.1). The problem with thresholding techniques for fall detection is that it is very difficult
to adapt thresholds to new or rare activities without prior knowledge.

The ADL performed by people follow certain natural regularities and temporal smooth-
ness [101], for example, people do not abruptly switch back and forth between walking and
driving a car. The recent history of activities can help in predicting the present nature of
activities. Lester et al. [101] show that using a sequence of posterior probabilities com-
puted through static classifiers, and training HMM on them can significantly improve the
performance and smoothness of the activity recognition system. In the past decade, there
has been considerable research carried out in the field of activity recognition using HMM
[101, 138, 95]. Most of his work is focused on modelling normal ADL using different types
of sensors (such as accelerometers, GPS, WLAN, video cameras etc) and employing su-
pervised learning for recognizing the activities. The data collected for detecting falls from
different types of sensors is generally sequential in nature and HMMs are very well-suited
for modelling sequential human motions with high accuracy [95]. These method based on
HMM can be either used in a supervised manner or with fixed thresholds to detect falls
(see Taxonomy (I)a and (I)b in Figure 2.1).

Thome et al. [182] present a Hierarchical HMM (HHMM) approach for fall detection
in video sequences. The HHMMs first layer has two states, an upright standing pose and
lying. They study the relationship between angles in the 3D world and their projection
onto the image plane and derive an error angle introduced by the image formation process
for a standing posture. Based on this information, they differentiate other poses as ‘non-
standing’ and thus falls can be distinguished from other motions. A two-layer HMM
approach, SensFall [110], is used to identify falls from other normal activities. In the first
layer, the HMM classifies an unknown activity as normal vertical activity or “other”, while
in the second stage the “other” activity is classified as either normal horizontal activity or
as a fall. Hung et al. [71] present a two phase approach that uses an HMM and a SVM
classifier in a home care sensory system for abnormal activity detection. The HMM is used
to extract significant features from normal activity traces captured through RFID sensors.
The features contain log-likelihood and time-stamp values, where a higher value of log-
likelihood indicates normal activity and a lower value is abnormal. These feature vectors
are then used to train a SVM classifier. Tokumitsu et al. [183] present an adaptive sensor
network for home intrusion detection by human activity profiling. They use multiple HMMs
for every subject in order to improve the detection accuracy and consider the fact that a
single person can have multiple patterns for the same activity. The data is collected using
infra-red sensors. A new sequence of activity is fed to all the HMMs and likelihoods are
computed. If all the likelihoods calculated from corresponding HMMs are not greater than
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pre-determined thresholds, then an anomaly is identified. They also present an empirical
comparison of false-positive and miss-alarm rates, showing that both of them work against
each other.

Tong et al. [184] use the time series from human fall sequences collected using a tri-
axial accelerometer worn on upper body. An HMM is trained on events just before the
collision for early fall prediction. They also compute two thresholds for fall prediction
and detection to tune the accuracy. Shi et al. [168] use standard HMMs to model sev-
eral normal activities including falls and perform classification with high accuracy from
Micro-Electro-Mechanical System (MEMS) inertial sensors. Florentino-Liaño et al. [54]
present a hierarchical HMM based method to detect human activities including falls using
a tri-axial accelerometer. Their method models both inter-activity and intra-activity dy-
namics and raw accelerometer signals were directly used to train the HMMs. No features
were extracted in their method from the accelerometer signals; therefore the technique is
sensitive to placement of the sensor on the subject’s body. Florentino-Liaño et al. [55]
extend this method by proposing a sensor position invariant measure on the raw accelerom-
eter signal with the assumption that the sensor is placed in any fixed location within a
region approximately bounded by a belt at the waist and a trouser pocket. The pro-
posed method improved the precision and recall on falling and other normal activities.
Cheng et al. [33] present a method to detect falls using surface electromyography and
accelerometer signals. Histogram entropy is used to identify static and dynamic active
segments. The later segments are further classified as dynamic gait activities and dynamic
transition activities using angles calculated from the accelerometer. Finally, the dynamic
transition activities were distinguished into normal dynamic activities and falls by using
a threshold on accelerometer amplitude and dynamic gait activities were classified based
on electromyography and accelerometer signals by using HMMs. Cheng et al. [32] present
a fall detection algorithm based on pattern recognition and human posture analysis. The
data is collected through a tri-axial accelerometer embedded in the smartphone and thirty
temporal features are computed. The HMM is employed to filter out noisy character data
and to perform dimensionality reduction. One-Class Support Vector Machine (OSVM) is
applied to reduce false positives, followed by a posture analysis to counteract the missed
alarms until a desired accuracy is achieved.

2.3.2 One-Class Classification

The techniques based on OCC attempt to build classification models on data from normal
activities only, because the data for falls activity is either absent, or hard to collect (see
Taxonomy (II)d in Figure 2.1). Alternatively, if sufficient falls are available, one-class
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classifiers can be built on them to reject normal activities; however, in realistic settings
such a strategy is highly unlikely because the availability of sufficient real fall data is
difficult (see Taxonomy (I)c in Figure 2.1).

Zhang et al. [206] train OSVM from positive samples (falls) and outliers from non-fall
ADL and show that falls can be detected effectively. Yu et al. [201] propose to train
Fuzzy OSVM on fall activity captured using video cameras and to tune parameters using
fall and some non-fall activities. Their method assigns fuzzy membership to different
training samples to reflect their importance during classification and is shown to perform
better than OSVM. Yu et al. [200] introduce a video-based fall detection system for
elderly people. They extract several video features and apply OCC techniques to determine
whether the new instances lie in the ‘fall region’ or outside it to distinguish a fall from
other activities such as walking, sitting, standing, crouching or lying. They test four OCC
methods; k-center, kth nearest neighbour, OSVM and single class minimax probability
machine (SCMPM) and find that SCMPM achieves the overall best performance among
them. Han et al. [61] propose to use wireless signal propagation by employing the time
variability and special diversity of Channel State Information as the indicator of human
activities. Firstly a local outlier factor algorithm [18] is used to filter out dynamic activities
such as walking, sitting, standing up and falling and then an OSVM is trained on fall
activities to distinguish it from other normal activities.

Zhou et al.[209] present a method to detect falls using transitions between the activities
as a cue to model falls. They train supervised classification methods using normal activities,
then extract transitions among these activities and use them to train an OSVM and show
that it performs better than an OSVM trained with only normal activities. Yu et al. [202]
present an online OSVM learning algorithm to detect falls captured through a single video
source. They extract three types of features: ellipse, shape-structure and position features
to build the normal model by an online OSVM which can be updated to new emerging
postures. Additional rules were added to the system to report fewer false alarms and
to improve fall detection performance. Popescu [146] presents a fall detection technique
that uses acoustic signals of normal activities for training and detects fall sounds from it.
They train OSVM, one-class nearest neighbour approach (OCNN) and One-class GMM
(that uses a threshold) to train models on normal acoustic signals and find that OSVM
performs the best. However, it is outperformed by its supervised counterpart. Khan et al.
[87] propose an unsupervised acoustic fall detection system with interference suppression
that makes use of the features extracted from the normal sound samples and construct
an OSVM model to distinguish falls from non-falls. They show that in comparison to
Popescu [146], their interference suppression technique makes a fall detection system less
sensitive to interferences by using only two microphones. Medrano et al. [124] propose
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to identify falls using a smartphone as a novelty from the normal activities and find that
OCNN performs better than OSVM but is outperformed by supervised SVM.

Taghvei and Kosuge [178] propose a method for a real-time visual state classification
of a user with a walking support system. They extract visual features using principal
component analysis and use an HMM for identifying real-time falls and state-recognition.
In their experiment, an HMM is trained on walking activity and a threshold is separately
calculated using a safe distance from the minimum probability distribution value of normal
walking, which is adjusted with a constant. If the log-likelihood of a new activity is more
than the calculated threshold, then it is identified as either a fall, sit or stand. A multi-class
step is performed on top of the one-class classifier to identify one of the states of the HMM
that corresponds to different activities including falls. A major drawback of this method
is that the threshold is chosen only based on one activity (i.e. walking), but sitting and
standing are also normal activities. Taghvaei et al. [177] present another fall detection
method from a walker that uses features obtained from a depth camera and uses one-
class GMM to identify non-walking states and a continuous HMM for identifying different
types of falls. The threshold for one-class GMM that represents normal activity is set
experimentally. However, it is difficult to generalize this type of threshold across different
people and there is no automatic way to tune it. Moreover, the threshold for a one-class
GMM is only obtained using walking activity and it classifies sitting and falls as outlier
activities. Rougier et al. [157] present a fall detection method using video feeds by tracking
the person’s silhouette and performing shape analysis. They use GMM to distinguish falls
from the normal data by manually setting a threshold on the log-likelihood.

2.3.3 Semi-Supervised and Sampling Techniques

In some cases, there may be few real falls available during the training phase (see Taxonomy
(II)a and (II)b in Figure 2.1). To handle such a case, Stone and Skubic [175] present a
two-stage fall detection system. In the first stage, a person’s vertical state is characterized
in individual depth image frames followed by an ensemble of decision trees to compute a
confidence on the occurrence of a fall. The data they collected has a fall ratio w.r.t. normal
activities of 1 : 400. They under-sample the normal activities s.t. the ratio is reduced to
1 : 40 and create a decision tree ensemble. The activities studied in their analysis are
standing, sitting, and lying down positions, near (within 4 m) versus far fall locations, and
occluded versus not occluded fallers and report better results in comparison to the state-
of-the-art methods. Debard et al. [39] use a weighted SVM to handle the imbalance in the
dataset obtained for real world falls and normal activities from camera. The weights were
computed using cross-validation and a grid search maximizing the area under the curve
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of a Receiver Operating Characteristic (ROC) curve. Liu et al. [104] present a vision
based semi-supervised learning mechanism for detecting falls and other ADL to overcome
the exhaustive labelling of human activities. They use spatial field constraint energy to
assist SVM-based activity decision with a Bayesian inference model, followed by a semi-
supervised step to retrain the classifier by automatically annotating the activities with the
highest confidence. However, their method is sensitive to changes in environment, and
needs to be retrained in new situations. Fahmi et al. [51] present a semi-supervised fall
detection method using smartphones by first training a supervised algorithm using decision
trees, then using fall profiles to develop a semi-supervised algorithm based on multiple
thresholds. Medrano et al. [123] present a nearest neighbour based semi-supervised fall
detection method for smartphones that can be personalized and updated easily as a new
user records new ADL and the system is retrained on the fly. Makantasis et al. [113]
present a 3D semi-supervised fall detection system that uses a monocular camera and uses
an expert to refine an initially created small subset of labelled activity samples.

2.4 Fall as an Abnormal Activity

Due to the lack of availability of data for falls and the knowledge and understanding of
what those falls might be, some researchers adopt an outlier detection approach. In these
approaches, deviations from normal behaviour are flagged as an abnormal activity (see
Taxonomy (II)c in Figure 2.1). Falling is one of the abnormal activities; therefore, such
techniques can be adapted for fall detection. However, the concept of normal activities
must be clearly defined because every abnormal activity may not be a fall. We review
some of the abnormal activity recognition techniques that can be adapted for detecting
falls.

2.4.1 Vision based

Several approaches have been proposed for abnormal activity recognition using the com-
puter vision sensors. Xiang and Gong [195] propose a Dynamic Bayesian Network approach
to model each normal video pattern and use a threshold to detect abnormal activity. This
approach is simple; however, choosing a threshold remains challenging. Duong et al. [44]
introduce the Switching Hidden Semi-Markov Model (SHSMM) for modelling normal ac-
tivities and identifying abnormal activities using multiple camera tracking. However, they
only focus on a specific type of abnormality that corresponds to spending too much or too
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little time at a location and can be of interest in an elder care application. In a later exten-
sion work, Duong et al. [45] model the duration of activities using a Coxian distribution
[132] and consider a hierarchy of activities to propose a SHSMM and show its application
to activity segmentation and abnormality detection in smart environments. Zhang et al.
[204] propose a semi-supervised adapted HMM framework for audio-visual data streams
which comprises of supervised learning of normal data and unsupervised learning of unusual
events using Bayesian adaptation. Their method has an iterative structure, where each
iteration corresponds to a new detected unusual event. However, it is not clear from their
work how many iterations are needed to terminate the process of outlier detection. Their
model assumes that the normal activities data contains unusual events and guarantees one
outlier per iteration. In cases where the normal activities data contains no unusual events,
their method would still finds an outlier per iteration, which may be undesirable. Jiang et
al. [80] mention that the HMM trained on small number of samples can overfit and propose
a dynamic hierarchical clustering method based on a multi-sample based similarity mea-
sure. Their method starts with clustering the data in a few groups; the groups containing
large numbers of samples are treated as normal patterns and HMMs are learned for each of
them. This is followed by an iterative procedure of merging similar clusters (re-classifying)
and re-training the remaining HMMs until no more merging occurs. An abnormal event is
identified if its maximum log-likelihood from all normal events is below a threshold. They
show their results on real surveillance video and point out that following the proposed
method, the initial training and clustering errors due to overfitting will be sequentially
corrected in later steps. However, the iterative re-classifying and re-training procedure can
be computationally expensive as the size of the data grows. Pruteanu-Malinici and Carin
[149] propose infinite HMM modelling to train normal video sequences; unusual events
are detected if a low likelihood is observed. The infinite HMM modelling retains the full
posterior density function as well as the underlying HMM states.

Zhang et al. [207] propose an abnormal event detection algorithm from video sequences
using a three-phased approach. First, they build a set of weak classifiers using Hierarchical
Dirichlet Process Hidden Markov Model (HDP-HMM) and then use ensemble learning to
identify abnormal events. Finally, they extract abnormal events from the normal ones in an
unsupervised manner to reduce the false positive rates. Hu et al. [69] propose a refinement
of the HDP-HMM method by incorporating Fisher Kernel into OSVM instead of ensemble
learning and using sensor data instead of video data that can be discrete or continuous.
The advantage of their method relies on using the HDP-HMM models that can decide on
the appropriate number of states of the underlying HMM automatically. Antonakaki et al.
[8] combine the use of HMM and OSVM to detect abnormal human behaviour using mul-
tiple cameras. They treat short term behaviour classification and trajectory classification

30



as separate classification problems by providing different set of features to both HMM and
OSVM. Two feature vectors are computed per instance to capture short term behaviour
and trajectory information and are fed to OSVM and HMM. Utilizing these two views of
the data, they fuse the output of both the classifiers (logical OR) to identify abnormal
activities. Matilainen et al. [119] present an unusual activity recognition method in noisy
environments that uses a body part segmentation (BPS) algorithm [13], which gives an
estimation of similarity between the current pose to the poses in the training data. The
normal activities they considered are walking and sitting down and everything else is con-
sidered unusual activity. The BPS algorithm uses an HMM and a GMM which are trained
through synthetic data created by motion capture. They use three sequences containing
walking and falling over as the training set to find a statistically optimal threshold for
unusual poses. They also propose to use a majority voting over large number of consecu-
tive decisions for the actions that spans over a period of time and to mitigate the effect of
single frames with incorrect decisions that helps in reducing false positive rates. However,
the approach is based on carefully chosen optimal thresholds and training on a minimalist
set of synthetic normal activities, which render this approach not very useful2. Mahajan
et al. [112] propose an activity recognition framework based on multi-layered finite state
machines (FSM) built on top of a low level image processing module for spatio-temporal
detection and limited object identification. The FSM learns the model for normal activi-
ties over a period of time in an unsupervised manner and can identify deviant activities as
abnormal. Parisi and Wermter [141] propose a hierarchical Self Organizing Maps (SOM)
based architecture for the detection of novel human behaviour in indoor environments by
learning normal activities in an unsupervised manner using SOM and report novel be-
haviour as abnormal. To handle tracking errors, a first SOM is used to remove outliers
from the training motion vectors. The pre-processed motion vectors are encoded by three
types of descriptors – trajectories, body features and directions. A separate SOM is then
trained for each type of descriptor. If a new observation deviates from the normal be-
haviour it is flagged as abnormal. Two threshold are empirically defined to remove outliers
from the first SOM and detect abnormal behaviour from the other three SOMs.

2.4.2 Sensor Based

Many recent research papers focus on using sensor networks to detect abnormal activities.
Yin et al. [199] propose a two-stage abnormal activity detection method in which an
OSVM is first trained on normal activities and the abnormal activities are filtered out

2A detailed review on several other types of video based abnormality detection methods is provided by
Popoola and Wang [147]
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and passed on to a kernel nonlinear regression routine to derive abnormal activity models
from a general normal activity model in an unsupervised manner. The method iteratively
detects different types of abnormal activities based on a threshold. They claim that this
method provides a good trade-off between false alarms and abnormal activity detection
without collecting and labelling the abnormal data. The data is collected by using wearable
sensors attached to a user and abnormal instances were collected by simulating ‘falls’ and
‘slipping’ in different positions. Quinn et al. [150] present a general framework of Switched
Linear Dynamical Systems (SLDS) for condition monitoring of a premature baby receiving
intensive care. They introduce the ‘X-factor’ to deal with unmodelled variation from the
normal events that may not have been seen previously. The general principle to identify
an unusual event is to vary the covariance of the model of normal events to determine the
interval with the highest likelihood where events can be classified as ‘not normal’. To model
dynamic detection of abnormal events, they add a new factor to the existing SLDS model by
inflating the system noise covariance of the normal dynamics. The sensor data is collected
using various probes connected to each baby. The computation of the factor related to
increasing the covariance remains challenging and is critical in this application. Cook et al.
[35] present a method for activity discovery (AD) for smart-homes to identify behavioural
patterns that do no belong to the pre-defined classes. Their algorithm scans the data and
find the patterns that may represent similar activities and their variations. The algorithm
then reports the best patterns that were found and the sensor event data can be compressed
using the best pattern. The process is repeated several times until no new patterns can be
found that compress the data. The search is carried out using Minimum Description Length
principle [155] and final set of discovered patterns are clustered using quality threshold
clustering method [67] in which the final number of clusters are not need to be specified
apriori. This procedure can generate ‘Other’ or unknown activity cluster; however, it may
contain some already discovered activities. The AD algorithm is performed on the ‘Other’
cluster and already discovered activities can be separated out from it, thereby reducing the
‘Other’ cluster size and the overall recognition of the system reportedly improved. Luca et
al. [107] present a method for detecting rare hypermotor seizures in children by attaching
accelerometer on the body. They use all the observed data to learn ‘normal behaviour’
and use extreme value theory to detect deviations from this model. Micucci et al. [125]
evaluate fall detection methods that do not require fall data during training on different
datasets collected using smartphone accelerometers. Their results show that in most of
the cases, one-class K-nearest neighbour approach performs better or equivalent to the
supervised SVM and KNN classification approaches that require data for both the normal
and fall activities. The main contribution of this study is the finding that to design an
effective fall detection method, prior understanding of falls patterns is not necessary.
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2.5 Cost Sensitive Classification and Decision Theory

Learning from imbalanced data pertains to situations where data from one class is available
in abundance, but the data from the other class is rare, difficult to collect or not readily
available. Fall detection is a good example for imbalanced learning because the data
for normal activities are easy to collect and sufficiently available in comparison to falls.
Traditional supervised algorithms expect balanced datasets with equal misclassification
costs for different classes. However, these algorithms fail to represent characteristics of the
data and provide unfavourable accuracies when presented with imbalanced datasets [59],
and their predictions may be dominated by the majority class [91]. The following are the
general strategies adopted to handle learning from imbalanced datasets [59]:

(i) Modify the training data distribution to correspond with the cost distribution of the
classes by performing over-sampling or under-sampling.

(ii) Applying Cost-sensitive classification techniques,

(iii) Applying Kernel based methods, Active Learning, OCC and others.

The main idea of cost-sensitive classification is to treat different costs in a classification
problem differently. This can be done by either presenting a different cost matrix to a cost-
insensitive classifier or by changing the inner workings of a classification algorithm such
that it uses a cost function to build a cost-sensitive classifier. Let us take the case of fall
detection, where the dataset is mostly imbalanced in favour of normal activities. Identifying
a rare activity (such as a fall) is important from the health and safety perspective, but the
cost of a false alarm and a missed alarms should be very different and must not be treated
equally. Therefore, when some data for falls is present for analysis along with abundant
data for normal activities, techniques based on cost-sensitive classification can be used for
fall detection (see Taxonomy (II)a in Figure 2.1). However, the incorporation of cost of
classification while reporting or not-reporting a fall is absent in most of the studies on fall
detection. It is important to note that the cost of errors in this problem should be domain-
specific and not vary across different datasets. However, such costs are mostly unknown
and hard to compute. Researchers use the following strategies to deal with cost-sensitive
learning problems [91]:

(i) Under/Over sampling of the majority/minority class to convert the original cost-
sensitive problem into a traditional one (i.e., 0-1 loss)[27],
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(ii) Changing the classification threshold [91, 167], and

(iii) Using an ensemble of classifiers for estimating probabilities from different cost-sensitive
classifiers and combine them for taking a decision [192, 118].

The objective of cost-sensitive learning is to minimize the overall cost of an action (for
e.g. to report or not-report a fall) on the training data using a theoretical Bayes conditional
risk. This problem can also be stated from a decision-theoretic perspective because costs
and utilities are related concepts. Decision theory pertains to rational decision making
by agents and can be employed to compute the expected cost of different actions in a
classification problem, such as to report a fall or not. To compute the minimum expected
cost, a Bayesian optimal probability threshold can be computed based on a given cost
matrix. However, Elkan [48] recommends empirically computing a threshold to improve
the accuracy of decision making rather than re-balancing the data to use a threshold of 0.5.
Thai-Nghe et al. [181] present a method for cost-sensitive learning for imbalanced data
that treats the cost-ratio of different errors as a hyper-parameter and optimize it locally
to train the final models. Maloof [114] present a technique to deal with skewed datasets
and unequal but unknown costs of error by performing ROC analysis to find the optimal
operating threshold. However, the selection of an appropriate decision threshold is not
automatic and it is unclear if this technique will work in the case of OCC, when the data
for the negative class is absent. Huang et al. [70] perform cost-sensitive analysis for fall
detection using Bayesian minimum risk and the Neyman-Pearson method. They vary the
ratio of the cost of a missed alarm to a false alarm to find an optimal region of operation
using the ROC curve. On the contrary, this ratio is generally fixed and must not depend
on the dataset. The technique presented in the paper to estimate cost ratio can overfit the
dataset without providing any intuitive interpretation about it.

Traditional approaches for cost-sensitive learning for imbalanced datasets may not be
directly applicable in the OCC problems. The reason is that in the OCC case, the data
for one of the classes is absent during training; therefore, the probability estimates for
the unseen or outlier class is hard to compute and estimating the costs of errors in such
cases are even harder. Luo et al. [109] propose a cost-sensitive OSVM algorithm called
Frequency based Support Vector Data Description (F-SVDD) and Write-Related SVDD
(WR-SVDD) for intrusion detection problems. The SVDD method gives equal cost to clas-
sification errors, whereas F-SVDD gives higher cost to frequent short sequences occurring
during system calls and WR-SVDD gives different costs to different system calls. Their
experiments suggest that giving different costs to system users (than to processes) result
in higher performance. Yaniv and Nisenson [47] consider OCC from a game-theoretic per-
spective as a game between the learner and an adversary, in which the target distribution
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is known to the learner and its goal is to construct a classifier that can minimize false
negative error for a given false positive error. They mention that low-density rejection is
worst-case optimal if the learner uses hard decision strategies. This formulation is more
relevant for the intrusion detection problem, where it is necessary to precisely quantify
what an adversary can do or knows about the target distribution. If such an adversary
exists, who knows all the parameters of the game including the learner’s strategy, it can
completely demolish the learner that uses hard strategies. We argue that this framework
is not suitable for fall detection problems because such an adversary does not exist in this
problem. A fall detection problem is more about recognizing falls and taking the right
decisions; therefore, a decision-theoretic framework is more apt to handle it.

There is very sparse literature on decision-theoretic methods for identification of outliers
or rare events/activities. Decision-theoretic approaches have been applied in some tasks,
including detecting anomalies in internet paths [52], intrusion detection [115] and fault
detection in wireless sensor networks [129]. Fida et al. [52] propose an algorithm to detect
anomalies on an end-to-end internet path based on the likelihood ratio. The normal internet
responses are modelled using a Gaussian distribution, whereas the anomalous activities
are modelled with a different mean than normal. Based on user defined true positive and
false positive rates they define thresholds to detect both hypotheses. Nandi et al. [129]
define an overall risk function for fault detection on sensor networks and seek a Bayes test
which minimizes the overall risk function in the critical region. Decisions are then made
purely on the optimal Bayes test. Torgo and Lopes [185] present a utility based fraud
detection method that produces a ranking that is ordered by decreasing expected utility of
inspecting the candidate cases. Their general framework requires additional information
such as historical data with information on past inspection activities, set of candidate cases
for inspection and utility function to use. However, this framework may not be applicable
to scenarios where outliers are not observed in the past.

2.6 Cost of Falls

Computing the costs incurred during and after a fall requires a long term study and it can
vary across different countries, healthcare systems and the target age group. There are
several research studies that attempt to calculate the cost of falls and false alarms.

Heinrich et al. [66] review 32 studies on falls across different countries and found that
the cost per fall ranged from $1, 059 to $10, 913. Newton et al. [133] present a study
to quantify the immediate costs to the Ambulance Services (Newcastle, UK) of attending
to fallers and found that 11% of them required assistance only and not hospitalization.
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However, there is the cost of the ambulance and the time spent in assistance, which comes
out to be £145.83 (≈ $231) per fall. This amount provides a very simple estimate on the
cost of reporting a non-fall as a fall. However, there are many hidden costs that are not
taken into account by this estimate. For example, an excess of false alarms may lead to a
higher rate of technology rejection. This, in turn, would lead to a higher number of people
living without fall detection systems, which eventually leads to a higher rate of unreported
falls – that is highly undesirable and costly.

Ikefuji et al. [76] articulate that “Catastrophic risks are important” but “The price to
reduce catastrophic risk is finite”. Not-reporting a fall is catastrophic in the sense that it
could lead to the loss of life of an individual. However, we could not find research on finding
the cost of not-reporting a fall, primarily this is not an obvious question to researchers and
its value is hard to estimate. The cost of unreported catastrophic events is difficult to
model mostly due to unreliable or lack of data [17]; however, if such cost is ignored it can
have adverse effects. Fred [17] suggests that epidemic data can be unreliable as there were
many asymptotic or mild unreported cases in the H1N1 influenza pandemic of 2009. Xue
et al. [197] use Susceptible-Exposed-Infected-Recovered model to estimate cost-benefit of
school closure during influenza pandemic. Xue et al. [196] use quasi-Poisson regression
model to estimate the impact of missing costs of unreported complications and sick leave
arising from influenza. The data was available from health care services and sick leave
certification and they estimated direct and indirect costs associated with the disease.

2.7 Proposed Improvements

Based on the taxonomy of the study of fall detection presented in Section 2.2, we can
broadly divide the techniques to handle fall detection into those that assume sufficient
data for falls and those with very few or no training data for falls. The former approaches
rely on sufficient falls for training the supervised classifiers, which is hard to obtain in
practice and is normally collected in a laboratory under non-naturalistic settings. This
assumption has the disadvantage that the collected falls may not be a true representative
of actual falls, and learning with a few contrived fall samples may not produce generalized
classifiers that work for all people. The latter approaches assume a more realistic setting,
where we may have insufficient or no training data for falls. These techniques attempt to
learn a ‘normal concept’ from the labelled data, apply outlier detection techniques, and find
a threshold to detect unseen falls. However, a major challenge in such techniques is to learn
the ‘normal concept’ correctly and decide on a threshold that gives a good compromise of
false-positives and false-negatives. The techniques that use OSVM suffer from choice of
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appropriate kernel, kernel parameters and the parameter to set the soft margin. If the size
of training data is large, then the optimization routine in OSVM can take a long time for
convergence, especially if some data objects are exactly on top of each other and compete
to become support vectors.

The traditional techniques based on HMM choose the maximum of the negative of
likelihood on the training data as a threshold to detect falls [88]. However, the data
captured through sensors for fall detection contain artifacts due to spurious sensor readings,
hardware noise or labelling errors. A threshold chosen on such data can be detrimental to
the overall performance of a fall detection classifier and may result in accepting unseen falls
as member of the normal class. Several researchers remove artifacts from the sensor data to
improve the overall performance of fall detection classifiers [141, 32, 7]. The rejected outlier
data is generally discarded and not used for further analysis. We hypothesize that such
outlier data can help in setting the boundaries of the normal concept in a case when a fall
is not observed before. Using these ideas, in Chapter 3, we present three new approaches
for fall detection that use the traditional HMMs to learn the normal concept and do not
need fall data during the training time. We then present a X-Factor approach to inflate
the covariances of the learned model for normal activities and infer a model for falls. The
hidden states of these three HMMs either model poses of a particular normal activity,
poses for general normal activities or transition between each normal activity. To find an
automatic threshold with a good balance for fall and normal activity detection, a novel
cross-validation method is presented that rejects few outliers from the normal activities
data to help estimating parameters of the X-Factor HMM models.

In some situations few falls may be present or data from different types of falls may
be available. In Chapter 4, we move forward to demonstrate the relationship between
increasing the number of training data for falls and the performance of several supervised
classifiers. We also perform experiments to understand the effect of knowing a type of fall
in identifying other types of falls in a supervised classification setting.

The methods that use threshold optimization for fall detection use the threshold as a
slider between raising false alarms or risking missed alarms [183]. Choosing the threshold
too low or high results in accepting all fall events as normal or rejecting most of the
normal activities as falls. However, as stated earlier, the costs of false alarms and missed
alarms are not the same for a fall detection application. Therefore, a decision-theoretic
model is required that can minimize/maximize a cost/utility function instead of setting a
threshold to take the rational decision to report or not-report a fall. The lack of methods
to model a rare class and lack of understanding of the utilities/costs imposes a challenge to
design decision-theoretic approaches for rare class classification. In Chapter 5 we present a
decision-theoretic framework to classify unseen falls that addresses these issues in detail.
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Chapter 3

Classification of Unseen Falls

A lot of the current research on activity recognition is centred around the identification of
the normal ADL [187, 30]. Identification of normal ADL, for e.g. walking, sleeping, hand
washing, making breakfast etc., is important to understand a person’s behaviour, goals and
actions [3] and forms the core of assistive technologies [105]. However, in certain situations,
a more challenging, useful and interesting research problem is to identify cases when an
abnormal activity occurs, as it can have direct implications on the health and safety of
an individual. An important abnormal activity is the occurrence of a fall. However,
falls occur rarely, infrequently and unexpectedly w.r.t. the other normal ADLs and this
leads to either little or no training data for them [74] (more details in Chapters 1 and
2). This imbalance in the training data for falls and normal activities makes it difficult to
develop generalizable supervised classifiers to identify falls. A typical supervised activity
recognition system may misclassify ‘fall’ as one of the already existing normal activities, as
‘fall’ may not be included in the classifier training set. An alternative strategy is to build
fall detection specific classifiers [36] that assume abundant training data for falls, which
is hard to obtain in practice. Another challenge is the data collection for falls, as it may
require a person to actually undergo falling which may be harmful, ethically questionable,
and cumbersome and the falling incidences collected in controlled laboratory settings may
not be the true representative of falls in naturalistic settings [82].

One of the research question we address in this thesis is: Can we recognise falls by ob-
serving only normal ADL with no training data for falls in a person independent manner?.
We use Hidden Markov Models (HMMs) for the present task as they are very well-suited
for sequential data and can model human motions with high accuracy [95] (see further
discussion in Sections 3.1 and 3.2). As discussed in Chapter 2, there are two ways to de-
tect falls using HMMs (see Taxonomy shown in Figure 2.1): (a) train an HMM involving
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normal activities and falls and perform supervised classification, (b) train an HMM for
normal activities and use a threshold to identify a fall as an outlier. The problem with the
former approach is that sufficient fall data are required to train a model for falls, which
is very difficult to obtain in the real world. In this chapter, we use an outlier detection
approach to identify falls and present three X-Factor HMM based sequence classification
approaches for detecting short-term fall events. The first and second method models in-
dividual normal activities by separate HMMs or all normal activities together by a single
HMM, by explicitly modelling the poses of a movement by each HMM state. An alterna-
tive HMM is constructed whose model parameters are the averages of the normal activity
models, while the averaged covariance matrix is artificially “inflated” to model unseen
falls. In the third method, an HMM is trained to model the transitions between normal
activities, where each hidden state represents a normal activity, and adds a single hidden
state (for unseen falls) with an inflated covariance based on the average of covariances of
all the other states. The inflation parameters of the proposed approaches are estimated
using a novel cross-validation approach in which the outliers in the normal data are used
as proxies for unseen falls. We present another method that leverages these outliers to
train a separate HMM as a proxy model to detect falls. We utilize this idea of rejecting
outliers from normal data to optimize the thresholds of the two traditional HMM based
approaches that otherwise would use the maximum of negative of log-likelihood as a fixed
threshold. In this chapter, we also study the effect of changing the number of states and
feature selection on the proposed HMM methods for fall detection.

We now present a brief introduction to HMM and its motivation to use it in our problem.
Then we present the proposed approaches and a novel cross-validation method to optimize
the parameters of the proposed approaches. We show the results on three real-world
datasets that collect human activities in semi-naturalistic settings and compare with the
traditional HMM based methods.

3.1 Brief Introduction to HMM

The HMM is a powerful stochastic tool for modelling generative sequences that can be
characterized by an underlying process generating an observable sequence. Formally, an
HMM consists of the following components [152]:

• N – the number of hidden states in the HMM. The hidden states can be connected
in several ways, for example in left-to-right manner or fully interconnected (ergodic).
the set of states can be denoted as S = {S1, S2, . . . , SN} and the state at time t as
qt.
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• M – The number of distinct observation symbols per state that corresponds to the
physical output of the system being modelled. The symbols can be denoted as
V = {v1, v2, . . . , vM}. When the observation is continuous, M = ∞, and can be
approximated using Gaussian or mixture of Gaussian with mean and covariance cor-
responding to each hidden state as the underlying parameters.

• A – The state transition probability distribution A = aij, where aij represents the
probability of state j following state i and is expressed as:

aij = P [qt+1 = Sj|qt = Si] 1 ≤ i, j ≤ N (3.1)

The coefficients of state transition have the following properties:

aij ≥ 0,
N∑
j=1

aij = 1

The state transition matrix A is independent of time. For the ergodic design where
any state can reach any other state aij > 0 for all i and j, whereas for other topologies
one or more values will have aij = 0.

• B – The observation symbol probability distribution in j, B = {bj(k)}, where

bj(k) = P [vk at t|qt = Sj] 1 ≤ j ≤ N, 1 ≤ k ≤M (3.2)

• π – The initial state distribution π = {πi}, where

πi = P [q1 = Si] 1 ≤ i ≤ N (3.3)

The above models makes two assumptions,

1. The model follows a Markovian assumption, which means that the current state at
time t is independent of all states t− 2, . . . , 1 given the state at t− 1, which can also
be understood as the memory of the model.

2. The model follows an independence assumption that means that the output obser-
vation at time t is independent of all the previous observations and states given the
current state.
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The generative model, HMM, discussed above can generate an observed sequence
O = O1O2 . . . OT , given appropriate values of N,M,A,B and π as follows (where ev-
ery observation of Oi is one of the symbols from V and T is the number of observations in
the sequence) [152]:

1. According to initial state distribution π, choose an initial state q1 = S1

2. set counter t = 1

3. Choose Ot = vk according to the symbol probability distribution in state Si i.e. bj(k)

4. Transit to a new state, qt+1 = Sj, according to the state transition probability dis-
tribution for Si, i.e. aij

5. Increment the counter t, if t < T then go to step 3, or else terminate the procedure

This procedure can be used both as a generator of observations or as a model for how
given observation sequences are generated by an HMM.

To represent the complete set of parameters of the model, the HMMs are compactly
represented as

λ = (A,B, π) (3.4)

Rabiner [152] mentions that for the HMM discussed above to be useful in real-world
applications, there are three fundamental problems that needs to be solved:

1. Given the model λ = (A,B, π) and observation sequence O = O1O2 . . . OT , how
can the likelihood of observed sequence, given that model i.e. P (O|λ), be efficiently
computed?

2. Given the model λ = (A,B, π) and observation sequence O = O1O2 . . . OT , how can
an optimal state sequence for the underlying Markovian process be chosen? The idea
is to choose the best state sequence Q = q1q2 . . . qT that best explains the observations
and can uncover the hidden parts of the HMM.

3. Given an observation sequence O = O1O2 . . . OT , N and M , how can we find the
model parameters, λ = (A,B, π), that maximizes the probability of observations i.e.
P (O|λ)? This step can also be viewed as training the model to best fit the observed
data.
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Rabiner [152] suggested the following solutions to the above mentioned problems (the
advanced mathematical details are omitted for brevity).

1. The computation of P (O|λ) using brute force requires 2T ×NT calculations, which
can become intractable for moderate choices ofN and T , therefore a forward-backward
method is suggested. Consider a forward variable α(i) defined as:

α(i) = P (O1O2 . . . OT , qt = Si|λ) (3.5)

The variable α(i) is the probability of the partial observation sequence O up to time
t, where the underlying Markov process is in state Si at time t and it can be computed
recursively in N2T multiplication steps.

2. Problem 2 is difficult to solve because there can be several interpretations of ‘optimal’
state sequence associated with the given observation sequence. Consider defining a
backward-variable β(i) as

β(i) = P (Ot+1Ot+2 . . . OT |qT = Si, λ) (3.6)

which can be computed recursively. This is analogous to the α(i)-pass discussed
above, except that it starts at the end and works back toward the beginning. Next
define a variable γt(i) as

γt(i) = P (qt = Si|O, λ) (3.7)

which is the probability in state Si at time t, given the observation sequence O and
the model λ. The equation 3.7 can also be expressed in terms of the forward and
backward variables i.e.

γt(i) =
αt(i)βt(i)

P (O|λ)
(3.8)

From the definition of γt(i) it follows that the most likely state at time t is the state
Si for which γt(i) is maximum, where the maximum is taken over the index i.

3. Given any finite observance sequence as training data, there is no efficient optimal
way of estimating model parameters. However, the model λ = (A,B, π) can be
chosen such that P (O|λ) is locally optimized using Baum-Welch (BW) or a gradient
descent method. Consider the variable ξt(i, j) as the probability of being in state Si,
at time t and Sj at time t+ 1, given the model and observation sequence, defined as:

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (3.9)
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ξt(i, j) can also be written in the form of forward-backward variables as:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(3.10)

and ξt(i, j) and γt(i) are related by

γt(i) =
N∑
i=1

ξt(i, j) (3.11)

Using ξt(i, j) and γt(i), the model parameters, πi, aij and bj(k) can be estimated in
an iterative manner.

The solutions to the three problems of HMM requires computations that involve product
of probabilities, which can result in underflow as t increases. To handle this situation,
a scaling procedure is applied that computes the logP (O|λ) instead of P (O|λ) and the
parameters of the model can be estimated easily.

3.2 Motivation to use HMM

The data that is considered in this thesis to model fall events is captured through various
sensors such as accelerometers and gyroscopes. These datasets capture the temporal activi-
ties performed by humans; therefore, this is a sequential classification problem. Considering
only the classification challenge of this problem, researchers have used several techniques to
handle similar activity recognition problems. The general idea is to segment the sequence
data using a window size and compute statistical and other complex features, represent
the window as a feature vector and apply standard classification methods. Others have
used various thresholding techniques to provide cut-offs to sensor readings to determine
ADLs and abnormal activities. Although, these technique have been shown to work in
different setting, they are ill-posed for the task of activity recognition and subsequently its
adaptation to detecting unseen falls.

This thesis deals with identifying falls data in the absence of their training data. For
such OCC case, techniques based on OSVM and one-class nearest neighbour can be useful.
However, the techniques based on OSVM suffer from the choice of appropriate kernel and
its parameters, parameters for soft margin and the rejection rate from the target class.
The optimization routine in the OSVM can take a long time for convergence when the
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training data is large and specially if some data objects are exactly on top of each other
and compete to become support vectors. One-class nearest neighbour approach does not
give a good trade-off between the false positive and false negative rates and is very sensitive
to the noise present in the training data.

One of the advantage of the HMM is that they can be used for temporal classification
by modelling the dynamics in data sequences effectively and consider the history of actions
when taking a decision on the current sequence. HMMs can automatically absorb a range
of model boundary information for continuous activity recognition [198] in scenarios where
activity boundaries are not easily detectable. There are not well defined sub-units or
easily discernible segmentation in the accelerometer data because human motion activities
are continuous [60], without a specific start or end and may last for a long time. The
traditional approach is to segment the data at fixed time intervals and consider a single-
frame as a representative of the activity. Mannini and Sabatini [116] compare various single-
frame classifiers against HMM based sequential classifier for activity recognition using
on-body accelerometers. A single-frame classifier assigns labels to each motion activity
frame without considering the history of motions, whereas a sequential classifier takes into
account the previous history to take a decision on the current feature vector. Their results
suggest that HMM outperforms other single-frame classifiers. However, they mention that
spurious training data in HMM can significantly deteriorate the classification performance
and suggest a heuristic based on a fixed threshold to improve the results. HMMs can be
used to model an individual action/activity, they scale well in the sense that new actions
can be added to the existing one without affecting the already learnt HMM. HMMs can
also be adapted to learn incrementally as new data arrives in a sequential manner. HMMs
are also successfully used in detection of human activities with high accuracy [95]. The
probabilistic theory behind HMMs is very strong and elegant and makes it easier to analyze
and develop implementations.

Typically, two approaches are commonly applied to model human actions and activities
using HMMs [95]:

(i) Modelling Poses : train an HMM for an activity where each state represents a pose
of a movement, or

(ii) Modelling Activities : train an HMM for different activities by modelling each activity
by a single state.

We consider both of these approaches to propose ‘X-Factor’ based models and provide
improvements over traditional threshold based HMMs to identify falls when their training
data is not available. These methods are discussed below.
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3.3 Pose HMM

3.3.1 Threshold Based - (HMM1)

The traditional method to detect unseen abnormal activities is to model each normal ac-
tivity using an HMM, compare the likelihood of a test sequence with each of the trained
models and if it is below a pre-defined threshold for all the models then identify it as an
anomalous activity[108]. With respect to fall detection, we model each normal activity i
by an ergodic HMM which evolves through a number of k states. The observations oj(t)
in state j are modelled by a single Gaussian distribution. Each model i is described by
the set of parameters, λi = {πi, Ai, (µij,Σij)}, where πi is the prior, Ai is the transition
matrix, and µij and Σij are the mean and covariance matrix of a single Gaussian distribu-
tion, N (µij,Σij), giving the observation probability Pr(oi|j) for the jth HMM state. The
parameters, λi, of a given HMM are trained by the Baum-Welch (BW) algorithm [152].
This method estimates the probability that an observed sequence has been generated by
each of the i models of normal activities. If this probability falls below a (pre-defined)
threshold Ti for each HMM, a fall is detected. Typically, an HMM is trained for each
normal activity on the full training data available and the individual activity threshold is
set as the maximum of the negative log-likelihood of the training sequences (we call this
method as HMM1full). If a new activity’s negative log-likelihood is below each of these
thresholds, it is identified as a fall.

A major drawback of this approach is that it assumes that the data for each normal
activity is correctly labelled and sensor readings are non-spurious. This assumption can
be detrimental for classification performance; if a wrong threshold is chosen then most of
falls activity may be classified as one of the normal activities during the testing phase.
Moreover, in real world applications, sensor readings may contain significantly different
or spurious information or the training data may be incorrectly labelled due to human
error. There is no direct way to adjust or adapt this threshold because the validation
set for falls may be absent. To address these issues, we propose a novel method for the
automatic threshold selection by rejecting outlier sensor data from each of the normal
activities based on a threshold, ω (see Section 3.6 for a detailed discussion and Figure 3.2
for pictorial representation), and use the rejected data as the validation set to optimize ω.
We call this method HMM1out and it differs from HMM1full in the following two ways:

(i) The threshold for HMM1full is set as the maximum of negative log-likelihood for
each activity, whereas in HMM1out this threshold is optimized to reject some outliers
from the normal activities.
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(ii) HMM1full is trained on full normal data that may contain anomalous sensor data,
whereas HMM1out is trained on non-fall data (obtained after rejecting outliers from
normal activities) with the optimized threshold.

3.3.2 XHMM1

Quinn et al. [150] present a general framework based on Switched Linear Dynamical Sys-
tems for condition monitoring of a premature baby receiving intensive care by introducing
the ‘X-factor’ to deal with unmodelled variation from the normal events that may not
have been seen previously. This is achieved by inflating the system noise covariance of the
normal dynamics to determine the regions with highest likelihood which are far away from
normality based on which events can be classified as ‘not normal’. We extend this idea
to formulate an alternate HMM (XHMM1) to model unseen fall events. This approach
constructs an alternate HMM to model fall events by averaging the parameters of i HMMs
(corresponding to i normal activities) and increasing the averaged covariances by a factor
of ξ such that each state’s covariance matrix is expanded. Thus, the parameters of the
X-Factor HMM will be λXHMM1 = {π̄, Ā, µ̄, ξΣ̄)}, where π̄, Ā, µ̄, and Σ̄ are the average
of the parameters πi, Ai, µi and Σi of each i HMMs. Each of the i HMMs is trained on
non-fall data obtained after removing outliers from the normal activities and these outliers
serve as the validation set for optimizing the value of ξ using cross validation (see details in
Section 3.6). For a test sequence, the log-likelihood is computed for all the HMM models
(i HMMs representing i normal activities and the alternate HMM representing fall events)
and the one with the largest value is designated as its class label.

3.4 Normal Pose HMM

3.4.1 Threshold Based - (HMM2)

Another common method to recognize unseen abnormal activities is to model all the normal
activities using a single HMM and if a test sequence’s likelihood falls below a predefined
threshold, it is identified as anomalous[88]. In the context of fall detection, we model all
the normal activities by a single HMM instead of modelling them separately. The idea
is to learn the ‘normal concept’ from the labelled data itself. This method estimates the
probability that the observed sequence has been generated by this common model for all
the normal activities and if this probability falls below a (pre-defined) threshold T , a fall
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is detected. Typically the HMM is trained on all the normal data available (by joining all
normal activities into one category) and the maximum of negative log-likelihood on the
training data is set as a threshold to detect unseen falls (we call this method HMM2full).
This method also suffers from similar drawbacks as HMM1full. To circumvent those issues,
we present a method to reject outliers as discussed in the previous subsection (see more
details in Section 3.6), optimize the threshold, ω and train a general HMM on non-fall data
(obtained after rejecting spurious sensor data from each normal activity) with parameters
λ. We call this method HMM2out.

3.4.2 XHMM2

In this approach the non-fall data for each activity (discussed above) is joined together and
a single HMM is trained to model the normal activities together. Similar to XHMM1, an
alternative HMM is constructed to model the ‘fall’ activities (XHMM2) whose parameters
(λXHMM2) remain the same as the HMM to model non-fall activities together (λ) except
for the covariance, whose inflated value is computed using cross validation (see Section
3.6). For a test sequence, the log-likelihood is computed for both HMM models (HMM
representing non-fall activities and the alternate HMM representing fall events) and the
one with the larger value is designated as its class label.

The intuition behind XHMM1 and XHMM2 approaches is that if the states rep-
resenting non-fall activities are modelled using Gaussian distributions, then falls events
coming from another distribution can be modelled using a new Gaussian (X-factor) with
larger spread but with the same mean as non-fall activities. Therefore, the mean of the
unseen falls is chosen to be the same as the non-fall activities (as in XHMM2) or the
average of means of different normal activities (as in XHMM1). The observations that
are closer to the mean retain high likelihood under the original Gaussian distribution for
normal activities, whereas the X-factor will have higher likelihood for observations that
are far away from normal activities. Hence, the HMM(s) for the non-fall and falls events
differ only in the covariances of the observation distributions. For detecting fall events, we
want to make as few assumptions as possible about what those fall events might look like;
hence, introducing extra X-factor parameters might affect generalization. Therefore, the
mean and the number of states in the HMM to model non-fall activities and the alternate
HMM to model unseen fall activities are kept the same in both XHMM1 and XHMM2
approaches, whereas the prior probabilities, mean and the transition matrix of the alter-
nate HMM are averaged across all normal activities for XHMM1 and kept the same as
for the normal activities in XHMM2.
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3.4.3 HMMNormOut

As discussed in the sections on threshold based HMM1 and HMM2, some outliers are re-
jected from each of the normal activities that may arise due to artifacts in the sensor read-
ings or mislabelling of training data (see details in Section 3.6). All these rejected sensor
readings from each normal activity are grouped together and two HMMs are trained, one
each for non-fall activities and outlier activities. We call this approach as HMMNormOut.
The HMM model learnt on outliers activities may not be the true representative for falls
but it models those activities that are non-falls.

3.5 Activity HMM

3.5.1 XHMM3

In this approach each normal activity is modelled by a state of an HMM; since a fall is not
observed earlier, an extra state is added to represent the unseen falls. Smyth [170] addresses
the problem of real-time fault monitoring, where it is difficult to model all the fault states
of a system in advance. Smyth proposes to add a (j+1) novel hidden state (in an HMM) to
cover all other possible states not accounted by the known j states. The novel state’s prior
probability is kept the same as other known states, the posterior probability is computed
using a hybrid generative-discriminative approach and the density of the observable data
given the unknown state is defined by using non-informative Bayesian priors over feature
space. Quinn and William [151] extend this idea to a more complex context, with factorial
state structure and an explicit temporal model for physiological monitoring of premature
infants receiving intensive care. We extend the idea of Smyth of adding a novel state in an
HMM by training a single HMM to model transitions of normal activity sequences, with
parameters, λXHMM3 = {π,A, µ,Σ}, where each hidden state represents a normal activity.
An extra hidden state is added to the existing model and its means and covariances are
estimated by averaging the means and covariances of all other states representing normal
activities. The X-factor is introduced to vary the covariance of this novel state by a factor
of ξ, which can be determined using cross validation (see Section 3.6). Adding a novel state
to the existing HMM means adding a row and column to A to represent transitions to and
from the state capturing unseen fall events. However, this information is not available
apriori. For the fault detection application, Smyth [170] designs a 3 state HMM and added
a novel 4th state to model unknown anomalies. Smyth chooses the probability of remaining
in the same state as 0.97 and distributes transition to other states uniformly (0.01 in this
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case). The value of self-transition probability of the unknown state reflect prior belief
concerning the typical duration of that state. We use similar idea to choose probability of
0.95 to self transitions to fall events and the rest of the probability is uniformly distributed
for transitions from fall events to normal activities. For mapping transitions from different
normal activities to fall events, a probability of 0.05 is set and the transition probabilities
between different normal activities are scaled such that the total probability per row in the
transition matrix A sums up to 1. We choose the probability of transition from normal
to unseen fall events as 0.05 to capture the assumption that fall events occur rarely. For
XHMM1 and XHMM2, the prior state probabilities, π, are learnt using BW (which are
initialized to be uniformly distributed); however, this information is not available for the
additional state in XHMM3. When the new state is added to this model all the prior
probabilities of states are set to be uniformly distributed. For a test sequence, Viterbi
decoding [152] is employed to find the most likely hidden state that generated it – if it
consists of a state among the normal activities it is classified as normal activity or else if
the state includes the novel state, the sequence is classified as a fall event.

Table 3.1 shows a brief summary of the different fall detection methods that are trained
without using falls data, using different threshold and HMM types. It is to be noted that
HMMNormOut does not optimize any parameter/threshold. In the techniques HMM1full,
HMM1out, XHMM1, XHMM3 and HMMNormOut, individual activities are segmented
out manually (through labels) and separate models are trained for each activity. Whereas
for techniques HMM2full, HMM2out and XHMM2, no labels are needed for individual
activities because all the normal activities are joined into one group and an HMM is
trained to model the normal concept and/or an alternative HMM for fall is inferred from it;
therefore, these techniques can continuously monitor activities during the training phase.
However, during testing any of these models, we do not need to segment the sequences
based on individual activities or the normal concept because the labels are only needed as
ground truth to evaluate the models.

3.6 Threshold Selection and Proxy Outliers

As discussed in Chapters 1 and 2, falls occur rarely and infrequently compared to normal
activities; therefore, it is difficult to get labelled data for them. This may result in a
situation where we have abundant data for normal activities and none for falls. In this
thesis, our goal is to train the three XHMM (and five other HMMs) described in the
previous section using only the “normal” data (i.e. activity sequences that are not labelled
as falls). Typically, to detect falls using traditional HMM approaches (i.e. HMM1full
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Method Name Threshold Type HMM Type HMM State
Models

HMM1full maximum of nega-
tive log-likelihood

Model each action
by an HMM

a pose of an activity

HMM1out optimized negative
log-likelihood (ω)

Model each action
by an HMM

a pose of an activity

XHMM1 optimized covari-
ance (ξ)

Model each action
by an HMM

a pose of an activity

HMM2full maximum of nega-
tive log-likelihood

Model all normal
activities by an
HMM

a pose of normal ac-
tivities

HMM2out optimized negative
log-likelihood (ω)

Model all normal
activities by an
HMM

a pose of normal ac-
tivities

XHMM2 optimized covari-
ance (ξ)

Model all normal
activities by an
HMM

a pose of normal ac-
tivities

HMMNormOut – Model all normal
activities by an
HMM and abnor-
mal activities by
outliers of nor-
mal activities by
another HMM

a pose of normal ac-
tivities

XHMM3 optimized covari-
ance (ξ)

Model transition of
actions by an HMM

an activity

Table 3.1: Summary of different fall detection methods
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and HMM2full), this is done by setting a threshold on the likelihood of the data given an
HMM trained on this “normal” data. This threshold is normally chosen as the maximum
of negative log-likelihood [88], and can be interpreted as a slider between raising false
alarms or risking missed alarms [183]. Choosing the threshold too low or high results
in accepting all fall events as normal or rejecting most of the normal activities as falls.
Moreover, any abnormal sensor reading or mislabelling of training data can alter this
threshold and adversely effect the classification performance. For the proposed approaches,
another challenge is to estimate the parameter ξ for XHMM1, XHMM2 and XHMM3
and ω for HMM1out and HMM2out in the absence of fall data during the training phase.

To address the above mentioned issues and finding appropriate ω and ξ, we propose to
identify and use the deviant sequences (outliers) within the “normal” data. The idea is
similar to the methods based on extreme value theory [107], that even though the “normal”
data may not contain any falls, it may contain sensor readings that are spurious, incorrectly
labelled or significantly different. These outliers can be used to set ω and ξ that are required
for fall detection, thereby serving as a proxy for falls data in order to learn the parameter ξ
of the three XHMMs and ω for the two traditional HMMs. To find the outliers, we use the
concept of quartiles from descriptive statistics. The quartiles of a ranked set of data values
are the three points that divide the data set into four equal groups, where each group
comprises of a quarter of the data. Given the log-likelihoods of sequences of training data
for an HMM and the lower quartile (Q1), the upper quartile (Q3) and the inter-quartile
range (IQR = Q3 −Q1), a point P is qualified as an outlier if

P > Q3 + ω × IQR || P < Q1 − ω × IQR (3.12)

where ω represents the percentage of data points that are within the non-extreme limits.
Based on ω, the extreme values of log-likelihood that represent spurious training data can
be removed, that leads to the

(i) computation of new thresholds ω for HMM1out and HMM2out,

(ii) computation of parameter ξ for the proposed XHMM approaches, and

(iii) creation of a validation set comprising of outliers (proxies for falls) to help in esti-
mating appropriate parameters for different HMMs and XHMMs (discussed below).

It should be noted that unlike traditional HMM based methods that choose a fixed thresh-
old as the maximum of the log-likelihood, the threshold chosen by the proposed approach
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is completely automated. If models for new normal activities are learned, then the thresh-
old will be set using cross-validation and does not require domain knowledge or manual
intervention.

Figure 3.1 (a) shows the log-likelihood logPr(O|λrunning) for 1262 equal length (1.28
seconds) running activity sequences of the German Aerospace Center dataset (see Section
3.7.1). Figure 3.1 (b) is a box plot showing the quartiles for this dataset, and the outliers
(shown as +) for w = 1.5 (representing 99.3% coverage; for more details refer to Figure
4.7 in Section 4.2). Figure 3.1 (c) shows the same data as in Figure 3.1(a) but with the
outliers removed.

(a) (b) (c)

Figure 3.1: Log-Likelihoods – (a) before and (c) after outlier removal. (b) shows box-plot
of the quartiles for this data and the outliers for w = 1.5

We employ an internal cross-validation to train the three XHMMs (and two HMMs)
using only the non-fall data; we first split the normal data into two sets: “non-fall” data
and “outlier” data (see Figure 3.2). We do this using Equation 3.12 with a parameter
ωCV = ω that is manually set and only used for this initial split. For each activity, an
HMM is trained on full normal data and based on ωCV , “outliers” are rejected from the
normal data and the remaining data is considered as “non-fall”. We train the HMMs on
the “non-fall” data and then set the thresholds, ω (which is defined as Ti for HMM1out
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Figure 3.2: Cross Validation Scheme

and T for HMM2out) and ξ (for XHMM1, XHMM2 and XHMM3), by evaluating
the performance on the “outlier” data. We use a N -fold cross validation: the HMMs are

trained on
(
K−1
K

)th
of the “non-fall” data, and tested on

(
1
K

)th
of the “non-fall” data and

on all the “outlier” data. This is done K times and repeated for different values of ω and
ξ. The value of parameters that give the best averaged geometric mean (gmean, see Table
3.4) over K-folds are chosen as the best parameters. Then, each classifier is re-trained with
this value of parameter on the “non-fall” activities.

3.7 Experimental Design

3.7.1 Datasets

The proposed fall detection approaches are evaluated on the following three human activity
recognition datasets.

German Aerospace Center (DLR) [128]

This dataset is collected using the XSens MTx sensor, which is an Inertial Measurement
Unit (IMU) with integrated 3D magnetometers. It has an embedded processor capable
of calculating the orientation of the sensor in real time, and returns calibrated 3D linear
acceleration, turn rate and magnetic field data. The orientation information of the IMU
can be obtained through the direction cosine matrix and the sample frequency is set to 100
Hz. The dataset contains samples from 19 people of both genders of different age groups.
The data is recorded in indoor and outdoor environments under semi-natural conditions.
The sensor is placed on the belt either on the right or the left side of the body or in the
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right pocket in different orientations. In total the dataset contains labelled data of over
4 hours and 30 minutes of the following 7 activities: Standing, Sitting, Lying, Walking
(up/downstairs, horizontal), Running/Jogging, Jumping and Falling. Each sample in the
dataset consists of a 9-dimensional vector that has 3 readings each for the accelerometer,
gyroscope and magnetometer in the x, y and z directions. One of the subjects did not
perform fall activity; therefore, their data is omitted from the analysis.

MobiFall (MF) [189]

This dataset is collected using a Samsung Galaxy S3 mobile device with inertial module
integrated with 3D accelerometer and gyroscope. The mobile device was placed in a trouser
pocket freely chosen by the subjects in random orientations. For falls, the subjects placed
the mobile phone in the pocket on the opposite side of falling direction. All falls were
monitored to be done in specific way. The data stores the timestamp to facilitate any con-
venient sub-sampling; however, mean sampling of 87 Hz is reported for the accelerometer
and 200Hz for the gyroscope. The dataset is collected from 11 subjects performing various
normal and fall activities and 2 subjects only performing falls activity; therefore, they are
removed from the analysis. The following 8 normal activities are recorded in this dataset:
step-in car, step-out car, jogging, jumping, sitting, standing, stairs (up and down grouped
together) and walking. Four different types of falls are recorded – forward lying, front
knees lying, sideward lying and back sitting chair. These data from different types of falls
are joined together to make one separate class for falls.

Coventry Dataset (COV) [137]

This dataset is collected using two SHIMMERTMsensor nodes strapped to the chest and
thighs of subjects. A SHIMMERTMsensor node is a small and light hardware platform
that consists of a 3D accelerometer, 3D gyroscope, and a Bluetooth device [23]. The data
was gathered at 100 Hz and transmitted to a remote PC and annotated. Two protocols
were followed to collect data from subjects. In Protocol 1, data for four types of falls,
near falls1, falls induced by applying a lateral force and a set of ADL (standing, sitting,
walking and lying) is collected. Protocol 2 involved ascending and descending stairs. 42
young healthy individuals simulated various ADL and fall scenarios, with 32 took part in
Protocol 1 and 10 in Protocol 2. For Protocol 1, the activities were collected in a real-life

1“Near-falls” are events that occur as a result of stumbles, trips or collisions with obstacles, but do not
necessarily result in falls” [137].
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circumstances where subject would make phone calls, read books, or talk to others while
maintaining various postures. The following normal ADL were collected in Protocol 1 –
standing, lying, sitting on a chair or bed, walking, crouching and near falls. Six types of
fall scenarios are captured – forward, backward, right, left, real fall-backward and real fall
forward. The data for real fall-backward/forward is collected by standing the subject on
a wobble board while they are blindfolded and try to balance themselves, then they are
pushed from behind/front to fall forward/backward onto a cushion and remain lying down
for 10 seconds. These data from different types of falls are joined together to make one
separate class for falls. The subjects for Protocol 2 did not record corresponding fall data;
therefore, the data from Protocol 2 is not used. In our analysis, we used accelerometer and
gyroscope data from the sensor node strapped to the chest.

Discussion about the datasets

We would like to highlight the following important aspects of the experiments using the
above datasets.

(i) Previous studies have shown that accelerometer and gyroscopes are very helpful in
recognition of normal ADL [19, 116]; therefore, these sensor readings are used in our
experiments and magnetometer readings from DLR dataset are not used.

(ii) All the activities except falling are considered as normal activities in all the datasets.
For the COV dataset, the near-fall events are considered as normal activities because
they do not necessarily result in a fall and treating them as falls may have the
disadvantage of increasing false alarms in a fall detection algorithm. The proposed
HMMs are supplied with only the normal activities during the training phase, fall
and normal activities are shown to the classifiers during testing.

(iii) Falls activities for DLR datasets are semi-naturalistic i.e. the subjects were not
instructed to fall at a given time, but the 4 types of falls activities in the MF dataset
are not entirely natural because the subjects were instructed to fall in a particular
manner. For the COV dataset, 2 types of falls – real-backward fall and real-forward
fall are natural falls induced by applying a lateral force to the subjects; however, other
4 types of fall are simulated. Nonetheless, whether falls were natural or contrived, it
does not impact the modelling of the proposed HMMs and XHMMs methods because
they are not required during the training phase and we are not focusing on detecting
specific types of unseen falls.
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(iv) For the DLR datasets, 26576 normal activities segments and 84 fall segments are
extracted for all the subjects (see the discussion on data segmentation in the next
section). Similarly, for the MF dataset 5430 normal activities and 488 fall segments
are extracted and for the COV dataset, 12392 normal activities and 908 fall segments
are extracted. The DLR dataset is collected in semi-naturalistic settings; therefore,
the ratio of falls to normal activities is quite small ≈ 0.0032, whereas in the MF
dataset this ratio is ≈ 0.0899 and for the COV dataset this ratio is ≈ 0.0733. The
reason for this variation is that in the MF and COV datasets, extra samples for
falls are collected deliberately for experimentation purposes; however, this ratio is
not a true representative of the actual chance of occurrence of falls (as discussed in
Chapter 1) and does not address the difficulty in obtaining labelled data for falls in
real scenarios.

(v) For the COV dataset, the window size is 2.56 seconds (see next section), for one
subject no fall was recorded because falls sequences (number of sensor readings) were
smaller than the window size and this person is removed from the analysis. Two
other subjects have very large gyroscope readings and they are also removed from
the analysis for fair comparison; therefore, instead of 32 subjects, the data from 29
subjects is used in this thesis.

(vi) We use leave-one-subject-out cross-validation (see Section 3.7.5), where the classifi-
cation models use normal data of N subjects for training and normal and falls data of
(N −1) subjects for testing. The performance metrics used is gmean (see Table 3.4),
which requires both the normal and fall activities for evaluation. During testing, if
any of the subject does not have data for either falls or normal activities, we cannot
compute the performance metric for that person and the average value of perfor-
mance metric across all the cross-validation folds will not be available. Considering
this computational issue, we did not consider

• One subject from the DLR dataset that did not perform falls,

• Two subjects from the MF dataset that only performed falls (and no normal
activity), and

• All the subjects that performed under Protocol 2 for the COV dataset as they
did not record any falls.

Removing some data corresponding to few subjects from the training set may impact
the overall performance of the classifiers.
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3.7.2 Data Pre-Processing

For the DLR and COV dataset, accelerometer and gyroscope sensor readings have the same
sampling frequency and are synchronized in time; therefore, they are used as is. However,
for the MF dataset, the gyroscope sensor has a different sampling frequency than the
accelerometer and their time-stamps are also not synchronized. For the MF dataset, the
gyroscope readings are interpolated to synchronize them with the accelerometer readings.
Although the calibration matrix for the DLR data is available to rotate the sensor readings
to the world frame, in our experiments we did not use it because it did not improve the
results. For the MF dataset, orientation information is present but incorporating it led to
the deterioration of results. This observation is consistent with the work of de la Vega et
al.[37] that suggest that activities can be detected without considering the orientations.
For each datasets:

• Correction of sensor orientation is not performed and raw sensor readings are used
for feature extraction.

• Winter [194] suggests that for the walking activity, 99.7% of the signal power was con-
tained in the lower seven harmonics (below 6Hz), with evidence of higher-frequency
components extending up to the 20th harmonic. Beyond that frequency, the sig-
nal had the characteristics of ‘noise’, which can arise from different sources, such
as electronic/sensor noise, spatial precision of the digitization process, and human
errors [194]. Therefore, the sensor noise is removed by using a 1st order Butterworth
low-pass filter with a cutoff frequency of 20Hz. The artifacts resulting from human
errors can lead to wrong labelling of the normal activities. Such artifacts along with
extreme deviations of normal activities among themselves are further filtered out us-
ing the IQR technique (described in Section 3.6, see Equation 3.12). We term them
as “outliers”, and they are used as a proxy for unseen falls and help in estimating
parameters for the proposed models to identify falls.

• The signals are segmented with 50% overlapping windows [116]. The size of the
window plays an important role identifying falls; shorter time spans can increase
the false alarm rates whereas longer time windows increase missed alarm rates [113].
Since a fall is a short term event, each window size is 1.28 seconds for DLR dataset, 3
seconds for MF dataset and 2.56 seconds for the COV dataset to simulate a real-time
scenario with fast response. The reason to choose different window size for DLR, MF
and COV dataset is explained in Section 3.8.1.
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3.7.3 Feature Extraction

The data from different sensors (e.g. accelerometers, gyroscopes etc) may not be very
useful in its raw form for classification of various activities. Therefore, meaningful and dis-
criminatory features are extracted from these raw sensor readings with an aim to find the
main characteristics that accurately represents the original data [93]. These features con-
tain vital information about the sensor data and are fed to the classifiers for identification
of activities [148]. The literature on feature extraction from sensor readings for activity
recognition is very rich [154, 73]. Most of the feature extraction techniques involve com-
puting time domain, frequency domain, and statistical features from the sensor readings.
One objective of this study is to identify low-cost features that are position and placement
independent. The following five signals were extracted from each of the datasets:

1. Three acceleration readings ax, ay, az along the x, y and z directions in the sensor frame,

2. Norm of acceleration, anorm =
√
a2
x + a2

y + a2
z and gyroscope, ωnorm =

√
ω2
x + ω2

y + ω2
z

where ω is the angular velocity in x, y or z direction in the sensor frame.

We compute the following 31 features from the above-mentioned signals:

• Mean, maximum, minimum and standard deviation from each ax, ay, az, anorm, ωnorm (f1

to f20). The range of values of these features depend on the value of individual signal.

• Difference between the 75th and the 25th percentiles of anorm and ωnorm (f21 to f22). The
above features extracted from accelerometer and gyroscope are shown to work well in
identifying various ADL [128].

• Normalized Signal Magnitude Area (SMA) [86] (f23) defined as:

W∑
i=1

(|axi |+ |ayi |+ |azi |) /len(W )

where W is the number of points in a window, |.| is the absolute value of a sensor reading
and len(.) is the window size. SMA is useful to identify dynamic and static activities
for e.g. running or walking versus lying or standing.

• Normalized Average Power Spectral Density (PSD) of anorm (f24). The normalization
is done by dividing by the number of data points in the window (Window Length =
Sample Frequency * Window Size).
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• Spectral Entropy (SE) of anorm [49] (f25), defined as:

SE =

∑freq2
freqi=freq1

P (freqi)log(P (freqi))

log(N [freq1, freq2])

where P (freqi) is the PSD value of the frequency freqi. The PSD values are normalized
so that their sum in the band [freq1, freq2] is one. N [freq1, freq2] is the number
of frequency components in the corresponding band in the PSD. We choose all the
frequencies present in the sensor signal to represent the frequency band. The SE feature
is useful for differentiating between activities involving locomotion.

• The DC component after performing Fast Fourier Transform (FFT) of anorm [12] (f26).

• The Energy feature [12] – The sum of the squared discrete FFT component magnitudes of
anorm. The sum was divided by the window size for normalization and the DC component
of the FFT was excluded in this sum (f27).

The features f26 and f27 are shown to result in accurate recognition of certain postures
and activities [12].

• Frequency domain Entropy – calculated as the normalized information entropy of the
discrete FFT component magnitudes of anorm. The DC component of the FFT was
excluded in this calculation. This feature helps in discriminating activities with different
energy values [12] (f28).

• Correlation between each of the three acceleration readings ax, ay and az (f29 to f31).

These above features are commonly used in the literature, have low-computational
cost and have shown satisfactory discriminating power among various human activities.
Features are computed for each window for XHMM3. To extract temporal dynamics for
HMM1full, HMM2full, HMM1out, HMM2out, XHMM1, XHMM2 and HMMNormOut,
each window is sub-divided into 16ms frames and features are computed for each frame.
All the extracted features are shown in tabular form in Table 3.2.

3.7.4 HMM Modelling

As shown in Table 3.1, all the presented approaches model:

1. Each normal activity by a separate HMM, and each state represents a key pose
(HMM1full, HMM1out, XHMM1, HMMNormOut),
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#features Type of feature
f1 – f5 Mean of ax, ay, az, anorm, ωnorm [128]
f6 – f10 Maximum value of ax, ay, az, anorm, ωnorm [128]
f11 – f15 Minimum value of ax, ay, az, anorm, ωnorm [128]
f16 – f20 Standard Deviation of ax, ay, az, anorm, ωnorm [128]
f21 – f22 IQR of anorm, ωnorm [128]
f23 Normalized Signal Magnitude Area [86]
f24 Normalized Average Power Spectral Density of anorm
f25 Spectral Entropy of anorm [49]
f26 DC component after FFT of anorm [12]
f27 Energy i.e. sum of the squared discrete FFT component

magnitudes of anorm [12]
f28 Normalized Information Entropy of the Discrete FFT

component magnitudes of anorm [12]
f29 – f31 Correlation between ax, ay, az

Table 3.2: Extracted Features.

2. All normal activities by one general HMM, and each state represents a key pose
(HMM2full, HMM2out, XHMM2),

3. All normal activities by one HMM, and each state represents an activity (XHMM3)

For all the HMMs methods, the observation model uses a single Gaussian distribution,
diagonal covariance matrix is used for each of the HMMs and the upper and lower values
are constrained to 100 and 0.01 during the training. For optimizing the parameters ξ and
ω, a 3-fold internal cross validation is used.

For all the HMMs methods except XHMM3, the following procedure is adopted:

• Each activity in the HMMs is modelled with 2/4/8 states, where each individual
state represents functional phases of the gait cycle [83] or the “key poses” of each
activity that are sequenced through as the activity is executed.

• Five representative sequences per activity are manually chosen to initialize the pa-
rameters.

• Initialization is done by segmenting a single sequence into equal parts (corresponding
to the number of states) and computing µij and Σij for each part.
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• The transition matrix Ai is ergodic (i.e. every state has transitions to other states)
and is initialized such that transition probabilities from one state to another are
0.025, self-transitions are set accordingly [170]. These transition parameters are only
set for the initialization, the actual values for the parameters are learned by the BW
algorithm following initialization.

• The prior probabilities of each state, π, are initialized to be uniformly distributed
(to sum across all states to 1) and further learned during BW.

• The likelihood for a test sequence is computed using the forward algorithm [152],
which computes its probability given a model. Since falls data is not present during
the training phase, its prior probability cannot be computed directly. Therefore,
posterior probabilities are not computed and the decisions are taken based on the
likelihoods.

For XHMM3, the parameters µj and Σj and transition matrix are computed from
the annotated data and no additional BW step is used. When a novel state is added, its
parameters are estimated by averaging the means and covariances of all other states (with
covariance further inflated using X-Factor) and transition matrix is re-adjusted (refer to
Section 3.5.1). The prior probabilities of each state is kept uniform. The decision is taken
using the Viterbi algorithm [152] which finds the most likely hidden state that produces
the given observation.

3.7.5 Performance Evaluation and Metric

To evaluate the performance of the proposed approaches for fall detection, we perform
leave-one-subject-out cross validation (LOOCV) [64], where only normal activities from
(N − 1) subjects are used to train the classifiers and the N th subject’s normal activities
and fall events are used for testing. This process is repeated N times and the average
performance metric is reported. This evaluation is person independent and demonstrates
the generalization capabilities as the subject who is being tested is not included in training
the classifiers. For the DLR dataset, one person did not have fall data and for the MF
dataset, two subjects only performed falls activity. These subjects are removed from the
analysis because in LOOCV, absence of either normal or fall activity from a subject will
make the performance metric useless. During the parameter optimization of ω and ξ, we
use a 3-fold cross-validation across subjects (2/3rd of subject’s non-fall data are used for
training, and 1/3rd of subjects non-fall and all the outlier data are used for validation).
The different values of ω tested for HMM1out and HMM2out are [1.5, 1.7239, 3,∞]. The
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relation between ω and percentage coverage area is shown in Section 4.2 in Table 4.7. The
bigger the value of ω, the larger is the coverage area and the less number of outliers to
be rejected from the negative of log-likelihood on the training data (given a model) to
optimize the threshold. We only want few outliers to be rejected; therefore, the range of ω
is chosen from 1.5 which represent 99.7% coverage area to∞, which represent no outlier is
rejected and it is equivalent to choosing the maximum of log-likelihood as the threshold to
identify falls. The various values of ξ tested for XHMM1, XHMM2 and XHMM3 are
[1.5, 5, 10, 100]. These different values of ξ represent different magnitude of variations on
the covariance of normal activities to estimate the covariance of the unseen falls, starting
from small scaling to very large scaling of parameters of the normal activities. The value
of ωCV for obtaining outliers from the normal activities is set to 1.5 such that 0.07% of
normal activities are rejected as outliers (representing 99.3% coverage area; more details
about ω and coverage area for rejection is shown in Table 4.7 in Section 4.2).

There are several metrics that are widely used by machine learning researchers to
measure the performance of classification algorithms. Some of the popular metrics are
accuracy, precision, recall, F-measure, AUC etc. However, due to rarity of fall data, during
the testing phase classifiers are expected to observe a skewed distribution of fall events
w.r.t. normal activities. Therefore, conventional performance metrics (e.g. accuracy)
may not be very useful. F-measure depends on precision and recall and if all falls data
is classified as normal activity or vice versa, then it can give NaN values. Kubat and
Matwin [94] use the gmean of accuracies measured separately on each class i.e. it combines
True Positive Rates (TPR) and True Negative Rates (TNR). An important property of
gmean is that it is independent of the distribution of positive and negative samples in
the test data. This measure is more useful in our application where we have a skewed
distribution of fall events w.r.t. normal activities and we want to evaluate the performance
on both the normal activities and fall events. In the case of perfect classification gmean
will be 1 and in the extreme case when all the test data is either classified as belonging to
normal activities or fall events, gmean will become 0. We also use two other performance
metrics, fall detection rate (FDR) and false alarm rate (FAR) to better understand
the performance of the proposed fall detection classifiers. FDR has a value of 1 if all
falls are correctly identified and 0 if no falls are identified. FAR is the rate at which the
classifier incorrectly predicts a normal activity as a fall, a value of 0 means no false alarms
and 1 means all normal activities are incorrectly identified as falls. A fall detection method
that gives high gmean, high FDR and low FAR is considered to be better than others.
Table 3.3 along with Table 3.4 show the performance metrics used in the thesis (fall is the
positive class and normal activities is the negative class).
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Actual Labels
Falls Normal

Predicted
Labels

Falls
True

Positive
(TP)

False
Positive

(FP)

Normal
False

Negative
(FN)

True
Negative

(TN)

Table 3.3: Confusion Matrix

Metric Formula
Geometric Mean

(gmean) [94]

√
TP

(TP+FN)
∗ TN

(TN+FP )

Fall Detection Rate
(FDR)

TP
TP+FN

False Alarm Rate
(FAR)

FP
(TN+FP )

Table 3.4: Performance Metrics

3.8 Results

We perform the following two experiments on all the datasets:

1. We compare the performance of the proposed XHMMs and HMMs when the models
are trained on “non-fall” data after rejecting outliers from the ‘normal’ datasets with
the traditional threshold based HMMs trained on full ‘normal’ data.

2. We extract salient features from the normal activities and compared the performance
of the proposed classifiers trained using all features. The aim is to build generalizable
classifiers with a small number of informative features for faster computation and
response time.

A detailed description of each of these experiments and their results is discussed below.
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3.8.1 Training without fall data

In this experiment, we compare the performance of the proposed fall detection methods
trained on “non-fall” data and full ‘normal’ data. HMM1full and HMM2full are trained
on full ‘normal’ data, while the proposed three XHMMs, and HMM1out and HMM2out
are trained on “non-fall” data, but they make use of full ‘normal’ data to optimize their
respective parameters.

Tables 3.5, 3.6 and 3.7 show the performance of the proposed fall detection methods in
the absence of training data for falls on all the datasets. Except for XHMM3, where the
number of states equals the number of labelled normal activities plus an additional state
for modelling falls, the number of states are varied for all other fall detection methods to
study the change in performance by increasing the complexity of the models. For all the
datasets, the number of states tested are:

• 2 (see Tables 3.5a, 3.6a and 3.7a),

• 4 (see Tables 3.5b, 3.6b and 3.7b) and

• 8 (see Tables 3.5c, 3.6c and 3.7c).

For XHMM3 the number of states corresponds to the total number of normal activities
plus an additional novel state to model unseen falls, thus the number of states are fixed
(see Tables 3.5d, 3.6d and 3.7d).

We observed that increasing the number of states does not significantly improve the
performance of any methods; except for HMM2out in the MF dataset. A disadvantage
of a large number of states is that the training time for the models increase significantly.
Therefore, we choose 4 states as the optimum for this and subsequent experiments.

Tables 3.5b and 3.5d show that for the DLR datasets, HMM1full and HMM2full failed
to detect any falls, whereas XHMM3, XHMM1 and HMM2out show the highest gmean
in comparison to other X-factor and optimized threshold based methods. HMMNormOut

performs worse than the three XHMMs and optimized HMMs but better than threshold
based HMMs. XHMM2 has the highest FDR but at the cost of high FAR. The reason for
the poor performance of HMM1out is that all of falls are misclassified as walking/running.

Tables 3.6b and 3.6d show that for the MF dataset, HMM1full failed to detect most
of falls and HMM2full failed to detect any fall event. XHMM2 and HMM2out show
the highest value of gmean in comparison to other X-factor and optimized threshold based
methods; XHMM2 has the highest FDR but also high FAR. XHMM1, XHMM3 and
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Method gmean FDR FAR
HMM1full 0 0 0.001
HMM2full 0 0 0.0003

HMM1out 0 0 0.001
HMM2out 0.817 0.768 0.109

XHMM1 0.813 0.822 0.100
XHMM2 0.781 0.968 0.366

HMMNormOut 0.246 0.500 0.761

(a) 2 states

Method gmean FDR FAR
HMM1full 0 0 0.001
HMM2full 0 0 0.0003

HMM1out 0 0 0.001
HMM2out 0.817 0.768 0.108

XHMM1 0.854 0.822 0.096
XHMM2 0.784 0.965 0.360

HMMNormOut 0.326 0.500 0.731

(b) 4 states

Method gmean FDR FAR
HMM1full 0 0 0
HMM2full 0 0 0.0003

HMM1out 0 0 0.0001
HMM2out 0.817 0.768 0.107

XHMM1 0.816 0.822 0.092
XHMM2 0.785 0.955 0.351

HMMNormOut 0.466 0.621 0.579

(c) 8 states

Method gmean FDR FAR
XHMM3 0.925 0.893 0.030

(d)

Table 3.5: Performance of Fall Detection methods for DLR dataset for 2, 4 and 8 states.
For XHMM3 (#states=#labelled activities + 1 state for fall).
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Method gmean FDR FAR
HMM1full 0.029 0.004 0.001
HMM2full 0 0 0.002

HMM1out 0.432 0.194 0.008
HMM2out 0.306 0.125 0.109

XHMM1 0.177 0.109 0.061
XHMM2 0.790 0.978 0.327

HMMNormOut 0.427 0.294 0.171

(a) 2 states

Method gmean FDR FAR
HMM1full 0.092 0.016 0.005
HMM2full 0 0 0.002

HMM1out 0.501 0.260 0.012
HMM2out 0.764 0.714 0.166

XHMM1 0.290 0.094 0.024
XHMM2 0.810 0.978 0.298

HMMNormOut 0.515 0.399 0.244

(b) 4 states

Method gmean FDR FAR
HMM1full 0.133 0.024 0.005
HMM2full 0 0 0.002

HMM1out 0.487 0.251 0.016
HMM2out 0.445 0.365 0.135

XHMM1 0.192 0.042 0.008
XHMM2 0.842 0.972 0.263

HMMNormOut 0.599 0.551 0.2177

(c) 8 states

Method gmean FDR FAR
XHMM3 0.516 0.285 0.059

(d) 8 states

Table 3.6: Performance of Fall Detection methods for MF dataset for 2, 4 and 8 states.
For XHMM3 (#states=#labelled activities + 1 state for fall).
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Method gmean FDR FAR
HMM1full 0.010 0.003 0.0001
HMM2full 0.010 0.003 0.0001

HMM1out 0.765 0.614 0.011
HMM2out 0.784 0.711 0.111

XHMM1 0.727 0.563 0.014
XHMM2 0.763 0.681 0.121

HMMNormOut 0.748 0.714 0.176

(a) 2 states

Method gmean FDR FAR
HMM1full 0.010 0.003 0.0001
HMM2full 0.010 0.003 0.0001

HMM1out 0.774 0.628 0.012
HMM2out 0.784 0.711 0.112

XHMM1 0.734 0.571 0.013
XHMM2 0.762 0.679 0.121

HMMNormOut 0.753 0.719 0.176

(b) 4 states

Method gmean FDR FAR
HMM1full 0.010 0.003 0.0001
HMM2full 0.010 0.003 0.0001

HMM1out 0.775 0.631 0.012
HMM2out 0.783 0.700 0.098

XHMM1 0.746 0.587 0.011
XHMM2 0.754 0.659 0.111

HMMNormOut 0.754 0.711 0.169

(c) 8 states

Method gmean FDR FAR
XHMM3 0.392 0.194 0.052

(d) 8 states

Table 3.7: Performance of Fall Detection methods for COV dataset for 2, 4 and 8 states.
For XHMM3 (#states=#labelled activities + 1 state for fall).
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HMM1out classify most falls as step-in car and sitting, thus their performance is greatly
reduced. The reason for the poor performance of multi-class classifiers (i.e. XHMM1,
XHMM3 and HMM1out) for the MF dataset is that falls signals collected in this dataset
contain sensor readings after the subject has hit the ground. Therefore, the labelled fall
data has some stationary values after a falling action has occurred and the subject lies
on the ground. After creating overlapping windows, some of them may contain stationary
values, which after feature extraction are likely to be classified as one of the static activities.

Tables 3.7b and 3.7d show that for the COV dataset, HMM1full and HMM2full failed
to detect most of falls. The rest of the methods perform very similar to each other in
terms of gmean; HMM2out and XHMM2 show high FDR at the cost of high FAR in
comparison to other methods. XHMM1 and HMM1out classify most falls as near-falls
that reduce their performance considerably.

The reason that DLR dataset does not have the same windows size as the MF dataset
is that it contains short duration fall events. Therefore, when the window size is increased
to 3 seconds then for many subjects fall samples could not be extracted and LOOCV will
not work in those situations. Similarly, for the COV dataset, by increasing the window size
fall samples could not be extracted for many subjects and decreasing the window sizes lead
to poor results. An initial experiment is done for all the datasets to fix the appropriate
window size.

Statistical Testing

To understand the statistical stability of the proposed methods,

(i) We plot the mean values of gmean along with error bars (see Figure 3.3). Each error
bar represents one unit of standard deviation above and below the mean value of
gmean. The standard deviation is calculated from the LOOCV method across all
subjects for both the datasets. Figure 3.3a shows that for the DLR dataset, all the
three proposed XHMM methods and HMM2out are statistically equivalent and out-
performs other traditional methods of threshold selection and HMMNormOut. Figure
3.3b shows that for the MF dataset, XHMM2 and HMM2out statistically outper-
forms other methods. Figure 3.3c shows that for the COV dataset, all the methods
except the traditional HMM based and XHMM3 perform statistically equivalent.
The performance of XHMM3 is poor in both the MF and COV dataset in com-
parison to the DLR dataset. The reason is that, in the DLR dataset, activities are
captured in a continuous manner, whereas in the other two datasets they are col-
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HMM Models for Fall Detection
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Figure 3.3: gmean with error bars across all subjects for DLR, MF and COV datasets
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lected in a disjoint manner. Therefore, the transition matrix is more accurate in the
DLR dataset resulting in better performance for XHMM3.

(ii) We use K-fold cross-validated paired t-test [6] to compute if the average gmean of
one method is significantly different from another. For two classification algorithms
A and B, if K-fold cross validation is performed on the training set Ti and the
gmeans on the testing sets are gAi and gBi , then the difference of gmeans for fold i is
gi = gAi − gBi . This is a paired test because for each fold i, both the algorithms see
the same training and testing sets. When this process is repeated K times, we have
a distribution of gi containing K points. Given that gAi and gBi are normal, gi is also
normal. The null hypothesis is that this distribution has zero mean:

H0 : µ = 0 and H1 : µ 6= 0

Now we define

m =

∑K
i=1 gi
K

and S2 =

∑K
i=1 (gi −m)

K − 1

Under the null hypothesis that µ = 0, we have a statistic that is t-distributed with
K − 1 degrees of freedom √

Km

S
∼ tK−1

The K-fold cross-validated paired t-test rejects the hypothesis that two classification
algorithms have the same gmean at significance level α if this value is outside the
interval

(
−tα/2,K−1, tα/2,K−1

)
. For the DLR, MF and COV datasets LOOCV results

in 18, 9 and 29 folds; therefore, the degree of freedom are be 17, 8 and 28 respectively.
The chosen significance level is α = 0.05. Table 3.8 shows the results of K-fold cross-
validated paired t-test on the DLR and MF datasets. The symbol ‘3’ indicates
that gmean between algorithm A (row) and algorithm B (column) is significantly
different from each other, ‘7’ indicates that gmean between algorithm A (row) and
algorithm B (column) are not significantly different from each other and ‘-’ means
this comparison has already been done elsewhere in the table. The results are similar
to the previous analysis of error bars around the average gmean. For all the datasets,
the proposed methods perform better than the traditional methods (HMM1full and
HMM2full). For DLR dataset, XHMM3 performs the best and for MF dataset,
XHMM2 and HMM2out outperform rest of the classifiers. For the COV dataset,
except XHMM3, all the proposed classifiers perform similar.
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HMM2full HMM1out HMM2out XHMM1 XHMM2 XHMM3 HMMNormOut

HMM1full 7 7 3 3 3 3 3

HMM2full - 7 3 3 3 3 3

HMM1out - - 3 3 3 3 3

HMM2out - - - 7 7 3 3

XHMM1 - - - - 3 3 3

XHMM2 - - - - - 3 3

XHMM3 - - - - - - 3

(a) DLR dataset

HMM2full HMM1out HMM2out XHMM1 XHMM2 XHMM3 HMMNormOut

HMM1full 3 3 3 3 3 3 3

HMM2full - 3 3 3 3 3 3

HMM1out - - 3 3 3 7 7

HMM2out - - - 3 7 3 3

XHMM1 - - - - 3 3 3

XHMM2 - - - - - 3 3

XHMM3 - - - - - - 7

(b) MF dataset

HMM2full HMM1out HMM2out XHMM1 XHMM2 XHMM3 HMMNormOut

HMM1full 7 3 3 3 3 3 3

HMM2full - 3 3 3 3 3 3

HMM1out - - 7 3 7 3 7

HMM2out - - - 3 3 3 7

XHMM1 - - - - 7 3 7

XHMM2 - - - - - 3 7

XHMM3 - - - - - - 3

(c) COV dataset

Table 3.8: K-Fold Cross-Validated Paired t-Test

The standard deviation for the gmean could be higher due to the very small number of
fall data in both the datasets (0.0032 for DLR dataset, 0.0899 for MF dataset and 0.0733
for the COV dataset w.r.t. normal activities, see Section 3.7.1). Since the number of
falls are smaller in the test set, a small number of misclassifications can vary the gmean
greatly. This experiment shows that training HMMs on full ‘normal’ data for detecting
unseen falls, and setting a threshold as the maximum of negative log-likelihood on training
sequences is not the right approach and better models can be built when outliers from the
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‘normal’ datasets are removed and thresholds of the traditional HMMs or covariances of
the X-Factor based HMMs are optimized.

3.8.2 Feature Selection

Selecting relevant features from a large set of statistical, time and frequency domain fea-
tures from wearable sensors have been shown to improve results for general activity recog-
nition and fall detection applications [57, 9, 166]. A major challenge in performing feature
selection in the proposed problem of fall detection is that falls data is not available during
the training time; therefore, relevant features are to be selected from the non-fall data. We
used the RELIEF-F feature selection method that is used earlier in activity recognition
tasks [205] and gave reasonable performance in comparison to other feature selection meth-
ods. The RELIEF-F method computes a weight for each feature in terms of how well they
distinguish between the data points of the same and different classes that are near to each
other. We used the MATLAB function for performing feature selection using RELIEF-F
with the nearest neighbors per class set to 10. This method does not remove redundant
features, it rather provides a ranking of features in order of their merit for classification.
The features are ranked using individual normal activities as the classes, and fall data is
not used because we assume that it is not available during the training. We choose the top
10 and top 20 features, that represent around one-third and two-third of the total features,
and train the models discussed in the experiments in Section 3.8.1 with these reduced sets
of features to study their effect on identifying unseen falls. The reason to choose top 10
and top 20 features is to test the performance of the classifiers on a reduced number of
features such that they are not too small or too large. In the top ranked 10 features, most
of the features are time domain and correlation features except for f26 for the COV dataset.
The ranking of features for the three datasets are different due to different activities in
the training data, sampling rates and window sizes. The reduced features, ordered from
highest to lowest rank, for all the datasets are shown in Table 3.9 (refer to Section 3.7.3
and Table 3.2 to see the meaning of features fi shown in Table 3.9).

Figures 3.4, 3.5 and 3.6 show the mean values of the top 5 features for the DLR,
MF and COV datasets when the normal data is used from all the subjects for feature
selection. The features are shown in different bar plots because their scales are different.
The feature values for ‘falling’ activity are only shown for comparison purposes but they
are not used during feature selection. For the DLR dataset, the value of feature f23 is not
much different from other sedentary activities. For the MF dataset, features f3, f30 and f31

do not discriminate falls from other standing and sitting activities. For the COV dataset,
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Figure 3.4: Mean values of the top 5 features for DLR dataset
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Activities
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Figure 3.5: Mean values of the top 5 features for MF dataset
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Figure 3.6: Mean values of the top 5 features for COV dataset
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Datasets
Top Ranked Features

Rank 1− 10 Rank 11− 20
DLR f3,f4,f23,f5,f19, f7,f8,f15,f22,f30,

f14,f9,f20,f10,f13 f18,f31,f6,f29,f11

MF f2,f29,f31,f30,f3, f9,f4,f8,f17,f20,
f11,f19,f13,f22,f7 f18,f5,f6,f23,f12

COV f23,f3,f18,f1,f4, f21,f14,f10,f2,f15,
f13,f11,f26,f8,f19 f9,f12,f20,f22,f5

Table 3.9: Top 10/20 ranked features

f4 and f18 do not discriminate falls from crouching and other sedentary activities. This
can happen because falls data is not considered during selecting features.

Method
20 Features 10 Features

gmean FDR FAR gmean FDR FAR
HMM1full 0 0 0 0.080 0.045 0
HMM2full 0 0 0.0001 0 0 0

HMM1out 0.538 0.424 0.014 0.608 0.499 0.011
HMM2out 0.879 0.909 0.139 0.872 0.904 0.147

XHMM1 0.415 0.271 0.018 0.192 0.107 0.042
XHMM2 0.852 0.933 0.213 0.832 0.933 0.248
XHMM3 0.425 0.288 0.063 0.333 0.209 0.079

HMMNormOut 0.786 0.921 0.317 0.771 0.783 0.217

Table 3.10: Performance of Fall Detection methods on reduced features for DLR dataset
(Compare with Tables 3.5b and 3.5d)

Tables 3.10 and 3.11 show that for the DLR and MF datasets, reducing the num-
ber of features to 20 from 31 decrease the performance of XHMM1 and XHMM3
(and XHMM2 in COV) but increase the performance of HMM2out, XHMM2 and
HMMNormOut. For the COV dataset, the performance is increased inHMM1out, XHMM1,
XHMM3 and HMMNormOut but it is worse than the best performing method with all
the features. When the number of features are reduced from the top 20 to the top 10, the
performance of all the classifiers deteriorates except for HMM1out in the DLR dataset,
XHMM3 in the MF dataset, andHMM1full andHMM2full in the COV dataset, but they
are worse than the best performance of other methods. The degradation of performance

77



Method
20 Features 10 Features

gmean FDR FAR gmean FDR FAR
HMM1full 0.093 0.020 0.007 0 0 0.005
HMM2full 0.106 0.022 0.002 0 0 0.005

HMM1out 0.464 0.247 0.079 0.235 0.085 0.059
HMM2out 0.882 0.872 0.106 0.773 0.734 0.174

XHMM1 0.051 0.008 0.004 0.046 0.006 0.005
XHMM2 0.829 0.957 0.239 0.785 0.763 0.185
XHMM3 0.531 0.333 0.110 0.685 0.542 0.109

HMMNormOut 0.759 0.774 0.163 0.566 0.453 0.127

Table 3.11: Performance of Fall Detection methods on reduced features for MF dataset
(Compare with Tables 3.6b and 3.6d)

Method
20 Features 10 Features

gmean FDR FAR gmean FDR FAR
HMM1full 0.010 0.003 0.0001 0.528 0.322 0.0001
HMM2full 0.010 0.003 0.0001 0.531 0.321 0.0001

HMM1out 0.778 0.635 0.013 0.756 0.597 0.007
HMM2out 0.784 0.710 0.109 0.772 0.691 0.122

XHMM1 0.769 0.626 0.020 0.019 0.005 0
XHMM2 0.714 0.717 0.244 0.703 0.521 0.001
XHMM3 0.415 0.217 0.057 0.257 0.103 0.021

HMMNormOut 0.764 0.757 0.194 0.612 0.709 0.385

Table 3.12: Performance of Fall Detection methods on reduced features for COV dataset
(Compare with Tables 3.7b and 3.7d)

can arise due to two reasons: (1) the data for falls is not used (available) during feature
selection, and (2) feature selection is based on the normal activity classes, rather than
based on falls/non-falls. This experiment also shows that when all the normal classes are
modelled by one HMM and the unseen falls are classified by either an optimized threshold,
or with X-Factor or outliers separately modelled as falls, then selecting relevant features
can improve their performance.
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3.9 Conclusions and Discussion

In this chapter, we presented classification techniques for fall detection that do not require
fall data during the training phase; falls are only presented during testing. We proposed
three new X-factor based HMM approaches that model normal activities using HMMs
based on poses, normal poses and transition between activities, and infer a new HMM (or
a novel state) to model unseen falls. We also proposed improvements to two traditional
HMM based thresholding approaches for fall detection. Based on our results on three real
world activity recognition datasets, we can make the following inferences:

• The methods that use maximum of negative of log-likelihood as fixed threshold to
detect unseen falls are ill posed for this problem.

• Across all the datasets, the methods based on Normal Pose HMM (i.e. XHMM2
and HMM2out) can detect most of the unseen falls; however, the number of false
alarm also increase.

• The performance of the type of HMM i.e. Pose HMM, Normal Pose HMM or Activity
HMM depends on the dataset.

• The performance of improved traditional HMMs (i.e. HMM1out and HMM2out)
that use optimized threshold to detect unseen falls is significantly better than the
methods that use maximum of negative of log-likelihood as fixed threshold to detect
unseen falls. For one dataset (COV dataset) HMM2out perform better than the
proposed X-factor methods.

• Feature selection can be useful to improve the detection rates of the proposed clas-
sifiers.

Despite the fact that falls occur rarely, we can obtain some labelled samples for falls and
their different types. The next chapter explore these ideas and investigate the importance
of labelled fall data for fall detection applications.
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Chapter 4

Supervised Fall Detection

In the previous chapter, we proposed fall detection methods based on X-factor HMMs that
can identify falls in the absence of their training data. We discussed in Chapters 1 and 2
that even though falls occur rarely and infrequently, a few falls samples may be collected
in real world settings [175, 39]. These fall samples may be used to build supervised fall
detection classifiers. However, due to severe skew in the number of falls w.r.t. the normal
activities, classification strategies based on imbalanced learning may need to be adopted
(see Taxonomy (II)a in Figure 2.1). The techniques based on over-sampling the minority
class suffers from over-fitting [28], the techniques based on under-sampling the majority
class may lead to under-fitting or no learning of classifiers due to insufficient amount of
data to train the classifiers. The techniques based on cost-sensitive learning offers a good
alternative to optimize the cost function (instead of accuracy) and take an action to report
or not-report a fall with minimum cost. However, the classifiers must be able to produce
probability estimates of the outcomes and the cost of different actions must be known.
The costs of different actions involved in fall detection are very hard to compute. These
aspects of decision-theoretic modelling are discussed in Chapter 5.

In this chapter, we use the three datasets presented in the previous chapter. We take
into account the labelled data available for falls along with normal activities and conduct
the following experiments:

1. To study the utility of availability of fall data during training on the predictive per-
formance of supervised classifiers, we compare the performance of supervised versions
of the three XHMMs and two non-HMM classifiers.

2. To test our hypothesis that outliers can be used as a proxy for falls, we train the
supervised models that are learned from non-fall data (normal activities sans outliers)
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and falls, and outliers are presented to these models for classification as either a
member of fall or non-fall classes.

3. To study the effect of the quantity of fall data available during the training phase on
the performance of the supervised classifiers, we vary the number of fall data during
training from very small to moderate fall samples and compare the performance when
full falls training data is present and completely absent.

4. For the MF and COV dataset, information about different types of fall were collected.
We perform an experiment for the supervised classifiers, where the model for falls
is trained using full data for one type of fall and tested on the remaining fall types.
The idea behind this experiment is to study the usefulness of known types of falls
to identify new types of falls and compare with the proposed methods when no
information on the type of fall is available.

5. For the MF and COV dataset, where the information about different fall type is
available, we perform supervised classification on different type of falls type to study
their (dis)similarity.

4.1 Training with sufficient fall data

In this experiment we implemented three supervised versions of the proposed XHMM
methods and two non-HMM supervised classification algorithms, assuming the case when
sufficient fall data is available. Sufficient data for falls mean the minimum amount of
training data used to build generalizable classifiers to identify unseen falls. To implement
these classifiers, all the labelled fall events present in the DLR, MF and COV dataset are
used for training and testing. The descriptions of these supervised classifiers are as follows:

1. HMM1sup – HMM1sup is similar to XHMM1, where each normal activity is mod-
elled by a separate HMM by utilizing full ‘normal’ data for each activity; however,
due to the presence of fall data a separate HMM is trained for fall events.

2. HMM2sup – HMM2sup is similar to XHMM2, where the full ‘normal’ activities
are modelled by a general HMM and a separate HMM is trained to model falls using
labelled falls data.

3. HMM3sup – HMM3sup is similar to XHMM3; however, in this case a state repre-
senting ‘actual’ fall activity is added in the HMM and its parameters are calculated
from the labelled fall data.
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Both HMM1sup and HMM2sup use 4 states to model different activities and the
number of states in HMM3sup correspond to the total number of activities in the
dataset (including falls).

4. Random Forest (RF) [175] – The ensemble size in RF is set to 200, where each
decision (or split) in each tree is based on a single, randomly selected feature (this is
the same RF configuration used in the work of Stone and Skubic [175]).

5. Support Vector Machine (SVM) [85] – For SVM classifier, a RBF kernel is used with
width equals to 10. This value of kernel width gave better results than the default
value of 1.

Tables 4.1, 4.2 and 4.3 show the results for the three datasets when all falls and normal
activities data of (N − 1) subjects is used for training the classifiers and the N th subject’s
normal and fall activities are used for testing. This process is repeated N times and the
average metric is reported (see Section 3.7.5). For the DLR dataset (see Table 4.1), the
performance of HMM1sup and HMM2sup is worse than when no training data for falls is
used, whereas HMM3sup show improvement in performance (see Table 3.5b) with SVM
classifier giving equivalent performance to HMM3sup. For the DLR dataset, HMM1sup
misclassifies most of falls as running, and jumping as falls. The RF classifier gave interme-
diate results. For the MF dataset (see Table 4.2), we observe performance improvements
in all the HMM based supervised classifiers in comparison to their counterparts that are
trained in the absence of falls (see Table 3.6b). Except HMM1sup, all of the other super-
vised classifiers give equivalent and superior performance. For the COV dataset (see Table
4.3), we observe similar behaviour to DLR dataset, i.e. the performance of HMM1sup
and HMM2sup is worse than when no training data for falls is used (see Table 3.7b),
whereas HMM3sup show improvement in performance. The SVM classifier gives the best
performance with RF giving similar results.

This experiment shows that HMM3sup models the transition between different activ-
ities (Activity HMM ) consistently performs better than its counterpart XHMM3 in all
the three datasets. The reason for this improvement in results is that the parameters of
the model and transitions probabilities can be accurately modelled in the supervised case
due to the presence of labelled fall data in the training set. In XHMM3, the parameters
for the novel state are estimated using the X-Factor approach and those parameters may
not provide a good estimate to detect unseen falls in all the datasets.

We also train the above mentioned supervised classifiers on all the labelled fall data
and the “non-falls” data (obtained by removing outliers from the ‘normal’ data, see Figure
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Method gmean FDR FAR
HMM1sup 0.768 0.719 0.054
HMM2sup 0.601 0.533 0.087
HMM3sup 0.938 0.908 0.021

RF 0.622 0.496 0.001
SVM 0.929 0.885 0.015

Table 4.1: Supervised Fall Detection with full training data for falls and all normal activities
for DLR dataset (compared with Table 3.5).

Method gmean FDR FAR
HMM1sup 0.489 0.259 0.038
HMM2sup 0.925 0.939 0.084
HMM3sup 0.969 0.988 0.045

RF 0.962 0.937 0.012
SVM 0.985 0.994 0.025

Table 4.2: Supervised Fall Detection with full training data for falls and all normal activities
for MF dataset (compared Table 3.6).

Method gmean FDR FAR
HMM1sup 0.234 0.084 0.002
HMM2sup 0.699 0.546 0.069
HMM3sup 0.738 0.574 0.011

RF 0.848 0.735 0.006
SVM 0.884 0.821 0.040

Table 4.3: Supervised Fall Detection with full training data for falls and all normal activities
for COV dataset (compared with Table 3.7).

3.2 and Section 3.6). Tables 4.4, 4.5 and 4.6 show the results for the DLR, MF and COV
datasets. We observe that when supervised classifiers are trained using falls and “non-
falls”, some improvement in the FDR and higher FAR is achieved. The reason for higher
FDR and FAR is that the supervised classifiers are trained on the “non-fall” data that
have already removed some outliers; therefore, the mean values of the Gaussian in the
HMMs are attenuated resulting in increase in accuracy in detecting falls.

The supervised classification techniques discussed above show similar behaviour in mis-
classifying certain short-term activities as falls. Nathasitsophon et al [130] and Qiang et
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Method gmean FDR FAR
HMM1sup 0.789 0.732 0.061
HMM2sup 0.591 0.527 0.092
HMM3sup 0.933 0.911 0.036

RF 0.680 0.573 0.001
SVM 0.945 0.917 0.020

Table 4.4: Supervised Fall Detection with full training data for falls and all non-fall activ-
ities for DLR dataset (compared with Table 3.5 and Table 4.1).

Method gmean FDR FAR
HMM1sup 0.555 0.325 0.039
HMM2sup 0.922 0.937 0.089
HMM3sup 0.968 0.988 0.047

RF 0.964 0.941 0.013
SVM 0.984 0.992 0.024

Table 4.5: Supervised Fall Detection with full training data for falls and all non-fall activ-
ities for MF dataset (compared with Table 3.6 and Table 4.2).

Method gmean FDR FAR
HMM1sup 0.497 0.277 0.007
HMM2sup 0.710 0.568 0.074
HMM3sup 0.741 0.578 0.016

RF 0.864 0.767 0.013
SVM 0.884 0.829 0.049

Table 4.6: Supervised Fall Detection with full training data for falls and all non-fall activ-
ities for COV dataset (compared with Table 3.7 and Table 4.3).

al. [102] discuss that jumping and falling signals have many similarities; other activities
like sitting or lying down on the floor quickly [175], and suddenly stopping during running
or walking may produce a fall-like event [1]. Mannini and Sabatini [116] show that the
presence of spurious training data in the HMM for activity recognition can significantly
deteriorate the classification performance. These idiosyncrasies of human activities, com-
pounded with erroneous labelling and imperfect sensor readings can impact supervised
classification performance. Therefore, removing the spurious data from the activities and
performing supervised classification can improve the overall performance of fall detection
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algorithms. This finding is consistent with other research works [141, 32, 7], where artifacts
were removed from the sensor data to improve the overall performance of fall detection
classifiers.

4.2 Are outliers representative of proxy for falls?

In Section 3.6 we assume that the outliers/deviant sequences in the normal activities can
be used as a proxy for falls to estimate the parameters ω and ξ. We conduct an experiment
to validate this assumption and evaluate the conditions when outliers can be a good choice
as a proxy for falls. We used the two supervised HMMs (discussed in the previous Section
4.1; HMM1sup and HMM2sup), with the only difference that during the testing phase we
present the “outliers” to the classifiers instead of normal and fall data. The idea is that
some of the outliers that are rejected by the model for normal activities (or the general
‘non-fall’ concept) will be classified as falls as they differ from the “non-fall” activities (or
from the general ‘non-fall’ concept), due to spurious sensor readings, labelling errors or
inadvertent artifacts. We now discuss the coverage parameter and the results of the above
experiments in detail.

1. The parameter ω represents the percentage of data points that are within the non-
extreme limits of log-likelihoods given an HMM model for activities. Further, the
lower quartile (Q1), the upper quartile (Q3) and the inter-quartile range (IQR =
Q3 −Q1) can be used to compute the %age area of coverage as follows:

s = [Q1 − ω ∗ IQR,Q3 + ω ∗ IQR]

%coverage = 2 ∗ N (s, 0, 1)− 1

where N (s, µ, σ) [120] returns the standard normal cdf at each value in s, with mean,
µ = 0 and standard deviation, σ = 1. Table 4.7 shows the relationship between ω
and %coverage. We observe that as the parameter ω is increased, the coverage area
increases and fewer outliers are rejected. In the present analysis, we want ‘some’
outliers to be rejected from the normal data; therefore, we choose ω = ωCV = 1.5
that represents 99.3% coverage (see discussion in Section 3.6). The value of ω can
also be calculated using cross-validation; however, this can increase the number of
parameters used to optimize the proposed XHMM methods.

2. HMM1sup : We train separate HMMs using all the labelled fall data and each
of the “non-fall” activity (i.e. obtained after removing outliers from the normal
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ω %age area coverage
0.500000 0.822656
1.000000 0.956975
1.500000 0.993023
1.723900 0.997300
2.000000 0.999255
3.000000 0.999998

Table 4.7: Relationship between ω and %age coverage

data). During the testing phase, the rejected “outliers” from each normal activity
are presented to each of the classifiers and LOOCV is performed for all subjects. We
define a metrics Rf (i) as:

Rf (i) =
#outliers of activity i classified as fall

#Total outliers of activity i
(4.1)

which is the ratio of the number of outlliers of an activity i classified as a fall to the
total number of outliers for that activity.

We show the results on the DLR dataset, when the outliers are rejected from normal
data and tested on Subject 13 (the results are consistent with the results for the
other subjects). Table 4.8 shows the confusion matrix after classifying the outliers as
one of the classes (normal activities or fall). Since there are no fall data to be tested,
there is no row for falls data in the confusion matrix. We observe that the outliers of
normal activities ‘Jumping’ and ‘Running’ are most of the time classified as ‘Falls’,
the outliers from the activities ‘Walking’ and ‘Lying’ are sometimes classified as fall,
whereas outliers from ‘Sitting’ and ‘Standing’ are mostly classified as non-fall. This
provides evidence that short term dynamic activities can have variations among each
other and some of them may not be identified correctly in their respective classes.
The number of outliers for the ‘Jumping’ and ‘Running’ activities are smaller in
comparison to the other activities because their training data is less in comparison to
the other activities. The outliers of these two activities were substantially different
from their training data; therefore, a few outliers from them can be used as a proxy for
falls and estimating the parameters of models for unseen falls discussed in Chapter
3. This observation is consistent with the results of Experiment in Section 4.1,
where HMM1sup misclassifies between most of falls, jumping and running activity.
Similar experiments on the MF dataset are shown for Subject 8. From the confusion
matrix shown in Table 4.9, we observe that only the step-in car activity’s outliers
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Predicted Labels

A
ct

u
al

L
ab

el
s A B C D E F G Rf (i)

A 0 1 0 0 0 0 8 0.889
B 1 2 1 0 0 0 9 0.692
C 0 1 193 0 0 0 100 0.340
D 0 0 43 141 78 299 12 0.0210
E 0 0 182 641 269 53 34 0.029
F 0 0 0 0 0 102 65 0.389

Table 4.8: Confusion Matrix and Rf (i) for DLR dataset. The alphabetical labels
and the activity correspondence is: A=Jumping, B=Running, C=Walking, D=Sitting,
E=Standing, F=Lying, G=Falling.

are classified as falls and the rest of the outliers for other “non-fall” activities are
classified as non-falls. It is to be noted that the ‘Sitting’ activity generated no outliers;
therefore, all the entries in the corresponding row are 0 and Rf (Sitting) is NaN .
This observation is also consistent with the results discussed in Section 4.1, where
HMM1sup misclassifies step-in car and fall activity. Table 4.10 shows the confusion
matrix for the COV dataset after classifying the outliers as one of the classes (normal
activities or fall) for Subject1. We observe that most of the outliers of the near-falls
activities are classified as a fall and some outliers from ‘Walking’ are classified as fall.
This observation is consistent with the results from Section 4.1, where HMM1sup
misclassifies near-falls and fall activity.

3. HMM2sup: We model all the labelled “non-fall” activities (i.e. obtained after re-
moving outliers from the normal data) by a general HMM and all the labelled falls
activities using a separate HMM. During the testing phase, the rejected “outliers”
from each activity are presented to both the classifiers and LOOCV (see Section
3.7.5) is performed for all subjects. We define a metric, Rf as:

Rf =
#outliers of normal activity classified as fall

#Total outliers
(4.2)

which is the ratio of the number of outliers from normal activities classified as falls
to the total number of outliers in the dataset.

The mean Rf across all subjects for the DLR, MF and COV datasets are 0.0801,
0.5726, and 0.4753. For the MF and COV dataset, the outliers are mostly classified
as falls and for the DLR dataset, they are classified as non-falls. This means that
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Predicted Labels
A

ct
u
al

L
ab

el
s A B C D E F G H I Rf (i)

A 1 0 0 0 0 0 1 0 2 0.500
B 0 2 0 0 0 0 1 0 0 0
C 0 0 7 24 0 0 0 0 0 0
D 0 0 0 12 0 0 1 0 0 0
E 0 0 0 0 0 0 0 0 0 NaN
F 0 0 0 0 172 14 49 0 0 0
G 0 0 4 0 0 0 9 13 1 0.037
H 0 1 0 0 0 0 0 44 0 0

Table 4.9: Confusion Matrix and Rf (i) for MF dataset. The alphabetical labels and the
activity correspondence is: A=Car-in, B=Car-out, C=Jogging, D=Jumping, E=Sitting,
F=Standing, G=Stairs, H=Walking, I=Falling.

Predicted Labels

A
ct

u
al

L
ab

el
s A B C D E F G Rf (i)

A 13 0 0 0 3 0 39 0.709
B 28 0 0 0 22 0 2 0.039
C 77 0 0 0 31 12 6 0.048
D 40 2 0 0 19 0 2 0.033
E 3 1 0 0 90 0 27 0.287
F 19 3 0 0 9 4 0 0

Table 4.10: Confusion Matrix and Rf (i) for COV dataset. The alphabetical labels and the
activity correspondence is: A=Near Fall, B=Standing, C=Lying, D=Sitting, E=Walking,
F=Crouching, G=Falling.
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the general HMM trained on non-fall data for the DLR dataset could not identify
most of the outliers correctly. This observation is consistent with the results shown
in Row 2 of Tables 4.5 and 4.6, where HMM2sup for MF and COV dataset performs
much better in terms of gmean and FDR in comparison to DLR dataset.

Based on the above experiments, we can conclude that in the absence of falls data
during training, rejected outliers from the normal activities can be used as a proxy for
falls, provided they are very different from the samples of normal activities or the general
concept of normal activity. For HMM1, where each activity is modelled separately, some
of the activities’ outliers are similar to falls. For HMM2sup, where all non-fall activities
are modelled together by a general HMM, some of these outliers cannot be modelled by
this general HMM and are thus classified as falls. The outliers that are similar to falls
are the ones which are either different from the model of each “non-fall” activity or from
the general “non-fall” model. Therefore, these outliers can be used as a proxy for actual
falls to optimize the parameter ξ to build the proposed XHMMs and ω for the traditional
HMMs. However, it is to be noted that since these rejected outliers are not actual falls
and only some of them are similar to falls, this could result in increased FDR and FAR
in the proposed XHMMs. We cannot set a threshold on the number of outliers identified
as falls (e.g. choose outliers from an activity if Rf (i) > 0.5) because during the training
phase we do not have fall data. The above experiment is only meant to demonstrate the
rationale for choosing outliers as a proxy for falls, given labelled data for falls.

4.3 Training with few falls

In real world situations, training data for falls in naturalistic settings is difficult to obtain
due to its rarity and risks involved for the subjects. However, falls data may be artificially
generated in controlled laboratory conditions but that may not be the true representative
of actual falls, can distort the actual probability of occurrence of falls w.r.t. the normal
activities and induce a bias to simplify classification of falls. Therefore, the presence of
abundant fall data to train supervised classifiers (as discussed in Section 4.1) represents an
optimistic view on data collection of actual falls. However, in some scenarios, few fall data
samples may be available during training as opposed to our problem formulation (where
falls may not have been encountered before or no data for it exists) along with sufficient
data for normal activities. This type of classification problem is known as learning with
imbalanced data where the majority class dominates the minority class (for e.g. normal
activities vs falls). There exists several standard techniques to handle such a scenario.
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‘Over-sampling’ the minority class is a popular technique to counter learning with im-
balanced datasets but it can lead to overfitting[27]. The general idea of these methods
is to generate synthetic data similar to the minority class to populate the feature space.
However, these techniques may not be very useful in fall detection applications because
falls are diverse and artificial datasets may not simulate new types of falls accurately. The
other technique is ‘under-sampling’ the majority class (or the normal activities); however,
if the minority class (i.e. falls) is rare then under-sampling may lead to under-fitting. The
other possibility is to under-sample the majority class to a certain level [175] but imbal-
ance among the number of instances in both the classes may still remain. Lastly, the errors
made by majority and minority may be weighted differently [39]; however, such weights
are difficult to find.

Keeping this view in mind, we extend the experiment discussed in Section 4.1, by
supplying a controlled amount of fall data during the training phase. We train all the
supervised classifiers by randomly choosing 1, 2, 4, 6, 8, 10, 25, and 50 falls samples from
the full fall data. To avoid classification bias due to random choice of fall data, we run this
experiment 10 times (per test subject) and report the average value of the performance
metrics. This experiment is intended to study the effect of varying the number of fall data
in building supervised classifiers and compare the performance with the proposed classifiers
that are trained without fall data.

Figure 4.1 shows the performance of supervised classifiers when falls data is varied
from 1 to 50 during the training phase for the DLR dataset. It can be observed that
all the supervised classifiers perform worse when the training data for falls is very small.
Figure 4.1 shows that as the number of samples in the training data for falls increases,
HMM3sup and SVM start to perform better than other the supervised classifiers, but
shows equivalent performance to XHMM3 (shown by • on the y-axis representing no
training data for falls). The performance of XHMM3, which requires no fall data for
training is much better than its supervised counterpart (HMM3sup) when a small number
of training samples for falls is available. Figure 4.2 shows the results for MF dataset when
the number of falls are increased in the training data. It is observed that the performance
of HMM2sup starts to improve when some fall data are added in the training set, whereas
other classifiers perform worse with limited training samples for falls. XHMM2 (shown by
• on the y-axis representing no training data for falls) and HMM2sup with small number
of training samples for falls show comparable performance. As the number of fall samples
increase in the training set, HMM3sup and SVM outperform other methods. Figure 4.3
shows the performance of the supervised classifiers when the number of training data for
falls is increased for the COV dataset. The HMM2out method (shown by • on the y-axis
representing no training data for falls) performs better than other classifiers when very few
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Figure 4.1: Effect of varying the amount of fall data in supervised learning on DLR dataset.
The best performing X-Factor approaches is shown on the y-axis corresponding to zero
training data (compared with Table 3.5b, Section 3.8).
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Figure 4.2: Effect of varying the amount of fall data in supervised learning on MF dataset.
The best performing X-Factor approach is shown on the y-axis corresponding to zero
training data (compared with Table 3.6b, Section 3.8).
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Figure 4.3: Effect of varying the amount of fall data in supervised learning on COV dataset.
The best performing X-Factor approaches is shown on the y-axis corresponding to zero
training data (compared with Table 3.7b, Section 3.8).
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fall data is available for training. As the number of training data is increased, performance
of HMM1sup, HMM2sup, HMM3sup and SVM also increase. Overall for the DLR and
MF datasets, we see that at least ∼ 10 falls are required (out of 84 fall segments for
DLR and 488 for MF dataset) to make supervised approaches worthwhile, whereas for the
COV dataset at least ∼ 50 falls (out of 908 fall segments) are required. The number of
fall samples required in the COV dataset to make supervised methods useful is more due
to the presence of the near-fall events, which gets misclassified with falls and reduce the
overall performance.

The experiments on these datasets suggest that when the number of fall samples in-
crease in the training set, HMM3sup and SVM perform better in terms of high gmean and
FDR and low FAR than other classifiers. The rate of increase of performance of SVM is
slower than HMM3sup as more training data for falls becomes available. The performance
of HMM1sup and HMM2sup increase initially when the number of fall data increases but
flatten out as more fall data is added to the training set. The rate of increase of the
performance of the RF classifier, as more fall data is available during training, is slower
than other classifiers. The results show that RF could not train generalizable classifiers
when the training data is highly imbalanced. This experiment suggests that supervised
classifiers trained on very limited fall data can not build generalized and robust models
and thus fail to classify new and unseen falls in comparison to the proposed models that
can identify falls even when they were not observed before. Alternatively, this experiment
also shows that the proposed approaches for fall detection work better in comparison to
their respective supervised methods when training data for falls is scarce. It is to be noted
that the supervised methods cannot handle training the classifiers in the absence of falls,
whereas the proposed X-factor approaches can learn in the absence of training data for
falls and identify unseen falls with high gmean and FDR.

4.4 Is knowing a type of fall useful?

A fall can occur in diverse ways, i.e. backward, forward, sideways on with abrupt body
movements. Although annotating different types of falls is difficult, in some cases infor-
mation about some types of falls may be available. However, a future fall may occur in a
different style than the existing information available about fall types in the training set.
In this experiment, we conduct an experimental study to understand the importance of
knowing one type of fall in the training set and testing it on other types of falls and its
effect on the overall performance of a fall detection system.

This experiment is done on the MF and COV dataset where the information on the
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types of falls is known. We train the three HMM based and two non-HMM based supervised
methods described in Section 4.1, each with full data for normal activities and one type
of fall and test on the normal activities and all types of falls. This experiment is intended
to utilize prior information about one type of fall during training, and test the ability of
these models to identify new types of falls.

The four types of falls present in the MF dataset are [189]:

1. Back-sitting-chair (Fall1MF ) – Fall backward while trying to sit on a chair.

2. Forward-lying (Fall2MF ) – Fall Forward from standing, use hands to dampen fall.

3. Front-knees-lying (Fall3MF ) – Fall forward from standing, first impact on knees.

4. Sideward-lying (Fall4MF ) – Fall sideways from standing, bending legs.

The six types of falls present in the COV dataset are [137]

1. Fall Forward (Fall1COV )

2. Fall Backward (Fall2COV )

3. Fall Right (Fall3COV )

4. Fall Left (Fall4COV )

5. Real Forward Fall (Fall5COV )

6. Real Backward Fall (Fall6COV )

The real forward and backward falls are collected by standing the subjects on a
wobble board while blindfolded and trying to balance, they are pushed from behind
(or front) to fall forward (or backward) onto a cushion and remained lying down for
10 seconds.

Table 4.11 shows the performance of the supervised classifiers on the MF dataset, when
they are trained using one type of fall and tested on all types of falls and normal activi-
ties. We observe that, except RF, all other classifiers perform either similar or better in
comparison to when all falls types were used for training (see Table 4.2). The performance
of these classifiers is also better than when no information about falls is present (see rows
for XHMM1, XHMM2 in Table 3.6b and XHMM3 in Table 3.6d).
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Table 4.12 shows the performance of the supervised classifiers for the COV dataset
when only one type of fall is used for training and tested on all types of falls and normal
activities. We observe that both RF and SVM perform worse in comparison to when all the
type of fall data is used for training (see Table 4.3); however, it is still better than the HMM
based supervised classifiers. The rest of the classifiers perform similar or better when full
training data is available, except for HMM1sup and HMM2sup trained on Fall2COV and
Fall6COV and when HMM1sup is trained on Fall1COV . The performance of HMM3sup is
better than XHMM3 (see Table 3.7d) and other HMM-based supervised classifiers is worse
than their counterparts that don’t use training data (see rows for XHMM1, XHMM2 in
Table 3.7b)

This experiment on the MF and COV datasets provide evidence that knowing a type
of fall can be helpful in identifying other types of falls that were not seen in the training
set.

4.5 Discrimination among different types of falls

In the previous section we observe good performance of the supervised classifiers in iden-
tifying unseen types of falls, when only one type of fall is presented during training. This
result is possible when different types of falls are difficult to classify among themselves.
To test this hypothesis, we perform the following experiment. We train HMM1sup and
HMM3sup on 4 types of falls present in the MF dataset and 6 types of falls present in the
COV dataset to observe the discrimination among different types of falls. We also train
HMM2sup s.t. one HMM is trained on one type of fall and the other types of falls are
joined to train the other HMM, and this process is repeated for all the four types of falls.
Similarly for the RF and SVM supervised classifiers, one type of fall is labelled as positive
and others are joined together as negative and a classifier is trained on them, and repeated
for every type of fall. We define precision and recall as the metrics for identifying a type
of fall as:

recalli =
#correctly identified fall type i

#Total number of instances of fall type i

precision =
#correctly identified fall type i

#Total number of instances predicted as a fall type i

The recalli is the rate of correctly identified falls of type i from all the actual fall
instances of that type. The precision shows the rate of correctly identified falls of type i
from all the instances predicted as that fall type.
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Fall Type Method
MF

gmean FDR FAR

Train on Fall1MF ,

HMM1sup 0.463 0.232 0.0144
HMM2sup 0.921 0.937 0.090
HMM3sup 0.977 0.961 0.007

Test on RF 0.817 0.673 0.004
Fall1, 2, 3, 4MF SVM 0.972 0.967 0.023

Train on Fall2MF ,

HMM1sup 0.564 0.330 0.004
HMM2sup 0.909 0.943 0.118
HMM3sup 0.975 0.998 0.044

Test on RF 0.829 0.692 0.003
Fall1, 2, 3, 4MF SVM 0.964 0.950 0.022

Train on Fall3MF ,

HMM1sup 0.463 0.237 0.003
HMM2sup 0.922 0.917 0.069
HMM3sup 0.995 0.998 0.007

Test on RF 0.784 0.641 0.004
Fall1, 2, 3, 4MF SVM 0.953 0.924 0.015

Train on Fall4MF ,

HMM1sup 0.674 0.490 0.040
HMM2sup 0.921 0.929 0.082
HMM3sup 0.981 0.967 0.005

Test on RF 0.777 0.614 0.002
Fall1, 2, 3, 4MF SVM 0.935 0.887 0.012

Table 4.11: Supervised Fall Detection for MF dataset with full training data for a type of
fall and tested on all types of falls (compared with Tables 4.2, 3.6b and 3.6d).

Table 4.13 shows the average recall and precision values, averaged over all the subjects,
for each type of fall by employing the supervised classifier for the MF dataset. We observe
low recall and precision values for the different type of falls, which shows that for each
type of fall, many instances were wrongly misclassified to others and vice-versa. The NaN
values for precision arise because for at least one subject, a type of fall is completely
misclassified as an other type and no other type of fall is misclassified in it.

For the COV dataset, 3 subjects did not have data from one of the category of falls
so they were removed in that analysis. Table 4.14 shows the average recall and precision
values, averaged for all the remaining subjects, for each type of fall by employing different
supervised classification algorithms for the COV dataset. We observe that HMM-based
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Fall Type Method
COV

gmean FDR FAR

Train on Fall1COV ,

HMM1sup 0.072 0.017 0.0004
HMM2sup 0.659 0.486 0.062
HMM3sup 0.765 0.620 0.009

Test on RF 0.733 0.557 0.002
Fall1, 2, 3, 4, 5, 6COV SVM 0.812 0.681 0.021

Train on Fall2COV ,

HMM1sup 0.050 0.014 0.0002
HMM2sup 0.537 0.329 0.036
HMM3sup 0.793 0.658 0.007

Test on RF 0.563 0.343 0.001
Fall1, 2, 3, 4, 5, 6COV SVM 0.657 0.455 0.023

Train on Fall3COV ,

HMM1sup 0.766 0.621 0.019
HMM2sup 0.781 0.728 0.140
HMM3sup 0.727 0.569 0.007

Test on RF 0.527 0.320 0.002
Fall1, 2, 3, 4, 5, 6COV SVM 0.441 0.222 0.013

Train on Fall4COV ,

HMM1sup 0.756 0.605 0.020
HMM2sup 0.772 0.813 0.245
HMM3sup 0.756 0.606 0.007

Test on RF 0.449 0.234 0.001
Fall1, 2, 3, 4, 5, 6COV SVM 0.407 0.185 0.018

Train on Fall5COV ,

HMM1sup 0.679 0.492 0.017
HMM2sup 0.786 0.738 0.146
HMM3sup 0.742 0.588 0.011

Test on RF 0.699 0.482 0.002
Fall1, 2, 3, 4, 5, 6COV SVM 0.730 0.581 0.073

Train on Fall6COV ,

HMM1sup 0.027 0.008 0
HMM2sup 0.576 0.384 0.048
HMM3sup 0.755 0.605 0.010

Test on RF 0.565 0.342 0.001
Fall1, 2, 3, 4, 5, 6COV SVM 0.7143 0.560 0.077

Table 4.12: Supervised Fall Detection for COV dataset with full training data for a type
of fall and tested on all types of falls (compared with Tables 4.3, 3.7b and 3.7d ).
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Method Fall Type Recall Precision

HMM1sup

Fall1MF 0.242 0.531
Fall2MF 0.445 0.425
Fall3MF 0.281 NaN
Fall4MF 0.677 0.508

HMM1sup

Fall1MF 0.404 0.210
Fall2MF 0.122 0.107
Fall3MF 0.597 0.188
Fall4MF 0.268 0.145

HMM3sup

Fall1MF 0.705 NaN
Fall2MF 0.616 0.842
Fall3MF 0.392 NaN
Fall4MF 0.795 0.743

RF

Fall1MF 0.556 0.173
Fall2MF 0.953 0.287
Fall3MF 0.874 0.274
Fall4MF 0.908 0.261

SVM

Fall1MF 0.425 0.158
Fall2MF 0.788 0.306
Fall3MF 0.683 0.287
Fall4MF 0.643 0.250

Table 4.13: Recall and Precision for MF dataset using supervised algorithms for identifying
different types of falls.

supervised classifier show low recall and NaN values for precision. This means that most
of the time, a fall type is not correctly identified and other type of falls were not classified
into this type. The RF and SVM classifiers show high values of recall for most of fall
types (except Fall1COV and Fall5COV ) but with low values of precision. This means that
most of fall types are correctly identified, but there were too many other type of falls
that were classified as this type of fall. This shows that these classifiers perform poor in
discriminating individual type of falls efficiently.

This experiment suggests that the studied supervised classification models are unable
to discriminate between the different types of falls. A possible reason could be that the
training data for falls may not be sufficient to build efficient supervised classifiers. Based
on these experiments, we can conclude that, since it is difficult to identify different falls
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individually for these datasets; therefore, presence of data of one type of fall can help in
better identification of other types of falls (as shown in Tables 4.11 and 4.12).

Method Fall Type Recall Precision

HMM1sup

Fall1COV 0 NaN
Fall2COV 0 NaN
Fall3COV 0.714 0.293
Fall4COV 0.635 0.103
Fall5COV 0.162 NaN
Fall6COV 0 NaN

HMM1sup

Fall1COV 0.004 NaN
Fall2COV 0.083 NaN
Fall3COV 0.203 0.NaN
Fall4COV 0 NaN
Fall5COV 0.009 NaN
Fall6COV 0.569 0.184

HMM3sup

Fall1COV 0.077 NaN
Fall2COV 0.385 NaN
Fall3COV 0.077 NaN
Fall4COV 0.039 NaN
Fall5COV 0.308 NaN
Fall6COV 0.115 NaN

RF

Fall1COV 0.518 0.135
Fall2COV 1 0.133
Fall3COV 1 0.130
Fall4COV 1 0.122
Fall5COV 0.865 0.248
Fall6COV 0.996 0.238

SVM

Fall1COV 0.219 0.069
Fall2COV 0.948 0.160
Fall3COV 0.942 0.151
Fall4COV 0.939 0.148
Fall5COV 0.475 0.167
Fall6COV 0.996 0.306

Table 4.14: Recall and Precision for COV dataset using supervised algorithms for identi-
fying different types of falls.
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4.6 Conclusions and Discussion

In this chapter, we experimentally showed that:

• Removing outliers from the normal activities can improve the performance of fall
detection classifiers. These outliers can also be used as proxies for falls to opti-
mize parameters for the proposed X-Factor HMM methods that learn models in the
absence of training data for falls.

• When very little amount of fall data is available, the performance of supervised
classifiers deteriorates significantly.

• Supervised classifiers cannot handle learning a model for falls without their data
present during training.

• The classifiers proposed in Chapter 3 that do not use training data for falls give better
performance in comparison to the supervised case when very few training data for
falls is available.

• Knowing a type of fall is useful to identify other types of falls in a supervised setting.

• Differentiating different types of falls is hard.

The datasets used in our experiments are collected in semi-naturalistic and laboratory
settings; therefore, most of them are simulated falls. Previous research [82] showed that
some characteristics of falls that were detectable in simulated falls were not detectable in
real life falls. The reason is that self-initiated, intentional falls may differ from sudden and
unexpected falls [156]. It is worth pointing out that fall detectors are mostly aimed at older
people because they are at more risk of falling [179]; therefore, their involvement is desirable
in the development of such technologies. However, very few studies use real-world fall data
from the older adults [74], which makes it difficult to validate fall detection systems on the
elderly people. This is important because fall mechanics, compensatory movements and
reaction time may be different in elderly people in comparison to young adults [78, 38, 106].
Huynh et al. [72] note that in their study, as younger adults perform the ADLs for testing
purposes instead of the elderly, they may not fully simulate the actual activities of seniors
and such fall detection systems may require re-adjustments of the classification thresholds
(or boundaries) to perform well for the elderly. Many studies on fall detection consider
activities like running or jumping as normal activities, which an elderly person may not
perform in real life due to frailty and may not be a good representative of the normal
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ADL for the elderly people. Therefore defining a concept of ‘normal activities’ of different
age-groups of people is important for the successful realization of fall detection systems.

The absence of falls during training of the proposed classifiers show higher detection
rate for falls at the cost of increase in the false alarms rate (see Section 3.8.1). Yin
et al. [199] mention that due to the scarcity of abnormal activities (e.g. falls), it is a
challenging problem to design a detection system that can reduce both false positives and
false negatives. The studies of Debard et al. [39] and Stone and Skubic [175] suggest that
in a long term experimental setup, a few real falls may be collected to train the classifiers.
The results obtained in Section 4.3 show that as the number of fall data increases, the
results improve both in terms of higher gmean and FDR and lower FAR in comparison to
the proposed methods that do not use training data for falls. The results get even better
when full data for falls is used (see Section 4.1). These results suggest that the strength
of the proposed methods is the development of a default fall detection system that has a
good detection rate for falls albeit more false alarms because falls are not observed earlier.
Then use the system to collect more real-world fall data and use traditional supervised
classification algorithms to construct better fall detection classifier.

In the next chapter, we take a novel decision-theoretic approach for fall detection when
the training data for falls is absent and the utilities/cost of different actions are not avail-
able.
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Chapter 5

Decision-Theoretic Reporting of
Unseen Falls

In Chapters 3, we addressed the problem of fall detection from the perspective of classi-
fication in the absence of their training data. We used a maximum likelihood approach
to estimate the parameters for normal activities and then used a X-Factor approach to
derive the parameters for falls to help in the classification of unseen falls in the test set. In
Chapter 4, we showed that the models built using the X-Factor approach perform better
than the supervised case when the training data for falls is limited. In this Chapter, we
shift focus from classification to decision-theoretic reporting of falls, when the training data
for falls is not available. In this chapter, we build the concept of expected utility for fall
detection and propose a framework to handle this scenario.

Decision-theoretic formulation deals with the notion of costs or utilities. The costs
involved in a fall detection systems are not necessarily monetary, they may refer to waste
of time, severity of an illness or medical condition, happiness, pain etc [48]. Let us now
look at the different costs that are involved in a fall detection system:

• The cost of false alarm – reporting a non-fall as a fall. This may include paying extra
for the ambulance services every time an action is reported as a fall. For economically
well off individuals, this cost may not be a big issue; however, for an ordinary person
this cost can be non-sustainable beyond a point. If a fall detection system produces
a lot of false alarms, a person may reject the system eventually and this will put
him/her at more risk.
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• The cost of missed alarm (MA) – not-reporting a fall. Missing to report a fall is
the worst outcome in terms of cost because it could lead to loss of life or physical
impairment or long-term rehabilitation, which everyone would want to avoid.

• The cost of true positive (TP) – reporting a fall correctly. Reporting an actual fall is
highly desirable; however, it may have some cost associated with it as well because
a fall may have caused injury that may lead to medical expenses and stress to the
person and family. For elder adults this action can have more utility than younger
adults because of the frailty and subsequent delayed recovery of seniors.

• The cost of true negative (TN) – not-reporting a non-fall. This actions costs nothing
to the person and is an outcome with highest utility.

It is clear that in a fall detection system, the cost/utilities of different actions are not the
same; however, they are hard to estimate. They can also vary across individuals depending
upon different factors such age group, economic situations or readiness to bear the costs,
previous history of syncope or fall, current overall health condition. Due to the rarity
of the minority class (falls) or absence of its data during training, it is very difficult to
build a cost-sensitive classification model as the traditional techniques may not be directly
applied. However, once the notion of costs is developed and probability estimates are
computed, the classification problem is degenerated to taking an action with minimum
cost or maximum utility. This formulation of problem is different from the ones presented
in Chapters 3 and 4 because here we are optimizing a cost function instead of trying to
find a probability threshold that optimizes a performance metric (gmean in our case) for
the task of classification. Rather, in this chapter, we use a decision-theoretic approach to
optimize the cost function to enable an agent to take a rational decision under uncertainty
to report or not-report a fall or non-fall. The research question we address in this chapter is
‘Is it good to report an activity as a fall?’, which is also different from the research question
addressed in Chapter 3 ‘Is an activity a fall?’.

In this chapter, we first provide a brief introduction to decision theory, followed by
the proposed decision-theoretic framework for fall detection (dtFall). We take a bayesian
approach and present a novel method to compute the expected likelihood of falls when
their data is not available during training, by parameterizing falls. Then we present a
exploratory cost estimation model to find an appropriate range of utilities to be used in
a decision-theoretic fall reporting system. We show results of the proposed methods on
three activity recognition datasets. In our problem formulation

1. We do not restrict the form of the likelihood function; hence, it will be more flexible
to be applied on different data sets.
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2. Unlike likelihood ratio, which can be biased when the data set is relatively small, a
global utility function is introduced to encode prior knowledge about fall detection.

3. When falls data is unavailable during training, we take a bayesian approach to average
over the parameter space of all possible likelihood functions.

5.1 Decision Theory

Decision theory is a normative theory i.e. it describes how a rational agent should take
decisions [160]. Decision theory provides a rational framework to an agent to choose be-
tween alternative states when the consequences resulting from these choices are imperfectly
known [134]. Let us denote the preferences of a rational agent as

A � B the agent prefers A over B

A ∼ B the agent is indifferent between A and B

A % B the agent prefers A over B or is indifferent between them

where A and B are the outcomes of each action; such a set is referred to as a lottery. A
lottery with different possible outcomes S1, . . . , Sn that occur with probabilities p1, . . . , pn
is written as

L = [p1, S1 : p2, S2 : . . . pn, Sn]

There are six constraints on preferences that all rational agents must obey [160]:

1. Orderability: Given two lotteries, a rational agent must either prefer one over the
other or is indifferent to them i.e.

exactly either A � B or B � A or A ∼ B holds.

2. Transitivity: Given three lotteries, if a rational agent prefers A over B and B over
C, then the agent must prefer A over C i.e.

(A � B) ∧ (B � C) =⇒ (A � C).
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3. Continuity: If there is a lottery B between A and C in preferences, there is a proba-
bility p for which the rational agent will be indifferent in getting B for sure and the
lottery that yields A and C with probabilities p and 1− p i.e.

A � B � C =⇒ ∃p[p,A; 1− p, C] ∼ B.

4. Substitutability: If a rational agent is indifferent between two lotteries A and B,
then it will be indifferent to two more lotteries that are the same except that B is
substituted with A in one of them, i.e.

A ∼ B =⇒ [p,A : 1− p, C] ∼ [p,B : 1− p, C]

5. Monotonicity: If two lotteries have the same outcomes, and an agent prefer A over
B, then the agent must prefer the lottery with higher probability for A, i.e.

A � B =⇒ (p > q ⇔ [p,A; 1− p,B] � [q, A; 1− q, B]).

6. Decomposability: Compound lotteries can be decomposed to simpler ones, i.e.

[p,A; 1− p, [q, B; 1− q, C]] ∼ [p,A; (1− p)q, B; (1− p)(1− q), C].

An agent that violates these constraints on preferences will exhibit irrational behaviour
in some situations. The agent’s preferences are captured through a utility function U(.)
that assigns a number to express the desirability of a state or that maps from lotteries
to real numbers. The process of finding the utility function is called preference elicitation
[41], where by different choices are presented to the agent and by observing its preferences
a utility function can be inferred. Any utility function can be normalized to lie in the
interval [0, 1].

The expected utility of an action is the average utility value of the outcomes weighted
by the probability that the outcome occurs. Mathematically, the expected utility (or value)
VE of an action O is defined as:

VE =
∑
i

piu(xi) (5.1)

where pi is the probability of outcome xi and u(.) is a utility function that defines the
subjective utility of xi. The subjective utility of xi is weighted by the probability with
which outcome i occurs.

EUT Expected Utility Theory (EUT) assumes that[164]

• Decision makers’ preferences are consistent, ordered and context insensitive.
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• Decision makers make choices based on the change in final value of the outcomes of
their choices, not on the basis if that change is a gain or a loss.

• Utility functions are subjective maps of the objective values of possible outcomes,
where the shape of the function reflects the nature of a decision maker’s attitude
towards risk.

5.2 Decision-Theoretic Framework - dtFall

The following section builds the concept of decision-theoretic fall detection and compares
it with the traditional ML classifier based on a fixed threshold on posterior probabilities.

5.2.1 Formulation for Fall Detection

A fall detection system’s job is to report a fall and remain passive otherwise. Let us use R
to denote a binary decision variable where R = r means the report is made (that an action
is a fall) and R = r̄ means there is no report made. Similarly, let F denote a binary random
variable where F = f means there is a fall and F = f̄ means there is no fall. There are
therefore four different situations one needs to consider, as shown in the following utility
table (see Table 5.1), where U(F,R) gives the utility for the outcome F after the decision
R. Let us define a cost function, C(F,R) = 1−U(F,R), which is the inverse of the utility
function U(F,R) and shows the normalized cost of a decision R for an outcome F .

R F U(F,R) C(F,R) Remark
r̄ f 0 1 Miss Alarm
r f̄ q 1− q False Alarm
r f p 1− p True Positive
r̄ f̄ 1 0 True Negative

Table 5.1: Utility Table.

We have deliberately set the U(F = f̄ , R = r̄) = 1 for the best possible situation (there
is no fall and no report), and U(F = f,R = r̄) = 0 for the worst (there is a fall and it
is not-reported). The other two utilities will be somewhere in between, to be determined
through some preference elicitation mechanism or expert knowledge. Using Table 5.1 and
Equation 5.1 we compute the expected value of generating a report (R = r) given an
observation o as:
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V (R = r|o) = Pr(f̄ |o)U(f̄ , r) + Pr(f |o)U(f, r)

Applying Bayes’ theorem and substituting the values of utility from Table 5.1, we get

V (R = r|o) =
1

Pr(o)
[Pr(o|f̄)Pr(f̄)q + Pr(o|f)Pr(f)p] (5.2)

and the expected value of not generating a report (R = r̄) given an observation o as:

V (R = r̄|o) =
1

Pr(o)
Pr(o|f̄)Pr(f̄) (5.3)

Let D(o) be a decision function which maps an observation o to a binary [1, 0] repre-
senting the decision to [report, not-report], respectively. For example, a simple threshold
function on the posterior over falls would be:

D(o) =

{
1, P r(f |o) ≥ τ

0 otherwise
(5.4)

where τ is a probability threshold. Then, the expected value for applying this decision
function for observation o is

Q(o) =
1

Pr(o)
([Pr(o|f̄)Pr(f̄)q + Pr(o|f)Pr(f)p]D(o) + Pr(o|f̄)Pr(f̄)[1−D(o)]) (5.5)

The EUT formulation for fall detection works well when the true distributions for falls
and non-falls are known. Moreover, if we don’t have a model for falls, this approach can
not be applied directly. We discuss these ideas in more detail in Section 5.3 and present a
particular technique to infer a model for unseen falls using a GMM and X-Factor approach
in Section 5.6.

We now start with a supervised case for the ML and the EUT case, when sufficient
training data is available for both falls and non-falls. Then we show the theoretical decision
functions and provide a definition for the regret of using EUT instead of ML. The decision
surfaces for each are shown in Figure 5.1. For each value of p and q, if the posterior Pr(f |o)
is above the surface, the decision is to report a fall.
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5.2.2 Maximum Likelihood Decision Function

The traditional supervised method for reporting falls is based on the normalized posterior
probability of falls and non-falls and not on the expected value of generating a report /
not-report. We call it the ML approach. In this case, τ = 0.5 in Equation 5.41, and the
decision surface is a horizontal plane (independent of p and q in Figure 5.1).

5.2.3 Expected Utility Decision Function

The rational decision is to maximize over the expected values, and so the decision surface
can be deduced by equating

V (R = r|o) = V (R = r̄|o)
and, setting Pr(f |o) = 1− Pr(f̄ |o)

from Equations 5.2 and 5.3, we get

Pr(f |o) =
1

1 + p
1−q

(5.6)

Thus, in the decision function D, τ = 1
1+ p

1−q
, and we call this the EUT approach and τ

is called a theoretical threshold for the EUT approach to report falls. The decision surface
is now curved in Figure 5.1 and we can see regions where the decisions will be different
than for the ML case. Specifically, when p < (1 − q), the EUT approach will report less
falls, whereas the opposite is true when p > (1 − q). When p = (1 − q), the two decision
functions are the same; therefore, ML becomes a limiting case of EUT.

We define the expected regret for taking a decision based on the EUT decision function
(rather than the ML one) as the difference between the two value functions given by
Equation 5.5. The expected regret can also be explained as the summation of regrets for
falls and non-falls for using EUT instead of ML. Denoting QS(p, q, o) as the value when
using D(o) (ML) and QL(p, q, o) as the value when using D(o) (EUT), we have the regret
for a particular value of p and q defined as

regret(p, q, o) = QL(p, q, o)−QS(p, q, o) (5.7)

1Putting Pr(f |o) = Pr(f̄ |o) and setting Pr(f |o) = 1− Pr(f̄ |o))
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Figure 5.1: Decision surface for EUT and ML classifier.

Theorem 1 The regret, regret(p, q, o), is always greater than or equal to zero.

Proof: Lets us denote x = Pr(f |o) and τ = 1
1+ p

1−q
. In Figure 5.1, there are four regions:

1. x > 0.5, x > τ : regret = [(1− x)q + xp] ∗ (1− 1) + (1− x) ∗ (0− 0) = 0

2. x > 0.5, x <= τ : regret = [(1− x)q + xp] ∗ (−1) + (1− x) ∗ 1 > 0, since x <= τ

3. x <= 0.5, x <= τ : regret = [(1− x)q + xp] ∗ (0− 0) + (1− x) ∗ (1− 1) = 0

4. x <= 0.5, x > τ : regret = [(1− x)q + xp] ∗ 1 + (1− x)(−1) > 0, since x > τ

�

The positive regret means that it will be always worthwhile to figure out what p and
q are and take the corresponding rational decision2. However, this will only be true if we
have a correct observation model for falls and non-falls i.e. Pr(o|f) and Pr(o|f̄). The
EUT approach may fail if the model is incorrectly estimated from the data. For example,
we may have insufficient training data for one of the classes (e.g. falls), which may cause
our estimation to be biased towards the other classes. In a specific case, when there is no
data for falls, the model that may be learnt is impoverished and insufficiently expressive
to separate falls from non-fall data. Due to these problems, the theoretical threshold
discussed in Equation 5.6 may not work appropriately. We consider this issue in Section
5.5 and present a modified thresholding algorithm to tackle it.

2We show a boundary value analysis to present the behaviour of EUT classifier in Appendix A
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Figure 5.2: Graphical representation of a fall detection.

5.3 Decision-making without training data for falls

We are considering a OCC case where we have lots of training examples for F = f̄ , but
none for F = f (see Table 5.1). Thus, we have some estimate of Pr(o|f̄) but we don’t for
Pr(o|f), where o is an instance of a random variable O that represents the observations.
Taking a bayesian approach, we characterize our uncertainty about this function with a
set of parameters θf describing a model, such that Pr(o|f) ≡ Pr(o|f, θf ). We can then
compute the expected value of likelihood of the parmeterized model for falls with respect
to the distribution of Pr(θf |D), where D = {o1, o2 . . . oN} is a set of instances of O that
represents the observed training data.

Figure 5.2 shows a graphical representation for a fall detection problem. Let O rep-
resents a random variable representing the observations, F represents the binary variable
F = {f, f̄} as defined in Section 5.2, θ0 and θF are the parameters of the parametric
distributions F and O. Therefore, the expected value to report given the training data D
and a new sample o can be written as:

V (R = r|O = o,D) =
∑
F

∫
θF ,θ0

Pr(F, θF , θ0|o,D)U(F,R = r)

∝
∑
F

∫
θF ,θ0

Pr(o|F, θF , θ0,D)Pr(F |θF , θ0,D)Pr(θF |θ0,D)Pr(θ0|D)U(F, r)

Assuming o is independent of D and θ0, given F , and representing (O = o) as o, we get
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V (R = r|o,D) ∝
∑
F

∫
θF ,θ0

Pr(o|F, θF )Pr(F |θ0)Pr(θF |D)Pr(θ0|D)U(F, r)

∝
∑
F

∫
θF

Pr(o|F, θF )Pr(θF |D)

∫
θ0

Pr(F |θ0)Pr(θ0|D)U(F, r)

We assume Pr(θ0|D) = δ(θ0 − Pr(F )), so θ0 is unknown, we get

V (R = r|o,D) ∝
∑
F

∫
θF

Pr(o|F, θF )Pr(θF |D)Pr(F |θ0 = Pr(F ))U(F, r)

∝
∑
F

∫
θF

Pr(o|F, θF )Pr(θF |D)Pr(F )U(F, r)

Expanding the terms, we get

V (R = r|o,D) ∝
∫
θf̄

Pr(o|f̄ , θf̄ )Pr(θf̄ |D)Pr(f̄)U(f̄ , r)+

∫
θf

Pr(o|f, θf )Pr(θf |D)Pr(f)U(f, r)

Substituting U(f̄ , r) = q and U(f, r) = p from Table 5.1, we get

V (R = r|o,D) ∝
∫
θf̄

Pr(o|f̄ , θf̄ )Pr(θf̄ |D)Pr(f̄)q +

∫
θf

Pr(o|f, θf )Pr(θf |D)Pr(f)p

Now we assume Pr(θf̄ |D) = δ(θf̄ − Pr(o|f̄)), so θf̄ is unknown, we get

V (R = r|o,D) ∝ Pr(f̄)q

∫
θf̄

Pr(o|f̄ , θf̄ = Pr(o|f̄)) + Pr(f)p

∫
θf

Pr(o|f, θf )Pr(θf |D)

∝ Pr(f̄)qPr(o|f̄) + Pr(f)p

∫
θf

Pr(o|f, θf )Pr(θf |D)

∝ Pr(o|f̄)Pr(f̄)q +EPr(θf |D) [Pr(o|f, θf )]Pr(f)p

(5.8)

where EPr(θf |D) [Pr(o|f, θf )] is the expected likelihood of the unseen falls and denotes
the expectation of Pr(o|f, θf ) with respect to the distribution of Pr(θf |D). The value
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of parameters of unseen falls, θf , is derived from the parameters inferred for the normal
activities using the X-Factor approach. A specific case of computing the expected likelihood
of the unseen falls using a GMM is discussed in Section 5.6.

Similarly, the expected value to not-report a new observation o can be written as:

V (R = r̄|o,D) =
∑
F

∫
θF ,θ0

Pr(F, θF , θ0|o,D)U(F,R = r̄)

From Table 5.1, U(f, r̄) = 0 and U(f̄ , r̄) = 1, we can simplify the above equation as

V (R = r̄|o,D) ∝ Pr(o|f̄)Pr(f̄) (5.9)

5.4 Problems with Theoretical Threshold

The EUT method works well when the true distribution for falls and normal activities is
known. The decision-theoretic probability threshold, τ = 1

1+ p
1−q

to take an action with

maximum utility is also derived under the same assumptions. However, in a real-world
scenario these assumptions may not hold good due to limited training data, limitations of
learning algorithm and underlying assumptions regarding the model and its parameters,
spurious sensor data and labelling errors. Therefore, instead of a true model, we may learn
an impoverished model for the training data that may not be expressive enough and may
not provide accurate estimation of true probabilities of the models for falls and non-falls.
We consider a case when falls are not available during training; therefore, the expected
likelihood of the unseen falls that is derived from the parameters inferred for the normal
activities (EPr(θf |D) [Pr(o|f, θf )], see Equation 5.8) may not represent actual likelihood of
falls. The posterior probability estimates, thus obtained may be biased and over-estimated
in comparison to the true model for falls. The computation of the theoretical threshold
assumes that the probabilities are obtained from the ‘true’ models for falls and non-falls;
however, in practice the probabilities are obtained from the impoverished model. In our
case, we have limited training data for non-falls and a parameterized model for falls with
no training data for them, which can further exacerbate the estimation of probabilities.

We now define regret of using EUT instead of ML for the problem when fall data is not
present during training and discuss a case when the theoretical threshold may not be the
right choice.
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5.4.1 Regret

The datasets collected in laboratory settings can contain many instances of real or simu-
lated falls along with other normal activities. Our experimental method consists of splitting
these datasets into training and test sets (see Section 5.7), and then building classifiers on
the training sets, computing decisions (based on ML and EUT decision functions) on the
test sets, and then using the results to estimate the expected regret incurred in a real
situation where falls occur infrequently. The data available for training and testing the
models may contain many more falls (and less non-falls) than one would expect in a real
situation. Therefore, for cost sensitive classification during the testing phase, it needs to
be re-scaled with the actual fraction of falls and non-falls expected in real data.

Let us now define,

(i) ∆U(f, r) – the difference in the number of reported falls (true positives) in the
experimental test set between EUT and ML.

(ii) ∆U(f̄ , r) – the difference in the number of reported non-falls (false alarms) in the
experimental test set between EUT and ML.

(iii) ∆U(f̄ , r̄) – the difference in the number of not-reported non-falls (true negatives) in
the experimental test set between EUT and ML.

It is to be noted that the absolute value of the difference of false alarms between
EUT and ML is the same as the absolute value of the difference of true negatives
between them.

In Section 5.2.3, we defined expected regret as the summation of regrets for falls and
non-falls for using the EUT instead of the ML. Now, we define regretUtilityp,q as the
expected regret of using the EUT instead of the ML decision function in a real situation
with α falls and β non-falls s.t. β � α. We compute this using the expected regret on the
experimental dataset, so that

regretUtilityp,q =Regret for fallspq + Regret for non-fallspq

=
∆U(f, r)pα

Nf

+

(
∆U(f̄ , r)q + ∆U(f̄ , r̄)

)
β

Nf̄

(5.10)

where Nf and Nf̄ are the number of falls and non-falls in the experimental test set. We use
the average expected regret (across all subjects) as a metric to evaluate the performance
of the EUT and ML methods. We assume that in the test set, both Nf > 0 and Nf̄ > 0,
otherwise regretUtilityp,q will be undefined.
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5.4.2 Negative Regret

The decision regions for theoretical thresholds for ML and EUT in Figure 5.1 are based
on the assumption that the true models for falls and non-falls are learned from sufficient
data. As discussed earlier, in a real world scenario there may be only limited training data
available for non-falls and no training data for falls. Therefore, the models learnt can be
impoverished, less expressive and the probability estimates may be biased. In such cases, a
situation can arise when the regret may not remain positive. This can happen when EUT
wrongly reports a normal activity as a fall instead of not-reporting it, whereas ML does
not report it. Therefore, EUT will have less not-reported non-falls than ML, which means
that in the expression for regret in Equation 5.10, ∆U(f̄ , r̄) < 0, when multiplied by β
(and q 6= 1) it will result in negative regret.

In the decision surface shown in Figure 5.1, this region corresponds to the case when
the posterior probability of fall for a non-fall observation o lies between 0.5 and τ , and
p > 1− q (bottom-right region of Figure 5.1). In this region, if EUT wrongly reports o as
a fall instead of not-reporting it, regret will become negative. We now give examples from
the three activity recognition datasets discussed in Chapter 3 to show the occurrence of this
situation. After segmentation and feature extraction, we joined all the normal activities
together and trained a GMM for them (the number of mixtures are equal to the number of
normal activities), and trained an approximate model for falls with no training data using
the X-Factor approach and expected likelihood (more details presented in Section 5.6 and
5.7). We trained on the normal data of (N − 1) subjects and tested on the normal and
fall data of N th subject. Figures 5.3a, 5.3b and 5.3c show the results on one test subject
for the DLR, MF and COV datasets. The x and y axis show the test instances and their
corresponding posterior probability of falls. The red circles (◦) are the actual non-falls
and the blue diamonds (�) are the actual falls in the test data. The dashed line (−−) is
the theoretical threshold of 0.5 for ML and the continuous line (–) shows the theoretical
threshold for EUT, which is set below ML’s threshold to τ = 0.3 s.t. p > 1 − q (when
p > 1 − q, EUT threshold will be less than 0.5). If both ML and EUT report an activity
when their thresholds are greater and 0.5, and both do not-report when their thresholds
are less than 0.3, the regret is zero. The region of interest is between the thresholds of
0.5 and τ = 0.3, where the labels of actual normal activities are printed in the plot when
EUT wrongly reports them as falls. We observe that for DLR dataset, few instances of
jumping and walking are wrongly reported as falls. For MF dataset, few instances of
jogging and jumping are wrongly reported as falls and for COV dataset, instances of near-
falls and lying are wrongly reported as falls. If the theoretical threshold for EUT is further
reduced, it can make more wrong predictions. In Chapters 3 and 4, we experimentally
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Figure 5.3: Posterior probabilities of falls for each observation in the test set.

showed that some normal activities in these datasets bear similarity to falls, specially
the ones that have sudden change in acceleration such as jumping, jogging or near-falls.
The distribution of posterior probabilities in Figure 5.3 show that the model learned for
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falls is biased and many normal activities are identified as falls by both EUT and ML.
One GMM model may not be expressive enough to represent different types of normal
activities; moreover, the data for each normal activity is limited. The model for falls is
obtained by varying only the covariance of the model for normal activities (more details in
Section 5.6), thus it may not be accurate. Since we don’t know how unseen falls may look
like, the approximate model for falls may result in more false alarms. This problem is also
discussed in Chapter 3. The negative regret also means that due to inexpressive models,
the posterior probabilities are over-estimated. This can lead to many instances of normal
activities to be incorrectly reported, when they should not be. A possible solution to handle
this situation is to empirically set a threshold for EUT that is more conservative than the
theoretical threshold to these over-estimated probabilities. We now discuss an empirical
thresholding method that can counter the problems that may be encountered with using
the theoretical threshold and can handle imperfect models for falls and non-falls.

5.5 Empirical Threshold

Sheng and Ling [167] present a threshold adjusting method, Thresholding, for selecting an
empirical threshold from the training instances according to the misclassification cost. This
method can convert any cost-insensitive algorithm to cost-sensitive one by searching for
the probability that minimizes the misclassification costs across all the training instances
as the threshold for predicting the test instances. The advantage with Thresholding is
that it is least sensitive when the difference in misclassification costs is high, it also does
not require accurate estimation of probabilities, rather an accurate ranking is sufficient
and an internal cross validation method can be used to search for an empirical threshold
[103]. The internal cross validation method looks for a threshold in the probability of
an observation given each class and optimizes that by using an exhaustive search over all
possible thresholds. Thresholding has been shown to outperform previous meta-learning
cost-sensitive methods and even the theoretical threshold in most cases as it almost always
produces the lowest misclassification cost. Thresholding does not introduce any bias by
data manipulation, provides a more direct solution, and could be applied as a first choice
before trying other approaches [42]. However, the disadvantage with using Thresholding
is that it takes additional time in searching for the best empirical threshold from all the
probabilities corresponding to every training set. That means that for every probability
threshold the base classifiers has to be executed for every training sample, following by a
sorting algorithm to find the best threshold. Due to limited training data, this technique
may also lead to sub-optimal choice of the empirical threshold.
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Figure 5.4: Typical total misclassification cost curves [167]
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As suggested by Sheng and Ling [167], the total misclassification cost Mc is a function
of threshold (T ), i.e. Mc = f(T ); T can be any given threshold used for classification. The
misclassification cost curve is generated by computing the cost at every possible threshold.
In practice the training data is limited; therefore, the number of thresholds are equal to
the total number of training samples. From this pool of thresholds, an empirical threshold
is chosen that minimizes the misclassification cost on the training set. Fig 5.4a shows the
ideal misclassification cost curve with one global minimum. Sheng and Ling [167] present
two more types of situations that might occur for misclassification cost curves in a realistic
setting. Fig 5.4b shows multiple local minima for the misclassification cost corresponding
to different thresholds, where one minimum is smaller than the rest and in Fig 5.4c where
two minima are same. The last situation can be tackled by a heuristic to choose the local
minima with a wider valley. To avoid overfitting, the Thresholding algorithm chooses the
best probability threshold using a validation set and use it to predict the instances in the
test set (test instances are not used for searching the best threshold.).

For fall detection, during training and testing we expect very few falls but sufficient
non-fall activities. However, data collected in laboratory settings can have excess instances
for falls (and less instances for non-falls) than the real scenario. We can use these excess
falls to build models for falls but during testing, we need to re-scale both falls and non-falls
by factors α and β to make the classifier cost-sensitive. Considering this severely skewed
scenario, we modify the Thresholding algorithm (mTh). To simulate a real scenario, we
re-scale the test instances and compute regret as shown in Equation 5.10. To choose
an empirical threshold from the training data, we need to re-scale the training data by
factors α and β in the internal cross-validation step to compute the utility (followed by
maximization) that represents actual occurrence of falls and non-falls. The utility can be
computed from a confusion matrix, CM , as follows:

Utility =
CM(1, 1)pα

Nf

+
(CM(1, 2)q + CM(2, 2))) β

Nf̄

(5.11)

where CM(1, 1) is the number of correctly reported falls, CM(1, 2) is the number of
wrongly predicted falls (false alarm), CM(2, 2) is the number of correctly predicted non-
falls. Nf , Nf̄ , α and β are same as defined in Equation 5.10. The mTh algorithm is shown
in Figure 5.5, where a base learner can be any probabilistic model learned using training
data for falls and non-falls, predicted probability is the likelihood (or posterior probability)
of a fall for an observation given the base learner, and confusion matrix is the grouping of
all predictions according to their actual and predicted labels. The mTh algorithm shown
in Figure 5.5 is meant for EUT; however, it can be adapted for the ML case by performing
the following changes:
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• A ML classifier does not use expected utility (as shown in Equation 5.11) as its
performance metric. In Section 3.7.5, we discussed gmean as a performance metric
for a ML classifier when we expect more normal activities than falls during testing. To
reflect the performance in a real situation with α falls and β non-falls, the expression
for gmean can be written as:

gmean =

√√√√√( CM(1, 1) α
Nf

(CM(1, 1) + CM(2, 1)) α
Nf

)
∗

 CM(2, 2) β
Nf̄

(CM(2, 2) + CM(1, 2)) β
Nf̄


=

√(
CM(1, 1)

(CM(1, 1) + CM(2, 1))

)
∗
(

CM(2, 2)

(CM(2, 2) + CM(1, 2))

) (5.12)

where CM(2, 1) is the number of wrongly predicted non-falls (missed alarm), and
other symbols have the same meaning as defined previously. The above expression
for gmean in Equation 5.12 and the one shown in Table 3.4 are the same. Therefore,
in line 9 of mTh algorithm, Ui is to be replaced by gmeani for the ML case.

• The for loop for utilities p and q on line 2 of the mTh algorithm is to be removed
because they are not used in computing the performance metric in the ML case.

5.5.1 One-Class Classification Case

The mTh algorithm discussed above cannot be directly applied in the OCC case due to
the absence of falls samples in the validation set of the internal cross validation step (see
Step 1(iii) of Algorithm 5.5) for optimizing the probability threshold. In Chapter 3, we
presented a method to reject outlier data from the normal activities using inter-quartile
range (IQR) and use them as proxies for falls to estimate the parameters of the unseen falls
(see Section 3.6). That technique is presented for HMMs, by calculating the log-likelihood
of normal activities training sequences and setting a user-defined threshold to reject a small
percentage of outlier data points from this class. These rejected outliers may not be actual
falls; however, they are seen as deviations from the non-fall activities. Experiments in
Chapter 4 (see Section 4.2) show that these rejected outliers from normal activities can
serve as a proxy for falls. This outlier rejection technique from normal activities can be
extended to any classifier that output probabilities.
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Input: Training Data oi ∈ O (both falls and non-falls), Number of Instances N
Output: Empirical Threshold, pm

1 Apply K-fold cross validation on O, For each fold

(i) Divide the training data into internal training set and validation set

(ii) Apply the base learner on the internal training set

(iii) Predict and store probability of a fall for each instance in the validation set given
the base learner

(After Step 1, a probability vector (pi) of length N is created)
2 for each m = {p, q} index of a p, q combination do
3 for i← 1 to N do
4 P = pi
5 Initialize the confusion matrix
6 for j ← 1 to N do
7 Compare pj with P and update the confusion matrix
8 end
9 Compute the utility (Ui) from the confusion matrix according to Equation

5.11
10 end
11 τm = argmax

i
Ui

12 (Use τm as empirical threshold to predict test instances and compute regret on
the test set according to Equation 5.10)

13 end
14 return pm

Figure 5.5: mTh algorithm for finding the empirical threshold for the EUT case.

We used a similar strategy, by first training a GMM for all the normal activities and
compute the likelihoods for each observation of the training set. Then, we reject outliers
from the normal activities by using the IQR technique on the likelihoods on the training
data. The rejected outliers are chosen as a proxy for fall class. The remaining normal
activities are termed as non-falls. The rejected outliers can be plugged into the mTh
algorithm as members of unseen fall class. Therefore, the input to the mTh algorithm
is a training set comprising non-falls and outliers (but no real falls). Thus, an inner
cross validation step can be performed for the threshold optimization to find an empirical
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threshold using the mTh algorithm. This empirical threshold is used to identify unseen
falls in the test set that comprises of both normal and fall activities. A block diagram for
the mTh algorithm for the OCC case is shown in Figure 5.6

5.6 Mixture of Gaussian X-factor model

In Section 5.3, we presented a technique to parameterize falls and compute the expected
likelihood when the training data for falls is absent. Note that the form of Pr(o|f, θf ) is not
restricted in the proposed setting. In this section, we examine a particular case of GMM
for falls and non-falls, and examine a particular prior distribution over model parameters
to model EPr(θf ) [Pr(o|f, θf )]. We propose to model unseen falls by using the X-factor
approach [150, 88], which differs from the model for non-fall data only in the variance and
the mean remains the same as non-falls.

Assuming the training observations available from normal activitiesD, let all the normal
activities be modelled by a GMM [5]:

Pr(O = D|f̄) =
K∑
k=1

wk
1√

(2π)n|Σk|
e−

(O−µk)TΣ−1
k

(O−µk)

2

For a Gaussian X-factor model, falls activity can be modelled as follows:

Pr(O = D|f, θf ) =
K∑
k=1

wk
1√

(2π)n|θfkΣk|
e
−

(O−µk)TΣ−1
k

(O−µk)

2θfk

where θf = (θf1, . . . , θfK)T is the model parameter, each θfk ∈ [1,∞], k = 1, . . . , K,

and wk satisfies wi ≥ 0 and
∑K

k=1wk = 1. Note that the models for normal activities and
falls only differ in their covariances, which is parameterized by θf .

Let us consider the case of one Gaussian mixture component to represent an activity.
Based on Equation 5.8, the expected likelihood of a new observation o, given f and θf , is
given by

EPr(θf )[Pr(o|f, θf )] =

∫ θfmax

θfmin

Pr(θf )√
(2π)n|θfΣ|

e
− (O−µ)TΣ−1(O−µ)

2θf dθf (5.13)

124



Training set (no falls)Training set (no falls)
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Generate probability thresholds pool
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and Outliers

Train the models for Non-Falls 
and Outliers

Evaluate on Test set (normal 
activities and falls)

Evaluate on Test set (normal 
activities and falls)

Figure 5.6: Block Diagram of the mTh algorithm for the OCC case.
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Assume Pr(θf ) to be uniform distribution and θfmin ≥ 1. It is the most simple and
straight-forward assumption for a prior distribution. However, this distribution will not
give us a closed form result for EPr(θf )[Pr(o|f, θf )] and the integral will need to be evaluated
numerically. We use MATLAB’s integral function [121] that uses global adaptive quadra-
ture method for computing an approximation of the integrand. To use the above result
for a mixture of Gaussian, the expected value is multiplied by the weight of each Gaussian
component and summed over all components to get the overall expected likelihood value
for unseen falls:

EPr(θf )[Pr(o|f, θf )] =
K∑
k=1

wkEPr(θfk)[Pr(o|f, θfk)] (5.14)

Equation 5.14 shows the expected likelihood of the unseen falls that is computed from
the parameters inferred for the normal activities using GMM and does not involve observing
the actual fall events. The modified thresholding algorithm (see Figure 5.5) that uses
GMM and reject outliers from the normal activities to set an empirical threshold is shown
in Appendix B.

5.7 Experimental Analysis

We perform experiments on three activity recognition datasets discussed in Section 3.7.1
and extract features as discussed in Section 3.7.3 and shown in Table 3.2. In these exper-
iments, for each of the datasets, all the normal activities are joined together to represent
a non-fall class. During the training phase, only the data from normal activities are used
and for testing, data from both the normal and falls classes are used. GMM can give
underflow error due to the large number of features; therefore, we employ the Relief-F
feature selection algorithm (see Section 3.8.2) and choose the first 15 top ranked features
from the total list of features. This number is chosen to select main features that are
useful in classification without getting an underflow error. To estimate the performance of
the proposed classifiers, we perform leave-one-subject-out cross validation (as discussed in
Section 3.7.5), where normal activities from (N−1) subjects are used to train the classifiers
and the N th subject’s normal activities and fall events are used for testing. This process
is repeated N times and the average performance metric is reported. The performance on
the test set is evaluated in terms of the regret of using EUT instead of ML (see Equation
5.10).
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5.7.1 Parameters Setting

For every dataset, one GMM corresponding to normal activities data is trained. The
experiments involve setting several parameters, which are discussed below:

• Number of mixtures in a GMM for modelling non-fall data = Number of non-fall
activities present in the data.

• The values of utilities p and q ∈ [0, 1] with a step size of 0.1.

• The pseudo counts for falls and non-fall activities per year is α = 2.6, β = 3.15569×
107 [56]. Since the DLR dataset is sampled at 1.28 seconds, the MF dataset at
3 seconds and the COV dataset at 2.56 seconds; the value of α and β are scaled
accordingly.

• The EM algorithm is initialized by K-means clustering and maximum number of
iterations are set to 100. This number is set such that either the K-means converges
or exit after sufficient iterations.

• Diagonal covariance matrix is used and shared by all Gaussian components.

• A non-negative regularization number (= 0.0001) is added to the diagonal of covari-
ance matrices to make them positive-definite.

• 2-fold internal cross validation is used to find the empirical threshold from the training
data (see algorithm in Figure 5.5).

• ω = 1.7239, the threshold to reject outliers from normal activities. This number
represent 99.73% coverage area and we need very few outliers as proxy for falls from
the normal activities.

• θfmin = 1 and θfmax = 100 (see Equation 5.13). θfmax is also tested for larger values,
however the results did not change much but the execution times increased a lot due
to numerical evaluation of a large interval.

5.7.2 Theoretical Threshold

We first show the results on the three activity recognition datasets to identity unseen falls
by using dtFall with the theoretical threshold shown in Equation 5.6. Figures 5.7a, 5.7b
and 5.7c show the mean regret between EUT and ML for DLR, MF and COV datasets
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across all subjects and averaged over actual number of activities (i.e. mean regret divided
by α+β

sampling rate
).

As discussed in Section 5.4, due to imperfect models for falls and non-falls, we obtain
negative regret for p > 1− q. In this case, the value of the theoretical threshold for EUT
is less than ML that leads EUT approach to incorrectly report more than ML. This will
lead to EUT to not-report less non-falls (or true negatives) than ML, which would lead to
negative regret (as described in Section 5.4.2). This experiment highlights the problems
associated with using a theoretical threshold in a decision-theoretic framework when no
training data is available for the minority class and an approximated model is inferred for
it.

5.7.3 Empirical Threshold

We now show the results on the three activity recognition datasets to identity unseen falls
by using dtFall with the empirical threshold obtained in Section 5.5.

Figures 5.8a, 5.9a and 5.10a show the mean of the expected value (Q(p, q, o)) for apply-
ing the decision function using EUT and ML classifiers for DLR, MF and COV datasets,
for all the values of utilities p and q across all subjects and averaged over actual number
of activities. The mean expected value for applying the EUT decision function is always
greater than ML. Figures 5.8b, 5.9b and 5.10b show the contour maps of the regret of
employing EUT instead of ML on the DLR, MF and COV dataset for different utilities p
and q across all subjects and averaged over actual number of activities. For all the values
of p and q utilities, the regret is positive. However, we observe a general pattern that the
regret depends more on utility q and is less dependent on utility p.

We observe that, for all the datasets, the empirical threshold is most of the time bigger
than the ML threshold of 0.5. The reason for the large value of the empirical threshold
is due to the maximization of the utility function (see Equation 5.10 and mTh algorithm
in Figure 5.5). In this step, higher utility is obtained for a given probability threshold,
if more non-falls (re-scaled by β) are classified correctly in comparison to falls (re-scaled
by α). In our setting β � α; therefore, the probability threshold is chosen in the inner
cross-validation step of mTh s.t. it is a large value. A larger probability threshold leverages
more non-falls to be correctly identified, at the cost of missing some falls – but their effect
on the overall utility is minimal because they occur rarely in the test set. The value of
the empirical probability threshold does not change much for different values of p and q
(except for the boundary condition q = 1) because for each p and q the training set is the
same; therefore, the model for falls and non-falls is the same. Hence, the pool of probability
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(a) DLR dataset

0 0.106 0.096 0.085 0.074 0.064 0.053 0.042 0.032 0.021 0.010 0
0.1 0.018 0.016 0.013 0.011 0.008 0.006 0.004 0.003 0.001 0 7.57e-10
0.2 0.013 0.011 0.009 0.007 0.006 0.004 0.002 0.001 0 -0.001 1.51e-09
0.3 0.010 0.009 0.006 0.005 0.004 0.002 0.001 0 -0.001 -0.001 2.27e-09
0.4 0.008 0.006 0.005 0.003 0.002 0.001 0 -0.001 -0.001 -0.001 3.03e-09

p 0.5 0.006 0.004 0.003 0.002 0.001 0 -0.001 -0.001 -0.001 -0.001 3.78e-09
0.6 0.005 0.003 0.002 0.001 0 -0.001 -0.001 -0.001 -0.001 -0.001 4.54e-09
0.7 0.003 0.001 0.001 0 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 5.30e-09
0.8 0.002 0.001 0 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.001 6.05e-09
0.9 0.001 0 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.001 6.81e-09
1 0 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 7.57e-09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

(b) MF dataset

0 0.151 0.135 0.120 0.105 0.090 0.075 0.060 0.045 0.030 0.015 0
0.1 0.026 0.022 0.018 0.015 0.012 0.009 0.005 0.003 0.001 0 1.19e-10
0.2 0.018 0.014 0.011 0.008 0.006 0.004 0.003 0.001 0 -0.001 2.38e-10
0.3 0.012 0.010 0.007 0.006 0.004 0.002 0.001 0 -0.001 -0.001 3.56e-10
0.4 0.009 0.007 0.006 0.004 0.002 0.001 0 -0.001 -0.001 -0.001 4.75e-10
0.5 0.007 0.005 0.004 0.003 0.001 0 -0.001 -0.001 -0.001 -0.001 5.94e-10

p 0.6 0.005 0.004 0.003 0.001 0 -0.001 -0.001 -0.001 -0.002 -0.002 7.13e-10
0.7 0.004 0.003 0.001 0 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 8.32e-10
0.8 0.003 0.001 0 -0.001 -0.001 -0.001 -0.002 -0.003 -0.003 -0.002 9.50e-10
0.9 0.001 0 -0.001 -0.001 -0.001 -0.002 -0.003 -0.003 -0.003 -0.002 1.07e-09
1 0 -0.001 -0.001 -0.001 -0.002 -0.003 -0.003 -0.003 -0.003 -0.002 1.19e-09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

(c) COV dataset

0 0.062 0.056 0.049 0.043 0.037 0.031 0.024 0.018 0.012 0.006 0
0.1 0.018 0.016 0.013 0.011 0.009 0.007 0.005 0.003 0.001 0 1.83e-09
0.2 0.014 0.012 0.010 0.008 0.00 0.004 0.002 0.001 0 -0.001 3.66e-09
0.3 0.011 0.009 0.007 0.005 0.003 0.002 0.001 0 -0.001 -0.001 5.50e-09
0.4 0.008 0.006 0.004 0.003 0.002 0.001 0 -0.001 -0.001 -0.001 7.33e-09
0.5 0.005 0.004 0.003 0.002 0.001 0 -0.001 -0.001 -0.001 -0.001 9.16e-09
0.6 0.004 0.003 0.002 0.001 0 -0.001 -0.001 -0.001 -0.001 -0.001 1.10e-08
0.7 0.003 0.002 0.001 0 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 1.28e-08
0.8 0.002 0.001 0 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.001 1.47e-08
0.9 0.001 0 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 1.65E-008
1 0 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 1.83e-08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

Figure 5.7: Regret between EUT and ML. Shaded regions show negative regret.129



(a) Mean Expected Value of Decision Function
using EUT and ML (b) Contour Plot of Regret

(c) Regret with Standard Deviation (d) Variation of Regret w.r.t. q (for p = 0.5)

Figure 5.8: Comparison of Regret between EUT and ML for DLR dataset

thresholds to look for to maximize the utility is the same. The magnitude of p and q is
much smaller than β; therefore, most of the time the same probability threshold is chosen
by the mTh algorithm for different values of p and q. Different values of the empirical
threshold could be selected by mTh if the number of falls and non-falls are of the same
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(a) Mean Expected Value of Decision Function
using EUT and ML (b) Contour Plot of Regret

(c) Regret with Standard Deviation (d) Variation of Regret w.r.t. q (for p = 0.5)

Figure 5.9: Comparison of Regret between EUT and ML for MF dataset

order with similar utilities. In our problem setting, falls are rare, utilities are unequal and
test data is severely skewed that leads to similar choice of the empirical thresholds.

The pool of probability thresholds is limited by the number of training samples; there-
fore, the mTh algorithm can sometimes give sub-optimal choice of probability threshold
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(a) Mean Expected Value of Decision Function
using EUT and ML (b) Contour Plot of Regret

(c) Regret with Standard Deviation (d) Variation of Regret w.r.t. q (for p = 0.5)

Figure 5.10: Comparison of Regret between EUT and ML for COV dataset

(see this discussion in Section 5.5) leading to negative threshold; however, on average the
regret is positive. The value of regretUtilityp,q is mostly dominated by the second term of
Equation 5.11 by β s.t. if few more true negatives / false positives are detected by EUT
than ML, the regret will be of the order of β ≈ 107, a few less would result in the difference
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being −β ≈ −107 or when both are similar then it is 0. Therefore, based on an empirical
threshold, if we get a few cases where regretUtilityp,q = 0 or regretUtilityp,q < 0, the
variation would be higher. Figures 5.8c, 5.9c and 5.10c show the variation of the regret
for the three datasets for all the values of utilities p and q. The dark circles (•) show the
average value of regret for a given utility p and q across all the subjects for each of the
dataset, the lines protruding the dark circles are the standard deviation across the subjects
and the blue mesh-grid is the zero regret for reference. The regret is higher at lower values
of utilty q and so is their variation, which shows that the cost of false alarms is a very
important factor in designing a decision-theoretic fall detection system. At lower utility
of false alarms, ML performs worse in comparison to EUT as shown in Figures 5.8d, 5.9d
and 5.10d for all the datasets at utility p = 0.5. In the empirical setting, EUT will have
more not-reported not-falls and can have few more not-reported falls in comparison to ML.
While computing the overall regret, the regret for non-falls will be much larger than the
regret of falls due to the expected pseudo-counts for non-falls and falls s.t. β � α (see
Equation 5.10). Therefore, the overall regret mostly depends on the regret for non-falls,
which depends on the utility of false alarms (q). The smaller the value of q, the larger
the regret and the larger the value of q, the smaller the regret; hence, ML performs worse
when q is smaller.

Due to less variability in the values of the empirical thresholds for different utilities
of p and q, the regret is mostly dependent on utility q. That is, for a given p, the regret
decreases with increase in q. However, for a given q, the regret does not change much as the
utility p changes. This means that in the empirical setting, the utility of identifying falls
correctly does not matter much on EUT’s performance for a given q. When the utility of
a false alarm increases for a given p, then the EUT’s performance degrades in comparison
to ML. These results suggest that if the model of falls and non-falls do not represent their
respective true distributions, we can use empirical thresholding technique (mTh) to almost
achieve the theoretical guarantee that EUT will always give better utility than ML. The
results show that utility p does not matter so much, we don’t need to precisely know the
value of reporting a fall; however, utility q matters much more so knowing the utility of
a false alarm is very important. As q gets smaller (false alarms have greater cost), using
EUT will be more and more useful than ML.

5.8 Cost Model

The dtFall framework assumes that the utilities of true positive and false alarms i.e. p
and q are known to the user. In practice, these utilities are very hard to estimate. Below
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we provide a exploratory analysis to present different parameters that may be essential in
estimating these utilities. This method can help in deducing the operational costs, which
is the cost (in dollars) associated with an action R for an outcome F that quantifies the
utility of an action.

5.8.1 Fall Severity

Heinrich et al [66] mention that the mean costs per fall victim per year increased with the
number of falls and their severity. Motion sensors are helpful in identifying human activities
correctly; however, they may cause false alarms due to rapid body movements. These
sensors can not directly provide information on the severity of a fall and the resulting injury
[180]. Doukas and Maglogiannis [43] present a fall detection system that estimates the
severity of a fall (low or high) based on motion, sound, and visual perceptual components
of the sensing environment. They build a semantic model of the patient’s status and
context with rules to provide more accurate estimation of fall severity. However, this
model depends on inputs from the sensors which can contain noise and different rules have
to be written to avoid missing to report a fall.

There are several studies [173, 10, 14, 190] that find correlation between the height of
a fall and the severity of injury due to a fall (on the Injury Severity Score (ISS)3 [186]).
Falling from a height can injure the head, chest, neck, abdominal area and rupture organs
that can be fatal [14]. Auñón-Mart́ın et al. [10] find that this relationship is not linear;
however, a higher height of a fall corresponds to a higher ISS and a lower probability of
survival of an individual. They also comment that patients who had accidental falls tend
to have lower ISS but more serious head injuries that amounted to be the most common
cause of death. Sterling et al. [174] conduct a 4.5 year study on two groups of people with
age greater than 65 years or less than or equal to 65 years and find that falls among elderly,
including the same-level falls result in high ISS and mortality in comparison to younger
patients. Hayes et al. [63] show that among the elderly, a fall from standing height should
not be considered trauma of less magnitude. If the impact from such fall occurs on the
hip and there are inadequate energy absorbing aides, it should be treated as a trauma of
sufficient magnitude that pose a serious risk of hip fracture.

We can define a severity function, S as

S(κ) = ISS0 + f(ISS, κ) (5.15)

3The ISS score takes values from 0 to 75. The ISS score correlates linearly with mortality, morbidity,
hospital stay and other measures of severity [186].
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where κ is the height of a fall, ISS0 is the ISS score at standing height, and f(.) is an
increasing function of ISS score w.r.t. height of a fall.

Modelling Cost

Let us denote in dollars, the

1. Cost of reporting a fall correctly, Crf

2. Cost of reporting non-fall, C ′
rf̄

= g(Crf̄ , pR)

where g(.) is a function, Crf̄ is the cost of false alarm per fall, and pR is the probability
of rejecting the system due to excessive false alarms. For a frequent faller, a high
sensitivity rate is a motivating factor to use a fall detector that will help in reducing
fear, anxiety and dangers due to a fall. However, for a person at low risk of falling,
even a low rate of false alarm can override the benefit of true alarms because it can
cause nuisance and disruptions in carrying out their normal ADL. In such cases, a
fall detector may be assumed to be less useful and it increases the chance of it being
rejected [78]. The term pR is meant to capture these behaviours of the users.

3. Cost of missed alarm, Cr̄f = h(Crf ,S(κ))

where function h(.) is an increasing function that combines Crf and S(κ) to give
a representative cost of missed alarms. We use the intuition that cost of a missed
alarm will increase with an increase in severity of a fall with a baseline of at least
the cost of reported fall. It should be noted that most of the elderly falls may occur
at ground level.

4. Cost of not-reporting non-fall is 0 because it there is no cost involved in this action.

Normalized Costs

We normalize all the costs into [0, 1] by dividing by Cr̄f because it is the maximum cost
that can be incurred.

1. Cost of reporting a fall correctly, Crf =
Crf

h(Crf ,S(κ))

2. Cost of false alarm, Crf̄ =
g(Crf̄ ,pR)

h(Crf ,S(κ))
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3. Cost of missed alarm = 1

4. Cost of not-reporting non-fall = 0

Normalized Utilities

We know that C(F,R) = 1−U(F,R) (see Table 5.1); therefore, the utilities corresponding
to each cost can be computed as below,

1. Utility of reporting a fall correctly,

p = 1− Crf =
h (Crf ,S (κ))− Crf

h (Crf ,S (κ))
(5.16)

2. Utility of a false alarm,

q = 1− Crf̄ =
h (Crf ,S (κ))− g(Crf̄ , pR)

h (Crf ,S (κ))
(5.17)

3. Utility of missed alarm = 0

4. Utility of not-reporting non-fall = 1

This cost model suggests that as the severity of falls increase, the utility to report a fall
(p) and a non-fall (q) also increase. However, if the probability to reject a fall detection
system due to excessive false alarms is high, then the utility to report false alarm will be
lower. This cost model can provide an insight into the operating regions of utilities p and
q that can help in designing a decision-theoretic fall detection system.

5.9 Conclusions and Discussion

In this chapter, we presented a decision-theoretic framework for designing an automated
fall detection system when the utilities of false alarm and missed alarm are not known
and falls data is not available. We present a bayesian method to parameterize unseen falls
that only uses the information from the model of training data available from non-falls.
We modified an empirical thresholding algorithm to fit the proposed dtFall framework to
select a probability threshold that ensures that it performs better than the traditional ML
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method in terms of expected value of applying a decision function. We showed that using
the decision-theoretic framework (a) knowing the difference in cost between a reported fall
and false alarm is useful, (b) knowing this cost difference is more helpful as the cost of a
false alarm gets bigger, and (c) knowing the difference in cost of between a reported and
non-reported fall is not that useful. The usefulness of the results can be more obvious if
the cost is translated in terms of dollars. If the cost in dollars for issuing false alarms is
too high (leading to system rejection and putting people at more risk), EUT is a better
approach than ML in terms of expected utility. The deduction of various costs in a fall
detection system is a challenging task and can be obtained through preference elicitation,
surveys and consulting domain experts. Once the notion of exact cost is identified, it can be
embedded in a real deployable decision-theoretic system. We also presented an exploratory
cost model to estimate actual costs (in dollars) involved in a fall detection system based
on fall severity and highlights its essential parameters that can be used to obtain utilities
for true positives and false alarms.
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Chapter 6

Summary and Future Work

In this thesis, we argue that it is difficult to collect sufficient labelled data for falls due to
their rarity and to know the costs in a fall detection system automatically. Therefore, we
do not know exactly the model for falls and the costs involved in a fall detection system. In
such a scenario, traditional supervised classification algorithms cannot be applied directly.
Keeping this issue in mind, we emphasize on the evolution and development of algorithms
and techniques that should be able to learn classifiers only from the normal activities to be
able to identify unseen falls. We present X-Factor HMM based techniques that can detect
falls in the absence of their training data that shows high detection rates. We further show
that standard supervised classification models perform poorly on severely skewed dataset
that involves very few samples for falls. Then, we present a decision-theoretic framework
for fall detection that can handle no training data for falls by estimating their expected
likelihood without observing falls in the training set and by only using the data from normal
activities. We further present a modified thresholding technique to handle imperfect models
for falls and non-falls, which can ensure the theoretical guarantees of EUT. We also discuss
a new cost model based on severity of falls for estimating the utilities required in a fall
detection systems. In the research presented in this thesis, we use data collected from
three publicly available datasets using wearable sensors to demonstrate the efficacy of the
proposed methods. We extract low cost features from the accelerometer and gyroscope
that work well for this problem.

The main contribution of the thesis is the development of techniques for the detection
and reporting of falls that were not observed before by observing only the normal ADL in
a person independent manner. The results obtained across different datasets suggest high
detection rates for unseen falls and the results generalized in person independent manner.
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In this thesis, we learned that traditional approaches that assume sufficient training
data for falls are ill-posed for the problem of fall detection. In the past, several studies
show that collecting few samples for real falls can be very time consuming and can put
the health and safety of an individual at risk. In those circumstances, the thesis addresses
techniques and methods that can identify falls without seeing them in the past. The various
OCC approaches presented in the thesis can be used in a continuous activity monitoring
environment, that can flag falls with a high detection rate. Once sufficient number of
falls are collected, traditional supervised methods can be employed to further refine the
performance. In this thesis, we also empirically find out that the costs of false alarms are
very critical for a decision-theoretic fall detection system. When the cost of false positives
is high, such as in a home-care environment, the proposed modified thresholding method in
the dtFall framework ensures reporting falls when the system is confident of the outcome;
hence, it helps in reducing false alarms.

Now, we will discuss some of the limitations and areas of improvements of the proposed
approaches in the thesis.

• The datasets used in the thesis contained simulated falls. The DLR and COV datasets
have some real falls but all falls data collected in MF dataset are artificial. The
presence of simulated falls in these datasets highlight the difficulty in obtaining real
falls. Simulated falls may also effect the generalization capabilities of the classifiers
and may influence the performance metric. The key to successfully test and deploy
a fall detection system lies in its efficiency in detecting real falls.

• The activities data in the COV and MF dataset is collected in a disjoint manner,
i.e. participants are asked to perform an activity several times, then perform another
activity several times and so on. In the DLR dataset, participants were asked to
carry on normal activities in a natural way but also fall a few times. In a real
world, humans do not perform normal activities in this manner and may fall without
intention. Therefore, the focus must be on collecting activities in a natural setting
to understand the normal activities of a person and what may be classified as a fall
without observing it in the past.

• Since falls data is not present during training; therefore, outlier sequences from the
normal activities are considered as a proxy for falls to determine the parameters
for the model for unseen falls or optimizing the thresholds to identify unseen falls.
These outliers are not actual falls but extreme variations from the normal activities.
A repercussion of doing so is an increase in the number of false alarms that can cause

140



annoyance to the user. Therefore a good trade-off between false alarms and missed
alarms is necessary for the successful realization of a fall detection system.

• To handle the two issues above, a long term activity monitoring experiment is re-
quired that let the users live their life normally without any interference. The advan-
tage of such an experiment is that a specific target audience may be targeted, for e.g.
older adults and personalized fall detection solutions could be devised. Supervised
solutions for fall detection cannot identify the first occurrence of a fall and require
several falls to be recorded to train the classifiers that can be fatal to a faller. A
long term experiment will help in understanding the overall ‘normal’ concept among
people of different age groups or a specific age group and using the methods proposed
in the thesis should be able to detect falls that were not seen before. A long-term
experiment will also help in building better models with accurate probability esti-
mates.

• Good performance of activity/fall recognition systems depends largely on the type
and number of features extracted from the sensor data. Those features should be low-
computationally expensive, if the system were to be used in a real world. However,
it is not clear how to pin-point the exact number and types of features that can work
well across different domains and settings for this task. A choice of different set of
features may effect the performance and response time of the proposed methods.

• The ideas presented in the decision-theoretic modelling for fall detection in the thesis
make no assumptions about the costs for false alarms, true positives and missed
alarms. From a theoretical perspective, it is good to know that EUT will perform
better than ML methods in terms of expected utility. However, a major question
is “Can we quantify those costs?”. Unless we know the exact costs, it is difficult to
deploy such fall detection system because it would not capture the actual expectations
of the users. To find out those costs, we must reach out to various stakeholders
in this problem such as physicians, nurses, orthopedicians, rehabilitation specialists,
counsellors, users and their families. We may need to conduct surveys and preference
elicitation to understand how people weigh cost-benefit evaluation of a useful fall
detection system.

• The EUT approach takes a rational decision to report or not-report a fall. In some
setting, if the cost of reporting a fall may be too high, it may choose to not-report.
This can be counter-intuitive and may raise discussions about the ethics of using such
system. Again, reaching out various stakeholders and finding actual costs in a fall
detection system is one aspect of the problem. Other ideas could be related to more
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human-like expectations from a fall detection system and not like a rational-machine.
Therefore, we need to explore ideas to model irrationality to give leverage to report
more false alarms at the cost of not missing to report falls.

6.1 Future Directions

The techniques and results reported in this thesis open up several new areas for future
research. These research areas involve refining existing machine learning and feature engi-
neering methods, developing methods to conduct user trials on older adults and designing
engineering products with high efficiency. The research presented in this thesis also provides
the confidence to focus on new and emerging areas such as deep learning and exploring
different types of sensors for the task of fall detection, especially when fall data is not
available during training. We discuss future research ideas below, followed by pointers
on taking them forward to enhance the efficacy, suitability and usability of the methods
proposed in this thesis.

Incremental Learning. An important extension of the proposed techniques for fall de-
tection is the realization of an online fall detection system, which can begin with the
proposed X-factor models as an initial representative model for unseen falls and incremen-
tally adapts its parameters as it starts identifying some falls. These techniques are very
useful in cases where continuous streams of data are received on a server from a sensor,
and batch training is both time and memory intensive and can deplete the memory of the
device very fast. A major thrust for future work is to direct the findings of this thesis
to target older adults, as they are more prone to falling and their falling patterns may
be different from young adults. The advantage of online HMM models is that they can
be customized to a person-specific ADL and a fall detection system can be specifically
designed for them based on their daily bodily movement patterns.

Feature Learning. In the future, we would like to experiment on using other low-cost
and rotation invariant features [142] that have the potential to improve the performance
of our methods. However, feature extraction is considered as a heuristic that is informed
by underlying domain knowledge. We aim to learn feature representations from the raw
sensor data using different deep learning architectures. Deep learning methods have not
been much investigated in identifying abnormal behaviours in activity recognition tasks.
We would like to conduct research on the usefulness of Auto-encoders that can be trained
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on one-class of data and can be used to identify outliers or anomalous activities [79, 117].
With Auto-encoders, a reduced set of features can be learned from the raw sensor data
and we aim to train other OCC classifiers for detecting unseen falls.

Reducing False Alarms. The traditional way to reduce false alarms in a fall detection
application is the use of domain knowledge and heuristic rules that are static and hard to
generalize. Various researchers have identified different fall risks factors, such as variability
in voluntary movement paths of older adults [84] as an independent predictor of fall risk.
In the future, we plan to combine these fall risk scores with the probabilities computed
from the proposed methods in the thesis to reduce false alarms.

Irrational Decision Making. The EUT method described in the thesis assumes that
agents make rational choices under uncertainty and risks. When humans are involved
in decision making under similar circumstances, those decisions are not rational anymore
because humans over-estimate the probability of rare events and under-estimate the prob-
ability of more-likely events [81]. This is the outcome of Prospect Theory (PT). A precur-
sory formulation of PT in the decision-theoretic framework for fall detection is shown in
Appendix C. Preliminary results using PT suggest that this technique will lead to more
reports than EUT. The initial results also indicate that the PT approach provides similar
guarantees as EUT albeit more reporting events. In the future, we would like to investigate
this area because a fall detection formulation with PT may be more favourable for elderly
patients who are at high risk of falling, in such cases we may not risk to miss to report a
fall at the cost of few additional false alarms.

Sensor Fusion. In the future, we plan to use activity data from multiple sources such as
MEMS sensors, video camera, microphone and RFID. We would like to extend the proposed
fall detection techniques with multiple data sources that can offer robust detection for
unseen falls and greater flexibility because different sensors can work in different settings
such as indoors and outdoors.
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detection of unusual temporal events during activities using hmms. In SAGAWARE
- Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12,
pages 1075–1084. ACM, 2012.

[89] Shehroz S. Khan, Michelle E. Karg, Dana Kulić, and Jesse Hoey. X-Factor HMMs for
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Appendix A

Boundary Value Analysis

Boundary value analysis of the decision surface for utilities p and q is important to un-
derstand the behaviour of the decision function, D at extreme points. The following two
scenarios result in boundary values:

B1) p = 0, 0 ≤ q < 1
Substituting these values in Equation 5.2, we get

V (R = r|o) = Pr(f̄ |o)q
if Pr(f̄ |o) = 0, then V (R = r|o) = V (R = r̄|o)

=⇒ D = 1

elseif Pr(f̄ |o) > 0, then V (R = r|o) < V (R = r̄|o)
=⇒ D = 0

This case means that when reporting a fall has the minimum utility (p = 0), then
the EUT will never report an activity as a fall unless Pr(f̄ |o) = 0 (or Pr(f |o) = 1)
or unless the utility of reporting a non-fall is the best (see below).

B2) 0 < p ≤ 1, q = 1
Substituting these values in Equation 5.2, we get

V (R = r|o) = Pr(f̄ |o) + Pr(f |o)p
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If the system will always report then

V (R = r|o) ≥ V (R = r̄|o)
=⇒�����Pr(f̄ |o) + Pr(f |o)p ≥�����Pr(f̄ |o)
=⇒ (1− Pr(f̄ |o) ≥ 0

=⇒ Pr(f̄ |o) ≤ 1

=⇒ TRUE =⇒ D = 1

This case means that if reporting non-fall has the maximum utility (q = 1), then the
EUT will always report an activity as a fall irrespective of the utility of reporting a
fall or the Pr(f |o).
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Appendix B

Algorithm to Compute Empirical
Threshold and Regret for OCC case
using GMM
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Data:

• O = {o1, . . . ,oN} data set where oi is data for the ith subject

• α and β are the number of actual falls in real scenario

1 for i = 1 . . . N (loop over left-out subjects) do
2 Remove oi from train set to create o−i (everything else)
3 Compute number of falls and non-falls in the training dataset, Nf and Nf̄
4 Train GMM on full training data o−i, GMM−i
5 l = 1
6 for j = 1 . . .K (cross-validation) do
7 split Oi into oi,t (1− 1/K of the data, internal training set)
8 and oi,v (the other 1/K of the data, validation set)
9 train GMM−i(oi,t) (includes one for falls and one for non-falls) on oi,t

// if no training data for falls, then use outliers and/or x-factor

10 for oi,k in oi,v do
11 pl ← Pr(fall|oi,k, GMM−i(oi,t)) // prob. that the oi,k is a fall

12 l = l + 1

13 end

14 end
15 for each m = {p, q} index of a p, q combination do
16 Rm ← 0
17 for each k (index of training data point in o−i) do

// Choose pk as threshold

18 θ = pk
19 for each j(index of training data point in o−i) do
20 if pj ≥ θ // a fall given threshold θ
21 then
22 Rm(f(oi,j), r)← Rm(f(oi,j), r) + 1
23 else
24 Rm(f(oi,j), r̄)← Rm(f(oi,j), r̄) + 1
25 end

26 end

27 end
28 Um,k ← computeUtility(Rm,k)
29 thresholdi,m ← arg maxk Um,k
30 Rm ← 0 // re-use this

31 RmML ← 0 // Confusion Matrix for ML

32 for each oi,j ∈ oi (test set) do
33 pj ← Pr(fall|oi,j , GMM−i)
34 if pj ≥ thresholdi,m // a fall given threshold thresholdi,m
35 then
36 Rm(f(oi,j), r)← Rm(f(oi,j), r) + 1
37 else
38 Rm(f(oi,j), r̄)← Rm(f(oi,j), r̄) + 1
39 end
40 if pj ≥ 0.5 // a fall given ML threshold=0.5
41 then
42 RmML(f(oi,j), r)← RmML(f(oi,j), r) + 1
43 else
44 RmML(f(oi,j), r̄)← RmML(f(oi,j), r̄) + 1
45 end

46 end
47 regreti,m ← regretFunction(Rm, RML, p, q,Nf , Nf̄ , α, β)

48 end

49 end
50 for each m = {p, q} index of a p, q combination do
51 regretm ← meani(regreti,m)
52 end 172



Appendix C

Prospect Theory

PT describes the way people choose between probabilistic alternatives that involve risks.
It differs from EUT in the following ways [164]:

• Framing : Decision makers’ preferences are not consistent and dependent on the pre-
sentation of choices. This behaviour is in contrast to ‘decomposability’ property
of EUT which states that agent is indifferent between lotteries that have the same
probabilities over the same outcomes.

• Probability Weighting : Decision makers over-weight smaller probabilities and under-
weigh larger probabilities or certain events based on their subjective distortion of
probabilities of events.

• Loss Aversion: Decision makers make choices as deviations from a reference point
in terms of gains and losses rather than a final outcome. In relation to the reference
point, decision makers are more sensitive to losses than are to equivalent gains (“losses
loom larger than gains” [81]).

Cumulative PT (CPT ) [188] is an extension of PT that employs cumulative rather than
separable decision weights with any number of outcomes, and it allows different weighting
functions for both gains and losses. According to CPT, the subjective value VP of an option
O is defined as:

VP =
∑
i

π(pi)v(xi) (C.1)
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where π(.) is a probability weighting function of the objective probabilities pi and v(.)
is a value function that defines the subjective value of outcome i. Both the probability
weighting function and value function differ for gains and losses.

The value function is defined as:

v(xi) =

{
xai , if xi ≥ 0

−λ(−xi)b, if xi < 0
(C.2)

where v(0) = 0 i.e. value of reference point is neutral, a and b are free parameters
and vary between 0 and 1, and λ specifies the degree of loss aversion. The value of λ is
normally kept greater than 1 because in CPT it is assumed that loss carry more weights
than gains. In the gain domain, v(xi) is concave i.e. v′′(xi) < 0 and in loss domain, v(xi)
is convex i.e. v′′(xi) > 0. Due to loss aversion property v′(xi) for x ≥ 0 is less than v′(xi)
for x ≤ 0.

The weighting function is defined as,

π(pi) =
pγi

(pγi + (1− pi)γ)
1
γ

(C.3)

where π(pi) is a monotonically increasing decision weighting function with 0 ≤ π(pi) ≤ 1
and as the individuals would not distort impossibility and certainty

∴ π(0) = 0 and π(1) = 1

0 ≤ γ ≤ 1 and can have different values for positive and negative payoffs. Until γ < 1,
the low probabilities will be overestimated as opposed to high probabilities that are un-
derestimated. Figure C.1a and C.1b shows sample plots for value function and probability
weighting function.

C.1 Decision-theoretic Formulation for Fall Detection

Using the above ideas of over-estimation and under-estimation of probabilities of falls and
non-falls, the expected value based on weighting function using CPT to report and not-
report can be written as:
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Figure C.1

VP (R = r|o, θf ) =
1

Pr(o)

[
Pr(o|f̄)π

(
Pr
(
f̄
))
q +EPr(θf |D) [Pr(o|f, θf )] π (Pr (f)) p

]
VP (R = r̄|o, θf ) =

1

Pr(o)
Pr(o|f̄)π(Pr(f̄))

(C.4)

We assume that VP (R = r̄|o, θf ) remains unaffected by θf and it only uses information
from non-fall data, however it uses the weighting function, π(.).

Now, a decision function, DP, can be defined as:

DP =

{
1, if VP (R = r|o, θf ) ≥ VP (R = r̄|o, θf )
0 otherwise

(C.5)

where 1 means ‘report’ an action and 0 means ‘not-report’ an action as a fall.
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