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Summary
The Cox-Aalen model, obtained by replacing the baseline hazard function in the well-known Cox
model with a covariate-dependent Aalen model, allows for both fixed and dynamic covariate ef-
fects. In this paper, we examine maximum likelihood estimation for a Cox-Aalen model based on
interval-censored failure times with fixed covariates. The resulting estimator globally converges
to the truth slower than the parametric rate, but its finite-dimensional component is asymptotically
efficient. Numerical studies show that estimation via a constrained Newton method performs well
in terms of both finite sample properties and processing time for moderate-to-large samples with
few covariates. We conclude with an application of the proposed methods to assess risk factors
for disease progression in psoriatic arthritis.
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1 INTRODUCTION

Most approaches to regression modelling of time-to-event data account for the possibility where some
events are right-censored, but other forms of censoring are routinely encountered in practice. Current
status data are obtained when each subject is assessed for the occurrence of an event at one random
inspection time. Periodic assessment at a fixed number k of times results in case k interval-censored
data. Often, the number of inspections is randomly-distributed. Mixed case interval censoring arises
when both the number and timing of inspections are random (Sun, 2006, Section 1.3).

The Cox (1972) proportional hazards model has been adapted for use with interval-censored data
in various ways. Many impose additional structure through a discrete (Finkelstein, 1986) or smooth
(e.g. Cai and Betensky, 2003) cumulative baseline hazard function. A semiparametric maximum like-
lihood approach may be preferable because it avoids the need to further specify the Cox model. Early
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work in this area dealt with case 1 and 2 interval-censoring (e.g. Huang, 1996, Huang and Wellner,
1997). More recently, Kim (2003) considered partially case 2 interval-censored data with the re-
maining observations subject only to right censoring, Zeng et al. (2006) constructed a semiparametric
model with fixed additive effects under case 2 interval censoring, and Wen (2012) devised a propor-
tional hazards model accounting for both mixed case interval censoring and covariate error. Much of
this development was made possible through Murphy and van der Vaart’s (2000) profile likelihood
theory. The semiparametric framework has since seen further extensions. Zhang et al. (2010), for ex-
ample, devised a spline-based sieve approach, and Wellner and Zhang (2007) derived an M-theorem
under model misspecification. These contributions were applied to estimation for the Cox model
under case 2 interval censoring and the proportional mean model from panel count data, respectively.

This paper considers semiparametric maximum likelihood estimation of a Cox-Aalen model in
which the event time T arises from a cumulative hazard function of the form

W ′Λ(t) exp(Z ′θ), (1)

where W = (1,W2, . . . ,Wdw)′ and Z = (Z1, . . . , Zdz)
′ are fixed covariates, θ is a regression coef-

ficient quantifying the multiplicative effect of Z and Λ = (Λ1, . . . ,Λdw)′ is a vector of cumulative
regression functions tracking the additive effect of W . The inner product W ′Λ is a baseline cumu-
lative hazard function with respect to Z, but Λ is otherwise unspecified. With the first component
of W fixed at 1, the remaining entries of W are typically rescaled so that Λ1 can be interpreted as a
reference level of risk and Λ2, . . . ,Λdw account for time-varying departures. When the W2, . . . ,Wdw

represent levels in a set of factors, (1) reduces to the stratified Cox model (Kalbfleisch and Prentice,
2002, Section 4.4). To our knowledge no methods for estimating either of these Cox model variants
from interval-censored data have previously been developed.

The general Cox-Aalen model permitting time-dependent covariates and recurrent events was de-
veloped by Scheike and Zhang (2002) as an extension of the Cox (1972) and Aalen (1980) regression
models. Its approximate maximum likelihood estimator from independently right-censored data con-
verges weakly to a mean-zero Gaussian process at the parametric rate

√
n. Martinussen and Scheike

(2006, Section 7.1.2) describe hypothesis tests about the functional form, but these are based on event
times subject only to right-censoring and thus cannot be applied to interval-censored data. In practice
one might decide, presumably from knowledge about the underlying process, that the proportional
hazards assumption is unrealistic for certain covariates. Under this setting our estimator offers a
novel approach to account for both departures from the Cox model and mixed case interval censoring.

2 NOTATION AND BASIC ASSUMPTIONS

Herein, we consider interval-censored data arising from K random inspections occurring at the ran-
dom times YK = (YK,1, . . . , YK,K) on the observation period [0, τ ], τ < ∞. These assessments
give ∆K = (∆K,1, . . . ,∆K,K), where ∆K,j = 1(YK,j−1,YK,j ](T ) (j = 1, . . . , K + 1), YK,0 ≡ 0 and
YK,K+1 ≡ ∞. Consider the following basic assumptions.

C1. Let Θ be a compact subset of Rdz and H the set of cumulative regression functions {Λ} with
Λ(0) ≡ 0, Λ1(∞) ≡ ∞, and 0 < W ′Λ(σ−) < W ′Λ(τ) < M , almost surely, for some fixed
0 < σ < τ and 0 < M <∞. The true parameter (θ0,Λ0) belongs to Θ×H with θ0 an interior point
of Θ.

C2. The conditional distribution of (∆K , YK , K) given (T = t,W,Z) is invariant with respect to all
t compatible with (∆K , YK , K); that is, all t ∈ (YK,j−1, YK,j] such that ∆K,j = 1 (j = 1, . . . , K + 1).
This distribution is specified by some parameter distinct from (θ,Λ).
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C3. The product measure of the marginals for W2, . . . ,Wp is absolutely continuous with respect to
the distribution function of W , FW .

C4. The probability pr(T > τ | W ) is almost surely bounded away from zero.

C5. There are known w0, w1 in the support of FW , supp(FW ), such that w0 ≤ W ≤ w1, almost
surely.

Remark 1. Condition C2 implies that T is coarsened at random (Gill et al., 1997, p. 274). This can
be motivated with the requirement that (YK , K) be conditionally independent of T given (W,Z).

Remark 2. A cumulative regression function Λ ensures W ′Λ is almost surely nondecreasing. Con-
ditions C3 and C4 imply Λ is valid if w′Λ is nondecreasing for every w ∈ supp(FW ). From C5
this holds provided that wΛ has nondecreasing entries, where w is a matrix whose rows run through
combinations of values from (0, w0, w1).

Our goal is to estimate (θ0,Λ0) from n independent observations Xi = (∆i
Ki
, Y i

Ki
, Ki,Wi, Zi)

(i = 1, . . . , n) assuming conditions C1–C5.

3 MAXIMUM LIKELIHOOD ESTIMATION

Under C2, the density of X = x = (δk, yk, k, w, z) is

pθ,Λ(x) =
k∏
j=1

[
exp{−w′Λ(yk,j−1)ez

′θ} − exp{−w′Λ(yk,j)e
z′θ}
]δk,j , (2)

with respect to a dominating measure ν determined by the distribution of (K,YK ,W, Z). The corre-
sponding log-likelihood is

`n(θ,Λ) =
n∑
i=1

log pθ,Λ(Xi)

=
n∑
i=1

Ki∑
j=1

log
[
exp{−W ′

iΛ(Y i
Ki,j−1)eZ

′
iθ} − exp{−W ′

iΛ(Y i
Ki,j

)eZ
′
iθ}
]∆i

Ki,j .

However only some inspections are relevant to the likelihood function.

Definition 1. Let Y(1), . . . , Y(m) be the order statistics of the set of all Y i
Ki,j

for which ∆i
Ki,j

+
∆i
Ki,j+1 = 1 (j = 1, . . . , Ki, i = 1, . . . , n). Also let (W(l),∆(l)) denote some (Wi,∆

i
Ki,j

) corre-
sponding to Y i

Ki,j
= Y(l) (l = 1, . . . ,m).

Suppose that the smallest relevant inspection time Y(1) corresponds to a right-censored obser-
vation; that is, ∆(1) = 0. Then any Λ maximizing the likelihood should satisfy Λ(Y(1)) = 0. Now
assume that the largest relevant time Y(m) is left-censored; that is, ∆(m) = 1. ThenW ′

(m)Λ(Y(m)) =∞
almost surely; or, in other words, Λ1(Y(m)) = ∞. These two cases make no contribution to the like-
lihood, so without loss of generality assume that ∆(1) = 1 and ∆(m) = 0. This implies that the
bounds imposed on H in C1 incur no loss in generality. The maximum likelihood estimator (θ̂n, Λ̂n)
is characterized by

`n(θ̂n, Λ̂n) = max
θ∈Θ,Λ∈H

`n(θ,Λ).

With ∆(1) = 1, the log-likelihood is concave in (θ,Λ). So the semiparametric maximum likelihood
estimator (SPMLE) concentrates the survivor distribution on a subset of Y(1), . . . , Y(m). This subset is
unknown a priori, but a maximal subset can be found by adapting Turnbull (1976, Lemmas 1 and 2).



A Cox-Aalen model for interval-censored data 4

Definition 2. From the censoring intervals, (Li, Ri] = (Y i
Ki,j−1, Y

i
Ki,j

] having ∆i
Ki,j

= 1 (i =
1, . . . , n, j = 1, . . . , Ki + 1), define the maximal intersections (Wong and Yu, 1999)

I = {(s1, t1], . . . , (sd, td]},

whose left and right endpoints are selected respectively from {L1, . . . , Ln} and {R1, . . . , Rn} such
that (sj, tj] ∩ (Li, Ri] is either (sj, tj] or ∅, for every j = 1, . . . , d and i = 1, . . . , n.

Proposition 1. W ′Λ̂n is almost surely constant outside I. Moreover for fixed Λ̂n on the boundary
of I, the likelihood is invariant to the behaviour of Λ̂n on the interior of I.

This result follows from a straightforward adaptation of the proof for Alioum and Commenges
(1996, Lemmas 1 and 2). Without loss of generality we take the SPMLE (θ̂n, Λ̂n) as the discrete
maximizer of `n(θ,Λ) concentrating mass on the right endpoints {t1, . . . , td} of I.

4 COMPUTATION

For θ ∈ Θ and Λ ∈ H discrete on t1, . . . , td, define λj = Λ(tj) (j = 1, . . . , d), λ = (λ′1, . . . , λ
′
d)
′, φ =

(θ′, λ′)′ and `n(φ) ≡ `n(θ,Λ). Under conditions C3–C5 the requirement that W ′Λ be nondecreasing
is met by 0 ≤ wΛ(tj) ≤ wΛ(tk), j < k, with w as defined in Remark 2. This can in turn be written
in the form Aλ ≥ 0, where A is the block diagonal matrix

A =


w 0 0 0 · · · 0
−w w 0 0 · · · 0

· · ·
0 0 · · · 0 −w w

 .
One could compute φ by alternating between iterative algorithms for θ and λ, but such a strategy
can be slow to converge. A reduction in computing time might be obtained by jointly updating
the estimates in a single iteration, as demonstrated in Pan’s (1999) extension of the iterative convex
minorant algorithm (Jongbloed, 1998) to the Cox model. A more recent example can be found in
Cheng et al. (2011), where the iterative convex minorant is recast into quadratic programming. We
propose a similar approach under a Lagrangian framework general enough to accommodate the Cox-
Aalen model. The algorithm is summarized as follows.

Step 1 (Initial value). Set r = 0, θ(0) = 0 and λ(0)
j = (tj, 0

′
dw−1)′.

Step 2 (Candidate step). Evaluate η(r) = (η
(r)
θ , η

(r)
λ ), where

η
(r)
θ = −∇2

θ`n(φ(r))−1∇θ`n(φ(r)),

is the Newton-Raphson offset, and

η
(r)
λ = arg max

ηλ:A(λ(r)+ηλ)≥0

∇λ`n(φ(r))′ηλ +
1

2
η′λ∇2

λ`n(φ(r))ηλ

= arg min
λ:Aλ≥0

1

2
λ′∇2

λ`n(φ(r))′λ+ {∇λ`n(φ(r))−∇2
λ`n(φ(r))′λ(r)}′λ− λ(r).

is the maximizer of a quadratic approximation to the increment in the log-likelihood function.
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Step 3 (Line search). To avoid overshooting the maximum, set φ(r+1) = φ(r) + η(r)/2j , where j is the
smallest nonnegative integer satisfying

`n(φ(r))− `n(φ(r) + η(r)/2j) ≤ α∇φ`n(φ(r))′η(r)/2j,

for some fixed 0 < α < 1/2.

Step 4 (Stopping rule). If ‖φ(r+1)−φ(r)‖∞ ≤ ε for some small ε > 0, then stop. Otherwise, increment
r and return to Step 2.

Condition C1 and properties of the log-likelihood function satisfy Dümbgen et al.’s (2006, Sec-
tion 3.1 and 3.2) requirements for convergence of φ(r) to the semiparametric maximum likelihood
estimator as r → ∞. Following from Fenchel’s duality theorem, the SPMLE can be directly charac-
terized through the stopping rule |∇θ`n(φ(r))′φ(r)| ≤ ε (Groeneboom, 1996, Lemma 2.1; Jongbloed,
1998). Unlike the supremum norm in Step 4 this inner product, when equal to zero, characterizes the
SPMLE.

Computation time is largely determined by the size of (dw, dz, d), processing power and the soft-
ware used to carry out quadratic programming in Step 2. We achieved a relatively fast estimation
routine by implementing the algorithm in C and drawing from IBM’s (2012) ILOG CPLEX Callable
Library.

5 ASYMPTOTIC PROPERTIES

Under some additional conditions (θ̂n, Λ̂n) is globally n1/3-consistent, but θ̂n is asymptotically ef-
ficient at (θ0,Λ0). The limiting distribution of Λ̂n remains an open problem. The current section
describes the details of these results. Proofs can be found in this paper’s supporting information.

Consistency requires that the semiparametric model is identifiable, which is easily ensured by
conditions C5 and C6–C8 below.

C6. The support of Z, supp(FZ), is a bounded subset of Rdz .

C7. There is an integer 1 ≤ k0 <∞, such that K < k0, almost surely.

C8. For any a ∈ R, b ∈ Rdw and c ∈ Rdz such that b, c 6= 0, both pr(W ′b 6= a) and pr(Z ′c 6= a) are
bounded away from zero.

Identifiability is clearly limited to the support of the inspection times, so we consider convergence
in measure. Let pk(w, z) = pr(K = k | W = w,Z = z). Adapting van der Vaart and Wellner (2000,
p. xiv) and Wellner and Zhang (2007, p. 2110), define for any B ∈ B[0, τ ] and C ∈ B(Rdw+dz)

µ(B × C) =

∫
C

∞∑
k=1

pk(w, z)
k∑
j=1

pr(Yk,j ∈ B | W = w,Z = z)dFW,Z(w, z),

µy(B) = µ(B ×Rdw+dz).

C9. µy × FW × FZ � µ.

Theorem 1. Under the aforementioned conditions θ̂n → θ0, almost surely, and Λ̂n → Λ0, µy-almost
everywhere.

The overall rate of convergence for (θ̂n, Λ̂n) is derived with one additional assumption.
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C10. Put µz = µ/µ{[0, τ ]×supp(FW )}. There exists some 0 < c < 1 such that a′ var(Z | Y,W )a ≤
ca′E(ZZ ′ | Y,W )a, µz-almost–everywhere, for all a ∈ Rdz .

Remark 3. Following Wellner and Zhang (2007, Remark 3.4), C10 can be justified as follows. From
C8 and the Markov inequality,E(ZZ ′) is positive definite. Assume that varµz(Z | Y,W ) andE(ZZ ′ |
Y,W ) are also positive definite. Condition C10 is then satisfied with c no larger than the ratio of the
smallest eigenvalue of varµz(Z | Y,W ) to the largest eigenvalue of E(ZZ ′ | Y,W ), provided that
this ratio is bounded away from zero uniformly in (Y,W ).

Theorem 2. Under the aforementioned conditions, ‖θ̂n − θ0‖+ ‖Λ̂n − Λ0‖µy ,2 = OP (n−1/3), where
‖Λ̂n − Λ0‖µy ,2 =

∑dw
j=1(

∫
|Λ̂n,j − Λ0,j|2dµy)1/2 is the L2(µy) distance between Λ̂n and Λ0.

The limiting distribution of θ̂n is obtained by application of Murphy and van der Vaart’s (2000)
profile likelihood theory. This considers an asymptotic expansion of the profile log-likelihood func-
tion `pn(θ) = supΛ∈H `n(θ,Λ) at θ̂n.

C11. The true cumulative regression function Λ0 has a bounded continuous derivative λ0 such that
wλ0 > 0 on [σ, τ ].

C12. There is y0 > 0 such that pr(YK,j − YK,j−1 ≥ y0) = 1 (j = 1, . . . , K).

C13. The conditional density functions fYk,j |W,Z(u | w, z) and fYk,j ,Yk,j+1|W,Z(u, v | w, z) exist for ev-
ery k = 1, 2, . . . and j = 1, . . . , k−1. Moreover the conditional expectationsEK|W,Z{

∑K
j=1 fYK,j |W,Z(u |

w, z)} and EK|W,Z{
∑K−1

j=1 fYK,j ,YK,j+1|W,Z(u, v | w, z)} have partial derivatives with respect to u and
v that are bounded uniformly in (w, z) ∈ supp(FW,Z).

Theorem 3. Under the aforementioned conditions, the sequence
√
n(θ̂n − θ0) is asymptotically nor-

mal with mean zero and variance equal to the inverse of efficient information matrix Ĩ0. Moreover,
for any vn → v ∈ Rdz and hn → 0 in probability as n→∞ such that (

√
nhn)−1 = Op(1),

−2
`pn(θ̂n + hnvn)− `pn(θ̂n)

nh2
n

→ v′Ĩ0v, (3)

in probability as n→∞.

Remark 4. Conditions C11–C13 greatly simplify the proof of Theorem 3 but have practical implica-
tions. A consequence of C12 is that the event times must be strictly left-censored, interval-censored or
right-censored. The availability of some exact times would only improve the rate of convergence. So
although Theorem 3 may imply asymptotic efficiency in the case of partially interval-censored data,
our proof does not formally address it. Condition C13 precludes consideration of any discretely-
distributed inspection process. However methods for grouped data (e.g. Lawless, 2003, Section 7.3)
are better suited in this setting.

6 VARIANCE ESTIMATION

The limit in (3) gives an approximation to the entries of Ĩ0. The resulting matrix can be inverted
to obtain a variance estimator for θ̂n. Let e1, . . . , edz denote the unit vectors in Rdz . Expanding
(ei + ej)

′Ĩ0(ei + ej), the (i, j)th entry of Ĩ0 is consistently estimated by

1

nh2
ii

{`pn(θ̂n + hiiei)− `pn(θ̂n)}+
1

nh2
jj

{`pn(θ̂n + hjjej)− `pn(θ̂n)}

− 1

nh2
ij

[`pn{θ̂n + hij(ei + ej)} − `pn(θ̂n)] (i, j = 1, . . . , dz). (4)
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Because θ and Λ are variation independent, `pn(θ̂n) = `n(θ̂n, Λ̂n). So this variance estimator calls for
maximizing dz(dz + 1)/2 profile likelihood functions. Such a task is carried out by fixing θ(r) in the
parameter estimation algorithm of Section 4 and revising the stopping rule to convergence in `n(φ(r)).

The tuning parameters hij = hji (i, j = 1, . . . , dz) must converge to zero no faster than
√
n. In

practice, some fixed value proportional to 1/
√
n may be chosen empirically. Borrowing methods

from numerical derivatives, we propose a data-driven approach that reduces the choice to specifying
typical and large values for θ.

For a continuously differentiable function f : R→ R, consider the numerical derivative based on
the first-order finite-difference approximation f ′(x) ≈ {f(x+ h)− f(x)}/h. Typically, one chooses
h ∼

√
ε curv(x), where ε is the error in evaluating f and curv = (f/f ′′)1/2 is the curvature scale

of f . This choice of h minimizes both the truncation error h3f ′′ and the round-off error ε|f/h| in
the approximation to f ′. Often little is known about f ′′, so h ∼

√
εx. To handle x close to zero,

this choice is revised to h ∼
√
ε sign(x) max(|x|, typx), where typx is the typical magnitude of x

(e.g. Press et al., 2007, Section 5.7). The approximation given by (3) is essentially a second-order
finite-difference approximation to the curvature in the profile log-likelihood at θ̂n. The corresponding
curvature scale curvij(θ̂n) is the cube root of −2`pn(θ̂n)/(ei ∨ ej)′∇3

θ`
p
n(θ̂n), where ei ∨ ej is the

element-wise maximum of ei and ej . Using the size of θ to replace extreme values in the curvature
scale, a straightforward extension of this selection strategy gives

hij = n−1/2 sign{curvij(θ̂n)} ×max[min{| curvij(θ̂n)|, sup θ}, |θ̂n,i|, |θ̂n,j|, typ θ], (5)

for i, j = 1, . . . , dz.

7 SIMULATION STUDY

We assessed the frequency properties of the semiparametric maximum estimator under an inspec-
tion scheme that roughly followed a predetermined schedule. Event times were generated from the
Weibull-type cumulative hazard function (t3/2W1 + t2/3W2) exp(θ1Z1 + θ2Z2), where W1 = 1, W2

is uniform on (0, 1), Z1 is standard normal and Z2 is uniform on {0, 1}. Over the observation period
(0, 2), a total of k scheduled visits were evenly spaced. The actual inspection times were generated
from k independent normal distribution functions having mean equal to one of the schedule times,
standard deviation 1/{2(k+ 1)} and truncation points at zero, the midpoints between scheduled visit
times and 2. This ensured that the support of the inspections times covered (0, 2), with most inspec-
tions occurring close to their scheduled target. To reflect skipped visits, each inspection after the
first one was missed with probability p(W,Z) = expit(β0 + β1Z2). The values examined for k and
(β0, β1) were set according to one of three scenarios.

Scenario 1. Independent censoring with k = 8, β0 = log(1/9) and β1 = 0.

Scenario 2. Independent censoring with k = 4, β0 = log(1/9) and β1 = 0.

Scenario 3. Conditionally independent censoring with k = 8, eβ0 = 1/4 and eβ1 = 4/9.

Under exp(β) = (1/9, 1)′, the probability of missing the jth (j = 2, . . . , k) inspection is 1/10. In
Scenario 3 the probability remained the same if Z2 = 1. Those with Z2 = 0 were twice as likely
to miss an inspection. The rates of left-, interval-, and right-censoring under Scenarios 1 and 3 were
roughly 17, 62 and 16%, respectively. Under Scenario 2 the corresponding rates were 26, 46 and
27%.

For each scenario the SPMLE was fit to 1000 Monte Carlo samples of size n = 100, 200 or 500.
For the tuning parameters, we set α = 1/3 in the line search of Step 3, ε = 10−7 in the stopping
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Table 1: Simulation study results for the regression coefficients under Scenario 1

n = 100 n = 200 n = 500

Bias SD ASE Bias SD ASE Bias SD ASE
×102 ×10 ×10 CP ×102 ×10 ×10 CP ×102 ×10 ×10 CP

θ1 SPMLE 5.64 1.57 1.60 0.96 3.10 1.03 1.04 0.94 1.34 0.58 0.62 0.96
Mid 0.45 1.39 1.35 0.94 -0.55 0.95 0.92 0.94 -1.18 0.54 0.57 0.95
End -0.66 1.38 1.35 0.94 -1.73 0.94 0.92 0.94 -2.31 0.54 0.57 0.94
Latent 1.79 1.35 1.33 0.94 0.98 0.95 0.91 0.94 0.41 0.54 0.56 0.96

θ2 SPMLE -3.48 2.57 2.57 0.95 -3.00 1.75 1.74 0.95 -0.97 1.06 1.07 0.95
Mid 1.24 2.41 2.41 0.95 0.45 1.67 1.66 0.94 1.22 1.02 1.04 0.95
End 3.37 2.40 2.43 0.95 2.03 1.68 1.67 0.94 2.38 1.03 1.04 0.95
Latent 0.07 2.36 2.32 0.95 -0.76 1.63 1.60 0.94 -0.17 1.01 1.00 0.95

Bias, average of estimates minus the truth; SD, standard deviation of estimates; ASE, average of standard
error estimates; CP, proportion of 95% confidence intervals that contained the truth; SPMLE, semiparametric
maximum likelihood estimator; Mid, End and Latent: semiparametric estimators from midpoint-imputed, right-
endpoint –imputed and latent right-censored data.

Table 2: Simulation study results for the regression coefficients under Scenario 2

n = 100 n = 200 n = 500

Bias SD ASE Bias SD ASE Bias SD ASE
×102 ×10 ×10 CP ×102 ×10 ×10 CP ×102 ×10 ×10 CP

θ1 SPMLE 8.07 1.81 1.86 0.96 4.48 1.14 1.19 0.96 2.31 0.63 0.70 0.96
Mid -2.40 1.41 1.37 0.93 -3.47 0.97 0.93 0.92 -3.75 0.54 0.58 0.90
End -5.89 1.44 1.37 0.90 -7.34 1.00 0.92 0.83 -7.53 0.57 0.57 0.72

θ2 SPMLE -5.60 2.88 2.87 0.96 -4.41 1.94 1.91 0.95 -2.06 1.17 1.17 0.94
Mid 3.70 2.50 2.51 0.94 2.94 1.72 1.73 0.95 3.50 1.08 1.08 0.94
End 8.68 2.59 2.56 0.92 7.64 1.76 1.74 0.92 7.51 1.08 1.08 0.89

See notes for Table 1.

rule of Step 4, and typ θ = 1 and sup θ = 10 in (5). This ensured convergence within a reasonable
number of iterations in all scenarios and sample sizes. For comparison, estimates were also obtained
from the corresponding midpoint-imputed, right-endpoint–imputed and the latent right-censored data
using Martinussen and Scheike’s (2006) timereg package for R (R Core Team, 2013).

The simulation results for θ̂n reported in Tables 1 and 2 and Table S1 in the supporting informa-
tion. The finite sample behaviour is compatible with the asymptotic properties outlined in Section 5;
across all scenarios bias becomes negligible with larger sample size, the empirical standard deviation
is reasonably approximated by the average of the standard error estimates, and the empirical coverage
rates of the 95% confidence intervals are close to the nominal level. Imputing to the midpoint of the
censoring interval generally achieved better results than imputing to the right-endpoint. Midpoint im-
putation also outperformed the maximum likelihood estimator in smaller samples with more frequent
inspections. However performance of both imputation-based estimators degraded with increasing
sample size and decreasing frequency of inspection.
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Figure 1: The true parameter value (dotted) displayed with the pointwise means (solid) and 2.5th
percentiles (dashed) of Λ̂n under Scenario 1
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Figure 2: The true parameter value (dotted) displayed with the pointwise means (solid) and 2.5th
percentiles (dashed) of Λ̂n under Scenario 2

Pointwise empirical means and 2.5th percentiles for Λ̂n are depicted in Figures 1 and 2 and Figure
S1 in the supporting information. Empirical bias and variability in Λ̂n decrease with increasing sample
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size and number of scheduled inspections. Bias also appeared to decrease closer to the scheduled visit
times, where inspections were relatively frequent. Estimates of the cumulative coefficient Λ2 vary
considerably more that those for the baseline regression function Λ1.

The constrained Newton algorithm described in Section 4 does not scale particularly well in larger
samples (Table 3); estimation under n = 500 was over fifty times slower than with n = 100. This
rate of increase is sharper when inspections are more frequent. The number of iterations is fairly
stable with n, suggesting that the computational burden lies in quadratic programming. Because the
number of constraints is exponential in dw, the processing time may become unreasonably long under
very large samples with numerous covariates. Such scaling issues are typical of methods to compute
nonparametric and semiparametric estimators. However, our approach appears to perform relatively
well compared to Pan’s (1999) extension of the iterative convex minorant to the Cox model (Zhang
et al., 2010, Table 1). On average, the maximum norm reached ε faster than the gradient-based norm.
Either stopping rule appears adequate, but the maximum norm is preferable in terms of processing
time.

Table 3: Monte Carlo sample average of processing time, iterations and gradient-based stopping norm

k = 4 k = 8

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

CPU time (minutes) 0.13 0.72 6.60 0.22 1.32 14.02
Number of iterations 210 201 177 356 360 372

∇φ`n(φ̂)′φ̂× 105 at convergence 0.79 0.88 1.05 6.20 2.75 4.61

CPU time, processing time in minutes for both parameter and variance estimation on an Opteron 6200 processor
core rated at 3GHz; Iterations, number of iterations to algorithm convergence.

8 APPLICATION

A severe form of joint destruction known as arthritis mutilans is estimated to arise in 2 to 16% of
patients with psoriatic arthritis (Gladman et al., 2005). Prognostic studies suggest that genetic factors
play a role in progressive joint damage. Using data collected from a Toronto-based psoriatic arthri-
tis clinic, Gladman and Farewell (1995) established an association between certain human leukocyte
antigen genes and various stages of progression. Chandran et al. (2011) revisited this problem with
an updated sample of 610 patients, including data on killer-cell immunoglobulin-like receptor genes.
They identified a number of potential genetic factors for the development in arthritis mutilans, char-
acterized by the presence of at least five severely damaged joints. A total of 49 patients (8%) had
arthritis mutilans by their first biannual radiographic survey, yielding left-censored times. An addi-
tional 49 patients developed arthritis mutilans over course of follow-up, leaving the majority (512 or
84%) of the sample right-censored.

Chandran et al. (2011) addressed interval-censoring through the use of a parametric Weibull haz-
ard model. This gave hazard ratios of various genetic markers, adjusted for both sex and age at diag-
nosis of psoriatic arthritis. Juvenile psoriatic arthritis, defined by onset before the age of 16 years, is
thought to be different from psoriatic arthritis arising in adulthood in terms both immunogenetics and
disease course (Hamilton et al., 1990). We thus fit a Cox-Aalen model to the same data considered by
Chandran et al. (2011), with the baseline hazard function stratified by age at diagnosis.

For initial covariate selection, we carried out Sun’s (1996) nonparametric log-rank test of differ-
ences in survival curves using the R interval package (Fay and Shaw, 2010). Genetic markers having
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Table 4: Covariate effects on the risk of arthritis mutilans, adjusted for age at diagnosis of psoriatic
arthritis

Factor θ̂n ese(θ̂n) p-value 95% CI for eθ

Female -0.08 0.21 0.71 0.61 – 1.40
HLA-A11 present -0.87 0.44 0.05 0.18 – 1.00
HLA-A29 present -1.47 0.69 0.03 0.06 – 0.89
HLA-B27 present 0.59 0.23 0.01 1.15 – 2.82

HLA-DQB1*02 present 0.52 0.21 0.01 1.11 – 2.56
KIR3DS1 present, HLA-Bw4*80I absent 0.54 0.22 0.01 1.12 – 2.63

HLA-A, B, C, DQB1: human leukocyte antigen gene classes; KIR, killer-cell immunoglobulin-like receptor;
ese, estimated standard error; CI, confidence interval.

Years since diagnosis

0 30 50

0

0.07

0.4

0.5

Λ̂1(�)

Λ̂2(�)

� = (1, 1)

� = (1, −1)

Figure 3: Left panel: Cumulative baseline hazard estimate for individuals diagnosed at the sample
average of 36 years (solid) and cumulative coefficient for standardized age at diagnosis (dotted).
Right panel: Cumulative baseline hazard estimate for individuals with age at diagnosis one standard
deviation older (solid) and younger (dotted) than 36 years

a p-value less than 10% were added to a regression model containing sex and age at diagnosis. The
set of markers was then reduced further by backward elimination until all remaining p-values were
no greater than 5%. This selection procedure ultimately identified the same set of genetic risk factors
(Table 4) as those found by Chandran et al. (2011).

Although the effect of age at diagnosis on the risk of arthritis mutilans is not of primary scientific
interest, we depict the estimate for Λ in Figure 3 to fully illustrate the model fit. Patients diagnosed in
older age tended to develop arthritis mutilans sooner. This difference appears to vary over time, but
further investigation is needed to determine if it is significantly different from zero.

Additional work is needed to assess the requirements of the SPMLE, particularly C2; the assump-
tion that the time to arthritis mutilans is coarsened at random. Although this goes beyond the simple
demonstration we aimed for here, any departures from the condition are likely limited as assessments
of arthritis mutilans were scheduled at 6-month intervals, staggered according to study entry. Some
observations are right-censored at the last visit prior to death, but this form of potentially dependent
censoring arises in less than 5% of the sample.



A Cox-Aalen model for interval-censored data 12

9 DISCUSSION

In this paper, we derived the SPMLE for the Cox-Aalen model with fixed covariates from interval-
censored data and showed that it performs well under moderate to large samples and relatively few
covariates. Although the estimator relying on midpoint-imputation attained smaller empirical bias in
some simulation scenarios, this edge in finite sample performance may not hold under other models
for the event time and observation scheme. Moreover, our simulation study showed that estimators
based on systematic imputation generally do not achieve smaller bias with increasing sample size—
a property needed to reasonably carry out inference on the regression coefficient.

Derivation of the limiting distribution of Λ̂n or subsampling-based pointwise confidence inter-
vals for Λ would permit inference about additive effects and the survivor distribution. Under right-
censored data Scheike and Zhang (2003) propose a test statistic to infer whether or not Λj , j > 1, is
time-varying. An analogous test with interval-censored data would be useful in assessing departures
from the Cox model. These are some potential areas for further development.
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S1 PROOFS

Asymptotic properties stated in Section 5 are derived here by application of empirical process theory.
This exercise largely amounts to adapting results from Huang (1996), Huang and Wellner (1997),
Murphy and van der Vaart (1997), van der Vaart and Wellner (2000) and Wellner and Zhang (2007).

Theorem 1 follows from van der Vaart (1998, Theorem 5.7), an approach routinely used to estab-
lish consistency of M-estimators. Instead of log pθ,Λ, we use the technically more convenient criterion
mθ,Λ = log{(pθ,Λ + p0)/2}, where the subscript 0 is shorthand for θ0,Λ0.

Let Sθ,Λ(y | w, z) = exp{−w′Λ(y)ez
′θ} denote the survivor function with Sθ,Λ(0 | w, z) ≡ 1,

Sθ,Λ(∞ | w, z) ≡ 0 and Fθ,Λ = 1− Sθ,Λ. Then pθ,Λ = p0 almost surely implies

0 =

∫ ∞∑
k=1

pk(w, z)
k+1∑
j=1

∫
|(Fθ,Λ − F0)(yk,j | w, z)

− (Fθ,Λ − F0)(yk,j−1 | w, z)}|dFYK |K,W,Z(yk | k, w, z)dFW,Z(w, z).

Adapting van der Vaart and Wellner (2000, Lemma 4), C7 ensures that the inner summation has lower
bound

max
1≤j≤k

∫
|(Fθ,Λ − F0)(yk,j | w, z)|dFYK,j |K(yk,j | k, w, z)

≥ 1

k

k∑
j=1

∫
|(Sθ,Λ − S0)(yk,j | w, z)|dFYK,j |K,W,Z(yk,j | k, w, z).

Thus 0 =
∫
|pθ,Λ − p0|dν ≥

∫
|Sθ,Λ − S0|dµ̃, where µ̃ is the measure obtained by scaling pk by 1/k

in µ. From C5–C7, µ and µ̃ are both finite. Since µ ≪ µ̃ the dominated convergence theorem gives∫
|Sθ,Λ − S0|dµ = 0. From C1, W ′Λ0 is µ-almost everywhere bounded away from zero. Therefore

ez
′(θ0−θ) = w′Λ(y)/w′Λ0(y), µ-a.e., and Z ′(θ0−θ) is then degenerate given Y ∼ µy. Under conditions

C8 and C9 this implies that θ = θ0 and hence w′{Λ(y) − Λ0(y)} = 0, µ-a.e. Appealing to C8 and
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C9 again yields Λ = Λ0, µy-a.e. This establishes identifiability. Since log a ≤ 2(
√
a − 1) for every

a ≥ 0,

P (mθ,Λ −m0) ≤ 2

∫ {
(pθ,Λ + p0)p0

2

}1/2

dν − 2 ≤ −
∫
(p

1/2
θ,Λ − p

1/2
0 )2dν. (S1)

The true measure p0 is identifiable, so this upper bound is zero only if θ = θ0 and Λ = Λ0 µy-
almost–everywhere. Since the logarithm is concave and (θ̂n, Λ̂n) is the unique maximizer of the
log-likelihood, Pn(mθ̂n,Λ̂n

−m0) = Pn log{(pθ̂n,Λ̂n
+p0)/(2p0)} ≥ Pn{log(pθ̂n,Λ̂n

)− log(p0)}/2 ≥ 0.
Thus

P (m0 −mθ̂n,Λ̂n
) ≤ Pn mθ̂n,Λ̂n

− Pmθ̂n,Λ̂n
+ o(1)

≤ sup
(θ,Λ)∈Θ×H

|Pn mθ,Λ − Pmθ,Λ|+ o(1). (S2)

Any Λ ∈ H can be written as Λ = Λ+ − Λ−, where both Λ+ and Λ− are bounded and monotone
on [0, τ ]. From C1, C5 and C6, (θ,Λ) → Sθ,Λ is uniformly bounded and Lipschitz for every x.
From C7 and van der Vaart and Wellner (1996, Theorem 2.7.5), M = {mθ,Λ : θ ∈ Θ,Λ ∈ H} is
P -Glivenko–Cantelli with bracketing number

N[ ]{ε,M, L2(P )} ≲ (diamΘ/ε)dzk0 × exp(2dwk0/ε). (S3)

Thus the upper bound in (S2) or, equivalently, the probability of the event {Pmθ̂n,Λ̂n
< Pm0} almost-

surely tends to zero. From (S1), {θ̂n ̸= θ0} and {Λ̂n ̸= Λ0 on supp(µy)} are subsets of this event, so
their probabilities must also almost-surely converge to zero.

Proving Theorem 2 amounts to verifying the requirements of van der Vaart and Wellner (1996,
Theorem 3.2.5), a well-known method for establishing an M-estimator’s rate of convergence.

Since p0 is bounded away from zero, pθ,Λ is bounded above by one, µ ≪ µ̃ with µ, µ̃ < ∞ and
|p− q|2 ≤ |p− q| for every p, q ∈ [0, 1], the proof of identifiability above gives

∫
(p

1/2
θ,Λ − p

1/2
0 )2dν ≳∫

(pθ,Λ− p0)
2dν ≥

∫
|Sθ,Λ−S0|dµ. Let θt = tθ+(1− t)θ0 and Λt = tΛ+(1− t)Λ0. From the mean

value theorem there is t ∈ (0, 1) depending on (y, w, z) such that

(Sθ,Λ − S0)(y | w, z) = Sθt,Λt(y | w, z)ez′θt{w′(Λ− Λ0)(y) + (θ − θ0)
′zw′Λt(y)}.

For (Y,W,Z) ∼ µ, define g0(Z) = 1+ t(θ− θ0)
′Z, g1(Y,W ) = W ′(Λ−Λ0)(Y ) and g2(Y,W,Z) =

(θ − θ0)
′ZW ′Λ0(Y ). So (Sθ,Λ − S0)(Y | W,Z) is equal to g0(Z)g1(Y,W ) + g2(Y,W,Z) up to the

factor Sθt,Λt(y | W,Z)eZ
′θt , which is bounded away from zero under C1 and C6. Adapting Wellner

and Zhang (2007, pp. 2126–2127), the Cauchy-Schwarz inequality and C10 give

{Eµ(g1g2)}2 ≤ Eµ(g
2
1)Eµ

(
[W ′Λ0(Y )Eµ{(θ − θ0)

′Z | Y,W}]2
)

≤ (1− c)Eµ(g
2
1)Eµ(g

2
2).

Since c is bounded away from zero and g0(z) is uniformly close to one for θ near θ0, Murphy and
van der Vaart (1997, Lemma A.6) gives

∫
(Sθ,Λ − S0)

2dµ ≳ µg22 + µg21 ≳ ∥θ − θ0∥ + ∥Λ − Λ0∥2µy
,

where the last inequality up to a constant holds under C1 and C5. Thus P (mθ,Λ−m0) ≲ −∥θ−θ0∥2−
∥Λ − Λ0∥2µy ,2. Let Mδ = {mθ,Λ −m0 : ∥θ − θ0∥ + ∥Λ − Λ0∥µy ,2 < δn}. From (S3), this class has
bracketing integral J[ ]{δ,Mδ, L2(P )} ≲ δ−1/2. By van der Vaart and Wellner (1996, Lemma 3.4.2),
E∗∥Gn ∥Mδ

≲
√
δ{1 + δ−1(δn)−1/2}.

Theorem 3 is derived by checking Murphy and van der Vaart’s (2000, Theorem 1) conditions for
semiparametric efficiency. Existence of the efficient score for θ at (θ0,Λ0) is shown by adapting the
proof of Huang and Wellner (1997, Theorem 4.1). Throughout Z is assumed scalar (dz = 1). The
case where dz > 1 follows by applying the same arguments to each entry of θ.
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Let Rθ,Λ(u, v | w, z) = Sθ,Λ(v | w, z)/{Sθ,Λ(u | w, z) − Sθ,Λ(v | w, z)} and Qθ,Λ = 1 − Rθ,Λ.
The score for θ is ℓ̇θ,Λ =

∑dw
j=1 ℓ̇

j
θ,Λ, where

ℓ̇jθ,Λ(x) = zezθ
[
δk,1wjΛj(yk,1)Rθ,Λ(0, yk,1 | w, z)− δk,k+1wjΛj(yk,k)

+
k∑

j=2

δk,j
{
wjΛj(yk,j)Rθ,Λ(yk,j−1, yk,j | w, z)

− wjΛj(yk,j−1)Qθ,Λ(yk,j−1, yk,j | w, z)
}]

.

Perturbing each entry in Λ generates a tangent set with respect to the product space {Λ1 × · · ·×Λdw}
of which H is a subset. Consider a one-dimensional submodel s 7→ Λs,1 × · · · × Λs,dw with direction
h = (h1, . . . , hdw) satisfying hj = ∂/∂s|s=0Λs,j (j = 1, . . . , dw). For now assume that h is chosen so
that Λs ∈ H . Then a score function for Λ is Lθ,Λh =

∑dw
j=1 Lθ,Λhj , where

Lθ,Λhj(x) = ezθ
[
δk,1wjhj(yk,1)Rθ,Λ(0, yk,1 | w, z)− δk,k+1wjhj(yk,k)

+
k∑

l=2

δk,l
{
wjhj(yk,l)Rθ,Λ(yk,l−1, yk,l | w, z)

− wjhj(yk,l−1)Qθ,Λ(yk,l−1, yk,l | w, z)
}]

.

Considering the event time T as the unobserved variable in an information loss model (e.g. van der
Vaart, 1998, Section 25.5.2), the adjoint L∗

θ,Λ of the score operator Lθ,Λ is the conditional expectation
under (θ,Λ) given {T = t}. Moreover if L∗

θ,Λℓ̇θ,Λ = L∗
θ,ΛLθ,Λh then h is a least favourable direction.

By C2,

L∗
θ,Λℓ̇θ,Λ(t) =

dw∑
j=1

EW,Z [E{ℓ̇jθ,Λ(X) | T = t,W,Z}]

=
dw∑
j=1

EW,Z [E{1(L,R](t)ℓ̇
j
θ,Λ(X) | W,Z}]

=
dw∑
j=1

EW,Z

[ ∞∑
k=1

pk(W,Z)E{1(L,R](t)ℓ̇
j
θ,Λ(X) | K = k,W,Z}

]
.

Owing to the similar score structure, L∗
θ,ΛLθ,Λh(t) is the right side of this expression with ℓ̇jθ,Λ replaced

by Lθ,Λhj . For u < v and j = 1, . . . , dw, put

Aj(u, v) = Rθ,Λ(u, v | W,Z)Wje
Zθ

∞∑
k=1

pk(W,Z)
k∑

l=1

fYK,l−1,YK,l|W,Z(u, v | W,Z)

and similarly define Bj(u, v) with Qθ,Λ in place of Rθ,Λ. Let aj , bj , cj and dj denote the respective
expectations of Aj , Bj , ZAj and ZBj relative to (W,Z). From C2 and C12,

qj(t) ≡ L∗
θ,Λℓ̇

j
θ,Λ(t) =

∫ τ

t

Λj(u)cj(0, u)du−
∫ t

σ

Λj(u)dj(u,∞)du

+

∫ t

u=σ

∫ τ

v=t

{
Λj(v)cj(u, v)− Λj(u)dj(u, v)

}
1(v − u ≥ y0)dvdu
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and rj(t) ≡ L∗
θ,ΛLθ,Λhj(t) has similar form, obtained by replacing Λj , cj and dj with hj , aj and bj ,

respectively (j = 1, . . . , dw). Let hj
θ,Λ denote the hj for which q′j = r′j (j = 1, . . . , dw). Then hj

θ,Λ is
the solution to the Fredholm integral equation

hj
θ,Λ(t) = gj(t) +

∫
Kj(s, t)h

j
θ,Λ(s)ds, (S4)

where gj(t) = −qj(t)/sj(t), Kj(u, t) = {aj(t, u)1(u− t ≥ y0)− bj(u, t)1(t− u ≥ y0)}/sj(t) and

sj(t) = aj(0, t) + bj(t,∞) +

∫ t

σ

aj(u, t)1(t− u ≥ y0)du+

∫ τ

t

bj(t, v)1(v − t ≥ y0)dv.

At the true parameter (θ0,Λ0), gj = g0,j and Kj = K0,j are bounded by C1, C5, C6 and C12. From
Fredholm’s first theorem (e.g. Kanwal, 1997, p. 48), (S4) at the truth has the µy-almost–everywhere
unique solution hj

0(t) = g0,j(t) +
∫
Γ0,j(u, t)g0,j(u)du, where Γ0,j is completely determined by K0,j

and is identically zero only if g0,j = 0. Thus ℓ̃0 = ℓ̇0 − L0h0 is the efficient score for θ at (θ0,Λ0)
and the efficient information matrix Ĩ0 = P0ℓ̃0ℓ̃

′
0 is positive definite. We now identify a submodel

that is indexed by h0 and satisfies the structural requirements of Murphy and van der Vaart (2000,
Theorem 1). Extending the arguments of Huang (1996, pp. 563–564) and van der Vaart (1998, p. 411),
consider

Λs(θ,Λ) = Λ + (θ − s)φ(Λ)(h0 ◦ Λ−1
0,1 ◦ Λ1), (S5)

where Λ0,1 and Λ1 are the first components of Λ0 and Λ, respectively, and φ is a smooth approximation
to 1(0,M)(wy) ensuring that 0 < wΛs(θ,Λ) < M on [σ, τ ] and ∂/∂s|s=0Λs(θ,Λ0) = h0. In particular
φ(Λ) = 1 on [Λ0(σ),Λ0(τ)], Λ 7→ φ(Λ) is Lipschitz and, for every Λ ∈ H , 0 ≤ wΛφ(Λ) ≲
wΛ ∧ (M −wΛ) with the last inequality satisfied up to a constant depending only on (θ0,Λ0). From
C1, φ exists. From C11, Λ0,1 is strictly increasing and continuous, so its inverse is well-defined. With
C13, h0 ◦ Λ−1

0,1 is bounded and Lipschitz. Since the composition h0 ◦ Λ−1
0,1 ◦ Λ1 has the same jump

discontinuities as Λ1 we have, for every u ≤ v and s sufficiently close to θ,

w{Λs(θ,Λ)(u)− Λs(θ,Λ)(v)} ≤ w{Λ(u)− Λ(v)}(1− |θ − s|c0),

where c0 is the Lipschitz constant of Λ 7→ φ(Λ)h0 ◦ Λ−1
0,1(Λ). Thus (S5) defines an approximately

least favourable submodel such that Λθ(θ,Λ) = Λ and the map s 7→ log ps,Λs(θ,Λ)(x) ≡ ℓ(s, θ,Λ)(x) is
twice continuously differentiable with ℓ̇(θ0, θ0,Λ0) = ℓ̃0. For any consistent estimator θ̃n, the profile
maximizer argmaxΛ∈H ℓn(θ̃n,Λ) tends to Λ0 in probability due to Theorem ?? and the fact that θ and
Λ are variation independent. For fixed x each term on the right-hand side of

P0ℓ̇(θ0, θ0,Λ) = P0

[p0 − pθ0,Λ
p0

{ℓ̇(θ0, θ0,Λ)− ℓ̇(θ0, θ0,Λ0)}
]

− P0ℓ̇(θ0, θ0,Λ)
{pθ0,Λ − p0

p0
− L0(Λ− Λ0)

}
depends on Λ only through one or both of Λ(yk,j−1) and Λ(yk,j) with δk,j = 1. Without loss of
generality suppose that 1 < j < k. Following Murphy and van der Vaart (2000, p. 460), ordinary
Taylor expansions at (Λ(yk,j−1),Λ(yk,j)) yield the inequalities

|pθ0,Λ − p0|(x) ≲ |Λ− Λ0|(yk,j−1) + |Λ− Λ0|(yk,j),
|ℓ̇(θ0, θ0,Λ)− ℓ̇(θ0, θ0,Λ0)|(x) ≲ |Λ− Λ0|(yk,j−1) + |Λ− Λ0|(yk,j),
|pθ0,Λ − p0 − L0(Λ− Λ0)p0|(x) ≲ |Λ− Λ0|2(yk,j−1) + |Λ− Λ0|2(yk,j),

since the first and second derivatives with respect to Λ(yk,j−1) and Λ(yk,j) are uniformly bounded
under C1, C5 and C6. Thus P0ℓ̇(θ0, θ0,Λ) ≲ ∥Λ − Λ0∥2µy,2. By Theorem 2, the right side of this
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inequality up to a constant is OP (n
−2/3), which is more than enough to establish the no-bias condi-

tion (Murphy and van der Vaart, 2000, equation 11). For the same x, ℓ̇(s, θ,Λ)(x) and ℓ̈(s, θ,Λ)(x)
are Lipschitz in z, ezθ, w′Λ(yk,j−1) and w′Λ(yk,j). From C1 and C7, van der Vaart and Wellner
(1996, Theorem 2.7.5) and arguments similar to those preceding display (S3), Θ×H is P0-Donsker.
Thus x → ℓ̈(s, θ,Λ)(x) and x → ℓ̇(s, θ,Λ)(x) form P0-Glivenko–Cantelli and P0-Donsker classes,
respectively, for (θ,Λ) running through Θ×H .

S2 ADDITIONAL SIMULATION STUDY RESULTS

Table S1: Simulation study results for the regression coefficients under Scenario 3

n = 100 n = 200 n = 500

Bias SD ASE Bias SD ASE Bias SD ASE
×102 ×10 ×10 CP ×102 ×10 ×10 CP ×102 ×10 ×10 CP

θ1 SPMLE 5.75 1.59 1.61 0.95 3.17 1.04 1.05 0.95 1.32 0.58 0.62 0.96
Mid 0.19 1.39 1.35 0.94 -0.80 0.96 0.92 0.94 -1.48 0.54 0.57 0.95
End -1.22 1.38 1.35 0.94 -2.37 0.96 0.92 0.93 -3.07 0.54 0.56 0.92

θ2 SPMLE -3.78 2.59 2.58 0.95 -3.07 1.75 1.75 0.94 -0.99 1.07 1.08 0.95
Mid 1.91 2.42 2.41 0.94 1.19 1.66 1.67 0.94 1.99 1.03 1.04 0.95
End 6.77 2.40 2.43 0.94 5.50 1.69 1.68 0.93 5.85 1.04 1.04 0.90

Bias, average of estimates minus the truth; SD, standard deviation of estimates; ASE, average of standard error
estimates; CP, proportion of 95% confidence intervals that contained the truth; MLE, semiparametric maximum
likelihood estimator; Mid, End and Latent: semiparametric estimators from midpoint-imputed, right-endpoint–
imputed and latent right-censored data.

S3 SOFTWARE

The C routine mentioned in Section 4 is available as part of the coxinterval R package, which is
currently maintained at a GitHub repository by the same name:

https://github.com/aboruvka/coxinterval

System requirements and installation instructions are available on the repository’s home page.
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Figure S1: The true parameter value (dotted) displayed with the pointwise means (solid) and 2.5th
percentiles (dashed) of Λ̂n under Scenario 3
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