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Summary

In studies of affective disorder, individuals are often observed to experience recurrent symp-
tomatic exacerbations warranting hospitalization. Interest may lie in modeling the occurrence
of such exacerbations over time and identifying associated risk factors. In some patients, recur-
rent exacerbations are temporally clustered following disease onset, but cease to occur after a
period of time.We develop a dynamic Mover-Stayer model in which a canonical binary variable
associated with each event indicates whether the underlying disease has resolved. An individual
whose disease process has not resolved will experience events following a standard point process
model governed by a latent intensity. When the disease process resolves, the complete data in-
tensity becomes zero and no further event will occur. An expectation- maximization algorithm
is described for parametric and semiparametric model fitting based on a discrete time dynamic
Mover-Stayer model and a latent intensity-based model of the underlying point process.
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1 INTRODUCTION

1.1 RECURRENT EVENT PROCESSES

Recurrent data arise frequently in studies of chronic disease, actuarial science, industrial research
and sociology. In health research, examples include exacerbations of symptoms in patients with
respiratory disease (Grossman et al., 1998), seizures in individuals with epilepsy (Pledger et al., 1994),
and recurrent episodes of bleeding in patients with thrombocytopenia (Heddle et al., 2003; Webert et
al., 2006). There has been considerable statistical research in the last 20 years on methods for the
analysis of recurrent event data. Models and methods can be broadly classified as intensity-based
(Andersen et al., 1993), based on marginal mean or rate functions (Lawless and Nadeau, 1995), or
based on random effect models (Lawless, 1987).
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Frequently the recurrent event process ends upon on the occurrence of a terminal event. Graft
rejection episodes in transplant recipients, for example, cease to occur upon total graft rejection (Cole
et al., 1993), skeletal complications in patients with bone metastases end when a patient dies (Horto-
bagyi et al., 1998), and recurrent hospitalizations for cardiovascular events end upon death (Bourassa,
Gurné, Bangdiwala et al., 1993). There has been considerable recent work on the development of
statistical methods for the analysis of recurrent events in the presence of a terminal event. This phe-
nomenon is naturally handled with intensity-based models (Andersen et al., 1993), but robust marginal
methods have been developed (Cook and Lawless, 1997; Ghosh and Lin, 2000, 2002) as have mod-
els and methods incorporating random effects (Liu, Wolfe and Huang, 2004; Ye, Kalbfleisch and
Schaubel, 2007).

We consider the setting in which recurrent events arise in a chronic disease processes but where
some individuals have particularly long periods of time from their last event to a right-censoring time.
This is motivated by the need to model recurrent event processes in which the recurrent events arise
because of a transient underlying condition which can resolve. Unlike the case of a terminal event
such as death, in this setting it is not known if and when the underlying condition has resolved. We
handle this complication through use of a dynamic mover-stayer model. The model is comprised of
an intensity function for event occurrence among individuals still experiencing the underling condi-
tion generating the events and a series of conditional probabilities for modeling the resolution of the
underlying process.

Mixture models have been used extensively to model the presence of a so-called “cured fraction”
in cancer studies featuring long-term survivors. Farewell (1982, 1986) proposed a parametric mixture
model incorporating a logistic regression model for the latent cure status and a Weibull model for the
survival times of those in the uncured group. Peng, Dear and Denham (1998) extended this approach
to incorporate the generalized F failure time distribution and Taylor (1995) extended this further to
enable nonparametric estimation of the survival distribution among susceptible individuals through
a Kaplan-Meier type estimate. Kuk and Chen (1992) extended the cure rate model to accommodate
a semiparametric proportional hazard model for the survival time and proposed estimation via an
expectation-maximization (EM) algorithm. Peng and Dear (2000) further studied the semiparametric
approach by allowing covariate effects on the cure rate. A zero-tail constraint was introduced by Sy
and Taylor (2000) to deal with identifiability issues. Yamaguchi (1992) described a further interesting
generalization of the notion of a cured fraction by introducing a latent failure time at which sub-
jects became nonsusceptible to the event of interest. Asymptotic properties of maximum likelihood
estimates from the cure rate model, including the existence, strong consistency and asymptotic nor-
mality, were studied by Fang, Li and Sun (2005); asymptotic variances were also derived to facilitate
inferences using Wald-based pivotals.

Cure rate survival models are a special case of a more general class of mover-stayer models. In
mover-stayer models the population is comprised of two sub-populations. In one sub-population, the
so-called “mover” group, transitions among states are made according to a general multistate process.
In the other sub-population individuals have a zero probability of moving from the initial state, and
these individuals are called “stayers”. Often Markov models are adopted for the multistate process for
movers, but any multistate model can be specified in principle. Goodman (1961) proposed methods
for consistent parameter estimation to address inconsistency of estimators developed by Blumen,
Kogan and McCarthy (1955) in the discrete-time setting. Spilerman (1972) further generalized the
mover-stayer model to allow the individual mobility rate to follow a continuous distribution. Frydman
(1984) described how to obtain maximum likelihood estimates based on the observed likelihood,
while Fuchs and Greenhouse (1988) used the EM algorithm with extensions to handle incomplete
follow-up in the panel studies. Models incorporating dynamic mover-stayer indicators have received
some attention including the multistate models by Heckman and Walker (1987), Yamaguchi (1994,
1998, 2003) and Cook, Kalbfleisch and Yi (2002).
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The remainder of this paper is organized as follows. A brief description of the Danish study on the
course of affective disorder is given in the next subsection. In Section ?? we introduce the notation
and give the complete data likelihood for a general model. We next describe how to implement
the EM algorithm, and give specific details on how to fit a semiparametric latent Markov model.
The performance of the proposed algorithm for parametric and semiparametric models is examined
empirically in Section ??. Several models are fit to the motivating Danish study of affective disorder
in Section ?? and concluding remarks and topics warranting further development are discussed in
Section ??.

1.2 DESCRIPTION OF DANISH REGISTRY DATA

A study of individuals with affective disorder was carried out in Denmark based on a registry of
hospitalizations. For this study, a patient entered the cohort at the onset of affective disorder, defined
by the first hospitalization for any mental disorder of inorganic etiology between 1994 and 1999. A
total of 10,523 individuals satisfied this selection condition. Over the course of the study period there
was an average of 1.618 admissions (SD=1.720), with a minimum of 1 and a maximum of 90.

Kvist et al. (2007) examined the impact of misspecification of the frailty distribution, using a
non-parametric estimator for the joint gap times and a marginalized estimator for marginal gap times.
Cook and Lawless (2012) investigated trends in this recurrent event process and discussed the tests
for trends in detail.

The present goal is to describe a model for the pattern of event occurrence in which the events
are the acute exacerbations of affective disorder and data feature individuals with unusually long
periods of time without recurrence at the end of follow-up; see Figure ??. This pattern prompted the
development (Winokur, 1975) and examination (Kessing, Hansen, Andersen et al., 2004) of a theory
that the disease process may “burn-out” for some affected individuals. This theory, in part, motivated
the development of the dynamic mover-stayer model we describe in the section that follows.

2 MODEL FORMULATION AND ALGORITHM FOR ESTIMATION

2.1 NOTATION AND MODEL FORMULATION

We suppose the process of interest begins with an initiating event representing the onset of disease.
This could be, for example, the first seizure among individuals with epilepsy, the first acute exacerba-
tion in persons with asthma, or the first hospitalization in individuals with affective disorder. We let
T0 = 0 denote the time of the initiating event and let Tj represent the time of the jth subsequent event,
j = 1, 2, . . .. The number of events over time period (0, t] is denoted by N(t) =

∑∞
j=1 I(Tj ≤ t), and

{N(s), 0 ≤ s} denotes the corresponding counting process.
Information on the nature of the event, individuals’ characteristics at the event time, and any

fixed covariates, are recorded in a p× 1 covariate vector Xj observed upon the occurrence of the jth
event. We let X̄(t) = {X0, . . . , XN(t)} denote the history of this covariate vector when viewed in
continuous time; because N(t) is right-continuous this history includes Xj if t = tj . Likewise we
let X̄j = {X0, . . . , Xj} denote the covariate history as a function of event count. To accommodate
the possibility that the condition of interest is resolved upon the occurrence of the jth event, we let
Zj denote a time-dependent indicator variable such that Zj = 1 if the individual remains at risk for
future events following the jth event, and Zj = 0 otherwise, j = 0, 1, . . .. The indicator Zj is a latent
variable, but we learn that Zj = 1 upon the occurrence of the (j + 1)st event, j = 0, 1, . . .. As was
done for the observed covariate vector, here we let Z̄(t) = {Z0, . . . , ZN(t)} and Z̄j = {Z0, . . . , Zj}.

The complete process history is denoted by H(t) = {(N(s), X(s), Z(s)), 0 ≤ s ≤ t}, which
includes the values of the latent variables realized over [0, t], and the history excluding Z̄(t) is denoted
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Figure 1: Timeline plots of recurrent acute episodes of affective disorder from time of disease onset
for a selected sample of individuals

by H(t) = {(N(s), X(s)), 0 ≤ s ≤ t}. We let t− denote an infinitesimal amount of time before t.
Assuming two events cannot occur at the same time, the complete data intensity function is

λ(t|H(t−)) = lim
∆t↓0

P (∆N(t) = 1|H(t−))

∆t
= ZN(t−)λ(t|H(t−)) , (1)

where ∆N(t) = N((t+ ∆t)−)−N(t−) denotes the number of the events over the interval [t, t+ ∆t)
and

λ(t|H(t−)) = lim
4t↓0

P (4N(t) = 1|H(t−))

4t
(2)

is a canonical event intensity function. We use the term complete data intensity function for (??)
because it contains the complete information over [0, t) including information on the latent process;
we use the term canonical intensity for (??) because it can be any intensity function useful for mod-
eling recurrent event processes not subject to resolution. It may, for example, correspond to any point
process model including modulated Markov models for which λ(t|H(t−)) = λ0(t;α) exp(X ′N(t−)β),
or modulated semi-Markov models for which λ(t|H(t−)) = hN(t−)(B(t);α) exp(X ′N(t−)β), where
hj(wj;α) is the baseline hazard for the inter-arrival time wj = tj − tj−1 and B(t) = t − tN(t−) is
the backwards recurrence time at t > 0 (Lawless, 1995). Mixed Markov and semi-Markov processes
offer alternative frameworks (Cook and Lawless, 2007). The canonical intensity is not relevant alone
for modeling the data, however, and the complete intensity is not useable since Z̄(t−) is not observed.
The observed data intensity function is obtained by marginalizing over the latent process and is of the
form

E{λ(t|H(t−))|H(t−)} = E(ZN(t−)|H(t−)) · λ(t|H(t−)) .
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As in models with fixed continuous frailty terms, here it is most convenient to adopt a latent variable
approach to estimation and hence construct a complete data likelihood based on (??); we do so in the
next section.

In general Xj can depend on the complete process history at t−j and the fact that an event occurred
at tj , so we denote the probability model by

P (Xj|H(t−j ), dN(tj) = 1) = P (Xj|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1) (3)

where Z̄j−1 = 1j−1 is an j×1 vector of ones, and we somewhat informally let dN(t) = lim∆t↓0 ∆N(t) =
1 if an event occurs at time t and dN(t) = 0 otherwise.

The probability of remaining at risk following the jth event can depend uponH(t−j ) and Xj , so at
tj we write this as

P (Zj = 1|H(t−j ), dN(tj) = 1, Xj) = P (Zj = 1|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1, Xj) . (4)

This probability may therefore depend on the times of previous events and the history of the ob-
servable covariates over [0, tj] and is only relevant if Z̄j−1 = 1j−1. Discrete waiting time models
are suitable for the resolution of the process and we may specify them based on logistic models. If
Ẋj = (1, X ′j)

′, a simple model is of the form

logitP (Zj = 1|H(tj), dN(tj) = 1, Xj) = Ẋ ′jηj (5)

in which the odds the process does not resolve upon the occurrence of the jth event at tj depends on
the features Xj upon event occurrence. It is often convenient and reasonable to constrain ηj = η and
so there is one set of regression coefficients common across all logistic models.

Example 1 Suppose the canonical intensity is Markov with λ(t|H(t−)) = λα(λt)α−1, and a logistic
model is used for the latent indicator with (??) taking the form logitP (Zj = 1|H(tj), dN(tj) =
1, Xj) = η0 + η1j + η2X where Xj = (j,X)′ with X being an indicator of a treatment (X = 1) or
control (X = 0) condition. In this case exp(η1) is the relative odds, given X , that the process remains
unresolved at the jth event compared to at the previous event; the parameter η1 therefore reflects the
tendency for the process to remain unresolved upon the occurrence of each event, regardless of the
times of the events. The coefficient η2 reflects the possible effect of treatment on the odds the process
remains unresolved after a given number of events.

The mean function gives the expected number of events as a function of the time and so is defined
by E{N(t)|X} =

∑∞
n=0nP (N(t) = n|X). To compute this, note that

P (N(t) = n|X) = P (N(t) = n|Z̄n = 1n, X)P (Z̄n = 1n|X)

+P (Tn ≤ t|Z̄n−1 = 1n−1, X)P (Z̄n−1 = 1n−1|X) ,

where
P (N(t) = n|Z̄n = 1n, X) = Λ(t|X)n e−Λ(t|X)/n! ,

with Λ(t|X) =
∫ t

0
λ(s|X)ds and

P (Tn ≤ t|Z̄n−1 = 1n−1, X) = 1−
n−1∑
r=0

P (N(t) = r|Z̄r−1 = 1r−1, X) ,

since the latent process is a Poisson process, and

P (Z̄n = 1n|X) = P (Z0 = 1|X)
n∏
j=1

P (Zj = 1|Z̄j−1 = 1j−1, X) .



A dynamic Mover-Stayer model for recurrent event processes 6

Figure ?? contains plots of the mean function based on the canonical intensity, and the mean
functions for the marginal (observed) processes discussed here for the treatment (X = 1) and control
(X = 0) groups; we set λ = 36, α = 0.50, η1 = log 0.95, η2 = log 0.75 and determined η0

to give E(N(1)) = 0.75 (left panel) or E(N(1)) = 3 (right panel). As expected there is a large
difference in the expected number of events between the canonical and marginal models since the
latter incorporate the chance that the process resolves during follow-up. The covariate effect on
the mover-stayer process leads to two marginal mean functions (under the proposed model) with the
difference between them reflecting magnitude of the effect of treatment on the mover-stayer indicator.
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Figure 2: Plots of the cumulative canonical intensity (λt)α and mean functions for the treatment (X =
1) and control (X = 0) group in the dynamic mover-stayer model; λ = 36, α = 0.5, η1 = log 0.95,
η2 = log 0.75, η0 is obtained to give E(N(1)) = 0.75 (left panel) and 3.0 (right panel)

2.2 PARAMETER ESTIMATION AND STATISTICAL INFERENCE

2.2.1 AN EM ALGORITHM FOR PARAMETRIC MODELING

To describe the algorithm for estimation we return to the general case with a canonical Markov inten-
sity of an unspecified form. Let θ1 denote the parameter indexing the canonical intensity in (??), θ2

parameterize (??), and θ3 parameterize (??).
If the latent process were observable over an interval [0, C], the complete data likelihood would

be proportional to the probability of observing {(tj, Xj, Zj), j = 0, 1, . . . , n} over [0, C] and is given
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by LC ∝ LC1(θ1) · LC2(θ2) · LC3(θ3) where

LC1(θ1) ∝
n∏
j=1

{
λ(tj|H(t−j )) exp

(
−
∫ tj

tj−1

λ(u|H(u−))du

)}
exp

(
−
∫ C

tn

λ(u|H(u−))du

)

LC2(θ2) ∝ P (Z0|H(0−), dN(0) = 1, X0)
n∏
j=1

P (Zj|H(t−j ), dN(tj) = 1, Xj)

LC3(θ3) ∝ P (X0|H(0−), dN(0) = 1)
n∏
j=1

P (Xj|H(t−j ), dN(tj) = 1)

and H(0−) = ∅. Terms involving the probability model for the observed covariates can be omitted if
the covariate process is non-informative (i.e. the parameters indexing the distribution of the covariates
are not functionally related to the parameters of the processes of interest). In this case we use the
partial complete data likelihood

LC(θ) ∝ LC1(θ1) · LC2(θ2) , (6)

where

LC1(θ1) ∝
n∏
j=1

{
λ(tj|H(t−j ))

}
exp

(
−

n∑
k=0

∫ tk+1

tk

Z
I(k=n)
k λ(u|H(u−))du

)
(7)

is the contribution pertaining to θ1, with t0 = 0 and tn+1 = C, and

LC2(θ2) ∝ P (Z0|H(0−), dN(0) = 1, X0) ·
n∏
j=1

P (Zj|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1, Xj)

∝ P (Z0|H(0−)) ·
n∏
j=1

P (Zj|H(t−j ), Z̄j−1 = 1j−1) (8)

is the contribution related to the latent process, where H(0−) = ∅, and θ = (θ′1, θ
′
2)′. The missing

variable in the above complete data likelihood is Zn, the indicator of whether the process continues
following the occurrence of the last observed event.

The expectation-maximization (EM) algorithm of Dempster et al. (1979) offers a convenient way
of maximizing the observed data likelihood. To do this we define

Q(θ; θ̂) = Q1(θ1; θ̂) +Q2(θ2; θ̂) (9)

whereQ1(θ1; θ̂) = E(logLC1(θ1)|H(C); θ̂) andQ2(θ2; θ̂) = E(logLC2(θ2)|H(C); θ̂). Since logLC1(θ1)
and logLC2(θ2) are linear in Zn, only

ζ(θ̂) = P (Zn = 1|H(C); θ̂), (10)

given by

P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1; θ̂2) exp(−
∫ C
tn
λ(u|H(u−); θ̂1) du)

P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1; θ̂2) exp(−
∫ C
tn
λ(u|H(u−); θ̂1) du) + P (Zn = 0|H(t−n ), Z̄n−1 = 1n−1; θ̂2)

,

is required at the E-step to compute (??). The maximum likelihood estimator is obtained by iteratively
maximizing (??) as follows. If θ̂r denotes the estimate of θ at the rth iteration, we maximize Q(θ; θ̂r)

with respect to θ to obtain θ̂r+1. This process is repeated iteratively until ‖θ̂r+1 − θ̂r‖ ≤ ε where ε is
a pre-specified tolerance, at which point we let the final value be the maximized likelihood estimate.
Variance estimation can be carried out using the method of Louis (1982); see Appendix A for details.

The model formulation in this section is quite general. In the next section we consider a special
model with a Markov canonical intensity with a proportional latent rate function and consider semi-
parametric modeling of the canonical Markov intensity. To do this we introduce subscripts to index
individuals and adopt counting process notation.
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2.2.2 AN EM ALGORITHM FOR SEMIPARAMETRIC MODELING OF A MARKOV PROCESS

Let m be the number of subjects in the study, ni be the number of events for subject i, [0, Ci] denote
the period of observation for subject i and let Yi(u) = I(u ≤ Ci) indicate whether they are under
observation at time u. Let Zi(u) = ZiNi(u−) denote the latent variable expressed as a continuous time
varying indicator. Under a Markov latent intensity λ(t|H(t−)) = λ0(t) exp(Xβ), where λ0(t) =
dΛ0(t)/dt is the baseline latent intensity for an individual with X = 0. We also let Λ0(s, t) =∫ t
s
dΛ0(u). In counting process notation the complete data likelihood for the recurrent event process

(Cook and Lawless, 2007) is

LC1(λ0(·), β) =
m∏
i=1

[
ni∏
j=1

[Yi(u)dΛ(u|Xi)]
Yi(u)dNi(u) exp

(
−
∫ ∞

0

Zi(u)Yi(u)dΛ(u|Xi)

)]
and LC2(θ2) is the same as in (??). The complete log-likelihood is then `C(θ) = `C1(λ0(·), β) +
`C2(θ2) where

`C1(λ0(·), β) =
m∑
i=1

{∫ ∞
0

Yi(u)dNi(u)(log dΛ0(u) +Xiβ)−
∫ ∞

0

Zi(u)Yi(u)dΛ0(u) exp(Xiβ)

}
,

and

`C2(θ2) =
m∑
i=1

[ ni−1∑
j=0

logP (Zij|H(t−ij), Z̄j−1 = 1j−1) + logP (Zini
|H(t−ini

), Z̄ni−1 = 1ni−1)
]
,

where we define Z̄−1 as the null set. Here θ = (λ0(·), β′, θ′2) where λ0(·) is the latent baseline rate
function, β is the covariate effect on the intensity of the latent process, and for the particular model
discussed in Section ??, for example, θ2 = (η0, η1, η2) is the parameter vector for the mover-stayer
probability model. Then (??) becomes Q(θ; θ̂) = Q1(λ0(·), β; θ̂) +Q2(θ2; θ̂), and

Q1(λ0(·), β; θ̂) =
m∑
i=1

{∫ ∞
0

Yi(u)dNi(u)(log dΛ0(u) +Xiβ)−
∫ ∞

0

ζi(u; θ̂)Yi(u)dΛ0(u) exp(Xiβ)

}
where if u < Tini

, ζi(u; θ̂) = 1; and if Tini
≤ u ≤ Ci, ζi(u; θ̂) = E(Zi(u)|Hi(Ci); θ̂) is given by

(??) with exp(−
∫ C
tn
λ(u|H(u−); θ̂1)du) reduced to exp(−Λ(tini

, Ci|Xi; θ̂1)), where Λ(s, t|Xi; θ̂1) =∫ t
s
λ(u|Xi; θ̂1)du and θ1 = (λ0(·), β)′. The argument u in ζi(u; θ̂) is therefore introduced to facilitate

writing a general expression for this expectation.
When maximizing Q1(λ0(·), β; θ̂) with respect to λ0(·) and β, we obtain the two equations

m∑
i=1

[
Yi(u)dNi(u)− ζi(u; θ̂)Yi(u) exp(Xiβ)dΛ0(u)

]
= 0, 0 < u (11)

m∑
i=1

[∫ ∞
0

Yi(u)dNi(u)Xi −
∫ ∞

0

ζi(u; θ̂)Yi(u)dΛ0(u) exp(Xiβ)Xi

]
= 0 . (12)

For a given β, we obtain the “profile” estimate

dΛ̂0(u; β) =

∑m
i=1 Yi(u)dNi(u)∑m

i=1 Yi(u)ζi(u; θ̂) exp(Xiβ)
,

and substitute this into (??) to obtain the equation
m∑
i=1

∫ ∞
0

Yi(u)dNi(u)

[
Xi −

∑m
i=1 Yi(u)ζi(u; θ̂) exp(Xiβ)Xi∑m
i=1 Yi(u)ζi(u; θ̂) exp(Xiβ)

]
.
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This looks very much like the usual Cox partial likelihood score equation with offsets. For each
subject i we can construct a pseudo-dataset with ni + 1 lines: first ni lines correspond to the period
from 0 to tini

and have an offset of zero; the last line corresponds to the period from tini
to Ci and has

an offset of log ζi(u; θ̂). Existing software can therefore be used to obtain updated estimates of λ0(·)
and β.

The second term is

Q2(θ2; θ̂) =
m∑
i=1

[ ni−1∑
j=0

logP (Zij = 1|H(t−ij), Z̄j−1 = 1j−1)

+ζi(θ̂) logP (Zini
= 1|H(t−ini

), Z̄ni−1 = 1ni−1)

+(1− ζi(θ̂)) logP (Zini
= 0|H(t−ini

), Z̄ni−1 = 1ni−1)
]
.

where ζi(θ̂) = ζi(u; θ̂) for Tini
≤ u. Maximization of Q2(θ2; θ̂) with respect to θ2 can be done by

fitting logistic regression to pseudo-datasets, which contains ni + 2 lines for each subject i: the first
ni lines correspond to Zi0 = 1, . . . , Zi,ni−1 = 1 and have weight 1; the next line corresponds to the
possibility that Zini

= 1 and has weight ζi(θ̂); the final line corresponds to the other possibility that
Zini

= 0 and has associated weight 1− ζi(θ̂).

3 SIMULATION STUDIES

Here we conduct simulation studies to evaluate the performance of the EM algorithm in fitting the
dynamic mover-stayer model with a latent Markov process. We first generate a treatment indicator
X as a Bernoulli random variable with P (X = 1) = 1 − P (X = 0) = 0.5. The Zj are generated
according to model (??) with a common η vector with η1 = log 0.95 and η2 = log 0.75 so that for
given X , the probability of remaining a mover decreases with each event, and for each value of j
the odds of remaining a mover are 25% lower in the treatment group with X = 1. For the baseline
intensity of the latent Markov process of the form λα(λt)α−1 we fix α = 1 to correspond to a time-
homogeneous latent process, and α = 0.50 to correspond to a time-nonhomogeneous latent process;
we set β = log 0.75 to correspond to a 25% reduction in the rate of events among individuals at risk
of events. For a given α and β, λ is determined so that the expected number of events over (0, C]
is specified at the particular value six among individuals who remain movers throughout the interval
(0, C]. We then solve for η0 so that the marginal expectation satisfies E[N(C)] = 0.75, 1.5, or
3.0. Five hundred datasets of m = 500 individuals were simulated for each parameter configuration.
Parametric analysis and semiparametric analysis were carried out for each simulated dataset. Standard
errors (SEs) were obtained using the method of Louis (1982) and the performance of the estimators
was assessed in terms of empirical bias, empirical and model-based standard errors, and empirical
coverage probability. The empirical bias (EBIAS), empirical standard error (ESE), average model-
based standard error (ASE) computed according to Louis (1982), and empirical coverage probability
expressed as a percentage (ECP) are given in Table ?? for the parametric analyses; the empirical
coverage probability is defined as the fraction of simulations for which the sample confidence interval
contained the true parameter value. The empirical bias and empirical SEs are also reported for the
semiparametric analyses.

The empirical biases are generally small and decrease with increasing expected numbers of events.
There is also good agreement between the empirical and average model-based SEs and the empirical
coverage probability is compatible with the nominal level of 95%. The results are roughly comparable
for the parametric and semiparametric analyses and the methods perform well when there is a trend
in the latent rate function.
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4 APPLICATION TO A COHORT STUDY OF INDIVIDUALS WITH AFFECTIVE DIS-
ORDER

We consider the cohort of 10,523 individuals with a first episode of affective disorder between January
1, 1994 and December 31, 1999. Among these individuals, 3,802 (36.1%) are male and 6,721 (63.9%)
are female. A total of 17,021 hospitalizations are made over this window of calendar time giving a
mean of 1.618 visits per individual (SD=1.720). A total of 1,106 (10.5%) of these individuals were
bipolar at the time of the first admission; among the 9,417 (89.5%) patients who were unipolar at
the study entry, 9,228 remain as unipolar, and 189 become bipolar by the end of follow-up. We
consider a dataset comprised of 9417 patients who are unipolar at the first admission and who had a
total of 14,497 admissions (mean=1.539 and SD=1.272). Follow-up of these individuals is censored
at the end of the observation period, upon the diagnosis of bipolar disorder, schizophrenia, or an
organic disorder, or at the time of death. There are 3,298 (35.0%) male individuals with total of 4,860
visits (mean=1.474 and SD=1.105) and 6,119 (65.0%) female patients with a total of 9,637 visits
(mean=1.575 and SD=1.352).

We fit parametric and semiparametric (Andersen and Gill, 1982) Poisson regression models for
the recurrence of acute episodes, with a single covariate indicating gender (X = 1 for females,X = 0
for males). These results are reported in the first three columns of Table ??. Dynamic mover-stayer
models are also fitted for which the latent variable model controls for the cumulative number of events
(j) and gender; we denote the vector of covariates by Ẋj = (1, j,X)′. A reduced dynamic mover-
stayer model is also fitted with Ẋj = (1, j)′ which simply controls for the cumulative number of acute
episodes. The canonical event intensity model in these dynamic mover-stayer models also controls
for gender. Both parametric (top half) and semiparametric (bottom half) event intensity models are
reported in Table ??.

0 1 2 3 4 5 6

ANDERSEN−GILL MODEL
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Figure 3: Plots of the estimated cumulative intensities for females and males with affective disorder;
the left panel gives the cumulative mean function estimates based on the Andersen-Gill model and
the right panel gives the cumulative canonical event intensity based on the dynamic mover-stayer
model with covariate Ẋj = (1, j,X)′ in the mover-stayer component and gender (X) in the canonical
intensity model.
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We focus the following discussion on the results of the analyses based on the semiparametric in-
tensity model. The estimated regression coefficient for gender from the semiparametric Andersen-Gill
model suggests women have a 17.6% increased rate of recurrence compared to men (RR = 1.176,
95% CI (1.109, 1.247), p < 0.001). The estimates of the cumulative mean functions based on the fit-
ted Andersen-Gill model are given in the left panel of Figure ?? and reveal a small absolute difference
between genders in the cumulative expected number of episodes over time. The first semiparametric
dynamic mover-stayer model reveals an insignificant association between gender on the latent inten-
sity of recurrence (RR = 0.980, 95% CI (0.882, 1.089), p = 0.709), but women have a significantly
higher odds of remaining at risk of recurrence based on the mover-stayer component (OR = 1.184,
95% CI (1.083, 1.293), p < 0.001). The dynamic mover-stayer model therefore suggests that the
higher expected number of episodes for women may arise from a lower tendency for women to expe-
rience resolution of the disease. The right panel of Figure ?? gives the semiparametric estimate of the
cumulative canonical event intensity for males and females. These estimates are much higher than
those of the left panel since they correspond to the canonical process which does not accommodate
resolution. Moreover the two estimates are very similar, reflecting the insignificant gender effect seen
in this model.

Upon the removal of gender from the mover-stayer component (see the last three columns of Table
??) the effect of gender on the latent rate remains insignificant (RR = 1.034, 95% CI (0.934, 1.146),
p = 0.516). The findings from the parametric and semiparametric analyses are in broad agreement.

5 DISCUSSION

We have described a dynamic mover-stayer model for the analysis of recurrent event data which is
useful when there is a substantial fraction of individuals with an unduly long final gap time. This
formulation is most appropriate when the underlying condition leading to the recurrent events can
resolve but this resolution is not observable. There are a number of other medical conditions where
this scenario can arise, and it is particularly relevant for registry studies where limited information
is collected on individuals between records of events of interest. In the motivating example, the
reasons for any resolution could include the identification of a suitable dose or type of medication or
a change in a stressful environment leading to exacerbations of symptoms. Details on these and other
possible explanations are often unavailable in the settings of registry studies but accommodation of
such eventualities is often sensible in model formulation.

The formulation in Section ?? is quite flexible given the general form of the latent intensity. We
have emphasized simple latent Markov models in our derivations and simulations. Natural extensions
include the use of baseline rates which stratify on the cumulative number of events, latent semi-
Markov models, or models with hybrid time scales. The expectation-maximization algorithm was
described for parametric and semiparametric baseline rates within the latent Markov family of models,
but adaptations to these other intensities are relatively straightforward. The introduction of random
effects to offer a further avenue for explaining heterogeneity, while possible, may require large sample
sizes to ensure convergence. Price and Manatunga (2001) illustrate the interplay between cure rate
models and frailty models and Yu (2008) describes a mixture cure model with the latent mover-stayer
and frailty variables realized at the time origin. Aalen (1992) discusses the use of a compound Poisson
random effect distribution as a means of accommodating a fraction of nonsusceptible individuals as
well as heterogeneity in risk among susceptible individuals. More general dynamic mover-stayer
models can be specified by building upon these static latent variable models. Issues of estimability
arise and become more challenging the more flexible the model components become and examination
of profile likelihood contours can be instructive when investigating reasons for convergence problems.

Model assessment is challenging in settings with latent variables and this is particularly true of
mixture models of this type. A particular issue of concern is the fact that there may be multiple con-
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Table 2: Results of fitting Poisson model and dynamic mover-stayer model† to study of affective
disorder with parametric and semiparametric models; Markov model is a parametric Poisson model
or Anderson-Gill (1982) semiparametric model, m = 9, 417

Dynamic Mover-Stayer Models

Poisson Model Ẋj = (1, j,X) Ẋj = (1, j)

EST SE p-value EST SE p-value EST SE p-value

Parametric Models

Mover-Stayer Model
η0 - - - -0.6344 0.0376 -0.5219 0.0257
η1 - - - 0.5184 0.0232 < 0.0001 0.5210 0.0233 < 0.0001
η2 - - - 0.1682 0.0433 0.0001

Recurrent Event Model
λ 0.1555 0.0058 1.2170 0.0548 1.1729 0.0548
α 0.6970 0.0087 0.9574 0.0140 0.9570 0.0140
β 0.1573 0.0299 < 0.0001 -0.0268 0.0515 0.6023 0.0222 0.0505 0.6600

Semiparametric Models

Mover-Stayer Model
η0 - - - -0.6418 0.0387 -0.5289 0.0264
η1 - - - 0.5760 0.0338 < 0.0001 0.5796 0.0340 < 0.0001
η2 - - - 0.1685 0.0451 0.0002

Recurrent Event Model
β 0.1620 0.0299 < 0.0001 -0.0201 0.0539 0.7088 0.0338 0.0521 0.5158

p-values are based on Wald statistics
† SEs for estimates from parametric models obtained by Louis’ method (1982) and by nonparametric
bootstrap (200 bootstrap samples) for fitted semiparametric models
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figurations of the baseline intensity and the mover-stayer model which render similar mean functions.
Clear ideas regarding which component of the model covariates are to be placed can help circumvent
this challenging problem.

In many settings with recurrent events, the events are not observed but only known to occur be-
tween to assessment times. In cohort studies of patients with osteoporosis for example, asymptomatic
fractures may be detected upon periodic radiographic examination. Establishment of suitable med-
ications or other changes in lifestyle and diet may minimize risk of further fractures, but it can be
difficult to determine if these changes have taken place. The dynamic mover-stayer model offers a
way of describing this phenomenon but adaptations to enable model fitting with interval-censored data
are required. Cook, Kalbfleisch and Yi (2002) offer one such approach in the content of parametric
Markov models.

We conclude by noting that mortality adds a further complication. In the motivating study we
found a mortality rate of about 5% over the course of the six year period but simply censored individ-
uals at the time of death. A multistate model offers a suitable framework for analysis which can be
readily adapted to deal with the added complication of mortality. This is a topic of ongoing research.

ACKNOWLEDGEMENTS

This research was supported by grants from the Natural Sciences and Engineering Research Council
of Canada (RGPIN 155849) and the Canadian Institutes forHealth Research (FRN 13887). Hua Shen
is supported by a Grant from the Division of High Impact Clinical Trials of the Ontario Institute
for Cancer Research. Richard Cook is a Canada Research Chair in Statistical Methods for Health
Research. The data on the psychiatric hospitalizations were kindly provided by Professor Lars Vedel
Kessing and Professor Per Kragh Andersen who have used the data in prior publications on recurrent
events.

A APPENDIX

A.1 APPENDIX 1: IMPLEMENTATION OF THE EM ALGORITHM

For an individual with n events observed at times t1 < t2 < · · · < tn < C, the only missing quantity
is Zn. If we have a single covariate X , the dataframe used at the rth step of the EM algorithm to
maximize Q1(θ1; θ̂r) has the usual counting process form with the addition of a weight which is 1 for
all lines except the last one

ID(i) enum(j) estart estop estatus weight rtrunc tstatus X

1 0 0 t1 1 1 NA 1 X1

1 1 t1 t2 1 1 NA 2 X1

1
...

...
...

...
...

...
... X1

1 n− 1 tn−1 tn 1 1 NA 2 X1

1 n tn C 0 ζ̂r NA 2 X1

In a parametric analysis with a baseline rate for the latent process of the form λ0(t;λ, α) =

λα(λt)α−1, Q1(θ1; θ̂r) is maximized to give θ̂r+1 by the Splus command

censorReg(censor(estop, estatus) ∼ X, truncation = censor(estart, rtrunc, tstatus),

weights = weight, distribution = “weibull”) .
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and in the semiparametric analysis by the call

coxph(Surv(estart, estop, estatus) ∼ X + offset(log(weight)),method = “breslow”) .

The data used to maximized Q2(θ2; θ̂r) has the form

ID(i) enum(j) Z X weight
1 0 1 X1 1
1 1 1 X1 1
1 2 1 X1 1

1
...

... X1
...

1 n− 1 1 X1 1
1 n 1 X1 ζ̂r

1 n 0 X1 1− ζ̂r

A simple logistic regression call

glm(Z ∼ enum+X,weights = weight, family = binomial(link = logit)) ,

yields θ̂r+1
2 . New dataframes are then created with ζ̂r replaced with ζ̂r+1 and the procedure is repeated

until ‖θ̂r+1 − θ̂r‖ < ε for some specified value of ε.

A.2 APPENDIX 2: VARIANCE ESTIMATION VIA LOUIS (1982)

Let SC(θ) = ∂ logLC(θ)/∂θ and IC(θ) = −∂SC(θ)/∂θ where LC(θ) is the complete data likeli-
hood for which Zn is treated as known, given by (??). If L(θ), S(θ) = ∂ logL(θ)/∂θ and I(θ) =
−∂S(θ)/∂θ are the observed data likelihood, score and information matrix, then

I(θ) = EZn [IC(θ)|H(C)]− EZn [SC(θ)S ′C(θ)|H(C)] (13)

where SC(θ) = (S ′C1(θ1), S ′C2(θ2))′ and SCk(θk) = ∂ logLCk(θk)/∂θk, k = 1, 2, and

IC(θ) =

[
IC1(θ1) 0

0 IC2(θ2)

]
,

where ICk = −∂SCk(θk)/∂θk, k = 1, 2. We estimate I(θ̂) in (??) by running the EM algorithm
to the point of convergence and using the expression in (??) evaluated at the MLE θ̂ to take the
required expectation. Standard software can be readily exploited to do this in both the parametric and
semiparametric settings.

The first matrix on the right hand side of (??) is obtained by extracting the values stored in the
information matrices produced at the final M-step. Each individual contributes to the complete data
likelihood and complete data score, so we can compute their contributions to SC1(θ1) and SC2(θ2),
stack them and then take a weighted average to estimate the second term in (??).

In the semiparametric setting, let u1 < · · · < uR denote the R unique event times over the
entire sample, let dΛ0 = (dΛ0(u1), . . . , dΛ0(uR))′, and let θ1 = (dΛ′0, β)′, then let SC1(θ1) =
(S ′C11(θ1), S ′C12(θ1))′, where SC11(θ1) = (SC11u1(θ1), . . . , SC11uR(θ1))′ and

SC11u(θ1) = SC11(λ0(u)) = Y (u) {dN(u)− Z(u)dΛ0(u) exp(βX)} , 0 < u

SC12(θ1) = SC12(β) =

∫ ∞
0

Y (u)X {dN(u)− Z(u)dΛ0(u) exp(βX)} .
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Then

IC1(θ1) =

[
−∂SC11(θ1)/∂θ′1
−∂SC12(θ1)/∂θ′1

]
= −

[
∂SC11(θ1)/∂dΛ′0 ∂SC11(θ1)/∂β
∂SC12(θ1)/∂dΛ′0 ∂SC12(θ1)/∂β ,

]
where

∂SC11(θ1)

∂dΛ0(u)
= −Y (u)Z(u) exp(βX)

∂SC12(θ1)

∂dΛ0(u)
= −Y (u)XZ(u) exp(βX)

∂SC11(θ1)

∂β
= −Y (u)Z(u)dΛ0(u) exp(βX)X

∂SC12(θ1)

∂β
= −

∫ ∞
0

Y (u)Z(u)dΛ0(u) exp(βX)X2 .

Then we can obtain SC(θ) and IC(θ) and proceed as in the parametric setting.
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