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Summary

In clinical trials featuring recurrent clinical events, the definition and estimation of treatment
effects involves a number of interesting issues, especially when loss to follow-up may be event-
related and when terminal events such as death preclude the occurrence of further events. This
paper discusses a clinical trial of breast cancer patients with bone metastases where the recurrent
events are skeletal complications, and where patients may die during the trial. We argue that treat-
ment effects should be based on marginal rate and mean functions. When recurrent event data are
subject to event-dependent censoring, however, ordinary marginal methods may yield inconsistent
estimates. Incorporating correctly specified inverse probability of censoring weights into analyses
can protect against dependent censoring and yield consistent estimates of marginal features. An
alternative approach is to obtain estimates of rate and mean functions from models that involve
some conditioning to render censoring conditionally independent. We consider three methods of
estimating mean functions of recurrent event processes and examine the bias and efficiency of
unweighted and inverse probability weighted versions of the methods with and without a termi-
nating event. We compare the methods via simulation and use them to analyse the data from the
breast cancer trial.
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1 INTRODUCTION

1.1 SKELETAL COMPLICATIONS IN PATIENTS WITH BONE METASTASES

The motivating study for the present article is a randomized clinical trial designed to investigate
the effect of a biosphosphonate, pamidronate, on the development of skeletal complications (e.g.,
fractures, spinal cord compression) in breast cancer patients with bone metastases (Hortobagyi et al.,
1996). Patients were accrued to this study between January 1991 and March 1994 from 97 sites in
the United States, Canada, Australia and New Zealand. Patients with stage IV breast cancer receiving
cytotoxic chemotherapy with at least one predominantly lytic bone lesion greater than or equal to one
centimeter in diameter were randomized within strata defined by ECOG status.

A total of 382 women were enrolled in the study with 185 randomized to receive pamidronate
and 197 to placebo control. Two patients randomized to placebo did not have bone metastases and
were therefore excluded from subsequent analyses. Patients randomized to the pamidronate arm
received 90 mg of pamidronate disodium via a two hour infusion every four weeks, whereas patients
randomized to the placebo received dextrose infusions; however those on a three week chemotherapy
regimen were permitted to receive the study drug every three weeks. At monthly visits patients were
assessed and the occurrence of skeletal complications was recorded. The skeletal complications of
interest include pathologic fractures, spinal cord compression with vertebral fracture, the need for
surgery to treat or prevent fractures, and the need for radiation for the treatment of bone pain. After
completion of the planned one year follow-up, the observation was extended for an additional year
and the results were published in Hortobagyi et al. (1998). Each patient was followed until death, the
last date of contact or loss to follow-up, or February 1, 1996.

Table 1 contains the frequencies of the numbers of skeletal complications experienced by the
patients over the course of observation. There is a higher proportion of patients having no skeletal
complications in the pamidronate arm compared with the placebo arm, but crude summaries of this
sort are difficult to interpret, because death is a terminal event precluding the occurrence of further
skeletal complications, and patients are withdrawn from this study or may be lost to follow-up. Fig-
ure 1 contains the Kaplan-Meier estimates of the cumulative probability of death for placebo and
pamidronate treated patients, which reveals comparable risk of death.

It is common in settings like this to see analyses based on the complication-free survival time
(that is, time to the first event). With this endpoint, standard methods of survival analysis can be used
including Kaplan-Meier plots, Cox regression, and log-rank tests for treatment effects (Kalbfleisch
and Prentice, 2002; Lawless, 2003). However, if a palliative therapy delays the occurrence of skeletal
complications (the clinical event of interest), but does not affect the mortality rate, this may underesti-
mate the effect of treatment on the skeletal event of interest, particularly if many patients die without
experiencing this event. Complication-free survival analyses are often motivated by the fact that they
obviate the need for dealing with the competing risk problem arising from deaths. A competing risk
analysis (Crowder, 2001) of the time to the first skeletal event is often preferable, however, because it
is directed at the event of primary interest; standard Cox regression models can be fit for the time to
first skeletal event, with inferences based on cause-specific hazards and regression coefficients.

A shortcoming of analyses based on the time to first skeletal complication is that they do not
make use of the information on complications arising after the first one. Use of subsequent clinical
events is desirable when more comprehensive summaries of the disease burden are of interest or when
cost implications for the nonfatal events are of interest in an economic analysis of treatment. Simple
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Table 1: Frequency distribution for the total number of skeletal complications observed by treatment
arm in Hortobagyi et al. (1998)

Number of Placebo Pamidronate
Skeletal Events No. Percent No. Percent
0 69 354 99 53.5
1 41 21.0 39 21.1
2 34 17.4 17 9.2

3 18 9.2 13 7.0
4 12 6.2 10 54

5 7 3.6 3 1.6
6 5 2.6 1 0.5

7 4 2.1 1 0.5
>8 5 2.6 2 1.1
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summaries of the total number of complications observed on study do not address the variation in
censoring and survival times and as a result are uninterpretable. Summaries based on events-per-
person-years statistics are often provided (e.g., Kanis et al., 1996), but these too are problematic
because they typically do not distinguish between the end of observation due to censoring and death;
for the former the event process may continue but for the latter it is terminated. Moreover, analyses
must deal with possible association between the recurrent event process and the terminating death
process.

In the context of skeletal complications, Moecks et al. (2004) review a variety of methods with
respect to clinical utility and statistical validity. Crude data summaries based on simple or period-
specific event rates are considered, and formal comparisons are recommended based on nonparamet-
ric tests. Such approaches do not require modeling assumptions, but given the possibly complex
relationship between recurrent events and death, they are not based on interpretable summary statis-
tics. The present article takes a rigorous look at the specification and estimation of treatment effects
in this setting. Finally, as we will find in the bone metastases study, there may even be event-related
loss to follow-up of persons still alive. In this case adjustments are needed to methods mentioned
previously to avoid bias in estimates.

1.2 FRAMEWORKS FOR ASSESSING TREATMENT EFFECTS

There have been considerable advances in the past few decades on statistical methods for the analysis
of recurrent events; see Andersen et al. (1993) and Cook and Lawless (2007) for comprehensive re-
views. These advances have been motivated, in part, by the many settings in medical research in which
recurrent events arise. Patients with asthma, for example, may have repeated attacks (Duchateau et
al., 2003), persons with cystic fibrosis suffer repeated pulmonary infections (Therneau and Hamilton,
1997), and persons with epilepsy can experience repeated seizures (Thall and Vail, 1990).
Intensity-based methods, where the probability of the occurrence of a new event is modeled in
terms of previous event history, are appealing in many contexts and offer a wide range of analyses.
However, they are rarely used as a basis for examining treatment effects in clinical trials for a number
of reasons. First, the effects of treatment or other baseline covariates should be easily interpreted
and understood in clinical trials, and should provide a convenient basis for trial design. The fact that
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Figure 1: Kaplan-Meier estimate of survival distribution for placebo and pamidronate treated patients
in Hortobagyi et al. (1998).

intensity-based methods in effect condition on dynamic internal covariates (i.e., prior event history)
makes interpretation of treatment effects difficult, and in particular confounds treatment effect with
prior event history. In addition, it is generally important that the comparison of treatments can be
based on their random assignment to subjects. Conditioning on prior event history at any given
time does not permit this, because balance across other factors that is achieved by randomization is
typically destroyed. Finally, intensity-based methods are susceptible to model misspecification.

Over the past 20 years there has been considerable development of methods based on marginal
features of recurrent event processes, and these provide important tools for the design and analysis
of clinical trials. The marginal features that have been proposed most often for analysis are (1) event
rate functions or cumulative mean functions (e.g., Cox and Lewis, 1966; Andersen and Gill, 1982;
Lawless, 1987a,b; Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lawless et al., 1997), (2) times
to specific events (e.g., Wei et al., 1989; Wei and Glidden, 1997), and (3) times between successive
events (Lin et al., 1999; Schaubel and Cai, 2004). As discussed by Cook and Lawless (2007, Sec.
8.4), the use of rate and mean functions is the most broadly appealing and applicable approach, and
we focus on this here.

Rate and mean functions are defined as follows. For simplicity, consider a single homogeneous
group of subjects, and let N;(¢) denote the number of events experienced by subject i over the time
period (0, t]. Then the event mean and rate functions are, respectively,

u(t) = E{N;(t)} p(t) = p'(t),

where we assume that events occur in continuous time. To compare two treatments, denoted 1 and
2, we can conveniently consider ratios p(t)/us(t) or p1(t)/ps(t), or differences py(t) — uo(t) or
p1(t) — po(t). In many settings it is found that the rate ratio p;(t)/p2(t) is more or less a constant 6,
and in that case p;(t)/po(t) is also approximately equal to 6. Methods of analysis are well developed
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in this case, provided follow-up is independent of event occurrence and that there are no terminating
events (Cook and Lawless, 2007, Chap. 3).

When the recurrent events arise in populations with advanced disease, mortality rates can be
high and generalizations are required to distinguish between patients who are lost to follow-up and
those whose follow-up is terminated by death. In other settings there may be events that terminate
recurrent event processes. For example, when the recurrent events are because of a transient condition
that can be cured by treatment, they will cease to occur when the underlying condition is resolved.
Some authors have recommended analyses based on shared or bivariate frailty models that link the
recurrent event and mortality processes (Huang and Wang, 2004; Liu et al., 2004; Rondeau et al.,
2007). Whereas this approach relates recurrent events and death, the event intensity of this model
is nonzero after death and so it does not correspond to any plausible physical process. In addition,
marginal rate, mean and survivor functions are complicated functions of treatment. Cumulative mean
functions that account for the possible termination of the event process can be defined in settings with
terminal events. Cook and Lawless (1997) describe a simple method for estimation of a marginal
cumulative mean function and Ghosh and Lin (2000, 2002) extend this and develop robust two-sample
tests based on marginal mean functions and survival distributions.

Many marginal methods are robust to the type of underlying recurrent event process, but are
valid only under independent censoring. Therefore, unlike intensity-based analyses that are valid
under adaptive (conditionally independent) censoring, biased estimates of rate functions and other
marginal features are obtained when subjects are withdrawn from a study based on their prior response
to treatment. Several authors have proposed the use of estimating equations with weights that are
inversely proportional to the probability of censoring (Robins and Rotnitzky, 1992, 1995; Robins,
1993, Satten et al., 2001; Datta and Satten, 2002). Such approaches require one to model the censoring
process, but when this is done successfully consistent estimates of marginal features are obtained
under event-dependent censoring.

An alternative approach is to develop methods that condition on enough of the event history to
render the censoring conditionally independent, and then to obtain marginal features by averaging
over prior event history. This is often complex, but in some cases can be achieved with an approach
based on multistate Markov models, which have recently been found to give robust estimates of state
occupancy probabilities (Aalen et al., 2001; Datta and Satten, 2001; Gunnes et al., 2007). This
robustness makes this an appealing approach because, in addition to providing an estimate of the
mean function, it allows for robust estimation of the marginal distribution of the number of cumulative
number of events over time. Moreover it is easily adapted to deal with the presence of terminal events.
The inverse probability of censoring weights described by Datta and Satten (2002) can also be applied
if there is concern about residual dependence between the censoring and event processes.

The purpose of this article is to study different methods for estimation of event mean functions,
with specific attention to the assessment of treatment effects in clinical trials. We consider methods
based on marginal rate functions, marginal survivor functions for event times, and partially con-
ditional rate functions employing Markov assumptions. Inverse probability of censoring weighted
(IPCW) versions of the estimators are also given to provide robustness to event-dependent censoring.
We examine the performance of these methods for different types of event processes under indepen-
dent and event-dependent censoring. Extensions that deal with a terminating event are also presented
and investigated. The methods are then used to analyse the data from the motivating trial of breast
cancer patients with skeletal metastases, and to make treatment comparisons.

The remainder of the article is organized as follows. In Section 2 we introduce some notation
and briefly review intensity-based modeling, marginal features, and censoring of recurrent event
processes. Nonparametric methods for estimating mean functions for recurrent events are given in
Section 3, and extensions are given in Section 4 for recurrent and terminal events. The design and
results of simulation studies are described in Section 5 and in Section 6 the nonparametric methods
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are applied to the study of skeletal complication in patients with bone metastases. Semiparametric
regression models are also introduced and used to summarize treatment effects; we give weighted
estimation procedures that adapt for event-dependent censoring. Some concluding remarks are given
in Section 7.

2 NOTATION AND SPECIFICATION OF TREATMENT EFFECTS

Let {N(t),0 < t} denote the right continuous process counting the number of events over the time
interval (0, t| for a general individual, and let dN (¢) = 1 if an event occurs at time ¢ and dN () = 0
otherwise. The time of the kth event is denoted by 7, k = 1,2,.... The history of the process
contains information on the number and times of prior events at a particular time and is denoted by
H(t) = {N(u),0 <u < t}. In practice, processes are observed over a finite period of time, so we
also let C' be a right censoring or end-of-follow-up time and C(t) = I(¢ < C') indicate whether the
process is under observation at time .

Recurrent event processes can be specified through the event intensity function (Cook and Law-
less, 2007, Sec. 1.3)

. P(AN(t) =1|H(t))

M) = Al |
where AN (t) = N(t+ At~) — N(¢™) is the number of events occurring over the interval [t, ¢ + At).
For continuous time processes where at most one event can occur at any time, this function fully
defines the process. Given the intensity, the likelihood function based on observed sets of event times
across independent individuals is readily written down (Cook and Lawless, 2007, Sec. 2.6), and the
validity of maximum likelihood estimation is maintained even when censoring is related to event
history.

If the probability of a new event at time ¢ depends substantially on the previous event history, then
specifying the effects of treatments in terms of the intensity is not especially desirable, as argued in
Section 1. In particular, a treatment that affects the event history H (¢) will be confounded with H (%)
as far as the intensity \(¢|H(t)) is concerned, thus rendering interpretation difficult. Moreover, it is
desirable to define treatment effects in terms of outcomes that are easily interpreted at the start of the
study, or at randomization. As argued in Section 1, this suggests that treatment effects be specified
in terms of marginal features such as the mean function 1(t). For example, the ratio or difference of
mean functions for two treatment groups is easily interpreted.

When interest lies in marginal features, alternative approaches are, in principle, available for anal-
ysis. If intensity functions giving a full specification for the event process are specified for different
treatment groups, then maximum likelihood methods can be applied and marginal features can then
be obtained based on this full model. However, these are typically complicated functions of model
parameters and treatment covariates. A simpler and widely adopted alternative is to estimate marginal
features directly via simple empirical estimators, giving easily interpreted measures of treatment ef-
fect. However, this typically involves no conditioning on the process history and such estimates can
be inconsistent under event-dependent censoring. We discuss this in Section 3 and show how inverse
probability of censoring weights can be used in this case to obtain consistent estimates of marginal
features under correct specification of a model for the censoring process. We also consider vari-
ous methods of estimating marginal mean or rate functions, which differ in the extent to which they
condition on event history, and in the need for inverse probability of censoring weights.
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3 ESTIMATION OF MEAN FUNCTIONS AND OTHER MARGINAL FEATURES

3.1 METHODS BASED ON MARGINAL RATE FUNCTIONS

We deal in this section with the case where there is no terminating event. Let {N;(¢),0 < ¢} be the
counting process for subject i, C; the censoring time, and C;(t) = I(t < C;) the indicator function
of whether individual 7 is under observation at t. We consider both discrete and continuous time
processes and let p(t) be the nondecreasing, right-continuous mean function. If y(t) is continuous at
t, we write du(t) = p(t)dt; if p(t) jumps at ¢, then dp(t) is the jump size.

We consider nonparametric estimation of 1(t), although a similar development applies to paramet-
ric models. Covariates are not considered here, as we assume initially that separate estimates will be
obtained for different treatment groups. As do many other authors (e.g., Lin et al., 2000; Miloslavsky
et al., 2004) we write, informally, E{dN;(t)} = du(t) and, correspondingly, E{dN;(t) — du(t)} =0
for both the discrete and continuous time cases. If observations are available on independent individ-

vals7 = 1,2,...,m, we then consider the estimating equations
> Ci(t){dNi(t) — dp(t)} =0, 3.1)

i=1

for different values of ¢. Because our nonparametric estimates of y(t) are discrete with jumps only
at event times, there is no harm in doing this. The Equation (3.1) is formally justified under a Pois-
son model as maximum likelihood equations (Lawless and Nadeau, 1995), but are unbiased more
generally and may be used more generally to estimate the mean function. They give

Ci(t)dN;(1)
di(t) = =L (32)

m
=1

and the resulting estimate of the mean function i(t) = fot dji(s) is the Nelson-Aalen estimate (e.g.,
Andersen et al., 1993, Sec. 4.1). Note that, unlike the case of survival data, C;(¢) is known for all
individuals at all times ¢ > 0.

Lawless and Nadeau (1995) justify (3.1) more formally and provide discrete-time asymptotics.
Lin et al. (2000) give a rigorous treatment of the continuous time case. The validity of (3.1) and
fi(t) for general processes requires that C; be completely independent of {V;(¢),0 < t} in which
case E{dN;(t)|C; > t} = E{dN;(t)} = du(t). This is a much stronger condition than conditionally
independent censoring necessary for intensity-based analysis, which requires only E{dN;(t)|C; >
t, Hi(t)} = E{dN;(t)|Hi(t)}.

The estimating Equation (3.1) can be modified by the introduction of inverse probability of censor-
ing weights originated by Robins and Rotnitzky (1992) and Robins (1993) in the context of survival
analysis. Van der Laan et al. (2002) and Miloslavsky et al. (2004) give recent discussions for general
event history processes. We proceed as follows. Assume that the conditional hazard function for
the censoring at time ¢, given the entire event history H;(co) for an individual, depends only on the
event history H;(t) up to time ¢ (e.g., see Satten et al., 2001; van der Laan et al., 2002). Then let
Gi(t) = P(C; > t|H;(00)) = P(C; > t|H;(t)) and consider the estimating equation

m

DU =3 28 {dN;(t) — dp(t)} = 0. (3.3)
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Then E{U;(t)} = 0 in (3.3) because Ey,){E[U;(t)|H;(t)]} = Eu,w{dN;(t) — du(t)} = 0. This
development also extends to cases where censoring depends on external covariates, under the assump-
tion that the censoring intensity at ¢ depends only on covariate values up to that time (e.g., Miloslavsky
et al., 2004). R

To use (3.3), G;(t) must be replaced with an estimate G;(t). Let A°(¢t|H;(t)) and A°(t|H;(t)) =
fot A(u|H;(u))du denote the censoring intensity (conditional hazard) function and cumulative inten-
sity functions respectively. Then note that by product integration (Andersen et al., 1993, Sec. 2.6)

Gi(t) = J[{1 — dA® (u|H;(u))} (3.4)

u<t

where dA°(t|H;(t)) = A\°(t|H;(t))dt if the intensity is continuous at ¢. One type of dependent censor-
ing we consider here takes the censoring intensity as a function of ¢ and N;(¢~), with

AN(tH(1)) = dA( N, (7)) = dAS (1) (3.5)

if N;(t7) = j. In this case the intensity for censoring depends only on the cumulative number
of events experienced by ¢~; this is sometimes called event-dependent, or more generally state-
dependent (Datta and Satten, 2002; Gunnes et al., 2007) censoring. A nonparametric estimate of
(3.5) is

dAS(t) = =2 (3.6)
S LG > 4 N() = )
i=1
and then d/A\C(t|Hi(t)) =22 d/AXj(t)I(N,-(t_) = j), which can be inserted into (3.4) to get @Z(t)
Equation (3.3) is then modified by inserting this estimate in place of G;(¢), giving the weighted rate
function estimate

m

' Ci(t)dN;(t) /Gi(t)
dji(t) = =—; — (3.7)
; Ci(t)/Gi(t)

and the weighted Nelson-Aalen estimate ji(t) = fg dji(u). Variance estimation for unweighted 7i(t)
is discussed by Lawless and Nadeau (1995) and Lin et al. (2000). For the IPCW case it may be
possible to derive variance estimates, but these would be very complicated and it is simpler to employ
bootstrap methods.

3.2 ESTIMATION VIA MARGINAL FAILURE TIME MODELS

Another approach to estimation of the mean function is to note that
pu(t) = kPor(0,1) (3.8)
k=1

where Py (t) = P(N(t) = k). Thus we first estimate the probabilities Py (t) of k events over (0, t],
which are another marginal feature of interest. One way this can be done is along the lines discussed
by Pepe (1991), Pepe et al. (1991), and Couper and Pepe (1997) in slightly different contexts. In
particular, we note that

Pox(0,t) = P(Tx <1) = P(Tjt1 < 1)
= P(Tk+1>t)—P(Tk>t),
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where T}, is the time of the kth event. The idea is then to estimate P (7}, > t) by a standard Kaplan-
Meier estimate. Thus let T}; be the time of the kth event and Ny;(t) = [(T}; < t) be the counting
process for the kth event for individual 4, i« = 1,...,m. Let Y (s) = I(s < Ty;) indicate that
individual 7 has not yet experienced their kth event at time s~ and Yy;(s) = C;(s)Y3(s) indicate that
individual 7 is under observation and has not yet experienced their kth event.

Let Hy(t) denote the cumulative hazard function for T, and let F;(t) = P(T; > t). Then the
estimating functions

> Vii(t){dNyi(t) — dHy(t)} = 0 (3.9)
=1
give the estimates
> Yii(t)dNyi(t)
dH,(t) = = (3.10)

> Vit

which can be used to obtain the Kaplan-Meier estimates

Fult) = [ [{I — dHi(w)}

(0,¢]

by product integration. A consistent estimate for y(¢) is obtained by substituting ﬁOk(t) = ﬁk+1(t) —
Fi(t) in (3.8), which we call the Pepe estimate.
Equation (3.9) is, like (3.1), only valid under independent censoring, and an IPCW version of

3.9)is
i CZz’(t)
i=1 Gi(t)

where G;(t) is estimated as in Section 3.1. This gives

Yii(){dNyi(t) — dHy ()} = 0 (3.11)

> " Vii(t)dNi (1) /Gi(t)
dH,(t) = E— , (3.12)
Z Yii(t)/Gi(t)

and a weighted marginal survivor function of the form

Fit) = [[{1 - dHi(u)}, (3.13)

(0,¢]

as described in Satten et al. (2001). Using this estimate of the survivor function gives a weighted
Pepe estimate. In practice, one can employ bootstrap sampling for variance estimation.

3.3 ESTIMATES BASED ON MULTISTATE MODELS

An alternative approach is to adopt a Markov multistate model as a basis for nonparametric estimation.
We consider a model with states £y, Ey, Es, . . ., where an individual is in state £ at time ¢ if N;(t) =
j,and let Vi;(t) = I(V;(t~) = k — 1) be an “at risk” indicator for transitions into state k. In contrast
to the indicator Yj; () discussed in Section 3.2, Vj,(¢) indicates whether individual ¢ is truly at risk
of their kth event by requiring them to be in state k¥ — 1; we also define V() = C;i(t)Vii(t). If the
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multistate process is Markov, then we may denote the intensity for a transition from state £ — 1 to
state k at time ¢ > 0 as oy (t) for k = 1,2, ..., and let Ax(t) = fot ag(u)du.

A nonparametric estimate of the transition probability matrix P(s,t), with entries Py (s,t) =
P(N;(t) = k|N;(s) = ¢), for 0 < s < t, is given by the Aalen-Johansen estimate (Andersen et
al., 1993, Sec. 4.4). For clarity of exposition, we briefly outline it here, as well as the refinements
made to it by Datta and Satten (2002). Let A(¢) be the upper triangular matrix with entries —A;(t),
j = 1,2,..., on the diagonal, entries A;(¢) in the superdiagonal positions (i.e., A, ;+1(t)), and zero
elsewhere. The matrix of transition probabilities is then given by (see Andersen et al., 1993, Sec 2.6)
the product integral

P(s,t) = [[{I +dA(u)} . (3.14)
(s:t]

The nonparametric estimates
Viei () dNpi ()
dAL(t) = =2 (3.15)

Z Vi (t)

yield the Aalen-Johansen estimate

P(s,t) = H{Hdﬁ(u)} (3.16)

(st]

(Andersen et al., 1993, Sec. 4.4). When the process is Markov, it is a consistent estimator of P(s,t)
when the number of states is finite; we can achieve this in the present case by imposing a limit X on
the number of recurrent events deemed possible over the follow-up period in question. We remark
that in finite samples there may be cases where the denominator in (3.15) equals zero. In that case
the ratio 0/0 in (3.15) is defined to be zero; this yields appropriate estimates (3.16) for transition
probabilities. A similar convention is used for estimates in Section 4.

Aalen et al. (2001) and Datta and Satten (2001) have pointed out that the Aalen-Johansen estima-
tor is also consistent for state occupancy probabilities P(0, ¢) for non-Markov multistate processes
under independent censoring. This implies that the corresponding “Aalen-Johansen” (AJ) estimate of
the mean function obtained using (3.8) with the corresponding entry of the AJ estimate P(0,¢) used
in place of Py(t), is also robust.

The AJ estimate of y() is thus robust if censoring times C; are independent of the event process
or, more generally, if the recurrent event process is Markov. However, Datta and Satten (2002) have
shown that the AJ estimate of P(s,t) can be adjusted by the IPCW method, so as to make it robust
when there is event-dependent censoring.

Defining the G;(t) as in Section 3.1, Datta and Satten (2002) give IPCW estimates

> Viilt)dNyi(t) /Gi(t)
dAL(t) = = (3.17)
Z Via(8)/Gi(t)

and use them in (3.16) to provide an IPCW estimate of the transition probability matrix. Provided
the censoring model used to obtain the G;(t) is correct, this gives a consistent estimator of P (0, t).
A consistent estimate of p(t) is then obtained by using this in (3.8). We will refer to this estimate
in what follows as the Datta-Satten or weighted Aalen-Johansen estimate of j(¢). Datta and Satten
(2002) give variance estimates for 13(0, t) but they are very awkward to apply to zi(t) and so we
suggest using bootstrap resampling methods.
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4 MARGINAL FEATURES WITH TERMINATING EVENTS

4.1 ESTIMATES BASED ON MARGINAL RATE AND SURVIVAL FUNCTIONS

Recurrent events frequently arise in settings where individuals are at high risk of a terminating event,
the setting motivating this article being a prime example. Cook and Lawless (1997) discuss marginal
features in this setting. For convenience, we refer to the terminating event here as death, and let Tj;
denote the time of the kth recurrent event as before and let 7 denote the time of death for individual
i,i=1,...,m. If du*(u) = E{dN;(u)|T? > u} denotes the rate of events at u conditional on being
alive at time u~, and F¢(u) = P(T¢ > u) is the survivor function for 7%, then

E{N;(t)} = /0 t Fu) dp* (u) 4.1)

is the marginal expected number of events accounting for the possible realization of the terminating
event which precludes subsequent recurrent events.

The counting processes { N;(t),0 < ¢} and {NZ(¢),0 < t} record the recurrent events and death
respectively so dV;(t) = 1 if an event occurs at time ¢ for individual 7 and dN;(t) = 0 otherwise, and
dNZ(t) = 1 if death occurs at time ¢ for individual i and dNZ(t) = 0 otherwise. Again C; is a right
censoring time, C;(t) = I(t < C;), and Y4(t) = I(t < T¢) indicates whether individual 7 is alive at
t.

An estimate of (4.1) can be obtained by modifying (3.3) to

Z )y (1) (N (1) — dy ()} = 0.

t
leading to
> Gt Ni()/Gi(t)
dpr(t) = Z— - . (4.2)
> G)Y(1)/Gilt)

i=1
Also note that a weighted Kaplan-Meier estimate for the survivor function that allows for event-
dependent censoring is obtained by solving

inj 2 i (t){dNZ(t) —dH(t)} =0, (4.3)
to get _ . ] ] . .
dH(t) = ; Ci(t)yéfz)d% (1) / ; %ﬁ;)(ﬂ | (4.4)
e Fit)y = [[{1 — ai’(u)} (4.5)
(0,]

(Satten et al., 2001). Using the estimates (4.2) and (4.5) in (4A.1) gives a weighted version of the
estimator of y(t) proposed by Cook and Lawless (1997); using G;(t) = 1 gives their actual estimator.
We refer to this estimator of (¢) in what follows as the weighted Cook-Lawless estimator.
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4.2 ESTIMATION VIA CUMULATIVE INCIDENCE FUNCTIONS

The analogous approach to the Pepe method of Section 3.2 requires estimation of cumulative inci-
dence functions because death is a competing risk for occurrence of the kth event (Crowder, 2001;
Kalbfleisch and Prentice, 2002). As before Ci(s) = I(s < C;) and Yi(s) = I(s < T?), and
Yii(s) = I(s < Ty;) indicates that individual i has not experienced the kth event. We define
dM¢(s) = 1 if individual i dies at time s without having experienced their kth event and define
it as being zero otherwise, and let V¢(s) = 1 — M&(s™); the corresponding counting process for
dME () is {MZ(s),0 < s}.
The cumulative incidence function for the kth event in the continuous time case is

Fi(t) = P(Ty <t) = /Ot dHy(u) exp(—(Hy(u) — Hi(u)) (4.6)

where Hj,(u) and H{(u) are respectively, in competing risks terminology, the cumulative cause-
specific hazards of the kth event and death before the kth event. The associated weighted estimating
equations are

i g.(tiYm@)Yg(w{dei(t) — dH,(H)} =0 7

and

> S0y v —ango) - o m

for dHy,(t) and dHE(t) respectively. We then plug the resulting discrete estimates into (4.6) to give
Fi.(t) (Lawless, 2002, Sec. 9.2).

Consider the multistate process diagram in Figure 2 and let Z(t) be the state occupied by an in-
dividual at time ¢. Transitions to the right (i.e., £y, — FEj.1) correspond to the occurrence of new
events and downward transitions (i.e., £, — Dy) correspond to deaths; because the death states are
absorbing, the latter transitions determine the lifetime number of events. The probability of experi-
encing exactly k events over (0, ¢] is then P(Z(t) = Ej or Dy) which is simply F}(¢) — Fj+1(t). An
estimate of y(¢) based on this formulation is therefore

i) = 3 kIB(t) — B (0)] 4.9)

We refer to this estimate as the weighted (G;(t) estimated) and unweighted (G;(¢) = 1) Pepe estimate
in the setting with a terminal event.

4.3 ESTIMATES BASED ON MULTISTATE MODELS

We continue to work with the multistate process of Figure 2. Here we define { Ny;(t),0 < t} as the
counting process for kth events as before but also define {N¢(¢),0 < t} as the counting process
recording the number of Ey — D) transitions (i.e., deaths from state £). As in Section 3.3 we let
Vii(t) = I(Z(t™) = Ej_,) indicate whether individual i is at risk of a kth event, and let Vj;(s) =
C;(s)Vki(s). Finally, we make the working assumption that the process is Markov, and define Ax(t) =
N t r(w)du and Af(t fo ad(u)du as the cumulative intensity functions for transitions from Ej_;
to £}, and E, to Dk, respectlvely
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In this case we specify a (conveniently large) upper limit & on the number of recurrent events that
can occur, so that a1 (t) = 0. The IPCW estimates for dA(t) and dA%(t) are

Z Vii(£)d Ny (t) /Gi(t)

dA,(t) = _ k=12 K (4.10)
> Vii(t)/Gilt)
i=1
and .
> Viara(t) AN (t) /Gilt)
dA () = = k=0,1,2,....K 4.11)
Z%H,i(t)/@(t)
=1

respectively, where @(t) is defined as in previous sections.

Writing the 2K + 2 states in order Fy, F1, ..., Fx, Dy, D1, ..., Dk, we define the (2K + 2) x
(2K +2) matrix dA(t) with entries dA g, g, (u) = —dAy(u)—dAf(u), k= 0,1,..., K, dAg, g, (u) =
dﬁk(u), k=0,1,...,K — 1, and dﬁEka(u) = dﬁﬁ(u), k = 0,1,..., K. The Datta-Satten (or
weighted Aalen-Johansen) estimate of P(0, t) is then given by

PO, =] {I + dﬁ(u)} .
(0,¢]
Deﬁning PEOEK(Oat) = P(Z(t) = Ek’Z(O) = Eo), PEoDk(Oat) = P(Z(t) = Dk|Z(0) = Eo), and
POk(t) = PEOEk(Oa t) -+ PEoDk(Oyt)’ then

fi(t) = kPo(t) (4.12)
k=1

is a Datta-Satten, or weighted Aalen-Johansen, estimate of the mean function; using @Z(t) = 1 gives
an unweighted Aalen-Johansen estimate in this setting with terminal events.

Eo | — | E E> Es

Do D, D, D

Figure 2: Multistate diagram for recurrent events and death.
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5 NUMERICAL STUDIES

5.1 SIMULATIONS FOR RECURRENT EVENTS

The multistate diagram in Figure 2 reflects the possible course of events for an individual, where £,
is the state occupied for subjects alive who have experienced k events, and Dy, is the state occuped for
subjects having experienced k events before death. In general, let us denote the recurrent event inten-
sity as \(t|H (t)) and let \X(t|H (t)) be the intensity for death. The history H (¢) at time ¢ determines
what state in Figure 2 an individual occupies at time . We begin by considering settings without a
terminal event as in Section 3 so that \Y(¢|H (t)) = 0.

Simulation studies were conducted to investigate the frequency properties of unweighted and
weighted Nelson-Aalen, Pepe, and Aalen-Johansen estimators for Markov and and non-Markov (semi-
Markov) processes under both independent and state-dependent censoring. For the Markov processes,
we let \(t|H(t)) = NoE*, if N;(t7) = k, k = 0, ..., 4 where )\, is the intensity for the first event, and
E' is a multiplicative factor that reflects how the risk of the first few subsequent events changes with
each additional event; we set \(t|H (t)) = \E* for N(t~) > 5. To examine the robustness of the
estimators to departures from the Markov assumption we also generated data from a semi-Markov
process in which \(¢|H (t)) = (.(B(t)) where B(t) is the time since the last event (or “backwards
recurrence time”) and N (¢~) = k, and (;(-) is the hazard function from a gamma distribution with
density function f(w) = w* 82 exp(—SBrw)/T'(«r). We set the parameters of the gamma distribution
as shape o = 2 and inverse scale 8, = E*S,k = 0,...,4and 3, = E*§3 for k > 4. Thus, as in the
Markov process, the event intensity changed for the first four events and remained constant thereafter.

The preceding processes were observed subject to administrative censoring at 7 = 1, as well as to
earlier, possibly state-dependent, censoring. We refer to the units of ¢ as years for convenience. We
considered a Markov model for censoring, and let A°(¢|H(t)) = A\;C* denote the rate of censoring
from state k, £ = 0,1, ..., where \j is the censoring rate in state F, and C' is a multiplicative factor
that indicates how the rate of censoring changes with the cumulative number of events.

The parameter values for the Markov process were determined by fixing £ and solving for \g
so that E{N (1)} was 1 or 2 and for the semi-Markov process  was determined to give these same
expectations. To obtain the desired censoring rates, the value of C' was then specified, and using the
explicit solution via the Chapman-Kolmogorov equations (Cox and Miller, 1965), A\j was determined
to give probabilities of censoring before 7 = 1 of 25% or 50%. We set the multiplicative factors to
be £ = 1 and 1.5 for the Markov model, and set C' = 1 for independent censoring and C' = 1.5 for
state-dependent censoring for both models. For the semi-Markov model we set £ = 1 and considered
C=1and C =1.5.

One thousand datasets of m = 500 subjects were simulated for each model and parameter
configuration. This number of subjects is realistic in many randomized trials involving recurrent
event responses, and 1000 simulations is enough to provide a clear picture of the bias and variabil-
ity of the different estimators. The mean function p(t) was estimated using the unweighted and
weighted Nelson-Aalen estimate, the unweighted and weighted Pepe estimate, and the unweighted
and weighted Aalen-Johansen (Datta-Satten) estimate. The estimate of G;(¢) was based on the most
general event-dependent censoring model with censoring rates estimated as in (3.6). Figure 3 gives
plots of the empirical bias over (0, 1] for the six estimates for the Markov and semi-Markov models
respectively with p(1) = 2, 50% censoring, C' = 1.5, and £ = 1.5. With 1000 simulations, the
standard deviations are no more than about 0.004 for the biases shown.

From Figure 3 we can see that under the Markov process, the unweighted Pepe and Nelson-
Aalen estimates of x(t) featured the greatest bias with both methods giving increasingly conservative
estimates of the expected number of events over time. The unweighted Aalen-Johansen estimate per-
formed much better than the other unweighted estimators, as one would expect because the Markov
model adapts to this form of state-dependent censoring. The weighted Pepe and Nelson-Aalen meth-
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ods performed considerably better with negligible bias even at 7 = 1; the plot of the weighted Aalen-
Johansen estimate is superimposed on the plot of the unweighted estimate. For the semi-Markov
process, all unweighted methods had some bias with the Nelson-Aalen estimate overestimating the
mean slightly and the Aalen-Johansen method underestimating it; weighted versions for all three
methods performed very well.

The empirical biases and standard errors of the estimators at 7 = 1 with C' = 1 and C' = 1.5 are
given in Tables 2 and 3 for the Markov and semi-Markov settings respectively. Under independent
censoring (C' = 1) the empirical standard errors are remarkably similar across the configurations
examined. For Markov processes subject to state-dependent censoring, the weighted Pepe estimators
had very slightly higher variability compared with the weighted Nelson-Aalen and weighted Aalen-
Johansen estimators when the mean number of events was two. The smaller empirical biases and low
empirical variabilities suggest the weighted Nelson-Aalen and weighted Aalen-Johansen approaches
may be preferred. Similar findings were seen for the semi-Markov setting in Table 3; the weighted
estimators typically had negligible bias and reasonably similar efficiency.

We also simulated data under a semi-Markov censoring model in which A\¢(t|H (t)) = [\eCF|HBO<A)
k =0,...,4 which means that the censoring intensity is zero other than at times within A of an event,
and the value for the censoring intensity when it is nonzero changes with the occurence of each event
up the fourth event; \(t|H(t)) = [\;C4FBO<A) for k = 5, .. .. To examine the impact of misspec-
ification of the censoring process the IPCW estimates were used with the Markov censoring model
of (4.5). The results, displayed in Table 4, indicate that the bias in the unweighted estimators was
quite substantial for the Nelson-Aalen and Pepe approaches, but tended to be smaller for the Aalen-
Johansen estimator. Even though the model for the censoring process is misspecified, the weighted
methods give much lower bias for the Nelson-Aalen and Pepe approaches; the empirical standard
errors were at times much smaller for the weighted Nelson-Aalen approach than the Pepe approach.

Table 2: Empirical biases and standard errors for unweighted and weighted estimators under a Markov
model (1 = E{N (1)}, m = 500, 1000 simulations)

C=1.0 C=15
uw  E  %CENS NA WNA  PEPE WPEPE Al WAJ NA WNA  PEPE WPEPE Al WAJ
1 1 25 BIAS 0.002  0.002  0.002 0.002 0.002  0.002 0.003  0.003 -0.010  0.002 0.003  0.003

ESE (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.049) (0.049) (0.048) (0.049) (0.049) (0.049)
50 BIAS 0.004  0.004  0.004 0.003 0.004  0.003 0.004  0.004 -0.026  0.002 0.003  0.003
ESE (0.057) (0.057) (0.058) (0.057) (0.057) (0.057) (0.055) (0.055) (0.052) (0.055) (0.055) (0.055)

1 15 25 BIAS 0.003  0.002  0.003 0.002 0.003  0.003 -0.016  -0.000 -0.029 -0.001  0.001  0.001
ESE (0.066) (0.066) (0.067) (0.066) (0.066) (0.066) (0.062) (0.065) (0.061) (0.065) (0.065) (0.065)

50 BIAS 0.005  0.003  0.006 0.003 0.004  0.004 -0.036  -0.004 -0.063 -0.007 -0.001 -0.002
ESE (0.074) (0.074) (0.075) (0.074) (0.074) (0.074) (0.068) (0.075) (0.065) (0.076) (0.075) (0.076)

2 1 25 BIAS 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001  -0.036  0.000 0.001  0.001

ESE (0.068) (0.068) (0.069) (0.068) (0.068) (0.068) (0.066) (0.066) (0.065) (0.066) (0.066) (0.066)

50 BIAS -0.001 -0.001 -0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.087 -0.005 -0.002 -0.003
ESE 0.077) (0.077) (0.079) (0.077) (0.077) (0.077) (0.076) (0.077) (0.072) (0.077) (0.077) (0.077)

2 15 25 BIAS 0.003  0.002  0.003 0.002 0.003  0.003 -0.067 -0.007 -0.107 -0.012  -0.003 -0.004
ESE (0.112) (0.111) (0.113) (0.111) (0.111) (0.111) (0.099) (0.107) (0.096) (0.108) (0.107) (0.108)
50 BIAS 0.003 -0.001 0.005 -0.002  0.001  0.001 -0.148  -0.029 -0.230 -0.041  -0.023 -0.023

ESE (0.118) (0.116) (0.121) (0.116) (0.116) (0.116) (0.103) (0.120) (0.097) (0.128) (0.120) (0.120)

5.2 SIMULATIONS FOR RECURRENT AND TERMINAL EVENTS

Problems with terminal events were simulated by setting AX%(¢t|H (t)) = M\¢D* with A4 > 0. Under
a Markov process we specified the form of the event intensities as in Section 5.1. The values for



Figure 3: Empirical biases of unweighted and weighted estimates of mean function over time for
Markov and semi-Markov processes without termination (50% censoring at 7
E = 1.5 for Markov model; a = 2 for semi-Markov model, (1) = 2).
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YEARS SINCE STUDY ENTRY

1.0

1 with C' = 1.5,

Cc=10 C=15
u E  %CENS NA  WNA PEPE WPEPE AJ  WAJ NA  WNA PEPE WPEPE AJ]  WAJ
1 1.0 25  BIAS  -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.003 -0.000 -0.010 -0.001 -0.003 -0.001
ESE  (0.041) (0.041) (0.041) (0.041) (0.041) (0.041)  (0.041) (0.040) (0.040) (0.040) (0.040) (0.040)
50  BIAS  -0001 -0.001 -0.002 -0.001 -0.001 -0.001 0.007 -0.000 -0.022 -0.001 -0.007 -0.001
ESE  (0.046) (0.046) (0.046) (0.046) (0.046) (0.046)  (0.046) (0.046) (0.044) (0.046) (0.045) (0.046)
1 15 25 BIAS 0000 -0.000 0000 -0.000 -0.000 -0.000  -0.011 -0.002 -0.023 -0.003 -0.007 -0.002
ESE  (0.056) (0.056) (0.056) (0.056) (0.056) (0.056)  (0.053) (0.054) (0.052) (0.054) (0.054) (0.055)
50  BIAS  -0.002 -0.003 -0002 -0.003 -0.003 -0.003  -0.026 -0.006 -0051 -0.008 -0.017 -0.006
ESE  (0.062) (0.062) (0.063) (0.062) (0.062) (0.062)  (0.059) (0.063) (0.057) (0.065) (0.061) (0.063)
2 1.0 25  BIAS  -0001 -0.001 -0.001 -0.002 -0.001 -0.001 0.003 -0.001 -0.028 -0.002 -0.009 -0.002
ESE  (0.055) (0.055) (0.056) (0.055) (0.055) (0.055)  (0.053) (0.053) (0.052) (0.053) (0.052) (0.053)
50  BIAS  -0.002 -0.002 -0.001 -0.002 -0.002 -0.002 0.010 -0.001 -0.062 -0.003 -0.021 -0.002
ESE  (0.059) (0.060) (0.062) (0.060) (0.060) (0.060)  (0.059) (0.059) (0.056) (0.058) (0.058) (0.058)
2 15 25 BIAS 0001 0000 0001 0000 0001 0001 0.046 -0.004 -0.079 -0.007 -0.018 -0.003
ESE  (0.089) (0.088) (0.090) (0.088) (0.088) (0.088)  (0.083) (0.087) (0.081) (0.087) (0.085) (0.086)
50  BIAS  -0.002 -0.004 -0.001 -0.005 -0.003 -0.003  -0.101 -0016 -0.174 -0.025 -0.048 -0.017
ESE  (0.099) (0.097) (0.103) (0.097) (0.097) (0.097)  (0.090) (0.099) (0.087) (0.102) (0.095) (0.099)

16
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Table 4: Markov model for event process and semi-Markov model for censoring process with
N(t|H () = [NCFIBO<A) k= 1,234 and \°(t|H(t)) = [NCHIBO<A) |k = 56,...
(u(r=1)=2, F =1.5,C = 1.5, m = 500, 1000 simulations)

A % CENS NA WNA PEPE  WPEPE Al WAJ

0.1 0.25 BIAS -0.0239  -0.0037 -0.0343 -0.0064 -0.0029 -0.0031
ESE (0.1055) (0.1099) (0.1031) (0.1109) (0.1093) (0.1097)

0.50 BIAS -0.0488 -0.0154 -0.0611 -0.0160 -0.0211 -0.0204
ESE (0.1089) (0.1206) (0.1042) (0.1423) (0.1176) (0.1185)

0.2 0.25 BIAS -0.0447  -0.0064 -0.0677 -0.0097 -0.0045 -0.0047
ESE (0.1020) (0.1083) (0.0989) (0.1091) (0.1075) (0.1081)

0.50 BIAS -0.0941 -0.0230 -0.1347 -0.0305 -0.0236 -0.0234
ESE (0.1076) (0.1209) (0.1023) (0.1316) (0.1187) (0.1202)

Mo, A, E and D were specified so that E{N (1)} = 1 or 2, and the probability of the terminal
event occuring before 7 = 1 was equal to 20% and 40% respectively. Given C, the censoring rate
A was determined to give a 25% or 50% rate of censoring at 7 = 1. Analyses were based on the
unweighted and weighted Cook-Lawless estimator, unweighted and weighted Pepe estimators based
on cumulative incidence functions, and unweighted and weighted Aalen-Johansen estimators. The
general event-dependent censoring model in (3.6) was used in the analyses.

Semi-Markov models were also considered with A(t|H (t)) = ((w) where w = B(t) and (i (w)
is a cause-specific hazard function for the next event in state k. We adopted the hazard function of
a gamma distribution with shape two as in Section 5.1 for this intensity, but retained the Markov
intensities described above for death and determined [ so that the expected number of events at 7 = 1
was one or two. The same censoring model and censoring rates were chosen as for the Markov
process.

The empirical biases of the estimators of 1(t) are plotted over time in Figure 4 and indicate a
considerable negative bias for the unweighted Pepe and unweighted Cook-Lawless estimators under
the Markov process (F = 1.25, D = 1.25) with event-dependent censoring (C' = 1.5); the weighted
Pepe and Cook-Lawless estimators perform well. The unweighted Aalen-Johansen and weighted
Aalen-Johansen (Datta-Satten) estimators perform well and are again indistinguishable in the Markov
setting. In the semi-Markov setting (o« = 2, D = 1.25, C' = 1.5) the Pepe estimator and the Aalen-
Johansen estimator have large negative bias, but the Cook-Lawless estimator has small positive bias
(comparable in magnitude to the Aalen-Johansen estimator). The weighted Pepe estimator still has
some bias, but the weighted Cook-Lawless and weighted Aalen-Johansen (Datta-Satten) estimators
perform much better.

The empirical biases and empirical standard errors in Tables 5 and 6 are for the estimators at 7 = 1
for the Markov and semi-Markov processes with terminal events respectively. The findings suggest all
methods perform well with comparable efficiency under independent censoring for both Markov and
semi-Markov processes. For Markov processes with dependent censoring, the empirical bias of the
unweighted Aalen-Johansen estimator is negligible and the use of weighting has a remarkably small
effect on the efficiency; the weighted Cook-Lawless and Pepe estimators again performed quite well.
In the semi-Markov setting the weighted Cook-Lawless and weighted Aalen-Johansen (Datta-Satten)
estimators perform very well in terms of bias and had comparable efficiencies.
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Figure 4: Empirical biases of unweighted and weighted estimates of mean function over time for

Markov and semi-Markov processes with termination (u(1) = 2, 50% censoring at T
C = 1.5, E = 1.25 for Markov model and o = 2 for semi-Markov model, probability terminal event

occurs before 7 = 1 is 0.40 with D = 1.25).

Table 5: Empirical biases and standard errors for unweighted and weighted estimators under a Markov
process with a terminal event (probability terminal event occurs before 7 = 1 is 0.40, £/ = 1.25,

pn= E{N(1)}, m = 500, 1000 simulations)

1 with

C=1.0 C=15

D %CENS CL WCL PEPE WPEPE Al WAJ CL WCL PEPE WPEPE Al WAJ
1 1.00 25 BIAS 0.003  0.003 -0.001 -0.002 0.003 0.003 -0.008  0.002 -0.030 -0.004  0.002  0.002
ESE (0.061) (0.061) (0.061) (0.060) (0.061) (0.061) (0.058) (0.059) (0.057) (0.059) (0.059) (0.059)

50 BIAS 0.004 0.002 -0.002 -0.005 0.003 0.003 -0.021  -0.001 -0.067 -0.012 -0.001 -0.001
ESE (0.070) (0.070) (0.071) (0.069) (0.070) (0.070) (0.065) (0.070) (0.061) (0.069) (0.070) (0.069)

1 125 25 BIAS 0.003  0.002 -0.002 -0.002 0.003 0.002 -0.006  0.002 -0.027 -0.004  0.002  0.002
ESE (0.057) (0.057) (0.057) (0.057) (0.057) (0.057) (0.056) (0.057) (0.054) (0.056) (0.057) (0.057)

50 BIAS 0.003  0.003 -0.002 -0.004 0.003 0.003 -0.015 0.001 -0.060 -0.009  0.000  0.000

ESE (0.067) (0.066) (0.068) (0.066) (0.066) (0.066) (0.065) (0.069) (0.061) (0.069) (0.069) (0.069)

2 1.00 25 BIAS 0.005  0.004 -0.006 -0.007 0.004 0.004 -0.034  -0.000 -0.098 -0.017 -0.001 -0.001
ESE (0.102) (0.101) (0.102) (0.101) (0.101) (0.101) (0.098) (0.102) (0.093) (0.101) (0.101) (0.102)

50 BIAS 0.008 0.006 -0.005 -0.012 0.007  0.007 -0.081 -0.008 -0.213  -0.044 -0.013 -0.013

ESE (0.115) (0.114) (0.118) (0.113) (0.114) (0.114) (0.100) (0.115) (0.091) (0.114) (0.112) (0.114)

2 1.25 25 BIAS 0.005 0.005 -0.004 -0.006 0.005 0.005 -0.025 0.002 -0.086 -0.014  0.001  0.001

ESE (0.097) (0.097) (0.097) (0.097) (0.097) (0.097) (0.092) (0.095) (0.088) (0.094) (0.095) (0.095)

50 BIAS 0.008 0.006 -0.004 -0.010 0.007  0.007 -0.061 -0.004 -0.188 -0.037 -0.008 -0.009

ESE (0.109) (0.108) (0.111) (0.108) (0.108) (0.108) (0.099) (0.111) (0.090) (0.109) (0.108) (0.110)
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Table 6: Empirical biases and standard errors for unweighted and weighted estimators under a semi-
Markov process (probability terminal event occurs before 7 = 1 is 0.40, ap = 2.0, p = E{N(1)},
m = 500, 1000 simulations)

C=1.0 C=15
u D %CENS CL WCL PEPE WPEPE Al WAJ CL WCL PEPE WPEPE Al WAJ

1 1.00 25 BIAS 0.001  0.001 -0.005 -0.005 0.001 0.001 0.005 0.001 -0.017 -0.005 -0.003  0.001
ESE (0.046) (0.046) (0.046) (0.046) (0.046) (0.046) (0.045) (0.045) (0.044) (0.044) (0.044) (0.045)

50 BIAS 0.001  0.001 -0.007 -0.008 0.001  0.001 0.010  0.001 -0.039 -0.008 -0.010  0.000
ESE (0.053) (0.053) (0.053) (0.052) (0.053) (0.053) (0.054) (0.053) (0.051) (0.053) (0.052) (0.053)

1 125 25 BIAS 0.001  0.001 -0.004 -0.005 0.001 0.001 0.005 0.001 -0.016 -0.005 -0.003 0.001
ESE (0.044) (0.044) (0.044) (0.044) (0.044) (0.044) (0.043) (0.043) (0.042) (0.042) (0.042) (0.043)

50 BIAS 0.001  0.002 -0.006 -0.007 0.001  0.001 0.012  0.002 -0.035 -0.007 -0.008 0.001
ESE (0.052) (0.053) (0.053) (0.052) (0.053) (0.053) (0.052) (0.052) (0.049) (0.051) (0.050) (0.052)

2 1.00 25 BIAS 0.001  0.001 -0.016 -0.016 0.001  0.001 0.008  0.003 -0.048 -0.014 -0.009 0.002

ESE (0.067) (0.067) (0.067) (0.066) (0.067) (0.067) (0.066) (0.066) (0.064) (0.065) (0.065) (0.066)

50 BIAS 0.000  0.000 -0.024 -0.026 -0.000 -0.000 0.014  0.001 -0.107 -0.026  -0.029 -0.003
ESE (0.079) (0.080) (0.080) (0.078) (0.079) (0.079) (0.076) (0.076) (0.070) (0.075) (0.074) (0.076)

2 125 25 BIAS 0.001 0.001 -0.015 -0.015 0.001  0.001 0.010  0.003 -0.044 -0.013 -0.008 0.002
ESE (0.063) (0.063) (0.063) (0.062) (0.063) (0.063) (0.063) (0.063) (0.061) (0.062) (0.062) (0.063)

50 BIAS -0.000 -0.000 -0.023 -0.024 -0.001 -0.001 0.018 0.001 -0.097 -0.024 -0.026 -0.003
ESE (0.073) (0.073) (0.073) (0.072) (0.073) (0.073) (0.072) (0.072) (0.066) (0.071) (0.070) (0.072)

6 SKELETAL COMPLICATIONS FROM BONE METASTASES

6.1 NONPARAMETRIC MEAN FUNCTION ESTIMATION

Here we apply the various methods discussed in Section 4 to estimate the expected number of skeletal
events over time for each treatment arm of the study introduced in Section 1. Figure 5 contains plots of
the Nelson-Aalen estimates of the cumulative transition rates for the occurrence of new skeletal events
and death from states £, F'1, and Es. These reveal increasing risk of new skeletal complications with
the occurence of each skeletal event, particularly after the first event, and generally higher mortality
rates with greater numbers of skeletal events. This is consistent with the notion that patients with
a greater extent of metastatic disease have both greater risk of skeletal events and increased risk of
death.

Figure 6 displays the Nelson-Aalen estimates of the cumulative transition rates for censoring
according to the cumulative number of skeletal events (for those with 0, one, and two events) among
patients in the control arm. Here the rate of censoring increases with each additional event indicating
some event-dependent censoring. There is slightly different variation in the censoring rate in the
pamidronate arm as well. This motivates the use of censoring models like (3.5). There may, however,
be a more complex dependence of the censoring risk on the event history. Additional components
of the event history were therefore introduced into the censoring intensity such as the time between
the previous two events, with the effects of these times allowed to vary depending on the cumulative
number of events. These analyses did not suggest the need to include additional terms and so a
stratified model as in (3.6) was used.

The evidence of event-dependent censoring suggests that the Kaplan-Meier estimate of the sur-
vival function for time to death will be biased. Figure 7 contains plots of the unweighted and weighted
Kaplan-Meier and Aalen-Johansen estimates for the cumulative distribution function of survival time.
The six estimates of the mean function x(t) are given in Figure 8, which reveals considerable differ-
ences in the placebo control arm. In the control arm, the three weighted estimates tend to agree more
closely than the unweighted versions, with the Aalen-Johansen and Pepe estimates being at the two
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extremes. For the pamidronate arm, four of the estimates agree reasonably well, but the unweighted
Cook-Lawless and unweighted Pepe estimates are lower than the other estimates.

The marginal survivor functions and mean functions are easily interpreted and represent a natural
basis for treatment comparisons for many questions of interest. This example illustrates the fact that
failure to account for event-dependent censoring can lead to quite different estimates of the cumulative
expected number of events. The simulations in Section 5 suggest there is little price to be paid for
using inverse probability of censoring weights and so if diagnostic plots such as those in Figure 6
suggest there may be a form of event-dependent censoring, use of inverse weighting can substantially
improve estimation. In the next section we discuss methods for estimating measures of treatment
effect via semiparametric models.

— EO—>E1 — EO0->DO0
-- E1-—>E2 -- E1->D1

E2 —>E3 04 - E2 —> D2

0.3 —

02 —

0.1 — !

CUMULATIVE INTENSITY FUNCTION FOR SKELETAL EVENTS
w
|
CUMULATIVE INTENSITY FUNCTION FOR DEATH

T T T T T T T T T T T T T T T T T T
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
MONTHS SINCE STUDY ENTRY MONTHS SINCE STUDY ENTRY

Figure 5: Nelson-Aalen estimates of the cumulative transition intensities for events and death for
control patients in Hortobagyi et al. (1998)

6.2 SEMIPARAMETRIC ESTIMATION OF TREATMENT EFFECTS

In addition to examining the effects of treatment on marginal features, we normally require quantita-
tive specification, testing, and estimation of treatment effect. Here we describe how this can be done
in the context of recurrent events and death, as represented by the bone metastases study.

Let z; = 1 if individual ¢ is randomized to the pamidronate arm and z; = 0 if the individual re-
ceives the placebo. Here we consider a semiparametric model of the form dy; (t) = dug(t) exp(Bz;)
where dy(t) = E{dN;(t)|T¢ > t,x; = 0} is the rate of events at time ¢, given survival to ¢, for con-
trol subjects, and exp(/3) is a multiplicative effect of treatment on this conditional rate. Let F{(t) =
P(T?# > t|x;) denote the survivor function for subject i with covariate x;. A proportional hazards
model dH(t) = dHE(t) exp(yz;) can also be formed, giving F{(t) = exp(—Hg(t) exp(yx;)). Note
that [} dpt(u) is uninterpretable, but [ F(u)dy (u) is the expected number of events for subject i
over (0, t], accounting for the possibility of termination; see (4.1). This semiparametric formulation
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Figure 6: Nelson-Aalen estimates of the cumulative intensities for censoring for control patients in

Hortobagyi et al. (1998)
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Figure 7: Various estimates of the cumulative probability of death for control patients in Hortobagyi

et al. (1998)
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Figure 8: Unweighted and weighted estimates of the cumulative mean function for treated
(pamidronate) and control (placebo) patients in Hortobagyi et al. (1998)

allows one to obtain simple estimates of treatment effects; note that the plots described in Section 6.1
allow us to assess the adequacy of the multiplicative models.

To protect against event-dependent censoring, we consider [IPCW estimating equations for the
conditional rate model, of the form

U1<t§ﬂ> = Z
Us(T;8) = Z/OT

m

&

Solving Ui (t; 5) = 0 gives

0
==
=
S

(t)
(t

Y ()
Gi(t)

Ci(1)Y,(

D[N, (t) - exp(Ba:)dyz(t)

)AN;(t) /G (t)

diig(t; B) =

SHMS

Zq BY;(t) exp(Ba) /Gi(t)

which can in turn be substituted into (6.2) to obtain
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i=170

Gi(t)

=0, t>0

L[dN;(t) — exp(Ba;)dpg ()] = 0.

Y Cut)Y{ ()N (1) Ga(t)

(t) exp(Be)/Go(t)

I

6.1

6.2)

(6.3)
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which can be set equal to zero and solved to give B .
Analogous equations can be defined to obtain 7 as described in Satten et al. (2001). The IPCW
estimating equations for the failure time model are of the form

i) = 3 SNt om0, 1>0 6
i) = Y / T%W(w—exw JAH()] = 0. (65)

Solving U{(t;v) = 0 gives

3

Ci()Y (AN (t)/Gi(t)
dH{(t:7) = 5 -
Z Cz‘(t)yid(t) exp(yz;)/Gi(t)

i=1

which can in turn be substituted into (6.5) to give an equation analogous to (6.3),

Co(t) Y (t)ANE (1) /G(t)
! (6.6)

~

Co(t) Y/ (t) exp(yze) /Go(t)

WE

_ m T Y. d X
i) =3 / C(%Y(g” ANE(t) — exp(yas)

=
NgEIR

~
Il

1

which can be solved to give 7. Variance estimation is rather complicated for (B ,7) and we use a
nonparametric bootstrap to compute the standard errors that follow.

In attempting to obtain estimates of S and ~ for the bone metastases data, at some of the later
time points the estimates of G;(¢) became close to zero. In what follows we therefore use data over
the first 18 months of follow-up. An alternative is to use a model that specifies the effect of N;(¢™)
parametrically instead of (3.6).

If an unweighted analysis is carried out using the data over the first 18 months of follow-up, we
find 8 = —0.617 (s.e.(3)= 0.095, RR= exp(—0.617) = 0.540, p<0.0001); a weighted analysis gives

a slightly smaller estimate 6 = —0.584 (s.e. (B)= 0.182, RR= exp(—0.584) = 0.558, p=0.0013);
both are highly significant, and suggest a roughly 45% reduction in the rate of skeletal events. Note
that the ratio of the treatment to control mean functions in Figure 8 is approximately 0.50, which is
reasonably close to these estimates. It is important to note, however, that this is estimating something
slightly different than the multiplicative effect obtained from (6.1) and (6.2); the estimates in Figure
8 are marginal and allow for death, whereas the approach here considers event rates conditional on
being alive.

In the analysis of the treatment effect on the time to death, we obtain 7 = 0.085 (s.e. (6) 0.266,
p=0.7502) for an unweighted analysis and 7 = —0.028 (s.e.(7)= 0.268, p=0.9178) for the weighted
analysis, both being compatible with no treatment effect on the time to death.

7 DISCUSSION

This article demonstrates that dependent censoring may arise even in carefully designed phase 1II
clinical trials. This can cause biases when interest lies in marginal features of recurrent event or mul-
tistate life history processes (e.g., Klein et al., 2000). Estimates of marginal features can typically be
based on simple estimating functions or on more complex models, from which estimates of marginal
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features can be obtained. The Nelson-Aalen and Cook-Lawless estimates of ((t) are examples of
simple marginal estimates without and with terminal events, respectively. The Aalen-Johansen esti-
mate is an example of the more complex modeling approach, which also leads to an estimate of the
mean function. In addition, however, it provides estimates of marginal state occupancy probabilities,
which convey a more complete picture of the distribution of event counts over time.

There is some built-in protection against dependent censoring with intensity-based or partly condi-
tional models, because the censoring is only required to be conditionally independent as discussed in
Section 1.2. However, this protection comes from specifying the model more completely and depends
on the adequacy of the model used, as we saw here for the Aalen-Johansen estimator.

Inverse weighting offers an appealing alternative approach; it allows the use of simple marginal
estimates and seems to more or less eliminate bias due to event-dependent censoring, with little price
in terms of efficiency. In some of the the simulations we conducted, we used a correctly specified
censoring process, but in practice the censoring mechanism is unknown and careful diagnostic checks
of the censoring process and its dependence on prior event history or covariates are called for. We
note that (1) limited simulations have shown some robustness of [PCW estimators to misspecification
of the censoring intensity, and (2) that good diagnostic methods exist for assessing assumptions about
censoring and other time-to-event hazard functions (e.g., Kalbfleisch and Prentice, 2002; Lawless,
2003). We note also that certain authors have examined additive models for censoring in connection
with the estimation of state occupancy probabilities by Aalen-Johansen and weighted Aalen-Johansen
estimators, for general multistate models (e.g., Datta and Satten, 2002; Gunnes et al., 2007). Such
models can also be valuable in our setting and, in fact, (3.5) can be considered such a model.

We have not discussed variance estimation. Glidden (2002) developed robust variance estimates
for the Aalen-Johansen estimates of the Py (0,¢) in Section 3.3, which could be used to obtain ro-
bust standard errors for the Aalen-Johansen estimates of the mean function. Datta and Satten (2002)
develop variance estimates for the Datta-Satten estimator of the state occupancy probabilities, which
could be programmed to obtain confidence intervals for the mean function. They are fairly compli-
cated expressions and we recommend using resampling to obtain variance estimates.

Finally, we note the broad appeal of weighted Nelson-Aalen estimates for estimation of mean
functions; they tend to perform the best across the situations we have examined, and are simple to
implement. However, if there is a desire to estimate the distribution of times to some specific event,
or the distribution of the number of recurrent events up to time ¢, then the weighted Pepe and Aalen-
Johansen approaches are useful, and also provide good estimates of mean functions.
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