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Abstract

This thesis presents a multifaceted effort to develop a system that allows electrodiagnostic

clinicians to perform a quantitative analysis of needle detected electromyographic (EMG)

signals for characterization of neuromuscular disorders. Currently, the most widely adopted

practise for evaluation of patients with suspected neuromuscular disorders is based on

qualitative visual and auditory assessment of EMG signals. The resulting characterizations

from this qualitative assessment are criticized for being subjective and highly dependent

on the skill and experience of the examiner.

The proposed system can be decomposed functionally into three stages: (1) extracting

relevant information from the EMG signals, (2) representing the extracted information in

formats suitable for qualitative, semi-quantitative and quantitative assessment, and (3)

supporting the clinical decision, i.e., characterizing the examined muscle by estimating the

likelihood of it being affected by a specific category of neuromuscular disorders.

The main contribution of the thesis to the extraction stage is the development of an

automated decomposition algorithm specifically tailored for characterization of neuromus-

cular disorders. The algorithm focuses on identifying as many representative motor unit

potential trains as possible in times comparable to the times needed to complete a qual-

itative assessment. The identified trains are shown to reliably capture important aspects

of the motor unit potential morphology and morphological stability.

With regards to the representation stage, the thesis proposes ten new quantitative EMG

features that are shown to be discriminative among the different disease categories. Along

with eight traditional features, the features can be grouped into subsets, where each subset

reflects a different aspect of the underlying motor unit structure and/or function. A muscle

characterization obtained using a feature set in which every relevant aspect is included

using the most representative feature is more structured, simple, and generalizable. All

the investigated features are clinically relevant. An examiner can easily validate their values

by visual inspection; interpret them from an anatomical, physiological, and pathological

basis; and is aware of their limitations and dependence on the acquisition setup.

The second main contribution to the representation stage is the evaluation of the possi-

bility of detecting neurogenic disorders using a newly proposed set of quantitative features
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describing the firing patterns of the identified motor units. The last contribution to the

representation stage is the development of novel methods that allow an examiner to detect

contributions from fibres close to the detection surface of a needle electrode and to track

them across a motor unit potential train.

The work in this thesis related to the decision support stage aims at improving existing

methods for obtaining transparent muscle characterization. Transparent methods do not

only estimate the likelihood of the muscle being affected by a specific disorder, but also

induce a set of rules explaining the likelihood estimates. The results presented in this the-

sis show that remodelling the characterization problem using an appropriate binarization

mapping can overcome the decrease in accuracy associated with quantizing features, which

is used to induce transparency rules.

To attain the above mentioned objectives, different signal processing and machine learn-

ing methods are utilized and extended. This includes spectral clustering, Savitzky-Golay

filtering, dynamic time warping, support vector machines, classification based on event

association rules and Gaussian mixture models. The performance of the proposed meth-

ods has been evaluated with four different sets of examined limb muscles (342 muscles in

total). Also, it has been evaluated using simulated EMG signals calculated using physiolog-

ically and anatomically sound models. A system capable of achieving the aforementioned

objectives is expected to promote further clinical adoption of quantitative electromyo-

graphic techniques. These techniques have potential advantages over existing qualitative

assessments including resolving equivocal cases, formalizing communication and evaluating

prognosis.
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Chapter 1

Introduction

1.1 Summary

This chapter presents the main objective of the research carried out for this thesis, namely

improving the clinical utility of quantitative electromyographic (EMG) techniques. The

chapter also lists the design constraints and goals underlying the development of the meth-

ods described in this thesis.

A brief review of the basics of muscle physiology, neuromuscular disorders, needle elec-

tromyography, and quantitative EMG techniques is presented. Understanding these basics

allows a greater appreciation of and insight into the methods presented in the following

chapters.

1.2 Objectives

Neuromuscular disorder (NMD) is a broad term used to refer to more than 40 different

diseases that affect the muscles and/or their direct nervous system control [105]. Most of

these diseases are rare, complex and incurable. Some of them, such as amyotrophic lateral

sclerosis, are debilitating or even fatal [88].
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While confirming a diagnosis of a NMD often involves physical evaluation, DNA analy-

sis, muscle biopsy, and different electrodiagnostic tests, needle electromyography is the gold

standard methodology for assessing NMDs. This can be attributed to the high temporal

and spatial resolution of the information obtained, which are necessary for the detection

of lesions, fibre depletion, and reinnervation [24].

The most widely accepted clinical practise for assessing needle-detected EMG signals

relies on the auditory and visual capabilities of the examiner to detect disease-induced

changes qualitatively. This qualitative assessment is highly dependent on the examiner’s

skill and experience, and has a limited or no ability for reporting and tracking longitudinal

changes. Research has suggested that assessment based on quantitative techniques has

the potential to be more specific and sensitive than qualitative assessment [84]. Moreover,

important clinical information, such as neuromuscular junction stability and muscle fibre

conduction velocities, can be only obtained using quantitative techniques.

The research presented in this thesis aims at improving the clinical utility of quantitative

electromyographic (QEMG) techniques. To this end, this thesis describes the development

of a system that allows electrodiagnostic clinicians to perform quantitative analysis of EMG

signals for characterization of NMDs. For the system to be clinically viable, it needs to

fulfil the following requirements:

� Informative: It should identify clinically relevant information from the EMG signal

and present it through a set of visualizations that can be readily appreciated and

validated by the examiner.

� Precise: It should be able to describe the identified information using a set of feature

estimates that are not sensitive to noise and acquisition protocol and/or setup.

� Decisive: A muscle characterization should be induced based on the extracted quan-

titative features. These characterizations are to be used by the examiner as a basis

of the diagnosis.

� Accurate: These characterizations should be consistent with an expert evaluation

and conforming to the results obtained from other examinations.
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� Transparent: Different system outputs, namely visualizations, quantitative features

and muscle characterizations should be validated by the examiners. Examiners should

also appreciate their clinical relevance and interpret their estimates based on their

expectation of disease-induced changes on the muscle function and structure.

� Sensitive: The characterizations should be indicative of the disease involvement and

discriminative across different NMDs.

� Fast: The system shall be capable of reaching results in a time span comparable to

the time needed to complete a qualitative analysis.

The direct implication of these improvements is to increase the diagnostic power of

QEMG techniques. The availability of visualizations, quantitative features, and muscle

characterizations that can be automatically obtained will motivate further utilization of

QEMG techniques for NMD assessment and other specialities such as senior care, rehabil-

itation, sport medicine, and pain management.

1.3 Background

A proper formulation of a diagnosis of a NMD through either qualitative or quantitative

assessment of EMG signals should be based on interpreting extracted information using

anatomical, physiological and pathological reasoning [30]. This section describes the pro-

cesses underlying the generation of EMG signals and the effects of NMDs.

Unless otherwise mentioned, the term ”EMG signal” will be used to refer to electromyo-

graphic signals as detected using a concentric needle electrode placed in the extracellular

space of a muscle performing a low to moderate isometric contraction.

The contraction of a muscle fibre requires the propagation of transmembrane muscle

fibre action potential (MFAP) along its axis. The properties of the MFAP mainly depend on

fibre diameter and the velocity at which the MFAP propagates [83]. While, the properties

of an extracellularly detected signal, referred to as muscle fibre potential (MFP), in addition
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depends on electrode geometry, the relative position of the muscle fibre to the detection

surface of the electrode and the extracellular conducting medium.

The fibres comprising a given muscle are grouped into motor units. A motor unit is

comprised of an alpha motor neuron and the muscle fibres that the motor neuron inner-

vates. In a normal muscle, when a motor neuron fires, all the muscle fibres belonging to

the motor unit are expected to contract. A group of motor units need to be recruited and

they must fire repeatedly for a muscle to maintain a contraction.

The size principle explains which motor units are recruited at which contraction levels

[55]. The principle states that smaller motor units, i.e., those spanning smaller cross

sectional area, are recruited earlier. As the level of contraction increases, the recruited

motor units fire more often (up to a certain limit) and larger motor units get recruited.

The motor unit is therefore considered to be the functional output component of the

neuromuscular system, since the relative amount of force generated by a muscle depends

on how many motor units are recruited and their firing rates.

The motor unit potential (MUP) is defined as the extracellular signal detected by an

electrode when a motor unit is activated. The MUP is the result of the summation of

the MFPs produced by fibres of the motor unit. The sequence of MUPs generated by the

repetitive activation of a given motor unit is called a motor unit potential train (MUPT).

The morphology of MUPs of the same MUPT, i.e., MUPs created by the repetitive

activations of the same motor unit, are expected to vary across different activations of

the motor unit due to variability of the MFAP initiation times and conduction velocities,

instrumentation noise and electrode movement.

NMDs result from different disease processes, such as inflammatory, metabolic and

endocrine, affecting motor neurons, neuromuscular junctions, or muscle fibres. Still, NMDs

can be broadly grouped as either neurogenic or myopathic.

� Myopathic disorders are a group of disorders linked to muscle fibre dysfunction.

The most common EMG manifestations associated with myopathies can be summa-

rized as:

1. Smaller MUPs due to muscle fibre loss
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2. Complex and dispersed MUPs due to the higher diameter variability of muscle

fibres belonging to the same motor unit resulting from muscle fibre atrophy and

hypertrophy

3. Earlier recruitment of motor units and elevated mean firing rates to compensate

for motor unit weakness caused by muscle fibre loss.

� Neurogenic disorders are mainly caused by loss of motor neurons. Axonal sprouts

of near surviving motor neurons often reinnervate some of the deinnervated muscle

fibres. The most common EMG manifestations associated with neurogenic disorders

can be summarized as:

1. Large MUPs due to reinnervation

2. Complex MUPs since the muscle fibres belonging to an affected motor unit will

have a wider range of diameters compared to a normal motor unit

3. Satellite MFPs due to delayed initiation of MFAPs in reinnervated muscle fibres

4. Morphological instability due to inconsistency of the activation transmission

across newly formed neuromuscular junctions

5. Delayed recruitment of motor units and reduced mean firing rates as less motor

units are required to attain the same contraction level, given that reinnervation

leads to motor units having more muscle fibres which are therefore capable of

producing more tension.

The grouping of NMDs as either neurogenic or myopathic provides a generic framework

that is useful in predicting disease-induced changes in the neuromuscular structure and/or

function from EMG manifestations. This grouping of NMDs is adopted in this research.

This means that the collected EMG studies used in this work are not annotated by an

experienced examiner to be affected with specific disorders but rather whether they are

normal, myopathic or neurogenic.

Moreover, the utility of QEMG features or characterization will be equated to how

indicative they are of a category of disorders rather than a specific disorder. However, it

should be noted that some observed disorders can be associated with both myopathic and

neurogenic processes.
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1.4 System Overview

Figure 2.2 presents the information flow of the system presented in this thesis. The system

can be decomposed functionally into three main steps: (1) Information extraction, (2)

Information representation, and (3) Decision support.

Figure 1.1: The information flow in a system capable of quantitatively analyzing an EMG

signal for characterization of neuromuscular disorders
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1.4.1 Extraction

Data Acquisition

The first stage of the system is the acquisition of intramuscular EMG signals using a con-

centric needle electrode during a voluntary, isometric, and low to moderate level contrac-

tion. It is important to emphasize here that the development of a system for quantitative

analysis starts by defining an acquisition protocol.

The number of pulses per second is among the most important parameters to be spec-

ified in the protocol. In a proper acquisition setup, this parameter is correlated to the

contraction level. This parameter also controls the trade-off between the information yield

(i.e., the number of MUPTs to be identified from a single contraction) and the MUPTs’

representativeness (i.e., the probability that the segmented MUPs are not superimposed

by contributions from other motor units).

Another important parameter is the sharpness of the detected MUPs. Sharpness is

mainly influenced by electrode focusing, i.e., the closeness of the electrode to the muscle

fibres. Contributions from distant motor units are mainly comprised of low frequency

components that obscure disease-induced morphological changes.

Preprocessing

The main objective of this stage is to accentuate the electrophysiological components of

interest, i.e., to make MUPs as distinguishable as possible compared to instrumentation

noise and/or contribution from other motor units. Other objective of this stage is to

calculate rudimentary signal quality metrics to help the examiner asses the EMG signals

utility and modify the electrode position accordingly.

Motor Unit Potential Segmentation

MUP morphology is expected to vary across different motor units depending on their mus-

cle fibre compositions, levels of disease involvement and positions relative to the detection
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surface of the electrode. In spite of this variability, some morphological characteristics,

such as sharpness, duration and amplitude, are expected to maintain values within specific

ranges distinguishable from noise and background activity. Many detection algorithms,

such as the one discussed in [92], are based on calculating and thresholding these charac-

teristics.

Other techniques, such as [70], are based on the observation that MUPs are tempo-

rally constrained, and have relatively high energy compared to the background activity.

Such techniques attempt to adaptively estimate statistical characteristics capturing the

background activity, and a MUP is detected whenever there is a statistically significant

deviation.

Motor Unit Potential Train Identification

In this stage, a subset of detected MUPs are clustered into MUPTs, based on morphological

similarity and firing pattern statistics. In this work, a partial rather than a complete

decomposition is assumed. This means that there is no attempt to segment each MUP and

assign it to a MUPT. Instead, partial decomposition attempts to extract MUPTs that can

be identified with confidence, and are useful for characterization of NMDs. This streamlines

MUP detection and MUPT identification eliminating the need to resolve superimposed

MUPs or identify MUPTs that are not consistently active throughout the contraction.

1.4.2 Representation

Clinical Data Visualization

The aim of this sub-stage is to validate, summarize and present the information extracted

from the MUP detection and MUPT identification stages. Various representations should

be in formats that can be easily assessed both qualitatively and quantitatively.

For example, the typical morphology of the MUPs belonging to the same MUPT is

captured through estimation of a template. The use of a template has the potential of

decreasing noise and contributions from other motor units.
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Another example is the MUPT raster, which is a display of a selected set of isolated

MUPs of a given MUPT after being aligned and stacked. MUPT raster plots are useful for

evaluating morphological instability across MUPs of the same MUPT. Another visualiza-

tion is a histogram of inter discharge intervals (IDIs) to represent the temporal sequences

of identified motor unit firings.

Quantitative Electromyographic Features

The output of this sub-stage is a set of quantitative features describing different visual-

ization provided by the previous sub-stage such as features describing a MUP template,

MUPT raster, or motor unit firings IDIs histogram. The author prefers to keep visu-

alization and feature extraction as two different sub-stages, because the outputs of the

clinical data visualization sub-stage might also be used for qualitative or semi-quantitative

assessment.

1.4.3 Decision Support

The main objective of this stage is to use a subset of quantitative features calculated in the

previous stage to estimate the likelihood of the muscle being affected by a specific category

of NMD transparently, meaning that a set of transparency rules needs to be also induced

to explain the likelihood estimates.

1.5 Thesis Organization

The thesis outline follows the basic structure of the information flow described in the previ-

ous section. The title of each chapter indicates whether it discusses information extraction,

information representation, or decision support stages. Chapter 2 is primarily about the

information extraction stage. Different digital signal processing and machine learning algo-

rithms are presented which enable (1) preprocessing EMG signals, (2) segmenting MUPs,

and (3) identifying MUPTs.
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The information representation stage is studied and extended in the following three

chapters. Chapter 3 focuses on quantitative features that describes MUP morphology and

morphological stability across MUPs belonging to the same train. The chapter introduces

new features that are shown to be discriminative across different disease categories. It

also presents a grouping of features based on what aspect of the MUP morphology they

describe. Each of these aspects can be linked to a different effect of neuromuscular disorder

on muscle structure and function.

Chapter 4 proposes a new quantitative EMG feature called near fibre MUP Jitter.

Similar to the conventional single fibre EMG based jitter, the feature aims at capturing

disturbances in the neuromuscular junction function. The key difference between the newly

proposed feature and the conventional jitter is that it is to be estimated from an automati-

cally decomposed EMG signals. The signal acquisition and analysis involved in estimating

near fibre MUP Jitter are significantly faster. The whole test can be completed in order of

few seconds compared to tens of minutes necessary to complete the conventional single fi-

bre EMG analysis. Also, the process does not demand expertise beyond that are necessary

for completing a conventional clinical EMG test.

Chapter 5 investigates the possibility of detecting neurogenic disorders using quantita-

tive features describing the firing patterns of a set of concurrently active motor units. The

proposed features circumvent many limitations of the current clinical acquisition setup

including incomplete decomposition and having the contraction level not measured nor

controlled.

Contributions of the thesis to the decision support stage are discussed in Chapter 6.

The problem of obtaining transparent muscle characterizations is remodelled using ten

different binarization mappings. The aim of the chapter is to mitigate the decrease in

categorization accuracy resulting from feature quantization and to obtain transparency

rules that are more clinically relevant. In Chapter 7, the main results and contributions

are summarized and discussed. Finally, the thesis concludes by discussing future directions

of research efforts with respect to quantitative EMG techniques for characterization of

neuromuscular disorders.

For ease of reference, each following chapter has its own literature review section. This
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makes it easier for the reader to see how the newly proposed ideas in each chapter fit in

and add to the current state of knowledge.
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Chapter 2

Extraction:

An Automated Decomposition

Algorithm of Electromyographic

Signals Tailored for Characterization

of Neuromuscular Disorders

A summary of the work described in this chapter has been submitted for publication in M. Ab-

delMaseeh, B. Smith, and D. Stashuk. An automated decomposition algorithm of electromyographic

signals tailored for characterization of neuromuscular disorders. Submitted for publication, December 2015

Portions of the methods described in this chapter previously appeared in M. AbdelMaseeh, T. Chen,

and D. Stashuk. Extraction and classification of multichannel electromyographic activation trajectories

for hand movement recognition. Neural Systems and Rehabilitation Engineering, IEEE Transactions on,

PP(99):1–1, 2015.
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2.1 Summary

Objective: This chapter describes the development of methods capable of decomposing

EMG signals recorded by a concentric needle electrode during a low to moderate isometric

contraction. The system is specifically tailored for characterization of neuromuscular dis-

orders. It focuses on identifying representative MUPTs that can capture disease induced

changes.

Methods: The signals are smoothed using a Savitsky-Golay filter whose parameters are

tuned based on the Durbin-Watson criterion. Segmenting MUPs from the composite signal

starts by estimating the characteristics of the baseline activity. This is followed by finding

peaks and evaluating the morphology of isolated MUPs.

Each of the potentially isolated segmented MUPs is set to be a node in a similarity graph.

The edges in the graph are added based on morphological similarity as evaluated using

dynamic time warping and firing times. A spectral analysis of the similarity graph is then

utilized to perform clustering.

Results: The methods are validated and evaluated using simulated signals produced us-

ing electro-physiologically sound models. A set of performance measures are also presented

to quantify different potential errors in the decomposition. The results show that a high

yield of representative MUPTs can be identified accurately and automatically in times

comparable to times required to complete qualitative clinical analysis.

2.2 Introduction

The term decomposition of EMG signals has been used in the literature to refer to a range

of manual procedures and computational algorithms that resolve an EMG signal into its

constituent MUPTs. This resolution allows researchers and clinicians to extract, from

what seems to be a random signal, fine and essential details regarding muscle anatomy and

electro-physiology. Decomposition is also the gateway to investigate the neurodynamics

underlying muscle control.

Identification of MUPTs for characterization of neuromuscular disorders can be con-
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sidered as an application tuned, special case of the EMG signal decomposition problem.

In general, the results obtained from decomposing EMG signals can be potentially utilized

for a wide variety of applications including investigation of neural mechanisms [26], control

of prosthetic limbs [36], ergonomic studies [39], and many others.

Each of these applications imposes its own set of constraints and requirements on the

design of the instrumentation, acquisition protocol, and analysis algorithms adopted in

the decomposition process. The main objective of the presented work is to increase the

clinical utility of decomposition-based EMG quantitative methods for characterization of

neuromuscular disorders.

To this end, a method for MUPT identification for characterization of neuromuscular

disorders was developed that possess the following characteristics:

� Representative Sampling: The identified MUPTs should include important as-

pects of MUP morphology and morphological stability that are useful for discrimina-

tion among different disease categories [6]. For example, MUPTs generated by motor

units with fibres that are all distant from the detection surfaces of the electrode or

from motor units that are active only briefly during acquisition should be excluded.

� Fast: The results should be obtained in times comparable to the times needed to

complete a clinical qualitative characterization. This entails focusing only on ex-

tracting clinically relevant information, using computationally efficient algorithms,

and producing results that need no or minimal manual editing.

� Clinically Feasible: The method should rely on acquisition instrumentation that

are currently available in a conventional electro-diagnostic laboratory. The most

commonly used electrodes are the standard concentric and monopolar electrodes

[24]. Both of them are single channel intramuscular electrodes.

� Unbiased Estimate: The decomposition algorithms should not produce systematic

errors resulting in a biased estimate of MUPT quantitative features. An example of

such would be consistently not associating a satellite MFP with its MUP resulting

in a lower estimate of morphological complexity.
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� High yield: The decomposition algorithms should identify as many representative

MUPTs as possible from each EMG signal recorded at each needle position.

� Partial decomposition: There is no need for a complete decomposition [119],

i.e. attempting to identify every firing of each active motor unit with fibres close

to the electrode detection surface. The level of contraction is not maintained nor

measured in a conventional clinical electrodiagnostic examination. It is therefore not

possible to attribute detailed aspects of motor unit firing patterns to pathology. In

addition, methods such as [130] and [85] can robustly estimate firing pattern statistics

from incomplete firing sequences with erroneously assigned firings. These statistics

were shown to be useful in detecting neuropathy [4]. The main advantage of doing

partial rather than complete decomposition is that it saves time and the uncertainty

associated with resolving superimposed MUPs.

� Invariant to disease induced changes: MUPTs generated by normal motor units

are often more homogeneous and regular in terms of MUP morphology and motor unit

firing patterns, compared to those generated by motor units affected by myopathic

or neurogenic disorders. A decomposition algorithm used for characterization of

neuromuscular disorders should be equally capable of identifying MUPTs generated

by normal or disease affected motor units.

2.3 Literature Review

In order to keep this review concise, only automated computer-aided decomposition meth-

ods that are designed for the characterization of neuromuscular disorders are considered.

The discussion of methods relying on multiple recording sites that are shown to have clini-

cal value [73] is avoided. These methods are very different from an algorithmic perspective.

Their clinical feasibility is also questionable, because they need instrumentation that is not

currently available in most clinical electrodiagnosic labs.

In the first phase of the system described by Gerber et al. [43], active segments based

on an estimate of the total variation in a window surrounding each sample were extracted.
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Each of the active segments was then described by a feature vector comprised of five

features that mainly captured the morphology of the segment. The nearest neighbour

method was then used for clustering. An average of the waveforms of MUPs belonging to

each cluster was then used as a MUPT template for subsequent stages and to estimate the

morphological features.

The second stage of the system focused on refining the estimated MUPT firing patterns

by estimating the MUP firing times, identify the firing times of MUPs that slightly overlap

with other MUPs, and resolving superimposed MUPs [131]. The authors tested their

methods using a synthetic signal comprised of seven MUPTs (521 MUPs in total) and

reported that 98.1% of the MUPs were correctly detected and assigned.

The first step in the ADEMG system described in [76] involved preprocessing the signal

using a second order low-pass differentiator [134]. In the second step, the system detected

every spike exceeding a given threshold. Each of the spikes then got aligned and interpo-

lated by transforming it using a canonically registered discrete Fourier transform [77]. A

matching was then done sequentially using the transformed spikes.

In the third step, ADEMG utilized the intervals between the spikes to (1) merge clusters

that corresponded to the same train, (2) identify time locked clusters (expected to be spikes

from multiphasic MUPs), and (3) validate MUPTs and the MUPs within the validated

trains. ADEMG does not attempt to resolve superimposed MUPs. It was shown in [78]

using simultaneous recordings of single fibre EMG signals for evaluation that ADEMG

correctly identified between 33% and 98% of MUP firings.

The signal preprocessing and MUP detection in DQEMG [124] were similar to the

methods described in ADEMG. The algorithm determined the number of the MUPTs

using a modified k-means shape and temporal based clustering algorithm (STBC) [129].

The STBC algorithm was initialized by assuming that the number of number of motor

units contributing representative MUPTs was the maximum number of MUPs occurring

within any 30 ms of the signal, and used the MUPs occurring in this interval as initial

cluster centres. The STBC then used the k-means algorithm to cluster the MUPs based

on their morphology. In case, an inconsistency was observed in the firing patterns of the

resulting clusters, a new cluster was created. Also during any of the K-means’ iterations,
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the STBC algorithm only kept MUPs that were found to be morphologically similar to the

cluster centre.

In the final stage of the STBC algorithm, it iteratively refined the clusters by merging

and splitting them. DQEMG then assigned each of the MUPs to one of the identified trains

(or decided to exclude it from further processing) in a supervised manner by estimating a

certainty measure evaluating its morphological similarity to the train template, whether it

was likely to introduce inconsistency to the train firing patterns, and the relative similarity

to the second closest MUPT. The algorithm was tested using 10 clinical EMG signals. The

average error rate obtained was 2.5 % . 88.7 % of the detected MUPs were assigned to one

of the trains.

In EMGTools [87], MUP segmentation relied on estimating the variance of a window

surrounding each sample. The algorithm first attempted to find a sample surrounded with

a window having a variance above a fairly high threshold to guarantee that it belonged

to a MUP. Starting from this sample, it searched for the MUP onset and end using lower

thresholds. All the thresholds were extracted adaptively from the signal.

A nearest-neighbour clustering algorithm based on a minimum spanning tree was used

for clustering. The distance between a pair of MUPs was calculated as the variance of

the difference between the two MUPs after performing a heuristic alignment by match-

ing each of the samples sequentially. A successive iterative approach for resolving MUP

superposition was used. The algorithm started by fitting the larger MUP templates to

the superimposed segments first. The methods were validated using clinical EMG data

by comparing the outputs to manual annotations and evaluating the residual signal af-

ter decomposition. The authors also evaluated the proposed methods using simultaneous

recordings.

The system proposed by Pattichis et al. in [20] represented each of the candidate MUPs

using a fixed length window centred around a peak with an amplitude above an adaptively

calculated threshold. The clustering was performed using an artificial neural network.

The training of the neural network was achieved in an unsupervised manner using a self-

organizing feature map followed by learning vector quantization method [68]. An iterative

procedure based on cross-correlation was then used to resolve superimposed MUPs. When
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applied to clinical data collected from 40 subjects, the authors reported 97.6% accuracy in

discriminating between normal, myopathic and neurogenic MUPs.

One of the main differences between the work described in this chapter and previous

reported work in the literature is the use of spectral clustering algorithms. The main

advantage of spectral clustering is that it optimizes for the connectivity between instances

of a given cluster rather than optimizing for cluster compactness. MUPTs are expected to

show both trending and random within-train morphological variability. Figure 2.1 shows

every fifth MUP of MUPTs generated by two simulated motor units. In this example, the

trending variability is assumed to be due to slow electrode movement. This is simulated

by moving the electrode 2 µm in the horizontal direction after every motor unit discharge.

The random morphological variations are modelled to be due to the variability in the times

needed for the neural signal transduction across each of the muscle fibres’ neuromuscular

junctions. In this example, these times are assumed to be sampled from a zero mean

Gaussian distribution with a standard deviation of 70 µS. Further details regarding the

simulation model can be found in Chapter 5 on page 94. The figure shows the clusters

obtained by spectral clustering and k-means algorithms. In this example, more miss-

assignments are obtained using the k-means algorithm, which can be attributed to the fact

that it optimizes for cluster compactness.

The design philosophy behind the methods described in this chapter and how they are

evaluated are also different from those discussed in the literature in other aspects including:

� Focusing on extracting only representative MUPTs that can contribute clinically

relevant information

� Accommodating for intra-train random morphological variations resulting from neu-

romuscular junction transmission variability by aligning segmented MUPs based on

dynamic time warping (DTW)

� Tuning parameters of the preprocessing algorithm to accommodate for acquisition

induced differences in signal characteristics.

� Developing techniques that aim at excluding superimposed MUPs
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Figure 2.1: The diagram illustrates the advantages of clustering approaches that opti-

mize for the connectivity between the instances of a given cluster rather than the cluster

compactness for the MUPT identification problem. The text provides extra details.
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� Optimizing for computational and space complexity

� Proposing new evaluation metrics that capture potential errors such as train splitting

and merging.

2.4 Methods

Figure 2.2 shows the main steps of the proposed MUPT Identification methods. The steps

can be divided into four main stages. The first stage is the data acquisition stage. The

details of the recommended acquisition protocol are discussed in Section 3.4.1 on Page 55.

For purposes of evaluation, synthetic EMG signals were produced using a physiologically

and anatomically sound model. The model is described in greater details in Section 5.4 on

Page 97.

The objective of the preprocessing stage is to reduce instrumentation noise and contam-

ination from distant bio-electric sources while maintaining the morphological characteris-

tics of contributions from the active motor units with fibres that are relatively close to the

electrode detection surface. The output of the MUP segmentation stage is a set of EMG

signals segments that are likely to include isolated MUPs. The last stage of the system is

the MUPT identification stage. It aims at estimating the number of concurrently active

motor units contributing representative MUPTs. It then assigns each of the segmented

MUPs to one of the MUPTs or decides to exclude it.

2.4.1 Pre-processing

The smoothed EMG signal ã(t) and its first derivative ã(1)(t) are estimated using the

traditional Savitzky Golay (SG) filter, which was first proposed in [111]. For each sample

at index t, the filter approximates ã(t) through fitting a polynomial of an order MSG to

LSG equally spaced samples centered at t in a least-squares sense. It was shown in [111]

that this local polynomial fitting can be achieved using a discrete convolution with a linear

time invariant impulse response.
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Figure 2.2: The main steps in the proposed MUPT identification method

From the perspective of the SG filter spectral characteristics [112], the choice ofMSG and

LSG affects the filter cut off frequency, its transition from the pass-band to the stop-band

and the attenuation in the stop band. These filter characteristics should be ideally tuned
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for each signal independently, as it is expected for EMG signals acquired from different

muscles with different degrees of needle focusing and acquisition setups to have different

characteristics for both the electro-physiological and noise components.

In this work, the tuning of the SG filter parameters MSG and LSG is performed in a

fashion similar to the one described in [135]. The Durbin Watson (DW) criteria [31] is

used as an estimate of the information content of x̃(t) (the raw EMG signal) that is still

maintained in ã(t).

DW =

tf∑
2

(
ε̃(t)− ε̃(t− 1)

)2

tf∑
1

ε̃(t)

where ε̃(t) = x̃(t)− ã(t) and tf is the length of the signal (2.1)

Defining ρε̃ as the least-squares estimate of the slope of a first-order linear fit of ε̃(t)

to ε̃(t − 1), The DW, as defined in Equation 2.1, can be shown to be approximately

equal to 2(1 − ρε̃) for long sequences. Therefore as DW approaches two, the consecutive

residuals between the smoothed and the raw signal become less correlated. Ending with

uncorrelated residuals suggests that the applied filtration removed only noise maintaining

the physiological components, which are expected to be serially correlated.

To keep the tuning procedure computationally feasible, the order of the polynomial MSG

is fixed to six. The algorithm then searches for the fitting window length LSG minimizing

the serial correlation of the residuals. The search starts with LSG = MSG+1 (if LSG < MSG,

no smoothing will be achieved [112]) and stops with LSG corresponding to a window that

is three ms in length. In each step, LSG is incremented by two to make sure that LSG stays

odd.

The fixation of MSG might result in not obtaining the best possible DW value. It is

still not severely limiting knowing that the same cut-off frequency of the SG filter can

be obtained with different combinations of LSG and MSG [112]. In order to make the

computation even faster, the tuning is based on seven milliseconds window centred on the
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highest peak found in the signal. The efficacy of the tuning procedure in maintaining the

amplitude and width of MUP peaks is illustrated in Figure 2.3.

In Figure 2.3, the smoothed EMG signals (plotted in solid black) obtained by filter-

ing the same simulated raw EMG signal (plotted in grey) using different LSG values are

stacked on the top of each other. Below each signal, a red trace shows the absolute dif-

ference between the simulated noise free EMG signal, which can be thought of as the

electrophysiological component of the signal, and the smoothed signal.

The filter configuration selected by the tuning procedure resulted in the smoothing

shown by the middle trace (LSG = 37), since it is the configuration that resulted in a DW

value closest to two for this signal suggesting serially uncorrelated residuals. Compared to

the smoothing obtained by LSG = 15, the selected smoothing provided a better reduction

of noise. It is also obvious by investigating the difference between the noise free signal and

the smoothed signal around the largest peak that the selected filter configuration better

maintains the number of turns, amplitudes, and widths of the peaks.

The design process used in obtaining the impulse response of the SG filter readily gives

the impulse responses of linear time invariant systems that can be used to estimate a

discrete approximation of its derivative up to order MSG − 1 [111]. In this work, the first

order and the second order differentiation of ã(t) are of particular interest.

2.4.2 Motor Unit Potential Segmentation

The proposed segmentation method operates on the signal in three main steps:

Estimating the characteristics of the baseline activity signal

Even when no motor unit, with fibres close to the detection surface of the electrode, is

contributing to the detected signal, a baseline activity signal will be observed. The baseline

activity is due to instrumentation noise, contributions from motor units belonging to the

same muscle which do not have fibres close to the electrode detection surface and other

electrophysiological sources.
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For an EMG signal acquired using a well controlled setup during a brief (a few seconds)

isometric contraction, the characteristics of the baseline activity can be assumed to be fairly

constant throughout the duration of the signal. Given this assumption, the characteristics

of the baseline activity signal can be estimated by searching for periods within the EMG

signal that have no MUPs.

For each sample of an index t, the signal ũ(t) is estimated by calculating the standard

deviation of a window spanning from t−τA to t. τA is the analysis window length in samples,

and, unless otherwise mentioned, τA is chosen so that the window length corresponds to

ten milliseconds worth of the signal. The standard deviation of the baseline activity of the

raw signal σx was estimated to be the mean value of the lowest ten values of ũ(t). Applying

the same procedure to the smoothed signal, the standard deviation of the baseline activity

of the smoothed signal σa is also estimated.

Detecting Peaks

The algorithm starts by finding all local maxima and minima in the pre-processed signal by

searching for a change in the sign in its first derivative signal ã(1)(t). A peak is then detected

at a sample of index t, if a local maximum is found at t with the following characteristics:

1. ã(t) has an amplitude of at least λAσx(µV ). λA is the peak amplitude threshold

factor. Note that σx, and not σa, is used for peak detection threshold, even when

the threshold is applied to the pre-processed signal. This is to make sure that the

detected peak is significantly higher than the actual background activity signal as

observed in the raw data, irrespective to the level of smoothing that may be applied

during the pre-processing stage.

2. ã(t) is at least λSσx ( µV ) higher in amplitude than all surrounding local minima.

λS is the peak separation threshold factor. A surrounding local minimum to a local

maximum is defined as a local minimum that either precedes or follows the local

maximum with no other local maxima in between with an amplitude above λAσx.

The default value for both λA and λS is three.
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Finding the MUP onset and end

The algorithm then proceeds by attempting to detect inactive periods within the signal.

A window of a length τI samples is assumed to be in-active, when a ∆I percentage of the

number of the samples of the smoothed signal ã(t) within the window are found to have an

amplitude below λIσa. ∆I is the inactivity window length ratio, while λI is the inactivity

amplitude limit factor. The values for ∆I and λI used in this chapter are 90% and two

respectively. τI is set to be the same length as τA.

It is important to detect the onset and end of a MUP carefully to make sure that

the estimates of the quantitative features such as MUP duration, length and area are not

systematically biased. Therefore for each sample of an index t, a binary left inactivity

indicator ILe(t) signals whether a window from t − τI to t is found to be inactive or not.

A transition of ILe(t) from 0 (active) to 1 (inactive) suggests a candidate MUP onset.

In a similar manner, a binary right inactivity indicator IRi(t) is defined over a window

ranging from t to t + τ . In this case, a transition from 0 (active) to 1 (inactive) suggests

a candidate MUP end. A MUP is assumed to be detected between a candidate MUP

onset and an immediately following candidate MUP end, if one or more peaks are found

in between them.

Excluding Potentially Superimposed MUPs

The objective of this sub-stage is to exclude potentially superimposed MUPs. The mor-

phology of superimposed MUPs often, but not necessarily always, is different compared to

the morphology of isolated MUPs. An example of such differences is the existence of two

peaks within a single MUP (not separated by inactivity) that are separated widely.

The algorithm proceeds by calculating the inter peak intervals between every two con-

secutive peaks within a segmented MUP. If any of the intervals is found to be above a

threshold Λ, the algorithm assumes that the two peaks are contributed by two different

motor units. The resulting MUP is then labelled as potentially superimposed. As will be

explained later, the MUPT identification algorithm does not assign potentially superim-

posed MUPs during the identification stage.
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Note that the algorithm at this stage does not have any prior information regarding the

morphology of the MUPs in the examined signal. Therefore the rules applied at this stage

are capturing domain knowledge for the limits of what can be considered as an isolated

MUP morphology. This stage can be extended by applying rules limiting the amplitude,

duration, or number of turns that can be accepted. An example showing the application

of the MUP segmentation algorithm to a simulated signal is illustrated in Figure 2.4. The

algorithm starts by estimating the characteristics of the baseline activity and uses these

estimates to set thresholds necessary for peak detection (λA ∗ σx plotted as a blue dashed

line in the upper panel) and finding the MUP onset and end (λI ∗ σa plotted as a red

dashed line in the upper panel).

Around the 25 ms mark, the algorithm segments a MUP (shaded in green) by detecting

a peak in between a candidate MUP onset and end. The candidate onset is assumed due

to a transition of the left activity indicator ILe (plotted in the lower panel) from inactive to

active. While, the candidate MUP end is assumed due to a transition of the right activity

indicator IRi from active to inactive. A similar scenario occurs around the 75 ms mark.

However in this case, the algorithm decides that this is a potentially superimposed MUP

because the MUP has an inter peak interval that is above Λ, which is set to have a default

value of three microseconds.

The last sub-stage in the MUP segmentation is to represent the potentially isolated

segmented MUPs in a format that can be processed by later stages. This includes an

initial alignment and zero padding of the MUPs. A matrix Ỹ of size NIMUP × LIMUP is

constructed. NIMUP is the number of the MUPs segmented and assumed to be isolated,

while LIMUP is the preset maximum length of each MUP (15 ms in this work).

Each row of the matrix Ỹ represents a different segmented MUP. The peak of each

MUP is aligned to LIMUP/2. This results in the segmented MUPs being initially aligned

by their peaks. As will be further explained in the following section, this initial alignment

is necessary to make constrained DTW alignment more effective. In case the MUP length

is less than LIMUP, the row is padded by zeros at both ends.

27



F
ig

u
re

2.
4:

T
h
is

fi
gu

re
il
lu

st
ra

te
s

th
e

re
su

lt
s

of
ap

p
ly

in
g

th
e

p
ro

p
os

ed
M

U
P

se
gm

en
ta

ti
on

p
ro

ce
d
u
re

to
a

10
0

m
s

w
id

e
E

M
G

si
gn

al
se

gm
en

t.
P

le
as

e
re

fe
r

to
th

e
te

x
t

fo
r

d
et

ai
le

d
ex

p
la

n
at

io
n
.

28



2.4.3 Motor Unit Potential Train Identification

The objective of this stage is to assign segmented MUPs into groups, where each group

represents a distinct MUPT. The problem is posed as a clustering task. The input to this

stage is Ỹ , which is a matrix with each row representing a potentially isolated segmented

MUP. The outputs of the identification stage are (1) the number of identified MUPTs

NMUPT and (2) a set of labels assigning each of the MUPs to one of the identified trains

or setting it as unidentified.

Spectral Clustering

A family of effective clustering algorithms widely known as spectral clustering are based

on the spectral graph theory [21]. These algorithms cluster the data using eigenvectors of

matrices associated to a graph, which capture the similarities between the data points.

Let a graph G = (VG, EG) be a graph with node set VG and edge set EG. In the context

of MUPT identification problem, each vertex represents one of the potentially isolated

MUPs. The presence of an edge between two vertexes indicates that they are found to

be neighbours. To consider two MUPs to be neighbours, they need to be morphologically

similar (relative to other segmented MUPs) and the interval between their firings to be

large enough.

The graph can be represented using an affinity matrix AG of size |VG|×|VG|, where |VG|
represents the number of nodes in the graph. If the nodes VG(k) and VG(l) are connected

by an edge, AG(k, l) will be set to one. Otherwise, AG(k, l) will be set to zero. The main

difference between spectral clustering alternatives [28, 113, 86] is in whether they use the

eigenvectors of the affinity matrix or some normalized form of the affinity matrix. A more

detailed review of spectral clustering methods can be found in [136].

The methods for spectral clustering used in this study mainly follow the work described

in [86]. For completeness and to facilitate further discussion of the methods, a pseudo code

is given in Algorithm 1.
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Algorithm 1 Spectral Clustering Algorithm
1: function Spectral-Clustering(AG,NC) . NC : Number of clusters

2: Calculate the degree matrix DG. It is a diagonal matrix with DG(i, i) =
j=|VG|∑
j=1

AG(i, j)

3: Calculate the normalized symmetric graph Laplacian matrix LG = D
−1
2
G AGD

−1
2
G

4: Calculate the eigenvectors corresponding to the largest NC eigenvalues of Matrix LG

5: Construct the spectral embedding matrix EG by stacking each of the eigenvectors as a

different column resulting in a matrix of size |VG| ×NC
6: Normalize each row of EG such that EG(i, j) = EG(i,j)√√√√j=|VG|∑

j=1
EG(i,j)2

7: . Each row of EG can be seen as a non-linear embedding of a vertex in VG [10]. The ith

row of EG will be further notated as V̂G(i)

8: Use k-means to assign each of the mapped data points V̂G to one of the NC clusters

9: Assign each of the nodes in VG to the cluster assigned to the corresponding embedded

point
return CG

10: . CG : A vector assigning each of the nodes in VG to a cluster

Choosing The Number of Clusters

The silhouettes coefficient was first proposed in [104] as a measure to evaluate how well

clusters represent a data set. In this case, the dataset is the nonlinear embedding of the

vertexes (V̂G). The coefficient measures the similarity of the data point to other data points

of the same cluster compared with data points belonging to the next closest cluster.

For each data point V̂G(i), two metrics are calculated:

� asil(i): The average distance of the point V̂G(i) to all the points assigned to the same

cluster

� bsil(i): The computation of this measure starts by calculating the average distance of

V̂G(i) to each of the clusters that V̂G(i) is not assigned to. bsil(i) is then set to the

minimum average distance. Therefore, bsil(i) captures the closeness of V̂G(i) to the

closest cluster.
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The silhouette coefficient for the data point V̂G(i) is then estimated

Sil(i) =
bsil(i)− asil(i)

max(asil(i), bsil(i))
(2.2)

The pseudocode outlined in Algorithm 1 is repeated for NC = 2, 3, ..., 15. For each value

of NC, the average of the silhouette coefficients of all points is calculated. The largest NC

with an average silhouette coefficient within a given tolerance γsil (default value = 0.1) to

the largest attained average silhouette coefficient is selected.

Similarity Graph Construction

This subsection describes the methods used for construction of the graph G. This entails

deciding which potentially isolated MUPs will be considered in the graph’s set of nodes

(VG). It also involves finding the set of the graph edges EG by finding the neighbours to

each MUP, i.e., the MUPs that are more likely to belong to the same MUPT as this MUP.

The construction of the graph can be broken down into the following three stages:

1. Finding the nearest neighbours: The morphological similarity is estimated using

a distance based on DTW alignment. As shown in Figure 2.5, the use of dynamic

time warping results in distances that are, to a great extent, less influenced by within-

train morphological variations. These variations are mainly due to neuromuscular

transmission variability. An ideal distance should be indifferent to these variations,

and therefore changes the least due to such changes in MUP morphology.

The algorithm finds the KG nearest neighbours to each MUP. The default value used

for KG is 15. A link is added to EG if the two MUPs are mutual nearest neighbours.

This means that each of them is among the KG nearest neighbours to the other MUP.

2. Validating the edges: The fact that a MUP is found to be among the nearest

neighbours of another MUP only indicates that two MUPs are morphologically sim-

ilar compared to the other potentially isolated MUPs. Superimposed MUPs that do

not get filtered out in the segmentation stage or MUPs with onsets and ends not

accurately detected might be erroneously linked to each other. Even though, their
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morphology might be remarkably different. Examples of these erroneous links include

large MUPs resulting from constructive superposition.

Another scenario that needs to be accounted for is when the MUPs from two MUPTs

are morphologically very similar. In this case, the use of their firing times is neces-

sary. The time intervals between motor unit firings in an isometric well controlled

contraction are expected to be regular (but still having some variability). This was

found to be the case in normal and affected muscles [40].

Therefore, a link is excluded when the DTW accumulated distance (L2-norm based

distance) is higher than a ΓG (default value = .5) fraction of the smaller of the areas

of the two MUPs linked by the edge. For the definition of the MUP area, please refer

to Table 3.2. Also an edge is excluded if the interval between the firing times of the

MUPs linked by the edge is less than τG. The default value of τG is set to 25 ms

allowing mean firing rates up to 40 discharges/s.

3. Pruning the nodes: The number of edges connected to each node might vary.

This is because edges are only connected between mutual nearest neighbour MUPs.

Spurious nodes resulting from inaccuracies in the segmentation stage are expected

to be linked to fewer edges compared to correctly segmented isolated MUPs. The

algorithm therefore prune nodes, and consequently the edges linked to them, that are

found to have less than λG links. λG is set by default to one fifth of KG. The idea of

pruning graphs before performing the spectral clustering was previously investigated

in [58].

Dynamic Time Warping

Let the alignment between two arbitrary samples of two waveforms each representing a

different MUP, say ỹk(tmj
) and ỹl(tnj

), be denoted as 〈mj, nj〉 and the distance associated

with this alignment be the Euclidean distance between the two samples d(〈mj, nj〉).

DTW searches for a path (i.e., a sequence of alignments between pairs of samples

P = 〈P(1) = 〈m1, n1〉, ...,P(j) = 〈mj, nj〉....P(|P|) = 〈m|P|, n|P|〉〉), that minimizes the
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accumulated distance defined as:

d̀(〈m|P|, n|P|〉) =

|P|∑
j=1

d(〈mj, nj〉) (2.3)

where || represents the length of the sequence.

The path is subject to the following conditions:

� Boundary: P(1) = 〈1, 1〉 and P(|P|) = 〈|ỹk|, |ỹl|〉.

� Monotonicity: If P(j) = 〈mj, nj〉 and P(j + 1) = 〈mj+1, nj+1〉, then mj+1 ≥ nj and

nj+1 ≥ nj ∀j.

� Step size: If P(j) = 〈mj, nj〉 and P(j + 1) = 〈mj+1, nj+1〉, then mj+1 −mj ≤ 1 and

nj+1 − nj ≤ 1 ∀j.

The search for the path P can be obtained using dynamic programming. Let P〈mj ,nj〉

be the optimal path between 〈ỹk(:, 1)...ỹk(tmj
)〉 and 〈ỹl(:, 1)...ỹl(tnj

)〉 that minimizes the

accumulated distance d̀(〈mj, nj〉). The path can be obtained using the following recursive

formula:

d̀(〈mj, nj〉) = d〈mj, nj〉+
min(d̀(〈mj − 1, nj − 1〉), d̀(〈mj, nj − 1〉), d̀(〈mj − 1, nj〉))

(2.4)

In this work, the distance between ỹk and ỹl is defined as the accumulated distance

D(ỹk, ỹl) = d̀(〈|ỹk|, |ỹl|〉).

Constraining the alignment path

Minimizing the accumulated distance D does not guarantee that the alignment accom-

modates for changes in the morphology resulting from variability in the time needed for

transduction across the neuromuscular junctions. This variability ranges between 15 µS

to 100 µS [67]. Given an initial alignment based on the peaks of segmented MUPs, any
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Figure 2.5: The figure illustrates that the distance based on DTW alignment is less sensitive

to random within-train morphological variability in MUP morphology compared to the

Euclidean distance. The DTW alignments and distances computed between an examined

MUP (shown as the lower trace in the four panels) and four other MUPs produced from

the same motor unit are shown in the figure. The grey lines represent every 10th alignment

from one time instance of a MUP to a time instance in the other MUP. To simulate the

changes in MUP morphology due to neuromuscular transmission variability, the initiation

time of the MFPs are randomly picked from a zero mean Gaussian distribution with a

standard deviation of 70 µs. As shown in the figure, the distances obtained based on

DTW alignments are not only smaller but also less variable.
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alignment between two samples from two different MUPs separated by more than λP = 300

microseconds is probably erroneous, in a sense that it is not accommodating for an electro-

physiological phenomenon.

A Sakoe-Chiba band [107] limits the possible alignments of a sample tm from one

MUP to the samples {tm−λP , . . . , tm, . . . , tm+λP} in the other matched MUP. This results

in the time and space complexities of the DTW procedure to be reduced from O(L2
IMUP) to

O(LIMUP×2λP). LIMUP is the preset length of the MUP. This is a significant improvement,

knowing that DTW is by far the most computationally expensive stage in the system.

Speeding Up Finding Nearest Neighbours with Lower Bounding

The intuition behind the lower bounding idea is to use a less computationally expensive

technique to compute a distance between two MUPs. This lower-bound distance should

be guaranteed to be lower than or equal to the DTW-based distance D. If the lower-

bound distance between the examined MUP and a query MUP is found to be larger than

the maximum of the KG smallest DTW-based distances that are already computed. The

computation of the DTW-based distance between the examined MUP and this particular

query MUP can be skipped.

An important property of the lower bound distance is its tightness, i.e., how close

its value is to the actual DTW-based distance. For instance, a trivial lower bounding

technique that always returns zero will result in no skipping of the computation of the

DTW based distance. As expected, increasing the tightness often results in increased

computational and space complexities of the lower bounding technique. Therefore, the

choice of a lower-bound distance for a particular problem entails a trade-off between the

lower bounding technique complexity and the probability of skipping the computations of

the original distance (the DTW based distance in this context).

Among various methods for DTW lower bounding discussed in the data mining liter-

ature [143, 66], the lower-bound distance proposed in [64] was shown to be tighter and

with comparable complexity. This distance will be referred to further in this thesis as the

LB-Keogh distance. For clarity, the idea behind LB-Keogh distance is illustrated in Figure

2.6.
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Figure 2.6: The figure illustrates the computation and intuition behind the LB-keogh

distance.

Figure 2.6 shows two MUPs: (1) the examined MUP (the MUP that the algorithm

is trying to find its KG nearest neighbours) and (2) the query MUP (the algorithm is

investigating whether it is one of the KG nearest neighbours of the reference MUP or

not). For each sample in the examined MUP, an upper bound is computed by finding

the maximum of the reference in a window of length 2λP (the Sakoe-Chiba band width)

centred at this sample.

A lower bound is computed in a similar fashion. To compute the contribution of a

particular sample in the query to the LB-Keogh distance (sample distance), a vertical

one-to-one alignment is assumed. The sample distance is computed relative to the upper

bound in the case that the amplitude of the query at this particular sample is higher than

the amplitude of the reference. It is computed relative to the lower bound in the case that

the query amplitude at this sample is lower than the amplitude of the reference.

For three samples, the figure shows the sample distances resulting from DTW align-

ments. It can be seen that the minimum contribution to the DTW distance can only

happen if (1) there are one-to-one alignments to each of these query samples and (2) the

sample distances are equal to the sample distance computed by the LB-Keogh distance.
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2.5 Evaluation

In order to evaluate the performance of the proposed methods, it is necessary to obtain a

reference composition of the analysed EMG signal. Ideally, this composition should define

the neuro-dynamical, anatomical, and electrophysiological characteristics of the active mo-

tor units which are contributing significantly to the detected signal. This reference compo-

sition should also capture the characteristics of the conducting medium and the acquisition

system; and reflect the temporal evolution and non-stationarity of such characteristics.

Such detailed reference composition would not only allow comparison of different pro-

posed methods for MUPT Identification, but also could be used to identify the empirical

confidence limits for the obtained information. For instance, how close should the detec-

tion surface be to a muscle fibre before it can be detected reliably. This motivated the

reliance of the presented experiments in this section on a physiologically based simulation

of intramuscular EMG signals. This simulation is discussed in more details in Chapter 3

on Page 51.

There have been other methods reported in the literature that aim at generating a

reference labelling for a decomposition rather than a reference composition of an EMG

signal. These labelling methods include:

1. synthetic signals simulated using real MUPs and a model of their motor units’ firing

patterns [35, 34]

2. evidence extracted from an EMG signal itself assuming that a correct decomposition

will extract MUPTs having regular firing patterns and high within-train morpholog-

ical similarity [79]

3. the concensus among independent decomposition results of simultaneously acquired

signals using multiple detection surfaces [74]

4. expert annotation

37



2.5.1 Tuning Motor Unit Potential Segmentation

The main objective of this experiment is to estimate an empirical lower limit for MUP

amplitude to noise ratio (ANR) at which MUPs can be accurately and consistently seg-

mented. The ANR is defined as the ratio of the maximum MUP amplitude (with either

negative or positive polarity) to the standard deviation of the simulated noise.

In order to evaluate the performance of the MUP detection algorithm at different MUP

ANRs, it is necessary first to establish a correspondence between the simulated firing

instances and the detection instances extracted by the segmentation algorithm. They

are not expected to align because of many reasons including the inability to sense motor

neuron firings, group delay due to signal filtration, and MUP superposition. A heuristic

is therefore needed to establish this correspondence. In this work, a detection instance is

defined as the instance at which the segmented MUP has a maximal amplitude.

On the other hand, a simulated firing is defined using both (1) a firing instance and

(2) an observation range. The range attempts to capture the duration in time at which

the firing can be effectively observed in the EMG signal, and therefore is dependent on the

noise level. The observation range is estimated from the MUP simulation buffer (with no

added noise) using a 200 microseconds wide moving window to scan for the start and end of

the MUP. Both the start and end of the MUP are assumed to occur, when the amplitude

of the MUP stays above one standard deviation of the simulated noise throughout the

window width.

Superimposed MUPs are ignored to simplify the analysis in this experiment. A super-

position is assumed to occur when two or more observation ranges of MUPs with amplitude

above twice the noise standard deviation overlap. A true positive detection TPD corre-

sponds to the algorithm reporting a detection instance during an observation range. A

false positive detection FPD corresponds to the algorithm reporting a detection instance

within no MUP observation range. Finally, a false negative detection FND corresponds

to the algorithm reporting no detection instances during an observation range, regardless

whether this range is superimposed or not. The MUP segmentation algorithm is evaluated

using both precision (PrD = TPD

TPD+FPD
) and recall (ReD = TPD

TPD+FND
).

In this experiment, 50 muscles were simulated, with each muscle assumed to be com-
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posed of 200 motor units. The diameter of motor unit territories (i.e., an assumed circular

area enclosing all the muscle fibres belonging to the motor unit) ranged from 2 to 8 mm

with a density of 10 motor unit fibres/mm2. The excitatory input to the motor neuron

pool was increased until 40 to 80 MUPs per second were observed. The variability in the

times needed for the neural signal transduction across each of the muscle fibres’ neuro-

muscular junctions were modelled to be sampled from a zero mean Gaussian distribution

with a standard deviation of 70µS. Finally, a normally distributed white noise with a

standard deviation of 40 µV was added to the signals. All the signals were simulated to

be ten seconds long. This resulted in each of the simulated EMG signals having from 5 to

13 observable MUPTs, which were defined as MUPTs having any of their MUPs with an

amplitude above twice the simulated noise standard deviation. The detection recall ReD

was only calculated for MUPTs with more than ten non-superimposed ranges.

Figure 2.7 shows the averages and ranges of the detection recall for different intervals of

MUP ANR values. The detection recall ReD is calculated for each MUPT independently.

It is clear that MUPs with amplitude above three times the noise standard deviation (40

µV ) can be detected reliably with minimal detection recall more than 0.8. Most of the FND

at higher ANR ranges were due to the segmentation algorithm mistakenly merging two or

more temporally close non-superimposed MUPs together. It is therefore safe to assume

that MUPs with ANR above three can be consistently segmented. The following section

reports on investigations into the lower bound of the MUP ANR in terms of its effect on

the accuracy of the MUPT identification. It is worth mentioning that having a MUPT

consistently identified does not necessarily mean that it will be useful for characterization

of neuromuscular disorders, however, this question is not in the scope of this study.

The average precision across different simulated signals was 0.924 ± 0.072. The rel-

atively low detection precision can be mainly attributed to using a low peak amplitude

threshold factor λa = 2. The use of low λa made it more likely to have false detections

due to superposition of more than one non-observable MUPs resulting in a peak with an

amplitude above λa. When λa was set to 2.5, the precision increased to 0.966 ± 0.035.

This led to no significant change in the average detection recall values for MUPTs with

MUPs having three ANRs or higher.
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Figure 2.7: Evaluating MUP Segmentation: Each bar represents the average of recalls

calculated for MUPTs belonging to a particular interval (right-open and left-closed) of

MUP ANRs. Each stick denotes one standard deviation around the obtained average

value.

2.5.2 Evaluating Motor Unit Potential Train Identification

The experiments reported in this section focus on evaluating the results of cascading the

segmentation and identification stages. In order to evaluate the MUPT Identification stage,

it is necessary first to establish an association between the simulated (gold standard) and

identified MUPTs. This is not straightforward, due to ambiguity resulting from many

sources including train merging and train splitting.

In this context, train merging refers to an identified train includes most of the MUPs

are from more than one simulated train, while train splitting refers to having more than one

identified train with most of their MUPs belonging to the same simulated train. Ambiguity

even goes to the MUP assignment level, as it is not clear how to assign a reference label

for a detection instance within a superimposed observation range.
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To resolve this ambiguity and develop appropriate indexes of performance, a definition

for an ideal MUPT identification should be first conceptualized. The indexes of perfor-

mance can be then developed to capture potential deviations from the ideal case. Intu-

itively, an ideal decomposition will result in the number of identified MUPTs being equal

to the number of simulated MUPTs with each of the identified MUPTs containing only

the isolated MUPs of a unique simulated MUPT. This is however an unrealistic definition,

because it ignores the possibility of MUP superposition which is expected to happen in

almost all EMG signals.

A more realistic definition for an ideal MUPT identification should take into consid-

eration the superposition phenomena. In this case, each of the identified MUPTs should

contain none but (1) all the isolated MUPs belonging to one of the simulated MUPTs, and

(2) the associated superimposed ranges where the morphology of the range is influenced

more by the MUP of this particular simulated train than by other superimposed MUPs.

The degree of the morphological influence of a particular MUPT to a superimposed range

is approximated by the ratio of the energy of the train’s MUP contributing to the range

to the total energy in the range.

The evaluation procedure starts by assigning each of the identified MUPTs to the

simulated MUPT to which most of the detection instances (isolated MUPs and associated

superimposed ranges) are associated with. Once this assignment between the identified and

simulated trains is established, three performance indexes can be calculated to evaluate

the identified trains

1. Splitting This performance index can be only calculated for each of the represented

MUPTs ( i.e., a simulated MUPT to which one or more identified trains are assigned).

Splitting is defined as the number of the identified trains assigned to this train.

2. Purity The ratio of correctly assigned MUPs to the total number of assigned MUPs

in each of the identified trains. This metric is adopted from the work described in

[71].

3. Merging The ratio of the number of MUPs mistakenly assigned to the train that

belong to the second most abundant MUPT in the identified train to the number of
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MUPs that are correctly assigned.

The performance indexes shown in Figure 2.8 constitute the identified MUPT view

evaluation. They do not reflect how much information is extracted from the signal. Instead,

these performance indexes focus on evaluating the quality of the identified trains. On the

other hand, Figure 2.9 presents the simulated train view evaluation. This view primarily

focuses on the completeness of the decomposition reporting the percentage of the detected

MUPTs. This view also reports the completeness within each train using precision and

recall calculated in the same way as in the previous section. Superimposed MUPs are set

to be associated to a train, if a MUP from this train contributes more than 60 % of the

energy of the observation range of the superimposed MUP.

2.5.3 Evaluating the Representativeness of the Identified Motor

Unit Potential Trains

In this section, the representativeness of an identified train is equated to how accurately

can the quantitative EMG morphology and morphological stability features be estimated

from it? This, in essence, is an end-to-end evaluation of the methods described in this

chapter. This is because feature values can be either under or over estimated due to errors

or inaccuracies in any of the sub-stages. This includes inaccurately estimating the onsets

and ends of MUPs, assigning MUPs to a wrong MUPT, excluding MUPs that could have

otherwise contributed to elevated morphological instability values, and failing to exclude

significantly superimposed MUPs.

The true values of the features are estimated from the simulated MUPTs. Simulated

MUPTs include all of the MUPs in the train with no added noise or superposition from

other MUPs. Four features are chosen for this experiment: area, length, number of phases

and jiggle. These features are chosen based on the analysis performed in Chapter 3 on

Page 51. Only MUPTs having an ANR above three are included in this study. The results

are shown in Figure 2.10.

In the case of evaluating the representativeness of MUPTs in terms of their ability to

estimate Jiggle (a feature estimating morphological variability across the MUPs belonging
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Figure 2.8: Iden-

tified MUPT view

Evaluation: The idea

here is to evaluate

the quality of the

identified trains. Each

bar in the top panel

represents the average

purity for MUPTs

belonging to a partic-

ular interval of MUP

ANRs. For the same

ANR intervals, the

middle panel shows

the average merging

and the bottom panel

shows the average

splitting. Each stick

denotes one standard

deviation obtained

around the average

value.
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Figure 2.9: Simulated

MUPT view Evalua-

tion: The idea here

is to evaluate how

much information is

extracted from an

EMG signal. Each

bar in the top panel

represents the percent

of simulated MUPTs

that were identified

belonging to a partic-

ular interval of MUP

ANRs. For the same

ANR intervals, the

middle panel shows

the average precision

and the bottom panel

shows the average

recall. Each stick

denotes one standard

deviation obtained

around the average

value.
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to the same train), noise is added to the simulated MUPTs. This is necessary to get

comparable estimates by having similar baseline fluctuations [16] (in a statistical sense) for

both the simulated and identified MUPTs. The morphological features (area, length and

phases) are estimated from a MUP template calculated using the following procedure:

1. Choose a reference MUP: For identified MUPTs, it is selected to be the MUP

with the smallest average of distances to its mutual nearest neighbours in Graph G.

Any MUP from the simulated MUPT can be selected as a reference MUP.

2. DTW Alignment: Using the procedure for DTW alignment described on Page 32,

the alignment path P is evaluated between the reference MUP and each of the MUPs

in the train. MUPs aligned based on their peaks (rows of Ỹ ) are used as an input to

this stage. The same procedure is applied for both identified and simulated MUPTs.

3. Find the minimal alignment: Each of the samples in the reference MUP can be

aligned to one or more samples when matched to another MUP. In case of multi-

ple alignments, the alignment that has the smallest Euclidean distance d among all

alignments is kept in the set of alignments associated with this particular sample. A

trimmed averaging (excluding the top and bottom 5% ) is used to to estimate the

template sample value.

Alternative methods for estimating morphological MUP templates can be found in [123, 60].

2.6 Discussion

The key advantages of using spectral clustering for the MUPT identification problem are:

� Unlike other clustering algorithms such as k-means, there is no need to represent

each MUP using a fixed length vector of morphological features or MUP samples.

This estimation of these features requires a precise alignment of the MUPs belonging

to the same train. Precise alignment is not feasible, since there is no way to obtain
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Figure 2.10: Each of the subplots is a bivariate graph. It shows the relation between the

feature values as estimated from the simulated trains (assumed to be the true values) and

when estimated from the identified MUPTs using the methods proposed in this chapter.

Dashed line represents regression line. The slope of the regression line, its 95% confidence

interval (CI), R2 statistic, and the p-value (rejecting the null hypothesis that the linear

model coefficients are equal to zero) are shown in the title of each subplot. The size of

the dot in the lower left subplot is proportional to the number of MUPTs. Please refer to

Chapter 3 on Page 51 for feature definitions and units.
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an accurate measurement of the motor neuron firing instance. The use of a single

morphological landmark (such as the peak with largest amplitude) as a reference

point can be misleading for highly unstable MUPTs. In contrast, the input to the

spectral clustering algorithm is a similarity graph constructed by evaluating pairwise

distances.

� The use of the k-nearest neighbour graph allows finding clusters with different simi-

larity densities. This can account for the non-uniformity of disease involvement across

motor units of the same muscle; which leads to detected MUPTs from concurrently

active motor units having different degrees of morphological variability across their

MUPs.

� The use of the k-nearest neighbour graph also allows efficient use of lower bounding

techniques.

� It is a graph based clustering approach finding clusters optimizing the connectivity

criteria rather than compactness. This means that the cluster is a set of points that

are connected to one another. The points belonging to the same cluster are not

necessarily assumed to form a dense region, as in the case of mixture models. This

can help in tracking MUPTs with slowly varying characteristics due to slow electrode

movement.

� The calculation of the Laplacian matrix and its spectral decomposition can be im-

plemented efficiently using optimized matrix operations. Also, the evaluation of the

adjacency matrix can be performed in parallel.

DTW-based distance is significantly more computationally expensive when compared

to the Euclidean distance. The computational complexity of DTW alignment is reduced

using early termination and lower bound distances. Early termination means stopping the

computation once the accumulated distance up to a certain sample index (either for the

DTW-based or the LB-Keogh distances) is above the maximum of the KG smallest DTW-

based distances that are already computed. The initial alignment of the MUPs allows

constraining the alignment path. This also contributes effectively to reducing computa-

tional cost.
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The main reasoning behind using DTW alignment is to calculate a distance that is

least affected by within-train morphological variability resulting from the instability in

neuromuscular transmission. DTW alignment can also accommodate to a great extent

inaccuracies in finding MUP onsets and ends by deleting activities mistakenly added to the

MUP. Moreover, the use of the DTW-based distance eliminates the need for representing a

MUP using a set of morphological features (e.g., duration, amplitude and area ) to perform

clustering.

SG filtering is used instead of a simple digital filtering schema due to its ability to

preserve the amplitude and width of signal peaks and valleys. This can be attributed

to the SG filter’s flat frequency response in the pass-band, linear phase response, and

modest attenuation in the stop-band. It is worth mentioning that the same desirable filter

characteristics (if not better) can be reached using other filter design methodologies [112].

The author still prefers to use an SG filter, because it provides a more intuitive and

convenient design process. The filters desirable characteristics can be maintained for dif-

ferent degrees of smoothing by changing either or both of the polynomial order and the

fitting window length. This is particularly useful for the applied tuning process, where

the degree of the applied smoothing is chosen based on the analyzed signal characteristics.

The SG design method also readily provides the impulse responses of linear time invariant

systems that can be used to obtain discrete approximations of differentiations up to an

order one below the set filter polynomial order. In this case, the first and second order

differentiation are useful in later analysis stages.

The main advantage of using a segmentation method that segments variable length

MUPs, rather than assuming that all MUPs have the same length, is that it potentially

decreases the chance of including contributions from other motor units. These erroneously

included contributions degrade the accuracy with which the quantitative features can be

calculated.

The described methods are mainly implemented using Matlab�except for the DTW and

LB-Keogh distance functions which are written in C. The methods were evaluated on a

computer having an i7-3820 processor and 32 GB of RAM. The implementation made use of

the four cores of the processor to realize a parallel execution for some methods including SG
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filter tuning, similarity graph construction, and spectral clustering. The average processing

time for a ten seconds long EMG signal is 4.7 ± 0.38 seconds. Nowadays, the extra cost to

purchase a computer powered by a multi-core processor (up to 16 cores) only represents a

small fraction of the cost of the acquisition hardware and the disposables.

The results of the identified MUPT view evaluation, shown in Figure 2.8, illustrate the

representativeness of the identified MUPTs. Those with an ANR that is five or above are

mostly comprised of MUPs whose morphology are mainly contributed by the same motor

unit (Purity: 0.99 ± 0.058). There is also a slight chance of train merging or splitting

(Merging: 0.016 ± 0.11 Splitting: 1.03 ± 0.17). On the other hand, the simulated train

evaluation view addresses the completeness of the extracted information. It is shown in

Figure 2.9 that 97.84 % of the simulated trains with an ANR that is five or above are

correctly identified with high precision (Precision: 0.99 ± 0.06 ). The obtained recall for

those trains is 0.65 ± 0.1. This low recall is partly by design, since the algorithm focuses

on excluding superimposed and inaccurately segmented MUPs.

As shown in Figure 2.10, the correlations between the quantitative EMG feature values

as estimated from the simulated MUPTs and when identified using the proposed methods

are highly significant. The estimated linear regression slopes are found to be statistically

significant and close to 1. The estimated linear model explains the variability in the data

around its mean (R2 statistic ranges between .83 and 1). This suggests that the identified

MUPTs can be used to accurately estimate features capturing different aspects of MUPT

typical MUP morphology and MUP stability. The same aspects are shown to be indicative

of neuromuscular disorders in Chapters 3 and 6.

The main advantage of evaluating the proposed methods using EMG signals obtained

from an electrophysiologically based model rather than a phenomenological model [35]

is that it prevents unjustified simplifications or complications of the MUPT identification

problem. An example of such simplifications in [35] is simulating contributions from distant

motor units as part of the added noise. It is true that MUPs from such motor units are

characterized with low amplitude. However, the fact that these MUPs are bandwidth

limited and observed with statistically consistent firing intervals and morphology poses

challenges to the segmentation and identification stages.
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On the other hand, the main advantage of using a phenomenological model to generate

EMG signals is that it allows a convenient direct association between the obtained per-

formance indexes and signal characteristics. For example, the performance indexes can be

obtained for trains with increased degrees of morphological variability. In comparison to

our approach, simulating increased morphological variability can be realized by increasing

the variability in neuromuscular junction transmission. There is no guarantee, however,

that this will lead to a monotonic increase in morphological variability.

The presented experimentation could have benefited from using reference labelling ob-

tained from multiple detection surfaces [74]. Such reference labelling could have been used

to confirm the obtained completeness of the decomposition results. It is worth emphasizing

that this approach of evaluation does not suffice by itself, since the characteristics of the

labelled MUPTs (signal to noise ratio, morphological variability, etc.) would have been un-

known, which would preclude analyzing the algorithm sensitivity with respect to different

physical properties and signal characteristics or evaluating the capability of the algorithm

to extract descriptive quantitative features reliably. Decomposition completeness is of a

secondary importance to the MUPT identification problem as explained earlier.
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Chapter 3

Representation:

Feature Selection For Motor Unit

Potential Train Description

3.1 Summary

Objective: Ten new features of motor unit potential morphology and stability are pro-

posed. These new features, along with eight traditional features, are grouped into five

aspects: size, shape, global complexity, local complexity, and stability.

Methods: Sequential forward and backward search strategies were used to select sub-

sets of these 18 features to discriminate accurately between muscles whose motor unit

potentials are predominantly neurogenic, myopathic, or normal.

Results and Conclusions: Results based on 8102 motor unit potential trains ex-

tracted from four different limb muscles (336 total muscles) demonstrate the usefulness of

Portions of this chapter previously appeared in M. Abdelmaseeh, B. Smith, and D. Stashuk. Feature

selection for motor unit potential train characterization. Muscle & Nerve, 49(5):680–690, 2014
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these newly introduced features and support an aspect-based grouping of the motor unit

potential train features.

3.2 Introduction

An important part of the current practise of electrodiagnostic medicine entails acquisition

and qualitative, or semi-quantitative analysis of needle-detected EMG signals. Qualitative

or semi-quantitative analysis involves auditory and visual assessment of spontaneous EMG

signals (recorded from resting muscle or after very small abrupt needle movements) and

of EMG signals recorded during slight voluntary muscle contraction. When signals are

assessed during slight voluntary muscle contraction, analysis is based on recognition and

semi-quantification of pathological changes in the morphology and/or stability of MUPs

as well as in recruitment levels and firing rates of the active motor units whose fibres

are close to the needle electrode. MUPs and their patterns of occurrence are assessed

to determine the likelihood they reflect normal or diseased motor units. After sampling a

suitable number of motor units, MUP characterizations are aggregated to obtain an overall

muscle characterization leading to a muscle categorization as normal or diseased [24].

Only a minority practitioners chose to perform quantitative analysis. This analysis

uses MUPTs extracted from signals recorded during low level voluntary contractions using

amplitude level or window triggering or signal decomposition algorithms. A more detailed

discussion of methods used in extracting MUPTs is provided in Chapter 2.

Each extracted MUPT is represented by an estimated MUP template and its ensemble

of MUPs. This allows assessment of MUP shape stability across multiple motor unit firings

as well as motor unit activation. Aspects of MUPTs related to MUP template morphology,

the consistency of their individual MUP morphologies, or motor unit recruitment and firing

pattern can be characterized using the values of various features.

As with qualitative analysis, MUPTs can therefore be characterized to determine

whether a disorder of nerve or muscle is likely and, if so, whether it is mild or severe.

MUPT feature values can be compared to reference normal and diseased values [37] to

estimate the likelihood that an extracted MUPT was detected in a normal or a diseased
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muscle. These individual MUPT characterizations can then be aggregated to create an

overall muscle characterization that can be used to categorize an examined muscle as be-

ing normal or abnormal.

Varying subsets of newly proposed and existing features were compared. The utility of a

feature subset was judged in terms of its accuracy in classifying muscles as myopathic, nor-

mal or neurogenic. Higher accuracy was equated with higher utility. Although this study

focuses on features evaluated using quantitative analysis, the findings are also applicable

to qualitative and semi-quantitative analysis, in that the same questions are addressed:

1. What aspects of MUPTs are most relevant to accurate muscle categorization?

2. Which features most reliably convey each MUPT aspect?

3. Which aspects are most useful in distinguishing myopathic versus neurogenic, myo-

pathic versus normal or neurogenic versus normal muscle?

4. Can feature subsets be generalized across different muscle types?

5. Can features sensitive to acquisition settings and/or operator skill be replaced by

other features which do not have these limitations without compromising accuracy?

3.3 Literature Review

MUPs from neurogenic muscles are often larger than those in myopathic or normal mus-

cles, and MUP size can be represented by duration and amplitude. MUPs from neurogenic

or myopathic muscles are often more complex than those from normal muscles, and the

number of phases and turns can characterize MUP complexity. As such, a feature set

comprised of duration, amplitude, number of phases, and number of turns can be used to

distinguish between normal muscles and those affected by myopathic or neurogenic disor-

ders [12, 15]. However, the influence of electrode type, sampling position, amplification,

and filter settings on the reproducibility of statistical estimates of these four conventional

features must also be considered [14, 13].
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Therefore, better ways of extracting motor unit information from MUPs have been

investigated. MUP thickness [81], the ratio of MUP area to amplitude, mitigates electrode

positioning effects and can discriminate between muscles affected by neurogenic and myo-

pathic disorders better than conventional MUP features [15]. MUP size index, a function

of area and amplitude developed using discriminant analysis, is effective for differentiating

normal muscles from those affected by a neurogenic process [115], but it is difficult to

interpret visually, because it is based on logarithmic scaling.

The MUP irregularity coefficient and the relative irregularity coefficient (RIR) are mea-

sures of MUP complexity and represent details of MUP shape rather than simply its global

features [144, 106]. MUPT jiggle and MUPT consecutive discharge cross-correlation co-

efficient measure morphological variability across MUPs of the same MUPT [121, 17].

Elevated jiggle and cross-correlation coefficient values correspond with increased muscle

fibre jitter.

Features representing motor unit activation patterns and MUP features estimated using

spectral and time-scale representations [92, 137] have also been investigated. Activation

pattern features are discussed in further details in Chapter 5. Spectral and time-scale

based features were not considered, because they are difficult to conceptualize or visualize

and their inferred characterizations are not explained easily.

In this work, size, shape, global complexity, and local complexity were considered as

four different aspects of MUP morphology. The fifth aspect studied relates to the stability

of MUP morphology of all the MUPs comprising an MUPT. The utility of different sets of

quantitative features was investigated using two different feature selection methods [47].

The relationships between different QEMG features were investigated previously. A

comprehensive review can be found in [120]. These studies mainly focused on statistical

relationships between pairs of features, for example the dependence of area and amplitude,

or the optimal way of combining feature values to obtain features with better statistical

characteristics. Also, feature subset selection methods have been applied previously to

QEMG data [95, 96]. In this work, a larger group of feature subsets using more exhaustive

search strategies and more computationally intensive classification methods were studied

to answer more general questions about MUPs.
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3.4 Methods

3.4.1 Data Acquisition

In the course of EMG laboratory evaluation of clinical patients referred for diagnostic EMG

studies, individuals were offered participation in the institutional review board approved

protocol.

A variety of subjects were enrolled and some declined enrolment. Recordings were

made without respect for diagnosis as enrolment took place prior to the EMG examination.

Subjects were selected for whom EMG evaluation was likely to require assessment of both

upper and lower limb muscles. The patients studied ended up having a wide variety of

conditions.

Subjects with neurogenic disorders had such diagnoses as polyneuropathy, polyradicu-

lopathy, or motor neuron disease. Individuals eventually diagnosed with myopathy most

commonly had inflammatory myopathies or dystrophies such as facioscapulohumeral mus-

cular dystrophy or oculopharyngeal muscular dystrophy. Most of the subjects had symp-

toms for a number of weeks to many months.

Routine clinical needle EMG was collected with a Viking EMG machine using a 10

to 10 kHz bandwidth and a 48 kHz sampling rate in the first dorsal interosseous (FDI),

deltoid (DLT), tibialis anterior (TA), and vastus medialis (VM) muscles. Following needle

positioning to detect suitably ”sharp” MUPs (with rise times < 0.5 ms) during low level

muscle contraction, a manual semiquantitative assessment of the detected signal was com-

pleted. The level of contraction was then increased until 40 to 60 MUPs per second were

detected and 15 sec of needle detected signal was acquired. This was repeated at multiple

distinct needle positions. Muscles were annotated by an experienced clinical neurophysiol-

ogist as myopathic, normal, or neurogenic based on manual semiquantitative assessments

of MUP signals detected during the low level muscle contractions across all sampled needle

positions.

For each needle position, MUPTs were extracted from the EMG signal detected during

the increased level of muscle contraction using a standard DQEMG algorithm [124]. Table
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Type Normal Neurogenic Myopathic

Muscles MUPTs Muscles MUPTs Muscles MUPTs

TA 48 868 31 429 24 548

FDI 59 1008 26 446 8 86

VM 55 830 19 330 9 112

DLT 40 690 13 246 10 171

Table 3.1: Number of muscles examined and the corresponding number of extracted

MUPTs for each muscle type

3.1 lists the number of muscles examined in this study and the corresponding number of

extracted MUPTs for each muscle type. All data was acquired under IRB approval and

sanitized of personal identifying information.

After extracting MUPTs that contributed significantly to a detected EMG signal, a

MUP template was estimated for each train. See [124] for a more complete description.

Morphological features of the MUP template were then measured as well as measures of

MUP stability across the MUPs comprising the MUPT.

3.4.2 Feature Definitions

All MUPT features included in this study and their definitions or formulae are listed in

Table 3.2.

Morphological Features
Size Aspect

Duration

(Dur)

ms The time difference between onset and end point of an MUP

template.

Amplitude

(Amp)

µV The difference in voltage from the maximal negative to the max-

imal positive peak of an MUP template.

Area (Ar) msµV Summation of the absolute values of samples of the MUP tem-

plate over its duration.
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Shape Aspect

Thickness

(Thk)

Area
Amplitude

Global Complexity Aspect(G.Cmpl)

Number of

Phases (Ph)

Phase is the part of an MUP template that falls between base-

line crossings

Number of

Turns (Tr)

Turn is a local peak, either negative or positive in an MUP

template.

Length Index

(LnInd)

MUP Length (Ln) is the summation of the absolute ampli-

tude differences for every two consecutive samples within the

duration of the MUP template. Length index is obtained

through normalizing the MUP length using the following for-

mula: Length−2×Amplitude
2×Amplitude

Shape Width

(ShpWdth)

ms Area
Length

Fibre Count

(FbrCnt)

The number of turns estimated from the second derivative of

the MUP templates.

Local Complexity Aspect(L.Cmpl)

Phase Area

(PhAr)

msµV Area
Number of Phases

Phase Com-

plexity

(PhCmpl)

Number of Turns
Number of Phases

Turn Length

(TrLn)

µV
Length

Number of Turns

Turn Am-

plitude

(TrAmp)

µV
Amplitude

Number of Turns
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Turn Area

(TrAr)

msV Area
Number of Turns

Turn Width

(TrWdth)

ms
Shape Width

Number of Turns

Ensemble Features
Jiggle(Jig) A measure of the average variation between motor unit dis-

charges of the individual voltage samples used to represent an

MUP, normalized by the energy of the MUP.

B Jig-

gle(BJig)

Similar to Jiggle but calculated using the second derivative.

Shimmer

Covariance

(ShmCov)

Average Euclidean distance of the ensemble of MUPs to the

estimated MUPT template normalized by the area of the tem-

plate.

Table 3.2: Features included in this study. All features were calculated au-

tomatically. Only duration was assessed and modified accordingly by Daniel

Stashuk.

These MUPT features can be broadly classified into 2 main categories:

� Morphological Features: These features quantify the shape of the MUP template.

The MUP template is calculated to estimate a typical MUP within the MUPT. MUP

templates have the advantage of reducing noise from contaminating MUPs from other

MUs but they also represent a smeared estimate of a typical MUP due to MUP shape

instability across the MUPT.

� Ensemble Features: These features describe how much MUP morphology varies

across the MUPs in an MUPT. Assuming negligible instrumentation noise and no

MUP superposition, MUP instability is attributed mainly to the variable times of

arrival of constituent muscle fibre action potentials at the electrode detection surface
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across consecutive motor unit discharges, which is due to variation in neuromuscular

transmission and in muscle fibre action potential conduction velocity.

Morphological features can be further classified into three different categories based on

which aspects of MUP morphology they best represent:

� Size: Size features, such as amplitude, duration, and area, are related to the number

and sizes of fibres in a given motor unit. Simulation studies [82], however, have

suggested that each of these features is affected by not only the number and sizes of

fibres that comprise a motor unit but also by the range of distances between muscle

fibres and the electrode detection surface, such that the closest fibres have the greatest

impact on the value of these features. In this regard, duration is less affected than

amplitude by individual fibre distance, but it is highly dependent on placement of

onset and end markers. Area is less dependent on individual fibre location than

amplitude and depends less on marker location than does duration.

� Shape: Shape features describe the overall shape of an MUP template. In this study,

thickness (area to amplitude ratio) is the only shape feature considered. Thickness

measured in milliseconds conveys information that can be thought of as the effective

width of an MUP. In myopathic muscles, MUPs can have amplitudes comparable to

those found in normal muscles, because amplitude is highly dependent on the size

of the closest fibre. Myopathic MUPs are, however, often thinner because of muscle

fibre loss. On the other hand, neurogenic MUPs are often thicker, as more muscle

fibres comprise the motor unit due to reinnervation.

� Complexity: MUP morphology is influenced by many factors, including the number

of muscle fibres, range of fibre diameters, spatial arrangement of fibres with respect

to the electrode detection surface, the variability of neuromuscular transmission, and

muscle fibre action potential conduction velocities.

Fibres in normal motor units are expected to exhibit more homogeneity and less

temporal dispersion, leading to simpler and more uniform MUPs. On the other

hand, diseased motor units tend to have more variation in all factors listed above

and therefore yield more complex MUPs. The features studied here attempt to
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represent MUP complexity at both global and local levels. The most obvious global

complexity features are number of phases and turns. Fibre count is different from

number of turns in that only positive turns detected in the second derivative of

an MUP template are counted. This gives more confidence that each of the counted

peaks is produced by a separate muscle fibre or a small group of fibres [125]. Another

way of expressing MUP irregularity uses MUP length, which can be thought of as

the length of the stretched out MUP contour. Length index and shape width feature

values are calculated by normalizing and standardizing MUP length with respect to

amplitude and area, respectively.

Local complexity features focus on representing the finer morphological details of

phases and turns. These features attempt to differentiate between neurogenic and

myopathic complexity. On average myopathic MUPs often have smaller phases and

turns compared with neurogenic MUPs.

3.4.3 MUPT Characterization

An MUPT characterization can be thought of as a set of conditional probabilities, one for

each category of muscle considered. Each element of an MUPT characterization represents

the conditional probability of the examined muscle falling into a specific category given

the feature values of the MUPT [i.e., P (yl | x)], where yl is the muscle category and

x is a feature vector used to describe the MUPT. For example, to discriminate between

normal and neurogenic muscles, yl ∈ {normal, neurogenic} and an MUPT characterization

would have two conditional probability values. The conditional probabilities were estimated

assuming a multivariate Gaussian probabilistic model such that:

P (x | yl) = N (x | µl,Ψ) (3.1)

Using various sets of training data, maximum likelihood was used to estimate the mean

feature vector µl for each category. The averaged covariance matrix was estimated using:

Ψ =
∑
l

ΨlP (yl) (3.2)
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where P (yl) represents the probability of having a muscle assigned to category l, and all

categories are assumed to be equally likely.

3.4.4 Muscle Characterization and Categorization

A muscle characterization is a set of conditional probabilities, one for each of the three

categories of muscle considered. Each element of a muscle characterization represents

the conditional probability of the examined muscle belonging to a specific category given

the set of MUPTs sampled from the examined muscle [P (yl | x1, · · · , xn)]. A muscle

characterization was calculated as the mean of the MUPT characterizations of all MUPTs

sampled from the examined muscle.

Assuming nMUPTs were sampled from an examined muscle, its muscle characterization

is estimated as:

P (yl | x1, · · · , xn) =

∑n
i=1 P (yl | xi)

n
(3.3)

A muscle is categorized as belonging to the category which has the highest muscle charac-

terization value. Muscle and MUPT characterization are explained more formally and in

further details in Section 6.4 on Page 117.

3.4.5 Validation and performance metrics

Leave-one-out cross-validation (LOOCV) was used. In each iteration, the feature vectors

of the MUPTs of a given muscle were used for testing, and feature vectors of the remaining

MUPTs were used as training data for estimating the parameters of the assumed Gaussian

model. For each category, category error was calculated as the ratio of the number of

misclassified muscles to the total number of muscles belonging to that category. The

overall classification error was then estimated as the mean value of individual category

errors.

61



3.4.6 Backward Feature Selection Algorithm (BFS)

The BFS algorithm starts by using a feature set containing all studied features. In each

subsequent iteration, all possible sets of features with one less feature than the previous

iteration are evaluated by calculating its respective classification error using LOOCV. A

feature is discarded if it does not belong to one of the best feature set combinations, in

which case it is redundant and/or irrelevant. If during an iteration no feature is discarded,

the algorithm evaluates all possible sets of features with two fewer features during the

subsequent iteration.

3.4.7 Statistical Forward Feature Selection Algorithm (SFS)

To improve the resolution with which muscle categorization accuracy might be measured,

muscle examinations were simulated using the MUPT data extracted from the actual mus-

cles examined. For each muscle category (i.e., myopathic, normal, and neurogenic) all

of the MUPTs extracted from muscles of each category were combined into one set (i.e.

pooled sets of myopathic, normal, and neurogenic MUPTs were created). For each muscle

category, 1000 sets of 20 MUPTs, randomly selected from its respective pooled set, were

created to simulate 1000 examinations of muscles pertaining to that category (i.e. 3000

sets of 20 MUPTs, representing 3000 simulated muscle examinations were created in total).

These 3000 sets of MUPTs were divided equally into ten groups of 300 simulated muscle

examinations for testing purposes.

The SFS algorithm starts with a single feature. In subsequent iterations larger feature

sets, created by adding one feature to each feature set selected during the previous iteration,

are evaluated by calculating the classification error for each group of simulated muscle

examinations using LOOCV. The best performing feature set, (i.e. the one having the

minimum average error across all groups of testing sets), and all statistically equivalent

sets (based on student t-tests) are selected. The algorithm terminates when none of the

selected feature sets brings a statistically significant improvement in classification accuracy

compared to the sets constituting the previous iteration. The algorithm is summarized in

Figures 3.1 and 3.2.
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Figure 3.1: Summary of the SFS algorithm. Boxes represent steps of the algorithm. Con-

ditions are shown as diamonds and datasets as cylinders.

3.5 Results

The muscle characterization was applied in a one-to-one schema. Three multivariate Gaus-

sian models were used to discriminate between neurogenic and normal muscles, between
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Figure 3.2: Summary of leave-one-out cross validation. Boxes represent steps of the algo-

rithm. Iterations are shown as dashed lines, while datasets as cylinders.

myopathic and normal muscles, and between neurogenic and myopathic muscles. The find-

ings using the BFS algorithm and those from the SFS algorithm are summarized in Table

3.3. The SFS algorithm was designed in such a way that all feature sets having equivalent

performance to the feature set(s) achieving the minimal mean classification error were pro-
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Muscle BFS Error SFS Avg. Error SFS No. of Sets

Discrimination between neurogenic and normal muscles

FDI 14.92 3.6 20

DLT 16.67 5.15 89

VM 22.13 2.75 45

TA 4.37 2.5 47

Discrimination between myopathic and normal muscles

FDI 18.96 2.1 334

DLT 16.25 7.3 17

VM 10.56 0.3 36

TA 23.54 5.25 171

Discrimination between neurogenic and myopathic muscles

FDI 7.69 0.15 154

DLT 13.33 2.55 14

VM 10.53 0 140

TA 3.33 0.7 43

Table 3.3: Summary of feature selection algorithm findings: The first column lists the

smallest classification error obtained by the BFS algorithm, the second lists the smallest

mean classification error obtained by the SFS algorithm using simulated studies, and the

final column notes the number of set(s) selected by the SFS algorithm which are equivalent

statistically to the set(s) which achieve minimal mean classification error (based on student

t-tests with alpha set to 0.05).

moted to the following iteration. This resulted into tens or even hundreds of equivalently

performing feature sets being selected for a particular decision level and muscle type as

shown in the last column of Table 3.3.

The relative importance of an aspect is proportional to the number of times a feature

representing that aspect was selected and at which iteration, since a feature selected at an

earlier iteration is more relevant to making a correct category assignment. A rank score
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for each aspect was therefore calculated to denote its relative importance. The rank score

of the contribution of each selected feature in each equivalently performing feature set

selected by the SFS algorithm was incremented by a weighting factor. The value of the

weighting factor was determined by the iteration number during which that feature was

selected. The weighting factor for a feature selected during the first iteration was equal to

the number of features included in its feature set. The weighting factors of the features

selected during subsequent iterations were then decreased correspondingly, such that the

weighting factor of the feature selected during the last iteration was 1.0. In cases where

more than one feature from the same aspect was selected in the same feature set, only

the earliest selected feature was considered. This is important to account for the fact that

different aspects have different numbers of features representing them.

The accumulated ranking scores of the different aspects were then normalized, such

that the highest was made equal to 100. These results are summarized in Table 3.4. The

features that were selected most often to represent a specific aspect for the various decisions

made, and those contributing to the various muscle type categorizations studied are also

shown in Table 3.4.

Muscle
1st

Aspect
2nd

Aspect
3rd

Aspect
4th

Aspect
5th

Aspect Err.
Sim
Err.

Discrimination between neurogenic and normal muscles

FDI

Aspects Size Stability L.Cmpl G.Cmpl Shape

Ranking 100 65 11.67 10 6.67

Features Ar Jig TrWdth ShpWdth Thk 22.4 3.9

DLT

Aspects L.Cmpl Size G.Cmpl Stability Shape

Ranking 100 99.34 78.95 26.32 18.42

Features PhAr Ar Tr ShmCov Thk 19.2 4.9

VM

Aspects Size Stability L.Cmpl G.Cmpl Shape

Ranking 100 66.67 11.11 11.85 2.96

Features Ar Jig TrLn Tr Thk 25.7 1.9

TA

Aspects Size Stability L.Cmpl G.Cmpl Shape

Ranking 100 71.30 33.04 19.13 10.43

Features Ar ShmCov PhAr ShpWdth Thk 11.5 2.1

66



Discrimination between myopathic and normal muscles

FDI

Aspects G.Cmpl L.Cmpl Stability Size Shape

Ranking 100 54.71 45.54 35.36 9.26

Features ShpWdth PhAr Jig Ar Thk 22.3 1.5

DLT

Aspects G.Cmpl L.Cmpl Size Stability Shape

Ranking 100 17.62 8.82 8.82 2.94

Features ShpWdth PhCmpl Dur Jig Thk 22.5 6.4

VM

Aspects G.Cmpl Size L.Cmpl Stability Shape

Ranking 100 62.04 18.52 5.56 1.85

Features ShpWdth Ar Trln Jig Thk 16.5 0.4

TA

Aspects L.Cmpl Stability G.Cmpl Size Shape

Ranking 100 76.14 50.53 36.73 1.17

Features TrAr Jig FbrCnt Ar Thk 30 5.1

Discrimination between neurogenic and myopathic muscles

FDI

Aspects G.Cmpl Size L.Cmpl Stability Shape

Ranking 100 89.79 73.94 22.89 19.72

Features ShpWdth Ar TrAr Jig Thk 13.9 0.1

DLT

Aspects Size L.Cmpl G.Cmpl Stability Shape

Ranking 100 17.86 14.29 7.14 3.57

Features Dur TrLn ShpWdth Jig Thk 17.5 2.7

VM

Aspects Size L.Cmpl G.Cmpl Shape Stability

Ranking 100 34.29 24.29 15 9.05

Features Ar TrWdth ShpWdth Thk Jig 15.5 0

TA

Aspects Size Stability L.Cmpl G.Cmpl Shape

Ranking 100 61.46 47.92 40.63 3.13

Features Ar Jig PhAr FbrCnt Thk 8.3 0.2

67



Table 3.4: For a particular muscle and decision, aspects are sorted based on

their estimated ranking factors, i.e. their utility. A set is also constructed

by selecting the most frequently selected feature for each aspect. The perfor-

mance based on simulated studies is equivalent statistically based on student

t-tests with alpha set to 0.05 to the set(s) selected by the SFS algorithm.

The errors obtained for these sets using actual data are within ±8% of the

minimal errors for the feature sets selected by the BFS algorithm.

3.6 Discussion

Using a global set of 18 MUPT features comprised of traditional and newly defined features

and representing different MUPT aspects, feature subset selection methods were used to

select discriminating QEMG feature sets. The selected feature subsets were selected by

considering the following properties:

1. Discriminative: Characterization based on selected features should be accurate

and consistent with an expert electromyographers assessments.

2. Simple: A lower number of features is preferable, eliminating irrelevant information

and simplifying the basis on which a characterization is based, and increasing the

confidence that results can be generalized.

3. Least redundant: It is preferable to have a feature set in which every relevant

aspect is represented using the most relevant feature, yielding a more structured

decision process.

4. Interpretable: The numerical estimates of features should be appreciated readily

and able to be understood based on visual inspection.
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5. Informative: Selected features should promote the use of electrophysiological and

anatomical knowledge to infer the muscle condition or readily explain decisions in-

ferred though statistical modeling.

6. Acquisition Independent: The measured feature values should be as insensitive

as possible to needle positioning and instrumentation settings

7. Easily estimated: Some features can be more consistently and accurately estimated

using automated methods, thereby avoiding time-consuming marker editing.

8. Generalizable: It is preferable to end up with a feature set that can be in all muscle

types: large and small, proximal and distal, and limb, axial, and cranial muscles.

The best feature subsets were found to be comprised of a reduced number of features, which

together can be used to distinguish accurately between neurogenic, myopathic, and normal

muscles. The main advantage of methods which consider feature subsets, as opposed to

methods which investigate each feature independently, is the consideration of inter-feature

dependencies or correlations. This is especially important for QEMG features, because the

same MUPT aspect often contributes to more than one feature. For example, duration,

amplitude, and area all represent the size of an MUP template. Even though each of them

can be used to discriminate between neurogenic and normal muscles, they are unlikely to be

selected in the same subset due to their interdependence. Moreover, some of these features

convey redundant information, in that they are calculated using other feature values.

A multivariate classification method was used rather than more traditional multiple

univariate methods, because multivariate methods use covariance or correlation matrices

to estimate and utilize the interrelatedness of the features within a selected set of features

to find linear combinations of the features to maximize discrimination among different

classes. On the other hand, multiple univariate analyses accumulate evidence from each

feature by assuming independence among the features or by employing heuristics [97].

The most comprehensive way to select a feature subset would be exhaustive search,

which means measuring the discriminatory power of all possible feature subsets. However,

because across the 18 features investigated in this study more than 250,000 subsets can
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be constructed, sequential search methods were used instead. Both forward and backward

search strategies were used to assure convergence to feature sets with the smallest numbers

of features that provide maximal discrimination. The discriminatory power of a selected

feature subset can be estimated using a filter or wrapper method. Filter methods rely on

general properties of the estimated distributions of feature data. These properties include

class separability, relevance, independence, and others. Wrapper methods measure the

classification accuracy of a specific feature subset using a chosen classification algorithm

[47]. The author used a wrapper method based on probabilistic muscle characterizations.

Simulated muscle studies were used for the following reasons:

� To provide more uniform evaluation across disease categories, even with imbalances

among different categories as shown in Table 3.1.

� To increase the resolution with which discrimination accuracy could be determined to

avoid drastic changes in search results caused by small numbers of misclassifications.

� To smear (reduce the effect of) muscle categorization inaccuracies, because MUPTs

from inaccurately categorized studies are to be distributed across many simulated

studies and their characterizations (the probability that a given MUPT was detected

in a muscle of a specific disease category) will be averaged with other MUPTs during

the aggregation stage in order to reach an accurate muscle categorization.

The resulting simulated studies may contain MUPTs belonging to muscles affected by

different levels or stages of disease involvement. BFS was therefore conducted using actual

muscle studies. The errors of feature sets selected by SFS were re-evaluated using actual

muscle studies, resulting in errors within ±8% of the minimal errors for the feature sets

selected by the BFS algorithm.

The large number of feature subsets selected by the SFS algorithm that have statistically

equivalent performance is not surprising given the large number of tested feature subsets,

as well as considering the redundancy and interdependence among investigated features

and the small size of the data set used for statistical validation. It is clear that features

belonging to the same selected set mostly represent different MUPT aspects, while alter-

native selected feature sets are more often formed by replacing one feature by another,
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reflecting the same aspect. These two observations support the proposed aspect-based

grouping of features, as they validate the independence among the proposed aspects (i.e.

that each aspect conveys some degree of unique information). It also demonstrates that

features belonging to the same aspect convey very similar information.

Another clear observation is that feature aspects that allow discrimination between

myopathic muscles and normal muscles are often different from feature sets that provide

discrimination between neurogenic and normal muscles even for the same muscle type. Still,

there appears to be clear consistency among aspect rankings for a given decision across

different muscle types. For instance, stability and size were selected as the most relevant

aspects for discrimination between neurogenic and myopathic muscles for all muscles types

studied except the deltoid. These two aspects correlate with reinnervation and abnormally

variable neuromuscular transmission. On the other hand, global and local complexity

features were found to be among the top three ranked aspects for discrimination between

myopathic and normal muscles. MUPs detected in myopathic muscles often have increased

complexity due to fibre loss, fibre atrophy, and fibre hypertrophy leading to increased

variability of muscle fibre diameters belonging to a given motor unit, which in turn leads

to higher variability in fibre conduction velocities.

Amplitude was selected rarely to represent MUP size. This is consistent with find-

ings of simulation studies [82], which have verified that amplitude is mainly influenced by

proximity of the electrode to the nearest muscle fibre, whereas both area and duration are

more acquisition independent. Area was selected more often than duration to represent

MUP size, which can be attributed to the fact that area is less influenced by onset and

end marker positioning.

For discrimination between myopathic and normal muscles, shape width was selected

more often than any other feature representing global complexity. MUPs in each row

of Figure 3.3 have almost the same thickness and area. MUPs in the right column are

extracted from myopathic muscles with clear morphological complexity. This complexity

is captured successfully using shape width, which is significantly smaller for the MUPs

extracted from myopathic muscles. Another advantage of using shape width to characterize

global complexity rather than turns is that shape width estimates are less sensitive to

baseline fluctuations and noise. Shape width was selected more often than length index,
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because shape width is normalized using area instead of amplitude.

Figure 3.3: The left column shows MUP templates extracted from normal muscles, and the

right column shows MUP templates extracted from myopathic muscles. In each row, the

two MUP templates have nearly the same size (area) and shape (thickness), while MUP

templates extracted from myopathic muscles show significantly lower shape width.

Local complexity features related to phase characteristics such as phase area, are in-

tended to augment discrimination between neurogenic and normal muscles. Figure 3.4

shows an increase in phase area for MUP templates estimated from MUPTs recorded in

neurogenic muscles compared to those of MUPTs recorded in normal muscles. This can

be attributed to re-innervation. On the other hand, local complexity features related to

turns such as turn area augment discrimination between myopathic and normal muscles.

A clear decrease in turn area for MUP templates estimated from MUPTs recorded in my-
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Figure 3.4: Black bins represent phase area measurements from MUP templates extracted

from neurogenic muscles, while grey bins represent measurements from MUP templates

extracted from normal muscles.

opathic muscles compared to those of MUPTs recorded in normal muscles can be seen in

Figure 3.5 , which is expected due to muscle fibre depletion. It is important to note that

MUPT labelling was based on muscle characterization (i.e., at the muscle level and not

at the motor unit level). Therefore, normal MUPTs are expected to be detected in both

neurogenic and myopathic muscles, with a probability dependent on the degree to which

the muscle has been affected by disease.

Each row in Figure 3.6 shows MUP templates having almost the same size (area). The

MUP template on the right in each row was extracted from a neurogenic muscle and has

a higher turn area, while the MUP on the left was extracted from a myopathic muscle.

This demonstrates how local complexity features can augment the discrimination between

myopathic and neurogenic morphological complexity in equivocal cases.
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Figure 3.5: Black bins represent turn area measurements from MUP templates extracted

from myopathic muscles, while grey bins represent measurements from MUP templates

extracted from normal muscles.

It is possible to obtain smaller average error rates when discriminating between neuro-

genic and myopathic muscle than the average errors obtained for the other two decisions,

because for most QEMG morphological features, normal MUPT values tend to lie be-

tween the neurogenic and myopathic values, and therefore the neurogenic and myopathic

categories are well separated.

The results obtained from this study are preliminary. Perhaps more convincing find-

ings could be obtained by studying EMG signals collected by a group of electrodiagnostic

experts contributing to a larger data set. Investigating additional features and employing

improved strategies for estimating the features studied here may eventually lead to a set

of features accepted by broad census which provide greater power to discriminate between

neurogenic, myopathic and normal muscles.

74



Figure 3.6: The left column shows MUP templates extracted from myopathic muscles, and

the right column shows MUP templates extracted from neurogenic muscles. In each row,

the two MUP templates have nearly the same size (area) but with clear differences in turn

area.
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Chapter 4

Representation:

Near Fibre MUP Jitter: A New

Quantitative Electromyographic

Feature For Characterizing

Neuromuscular Junction

Transmission

4.1 Summary

Objective: The main objective of this chapter is to address technical difficulties associated

with estimating jitter using single fibre EMG signals. The chapter proposes a variant of

Portions of the methods described in this chapter previously appeared in T. Chen, M. Abdelmaseeh,

and D. Stashuk. Affine and regional dynamic time warpng. arXiv preprint arXiv:1505.06531, 2015.
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the jitter feature, called near fibre MUP jitter, that can be estimated quickly from an

automatically decomposed EMG signal. A signal that can be acquired using a conventional

clinical protocol and equipment that have been shown to be useful for evaluating MUP

morphology and morphological stability.

Methods: At the core of the proposed method is a classifier capable of detecting single

fibre MUP segments, i.e., parts of the MUP where the contribution from a single muscle

fibre is not highly contaminated by contributions from other fibres. For a set of MUPs

created by the same motor unit, single fibre MUP segments may have varying occurrence

times within the MUPs but will have consistent morphology across the MUPs. Aligning

single fibre MUP segments and evaluating their morphological consistency are achieved

using regional dynamic time warping.

Results: Results based on 680 simulated MUPTs show that near fibre MUP jitter can be

estimated with an average error rate as low as 8.9%. Also, one or more single fibre MUP

segments can be detected in more than 85.3% of the studied MUPTs. The analysis for a

single MUPT can be completed in 3.6 seconds on average using a conventional personal

computer.

4.2 Introduction

Myasthenia gravis is a chronic autoimmune NMD caused by antibodies binding to receptors

for acetylcholine in the neuromuscular junction. This results in altering and/or blocking

of the transduction of the motor neuron impulses at the neuromuscular junction [56].

Other NMDs can also disrupt neuromuscular transmission, especially disorders that involve

denervation and reinnervation of muscle fibres [140].

In the mid sixties, St̊alberg and Ekstedt developed an electro-physiological test known

as single fibre electromyography (SFEMG) [116, 32]. As the name of the test suggests, they

utilized a spatially selective electrode to record EMG activity created by a single muscle

fibre. The major contribution of SFEMG to characterization of NMDs is the definition of

a new quantitative EMG feature, called jitter. The authors defined jitter in [118] as ”the

variability in time interval at consecutive discharges between two action potentials from
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two muscle fibres belonging to the same motor unit”. The MFPs can be produced as a

result of either low voluntary contraction or repetitive stimulation.

Jitter was shown to be sensitive to disturbances in neuromuscular transmission. In

[108], jitter was shown to have a sensitivity of up to 99 % in detecting deficiencies in

neuromuscular transmission due to generalized myasthenia gravis. The same study also

showed that jitter is suitable for tracking longitudinal changes. In recent years, there

have been many attempts [33, 11, 110] to use less spatially selective electrodes, such as

concentric and monopolar electrodes, for jitter estimation. One compelling argument for

replacing single fibre electrodes is that they are not disposable. The use of reusable clinical

electrodes is restricted in many countries [117]. Compared to single fibre electrodes, needle

electrodes are usable for other electrodiagnostic tests, and they are cheaper. On the other

hand, the fact that these electrodes are less spatially selective makes it more likely that

detected MFPs are contaminated by contributions from other distant fibres belonging to

the same motor unit or other motor units.

Therefore, the use of conventional less spatially selective clinical electrodes, such as a

concentric needle electrode, is normally accompanied by high pass filtering to attenuate

contributions from distant fibres and manual editing to exclude highly contaminated MUPs

from the analysis. Regardless the type of the electrode used for jitter analysis, the clinical

procedure used in estimating jitter has been constantly described by a majority of neu-

rologists and electromyographers to be challenging. The authors of the textbook ”EMG

pearls” [44] described the analysis to impose substantial technical demands for both the

patient and the practitioner. A mini-monograph published by the American association of

neuromuscular and electrodiagnostic medicine ( coauthored by St̊alberg [109]) mentioned

that it is a must for a practitioner to have considerable experience to be able to perform

the analysis. These difficulties were also reported in other clinical studies [52, 91, 19].

This study aims at elevating these difficulties by estimating a new quantitative EMG

feature that the author refers to as near fibre MUP jitter (NF-MUP-Jitter). Similar to the

conventional SFEMG based jitter, the feature aims at capturing disturbances in neuromus-

cular transmission. The key difference between NF-MUP-Jitter and conventional jitter is

that NF-MUP-Jitter is to be estimated from an automatically decomposed EMG signal.

Please refer to Chapter 2 for further discussion on automated decomposition of EMG sig-
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nals. These signals are to be collected using a conventional clinical acquisition protocol

that is used for evaluating MUP morphology and morphological stability. An example of

such an acquisition protocol is discussed in Chapter 3 on Page 51. Given the nature of

the utilized signal and how it is processed and decomposed, the newly proposed feature

(NF-MUP-Jitter) deviates from the original definition of jitter in that:

� The NF-MUP-Jitter analysis does not attempt to find isolated MFPs. Instead, it

focuses on finding segments in the MUPs assigned to a given identified train that

are observed to have consistent morphology and hence the name of the new feature

contains the term MUP. These segments are hypothesized to be mainly created by a

single fibre and not significantly contaminated by contributions from other fibres.

� The MUPs used for NF-MUP-Jitter analysis are not necessarily assumed to be consec-

utive. This assumption is not realizable for signals acquired during a low to medium

contraction level. Such EMG signals are normally comprised of multiple MUPTs,

which increases the chance of MUP superposition.

� The MUPs used for NF-MUP-Jitter analysis are low-pass double differentiated [134]

to eliminate contributions from muscle fibres that are distant from the electrode

detection surface without accentuating the high frequency components of the noise.

The signal acquisition and analysis steps involved in estimating NF-MUP-Jitter are signif-

icantly faster compared to the SFEMG based analysis. The whole test can be completed

in the order of a few seconds compared to the tens of minutes necessary to complete con-

ventional SFEMG analysis. Also, the process does not demand expertise beyond that

necessary for completing a conventional clinical EMG test, which is found in almost every

electrodiagnostic lab.

4.3 Literature Review

This review only focuses on a subset of the jitter analysis literature that addresses char-

acterization of disturbances in neuromuscular transmission based on clinical EMG signals
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acquired using conventional needle electrodes. In the late seventies, Payan showed in a

short technical note [94] that increasing the cut-off frequency of the high-pass filtering

applied to EMG signal from the standard 500 Hz to as high as 3000 Hz reduces contri-

butions from muscle fibres that are distant from the electrode detection surface. These

contributions are mainly comprised of low frequency components. Therefore, they obscure

disease-induced MUP complexity.

Payan used the analogy of looking under blanket to demonstrate the effect of high-pass

filtering on revealing MUP complexity. An investigation of the utility of features describ-

ing the complexity and size aspects of high-pass filtered MUPs in discriminating between

normal, myopathic and neurogenic muscles is presented in Appendix A. It was not until

1998 that Stashuk presented a comprehensive study of the possibility of detecting contri-

butions from muscle fibres [126] from MUPs acquired using a concentric needle electrode.

The detection of MFPs was performed by searching for peaks in band-pass filtered (or

low-pass double differentiated) MUPs. For these peaks to qualify as contributions from

muscle fibres, they needed to have an amplitude and rise time above preset thresholds.

The evaluation in this study mainly relied on computational models to produce MUPs

with known MFP composition. Results based on 720 simulated MUPTs showed that up

to 84 % of significant MFPs were detected in the case of using an amplitude threshold

of 2.5 KV/ s2. A simulated MFP was considered to be significant (i.e., detectable) only

if it exceeded the same amplitude threshold. This direction of investigation was further

extended by Stashuk and his collaborators.

In [72], it was shown that the acceleration filter (low-pass double differentiation) was

better for detection of MFPs compared to using a Butterworth band-pass filter. The work

also presented methods for jitter measurement by identifying and tracking detected MFPs

along the MUPs of a given train. Results based on simulated MUPTs showed that jitter can

be measured with an average error of 8.37%. This work was further extended in [138, 54]

by refining MUP filtration techniques and introducing an algorithm, based on minimum

spanning tree clustering [46], for classifying MUPs within a given train as either isolated

or superimposed. This resulted in reducing the average error for measuring jitter to 7.3%.

The main differences between the work presented in this chapter and the previous work
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performed by Stashuk et al. is that this work does not detect MFPs by investigating the

morphology of the MUPs (i.e., searching for peaks) but through analyzing morphological

consistency across the MUPT. This work instead focuses of detecting single fibre MUP

segments, which is defined as a part of a MUP created by a single muscle fibre and not

significantly contaminated by contributions from other muscle fibres. Therefore, for a

particular MUPT, these segments may have varying occurrence times within the MUPs

because of the variable time required for neuromuscular transmission. However across the

MUPs of a MUPT, a single fibre MUP segment is expected to have a consistent morphology

in most MUPs of a given MUPT when compared to the segments of the MUPs resulting

from overlapping muscle fibre contributions. Given this definition, a peak in a NF-MUP,

even when significant and not bifuricating, might or might not be a single fibre MUP

segment. Figure 4.1 provides an example of single fibre MUP segment.

Other technical differences between this work and previous work completed by Stashuk

et al. are:

� Using regional dynamic time warping (RDTW) for tracking single fibre MUP seg-

ments and estimating NF-MUP-Jitter.

� Utilizing learning algorithms trained using simulated MUPTs for detection of single

fibre MUP segments rather than a set of fixed criteria such as minimal amplitude or

slope.

4.4 Methods

The proposed system operates in two phases: training and estimation. The output of

the training phase is a classifier that can segment single fibre MUP segments from unseen

MUPTs. The input to the training phase is a set of simulated MUPTs with known MFP

composition and jitter values. Up to the author’s knowledge, there is no laboratory method

capable of revealing the MFP composition of a MUP nor the variability in neuromuscular

transmission. The training algorithm learns a model using a set of feature vectors that

are assumed to be probabilistically independent. Each of the vectors describes a group of
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aligned regions using a constrained DTW procedure, where each region belongs to one of the

MUPs in a MUPT. The feature vector captures the aligned regions’ alignment properties.

A label is assigned to each feature vector based on how accurately the NF-MUP-Jitter can

be estimated based on this region. That is to say, a single fibre MUP segment is equated

to a region, which can be used to accurately calculate NF-MUP-Jitter.

The inputs to the estimation phase are MUPTs identified from a clinical EMG signal

and a trained classifier. The MUPs belonging to each MUPT are aligned using the same

procedure applied in the training phase. Also, the resulting aligned regions are described

using the same feature vector definition. These feature vectors are classified to either

represent a single fibre MUP segment or not. The alignments between regions found to

represent single fibre MUP segments can be then used for NF-MUP-Jitter estimation. The

difference between the NF-MUP-Jitter estimation method in the estimation stage compared

to the training stage is that it demands using a pair of single fibre MUP segments created

by two different muscle fibres. This is because there is no direct way to estimate the motor

neuron firing times and therefore neuromuscular junction transmission variability can be

only estimated indirectly through investigating the variability in the intervals between

two MFPs. The information flow of the system is depicted in Figure 4.2. The same

nomenclature used in Chapter 2 is adopted here.

4.4.1 Alignment

The alignment procedure operates on a single MUPT at a time. The MUPs belonging

to the MUP are first low-pass double differentiated. A reference MUP, say ÿ , which

can best capture the typical morphology of the MUPs belonging to the train is then se-

lected. Therefore, the morphology of the reference MUP is expected to be the least affected

by superposition from other MUPs, MFP blocking, and other factors including electrode

movement. This problem was previously dealt with in Section 2.5.3 on Page 42 for the

purpose of estimating a typical morphology template to be used for estimating quantita-

tive EMG features. The idea behind the proposed solution is to find the MUP which is

on average closest (based on some similarity measure) to the other MUPs belonging to

the train. The assumption was that the changes in morphology due to superposition are
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expected to produce random changes that were different from one MUP to another.

The simulated MUPTs used for training are modelled to be isolated. Therefore, any

MUP in the MUPT can be selected as the reference MUP. Each MUP in the MUPT,

except the reference MUP, is then aligned to the reference MUP using RDTW. RDTW

uses the same dynamic programming optimization explained in Section 2.4.3 on Page 32.

The major difference is that a zero-shift pseudo-correlation (ZPC) distance [38] is used

instead of the Euclidean distance. ZPC can be calculated for an alignment between two

arbitrary samples, say ỹk(tn) from the kth MUP in the train and ÿ(tm) from the reference

MUP as:

ZPC(tm, tn) =

j=LRDTW∑
j=−LRDTW

(ỹk(tn + j)ÿ(tm + j)− |ỹk(tn + j)− ÿ(tm + j)|max{|ỹk(tn + j)|, |ÿ(tm + j)|})

j=LRDTW∑
j=−LRDTW

(max{|ỹk(tn + j)|, |ÿ(tm + j)|})2

d(tm, tn) = 1− ZPC(tm, tn)

where LRDTW is the half region width. It is set to 50 µS, unless otherwise is mentioned.

|| indicates taking the absolute value of the sample. The alignment path is constrained

in the same way as described in Section 2.4.3 on Page 32. The half length of the Sakoe-

Chiba band [107] is set to 300 µS, because it is expected that the standard deviation

of the neuromuscular transmission times to be less than 150 µS. In order to speed up

the computation time of the ZPC for different alignments, the sums in the denominator

and the nominator of ZPC(tm + 1, tn + 1) are computed in an incremental manner from

ZPC(tm, tn), i.e. removing the elements for (tm − LRDTW, tn − LRDTW) and including an

element for (tm + LRDTW + 1, tn + LRDTW + 1).

The evaluation of disturbances in neuromuscular transmission demands estimating jit-

ter with a resolution as low as few microseconds. Therefore, it is necessary to sample

the EMG signal with a resolution of 1 MHz or preferably higher. Most of the clinically

available systems use much lower sampling rates (below 50 KHz). This is because MUP

morphology can be well reproduced when sampled at this rate. Also, the equipment used
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in these systems are based on legacy designs that were constrained by computational power

and storage capacity. To circumvent these limitations, the MUPs are interpolated using

linear interpolation to have a sampling rate of 1 MHz.

4.4.2 Aligned Regions Features Calculation

For each sample in the reference MUP, say tm, two sets are constructed: the aligned indexes

set AI(tm) and the aligned distances set AD(tm). Each of these two sets has a number of

elements that is one less than the number of MUPs in the MUPT. The kth element in the

AI(tm) set is the index of the sample to which ÿ(tm) is matched to, when the reference MUP

is aligned to the kth MUP of the train. When ÿ(tm) is aligned to more than one sample,

the index of the sample that has the least distance d is kept. The corresponding alignment

distance is kept in AD(tm). A feature vector x
(tm)
NFJ is constructed defining six statistics over

AD(tm): (1) mean, (2) standard deviation, (3) range, (4) minimum, (5) maximum and (6)

median. It is worth reemphasizing here that both alignment and feature calculation are

applied in the same way during both training and estimation phases of the analysis.

4.4.3 NF-MUP-Jitter Estimation

NF-MUP-Jitter (NFJ(tm)) is estimated for every sample in the reference MUP during the

training phase. It is set to the standard deviation of AI(tm). For all MFPs belonging to

a particular simulated muscle, the neuromuscular transmission times are modelled to be

sampled from normal distributions having the same standard deviation. This means the

expected NF-MUP-Jitter values for any of the single fibre MUP segments are the same.

NF-MUP-Jitter is estimated differently, when using non-simulated data during the

estimation phase. In this case, the estimation starts by choosing a sample in the ref-

erence MUP to act as a synchronizing sample tSync. NFJ(tm) is then estimated as the

standard deviation of the synchronized aligned indexes set AI
(tm)
Sync, such that AI

(tm)
Sync(k) =

|AI(tSync)(k)− AI(tm)(k)|. k is the index of the MUP aligned to the reference MUP.
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4.4.4 Classification

A binary label is assigned to each feature vector x
(tm)
NFJ. A positive label (z

(tm)
NFJ = +1) is

assigned when the absolute difference between NFJ(tm) and the simulated NF-MUP-jitter

value is below or equal to λNFJ. Conversely, a negative label (z
(tm)
NFJ = −1) is assigned to

x
(tm)
NFJ, when this difference is above λNFJ. A training dataset is then constructed by pool-

ing examples (feature vector and label pairs) from all simulated MUPTs. The dataset is

then sub-sampled to only include 15,000 positive examples and 15,000 negative examples,

resulting in DNFJ = {xNFJ(i), zNFJ(i)}NNFJ
i=1 . NNFJ is the number of samples in the train-

ing dataset after sub-sampling (30,000). The index tm is dropped to emphasize that all

examples are considered to be identical and probabilistically independent.

To further ensure that the positive examples are not due to a random chance, the sub-

sampling only selects examples from samples that are preceded and followed with a 150

µS worth of samples with absolute error less than or equal to λNFJ. The sub-sampling

is necessary to make training the classifier more computationally feasible. The size of a

training set constructed from a few hundred simulated MUPTs is in the order of a few

million samples. This is because, the dataset has a feature vector for every sample in the

reference MUPs sampled at a one MHz rate. Moreover, there will be a significant imbalance

between the number of positive and negative examples.

The training dataset is then used to build a support vector machine (SVM) model. The

use of support vectors for the supervised binary classification task was first introduced by

Cortes and Vapnik in [23]. The weights {αSVM(i)}NNFJ
i=1 defining an SVM classifier are
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obtained by solving the following quadratic optimization problem:

max
{αSVM(i)}NNFJ

i=1

(NNFJ∑
i=1

αSVM(i)

− 1

2

NNFJ∑
i=1

NNFJ∑
k=1

αSVM(i)αSVM(k)zNFJ(i)zNFJ(k)φTSVM

(
xNFJ(i)

)
φSVM

(
xNFJ(k)

))
s.t.

NNFJ∑
i=1

αSVM(i)zNFJ(i) = 0

0 ≤ αSVM(i) ≤ CSVM, i = 1, ..., NNFJ

CSVM is a regularization factor controlling the trade-off between the model complexity and

empirical risk. φSVM is a nonlinear mapping of the feature vector to a higher (possibly

infinite) dimensional space, where the positive and negative examples can be classified

linearly. Training vectors with a corresponding αSVM(i) that is not equal to zero are

referred to as support vectors. The objective of the above optimization problem is to

find a linear separation surface with a maximum distance to the two margins (one for the

positive class and the other for the negative class) along which the support vectors lie.

The mapping φSVM does not need to be explicitly evaluated. Only an estimation of its

dot product KSVM(xNFJ(i), xNFJ(j)) = φTSVM

(
xNFJ(i)

)
φSVM

(
xNFJ(k)

)
is needed for either

SVM training (the above optimization problem) or evaluation, where KSVM is known as the

kernel function. It is not even necessary to know φSVM to design a valid Kernel function,

as long the kernel function satisfies Mercer’s conditions. The radial basis function (RBF)

kernel was used in this work:

KSVM(xNFJ(i), xNFJ(k)) = exp

(
−
(
xNFJ(i)− xNFJ(k)

)T (
xNFJ(i)− xNFJ(k)

)
2γRBF

)
γRBF controls the width of the kernel

During the evaluation phase, the label for a new sample, say hSVM(xNFJ), can be ob-

tained using:

hSVM(xNFJ) =

+1, if
NNFJ∑
i=1

αSVM(i)zNFJ(i)KSVM(xNFJ(i), xNFJ) ≥ 0

−1if
∑NNFJ

i=1 αSVM(i)zNFJ(i)KSVM(xNFJ(i), xNFJ) ≤ 0
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4.5 Evaluation

Eleven, randomly selected, simulated muscles from the dataset described in Chapter 2 on

Page 12 were used for evaluation. The details of the model used for simulation are further

discussed in Chapter 5 on Page 94. Each of the muscles was modelled to have 200 motor

units with varying motor unit territory diameters ( ranging between 1.52 to 8.53 mm),

number of muscle fibres (ranging from 31 to 434 muscle fibres) and muscle fibre diameters

(the mean muscle fibre diameter of a single motor unit ranges between 44.97 and 64.54

µm). All of the motor units were assumed to be recruited. Only motor units with any

of its MUPs having a peak to peak acceleration amplitude above 2 KV/S2 were used for

evaluation. This resulted in 680 MUPTs. Each of the trains was assumed to have 50

MUPs.

The variability in neuromuscular transmission times was modelled to be sampled from a

zero-mean Gaussian distribution. All the muscle fibres belonging to the same muscle were

sampled from distributions with the same standard deviation. The standard deviation for

the first muscle was simulated to be 14.12 µS. In case of evaluating NF-MUP-Jitter using

a pair of single fibre MUP segments, the resulting expected jitter was equal to 20 µS. The

standard deviation for each of the following muscles was incremented by 7.07 µS.

Ten folds cross validation was used for calculation of performance metrics. In each fold,

two metrics were calculated:

� Error Percent: It is the absolute difference between the simulated and estimated

NF-MUP-Jitter values normalized by the simulated value.

� Yield Percent: It is the percent of the number of MUPTs that have one or more

single fibre MUP segments to the total number of MUPTs.

The upper panel in Figure 4.3 shows the average performance metrics over a coarse grid

search for different combinations of γSVM and λNFJ. The lower panel shows the break down

of the results for different simulated NF-MUP-Jitter values for γSVM = 106 and λNFJ = 3.

This point is selected, since it represents an acceptable trade-off between the average error
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percent 8.9% and yield percent of 85.3%. The average time for analyzing one MUPT is

3.6 seconds.

4.6 Discussion

The main justification for using regional DTW rather than conventional DTW is that

the objective of the proposed methods is to segment regions that clinicians can track and

validate the consistency of their morphologies across different MUPs belonging to the same

train. Therefore, the purpose of the alignment procedure is to evaluate the consistency of

regions. Moreover, it is highly likely to mistakenly find, by random, a set of consistent

alignments for a single sample in the reference MUP.

The Euclidean distance was replaced with a pseudocorrelation based distance. The

main reason is that Euclidean distances will be low, i.e., indicating consistent alignments,

for regions in the reference MUP that have energies close to energies of the baseline regions.

On the other hand, ZPC will approach zero (therefore, the alignment distance will be close

to one) when the two regions have low energy. This is because the instrumentation noises

contaminating different regions of the EMG signal are not expected to be correlated.

The idea behind using double differentiation is to accentuate contributions from fibres

close to the detection surface of the electrode by relatively suppressing low frequency

contributions from distant muscle fibres. This, in turn, increases the chance of having

segments in the MUP with morphologies that are mainly influenced by a single muscle

fibre. Therefore, a higher probability of finding and tracking single fibre MUP segments.

In most real-life problems, the choice of the classification technique is mostly deter-

mined by empirical and experimental evaluation. This is not different for the problem

of segmenting single fibre MUP segments. The decision to use SVM was made after pi-

lot experiments with other classifiers and regression methods, including Gaussian mixture

models, logistic regression, artificial neural networks and multiple linear regressions. Re-

view of these techniques can be found in multiple foundational machine learning text books

including [9]. The results for these experiments are omitted for the sake of brevity. SVMs

90



F
ig

u
re

4.
3:

E
ac

h
of

th
e

co
lo

u
r-

co
d
ed

ce
ll
s

in
F

ig
u
re

(A
)

re
p
re

se
n
ts

th
e

av
er

ag
e

er
ro

r
p

er
ce

n
t

ob
ta

in
ed

fo
r

d
iff

er
en

t
co

m
b
in

at
io

n
s

of
γ
S
V
M

an
d
λ
N
F
J
.

F
ig

u
re

(B
)

sh
ow

s
th

e
co

rr
es

p
on

d
in

g
av

er
ag

e
y
ie

ld
p

er
ce

n
ts

fo
r

th
e

sa
m

e
co

m
b
in

at
io

n
s.

F
ig

u
re

s
(C

)
an

d
(D

)
sh

ow
th

e
b
re

ak
-d

ow
n

of
th

e
re

su
lt

s
fo

r
γ
S
V
M

=
10

6
an

d
λ
N
F
J

=
3.

E
ac

h
b
ar

in
th

e
tw

o
gr

ap
h
s

re
p
re

se
n
ts

th
e

ob
ta

in
ed

re
su

lt
s

fo
r

a
p
ar

ti
cu

la
r

si
m

u
la

te
d

N
F

-J
it

te
r

va
lu

e.

91



outperformed the other techniques, which can be attributed to the following characteristics

of an SVM classifier:

� SVM training is based on a convex optimization problem that can be solved efficiently,

and has no local minima.

� The use of kernels, though not unique to SVM, allows estimation of a nonlinear

separation surface (compared to logistic regression and Gaussian mixture models).

� It has fewer parameters, so it is easier and faster to tune (compared to artificial

neural networks).

� Its model size (the number of support vectors) scales linearly with the number of the

training examples.

� The sparsity of the solution allows efficient evaluation of the SVM decision for new

samples.

It is clear from the results shown in Figure 4.3 that a trade-off exists between yield

and error. For a particular γRBF , increasing λNFJ increases the yield at the cost of higher

error. This is expected, because increasing λNFJ is equivalent to having a looser definition

for what can be considered as a positive example for training in a sense of allowing higher

error. A better performance (lower error and higher yield) is expected to be obtained by

(1) tuning parameters using finer search, (2) tuning more parameters (SVM regularization

parameter, RDTW half region width, and others), (3) performing feature selection similar

to the one performed in Section 3.4.6 on Page 62, and (4) using more MUPs from each

MUPT .

A further investigation is necessary to specify what settings are optimal for a clinical

setup. The author believes that performing the analysis with an average error percent of

8.9% and a yield percent of 85.3% ( i.e., setting γSVM to 106 and λNFJ to 3) is sufficient for

the proposed analysis to be useful for discrimination between normal muscles and muscles

affected by a NMD disturbing neuromuscular transmission. The effect of error in estimating

jitter on discrimination accuracy will be limited due to the fact that the proposed methods

allow performing the analysis on multiple MUPTs acquired from a single contraction.
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The training and testing data for the work presented in this chapter can be considered

to be drawn from two different joint distributions of alignment features. The training

data is based on simulated MUPTs, while the testing data (in a clinical setup) will be

extracted from MUPTs identified from clinical EMG studies. This will be probably always

the case regardless how realistic the utilized models are. Even within the testing dataset,

it is likely that there are differences between the distributions of features calculated from

different muscle types or even from the same muscle type at different levels of contraction.

The problem is known in the machine learning community as transfer learning [89]. More

specifically, this problem will fall under the category of transductive transfer learning as

there are no labels available for the testing data. Further testing is necessary to evaluate

the usefulness of these techniques.

This study could have also benefited from simultaneous recording of single fibre and

concentric needle EMG signals. By registering the two signals, the estimated values for

jitter can be validated. This is only applicable when the MFPs detected by the single fibre

are registered to single fibre MUP segments in one of the MUPTs identified from the EMG

signals acquired by the concentric electrode. It is worth mentioning that this evaluation

can not replace the use of simulated MUPTs for evaluation. This is because there is no

straightforward experimental method to decide whether the MFPs detected by the single

fibre electrode are superimposed or not by the activity of other muscle fibres contributing

to the MUP detected by the concentric electrode.
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Chapter 5

Representation:

Detecting Neuropathy Using

Measures of Motor Unit Activation

5.1 Summary

Objective: Motor unit loss associated with neuropathic disorders affects motor unit ac-

tivation. Quantitative electromyographic features of motor unit activation estimated from

the sequences of motor unit potentials created by concurrently active motor units can

support the detection of neuropathic disorders.

Interpretation of most motor unit activation feature values are, however, confounded

by uncertainty regarding the level of muscle activation during EMG signal detection. A set

Portions of this chapter previously appeared in M. AbdelMaseeh, B. Smith, and D. Stashuk. Detecting

neuropathy using measures of motor unit activation extracted from standard concentric needle electromyo-

graphic signals. In Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International

Conference of the IEEE, pages 4066–4070. IEEE, 2014
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of new features circumventing these limitations are proposed, and their utility in detecting

neuropathy is investigated using simulated and clinical EMG signals.

Methods: The firing sequence of a motor neuron was simulated using a compart-

mentalized Hodgkin-Huxley based model. A pool of motor neurons was modelled such

that each motor neuron was subjected to a common level of activation. The detection of

the firing sequence of a motor neuron using a clinically detected EMG signal was simu-

lated using a model of muscle anatomy combined with a model representing muscle fibre

electrophysiology and the voltage detection properties of a concentric needle electrode.

Results and Conclusion: Findings are based on simulated EMG data representing 30

normal and 30 neuropathic muscles as well as clinical EMG data collected from the tibialis

anterior muscle of 48 control subjects and 30 subjects with neuropathic disorders. These

results demonstrate the possibility of detecting neuropathy using motor unit recruitment

and mean firing rate feature values estimated from standard concentric needle detected

EMG signals.

5.2 Introduction

The amount of force produced by a muscle is controlled by activating or deactivating

motor units and by modulating the firing rates of active motor units [25]. Neuropathic

processes can change the number, territory, and contractile properties of motor units.

These pathological changes are in turn expected to induce changes in motor unit activation

patterns [45]. Therefore, QEMG features estimated from the sequences of firing times of

MUPs created by concurrently active motor units are likely to be useful for detecting

neuropathy.

This work attempts to answer questions that, from a clinical perspective, are practical:

� Can we extract discriminating QEMG motor unit recruitment and firing rate features

from EMG signals detected using a conventional clinical concentric needle electrode?

� Can this be achieved using a clinically practical signal acquisition protocol that is

also suitable for extraction of morphological features?
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� Can these QEMG features be extracted automatically, quickly, accurately and using

a procedure the output of which can be evaluated and validated by a physician?

These questions have been addressed through the analysis of simulated and clinical

EMG studies. Analyzing simulated data is useful because it overcomes many inherent

limitations of clinical data such as labelling inaccuracies, non-uniformity of disease in-

volvement, acquisition dependence (such as needle focusing and instrumentation noise)

and incompleteness of extracted MUPTs. Simulation can also provide clearer insight by

excluding irrelevant phenomena and factors, such as MUP instability caused by neuromus-

cular junction jitter, and by modelling other relevant parameters that are very difficult to

measure experimentally, namely excitatory input to a motor neuron pool.

5.3 Literature Review

Earlier studies have evaluated the discriminability of motor unit mean interdischarge in-

tervals (IDIs) and their standard deviation using MUPTs extracted from EMG signals

detected using a single fibre needle electrode [40, 48]. A single fibre needle electrode was

used because the selectivity of this electrode allows the signals detected to be more reliably

decomposed into their constituent MUPTs.

Results from both of these studies demonstrated that neuropathic muscles had de-

creased mean IDI and higher IDI variability. Similar results were obtained in [29] using

a standard concentric needle electrode. In all these studies, the level of contraction was

measured and controlled.

Several models related to different aspects of low level isometric skeletal muscle con-

traction have been developed with different inputs, outputs, and level of detail to serve

different objectives. For instance, a detailed model of a motor neuron pool was built to

answer neurophysiological questions such as the schema of input distribution in [132, 133].

While, a model was constructed in [59] to investigate quantification of motor neuron firing

synchrony and common drive. Nandedkar [83, 82] devised a model focusing on electrode

properties and MFPs to contrast the spatial selectivity of different electrodes and the

relationship between muscle fibre anatomy and detected EMG signal features.
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Models in [122, 50] proposed a detailed muscle layout to investigate EMG signal de-

composition and analysis in a structured manner. In this work, these models of Traub,

Nandedkar and Hamilton-Wright and Stashuk are combined to simulate the detection of

motor neuron firings using concentric needle-detected EMG signals.

The remainder of this chapter is structured as follows: Section 5.4 discusses the motor

unit pool model. Section 5.5 summarize the acquisition and analysis of the clinical EMG

data. Results are presented and discussed in section 5.6.

5.4 Composite Model Construction

5.4.1 Modularized Architecture

To simulate the use of concentric-needle-detected EMG signals to quantify motor neuron

activity, the parts of the human neuromuscular system that control motor neuron activa-

tion and the parts of the acquisition and analysis systems that influence the estimation of

the corresponding motor unit activation features were independently modelled and subse-

quently combined into a composite model composed of modularized functional component

models.

This means that each component model processes a specific set of inputs and produces

a defined set of outputs. As long as the interfaces (outputs and inputs) are maintained

compatible between the different component models, a different realization of any compo-

nent model can be utilized. The functional descriptions of the five component models are

summarized in Tables 5.1 and 5.2, while the specific component model realizations adopted

for this study are presented in subsequent subsections.

5.4.2 Motor Neuron Model

To provide a basis for the accurate study of the quantification of the firing sequence of

a motor neuron, a rigorous and detailed motor neuron model based on previous work

completed by [27] and [133] was developed. The key advantage of this relatively detailed
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Component Description

Motor Neuron:

sNr(j) = fNr(aNr(j), gex)

sNr(j) is the firing sequence of the jth motor neuron.

sNr(j) is a function of the soma-dendritic equivalent cylin-

der diameter aNr(j) of the motor neuron and the steady

excitatory inputs to the different dendritic compartments

gex.

Muscle Fiber Potential:

PMF(i) =

fMF(dMF(i),cMF(i),

nMF(i), eCN)

PMF(i) is the MFP of the ith muscle fiber as detected by

a concentric needle electrode placed at eCN. PMF(i) is a

function of muscle fiber diameter dMF(i), center location

cMF(i), and neuro-muscular junction location nMF(i).

Table 5.1: Functional description of the dynamic component models. Note that insignif-

icant parameters and those assumed to be fixed are excluded from the lists of input pa-

rameters. Scalars are notated as lower case variables, vectors as lower case variables with

an overline, while matrices are notated as uppercase variables with an overline

model is its ability to model motor neurons having different sizes and input resistances.

This model can therefore be used as a building block in a motor unit pool model.

The main aspects of the developed model are:

� Motor neuron morphology and membrane heterogeneity are represented by five com-

partments comprised of three dendritic compartments (proximal, middle, and distal),

the soma, and the initial segment.

� The dendritic tree is converted into an equivalent cylinder using the method of Rall

[102].

� The membrane of a dendrite is passive, while the time and voltage dependence of

potassium and sodium conductance of the active membrane compartments (the soma

and the initial segment) are modelled using Hodgkin-Huxley like equations modified

to match voltage clamp data.
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Component Description

Muscle Layout:

[dMF, cMF, nMF,WMus] =

flayout(NMU, eCN)

Muscle layout is defined by the muscle fibre diameters

dMF, centre locations cMF, neuromuscular junction loca-

tions nMF and the muscle fibre assignments to the NMU

motor units. The specific muscle fibre to motor unit as-

signments are represented using matrix WMus. The nee-

dle location eCN is an input parameter because needle

insertion causes nearby fibers to be pushed aside.

Neuropathy:

W ′ = fneuro(

dMG, cMF,WMus, γMus, δMus)

Neuropathy causes a loss of a γMus fraction of the motor

neurons and muscle fiber reinnervation, i.e. reassignment

of the muscle fibres from the lost motor neurons to surviv-

ing motor neurons, represented by matrix (W ′
Mus), such

that a surviving motor neuron can innervate up to δMus

percent more fibres.

Motor Neuron Pool:

aMU = fpool(t)

The motor unit territory radii of the corresponding motor

units aMU belonging to the pool are modelled as a func-

tion of the muscle force tMus at which the motor neurons

are recruited.

Table 5.2: Functional description of the structural component models.

� The after hyper-polarization following an action potential in a motor neuron is real-

ized using a slow potassium conductance.

� Membrane specific properties, such as membrane capacitance and leakage resistivity,

are assumed to be independent of the motor neuron size.

� The inputs to the model are restricted to excitatory synaptic conductance values gex
associated with the three dendritic compartments.

The radii of the soma equivalent cylinder and the dendritic equivalent cylinder are set

equal. It was shown that this radius aNr can be estimated from a set of preset values

(membrane resitivity Rm, internal resistivity Ri, equivalent length of the soma-dendritic
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length LNr, and characteristic length λNr) and the input resistance Rinput using the following

formula:

aNr =

[
RmRi

2

]1/3
×
[
coth(LNr/λNr)

πRinput

]2/3
(5.1)

The resulting system of 15 coupled differential equations is solved using the Runge-

Kutta method with a variable time step. Figure 5.1 shows that the model creates repetitive

motor neuron firings with an appropriate time course. Figure 5.2 shows that the firing rate

vs. excitatory input curve has primary and secondary ranges with steeper slopes for larger

motor neurons.

Figure 5.1: (a) Transmembrane potential across the initial segment of a motor neuron

having Rinput = 1.5MΩ. Remaining parameters and rate functions are from [133].
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5.4.3 Motor Neuron Pool Model

In [132], it was shown that the threshold force of activation (hNr) in grams, i.e., the force

at which a motor neuron is recruited, can be modelled as a function of the recruitment

order j of the motor neuron using:

hNr = 1000− 469× log(j) (5.2)

Rinput in MΩ is then estimated using:

Rinput = 2.5− hNr

600
(5.3)

and the potassium slow conductance time constant in ms as:

1

βq
= 13.3 + 6.7×Rinput (5.4)

Figure 5.2 shows that the model realizes ordered recruitment.

5.4.4 Muscle Model

Motor neurons via their axonal projections and neuromuscular junction are connected to

groups of muscle fibres and together comprise motor units. Activation of a motor neuron

in turn activates each of its connected muscle fibres, i.e., its entire motor unit. The activity

of a motor neuron can therefore be determined by detecting MUPs produced by its muscle

fibres. Therefore, if the MUPs associated with the activity of a motor neuron can be

consistently detected in an acquired needle-detected EMG signal, the extracted MUPT

is defined as decomposable and can be used to estimate statistics related to the firing

sequence of the motor neuron. With respect to simulated data, it is assumed that a MUP

can be consistently detected and therefore its MUPT considered decomposable, when the

second derivative of any of its composite MFPs have a value higher than 1 kV/s2.

The simulation of a MFP PMF as detected by a needle electrode requires determining

the diameter of the muscle fibre and the location of the muscle fibre and its neuromuscular

junction relative to the electrode detection surface. Therefore, the muscle layout model
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Figure 5.2: Firing rate versus the input excitatory conductance applied to the dendritic

compartments for every tenth motor neuron of the pool.

of [122, 50] which specifies the diameter dMF, centre cMF and neuromuscular junction nMF

location of each fibre as well as its associated motor unit WMus was used. The main stages

of simulating a muscle layout can be summarized as:

� Assigning motor unit territory diameter: Both the muscle and the constituent motor

unit territories are assumed to have circular cross-sectional areas. The motor unit

sizes are sampled from a Poisson distribution.

� Assigning motor unit territory centre: The two main assumptions are: (1) there

is no necessary correlation between motor unit territory diameter and motor unit

territory centre, and (2) motor unit centres are uniformly distributed across the

cross-sectional area of a muscle. The algorithm developed in [50] which divides the

muscle cross section into a uniform grid was used. This algorithm then iteratively

places motor unit territory centres at grid points, perturbed by random offsets, in a

randomized manner guaranteeing that any motor unit is equally likely to be placed
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in any quadrant.

� Assigning muscle fibre centre location cMF: Muscle fibres are located in a uniform

grid such that a uniform density of 400 muscle fibres per mm2 is achieved.

� Assigning muscle fibres to motor units (WMus): Each muscle fibre is assigned ran-

domly to one of the motor units which has territory including its location. The

likelihood of the ith muscle fibre being assigned to the jth motor unit is estimated as

a weighted sum of three factors:

1. the distance from the motor unit territory centre to the muscle fibre centre

2. the number of fibres already assigned to the motor unit

3. the expected number of fibres to be assigned to the motor unit

� Assigning muscle fibre diameter dMF: The diameters of the muscle fibres belonging

to a given motor unit are sampled from a Gaussian distribution specific to the motor

unit. The mean muscle fibre diameter of a motor unit is modified by a range of

increments to account for the fact that type-I fibres are more likely to be found in

smaller motor units.

� Assigning neuromuscular junction location nMF: Because a muscle cross-section is

arbitrarily chosen to be in an x-y plane, the location of the neuromuscular junction

is modelled to be along the z axis and is drawn from a Gaussian distribution with a

zero mean and a standard deviation based on its motor unit territory diameter.

� Muscle fibre ploughing: A concentric needle electrode detection surface is modelled

as an ellipsoidal cross-sectional area at the tip of the needle oriented at 15.95 degrees

relative to the axis of the cannula. When simulating detected EMG signals the needle

tip is assumed to be positioned at a specific location eCN within the muscle and all

fibres that would intersect with the cannula are therefore assumed to have moved

either above or below the cannula, whichever is closer.

The motor neuron pool model is interfaced to this muscle model by assigning motor

neurons ordered according to their recruitment threshold to motor units ordered based on

their territory diameters.
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5.4.5 Muscle Fibre Potential Model

The model used to simulate MFPs is based on the work done in [82]. The concentric

needle electrode is assumed to have an ellipsoid detection surface with a major axis of 580

µm and a minor axis of 150 µm. The ellipse is modelled using six line integrals spaced

equally across the surface. The MFP of the ith fibre PMF(i) is calculated by convolving a

propagating transmembrane current with a weight function related to the relative geometry

of the detection surface and the fibre location:

� Propagating transmembrane current amplitude and conduction velocity are

dependent on muscle fibre diameter dMF(i).

� Electrode weight function is the average response to a unit impulse current of the

six line electrode potential response functions used to model the concentric needle

detection surface. It is dependent on the position of the electrode eCN, the position

of the muscle fibre centre cMF(i), neuromuscular junction nMF(i), and conductance

properties of the extracellular tissue.

The transmembrane currents travelling toward and away from the electrode based on eCN

and the neuromuscular junction location nMF(i) are both modelled. For a given position

of the electrode detection surface, a MFP is simulated for each fibre of a motor unit. If

any of the simulated MFPs of the motor unit has a second derivative value of greater than

1 kV/s2, the corresponding MUPT is considered decomposable (i.e. the corresponding

motor unit is considered to have been sampled and the firing sequence of its motor neuron

is analyzed).

5.4.6 Neuropathy Model

A diffuse neuropathic process is simulated as a loss of motor neurons [51]. Different levels

of involvement are modelled as the loss of different fractions γMus of the total number

of motor neurons. It is assumed that all motor units are equally likely to be affected

by the diffuse disease process, therefore lost motor neurons are randomly selected. The
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re-innervation process is modelled by re-executing the muscle fibre assignment procedure

described in section 5.4.4. In this case, however, a surviving motor neuron can support

only a maximum number of additional fibres which is described as a fraction δMus of its

original size.

5.5 Data Analysis

5.5.1 Estimation of Mean Motor Unit Firing Rates

The acquisition and analysis of the clinical data is described in Section 3.4.1 on Page 55.

Only data acquired from the TA muscle was used in this study. The error-filtered estimation

(EFE) algorithm described in [130] was used to estimate mean motor unit firing rate. This

algorithm has been shown to provide accurate estimates even when the firing sequence of

a MUPT is only partially complete or includes erroneous firings.

The EFE algorithm makes use of the fact that the probability distribution function of

the IDIs of an incomplete and/or an inaccurate firing sequence has a peak corresponding

to the true mean IDI and other peaks at integer multiples of the true mean IDI value. The

EFE algorithm iteratively divides the IDI histograms into three regions:

1. a region of small IDIs due to false firings

2. a region of large IDIs due to missed firings

3. a region with true IDIs lying in between.

5.5.2 Measures of Motor unit Activation

A set of features describing a given contraction is estimated from the extracted MUPTs

and their associated motor unit mean firing rates:

� No. of decomposable MUPTs: The number of active motor units sampled during

the contraction
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� Contraction Mean Firing Rate (cont.MFR): Mean of the motor unit mean

firing rates of the motor units sampled during the contraction

� Contraction Sum Mean Firing Rate (cont.SFR): Sum of the motor unit mean

firing rates of the active motor units sampled during the contraction

� Contraction Mean Firing Rate Range (cont.Range): Difference between the

maximum motor unit mean firing rate and the minimum motor unit mean firing rate

of the active motor units sampled during the contraction

5.5.3 Simulated Data Acquisition

Using the muscle layout model flayout(.), 60 simulated muscles were generated with each

muscle having 120 motor units. 30 of them were modified by the modelled neuropathic

process fneuro(.). γMus was set to 0.3 for the first 10 muscles, 0.4 for the second 10, and 0.5

for the last 10. δMus was set to 0.5 for all neuropathic simulated muscles. Using the MFP

model fMF(.), decomposable MUPTs detectable by a concentric needle EMG electrode were

identified.

The motor neuron pool model fpool(.) and the motor neuron model fNr(.) do not include

any stochastic components, therefore there was no need to rerun them for each muscle

and/or excitation level. The sequence of inputs applied to all motor neurons in the pool

was a ramp sequence of excitatory conductance in mmho:

g(c)ex (k) = 1.5× 10−5 + k × 10−6 (5.5)

where c ∈ {1, 2, 3} is the dendritic compartment index and k is a step in the input. At each

step, the gex was maintained constant for all motor neurons for two seconds to simulate an

isometric contraction.

The first set of inputs was k ∈ {0, 2, ..100}. The average cont.SFR of normal sim-

ulated muscles was then calculated at each step. The range of steps for which 0 ≤
avg. cont.SFR ≤ 100 was found to be 2 ≤ k ≤ 8. Another fine tuned set of inputs

was then created with k ∈ {2, 2.125, 2.25, ..., 8}. It was found that motor neurons of re-

cruitment order j ≤ 85 were recruited by k = 8.
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5.6 Results and Discussion

Results from the clinical and simulated EMG studies shown in Figure 5.3 demonstrate

an increased cont.MFR for neuropathic muscles, which is consistent to results shown in

[29, 48, 45]. The increase is relatively higher for cont.SFR. above 40 Hz.

The acquisition protocol in which the contraction level is increased until 40 to 80

MUPs/s are detected has already been shown to be efficient in extracting QEMG fea-

tures capturing MUP morphology and morphological stability in Chapter 3. This suggests

that these features can be automatically extracted without the need to complete an addi-

tional/different acquisition protocol and/or to measure force.

The evidence of neuropathy provided by the newly proposed motor unit activation fea-

tures is independent from that provided by morphological features. Therefore, a set of

features combining both aspects, i.e., morphological and activation features, is expected to

yield more accurate categorizations than a set including either of them individually. More-

over, electrodiagnostic clinicians are familiar with motor unit mean firing rate concepts and

the EFE algorithm estimates can be easily validated by examining the IDI distributions.

It is worth noting that in practise increasing the cont.SFR of an EMG signal above

100 Hz makes decomposition of the EMG signal into its constituent MUPs more difficult

because more MUP superpositions are likely to occur.

Based on our simulation results, when cont.SFR is above 20 Hz around 25% of ac-

tive motor units are decomposable. This might explain why the results obtained using

cont.Range did not show clear discriminablity between normal and neuropathic muscles.

It is unlikely in normal muscles that motor neurons reflecting the width of the full range

will be sampled.

Three main limitations of the implemented composite model can be summarized as:

� The motor neuron and motor neuron pool models used excluded some temporal

details, such as sensory feedback loops and synaptic neurodyanimcs, that could be

useful for muscle characterization .
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� Needle movement and instrumentation noise caused by a subjects inability to main-

tain a constant contraction were not modelled.

� The MUP model, as implemented, was not used to analyze MUP morphological

features. It is important to investigate potential relationships between aspects of

MUP morphology and motor unit activation. These relationships can be studied by

calculating a unique MUP for each firing of a motor unit as the summation of the

MFPs of the motor unit taking into account neuromuscular junction instability.

The firing sequences of concurrently active motor units are probably too complex to be

adequately described using only their mean firing rates. Other measures quantifying the

variability of firing rates, synchrony among motor units firings and correlations of their

instantaneous firings rates might also yield discriminative information taking into consid-

eration acquisition and analysis limitations. While MUPT features quantify individual

motor units, the features proposed in this study quantify a subset of concurrently active

motor units sampled in a given muscle or the entire muscle. New methods are being sought

to optimize integration of information coming from features describing individual motor

units as well as whole muscles.
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Chapter 6

Decision Support:

Different Binarization Mappings for

Obtaining Transparent

Characterization of Neuromuscular

Disorders

Portions of this chapter previously appeared in:

1. M. AbdelMaseeh, T. Chen, P. Poupart, B. Smith, and D. Stashuk. Transparent muscle character-

ization using quantitative electromyography: Different binarization mappings. Neural Systems and

Rehabilitation Engineering, IEEE Transactions on, 22(3):511–521, May 2014

2. M. Abdelmaseeh, P. Poupart, B. Smith, and D. Stashuk. Muscle categorization using quantitative

needle electromyography: A 2-stage Gaussian mixture model based approach. In Proceedings of the

2012 11th International Conference on Machine Learning and Applications - Volume 01, ICMLA

’12, pages 548–553, 2012
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6.1 Summary

Objective: The aim of this study is to improve available methods for obtaining trans-

parent muscle characterizations from features obtained using QEMG techniques. More

specifically, the study investigates the following questions: (1) Can the use of binarization

mappings improve muscle categorization accuracies of transparent methods? (2) What are

the appropriate binarization mappings in terms of accuracy and transparency?

Results: The obtained results from four different sets of examined limb muscles (342

muscles in total) demonstrate that four out of the ten investigated binarization mappings

based on transparent characterization methods outperformed the multi-class characterizers

based on Gaussian mixture models and the corresponding binarization mappings based on

Gaussian mixture models.

Conclusion: This suggests that the use of an appropriate binarization mapping can

overcome the decrease in categorization accuracy associated with quantizing MUPT fea-

tures, which is often used to obtain transparent characterizations using quantized feature

values. This performance gain can be attributed to the use of more relevant features and

tuned quantization to obtain more specific binary characterizations.

6.2 Introduction

In the context of this work, muscle characterization is the process of characterizing a muscle

using clinical and EMG information to assist with the detection of neuromuscular disor-

ders and to determine whether detected disorders are likely due to myopathic or neurogenic

processes. More specifically, the focus of this study is to assess the diagnostic utility of in-

formation extracted from EMG signals detected using a concentric needle electrode during

isometric voluntary contractions independent of information from other EMG procedures

(such as nerve conduction studies and EMG signals detected due to spontaneous and inser-

tional activity) and physical examinations (including sensory testing, motor examination

and assessment of stretch reflexes).
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As explained in Chapter 2, quantitative analysis starts by segmenting MUPs from an

EMG signal and then clustering the segmented MUPs into distinct trains based on the

assumption that MUPs from a single motor unit are expected to be more similar to each

other than MUPs from other motor units [127].

Each MUPT is represented by an estimated MUP template and the ensemble of MUPs

compromising the MUPT. MUPTs can be represented using QEMG features, which de-

scribe the morphology of a typical or template MUP, the consistency of the morphologies

of the individual MUPs belonging to the same MUPT as well as features describing motor

unit recruitment and firing pattern. The representation and feature extraction stages are

described in further details in Chapters 3, 4 and 5.

Given the number of possible QEMG features, the dependence among feature values,

and the overlap of feature value probability distributions between muscle categories, it is

not straightforward how to reach a muscle characterization using a selected set of QEMG

features. The focus of this study is to assess various ways of providing an accurate and

consistent muscle characterization utilizing QEMG features. The problem is challenging

because of the following reasons:

� The level of disease involvement is not uniform among all of the motor units of the

same muscle. For example, a neurogenic muscle may have slightly affected, severely

affected and normal motor units. There is no clear cut rule that can be applied

to determine when to consider a muscle to be affected. Clinicians often consider a

muscle to be affected, when the set of EMG signals suggest the presence of a sufficient

number of significantly affected motor units. Muscle categorization can be facilitated

if the characterization of each motor unit, based on its detected MUPT, can be in

the form of a score reflecting disease involvement to allow aggregation into an overall

muscle characterization.

� Most of the estimated MUPT features suffer from dependence on the signal detec-

tion protocol. The two main sources of variation are focusing (i.e., adjusting the

electrode position to acquire suitably sharp MUPs which effectively reflect motor

unit morphology and physiology) and the level of contraction.
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� The training dataset is annotated at the muscle level; consequently each MUPT label

represents the condition of the muscle to which the motor unit belongs rather than

the actual condition of the motor unit.

� The dataset is also highly unbalanced due to the fact that it is more likely that an

examined muscle is normal than diseased and the number of sampled motor units

varies across different muscles.

� Biovariability, poor understanding of the underlying electrophysiological process and

variation in detection protocols lead to poor agreement among annotators [63]. The

labelling of the training or the testing data therefore cannot be considered certain

nor completely accurate.

In addition to these challenges, a formulation of muscle characterization as a learning

problem should consider that a diagnostic impression is often a result of accumulating

evidence from physical and other electrodiagnostic examinations. Therefore, the output of

any candidate algorithm should be a continuous value or set of continuous values, refuting

or supporting an outcome, a muscle category or set of muscle categories in our case, with

a certain degree of confidence, so that it can be integrated with the outcomes of other

examinations that could have either quantitative or qualitative outcomes.

A candidate muscle characterization algorithm should be transparent. This means that

the computational inductive reasoning leading to the outcome and the associated degree

of confidence should be presented to the electrodiagnostic physician in a form that can

be evaluated and therefore validated. Transparency also implies that the outcome of the

algorithm and the inductive reasoning underlying it can be translated into/explained by

physiological and anatomical disease-induced changes. For example, an increase in size

aspect feature values suggests a reinnervation process, while increased instability suggests

pathological changes to neuromuscular junctions. There can be a cost associated with

using transparent classifiers because they often require feature value quantization which is

expected to reduce accuracy relative to non-transparent classifiers that can use continuous

feature values.

Class binarization is defined by Fürnkranz [41] as ”a mapping of the multi-class learning
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problem to several 2-class problems in a way that allows a sensible decoding of the predic-

tion, i.e., allows deriving a prediction for the multi-class problem from the predictions of

the set of 2-class classifiers. The learning algorithm used for solving the 2-class problems is

called the base classifier”. A lot of work has been done in the machine learning community

on class binarization to increase accuracy, reduce complexity, and overcome the limitation

of some algorithms being only capable of performing binary classification [80, 57, 8].

In the context of this study, the muscle characterization problem is defined as a multi-

class problem where a muscle is labelled as normal, myopathic or neurogenic and the main

questions addressed can be summarized as:

� Can using a class binarization overcome the cost of using transparent techniques for

muscle characterization?

� What is the best binarization mapping in terms of accuracy and transparency?

� What are the most relevant features?

These questions were addressed by investigating muscle categorization accuracies using

multi-class characterizers and a comprehensive set of binarization mappings using a prob-

abilistic model and a rule induction algorithm applied to sets of MUPT data extracted

from EMG signals detected from four different sets of clinically examined muscles.

6.3 Literature Review

6.3.1 Review of multi-class muscle characterization

During the 1940s and early 1950s, many studies similar to the work of Kugelberg [69]

correlated certain disorders to variations in the morphology and frequency content of de-

tected MUPs. In 1955, Buchthal et al. [14] coined the term QEMG and proposed a muscle

characterization based on comparison of extracted features to reference data of matching

age range, gender, electrode type and other physical parameters.
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Pattichis et al. [93] evaluated the performance of an artificial neural network (ANN)

trained using both supervised and unsupervised learning. The performances of an ANN

and the K-nearest neighbour (KNN) technique were also compared. The feature vector

was composed of the standard deviation and mean of seven time domain features. For

supervised training, back propagation was utilized, while a self organizing feature map

algorithm was used for the unsupervised paradigm. Both ANN paradigms showed com-

parable performance with diagnostic accuracy of 80%, which substantially exceeded the

KNN.

Pfeiffer et al. [97] used linear discriminant analysis to map duration, area, number of

turns, and central frequency features into two scores. The mapping was a linear function

of the features and was inferred using the training data, so as to maximize the separability

among scores for different classes. The utilized algorithm also excluded features that did

not improve discrimination. The centroid of each categorization was then estimated. Dur-

ing classification, the posterior probability was computed using Bayes’ rule. The likelihood

probabilities were estimated using the Euclidean distance from class centroids assuming

features were normally distributed with equal covariance for all classes. For the first MUP,

the prior probabilities of the classification were based on epidemiological data. The poste-

rior probability of the previous MUP was then used as the prior probability for subsequent

MUPs. Experimentation showed diagnostic probabilities above 0.95 in 91% of 223 biceps

brachii muscles from 80 patients.

Pino et al. [98] used classification based on event association rules for muscle charac-

terization. During the training phase, repeatable patterns were discovered from quantized

feature vectors. A weight of evidence (WOE) measure was then estimated to reflect the

support or refutation of each of the patterns for one of the classes. During classification,

the summations of the WOE measures for all patterns for the three classes were then used

to estimate the posterior probabilities. These MUP characterizations were then aggregated

using Bayes’ rule or averaged to produce a muscle characterization. Experimentation based

on both clinical and simulated data using only four time domain features had performance

similar to that achieved by the method described by Pfeiffer et.al. [97].
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6.3.2 Review of binarization mappings of muscle characteriza-

tion

Katsis et al. [62] used a feature vector comprised of the time samples in a 25 ms interval of

raw EMG data centred around the peak of a MUP to train three support vector machines

in a one-against-one mapping. Katsis et.al. [61] also investigated a different binarization

mapping, using an ANN to classify a feature vector, comprised of five features, representing

a MUP as normal or diseased. If a diseased MUP was detected in the first stage, a decision

tree was used to classify a quantized version of the feature vector as either myopathic or

neurogenic. A decision tree was used in the second stage to provide rules for transparency.

In both of these studies, the MUP characterizations were not aggregated to produce a

muscle characterization. Instead, an expert was asked to label MUP templates estimated

by a previous stage of the algorithm.

AbdelMaseeh et al. [3] proposed using a variation of decision directed acyclic graph

binarization mappings in which a muscle is classified as neurogenic or myopathic in the first

stage. The second stage then uses a classifier specific to each disease category to confirm

or refute the disease involvement. Decision directed acyclic graph binarization mappings

are formally defined and further studied in this work.

This study tackles the class binarization mapping of muscle characterization more com-

prehensively than previous efforts. In addition, it defines muscle characterization as a

different task than classification, stressing the importance of:

1. The integrability of a characterization obtained from an EMG signal with character-

izations obtained from other physical and EMG examinations

2. The capability of validating and interpreting an obtained characterization

3. The non-uniformity of disease involvement across motor units belonging to the same

muscle
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6.4 Algorithms

6.4.1 Overview

A training setD is constructed from muscle-label pairsD = {(M1, y1), ..., (Mi, yi), ..., (MN , yN)},
where N is the number of pairs. Each muscle Mi is a set of feature vectors Mi = {x(i)j ∈
Rd : 1 ≤ j ≤ ni}. Each vector x

(i)
j is of length d, and describes one of the ni MUPTs sam-

pled from muscle Mi. The label yi ∈ C = {c1, ..., cl, ..., cL} designates the muscle category

of Mi. The elements of the set C may change depending on the definition of the muscle

characterization problem. For example, a label cl ∈ C might represent normal muscles,

muscles affected by a specific disease (say, facioscapulohumeral muscular dystrophy), or

muscles affected by a category of related diseases (say, myopathy). It might also represent

muscles affected and/or not affected by a group of diseases or categories of related diseases.

For example, a label cl might represent all muscles not affected by myopathic diseases.

Defining a set of unlabelled muscles V = {M1, ...,Mk, ...}, the objective of the training

phase is inducing a muscle characterizer fD : V → Z, i.e., a function induced using the

training set D mapping an unlabelled muscle, say M , to its characterization z, which

includes:

1. A muscle categorization: Assignment of the label c ∈ C to the unlabelled muscle.

2. A likelihood vector Φ: A vector of length |C|, whose lth element (φl) is a scalar

estimate of the likelihood that the unlabelled muscle M is to be categorized as cl.

Estimation of the likelihood vector is necessary to allow integration of the obtained

characterization with characterizations obtained from other physical or EMG exam-

inations. The muscle categorization in this work is obtained from Φ by assigning

M to the label estimated to be most likely. Other techniques of obtaining a cate-

gorization from Φ are also possible, such as a technique capable of reporting ”No

Categorization”, when no label is clearly more likely than the other labels.

3. Transparency Rules: A transparent characterizer should also report a set of rules θl

corresponding to each φl. A system operator can use this set of rules to validate the
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estimate, and interpret the characterization, i.e., conceptually link feature values to

disease-induced changes.

A muscle characterization might also include measures proportional to the level of disease

involvement and metrics assessing signal quality; however those are out of the scope of this

study.

The binary characterizer fB is induced using B = {(Mi, yi) ∈ D : yi ∈ {c+, c−}}.
When the output of fB is obtained for an unlabelled muscle M , it categorizes M as either

c+ or c− estimating the likelihood vector (φ+, φ−) and the corresponding vector of sets of

transparency rules (θ+, θ−). A binarization mapping transforms the problem of inducing

a multiclass characterizer into inducing a specific class MAP (F ) over a set of binary

characterizers F , such that a characterization z for an unlabelled muscle can be estimated

by evaluating the output of the binary characterizers. An instance of MAP (F ), say X , has

a set of binary characterizers FX = {f1, ..., fs, ..., fS} induced during the training phase.

The estimation of the characterization of an unlabelled muscle through evaluation of the

output of an instance of an ordered binarization mapping and an instance of an unordered

binarization mapping are shown in Figures 6.2 and 6.1 respectively. The evaluation of the

output of an instance of an unordered binarization mapping is obtained by decoding binary

characterizations obtained through evaluating the outputs of all binary characterizers.

While, the evaluation of the output of an instance of an ordered binarization mapping is

obtained through evaluating the outputs of some or all binary characterizers in a specific

order implied by the binarization mapping.

6.4.2 Ordered Binarization Mapping

6.4.2.1 Decision Directed Acyclic Graph Binarization

A rooted binary directed acyclic graph (DAG) is a graph whose edges have an orientation

and no cycles, and whose nodes have either zero or two edges directed from them. The

root node is the only node with no edges pointing toward it. An instance of a decision

directed acyclic graph (DDAG) [99] binarization mapping, say 4, is implemented using
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Figure 6.1: An instance of an unordered binarization mapping. Each box represents a

different binary characterizer induced during the training phase. The outputs of all binary

characterizers are evaluated for the same unlabelled muscle without any specific order. The

muscle characterization is then obtained as a function of the resulting binary characteri-

zations.

a DAG, where each of the internal nodes is labelled with a binary characterizer induced

during the training phase. The output of 4 is evaluated by traversing its DAG starting

from the root node. At each node, the output of the binary characterizer is evaluated, and

the next node is selected based on the categorization of the binary characterizer.

The purpose of this study is to discriminate among normal (given the label cnor), my-

opathic (given the label cmyo) and neurogenic (given the label cneu) muscles. The set of

binary characterizers utilized by 4 in this study therefore consists of three binary charac-
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Figure 6.2: Instances of two different classes of ordered binarization mappings. The upper

graph represents an instance of a decision directed acyclic graph binarization mapping.

The lower graph represents an instance of a staged binarization mapping. The diamond

shaped polygon and solid lines represent making a decision as to which binary characterizer

to evaluate its output next based on the categorization obtained by the preceding binary

characterizer.

120



terizers F4 = {fmyo−neu, fnor−myo, fnor−neu}. During the training phase, the binary charac-

terizer fmyo−neu is induced using Bmyo−neu = {(Mi, yi) ∈ D : yi ∈ {cmyo, cneu}}, fnor−myo is

induced using Bnor−myo = {(Mi, yi) ∈ D : yi ∈ {cnor, cmyo}}, and fnor−neu is induced using

Bnor−neu = {(Mi, yi) ∈ D : yi ∈ {cnor, cneu}}.

For the purpose of discriminating among normal, myopathic, and neurogenic muscles,

three different variations of a DDAG can be obtained by labelling the root node with a

different characterizer in F4. The three variations are listed in Table 6.1.

Binarization Mapping Abbreviation Root Node Left Node Right Node

DDAG Disease First DDAG Dis fmyo−neu fnor−myo fnor−neu

DDAG Myo First DDAG Myo fnor−myo fnor−neu fmyo−neu

DDAG Neuro First DDAG Neu fnor−neu fnor−myo fmyo−neu

Table 6.1: Different variations of DDAG binarization for discrimination among normal,

myopathic and neurogenic muscles

6.4.2.2 Staged Binarization Mapping

An instance of a staged binarization mapping, say τ , utilizes a set of binary characterizers

Fτ = {f1, ..., fs, ..., f|C|−1}. The outputs of binary characterizers belonging to Fτ are eval-

uated in stages. In the first stage, f1 categorizes an unlabelled muscle M as either c1+ or

not. If M is categorized as c1+, z (the characterization of M) will be set to the charac-

terization obtained by f1 and the evaluation process terminates. Otherwise the output of

f2 is evaluated in the second stage and M is categorized as either c2+ or not. This keeps

going on until f|C|−1 categorizes M as one of the two remaining classes.

During the training phase, the binary characterizer fs ∈ Fτ is induced using Bs =

Bs+ ∪ Bs− where Bs+ = {(Mi, yi) ∈ D : yi = cs+} and Bs− is obtained by relabelling

yi = cs− ∀ {(Mi, yi) ∈ D : yi 6∈ {c1+, c2+, ..., cs+}}, i.e., by relabelling all muscle-label pairs

as negative examples, except those belonging to categories considered as positive examples

in the current stage or previous stages.
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For the purpose of discriminating among normal, myopathic and neurogenic muscles

(i.e., |C| = 3), an instance of a staged binarization mapping utilizes a set of two binary

characterizers Fτ = {f1, f2}. Similar to a DDAG, a different variation of a staged bina-

rization mapping is obtained by defining a different category cl ∈ {cnor, cmyo, cneu} as c1+.

Those variations are listed in Table 6.2.

Binarization Mapping Abbreviation c1+

Staged Normal First S Nor cnor

Staged Myopathy First S Myo cmyo

Staged Neuropathy First S Neu cneu

Table 6.2: Different variations of staged binarization for discrimination among normal,

myopathic and neurogenic muscles

6.4.3 Unordered Binarization Mappings

6.4.3.1 Pair-wise Decomposition Binarization

The set of binary characterizers used by an instance of a pairwise decomposition (PWD)

binarization is the same as F4, the set of binary characterizers used by a related instance

of a DDAG binarization mapping, given they are induced using the same dataset D.

Let φgh be the likelihood estimate of an unlabelled muscle, M , being categorized as

cg obtained by the binary characterizer induced using B = {(Mi, yi) ∈ D : yi ∈ {cg, ch}}
during the training phase, while φhg = 1 − φgh is an estimate of the likelihood of the

same muscle being categorized as ch obtained by the same binary characterizer. φgh is an

estimate of P (y = cg|y = cg or y = ch,M). It can be assumed that φgh = P (y = cg|y =

cg or y = ch,M) [114, 100] such that:

P (y = cg|y = cg or y = ch,M)

=
P (y = cg|M)

P (y = cg|M) + P (y = ch|M)

=
P (M |y = cg)P (y = cg)

P (M |y = cg)P (y = cg) + P (M |y = ch)P (y = ch)

(6.1)
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Therefore:

P (y = cg|y = cg or y = ch,M)

P (y = ch|y = cg or y = ch,M)

=
P (M |y = cg)P (y = cg)

P (M |y = ch)P (y = ch)

(6.2)

given that P (M |y = cl) > 0 ∀ cl ∈ C.

By applying Bayes’ rule, the posterior probability φg = P (y = cg|M), i.e., the likelihood

of the unlabeled muscle being categorized as cg, can be estimated as:

P (y = cg|M) =
P (M |y = cg)P (y = cg)∑L
l=1 P (M |y = cl)P (y = cl)

(6.3)

It can be shown [114, 100] that:

P (y = cg|M)

=
1∑

l:l 6=g
1

P (y=cg |y=cg or y=cl,M)
− (L− 2)

(6.4)

6.4.3.2 Pair-wise Coupling Binarization

The set of binary characterizers used by an instance of a pair-wise coupling (PWC) bina-

rization mapping is the same as F4, given they are induced from the same training dataset

D.

In contrast to the previous method, it can be assumed that φgh and P (y = cg|y = cg or y =

ch,M) are not equal [53] such that φg can be estimated by minimizing the Kullback-Leibler

kl distance between them.

kl =
∑
g 6=h

[ngh
P (y = cg|M)

P (y = cg|M) + P (y = ch|M)

log
P (y = cg|y = cg or y = ch,M)

φgh
]

(6.5)
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where ngh is the total number of training examples labelled cg or ch. The point that

minimizes the above criteria was shown to satisfy:∑
j:j 6=i

nghP (y = cg|y = cg or y = ch,M)

=
∑
j:j 6=i

ngh
P (y = cg|M)

P (y = cg|M) + P (y = ch|M)

=
∑
j:j 6=i

nghφgh

L∑
l=1

P (y = cl|M) = 1

P (y = cl|M) > 0, l = 1, ..., L

(6.6)

and φg = P (y = cg|M) can be obtained by solving the system of equations in 6.6 using an

iterative algorithm.

6.4.3.3 Pairwise Resemblance Binarization

The set of binary characterizers used by an instance of a pairwise resemblance (PWR)

binarization mapping is the same as F4, given they are induced from the same training

dataset D.

It has been pointed out that the ratio P (y=cg |y=cg or y=ch,M)

P (y=ch|y=cg or y=ch,M)
often differs significantly

from
φgh
φhg

and that the effects of this inconsistency can be mitigated by the use of a resem-

blance model [49]. Assuming a set of three muscle categories C = {c1, c2, c3}, the main

assumptions of a resemblance model can be summarized as:

� Each category, say c1, is divided into virtual classes c12 and c13, where c12 represents

a subset of c1 labelled muscles that are closer to c2, and c13 represents a subset of c1

labelled muscles that are closer to c3.

� Since the main focus is on discrimination between ”confusing” muscles, it is assumed

that: P (y=c1|y=c1 or y=c2,M)
P (y=c2|y=c1 or y=c2,M)

= P (y=c12|y=c1 or y=c2,M)
P (y=c21|y=c1 or y=c2,M)

.
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� The last assumption is that P (y=c12|y=c1 or y=c2,M)
P (y=c21|y=c1 or y=c2,M)

= P (y=c31|y=c1 or y=c3,M)
P (y=c32|y=c1 or y=c3,M)

.

The other ratios of the posteriori probabilities of the virtual classes of a given class

can be similarly found.

The posterior category probability can be estimated using [49]:

P (y = cg|M)

=

∏
l,l 6=g P (y = cg|y = cl or y = cg,M)∑

h

∏
l,l 6=h P (y = ch|y = cl or y = ch,M)

(6.7)

6.4.3.4 One-Against-All Binarization

An instance of a one-against-all (OAA) binarization mapping, say ρ, induced to discrim-

inate among L labels, utilizes a set of binary characterizers Fρ of length L. A binary

characterizer fl ∈ Fρ is associated with the label cl, since when obtained, it categorizes

an unlabelled muscle, M , to be either cl or not. The data set used for inducing fl is

Bl = Bl+ ∪ Bl− , where Bl+ = {(Mi, yi) ∈ D : yi = cl} and Bl− is obtained by labelling

yi = cl− ∀ {(Mi, yi) ∈ D : yi 6= cl}. When the output of fl is evaluated for a test muscle

M , a vector of likelihood estimates (φl, φl−) is estimated. The first element of the vector

represents the likelihood of M being labeled cl, while the second element is the likelihood

of M not being labeled cl. A likelihood factor for cl can be defined as ξl = φl
φl+φl−

.

During the evaluation of the output of ρ using M , all the outputs of all elements of Fρ are

evaluated. The element of the final likelihood vector Φ(l) estimating the likelihood of an

unlabelled muscle, M , being labelled cl is obtained as:

Φ(l) =
ξl∑L
a=1 ξa

(6.8)

6.4.4 MUPT Characterization based on Event Association Rules

This and the following subsections describe inducing MUPT characterizers based on event

association rules (EAR) and Gaussian mixture models (GMM), as either binary charac-

terizers or as multi-class characterizers. The training set T used for estimating a MUPT
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characterizer consists of a pool of labelled MUPTs. This is obtained by assigning a muscle

label to its constituent MUPTs:

T = {(x(1)1 , y1), ..., (x
(1)
n1 , y1), ..., (x

(N)
1 , yN), ..., (x

(N)
nN , yN)}.

The label assigned to a MUPT might not be the correct MUPT categorization, because

some of the motor units belonging to a diseased muscle might not be affected by the disease.

The output of a MUPT characterizer (induced using the dataset T ) for a feature vector

representing a MUPT belonging to the unlabeled muscle Mk ∈ V , say x
(k)
j for each category

cl consists of: (1) The estimate ζ
(k)
j (l) of the likelihood of assigning the MUPT to cl and

(2) the corresponding set of transparency rules. It was assumed in this work that Φ(l),

i.e., an estimate of the likelihood of Mk being categorized as label cl, can be obtained as:

Φ(l) =
1

nk

nk∑
j=1

ζ
(k)
j (6.9)

where nk is the number of MUPTs sampled from muscle Mk.

The characterization based on EAR [142, 139, 141] performs statistical analysis on dis-

crete data using contingency tables of dimension [(d + 1) × (d + 1)]. Therefore, each

feature, either discrete or continuous, is quantized using Q bins (in this work, Q = 5),

such that each bin has the same number of elements. For a given labelled feature vec-

tor x
(i)
j = (x

(i)
j (1), ..., x

(i)
j (u), ..., x

(i)
j (d)) ∈ Mi representing a MUPT, a corresponding dis-

cretized feature vector is created χ
(i)
j = (χ

(i)
j (1), ..., χ

(i)
j (u), ..., χ

(i)
j (d)), such that the uth fea-

ture can assume an element from a specific alphabet: χ
(i)
j (u) ∈ {αu(1), ..., αu(q), ..., αu(Q)}.

In the training set T , a primary event occurs when an element of χ
(i)
j takes a specific

value χ
(i)
j [u] = αu(q). An rth order event ϕr, where r ≤ d contains r primary events. An

event will be defined as a pattern if it passes a test of statistical significance. The number

of expected observations eϕr is calculated by assuming that the alphabets forming any

feature are equally likely and the variables belonging to the same vector are independently

sampled.

dϕr =
oϕr − eϕr

√
vϕr
√
eϕr

(6.10)

where oϕr is the number of times the event ϕr was observed in T and
√
vϕr is the standard

deviation of
oϕr−eϕr
√
eϕr

.
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The discriminatory power of a pattern that includes a label in supporting or refuting a

class cl is estimated using the weight of evidence:

WOEl(ϕ
r) = log(

P (ϕr|y = cl)

P (ϕr|y 6= cl)
) (6.11)

A rule is formed of a triplet of a pattern, label and WOE.

The evaluation of the output of a MUPT characterizer using x
(k)
j , a feature vector de-

scribing a MUPT belonging to an unlabelled muscle Mk, starts by quantizing the features

into χ
(k)
j using the same quantization ranges obtained during the training phase. The rules

used for classifying are selected starting from the highest order rule first and accumulating

its WOE for each label. All the feature-value pairs of this rule are then excluded and the

highest order rule is then found from the remaining feature-value pairs. This continues

until no rule can be extracted or no feature-value pairs remain. The algebraic sum of the

WOE of all classifying rules supporting or refuting a given category, say cl, is an estimate

of ζ
(k)
j (l). The union of the patterns of the classifying rules represents the corresponding

transparency rules.

6.4.5 MUPT Characterization based on Gaussian Mixture Model

In this work, the conditional probabilities were estimated by assuming a multivariate Gaus-

sian probabilistic model such that:

P (x
(i)
j |yi = cl) = N (x

(i)
j |µl,Ψ) (6.12)

where N (x
(i)
j |µl,Ψ) is a multivariate Gaussian probability distribution. Using the training

data T , the maximum likelihood estimate of the mean feature vector µl and the covariance

matrix Ψl are obtained for each category. Assuming all categories are equally likely, the

averaged covariance matrix Ψ is estimated using:

Ψ =
1

L

L∑
l=1

Ψl (6.13)
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The posterior probability of x
(k)
j ∈ Mk, a feature vector describing a MUPT belonging to

an unlabelled muscle, is then calculated using Bayes’ rule as:

ζ
(v)
j = P (y = cl|x(k)j ) =

P (x
(k)
j |y = cl)∑

l P (x
(k)
j |y = cl)

(6.14)

6.5 Empirical Evaluation

6.5.1 Validation

The data was acquired and processed in the same manner as described in Section 3.4.1 on

Page 55. Also, this work utilized all features defined in Chapter 3 using the same estimation

parameters. Leave-one-out cross-validation (LOOCV) was used. In each iteration, the

feature vectors of the MUPTs of a given muscle were used for testing, and feature vectors

of the remaining MUPTs were used as training data.

For each class, the class error was calculated as the ratio of the number of incorrectly

categorized muscles to the total number of muscles belonging to that class. The overall

muscle categorization error was then estimated as the mean value of individual class errors.

6.5.2 Feature Selection

The sequential floating forward search (SFFS) algorithm described in [101] was used to

select the feature sets, used by the binary characterizers of the investigated binarization

mappings or the multi-class characterizers, which minimized muscle categorization error.

Tables 6.3 and 6.4 list overall muscle categorization accuracies obtained by different bina-

rization mappings and multi-class characterizers based on EAR and GMM, utilizing the

selected feature sets.
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TA FDI DLT VM Average

Multi-class 88.95 83.97 76.54 78.79 82.06

Ordered Binarization Mappings

DDAG Dis 91.91 86.53 84.47 83.64 86.64

DDAG Myo 91.91 86.53 82.31 87.99 87.19

DDAG Neu 91.91 86.53 84.87 86.54 87.46

S Nor 89.59 58.03 74.87 74.07 74.14

S Myo 91.17 86.53 78.14 81.41 84.31

S Neu 94.1 89.05 81.54 87.99 88.17

Unordered Binarization Mappings

PWD 90.4 84.32 79.81 83.64 84.54

PWC 90.4 63.23 67.23 69 72.47

PWR 90.4 82.93 79.81 83.64 84.2

OAA 84.47 56.07 75.7 73.98 72.56

Table 6.3: Overall muscle categorization accuracies of different binarization mappings and

multi-class characterization based on EAR

6.6 Discussion

Characterization based on EAR is transparent, because it provides the underlying evi-

dence supporting its decision in a way that can be understood and evaluated by clinicians.

The searched hypothesis space is a set of conjunctive rules associated with a particular

class. The main reasons characterization based on EAR was selected over other inductive

rule learning algorithms such as IREP [42] or its successor, RIPPER [22], which are also

transparent, can be summarized as:

1. the capability of detecting and assessing higher order relationships between different

features

2. immunity to noisy patterns

3. the ability to avoid exhaustive search using a reasonable statistical heuristic
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TA FDI DLT VM Average

Multi-class 91.24 82.02 83.2 83.64 85.03

Ordered Binarization Mappings

DDAG Dis 90.43 86.02 83.2 84.99 86.16

DDAG Myo 90.43 84.89 81.47 84.99 85.45

DDAG Neu 90.43 84.89 81.47 84.99 85.45

S Nor 86.69 54.38 69.81 67.4 69.57

S Myo 90.43 84.32 81.47 86.44 85.67

S Neu 92.69 85.54 82.37 83.73 86.08

Unordered Binarization Mappings

PWD 82.09 81.05 74.68 73.98 77.95

PWC 85.94 75.67 71.41 73.98 76.75

PWR 79.05 81.5 72.12 72.53 76.3

OAA 89.66 75.73 73.97 73.4 78.19

Table 6.4: Overall muscle categorization accuracies of different binarization mappings and

multi-class characterization based on GMM

4. the possibility of analyzing mixed-mode data using an appropriate quantization ap-

proach

5. the ability to combine WOE measures from different sources of evidence supporting

or refuting a given decision to obtain an overall measure supporting or refuting a

specific categorization.

However, the current configuration of characterization based on EAR does not easily allow

the embedding of prior or domain knowledge. Therefore, the superiority of MUPT char-

acterization based on EAR over other inductive rule learning algorithms remains an open

question to be investigated theoretically and empirically.

Investigated binarization mappings were also implemented using GMMs as MUPT

characterizers. A GMM is an instance of a Bayesian linear separator that provides a

semi-parametric density model. Similar to parametric models, a GMM has structure and
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parameters which control the behaviour of the density, with sufficient degrees of freedom

to allow arbitrary density modelling [103]. The choice of using GMMs to model MUPT

conditional probabilities is justifiable, because the marginal conditional probabilities of

each MUPT feature is either normal or log normal and therefore this normality is expected

to hold for their joint distributions.

The QEMG features used in this study are also transparent, i.e., an electrodiagnostic

physician can validate an estimate of a feature value by examining the MUP template,

in the case of morphological features, and the ensemble of MUPs belonging to the same

MUPT, in the case of morphological stability features. It has also been shown in Chap-

ter 3 that changes in the values of the features used can be related to disease-induced

changes. For example, neurogenic MUP templates have higher values of thickness feature,

as more muscle fibres comprise the motor unit due to reinnervation; while myopathic MUP

templates have smaller values of thickness feature because of muscle fibre loss. electrodi-

agnostic physicians are also aware of limitations of the feature values used. For example,

the MUP amplitude is known to be highly dependent on the size and number of the few

nearest motor unit fibres.

Electrodiagnostic physicians, applying quantitative EMG techniques, may exclude in-

valid MUPTs or inconsistent MUPs from ensembles of MUPs belonging to the same MUPT

used for template and/or stability features estimation and often adjust the onset and end

positions of the provided MUP templates used to calculate important feature values. In

this work, MUPTs were not manually excluded or edited and MUP template onset and end

marker positions were not manually adjusted. The feature values automatically provided

by DQEMG [124] were used. The following reasons summarize this decision:

� Editing is a time consuming process, and normally in the course of a needle exam-

ination more than one muscle is examined and each muscle examination includes

the sampling of motor units at several muscle locations. Therefore, it is important

to have QEMG methods that can provide useful information without the need for

manual editing to ensure their clinical viability.

� Editing might be biased by prior hypotheses originating from other examinations.

They for example might exclude small MUPs to avoid categorizing a slightly involved
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muscle as myopathic.

� The need to evaluate the effectiveness of validation procedures implemented in DQEMG

[90] and the immunity of different binarization mappings and MUPT characterizers

to probable inaccuracies in feature estimates.

Tables 6.3 and 6.4 show that the multi-class characterizer based on GMM outperformed

on average the multi-class characterizer based on EAR. However, four out of ten binariza-

tion mappings based on EAR outperformed the multi-class characterizer based on GMM.

Seven binarization mappings based on EAR, including the aforementioned four mappings,

also outperformed the corresponding binarization mappings based on GMM. Furthermore,

characterizations based on EAR always performed better than the characterizations based

on GMM when one takes the best score across all binarization mappings for each muscle.

These results are significant as they suggest that the use of an appropriate binarization

mapping can overcome the possible decrease in categorization accuracy resulting from

quantizing MUPT features, often used to realize a transparent characterization.

As shown in Tables 6.3 and 6.3, improved categorization accuracies are often obtained

using binarization mappings compared to multi-class characterization. Seven out of ten

binarization mappings based on EAR outperformed on average the multi-class characteriza-

tion based on EAR, and five out of ten binarization mappings based on GMM outperformed

on average the multi-class characterization based on GMM. The performance gain can be

attributed to the fact that binary characterizers use more relevant features to obtain more

specific characterizations. Binary characterizers based on EAR also make use of more

relevant quantization yielding more accurate statistical significance testing of events.

S Nor binarization mapping performed significantly worse than the multi-class charac-

terizers and the other binarization mappings based on either GMM or EAR. The catego-

rization accuracy of the first stage discriminating normal versus others was low, because

the disease process is progressive and non-uniform across the motor units belonging to the

same muscle, which results in many MUPTs belonging to diseased muscles being normal.

This can also explain the poor performance of the OAA binarization mapping, as it utilizes

the same binary characterizer.
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Using characterizers based on EAR, PWD binarization mapping outperformed the

multi-class characterizer and was close to the highest performing binarization mappings,

which was not the case for PWD using characterizers based on GMM. In PWD, it is

assumed that the likelihood estimate obtained by a binary characterizer is equal to the

posterior probability of a muscle being categorized as a category given that only two cate-

gories are under consideration. This indicates that the likelihood estimates obtained by the

binary characterizer based on EAR are closer to the true posterior probability estimates

than estimates obtained using binary characterizers based on GMM characterizers. The

categorization accuracies for PWR are close to those for PWD, which suggests that the

impurities in the diseased muscles can be captured to some extent using the resemblance

model adopted by the PWR binarization mapping.

The DDAG variations and the S Myo and S Neu binarization mappings had compara-

ble categorization accuracies and exceeded the accuracies of the multi-class characterizers

based on either GMM or EAR. It is not straightforward how to decide which one is su-

perior. One important factor to consider is how the electrodiagnostic physician can use

the obtained likelihood estimates and sets of transparency rules. For instance, the trans-

parency rules obtained in either of the leaf nodes in the DDAG DIS enumerate the evidence

supporting and refuting the muscle being categorized as diseased versus being categorized

as normal. These rules can possibly be used as a basis for a diagnosis.

The SFFS algorithm [101] is not guaranteed to find the optimal feature set, i.e., the

feature set having the maximum muscle categorization accuracy. This is the case for all

feature selection algorithms based on heuristic search. Nonetheless, the SFFS algorithm

was used because:

1. It is computationally efficient. This is crucial, since the initial feature set has 22

features.

2. It allows selected features to be later discarded. A given feature might prove to be

useless after another set of features have been selected. It was shown that there is

a high interdependence between QEMG features belonging to the same aspect (see

Chapter 3).
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3. It is tolerant to deviation from monotonic behaviour of classification accuracy as

new features are added. Since a conditional exclusion step follows the comparison of

feature subsets to features with the same dimension.

Table 6.5 shows the results of feature selection up to the 5th dimension for binary charac-

terizers belonging to F4 and the multi-class characterizer based on EAR. It is clear that

the results are consistent with the results presented in Chapter 3 using more exhaustive

feature selection techniques and both real and simulated muscle studies. The consistency

is clear from the following observations:

1. the most relevant feature set is composed of features belonging to different aspects

2. FbrCnt is better than Trn, because FbrCnt is estimated using high-passed filtered

data, which emphasizes the contribution of fibres close to the detection surface of the

electrode

3. local complexity features related to turns are more important for discrimination of

myopathic complexity, while local complexity features related to phases are more

relevant for discrimination of neurogenic complexity

4. Duration is highly affected by marker placement and this may be why it is less

relevant when no manual editing is performed.

6.7 Conclusion

This work contributes to the development of transparent and accurate methods for obtain-

ing muscle characterizations based on EMG signals detected during isometric contractions.

For the characterizations to meet clinical requirements, they should be integratable with

characterizations evaluated from other physical and electrophysiological examinations. The

characterizations should also include transparency rules that can be used for validation

and as a basis for diagnosis. Results of this work demonstrate that the use of binarization

mappings can overcome decreases in categorization accuracies associated with transparent
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Characterizer Size Global Com-

plexity

Local Complex-

ity

Stability

fmyo−neu Amplitude Fibre Count,

Shape Width

Phase Complex-

ity

Jiggle

fnor−myo Amplitude Fibre Count,

Shape Width

Turn Amplitude B Jiggle

fnor−neu Area Number of

Phases, Number

of Turns

Phase Complex-

ity

B Jiggle

Multi-class Area Shape Width,

Number of

Phases, Fibre

Count

- B Jiggle

Table 6.5: SFFS selected features up to the 5th dimension for muscle characterizers based

on EAR for the TA muscle

characterizers. Future work will focus on the value of transparency rules obtained using

EAR compared to rules obtained using other rule induction algorithms. Better ways of

estimating muscle characterizations by integrating information obtained from QEMG fea-

tures extracted from resolved MFPs, decomposed MUPTs, sampled contractions and the

whole muscle will also be investigated. Finally, a clinical study evaluating the impacts of

applying the proposed methods in practise is strongly recommended.
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Chapter 7

Conclusion

7.1 Summary

In this chapter, a summary of the contributions of this thesis and their possible impacts

are presented. The chapter also discusses the important directions of future work.

7.2 Summary of Thesis Contributions

The central problem addressed in this thesis is the characterization of neuromuscular dis-

orders by quantitatively analyzing EMG signals acquired using an intra-muscular needle

electrode from human skeletal muscle during low to moderate isometric voluntary contrac-

tion. Digital signal processing algorithms and machine learning methods were developed

to provide accurate, sensitive and transparent muscle characterization in a time span com-

parable to the the time needed to complete a qualitative analysis using clinically viable

acquisition protocols.
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EMG Signal Preprocessing

The main contribution to the the preprocessing sub-stage is the adoption of digital fil-

tering techniques (Savitzky-Golay filter) that primarily focus on maintaining the MUP

morphology while discarding contaminations from instrumentation noise and other irrel-

evant bio-electric sources. This is crucial, because MUP morphology is, by far, the most

reliant source of information to capture disease induced changes to the muscle structure

and function. The preprocessing scheme is also adaptive, where the filter configuration is

changed based on each signal optimizing for the Durbin-Watson criteria.

MUP segmentation

The MUP segmentation technique proposed in this thesis is an extensible approach that

does not only aim at extracting active segments from the EMG signal, but also attempts

to classify the extracted segments based on how well their morphology resemble an isolated

MUP. An extensive evaluation using 50 simulated EMG signals calculated using an electro-

physiologically sound model shows that the obtained average recall is 0.95 ± 0.066 and

the average precision is 0.966 ± 0.035. These results are obtained for MUPs with maximal

amplitude that is three times larger than the standard deviation of the added noise.

MUPT Identification

The design philosophy behind the proposed MUPT identification methods is conservative

but reasonably effective. It is conservative in a sense that it does not try to assign every

segmented MUP, or even identify every MUPT. Instead, the main focus is to identify

a subset of MUPTs that can be used to investigate disease induced changes in MUP

morphology and how MUP morphology varies across a train. The proposed methods are

also specifically tailored to accommodate issues that are particularly relevant to the analysis

of clinical EMG signals in the context of characterizing neuromuscular disorders. These

issues include:
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� Random intra-train variability: The use of DTW alignment is effective in es-

timating morphological similarity measures that are least affected by variability in

MUP morphology due to instabilities in neuromuscular transmission.

� Trending intra-train variability: The reliance on spectral clustering, that as-

sumes connectivity between cluster members rather than cluster compactness, can

track the changes resulting from slow and slight electrode movement.

� Inter-train MUP morphological similarity: Similarity graph pruning provides

a powerful mean for integrating motor unit firing times into the clustering. In some

cases, the firing times can be the last resort in discriminating between trains that

happen to have highly morphologically similar MUPs.

A comprehensive evaluation of the proposed methods shows that a high yield of represen-

tative MUPTs can be identified accurately in a course of a few seconds. Beyond proposing

new methods, the thesis also contributes to the MUPT identification problem by defin-

ing a new framework for evaluation. This framework quantifies superposition degree of

influence, train representativeness, information yield and potential identification errors

including misassignment, train splitting and merging.

Morphological and Morphological Stability Features

The thesis proposes ten new features capturing MUP morphology and how it varies across

the MUPs belonging to the same train. The newly proposed features are shown to be

discriminative across different disease categories. More importantly, the thesis introduces

the novel concept of grouping quantitative EMG features into groups, where each group

is reflecting a different aspect of MUP morphology. This aspect grouping is investigated

by creating simulated EMG studies and applying an in-depth statistical feature selection

algorithm.

In any of its iterations, the feature selection algorithm selects all subsets of features

that performed equivalently in a statistical sense. This prevents the search from discarding

feature combinations at early stages due to subtle performance differences. The results are
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also validated using clinical EMG studies and a feature selection algorithm based on a

different search approach. Results also confirm that a muscle characterization based on

a selected feature set that is limited to have each aspect represented by only one feature

does not result in a decrease in categorization accuracies. Instead, it enables the making

of a more structured, more transparent and simpler clinical decision.

Features for Characterizing Neuromuscular Junction Stability

The thesis introduces a new QEMG feature called NF-MUP-Jitter that is sensitive to

disturbances in the neuromuscular junction function. The estimation of this feature relies

on segmenting single fibre MUP segments, i.e., parts of the MUP, where a contribution

from one of the muscle fibres is not significantly changed by contributions from other fibres.

Aligning and evaluating the morphological consistency of these segments are achieved using

regional dynamic time warping. For the purpose of segmenting single fibre MUP segments

from the MUP, a SVM classifier is trained using simulated MUPTs with known NF-MUP-

Jitter values.

An evaluation based on 680 simulated MUPTs shows that the average error in estimat-

ing NF-MUP-Jitter is 8.9%. One or more single fibre MUP segments can be detected in

85.3% of MUPTs. The key advantage of this feature is that it can be estimated quickly

(the average analysis time for a MUPT is 3.6 seconds) from an automatically decomposed

EMG signal acquired using conventional clinical protocol and equipment. These improve-

ments shall facilitate the characterization of NMDs affecting the neuromuscular junction

operation using EMG techniques substantially, when compared to estimating jitter based

on traditional single fibre EMG.

Firing Patterns Features

The thesis shows initial evidence supporting the possibility of detecting neurogenic dis-

orders by investigating quantitative features summarizing the firing patterns of sampled

concurrently active motor units. These quantitative features are driven from mean firing

rates that are estimated from MUPTs extracted from partially decomposed EMG signals.
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The MUPTs are sampled using an acquisition protocol that does not demand measure-

ment nor control of the contraction level. The evidence is based on clinical data acquired

from more than 800 MUPTs sampled from the TA muscle. For a further insight and

confirmation, a model with a modularized architecture is built blending state of the art

mathematical and numerical models that predict motor neuron pool neurodynamics and

muscle electrophysiology.

Muscle Characterization

The thesis provides a mathematical formulation of the muscle characterization problem

emphasizing its nature as a multiple instance learning problem and delineating its different

outputs. The thesis evaluates remodelling the muscle characterization problem to ten

different binarization mappings. The performance of each is investigated using a through

feature selection procedure based on both statistical and rule induction classifiers. The

results obtained using more than 340 clinical studies confirm that using an appropriate

binarization mapping can result in obtaining higher categorization accuracy and more

clinically relevant transparency rules.

7.3 Directions for Future Work

Each of the preceding five chapters concludes with suggestions for future directions related

to the methods and evaluation techniques discussed within the chapter. This section

focuses on more general and long term directions for future work.

7.3.1 Evaluation of Clinical Utility

A set of clinical studies should be performed to evaluate the proposed system with respect

to the following criteria:

� How well will the system generalize across age groups or race/ethnicities?
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� Do the proposed characterizations contribute to equivocal cases?

� How often do clinicians need to edit the identified trains by excluding and/or includ-

ing MUPs?

� How suitable is the proposed system for tracking prognosis?

� How correlated are the estimated features and induced rules to the level of disease

involvement?

7.3.2 Refining and Monitoring the Acquisition Protocol

The yield and quality of the information extracted from an EMG signal is determined

by the nature of the acquired signal. For instance, signals acquired at a low contraction

force with inappropriate needle positioning will result in few (one to three) representative

MUPTs being identified. On the other hand, increasing the level of contraction results in

a lesser chance of observing isolated MUPs. This will also demand a more complicated

and time consuming analysis, and will result in less representative MUPTs.

The first phase of this sought study shall focus on the biophysial basis of intramuscular

EMG signals by utilizing and extending the mathematical, computational and phenomeno-

logical models of EMG to find convincing answers to basic, yet unresolved, questions in-

cluding:

� What characteristics should a MUP possess before it can be considered suitable for

characterization of neuromuscular disorders?

� How many MUPs need to be sampled from each train to be able to confidently

quantify the variability in neuromuscular transmission?

� How much electrode movement can be tolerated?

� How important is it to measure and control the level of contraction?
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This should be followed by development of signal analysis techniques that are capable of

providing real-time signal quality indexes. An operating electrodiagnostic clinician should

use these indexes to adjust the needle position and to provide instruction to the test

subject (For example, to increase or decrease the contraction level). The sought analysis

techniques should also provide a feedback to the operating clinician on when enough high

quality signal for characterization of neuromuscular disorders are acquired.

7.3.3 Characterization using Clinically Relevant Multi-level Trans-

parency Rules

The information yield of decomposition based methods is constantly increasing, i.e., de-

composing more MUPTs and extracting more and finer clinically relevant details. This will

lead to characterization being based on higher order and more transparency rules. The

first thing to consider along this line of investigation is to induce lower order rules and

not to increase the order of an induced rule, unless it will lead to a statistically significant

improvement in the confidence in the likelihood estimates.

The second sought improvement is to develop means of transparency rules ranking and

selection that allows integration of domain knowledge without compromising categorization

accuracy or confidence in likelihood estimates. For instance, selecting a rule that includes

two features belonging to the same aspect should be avoided unless it significantly changes

the results.

The last objective is to deal with the relational nature of the features, meaning that

the estimated features can not be expressed using a single fixed length feature vector [65].

QEMG features describe all of the following levels of the neuromuscular structure: (1)

Muscle, (2) Contraction, (3) MUPT, and (4) MFPs.

Therefore, a One-to-Many relational description of a muscle data rather than a tabular

representation is more accurate. Most of the conventional machine learning approaches are

suitable for tabulated data. This limits the integration of features describing other levels

and therefore most of the previous work [98] use aggregation methods to move from the

MUPT level to the muscle level.
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A desired muscle characterization based on a multi-level clinically relevant transparency

rules should be expressed verbally. For instance:

”The likelihood of this muscle being categorized as neurogenic rather than normal is 80

%. This is because 90% of the decomposed potential trains have medium to high instability

and high complexity. 72 % of the resolved NF-MUPs have large sizes”.
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Appendix A

Morphological Features Describing

Near Fibre MUPs

A.1 Summary

In this appendix, a preliminary investigation of the utility of features describing the mor-

phology of NF-MUPs is presented. Statistical results and provided examples suggest that

a better discrimination between normal and affected muscles is achievable using NF-MUP

global complexity features compared to MUP global complexity features.

A.2 Introduction

The objective of this appendix is to compare the utility of size and global complexity

aspect features, specifically area and turns, acquired using standard clinical bandwidths

Portions of this appendix previously appeared in D. Stashuk, M. AbdelMaseeh, and B. Smith. Looking

under the blanket for better measures of motor unit potential size and complexity. Muscle & Nerve,

48(4):669–669, 2013
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versus features from NF-MUPs templates obtained using low-pass double differentiation.

A visual reasoning behind why NF-MUPs are potentially more capable of providing better

MUP complexity features is presented in Figure A.1.

The middle column shows templates and raster plot of a MUPT sampled from a normal

muscle. The left column of a MUPT sampled from a myopathic muscle, while the right

column is of a MUPT sampled from a neurogenic muscle. Examining the MUP templates

presented in the first row, the three MUPs are of similar size and look similarly complex,

given that all of them are comprised of two or three turns. On the other hand, the NF-

MUPs presented in the third row show that diseased NF-MUPs have larger numbers of

distinctive and dispersed turns and therefore are more complex compared to the normal

MUP. In any of the MUPTs, the raster of isolated NF-MUPs validate that the detected

turns can be tracked consistently, to some extent, across the raster of NF-MUPs and that

they are jittering with respect to each other.

A.3 Empirical Analysis

The data was acquired using the same procedure described in Section 3.4.1 on Page 55.

However, only studies from the TA muscle were utilized in this study. Area and number of

turns features were extracted from the MUP templates. These MUP templates were then

high-pass filtered using a second order low-pass differentiator and a new estimate of the

area (NF-area) and the number of turns (NF-Turns) were extracted.

The histograms in Figure A.2 show a better separability between normal and diseased

MUPTs distributions when NF-turns are used compared to turns. It is also clear that

not much separation exists between myopathic and neurogenic MUPTs distributions using

either turns or NF-turns, which is expected as both types of MUPs are predicted to be

more complex.

The discriminability of the investigated features across different classes was also inves-

tigated using muscle-level features obtained by averaging the feature values across MUPTs

sampled from the same muscle. Muscle-level features can overcome the non-uniformity

of disease involvement across the motor units belonging to the same muscle. This means
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Figure A.1: Example MUP templates, NF-MUP templates and NF-MUP raster plots

that some of the motor units sampled in an affected muscle can be slightly affected or not

affected at all.
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Figure A.2: Histograms of Turns and NF-Turns show better discrimination between normal

and disease categories using NF-Turns compared to using turns

The area under curve (AUC) metric of the receiver operating characteristics curve [75]

was used to evaluate discriminability of four corresponding muscle-level features and the

results are shown in Table A.1. The main reason for using AUC is that it is a non-

parametric test. This is beneficial, since the number of muscles in the used dataset are

low, especially for myopathic muscles and therefore it is not possible to assume how the

muscle-level features are conditionally distributed.

The three most obvious observations in Table A.1 are: (1) the NF-Turns feature is more

indicative of disease than the Turns feature (2) Not much discrimination between disease
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Feature Myo vs Normal Neuro vs Normal Neuro vs Myo

Area 0.85 0.94 0.97

NF-Area 0.63 0.88 0.88

Turns 0.61 0.72 0.58

NF-Turns 0.79 0.9 0.62

Table A.1: The area under a receiver operating curve (AUC) estimates the discriminiabilty

of a muscle-level feature across two categories. AUC values for all two category decisions

are presented.

categories can be obtained using either turns or NF-turns (3) Area is more discriminative

than NF-Area for the three decisions. The last observation can be attributed to the fact

that discarding contributions for distant muscle fibres might lead to a less representative

feature of the number of fibres in a motor unit.

Feature Set Myo vs Normal Neuro vs Normal Neuro vs Myo Multi-category

Area 79.1 85.2 88.7 76.2

NF-Area 57 80.8 79.9 58.5

Area , Turns 70.4 85.2 88.7 70.4

Area, NF-Turns 91.3 85.2 88.7 85.1

Table A.2: Classification accuracies for two and multi-category decisions using various

feature combinations

The ability of NF-turns to improve the discrimination provided by size aspect features

was investigated using classification based on event association discussed in Section 6.4.4

on Page 125. Similar to the paradigm adopted in Chapter 6, the utility of a feature set

was equated to the classification accuracy. Table A.2 shows that a feature set comprised

of Area and NF-Turns increased categorization accuracy for a binary characterizer dis-

criminating myopathic and normal muscles by almost 10% over using Area only, while

no improvement was achieved for the other two decisions. The multi-class categorization
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accuracy implemented using a decision directed acyclic graph (diseased-first) binarization

mapping discussed in Chapter 6 using a feature set comprised of NF-Turns and Area was

9% higher than using Area only. No similar improvement was obtained when a feature

set composed of area and turns was used. Similar to what is shown in Table A.1, the

classification accuracies obtained using Area is higher than NF-Area.

The improvement in the ability to discriminate myopathic from normal muscles achieved

by the feature set comprised of Area and NF-Turns can be attributed to the fact that

it is more likely to find small NF-MUPs that have larger numbers of NF-Turns. The

turns, since they are estimated from the raw MUPs, are less capable of revealing MUP

complexity, especially for small MUPs that are more likely to be found in myopathic

muscles. This is potentially due to the fact that the morphology of a MUP is blurred

by low frequency components contributed by distant fibres obscuring complexity details.

Equal accuracies were obtained for discrimination between neurogenic and normal when a

feature set composed of Area, Area and Turns, or Area and NF-Turns. This suggests that

no additional evidence of neuropathy is provided by either of the complexity features.

In summary, Area is more useful then NF-area. However, NF-turns are more useful

than turns. In general, NF-MUPs contain more useful complexity information that can be

automatically extracted and used to better distinguish better between normal muscles and

muscles affected by myopathic and neurogenic disorders.
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