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Abstract 

Transportation agencies in many countries require high-accuracy (2-20 cm) digital 

terrain models (DTMs) along roads for various transportation related applications. Compared 

to traditional ground surveys and aerial photogrammetry, mobile laser scanning (MLS) has 

great potential for rapid acquisition of high-density and high-accuracy three-dimensional (3D) 

point clouds covering roadways. Such MLS point clouds can be used to generate high-

accuracy DTMs in a cost-effective fashion. However, the large-volume, mixed-density and 

irregular-distribution of MLS points, as well as the complexity of the roadway environment, 

make DTM generation a very challenging task. In addition, most available software packages 

were originally developed for handling airborne laser scanning (ALS) point clouds, which 

cannot be directly used to process MLS point clouds. Therefore, methods and software tools 

to automatically generate DTMs along roads are urgently needed for transportation users.  

This thesis presents an applicable workflow to generate DTM from MLS point clouds. 

The entire strategy of DTM generation was divided into two main parts: removing non-

ground points and interpolating ground points into gridded DTMs. First, a voxel-based 

upward growing algorithm was developed to effectively and accurately remove non-ground 

points. Then through a comparative study on four interpolation algorithms, namely Inverse 

Distance Weighted (IDW), Nearest Neighbour, Linear, and Natural Neighbours interpolation 

algorithms, the IDW interpolation algorithm was finally used to generate gridded DTMs due 

to its higher accuracy and higher computational efficiency.  

The obtained results demonstrated that the voxel-based upward growing algorithm is 
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suitable for areas without steep terrain features. The average overall accuracy, correctness, 

and completeness values of this algorithm were 0.975, 0.980, and 0.986, respectively. In 

some cases, the overall accuracy can exceed 0.990. The results demonstrated that the semi-

automated DTM generation method developed in this thesis was able to create DTMs with a 

centimetre-level grid size and 10 cm vertical accuracy using the MLS point clouds.  
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Chapter 1 
Introduction 

1.1 Motivations 

1.1.1 Requirements of High-accuracy DTMs along Roads  

A Digital Terrain Model (DTM) is a digital and mathematical representation of the 

virtual terrain information (Kasser and Egels, 2002). It is a type of Digital Elevation Model 

(DEM) which only measures the elevation of any point on ground or water surface. Terrain is 

a fundamental factor of earth surface modeling which can be efficiently represented by 

DTMs. Thus, DTMs have been widely used in many areas such as resource management, 

urban planning, transportation planning, earth sciences, environmental assessments, and 

Geographic Information System (GIS) applications (Vaze and Teng, 2007).  

In transportation, a highly accurate DTM along roads can be used in various 

transportation applications. A high-accuracy DTM can be applied toward road design and 

construction, post-construction quality control, and the maintenance of roads and highways. 

For instance, highway design and construction normally requires 30 cm or 15 cm contour 

intervals (Maune, 2007). According to Berg and Ferguson (2001), the Ministry of 

Transportation Ontario (MTO) requires an accuracy of 9 cm and 23 cm (for 1:3000 scale) 

DTMs on hard-surface and soft-surface areas, respectively, when working on highway 

engineering projects. Fellendorf (2013) stated that a DTM with a height accuracy of 2-5 cm 

can compute the energy consumption and simulate traffic flow. The grid size and the 

accuracy of elevation of DTMs are relevant to the quality of the geometric design of roads 
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and highways (Fellendorf, 2013). In the United States, the Department of Transportation 

requires an accuracy of 21 cm (for 1:3000 scale) DTMs for hard surface (Yen et al., 2010). 

According to the National Cooperative Highway Research Program (NCHRP) of the United 

States, the suggested accuracy of DTMs is less than 5 cm at the engineering survey level 

such as pavement analysis and road and highway design, 5-20 cm at the general mapping 

level such as extraction of road features and autonomous navigation, and greater than 20 cm 

at the road condition assessment level (Olsen et al., 2013). For this purpose, generating high-

accuracy and high-resolution DTMs along roads is necessary for transportation engineering 

projects.  

In addition, pavement cracks and curbs along the road can be generated through high-

resolution and high-accuracy DTMs. Moreover, high-accuracy DTMs can be implemented in 

transportation safety control. For example, roads surface water has a major impact on 

pavement skid resistance (Norrman et al., 2000). Road surface water depth and road surface 

run-off can be calculated by using highly accurate DTMs. The input data (DTM) quality and 

resolution significantly affect these final results (Kenward et al., 2000). Moreover, some 

terrain features extracted from DTMs, such as slope and aspect, can assist with stormwater 

management, disaster preparedness and response, and floodplain management. Stormwater 

management heavily relies on DTMs (Maune, 2007). Urban road waterlogging normally 

occurs in many cities such as Beijing, and Mumbai during rainy seasons, and it can result in 

human casualties and economic losses (Gupta, 2007; Liu et al., 2014). A high-accuracy and 

high-quality DTMs along roads is advantageous for urban planning and management 

regarding these types of disasters.  
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1.1.2 Techniques for Generating DTMs 

Traditionally, cartographers manually plotted data points with the assistance of 

photogrammetric models after ground surveying to obtain DTMs (Gallant, 2000). It provides 

the most accurate DTM among other methods. This method requires more editing, which can 

be completed by using GIS, and they are costly and require a great effort. However, rapidly 

updating GIS data has become a new trend, and traditional surveying next to speeding traffic 

is hazardous and time consuming.  

With the rapid development of GIS and remote sensing, these techniques allow a 

greater number of researchers to use remote-sensed imagery to generate DEMs. A variety of 

satellite images, which have different spatial, radiometric, spectral, and temporal resolutions, 

can provide elevation information for generating DTMs (Kayadibi, 2009). Using remote-

sensed images to extract DTMs has become an attractive option as it is less labour intensive 

and less time consuming. 

There are many research conducted in the past where satellite images used to generate 

DTMs. Satellite stereo images have been used to generate DTMs. Compared to a DTM 

generated from topographic contours at a scale of 1:250,000, a DTM extracted from SPOT 

stereo imagery had a median disagreement of 58 m, and it provides better basis for 

orthorectification (Zomer, 2002). Some researchers tried to use adjacent-orbit Landsat-7 

ETM+ panchromatic images to obtain a DTM but a main problem to this approach arises as 

Landsat images are significantly affected by clouds, snow, and ice in mountains and high-

latitude areas (Toutin, 2002). ASTER stereo data and Cartosat-1 stereo data can extract 
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highly-accurate DTMs (Toutin, 2006; Kayadibi, 2009). However, these two types of satellite 

images need to be integrated into ground control points (GCPs) as auxiliary data. After the 

emergence of sophisticated radar technology, methods such as radargrammetry and 

interferometry have been used to produce DTMs using radar images (Kayadibi, 2009). 

Generating DTMs using Interferometric Synthetic Aperture Radar (InSAR) images requires 

at least two complex Synthetic Aperture Radar (SAR) images that must cover the same area 

and be acquired from slightly different points of view (Crosetto, 2002). Unlike using 

Landsat’s data for extracting DTMs, SAR or InSAR data can be used without considering 

weather conditions and day or night data acquisition. However, the data quality is not as high 

as using optical images at the same scale (Moreira, 1996; Kayadibi, 2009).  

1.1.3 Laser Scanning Techniques for Generating DTMs 

Airborne laser scanning (ALS), terrestrial laser scanning (TLS), and mobile laser 

scanning (MLS) data have been used to derive DTMs, which contain more details than those 

derived from photogrammetry, respectively (Abellan et al., 2009; Corsini et al., 2009; Lato et 

al., 2009). In addition to the improvement of spatial resolution, vertical accuracy can be 

improved as well. Compared to other methods, laser scanning data acquisition is rapid, 

affordable, and capable of reaching inaccessible areas (Heritage and Large, 2009). Since 

laser scanning data usually achieves centimetre level precision in the vertical direction, 

researchers recently began to focus on using laser scanning systems to obtain DTMs.  

Laser sensors are equipped on different platforms, such as ground-based platforms, or 

moving platforms: an airplane, a vehicle, a boat, and even a human carried backpack (Kukko 
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et al. 2012; Williams et al., 2013).  Because of this, the features of data acquired from these 

different methods are diverse. A typical urban road profile is shown in Figure 1.1. 

Traditionally, for generating topographical information, people tend to use automatic levels, 

total stations, or GPS. As Profile A shows, this method usually obtains less data and is time 

consuming. In addition, surveying in urban areas especially on roads or highways, is quite 

dangerous for operators.  

Laser scanning data has much more topographical details which help with generating 

DTMs and Digital Surface Models (DSM). Compared to DTMs, DSM not only represents 

the elevation of any point on ground or water surface, but also contains the elevation of all 

features above the ground. ALS systems can collect not only the terrain features but also the 

objects above the ground with dense point clouds as shown in Profile B. This kind of laser 

scanning data usually shows a point density up to 20 points/m² (Zippelt and Czerny, 2010). 

However, as Profile C shows, TLS and MLS can observe and measure very high dense point 

clouds, usually up to several thousand points per square meter for all objects which are 

terrain or off-terrain points. After the raw data is processes, new details and information with 

finer resolution can be provided. Since then, the usage of topographic mapping as the 

fundamental function of MLS systems has become very prominent (Olsen et al., 2013). Lin 

and Hyyppa (2010) successfully proposed an automatic method for detecting pedestrian 

culverts from DTMs created from MLS point clouds, which helps supplement roadway 

characteristic attributes. Their work demonstrates that it is possible to generate DTMs along 

the road from MLS data. Meanwhile, the development of MLS technology advances as more 

advanced MLS systems that can efficiently collect data with higher positional accuracy, were 
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invented by manufacturers. For instance, 1.1 million points can be collected in one second by 

RIEGL VMX-450 system (RIEGL, 2013). Surveying a 10-kilometre highway using the 

traditional method usually takes over 20 nights. However, to finish all these works, the MLS 

system only takes less than one week (Olsen et al., 2013).  Most MLS systems can provide an 

absolute accuracy less than 5 cm. Therefore, generating high-accuracy and high-quality 

DTMs along roads can be achieved. Compared to other methods, MLS systems provide a 

labour-effective method to acquire high precision topographical information. 

 

Figure 1.1: Example of traditional surveying and different laser scanning observations. 
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1.1.4 Challenges in DTM Generation by MLS Data 

To generate a DTM from MLS data, data processing could be a challenge. Data post-

processing has been identified as a new challenge to the industries since MLS data sets 

usually have huge volumes. As a result, data processing capability is significant to the 

efficiency and accuracy of the final deliverable topographical information, such as DTMs. 

There have been several commercial software packages available such as TerraSolid 

software, Leica Cyclone®, InnovMetric PolyWorks®, GeoCue software suite, PHOCAD 

PHIDIAS®, Bentley Pointools, and Virtual Geomatics software suite (Yen et al., 2011). 

However, many of these packages were originally developed for ALS data processing. For 

example, the Terrasolid® software suite can only process point clouds with dozens of 

megabytes in each data strip. MLS data commonly holds hundreds of megabytes in each data 

strip. In addition, some manufactures developed packages to process MLS data such as 

RIEGL’s Ri-SCAN PRO and Ri-PROCESS (Guan, 2013). But these software packages only 

provide some fundamental functions when processing MLS data, including data control, 

calibration, adjustment, registration, and visualization, rather than processing data further for 

the purpose of delivering more detailed geographical products such as DTMs (Guan, 2013).  

In addition, several MLS-based studies have been conducted by our research group, 

including the development of algorithms and software tools for automated detection and 

extraction of 3D off-terrain objects (e.g., vehicles, traffic signs, and street light poles), and 

road information (e.g., road markings, pavement cracks, and manhole covers) (Guan et al., 

2015a; Guan et al., 2015b; Wen et al., 2015; Yu et al., 2015a; Yu et al., 2015b). However, 

there is no research working on using MLS data to generate DTMs along roads. Therefore, 
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this thesis attempts to address the following three key research questions:  

(1) How efficient is DTMs generation from MLS data?  

(2) How good of DTMs generated from MLS point clouds can be achieved in terms 

of accuracy and resolution?  

(3) How different densities of MLS point clouds effect the accuracy and resolution of 

DTMs? 

1.2 Objectives of the Study 

The main research goal of this study is to develop a method for automatically 

generating high-accuracy DTMs using MLS data. More specifically, the objectives of this 

study are summarized as follows: 

• To develop a semi-automated filtering algorithm to extract terrain points from 

raw MLS point clouds;  

• To generate centimetre-accuracy gridded DTMs based on the high-density 

terrain points segmented from the MLS point clouds using a simple and 

efficient interpolation method;  

• To assess the quality and accuracy of the proposed filtering approach and the 

derived DTMs using the MLS data acquired in the selected study area.  

1.3 Structure of the Thesis 

This thesis consists of five chapters. Chapter One provides the motivations and 
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objectives of this study. Chapter Two reviews the elements of a typical MLS system and 

various previous studies on the generation of DTMs using ALS, TLS and MLS point cloud 

data. Chapter Three presents the study area, analyzes the collected MLS data, and explains 

the designed method of filtering ground points from MLS data and generating DTMs from 

ground points. Meanwhile, how to assess the accuracy of proposed approach is described. 

Chapter Four details and compares the results, which obtained from the filtering algorithms, 

and quantitatively and qualitatively analyzes the filtering performance. In the meantime, 

gridded DTMs generated by several interpolation methods are analyzed and discussed 

through internal and external accuracy assessments. Chapter Five concludes this research 

with contributions of the study, limitations, and outline direction for future research. 
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Chapter 2 
Background and Related Work 

This chapter presents the literature review which related to this research. Section 2.1 

describes the principle of mobile laser scanning. Sections 2.2 and 2.3 provide the literature 

review of existing algorithms that have been used for ground filtering and some critical 

issues in those algorithms. Section 2.4 reviews some existing methods for interpolating 

discrete points into continuous surface as DTMs. Section 2.5 summarizes this chapter. 

2.1 Principle of Mobile Laser Scanning 

2.1.1 Components of a Mobile Laser Scanning System 

In general, a typical MLS system consists of five essential parts: (1) a mobile 

platform, (2) a navigation solution system which integrates a Global Navigation Satellite 

System (GNSS), an Inertial Measurement Unit (IMU), and a wheel-mounted Distance 

Measurement Indicator (DMI), (3) laser scanner(s), (4) digital camera(s), and (5) a control 

system (Puente et al., 2013).  

(1) A mobile platform 

The platform carries all data collection hardware into one system. This platform can 

be a vehicle used in this thesis, or a boat, a train, or a stroller.  

(2) A navigation solution system  

A navigation solution system of a MLS system is composed of a GNSS, an IMU, and 

a wheel-mounted DMI. GNSS antenna monitors three primary measurements including time, 
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position, and velocity (speed and direction) (Glennie, 2007). Even a GNSS sensor can 

acquire high-accuracy positional information in most areas; it is still affected by high-rise 

buildings, high trees, and other barriers that may block satellite signals (Glennie, 2007). At 

the same time, the IMU observes the posture information including roll, pitch, and heading of 

the vehicle. It provides both accelerations and angular rotations in three coordinate axes. In 

addition, IMU can work without satellite signals. Thus, IMUs can continually fill the gaps 

between the former and later GNSS observations which update the GNSS positions in 

periods of poor satellite signal conditions (Williams et al., 2013).  

Reciprocally, the GNSS helps to updating positioning information to IMU. DMI is 

equipped on one of the vehicle wheels, and measures the tire rotation to calculate a travelled 

distance of the vehicle (Glennie, 2007). DMI provides supplementary positioning 

information for the GNSS and IMU. 

(3) Laser scanner(s) 

In different MLS systems, the number and the type of scanners may vary. Continuous 

waves or pulses are emitted from laser scanners to scan objects (Glennie, 2007). Recently, 

there are two main ranges measurement methods of laser sensors: time-of-flight and phase 

shift (Lichti, 2010). The difference between these two types sensors is the time-of-flight 

method uses the time difference, while the phase shift method is more accurate based on the 

phase differences (Petrie and Toth, 2008; Beraldin et al., 2010). In terms of scanning head, 

there are two kinds of laser scanners: fixed scanning head laser scanner and rotated scanning 

head laser scanner. The quality of a laser scanner is determined by the level of eye safety, the 
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data accuracy, the field-of-view, the data resolution, and the scan rate (Guan, 2013). Some 

scanners can also keep the intensity values which are the strength value of return signals that 

helps distinguishing the different reflectance from targets (Williams et al., 2013). Most laser 

sensors use the eye-safe near infrared laser light which the electromagnetic spectrum range is 

at 1040 to 1060 nm, and the measurement frequencies are always up to 200,000 points per 

second (Optech, 2009). The operating principle of a laser scanner is measures the round-way 

travel time of one laser pulse traveled to the object.  

                                                     (	 = 	%× +
,
                                                 (2.1) 

where d is the distance between the laser scanner and the object, t is the travel time, and c is 

the known the speed of light in vacuum (299,792,458  ms-1).                         

(4) Digital camera(s) 

In addition, ancillary data such as photos and/or videos taken via digital camera can 

also contribute to survey by MLS system. For example, in terms of visualization, MLS Data 

cannot provide the true-colour information in reality. However, after integrating records of 

digital cameras, people can acquire more detailed data in color and features (Guan, 2013; 

Williams et al., 2013). Similarly, the number and types of the camera depend on different 

MLS systems.  

(5) A control system 

A control system is a type of computer system that integrates the navigation system, 
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laser scanner(s), and camera(s) working well but it requires storing a large quantity of data.  

2.1.2 Direct Geo-referencing and Error Analysis  

As an active remote sensing technique, LiDAR can directly and efficiently provide 

3D coordinates (x, y, z) point clouds in both horizontal and vertical directions. From the 

point clouds, the geographical coordinator of every object on the ground surface can be 

acquired such as trees, buildings, power lines, terrain, and other above-ground objects. 

In a MLS system, a GPS and an IMU are quite important to determine the position 

and orientation of the system. Because they provide a reference to a mapping coordinate 

system for each laser measurement (Barber et al., 2008). In other words, the quality of MLS 

data depends on laser sensors and the whole integrated navigation solution system (including 

GPS, IMU, and DMI). In order to have the exact coordinates of mapping points, observations 

in the ground coordinate are calculated by Equations 2.2 and 2.3 through time-stamped 

navigation data (Glennie, 2007; Barber et al., 2008). The coordinates of a target P shown in 

Figure 2.1 can be calculated by: 

-.
/.
0.

1

=
-2.3
/2.3
02.3

1

+ 56171 8, :, ; ∙ 53617 Δ8, Δ:, Δ; ∙ >.3 ?	( +
#@
#A
#B 3

617

−
D@
DA
DB 2.3

617

				(2.2) 

>.3 ?	( = (.3 ∙
cos ?
0

sin ?
                                                   (2.3) 

where,  

-., /., 0. are the location of the target P in the mapping frame. 
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-2.3, /2.3, 02.3 are the location of GPS antenna in the mapping frame. 

56171 8, :, ;  is the rotation matrix between IMU and mapping frame,	 ω, φ, κ 	are 
the roll, pitch and heading of the sensor with respect to the local 
mapping frame. These values are provided by the IMU system. 
 

53617 Δ8, Δ:, Δ;  is the rotation matrix between the laser scanner and IMU, 
Δ8, Δ:, Δ; 	are the boresight angles which align the scanner frame 

with IMU body frame. Those values are determined by the system 
calibration. 
 

>.3 ?	(  is the relative position vector of Point P in the laser scanner coordinate 
system. α and d are scan angle and range measured and returned by the 
laser scanner, respectively. 
 

(N
O  is the range from laser scanner to the observed object. 

#@, 	#A, #B are lever-arm offsets from the navigation and IMU origin to the laser 
scanner origin. These values are determined by system calibration or 
measurement. 
 

D@, DA, DB are lever-arm offsets from the IMU origin to the GPS origin. These 
values are determined by system calibration or measurement. 

 

Figure 2.1: Principle of direct geo-referencing. 
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Equations 2.2 and 2.3 explain the relationship between the geo-referenced MLS data 

and the measurements of observed targets, which determines the accuracy of the final point 

cloud. Therefore, some typical errors can be pre-analyzed through these parameters (Glennie, 

2007). 

(1) Positioning errors: Since a number of factors, such as multipath, atmospheric 

errors, baseline length, poor satellite geometry, and loss of lock can directly affect 

the results of the observation; the absolute level of positioning accuracy for the 

GPS system is difficult to quantify (Glennie, 2007). In ideal conditions, the 

accuracy of positional data is expected as 2cm +1 ppm horizontally and 2cm +1 

ppm vertically within a relatively short kinematic baseline (< 30 km) (Glennie, 

2007). 

(2) IMU attitude errors: The Inertial Measurement Unit measures roll, pitch, and yaw 

angles which equate the rotation from the IMU into the mapping frame. An IMU 

constantly provides the acceleration along a specific axis and measures and 

maintains orientation of the MLS system frame (Glennie, 2007). Thus, system 

errors of IMU sensor include accelerometer biases and gyro drifts (Guan, 2013). 

(3) Laser scanner errors: Typically, system errors of a laser scanner have two main 

parts: errors in distance and errors in angles. Distance errors are usually caused by 

the accuracy of internal time measures including the time of flight and the width 

of the output laser pulse (Glennie, 2007). The errors in angle depend on the 

angular resolution of the angle encoder of laser sensor and the deviation of beam 
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divergence.  

(4) Boresight errors: Misalignments of axes between IMU and laser scanner 

measurement cause boresight errors. In order to acquire high-accuracy laser 

scanning data, the location and orientation of the laser scanner relevant to the 

IMU must be precisely known. An alignment error can affect the distance 

between the laser and the scanned object. According to Rieger et al. (2010) and 

Lim et al. (2013), boresighting should be an extremely precise measurement 

process which pursues any mounting misalignment correction between the IMU 

and laser scanner. 

(5) Lever-arm offset errors: To obtain high-quality georeferenced MLS points, the 

lever-arm offsets must be known. However, the origins of laser sensors and IMU 

usually cannot be co-located (Barber et al., 2008). Therefore, calibration and 

physical measurement are two approaches to access the lever-arm offsets. 

Physical measurement is widely used since it is easy to apply, but the 

measurement error is another problem because of the uncertainty to align axes of 

laser scanner and IMU (Guan, 2013). 

According to these error sources, the accuracy of MLS data is highly depends on the 

accuracy of navigation solution system and laser scanners, because both boresight and lever-

arm errors can be corrected by system calibration (Guan, 2013).  Secondly, GPS system 

conditions on a moving vehicle are very critical because high-rise buildings and trees along 

the street may cause multi-path effects and signal shading (Barber et al., 2008; Haala et al., 
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2008). Thus, the accuracy of MLS data mainly depends on the navigation solution system.  

2.2 Ground Filtering Techniques 

Researchers have developed a wide range of filtering algorithms to separate terrain 

points (ground points) from off-terrain points (non-ground points) using laser scanning data 

(Sithole and Vosselman, 2004; Meng et al., 2010). Several important things that should be 

considered when separating terrain points from off-terrain points, including types of input 

data, iterative characteristics, penetration of laser scanning, pre-processing steps, 

neighbourhood types, and other key factors used in the filtering process. 

The basic idea of a slope-based filter is using the slope or difference in elevation 

between two points to perform a filtering operation locally. There will be some 

misclassifications if the off-terrain object matches the criteria on slope and elevation 

difference (Vosselman, 2000; Roggero, 2001; Sithole, 2001; Vosselman et al., 2001). This 

means that a digital surface model (DSM) is created from all first-return points. Then, the 

next step is to generate a slope map from the DSM and remove all slope areas above the 

identified threshold. Then, evaluate the removed area: if the deleted areas are not right, repeat 

the former step until all data are correct; if the deleted areas are right, apply the focal 

majority filter and focal mean filter in order which can fill the leftover areas and deleted 

areas.  

Morphological filters provide a quantitative description of a geometrical structure 

(Kilian, 1996; Wack and Wimmer, 2002; Zhang et al., 2003). Thus, it is necessary to 

resample irregularly original point clouds into a raster before operation. Although 
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morphological methods are conceptually simple and can be easily implemented, rasterization 

of point clouds, in addition to resulting in a loss in precision, has to interpolate raster heights 

in some areas without points (Pfeifer and Mandlburger, 2008).  

Axelsson (2000) stated using progressive triangulated irregular network (TIN) 

densification to filter the Lidar point clouds. This filter has been used in the commercial 

software Terrasolid®, which is well known for robust and steady for modeling discontinuity 

surfaces especially in urban areas (Guan et al., 2013). The main assumption in this algorithm 

is that all objects on the ground are usually higher than on-ground points. The first step is 

calculating initial parameters and choosing seed points which are the lowest point in a 

defined size (largest object size) grid. At the same time, some seed points will be removed to 

minimize grid size by fitting the median value which estimated from the histograms. Then, 

using all seed points extract a TIN as an initial DEM. Lastly, all points will be iterated, and 

once they match the TIN facet they will be classified in to on-ground class. In the iterative 

process, which the TIN and the thresholds are recomputed, the process will repeat until no 

more points meet the threshold values (Axelsson, 2000). Von Hansen and Vogtle proposed a 

similar method with some differences: the seed points were the lower part of the convex hull 

of the point sets, and the offset of vertical distance was used into analysis (Riaño et al., 2004). 

Sohn and Dowman (2002) described a reversed method which applied the progressive 

densification first. All these proposed filters used triangulation to access the point clouds data. 

Surface-based algorithms start with the assumption that the terrain is a continuous or 

piecewise continuous surface. In this case, the concept of the filter is to select the lowest 
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point in each user-defined cell from all points, and these points will serve as the robust 

interpolation for the initial parametric surface. The robust interpolation’s general principle, 

such as linear least squares interpolation and Kriging interpolation, is using locally weighted 

regression to classify the points into on-ground and non-ground classes. Then new points are 

added only if they meet certain data-derived threshold parameters (e.g., difference in 

elevation, slope) (Kraus and Pfeifer, 1998; Axelsson, 2000; Sohn and Dowman, 2002; 

Krzystek, 2003; Nurunnabi et al., 2013). Pfeifer et al. (2001) stated a hierarchical-based 

robust interpolation method to deal with larger size buildings and reduce computational time. 

In Elmqvist (2001), the iteration begins with a horizontal surface below all points and moves 

upwards to reach the points following the negative gravity, and uses inner stiffness to classify 

points on vegetation or roofs. 

Some cases focus on a set of segmentation-based and clustering methods, which are 

popular techniques in land-use and land-cover classification; these methods are used in 

classifying on-ground and off-ground Lidar points (Akel and Zilberstein, 2004; Akel et al., 

2005; Sithole and Vosselman, 2005; Tovari and Pfeifer, 2005; Filin and Pfeifer, 2006; Pfeifer 

and Briese, 2007). Segmentation methods focus on rasterized point clouds instead of dealing 

with individual point which are less affected by noise (Pfeifer and Mandlburger, 2008).  Most 

studies have good results in carrying out on relatively flat ground surfaces. 

In addition, many researches focused on filtering road surface points from MLS data. 

Takashi and Kiyokazu (2006) extracted road lanes with curvature, yaw angles, and offsets 

information from point clouds by Hough Transform. Yuan et al. (2010) proposed a fuzzy 



 

 20 

cluster method based on segment points and a weighted least-square linear fitting algorithm 

to detect the road points. But these computational methods of road points’ detection are time 

consuming. Smadja et al. (2010), Yang et al. (2013), and Guan (2013) presented a method to 

filter road points based on curb candidates along the road to detect the road points. However, 

these methods need extra ancillary information such as multi-frame accumulated map, and 

trajectory of measured points. All these methods only focus on the point on road surface 

detection; thus, those points beside the road surface become useless since they also contain 

the same information as road surface. 

2.3 Critical Issues in Ground Filtering  

Most of these filtering algorithms have a poor performance when applying terrain 

surfaces with complex features such as steep slopes, large building structures or breaklines. 

Specifically, steep slope areas are covered by dense vegetation or artificial structures, as well 

as features of landform changes, are difficult to extract its DTMs because of fewer Lidar 

points reflecting by the ground surface or large height differences at small horizontal 

distances (Kobler et al., 2007). Hyppä et al. (2000) evaluated and discussed that the vertical 

accuracy of DTMs generating by laser scanning data of forested areas is related to terrain 

slop, point density and vegetation types. Liu (2008) stated that it is difficult to automatically 

filter on-ground and off-ground points from laser scanning points especially for large areas 

with various terrain characteristics. 

Sithole and Vosselman (2004) indicated that some situations may lead to most 

algorithms failing in terrain points filtering. First, low outliers usually come from multiple 
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sources errors in a MLS system, while many algorithms are based on the assumption that the 

lowest points belong to the on-ground point class. This may cause an erosion of neighbour 

points of the low outlier. Second, the complex objects pose another problem in the filtering 

process. Some methods require a user-defined grid size for computing; although they meet 

the over-size objects, the on-ground points would be misclassified. For example, if the size of 

buildings is larger than the defined thresholds, then these buildings cannot be completely 

removed from the DSM. Similarly, when dealing with urban area data, vehicles are hard to 

remove due to their overall small size. Furthermore, some irregular shapes objects, such as 

low walls and irregular shape building, can cause the filter failure. Third, if roofs of building 

on a steep slope are as high as their surrounding surfaces of terrain, then it would be difficult 

to remove them from Lidar data. For instance, San Francisco, as a coastal city in the USA, 

has a complex terrain situation. In this case, the building on the hills will directly affect the 

final DTM accuracy when using some of these algorithms. Last, many filtering that are based 

on above terrain objects are discontinued with the terrain. Therefore, some discontinued 

terrain features like breaklines will influence the final DTM accuracy.  

As most filtering have their unique assumptions, the filtering algorithm should focus 

on a certain terrain type like an urban area or a forest area to improve the accuracy of DTM 

generation. Moreover, most of these filters were originally designed for ALS point clouds. 

Some available commercial software usually has limitations on number of points. For 

instance, ArcMap only can handle no more than 5 million points and TerraSolid works with 

tens million points (TerraSolid, 2014; ArcGIS, 2015). However, MLS data usually has much 

higher number of points and density of points. The computational time of applying these 
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filters is lengthy when processing high density points or high volume point clouds.  

2.4 Interpolating DTMs from Ground Points 

DTMs can be stored in GIS databases in several data structures: set of contours 

(vector format), regular grids (raster format), and TIN (vector format). Compared to contour 

and TIN, gridded DTMs have good performance on surface analysis and storage simply 

(Weibel and Heller, 1993). Since gridded DTMs are simply represented by elevation matrices, 

which storage topographical relations between grids, raster format DTMs has been the most 

wildly used data structure to represent DTMs (Wilson and Gallant, 2000). 

After obtaining all on-ground points, generate a gridded DTM requires interpolation 

to be the next step. Choosing an appropriate interpolation method is very important because 

after applying different methods the results could be totally different even using the same 

data source (Arun, 2013). There are several interpolation methods which can be divided into 

two groups: global and local methods. Global interpolation methods compute all available 

data points in the region of interpolation to acquire the estimation and capture a general trend 

of terrain relief (Wilson and Gallant, 2000; Li and Heap, 2014). For example, thin plate 

splines, trend surface analysis, regression models, and classification interpolation are global 

interpolation (Li and Heap, 2014). Since the Lidar data sets always in huge volume, the 

global interpolate algorithms are impracticable in computation (Wilson and Gallant, 2000; 

Shan and Toth, 2008). Therefore, they cannot be easily used into a real terrain surface DEM 

generation especially in laser scanning data.  

Local interpolate algorithms, such as Inverse Distance Weighted (IDW), Kriging, 
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Nearest Neighbour, and triangulation, achieve better efficiency than global interpolations 

(Wilson and Gallant, 2000). Local interpolation methods apply within a pre-defined small 

area around the point being predicted and capture the local difference (Burrough and 

McDonnell, 1998). The local interpolation methods calculate the unknown point’s value 

based on the values of neighbourhood points. Table 2.1 describes some widely used local 

spatial interpolation methods which can be applied into gridded DTMs generation (Li and 

Heap, 2014).  

Nearest Neighbour interpolation searches the closest user-defined subset of all data to 

a target point and gives weights to target points by proportion of areas (Sibson, 1981). 

Considering the exactness of interpolation methods, nearest neighbour interpolation assigns 

estimated value exactly the same as value at a sampled point (Burrough and McDonnell, 

1998). The drawback of Nearest Neighbour interpolation is that it only processes one nearest 

reference point into the final interpolating.  

Triangulate interpolation constructs triangles which can be 2D or 3D through the data 

points, and then a local polynomial function will be applied across every triangle in TIN 

(Wilson and Gallant, 2000).  The advantage of triangulate interpolation is that even when the 

real terrain surface has various structures such as breaklines this method can still work well 

due to its strong adaptability (McCullagh, 1988). Nonetheless, triangulation methods are 

limited by their sensitivity to the points’ position, making them difficult to interpolate 

contour data (Clarke, 1990).  
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Table 2.1: Comparison of available local spatial interpolation methods. 

Method Assumption Exactness 
Limitation of the 
Procedure 

Computing 
Load Suitability 

Nearest 
Neighbour 

The best local 
predictor is 
the nearest 
neighbour data 
point. Exact 

No error assessment 
and only one data 
point per pixel is 
used Small 

Nominal data 
from all 
known points 

Triangulation 
(TIN) 

The best local 
predictor is 
data points on 
the 
surrounding 
triangle. Exact 

No error assessment 
and TIN pattern 
relays on 
distribution of data Small 

Quick 
interpolation 
on regularly or 
irregularly 
spaced data 

Natural 
Neighbours 

The best local 
predictor is 
data points on 
the 
surrounding 
Voronoi 
polygons. Exact No error assessment Small 

Quick 
interpolation 
on regularly or 
irregularly 
spaced data 

Inverse 
Distance 
Weighting 
(IDW) 

The 
underlying 
surface is 
smooth. 

Inexact 
(but can 
be forced 
to be 
exact) 

No error assessment 
and the result 
depend on weighting 
parameter Small 

Quick 
interpolation 
on regularly or 
irregularly 
spaced data 

Local trend 
surfaces 

The best local 
predictor is 
the nearest 
neighbour data 
point and data 
normality. Inexact 

The final result 
depends on span 
parameter and detail 
of the known data 
surface Moderate 

Quick 
interpolation 
on regularly or 
irregularly 
spaced data 

Kriging 

The 
interpolated 
surface is 
smooth and 
statistical 
stationary and 
the intrinsic 
hypothesis. Exact 

Error assessment 
depends on 
variogram and 
distribution of 
reference points and 
the size of 
interpolated grid Moderate 

Provides a 
good 
interpolator 
for sparse data 
when data are 
sufficient to 
compute 
variogram 
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According to Webster and Oliver (2001), Natural Neighbours has better performance 

than Nearest Neighbour and TIN since it estimated a continuous and smooth surface. It can 

also quickly interpolate on regularly or irregularly spaced data. The IDW is a local 

deterministic interpolation that predicts the value using “a distance-weighted average of 

sampled points in a defined neighbourhood” (Burrough and McDonnell, 1998). This means 

the closer between reference points and the target point, the higher weighted of the sample 

points with inverse of their distance to the target point. IDW predicted values of estimated 

point different from those reference values, but IDW can make the predicted value to be the 

same as the known point (Li and Heap, 2014).  

Local trend surfaces predict an inexact value based on the assumption that best local 

predictor is the nearest neighbour data point and data normality. This method provides 

gradual surface but the computing load is higher than other method (Webster and Oliver, 

2001). Kriging interpolation is a geo-statistical-based interpolation method, and it is more 

related with the spatial relationship of data rather than their values. If the variogram models 

been used are good enough, a high quality result can be generated (Li and Heap, 2014).  

2.5 Chapter Summary 

This chapter first reviewed detailed background knowledge of MLS technology, 

including a description of main components of a typical MLS system, the principle of how to 

geo-reference raw laser pulses into a map projection, and analysis some potential errors of 

MLS data. In addition, variety filtering terrain point’s methods for laser scanning data were 

reviewed. Some critical issues of DTM generation process were presented. Most of these 
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filtering method were originally developed for ALS data, which are quite time consuming 

when uses them for MLS data. Some of existing methods cannot process MLS point clouds 

that contain steep slopes, different sizes buildings, and irregular-shape objects above the 

ground. Lastly, current available spatial interpolation methods for DTM generation were also 

introduced and analyzed. The local interpolation methods are more suitable in this study.    
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Chapter 3 
Methodology 

This chapter presents the methodology of this research. Section 3.1 describes the 

workflow of generating DTMs along road from MLS point clouds. Sections 3.2 and 3.3 

detail the study area and dataset used in this study, and a pre-processing procedure. Section 

3.4 introduces the concept of proposed terrain point filtering algorithm. Section 3.5 describes 

interpolation methods that will be used in ground point interpolation. The accuracy 

assessment methods are described in Section 3.6. 

3.1 Workflow 

  

Figure 3.1: Workflow of ground filtering and generating DTMs from mobile laser scanning point 

clouds.  
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Figure 3.1 presents the workflow with five processes. Firstly, the MLS datasets are 

pre-processed to remove lower outliers. Then ground points are retrieved by filtering. After 

filtering, ground points are interpolated into gridded DTMs after evaluating filtering results.  

Finally, the accuracy of gridded DTMs is assessed. These processes will be detailed in the 

following sections. 

3.2 Study Area and Datasets 

3.2.1 Study Area and MLS Dataset 

The surveyed area is within Kingston, Ontario, Canada (longitude 76°33'22.57"W, 

latitude 44°13'7.40"N). As shown in Figure 3.2 (a), Kingston is a city located in Eastern 

Ontario where the St. Lawrence River flows out of Lake Ontario. It is in the midway between 

Toronto and Montreal. As shown in Figure 3.2 (b), this surveyed road is a part of King Street 

West and Front Road. The west part of this surveyed road is nearby the lakeshore of the Lake 

Ontario. The total distance of the surveyed road was around 3.7 km. It mainly is a two-

direction, four-lane road, and some parts of the road are two-direction, two-lane road. There 

are a few tall buildings, many houses, tall trees, grasslands, and other objects (e.g., light poles, 

traffic poles, power lines and poles) are along the road. Some surveyed data includes point 

clouds of pedestrians, vehicles and trains.  

This dataset includes the trajectory, point clouds LAS files, and digital images. The 

data were acquired on 29 August 2013 by a RIEGL VMX-450 system from Tulloch 

Engineering. This system comprises two RIEGL VQ-450 laser scanners, four CS-6 CCD 

cameras, and a set of Applanix POS LV 520 processing system containing a GPS, an IMU, 
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and a DMI (see Figure 3.3). As depicted in Figure 3.4 (a), the RIEGL VMX-450 deploys two 

rotating laser scanners, configured as a “Butterfly” (or “X”) pattern. Therefore, the point 

clouds measured by two scanners are in slant reticulated pattern as shown in Figure 3.4 (b).  

 

Figure 3.2: Study area. 

In total, over 916 million points were collected and stored in 45 LAS files, which 

took up 23.8 GB of storage space and were generated by TerraScan Software. For all tiles, 

the point density is over 4800 points/m�, and some of them reach 5000 points/m�. All point 

cloud files have two return pulses. The speed of the vehicle was around 20-30 km/h during 

the survey. The entire area was measured five times for the two directions of the road. That 

means there are at least twice two-directions observations stored in the dataset. For example, 

as shown in Table 3.1, with each additional survey, the point density of Sample 3, which is a 

50 m long road segment, increases, and the average spacing between points decreases. The 

images generated by the CCD cameras were saved in JPEG format, and all images take 

around 10 GB of storage space and include one CSV file containing the origin and direction 

coordinates, timestamp, roll, pitch, and yaw information, which can be used for visual 



 

 30 

interpretation and reference of point clouds. 

 

Figure 3.3: A RIEGL VMX-450 system 

 

Figure 3.4: Illustration of (a) VMX-450 scanning pattern, and (b) Reticulated point clouds. 

Table 3.1: Characteristics of point clouds by different acquisition missions for Sample 3. 

Surveyed 
Times 

Direction Number Point 
Number 

Points Density 
(points/m²) 

Spacing 
(cm) 

1 1 (East to West) 3,390,048 926.24 3 

2 
2 (East to West Then 
West to East) 6,877,517 1750.9 2 

4 
2 (East to West Then 
West to East) 17,652,231 4251.5 2 

5 
2 (East to West Then 
West to East) 20,743,822 4976.92 1 
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3.2.2 Reference Dataset 

In order to obtain check points for validating the accuracy of final results, a field 

survey was carried out on September 4 and 5, 2015. Based on the National Standard for 

Spatial Data Accuracy (FGDC, 1998), at least 20 sample points should be selected as check 

points. In this study, total 30 check points were randomly chosen from the area covered by 

MLS dataset and surveyed by two Leica Viva GS14 GPS receivers: one base station and one 

rover, see Figure 3.6 (a) and (c).  

All these check points (see Figure 3.5) were measured using the Real Time Kinematic 

(RTK) technique, and they should be at least one level more accurate than the system 

(RIEGL VMX-450) is tested. In Figure 3.6, (a) shows the GPS base station, (b) benchmark, 

(c) the GPS rover receiver used in the field survey. Table 3.2 lists the information of the 

permanent benchmark 75U501 adopted in the field surveys. This benchmark was established 

by the Geodetic Survey Division of Natural Resources Canada. Ellipsoidal heights 

determined by GPS were converted to orthometric height based on the height of geoid 

defined in the Height Reference System Modernization by the Natural Recourses Canada 

(2015). Meanwhile, there were additional 20 different feature points (see Figure 3.5) were 

surveyed to check the difference between the measured points and the original MLS points. 

All surveyed points were in projection North American Datum of 1983 (NAD83) Universal 

Transverse Mercator (UTM) zone 18N, and the vertical datum is the Canadian Geodetic 

Vertical Datum of 1928 (CGVD28). All surveyed points were post-processed regarding a 

base station with a mean base-line length of less than 3 km.  
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Figure 3.5: Check points and feature points. 

Table 3.2: Benchmark used in the field work. 

Benchmark Vertical 
Datum 

Elevation 
(m) 

Reference 
Frame Zone Easting (m) Northing (m) 

75U501 CGVD28 75.990 NAD 1983 UTM18N 378851.159 4897458.583 

 

Figure 3.6: Field surveys. (a) is the GPS used as the base station, (b) is the benchmark 75U501, and 

(c) is the GPS used as the rover in the survey. 
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3.2.3 MLS Data Quality Assessment 

To validate the overall performance of MLS point clouds generated by RIEGL VMX-

450, a set of feature points was collected. All feature points were chosen at corner points of 

objects along the street (e.g. short concrete walls or road edges) which can be conveniently 

identified in the point clouds. As shown in Table 3.3, the Root Mean Square Error (RMSE) 

of differences between MLS data and ground survey of vertical and horizontal directions are 

4.1 cm and 29.3 cm, respectively. The standard deviation of the vertical difference is 3.6 cm, 

and horizontal difference standard deviations are 17.6 cm and 19.2 cm in X and Y direction, 

respectively. In this study, X and Y directions indicate the easting and northing directions in 

the NAD83 UTM zone 18N coordinator system, respectively. Considering the high 

differences in horizontal directions, a higher error rate may occur of the quantitative 

evaluation results in the external accuracy assessment in this experiment  

Table 3.3: Positional differences between RTK surveyed feature points and MLS data. 

  RMSE Standard Deviation  
Vertical Direction(cm) 4.1 3.6 

Horizontal Direction(cm) 29.3 
X Y 

17.6 19.2 

3.3 Pre-processing of Datasets 

Sometimes, laser scanner can falsely measure and detect some points which do not 

actually exist as outliers. This can be due to the laser beam splitting at the edge of an object 

or a person or object moving in the scene during scanning. There are two types of outliers: 

low and high outliers (Sithole, 2004). Most low outliers (see Figure 3.7) are caused by multi-

path errors and hits in the wall. Since the proposed filter requires the value of local lowest 
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voxel, low outlying points can produce errors in later processing steps. Thus, it is critical to 

identify and remove them. If low outliers cannot be removed from point clouds before 

applying the filter, they and their neighbour voxels will be wrongly classified. Some ground 

points could be misclassified into non-ground points (see Figure 3.8).  

There are some existing methods can be used to detect low outliers. Meng et al. (2010) 

applied the Delaunay Triangulation method to compare each point to the local elevation 

reference to detect the outlier. This method was originally developed for ALS data which 

requires a pre-defined local elevation reference. However, for MLS point clouds, defining 

local elevation reference can be challenging in certain situations. As shown in Figure 3.7, 

some low outliers are under the road curb which are critical to determine the thresholds. 

Manual examination is another effective method to remove low outliers (Wang et al., 2009), 

but it is time consuming and not labour effective. 

In this study, the Statistical Outlier Removal (SOR) algorithm is used to detect the 

outliers. Walsh and Hajjar (2009) applied the SOR algorithm into their study, and they 

obtained satisfactory results by this method. The SOR method first needs to determine the 

neighbourhoods. K nearest neighbours approach assigns the number of points to be included 

(Hoppe et al., 1992; Vanco and Brunnett, 2004; Rabbani et al., 2006). First, it guarantees that 

each neighbourhood will be determined by the same number of points regard thinking the 

point density. Then, the average distance of each point is computed. It considers the K 

nearest neighbours for each K as the first parameter, and the second parameter is the standard 

deviation multiplier which is a number of times the standard deviation. Assuming that the 
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result fit Gaussian distribution with a mean and a standard deviation, all points’ mean 

distances are outside of an interval which defined by the global distances mean and standard 

deviation is recognized as outliers. After several tests in this study, the parameter 

combination which the number of neighbours is 8 and the standard deviation multiplier sets 

as 4 has the best performance of removing low outliers. Those removed noises might not be 

real outliers. But considering MLS data are very high density, those wrongly removed points 

will not affect the final result. 

 

Figure 3.7: Low outliers in mobile laser 

scanning point clouds. 

 

Figure 3.8: Misclassification caused by low 

outliers. 

3.4 Filtering Ground Points 

The literature review in Section 2.3 revealed the limitations of the existing filters to 

efficiently process point clouds, which are high in density, high in volume, and with complex 

terrain features, especially in urban areas. A voxel-based upward growing algorithm was 

firstly proposed by Yu et al. (2015b) for removing ground points to reduce computational 

time and solve difficulties of 3D objects detecting. This method was selected and applied to 
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rapidly and correctly generate ground points from MLS data in this thesis.  

Figure 3.9 shows the workflow of the voxel-based upward growing algorithm for 

filtering terrain point clouds. There are three steps of this semi-automated algorithm, which 

requires input a set of the user-defined parameters. To begin with segmentation of the input 

raw MLS point clouds, the dataset can be divided and stored into different data blocks. Then, 

the data blocks will be voxelized using the octree index structure. Finally, to filter ground 

points, the proposed criteria will be applied into the voxelized point clouds and determined 

whether they are ground points or non-ground points.    

 

Figure 3.9: Workflow for filtering terrain points. 

3.4.1 Segmentation of Point Cloud Scene 

In the real world, the terrain has different reliefs in different areas. MLS point cloud 

scenes have much more details than ALS point clouds to represent the actual terrain. The raw 

point clouds contain huge number of points and large terrain relief. Therefore, processing the 
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whole point cloud scene as one part is more time consuming than segmentation the dataset 

into small pieces. In addition, this will also cause the filter loses effectiveness in ground 

points detecting which area has huge fluctuate terrain.  

 

Figure 3.10: Illustration of raw point clouds segmentation and data block. (a) Top view of point 

clouds being segmented into data blocks, and (b) Data in "#$%&P. 

To achieve better computational efficiency and filtering performance, first, the 3D 

point cloud scene was segmented into data blocks. As shown in Figure 3.10 (a), the large 

MLS data scene is vertically divided into a set of data	"#$%&P ,	' = 1, 2, 3, … , UV, (UV is the 

total number of blocks in this scene) with a size of WVin the XY plane. X is easting direction, 

and Y is northing direction. Figure 3.10 (b) shows a sample of a segmented data block. After 

segmenting the raw MLS data into data blocks, during the computation stage each data block 

will be processed separately to detect terrain points.  
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3.4.2 Voxelization of Point Clouds 

 

Figure 3.11: Illustration of (a) a voxel, (b) the voxelization, and (c) a sample of voxelized	"#$%&P. 

The second step is voxelization of each data block. A is cuboid shape data structure, 

and it is represented as voxel X(#,Z, U) , see Figure 3.11 (a). A voxel can spatially 

conceptualize and represents as a set of volumetric elements (Wu et al, 2013). In this study, a 

voxel X\, ] = 1, 2, 3, … , U^ , (U^ is the number of voxels in "#$%&P ) represents as a group of 

point clouds and sets as a cube shape which #, Z, _U(	U have equal value	W^ . In order to 

speed up the indexing of large amounts of unorganized 3D voxels, see Figure 3.11 (b), a 

voxel grid coordinate system is constructed using octree structure, see Figure 3.11 (c) (Xu et 

al, 2015). Recent years, there are many studies applied octree data structure into point clouds 

processing show that octree structure is very helpful in computation efficiency for 3D space 

decompositions (Barber et al., 2008; Elseberg et al., 2013; Linh and Laefer, 2014). To 

construct an octree structure, first, we need to calculate the bonding box of the point 

cloud	"#$%&P, and initial the root node of this data block. Then sub-division of the octree is 

computed, and each node is divided into eight smaller nodes, which form as the voxelization 
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grid system as shown in Figure 3.12. 

 

Figure 3.12: Process of constructing octree index structure to obtain the voxelization grid system. 

 
Figure 3.13: Three-type neighbours of a voxel in voxelization grid system. (a) Face neighbour, (b) 

Edge neighbour, and (c) Vertex neighbour 

3.4.3 Searching Voxel Neighbourhoods and Marking Voxels 

By using the octree partition structure, each voxel has a maximum of 26 

neighbourhoods in a 3D voxelization grid system. There are three types’ of voxel neighbours: 

face neighbours, see Figure 3.13 (a), edge neighbours, see Figure 3.13 (b), and vertex 

neighbours, see Figure 3.13 (c). In this study, nine upper-layer neighbours are used for an 



 

 40 

upward growing process including one-top faced neighbour, four upper-edge neighbours, and 

four upper-vertex neighbours. Firstly, each voxelX\	, ] = 1, 2, 3, … , U^, grows to nine upper-

layer neighbours. Then, the same growing modus is used for all nine upper-layer neighbours 

to continually grow upward.  Each one of the nine neighbours computes separately.  

The growing process breaks when there are no nine upper-layer neighbours of the 

grown voxel. Then, the highest voxel in the grown data block is marked as	X`, where X` has 

the highest elevation in this grown region. In addition, the local height ℎb of point clouds is 

defined as the elevation difference between elevations of X` and the lowest elevation voxel 

Xb in the same data	"#$%&P. At the same time, the global height ℎcof point clouds is defined 

as the elevation difference between elevations of X` and the lowest elevation voxel Xb in the 

data scene. Finally, in order to filter terrain points, all voxels X\in this scene are labeled as 

terrain voxels which contain terrain points and off-terrain voxels which contain off-terrain 

points based on following criteria: 

(1) Setting a local terrain relief height as db  for the data block. This parameter 

constrains the maximum terrain relief heights of each data "#$%&P	in one scene.  

(2) Setting a global terrain relief height as dc  for the point cloud scene. This 

parameter controls the maximum terrain relief heights of the whole scene. 

(3) If the ℎc of voxel  X\ is less than	dc, and ℎb is less than	db, the voxel X\ will be 

regarded as an terrain voxel. All points in the voxel X\ are marked and kept as 

terrain points.  
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(4) If the ℎc of voxel  X\ is greater than	dc, or ℎb is greater than	db, the voxel X\ will 

be regarded as an off-terrain voxel. All points in the voxel X\  are marked and 

removed as off-terrain points. 

3.5 DTMs Interpolation 

After filtering the point clouds into terrain points and off-terrain points, the remaining 

task is the interpolation of ground points. Most interpolation methods produce similar results 

with high density dataset (Burrough and McDonnell, 1998). Since the point density of MLS 

data is very high, there is no need to apply the best predicated interpolation method. Rather 

than choose a more efficient method in computational performance and reduce the random 

errors (Shan and Toth, 2008). Based on the literature review in Section 2.4, a comparison of 

four interpolating methods is conducted to explore which one produces a better 

computational performance. They are IDW interpolation, Nearest Neighbour interpolation, 

Linear interpolation, and Natural Neighbour interpolation.  

3.5.1 Inverse Distance Weighting Interpolation 

Similar to other interpolation methods, IDW predicts the value at a point as a 

weighted average of the elevations at nearby reference points. Inverse Distance Weighted 

interpolation is an intuitive and efficient method and it has best result with evenly distributed 

points (Anderson, 2010). IDW interpolation assumes that the values of closest known 

locations have higher influences on estimated value than locations farther away (El-Sheimy 

et al. 2005). To predict the elevation of an unknown location, IDW weights reference points 

closer to the unknown point greater than farther points. The mathematical interpolation 
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function can be described by Equations 3.1, 3.2, and 3.3 (El-Sheimy et al. 2005):  

0 -, / e = 	 fP0(-, /)Pg
Phi 		                                           (3.1) 

fP = 	(Pe
jk/	 (Pe

jkg
Phi                                                   (3.2) 

fPg
Phi = 1                                                         (3.3) 

where: 

0 -, / e is the elevation value of predicted location -, / e. 

U is the number of reference points surrounding the prediction location.  

fP are the weights applied to each reference point which decrease with 

distance. 0(-, /)P is the elevation value of reference points at the location (-, /)P. 

m is the factor which determine how weights reduce by distance. 

(Pe is the distance between the location -, / e	and location (-, /)P. 

 

The weights for the reference points applied in estimation are scaled. Therefore, the 

sum of the weights is equal to one. The power m can affect the weighting of the elevation of 

reference locations on the elevation of the predicted location. According to El-Sheimy et al. 

(2005), some practical experiences and studies have showed that a power equal to two 

produces better performance. Meanwhile, the value of power parameter is larger, the weight 

of nearby samples is heavier, and the estimated surface is more smooth (Li and Heap, 2014).  

Considering MLS data is very dense and this study tries to optimally keep terrain features, 

power m has been set as 2. In addition, to speed up the calculation process, it is common 

practice to limit the number of reference points (Johnston et al., 2001). Therefore, in this case, 
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the number of reference points U has been set as 12.   

3.5.2 Nearest Neighbour Interpolation 

 

Figure 3.14: Example of Nearest Neighbour Interpolation. 

Another interpolation method is used in this study is Nearest Neighbour. Nearest 

Neighbour interpolation method is a special case of IDW interpolation where m equals zero 

and U equals one (Laslett et al., 1987; Brus et al., 1996). This technique assigns interpolation 

point’s value by substituting the value of its closest neighbour. Figure 3.14 is an example that 

illustrates the concept of comparing and calculating regular distributed neighbour points. 

Point M is the estimated point, and Euclidean distances between other four points and point 

M are	(i, (,,	(n, and (o. As shown in the diagram below, the distance	(i has the shortest 

path of those four points. Therefore, the value of point M will be the value of point 1. The 

disadvantage of using this method is it is no error estimate. Only one of the sample points is 

considered in the estimate, and any other nearby sample points is excluded (Webster and 

Oliver, 2001). In other words, this method constructs a discontinuous surface with no 

smoothing process. However, the Nearest Neighbour interpolation is one of the most 
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computational efficient methods, and this is the main reason that it is applied in this study.  

3.5.3 Linear Interpolation 

The linear interpolation algorithm simulates the terrain surface by continuous 

Triangulated Irregular Network. The surface elevation is estimated by the elevation values at 

the nodes of the triangle where the predicted point is located. The interpolating points are 

calculated separately for each triangle. As a result, the interpolated value is not affected by 

the terrain behaviour of adjacent triangles (El-Sheimy et al. 2005). Linear interpolation 

assumes each triangle represents a planar surface (El-Sheimy et al. 2005).  

There are two types of triangulation that can be used to triangulation: Delaunay 

conforming triangulation and Delaunay constrained triangulation. In this study, the TIN is 

firstly carried out by Delaunay conforming triangulation. Compared to constrained 

triangulations, Delaunay conforming triangulation contains fewer long and skinny triangles 

which are not satisfactory for some spatial analysis (ArcGIS, 2008). As Figure 3.15 describes, 

Delaunay triangulation first satisfies the requirements of Delaunay triangle criterion (Figure 

3.15 [b]). All vertices in the triangulation are connected with a serial edge, and there is no 

vertex located within the inside of any circumcircles of each triangle in the triangulation as 

Figure 3.15 (c) shows (Gallant, 2000). After this triangulation has been completed, the 

predicted point’s elevation can be calculated by linear interpolation as Equations 3.4 and 3.5 

(Leberl, 1973). 
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0 -, / = 	_e +	_i- +	_,/                                               (3.4) 

0p
0V
0q

= 	
1 -p /p
1 -V /V
1 -q /q

_e
_i
_,

                                                (3.5) 

 

where 0 -, / is the elevation of predicted point, -, /, _U(	0  of nodes r, ", _U(	s  of the 

Delaunay triangle are used to calculated for the coefficients (_e, _i, _,) . The linear 

interpolation only works on the three nodes of the triangle within which the predicted point 

lies. Thus, the computation process is very efficient. 

 

Figure 3.15: Illustration of (a) A collection of points, (b) A Delaunay triangle, and (c) A Delaunay 

triangulation. 

3.5.4 Natural Neighbours Interpolation 

The last interpolation method is Natural Neighbour. Natural neighbour interpolation 

finds the closest neighbour reference points to a predicted point and applies weights based on 

proportionate areas or volumes to the interpolate height value (Sibson, 1981). According to 

Watson (1992), Natural Neighbours interpolation method performs equally with both 

regularly and irregularly distributed data. Similar to Linear interpolation using Delaunay 
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triangulation data structure, the Natural Neighbours interpolation is calculated based on 

Voronoi diagram which is double to the Delaunay triangulation of the same set of 

points. Figure 3.16 describes the natural neighbours of point t  associated with Voronoi 

polygons of the natural neighbours. Initially, the Voronoi diagram is produced from all 

known reference points 	mP. Then a new Voronoi polygon, blue-colored polygon in Figure 

3.16, is constructed around the predicted point t. The Natutal Neighbours interpolation is 

denoted by Equations 3.6 and 3.7 (Ledoux, 2005). 

t(-, /) = 	 WPm(-, /)Pg
Phi                                               (3.6) 

WP = 	uP(t)/u(t)                                                     (3.7) 

Similarly to all interpolation algorithms, Natural Neighbours interpolation applies the 

basic equation, as shown in Equation 3.6. The elevation of interpolated point t is calculated 

by relevant neighbours. However, all interpolation methods use different weights in the 

calculations. In the Natural Neighbours interpolation, weight WP is the proportion of overlap 

areas uP(t) between this new polygon and the initial polygon and areas of initial polygons 

u(t). Compared to distance-based interpolation method, such as IDW, natural neighbour 

interpolation assigns weights based on the percentage of overlapped area in Voronoi diagram. 

This approach theoretically could provide more accurate results. 
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Figure 3.16: Example of Voronoi diagram of natural neighbours of point M.	

3.6 Quality Assessment  

Accuracy of spatial dataset is a kind of combination of positional accuracy and 

thematic accuracy (Congalton and Green, 2008). To derive a quality assessment of this study, 

there are two parts of accuracy assessments were carried out: accuracy assessment of filtering 

algorithm (thematic accuracy assessment) and accuracy assessment of DTMs (positional 

accuracy assessment).  

3.6.1 Accuracy Assessment of Ground Filtering Algorithm 

Thematic accuracy usually represents the differences between the labeled attributes of 

map features and the true attributes of real world features (Congalton and Green, 2008). Error 

matrix as the most wildly used method is applied into the thematic accuracy assessment 

(Congalton and Green, 2008). Table 3.4 shows the error matrix for binary classification, 

where vm is true positive, vU is true negative, wm is false positive, wU is false negative. In this 

study, vm and vU are the number of terrain points and off-terrain points that are correctly 

classified into each class, respectively. The wm means the number of off-terrain points is 
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incorrectly classified into terrain points. Similarly, wU means the number of terrain points is 

misclassified into off-terrain points. 

Table 3.4: Error matrix for binary classification. 

Class\ Classified  as Positive as Negative 

Positive vm wU 

Negative wm vU 

Three criteria are used to measure the accuracy in this study: overall accuracy, 

completeness correctness (Jwa and Sohn, 2012), Type I error and Type II error (Sithole and 

Vosselman, 2003). 

Overall accuracy is obtained by 

$Xx>_##	_%%y>_%z = +k{+g
+k{+g{|k{|g

                                  (3.8) 

Completeness (omission error, producer’s accuracy) is obtained by 

%$Zm#xvxUx}} = +k
+k{|g

                                                   (3.9) 

Correctness (commission error, user’s accuracy) is obtained by 

%$>>x%vUx}} = +k
+k{|k

                                                    (3.10) 

Type I error is the error which incorrectly identified terrain points as off-terrain points, 

which is obtained by: 
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~zmx	�	x>>$> = 	 wU
vm+wU

                                                          (3.11) 

Type II error is the error which incorrectly identified off-terrain points as terrain 

points, which is obtained by: 

~zmx	��	x>>$> = 	 wm
wm+vU

                                                        (3.12) 

In this study, the error matrix is used for evaluating the performance of voxel-based 

upward growing algorithm. Reference data are five sample areas manually labeled in 

CloudCompare by visual interpretation. The five samples were chosen by their features 

including the terrain relief and off-terrain objects. Each sample point cloud was segmented 

into 10 cm width profile based on easting direction for easily visual interpretation as Figure 

3.17 shows. The details of five sample datasets are shown in Table 3.5. Both Samples 3 and 4 

are area with a large topographic relief. Sample 3 has a large relief along the direction of road; 

while, Sample 4 has much vegetation on steep slope (greater than 45ᵒ) which is similar with 

forest in mountain areas. Samples 1, 2, 3 and 5 are typical urban areas with common features 

such as small and large buildings, traffic signs and facilities, vehicles, vegetation, fire 

hydrant and power facilities. The average distance between the road centre line and the 

furthest point, which MLS system can observed, is 40 m. 

 

Figure 3.17: A profile sample for visual interpretation.
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Table 3.5: Details of labeled sample sites. 

Test 

Sample 

Number of 

Points 

Point Density 

(points/m²) 

Measured 

Times Terrain Points  

Off-terrain 

Points 

Length (m)                  

(along the 

road) 

Data 

Volume 

(Mb) Features of Scene 

Sample 1 8113459 2085 4 6715596 1397863 50 263 

Small topographic relief, railway 

with trains, lower vegetation, and 

trees 

Sample 2 9808121 2270 4 1963354 7844767 50 318 

Small topographic relief, large 

building, and lower vegetation 

Sample 3 18792025 4930 5 11941705 6850320 50 609 

Moderate topographic relief, 

houses, vehicles, traffic signs, 

vegetation, and power lines and 

poles 

Sample 4 25384615 4639 4 16918577 8466038 100 823 

Large topographic relief, steep 

slope with vegetarians, large 

buildings, low concrete walls 

Sample 5 31817216 4171 3 20046257 11770959 100 1024 

Small topographic relief, houses, 

power lines and poles, vegetation 
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Figure 3.18: Sample Scenes of raw point clouds. 

3.6.2 Accuracy Assessment of DTMs 

Positional accuracy reflects and measures how different between a location of a 

spatial feature on the map and a reference location on the ground (Bolstad, 2005). In this 

study, the vertical position accuracy of DTM is validated by several statistical parameters 

including RMSE, arithmetic mean, standard deviation of population of vertical errors, 

standard error of estimates of RMSE. According to some previous positional accuracy 

assessment theories (Greenwalt and Schultz, 1962; Mikhail and Gracie, 1981; Congalton and 
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Green, 2008), all these statistical parameters are calculated by the following equations. The 

vertical RMSE of the sample of vertical errors (!"#) is estimated by 

$%&'" = 	 (!"#),/./
#                                           (3.13) 

where                                             !"# = 	 01# − 03#                                               (3.14) 

  01#  equals the reference elevation at the 4 th check point, 03#  equals the DTM 

elevation at the 4th check point, and  . is the number of sample. 

The arithmetic mean of the absolute error values is calculated by 

!" = 	 !"#/
# /.                                             (3.15) 

The standard deviation &" of the population of vertical errors is estimated by 

&" = 	 !"# − $%&'" ,/ . − 1/
#                                    (3.16) 

and the standard error of estimates of $%&'" is estimated by 

&6789: = 	 &"/ .                                               (3.17) 

Assuming that the population of positional error is normally distributed, and  ;# is the 

value from the x-axis of 	4th standard normal distribution at the probability level. The vertical 

accuracy can be represented by two standards (Congalton and Green, 2008): the interval of 

errors around RMSE which includes 95% of map errors is	$%&'	 ±	;#&", and a confidence 

interval around the estimate of RMSE at 95% probability is	$%&'	 ± ;#&6789. Here the ;# 
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equals 1.96 which is the standard normal distribution Z statistic for an interval with 

probability of 95%. 

During this step, two parts of assessment were carried out: internal accuracy 

assessment and external accuracy assessment. Based on a previous review of positional 

accuracy assessment (FGDC, 1998), at least 20 samples should be chosen for the statistical 

analysis. Hence, a number of 200 ground points were randomly chosen from the Sample 3 

used into the cross-validation as the internal accuracy assessment. Meanwhile, the external 

accuracy assessment used the 30 GPS check points into the statistical analysis. All the 

positional accuracy assessments indicate the vertical accuracy which is the accuracy in Z 

direction or height. 

3.7 Chapter Summary 

This chapter introduced the entire procedure of generating DTM from MLS point 

clouds. Firstly, the details of study area and dataset were described. Secondly, a pre-

processing stage was proposed to remove outliers from raw MLS point clouds. Then, the 

filtering process was carried out for separating terrain points from point clouds by using 

voxel-based upward growing algorithm.  In this step, the point cloud was segmented and 

voxelized into pre-defined size. Then, all voxels applied the main function which satisfied 

with upward growing criteria. After filtering terrain points, four interpolation methods 

including IDW interpolation, Nearest Neighbour interpolation, Linear interpolation, and 

Natural Neighbours interpolation were proposed to efficiently derive a high quality raster 

format DTM. Lastly, the method of quality assessment of the entirety workflow was stated.    
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Chapter 4 

Results and Discussion 

This chapter presents the final results of DTM which was generated by the proposed 

method from MLS point clouds. Chapter four is organized into four sections. Section 4.1 

includes the results of filtering processes, analysis of parameters used into the proposed filter, 

and quantitative and qualitative evaluation of the proposed algorithm. Section 4.2 shows the 

final delivered gridded DTMs of the study area. Section 4.3 presents the internal and external 

accuracy assessment of the gridded DTMs. Finally, Section 4.4 summarizes the main results 

of this chapter. 

4.1 Quality of Ground Filtering 

In this study, the filtering process is the first and the most important part separating 

the terrain points and off-terrain points. In this section, the proposed voxel-based upward 

growing algorithm was applied to five sample sites and performance was assessed both 

qualitatively and quantitatively. The visual interpretation process was conducted by 

CloudComapre v2.6.2 and TerraScan software (Evaluation Edition). The ground points of 

five sample datasets were validated by error matrix which was described in Section 3.6.1. 

The whole process of ground points filtering was implemented in C++ code in Microsoft 

Visual Studio 2010 and used some modules provided by Point Cloud Library (PCL) 1.6.0. A 

moderate configured laptop carried out this task with an Intel® Core™ i5-3320M 2.60 GHz 

processor with 8 GB memory random access memory (RAM), and uses Windows 7 64-bits 

operating system.  
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4.1.1 Parameters Analysis in Ground Filtering 

4.1.1.1 Analysis of Block Size 

In order to determine the optimal parameter combination and evaluated the sensitivity 

of these parameters, a series of experiments were carried out. To segment the scene into 

blocks the size =>  of  ?@ABC#  should be firstly defined. The purpose of segmenting point 

clouds into blocks is to reduce the computational time and improve the accuracy of the filter. 

At this stage, the voxel size =D, the local terrain relief height as EF and the global terrain 

relief height as EG were set as 0.05 m, 0.4 m and 4.5 m, respectively. Segmentation was 

carried out at various, i.e. 1 m, 3 m, 5 m, 8 m, and 10 m. Since Samples 1 and 3 have 

exhaustive and different features as described by Table 3.5, they were used to test the 

parameter combinations.  

 

Figure 4.1: Computational time of applying different block sizes. 
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Figure 4.2: Overall accuracy of applying different block sizes. 

Figures 4.1 and 4.2 present the computational time and overall accuracy of different 

block sizes. Figure 4.1 shows that the computational time exponentially increases as the 

block size increases. When the block size was set to 1 m, the whole algorithm only needed 

several seconds to process a 50 m long road dataset, e.g. 2.6 seconds for Sample 1 and 4.2 

seconds for Sample 3, respectively. However, when the block size increases to 8 m, the 

processing time is increased to the hundred-second level, e.g. 103.5 seconds for Sample 1 

and 95.9 seconds for Sample 3, respectively. The computational time reduced slightly for the 

8 m block size of Sample 3 (95.9 seconds) compared to the 5 m block (98.4 seconds). That 

can be explained by the various internal process performance of computer such as RAM 

space. Similarly, Figure 4.2 illustrates the overall accuracy of applying various block sizes, 

ranging from 0.8 to 0.99. It is noticeable that with the overall accuracy of 10 m block size for 

Sample 1 (i.e. 0.9575) is higher than that of 5 m (i.e. 0.9551) and 8 m block size (i.e. 0.8962). 
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That may be caused by other fixed parameters which are not suitable to this scene. The above 

analysis indicated that the ground filtering overall accuracy decreases when block size 

increases.  

4.1.1.2 Analysis of Voxel Size 

Theoretically, the voxel size affects the accuracy of detecting the terrain points and 

influences the computing time of upward growing. A fixed parameter combination was used 

to explore the influences of voxel size, i.e. block size => = 3	m, the local terrain relief 

height EF = 0.4	m, and the global terrain relief height EG = 4.5	m, respectively. Same with 

the previous section, Samples 1 and 3 were used in this analysis.  

 

Figure 4.3: Computational time of applying different voxel sizes. 
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Figure 4.4: Overall accuracy of applying different voxel sizes. 

Figures 4.3 and 4.4 present the computing time and overall accuracy for different 

voxel sizes setting. As the voxel size increases, the computational time reduces significantly 

from 40.0 seconds to 6.6 seconds for Sample 1 and 136.0 seconds to 2.9 seconds for Sample 

3. The large difference in computational time of these two sample sites is caused by the point 

density. Table 3.5 shows the point density of Samples 1 and 3 were 2,085 and 4,930 

points/m2, respectively. In addition, the overall accuracy of various voxel sizes setting is 

different. The overall accuracy for Sample 1 increases as the voxel size increases. In contrast, 

the overall accuracy for Sample 3 is a normal distribution and maximized at 5 cm voxel size. 

Hence, there is no significant trend can be concluded for the overall accuracy of different 

voxel sizes. The presumable reasons are 1) there are other parameters affecting the final 

result, and 2) different terrain features can influence with the accuracy.  
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Figure 4.5: Overall accuracy and computing time of Sample 5 with different voxel sizes. 

Theoretically, smaller voxel size should produce higher accuracy since the algorithm 

classifies the whole voxel into terrain points and off-terrain points. Therefore, Sample 5 was 

applied with the same test and the results are presented in Figure 4.5. Sample 5 has the same 

trend as Sample 3 in terms of the overall accuracy and computing time. Different from the 

theoretical assumption, the 3 cm voxel size has lower overall accuracy and more 

computational time. This is due to the voxel size is smaller than the terrain surface, which 

results in many terrain points classified to the off-terrain category. In addition, more analysis 

was carried out with Sample 1. Both Types I and II error of Sample 1 using the same 

parameter setting were calculated as listed in Table 4.1. Type I error is the terrain points 

falsely detected as off-terrain points, and they increase as the voxel size increases. While 

Type II error significantly decreases as the voxel size increase. As shown in Figure 3.18, 

Sample 1 contains much lower vegetation cover. Smaller size voxel on grass can be easily 

classified to the terrain part. Meanwhile, even for manually interpretation, lower vegetation 
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cover is a big problem. It is difficult to determine if they are vegetation points or terrain 

points. Thus, the labeled points may have some errors, which is another reason for this 

phenomenon. Hence, it can be concluded that the 5 cm voxel size setting is a global 

thresholding of the voxel-based upward growing algorithm for filtering ground points from 

MLS data.   

Table 4.1: Types I and II errors of Sample 1. 

Voxel Size 3 cm 5 cm 8 cm 10 cm 
Type I Error 0.0183 0.0185 0.0193 0.0182 
Type II Error 0.1256 0.0846 0.0487 0.0406 

 

To explore more about the relationship between block size and voxel size, several 

additional tests were conducted. Different combination of block sizes of 3 m, 5 m, 8 m, and 

10 m and the voxel size of 3 cm, 5 cm, 8 cm, and 10 cm were used by the algorithm with 

fixed local terrain relief height EF = 0.4	N , and global terrain relief height EG = 4.5	N . 

Figure 4.6 and Figure 4.7 demonstrate a consistent pattern in terms of accuracy despite the 

changes to voxel size. It indicates that the changes of block size and voxel size affect the 

accuracy of filtering result.  

The processing time increases when the block size increases for a fixed voxel size. 

On the contrary, with a fixed block size, the upward growing process is more efficient when 

the voxel size increases. In order to reduce the processing time for filtering terrain points 

from raw data, the block size should be set as small as possible; and the voxel size should be 

set as large as possible. Moreover, the voxel size cannot be too small or too large considering 



 

 61 

its accuracy level. Therefore, the block size 	=> = 3	N  and voxel size =D = 5	BN  were 

chosen in this study to filter the terrain points, which is also can be a global threshold setting.  

 

Figure 4.6: Overall accuracy of different block sizes and voxel sizes for Sample 1. 

 

Figure 4.7: Overall accuracy of different block sizes and voxel sizes for Sample 3. 
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4.1.1.3 Analysis of Local and Global Terrain Relief Height 

Based on the concept of voxel-based upward growing algorithm, the local and global 

terrain relief heights only influence the accuracy of final results in terms of computational 

time. Therefore, a fixed block size of 3 m and voxel size of 5 cm were used to examine the 

appropriate local and global terrain relief heights. It requires prior knowledge of the terrain 

relief of the study area to define these two parameters. If the terrain changes a lot, both the 

local and global relief height should be set higher than an area with fewer terrain changes. 

The selected area is relatively flat. After visually exploring the point clouds, the local relief 

height ranges between 0.45 m and 0.65 m and the global relief height ranges between 4.5 m 

and 6.5 m. 

 

Figure 4.8: Overall accuracy of different local and global terrain relief height settings. 
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Hence, different terrain relief heights of the scene (i.e. 4.5 m, 5 m, 5.5 m, 6 m, and 6.5 

m) were tested with fixed EF= 0.45m for Sample 3. At the same time, a fixed EG= 4.5 m was 

applied with different local terrain relief height (i.e. 0.45 m, 0.5 m, 0.55 m, 0.6 m, and 0.65 

m). Figure 4.8 presents the testing results, which shows that the overall accuracy of filtering 

decreases as the global relief height increases for a fixed local terrain relief height. But if the 

global terrain relief height is not large enough, some ground surface will be categorized to 

off-ground points. Therefore, an optimal global relief height value should be chosen to 

achieve the best performance for the study area. 

 

Figure 4.9: Comparison of ground points filtering with different local terrain relief height settings.  

  On the contrary, the overall accuracy will reach a maximum value if the local relief 

height increases for a fixed global terrain relief height. After reaching the peak value, all 

points are classified to terrain and off-terrain categories. Meanwhile, if the local terrain relief 

height is not large enough, the terrain points can be classified into off-terrain points. For 

instance, Figure 4.9 (a) shows that areas in the red boxes have missing data which caused by 
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misclassifying the terrain points as off-terrain points when EF= 0.45 m and EG= 4.5 m. 

However, after increasing the local terrain relief height to 0.6 m as shown in Figure 4.9 (b), 

the situation significantly improved in the highlight areas. The same examination was carried 

out with Sample 2, and the final results present the same trend as Sample 3. Thus, a proper 

local terrain height should be set depending on different study areas. 

4.1.2 Quantitative Analysis of Voxel-based Upward Growing Algorithm 

Some misclassified terrain points which denote Type I error can be interpolated by 

their neighbourhoods; while an off-terrain point misidentified as terrain point will cause an 

inaccuracy of the interpolated DTM. Therefore, Type II error is another vital statistical value 

should be considerate. 

Firstly, after analyzing various parameters of the voxel-based upward growing 

algorithm in the previous section, a set of global threshold was chosen and applied in all five 

sample sites. Figure 4.10 presents the ground points filtering results and accuracy assessment 

of five sample sites with =>  = 3 m, =D  = 0.05 m, EF= 0.6 m, and EG  = 5.5 m. The left 

column of Figure 4.10 lists terrain points and the right column lists off-terrain points. Table 

4.2 shows the lowest overall accuracy was Sample 4, i.e. 0.949, where an area with very 

steep slope. The overall accuracy of other sample sites ranges between 0.963 and 0.99. The 

average overall accuracy of these five samples is 0.975.  

All these samples have correctness and completeness greater than 0.95. The average 

value of correctness and completeness were 0.980 and 0.986, respectively. Sample 1 has the 

largest Type II error than others. The main reason was discussed in Section 4.1.1.2. Both 
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improper parameter setting and visually misclassified terrain points result in the high Type II 

error rate as 0.166. In addition, Samples 3 and 5 have similar terrain features as typical urban 

scenes. Also, both of these two samples provide an excellent performance on accuracy 

assessment. Thus, in this case, the pre-defined thresholding set is not a global threshold for 

all data set, but it is suitable for the data with similar terrain relief and urban objects.  

Several more suitable parameters were set for Samples 1, 2, and 4 to obtain higher 

accuracy in these cases. As previously discussed, Sample 1 is an area with much lower 

vegetation cover. As a result, there are many off-terrain points were misclassified as the 

ground which is denoted as a high rate of Type II error. But the overall accuracy, correctness 

and completeness are all greater than 0.95 which are acceptable. In this case, the main 

purpose of the sample filtering is to reduce Type II error rate. Considering there is much 

lower vegetation cover on terrain leading to high Type II errors, the slight reduction of the 

local and global terrain relief height is helpful. The same block and voxel sizes were set, and 

EF= 0.4 m and EG = 4.5 m. The overall accuracy, correctness, and completeness of the final 

results have increased to 0.97, 0.982, and 0.982, respectively. Type II error was significantly 

reduced from 16.57% to 8.46%. 
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Figure 4.10: Filtering results of five samples. The point clouds were displayed by intensity value. 
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Table 4.2: Accuracy assessment of five sample sites. 

Test 
Sample Overall Accuracy Correctness Completeness Type I Error Type II Error 

Sample 1 0.970 0.982 0.982 0.019 0.085 

Sample 2 0.984 0.986 0.994 0.006 0.056 

Sample 3 0.990 0.991 0.993 0.007 0.015 

Sample 4 0.949 0.971 0.952 0.048 0.057 

Sample 5 0.989 0.983 0.999 0.001 0.029 

Average 0.976 0.983 0.984 0.016 0.048 
 

In the case of Sample 2, the following parameter settings were used:	=> = 3 m, =D = 

0.05 m, EF= 0.55 m, and EG  = 5.5 m. As a result, the overall accuracy, correctness, and 

completeness are slightly changed to 0.984, 0.986, and 0.994, respectively, and Types I and 

II error are 0.006 and 0.056, respectively. Even though there are some variations, there is no 

significant improvement in this case. The potential reasons of high Type II error rate will be 

discussed in the next section.  

Since Sample 4 has steep slope adjacent to the road surface, this algorithm cannot 

produce high accuracy and low Type II error at the same time. The final goal is to generate 

more accurate DTM, instead of perusing high accuracy rate. Thus, it is more reasonable to 

decrease the Type II error rate. Parameters 	=> = 3 m, =D = 0.05 m, EF= 0.5 m, and EG = 5 m 

were used in the filter. As expected, the overall accuracy, completeness, and Type II error 

were all dropped down to 0.915, 0.898, and 0.051, and the correctness and Type I error 

increased to 0.972 and 0.103, respectively.  There is the only slight decrease of the Type II 

error rate, but the cost of decreasing overall accuracy is huge.  
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Based on the above experimental results, it is can be concluded that the local and 

global relief terrain heights influence the performance of the proposed algorithm. But they 

can only slightly improve the accuracy of the filter most of the time. In a typical urban 

scenario, the global thresholds can be applied in the same dataset. But if the MLS data scenes 

have much lower vegetation cover such as grassland, the local and global terrain relief 

heights should be set lower than the global setting. In addition, the scene with high relief 

terrain feature such as steep slope cannot produce a satisfied result. Decreasing local and 

global terrain relief heights can help to obtain lower Type II error rate. However, the overall 

accuracy will also be reduced. A basic understanding of the entire dataset is required to 

choose an appropriate set of parameters. 

4.1.3 Qualitative Analysis of Voxel-based Upward Growing Algorithm 

This section analyzes the voxel-based upward growing Algorithm’s performance 

through visual interpretation of the cross matrix image. The cross matrix image is presented 

in Figure 4.11, which shows where the most errors occur. There are two main types of errors 

in all these five samples, including terrain with the steep slope and terrain with lower 

vegetation. 

Firstly, steep slope is the most common obstacle for existing filters. In this study, 

Sample 4 is a scene with the steep slope and steep-sloped vegetation in an urban area. As 

shown in Figure 4.12, Sample 4 has very steep slope approximately 45° on the left side of the 

road, and the terrain relief is also relative large along the road’s direction. The figure also 

shows that there are many Type I errors which are in blue colour as the filter falsely detected 
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the terrain points as off-terrain points. 

 

Figure 4.11: Cross matrix image of samples: left side is top view and right side is front view. 
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Similarly, Sample 1 has same problem with steep slope near 35ᵒ. There is a steep 

slope right beside with the road surface as shown in Figure 4.13 (a). As a result, there is a 

strip of Type I errors next to the road surface. The main reason is that the algorithm directly 

filtered the point clouds by setting local and global terrain relief heights. On the other hand, 

the algorithm is based on the voxel growing up process. Once the voxel is on a steep slope, 

the terrain voxel cannot stop the growth since it has 9 upper layer neighbours. Thus, the 

points on the steep slope are misclassified as off-terrain points. If increasing EF  and EGto 

reduce the errors, the grow up process will still have the same problem, and objects such as 

vegetation or building at lower elevation will partially classified into ground category. The 

algorithm works well for areas with slope along the road direction which is not steep. 

Therefore, it is difficult to process data well for areas with steep slope by using the proposed 

filter.  

 

Figure 4.12: Illustration of off-terrain feature for Sample 4 
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Figure 4.13: Example of areas which are difficult to filter with the proposed method. 

Secondly, the short vegetation such as grassland is another main problem of this 

method. Figure 4.11 shows that Samples 1, 4 and 5 are all contain many Type II errors. 

Those errors occurred in the short grass (less than 5 cm height) areas as shown in Figure 4.13 

(b) and (c). When samples are labeled by visual interpretation, human brain can make 

assumption if it is short-grass or terrain point by cross comparison of the point clouds with 

digital photos. However, the proposed filter algorithm is not as intelligent as human brain. 

Thus, many points which are short grass were identified as terrain points.  In most cases, 

Type II error can be ignored since the short vegetation is less than 5 cm height.  

Even though there are some errors produced by the proposed filter, the overall 

performance of this algorithm is quite satisfied. Section 2.3 states that some previous study 

had difficulties in processing objects with different sizes in one scene such as huge buildings, 

small buildings, and vehicles. Figure 4.14 illustrates that the large and small buildings, 

vehicles on the ground, short walls, and even pedestrians can be filtered out in some cases in 

one scene with excellent performance. It is confident that this algorithm is suitable for most 

situations no matter if it is urban or non-urban area except areas with steep slopes. 
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Figure 4.14: Off-terrain points detection from a complex point cloud scene. 

4.2 Generation of Gridded DTMs 

The final gridded DTM of the study is a DTM database which includes DTMs with 

various cell sizes, i.e. 2cm, 5 cm, 10cm, 15 cm, 20 cm, 25 cm, 30cm, 35 cm, 40 cm, 45 cm, 

50 cm, and 1m. In order to present the DTM that covers the entire study area well, the DTM 

was clipped into three parts. Parts 1, 2, and 3 were snapped starting from east side to west 

side of the study area. Figure 4.15 illustrates the DTM interpolated by the IDW interpolation 

method with 5 cm grid size. The elevation of the entire study area ranges from 73.28 m to 

97.20 m.  

As shown in Figure 4.15, there is no obvious terrain changes between road and non-

road areas in Parts 1 and 2 which are located near the centre of the city. However, there are 

more differences between the road and non-road areas in Part 3 of DTM. The satellite image, 

see Figure 3.2 (b), shows the Part 3 area is out of city centre, and the surveyed road crosses a 
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bay of Lake Ontario that results in larger terrain relief between the road and non-road area. 

 

Figure 4.15: DTMs of the study area which interpolated by IDW with 5 cm grid size. 
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4.3 Quality of Gridded DTMs 

One of the main objectives of this study is to examine the accuracy of DTMs 

generation using MLS data. Thus, the final accuracy assessment of DTMs is very important. 

This section states and discusses the accuracy analysis of the final gridded DTM. It includes 

internal and external accuracy assessments. The performance of different interpolation 

methods is also discussed. In addition, the accuracy of DTMs generated from different dense 

point clouds is compared. 

4.3.1 Internal Accuracy Assessment of Gridded DTMs 

Since the GPS check points have large difference from the MLS dataset, 200 ground 

points from MLS point clouds were randomly chosen to use in internal validations of the 

vertical accuracy in this study. This greatly reduces the influences of random errors occurred 

during the process of evaluating the suitability of interpolation method used in MLS point 

clouds. In addition, various grid sizes of DTMs were generated. Since the objective of this 

research is to generate high-accuracy and high-resolution DTMs, 12 grid sizes were used, i.e. 

2 cm, 5 cm, 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, 40 cm, 45 cm, 50 cm, and 1 m. Then 

the RMSE, absolute mean error, standard deviation, and standard error were calculated by 

equations listed in Section 3.6.2 to examine the relationship between the DTMs generated by 

four different interpolation methods and check points. 

4.3.1.1 Accuracy Assessment of Different Interpolation Methods and Grid Sizes 

The internal accuracy assessment of different interpolation methods is shown in 

Figure 4.16. The overall trend of these four interpolation results was with the increasing grid 

size, the accuracy of interpolated DTM decreases. All RMSEs of these results were less than 
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3.5 cm, and all absolute mean errors ranged between 0.3 and 2 cm. Each interpolation 

method has its own trend. For the IDW interpolation, there was a gentle growth of errors with 

increased grid size. But after the grid size increased to 35 cm, the growth rate of errors 

rapidly increased.  

Different from the IDW interpolation, the Nearest Neighbour interpolation started 

with relative large RMSE and absolute mean error, i.e. 1.12 cm and 0.41 cm, respectively. 

All the accuracy results of DTMs were almost the same for resolution less than 20 cm and 

then followed by an increasing trend of errors. The Linear interpolation and Natural 

Neighbours interpolation have a similar trend which increases with fluctuations when grid 

size increases. Compared to the Natural Neighbours method, the Linear interpolation has the 

lowest RMSE value at 2 cm resolution, i.e. 0.63 cm. In summary, the IDW and Nearest 

Neighbour have more stable performance than Linear and Natural Neighbours interpolation 

for different grid sizes. 

In order to explore the relationship between these four interpolation methods and grid 

size setting, four line charts were generated, as illustrated in Figure 4.17. The standard 

deviation increases as the grid size increase for all four interpolation methods. Not only the 

RMSE tends to become larger with increasing grid size, but the variations of those errors 

increase too. The RMSE, standard deviation, and standard error have similar trends. The 

absolute mean error of these four interpolation methods ranges from 0.3 cm to 1.93 cm. 

As Figure 4.17 shows, the IDW has the highest accuracy among four interpolation 

methods with most grid sizes. When setting the grid size to 2cm, results generated by IDW 
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and Linear interpolations have excellent quality (less than 1 cm) with all statistical indices. In 

addition, all IDW interpolation with grid size less than 20 cm results in RMSE of less than 1 

cm. However, once the grid size increased to 1 m, IDW is no longer the best interpolation 

method. All four statistical values were greater than Linear and Natural Neighbours 

interpolation. For example, the RMSE of IDW and Linear interpolation with 1 m grid size 

were 3.08 cm and 2.83 cm, respectively. Therefore, from the perspective of accuracy, IDW 

interpolation is more suitable to interpolate terrain MLS point clouds when generating high-

resolution (grid size smaller than 1 m) gridded DTMs.  
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Figure 4.16: Internal accuracy assessment results.
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Figure 4.17: Internal RMSE, absolute mean error, standard deviation, and standard error of different grid sizes for four interpolation methods.
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4.3.1.2 Computational time of Different Interpolation Methods and Grid Sizes 

Computational time is another vital factor when determining a suitable interpolation 

method of the MLS point clouds. Figure 4.18 shows that the computational times of all four 

interpolations were similar with increasing grid size. There were rapid reductions in 

computing time between 2 cm to 5 cm size of the grid. With increasing grid size, the 

computational time becomes constant. When the grid size was set to 2 cm, the calculation 

speed of these four interpolations was very slow. But the Natural Neighbours interpolation 

was the most time-consuming algorithm. The reason is that the average spacing between 

points is between 2 cm and 1 cm for this dataset, as indicated by Table 3.1. Thus, the 

interpolation process requires more time to compute and assign values to the 2 cm-grid DTM. 

If the grid size is larger than the average spacing, it saves more time to process the 

interpolation.  

The IDW and Nearest Neighbour algorithms have almost the same trend for the 

computational time. The Linear and Natural Neighbours interpolations need triangulation 

first, which result in more computational time. The Linear interpolation has a sudden 

increase of computing time at 35 cm grid size, which is related to the accuracy. As shown in 

Figure 4.16, 35 cm grid size has higher accuracy compared to grid sizes of 30 cm and 40 cm. 

As a result, the computational time is higher too. To summarise, IDW and Nearest Neighbour 

interpolations have better computational performance when generating gridded DTMs from 

MLS point clouds.  
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Figure 4.18: Computational time of four interpolation methods with different grid sizes. 

4.3.1.3 Accuracy of DTMs Generated with Different Dense MLS Point Clouds and Grid Sizes 

In order to discover whether the density of MLS point clouds affects the accuracy of 

DTMs, a comparison experiment was conducted. It compares the RMSEs of DTM using 

different dense point clouds of Sample 3, and the results are presented in Figure 4.19.  Based 

on the GPS time stored in the MLS dataset, three types of various density point clouds were 

extracted from the original Sample 3 which was surveyed five times, i.e. once measured 

point clouds (one direction observation), twice measured point clouds (bi-direction 

observation), and four-time measured point clouds (twice bi-direction observations).  The 

IDW was applied to all these three different dense point clouds and the original point cloud 

for DTMs generation due to its good performance. 

Figure 4.19 shows the RMSE of DTMs generated from these four various dense point 

clouds. Results demonstrate that the RMSEs had no significant difference when the grid size 
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is larger than 25 cm. However, if the grid size is smaller than 25 cm, the density of MLS 

point clouds could impact the final accuracy of DTM. When the grid resolution is smaller 

than 10 cm, more dense point clouds can produce more accurate DTMs. Four-time and five-

time measured data provide similar accuracy when generating DTMs. The RMSEs of DTMs 

at 2 cm resolution were 0.6 cm for four-time measurements and 0.63 cm for five-time 

measurements. The RMSEs of once measurement and twice measurement were 0.91 cm and 

0.75 cm, respectively. It is clear that using five-time measured point clouds to generate high-

resolution DTM can almost double the accuracy than using once measured MLS data. When 

the grid size was between 10 cm to 25 cm, the DTMs accuracy of once and twice measured 

point clouds tended to be the same. The four-time and five-time measured point clouds 

tended to produce the DTMs with similar accuracy.  

 

Figure 4.19: RMSE of DTMs using different dense point clouds with different grid sizes. 
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In summary, when the grid size of DTM is smaller than 25 cm, the more dense point 

clouds can produce more accurate results. MLS point clouds with average spacing around 1-2 

cm and point density greater than 4000 points/m2 can provide  satisfactory results of 

interpolation. If the DTM grid size is greater than 25 cm, the point clouds with 1000 to 5000 

points/m2 have similar accuracy in gridded DTMs generation.  

4.3.2 External Accuracy Assessment of Gridded DTMs 

Through calculation of a series of statistical measures which are described in Section 

3.6.2, the final absolute accuracy of gridded DTMs was obtained. The final results of external 

accuracy assessment are presented in Figures 4.20 and 4.21, and Table 4.3. 

 

Figure 4.20: External accuracy assessment of RMSE with different interpolation methods and grid 

sizes. 

Figures 4.20 and 4.21 show some distribution of the external assessment in terms of 

RMSE and absolute mean error. Similar to the trend of internal accuracy assessment, the 

external accuracy has a gentle growth as the grid size of DTM increases with fluctuations. 
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The accuracies of each interpolation methods were compared to each other with no more than 

1.1 cm in RMSE and 0.7 cm in absolute mean error. It means that there is no large difference 

between four interpolation methods in terms of external accuracy. Since the external check 

points were surveyed by GPSs, which contain some random errors, the accuracy of DTMs 

shows more fluctuations than the internal accuracy assessment results.  

 

Figure 4.21: External accuracy assessment of absolute mean error with different interpolation 

methods and grid sizes. 

Figures 4.20 and 4.21 show a significant drop of RMSE and absolute mean error for 

grid sizes between 30 cm and 50 cm. It indicates that the accuracy of cell sizes between 30 

cm and 50 cm is higher than other grid sizes. However, neither the RMSE nor the absolute 

mean error had a deviation greater than 1 cm. This may be caused by the locations of check 

points. Some of the 30 randomly selected check points are probably located near the centers 

of 30 to 50 cm grids. Another reason could be the random errors of check points. But 
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according to the internal accuracy assessment, the 35 cm grid size DTM obtained higher 

accuracy than others which is consistent with external accuracy. Based on these results, grid 

size should be set at 35 cm when interpolating MLS points.  

Table 4.3 contains the entire external accuracy of DTMs generated in different cell 

sizes. The standard deviations of RMSE range from 13.5 to 15.5 cm. According to Congalton 

and Green (2008), a confidence interval around the RMSE at 95% probability range and the 

interval of errors around RMSE which includes 95% of map errors range were calculated. As 

shown in Table 4.3, the confidence interval around the RMSE at 95% probability range 

distributed from 3.7 cm to 15.1 cm. It means all grid-sized DTMs have 95% confidence to 

present that the RMSEs are in this range. The interval of errors around RMSE which includes 

95% of map errors range was settled between -20 cm and 40 cm. In addition, Table 4.3 

shows that the RMSEs were all ranged between 8.5 cm and 9.6 cm. The absolute mean errors 

were in the range of 7 cm - 7.7 cm.  

The ALS-derived metre-level resolution DTM usually has 20 cm accuracy in RMSE 

(Bater and Coops, 2009; Veneziano et al., 2002). However, MLS-derived DTMs with grid 

size smaller than 1 m can provide the absolute accuracy of RMSE at 10 cm level. The 

RMSEs are distributed from 3.7 cm to 15.1 cm with 95% confidence.  In addition, the DTMs 

with smaller than 1 m grid size have similar absolute accuracies which are ranged in 1.1cm 

of RMSE. To obtain the best interests with MLS point clouds, the cell size of DTM should be 

set as 30-40 cm. 
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Table 4.3: External accuracy assessment.  

Interpolation Grid 
Size(cm) 

Mean 
Error (cm) 

Absolute 
Mean 

Error (cm)  

RMSE 
(cm) 

Standard 
Deviation 

(cm) 

Standard 
Error   
(cm)  

A confidence interval 
around the estimate of 

RMSE at 95% 
probability range (cm) 

The interval of errors 
around RMSE which 
includes 95% of map 

errors range (cm) 
IDW 2 -2.16 7.33 9.03 14.45 2.64 3.85 14.20 -19.31 37.36 
IDW 5 -2.26 7.26 9.06 14.56 2.66 3.85 14.27 -19.49 37.60 
IDW 10 -2.12 7.28 9.01 14.40 2.63 3.86 14.16 -19.22 37.24 
IDW 15 -2.30 7.47 9.20 14.80 2.70 3.91 14.50 -19.80 38.20 
IDW 20 -2.11 7.29 9.03 14.43 2.63 3.87 14.20 -19.25 37.31 
IDW 25 -2.16 7.49 9.18 14.68 2.68 3.93 14.43 -19.58 37.95 
IDW 30 -2.37 7.30 9.09 14.68 2.68 3.84 14.34 -19.69 37.87 
IDW 35 -2.43 7.46 9.33 15.07 2.75 3.94 14.73 -20.21 38.88 
IDW 40 -2.58 7.40 9.11 14.84 2.71 3.80 14.42 -19.98 38.19 
IDW 45 -2.33 7.15 8.94 14.44 2.64 3.77 14.11 -19.36 37.24 
IDW 50 -2.07 7.08 8.78 14.04 2.56 3.76 13.80 -18.74 36.30 
IDW 100 -1.29 7.27 9.00 13.85 2.53 4.05 13.96 -18.14 36.15 

Linear 2 -2.32 7.37 9.09 14.65 2.68 3.85 14.33 -19.63 37.81 
Linear 5 -2.25 7.36 9.13 14.66 2.68 3.88 14.38 -19.61 37.87 
Linear 10 -2.27 7.35 9.09 14.62 2.67 3.86 14.32 -19.56 37.75 
Linear 15 -2.12 7.43 9.15 14.61 2.67 3.92 14.38 -19.48 37.78 
Linear 20 -2.17 7.45 9.14 14.63 2.67 3.91 14.37 -19.53 37.81 
Linear 25 -2.56 7.65 9.32 15.13 2.76 3.90 14.73 -20.34 38.97 
Linear 30 -2.24 7.57 9.33 14.95 2.73 3.98 14.68 -19.96 38.62 
Linear 35 -1.83 7.41 9.01 14.22 2.60 3.92 14.10 -18.85 36.88 
Linear 40 -1.59 7.03 8.74 13.67 2.49 3.85 13.63 -18.05 35.52 
Linear 45 -2.48 7.15 9.07 14.73 2.69 3.80 14.34 -19.79 37.94 
Linear 50 -2.03 7.27 9.00 14.33 2.62 3.87 14.13 -19.09 37.08 
Linear 100 -2.41 7.63 9.58 15.41 2.81 4.06 15.10 -20.63 39.79 
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Interpolation Grid 
Size(cm) 

Mean 
Error (cm) 

Absolute 
Mean 
Error 
(cm)  

RMSE 
(cm) 

Standard 
Deviation 

(cm) 

Standard 
Error 
(cm)   

A confidence interval 
around the estimate of 

RMSE at 95% 
probability range (cm) 

The interval of errors 
around RMSE which 
includes 95% of map 

errors range (cm) 

Natural Neighbours 2 -2.32 7.39 9.13 14.71 2.69 3.87 14.39 -19.70 37.95 
Natural Neighbours 5 -2.30 7.37 9.16 14.73 2.69 3.89 14.43 -19.71 38.03 
Natural Neighbours 10 -2.27 7.35 9.14 14.68 2.68 3.88 14.39 -19.64 37.91 
Natural Neighbours 15 -2.17 7.48 9.21 14.72 2.69 3.94 14.47 -19.64 38.06 
Natural Neighbours 20 -2.19 7.43 9.12 14.61 2.67 3.89 14.35 -19.51 37.75 
Natural Neighbours 25 -2.55 7.65 9.32 15.13 2.76 3.91 14.74 -20.34 38.98 
Natural Neighbours 30 -2.28 7.62 9.36 15.02 2.74 3.99 14.74 -20.07 38.80 
Natural Neighbours 35 -1.90 7.39 9.02 14.27 2.61 3.91 14.13 -18.96 36.99 
Natural Neighbours 40 -2.09 7.14 8.98 14.35 2.62 3.85 14.12 -19.13 37.10 
Natural Neighbours 45 -2.49 7.08 9.03 14.67 2.68 3.78 14.28 -19.72 37.78 
Natural Neighbours 50 -2.06 7.27 9.01 14.36 2.62 3.87 14.15 -19.14 37.16 
Natural Neighbours 100 -2.41 7.63 9.58 15.42 2.82 4.07 15.10 -20.64 39.81 
Nearest Neighbour 2 -2.12 7.33 9.02 14.41 2.63 3.86 14.18 -19.23 37.27 
Nearest Neighbour 5 -2.20 7.37 9.14 14.64 2.67 3.90 14.37 -19.55 37.83 
Nearest Neighbour 10 -1.96 7.23 9.02 14.32 2.61 3.90 14.15 -19.05 37.10 
Nearest Neighbour 15 -2.13 7.36 9.13 14.59 2.66 3.91 14.35 -19.46 37.72 
Nearest Neighbour 20 -2.09 7.30 9.09 14.50 2.65 3.90 14.28 -19.32 37.50 
Nearest Neighbour 25 -2.16 7.48 9.18 14.68 2.68 3.93 14.44 -19.59 37.96 
Nearest Neighbour 30 -1.99 7.29 8.98 14.28 2.61 3.87 14.09 -19.01 36.97 
Nearest Neighbour 35 -2.33 7.62 9.48 15.22 2.78 4.04 14.93 -20.35 39.32 
Nearest Neighbour 40 -2.25 7.23 9.00 14.48 2.64 3.82 14.18 -19.37 37.37 
Nearest Neighbour 45 -2.30 7.29 8.92 14.38 2.63 3.77 14.06 -19.28 37.11 
Nearest Neighbour 50 -2.04 7.09 8.69 13.89 2.54 3.72 13.67 -18.54 35.93 
Nearest Neighbour 100 -1.30 7.55 9.26 14.23 2.60 4.17 14.35 -18.62 37.14 
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4.4 Chapter Summary 

In this chapter, the DTMs generated from MLS point clouds are presented. The 

parameters of voxel-based upward growing algorithm were analyzed. Meanwhile, the 

quantitative and qualitative analysis demonstrated that the voxel-based upward growing filter 

obtained excellent results with average overall accuracy of 0.975. However, when processing 

terrain with steep slope, the performance of the proposed algorithm was not satisfactory. 

Finally, the gridded DTMs were evaluated both in internal and external examinations. The 

results showed that the IDW interpolation is more suitable for interpolating ground points 

into raster DTMs due to higher accuracy and shorter computational time. The final delivered 

DTM can reach 10 cm absolute accuracy under 1 m grid size. 
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Chapter 5 
Conclusions and Recommendations 

This chapter presents the conclusions of this study, describes its limitations, and 

proposes some suggestions for future studies. 

5.1  Conclusions 

One of the best features of MLS is that it can collect high density point clouds, which 

are also its biggest drawbacks in terms of processing these large volumes of data. Thus, this 

research has focused on how to efficiently and accurately apply the MLS point clouds to 

generate DTMs along roads. The proposed workflow provides a satisfactory approach, and 

objectives proposed have been fulfilled. 

A semi-automated voxel-based upward growing algorithm has been applied to 

classify the terrain points from raw MLS point clouds. To reduce the processing time, this 

algorithm first decomposes a large scene of point clouds into a set of blocks, and partitions 

each block into voxels. Then an upward growing process is employed to determine whether a 

voxel belongs to terrain or off-terrain. Four parameters of this algorithm were defined and 

analyzed separately for sensitivity analysis. The voxel-based upward growing algorithm was 

evaluated quantitatively and qualitatively. The results obtained using a set of global 

thresholds of five selected datasets show that the algorithm was able to achieve the average 

overall accuracy, correctness, and completeness values of 0.975, 0.98, and 0.986, 

respectively. In some cases, the overall accuracy was more than 0.990. The average rates of 

Types I and II errors were 0.014 and 0.064, respectively. By visual inspection of the cross 

matrix images, it can be seen that the voxel-based upward growing algorithm performed well 
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except for those areas with steep slopes. This finding indicates that this algorithm is more 

suitable for areas without steep slopes.  

In this study, four types of interpolation methods, namely IDW, Nearest Neighbour, 

Linear, and Natural Neighbour, were used to interpolate ground points for obtaining gridded 

DTMs. Internal and external accuracy assessments were carried out. Under a grid size setting 

of less than 1 m, IDW has proven to be the best method for interpolating ground points into 

raster DTMs, due to its superior accuracy and computation process speed. When the grid size 

of DTMs is smaller than 25 cm, accuracy grows higher as the density of the clouds increases. 

When the cell size is large than 25 cm, the point clouds that have 1000 to 5000 points/m² 

provides similarly accurate DTMs. In terms of absolute accuracy of DTMs, the external 

accuracy illustrated that the final products of all cell-size DTMs with 2 cm to 1 m can 

provide a 10 cm-level (RMSE) accuracy DTM.  

In conclusion, MLS is an effective system in obtaining DTMs. The proposed 

methodology has proven to be successful in generating DTMs with high-accuracy and high-

resolution from MLS point clouds. DTMs with centimetre resolution and 10 cm accuracy can 

be obtained from MLS data. Even though the final gridded DTMs do not meet the 

engineering survey level (less than 5 cm of vertical accuracy) required by transportation 

agencies, they are still useful for other transportation applications, including road features 

extraction, autonomous navigation, roadway condition assessment, and selected hydrological 

modeling on road surfaces. MLS technology can be an efficient and safe approach for 

operations all along roads to generate DTMs.  



 

 90 

5.2 Limitations and Recommendations 

In this study, the proposed methodology in generating DTMs from MLS point clouds 

has provided a satisfactory result in this paper. However, certain limitations are noted below.   

Firstly, while the proposed filter has produced favourable results in most scenes 

including typical urban areas and non-urban areas. This algorithm does not work in areas 

with steep slopes. This is because that the algorithm is based on upward growing processes. 

Voxels located on steep slopes cannot grow up as well as on flat areas. Therefore, for steep 

terrain areas, the algorithm will need to be revised and improved. Secondly, setting 

appropriate parameters is another limitation which reduces the automation of this filter. 

According to this filter, it is necessary to have prior knowledge, in setting heights of the 

dataset for the local and global terrain relief. While a global threshold set could be applied 

into one dataset, in order to obtain more accurate filtering results, the parameters used in 

different tiles of datasets may need adjusting accordingly. The adjustment of these 

parameters requires more manual interactions. Therefore, an automatic generation of the 

parameters could be developed in the future. The parameters used in the proposed filter may 

be automatically set by methods such as artificial intelligence.  

Moreover, due to limitation in the data availability, this study only proves that the 

proposed filter algorithm is not suitable in steep slope areas. However, the details of how 

well the algorithm works at steeper slopes are not discussed. Thus, in the future, should there 

be more available datasets for different degrees of slope; the algorithm may be tested again. 

The applicability of the algorithm would then be known better.  
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Furthermore, the final DTM products with an absolute accuracy of 10 cm are not 

sufficient compared to the required absolute accuracy of 2-5cm set by transportation agencies. 

However, a more accurate DTM product can be achieved in the future by improving the 

accuracy of DTMs, some approaches can be used in the future to improve the accuracy of 

measurements of the MLS system. For example, calibration targets can be used during MLS 

system measurement period to improve the accuracy of MLS raw data. 

Lastly, the proposed algorithm was originally designed for MLS point clouds.  

Considering the similarity between TLS data and MLS data, it may be possible to also apply 

this voxel-based upward growing method into TLS point clouds. Therefore, in the future, 

more experiments can be conducted in evaluating whether this algorithm may be applicable 

when working with terrestrial laser-scanned data.    
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