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Abstract

Current  research  in  walkers  and rollators  with  integrated  intelligent  computing  and robotic 

components shows promise in treatment, management and rehabilitation of a variety of ailments and 

disorders such as stroke, Alzheimer disease and multiple sclerosis. 

In this thesis a novel intelligent walker is designed, constructed and tested for the purpose of 

examining whether we can increase mobility among individuals with vision and cognitive impairments 

hindering their ability to move collision free about their environments, by detecting obstacles and using 

brakes to guide the user around them. 

This walker consists of a support frame, front castor wheels and rear particle brakes. Obstacle 

detection and localization are sensed by an onboard 3D depth camera and RGB camera (The Microsoft 

Kinect) and encoders in the rear wheels. This data is processed by an onboard laptop, producing a 2-

dimensional map of the environment. This map is inputted into the control algorithms to make braking 

decisions for obstacle avoidance. 

Two control algorithms are presented. The first is an open loop proportional gain control which 

determines necessary braking torque directly from the distance to the nearest obstacle.  The second is a 

closed loop control which uses the systems dynamics and velocity data from the wheel encoders to 

estimate the forces being applied by the user and calculates the braking torque necessary to avoid 

obstacles. 

The walker moment of inertia and the viscous damping parameters of the system are estimated 

experimentally. The effect of varying three parameters in the closed loop algorithm and one parameter 

in the open loop algorithm are examined in a corner turning test.  Observations support predictions 

made by the derived system dynamics. 

Lastly, the efficiency of the system at real world obstacle avoidance is tested in a controlled 

indoor obstacle course using goggles to impair the vision of otherwise able bodied test subjects. The 

open loop control algorithm was found to reduce the occurrence of collisions by 44% as compared to 

trials with no braking. The closed loop control algorithm was found to greatly reduce collisions with 

the front  of the walker,  however  shows a tendency for  over  steering the user,  producing a  higher 

number  of  collisions  with  the  walker's  side.   Possible  causes  and  solutions  to  this  problem  are 

discussed.

This thesis demonstrates promise in the approach of using braking to help walker users avoid 

collisions with their environments.  Discussion is offered about necessary next steps towards testing 

with regular users of assisted walking devices, and eventually real world use.
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Chapter 1

Introduction

In Canada, the population commonly referred to as the “baby boomers” (born 1946 to 1965) will reach 

retirement age in the next two decades.  This will cause the proportion of Canadians over the age of 65 

to  increase from its current rate of around 13%, to a projected 23%, while at the same time, those 

between the ages of 15 and 65 (the so-called 'working age' population), will decrease from 68% to 

around 60% [1].  In such an aging society we are likely to experience a shortage of workers available to 

care for seniors.  This disparity makes it increasingly necessary for the elderly to maintain a level of 

independence; however, many such people suffer from injuries, poor eyesight, cognitive impairment, 

and a general lack of muscle strength, which leads to increased need for the support of other people.  

One area of vital importance in maintaining an independent lifestyle in old age is the ability to safely 

and steadily navigate one's environment.  For about 9% of the nearly five million seniors currently 

living in Canada, this is accomplished primarily through the use of a walker or rollator device [2]. 
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Figure 1.1: A rollator walker (left) and a simple walker (right)



These assisted walking devices, though smaller than a wheelchair, do (by the necessity of 

having a wide, firm base) have a degree of spatial bulk which can make them challenging to navigate 

through an environment.  This presents an issue, as aging people tend to see a change in their cognitive 

ability to acquire and use spatial information about their environment; in general, distance perception 

and spatial orientation ability tend to decrease in older adults [3].  One common cause of this difficulty 

is progressive neurodegenerative diseases such as Alzheimer's [4].  This change occurs in addition to a 

general increase in vision impairment among the elderly.  Studies have found that age is the single best 

predictor of blindness and visual impairment [5].    

Walkers are a valuable and relevant intervention into the problem of maintaining mobility and 

independence in old age; however they have been shown to be problematic for some users in 

navigating through environments, both in user satisfaction surveys [6] and in laboratory studies [7], 

where users have been observed having trouble with tasks such as navigating doorways without 

colliding with the door frame.  This presents an issue as an estimated 2037 injuries occur per year as a 

result of a walker colliding or catching on an environmental hazard [8].

In Chapter 2 of this thesis a background is presented on the issues involved in walker use and 

the approach of integrating intelligent systems into walkers to mitigate these problems.  In Chapter 3 a 

novel assisted-walking device is presented with integrated intelligent systems designed to assist the 

user in obstacle avoidance.  This new walker uses passive control to help users navigate through their 

environment while avoiding potentially destabilizing obstacles.  The hardware (described in Chapter 3) 

includes an onboard controller, which takes input information from wheel encoders, a depth camera,  

and an RGB camera, and a pair of particle brakes in the wheels.  Environment mapping and 

localization, described in Chapter 4, is achieved with the depth camera and wheel encoders.  The 

physical system of the walker and user is characterized in Chapter 5 and used to design two potential 

control schemes to guide the user with minimal braking torque.  These schemes are then experimentally 

evaluated in Chapter 6 with parameter variation testing and a controlled obstacle avoidance test.  

Finally Chapter 7 presents discussion on the results of the experiments and a description of future 

work.

2



Chapter 2

Background

2.1   Walker Use and Issues

As mentioned in Chapter 1 the number of seniors in Canada using a walker or rollator as their primary 

mobility aid is nearly half a million, as of 2009 [1].  A walker is generally defined as a frame that is 

designed to support someone (such as a baby, or an injured or elderly person) who needs help walking.  

This thesis deals solely with walkers designed for use by adults and ignores its use as an infant walking 

aid.  Rollator is a genericized trademark that refers to a type of walker with 4 wheels, handlebars and, 

usually, a built-in seat and carrying basket.  They are equipped with hand brakes in the handlebars for 

manual braking.  The rollator was invented in Sweden and is used there by upwards of 300,000 people, 

the highest percentage of any country measured [9].  No specific data could be found on the prevalence 

of rollators versus  two-wheeled or no-wheeled walkers in Canada.

Walkers are used for support and mobility among the elderly or injured.  Clinical study has 

found that the use of a four-wheeled walker use can reduce the risk of fractures due to falls despite a 

decline in general status of health [9].  The ability to walk independently contributes to strengthened 

muscles and skeleton, which leads to reduced fractures, even though falls may still occur [10].

One of the major issues with walkers is that they increase the volume and area that the user 

takes up as they try to move around their environment;  although this provides a stable platform for 

balance, it can lead to collisions with obstacles, which can in turn cause falls.  Walker-related injury can 

occur as a result of collision with, or catching on, external obstacles [8].  One study found that in the 

United States 42,000 injuries associated with walker use are treated annually, a rate seven times higher 

than injuries associated with cane use.  In an estimated 2037 of these cases the circumstance of the 

injury is “caught or hit aid on object” [ibid].  While this is a small section of the elderly population, this 
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number of cases warrants investigation into possible interventions to reduce the rate of collision 

associated injuries.  In addition, collisions which are not associated with injuries but which, user 

satisfaction surveys show, can cause frustration and annoyance to the user and reduce their ability to 

maintain mobility in their own home, should be considered [6].

2.2   Intelligent Walkers 

Integration of intelligent systems in assisted walking devices has been attempted with a variety 

of approaches, including obstacle avoidance, wayfinding, fall detection and mobility evaluation.  This 

review will focus primarily on obstacle avoidance, which is the process of moving through an 

immediate environment (eg. getting across a room, around furniture, through doorways etc.).  This is 

distinguishable from wayfinding, which is the process of to moving from one area in a building to 

another (eg. finding your way from the bedroom to the kitchen).  

Intelligent walkers intended to alter the movement of the user in some way belong to either the 

active or passive types.  Active walkers are those which provide energy to the walker's motion.  This 

usually involves servo motors in the wheels which drive the walker [11].  These systems tend to be 

heavy and complex due to the motors, reduction gears and batteries required.  In particular, batteries 

pose an issue for long term use as the servo motors used in these systems have high power 

requirements.  There is also the possibility that inappropriately-controlled servo motors may move 

unintentionally, causing danger to their user.  Passive walkers are those which steer or guide the user 

without providing energy to their motion.  Guidance is achieved by using servo motors to change the 

walker's direction of motion by turning the castor wheels [12] or by attaching a steering wheel to a 

servo motor to allow for joint user/computer steering [13].  Another possibility is the use of brakes in 

two of the walker wheels; by engaging only one brake at a time, or by engaging one brake with more 

torque than the other, the dynamics of the walker are altered in order to steer around obstacles.  Passive 

guidance using braking has lower power requirements than active motor-driven systems and has the 

safety feature of being unable to move on its own without user intention.

Previously, Hirata, Hara and Kosuge published in IEEE Transactions on Robotics a paper on the 

design and testing of passive-controlled intelligent walker, called the RT Walker, which uses rear-wheel 

servo brakes for slowing and turning [14].  As the RT Walker represents the most similar research to 

that presented in this thesis, the following section will examine Hirata, Hara and Kosuge's paper in 

depth.

The RT Walker uses a laser range-finder (LRF) for obstacle detection.  The LRF used was a 
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one-dimensional arrays of lasers, which use time-of-flight technology to find the distance to a two-

dimensional slice of the environment.  LRFs are generally quite accurate, but are incapable of imaging 

the 3D environment at once;  as a result, obstacle detection depends on the height of the LRF and its 

inclination, it could miss potential obstacles.  For example, an LRF mounted one foot off the ground 

and angled downwards, as on the RT Walker, would not see the obstacle posed by the lip of a table (Fig 

2.1).

Detail is given on the RT Walker's control algorithm and the physical model behind it.  The 

dynamics of the system are given, with respect to the force applied by the human user and the force 

applied by the servo brakes. Next, a method of altering the dynamics of the system by braking is 

outlined. This system uses closed loop control based on encoder readings of the velocity and 

acceleration of the system. The control scheme is then further modified to include sensory data of the 

environment. Two tilt-angle sensors provide information on the direction of gravity which is 

compensated for in the braking in order to render the dynamics of the system the same on a slope as on 

a level plane. The LRF detects both obstacles and drops. This information is used to produce an 

artificial potential field.  The potential field is generated based on the distance between obstacles and a 

point in front of the walker.  How this point is selected is not described. The brakes produce the 

necessary torque to simulate a force applied by the potential field on this point and this guides the 

walker around and away from these obstacles.

The first experiment tests the dynamic control of the walker without environmental sensing. The 

walker was placed on a slope facing downhill to simulate a user applying a constant force. Three 

desired dynamical coefficients were specified and the measured velocity response of the walker was 

compared to the theoretical velocity response. In all three cases the velocity reached a steady state at, or 

very near, the theoretical predicted value, validating the physical system.
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Figure 2.1: In this example the LRF can see the base of the table but misses the lip.



In the next experiment, the walker was again placed on a slope, now at an angle relative to the 

direction of the slope. The dynamical system was given five damping parameters relative to the 

rotational motion of the walker. It is shown that a larger damping coefficient produces a straighter arc 

of motion when the walker is released (as the gravity attempts to turn the walker to face downhill); 

however, in this case no comparison is made to the theoretical path. While this is the expected 

correlation, it does nothing to show the accuracy of the model. The theoretical paths should not have 

been difficult to calculate based on the already derived mathematical model and would have been 

useful in showing that the angular part of the model is as accurate as the translational part. 

The paper ends with a short section on human testing.  In the first trial, four university students 

were blindfolded to prevent visual feedback and guided the walker through a walled u-shaped path. All 

four students succeeded in avoiding collisions with the walls. In the second trial, five blindfolded 

university students were guided by the RT Walker along an s-shaped path between a start and end point. 

The authors state that “the differences between desired and actual paths were almost zero”.  In the final 

trial, a single blindfolded user was guided by the walker through an environment consisting of stairs, 

obstacles and a downward slope. The user successfully navigated this course. There are some issues 

with this methodology.  A larger sample size is needed to improve the validity of these tests. In 

particular, the final test being done with only a single trial makes it difficult to draw any real 

conclusions on how well the walker works. With so few trials, the authors were unable to compile the 

data necessary to rule out chance as a major factor in the successful navigation.   Furthermore, the trials 
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Figure 2.2: The RT Walker and its Obstacle Avoidance Method.



were not controlled; in order to confirm the improvement in user mobility, the authors could have had 

their subjects attempt to navigate the course with the walker's navigation algorithm disabled.  It may 

seem obvious that a blindfolded user with both hands on the walker should not be able to navigate a 

course that he/she has no knowledge of, but it would be useful to show that the navigation software is 

an improvement over a user's ability to use his/her hands to help navigate by feeling around the space 

near the walker.

The intelligent walker presented in this thesis addresses some of the aforementioned issues in 

the methodology of Hirata, Hara and Kosuge.  It avoids the problems inherent in the use of laser range-

finders, by instead using a three-dimensional depth camera, which images a much larger portion of the 

environment at once.  The passive control algorithms differ from those used by the RT-Walker and were 

tested more rigorously, using  a controlled obstacle avoidance test with a larger number of trials. 

Unfortunately due to the lack of a control group in the RT-Walkers obstacle avoidance testing, it is not 

possible to compare the real world efficacy of the algorithms used by the two walkers.
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Chapter 3

Hardware and Instrumentation

The key components of the novel intelligent walker (Fig 3.1) presented in this thesis are an onboard 

laptop, an Arduino® micro-controller, a pair of magnetic particle brakes, a pair of optical encoders and 

a Microsoft Kinect®.  This chapter will first describe the general construction of the walker, and then 

will describe in more detail the composite parts: the Arduino, the particle brakes, the encoders, and the 

Kinect

3.1   Platform

The walker was constructed by fitting components on a standard rollator (a Dolomite Legacy 
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Figure 3.1:  Front and back views of the novel intelligent assisted-walking device.



600).  The walker is made of curved steel tubing.  Its front two wheels are hard plastic castor-type 

wheels with rubber coating for friction. The  fixed back wheels were removed and replaced with wheels 

attached to the particle brakes and encoders.  A plastic seat was also removed to make room to mount 

the onboard computer.  The steel handles are fitted with soft foam for user comfort.

Table 3.1:  Walker Dimensions

Handle Height  91 ± 1 cm

Handle Width  48 ± 1 cm

Back Wheel Diameter  204 ± 2 mm

Front Wheel Diameter  199 ± 2 mm

Back Wheel Track Width  68 ± 0.5 cm

Front Wheel Track Width  45 ± 0.5 cm

 Total Length  74.5 ± 0.5 cm

Kinect Sensor Height  49.5 ± 0.5 cm

Kinect Sensor Distance From Back Wheels  41 ± 0.5 cm

Walker Mass  17.9 ± 0.1 kg

An Arduino microcontroller, a voltage regulator and a 12 volt lead acid rechargeable battery are 

affixed to a stable wooden platform which is held in a basket under the laptop platform.  The battery is 

rated for 7.2 Amp-hours, so even at the maximum draw of 0.67A from each brake, and 1.08A from the 

Kinect, a full battery charge should last nearly three hours.  In practice, the brakes will only be used for 

short intermittent periods so the charge should, speculatively, last longer.  The Microsoft Kinect is hung 

upside down (to take advantage of the stand already attached to its bottom) from a crossbar on the front 

end of the walker (as shown in Fig 3.7).

The weight of the instrumented walker is significantly greater than that of an average rollator.  

The unmodified Dolomite Legacy 600 has a listed weight of  7.6kg [15].  Most of the additional weight 

comes from the particle brakes, each of which weigh 1.8kg and the battery, which weighs 2.47 kg.  This 

will likely prevent the user from picking up the walker to move it, meaning it can only be rolled.

3.2   Controller

Input from encoders and output to wheel brakes is routed through an Arduino Uno (Fig 3.2).  

The Uno is a micro-controller board based around the Atmega328, a micro-controller chip which has a 

20MHz 8-bit CPU, 2 Kbytes of RAM, 32 Kbytes of Flash memory and 28 pins [16].  It is capable of 
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both digital and analog input and output.  Analog output is accomplished through pulse width 

modulation (PWM).  It can be powered by AC-to-DC adapter, battery or in this case, through a 

computer with a USB cable.  Here it is used to keep track of the wheel revolution and maintain wheel 

torque while images from the Kinect are being processed.  Image processing is beyond the 

computational capabilities of the Arduino and is done by an onboard computer (Asus Notebook PC 

Model TP500L) using the MATLAB computing environment.

The Arduino is given instructions by uploading “sketches”, written in the Arduino Development 

Environment, to the board from a computer via USB.  It can then run these independently of said 

computer.  In order to interface with MATLAB, a support package called ArduinoIO is used.  This 

provides MATLAB commands to set Arduino pin modes to input or output and then request input 

information, or set the output on a pin.  ArduinoIO also contains functions for using servo motors and 

optical encoders.  The optical encoder function uses interrupt pins (pins which interrupt the Arduino 

CPU during its normal processing to perform a different function) to keep track of the encoder count; 

however, the provided function requires two interrupt pins per encoder, while the Arduino Uno only 

contains two interrupt pins total and two encoders are required.  Therefore, the sketch was modified to 

include a function to attach an encoder to one interrupt pin and another regular input pin.  This halves 

the resolution of the encoders from 512 to 256 counts per rotation.
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Figure 3.2:  The Arduino Uno and the Electronic Shield Used 
to Control the Encoders and Particle Brakes



3.3   Particle Brakes

Each of the back wheels of the walker was removed and replaced with a custom made wheel attached 

to a magnetic particle brake (MPB) made by Placid Industries, model number B35-12-H (Shown in Fig 

3.4).  Current flowing through a coil in the MPB generates a magnetic field.  A cavity within the brake 

holds a powder of magnetic particles.  The brake rotor passes through this same cavity.  When the 

magnetic field is generated, the magnetic particles bind, causing friction on the rotor.  The friction 

applied is proportional to the magnetic field applied.  MPB's are ideal for this sort of use because the 

torque applied to the brake can be controlled with a high degree of accuracy, and is near to linear with 

the input current [17].

The brakes uses a maximum of 12 volt input, with a 17 ohm coil resistance.  This produces a 

100% input current of 0.67 amps.  At this current, the brake torque is 35 lb.-in.  (3.95 Nm).  At 0% 

current the brake torque is 0.6 lb.-in. (0.068 Nm).  Between these two extremes the torque is nearly 

linear with the current, but resembles a hysteresis with a slightly lower torque when increasing from 0 

amps than when decreasing from 0.67 amps.  The brakes can dissipate 30 watts of heat and have a 

maximum rotation of 1800 RPM [17].  This should be more than sufficient for use on an assisted 
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Figure 3.3: Schematic of the walker's circuitry, including the micro-controller, particle 
brakes and encoders.



walking device (provided walker users do not exceed 65km/h).  The brake's response time to change in 

current is 35 mSec when unforced and 20 mSec when forced.  This should also be sufficient, as the 

control algorithm requires on the order of 100 mSec per timestep.

3.4 Encoders

The walker's back wheels are fitted with a pair of optical rotary encoders (Fig 3.5), made by Grayhill 

Inc. model number B1K128-050.  These encoders are incremental, reporting the motion of the encoder 

shaft, rather than the current position.  When rotated, the encoders produce two square waveforms with 

a phase shift of a quarter cycle, shown in Fig 3.6.  Upon detection of an edge in either waveform, the 

encoder's count is incremented (on the Arduino) positively or negatively, depending on whether the 

waveforms have the same state (both high or low) or different states.  The encoders are mounted in line 

with the axis of the wheels, so they experience 1-to-1 rotation.  With an encoder resolution of 256 

counts per revolution and wheel diameter of 204 ± 2 mm, this corresponds to a distance resolution of 

2.5 ± 0.02mm per count.
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Figure 3.4:  A Back Wheel with Encoder, Magnetic Particle Brake and Aluminum Shield.



3.5   Depth Camera

One aspect that differentiates the proposed walker from previous attempts discussed herein is in it's use 

of a full depth camera to sense the environment.  It uses the Microsoft Kinect model 1473, a sensor 

suite which includes a 3D depth camera, an RGB camera, an accelerometer and a microphone.  The 

Kinect is capable of full-body 3D motion capture, skeleton tracking, and facial recognition.  The depth 

sensor uses an infrared laser projector and a monochrome CMOS sensor, emitting a 640 x 480 grid of 

laser points to capture depth data in the same resolution.  Its angular field of view is 57 degrees 

horizontal and 43 degrees vertical with results of approximately 1.6 mm per pixel at a distance of one 

meter [19].  This allows the Kinect to accurately capture a much greater portion of the environment at 
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Figure 3.6: The circuitry and waveform of the optical encoder

Figure 3.5: An Encoder Mounted to the Axis of a Back Wheel.



once than could a simpler time-of-flight laser rangefinder.  The Kinect has a ranging limit of about 3.5 

meters which is adequate for the speeds walker users are likely to achieve and the update frequency of 

the avoidance algorithm.  The minimum viewing distance is 0.8m; this causes some technical issues, as 

will be discussed later.  Kinect's coordinate system uses x as the horizontal component perpendicular to 

the direction of view, y as the vertical component (with the positive direction point downward with 

respect to the camera's stand) and z as the horizontal component parallel to the direction of view.  In 

most literature, and in common usage, the z coordinate is the vertical component; to avoid confusion 

from this point on the coordinate system used will use x as the horizontal component parallel to the 

viewing angle, y as the horizontal component perpendicular to the viewing angle and z as the vertical 

component, with the positive direction pointing upwards.
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Figure 3.7: The Microsoft Kinect mounted on the front of the walker. 



Chapter 4

Obstacle Mapping and Localization

In this chapter an overview of the software is given followed by a description of the process of 

mapping obstacles and maintaining walker localization.

Figure 4.1 shows a single timestep in the obstacle mapping and avoidance process.  The 

software initiates with preallocation of variables.  An image is then taken by the depth camera and 

converted from depth image to a three-dimensional point cloud,which is then translated into a two-

dimensional point cloud (flattened to the plane of the floor).  Next, the software uses data from the 

encoders to perform localization (i.e. discerning the current position and attitude of the walker).  At this 

step the translational and rotational velocities of the walker are also approximated.  The point cloud is 

then translated and rotated according to this localization and added to a two-dimensional occupancy 

grid, which is persistent between timesteps.  Next this grid is used to perform two control decisions; 

first, the software decides which direction the walker should turn if an obstacle is present; and second, 

with what torque the brakes should be engaged, based on the distance to the nearest obstacle and the 

walker's current position and velocity.
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Figure 4.1: The general software structure used to control the walker



4.1   Point Cloud Generation

Depth data, as shown in Fig 4.2, from the Kinect is translated into a point cloud, as shown in 

Fig 4.3, using the MATLAB function depthToPointCloud.   For computing efficiency every tenth point 

in this cloud is kept and the rest discarded.  This gives an approximate resolution at maximum viewing 

distance of 5cm per pixel.  Points are then removed whose z  coordinate is less than -0.4m (the 

approximate level of the floor), or greater than 2m (points too high to be considered obstacles), the 

result is shown in Fig 4.4.  The z coordinate is then discarded in order to produce a 2D scatter map of 

obstacle points, which are then rotated and translated according to the following equation:

[ x '
y ' ]=[cosφ −sinφ

sinφ cos φ ][x
y]+[ xcamera

ycamera] (4.1)

where φ, xcamera and ycamera are the viewing angle of the walker, and the x and y coordinates of the 

camera, as determined through dead reckoning using the encoders.  This places the points in their 

correct location with relation to the walker's current position and heading.

In this way, the walker can take a single snapshot and map a large portion of the environment, 

even finding obstacles that partially obscured by other obstacles, so long as some part of them is 

visible.  It can also recognize obstacles which may not extend directly to the floor.

In order to produce a continuously updating map of the environment, the points are then added 

to a 2D histogram of horizontal plane, with a resolution of 5cm2.   At the same time the section of the 

2D plane which is currently being viewed is calculated and an array containing the number of times 

each pixel has been viewed by the Kinect is updated.  This allows the algorithm to determine which 

obstacles are persistent (having been viewed consistently) and which are moving obstacles (such as a 
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Figure 4.2: An RGB image and its corresponding depth image taken by the Kinect



person moving through the walker's field of view) or artifacts from the camera.  Only pixels which 

have contained obstacle points for more than 50% of the timesteps in which they were viewed are 

considered to contain persistent obstacles.  The result is an updating 2D occupancy grid showing which 

areas contain obstacles and which are safe for the walker to traverse, shown in Fig 4.5.  
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Figure 4.3: A point cloud generated from a Kinect depth image

Figure 4.4: The point cloud from figure 4.2, with floor points removed.



The major drawback of this approach is in the technical limitations of the Kinect.  On sharp turns it is 

possible for obstacles to pass unseen inside the minimum viewing distance of 0.8m.  Such obstacles 

would never be added to the occupancy grid and so the brakes would not engage to prevent a collision.  

Depth cameras with closer minimum viewing distances could mitigate this issue.

4.2   Localization

A central problem in robots that map environments is keeping track of their own location within the 

environment as they sense it, known as the SLAM (Simultaneous Localization and Mapping) problem.  

Two successive measurements are only useful if the software knows how to overlay them, and this 

requires one to know how much they moved between the measurements. 

The walker's tracks its own location through dead reckoning.  For this only the wheel encoder 

readings are required.  The Arduino micro-controller keeps a record of the total number of counts so in 

order to calculate the x and y change between timesteps, each encoder count is subtracted from the 

previous count.  This gives a Δcountleft and  Δcountright.  The change in x and y is then given as:

Δ x=
(Δ countR+Δ countL)

2

π rwheel

resenc

cos(φ)

Δ y=
(Δ countR+Δcount L)

2
π r wheel

resenc

sin(φ)

(4.9)

where resenc is the count resolution of the encoders, in this case 256 counts per revolution.  The heading, 
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Figure 4.5: The point cloud from figure 4.3, transformed to a 2-D ground coordinate system.



φ, is given by:

φ=(count R−count L)
π r wheel

r track resenc

(4.10)

This is a very fast and simple way of keeping track of location, but has the drawback of not correcting 

for accumulating error.  Because of the problem of accumulating encoder error, the map is cleared and 

reset after every 100 timesteps.  This corresponds to roughly 10 seconds of computation time.  

Additionally, this ensures that out-of-date obstacle data does not interfere with user navigation.

Two alternate methods of localization, which may have produced more accurate locations using 

data from the Kinect's camera were attempted; however neither of these were successfully integrated 

with the rest of the walker's software and so were discarded in favor of dead reckoning.  These methods 

require a significant amount of discussion that does not fit well within the structure of this thesis, so has 

been presented in Appendix A.
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Chapter 5

System Characterization and Control Scheme

5.1   Equations of Motion

For the purpose of characterizing the system the system state is given by [x,y,φ] and its derivatives.  

The heading angle φ is taken as zero when the walker points in the x direction and increases in the 

counterclockwise direction.  

For simplicity, the assumption is made that the center of mass is along the centerline of the 

walker and directly between the back wheels.  The torque on the walker was then derived as:
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Figure 5.1: A diagram of the walker system and the forces 
applied to it.



τ⃗= r⃗×F⃗
=(−r⃗ h×F⃗ hL)−(r⃗ b×F⃗ bL)+(−r⃗h× F⃗hR)−(r⃗b×F⃗ bR)−Dφ φ̇

∣τ ∣= rb ((α FhR−FbR)−(α F hL−FbL)) −Dφ φ̇

(5.1)

where FhL and FhR are the force applied to the left and right handle, rh is the 2 dimensional radial distance 

from the center of mass to the handle,  FbL and FbR are the force applied by the left and right brake and rb 

is the two-dimensional radial distance from the center of mass to the back wheel.  α is the ratio rh/rb and 

is introduced to simplify the expression.  I is the moment of inertia and Dφ is the coefficient of 

rotational viscous damping of the system.  

The second derivative of the heading is therefore:

φ̈=τ / I

=((α F hR−FbR)−(α F hL−FbL))
rb

I
−

Dφ φ̇

I

(5.2)

The second derivative of x and y were similarly derived from Newton's laws as:

ẍ=((F hL −FbL)+(F hR −FbR))
cos(φ)

m
−

D ẋ
m

ÿ=(( FhL −F bL)+(F hR −F bR))
sin(φ)

m
−

D ẏ
m

(5.3)

where D is the translational damping constant and m is the total mass of the system.  In addition, the 

walker cannot have motion perpendicular to the direction of the back wheels. Therefore the controllable 

degrees of freedom are less than the total degrees of freedom in the walker's two-dimensional system, 

or nonholonomic, and has the following constraint:

ẋ sin(φ) − ẏ cos (φ)= 0 (5.4)

 For the purpose of obstacle avoidance, the walker's radius of curvature is of particular interest.  

This is given by:

R=
ds
d φ

=
∂ s
∂ t (

∂φ

∂ t )
−1

(5.5)
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where s is arc length.  The first derivative of s with respect to time is the walker's speed so:

∂ s
∂ t

=√ ẋ 2
+ ẏ 2 (5.6)

For the purpose of finding an analytic expression for R with respect to the forces on the walker, 

the equilibrium state can be examined.  If the second time derivatives of x, y and φ are set equal to zero 

an expression for the eventual equilibrium of the first time derivatives of x, y and φ as a function of the 

forces applied is found.  This assumes that the walker has reached such velocities as to produce viscous 

forces that counterbalance the coulomb friction and applied forces, resulting in a net force of zero:

φ̇=((α F hR−F bR)−(α FhL−F bL))
rb

Dφ

ẋ=((F hL −FbL)+(F hR −FbR))
cos(φ)

D

ẏ=(( FhL −F bL)+(F hR −F bR))
sin(φ)

D

(5.7)

If  these equations are substituted into the nonholonomic constraint given above it is found that they 

already satisfy it.  Substituting into the formula for the walker speed (5.6) gives:

∂ s
∂ t

=√(( FhL −F bL)+(F hR −F bR))
2
(cos2 φ+sin2 φ)

1
D2

=((F hL −FbL)+(F hR −FbR))
1
D

(5.8)

Therefore the expression for the radius of curvature is:

R=
((F hL −FbL)+(F hR −F bR))

((α F hR−F bR)−(α FhL−F bL))
Dφ

D rb

(5.9)

With data from the encoders the translational and rotational velocity of the walker can be 

directly measured.  The force that the user is applying to either handle cannot be directly controlled.  It 

would be useful to know these forces for the purpose of control.  The formula for translational and 

rotational velocity can be rearranged to find:
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( FhL+F hR)=v∗D+(FbL+F bR)

(F hR−F hL)=
φ̇ Dφ

r bα
+( FbR−FbL)/α

(5.10)

Which combined give expressions for the handle forces:

F hR=
1
2 (v∗D+(FbL+F bR)+

φ̇ Dφ

rb α
+(F bR−F bL)/α)

F hL=
1
2 (v∗D+(F bL+F bR)−

φ̇Dφ

rb α
−( FbR−FbL)/α)

(5.11)

All variables on the right side of these equations can be measured in advance or in real time, so the 

handle forces can be calculated in real time.

Likewise, if it is assumed that the handle forces are known, the braking force necessary to 

produce the desired movement can be derived.

F bR=
1
2(−v∗D+(F hL+F hR)−

φ̇ Dφ

rb

+(F hR−F hL)α)
F bL=

1
2(−v∗D+(F hL+F hR)+

φ̇ Dφ

rb

−(F hR−F hL)α)
(5.12)

5.2   Obstacle Detection and Turning Decision

In order to avoid obstacles the walker checks distance to the nearest obstacle directly in front of 

it, within a rectangle equal to the width of the walker.  The walker then needs to decide in which 

direction to turn.  In order to make this decision, a 90°arc in front of the walker, centered on the 

walker's heading, is divided into 30 3° subarcs.  In each subarc the distance to the nearest obstacle is 

calculated.  These are then used to perform two simple polar coordinate integrations, first in the angle 

interval [φ – 45°, φ ]  and then over [φ, φ + 45° ].  The magenta circles on the obstacle map in Fig 5.1 

show the points used for this integration. These two integrations are compared to determine which 

turning direction has the most open space.  An arc containing no points can represent one of two cases.  

Either that section of room has not yet been viewed yet, or the nearest obstacle in that arc is beyond the 

maximum viewing distance of the Kinect.  Unless that section of the room is currently being viewed, 
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the safest option here is to assume that the first case is true and so that section may contain an obstacle;  

as a result, any arcs outside the current Kinect view with no points found is assigned an obstacle 

distance of zero and so does not affect the integration. Arcs that are currently in the Kinect's view, but 

contain no obstacle points, are set to the Kinect's maximum viewing distance of 3.5m.

5.3   Braking Algorithms

As the walker is maneuvered, the controller monitors it's velocity and trajectory.  When an 

obstacle is in front of the walker, a pair of electromagnetic particle brakes engage in the rear wheels.   

With low torque braking the user should ideally feel as if the walker is simply guiding them to where 

they already want to go, rather than taking over their movement entirely.  It is important that the user 

maintain a sense of autonomy in their movements so that they don’t get frustrated with the walker 

moving in unwanted ways.  This can be thought of as generating a haptic path for the user, causing 

motion in one direction to feel easier than motion in another.  Two braking algorithms are presented 

here; both of them are purely reactive, with decisions based on the current state of the system.  This 

approach was chosen because the human element makes it difficult to predict future states based on 

control.  These approaches make no assumption about the user's intended destination or the state of the 

system in the future.

5.3.1   Open Loop Braking Algorithm

The first algorithm is an open loop proportional gain control, with braking torque directly 

proportional to obstacle distance with no dynamic (inertial) or friction/damping consideration.  At 

50cm (dmin) the brake is given maximum torque.  This distance was chosen because it is the closest the 

walker can rotate around a single stationary wheel and still avoid collisions.  The point at which the 

torque is set to zero (dmax) is more arbitrary.  The effect of dmax is examined experimentally in chapter 

six.  Thus the voltage sent to one of the brakes, depending on the desired turning direction, is given as:

V=0 d>d max

V=12
d max−d

d max−d min

d min<d <d max

V =12 d<d min

(5.13)

where d is the distance to the nearest obstacle in front of the walker.
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5.3.2   Closed Loop Braking Algorithm

The second algorithm is a closed loop control taking advantage of the system characteristics 

previously derived.  As shown in equation (5.11), the force being applied to either handle can be 
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Figure 5.3: The open loop control algorithm for obstacle avoidance

Figure 5.2: An example of the map generated by multiple depth images.   The red 
dot and line represents the point between the back wheels and its path.  The green 
dot shows the position of the Kinect.  The yellow outline shows the section of room 
currently being viewing by the Kinect.  The magenta dots represent points used in 
the algorithm to perform the integration. 



estimated as long as the translation and rotational velocities, and braking forces are known.  Braking 

forces are directly controlled here and the velocities are measured using the wheel encoders,  the rest of 

the variables in equation (5.11) (damping constants and radii of the brakes and handles from the 

centerline) can be found experimentally (this will be detailed in chapter six). 

With the force on the handles estimated the feedback loop then uses equation (5.12):

F bR=
1
2(−v d∗D+(F hL+F hR)−

φ̇ d Dφ

rb

+(F hR−F hL)α)
F bL=

1
2(−v d∗D+( FhL+F hR)+

φ̇ d Dφ

rb

−(F hR−FhL)α)
(5.14)

to calculate the braking force needed to produce the desired translational and rotational velocities.  

With these equations it is possible to independently manipulate these velocities; however, for the 

purposes of avoiding obstacles, the equation for turning radius, which is a ratio of these two velocities, 

can be used.  Therefore, for any given turning radius, there is a choice of where to set the desired 

translational and rotational velocities.

Because of inherent friction in the system, and because brakes cannot produce a force in the 

same direction as the motion, there is a positive lower bound to the braking force.

If equation (5.9) is manipulated, it shows that for a given desired turning radius the expression 

for the sum of the braking forces is:

F bR+FbL=
R rb D

Dφ

(α(F hR−F hR)+(F bR−F bL))+F hL+FhR (5.15)
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Figure 5.4: The closed loop control algorithm for obstacle avoidance



It is apparent from this equation that in order to minimize the total braking force required to achieve the 

desired turning radius, the brake force on the side opposite the turning direction should be minimized.  

With a positive R, this means minimizing the right brake and with a negative R this means minimizing 

the left brake.  Therefore in order to find the braking forces needed to both minimize total braking and 

achieve the desired R, first the brake on the side opposite the desired turning direction is set to its 

minimum (i.e. no current flow).  Then equation (5.13) is rearranged to find the desired rotational 

velocity:

φ̇=−[2FbR min−(F hL+FhR)−α(F hR−F hL)]
1

Dφ/rb+RD
for positive R

φ̇=[2FbL min−(F hL+F hR)+α(FhR−F hL)]
1

Dφ/ rb−RD
for negative R

(5.16)

which are then substituted back into equation (5.13) to find the braking force required on the other 

wheel.  If the result is greater than the maximum force the brake can apply then it is set to maximum.

By substituting equation (5.16) into (5.14), a final equation is found for the braking force 

required in whichever wheel is on the side towards which a turn is to be made, as a weighted sum of the 

forces from the opposite wheels minimum friction and the forces on the two handles:

F bL=
RDrb−Dφ

RDr b+Dφ

FbR min+
Dφ−α RDr b

Dφ+RDr b

F hR+
Dφ+α RDrb

Dφ+RDr b

F hL for positive R

F bR=
RDr b+Dφ

RDrb−Dφ

F bLmin+
Dφ−α RDrb

Dφ−RDrb

F hR+
Dφ+α RDr b

Dφ−RDrb

F hL for negative R

(5.17)

This allows the minimum possible braking torque required to produce the necessary forces to 

prevent collisions with nearby obstacles to be determined at each step.
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Chapter 6

Experimental Testing

In this chapter a variety of experiments performed on the walker are described and their results 

discussed.  First the moment of inertia of the walker is measured.  Then the viscous and rotational 

damping coefficients are estimated.  The effect of varying the control algorithm's coefficients is 

examined.  Lastly the real world application of obstacle avoidance is tested on an obstacle course.

Early in testing it became apparent that slipping in the wheels was an issue.  When the brakes 

on the walker engaged the wheels could slip along the ground, causing the encoders in that wheel to 

under-report.  This is shown in Figure 6.1.
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Figure 6.1: Four times the walker is forced along the same path, here 
shown by the orange line, with one, both or neither brakes engaged at 
60% torque.



It is apparent that the path registered by the walker is curved in the direction of the braking 

wheel, despite the walker taking the same path in each trial.  It was found that this error could be 

reduced by making sure that the floor surface was free of dust and by cleaning the outside of the wheels 

with alcohol swabs.  Figure 6.2 shows the results of taking these measures.

Subsequently, care was taken to keep the wheels and floor clean during experiments.  In future 

iterations of this sort of intelligent walker this problem could be reduced by using wheels with softer 

rubber, or treads, and thus higher traction.

6.1   Mass Moment of Inertia

The mass moment of inertia was measured by hanging the walker by two cables to create a 

bifilar pendulum.  Two fifteen pound weights were attached to each handle in order to simulate the 

downward force of the user.  It was then given a small amount of angular displacement and allowed to 

rotate freely.  By measuring the oscillation period the inertial moment can be calculated using the 

following equation:

29

Figure 6.2: The same four trials as shown in Figure 6.4, performed 
after cleaning the floor and the outside of the wheel.



I =
mgT 2b2

4π
2 L

(6.1)

where m is the mass, g is local gravity, T is the period of oscillation, b is the distance between the two 

cables and L is the total length of the cables [21].  The total mass of the walker, including the weight of 

the user on the handlebars, was measured at 31.5kg.  The cables were 65cm long and spaced 44.5 cm 

apart.  

The walker was given a small amount of angular displacement and then allowed to rotate freely for 20 

seconds.  The number of full rotations was then counted.  This was done three times with the results 

given below.

Table 6.1: Moment of Inertia Measurements

Trial Measured Period Calculated Mass Moment of Inertia

1 1.8s 7.88 kg m2

2 2.0s 9.54 kg m2

3 1.9s 8.65 kg m2

This gives an average mass moment of inertia of 8.69 kg m2.

6.2 Measuring the Viscous Damping Coefficients

To realize the control schemes described in chapter five, it is necessary to know the viscous damping 

coefficients for translational motion (D) and rotational motion (Dφ).  In order to measure these, 

momentum was imparted on the walker and it was allowed to come to a complete stop with no current 

delivered to the brakes, while measuring the translational and rotational velocities using the onboard 

encoders.  This was done six times with a simple forward push, in order to measure the translational 

coefficient and six times with a spin imparted, in order to measure the rotational coefficients.

By solving equations (5.2) and (5.3) it can be shown that without force applied to the handles, 

the resulting motion should have a decaying exponential part and a constant part.

φ̇=(F bLmin−F bRmin)
r b

Dφ

(1−e
−Dφ

I
t

)+φ̇0 e
−Dφ

I
t

v=
−(F bLmin+F bRmin)

D
(1−e

−D
m

t
)+v0e

−D
m

t (6.2)
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Figure 6.4:Recorded rotational velocities over six trials with spin 
imparted to the walker

Figure 6.3:Recorded translational velocities over six trials with 
forward momentum and no spin imparted to walker



These equations were then fit to each of the trials in order to estimate D and Dφ.  The rotational velocity 

trials (shown in figure 6.4) yielded the values shown in the table below:

Table 6.2: Rotational Viscous Damping Measurements

Trial Dφ (Nms/rad) 95% Confidence Interval

1 10.91 [9.85, 11.96]

2 11.78 [10.58,12.99]

3 9.56 [7.88, 11.27]

4 11.15 [9.58, 12.72]

5 12.07 [10.57, 13.57]

6 10.15 [8.75, 11.55]

Mean 10.94 Std Dev: 0.95

The translational trials yielded anomalous results.  As shown in Figure 6.3, they appear to decay 

linearly rather than exponentially.  This resulted in the fits failing to converge for all of these trials.  

This may be explained if the series expansion of equation (6.2) is examined.  Expanded around t=0 the 

series expansion is:

v=v0−
D
m

t (
( FbLmin+F bRmin)

D
+v0)+

1
2

D2

m2 t 2
(
( FbLmin+F bRmin)

D
+v0)+Higher Order Terms (6.3)

From this expansion it can be seen that for a small D/m term, the resulting equation would look 

approximately linear at small t.  This may explain the difficulty in fitting to the curve.

Another way to determine viscous damping coefficients was to apply a consistent known force 

to the walker and record the resulting motion. A person pushing the walker would not fit these 

requirements as he/she would not be able to apply a consistent  force, so a mechanical device was 

required.  This device would need to apply a consistent force in the direction the walker faces, without 

adding any additional non-holonomic constraints to the system.  For example, a large 4-wheeled robot 

would add additional resistance to turning that is not compensated for in the system equations.  The 

chosen solution was to attach a single driving wheel between the two back wheels of the walker to 

simulate equal force being applied to each of the handles, while not restricting the walker's ability to 

turn.  This wheel was attached to a 12V motor, mounted on a crossbar attached to the walker's back 

wheel tubing.  It was powered from the onboard 12V battery through a MD10C enhanced 10A DC 
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motor driver, which received a 0-5V signal from the Arduino in order to control the voltage applied to 

the motor [22].

In order to best estimate the viscous damping coefficients the other variables inherent in the 

equations of motion derived in chapter five need to be accurately controlled or measured.  The braking 

torque on each wheel is controlled electronically as described in Chapter 3.  Forward force applied to 

the handles is controlled by measuring the current applied by the driving wheel's motor.  

The braking torque was varied from 0 to 3.95 Newton-meters (Nm) in increments of 0.66 Nm.  

The voltages delivered to the motor were 7.1, 9.5 and 12 volts.  For each combination of motor voltage 

and braking torque, the walker's path, and translational and rotational velocities were measured.  The 

walker was allowed to move freely for at least twenty seconds in order to come to an equilibrium 

between braking forces (both viscous and coloumb) and applied force.  This produced a circular path as 

anticipated based on equation (5.9).

The current applied to the motor was converted into motor torque based on the specifications of 

the motor used, which was then converted into the handle forces by multiplying torque by the driving 

wheel radius (0.105m) and assuming an even split between the two handles.  With all relevant forces 

known and the encoder measurements of the translational and rotational velocities, equation (5.6) was 

then used to estimate the damping coefficients.  These estimates had a very wide range.  The rotational 

damping coefficient (Dφ) was estimated at 8.54±4.24 Nms/rad, while the translational damping 

coefficient (D) was estimated at 19.28±10.30 Ns/m.  It should be noted that the result found here for the 

rotational damping coefficient is consistent with the results found in fitting.  All six curve fitting trials 

found a rotational damping coefficient which falls within the uncertainty found in the motorized wheel-

driven experiment.

6.3   Parameter Testing

With uncertainty in the value of D and Dφ it was determined that it would be useful to examine the 

effect that these parameters have on the motion of the walker.  Additionally, the effect that dmax (the 

maximum distance at which the brakes will engage) has in both the open loop and closed loop control 

schemes was also of interest.  In order to do this, the walker was pushed manually into a 90° corner of a 

room with the control algorithm active.  This algorithm then steered the user around the corner (or 

failed to, in some cases).  The walker's path, as measured by the wheel encoders, was saved for future 

examination.  The velocity in these tests was kept to within 0.9-1.2 m/s for consistency.

The user's downward force on the walker changes its dynamics, as seen in chapter five.  
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Unfortunately, this walker did not have the instruments necessary to measure this force.    In order to 

keep this force consistent during and between trials, 15lb weights were hung from each of the 

handlebar. The walker was then pushed forward using a force approximately parallel to the ground, so 

that the experimenter's weight did not add to the walker's total weight. 

6.3.1   Translational Damping Coefficient (D):

Based on the results obtained from the motor-driven testing previously discussed, a range of four 

values of D between 9 Ns/m and 30 Ns/m were used for testing.  For each value the test was run six 

times.  Over all trials Dφ was held at 9.75 Nms/rad and dmax was held at 1250 mm.

Figure 6.5 shows that the value used for D has only a small effect on the average path taken by the 

walker.  The effect seems to be that higher values of D to produce tighter turns, while lower values 

produce wider turns.  If equation (5.9) is examined, it can be seen that this is consistent with what the 
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Figure 6.5: Corner trials for testing the effect of different values of D.  
This graph shows the position of the midpoint between the walker's back 
wheels. Individual trials are shown as dotted lines, while solid lines 
represent the average path for each value of D.  The cyan lines represent 
the wall.



system characterization predicts.  The walker's radius of curvature is inversely proportional to the value 

of D, implying that a higher D should produce a tighter turn.

6.3.2   Rotational Damping Coefficient (Dφ):

Based on the results obtained from the motor-driven testing previously discussed, a range of four 

values of Dφ between 4.25 Nms/rad and 12.5 Nms/rad were used for testing.  For each value the test 

was run six times.  Over all trials D was held at 16 Ns/m and dmax was held at 1750 mm.

Again, figure 6.6 shows only a minor effect of large changes in the value of  Dφ. The effect 
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Figure 6.6: Corner trials for testing the effect of different values of Dφ.  
This graph shows the position of the midpoint between the walker's back 
wheels. Individual trials are shown as dotted lines, while solid lines 
represent the average path for each value of Dφ.  The cyan lines represent 
the wall.



observed is that higher values of Dφ produce wider turns, while lower values produce tighter turns.  

This is the inverse of what was observed for D and again, is consistent with what would be expected 

based on equation (5.9).  Radius of curvature is directly proportional to Dφ, so a higher value of Dφ 

should produce a wider turn.

6.3.3   Maximum Distance (dmax) for the Closed Loop Algorithm:

The maximum distance to engage the braking algorithm was varied between 750mm and 2250mm.  For 

each value the test was run six times.  Over all trials Dφ was held at 9.75 Nms/rad and D was held at 16 

Ns/m.

In figure 6.7 it is apparent that changing dmax has a significant effect on the resulting path.  A 

higher dmax results in the walker turning sooner and farther from the far wall.  It appears that this 
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Figure 6.7: Corner trials for testing the effect of different values of dmax in 
the closed loop algorithm.  This graph shows the position of the midpoint 
between the walker's back wheels. Individual trials are shown as dotted lines, 
while solid lines represent the average path for each value of dmax.  The cyan 
lines represent the wall.  Dashed lines represent the point where the 
algorithm begins braking.



algorithm produces a similar path once engaged, regardless of obstacle distance.  It is difficult to say 

with certainty why this is the case, but it is possible that this may indicate a problem with the 

simplification of using the equilibrium expression (equation (5.7)) in designing a feedback control 

system.  This expression is only true when all forces (viscous friction, coloumb friction and applied 

force) are balanced; however this only occurs when the walker has accelerated or decelerated to 

produce the necessary viscous friction.  The control algorithm implemented here assumes that equation 

(5.7) is true at every timestep, despite altering the braking force at every step.  It may be that when the 

brakes are first applied the roughly tenth of a second between each timestep is not enough to reach this 

equilibrium again.  This would cause higher velocities than predicted by equation (5.7) for the forces 

present.  As a result, the handle force prediction would be artificially high, causing the control 

algorithm to apply more force to the brakes and thus a tighter turn would be achieved than if the 

simplification were more accurate.

Regardless of this, a dmax can be chosen which produces the desired behaviour.  750mm resulted 

in some collisions with the wall (as shown by the broken blue dotted lines in Figure 6.5), but 1250mm 

did not produce these collisions and resulted in a curve fairly close to the wall.

6.3.4   Maximum Distance (dmax) for the Open Loop Algorithm:
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Figure 6.8: Corner trials for testing the effect of different values of dmax with the open loop braking 
algorithm.  This graph shows the position of the midpoint between the walker's back wheels. Individual 
trials are shown as dotted lines, while solid lines represent the average path for each value of dmax.  The 
cyan lines represent the wall.  Dashed lines represent the point where the algorithm begins braking.



The maximum distance to engage the braking algorithm was again varied between 750mm and 

2250mm, this time using the open loop guidance algorithm.  For each value the test was run six times.

Figure 6.8 shows a much more subdued effect of varying dmax.  Engaging the brakes farther from 

the wall cause the walker to turn sooner, but only by a very small amount, even between the highest 

and lowest dmax.  This is as expected because, as equation (5.13) shows, with a larger dmax the brakes 

engage farther from the wall, but increase the torque more gradually as the walker approaches it, 

eventually leading up to the same point where the torque is at its maximum.  This results in a roughly 

similar path, regardless of the value of dmax. 

6.4   Obstacle Course Testing

In order to evaluate the walker's real world usefulness in collision avoidance an obstacle course (Fig 

6.10) was constructed in a room roughly 10.5 m by 7 m.  The course was constructed primarily of four-

legged tables, desks, and office chairs.  The course was designed to challenge the user, containing a 

high number of turns.  However, obstacles were spaced so that movement between them was always 

possible unimpeded, with a path at least 90 cm wide, the width of a typical doorway.  

Users were asked to begin at the door of the room and follow the course around the outside of 

the room.  The course then spiraled in towards the center at which point the users were asked to turn 

around and make their way back to the beginning of the course. 

During each trial the users wore a pair of plastic safety goggles, which had been altered with 

opaque tape, to restrict visual range and depth perception, and layers of clear tape, to blur the non-

opaque areas (shown in Fig 6.9).  These vision impairment goggles are not an accurate simulation of 

the kinds of vision impairment discussed in chapter one; however they did serve the purpose of 

artificially increasing the likelihood of collisions, which allowed accurate testing of the walker's 

effectiveness.  
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During these tests, users were carefully monitored for collisions with the environment.  

Collisions were defined as an event in which contact with the environment significantly altered or 

impeded the movement of the user.  By this definition, minor scrapes against obstacles were not 

counted as collisions.  Collisions were divided into three categories:  collisions with the front of the 

walker; collisions with the side of the walker; and collisions in which an obstacle caught on the back 

wheel of the walker.

Three users were each asked to do ten trials, switching between navigating the course entirely 

manually, with no obstacle 

avoidance, navigating with 

the open loop control algorithm active, and navigating with the closed loop control algorithm active.  

This resulted in a total of ten trials each for manual navigation and the two algorithms.  Before each 

trial the wheels were cleaned with alcohol swabs in order to improve traction and reduce encoder error.

In closed loop trials the parameters were set to D = 16 Ns/m, Dφ =7 Nms/rad and dmax = 1.25m.  

These parameters were chosen based on the corner turning experiments to turn the walker soon enough 

to avoid an obstacle in front of it, while not turning sooner or more widely than necessary, which would 

increase the number of collisions with obstacles to the walker's side.

In open loop trials the parameters were set to dmin = 0.50m and dmax = 1.25m.  Again, these were 

chosen based on the corner turning experiments to turn the walker before obstacle collisions occurred 

and sharply enough to reduce the likelihood of the walker colliding with an obstacle to its side.

As with the cornering experiment, 15lb weights were hung from each of the handlebars and the 

user was asked to push the walker forward without putting downward force on it, in order to keep the 
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Figure 6.10: The obstacle course used for testing.  Users were asked to start at the door of 
the room (approximately where this photo was taken), and navigate around the outside of 
the room, eventually spiraling into the center, where they were asked to turn around and 
then navigate back to the starting point.

Figure 6.9: View from inside the vision impairment goggles.



weight and dynamics of the walker consistent during and between all trials.  In practice, it is impossible 

to assure that this was the case, and this may have had a minor effect on the results of the experiment.  

In future iterations of this walker force sensors in the handles to measure actual vertical forces applied 

will solve this issue.  

The results of the obstacle course experiment are shown in the following table:

Table 6.3: Obstacle Course Experiment Results

Manual Trials

User Front Collisions Side Collisions Wheel Collisions

1 1 0 1

1 0 0 1

1 1 0 2

2 0 0 2

2 0 0 1

2 1 0 3

3 0 0 2

3 0 0 4

3 1 0 2

3 1 0 2

Total 5 0 20

Algorithm #1 (Open Loop Control) Trials

User Front Collisions Side Collisions Wheel Collisions

1 0 0 0

1 0 0 1

1 0 0 0

2 0 0 1

2 0 0 1

2 0 0 0

2 0 0 0

3 0 0 4

3 0 1 2

3 0 0 4

Total 0 1 13

Algorithm #2 (Closed Loop Control) Trials
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User Front Collisions Side Collisions Wheel Collisions

1 0 1 3

1 0 0 1

1 0 1 2

1 0 0 1

2 0 0 2

2 0 0 1

2 0 1 2

3 0 1 2

3 0 1 3

3 0 0 5

Total 0 5 22

The results of the experiment show that the open loop control algorithm produced a decrease of 

44% in overall collisions, while the closed loop algorithm produced an 8% increase.   

When examined individually the different types of collisions illustrate the advantages and 

current issues of these algorithms.  Front collisions occurred five times during the manual control trials, 

but not at all during trials with braking algorithms.  This result was expected, as the front-facing depth 

camera makes this the easiest type of collision for the walker to avoid.  Obstacles to the front are likely 

to have been mapped unless the walker performed a sharp turn that put obstacles closer than its 

minimum camera range.  This did not seem to occur during the obstacle course trials.

The inverse case seems to be true for collisions with the side of the walker.  These are the result 

of a turn occurring with an obstacle directly beside the walker, close enough that the turn cannot be 

completed.  Side collisions occurred once in the open loop trials and five times in the closed loop trials. 

They appear to be a result of the walker's algorithms over-steering the walker (i.e. failing to disengage 

the brakes after a successful turn has been made and there are no more obstacles in front of it.)  A 

possible explanation lies in the slipping problem described earlier.  In testing the walker, it was 

observed that when the brake engages on one side to steer the walker away from an obstacle, slipping 

in that wheel can sometimes produce an effect where part of the obstacle being avoided appears to be 

dragged in front of the walker as it turns.  This causes the algorithm to think that it has not yet turned 

enough to avoid the obstacle, which causes it to over-steer.  In tight conditions, like those produced by 

the obstacle course, this can cause the walker to turn into other obstacles, causing side collision.  This 

seems to be more common in the closed loop algorithm than in the open loop one.  
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Lastly, wheel collisions were by far the most prevalent collision, accounting for 83% of the collisions.  

This is likely a result of the rear wheels protruding 6.5cm from the walker's frame, due to the 

placement of the particle brakes.  Were the walker redesigned to have the rear wheels directly below 

their support struts, as was the case with its original design before modifications, these collisions could 

be expected to drastically decrease in frequency across all trials.  Many of these collisions seem to 

again be a product of the walker over-steering the user, not enough to cause a collision with the side, 

but enough to place obstacles in a position very close to the side where they cannot be seen by the 

depth camera, but are in the direct path of the rear wheel.  As previously mentioned, this obstacle 

dragging behaviour is more prevalent in the closed loop algorithm tests, which could explain why rear 

wheel collisions were more common in the closed loop than the open loop trials (twenty-two collisions 

compared to thirteen).  The closed loop algorithm seems to produce roughly the same number of rear 

wheel collisions as manual control (in this case a 9% increase was observed in the closed loop 

algorithm, which is not enough to draw a conclusion), however the open loop algorithm produced 35% 

fewer.
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Figure 6.11: An example of encoder error causing an obstacle to appear to be dragged out 
in front of the walker on the obstacle map.  In this example the walker has just made a turn 
in the corner of a room and is facing parallel to a wall.



Chapter 7

Conclusion and Future Work

In this thesis a novel intelligent walker was designed and constructed, and two control 

algorithms were designed for the purpose of examining whether intelligent braking in an assisted 

walking device can help individuals who have trouble navigating their environment.  The results of this 

effort show a clear promise to this application.

Parameter tests were performed by pushing the walker into a corner while varying the damping 

coefficients and maximum distances used by the obstacle avoidance algorithms.  The damping 

coefficient tests showed that the closed loop algorithm is not significantly affected by varying these 

coefficients.  The effect that was observed was consistent with the theoretical model proposed in 

Chapter 5.  The closed loop maximum distance test showed a significant effect of varying the 

maximum distance for braking.  This was not anticipated by the theoretical model, however may be the 

result of a simplification made in the model's derivation.  This parameter should be set to produce 

desired turning behaviour.  The open loop maximum distance test did not show a significant effect of 

varying the maximum distance parameter.  This result was consistent with the open loop algorithm's 

proportional gain equation.

In obstacle course testing, the open loop control algorithm shows a 44% reduction in the 

occurrence of significant collisions.  This is a considerable decrease.  While the results of an obstacle 

course run by users with artificially simulated vision impairment cannot be directly applied to real 

world use by users with genuine disabilities, even a much smaller decrease in collisions with obstacles 

could feasibly prevent hundreds of falls per year [11], and, by helping alleviate anxiety about moving 

around one's own home, significantly improve the quality of life of their users. The closed loop 

algorithm did not show the same kind of improvement over unguided walker use.  

Closed loop control yielded a slight (8%) increase in significant collisions.  This is a null result, 

43



but the placement of these collisions does yield valuable information about how the algorithms 

performance might be improved in future work. Collisions to the front of the walker were present in the 

manual control trials, but absent in the open and closed loop guidance trials.  Inversely, collisions to the 

side of the walker were present in the open and closed loop guidance trials, but absent in the manual 

control trials.  Collisions in which the rear wheel caught on an obstacle were prevalent in all three.  

This implies that the walker's guidance might perform better if its ability to avoid side collisions was 

improved and if collisions with the rear wheels were also reduced among all cases.  

Unfortunately there does not currently exist a good benchmark to compare these results to.  The 

RT-Walker build by Hirata, Hara and Kosuge [14] represents the closest comparable device to the one 

described here, but their testing was very brief and not controlled and so, cannot be compared to the 

test results obtained in this thesis.  Speculatively, the walker presented here should perform as well as 

the RT-Walker in the tests involving turning to avoid colliding with walls, however it is not currently 

equipped to deal with transitioning onto and off of a slope and so would have trouble with this part of 

the RT-Walker's testing.  If the RT-Walker were to be tested on the obstacle course described in this 

thesis it would likely have trouble detecting the tables used to make the course, as its laser rangefinder 

would only see the table legs.

The walker described in this thesis has several limitations which could be addressed in future 

iterations of the device.  A reduction of wheel collisions should be simple to achieve; the frame of the 

walker would need to be redesigned in order to position the walker's struts directly above its rear 

wheels, while still accommodating the particle brakes.  This would eliminate the 6.5cm protrusion that 

the wheels currently produce and likely prevent most such collisions from being a problem in the 

future.

The goal of reducing collisions with the side of the walker could also be achieved by altering 

the construction of the walker.  The current system has only a forward-facing depth camera and relies 

on having recently viewed obstacles to the walker's sides.  A more sophisticated system could employ 

other methods for detecting such obstacles, including two more depth sensing devices on either side 

(these would require a much smaller minimum depth-ranging distance than the depth camera currently 

being used in order to see obstacles nearby obstacles as they moves past) or small tactile devices 

sticking out from either side which would contact obstacles first and alert the walker to their presence.  

Additionally, exchanging the rear wheels for those with better traction (e.g. a softer rubber with better 

grip) would reduce error in the encoders and reduce the chances of the algorithms dragging obstacles 

across their maps as they turned.  This in turn would reduce the likelihood of the walker steering more 

than necessary to avoid an obstacle and hitting others to its sides.  Side collisions aside, this would have 
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the overall benefit of improving the accuracy of the walkers localization and thus improving the 

accuracy of the obstacle map.

The walker's localization might also be improved with methods of SLAM other than the 

currently implemented 'dead reckoning' system, including the use of the onboard camera for feedback 

filtering.  Particle filtering and a hybrid particle and extended Kalman filter called FastSLAM were 

examined, but implementing them was not fully successful.  Because of this they did not fit well within 

the structure of this thesis and are instead discussed in Appendix A.

With some or all of these improvements this assisted walking system will be ready to be tested 

experimentally among the individuals for whom it was designed, those with visual and cognitive 

disorders which produce difficulties in navigation.  This would be accomplished first with tightly 

controlled trials in a planned course, similar to the obstacle course experiment presented here.  This 

would then lead to a longer term study in which users with these same disabilities used an intelligent 

walker in their own home for a designated time period.  They would then report back their level of 

satisfaction with the device and whether or not they experienced any falls during that time period.  This 

would be compared to a control group of users of traditional walkers.

This crucial data would allow further improvements to the walkers design and hopefully would 

lead to a sophisticated assisted walking system which is ready to improve the mobility of everyday 

users.  This thesis is the preliminary step towards this goal.  The results presented here show a clear 

indication that the approach of passive braking-based obstacle avoidance merits further exploration.  

With additional research such an approach may prevent falls and improve the quality of life of 

thousands of people living with visual and cognitive disorders.
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Appendix A

Alternate Localization Methods

A central problem in robots which map environments is keeping track of their own location within the 

environment as they sense it.  Two successive measurements are only useful if one knows how to 

overlay them, and this requires one to know how much they moved between the measurements.   The 

first attempt at solving this problem was  by way of an algorithm called a “particle filter”.   A particle 

filter is a probabilistic method by which sequential monte carlo trials (random trials) are used to 

generate a particle cloud (set of discrete points) which is used to estimate the probability density of the 

unknown variable (in this case the position of the walker).  At each successive timestep a new set of 

particles is generated from the previous set and a given command variable.  These particles are then 

given weights based on some measurement and resampled.  The basic particle filter algorithm for a set 

Xt-1 of M particles, in psuedocode is:

Algorithm Particle Filter ( Xt-1, ut, zt )

1: X't = Xt = 0

2: for m=1 to M

3: sample xt
m from p(xt

m | ut, xt-1
m )

4: wt
m = p( zt | xt

m )

5: X't  = X't  + <  xt
m , wt

m >

6 endfor

7: for m=1 to M do

8: draw i with probability proportional to  wt
i

9: add  xt
m to Xt
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10: endfor

11: return Xt

This algorithm [23] first constructs two empty sets of particles, X't and Xt, the first of which is a 

temporary set while the second will become to output of the algorithm.  New points are generated 

based on the points in set Xt-1 and on the action parameter ut .  These new particles are then assigned an 

“importance factor”, or weight, based on the new measurement zt and added to X't . Finally, these new 

particles go through “importance sampling” in which they are redrawn from the set X't based on their 

weight.  The resultant sampling becomes Xt . The set of new particles now represents the probability 

density of the property x.

Implementation of the Particle Filter

The above algorithm was implemented in MATLAB with Xt representing a set of 2-D positions within 

the environment.  At each timestep the set Xt-1 is updated based on the approximate distance and 

direction the Kinect had moved between timesteps.  This is the action parameter ut . In order to 

accomplish this points are picked from a normal distribution centered around the point xt-1 + ut . The 

action parameter was meant to come from the wheel encoders, but at this point the encoders had not 

been added to the walker so measurements were taken by hand for testing.

In order to assign weights, a bivariate histogram of 2-D point cloud generated by the Kinect is 

made.  For each particle this histogram is then translated based on the position and heading specified by 

the particle and compared to a similar histogram taken in the previous step.  A weight is then assigned 

based on how close the two histograms are to each other.  The weight chosen is the inverse of the total 

difference between the two histograms.

There were many issues with this implementation.  The choice to simply give weights based on the 

inverse of the total difference between the two histograms should be proportional to p( zt | xt
m ), but 

doesn't necessarily represent it.  Therefore the final set of particles doesn't necessarily represent the 

probability density of the walker's position.  More importantly, this process of assigning weights was 

very computationally intensive.  Upon implementation each timestep was found to take on the order of 

10 seconds to complete even with fairly low M.  After some consideration the simple particle filter was 

abandoned in favour of a more advanced algorithm called FastSLAM.

FastSLAM

FastSLAM is a powerful simultaneous localization and mapping algorithm, developed by researchers at 
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Carnegie Mellon University and Stanford University, which makes use of both the extended Kalman 

filter and particle filter techniques [24].   It operates recursively on a series of measurements containing 

noise and other inaccuracies, in order to maintain an accurate estimate of the walker's location within 

it's environment.  

The goal of FastSLAM is to approximate the following posterior distribution:

p (Θ , st ∣z t , ut , nt )

Where Θ = θ1 … θN represent the position of a series of landmarks in the environment, st=s1 … st 

represents the path of the vehicle (st representing the pose of the vehicle at timestep t), zt = z1 … zt  is a 

series of measurements of the range and bearing to nearby landmarks (only one landmark is observed 

per timestep t), ut = u1 … ut  is a sequence of robot command controls and nt = n1 … nt  are “data 

association variables” with nt denoting which obstacle was observed at timestep t (nt=k means that at 

timestep t, θk was observed).  Thus the distribution gives the probability of a particular set of landmark 

locations and a specific vehicle path, given all prior observations on those landmarks and all prior 

robotic commands.  In order to calculate this the algorithm requires the probability distribution p(st | ut 

st-1) which describes how a control ut  affects the pose of the platform, and the distribution p(zt |st , Θ, nt)  

which describes how likely a measurement is, given the state (the position of the vehicle st the position 

of the particles  Θ and the identity of the last observed landmark).

FastSLAM makes the important observation that the landmarks pose are independent given the 

vehicles pose, which means the above distribution can be factored:

p (Θ , st ∣z t , ut , n t )= p(st ∣zt , u t , nt)∏
k

p(θk ∣zt , u t , nt , st )

FastSLAM then represents the distribution over trajectories, p(st
 | zt ,ut ,nt ), as a particle filter with M 

particles, and within each particle the distribution over landmarks, p( θk | zt ,ut ,nt
, st

  ), is represented by 

N extended Kalman filters (EKF).  So at timestep t the m'th particle can be represented as:

S t
[m ]

=st ,[m] ,μ1, t
[m] ,Σ1,t

[m ] ,... ,μN ,t
[m ] ,ΣN ,t

[m ]

Where μ[m]
n,t and Σ[m]

n,t are the mean and covariance respectively of the n'th EKF in the m'th particle at 

time t.

In a extended Kalman filter with N landmarks, each with two Cartesian coordinates, and a robot 

pose with two Cartesian coordinates and a heading, the mean would require 2N+3 parameters while the 

covariance matrix would need (2N+3)2 parameters.  FastSLAM's observation that the landmarks are 

independent allows for the covariance matrix to be replaced by N 2x2 covariance matrices, making the 

total number of parameters N(2+2x2)+3.  A Kalman filter therefore requires O(N2) memory and O(N2) 

time to update while FastSLAM requires O(MN) memory and can be updated in O(MlogN) time.  This 
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is a marked improvement when dealing with large numbers of landmarks.

Each update of the FastSLAM begins with a sampling of new poses based on the most recent 

motion command and observation.

st
[m]

∼p(s t ∣s
t−1,[m ] , ut , zt , n t

)

To obtain this distribution we find the predicted pose and landmark location:

ŝt
[m ]

=(x , y ,φ)=st−1
[m ]

+u t

θ̂nt

[m]
=(u , v )=μn ,t−1

[m]

which are then used to find the predicted measurement and its Jacobians:

ẑ t
[m ]

= g (θ̂nt

[m ] , ŝt
[m]

)=[ √(u−x)2
+(v− y )

2

atan2 (v−y.u−x)−φ]

Gθ=[ (u−x )/r (v− y)/r
−(v− y)/r 2

(u−x )/r2]
G s=[ ( x−u)/r

−( y−v )/r2

( y−v)/ r
(x−u )/r2

0
−1]

Under the EKF approximation the above distribution is Gaussian with mean and variance:

Σst

[m ]
=[G s

T Qt
[m ]−1G s+Pt

−1 ]
−1

μst

[m]
=Σst

[m ]G s
T Qt

[m ]−1
(z t− ẑ t

[m ]
)+ ŝt

[m ]

where:

Qt
[m ]

=Rt+GθΣnt , t−1
[m ] Gθ

t

and Rt and Pt are the error covariances of the measurement and action respectively.

After new poses are sampled, the EKF corresponding to the observed landmark is updated using 

the standard Kalman gain:

K t
[m]

=Σt−1
[m ] Gθ

T Qt
[m] −1

μnt , t
[m]

=μnt , t−1
[m]

+K t
[m]

(zt− ẑt
[m ]

)

Σnt ,t
[m ]

=(I −K t
[m ]Gθ)Σnt ,t−1

[m ]

Lastly the particles must be resampled so that they match the desired posterior.  In order to do 

this we assign each particle an importance factor:

w t
[m ]

∝ p(z t ∣s
t−1,[m ] , ut , zt−1 , n t

)

This can be approximated as a Gaussian function
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w t
[m ]

= f ( z t)=N ( ẑ t
[m] , G s P t Gt

T
+G θΣnt ,t−1

[m] Gθ
T
+Rt)

The particles are then resampled with weights assigned based on this importance factor..

Implementation of FastSLAM

The FastSLAM algorithm was implemented in the MATLAB computing environment.  

Landmark measurement was accomplished by placing visual markers around the environment.  These 

markers, called AprilTags, are simple images on paper, akin to a low resolution QR code.  The Kinect's 

RGB camera images these markers and a simple algorithm can then estimate their distance [25].  

AprilTags and their detection algorithm were developed by Professor Ed Olson of the APRIL Robotics 

Laboratory at the University of Michigan, in the Java programming language.  It was later ported to C+

+ by Jeffrey Boyland and David Touretzky of  Carnegie Mellon University.   AprilTags are typically 6.5 

inches per side with a coded sequence of white blocks which provides the algorithm with a tag id.  If 

the camera is calibrated and the exact size of the tag known, the relative transform between the tag and 

the camera can be calculated.  This allows for physical landmarks which can be easily and quickly 

associated between timesteps.  The measured distances are then used as landmarks by FastSLAM to 

keep track of where the walker is and prevents error in the encoders from accumulating.  The AprilTags 

are simply placed close to the ground on walls, cupboards etc. every couple of meters around the 

environment. 

At each step an the measurement zt is [r, Φ] where r is the radial distance to the first apriltag 

viewed and Φ is its azimuthal angle.  The action command ut is [dx,dy,dφ] as read by the wheel 

encoders.  The error on these is estimated at 5%.

April Tag detection was achieved through modifying a C++ port of the original Java code detection 

program.  The C++ file was rewritten as a “MEX build script” which allows MATLAB to compile it 

(along with all necessary libraries and header files) as a binary MEX-file, callable from MATLAB.  In 

this way a C++ function can be called from MATLAB and therefore can make use of C++ programs 
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outside of MATLAB such as Open Source Computer Vision (OpenCV).  Because of this the complex 

AprilTag detection algorithm did not need to be rewritten entirely in MATLAB code.

This localization was found to converge well when implemented with m=100 particles.  

However a setback was experienced while trying to combine this with depth mapping.  The AprilTag 

program was written to use linux libraries, however the Kinect, being a Microsoft product, was 

developed for Windows and while the onboard rgb camera was recognized by the linux distro Ubuntu, 

the depth camera was found, after much frustration, to be not compatible.  Therefore the options left 

were to completely rewrite the AprilTag algorithm in MATLAB, or to leave FastSLAM out of the final 

implemented walker.  Eventually due to time constraints it was decided to leave out FastSLAM in favor 

of a simpler, but more error prone, dead reckoning system, using only the wheel encoders.  It would be 

a viable method of accurately tracking walker position while mapping the environment, if these 

technical issues could be solved.
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Appendix B

Code

This appendix contains the code used by the novel walker for mapping, localization and obstacle 

avoidance.  The following table describes the function of each of the scripts.

Script Name Function

ObstacleAvoidanceSetup.m Initial setup, connects MATLAB to the Microsoft Kinect and Arduino.  
Sets Arduino pins to receive data from encoders.

ObstacleAvoidanceOpen.m Main code body for open loop obstacle detection and avoidance

ObstacleAvoidanceClosed.m Main code body for closed loop obstacle detection and avoidance

KinectMapSimple.m Function called by both open and closed loop main code in order to 
take a depth snapshot from the Kinect and turn it into an obstacle map

AprilFastSlam.m Main code for FastSLAM using April Tags as described in Appendix A

FastSlamKalman.m Called by FastSLAM code every time a Kalman Filter must be 
evaluated

RouletteSelection.m Weighted random selection of members of input set

ObstacleAvoidanceSetup.m

clear

%connect to Arduino
a = arduino('COM4')
 
%Kinect Setup
colorVid = videoinput('kinect',1,'RGB_640x480'); %RGB camera
depthDevice = imaq.VideoDevice('kinect',2); %Depth Camera
start(colorVid);
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step(depthDevice);
getsnapshot(colorVid);
 
%attach encoders
encoderAttach2(a,0,2,4)
encoderAttach2(a,1,3,5)
encoderReset(a,0)
encoderReset(a,1)

ObstacleAvoidanceOpen.m

%% Reset Encoders and Brakes

 
encoderReset(a,0)
encoderReset(a,1)
analogWrite(a,9,0)
analogWrite(a,10,0)
 
%% Constants
 
maxdist = 1000;%farthest distance to engage brake
mindist = 500;%distance for full brake
count = 2000; %number of timesteps to use
WalkerWidth = 690; %Total Width of Walker in mm
WalkerDepth = 740;  %Depth of Walker in mm
trackWidth = 640; %Distance between contact points of back wheels
wheelDiameter = 203; %Diameter of back wheels
countsPerRevolution = 256; %Number of encoder counts per full wheel/encoder 
revolution
distancePerCount = pi * wheelDiameter / countsPerRevolution; %Wheel travel distance 
in mm per encoder count
countsPerRotation = (trackWidth / wheelDiameter) * countsPerRevolution;%counts 
required to rotate walker
radiansPerCount = pi * (wheelDiameter/trackWidth) / countsPerRevolution;%radians 
rotated per encoder count
 
%% Preallocation
z = zeros(1,count); %z coordinate of point between walker's back wheels
x = zeros(1,count); %x coordinate of point between walker's back wheels
v = zeros(1,count); %forward velocity of walker
distance = zeros(1,count);
 
%stores previous timesteps encoder count to calculate coordinate deltas
leftCountsOld = 0;
rightCountsOld = 0;
 
%BinCenters contains coordinates of points for obstacle mapping 
BinCenters = cell(1,2);
BinCenters{1} = -5000:50:5000;
BinCenters{2} = -5000:50:5000;
%Point grid for obstacle mapping
[Xgrid, Zgrid] = meshgrid(BinCenters{1}, BinCenters{2});
%Grid containing obstacle map
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OccMap = zeros(length(BinCenters{1}),length(BinCenters{2}));
 
%nview and nview old contains a grid storing the number of times each point
%in the grid has been viewed
nview = zeros(201,201);
nviewold = zeros(201,201);
 
%Used to seperate the space in front of the walker into zones and find the
%distance to obstacles in each of those zones
nzones = 32;
zones = cell([nzones,1]);
zoner = zeros(1,nzones);
dist = zeros(1,nzones); %distance to nearest obstacle in each zone
 
%For graphing purposes to show obstacle distances
zmid = zeros(1,nzones);
xmid = zeros(1,nzones);
 
%Store time at each step.  Time is determined by the system clock
%not a prechosen timestep size.
t = zeros(1,count);
 
tic %start system clock
 
%% Mapping and Obstacle Avoidance Loop
for n=2:count
    %Reset every 100 frames
    if rem(n,20)==0
        %BinCenters contains coordinates of points for obstacle mapping 
        BinCenters = cell(1,2);
        BinCenters{1} = -5000+x(n-1):50:5000+x(n-1);
        BinCenters{2} = -5000+z(n-1):50:5000+z(n-1);
        %Point grid for obstacle mapping
        [Xgrid, Zgrid] = meshgrid(BinCenters{1}, BinCenters{2});
        %Grid containing obstacle map
        OccMap = zeros(length(BinCenters{1}),length(BinCenters{2}));
 
        %nview and nview old contains a grid storing the number of times each point
        %in the grid has been viewed
        nview = zeros(201,201);
        nviewold = zeros(201,201);
    end
    %Get new count on each wheel.
    leftCounts = -encoderRead(a,0);
    rightCounts = encoderRead(a,1);
    
    t(n) = toc; %current system time
    
    %x and z coordinates of point cloud
    [Ox,Oz] = KinectMapSimple(depthDevice, colorVid);
    
    %number of encoder counts of each wheel since last timestep
    deltaLeft = leftCounts - leftCountsOld;
    deltaRight = rightCounts - rightCountsOld;
    
    %delta displacement of point between right and left wheel.
    deltaDistance = ((deltaLeft + deltaRight) / 2.0) * distancePerCount;
    %walker angle (heading of zero implies pointing in the z direction
    heading = (rightCounts - leftCounts) * radiansPerCount;
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    heading = wrapToPi(heading);
    
    %delta x and z displacement of point between back wheels
    deltaZ = deltaDistance * cos(heading);
    deltaX = deltaDistance * sin(heading);
    
    %current x and z displacement
    z(n)=z(n-1)+deltaZ;
    x(n)=x(n-1)+deltaX;
    %current velocity
    v(n) = sign(deltaDistance)*sqrt(deltaZ^2 + deltaX^2)/(1000*(t(n)-t(n-1)));
    %x and z position of camera
    camerax = x(n) + 410*sin(heading);
    cameraz = z(n) + 410*cos(heading);
    
    %store previous encoder counts
    leftCountsOld = leftCounts;
    rightCountsOld = rightCounts;
    
    %rotate and translate new points based on current camera position
    OxTemp = Ox;
    OzTemp = Oz;
    Ox = cos(heading)*OxTemp+sin(heading)*OzTemp;
    Oz = cos(heading)*OzTemp-sin(heading)*OxTemp;
    Ox = Ox+camerax;
    Oz = Oz+cameraz;
    
    %% View Stuff
    %Determine which points have been viewed this timestep
    phi = atan2(Xgrid-camerax,Zgrid-cameraz)-heading;
    r = sqrt((Xgrid-camerax).^2 + ((Zgrid - cameraz).^2));
    phihigh = phi < 0.50;
    philow = phi > -0.51;
    rhigh = r > 800;
    rlow = r < 4150;
    viewed = phihigh & philow & rhigh & rlow; %logical array of which 
    %points have been viewed
    
    %for graphing the currently viewed area
    xviewingareatop = [4150*sin(-0.51):50:4150*sin(0.5)];
    xviewingareabottom=[800*sin(0.5):-50:800*sin(-0.51)];
    zviewingareatop = sqrt(4150.^2-(xviewingareatop).^2);
    zviewingareabottom = sqrt(800.^2-(xviewingareabottom).^2);
    xviewingarea=[xviewingareabottom,xviewingareatop,xviewingareabottom(1)];
    zviewingarea=[zviewingareabottom,zviewingareatop,zviewingareabottom(1)];
    xviewingtemp = xviewingarea;
    zviewingtemp = zviewingarea;
    xviewingarea = cos(heading)*xviewingtemp + sin(heading)*zviewingtemp;
    zviewingarea = cos(heading)*zviewingtemp - sin(heading)*xviewingtemp;
    xviewingarea = xviewingarea + camerax;
    zviewingarea = zviewingarea + cameraz;
    
    %% Turn point cloud into obstacle 
    OccMap = OccMap.*nview;
    nview(viewed) = nview(viewed)+1;
    Oxz = [Ox,Oz];
    %add new points to obstacle map
    OccMap = OccMap + transpose(logical(hist3(Oxz, BinCenters)));
    OccMap = (OccMap./nview);
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    OccMap(isnan(OccMap)) = 0;
    OccMap(OccMap>1) = 1;
 
    %% Distance to Obstacles
    
    %Integration for turning decision
    dtheta = pi/(2*nzones);
    zoneedges = (-pi/4:dtheta:pi/4);
    zonemid = zoneedges(1:nzones) + diff(zoneedges);
    for i = 1:nzones
        zoners = r((phi>zoneedges(i)) & (phi < zoneedges(i+1)) & (OccMap > 0.5));
        if numel(zoners>0)
            zoner(i) = min(zoners);
        else
            zoner(i) = 450;
        end
    end
    
    %find obstacles in front of walker
    slope = tan(pi/2-[heading-0.05, heading+0.05]);
    slopeback = -1/tan(pi/2-heading);
    xpoints = [-(WalkerWidth/2),(WalkerWidth/2)]*cos(-heading)+camerax;
    zpoints = [-(WalkerWidth/2),(WalkerWidth/2)]*sin(-heading)+cameraz;
    b = zpoints - xpoints.*slope;
    camerab = cameraz - camerax*slopeback;
    if cos(heading)>0
       if slope(1) > 0
           if slope(2) > 0
               zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
               (Zgrid > (slope(2)*Xgrid + b(2))) &...
               (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
           else
               if heading > 0
                   zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                   (Zgrid > (slope(2)*Xgrid + b(2))) &...
                   (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
               else
                    zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                    (Zgrid < (slope(2)*Xgrid + b(2))) &...
                    (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
               end
           end
       else
            if slope(2)<0
                zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                (Zgrid < (slope(2)*Xgrid + b(2))) &...
                (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            else
                zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                (Zgrid > (slope(2)*Xgrid + b(2))) &...
                (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            end
       end
    else
        if slope(1) > 0
            if slope(2)>0
                zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                (Zgrid < (slope(2)*Xgrid + b(2))) &...
                (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
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            else
                if heading > 0
                    zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                    (Zgrid > (slope(2)*Xgrid + b(2))) &...
                    (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
                else
                    zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                    (Zgrid < (slope(2)*Xgrid + b(2))) &...
                    (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
                end
            end
        else
            if slope(2)<0
                zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                (Zgrid > (slope(2)*Xgrid + b(2))) &...
                (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            else
                zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                (Zgrid < (slope(2)*Xgrid + b(2))) &...
                (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            end
        end
    end
    
    %distance to nearest obstacle
    obstacledist = min(min(abs((slopeback)*Xgrid(zonefront)...
        -Zgrid(zonefront)+camerab)/(sqrt((slopeback)^2+1))));    
    if numel(obstacledist)==0
        obstacledist = 1500;
    end
 
    %integrate right
    PolArea(1) = sum((1/2)*(zoner(1:nzones/2).^2)*dtheta);
    PolArea(2) = sum((1/2)*(zoner((nzones/2+1):end).^2)*dtheta);
    
    %fit1 = polyfit(xdist(zoner<5000),zdist(zoner<5000),1);
    xdist = camerax + zoner.*sin(zonemid+heading);
    zdist = cameraz + zoner.*cos(zonemid+heading);
 
    %% Braking
    if v(n) >0
    if PolArea(2)>PolArea(1)
        analogWrite(a,9,0)
        if (obstacledist > mindist) && (obstacledist < maxdist)
            analogWrite(a,10,round((-255/(maxdist - 
mindist))*obstacledist+(255*maxdist/(maxdist-mindist))))
        elseif (obstacledist < mindist)
            analogWrite(a,10,255)
        else
            analogWrite(a,10,0)
        end
    else
        analogWrite(a,10,0)
        if (obstacledist > mindist) && (obstacledist < maxdist)
            analogWrite(a,9,round((-255/(maxdist - 
mindist))*obstacledist+(255*maxdist/(maxdist-mindist))))
        elseif (obstacledist < mindist)
            analogWrite(a,9,255)
        else
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            analogWrite(a,9,0)
        end
    end
    else
        analogWrite(a,9,0)
        analogWrite(a,10,0)
    end
 
    %% Plots
  
    imagesc(BinCenters{1},BinCenters{2},OccMap)
    hold on
    plot(x(n),z(n),'ro')
    plot(x(1:n),z(1:n),'r')
    plot(camerax,cameraz,'go')
    plot(xviewingarea,zviewingarea,'y')
    %%
    plot(xdist(zoner<5000),zdist(zoner<5000),'om')
    %%
    xlabel('x')
    ylabel('z')
    %axis([-5000 5000 -5000 5000])
    axis([min(BinCenters{1}) max(BinCenters{1}) min(BinCenters{2}) 
max(BinCenters{2})])
    set(gca,'Ydir','normal')
    str1 = ['obstacle distance: ', num2str(obstacledist/1000,3), 'm'];
    distance(i) = obstacledist/1000;
    text(min(BinCenters{1})+500,min(BinCenters{2})+500,str1)
    drawnow
    hold off
end
 
%stop current to brakes
analogWrite(a,9,0)
analogWrite(a,10,0)
%frequency count
freq = count/toc
beep

ObstacleAvoidanceClosed.m

%% Reset Encoders and Brakes

 
encoderReset(a,0)
encoderReset(a,1)
analogWrite(a,9,0)
analogWrite(a,10,0)
 
%% Constants
 
maxdist = 1250;%farthest distance to engage brake
mindist = 450;%distance for full brake
count = 200; %number of timesteps to use
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WalkerWidth = 690; %Total Width of Walker in mm
WalkerDepth = 740;  %Depth of Walker in mm
trackWidth = 640; %Distance between contact points of back wheels
wheelDiameter = 203; %Diameter of back wheels
countsPerRevolution = 256; %Number of encoder counts per full wheel/encoder 
revolution
distancePerCount = pi * wheelDiameter / countsPerRevolution; %Wheel travel distance 
in mm per encoder count
countsPerRotation = (trackWidth / wheelDiameter) * countsPerRevolution;%counts 
required to rotate walker
radiansPerCount = pi * (wheelDiameter/trackWidth) / countsPerRevolution;%radians 
rotated per encoder count
D = 16;
Dphi= 7.0;
alpha = 46/64;
r_b = trackWidth/2000;
 
%% Preallocation
z = zeros(1,count); %z coordinate of point between walker's back wheels
x = zeros(1,count); %x coordinate of point between walker's back wheels
v = zeros(1,count); %forward velocity of walker
phidot = zeros(1,count); %rotational velocity of walker
distance = zeros(1,count);
 
%stores previous timesteps encoder count to calculate coordinate deltas
leftCountsOld = 0;
rightCountsOld = 0;
 
%Starting brake forces
Fblmin = 0.068;
Fbrmin = 0.068;
Fbr = Fbrmin;
Fbl = Fblmin;
 
%BinCenters contains coordinates of points for obstacle mapping 
BinCenters = cell(1,2);
BinCenters{1} = -5000:50:5000;
BinCenters{2} = -5000:50:5000;
%Point grid for obstacle mapping
[Xgrid, Zgrid] = meshgrid(BinCenters{1}, BinCenters{2});
%Grid containing obstacle map
OccMap = zeros(length(BinCenters{1}),length(BinCenters{2}));
 
%nview and nview old contains a grid storing the number of times each point
%in the grid has been viewed
nview = zeros(201,201);
nviewold = zeros(201,201);
 
%Used to seperate the space in front of the walker into zones and find the
%distance to obstacles in each of those zones
nzones = 32;
zones = cell([nzones,1]);
zoner = zeros(1,nzones);
dist = zeros(1,nzones); %distance to nearest obstacle in each zone
 
%For graphing purposes to show obstacle distances
zmid = zeros(1,nzones);
xmid = zeros(1,nzones);
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%Store time at each step.  Time is determined by the system clock
%not a prechosen timestep size.
t = zeros(1,count);
 
tic %start system clock
 
%% Mapping and Obstacle Avoidance Loop
for n=2:count
    %Reset every 100 frames
    if rem(n,201)==0
        %BinCenters contains coordinates of points for obstacle mapping 
        BinCenters = cell(1,2);
        BinCenters{1} = -5000+x(n-1):50:5000+x(n-1);
        BinCenters{2} = -5000+z(n-1):50:5000+z(n-1);
        %Point grid for obstacle mapping
        [Xgrid, Zgrid] = meshgrid(BinCenters{1}, BinCenters{2});
        %Grid containing obstacle map
        OccMap = zeros(length(BinCenters{1}),length(BinCenters{2}));
 
        %nview and nview old contains a grid storing the number of times each point
        %in the grid has been viewed
        nview = zeros(201,201);
        nviewold = zeros(201,201);
    end
    %Get new count on each wheel.
    leftCounts = -encoderRead(a,0);
    rightCounts = encoderRead(a,1);
    
    t(n) = toc; %current system time
    
    %x and z coordinates of point cloud
    [Ox,Oz] = KinectMapSimple(depthDevice, colorVid);
    
    %number of encoder counts of each wheel since last timestep
    deltaLeft = leftCounts - leftCountsOld;
    deltaRight = rightCounts - rightCountsOld;
    
    %delta displacement of point between right and left wheel.
    deltaDistance = ((deltaLeft + deltaRight) / 2.0) * distancePerCount;
    %walker angle (heading of zero implies pointing in the z direction
    heading = (rightCounts - leftCounts) * radiansPerCount;
    heading = wrapToPi(heading);
    
    %delta x and z displacement of point between back wheels
    deltaZ = deltaDistance * cos(heading);
    deltaX = deltaDistance * sin(heading);
    
    %current x and z displacement
    z(n)=z(n-1)+deltaZ;
    x(n)=x(n-1)+deltaX;
    %current velocity
    v(n) = sign(deltaDistance)*sqrt(deltaZ^2 + deltaX^2)/(1000*(t(n)-t(n-1)));
    phidot(n) = ((rightCounts-rightCountsOld)-(leftCounts-
leftCountsOld))*radiansPerCount/(t(n)-t(n-1));
    %x and z position of camera
    camerax = x(n) + 410*sin(heading);
    cameraz = z(n) + 410*cos(heading);
    
    %store previous encoder counts

60



    leftCountsOld = leftCounts;
    rightCountsOld = rightCounts;
    
    %rotate and translate new points based on current camera position
    OxTemp = Ox;
    OzTemp = Oz;
    Ox = cos(heading)*OxTemp+sin(heading)*OzTemp;
    Oz = cos(heading)*OzTemp-sin(heading)*OxTemp;
    Ox = Ox+camerax;
    Oz = Oz+cameraz;
    
    %% View Stuff
    %Determine which points have been viewed this timestep
    phi = atan2(Xgrid-camerax,Zgrid-cameraz)-heading;
    r = sqrt((Xgrid-camerax).^2 + ((Zgrid - cameraz).^2));
    phihigh = phi < 0.50;
    philow = phi > -0.51;
    rhigh = r > 800;
    rlow = r < 4150;
    viewed = phihigh & philow & rhigh & rlow; %logical array of which 
    %points have been viewed
    
    %for graphing the currently viewed area
    xviewingareatop = [4150*sin(-0.51):50:4150*sin(0.5)];
    xviewingareabottom=[800*sin(0.5):-50:800*sin(-0.51)];
    zviewingareatop = sqrt(4150.^2-(xviewingareatop).^2);
    zviewingareabottom = sqrt(800.^2-(xviewingareabottom).^2);
    xviewingarea=[xviewingareabottom,xviewingareatop,xviewingareabottom(1)];
    zviewingarea=[zviewingareabottom,zviewingareatop,zviewingareabottom(1)];
    xviewingtemp = xviewingarea;
    zviewingtemp = zviewingarea;
    xviewingarea = cos(heading)*xviewingtemp + sin(heading)*zviewingtemp;
    zviewingarea = cos(heading)*zviewingtemp - sin(heading)*xviewingtemp;
    xviewingarea = xviewingarea + camerax;
    zviewingarea = zviewingarea + cameraz;
    
    %% Turn point cloud into obstacle 
    OccMap = OccMap.*nview;
    nview(viewed) = nview(viewed)+1;
    Oxz = [Ox,Oz];
    %add new points to obstacle map
    OccMap = OccMap + transpose(logical(hist3(Oxz, BinCenters)));
    OccMap = (OccMap./nview);
    OccMap(isnan(OccMap)) = 0;
    OccMap(OccMap>1) = 1;
 
    %% Distance to Obstacles
    
    %Integration for turning decision
    dtheta = 2*pi/(3*nzones);
    zoneedges = (-pi/3:dtheta:pi/3);
    zonemid = zoneedges(1:nzones) + diff(zoneedges);
    for i = 1:nzones
        zoners = r((phi>zoneedges(i)) & (phi < zoneedges(i+1)) & (OccMap > 0.5));
        if numel(zoners>0)
            zoner(i) = min(zoners);
        else
            if i>7 & i<27
                zoner(i) = 3500;
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            else
                zoner(i) = 1000;
            end
        end
    end
    
    %find obstacles in front of walker
    slope = tan(pi/2-[heading-0.05, heading+0.05]);
    slopeback = -1/tan(pi/2-heading);
    xpoints = [-(WalkerWidth/2),(WalkerWidth/2)]*cos(-heading)+camerax;
    zpoints = [-(WalkerWidth/2),(WalkerWidth/2)]*sin(-heading)+cameraz;
    b = zpoints - xpoints.*slope;
    camerab = cameraz - camerax*slopeback;
    if cos(heading)>0
       if slope(1) > 0
           if slope(2) > 0
               zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
               (Zgrid > (slope(2)*Xgrid + b(2))) &...
               (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
           else
               if heading > 0
                   zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                   (Zgrid > (slope(2)*Xgrid + b(2))) &...
                   (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
               else
                    zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                    (Zgrid < (slope(2)*Xgrid + b(2))) &...
                    (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
               end
           end
       else
            if slope(2)<0
                zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                (Zgrid < (slope(2)*Xgrid + b(2))) &...
                (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            else
                zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                (Zgrid > (slope(2)*Xgrid + b(2))) &...
                (Zgrid > (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            end
       end
    else
        if slope(1) > 0
            if slope(2)>0
                zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                (Zgrid < (slope(2)*Xgrid + b(2))) &...
                (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            else
                if heading > 0
                    zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                    (Zgrid > (slope(2)*Xgrid + b(2))) &...
                    (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
                else
                    zonefront = (Zgrid > (slope(1)*Xgrid + b(1))) &...
                    (Zgrid < (slope(2)*Xgrid + b(2))) &...
                    (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
                end
            end
        else
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            if slope(2)<0
                zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                (Zgrid > (slope(2)*Xgrid + b(2))) &...
                (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            else
                zonefront = (Zgrid < (slope(1)*Xgrid + b(1))) &...
                (Zgrid < (slope(2)*Xgrid + b(2))) &...
                (Zgrid < (slopeback*Xgrid + camerab)) & (OccMap > 0.5);
            end
        end
    end
    
    %distance to nearest obstacle
    obstacledist = min(min(abs((slopeback)*Xgrid(zonefront)...
        -Zgrid(zonefront)+camerab)/(sqrt((slopeback)^2+1))));
    if numel(obstacledist)==0
        obstacledist = 1500;
    end
 
    %integrate right
    PolArea(1) = sum((1/2)*(zoner(1:nzones/2).^2)*dtheta);
    PolArea(2) = sum((1/2)*(zoner((nzones/2+1):end).^2)*dtheta);
    
 
    %fit1 = polyfit(xdist(zoner<5000),zdist(zoner<5000),1);
    xdist = camerax + zoner.*sin(zonemid+heading);
    zdist = cameraz + zoner.*cos(zonemid+heading);
 
    %% Braking
    R_d = obstacledist/1000+0.5;
    currentv = mean([v(n), v(n-1)]);
    currentphidot = mean([phidot(n), phidot(n-1)]);
    Fhr = 0.5*(currentv*D + (Fbl + Fbr) + (currentphidot*Dphi)/(alpha*r_b) + (Fbr- 
Fbl)/alpha);
    Fhl = 0.5*(currentv*D + (Fbl + Fbr) - (currentphidot*Dphi)/(alpha*r_b) - (Fbr- 
Fbl)/alpha);
    
    if v(n) >0
    if PolArea(2)>PolArea(1)
        Fbl = Fblmin;
        phidotd = (2*Fblmin - (Fhl + Fhr)+alpha*(Fhr-Fhl))*1/((Dphi/r_b)-R_d*D);
        vd = abs(R_d*phidotd);
        analogWrite(a,9,0)
        if (obstacledist > mindist) && (obstacledist < maxdist)
            Fbr = 0.5*(-vd*D + (Fhl + Fhr) - phidotd*Dphi/r_b + alpha*(Fhr - Fhl));
            Torque = Fbr*r_b;
            brakenum = round((Torque-0.068)/0.0152);
            if brakenum > 255
                Fbr = 3.954;
                brakenum = 255;
            end
            if brakenum < 0
                Fbr = Fbrmin;
                brakenum = 0;
            end
            analogWrite(a,10,brakenum)
        elseif (obstacledist < mindist)
            analogWrite(a,10,255)
            Fbr = 3.954;
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            brakenum = 255;
        else
            analogWrite(a,10,0)
            Fbr = Fbrmin;
            brakenum = 0;
        end
    else
        Fbr = Fbrmin;
        phidotd = -(2*Fbrmin - (Fhl + Fhr)-alpha*(Fhr-Fhl))*1/((Dphi/r_b)+R_d*D);
        vd = abs(R_d*phidotd);
        analogWrite(a,10,0)
        if (obstacledist > mindist) && (obstacledist < maxdist)
            Fbl = 0.5*(-vd*D + (Fhl + Fhr) + phidotd*Dphi/r_b - alpha*(Fhr - Fhl));
            Torque = Fbl*r_b;
            brakenum = round((Torque-0.068)/0.0152);
            if brakenum > 255
                brakenum = 255;
                Fbl = 3.954;
            end
            if brakenum < 0
                brakenum = 0;
                Fbl = Fblmin;
            end
            analogWrite(a,9,brakenum)
        elseif (obstacledist < mindist)
            brakenum = 255;
            analogWrite(a,9,255)
            Fbl = 3.954;
        else
            brakenum = 0;
            analogWrite(a,9,0)
            Fbr = Fbrmin;
        end
    end
    else
        brakenum = 0;
        analogWrite(a,9,0)
        analogWrite(a,10,0)
        Fbl = Fblmin;
        Fbr = Fbrmin;
    end
 
    %% Plots
  
    imagesc(BinCenters{1},BinCenters{2},OccMap)
    hold on
    plot(x(n),z(n),'ro')
    plot(x(1:n),z(1:n),'r')
    plot(camerax,cameraz,'go')
    plot(xviewingarea,zviewingarea,'y')
    %%
    plot(xdist(zoner<5000),zdist(zoner<5000),'om')
    %%
    xlabel('x')
    ylabel('z')
    axis([min(BinCenters{1}) max(BinCenters{1}) min(BinCenters{2}) 
max(BinCenters{2})])
    set(gca,'Ydir','normal')
    str1 = ['obstacle distance: ', num2str(obstacledist/1000,3), 'm'];
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    distance(i) = obstacledist/1000;
    text(min(BinCenters{1})+500,min(BinCenters{2})+500,str1)
    str2 = ['brakenum: ', num2str(brakenum)];
    text(min(BinCenters{1})+500,min(BinCenters{2})+900,str2)
    drawnow
    hold off
end
analogWrite(a,9,0)
analogWrite(a,10,0)
freq = count/toc
beep

KinectMapSimple.m

function  [Ox,Oz]= KinectMapSimple(depthDevice, colorVid)

%% Create system objects for the Kinect device
%colorImage = getsnapshot(colorVid);
depthImage = step(depthDevice);
%alignedColorImage = alignColorToDepth(depthImage,colorImage,depthDevice);
 
%% Create Point Cloud From Image
xyzPoints = depthToPointCloud(depthImage,depthDevice);
[xs, ys, ~] = size(xyzPoints);
xyzPoints = xyzPoints(1:10:xs,1:10:ys,:);
clear colorImage depthImage
xyzPoints(xyzPoints(:,:,2) < -0.4)=NaN;
xyzPoints(xyzPoints(:,:,2) > 1.5)=NaN;
%figure(1)
%showPointCloud(xyzPoints,alignedColorImage,'VerticalAxis','y','VerticalAxisDir','u
p');
%xlabel('X (m)');
%ylabel('Y (m)');
%zlabel('Z (m)');
Ox = reshape(xyzPoints(:,:,1),numel(xyzPoints(:,:,1)),1).*-1000;
Oz = reshape(xyzPoints(:,:,3),numel(xyzPoints(:,:,3)),1).*1000;
end

AprilFastSlam.m

clear

clc
close all
npart = 100; %number of particles
ntag = 1; %number of tags
nsteps = 10; %number of steps to take
R = [0.01^2,0;0,0.01^2]; %measurement error covariance
P = [0.001^2,0,0;0,0.001^2,0;0,0,0.001^2 ]; %action error covariance
weight = zeros(npart,1);
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%% Initiate Particles
 
%PathArr = cell(npart,1); %each cell is the path of a particle with x, y,
% and theta components
for i = 1:npart
    PathArr{i} = zeros(3,nsteps); 
end
 
%TagPos = cell(npart,1); %nth cell gives nth particle's estimated x,y mean
%of each of the tags
for i = 1:npart
   TagPos{i} = zeros(2,ntag); 
end
 
%TagVar = cell(npart,1); %nth cell gives nth particle's estimated covariance
%matrix for each tag
 for i = 1:npart
   TagVar{i} = zeros(2,2,ntag);
   TagVar{i}(1,1,:) = 0.01;
   TagVar{i}(2,2,:) = 0.01;
 end
 
Action = zeros(3,1); %action from the encoders
TagIdent = 0; %array of the tag identity for each timestep
 
%% Step 1:
 
% tagdetector returns a 5x8 array containing information on each tag detected
% Each column contains 1) One or zero depending on whether this column
% contains information on a detected tag, 2) x position, 3) y position, 4)
% z position, 5) yaw, 6) pitch, 7) roll
 
tagarray = tagdetector;
%tagarray = 
[1,0,0,0,0,;1,0,0,0,0,;1,0,0,0,0,;2,0,0,0,0,;3,0,0,0,0,;1,0,0,0,0,;1,0,0,0,0,;1,0,0
,0,0,;];
tagsdetected = sum(tagarray(1,1:5)); % # of tags detected
if tagsdetected == 0
    fprintf('err')
    return
end
TagIdent(1) = tagarray(2,1); %identity of 1st tag (only one is used per dt)
r = sqrt(tagarray(3,1)^2+tagarray(4,1)^2); %radial distance of tag
phi = atan2(tagarray(4,1),tagarray(3,1)); %azimuthal angle of tag
g = [r;phi];
z(:,1) = g;
for i = 1:npart
    TagPos{i}(:,TagIdent(1)) = [tagarray(3,1),tagarray(4,1)];
end
 
%% Further Steps:
for k = 2:nsteps
    pause 
    tic
    Action(:,k) = [0.01;0;0];
    %for i = 1:npart
    %    MovErr = [0.02*randn;0.02*randn;0.02*randn];
    %    PathArr{i}(:,k) = PathArr{i}(:,k-1)+Action(:,k)+MovErr;
    %end
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    tagarray = tagdetector;
    %tagarray = 
[1,0,0,0,0,;1,0,0,0,0,;0.9,0,0,0,0,;2,0,0,0,0,;3,0,0,0,0,;1,0,0,0,0,;1,0,0,0,0,;1,0
,0,0,0,;];
 
    tagsdetected = sum(tagarray(1,1:5));
    if tagsdetected == 0
        fprintf('err')
        return
    end
 
    TagIdent(k) = tagarray(2,1);
 
    r = sqrt(tagarray(3,1)^2+tagarray(4,1)^2);
    phi = atan2(tagarray(4,1),tagarray(3,1));
    g = [r;phi];
    z(:,k) = g;
 
    %kalman filter
    for i = 1:npart
        
        x = PathArr{i}(1,k-1)+Action(1,k);
        y = PathArr{i}(2,k-1)+Action(2,k);
        phi = PathArr{i}(3,k-1)+Action(3,k);
        TagPosHat = [x;y;phi];
        u = TagPos{i}(1,TagIdent(k));
        v = TagPos{i}(2,TagIdent(k));
        
        zhat = [sqrt((u-x)^2 + (v-y)^2); atan2(v-y,u-x)-phi];
        Gs = [(x-u)/zhat(1), (y-v)/zhat(1), 0 ; (v-y)/(zhat(1)^2), (x-u)/
(zhat(1)^2), -1];
        Gtheta = [(u-x)/zhat(1), (v-y)/zhat(1); (v-y)/(zhat(1)^2), -(u-x)/
(zhat(1)^2)];
        
        Q = R + Gtheta*TagVar{i}(:,:,TagIdent(k))*transpose(Gtheta);
        samplesigma = inv(transpose(Gs)*inv(Q)*Gs + inv(P));
        samplemu = samplesigma*transpose(Gs)*inv(Q)*(z(:,k)-zhat)+TagPosHat;
        PathArr{i}(:,k) = 
transpose(mvnrnd(transpose(samplemu),transpose(samplesigma)));
        
        x = PathArr{i}(1,k);
        y = PathArr{i}(2,k);
        phi = PathArr{i}(3,k);
        zhat = [sqrt((u-x)^2 + (v-y)^2); atan2(v-y,u-x)-phi];
        Gs = [(x-u)/zhat(1), (y-v)/zhat(1), 0 ; (v-y)/(zhat(1)^2), (x-u)/
(zhat(1)^2), -1];
        Gtheta = [(u-x)/zhat(1), (v-y)/zhat(1); (v-y)/(zhat(1)^2), -(u-x)/
(zhat(1)^2)];
        
        weightsigma = Gs*P*transpose(Gs) + Gtheta*TagVar{i}
(:,:,TagIdent(k))*transpose(Gtheta) + R;
        
        [TagPos{i}(:,TagIdent(k)), TagVar{i}
(:,:,TagIdent(k))]=FastSlamKalman(k,z(:,k),PathArr{i},TagIdent(k),TagPos{i},TagVar{
i});
        
        weight(i) = 1/(sqrt(4*(pi^2)*det(weightsigma)))*exp(-0.5*transpose(z(:,k)-
zhat)*inv(weightsigma)*(z(:,k)-zhat));
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    end
    choice = rouletteselection(weight);
    for i = 1:npart
        PathArrNew{i} = PathArr{choice(i)};
        TagPosNew{i} = TagPos{choice(i)};
        TagVarNew{i} = TagVar{choice(i)};
    end
    PathArr = PathArrNew;
    TagPos = TagPosNew;
    TagVar = TagVarNew;
    toc
end
figure (1)
hold on
for n=1:100
    plot(PathArr{n}(1,:),PathArr{n}(2,:))
end
axis equal

FastSlamKalman.m

function   [ munew, sigmanew ] = FastSlamKalman( step, z, PathArr, TagIdent, TagPos, 

TagVar  )

%UNTITLED3 Summary of this function goes here
%   Detailed explanation goes here
R = [0.01^2,0;0,0.01^2];
x = PathArr(1,step);
y = PathArr(2,step);
phi = PathArr(3,step);
u = TagPos(1,TagIdent);
v = TagPos(2,TagIdent);
CoVar = TagVar(:,:,TagIdent);
zhat = [sqrt((u-x)^2 + (v-y)^2); atan2(v-y,u-x)-phi];
Gtheta = [(u-x)/zhat(1), (v-y)/zhat(1); (v-y)/(zhat(1)^2), -(u-x)/(zhat(1)^2)];
BigZ = Gtheta*CoVar*transpose(Gtheta) + R;
KalmanGain = CoVar*transpose(Gtheta)*inv(BigZ);
munew = transpose([u,v]) + KalmanGain*(z - zhat);
sigmanew = (eye(2) - KalmanGain*Gtheta)*CoVar;
end

RouletteSelection.m

function   [ choice ] = rouletteselection(fitness)

%Roulette selection based on fitness input.
%choice is a vector of indices for the randomly drawn fitnesses
cp=cumsum(fitness);
choice = zeros(length(cp),1);
for i = 1:length(cp)
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    selection = rand()*cp(end);
    choice(i) = find(cp>=selection,1);
end
end
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