
T-SIMn: Towards a Framework for the
Trace-Based Simulation of 802.11n

Networks

by

Andrew Heard

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Andrew Heard 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144149034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

With billions of WiFi devices now in use, and growing, combined with the rising popu-
larity of high-bandwidth applications, such as streaming video, demands on WiFi networks
continue to rise. To increase performance for end users the 802.11n WiFi standard intro-
duces several new features that increase Physical Layer Data Rates (PLDRs). However,
the rates are less robust (i.e., more prone error). Optimizing throughput in an 802.11n
network requires choosing the combination of features that results in the greatest balance
between PLDRs and error rates, which is highly dependent on the environmental condi-
tions. While the faster PLDRs are an important factor in the throughput gains afforded
by 802.11n, it is only when they are used in combination with the new MAC layer features,
namely Frame Aggregation (FA) and Block Acknowledgments (BAs), that 802.11n achieves
significant gains when compared to the older 802.11g standard. FA allows multiple frames
to be combined into a large frame so that they can be transmitted and acknowledged as
one aggregated packet, which results in the channel being used more efficiently.

Unfortunately, it is challenging to experimentally evaluate and compare the perfor-
mance of WiFi networks using different combinations of 802.11n features. WiFi networks
operate in 2.4 and 5 GHz bands, which are shared by WiFi devices, included in com-
puters, cell phones and tablets; as well as Bluetooth devices, wireless keyboards/mice,
cordless phones, microwave ovens and many others. Competition for the shared medium
can negatively impact throughput by increasing transmission delays or error rates. This
makes it difficult to perform repeatable experiments that are representative of the condi-
tions in which WiFi devices are typically used. Therefore, we need new methodologies for
understanding and evaluating how to best use these new 802.11n features.

An existing trace-based simulation framework, called T-RATE, has been shown to
be an accurate alternative to experimentally evaluating throughput in 802.11g networks.
We propose T-SIMn, an extension of the T-RATE framework that includes support for
the newer 802.11n WiFi standard. In particular, we implement a new 802.11n network
simulator, which we call SIMn. Furthermore, we develop a new implementation of the trace
collection phase that incorporates FA. We demonstrate that SIMn accurately simulates
throughput for one, two and three-antenna PLDRs in 802.11n with FA. We also show that
SIMn accurately simulates delay due to WiFi and non-WiFi interference, as well as error
due to path loss in mobile scenarios. Finally, we evaluate the T-SIMn framework (including
trace collection) by collecting traces using an iPhone. The iPhone is representative of a
wide variety of one antenna devices. We find that our framework can be used to accurately
simulate these scenarios and we demonstrate the fidelity of SIMn by uncovering problems
with our initial evaluation methodology. We expect that the T-SIMn framework will be

iii

suitable for easily and fairly evaluating rate adaptation, frame aggregation and channel
bandwidth adaptation algorithms for 802.11n networks, which are challenging to evaluate
experimentally.

iv

Acknowledgements

I would first like to thank my supervisor, Professor Tim Brecht, for his guidance,
support and understanding throughout this degree. I am grateful for his encouragement
and optimism that enabled me to persevere during the most challenging portions of this
project. I would also like to thank my committee members, Professor Martin Karsten and
Professor Srinivasan Keshav, for their valuable suggestions that improved this thesis.

I would like to thank my colleague, Ali Abedi, for his tremendous help and friendship
over the last two years. From debugging kernel panics to assembling furniture, Ali was
always happy to help and I couldn’t have asked for a better teammate.

I appreciate the generous financial support provided by the Natural Sciences and En-
gineering Research Council, the Government of Ontario and the University of Waterloo.

Last but not least, I dedicate this thesis to my parents, Sylvia and Stephen Heard, who
have given me love and support my entire life. I can’t imagine getting here without you.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgments v

List of Tables x

List of Figures xi

List of Acronyms xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Thesis Organization . 5

2 Background and Related Work 6

2.1 Alternative Approaches to Performance Evaluation 6

2.1.1 Experiments . 6

2.1.2 Emulation . 7

2.1.3 Simulation . 7

vi

2.1.4 Summary . 8

2.2 T-RATE (802.11g) . 9

2.2.1 Trace Collection . 9

2.2.2 Trace Preparation . 11

2.2.3 Trace Processing . 12

2.2.4 Summary . 12

2.3 Overview of 802.11n . 13

2.3.1 Physical Layer Features . 14

2.3.2 MAC Layer Features . 14

2.3.3 Summary . 15

2.3.4 T-SIMn . 16

3 T-SIMn Design and Implementation 17

3.1 Rate Configurations . 17

3.2 Frame Aggregation Length Notation . 18

3.3 System Overview . 19

3.3.1 Trace Collection . 19

3.3.2 Trace Preparation . 21

3.3.3 Simulation . 22

3.4 Test Bed . 26

3.5 Experimental Methodologies . 27

4 Simulating 802.11n Features 29

4.1 Physical Layer Features . 29

4.1.1 Multiple Spatial Streams (MIMO) 30

4.1.2 Short Guard Interval . 31

4.1.3 Channel Bonding . 32

4.1.4 Dual Bands . 32

vii

4.1.5 Summary . 33

4.2 MAC Layer Features . 33

4.2.1 Block Acknowledgments . 33

4.2.2 Frame Aggregation . 34

4.2.3 Summary . 37

5 Simulating Channel Access 38

5.1 WiFi Interference . 40

5.2 Non-WiFi Interference . 45

5.3 Summary . 47

6 Simulating Channel Error Rate 48

6.1 Subframe Index Error Rates . 48

6.2 Path Loss . 50

6.3 Summary . 52

7 Combining Trace Collection and Simulation 53

7.1 Evaluating the T-SIMn Framework . 53

7.2 The Importance of Rate Configuration Ordering 57

7.3 Uncontrolled Trace Collection and Simulation 59

7.4 Summary . 60

8 Conclusions and Future Work 61

8.1 Conclusions . 61

8.2 Limitations . 62

8.2.1 Tight Coupling with Channel Coherence Time 62

8.2.2 Evaluations Requiring Repeatability 63

8.3 Future Work . 63

8.3.1 Trace Collection with More Rate Configurations 64

viii

8.3.2 Simulating Rate Adaptation Algorithms 64

8.3.3 Better Evaluation of Frame Aggregation Algorithms 64

8.3.4 Simulating 802.11ac . 65

8.4 Concluding Remarks . 65

APPENDICES 66

A 802.11 Rate Tables 67

References 69

ix

List of Tables

2.1 Physical Layer Features in 802.11g and 802.11n 14

4.1 Timing Constants for Dual-Band 802.11n 33

A.1 802.11g Rate Table . 67

A.2 802.11n Rate Table . 68

x

List of Figures

1.1 Maximum Theoretical Throughput with Frame Aggregration 3

1.2 Overview of the T-RATE Framework. 5

2.1 Example Cycle Counter Information (CCI) Log Entry in T-RATE 10

2.2 Example Data Frame Log Entry in T-RATE 10

2.3 Example Third-party WiFi Traffic Trace (TWTT) Log Entry in T-RATE . 10

2.4 T-RATE Simulation Flowchart . 13

2.5 Individual Frames (No Aggregation) . 15

2.6 Frame Aggregation . 15

3.1 Example Data Frame Log Entry in T-SIMn 20

3.2 T-SIMn Simulation Flowchart . 24

3.3 T-SIMn Aggregated Frame Formation Flowchart 25

4.1 Throughput for 802.11n Physical-Layer Features 31

4.2 Simulating Shorter Aggregated Frames . 36

5.1 Throughput with WiFi Interference . 42

5.2 Simulating Shorter Aggregated Frames . 45

5.3 Throughput with Non-WiFi Interference 47

6.1 Subframe Index Error Rates . 50

6.2 Path Loss . 51

xi

7.1 Round-Robin Throughput for Interference-Free Mobile Scenarios 56

7.2 Round-Robin Throughput for Interference-Free Mobile Scenarios 56

7.3 Round-Robin Throughput for Interference-Free Mobile Scenarios 58

7.4 Round-Robin Throughput for Interference-Free Mobile Scenarios 58

7.5 Round-Robin Throughput for an Uncontrolled Mobile Scenario 60

xii

List of Acronyms

ADC Analog-to-Digital Converter. 32, 39

AP Access Point. 9, 20, 21, 26, 29, 32, 35, 39, 40, 42–44, 46, 50, 54, 59

BA Block Acknowledgment. iii, 14–16, 20, 33, 34, 37, 65

BAR Block-Ack Request. 34

BAW Block-Ack Window. 34, 35, 49, 57, 58

CB Channel Bandwidth. 2, 14, 16–18, 22, 28, 30, 33, 39, 40, 46, 54, 59, 62, 64, 65, 67

CCI Cycle Counter Information. 9–11, 19, 32, 39

CSI Channel State Information. 64

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance. 38, 50

DIFS Distributed Inter-Frame Space. 32–34, 38

FA Frame Aggregation. iii, 2–4, 14–16, 19, 33–37, 44, 53, 57, 60, 61, 63, 65

FAA Frame Aggregation Algorithm. 3, 22, 23, 62, 65

FHSS Frequency-Hopping Spread Spectrum. 45, 46

FPGA Field-Programmable Gate Array. 7

GI Guard Interval. 2, 14, 16–18, 22, 30, 32, 33, 40, 54, 64, 67

HT-LTF High-Throughput Long Training Field. 30

xiii

JIT Just In Time. 21

LGI Long Guard Interval. 14, 18, 28, 32, 62

MBP MacBook Pro. 50, 51

MCS Modulation and Coding Scheme. 2, 3, 8, 10, 14, 16–18, 20, 30, 39, 54, 57, 64

MIMO Multiple-Input and Multiple-Output. 30

PLCP Physical Layer Convergence Protocol. 30

PLDR Physical Layer Data Rate. iii, 1–3, 13–18, 30–35, 41, 48, 67

RAA Rate Adaptation Algorithm. 3, 6, 9, 11, 12, 16, 22, 23, 53, 54, 62–65

RSSI Received Signal Strength Indicator. 20

RTS Request-to-Send. 20

SFIER Subframe Index Error Rate. 21–23, 28, 49, 50, 52, 65

SGI Short Guard Interval. 3, 14, 18, 20, 28, 29, 31, 32, 62

SIFS Short Inter-Frame Space. 32–34

SNR Signal-to-Noise Ratio. 7, 8

SS Spatial Stream. 2, 14, 16–18, 28–31, 54, 59, 61, 64, 65, 68

TWTT Third-party WiFi Traffic Trace. 10–12

UDP User Datagram Protocol. 21, 35

xiv

Chapter 1

Introduction

Thesis Statement:
We believe that it is possible to build a framework for the trace-based simulation of
802.11n devices with one antenna.

This thesis describes the design, implementation and evaluation of T-SIMn, a framework
for the trace-based simulation of 802.11n devices. T-SIMn is based on an existing trace-
based simulation framework for 802.11g devices, called T-RATE. T-SIMn consists of a
trace collection methodology and a trace-driven 802.11n network simulator that we call
SIMn. Although the focus of this thesis is the simulator (SIMn), we also demonstrate that
the T-SIMn framework is highly accurate in the simulation of 802.11n devices with one
antenna.

1.1 Motivation

With billions of WiFi devices now in use, and growing, combined with the rising popular-
ity of high-bandwidth applications, such as streaming video, demands on WiFi networks
continue to rise. Since its first release in 1997, the 802.11 WiFi standard has seen many
amendments to increase performance for end users. 802.11 WiFi networks support multiple
Physical Layer Data Rates (PLDRs) rates to handle a range of wireless channel conditions.
Generally, slower PLDRs are more robust (i.e., are less prone to error) but offer lower po-
tential throughput, whereas faster PLDRs are more fragile (i.e., are more prone to error)
but offer higher potential throughput. The 802.11g standard supports 8 different PLDRs

1

through a combination of Modulation and Coding Schemes (MCSs). The newer 802.11n
standard introduces several new physical layer features (Multiple Spatial Streams (SSs)
using one to four antennas, Short Guard Intervals (GIs) and 40 MHz Channel Bandwidths
(CBs)) to increase throughput. We refer to the combination of features and an MCS as a
rate configuration. Combinations of these features and MCSs results in up to 128 different
rate configurations (i.e., 8 MCSs× 4 SSs× 2 GIs× 2 CBs = 128). In order to optimize
throughput in an 802.11n network, we must choose the rate configuration that results in
the greatest balance between PLDRs and error rates, which is highly dependent on the en-
vironmental conditions. However, it is challenging to experimentally evaluate and compare
the performance of WiFi networks using different rate configurations.

WiFi networks operate in 2.4 and 5 GHz bands of the radio spectrum, which are license-
free in most countries [12]. These bands are shared by WiFi devices, included in computers,
cell phones and tablets; as well as Bluetooth devices, wireless keyboards/mice, cordless
phones, microwave ovens and many others. If one or more of these devices are competing
with a WiFi device for access to the channel, they can negatively impact throughput by
increasing transmission delays or error rates. This makes it difficult to perform repeatable
experiments that are representative of the conditions in which WiFi devices are typically
used. Therefore, we need new techniques for understanding and evaluating how to best
use these new 802.11n features.

Abedi and Brecht [2] propose a solution that uses traces that capture environmental
conditions, rather than models, to simulate 802.11g networks. This framework is called T-
RATE and forms the basis of this thesis. This thesis focuses on extending T-RATE to more
widely used 802.11n networks, using a framework we call T-SIMn. In particular, we focus
on the simulator component of the framework, called SIMn. We expected that this would
be a relatively simple extension of T-RATE (i.e., updating the existing implementation of
T-RATE to support the many new, and faster, Physical Layer Data Rates (PLDRs) in
802.11n). However, extending T-RATE to support 802.11n turned out to be a much more
interesting problem than anticipated. While the faster PLDRs are an important factor in
the throughput gains afforded by 802.11n, it is only when they are used in combination with
MAC layer changes, namely Frame Aggregation (FA), that 802.11n achieves its significant
increases in throughput when compared with 802.11g. FA allows multiple frames to be
combined into a large frame so that they can be transmitted and acknowledged as one
aggregated packet, which results in the channel being used more efficiently.

To demonstrate the importance of FA in obtaining high throughput, Figure 1.1 shows
the maximum theoretical throughput obtained using the highest PLDRs in 802.11n for one,
two and three antennas, respectively (when aggregating 1, 2, 4, 8, 16 or 32 frames, with
“1” meaning that frame aggregation is not being used). Without frame aggregation, we see

2

limited gains in throughput when comparing the one antenna (150 Mbps) PLDR, the two
antenna (300 Mbps) PLDR and the three antenna (450 Mbps) PLDR, despite the threefold
increase in PLDR when going from 1 to 3 antennas. However, when aggregating up to
32 frames, we see a nearly threefold increase in throughput between the 1 and 3 antenna
configurations. Because performance is so heavily dependent on FA, accurate simulation of
FA is crucial for T-SIMn to be useful in the study of a range of active research topics. This
includes the evaluation of Frame Aggregation Algorithms (FAAs) [8, 36], Rate Adaptation
Algorithms (RAAs) [11, 38, 29, 39] and Channel Bandwidth Adaptation [10, 16]. As well
as 802.11n Link Adaptation [21], which studies the above topics together. For this reason,
simulation of FA in environments that are representative of those in which WiFi devices
are used is the focus of the T-SIMn framework.

 0

 50

 100

 150

 200

 250

 300

 350

1 (150 Mbps) 2 (300 Mbps) 3 (450 Mbps)

M
ax

T

he
or

et
ic

al

T

hr
ou

gh
pu

t
(M

bp
s)

Number of Spatial Streams (PHY Data Rate)

 Number of Aggregated Frames
1
 2
 4
 8

 16
 32

Figure 1.1: The maximum achievable throughput using the fastest 802.11n rate
configuration (Modulation and Coding Scheme (MCS) 7, Short Guard Interval
(SGI), 40 MHz) for 1, 2 and 3 spatial streams (i.e., antennas) when aggregating
between 1 and 32 frames.

3

1.2 Contributions

The major contribution of this thesis is to extend the T-RATE framework to 802.11n
networks, which we call T-SIMn. Figure 1.2 provides an overview of the pre-existing T-
RATE framework. While the overall framework remains unchanged from T-RATE, we
make significant implementation changes in each phase to support 802.11n networks.

The contributions of this thesis are:

• We implement 802.11n trace collection in the Ath9k driver. We capture the state of
Frame Aggregation (FA) by logging each aggregated frame, including the fate of each
subframe in a bitmap. We also capture the rate configuration (i.e., which 802.11n
physical layer features are used) for each aggregated frame.

• We eliminate trace preparation as a separate phase and no longer generate “complete
traces” because, when compared with 802.11g, this is time consuming and requires a
considerable amount of disk space, due to the many rate configurations in 802.11n.
We implement the conceptual functionality of trace preparation within the trace
processing (simulation) phase, computing frame fates only as needed.

• We demonstrate the need to compute Subframe Index Error Rates (SFIERs) to
accurately simulate frame fates with FA.

• We implement a trace-driven 802.11n network simulator, SIMn, including an FA
Algorithm that mimics the behavior of the Ath9k driver.

• We evaluate the accuracy of the SIMn simulator with FA for one, two and three-
antenna rates in 802.11n, with both WiFi and non-WiFi interference; and errors due
to path loss.

• We evaluate the accuracy of the T-SIMn framework with trace collection for all one-
antenna rates without RTS/CTS, in a mobile scenario.

• We describe how we use the simulator to discover a flaw with our initial methodology
for evaluating the accuracy of the T-SIMn framework. After correcting the flaw in
our methodology, we show that the framework is highly accurate.

4

Trace
Collection

Collected
Traces

8
0

2
.1

1
 N

e
tw

o
rk

Rate
Adaptation
Algorithm

Trace
Preparation

Complete
Traces

Trace
Processing

Results

Figure 1.2: Overview of the T-RATE Framework.

1.3 Thesis Organization

We begin by describing T-RATE, the framework that T-SIMn is based on, and providing an
overview of the new features of 802.11n, in Chapter 2. We then describe the implementation
of the T-SIMn framework, in Chapter 3. We describe and evaluate the simulation (with
SIMn) of the new 802.11n features, in Chapter 4; simulation of channel access due to WiFi
and non-WiFi interference, in Chapter 5; and simulation of channel error rates due to path
loss, in Chapter 6. In Chapter 7, we evaluate the use of T-SIMn for widely used one-
antenna devices, as an example of how the framework can be used, in an environment that
is representative of that in which WiFi devices are typically used. Lastly, we discuss the
limitations of T-SIMn, propose future areas of research and provide concluding remarks in
Chapter 8.

5

Chapter 2

Background and Related Work

T-SIMn builds upon an existing project called T-RATE [2]. T-RATE is a trace-driven
framework for evaluating Rate Adaptation Algorithms (RAAs) designed for 802.11g net-
works [2]. While the evaluation of RAAs is not the focus of this thesis, T-RATE serves
as an excellent base for T-SIMn because of its trace collection methodology, as well as its
highly accurate simulation of 802.11g networks. T-SIMn adapts these approaches to the
newer 802.11n standard, which introduces many new features at the physical and MAC
layers. We begin by discussing alternatives to trace-based simulation in Section 2.1. We
then describe the existing implementation of T-RATE in Section 2.2. Lastly, we discuss
802.11n and the new features that it adds in Section 2.3.

2.1 Alternative Approaches to Performance Evaluation

We begin by describing different methodologies for evaluating the performance of 802.11
networks. We argue that if trace-based simulations can be implemented for 802.11n net-
works, they provide much promise for the fair evaluation and comparison of algorithms
that are critical for obtaining high throughput in 802.11n networks.

2.1.1 Experiments

Conducting experiments is a common technique for evaluating the performance of WiFi
networks. The advantage of this approach is that real-world wireless channel conditions are
captured. However, it is challenging to conduct repeatable experiments because channel

6

conditions can vary significantly between trials due to many factors, including mobility,
changes in the environment (including the movement of people nearby), and the presence of
WiFi and non-WiFi interferers [7]. To reduce variation in channel conditions, experiments
are often conducted in environments that are not representative of those in which WiFi
devices are typical used, such as “in the middle of the night” or “when no one else is
around” [28, 9]. In previous work, we propose a technique called multiple interleaved
trials [3] that allows WiFi performance to be fairly and repeatably compared in challenging
scenarios with mobility and interference. However, this technique is highly time consuming,
especially as the number of competing alternatives becomes large. Moreover, it relies on
being able to quickly and easily switch between alternatives that are being compared, which
is not always possible.

2.1.2 Emulation

Emulation is another alternative for evaluating and studying 802.11 networks. Although
emulation is a broad term, in the literature it commonly refers to a system that uses real
WiFi devices connected by wire to a Field-Programmable Gate Array (FPGA) which sim-
ulates signal propagation [17]. An emulation testbed by Judd and Steenkiste [18, 20, 19] is
one of the most prominent examples of this type of system. As real devices are used, the
MAC and higher layers are not simulated. However, the physical layer is simulated using
the FPGA to alter the signals being transmitted between devices. The major disadvan-
tage of this approach is that the realism of the emulation is limited by the models used
to simulate the physical layer. Since the MAC layer uses deterministic highly specified
protocols, we can more easily simulate the MAC layer than the physical layer. As a result,
our approach is to collect traces that capture the physical layer impact on frame fates and
to simulate the MAC layer. Hybrid approaches using traces to simulate the physical layer
and emulation for the MAC layer have also been proposed [18, 41, 40], however these have
been limited to 802.11b networks and rely on measurements of Signal-to-Noise Ratio (SNR)
or signal strength to simulate the physical layer. However, SNR and signal strength are
shown to be inaccurate predictors of frame fates [9, 13], especially in 802.11n networks [3].

2.1.3 Simulation

Simulation is a common technique for evaluating the performance of 802.11 networks.
Since both the physical and MAC layers are simulated in this approach, comparisons are
repeatable. However, they may not reflect real-world performance due to the challenging

7

nature of simulating wireless signals in the physical environment. WiFi signals are impacted
by many factors, including the distance between devices, material types of surrounding
objects and walls, wavelength, mobility and many more [34]. ns-3 [27] is a popular network
simulator that is still under active development. The physical layer simulation in ns-3
consists of three major components [22], a signal propagation model, an error rate model
and an interference model. The propagation model simulates the transmission of a wireless
signal from a sender and estimates the SNR at the receiver [34], (based on the distance
between devices, material types of surrounding objects and walls, wavelength, mobility
and many more factors). The error rate model estimates the frame fate based on the
SNR, the Modulation and Coding Scheme (MCS) [15] and based on energy received on
the channel as interference [27]. Each of these models have multiple implementations, each
of which makes trade-offs between computational complexity and accuracy [34]. Other
popular 802.11 network simulators include OPNET Modeler [35] (recently renamed to
Riverbed Modeler) and QualNet [30]. The complexity and time varying nature of all of
the factors that can affect a frame’s fate makes it incredibly challenging to obtain accurate
results, especially since models of one environment (e.g., one home) may not necessarily
work in another environment (e.g., an office or even a different home) and in the case of
environments with mobility, this model may be changing over time. Rather than simulating
the physical layer, we collect traces to capture the impact of the physical layer on frame
fates, allowing us to handle more complex scenarios than can be accurately modeled by
traditional simulators.

2.1.4 Summary

Experiments, emulation and simulation are all viable alternatives to the trace-based sim-
ulator that we propose in this thesis. Each technique provides its own advantages and
disadvantages. At one end of the spectrum, experiments provide complete realism but re-
peatability is challenging. On the other, simulations provide repeatability but realistically
simulating the physical layer is challenging. We propose the use of trace-based simula-
tion to avoid simulating the effect that the highly volatile, and environmentally sensitive,
physical layer can have on frame fates. Instead, we rely on traces to capture the impact
of the physical layer on frame fates. We simulate the precisely defined MAC layer since it
can be simulated with a high degree of accuracy because it is not affected by the physical
environment. We believe that this provides an excellent combination of repeatability and
accuracy.

8

2.2 T-RATE (802.11g)

T-RATE is a trace-driven framework for evaluating RAAs designed for 802.11g [2]. T-
RATE eschews modelling or emulation of wireless channel conditions in favour of traces
that capture channel access and channel error rate information. These traces are used to
simulate RAAs in conditions that are more representative of those in which 802.11 WiFi is
typically used (i.e., in the presence of interferers, both WiFi and non-WiFi, and path loss).
Since a single trace is used to evaluate multiple competing RAAs, fair comparisons can be
made in a wide variety of scenarios, as each RAA is exposed to the exact same channel
conditions.

T-RATE employs a three phase approach to simulation. First, a trace is collected
by saturating a wireless network while cycling between all available 802.11g transmission
rates; the fate of these frames, the delays they experience and received third-party WiFi
frames are recorded to form the collected trace. Next, for each 802.11g transmission rate,
the trace preparation phase estimates packet fates for the points in time that fall between
collected samples to produce a complete trace. Lastly, the trace processing phase simulates
an RAA by using the frame fates and delays obtained from the complete traces. We now
discuss each of the three phases of T-RATE in detail.

2.2.1 Trace Collection

The purpose of the trace collection phase in T-RATE is to capture channel access and
channel error rate information (i.e., a trace), for each 802.11g transmission rate. This
trace can later be used to simulate the behavior of one or more RAAs using conditions that
very closely approximate those in which the trace was collected. In the trace collection
phase, an 802.11g Access Point (AP) is created on a computer using hostapd [24]. A
network is established between the computer running the AP and another computer, with
one acting as a sender and the other as a receiver . In the evaluation of T-RATE, the
AP is always the receiver for consistency, though this is not required by the framework.
The sender ’s WiFi card uses a modified version of the Ath9k driver, which logs the Cycle
Counter Information (CCI) that measures the number of clock cycles the device spent
transmitting and receiving, as well as the number of cycles that the channel was busy. As
described in Section 3.3.2, CCI can be used for determining non-WiFi delay. The sender
runs tcpdump, which captures all outgoing frames and their fate (i.e., whether the frame
is acked), as well as all incoming frames, both from the receiver (such as Acks) and from
third-party WiFi devices. To collect a trace, the sender saturates the link to the receiver

9

by sending as many packets as possible using Iperf [37]. During collection, the sender
cycles through each of the eight 802.11g rates (shown in Appendix A), in a round-robin
fashion. After each transmitted frame, the sender switches to the next available rate;
wrapping back around after all rates have been sampled. This round-robin sampling of
rates continues for the entire duration of the trace collection. After the desired amount of
time has elapsed, the CCI logs produced by the modified Ath9k driver (example shown in
Figure 2.1); the sender -side tcpdump log (example shown in Figure 2.2) and the Third-
party WiFi Traffic Trace (TWTT) frames (example shown in Figure 2.3) are stored. These
three logs constitute the trace that is passed on to the trace preparation phase.

[61164.046938] [TRACE] 23971 2151 28370 33835

Figure 2.1: Example CCI log line for a frame in T-RATE. Read from left to
right, this means the frame was sent at kernel time 61164.046938 (in seconds
since system boot time), it has the tag “TRACE”, it took 23,971 clock cycles
to transmit the data, 2,151 cycles to receive the Ack, and for 28,370 cycles, the
card was busy (transmitting, receiving or waiting for channel access). The total
time spent on the frame (busy and idle) was 33,835 cycles.

33.509061000 40 24 2456

Figure 2.2: Example log line for a data frame in T-RATE. Read from left to
right, this means the frame was sent at time 33.509061000 seconds, the entry
type is type 40 (a data frame), it was transmitted at 24 Mbps (MCS 4), and
has the sequence number 2,456.

46.746295000 124 26 6

Figure 2.3: Example log line for a TWTT frame in T-RATE. Read from left
to right, this means the frame was sent at time 46.746295000 seconds, it is 124
bytes including headers, the radiotap header is 26 bytes and it was transmitted
at 6 Mbps (MCS 0).

10

2.2.2 Trace Preparation

At a conceptual level, the goal of the trace preparation phase is to produce a set of lookup
tables that can later be used by the trace processing engine to determine, for a time t and
a rate r, both the fate of a frame (i.e., acked or not acked) and the transmission delay
due to WiFi and non-WiFi interference. In practice, these lookup tables are stores as log
files, one for each rate r, which are referred to as a complete traces. Additionally, there
is another log file for storing WiFi traffic. It is important to note that for any given time
t, the collected trace contains a sample for a single rate, as the sender can only sample
one rate at time. In contrast, the complete traces include the expected fate of the frame
and the packet delay for all rates, at all times t. Since time is a continuous measure with
infinitely many points, frame fates and packet delays cannot truly be stored for all times t.
Instead, T-RATE discretizes time using a stepping interval on the order of microseconds
and stores frame fates and packet delays at these discrete points in time. To fill in the
missing values between samples of a rate r in the collected trace, T-RATE relies on the
concept of channel coherence time; the duration of time over which channel conditions can
be considered constant [2]. A channel coherence time of 100 ms is used by T-RATE, with
an averaging window of t− 50 ms to t+ 50 ms (i.e., the 50 ms before and after the given
time t). We begin by discussing the methodology used by T-RATE for computing channel
error rate (frame fates), and then follow with the methodology for channel access (delay).

To compute the frame fate at time t for rate r, T-RATE considers all samples for the
rate r, in the averaging window (t − 50 ms to t + 50 ms), from the collected trace. The
number of these samples that have failed (i.e., frames that are not Acked) is divided by
the total number of these samples, to produce an error rate e. A uniform random number
is then drawn, in the range [0,1.0]. A frame at time t for rate r is considered successful if
the random number is larger than the error rate e. This process is repeated for all time
steps t and rates r and is referred to as completing the trace.

To compute the non-WiFi delay at time t for rate r, T-RATE again considers all samples
from the collected trace for the rate r, in the averaging window (t−50 ms to t+50 ms). The
delay for a sample is computed by comparing the expected transmission time for a frame
sent at rate r against the actual transmission time measured using the CCI. The delays are
simply averaged and stored alongside the frame fates in the complete trace. WiFi delays
(due to third-party WiFi traffic) are treated differently. Inbound frames, other than Acks,
are considered third-party traffic and are logged in a separate file, called the TWTT. The
complete traces and the TWTT are then passed to the trace processing phase. Since these
traces are RAA-agnostic, they may be re-used for many simulations.

11

2.2.3 Trace Processing

The trace processing phase uses the complete traces to simulate an RAA. The T-RATE
simulator performs a time based simulation of an 802.11g scenario, where the sender sat-
urates the link to the receiver by sending as many packets as possible. Starting at time
t = 0 seconds, the simulation proceeds using an event loop that performs the following
steps:

1. The TWTT is checked for frames that were received before t. If any such frame exist,
t is incremented by the duration of these frames (i.e., the delay incurred by these
frames). This is repeated until all frames received before t have been processed.

2. A transmission rate r is obtained from a Rate Adaptation Algorithm (RAA).

3. The delay due to non-WiFi interference is obtained from the complete trace for rate
r, which advances t by the duration of the delay.

4. The fate of a frame transmitted at time t, using rate r, is obtained from the complete
trace for r. Successful frames increment a counter, which is used to report throughput
at the desired simulation time interval. The frame fate is also reported to the RAA
in order to drive subsequent rate selection decisions.

This process repeats until the simulation ends; this is generally after the elapsed simulation
time is equal to the duration of the collected trace. Figure 2.4 provides an overview of this
process.

2.2.4 Summary

T-RATE is a three phase, trace-driven framework for evaluating Rate Adaptation Algo-
rithms (RAAs) and simulating 802.11g networks. T-RATE begins with collecting a trace
that represents channel conditions during an experiment. It then pre-computes frame fates
and delays for discretized time t, for the duration of the collected trace. Lastly, T-RATE
simulates a scenario, where a link between a sender and receiver is saturated. Overall,
these three phases allow a scenario to be simulated that mimics the channel conditions that
occurred during trace collection. However, T-RATE is limited to 802.11g networks and
does not support the new features of widely used 802.11n networks, which are described
in the following section.

12

T = 0

Obtain Rate (R) from
RAA

Compute delay tme
(CS+VCS)

Time += delay

Read expected busy
tme (EBT)

Time += EBT+Back of
Frame in

TWTT at or
before T?

END

Frame
received at tme

 T and rate R?

Retransmission
 limit reached?

Time += Transmission
tme

Look-up frame fate

START

T < SIM_END

Report result to RAA

YES

NO

YES

NO YES

NO

YES

NO

Figure 2.4: T-RATE simulation flowchart [2].

2.3 Overview of 802.11n

802.11n is the “High-Throughput” (HT) successor to the popular 802.11g WiFi standard,
which makes improvements at both the physical and MAC layers. In order to fully ap-
preciate the throughput improvements afforded by 802.11n, we now stress the important
difference between a Physical Layer Data Rate (PLDR) and realized throughput. 802.11n
devices are often advertised as supporting up to 150, 300 or 450 Mbps, with one, two and

13

three antennas, respectively. These values are referring to maximum PLDRs and these
devices do, in fact, transmit data at up to 450 Mbps. However, these devices will never
achieve throughput of 450 Mbps due to the overhead of the 802.11n protocol. Since WiFi
uses a shared medium for communication, devices must listen and wait for their turn to
transmit, in order to avoid interfering with one another; they must also wait for acknowl-
edgments to verify that each packet is received correctly. As the PLDRs become higher and
higher, these wait times begin to dominate and decrease the realized throughput. We now
examine the physical and MAC layer features that are introduced in the 802.11n standard.

2.3.1 Physical Layer Features

802.11n introduces several new features that increase PLDRs, including multiple Spatial
Streams (SSs), which allow multiple data streams to be transmitted simultaneously using
different antennas; Short Guard Intervals (SGIs), which reduces the time between transmis-
sion of successive symbols in a data stream, from 800 ns to 400 ns; and Channel Bonding,
which allows two adjacent 20 MHz channels to be bonded together, providing a Channel
Bandwidth (CB) of 40 MHz. These features are described and analyzed in greater detail in
Section 4.1. 802.11n also adjusts the available Modulation and Coding Schemes (MCSs),
including the addition of a higher coding rate (i.e., less redundancy). An overview of the
physical layer features in 802.11g and 802.11n is shown in Table 2.1. For comparison, tables
showing all rates for 802.11g and 802.11n can be found in Appendix A.

Table 2.1: Physical Layer Features in 802.11g and 802.11n

Feature 802.11g 802.11n

Modulation and Coding Schemes 8 8
Spatial Streams 1 Up to 4
Guard Intervals 800 ns 800 ns (LGI) and 400 ns (SGI)

Channel Bandwidths 20 MHz 20 MHz and 40 MHz
Number of Rate Configurations 8 Up to 128

2.3.2 MAC Layer Features

802.11n introduces two MAC layer features that increase the efficiency of the 802.11 proto-
col, including Block Acknowledgments (BAs), which allow multiple packets to be acknowl-
edged at once; and Frame Aggregation (FA), which allows multiple frames to be combined

14

into a large frame so that they can be transmitted and acknowledged (with a BA) as one
aggregated packet, as shown in Figure 2.6. This means that the device only needs to wait
for its turn to transmit once for the entire aggregated frame, rather than for each individual
frame as shown in Figure 2.5. Together, BAs and FA increase the efficiency of the 802.11
protocol by reducing the amount of time a device spends waiting for its turn to transmit.
BAs and FA are described and analyzed in greater detail in Section 4.2.

Data

Ack

Sender

Receiver
Time

SIFS

DIFS

Data

Ack

SIFS

DIFS

Data

Ack

SIFS

Figure 2.5: Transmission of individual frames without frame aggregation (repro-
duction from Figure 5-7 in 802.11n: A Survival Guide, by Matthew S. Gast [12]).

DataSender

Receiver
Time

Data
Block-

Ack ReqData

Block-
Ack

SIFS

Figure 2.6: Transmission of multiple frames using frame aggregation (reproduc-
tion from Figure 5-7 in 802.11n: A Survival Guide, by Matthew S. Gast [12]).

2.3.3 Summary

802.11n increases the realized throughput of WiFi networks using two very different ap-
proaches, first by increasing the available Physical Layer Data Rates (PLDRs) and then by
improving the efficiency of the protocol with Block Acknowledgments (BAs) and Frame Ag-
gregation (FA). Recall from Figure 1.1 that without FA (i.e., # Aggregated Frames = 1),
there are limited gains in changing from a PLDR of 150 Mbps to 450 Mbps. However,
we see throughput nearly doubled and tripled when we also aggregate as many frames as

15

possible (i.e., # Aggregated Frames = 32). The combination of physical and MAC layer
features leads to realized throughput that is many times greater than was possible with
802.11g. The focus and challenge in this thesis is in accurately simulating these features.

2.3.4 T-SIMn

T-RATE is limited to simulating 802.11g networks, which has only 8 rates, one for each
Modulation and Coding Scheme (MCS). It does not support any of the 802.11n features
described above. 802.11n is challenging to simulate due to the sheer number of possible
Physical Layer Data Rates (PLDRs) available. There are a total of 128 PLDRs using the 8
different MCSs, 4 Spatial Streams (SSs), 2 Guard Intervals (GIs) and two available Channel
Bandwidths (CBs). However, Frame Aggregation (FA) and Block Acknowledgment (BA)
pose the greatest challenge in simulating 802.11n, with throughput being determined by
many factors, including the pattern of failures in an aggregate frame and the number
of frames that can be aggregated in a single frame. We name our new system T-SIMn,
because the focus is no longer on the simulation of Rate Adaptation Algorithms (RAAs),
but instead on the simulation of 802.11n networks in general. We describe T-SIMn and
detail the changes required for 802.11n, in Chapter 3.

16

Chapter 3

T-SIMn Design and Implementation

T-SIMn is a trace-driven framework for simulating 802.11n networks with frame aggrega-
tion, that builds upon an existing framework, T-RATE, for 802.11g. We continue from the
introduction of 802.11n, from Section 2.3, with the notation that we will use to concisely
describe 802.11n rate configurations, in Section 3.1; and notation for describing frame ag-
gregation length limits, during trace collection and simulation, in Section 3.2. We then
provide an overview of the T-SIMn system, with specific emphasis on the differences be-
tween T-SIMn and T-RATE, in Section 3.3. We then describe the test bed, including
the hardware and software, that we have available for evaluating T-SIMn. We close this
chapter by describing the experimental methodologies that will be used in the remainder
of this thesis.

3.1 Rate Configurations

In 802.11g, a transmission rate can be uniquely identified by the index of the Modulation
and Coding Scheme (MCS). This index alone is no longer sufficient to uniquely identify an
802.11n rate, as a transmission rate is now also dependent on the the number of Spatial
Streams (SSs), the Guard Interval (GI) and the Channel Bandwidth (CB). We refer to
this set of parameters as a rate configuration. In the interest of brevity, we introduce the
following notation for describing a rate configuration (sometimes simply referred to as a
rate):

Format: (# of Spatial Streams)-(MCS Index)-(Guard Interval)-(Channel Band-
width)=(Physical Layer Data Rate)

17

of Spatial Streams: 1S, 2S or 3S, for one, two and three SSs, respectively.

MCS Index: I0, I1, I2 . . . , I7, for MCS indices 0, 1, 2 . . . , 7.

Guard Interval: LG or SG, for Long Guard Interval (LGI) or Short Guard Interval (SGI),
respectively.

Channel Bandwidth: 20M or 40M, for 20MHz or 40MHz CB, respectively.

Physical-Layer Data Rate: 6.5, 13, . . . , 405, 450, for 6.5 Mbps, 13 Mbps . . . , 405 Mbps,
450 Mbps.

For example, 1S-I4-LG-20M=39 means 1 SS, MCS 4, LGI, 20 MHz CB and Physical
Layer Data Rate (PLDR) of 39 Mbps; and 3S-I7-SG-40M=450 means 3 SSs, MCS 7, SGI,
40 MHz CB and a PLDR of 450 Mbps. This notation is used in the remainder of the
document.

3.2 Frame Aggregation Length Notation

In order to more concisely describe limits on the length (i.e., the number of subframes) of
an aggregated frame, we introduce the following notation:

FA(SIM | COL)=maximum number of aggregated subframes

For example, FASIM=16 means that the simulator is allowed to aggregate a maximum of
16 subframes. Note that FASIM=16 does not mean that all aggregated frames in a simulation
have exactly 16 subframes. The number of subframes in a specific aggregated frame may
be further limited by the Block-Ack window and the rate configuration, discussed in detail
in Section 4.2.2. Similarly, FACOL=32 means that the driver was limited to aggregating a
maximum of 32 subframes during trace collection. Again, FACOL=32 does not mean that all
aggregated frames in the collected trace have exactly 32 subframes, as aggregation may
be limited by the factors discussed in Section 4.2.2. Furthermore, we use the notation
FASIM=MAX and FACOL=MAX to mean that we impose no further restrictions, beyond those in
the 802.11 standard, on the number of subframes that may be aggregated during simulation
and collection, respectively. In other words, FASIM=MAX and FACOL=MAX signifies that we
always aggregate as many subframes as possible. Lastly, we use FASIM=FACOL to mean that
the limits on the length of an aggregated frame are the same during simulation and trace
collection.

18

3.3 System Overview

Unlike T-RATE, which uses three phases, T-SIMn uses two phases to simulate 802.11n
traces. The first phase is trace collection, where a log containing the data necessary for
replaying an 802.11 experiment is collected. The second phase is simulation, where the
trace is used to determine frame fates, transmission delays and throughput. We begin by
discussing the methodology used for trace collection in Section 3.3.1. In Section 3.3.2, we
describe the reasons for eliminating the trace preparation phase. Lastly in Section 3.3.3,
we explain how the simulator uses the collected traces to simulate an 802.11n network,
including computing frame fates and transmission delays, as well as performing Frame
Aggregation (FA).

3.3.1 Trace Collection

As is the case for T-RATE, the purpose of trace collection in T-SIMn is to capture channel
access and channel error rate information (i.e., a trace), for each 802.11n rate configuration.
However, the implementation of the trace collection phase in T-SIMn differs considerably
from T-RATE. Recall from Chapter 2 that T-RATE uses tcpdump to record outbound
frame transmissions and their fates, as well as inbound transmissions to capture third-
party WiFi traffic. T-RATE also uses a modified Ath9k driver that logs Cycle Counter
Information (CCI) to capture non-WiFi traffic. Using two logs, one captured at the appli-
cation layer (tcpdump) and one at the physical/MAC layer (Ath9k driver), is challenging
because it requires corresponding frames to be matched between traces. This becomes even
more difficult in 802.11n due to the addition of FA. Since tcpdump runs at the application
layer, aggregated frames are represented as a series of individual frames, since FA is ab-
stracted away from the application layer by the MAC layer. In T-SIMn, trace collection
has been modified to obtain traces from a single source, a log from a modified Ath9k driver.
This log captures both frame fate and CCI, which replaces the combination of a tcpdump
log and a driver log in T-RATE. Using a new technique for differentiating delay due to
WiFi interference from delay due to non-WiFi interference, CCI is now used to capture
both delays. This technique is covered in detail in Chapter 5. For T-SIMn, we collect a
single log entry for each aggregated frame, rather than for each individual subframe, as is
done in T-RATE. This provides two key advantages: subframes do not need to be grouped
into aggregate frames during post-processing, which is especially challenging when subse-
quent aggregate frames have the same rate configuration; it also significantly reduces the
total number of log entries that are produced and thus reduces the size of the logs. In the
initial implementation where individual frames were logged, at higher transmission rates

19

the sheer number of frames transmitted per second led to missing entries when the logging
system, rsyslog [25], could not keep up with the volume. In the current implementation,
with a single log entry produced per aggregated frame, we do not observe this problem,
even at the highest transmission rate.

We modify the Ath9k driver to print a log entry after each aggregated frame transmis-
sion has completed, which also includes the reception of a Block Acknowledgment (BA) (or
a timeout if no BA is received). To produce log entries, we use the Linux kernel function
printk and prepend each line with the tag “[AGGR]”. We use the system logging daemon
rsyslog [25] to filter log entries from other kernel messages, using the “[AGGR]” tag, and to
periodically write them to disk. An example log entry is shown in Figure 3.1. Note that
we log the bitmap of subframe fates within the aggregated frame, as the pattern of failures
can have a dramatic impact on throughput. This issue is examined in detail in Section 4.2.

[15550578.728446] [AGGR] 1 6 1 1 0 12 32 1 30 265863 2719
270536 314515 2947 00000000fffe001f

Figure 3.1: Example log line for a frame in T-SIMn. Read from left to right, the
frame was sent at kernel time 15550578.728446 (in seconds since system boot
time), has the tag “[AGGR]” to signify an aggregated frame, was an 802.11n
rate (1), used MCS 6, SGI (1), 40 MHz (1), did not use Request-to-Send (RTS)
(0), 12 subframes failed, 32 frames were included in the aggregated frame, a
BA was received (1), the Received Signal Strength Indicator (RSSI) of the
BA was 30 dBm, it took 265,863 clock cycles to transmit the data, 2,719
cycles to receive the BA, the device was busy for 270,536 cycles (transmitting,
receiving or waiting for channel access) and the device took 314,515 cycles total
(busy and idle) to transmit the frame, the sequence number was 2,947 and the
subframe fate bit pattern (represented in hexadecimal) was fffe001f (with 1’s
meaning the subframe at that index was successfully received and 0’s meaning
the subframe failed).

To prepare for trace collection, we begin by creating an 802.11n Access Point (AP), using
hostapd [24], on a desktop computer running our modified Ath9k driver. Trace collection
must always be done on the sender . Although the AP could be used as the sender or
the receiver , we use the computer designated as the AP as the sender in all experiments.
The major advantage of this approach is that there are fewer requirements imposed on the
receiver , which does not need to be capable of creating an AP. In addition, the receiver

20

does not need to use a modified Ath9k driver and, as a result, can be any 802.11n-capable
device that runs Iperf3 [32]. For example, this allows us to perform experiments using
an iPhone as a receiver . We then establish a network between the AP (sender) and a
client, which acts as a receiver. To collect a trace, the sender saturates the link to the
receiver by sending as many User Datagram Protocol (UDP) frames, of size 1,470 bytes, as
possible using Iperf3 [32]. Unless otherwise noted, we aggregate the maximum number of
subframes (i.e., FACOL=MAX); see Section 3.2 for more details. During collection, the sender
cycles through a set of 802.11n rates (shown in Appendix A), in a round-robin fashion.
In constant rate trace collection, there is only one rate configuration in the set of round-
robin rates. After each transmitted frame, the sender switches to the next rate in the set;
wrapping back around after all rates have been sampled. This round-robin cycling of rates
continues for the entire duration of the trace collection. After the desired amount of time
has elapsed, the logs produced by the modified Ath9k driver are stored to disk. This log
constitutes the trace that is passed on to the next phase.

Note that in T-RATE, all eight 802.11g rates were sampled but we now have 128
possible rate configurations in 802.11n (96 for our 3 antenna devices). Sampling the 96
rate configurations supported by our WiFi devices takes over 300 ms, which results in only
a few samples within the channel coherence time. Trace collection for all 802.11n rates
remains an open problem, which will be investigated in future work. However, we do show
that the current implementation of T-SIMn is accurate when limiting trace collection to
rate configurations with 1 antenna (i.e, 32 rate configurations). This evaluation of T-SIMn,
including trace collection with all single antenna rate configurations (32 rates), is presented
in Chapter 7.

3.3.2 Trace Preparation

Recall from Section 2.2.2 that the trace preparation phase of T-RATE pre-computes frame
fates for all 802.11g transmission rates and for all discretized times within the bounds
of the trace. In T-SIMn, we make the decision to eliminate the trace preparation phase
and the collected trace is now the direct input to the simulator. With 96 possible rates,
each with 32 Subframe Index Error Rates (SFIERs) (discussed in Section 6.1), it becomes
computationally expensive to pre-compute all frame fates and the resulting traces would
be prohibitively large. It would also have resulted in much wasted work. For example, we
transmit at a single rate at any given time, meaning that the pre-computed frame fates for
the remaining 95 rates would be unused. Moreover, we find eliminating this phase better
facilitates iterative development of SIMn. This new approach can be thought of as Just In
Time (JIT) virtual trace preparation.

21

Despite eliminating the trace preparation phase, many techniques have been carried
forward from T-RATE. To compute the frame fate at time t, rate r and subframe index
i, T-SIMn considers all samples for the rate r and subframe index i in the averaging

window (t −
window_size

2
ms to t +

window_size
2

ms), from the collected trace. The
averaging window should be less than the channel coherence time for the environment so
that channel conditions are relatively constant with respect to the frames being used to
determine the fate of packets at time t. Channel coherence time is dependent on many
factors, such as movement speed (i.e., longer in stationary environments and shorter in
high speed environments) and channel frequency (i.e., longer for 2.4 GHz channels and
shorter for 5 GHz channels). In indoor environments at walking speeds, channel coherence
time is reported to be approximately 200 ms for the 2.4 GHz band [31] and 100 ms for
the 5 GHz band [5]. Because all of the experiments conducted to evaluate T-SIMn use
the 5 GHz band, we use an averaging window of 200 ms (i.e., t − 100 ms to t + 100 ms)
which corresponds to a coherence time of 100 ms. Our evaluation in Section 7 shows that
an averaging window of 200 ms produces accurate results in our mobile environment at
walking speeds, when performing round-robin trace collection with 1 antenna. However,
this parameter is easily set in SIMn so that it can be tailored to other environments.

To compute a Subframe Index Error Rate (SFIER), the number of these samples that
have failed (i.e., subframes that are not acked) is divided by the total number of these
samples. A uniform random number is then drawn, in the range [0,1.0]. A subframe at
time t, rate r and index i is considered successful if the random number is larger than
the error rate. The two major differences from T-RATE are that the functionality of the
trace preparation phase is now moved to the simulation phase (called trace processing in
T-RATE); and that SFIERs are now considered.

3.3.3 Simulation

The trace processing phase uses the collected trace to simulate other experiments. Simi-
larly to T-RATE, SIMn performs a time based simulation using an 802.11n trace, where
the sender saturates the link to the receiver by sending as many aggregated frames as
possible. SIMn currently simulates constant rate or round-robin experiments, and aggre-
gates subframes using the default Frame Aggregation Algorithm (FAA) of the Ath9k device
driver. However, SIMn is designed to allow porting, developing, evaluating and comparing
new Rate Adaptation Algorithms (RAAs) and FAAs. We also expect that SIMn will be
a valuable tool for studying 802.11n configuration options such as CB selection (20 or 40
MHz) and GI selection. We discuss these avenues for future research in Section 8.3.

22

A simulation in SIMn proceeds using an event loop, starting a time t = 0, that performs
the following steps:

1. We check the collected trace for unprocessed WiFi delays that occurred before time
t. If any such WiFi delays exist, t is incremented by the duration of the delay.
This is repeated until all WiFi delays that occurred before t have been processed.
Computation and differentiation of WiFi delays is discussed in Section 5.1.

2. We compute non-WiFi delay at time t and increment t by the duration of the delay.

3. If there are fewer than two aggregate frames (one in transmission and one queued),
we form an aggregate frame (ensuring that no aggregated frame length limits are
violated) and add it to the queue. Aggregated frame queuing, and length limits, are
analyzed in Section 4.2.2.

4. Transmission time for the aggregated frame is computed and t is advanced.

5. The fate of each subframe i in the aggregate frame is determined using the SFIER
at time t, using rate r and index i. Successful subframes increment a packet counter,
which is used to report throughput during the desired simulation time interval. Failed
subframes are rescheduled for transmission if they have not reached their retry limit.
Rescheduled frames are given priority when forming aggregate frames. SFIERs are
discussed in greater detail in Section 6.1.

As in T-RATE, this process repeats until the simulation ends; this is generally after the
elapsed simulation time is equal to the duration of the collected trace. Figure 3.2 provides
an overview of this process. The two primary points for modification to support future
research are obtaining a rate configuration from an RAA (discussed in Section 8.3.2) and
the Frame Aggregation Algorithm (discussed in Section 8.3.3).

23

START

WiFi_Delay at or
before T?

Time += WiFi_Delay

T= 0

Yes

T += Non_WiFi_Delay

No

Number of queued
aggregated frames < 2

Aggregated
Frame Queue

Frame
Aggregation
Algorithm

No

T += Transmission_Time

P
ush

 A
ggregated

 Fram
e

P
op

 A
ggregated

 Fram
e

Yes

Failed subframe I at
time T and rate R?

Reschedule
Subframe

Yes

Transmit Aggregated Frame

Time < Sim_EndEND
No

Yes

More subframes?

No

Yes

No

Obtain Rate Configuration
from RAA

Figure 3.2: T-SIMn Simulation Flowchart. Solid lines represent the execution
flow of the simulator, with the direction being indicated by a closed (i.e., filled)
arrow. Dashed lines indicate the flow of data, with the recipient of the data
being indicated with an open arrow. “Form Aggregated Frame” and “Reschedule
Subframe” are entry points to the process of forming aggregated frames, shown
in Figure 3.3.

24

Packet Queue

Frame
Aggregation
Algorithm

Reschedule
Subframe

Next packet outside
Block-Ack window?

Aggregation Limit
Reached?

Aggregated
Frame

Add Packet

Compute Aggregation
Limit for Rate
Configuration

Return Aggregated
Frame

Yes

No

Application

No

Push Packet

Yes

Pop Packet

Figure 3.3: T-SIMn Aggregated Frame Formation Flowchart. Solid lines rep-
resent the execution flow of the process, with the direction being indicated by
a closed (i.e., filled) arrow. Dashed lines indicate the flow of data, with the
recipient of the data being indicated with an open arrow. The entry point of
this process is “Form Aggregated Frame”, which is called in Figure 3.2. The
packet queue is populated with frames from a simulated application or from
failed subframes, from Figure 3.3, that have been rescheduled for transmission.
The process ends by returning an aggregated frame to the T-SIMn simulator.

25

3.4 Test Bed

For conducting experiments, we have created a test bed in our lab on the university campus.
This environment consists of cubicles in a large room, as well as some separate offices. Our
test bed consists of three desktop computers housing identical TP-Link TL-WDN4800
PCIe cards, an Apple MacBook Pro (Retina, 15-inch, Mid 2012) and an Apple iPhone 6.
The TP-Link cards use an Atheros AR9380 chipset, while the MacBook uses a Broadcom
BCM4331. All five devices are dual-band (2.4 and 5 GHz). All contain three antennas
which support three spatial streams in a 3x3:3 MIMO configuration, except the iPhone 6
which contains only one antenna. We use one of the desktop computers as an AP, which
acts as the sender in all experiments. This computer will be referred to as the “the AP” in
the remainder of the document. We use the remaining two desktop computers as receivers.
One is located in close proximity (less than 1 meter) to the AP, with line of sight; while the
other is further away (roughly 10 meters) in a separate office, without line of sight due to
cubicles and a wall. We refer to these receivers as the “Near Client” and the “Far Client”,
respectively. The MacBook and iPhone are used only for mobile experiments and we refer
to them by name. In order to minimize the amount of uncontrolled WiFi interference,
we run all experiments in the 5 GHz band on channels that are unused by other APs
in the vicinity, unless otherwise noted. These channels are also subject to interference
from fewer non-WiFi devices, as most devices operate in the 2.4 GHz band. We monitor
for interference using an AirMagnet Spectrum XT [4] spectrum analyzer. For generating
controlled non-WiFi interference, we have an RF Explorer Handheld Signal Generator [26]
(RFE6GEN), which we control using a USB connection.

The three desktop computers run Ubuntu 12.04 with Linux kernel version 3.13.0. All
three use a modified version of the Ath9k driver provided by the backports-3.14-1 package;
a set of drivers backported from Linux kernel 3.14-1, in order to run on earlier versions
of the kernel. The MacBook runs OS X 10.11.1 El Capitan and the iPhone runs iOS 9.2,
both using the default drivers provided by Apple. We use hostapd [24] v0.7.3 to create
an Access Point (AP) that the three client computers can connect to. iPerf3 [32] is used
to saturate the link between the sender (AP) and a receiver. By using a single desktop
computer as the AP and the sender , the receivers do not need to be capable of running
the modified Ath9k driver and can be any device capable of running iPerf3, such as the
MacBook. This will allow other devices, such as cell phones and tablets, to be used in the
future. To capture the logs that we produce in the Ath9k driver, we use rsyslog [25].

26

3.5 Experimental Methodologies

In this section we describe the methodologies that are used to evaluate the simulator, SIMn,
and the full T-SIMn framework. As the focus of this thesis is the simulator component of
the T-SIMn framework, we evaluate SIMn using a technique that minimizes the reliance
on the trace collection methodology. We conduct an experiment using a constant rate
configuration, which produces a constant rate configuration trace. We then use SIMn
to simulate a constant rate configuration experiment (for the same rate configuration)
using the trace. Since the simulated experiment uses the same rate configuration as the
conducted experiment, simulated throughput should match throughput obtained during
the conducted experiment, if the simulator is accurate. There are two major advantages
to this methodology:

1. It does not require experiments to be repeatable since the experiment produces a trace
that is used by SIMn to simulate an experiment with exactly the same conditions
and environment as the conducted experiment (i.e., the conducted experiment is
trace collection). For comparison, if experimentation and trace collection were two
separate steps, it would be challenging to ensure that the exact same conditions and
environment are maintained for both the experiment and trace collection.

2. Constant rate traces provide many samples in each averaging window, which means
that the accuracy of SIMn is not limited by the collected trace.

Together, these properties allow us to expect, and check for, close matches between
experimental and simulated throughput when evaluating SIMn. This facilitated iterative
improvements to the accuracy of SIMn, as we did not need to determine if a mismatch
was due to an inaccuracy in the simulator or due to a lack of experimental repeatability
or a lack of samples in the collected trace. Note that we show 95% confidence intervals
in all plots in this thesis and we consider a match to be overlapping confidence intervals
for experimental and simulated throughput. We use this approach to evaluate SIMn’s
accuracy in simulating the new physical and MAC layer features in 802.11 in Chapter 4,
channel access delays in Chapter 5 and error rates in Chapter 6.

However, in order to evaluate the T-SIMn framework, we use an evaluation methodology
similar to that used to evaluate T-RATE [2]. That is, we conduct an experiment (which
produces a trace) using a round-robin ordering of rate configurations and then in SIMn
we conduct a simulation using a round-robin ordering that differs from the experiment.
This is done to verify the averaging window approach to determining a frame fate at time

27

t in SIMn, when the simulated rate configuration differs from that in collected trace at
time t. In contrast to T-RATE, we cannot cycle through all of the available 802.11n rates
when performing round-robin trace collection, due to the time required to perform a full
round (roughly 300 ms). We instead limit trace collection to the set of 1-Spatial Stream
(SS) rates, using Long Guard Interval (LGI), Short Guard Interval (SGI), 20 and 40 MHz
Channel Bandwidth (CB), for a total of 32 rates. We choose this set because its use is
prevalent in cell phones, tablets and other small devices, most of which contain only 1
antenna. We use this methodology in Chapter 7 to demonstrate that, despite not being
able to collect traces for 2 or 3 SSs, the full framework is practical for 1 SS.

In many cases, we collect “error-free” traces. However, in practice, it is impractical to
collect truly error-free traces due to the nature of wireless transmission being less reliable
than wired. As a result, we define error-free to be an error rate of less than 0.1%.

Scenarios
We use the general term scenario to describe a set of events or the environment in
which a trace is collected. For example, a mobile scenario refers to trace collection
with a moving receiver and an error-free scenario means that trace collection is
performed such that there is no path loss or error due to interference. Note that we
define “error-free” to be an error rate of less than 0.1% in each reported time interval,
as it is impractical to collect truly error-free traces due to the nature of wireless
transmission being less reliable than wired.

Accuracy and Realism
Although we strive to collect traces that allow the trace preparation phase to accu-
rately reflect the channel conditions experienced in reality, this is not required for
comparisons of different algorithms using T-SIMn. Even if there are slight inaccura-
cies with respect to reality, all algorithms are exposed to the same inaccuracies and
thus the comparison is still viable and, most importantly, fair. This also allows us
to synthetically generate traces that would be difficult to collect experimentally. We
use this technique to study Subframe Index Error Rates (SFIERs) in Section 6.1.

The described trace collection details and experimental methodologies will be used in
the remaining chapters; any deviations will be explicitly mentioned in the experimental
setup. We now evaluate the simulation of physical and MAC layer features of 802.11n in
Chapter 4; channel access delays in Chapter 5; and channel error rates in Chapter 6.

28

Chapter 4

Simulating 802.11n Features

802.11n introduces both physical and MAC layer enhancements to increase throughput,
compared to 802.11g. We consider each of the major features of 802.11n and, specifically,
how they impact simulation. We discuss the physical layer enhancements, which focus on
increasing the raw data rate of transmission, in Section 4.1. We then examine the MAC
layer enhancements, in Section 4.2, which instead focus on improving the efficiency of the
802.11 protocol.

4.1 Physical Layer Features

The 802.11n protocol introduces many new physical layer features, namely Multiple Spatial
Streams (SSs), Short Guard Intervals (SGIs), Channel Bonding and Dual-Band support.
Despite being numerous, these features are comparatively simpler to simulate than the
MAC layer features and did not require major architectural changes to the simulator.
However, we discuss each of these features in detail because they required precise changes to
the simulator. In this section we focus on timing, rather than interference and transmission
errors, which are studied in Chapters 5 and 6, respectively. We now evaluate SIMn’s ability
to accurately replicate the timings, and consequently the throughput, of these 802.11n
physical layer features.

Experiment Setup:

We create a network between the Access Point (AP) (sender) and a desktop client
(receiver). We use the Near Client because it can reliably obtain error-free traces, due

29

to its close proximity and line of sight. Recall from Section 3.5 that we define error-free to
be an error rate of less than 0.1%. We collect 100 second traces for the rate configurations
1S-I4-LG-20M=39, 1S-I4-SG-40M=90, 2S-I4-SG-40M=180 and 3S-I4-SG-40M=270. We
choose these rate configurations because they cover both long and short Guard Intervals
(GIs); 20 and 40 MHz Channel Bandwidths (CBs); as well as one, two and three spatial
streams. Modulation and Coding Scheme (MCS) Index 4 is chosen because it is the
highest index with which we could reliably obtain error-free traces. We use high rates
because discrepancies between experimental and simulated throughput are more likely
to be seen at high rates than low rates. We simulate constant rate experiments for each
of the chosen rate configurations, using the collected traces as input to the simulator.
We expect simulated throughput to match experimental throughput obtained from the
collected traces, for each of the respective rate configurations.

In Figure 4.1, we plot pairs of throughput measurements, simulated and experimental, for
each of the collected rate configurations. We analyze the results in the following sections.

4.1.1 Multiple Spatial Streams (MIMO)

Multiple Spatial Streams allow multiple data streams to be transmitted simultaneously
using different antennas, one for each stream. Using two or three SSs exactly doubles or
triples, respectively, the Physical Layer Data Rate (PLDR) of a one stream configuration.
At the physical-layer, both individual and aggregated frames have a header that is defined
by the Physical Layer Convergence Protocol (PLCP) [12]. The PLCP header includes
several training fields that are used for tuning the receiver. One type of training field
is the High-Throughput Long Training Field (HT-LTF), which aids in decoding MIMO
transmissions [12]. The number of SSs that are used for transmission affects the number
of HT-LTFs that must be included in the PLCP header. For one and two SSs, 1 and
2 HT-LTFs are needed, respectively; for three or four SSs, 4 HT-LTFs are needed [12]
(though our WiFi cards support a maximum of three SSs). These training fields increase
the size of the PLCP header, which consequently increases the duration of time required
for transmission. To accurately simulate multiple SSs, the simulator must consider both
the PLDRs and the PLCP duration, in terms of the number of streams.

We show that SIMn can accurately handle one, two and three SS by examining the
rate configurations 1S-I4-SG-40M=90 (one stream), 2S-I4-SG-40M=180 (two streams) and
3S-I4-SG-40M=270 (three streams), in Figure 4.1. These rate configurations differ only
by the number of SSs and cover the three possible values. For each configuration, there is
a tight match between simulated and experimental throughput. This suggests that SIMn

30

 0

 50

 100

 150

 200

 250

1S-I4-LG-20M=39

1S-I4-SG-40M=90

2S-I4-SG-40M=180

3S-I4-SG-40M=270

T
hr

ou
gh

pu
t

(M
bp

s)

Rate Configuration

Simulated
Experimental

Figure 4.1: Simulated throughput using the new physical-layer features in
802.11n (SGI, 40 MHz and Multiple SSs) compared against throughput mea-
surements obtained experimentally.

accurately simulates one, two and three spatial stream rate configurations in an error-free
scenario. Figure 4.1 also demonstrates how throughput scales as the number of SSs is
increased, with the throughput of 2S-I4-SG-40M=180 (154 Mbps) being roughly double
that of 1S-I4-SG-40M=90 (80 Mbps). Similarly, throughput of 3S-I4-SG-40M=270 (219
Mbps) is nearly triple that of 1S-I4-SG-40M=90 (80 Mbps). Although the PLDRs exactly
double or triple using two or three SSs, respectively, throughput does not quite double or
triple due to overheads inherent in the 802.11 protocol.

4.1.2 Short Guard Interval (SGI)

SGI decreases the duration of time between the transmission of successive data symbols,
from 800 ns to 400 ns. This decreases the time to transmit each symbol from 4 µs to
3.6 µs, which in turn decreases the time required to transmit a given frame. Using SGI

31

increases the Physical Layer Data Rate rate by up to 11%, compared to the corresponding
Long Guard Interval (LGI) rate configuration.

Figure 4.1 also shows that SIMn accurately handles both GIs. This can be seen by
examining the rate configurations 1S-I4-LG-20M=39 (LGI) and 1S-I4-SG-40M=90 (SGI).
In both cases, the simulated throughput closely matches the experimental throughput,
indicating that in error-free environments, SIMn accurately simulates both LGI and SGI
rate configurations.

4.1.3 Channel Bonding

802.11n supports bonding two adjacent 20 MHz channels for a total channel width of 40
MHz. Channel bonding increases the Physical Layer Data Rate to slightly more than
double that of the equivalent 20 MHz rate configuration. This increases the number of
bits per symbol, which decreases transmission time for a given frame. Additionally, during
simulation we must consider the configuration of the AP that was used for trace collection.
An AP supporting 40 MHz channel widths may use a higher clock frequency for the Analog-
to-Digital Converter (ADC), as is the case with our devices. This impacts the delay
calculations, which rely on the Cycle Counter Information (CCI), and are discussed in
greater detail in Chapter 5.

We verify that the simulator handles both 20 and 40 MHz channel widths by studying
the rate configurations 1S-I4-LG-20M=39 (20 MHz) and 1S-I4-SG-40M=90 (40 MHz), in
Figure 4.1. In both cases, the simulated throughput tightly matches the experimental
throughput. This suggests that SIMn accurately handles rate configurations using both 20
and 40 MHz channel widths.

4.1.4 Dual Bands

The 802.11n protocol supports both the 2.4 and 5 GHz bands. These bands have different
signal propagation and interference characteristics, but the choice of band does not affect
the PLDR. However, the duration of Short Inter-Frame Space (SIFS), and consequently
Distributed Inter-Frame Space (DIFS), depends on the band being used. The duration of
DIFS is SIFS+2×Slot T ime µs. The durations for SIFS, Slot Time and DIFS are shown
in Table 4.1, for both 2.4 and 5 GHz. Since these timings differ, we determine whether
the 2.4 or 5 GHz band was used during trace collection, and use the respective SIFS and
DIFS values during simulation. However, we use the 5 GHz band for all experiments due
to heavy utilization of all 2.4 GHz channels on the university campus.

32

Table 4.1: Timing Constants for Dual-Band 802.11n

Band (GHz) SIFS (µs) Slot Time (µs) DIFS (µs)
2.4 10 9 28
5 16 9 34

4.1.5 Summary

We find that SIMn is able to match throughput obtained from collected traces with
the rate configurations 1S-I4-LG-20M=39, 1S-I4-SG-40M=90, 2S-I4-SG-40M=180 and
3S-I4-SG-40M=270, which cover both long and short GIs; 20 and 40 MHz CBs; as well as
one, two and three spatial streams. This suggests that SIMn accurately simulates the new
physical layer features in 802.11n.

4.2 MAC Layer Features

802.11n introduces two major features at the MAC layer, Block Acknowledgment (BA) and
Frame Aggregation (FA), that aim to improve the efficiency of the protocol. In the following
two sections we describe Block Acknowledgment and Frame Aggregation, describing how
they work together to increase throughput in 802.11n networks.

4.2.1 Block Acknowledgments

In an 802.11g (or earlier) network, each successfully received frame is immediately acknowl-
edged with an Ack frame. Like other management frames, Acks are transmitted using a
rate from the basic rate set, which is the set of rates that all members of the network
must support. It is most common for 802.11n networks to support a mixed mode [12],
which retains backwards compatibility with 802.11a, b and g devices. This means that the
basic rate set is typically limited to at most 11 Mbps (i.e., the maximum 802.11b rate)
for 2.4 GHz networks and 54 Mbps (i.e., the maximum 802.11a rate) for 5 GHz networks.
These Acks result in significant inefficiencies due to the time required for their transmis-
sion, relative to the time required for the data frame transmission, especially in 802.11n
networks with Physical Layer Data Rates (PLDRs) of up to 450 Mbps for data frames.
To improve the efficiency of the protocol, 802.11n adds Block Acknowledgment (BA) as a
mandatory feature [12], which allows multiple frames to be acknowledged at once. 802.11n

33

networks use a type of BA called a Compressed Block-Ack, which contains a starting se-
quence number and a 64-bit bitmap that represents the fate of up to 64 frames in the range,
starting_sequence_number to starting_sequence_number+64−1. This range is called
the Block-Ack Window (BAW) and is established with a Block-Ack Request (BAR). The
BAW is the range of sequence numbers that the receiver is expecting and frames falling
outside this window will be ignored. After a receiver responds with a BA, both the sender
and receiver advance their BAW to the sequence number of the last frame for which all
preceding frames have been acknowledged. For example, if the starting sequence number
of the BAW is 0 and the sender transmits frames 0, 1, 2 and 3, but only 0, 1 and 3
are received, the starting sequence number of the BAW will be advanced to 2. BAs are
especially useful in combination with Frame Aggregation (FA), which we describe in the
following section.

4.2.2 Frame Aggregation

Frame Aggregation (FA) is a new feature in 802.11n that allows multiple frames to be
combined to form a larger frame. By sending these frames together, as an aggregated
frame, the sender only needs to perform channel sensing, backoff, Distributed Inter-Frame
Space (DIFS), Short Inter-Frame Space (SIFS) and wait for an Ack once for the entire set
of frames, rather than for each individual subframe. This results in a greater proportion of
time being spent transmitting data, increasing the airtime efficiency. Recall from Figure 1.1
that throughput without frame aggregation (i.e., sending individual frames), does not
increase significantly as the Physical Layer Data Rate (PLDR) is increased from 150 Mbps
to 450 Mbps. As the PLDR increases, the duration of frame transmission gets smaller
and smaller. However, the wait times listed above do not decrease alongside the increases
in PLDR, and eventually the transmission time becomes insignificant relative to the wait
times. As shown in Figure 1.1, throughput gains (in an error-free scenario) are larger when
we aggregate more frames, though this too reaches a point of diminishing returns. Note
that in Figure 1.1, the number of frames being aggregated is increasing exponentially but
we see roughly linear increases in throughput. We refer to the number of subframes in an
aggregated frame as the frame length. Generally, longer aggregated frames result in higher
throughput, although this may not always be the case. There are many factors that limit
the length of an aggregated frame:

• There is an airtime limit of 4 ms in the 802.11n standard that prevents a single device
from monopolizing the channel by aggregating frames. This airtime limit means that
when using slower rate configurations (i.e., lower PLDRs), aggregated frame length
may be limited by the number of frames that can be transmitted in 4 ms.

34

• The Block-Ack Window (BAW), described in the previous section, also plays a major
role in the length of aggregated frames, as the sequence numbers of subframes can
be offset by at most 64 from the starting sequence number in the BAW.

• There is a 64 KB limit on the size of a User Datagram Protocol (UDP) packet. For
example, if using 1,500 byte frames, a maximum of 43 frames may be aggregated.

• Implementation specific requirements may also limit the length of aggregated frames.
For instance, the Ath9k driver used in this thesis imposes a limit of 32 subframes
in an aggregate frame, though this is not dictated by the 802.11n standard. This is
done so that another aggregated frame can be constructed and queued while the first
is in transmission. A limit of 32 subframes in each aggregate frame means that two
aggregates frames can be created within the 64-bit BAW, one in transmission and
one queued.

• Management frames must be transmitted as individual frames. When a time sensi-
tive management frame, such as a beacon frame, is queued, the Ath9k driver will stop
aggregating subsequent frames. This allows the management frame to begin trans-
mission sooner than if a long aggregated frame were ahead of it in the transmission
queue.

During trace collection, we always aggregate as many subframes as possible (i.e.,
FACOL=MAX, which is FACOL=32 in Ath9k). Since we do not collect FACOL=1, FACOL=2, . . . ,
FACOL=MAX, we often need to simulate cases where FASIM < FACOL=MAX, due to the many
reasons listed above. We now evaluate SIMn’s accuracy when simulating the throughput
of frames aggregated with fewer subframes during simulation than were obtained during
trace collection.

Experiment Setup:

We create a network between the Access Point (AP) (sender) and a desktop computer
client in close proximity (receiver). We use the Near Client because it can reliably
obtain error-free traces, for rate configurations with higher PLDRs than the Far Client
(we study simulation with error in Chapter 6). For all experiments, the sender is set to
a constant rate configuration of 2S-I4-SG-40M=180. We collect a 100 second trace with
FACOL=MAX, as this is the aggregation limit that we will typically use for trace collection.
We then conduct 100 second experiments with FA limited to 32, 16, 2 and 1 aggregated
frames, which we use as the ground truth. We then simulate constant rate scenarios for
the rate configuration 2S-I4-SG-40M=180 with FASIM=MAX, FASIM=16, FASIM=2 and FASIM=1,
using the FACOL=MAX trace as input to the simulator. We expect simulated throughput for

35

FASIM=MAX, FASIM=16, FASIM=2 and FASIM=1 to match the throughput obtained directly from
the experiments run with FA limited to 32, 16, 2 and 1 aggregated frames, respectively.

In Figure 4.2, we plot pairs of simulated and experimental throughput measurements,
for each of the frame aggregation configurations. For all pairs of simulated and experimental
throughput, we see a close match which suggests that SIMn can accurately simulate shorter
aggregated frames from traces with FACOL=MAX, in an error-free environment. Because
SIMn can accurately simulate FASIM=1, FASIM=2, . . . , FASIM=MAX from a trace collected with
FACOL=MAX, we do not need to do round-robin trace collection for FACOL=1, FACOL=2, . . . ,
FACOL=MAX. Instead, we always collect traces with FACOL=MAX.

 0
 20
 40
 60
 80

 100
 120
 140
 160

32 16 2 1

T
hr

ou
gh

pu
t

(M
bp

s)

FAsim (Number of Aggregated Frames)

Simulated from FAcol=32
Experimental

Figure 4.2: Experimental throughput for the rate configuration
2S-I4-SG-40M=180 with FA limited to 32, 16, 2 and 1 aggregated
frames, compared against simulated throughput for the rate configura-
tion 2S-I4-SG-40M=180 with FASIM=32,16,2,1, using an FACOL=32 trace as
input to the simulator (i.e., simulating throughput when aggregating fewer
frames during simulation than collection).

We do not repeat this evaluation in environments that are experiencing error due to
interference or path loss because of a lack of experimental repeatability. However, simu-

36

lation of shorter aggregated frames from traces with FACOL=MAX, in environments that are
experiencing error, is indirectly tested in Section 6.2. The tight match between simulated
and experimental throughput in Figure 6.2 suggests that shorter frames are accurately
simulated in an environment with high error rates due to path loss. Developing a new
experimental methodology for a direct evaluation of the simulation of shorter frames in
these environments is proposed as future work, in Section 8.3.3.

4.2.3 Summary

Frame Aggregation (FA) and Block Acknowledgment (BA) are MAC layer features of
802.11n networks that are necessary to take advantage of the new physical layer features.
These MAC layer and physical layer features can be combined to obtain throughput that
is well beyond what can be achieved in 802.11g networks. We demonstrate that SIMn in
an error-free environment can accurately simulate frame aggregation when aggregating as
many frames as possible, FASIM=MAX, as well fewer frames, using a single FACOL=MAX trace.

37

Chapter 5

Simulating Channel Access

Since WiFi networks use a shared medium for communication, channel access is a crucial
factor in determining throughput for an experiment. 802.11n operates in both the 2.4 and
5 GHz bands, which are shared by other WiFi devices, such as computers, cell phones and
tablets; as well as Bluetooth devices, wireless keyboards/mice, cordless phones, microwave
ovens and many others. 802.11 is a listen-before-talk protocol [12], meaning that an 802.11
device will check that the channel is idle before transmitting, in order to avoid collisions.
This process is called Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
In order to proceed with transmission, the channel must remain idle (Carrier Sensing) for
the duration of a Distributed Inter-Frame Space (DIFS) (durations shown in Table 4.1)
and a random backoff time. The random backoff time prevents multiple WiFi devices
from transmitting immediately after the duration of a DIFS, resulting in a collision. To
backoff, the device draws a uniform random number n between 0 and 15 and waits for
n × Slot T ime (from Table 4.1) µs. If the channel does not remain idle then the device
must backoff again (Collision Avoidance), for an exponentially increasing duration of time,
before re-checking the channel for activity. It is also possible for two or more devices to
draw the same random number and begin transmitting at the same time, resulting in a
collision (i.e., neither frame is decodable). The channel may also be occupied by non-WiFi
devices, which are not required to follow this protocol and may broadcast on the channel
at any time. If a non-WiFi device begins broadcasting before a WiFi transmission has
begun, this will introduce a delay for the WiFi transmission because the channel will be
sensed as not being idle. If a non-WiFi device begins broadcasting while a WiFi device
is already transmitting, this will increase the likelihood that the transmission fails, due to
overlapping signals. In this section we focus on the scenarios where WiFi and non-WiFi

38

interference results in delay, rather than error, though we cannot study the two in complete
isolation.

In T-RATE [2], non-WiFi delay is computed using the Cycle Counter Information (CCI)
available in the Ath9k driver; while WiFi delay is computed using a tcpdump trace that
captures third-party WiFi packets. In T-SIMn, we now compute both WiFi and non-WiFi
delay using the CCI, with a heuristic proposed by Ali Abedi for distinguishing the two
types of delays [1]. The four available counters are tx_cycles, which counts the number of
cycles that the chip spends performing transmissions (outbound); rx_cycles, which counts
clock cycles spent receiving (inbound); busy_cycles, which measures the number of cycles
that the channel was busy performing transmission, receiving WiFi frames or due to non-
WiFi noise; and total_cycles, which counts the total number of cycles for transmission,
including those spent busy (i.e., waiting). We modify the driver to report cycle counts
after each aggregated frame, rather than for each subframe, because carrier sensing and
backoff (delay) are not performed between subframes. We compute delay with the following
general formula:

delay = actual duration− expected duration (5.1)

The actual duration is the measured amount of time that the device spent transmitting the
aggregated frame, according to the cycle counters. While we initially thought that the cycle
counters were in reference to the WiFi card’s chipset clock speed, they are instead measured
in terms of the sampling rate of the Analog-to-Digital Converter (ADC) [23]. The clock
speed is dependent on the maximum supported channel bandwidth of the Access Point
(AP), which may be either 20 or 40 MHz in 802.11n. Our wireless cards use a clock speed
of 44 MHz when the AP is limited to a 20 MHz Channel Bandwidth (CB) and 88 MHz for
a CB of 40 MHz. This is consistent with the Nyquist rate [33] of 2 × signal bandwidth,
which is a lower-bound on the sampling rate needed to avoid aliasing. The formula used
for computing actual duration from the cycle counters is:

actual duration =
total_cycles
clock_speed

(5.2)

For simplicity, we always enable support for 40 MHz channel widths (even though they are
not necessarily used in all experiments) in the AP and thus always have a clock speed of
88 MHz.

The expected duration is the amount of time that we would expect the device to spend
transmitting the aggregated frame in the absence of WiFi or non-WiFi interference. We
can accurately compute the transmission time of both the data frame and the resulting ack
frame, based on the number of bits per symbol for the given Modulation and Coding Scheme

39

(MCS) and Channel Bandwidth (CB); and the transmission time for each symbol based
on the Guard Interval (GI). The expected duration is then computed with the following
formula:

expected duration = DIFS+average backoff+data tx time+SIFS+ack tx time (5.3)

Since the backoff time for a specific aggregated frame cannot be determined from the
collected traces, the average backoff time (7.5 × Slot T ime µs) is used when computing
expected duration.

We separate delays into two categories, WiFi, and the broadly defined non-WiFi, delay.
While we compute both types of delays using Equation 5.1, we apply them differently de-
pending on the delay type. The following sections characterize the two types of interference
and show that they can be accurately simulated by the T-SIMn system.

5.1 WiFi Interference

WiFi interference consists of any WiFi traffic occurring on the same (or overlapping) chan-
nels used by the Access Point (AP) for the experiment. This traffic can be generated by:
(1) a completely independent network with its own AP and clients; (2) other clients be-
longing to the same network as the experiment’s AP; or (3) by the experiment’s AP itself
(e.g., beacon frames). Sources (1) and (2) behave similarly; they delay a sender’s transmis-
sions since their presence is detected during channel sensing, which causes the sender to
backoff before re-attempting transmission. These sources increase the time, measured by
the rx cycles, that the device spends receiving data on top of the Ack. Source (3) includes
outbound WiFi transmissions, such as beacon frames and probe responses. These sources
increase the time that the device spends transmitting data, measured by the tx cycles,
on top of the data payload. In practice, we treat these three types of WiFi interference
identically when computing delay during simulation using Equation 5.1. We now evaluate
the accuracy of SIMn in simulating WiFi interference.

Experiment Setup:

We create a network between the AP (sender) and two desktop computer clients. One
client acts as a receiver, while the other acts as a third-party sender (WiFi-interferer).
For all experiments, the WiFi-interferer is set to a constant rate configuration of 1S-I4-SG-40M=90.
We choose this rate as it is not affected by path loss at the distance from both the
sender and the receiver, so that it does not create an instance of a hidden terminal.

40

We perform the following steps to conduct constant rate configuration experiments
(i.e., trace collection) for the rate configurations 1S-I4-LG-20M=39, 1S-I4-SG-40M=90,
2S-I4-SG-40M=180 and 3S-I4-SG-40M=270:

1. Starting at time t = 0 seconds, the sender is set to the respective constant rate
configuration.

2. At time t = 25, the WiFi-interferer begins transmitting to the sender at a rate of
3 Mbps for 25 seconds.

3. At t = 50, the interferer is stopped.

4. At t = 75, the WiFi-interferer begins transmitting to the sender at a rate of 10
Mbps for the remainder of the 100 second experiment.

We simulate constant rate experiments for each rate configuration using the collected
trace as input to the simulator. We expect throughput to drop slightly after t = 25
when the WiFi-interferer begins transmitting, due to competition for access to the
channel, and to return to baseline levels when the interferer is turned off. After t = 75,
we expect throughput to drop significantly, as the WiFi-interferer is set to use more
bandwidth than at t = 25 (though its Physical Layer Data Rate (PLDR) remains the
same). Therefore, it will occupy the channel for a greater portion of time, decreasing
throughput for the sender.

We plot throughput for each simulated constant rate experiment (referred to as sim-
ulated throughput), along with throughput for each conducted constant rate experiment
(referred to as experimental throughput), in Figure 5.1. Each point at time t represents the
mean throughput (with 95% confidence intervals) obtained during the preceding 5 seconds
(i.e., in the interval (t−5, t]). For example, the point at t = 5 represents mean throughput
during t = 0 to t = 5. Points for simulated throughput are artificially offset by 1 second to
facilitate visual comparisons with the corresponding points for experimental throughput.
We use these graphing properties for all time series plots in the thesis.

As shown in Figure 5.1, we find that the simulated throughput matches the experi-
mental throughput for the rate configurations 1S-I4-LG-20M=39, 1S-I4-SG-40M=90 and
2S-I4-SG-40M=180. For the rate configuration 3S-I4-SG-40M=270, simulated throughput
matches the experimental throughput for the points at t = 0 to 75. However, we find that
simulated throughput is lower than experimental throughput for the points at t = 45 to 50,
and t = 85 to 100. Upon closer inspection, we find that error rates for 3S-I4-SG-40M=270
increase to over 4% when the interferer is transmitting, while they remain below 2% for

41

the other configurations. While we attempt to minimize error rate by avoiding a hidden
terminal scenario, we cannot completely study WiFi delay in isolation from error rate, as
the sender and WiFi-interferer may choose the same backoff duration and begin transmit-
ting at the same time, resulting in packet loss and an increase in error rate. We specifically
study simulation with error in Chapter 6.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp:3S-I4-SG-40M=270
Sim:3S-I4-SG-40M=270
Exp:2S-I4-SG-40M=180
Sim:2S-I4-SG-40M=180
Exp:1S-I4-SG-40M=90
Sim:1S-I4-SG-40M=90
Exp:1S-I4-LG-20M=39
Sim:1S-I4-LG-20M=39

Figure 5.1: Simulated throughput when a WiFi interferer is turned on and off,
compared against throughput measured experimentally.

In the previous experiment, we collect traces with FACOL=MAX and simulate with FASIM=MAX,
where the number of aggregated frames transmitted per unit of time is similar during col-
lection and simulation. However, as described in Section 4.2.2, we often need to simulate
FASIM < FACOL. To handle this case, we must process WiFi delays differently from non-WiFi
delays because they scale differently as FASIM diverges from FACOL. We illustrate this with
an example: an AP is configured with a specific beacon interval (e.g., 50 ms); meaning
that every 50 ms the AP must postpone transmission of data frames in order to trans-
mit a beacon frame. If we simulate FASIM < FACOL=MAX, we will send more (but shorter)
aggregated frames per unit time than if we simulated FASIM=MAX. However, the number of

42

beacon frames transmitted in each window is independent of the number of aggregated
frames (i.e., regardless of how many aggregated frames we transmit in a given period of
time, a beacon frame will only be transmitted every 50 ms). If we compute a mean WiFi
delay per aggregated frame from a trace collected with FACOL=MAX, we will overestimate
the total WiFi delay if we simulate FASIM < FACOL and apply the mean WiFi delay to each
aggregated frame. The total delay would be increased by the ratio of aggregated frames
transmitted during simulation compared to collection:

delay inflation =
#aggregated frames (simulation)

#aggregated frames (collection)
=

FASIM
FACOL

(5.4)

Rather than using the mean when computing WiFi delay, we apply WiFi delays obtained
directly from the collected trace (e.g., the delay for a beacon is applied every 50 ms, rather
than averaged over many frames). This relies on being able to distinguish WiFi from non-
WiFi interference. To do this we use a heuristic proposed by Abedi [1], where a delay is
considered to be from WiFi if one or both of the following are true:

1. The time spent transmitting the frame is significantly more than expected:

actual tx duration− expected tx duration > threshold

tx_cycles
clock_speed

− data tx time > threshold

This handles the case where the frame is delayed due to outbound traffic on the AP,
such as transmitting a beacon frame or responding to a probe request. The heuristic
uses a threshold of 60 µs as it is small enough to catch beacon frames, which were
the shortest WiFi frames that we observed.

2. The time spent receiving the ack for the frame is significantly longer than expected:

actual rx duration− expected rx duration > threshold

rx_cycles
clock_speed

− ack rx time > threshold

This handles the case where a frame is delayed due to inbound traffic, such as re-
ceiving a data frame from another client. The heuristic uses a threshold of 10 µs
because there is little variation in the actual rx durations in the absence of WiFi
interference.

43

The thresholds above may be further tuned to improve the accuracy of the heuristic in
differentiating WiFi and non-WiFi interference, though we find that these values provide
accurate results in the following evaluation. We now evaluate the accuracy of simulating
FASIM < FACOL using the heuristic to handle WiFi interference.

Experiment Setup:

We create a network between the AP (sender) and a desktop computer client (receiver).
We collect a trace for the rate configuration 2S-I4-SG-40M=180 with FACOL=MAX. We then
conduct experiments with Frame Aggregation (FA) limited to 2 and 1 aggregated frames.
Using the trace collected with FACOL=MAX, we simulate constant rate scenarios for the rate
configuration 2S-I4-SG-40M=180 with FASIM=2 and FASIM=1. This is done to evaluate
SIMn’s accuracy in simulating shorter frames, from traces collected with FACOL=MAX, in
the presence of WiFi interference. We then repeat these simulations but disable the
heuristic (i.e., WiFi and non-WiFi delays are not differentiated) to demonstrate the
need to treat WiFi and non-WiFi interference differently.

In Figure 5.2, we plot the simulated throughput (with and without the heuristic) for
FASIM=2 and FASIM=1, along with the experimental throughput with FA limited to 2 and
1 aggregated frames. The bars for “Simulated (with Heuristic)” show throughput when
simulating FASIM=2 and FASIM=1, using the FACOL=MAX trace as input to the simulator. The
bars for “Simulated (without Heuristic)” also show throughput when simulating FASIM=2
and FASIM=1, using the FACOL=MAX trace as input to the simulator, but the heuristic for
differentiating WiFi and non-WiFi interference is not used. For this experiment, the only
WiFi interference is from beacon frames generated by the AP. We find that simulation
error (i.e., the difference between simulated throughput, with and without the heuristic,
and the experimental throughput), is lower when using the heuristic. With the heuristic,
simulation error is less than 1% when simulating FASIM=2 from FACOL=MAX, and less than
2% when simulating FASIM=1 from FACOL=MAX. Without the heuristic, simulation error is
roughly 6% and 10% for FASIM=2 and FASIM=1, respectively. These are significant differences,
especially when considering that the only WiFi interference is beacon frames, which are
relatively short in duration compared to data frames. We expect these differences to be
even larger if a third-party WiFi client is added.

44

 0

 10

 20

 30

 40

 50

 60

 70

2 1

T
hr

ou
gh

pu
t

(M
bp

s)

FAsim (Number of Aggregated Frames)

Simulated (without Heuristic)
Simulated (with Heuristic)

Experimental

Figure 5.2: Throughput when aggregating fewer frames during simulation than
collection.

5.2 Non-WiFi Interference

Non-WiFi interference consists of any energy detected on the channel and may be generated
by many devices, some of which include: Bluetooth devices, microwave ovens, wireless
keyboards/mice and cordless phones. It is common for these non-WiFi devices to use the
Frequency-Hopping Spread Spectrum (FHSS) method for transmission and we focus on
this class of devices in the evaluation of the simulator. For the purposes of simulation, we
define non-WiFi interference as any interference that was not classified as WiFi using the
heuristic presented above in Section 5.1. Non-WiFi interference results in increases in the
total_cycles required to transmit an aggregated frame since the sender must backoff when
it detects energy during channel sensing. Thus we again use Equation 5.1 for computing
non-WiFi delay. In contrast to delays caused by WiFi interference, delay due to non-
WiFi interference depends on the number of aggregated frames transmitted. Because each
aggregated frame transmission will perform channel sensing, if we simulate a fixed rate

45

scenario where we send more individual frames per unit time, such as a scenario without
frame aggregation, the mean delay will be increased by the ratio of aggregated frames
transmitted during simulation compared to collection (Equation 5.4). The more frequently
we perform channel sensing, the more likely we will be delayed. Note that this depends
on the pattern of non-WiFi interference being received. For example, an interferer that
only periodically transmits (e.g., once every second) may result in delays similar to those
produced by WiFi devices. We now evaluate the accuracy of SIMn in simulating non-WiFi
interference, similar to that generated by a cordless phone. We do not evaluate SIMn
with different patterns of non-WiFi interference, though this could be an area for future
research.

Experiment Setup:

We create a network between the AP (sender) and a desktop computer client (receiver).
To generate non-WiFi interference we use the RF Signal Generator in frequency sweep
mode over a range of 160 MHz. This mode is chosen to mimic the interference produced
by an FHSS cordless phone. Since our AP has a CB of 40 MHz, the signal generator is
broadcasting on a frequency overlapping with our AP roughly 1/4 of the time, when
active. We perform the following steps to collect traces for the rate configurations
1S-I4-LG-20M=39, 1S-I4-SG-40M=90, 2S-I4-SG-40M=180 and 3S-I4-SG-40M=270:

1. The sender is set to the respective constant rate configuration.

2. At time t = 25 seconds, the non-WiFi signal generator is enabled for 25 seconds.

3. At t = 50, the non-WiFi signal generator is disabled.

4. At t = 75, the non-WiFi signal generator is enabled for the remainder of the
experiment.

We simulate constant rate experiments for each rate configuration using the collected
trace as input to the simulator. We expect throughput to drop after t = 25 due to
competition with the non-WiFi interferer for access to the channel. We then expect
throughput to return to the levels observed in the first 25 seconds of the experiment,
as the interferer is disabled. After t = 75, we expect throughput to drop to the same
level as observed for the points t = 30 to t = 50 seconds because the same non-WiFi
interference is generated until the experiment ends.

We plot the simulated throughput for each rate configuration, along with experimental
(raw) throughput computed from the collected trace, in Figure 5.3. We find that the
simulated throughput matches the experimental throughput for all four rate configurations,
which suggests that non-WiFi interference is accurately simulated by SIMn.

46

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp:3S-I4-SG-40M=270
Sim:3S-I4-SG-40M=270
Exp:2S-I4-SG-40M=180
Sim:2S-I4-SG-40M=180
Exp:1S-I4-SG-40M=90
Sim:1S-I4-SG-40M=90
Exp:1S-I4-LG-20M=39
Sim:1S-I4-LG-20M=39

Figure 5.3: Simulated throughput when a non-WiFi interferer is turned on and
off, compared against throughput measured experimentally.

5.3 Summary

We show that SIMn can accurately simulate delay due to both WiFi and non-WiFi in-
terference. We also demonstrate that WiFi and non-WiFi interference must be handled
differently in order to accurately simulate shorter aggregated frames when collecting with
FACOL=MAX (i.e., FASIM < FACOL).

47

Chapter 6

Simulating Channel Error Rate

Along with the Physical Layer Data Rate (PLDR) and channel access (delay), channel
error rate is one of the major factors in determining the throughput for an 802.11n network.
Error can be introduced when multiple WiFi devices transmit at the same time, resulting
in a packet collision (i.e., an undecodeable frame). Error can also be caused by non-WiFi
interferers that begin transmitting after the device performs channel sensing and begins
transmitting. Furthermore, error may be caused by path loss when signal strength is low
due to the distance between a sender and receiver or because of obstacles like walls or
furniture, that obscure the path between the two devices. We begin by describing the need
to consider the subframe index when computing the fate of a subframe in Section 6.1 and
then describe the simulation of path loss in Section 6.2.

6.1 Subframe Index Error Rates

An aggregated frame consists of multiple individual frames, which we refer to as subframes.
Each subframe in an aggregated frame is indexed from 0 to n − 1, with index 0 being
transmitted first and n − 1 last. In our initial implementation of SIMn, we treated the
successes and failures of individual subframes as samples in the computation of an error
rate for a time window. For example, if we sent 5 aggregated frames, each containing
30 subframes, 15 successful and 15 failing, we would compute the error rate to be 50%
because a total of 75 subframes were successfully transmitted and 75 failed. We found
that simulated throughput did not always closely match experimental throughput, even
though the error rates obtained in the simulator were similar to those in the experiments.
However, we found that the average length of aggregated frames differed significantly in

48

simulation compared to experimentation. We found that the error rate can vary with
the subframe index. Byeon et al. find that that subframes transmitted more than 2 ms
after the beginning of the transmission of an aggregated frame have a lower probability
of being successfully received [8]. We find that the pattern of subframe error rates differs
significantly across different scenarios. In some scenarios the pattern is similar to that
found by Byeon et al., in others we see high error rates for the first subframe index with
a sharp decrease in the following subframes indices, and in others we see subframe error
rates that are roughly uniform across all subframe indices. Because we have observed
several different patterns, we use a technique that will work with any pattern, including
environments where the pattern changes over time. SIMn now computes individual error
rates for each subframe index, rather than using an average error rate across the entire
aggregated frame. We refer to this as a Subframe Index Error Rate (SFIER). We now
evaluate the impact of SFIERs on simulated throughput.

Experiment Setup:

We generate two synthetic traces with equal overall error rates of 41%, but using two
different SFIER patterns. We use synthetic traces due to the difficulty in experimentally
obtaining traces with the same overall error rate with different SFIER patterns. The
first trace has a linearly increasing SFIER from 0.025 at index 0 to 0.8 at index 31 (i.e.,
SFIER = 0.025, 0.050, 0.075, . . . , 0.775, 0.800 for the indices 0, 1, 2, . . . , 30, 31, respec-
tively). The second trace is the opposite, with the SFIERs decreasing linearly from 0.8
at index 0 to 0.025 at index 31 (i.e., SFIER = 0.800, 0.775, 0.750, . . . , 0.050, 0.025 for
the indices 0, 1, 2, . . . , 30, 31, respectively). We simulate throughput for the rate config-
uration 3S-I7-SG-40M=450 using the two synthetic traces, treating all subframe indices
equally, as in our initial implementation of SIMn. We then repeat the simulations us-
ing our current implementation of SIMn which considers each SFIER individually. We
expect that a decreasing SFIER pattern will result in lower throughput, as failures at
the start of an aggregate frame will prevent the Block-Ack Window (BAW) (described
in Section 4.2.1), from advancing and thus will reduce the average length of aggregated
frames in the simulation.

We plot throughput for the two synthetic traces in Figure 6.1. The bars on the left show
results obtained using the current implementation with per-SFIERs and those on the right
show results obtained using the initial implementation where SFIERs are averaged. These
results show that when considering per-SFIERs, an increasing SFIER pattern results in
higher throughput than a decreasing pattern, even though they have the same average error
rate. As expected, when all subframe indices are treated equally (i.e., they are averaged)
we find that both patterns result in the same throughput. This is because the overall error

49

rate of both traces is the same, at 41%. These experiments demonstrate the importance
of considering individual SFIERs.

 0

 50

 100

 150

 200

 250

Increasing Decreasing

T
hr

ou
gh

pu
t

(M
bp

s)

Subframe Index Error Rate Pattern

Per-Subframe
Averaged

Figure 6.1: Simulated throughput for increasing and decreasing SFIERs when
using per-subframe and averaged error rates.

6.2 Path Loss

To evaluate the simulation of channel error rate in T-SIMn we focus on path loss because,
unlike WiFi and non-WiFi interference, it allows the channel error rate to be studied in
isolation from channel access (delay). Due to Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA), WiFi devices will delay transmission in the presence of WiFi and
non-WiFi interference to avoid transmitting at the same time as the interferer. Although
collisions can still occur if the interferer begins transmitting after the WiFi device has begun
transmitting, we find that error rates remain relatively low when using our non-WiFi signal
generator to create interference. Therefore, we now evaluate the accuracy of SIMn using
a challenging mobile scenario, with error rates that will be significantly impacted by path
loss.

Experiment Setup:

We create a network between the Access Point (AP) (sender) and a MacBook Pro
(MBP). The sender is set to a constant rate configuration of 2S-I4-SG-40M=180. We
choose this rate configuration because it experiences a wide range of error rates in this

50

mobile scenario. We collect a 100-second trace with FACOL=MAX. At time t = 0 seconds,
the MBP is held in close proximity (1 meter) to the sender . At t = 10, we begin walking
slowly away from the sender in a C shape until reaching a wall at t = 80, roughly 10 m
from the sender with cubicle walls obscuring line of sight. At t = 85, we quickly change
direction, walking quickly towards the sender until trace collection ends at at t = 100.
We expect that due to path loss, throughput will decrease as we move further away from
the sender and that it will increase as we move towards the sender . Signal strength
decreases exponentially with distance and is decreased by obstacles, such as walls, that
block line of sight. Reduced signal strength leads to increased error rates and decreased
throughput. We simulate throughput for the rate configuration 2S-I4-SG-40M=180,
using the collected trace as input to the simulator. This tests SIMn’s ability to accurately
simulate throughput with fluctuating error rates (with many samples due to constant
rate trace collection).

In Figure 6.2, we plot pairs of throughput measurements, simulated and experimental,
for the mobile scenario. This graph shows that throughput decreases quickly until t = 20
seconds. From t = 20 to t = 80, the throughput fluctuates significantly. At t = 85, there is
a rapid drop in throughput as the MBP is moved quickly to change direction. Throughput
then increases until the end of the trace, as we move closer to the sender . Despite the
significant fluctuations from t = 20 to t = 80, there is a close match between simulated
and experimental throughput in all time intervals. This suggests that the simulator can
accurately simulate a variety of channel error rates.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp:2S-I4-SG-40M=180
Sim:2S-I4-SG-40M=180

Figure 6.2: Simulated throughput for a mobile scenario experiencing path loss.

51

6.3 Summary

We show that in order to match the wide range of subframe loss patterns that can occur
during trace collection, Subframe Index Error Rates (SFIERs) must be considered during
simulation. We demonstrate that SIMn can accurately simulate a mobile scenario with
a wide range of error rates. Unlike Chapter 4 and Chapter 5, we are unable to test the
simulation of shorter aggregated frames due to a lack of experiment repeatability with path
loss. However, the following chapter tests the entire framework in challenging scenarios
that will require SIMn to simulate shorter aggregated frames from traces collected with
FACOL=MAX.

52

Chapter 7

Combining Trace Collection and
Simulation

In the previous chapters, we use constant rate trace collection in order to test the T-SIMn
simulator, SIMn. By limiting trace collection to constant rates, we have a large number of
samples for each time interval. Although not representative of how trace collection would
be done in T-SIMn, this technique is used to evaluate SIMn on its own. In this chapter, we
evaluate the T-SIMn framework as a whole, using round-robin trace collection, in conditions
that are representative of those in which WiFi is used. Recall from Chapter 6 that we are
unable to obtain repeatable traces in scenarios that include path loss. Obtaining repeatable
traces becomes even more challenging in uncontrolled environments, where interference
from WiFi and non-WiFi devices is unpredictable. In order to evaluate T-SIMn in these
conditions, we make use of an experimental methodology that is used to evaluate T-RATE,
which does not require repeatability. We describe this approach in Section 7.1 and describe
a revised evaluation methodology in Section 7.2 for 802.11n with Frame Aggregation (FA).
We then evaluate T-SIMn in a completely uncontrolled environment, in Section 7.3.

7.1 Evaluating the T-SIMn Framework

To evaluate T-RATE in scenarios where repeatable traces could not be obtained, Abedi and
Brecht [2] collect round-robin traces and use these traces to simulate a Rate Adaptation
Algorithm (RAA) that should provide the same short and long term throughput, as is ob-
tained when collecting the trace. This is done using a round-robin RAA but with a different

53

ordering from that used during trace collection. Using this RAA, each rate configuration is
used for the same proportion of time during both trace collection and simulation. There-
fore, the throughput that is obtained during trace during collection is expected to match
simulated throughput. Because the round-robin ordering is different during trace collection
and simulation, the fate of a packet transmitted at time t, with rate configuration r, cannot
simply be obtained by looking up the entry in the collected trace for time t. This is done to
validate the averaging window approach to determining a packet’s fate, referred to as the
trace preparation phase in T-RATE. We evaluate T-SIMn using the same methodology,
first collecting traces by sampling all rate configurations in a round-robin fashion and then
simulating a different algorithm for determining the rate configuration of each packet, in
this case the algorithm is round-robin in a different order. During trace collection, rates
are grouped by a combination of the Guard Interval (GI) and the Channel Bandwidth
(CB). Rates are sampled in the following group order LGI-20MHz, SGI-20MHz, LGI-40MHz,
SGI-40MHz. Within each group, rates are sampled in order from the lowest Modulation and
Coding Scheme (MCS) to the highest (i.e., MCS 0, 1, ..., 6, 7). We simulate round-robin in
the reverse group order (i.e., SGI-40MHz, LGI-40MHz, SGI-20MHz, LGI-20MHz) and from the
highest MCS to the lowest (i.e., MCS 7, 6, ..., 1, 0). Recall from Section 3.3.1 that sampling
all 96 rates supported by our WiFi devices takes over 300 ms, which is longer than the
channel coherence time and averaging window that we use in T-SIMn. In order to evaluate
T-SIMn in a real-world scenario, we limit trace collection to the set of 1-Spatial Stream
(SS) rates. Widely popular small devices, such as cell phones, commonly have only one
WiFi antenna due to power and space restrictions, and therefore only support 1-SS rates.
In Section 8.3.1, we discuss the research topic of trace collection with 2 or more SSs, which
is currently being explored. We now describe the experimental setup that is used to collect
traces for evaluating T-SIMn.

Experiment Setup:

We create a network between the Access Point (AP) (sender) and an iPhone 6 (receiver).
The sender is configured to sample all 1-SS 802.11n rate configurations. This includes 8
MCSs, 2 GIs and 2 CBs, for a total of 32 rate configurations. This is the entire set of
802.11n rate configurations supported by the iPhone 6. We collect two 100-second traces
with FACOL=MAX, each using a different scenario. In the first scenario, we test gradual
increases and decreases in error rate, such as a person walking towards or away from an
AP. We consider this scenario to be representative of typical mobile WiFi usage. In the
second scenario, we test large increases in error rate, such as those experienced when
a device is moved far away from an AP. This scenario represents very poor channel
conditions, where a device may be close to losing connectivity with the AP. We now
describe the experimental methodology for collecting traces for the two scenarios:

54

Scenario 1
At time t = 0 seconds, the receiver is held in close proximity (1 meter) to the
sender . We begin walking slowly away from the sender for 55 seconds until we
reach a wall. Between t = 55 and t = 65, we slowly turn around. We then begin
walking slowly towards the sender until trace collection ends at t = 100. The
receiver ’s positions at t = 0 and t = 100 are approximately the same (i.e., the
receiver returns to the starting position at the end of trace collection).

Scenario 2
At time t = 0 seconds, the receiver is held further from the sender than in Scenario
1, at roughly 4 meters away, facing a door that allows us to exit the room quickly.
The receiver remains stationary for the first 20 seconds of the experiment. At
t = 20, the door is opened and we walk through, allowing the door to close behind
us. The path between the sender and the receiver is now obstructed by a wall
and a door made of metal, which lowers the signal strength. We walk further away
from the sender , stopping at t = 50. We remain stationary for 20 seconds, holding
the phone still. At t = 70, we walk towards the door, moving closer to the sender .
At t = 80, we open the door and quickly enter the room, allowing the door to close
behind us. At t = 90 s, we turn around to face the door, returning to the starting
position. We remain still until trace collection ends at t = 100.

In both scenarios, we expect that throughput will decrease as we move further from
the sender and increase as we move closer. We expect throughput to be lower in the
second scenario due to the receiver being further from the sender throughout the entire
experiment and due to path loss from the wall and door.

In Figure 7.1 and Figure 7.2, we plot simulated and experimental throughput for the two
scenarios, respectively. In Scenario 1, we find that simulated throughput matches experi-
mental throughput (i.e., they have overlapping confidence intervals) except for the points
at time t = 20 to 25, where simulated throughput is roughly 5% lower than experimen-
tal throughput. In Scenario 2, we find that simulated throughput matches experimental
throughput except for the points at times t = 20, t = 60 and t = 100. The largest dif-
ference is observed at t = 60, where simulated throughput is roughly 11% higher than
experimental throughput. At times t = 20 and t = 100, simulated throughput is roughly
1% lower than experimental throughput. While there is a throughput match for the ma-
jority of the time intervals in both scenarios, in terms of overlapping confidence intervals,
the match is not as close as with T-RATE for 802.11g networks. Initially, we thought that
this was due to inaccuracy in SIMn but upon closer investigation, we realized that the
opposite is true. Our assumption that simulating round-robin in a different order would

55

result in each rate configuration being used for the same proportion of time, in both trace
collection and simulation, is no longer guaranteed in 802.11n networks. In the following
section, we investigate and explain why the sampling order of round-robin trace collection
impacts throughput.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp: Round-Robin 1S Scenario 1
Sim: Round-Robin 1S Scenario 1

Figure 7.1: Scenario 1 Round-robin simulated in the reverse order of trace
collection.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp: Round-Robin 1S Scenario 2
Sim: Round-Robin 1S Scenario 2

Figure 7.2: Scenario 2 Round-robin simulated in the reverse order of trace
collection.

56

7.2 The Importance of Rate Configuration Ordering

When using round-robin trace collection with T-RATE for 802.11g networks, each rate con-
figuration that is sampled is independent from the last (i.e., the fate of the previous frame
does not impact the fate of the current frame). This allows round-robin trace collection to
be compared against a round-robin simulation performed in any order. However, in 802.11n
networks, the fate of previous frames impacts Frame Aggregation (FA) due to the Block-
Ack Window (BAW). Failed aggregated frames, or subframes, limit how far forward the
BAW can be advanced. This can, in turn, limit the length of the current aggregated frame.
Recall from Figure 1.1 that the number of subframes being aggregated has a significant
impact on throughput, with longer aggregated frames leading to higher potential through-
put. In T-SIMn, we sample rates in the group order LGI-20MHz, SGI-20MHz, LGI-40MHz,
SGI-40MHz. Importantly, the rates are sampled in order from the lowest Modulation and
Coding Scheme (MCS) to the highest (i.e., MCS 0, 1, ..., 6, 7). This means that the most
robust rates in each group are sampled first and the least robust rates are sampled last.
In Scenario 2, shown in Figure 7.2, we have examined the data in detail and found that
at times t = 50 to 70, the reverse ordering performed during simulation leads to longer
aggregated frames on average (a mean of 15.2 subframes in each aggregated frame during
simulation compared to 14.6 in the experiment), which results in slightly higher through-
put during this period. In contrast, the average length of aggregated frames was higher in
the remaining time intervals of the trace, with aggregated frames being shorter on average
during simulation than experimentation. Although there is a match in simulated and ex-
perimental throughput during these time intervals (i.e., overlapping confidence intervals),
the simulated throughputs are visibly lower for most times t. Simulating longer frames
than those that were collected may also lead to inaccuracy due to a lack of statistics for
subframes with higher indices than those in the collected frames.

We now expect different round-robin orderings to result in different throughput, unless
the behavior of the Block-Ack Window (BAW) advancement and consequently Frame Ag-
gregation (FA), is the same during trace collection and simulation. To test this hypothesis,
we construct a new ordering that preserves the property that the most robust rates in each
group are sampled first and the least robust rates are sampled last. We sample rate groups
in the reverse order, SGI-40MHz, LGI-40MHz, SGI-20MHz, LGI-20MHz. However, within each
group, we sample rates in order from the lowest Modulation and Coding Scheme (MCS) to
the highest (i.e., the same as during trace collection). We simulate round-robin in this new
reverse group order and show simulated and experimental throughput for Scenario 1 and
Scenario 2, in Figure 7.3 and Figure 7.4, respectively. We now observe a very close match
of simulated and experimental throughput in both scenarios, for all time intervals, with

57

confidence intervals overlapping in all cases. Note that this property does not limit SIMn
to simulating only certain orderings of rate configurations. It is only when evaluating the
accuracy of T-SIMn by comparing with results obtained from an experiment that we must
consider this property. Now that we are aware of this property, we will use the reverse
group ordering in the following section, where we evaluate T-SIMn in an uncontrolled envi-
ronment. In Section 8.3, we discuss possible trace collection techniques to avoid aggregated
frame length being limited by the BAW, to avoid the potential inaccuracy that we mention
above.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp: Round-Robin 1S Scenario 1 - Reversed Groups
Sim: Round-Robin 1S Scenario 1 - Reversed Groups

Figure 7.3: Scenario 1 Round-robin simulated in the reverse rate configuration
group order of the trace (i.e., SG-40M, LG-40M, SG-20M, LG-20M), but MCS
indices going from low to high within each group (i.e., 0, 1, ..., 7), like the trace.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp: Round-Robin 1S Scenario 2 - Reversed Groups
Sim: Round-Robin 1S Scenario 2 - Reversed Groups

Figure 7.4: Scenario 2 Round-robin simulated in the reverse rate configuration
group order of the trace (i.e., SG-40M, LG-40M, SG-20M, LG-20M), but MCS
indices going from low to high within each group (i.e., 0, 1, ..., 7), like the trace.

58

7.3 Uncontrolled Trace Collection and Simulation

Up to this point, all experiments are performed on a 5 GHz channel with no neighboring
Access Points (APs). We now move to a different 5 GHz channel that is in use by the
university’s WiFi network, to evaluate T-SIMn in conditions that are typical for a shared
university WiFi network. This includes interference from many third-party WiFi clients
and APs. We now describe the setup that is used to collect traces in this environment.

Experiment Setup:

Similarly to the previous section, we create a network between the AP (sender) and
an iPhone 6 (receiver). However, unlike previous experiments, we now configure the
AP to use a channel occupied by one of the university’s APs. We choose the 5 GHz
channel that is occupied by the AP with the highest signal strength. We use a 5 GHz
channel because the iPhone does not support 40 MHz Channel Bandwidths (CBs) in
the 2.4 GHz spectrum. Note that if we had used the 2.4 GHz band, thus limiting
trace collection to 20 MHz rate configurations, we would have obtained twice as many
samples in each averaging window which should only improve accuracy. As in previous
experiments, we sample all 1-Spatial Stream (SS) 802.11n rate configurations. We collect
a 100 second trace with FACOL=MAX to test T-SIMn in an uncontrolled environment. At
time t = 0 seconds, the receiver is held in close proximity (1 meter) to the sender . At
t = 25, we walk to the metal door, leaving the room at t = 35. At t = 45, we re-enter
the room and stop moving at t = 60. We remain stationary for the remainder of trace
collection, ending at t = 100. We check for matches between simulated and experimental
throughput for this trace.

In Figure 7.5, we plot pairs of throughput measurements, simulated and experimental,
for the uncontrolled experiment. We find that while the receiver is stationary from t = 60
to 100 in Figure 7.5, there is significantly more fluctuation in throughput when compared
to Scenario 2 from t = 10 to 40 in Figure 7.4. This is due to delay from third-party WiFi
traffic on the shared channel. This is expected due to students using the network. The close
matches in throughput suggest that T-SIMn is accurately capturing and simulating third-
party traffic and that T-SIMn can accurately simulate conditions that are representative
of those in which WiFi devices are used.

59

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100

T
hr

ou
gh

pu
t

(M
bp

s)

Time (Seconds)

Exp: Round-Robin 1S Uncontrolled Scenario
Sim: Round-Robin 1S Uncontrolled Scenario

Figure 7.5: Uncontrolled Mobile Scenario Simulated round-robin through-
put for a mobile scenario experiencing path loss and WiFi interference. Round-
robin is simulated in the reverse rate configuration group order of the trace
(i.e., SG-40M, LG-40M, SG-20M, LG-20M), but MCS indices going from low to
high within each group (i.e., 0, 1, ..., 7), like the trace.

7.4 Summary

We collect round-robin traces and simulate round-robin using a different ordering of rate
configurations to evaluate the T-SIMn framework in conditions that are representative of
those in which WiFi devices are used. However, initially the match between experimental
and simulated throughput was not as close as was obtained with T-RATE for 802.11g.
We then investigated the evaluation methodology in greater detail and discovered that
the round-robin ordering of rate configurations impacts throughput due to Frame Aggre-
gation (FA) in 802.11n, which was unexpected. This demonstrates the power of T-SIMn
because this property would be challenging to observe experimentally. Using the traces
and SIMn we were able to understand this important property. We correct the evaluation
methodology and obtain a close match in simulated and experimental throughput which
suggests that the T-SIMn framework is highly accurate in simulating 802.11n devices with
1 antenna in uncontrolled environments.

60

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we describe the development of a trace-based simulation framework for
802.11n networks, called T-SIMn, that is based on an existing framework, T-RATE. In
particular, we focus on the implementation of the simulator component of the framework,
called SIMn. We find that careful consideration of both the physical layer and MAC
layer features of 802.11n is necessary in order to accurately simulate this standard. We
demonstrate that SIMn accurately simulates one, two and three-antenna rates in 802.11n
with Frame Aggregation (FA), by obtaining throughput metrics from the simulator that
closely match those obtained experimentally. We show that aggregated frames of any length
(i.e., FASIM=1, FASIM=2, . . . , FASIM=MAX can be accurately simulated from longer aggregated
frames (i.e., FACOL=MAX). Furthermore, we find that SIMn accurately simulates delay due to
WiFi and non-WiFi interference, and error rates due to path loss. Despite the complexity
of the interdependent physical and MAC layer features in 802.11n, we are able to accurately
simulate challenging mobile scenarios using SIMn.

We develop a new implementation for the trace collection phase and demonstrate that
in its current state, the T-SIMn framework can be used with 1 Spatial Stream (SS) (i.e.,
1 antenna) devices. The iPhone 6 (and all earlier versions) contain one WiFi antenna,
along with most phones from other manufacturers. As a minor indication of the number
of devices this framework can be applied to, over 230 million iPhones were sold in Apple’s
2015 fiscal year alone [6].

With so many devices being limited to 1 SS, T-SIMn is a valuable tool for mobile phones.
The groundwork has also been laid for simulating more SSs (i.e., support for these rates has

61

been implemented and tested in SIMn). Full trace-based simulations should be possible
once better trace collection techniques are developed. We discuss the limitations of T-SIMn
in greater detail in Section 8.2 and discuss avenues for future research or improvements to
T-SIMn in Section 8.3.

8.2 Limitations

While we show that in its current state SIMn can simulate 802.11n networks with WiFi
interference, non-WiFi interference and path loss, we envision that it will become a plat-
form for fairly comparing competing algorithms (e.g., Rate Adaptation Algorithms (RAAs)
or Frame Aggregation Algorithms (FAAs)) or configurations (e.g., Long Guard Intervals
(LGIs) and Short Guard Intervals (SGIs), or 20 and 40 MHz Channel Bandwidths (CBs))
for 802.11n networks. We now discuss the limitations of the current implementation of
T-SIMn and limitations of the evaluation for SIMn.

8.2.1 Tight Coupling with Channel Coherence Time

To determine the fate of a frame at time t, T-SIMn uses samples that are collected within
the channel coherence time to compute an error rate. Samples falling outside the channel
coherence time may be collected in channel conditions that differ from those at time t.
Because of this requirement, T-SIMn’s approach to determining the fate of a frame is
tightly coupled with the channel coherence time. We limit trace collection to 1 antenna
rate configurations in the evaluation of T-SIMn in order to obtain sufficient samples for
each rate configuration in the channel coherence time. We also limit the evaluation to
scenarios that are stationary or use walking speeds, as channel coherence time generally
decreases as movement speeds increase. Further evaluation is required to better understand
how different environments and different movement speeds affect channel coherence times,
and to understand the impact of channel coherence times on the ability of the T-SIMn
framework to identically match the physical reality of a scenario. Note, however, that we are
referring to the ability of T-SIMn to capture channel conditions that exactly match reality,
rather than the accuracy in simulating different algorithms. Although almost all scenarios
examined in this thesis have very close matches, we may not be able to capture channel
conditions as accurately in environments with shorter coherence times. It is important to
understand that the framework still allows for the fair comparison of different algorithms.
Each algorithm is subjected to the exact same channel conditions, even if the channel
conditions do not identically match reality.

62

8.2.2 Evaluations Requiring Repeatability

To evaluate the accuracy of T-SIMn in simulating shorter aggregated frames from traces
collected with FACOL=MAX we require experimental repeatability. Recall that we use an ex-
periment run with FACOL=N as ground truth and compare against a simulation of FASIM=N
from the trace collected with FACOL=MAX. Environmental conditions must be the same dur-
ing the collection of the trace and all experiments that we wish to conduct (i.e., conditions
must remain the same during the collection of the trace with FACOL=MAX and the experi-
ments with FACOL=N for all values of N being tested). In the evaluation of T-RATE [2],
repeatbility was obtained by conducting experiments in an environment with no external
interference and using an electric train to move the sender at the same speed, following the
same path in each run of an experiment. Unfortunately, we were unsuccessful in creating
scenarios with experimental repeatability that include path loss or WiFi and non-WiFi
interference (i.e., we found that throughput differed between identical runs of experiments
using these scenarios) in 802.11n with FA. Our evaluation of simulating shorter aggregated
frames is therefore limited to error-free scenarios, in which we are able to obtain consistent
throughput between runs of each experiment, and indirectly in the uncontrolled scenarios
in Chapter 7, where simulated aggregated frame lengths do not always match those in the
experiments.

We would also require experimental repeatability in order to evaluate T-SIMn with
real RAAs, as we would need to compare simulated throughput from a round-robin trace
against an experiment using the RAA. To avoid this requirement, we evaluate T-SIMn
using an RAA that we can expect to produce the same throughput as obtained during
trace collection. In this case we simulate round-robin in a different ordering. For further
evaluation of T-SIMn and SIMn we hope to construct repeatable experiments using the
controlled introduction of errors, possibly using different frequency hopping patterns than
were used in Section 5.2 with the signal generator, controlling the signal strength of the
sender, or both.

8.3 Future Work

We now discuss future areas of research to address the limitations described in the previous
section and specific use cases for T-SIMn that we hope to explore.

63

8.3.1 Trace Collection with More Rate Configurations

In Chapter 7, we have evaluated T-SIMn when sampling at most 32 rate configurations, by
limiting the set of rates to those that use 1-SS only. However, 802.11n networks support
128 rate configurations through a combination of 4 SSs, 8 Modulation and Coding Schemes
(MCSs), 2 Guard Intervals (GIs) and 2 CBs. Sampling the 96 rate configurations supported
by our devices (maximum of 3 SSs) in a round-robin fashion requires over 300 ms, which
means that each round is longer than the channel coherence time of 100 ms that we use in T-
SIMn. As a result, we are not able to obtain enough samples to closely match simulated and
experimental throughput when collecting with all 96 rate configurations. This problem is
being investigated by Ali Abedi, the co-author of T-RATE [2], using correlations between
rate configurations. Early results are promising and we expect this to allow a greater
number of rates to be sampled in T-SIMn in the future, making it useful for devices with
more than 1 antenna.

8.3.2 Simulating Rate Adaptation Algorithms

We expect that T-SIMn will be capable of simulating statistically-based 802.11n RAAs,
which rely on error rate statistics to choose which rate configurations to use, similarly
to how T-RATE simulates RAAs for 802.11g. We provide an RAA interface in SIMn
that is similar to the mac80211 module in the Linux kernel. This should allow common
RAAs, such as Minstrel-HT, to be ported to the simulator. However, validating the T-
SIMn simulator with RAAs will be challenging due to the difficulty in obtaining repeatable
traces with path loss. While the current approach to trace collection relies on error rate
statistics, it may be possible to collect Channel State Information (CSI) [14], which provides
additional link quality information, to evaluate a wider range of RAAs. For example, the
Effective SNR [13] RAA uses CSI to predict the highest rate configuration that will be
successfully received, rather than using statistics from past frames to make predictions.

8.3.3 Better Evaluation of Frame Aggregation Algorithms

In Section 4.2.2, we show that T-SIMn is capable of accurately simulating shorter aggre-
gated frames, despite performing trace collection with FACOL=MAX. However, this evaluation
is performed in an error-free environment. We show that simulated and experimental
throughput matches in the presence of interference (Chapter 5) and path loss (Chapter 6).
Although we do not directly study aggregation of shorter frames from FACOL=MAX traces in

64

these environments, we have shown that in uncontrolled environments, the T-SIMn frame-
work is highly accurate. Further research in this area may allow FAAs to be evaluated in
T-SIMn. Byeon et al. [8] find that decreasing the maximum length of aggregated frames can
increase throughput in a mobile environment due to their observation that higher subframe
indices had higher error rates. They propose an FAA, called MoFA [8], which adapts the
length of aggregated frames based on the Subframe Index Error Rates (SFIERs). Since
the T-SIMn framework uses SFIERs, it should be an ideal platform for evaluating and
comparing existing and new FAAs. Much like with RAAs, T-SIMn could allow multiple
FAAs to be fairly compared using common traces, ensuring fair comparisons and reducing
the experimental effort required. For example, MoFA is evaluated by comparing average
throughput of multiple mobile trials, with and without the FAA. This evaluation methodol-
ogy is time consuming and may be unfair, as it is challenging to repeat mobile experiments
(e.g., maintaining the exact same walking speed and path across trials).

8.3.4 Simulating 802.11ac

802.11ac is the successor to 802.11n and was officially ratified in January 2014. 802.11ac
supports even more rates than 802.11n, with the availability of 80 and 160 MHz CBs (in
addition to the existing 20 and 40 MHz CBs), as well as up to 8 SSs (compared to 4 SSs in
802.11n). MAC layer features such as FA and Block Acknowledgment (BA) remain similar
in 802.11ac, which may make the transition from 802.11n to 802.11ac simpler than from
802.11g to 802.11n. Unfortunately, much of the functionality in Ath9k has been moved to
closed source firmware in the Ath10k 802.11ac device driver, which may make it challenging
to port T-SIMn to 802.11ac using the current drivers and hardware.

8.4 Concluding Remarks

We believe that T-SIMn is a valuable tool for studying widely used devices with 1 antenna
and that work currently in progress will enable complex, multi-antenna devices to be
studied in the future. We look forward to T-SIMn being used to fairly and easily evaluate
new RAAs and FAAs in environments that are representative of those in which WiFi
devices are typically used.

65

APPENDICES

66

Appendix A

802.11 Rate Tables

For reference, Table A.1 and Table A.2 show the Physical Layer Data Rates (PLDRs) in
802.11g and 802.11n, respectively. These tables also show the combinations of modulation
types and coding rates (as well as Guard Intervals (GIs) and Channel Bandwidths (CBs)
in 802.11n) that lead to each PLDR.

Table A.1: 802.11g Rate Table [12]

MCS Index Modulation Type Coding Rate Data Rate (Mbps)

0 BPSK 1/2 6
1 BPSK 3/4 9
2 QPSK 1/2 12
3 QPSK 3/4 18
4 16-QAM 1/2 24
5 16-QAM 3/4 36
6 64-QAM 2/3 48
7 64-QAM 3/4 54

67

Table A.2: 802.11n Rate Table [12]

Data Rate (Mbps)

20 MHz 40 MHz

SSs MCS
Index

Modulation
Type

Coding
Rate LGI SGI LGI SGI

1 0 BPSK 1/2 6.5 7.2 13.5 15.0
1 1 QPSK 1/2 13.0 14.4 27.0 30.0
1 2 QPSK 3/4 19.5 21.7 40.5 45.0
1 3 16-QAM 1/2 26.0 28.9 54.0 60.0
1 4 16-QAM 3/4 39.0 43.3 81.0 90.0
1 5 64-QAM 2/3 52.0 57.8 108.0 120.0
1 6 64-QAM 3/4 58.5 65.0 121.5 135.0
1 7 64-QAM 5/6 65.0 72.2 135.0 150.0
2 0 BPSK 1/2 13.0 14.4 27.0 30.0
2 1 QPSK 1/2 26.0 28.9 54.0 60.0
2 2 QPSK 3/4 39.0 43.3 81.0 90.0
2 3 16-QAM 1/2 52.0 57.8 108.0 120.0
2 4 16-QAM 3/4 78.0 86.7 162.0 180.0
2 5 64-QAM 2/3 104.0 115.6 216.0 240.0
2 6 64-QAM 3/4 117.0 130.0 243.0 270.0
2 7 64-QAM 5/6 130.0 144.4 270.0 300.0
3 0 BPSK 1/2 19.5 21.7 40.5 45.0
3 1 QPSK 1/2 39.0 43.3 81.0 90.0
3 2 QPSK 3/4 58.5 65.0 121.5 135.0
3 3 16-QAM 1/2 78.0 86.7 162.0 180.0
3 4 16-QAM 3/4 117.0 130.0 243.0 270.0
3 5 64-QAM 2/3 156.0 173.3 324.0 360.0
3 6 64-QAM 3/4 175.5 195.0 364.5 405.0
3 7 64-QAM 5/6 195.0 216.7 405.0 450

68

References

[1] Ali Abedi. Personal communication, 2015.

[2] Ali Abedi and Tim Brecht. T-RATE: A framework for the trace-driven evaluation
of 802.11 rate adaptation algorithms. In Modelling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2014 IEEE 22nd International
Symposium on, pages 1–10. IEEE, 2014.

[3] Ali Abedi, Andrew Heard, and Tim Brecht. Conducting repeatable experiments and
fair comparisons using 802.11n MIMO networks. ACM SIGOPS Operating Systems
Review, 49(1):41–50, 2015.

[4] AirMagnet. Fluke networks. http://www.flukenetworks.com/enterprise-network/-
wireless-network/AirMedic.

[5] Jeffrey G Andrews, Arunabha Ghosh, and Rias Muhamed. Fundamentals of WiMAX:
understanding broadband wireless networking. Pearson Education, 2007.

[6] Apple Inc. Annual Report - Form 10-K, 2015. http://investor.apple.com/secfiling-
.cfm?filingID=1193125-15-356351.

[7] Ryan Burchfield, Ehsan Nourbakhsh, Jeff Dix, Kunal Sahu, S Venkatesan, and Ravi
Prakash. RF in the jungle: Effect of environment assumptions on wireless exper-
iment repeatability. In IEEE International Conference on Communications, pages
1–6. IEEE, 2009.

[8] Seongho Byeon, Kangjin Yoon, Okhwan Lee, Sunghyun Choi, Woonsun Cho, and
Seungseok Oh. MoFA: Mobility-aware frame aggregation in Wi-Fi. In Proceedings of
the 10th ACM International on Conference on emerging Networking Experiments and
Technologies, pages 41–52. ACM, 2014.

69

http://www.flukenetworks.com/enterprise-network/wireless-network/AirMedic
http://www.flukenetworks.com/enterprise-network/wireless-network/AirMedic
http://investor.apple.com/secfiling.cfm?filingID=1193125-15-356351
http://investor.apple.com/secfiling.cfm?filingID=1193125-15-356351

[9] Lara Deek, Eduard Garcia-Villegas, Elizabeth Belding, Sung-Ju Lee, and Kevin
Almeroth. Joint rate and channel width adaptation for 802.11 MIMO wireless net-
works. In 10th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON), pages 167–175. IEEE, 2013.

[10] Lara Deek, Eduard Garcia-Villegas, Elizabeth Belding, Sung-Ju Lee, and Kevin
Almeroth. Intelligent channel bonding in 802.11n WLANs. IEEE Transactions on
Mobile Computing, 13(6):1242–1255, 2014.

[11] Lara Deek, Eduard Garcia-Villegas, Elizabeth Belding, Sung-Ju Lee, and Kevin
Almeroth. A practical framework for 802.11 MIMO rate adaptation. Computer Net-
works, 2015.

[12] Mattew S. Gast. 802.11n: A Survival Guide. O’Reilly, 2012.

[13] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. Predictable 802.11
packet delivery from wireless channel measurements. ACM SIGCOMM Computer
Communication Review, 41(4):159–170, 2011.

[14] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. Tool release: Gath-
ering 802.11n traces with channel state information. ACM SIGCOMM Computer
Communication Review, 41(1):53–53, 2011.

[15] Christopher Hepner, Arthur Witt, and Roland Muenzner. In depth analysis of the
ns-3 physical layer abstraction for WLAN systems and evaluation of its influences on
network simulation results. International Workshop on Socially Intelligent Computing,
pages 46–51, 2015.

[16] Pei Huang, Xi Yang, and Li Xiao. Adaptive channel bonding in multicarrier wireless
networks. In Proceedings of the fourteenth ACM international symposium on Mobile
ad hoc networking and computing, pages 297–300. ACM, 2013.

[17] Glenn Judd and Peter Steenkiste. Repeatable and realistic wireless experimentation
through physical emulation. ACM SIGCOMM Computer Communication Review,
34(1):63–68, 2004.

[18] Glenn Judd and Peter Steenkiste. Using emulation to understand and improve wireless
networks and applications. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, Volume 2, pages 203–216. USENIX
Association, 2005.

70

[19] Glenn Judd and Peter Steenkiste. Characterizing 802.11 wireless link behavior. Wire-
less Networks, 16(1):167–182, 2010.

[20] Glenn Judd, Xiaohui Wang, Mei-Hsuan Lu, and Peter Steenkiste. Using physical layer
emulation to optimize and evaluate mobile and wireless systems. In Proceedings of
the 5th Annual International Conference on Mobile and Ubiquitous Systems: Comput-
ing, Networking, and Services, Mobiquitous ’08, pages 26:1–26:10. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008.

[21] Lito Kriara and Mahesh K Marina. SampleLite: A hybrid approach to 802.11n link
adaptation. ACM SIGCOMM Computer Communication Review, 45(2):4–13, 2015.

[22] Mathieu Lacage and Thomas R Henderson. Yet another network simulator. In Pro-
ceeding from the 2006 Workshop on ns-2: The IP Network Simulator. ACM, 2006.

[23] Feng Lu, Geoffrey M Voelker, and Alex C Snoeren. SloMo: Downclocking WiFi
communication. In NSDI, pages 255–258, 2013.

[24] Jouni Malinen. hostapd: IEEE 802.11 AP, IEEE 802.1X, 2015. https://w1.fi/-
hostapd/.

[25] Peter Matulis. Centralised logging with rsyslog. Canonical Technical White Paper,
2009.

[26] Nuts About Nets. RF Explorer Handheld, RF Signal Generator, 2015. http://-
rfexplorer.com/rf-signal-generator/.

[27] ns-3 project. ns-3 Wi-Fi module design documentation, 2016. https://www.nsnam-
.org/docs/models/html/wifi-design.html.

[28] Ioannis Pefkianakis, Yun Hu, Starsky H.Y. Wong, Hao Yang, and Songwu Lu. MIMO
rate adaptation in 802.11n wireless networks. In Proceedings of the Sixteenth Annual
International Conference on Mobile Computing and Networking, MobiCom ’10, pages
257–268. ACM, 2010.

[29] Ioannis Pefkianakis, Suk-Bok Lee, and Songwu Lu. Towards MIMO-aware 802.11n
rate adaptation. IEEE/ACM Transactions on Networking, 21(3):692–705, 2013.

[30] SCALABLE Network Technologies, Inc. QualNet, 2014. http://web.scalable-
networks.com/content/qualnet.

71

https://w1.fi/hostapd/
https://w1.fi/hostapd/
http://rfexplorer.com/rf-signal-generator/
http://rfexplorer.com/rf-signal-generator/
https://www.nsnam.org/docs/models/html/wifi-design.html
https://www.nsnam.org/docs/models/html/wifi-design.html
http://web.scalable-networks.com/content/qualnet
http://web.scalable-networks.com/content/qualnet

[31] Wei-Liang Shen, Kate Ching-Ju Lin, Shyamnath Gollakota, and Ming-Syan Chen.
Rate adaptation for 802.11 multiuser MIMO networks. IEEE Transactions on Mobile
Computing, 13(1):35–47, 2014.

[32] ESnet Software. iperf3, 2015. http://software.es.net/iperf/.

[33] Michiel Steyaert and Willy MC Sansen. Design of Multi-Bit Delta-Sigma A/D Con-
verters. Springer Science & Business Media, 2002.

[34] Mirko Stoffers and George Riley. Comparing the ns-3 propagation models. In IEEE
20th International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 61–67. IEEE, 2012.

[35] Riverbed Technology. SteelCentral Riverbed Modeler, 2016. http://www.riverbed-
.com/products/steelcentral/steelcentral-riverbed-modeler.html.

[36] Peyman Teymoori, Aresh Dadlani, Khosrow Sohraby, and Kiseon Kim. An optimal
packet aggregation scheme in delay-constrained IEEE 802.11n WLANs. In 8th Inter-
national Conference on Wireless Communications, Networking and Mobile Computing
(WiCOM), pages 1–4. IEEE, 2012.

[37] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. Iperf: The
TCP/UDP bandwidth measurement tool, 2005. http://sourceforge.net/projects/-
iperf2/.

[38] Federico Tramarin, Stefano Vitturi, and Michele Luvisotto. Improved rate adaptation
strategies for real-time industrial IEEE 802.11n WLANs. In IEEE 20th Conference
on Emerging Technologies & Factory Automation (ETFA), pages 1–8. IEEE, 2015.

[39] Zenghua Zhao, Fucheng Zhang, Shaoping Guo, Xiang-Yang Li, and Junze Han. Rain-
bowRate: MIMO rate adaptation in 802.11n WiLD links. In IEEE International Per-
formance Computing and Communications Conference (IPCCC), pages 1–8. IEEE,
2014.

[40] Pei Zheng and Lionel M. Ni. EMWIN: Emulating a mobile wireless network using a
wired network. In Proceedings of the 5th ACM International Workshop on Wireless
Mobile Multimedia, WOWMOM ’02, pages 64–71. ACM, 2002.

[41] Junlan Zhou, Zhengrong Ji, and Rajive Bagrodia. TWINE: A hybrid emulation
testbed for wireless networks and applications. In INFOCOM, Volume 6, pages 23–29,
2006.

72

http://software.es.net/iperf/
http://www.riverbed.com/products/steelcentral/steelcentral-riverbed-modeler.html
http://www.riverbed.com/products/steelcentral/steelcentral-riverbed-modeler.html
http://sourceforge.net/projects/iperf2/
http://sourceforge.net/projects/iperf2/

	Author's Declaration
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background and Related Work
	Alternative Approaches to Performance Evaluation
	Experiments
	Emulation
	Simulation
	Summary

	T-RATE (802.11g)
	Trace Collection
	Trace Preparation
	Trace Processing
	Summary

	Overview of 802.11n
	Physical Layer Features
	MAC Layer Features
	Summary
	T-SIMn

	T-SIMn Design and Implementation
	Rate Configurations
	Frame Aggregation Length Notation
	System Overview
	Trace Collection
	Trace Preparation
	Simulation

	Test Bed
	Experimental Methodologies

	Simulating 802.11n Features
	Physical Layer Features
	Multiple Spatial Streams (mimo)
	Short Guard Interval
	Channel Bonding
	Dual Bands
	Summary

	MAC Layer Features
	Block Acknowledgments
	Frame Aggregation
	Summary

	Simulating Channel Access
	WiFi Interference
	Non-WiFi Interference
	Summary

	Simulating Channel Error Rate
	Subframe Index Error Rates
	Path Loss
	Summary

	Combining Trace Collection and Simulation
	Evaluating the T-SIMn Framework
	The Importance of Rate Configuration Ordering
	Uncontrolled Trace Collection and Simulation
	Summary

	Conclusions and Future Work
	Conclusions
	Limitations
	Tight Coupling with Channel Coherence Time
	Evaluations Requiring Repeatability

	Future Work
	Trace Collection with More Rate Configurations
	Simulating Rate Adaptation Algorithms
	Better Evaluation of Frame Aggregation Algorithms
	Simulating 802.11ac

	Concluding Remarks

	APPENDICES
	802.11 Rate Tables
	References

