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Abstract

Electric transportation has attracted a great digterest within the transport sector because
of its notable potential to become a low-carbonssitite for conventional combustion
engine vehicles. However, widespread use of thisfof transportation, such as plug-in
electric vehicles (PEVs), will constitute a sigo#&nt draw on power grids, especially when
associated with uncontrolled charging schemesadty lectric utilities are unable to control
individual PEVs in order to manage their chargimgl aavoid negative consequences for
distribution lines. However, a control strategy lcbbe directed at a single vehicle or group
of vehicles. One effective approach could be tddoom a supervisory control system, similar
to a SCADA system that manages the aggregationEdsPa role that could be filled by
aggregators that exchange data and information grnmaiividual PEVs and energy service
providers. An additional consideration is that athes in intelligent technologies and expert
systems have introduced a range of flexible constohtegies, which make smart grid
implementation more attractive and viable for tlosver industry. These developments have
been accompanied by the initiation of a new paradigy controllable PEV loads based on a
number of advantages associated with a smart gmdegt. One of the established goals
related to smart grids is to build on their ability take advantage of all available energy
resources through efficient, decentralized managéeni® this end, utilities worldwide are
using IT, communication, and sensors to provideaanld incorporation of operational tools
and thus create a more robust and interactive @mvient able to handle generation-demand
dynamics and uncertainties. One of these toolsermathd response (DR), a feature that
adjusts customers’ electricity usage through tler aff incentive payments.

Motivated by this background, the goal of the wgmesented in this thesis was to
introduce new operational algorithms that faciétathe charging of PEVs and the
employment of their batteries for short-term grigpggort of active power. To allow both
public parking lots and small residential garagebédnefit from smart charging for end-user
DR, a framework has been developed in which thereggor handles decision-making
through real-time interactions with PEV owners. Timteraction levels are implemented.

First, for charging coordination with only one-ra@umnteraction, a fuzzy expert system



prioritizes PEVs to determine the order in whicteythwill be charged. Next, for smart
charging, which includes battery discharging, atiratage decision-making approach with
two-round interaction is proposed. Real-time int&oan provides owners with an appropriate
scheme for contributing to DR, while avoiding timeanvenience of pre-signed long-term
contracts. A new stochastic model predicts futui/ Rarrivals and their energy demand
through a combination of an artificial neural netlwQANN) and a Markov chain.

A new method is proposed for promoting collaboratad PEVs and photovoltaic (PV)
panels. This technique is based on a determinafidihe ways in which smart charging can
support simultaneous efficient energy delivery gmése-unbalance mitigation in a three-
phase LV system. Simulation results derived fromb88 and 123-bus distribution test
systems have verified the efficacy of the proposedthods. Through case-study
comparisons, the inefficiency of conventional claggegimes has been confirmed and the
effectiveness of real-time interactions with veblicbwners through DR has been
demonstrated.

The most obvious finding to emerge from this stiglyhat the use of a scoring-based
(SCR) solution facilitates the ability of an aggatmy to address urgent PEV energy demands,
especially in large parking lots characterized ghHevels of hourly vehicle transactions.
The results of this study also indicate that sigaiitly greater energy efficiency could be

achieved through the discharging of PEV batterieemPEV grid penetration is high.



Acknowledgements

I would like to express my sincere gratitude to snpervisor Professor Ehab El-Saadany and my co-
supervisor Professor Fakhri Karray for their combims supports of my Ph.D study and for their
patience, motivation, and immense knowledge. Myceasi@ thanks also extended to my Ph.D.
committee members: Professor Mehrdad Kazerani,eBsof Othman Basir and Professor Amir
Khajepour. Thanks are also due to my external examProfessor Hossam Gaber for his coming to
referee this thesis.

I would like to thank my fellow group-mate Dr. Maft Shaaban for the stimulation supports and
discussions to improve the research outcomes.

| wish to express my deepest thanks to Kiyan Ebaditiari, my husband and my best friend, for
his endless understanding, patience, encouragemgtmism and support during all these years of
my Ph.D. studies.

Last but not the least; | would like to thank mythrer Ms Afzal Davari, my sister and my brother
Ms Elnaz Akhavan and Mr Emad Akhavan as well asimlpws for supporting me spiritually
throughout all these four years of my Ph.D. andlifeyin general. My father, Kapachoo, is not with

us anymore but his memory and the way he suppartedlways with me in my heart.



Dedication

To
Kiyan,
Hendooneh & Agha-khosro,

the sweetest things in my life

vi



Table of Contents

AUTHOR'S DECLARATION ...ttt ettt et e e e e e e sttt e e e astae e e e s ssssaaananseeeessnseeeeeesnnneeens ii
Y 01 1 = V! PP IiL.
F ol [ 1V [T [ [T 1= (PP v
=T [ o= 11T o P PP PP PPOPPPPPPPRPPRIS 1/ P
TabIE Of CONLENES ...t e e e e s e bbb et et e e e e e e e s bbb e e e eaaeeas vii
IS o o TN = X...
LISt Of TADIES ...t e et e e e e e e s st e e e e e e e e e e aane iixi
IS 0 A £0] 010 1 Xiv
(O F=T o] (=1 g I T 1 o o [1Tox T} o P 1
1.1 RESEAICH MOLIVALIONS ......vvviiiiiee e s ettt e e e e e e e s ettt e e e e st s e e e e e e e e e e s annabbbeeeeaeeeas 4
1.2 RESEAICH ODJECHVES .....uuiiiiiie it eseseesbeeesaeennsennnssnnnnnnns 5
1.2.1 Accommodate Charging High Penetration of PEVS............ccccoiiiiiiiiiiiiiiieee e 7
1.2.2 Realize Demand-side Management/Demand Responsedrporation of PEVS.............. 7
1.2.3 Explore Better Owner Satisfaction ... 8
1.2.4 Prediction of Future PEV Arrivals and their StatoisSupport Smart Charging.................. 8
1.2.5 Analyses Smart Charging Impacts in 3-Phase LVidigion system............ccccceeeeeiiinnnns 8
1.3 THESIS OULIINE.....ceeiieeiieeeeeeee e 8
Chapter 2 Literature Related to PEVs: BackgrourdiRrevious Research ............cccccoooiiiiceeeee 10
2.1 Infrastructure: Aggregation Role in Public AB@ility ... 10
2.2 PEV Modeling: Battery and Charger....... .. eeeeeeeeeeeeeeeeeieeeieeeieeeieeeiieeeeeeeeeeeeeeeeeeeeeees 12
2.2.1 Charging CharaCteriStiCS. .. ... uuuuuuruss e e eeeeeveeeseeessssssssssssssssssrrerrrernreeereeerrrrrereree 13
2.2.2 Discharging CharaCteriStiCS .......uuuuuuuimmmmme st ee et e e e e 14
2.2.3 Li-lon Battery CyCle Lif ........oeiiiiiiiiiieeee et 15
2.2.4 Charger Characteristics in Smart Parking lo1S.............cooooiiiiiiiiiiiiee e 16
2.2.5 Cost of Charging versus Gas: A Case iN ONtaliQ..ee.....ueueeeeiiiiecieeeeeeee e e 19
2.3 Impacts of PEVs on the Distribution Grid................cooooiiiiiii e, 20
2.4 PEV Charging Coordination..............ccoeiieiiiiii ettt 23
2.5 Applications of Grid-able PEVs in Smart Grids..............cccooee e, 27
2.5.1 Frequency Regulation .............cccco i 28.
2.5.2 Voltage REQUIALION .........uviiiiiiiieeeiiiee et e e e e 31
2.5.3 Phase balanCing ............ccooiiiiiiiiiii e 33



2.5.4 Power quality @NhanCemMENt ............uuuuuuuiii s 33

2.5.5 Revenue OPLIMIZALION ........ouiiiieiiiiiiieie e e e e e e e e e eeeeeeeas 34

2.5.6 V2G in Demand-side management, Demand Respons@uatade management............ 36

2.5.7 Role of PEVS in MIiCro-Grid CONIEXL........cceeeeeiiiiiieiiiiiiie e 38
2.6 DISCUSSION ...ttt ettt ettt et et et e e ekt ee e et e e e e b e e e e e e e e e e e e e e 39

Chapter 3 Online, Intelligent Demand Managemerlaf-in Electric Vehicles in Future Smart

T (] o T o ) PP 42
G 700 11 0o [T £ o ISP 42
3.2 Problem Statement: Demand Management in PubtEwith PEVS ............cccccoiiiiiiiies 42

3.2.1 Benchmark 1: Uncoordinated Charging.........ccocueeeeeieeeiiiniiiiiiieieeeee e essieeeees s 42
3.2.2 Benchmark 2: First Come, FirSt SErVed......coouu i 43
3.3 Proposed Intelligent Decision-Making Algorithm................coo o, 43
I Y o T 1= [T g Vo N o 1= T o £ PR 45
3.4.1 Smart Parking lot Model: PEV Chargers and Batarie.................coooeeeeeiiieiiee e 45
3.4.2 Fuzzy SCoring EXPert SYSIEM ...ttt 46
3.5 Problem FOrMUIALION ..........u e 52
3.5.1 ODbJECtiVE FUNCLION ... e 52
3.5.2 CONSIIAINTS ....uutiiiiiiiee ettt mmee ettt e e e e e s ettt e e e e e e e e s s bbb be e e e e s s ssbbbaneeaeeeeeeeaannn 52
3.6 CASE STUAY ... e e ettt e e e e e e et e e e e e e e e e e e e e e e e e e e eaas 55
3.6.1 Case Study INVOIVING FIVE PEVS ......ooiii e 56
3.6.2 Case Study Involving @ 38-BUS SYSIEM ......cooiriiiiiiieeece e 57
3.7 Discussion: Performance EVAlUALION ........cooueiuiiiiiiiieiiiiiiiiie e 62
GRS TS 1010 1] = YRS 65

Chapter 4 New Energy Management System for Incatpay Smart Parking Lots into the Demand

1S 010 1= G 6
ot Lo (o T U1 1o o IO PP PPPPPPPPPRN 66
4.2 Problem STAtEMENT .........uiiiiiiiie et e e e s e e e e s s e e e e e e e e e aan 66
4.3 Framework of the proposed EMS MEthOd ...eeceeeeeeeeeiiiiiiiiiiei e 67
4.4 Aggregator’'s Controlling MOAUIES ... 68

4.4.1 Processing MOTUIES ........ccooiiiiiiiiiis e ettt e e e e e e e e e annes 68
4.4.2 Decision Optimization MOAUIE .............uuiiiiieiiiiiee e 73
R L ] o1 (=T g 1T a1 = (o o PP 77



4.6 RESUILS ANT DISCUSSIONS ....eevueese s e e ee st eeessesasesanssssnsesasestaassentsestrestrertsessaersenns 78

4.6.1 Case (1): First come first serve (FCFS) .....covviiiiiiiiiiiiiieeeeeeeeeeeeeveveeeeee e 78
4.6.2 Case (2): Charge-0NlY ........ccooiiiiiiiii ettt e e e e e e e e e e e e e e e e eee s 78
4.6.3 Case (3): Charge and diSCNArge ..........ooueeeeeeiiiiiieeeeiii e 79
4.6.4 DISCUSSION.....ciiiiiiitiiietee e e e et eeeem e oo e e ettt e e e e e e e s e bbbttt et e e e e eeanse e e e e e e e e e e annnbnbeneeeeaas 81
S YU |1 0] 0= Y U 83
Chapter 5 Managing Demand for Plug-in Electric \ét#s in Unbalanced Low Voltage (LV)
RS L=T 1 84.
LS00 I 10T [T £ 84
5.2 Problem StatemENt ...... ... e 84
5.3 Framework of the Proposed Method ... 85
5.4 Additional ASpects Of MOUEIING .........uviiiiiiiiiii e 86
5.4.1 Voltage unbalance CONSIIaiN...........oooi e 86
5.4.2 PV module SPECIfICALIONS .......evviiiiiiiiiceee e e 86
5.5 Extended Problem FOrmulation...........cccc i 88
5.6 CASE STUIES ..ooieeiiiiiiieie ittt e ettt e e e e e e e s e e e e e e e e s s s bbb et e e e e e e e e e b aene s 90
I A =TS 3 £1 (] o PP 91
5.6.2 Case study 1: PEV charge-only (comparison betwggmlow penetration) ................... 93
5.6.3 Case study 2: PEVs in the presence of PV pant&signoits ...............ccccvviiiiieiieinnns 95
A B Yol B 11 o] o PP PPPPTP 97
LIRS TS 1010 0] 0= Y/ SRR 98
(O gF=T o] (=] gl G T @0 Tod 11 5] o] o <P 99
6.1 THESIS SUMIMANY ....uuiiiiiiiiie i o e e e e e et e e et e e ettt e ettt ettt ettt ettt eeaaaaaaaaaaaaaaaeaaaaaeaaeeaeaeeeeeess 99
6.2 TheSIS CONIDULIONS......coiiiiiiiiite et e e e e e s eeeaeas 100
6.3 ProSpectivVe WOIK ......cooe i 100
Appendix A The 38-DuUs teSt SYSIEM ALA ... e e eeeeeeeeeeee e 103
Appendix B The 123-bus test System data ....ccccooooooeiieiiii e 105
(2] ][ ToTo | =1 o] oY/ 108



List of Figures

Figurel-1 American Daily Vehicle Travel [2] ..., 2
Figurel-2 In-service generation Capacity in Ontario (OHE10), [6]....ccccceeeeeeereaareeaeeeee e eeeeeeen 2
Figurel-3Smart Grid COMPONENTS........c.iiiiiiiitcceeeeeeeeeeeeeeeeeeeeeeeeeeeraessseasaeesrerrerrrereeeeeeereeeeeeeeeeees 6
Figurel-4 ReSearch ODJECHVES ..........uuuuiiiiiiiiiiiiiiiiiiiiii e sasrss e anesnnsannnsnnnnnnas 7
Figure2-1 Electrification trend of advanced vehicle teglogies [4] ..........coovvvvvevvieeiiieeieeeiieeenns 10
Figure2-2 Aggregator's RoIe as @ MediUM......... o eeeieeiiiiiiiiiiiiiiiiiieeeeeeeeeeeeseeeeeaea e e e e e e e 11
Figure2-3 A typical battery Model [17] ......uuuriiieeeeeiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e e 12
Figure2-4 A integrated PEV mModel [18].............cummmmereemmmmiiiiiiieissssesses s se e e e s sessennnennnnnnnnnnnes 13
Figure2-5 Voltage and current characteristics of thedr-battery during charging [19].............. 4.1
Figure2-6 Voltage and current characteristics of thedr-battery during discharging [20] ............ 14
Figure2-7 Battery SOC as a function of cycle-used [21].........ccevevrrririiierieeiiiiiiiiieiivieeeeee e 15
Figure2-8 Typical battery charge and discharge effiCigl@@] ..o e 16
Figure2-9 General bi-directional charger topology forgdaithree phase [23].........cccooeiiiiiiiiieee. 17
Figure2-10 Suggested design of vehicle smart dashboattot§26] ..........cccoeeeeeieiiiiiiiiiiieiiinee, 19
Figure2-11 AC fast charger growth versus slow chargewgrdetween 2008-2013, [29] .............. 20
Figure2-12 Feeder current with different penetrationh@ PEVS..............c.oovviiiiiiiiiiiiiiiiinceeenn. 21
Figure2-13 VSC-based PEV schematic and the equivalegtah@[24] ............cccoccvveiiiiiiiiinnnnn. 22
Figure2-14 Current waveform for the PEV charger and {fstesn load profile [42]............cccvveee. 23
Figure2-15 System total THD of voltage due to low pertairaof the PEVS [42] ........ccovvvviiennee. 32
Figure2-16 Examples of the frequency regulation [12] . .c.eeeeeeeiiieiiiiiiiieiiiieiieeeieeeeeee e 29
Figure3-1 Charging sequence using FCFS would be unfaa foEV arrives later and will leave
Lo LT G Y A 43
Figure3-2 Proposed SCR framework for the PEVs chargingagament...................cc.cceeeeeee. 5.4
Figure3-3 Fuzzy inference DIOCKS ...........uie et 47
Figure3-4 Membership functions for the battery KWh regdi{input 1) ..........cccccovurimmiinnnnnnnimnns 49
Figure3-5 Membership functions for the departure timer(e) (inPut 2) ..........ccoovvvvvviieerieeneen. 49
Figure3-6 Membership functions for the Max charger po@®Y) (input 3)...........ccevvvvvvevvveennene. 50
Figure3-7 Membership functions for the scoring (OULRUL)............ccoovviiiiiiiiiiiieieeeeeeeeee e, 50
Figure3-8 Proposed SCR charging coordination algorithm.............c.ccevvvvvviviiiiiiiiiiiiiieeeenneenn, 55
Figure3-9 SOC (%) trend based on FCFS charging solution..............cceevvveeeiiiiiiiiieeeeee 56
Figure3-10 SOC (%) trend based on the proposed SCR cliesQIution ..............ccoocveeeeiiiinnene. S7

X



Figure3-11 Consumed power by the five PEVs through bb#rging scheme....................cccooe. 57

Figure3-12 The 38-bus distribution test FEEUEr .....ceeeeeeeii e 58
Figure3-13 Daily PEV transactions at each parking lot...............cc.co o, 59
Figure3-14 System loading in different PEV charging scBem...............cccco oo 60
Figure3-15 PEV charging demand at DUS 22 (PL-4) e 60
Figure3-16 PEV charging demand at DUS 25 (PL-1) weennunniaaaaaae e 60
Figure3-17 PEV charging demand at DUS 33 (PL-3) e ceeeeeeiiiiiiiiiiiiiieeee e eee e 61
Figure3-18 PEV charging demand at DUS 37(PL-2) .. 61
Figure3-19 A snap shot of the demand at PL-2....ciooiiiiiiieiiieieeeeeeeeeeeeeeeee e 61
Figure4-1 Aggregator’s modules for the proposed method...............oooo e, 68
Figure4-2 Average hourly parked vehicles of a parking.lot................eveiiiiiiiiiiiiiiiiieeeeeeeeee. 71
Figure4-3 Architecture of the ANN MOAEL..........oi oo 71
Figure4-4 MC-based presentation of the responses argtdteetransitions................cooooeeeeeeeeed 73
Figure4-5 Structure of the proposed decision optimizati@dule ....................ooo oo s 74
Figure4-6 The 38-bus test system with parking IotS.............uuuuiiiiiiiiiiiiei s 77
Figure4-7 R-values for training, validating, and teStB®E ............cccoeeeeeeieii e 78
Figure4-8 Flowchart of the aggregator modules’ collakiorain decision making...................... 79.
Figure4-9 Patterns of plugged PEVs based on offers §1.10L............ooovvvviiiiiiiiiiiieiiies e 80
Figure4-10 Demand pattern of the parking lot through FER&Qing regime ...........ccccvvvvvvvnnnnnd 80..
Figure4-11 Demand pattern of the parking lot through @aaonly regime...........ccccvvvvvvvvvvvvvvim 80
Figure4-12 Demand pattern of parking lot through Chargelthrge regime..........cccccvvvvvvviiinnn 81.
Figure4-13 Demand pattern of parking lot comparing theecstudies...................ccee oo 81
Figure4-14 ENS comparison based on class Of Offers...........oovveiiiiiiieereee e 83
Figure.5-1 ENS comparison based on class of Offers............coeiiiiiieeeeee e 85
Figure.5-2 Seasonal PV OULPUL...........uuiiiiii it e e 88
Figure.5-3 The structure of the decision making algorithm.......................l. 90
Figure.5-4 IEEE 123-DUS St SYSIEM ..o 91
Figure.5-5 Hourly Max and min PVUR values: system is baégghunder normal condition ............ 92
Figure.5-6 Hourly Max and min PVUR values: System is uabhaéd when PVs are added............. 93
Figure.5-7 Total loadings of PEVs for low and high penBras ................ccccvvrreeeeeeeinnnieenenns 94
Figure.5-8 Hourly Max and min PVUR%: for high PEV penetuat...............cccccevvveevieeeieenenennil 94
Figure.5-9 Hourly Max and min PVUR%: for low PEV penetaati.................covvvvvvvvvenivinnininniie. 94

Xi



Figure.5-10 Hourly Max and min PVUR%: adding the constr&mn voltage unbalance .

Figure.5-11 Chrg-only vs Chrg/Dchrg for High PenetratideM3...................coeeeeeeee.
Figure.5-12 Max and min PVUR%: V2G with PV, including pkasalancing constraint

Xii



List of Tables

Tablel-1Additional Loads due Incremental Growth of EMABRAtiON ... 2
Table2-1 Charging Levels Standard for NOrth AmEeriCa . .. .uvvevieiiiiiiiiiiiiicceeee e 17
Table2-2 Charging stations based on Charger type. oo, 18
Table2-3 Benefits of the DMS for the utility and custame..................ccccciviieievveeeeeeee, 37
Table3-1 Characteristics of the Membership FUNCHONS.cc........uuuieiiiiicce e 48
Table3-2 Battery capacity range available in market.............c.cccoviiviiiiiii e 49
Table3-3 Proposed RUIE BaASE .........cooo oo ettt 51
Table3-4 Results of the Load FIOW ANAIYSIS .......cceeeiiiiiiiiiiiiiiiiiiivieevieeiieiiev v eeeeer e e eeeeeeeees 62
Table3-5 RMSD Results for the Aggregator and ParkingsLat..............oooooeeeeee e 64
Table3-6 RMSD in energy delivered to the critical andhooitical PEVS ..., 64
Table4-1CHARACTERISTICS OF THE ANN BUILD FOR PEV PREDICTION...........cccccveennn. 72
Table4-2 ENS comparison of the CaSe STUIES .....cceeeeeiiiiiiiiiiiiiiieee e 82
Table5-1Solar Irradiance Data ............oooe oottt 87
Table5-2 Impact of phase-balancing on total system BSSe...........coovviiiiiiiiiiiiiiiiiieee e 95
Table5-3 TOtal SYSIEM LOSSES......ciiiiiiiiiiieee et e e e e e e e e r e e e e e e e e anes 96
Table5-4 The energy required vs the energy delivered...............cc 97

Xiii



AER
ANN
CcC
CSP
Ccv
DER
DG
DR
DSM
DSO
EE
EMS
ENS
EPRI
ESP
FCFS
FERC
FERC
FLC
FVC
HEV
ICE
ISO
LOL
MDP
MC
O&M
OM
PEV

List of Acronyms

All Electric Range

Artificial Neural Networks
Constant Current

Charging Schedule Planner
Constant Voltage

Distributed Energy Resources
Distributed Generation

Demand Response

Demand Side Management
Distribution System Operator
Energy Efficiency

Energy Management System
Energy Not Supplied

Electric Power Research Institute
Energy Service Provider

First Come First Serve

Federal Energy Regulatory Commission
Federal Energy Regulatory Commission
Fuzzy Load Controller

Fuzzy Voltage Controller

Hybrid Electric Vehicles

Internal Combustion Engine
Independent System Operator
Loss of Life

Markov Decision Process
Markov Chain
Operating and Maintenance
Outage Management

Plug-in Electric Vehicles

Xiv



PV Photo-voltaic panels (PV)
SCADA Supervisory Control And Data Acquisition

SCR Scored Charging

SOC State-of-Charge

TOU Time of Use

uc Unit Commitment

UNCR Uncoordinated Charging
V2G Vehicle to Grid

VSC Voltage Source Converter

XV






Chapter 1

Introduction

The power grid is expected to change dramaticaligr adhe coming decades, in part because the
number of customers, their requirements, and thgiectations has grown dramatically. On the other
hand, planners and operators need to operate itheirger progressively more complex conditions
due to utilization of renewable generation, enestrage systems, to name a few. Accordingly,
utilities all over the world are making efforts itacorporate operational tools into the power gnd b
means of information technology, communication,sees, and digital knowledge so as to create a
more robust and interactive intelligent environmbatter capable of handling all the uncertainties
related to generation and demand.

On the other hand, the automotive industry has téelvextensive efforts to explore alternative
energy resources for transportation, largely dueotaerns about increased emissions and increasing
oil prices. Electrification of vehicle fleets peggs a promising solution, since the power secsrih
place a reliable and highly efficient infrastruguthat can provide energy for such vehicles.
Furthermore, electric vehicles are inherently meffgient at turning energy into miles driverand
they have a salient feature in common: their biadeAccording to [1, 2], the average daily diseanc
for North Americans to drive is 45 km (Figure (2;13and the average daily time during which cars
are parked is 90% (almost 22hrs) [3]. Thus, thergnestorage capacity in electric cars with
significant well-aggregated penetration presentsatgropportunities for better integration of
“intermittent” energy resourcéwith the power grid [4] However, charging plug-in electric vehicles
(PEVs) imposes an additional load on the power. gvidre importantly, the penetration of PEVs is
going to become relatively high compared to thetdle generation capacity; 20% of eligible new
Ontario Public Sector vehicle purchases will bectele by 2020 [4]. The trend towards additional
electrical load growth in Ontario has been pointed in [5]. Table (1-1) shows the significant
additional demand expected due to PEV penetratidiich can be compared to the in-service

generation capacity illustrated in Figure (1-2). [6]

1. Electric cars are much more efficient than inééicombustion engine (ICE) drive trains (about AB%:25%) [7].

2_ Such as solar and wind energy.

3 - This capability is of particular interest whepnabined with micro-grids; as a potentially selffaiént segment of the
grid that is connected to the power grid at largehas the ability to provide and manage its owergy

1
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Figurel-1 American Daily Vehicle Travel [2]

Tablel-1Additional Loads due Incremental Growth of E\hBeation [5]

Canada Ontario
Number of vehicles 27,577,524 9,990,267
10% penetration (GVA) 8.27 3
50% penetration (GVA) 41.37 14.99
100% penetration (GVA) 82.73 29.97
Unregulated Other, 2 Regulated

Nuclear,

Thermal
— 6606 MW

6327 MW

Unregulated //Regulated

Hydroelectri S e Hydroelectric
, 3684 MW , 3312 MW

Figurel-2 In-service generation Capacity in Ontario (O2210), [6]

Although, opinions are divided about the impacP&YVs on distribution grids, there is a general
agreement with respect to the considerable effibets mass PEV operation under an uncontrolled
charging scheme will have on electric grid assetairfly on local distribution infrastructure and
possibly on the transmission sector). Studies aports classify the consequences of uncontrolled
charging as follows:



* Phase imbalance,

» Harmonics and other power quality issues,

» Line congestion,

» Transformer degradation and failure due to théowarloading, and

» Circuit breaker and fuse blowout.
Electric grid operators and planners are therebamrecerned with deploying PEVs effectively and
mitigate their impacts. Planning alternatives indelumeeting demand growth through upgrades to grid
infrastructures or installation of Distributed Geateon (DG) [8, 9]. However, planning alternatives
reflect long-term horizons, and feasible solutioeguire consideration of several prospective fagtor
such as load growth, updated PEV models, and newknologies.
Operational solutions are thus being proposedmsams of minimizing the additional costs related to
planning solutions. Demand Side Management (DSMj fsindamental operation component that
seeks to involve end-use customers in shaping gngegnands, which, in turn, results in peak
clipping, valley filling, load shifting, strategiconservation/load growth, and flexible load shape.
Electric utilities often understand DSM to inclutdeo components: (1) Energy Efficiency (EE),
which is designed to reduce electricity consumptioming all hours of the year, and (2) Demand
Response (DR), which modifies customers’ elecyringage from their normal consumption pattern,
in response to incentive payments designed to eageuower electricity use at times of high prices
or when system reliability is at risk [2].
Some DR studies propose scheduling of PEV chardining off-peak hours [3]. However, with a
high penetration of PEVs, even if all charging ascat off-peak hours, upward pressure on
distribution components will still exist. As wedl,convenient time for the owner to charge the vehic
and the preference of the utility might conflicO[1Consequently, grid operators are trying flesibl
and smart charging scenarios that simultaneouslgramodate the technical limits of the grid and
also satisfy vehicle owners. The success of sueltesies is dependent on a bidirectional medium, a
role that can be filled by aggregators, which atliaformation from PEVs, send it to the energy
service providers, and vice versa.
Integration of storage systems would also leadréatgopportunities for DR programs, even though
their applications for end-use customers arerstitricted due to the installation costs of suchagfe
devices. Deployment of grid-able PEVs, howeverdfidhe promise of using their batteries for DR
without imposing the additional infrastructure armsts associated with domestic storage systems

[11]. Along with proper charging and communicatiofrastructure, PEVs may play a dual role in

3



smart grids; they may eventually either turn intaetruptible Loads (IL) when plugged in for
charging or act as grid-able storage respondingiting commands, a concept generally referred to
as vehicle-to-grid (V2G). These features make PEMgropriate for providing short-term ancillary
services for the grid. As with other DR prograni® tdea behind V2G is simply to allow owners to
profit and to gain more revenue. That is, if théaigke owner changes the battery from charging to
discharging back to the grid at a rated powergtiergy payment direction should be reversed [12].
Most research and studies reveal potential prafas electric utilities or policy makers would make
from V2G. Questions, however, have been raised tabehicle owners’ interest in V2G. Recent
surveys by Hidrue et al., [13, 14], indicate thafie to the stochastic nature of the arrival and
departure of vehicles, the conventional approach-EEvers signing pre-specified contracts, in
return for annual cash back- is unlikely to appealrivers under current market conditions.

The research presented in this thesis investigh&sollaboration of PEVs in customer-side demand
management by means of smart charging. It explitresvays an aggregator can enable decision-
making by interacting with vehicle owners and tdysamically manage PEV charging in real-time.
Two different approaches are realized based new-interaction with owners. In the first, PEV
owners send data to the aggregator and the aggregaimizes charging action with respect to other
PEVs and power-grid operation practice. The seapputoach provides a higher interaction level,
whereby the aggregator processes the data rectwedowners and offers charge and discharge
options regarding real-time energy tariffs. Accagly, owners choose among the options and based
on the owners’ responses, the aggregator optiniieslecision making. The next sections move on

to describe in greater detail the thesis objectaras outline.

1.1 Research Motivations

Investing vast sums to upgrade the distributiod &t the charging of PEVs (for a limited number of
hours per day) would be economically non-viablghdligh charge-management scenarios have been
introduced as a component of operational plansfdoilitating the adoption of PEVs, not all-
encompassing regulation is yet available for maradlEV aggregators with respect to producing
optimal decisions. The motivation for the widespreadoption of PEVs and the development of
regulations is predicated on a broad understangfirije possible benefits and advantages of PEVSs,
such as the following:

* Economy and Environment: Not only is it costly to upgrade the existing powgid to

accommodate PEVSs, but doing so would also regthiesinistallation of additional power plants,
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which would result in a larger carbon footprint dandreased emissions, and would be counter to the
primary goal of fleet electrification.

» Demand Response and Load Managemeritlass PEV operation would significantly amplify
energy demand. Shifting PEV charging to off-pealrsoor applying smart charging regimes based
on demand control and the safe operation of theesysvould become primary concerns for electric
utilities in the near future. Any consequent effesthould ideally benefit both customers and esiti
through reduced energy costs and lower grid-opeya&xpenses, respectively.

* Grid Support with Small-scale and Decentralized Bwer Sharing: Based on an enhanced
“smart” concept, future smart grids will facilitagower sharing through the employment of all
available energy resources and their efficient deabzed management. An additional consideration
beyond charge management is the possible use of RE\Supplying the electric grid in the form of
short-term ancillary services. Theoretically, thpimwer-electronics-based converters are able to
switch quickly to the grid and provide such sersies voltage/frequency regulation, peak shaving,
and outage management contribution. It is worth trogeimg that peak shaving would not only
include shifts in the charging time, but also inmrate additional PEV battery power to serve some
loads (such as supporting the charging of other PiEWehicle-to-vehicle (V2V) mode). Of course,
the realization of this vision is dependent on arguotee that society would move toward the

widespread adoption of PEVs.

1.2 Research Objectives

The research presented in this thesis addressedhfiin objectives:

« Accommodate the charging associated with high PEwepation while meeting the
operating constraints inherent in the availabletdleinfrastructure.

* Realize demand-side management (DSM) through fliexibarging and V2G/V2B/V2V PEV
moods to provide specific benefits for vehicle orgn@nd to collaborate with electric utilities
in the reshaping of the load so as to expand thaatty of the electric infrastructure to serve
additional loads to some extent (i.e., from thétyis economic perspective).

» Work toward greater owner satisfaction by exploniagl-time interactions and by offering a
strategy that would encourage PEV adoption by dsivig.e., from a vehicle owner's
economic and fairness perspective).

* Implement a prediction module that would betteiflitate charging coordination.



* Analyze charging coordination in a three-phase listridhution system and so determine how

smart charging could support unbalance mitigatibileVPEV owners participate in DSM.

In view of smart grid’'s components, as illustrated-igure (1-3), this thesis contributes mainly in
employments of PEVs, customer options, and eneffigiemcy under the smart grid umbrella.
However, market and extensive incentive mechanisies in smart grids are beyond the scope of
this study. Figure (1-4) presents the researchctbgs along with the corresponding chapters that
cover them. The objectives are described in detaiie following subsections.
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1.2.1 Accommodate Charging High Penetration of PEVs

This study begins by introducing a novel methodcobrdinating the charging of PEVs in smart
parking lots. An intelligent and on-line control thed is proposed based on a fuzzy expert system
that assigns scores to PEVs in a charging queus. riiéthodology offers a trade-off between the
concerns of the utility and the needs of the vehahners to achieve greater satisfaction for both.
The developed solution assigns each PEV a chamiiogity, the determination of which includes
consideration of the grid, the vehicle, the baitemd the charger. To allocate priorities to PEVs
located in a parking lot, an aggregator employsimlyer of decision factors. The charging service
will thus be allocated to higher-priority PEVs bwithout violation of the operational practice

constraints of the grid. Two case studies evalthe@elgorithm for the proposed method.

1.2.2 Realize Demand-side Management/Demand Respons e by Incorporation of PEVs

The second objective addresses an approach tHaesdemand response (DR) by developing an
energy management system (EMS) for incorporatirgyeagated PEV in parking lots. This approach
includes real-time interaction between the aggmgand PEV owners, whereby the aggregator
proposes a number of offers and the owner respioasisd on his/her preference. The offers include
opportunities for both charging and dischargingdyags, with a corresponding discount for the fatte
Here, the aggregator incorporates a number of rdiftemodules to facilitate real-time decision-
making. Case-studies compare the proposed solwitbrconventional charging regimes, to ascertain
the effectiveness of the real-time interactive nhode
7



1.2.3 Explore Better Owner Satisfaction

New studies debate that the conventional approdeti-dRivers signing pre-specified contracts in
return for annual cash back- is unlikely to apgeadirivers. The third objective of this study thus
focuses on giving PEV owners flexible options a& thoment of plugging-in the vehicle, i.e., in the
on-line interactive method. This approach suppdnes owner in DR-cooperation by providing
convenience, whether or not he/she wants to digehidre battery for cash back, or he/she wants to
postpone charging until the lower energy tarifeinal arrives. Therefore, there will be no pre-sigin

contract violation penalty for these PEV owners.

1.2.4 Prediction of Future PEV Arrivals and their S tatus to Support Smart Charging

In addition to any already-present PEVS, the pattdrfuture arrivals also affects the aggregator’s
decision making. The fourth objective of this resbkas to implement a prediction module for the
aggregator, one that carries out two predictiokstathe number of future vehicle arrivals and their

corresponding energy-demand status.

1.2.5 Analyses Smart Charging Impacts in 3-Phase LV distribution system

Significant growth of asymmetric single-phase ckasgn the domestic area and, more importantly,
the uncertainties associated with PEV charging @meé duration, would present substantial phase-
unbalance and consequently reduce power-suppabikty and quality.

The last main objective of this thesis is to apiplg smart charging into the three-phase system
through adopting a more generalized form of theppsed interactive-structure, not only to provide
owners with an appropriate scheme for contributmd@R, but also to ensure that the three-phase

existing infrastructure distribution grid operatehin acceptable unbalance limits.

1.3 Thesis Outline

The thesis is structured into six chapters andgarized as follows:

Chapter 2provides a brief review of the relevant backgroamd the literature related to this
study. It begins by laying out the theories for PBddeling and then goes on to review impacts and
applications of PEVs in smart grids.

Chapter 3presents an online intelligent charging coordoranf PEVs in distribution systems. It
develops a strategy that enables aggregators ificppdirking lots to dynamically manage PEV

energy demands.



Chapter 4tackles the demand response (DR) by developirgnargy management system (EMS)
for incorporating aggregated PEVs in parking |okkis approach includes real-time interaction
between the aggregator and PEV owners and exglweesffect of various charge/discharge offers on
total demands.

Chapter 5addresses how smart charging can be used to $uppg efficient energy delivery and
phase unbalance control, while improve DR contidng by the PEV owners. It extends the idea
presented in chapter 4 to evaluate the impactsEdfsPin three-phase LV distribution systems.
Moreover, the potential of PEVs and V2G applicaiiomitigating phase-unbalance is studied.

Chapter 6summarizes the thesis findings and outcomes, iboitibns, and suggests potential
future works.



Chapter 2

Literature Related to PEVs: Background and Previous Research

Interactions between plug-in electric vehicles (BE®nd an electric grid, especially the distribatio

sector, can be viewed from two different standoitite impact of the PEVs on the grid and their
potential applications with respect to grid supp®his chapter first provides background about PEV
modelling and then addresses the impact of high PENetration on the distribution grid. The

research and solutions related to charge coordmétiat have previously been reported in the
literature are then examined. The application oV/®Bs smart grid loads that are controllable by
means of smart charging/discharging schemes is teerewed. The chapter ends with the

identification and a discussion of the gaps in dradvbacks of prior studies.

2.1 Infrastructure: Aggregation Role in Public Acce ptability

Although emissions and oil prices are the primaiyeats impelling policy makers to deploy electric
cars, if customers are unwilling to pay for thes@igles, the transition to electric transportatiat

be impeded because very few drivers would rely nd-lsased electricity as an energy resource.
Public acceptance is therefore an essential cormparigoolicy making. With the goal of achieving
customer acceptance, a number of alternatives warently offered by the automobile and power
industry; hybrid vehicles that provide the advartafioperating in a non-electric mode were thd firs
of these solutions. However, a new generation ghaced vehicles, including fully electric PEVs, is

emerging every day and will be available over teetiiew years (Fig (2-1)) [4].

A

Electrification

>

Time

ICE: Internal combustion engine  BEV: Battelgotric vehicle ~ FCV: Fuel cell vehicle

Figure2-1 Electrification trend of advanced vehicle teglogies [4]
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The fully electric cars of the near future will tége an infrastructure of electric stations andkjyey
lots distributed throughout cities, as well as dxédts capable of rapid recharging. The infrastmectu
must be reliable and able to ensure the chargereelto reach the next destination. According to
SAE J1772 the North American standard for electric chargeve connections are necessary [15]:

* A power connection for electrical energy flow, and

« Bidirectional communication between vehicles aredtstribution sector as well as control

Electrification of vehicle fleets presents a prangssolution, since the power sector has in place a
reliable and highly efficient infrastructure thaanc provide energy for such vehicles. However,
charging plug-in electric vehicles (PEVs) imposesaaditional load on the power grid. Although,
opinions are divided about the impact of PEVs atrittiution grids, there is general agreement with
respect to significant effects of mass operationP&Vs with uncontrolled charging regimen
electric grid assets. In fact, electric utilitienaot communicate with each individual PEV to manag
their charging and avoid any congestion in therithistion line. A controlling strategy could be
directed to a single vehicle, or to a group of elds. An effective approach would benefit from a
supervisory control system, similar to SCADA syssetimat manage aggregation of PEVs. Therefore,
the concept of an aggregator has been developegitesent a commercial medium/agent between a
grid operator and multiple vehicles through a t@éabidirectional communication link (see Figure
(2-2)) [16].

(5] 2
=
Utility 2 D O
&0 Fleet of EVs
w | < -

Figure2-2 Aggregator’s Role as a Medium

The aggregator collects the available energy of PRiteries to deal with grid operators, or Energy

Service Providers (ESPs), and to manage the clipsginedules of the batteries. Aggregation of the

1. SAE J1772 is a North American standard for eieait connectors for electric vehicles maintaingdthe Society of
Automotive Engineers, which covers the general fgays electrical, communication protocol, and perance

requirements for the electric vehicle conductivargle system and coupler. In Europe, IEC 61851 eppdi equipment for
charging electric road vehicles.

2. When a vehicle starts getting charge right aftisrplugged in to the grid.
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PEVs would also be utilized to support smart gris offering ancillary. Stated simply, the

aggregation role involves how the battery statekafrge (SOC) is managed.

2.2 PEV Modeling: Battery and Charger

The literature proposes integrated models for PEVsystem-level studies. These models mainly
include the battery and the charger. To model tehgs real-time charging power and demand
profile, the battery’s SOC, voltage, current, and gide interface are required.

As the most important component of a PEV, a battdrgracterizes the vehicle under several
points of view, such as energy and power capaailygelectric range (AER), lifetime, etc. The
lithium-ion (Li-ion) battery-type has become thesnhpopular type of rechargeable battatye to its
good energy density, memory-less effect, and slkosg lof charge (when it is not in use). Recent
studies have modeled vehicle batteries using SCfieasnly state variable [17, 18]. Here, the bgtter
is modeled using a controlled voltage sourcg)(¥h a series with an equivalent battery pack
resistance (R as shown in Fig (2-3). The terminal voltagelt# battery is Y and the SOC, the only
state variable, is defined as (2-1):

SOC:i (2-1)
nom
where,
Q = the actual capacity/energy (Ah) stored in thtdoy,
hom = the nominal capacity (Ah) of the battery.
W=,
Ri

SOC +
Voc Ve

Figure2-3 A typical battery model [17]

Neglecting the battery efficiency, the SOC variatduring charging/discharging is expressed as (2-
2):

! . According to [18], 70% of PEV batteries in 20d® be Li-ion.
12



dSOC_ i
dt Qnom

where,

(2-2)

i = the charging/discharging current

In [18], battery voltage is shown as a functiortloeé actual capacity, (Q), and consequently is a
function of the SOC level. The terminal voltagetioé battery pack, (M, is thus in (2-3). Voltage
drop is positive during charging and negative dymischarging. Hence, an integrated PEV model
could be represented simply as a battery and chaagen Figure (2-4). On the grid side, the PEV
charger is supplied with grid voltage J\and absorbs the curreigtduring charging. On the battery

side, \ackandi identify the terminal voltage and the current absd by the battery.

Vpack :Voc+ R eq ! (2-3)
R. i
W O—
I
‘_
———0
Voceq 4
UPH<=0° Vs EV Battery "
' Charger ¢

Battery madel

Figure2-4 A integrated PEV model [18]

2.2.1 Charging Characteristics

The standard charging of a Li-ion battery is conagosf two distinct operational regions (Figure (2-
5)): the constant current (CC) until the voltag@erpimit is reached, and constant voltage (CV)lunt
a SOC level of 100% is reached [18]. Since the wtuipltage of the battery is a function of its SOC,
the battery power is also being a function of ét(2-4). Consequently, the energy exchange for each

individual vehicle will vary based on the battei@G.

Rt (SOQ = ( SOL i (2-4)
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Figure2-5 Voltage and current characteristics of thedri-battery during charging [19]

2.2.2 Discharging Characteristics

Similar to charging characteristics, dischargeagutis a function of the SOC, which drops according
to the SOC'’s reduction. Figure (2-6) illustrates #oltage discharge curve versus the SOC of arLi-io
battery [20]. The non-linear voltage depends onabkial battery charge, meaning that when the
battery is almost completely discharged and noeatris flowing, the voltage will decrease
significantly. The battery has a flat declining tagle curve in the usable discharge range. Studies

show that an SOC window of 20-90% is a suitablegneindow to use for PEV batteries [18].
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Figure2-6 Voltage and current characteristics of thedr-battery during discharging [20]
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2.2.3 Li-lon Battery Cycle Life

The SOC vs. cycle-life curves show the percentdghe original charge capacity as a function of
cycle use (i.e. charge, then discharge). Fig (8Hws the SOC vs. cycle-life for Li-lon battery
technology. As can be seen from this figure, tlselthrge capacity decreases approximately linearly

with the cycle number. If the SOC criterion is 8880%, this particular battery can last roughG0D,

80.00%

60.00%

cycles [21].

40.00%
20.00%

0.00%
0 1000 2000 3000 4000 5000 6000 7000 8000

=Number of Cycles

Figure2-7 Battery SOC as a function of cycle-used [21].

2.2.3.1 Battery Efficiency

At higher SOC, the battery has larger open ciragitage and smaller resistance. These two
parameters are sometimes regarded as constams,tls@y do not change much over the full battery
operating range, e.g. 30/20-90%. Fig (2-8) illussathe efficiency of the typical battery during
discharging and charging. The battery has a higbhdirging efficiency with high SOC and a high
charging efficiency with low SOC. It seems that tiet cycle efficiency is maximized at the middle
range of the SOC [22]. Therefore, the battery apmracontrol unit of a PEV should control the
battery SOC in its middle range so as to enhareelerating efficiency and depress the temperature

caused by energy loss (high temperature would dantegbattery).
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Figure2-8 Typical battery charge and discharge efficief2@}

2.2.4 Charger Characteristics in Smart Parking lots

The introduction of smart garage with charger ficilrepresents an interface between the
transportation network and electric power systelmens, the charging/discharging infrastructure and
control system needs to be widely available [2]e Tgarking facility should be capable of bi-
directional power flow to either charge or discleagar batteries, and should be able to hold either
process for more flexible controlling purposes.

The bi-directional charger should charge the PEhéstery while producing minimal harmonic
currents, and also should be able to provide enaagi to the grid (V2G) or to the building (V2B) or
to other PEVs (V2V). The charger should functionosthly in both directions and draw a clean
sinusoidal current in phase to avoid harmonic eusr@nd poor power factor. Similarly in battery
discharge mode, the charger should return curreatsimilar sinusoidal. Different electronic cirsui

with the same topology shown in Fig (2-9) can fulfiis requiremenrit[23].

1. In the battery charging mode, the AC currenispashrough a filter to remove unwanted frequemsygonents. Then,
the AC current is rectified into DC current as @spes through the bidirectional AC-DC converteincé& this AC-DC
converter output voltage might not match the vatafjthe DC energy storage, a bi-directional DC-&Dverter ensures
the proper charging voltage is supplied to thedoattin discharge mode, the process is reverseel|&dves the battery and
is changed back to the proper DC voltage with ikgirectional DC-DC converter. This DC currentligeh inverted into AC
by the bi-directional AC-DC converter. Then, it pas through the filter, which smooths out the A@ent so it is suitable
for injection back into the grid [23].
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Figure2-9 General bi-directional charger topology forgirithree phase [23]

Charger facility level affects the energy exchanB®RI introduced three levels of charger
standard applicable for North America (Table (2-13). For smart garage with charging and
discharging abilities, Level-1 and Level-2 will liieal choices, since a Level-3 charging statioth wil
dramatically increase the power flow capacity regment. Level-1 charging only provides a small
amount of power (maximum of up to 1.44 kW), andilessin prolonged charging time. The Level-2
(also known as fast charger) method uses a 208@VAC, single-phase, up to 80-amp branch
circuit. Since the typical charging time for a 1Wik battery pack will be 1-2 hrs, it is the primary
charger facility for the PEV in both private andbfia facilities [2]. Table (2-2) also shows where
charging stations can be located by charger typg [2

Table2-1 Charging Levels Standard for North America [24]

Charging Level Specification
1 120 VAC, 15A (12A), Single-phase, 1.44 kW/h
2 240 VAC, 40A" (32A), Single-phase, 7.7kW/h
3 480 VAC, Three-phase, 60-150 kW/h

*Could be 20 A
** Could reach80 A (100 amp rated circuit)
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Table2-2 Charging stations based on charger type [25]

Charging Station Type

Level-1 Level-2 Level-3
Residential
Single family houses
Multi-family units
Commercial/lEmployment Centers
Privet (offices complex, business campus) 4 4
Commercial/Retail (fleet and delivery service) 4 4
Public access (airport, hotel, grocery store, ltakpnall) v v v
Government, university, and municipal facility 4 4
Transit hubs v v
Fueling stations v v
Public
Parking lots 4 4 4
Street 4
Interstate and highways 4

2.2.4.1 Communication and control

Smart grid is all about how data are efficientlyneected. The primary purpose of employing
communication infrastructure is optimizing grid ege transfer to PEVs. There are two basic
approaches currently being adopted for communicdigiween PEVs and the aggregator. One is the
wireless communication approach and the otheres-twe signaling approach.

In the first approach, control links mainly incluaereless access, positioning, and on-board
metering. Secure wireless communication betweeragfggegator and the PEVs, and between the
aggregator and the control center is required delBEV verification, and PEV and owner privacy
protection. The on-board charger needs to be egdipgth Telematicscommunication unit is used
for the transmission of data, GPS geographic lonaithformation, and receiving information from

the aggregator and the control center. The standaliéd Wireless Access for the Vehicular

1. Telematics, which is the integrated use ofcmtemunications and informatics
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Environment (WAVE), is the standard that addresses and enhancdig@retransportation system.
An example of control panel, suggested in [26§hewn in Figure (2-10).

The SAE standard serfe®stablished various protocols for communicatioarguower line
including Level-2 outlet and on-board charger al a& DC chargers and PEVs. The data signals as
follows:

» Identifications: vehicle ID and customer ID;

» Energy requests: energy request, power rate regemsigy available, power available,
etc;

e Timing information: time charging to start/end;

« Pricing: request scheduled prices, publish priefind rate time period, etc.;

« Load control: load control, cancel load controlpad event status request/response,
request scheduled events;

* Vehicle info/status: time at connection, batteryCS€art, battery SOC end, battery SOC
actual, vehicle type, usable battery energy, custanode preference.

AUTO CHARGE CONTROLLER
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Figure2-10 Suggested design of vehicle smart dashboantiot§26]

2.2.5 Cost of Charging versus Gas: A Case in Ontari o

According to Ontario Ministry of transportation,72 a PEV typical battery will cost less than $300
per year on average, or about $0.78 per day tayehatrnight (Value for Nissan Leaf, adapted from
Natural Resources Canada 2013 Fuel ConsumptioreGusihg Ontario off-peak electricity prices as
of May 2013, based on an average annual drivirtgmiie of 20,000 km).

While, a typical plug-in hybrid EV will cost aboft700 per year, or $1.92 per day for fuel

including gasoline and electricity costs (Value @inevrolet Volt, adapted from Natural Resources

1. From IEEE 1609 family.
2. SAE J1850, SAE J2293, SAE J2836.
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Canada 2013 Fuel Consumption Guide, using Ontdfipeak electricity prices as of May 2013 and
a gas price of $1.30/litre, based on an averageairdriving distance of 20,000 km). Comparable
gasoline cars can cost between $1,000 and $2,509epe to fuel - up to eight times more money
spent each day (Estimate based on values from &ldRasources Canada 2013 Fuel Consumption

Guide and a gas price of $1.30/litre).

2.3 Impacts of PEVs on the Distribution Grid

Market trend estimation is important to precisedgess and predict the potential impacts of PEVs on
the energy sector. By 2018, there will be at |&&§ 000 highway-capable PEVs on Canadian roads
[28]. According to International Energy Agency (IEAhe number of charging stations has increased
fivefold between 2010 and 2012, where slow chaigfeastructures have been growing dramatically
greater than the fast charging stations as show#girf2-11) [29]. Significant growth of asymmetric
single-phase chargers in the domestic area ande mmoortantly, the uncertainties associated with
PEV charging time and duration, would present sufigtl phase-unbalance and consequently would
reduce power-supply reliability and quality as wedl the transformer utilization rate. In addition,
phase-unbalance may lead to excessive curreneinghtral line, and voltages at the customer side

may fall outside acceptable levels [30, 31].
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Figure2-11 AC fast charger growth versus slow chargewgidetween 2008-2013, [29]

Preparing for the rapid growth of PEV penetratiom groper installation of charging stations
needs distribution networks to be expanded andldeeéd through careful research, planning and
investment. Overall, potential impacts of the PEWsthe power grid, especially on the distribution

sector would include as follows [25]:
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* phase imbalance;

« harmonics at the battery charger and other powalitgussue¥
* line overloading and congestion;

e reactive power demand;

» transformer degradation and failure due to thewwalloading;
» circuit breaker and fuse blowout.

Recharging the PEV battery is typically carried wutesidential garages equipped with standard
outlets and taken several hours. The uneven disiib of single-phase chargers can results in sever
voltage magnitude deviations and voltage unbaldB2e 33]. A qualitative analysis done in [34]
illustrates that charging high penetration of ti&/B increases fault currents significantly. Diffietre
fault analyses have been simulated for a distousiystem. Fig (2-12) shows two scenarios of fault
current due to single phase to ground and phagskease faults in the feeder.
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Figure2-12 Feeder current with different penetrationhaf PEV's

A study in the UK reports that with fewer chargérg. lower percentage of PEVs being charged),
the load diversity is lower, resulting in a larg@riation in the current imbalance. Conversely, mhe
the number of chargers switched on is high, therdity was high, resulting in a lower average
current imbalance [35]. It is shown in another wbykF. Shahniat al, [36], that PEVs have minor

effect on the voltage unbalance at the beginning &V feeder. While, the voltage unbalance is
increased at the end of the feeder to more thastémelard limit.

! . Such as sub-harmonics signal generation [24]
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There are two approaches currently being adoptedilbalance studies of PEVs. One is the effect
of converter-based PEV chargers on the distribugiich such as the research conducted [24] and the
other is the aggregated effects of the PEVs orsylséem’s phase unbalance [37]. In [24] voltage
unbalance is analyzed through incorporating théagel source converted (VSC)-based PEV model
into a three phase distribution power flow algaritiThe PEV model in load flow analysis comprises
a voltage source converted (VSC) and a battery .patle proposed schematic diagram and
equivalent circuit of the VSC-based PEV for reaetpower control in power flow studies are
presented in Fig (2-13), where the model allowssagiower exchange and regulation of bus voltage
magnitude.
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Figure2-13 VSC-based PEV schematic and the equivalegtatia[24]

To determine effects of PEV charging on the distitn transformer life-time, M.-J.
Rutherfordet al.compare transformer’s aging acceleration facté”A(Fand the Loss-of-Life (LOL)
for different scenarios of Lithium-lon battery cgang load [38]. The author found that an intelligen
residential charging station, in which charging Wooe delayed or coordinated so that one or limited
number of them could be charged at once, can nueirttie charging impact on the distribution
transformer aging. Similarly, in [39] impacts ofethPEV charging on transformer hot spot
temperature and loss of life are simulated. Thaltegonfirm the findings of [38], in which charge
control would help utilizing the capacity of traashers more efficiently.

Perhaps harmonics are the most serious disadvaotagmnverter-based devices in smart grids.
PEV battery chargers are high power nonlinear dsvihat can generate a significant amount of
current harmonics by drawing low voltage AC powed @onverting it to DC. This process involves
rectifying the AC signal and running the rectifisignal through a DC/DC converter. Both of these
processes produce harmonic distortion in the distion system, which cause problems on the power
system, including excessive neutral current andstamer hot spots. A number of studies address
how fundamental and total harmonic distortion cdubg battery chargers lead to suboptimal
generation dispatch to serve the large PEV chailgiads [40-42]. The analysis, presented in [42], is

based on harmonic power flow for non-linear loadisharmonic frequencies, the power system is
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modeled as a combination of passive elements amaoméc current sources, each injecting harmonic
currents at different frequencies into the systéig. (2-14) and Fig (2-15) illustrate a sample of
charger waveform, system load profile and total TéfDroltage in a distribution system with a low
penetration of the PEVs.
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Figure2-14 Current waveform for the PEV charger and §fsesn load profile [42]
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Figure2-15 System total THD of voltage due to low pernt@raof the PEVs [42]

2.4 PEV Charging Coordination

Recent years have seen a rapid growth of large bblikerature on the deployment of PEVS in smart
grid. Energy flow direction is a major area of ne&t within the literature devoted to PEV charge
scheduling, which is classified into two main categs: 1) charge-only and 2) V2G/V2B

scheduling. On the other hand, to tackle the prebplessure due to additional energy demand of

PEVs, electric grid operators and planners havéoexg various solutions to properly adopt PEVs

' - Vehicle-to-Building
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and mitigate their impacts. Planning alternativesmnty include meeting the demand growth through
upgrades to grid infrastructures or installationDoétributed Generations (DG) [8, 43]. However,

planning alternatives reflect long-term horizonsd &easible solutions require consideration of
several prospective factors, such as load growthugndated PEV models and newer technologies.
Operational and demand response solutions arebiting proposed as a means of minimizing the
additional costs related to planning and renewlaitioms.

Among the studies that address PEV charging coatidim, some propose scheduling of PEV
charging during off-peak hours [3]. However, witthigh penetration of PEVs, even if all charging
occurs at off-peak hours, upward pressure on bligidn components will still exist. As well, a
convenient time for the owner to charge the vehaeld the preference of the utility might conflict
[4]. Consequently, grid operators are trying flégibcharging scenarios that simultaneously
accommodate the technical limits of the grid arsb aatisfy vehicle owners. The literature reports
the investigation of price-shift charging coordinatas a more-easily managed strategy [44-46], or
the use of variable charging power set points [&2}th approaches involve different objective
functions [9, 10, 12, 18, 22], [47- 56]: eitherdahgh the adjustment of grid operational objectives,
including loss minimization and maximizing load tiag peak shaving, reliability and demand
response [3]-[55], or through the maximization ehicle owner revenue [47] and [51-53]. The focus
tends to be either on individual or aggregated RPiEviagement [55,57, 58].

To determine the effect of PEV charging on powasés, Clement-Nynst al. use the quadratic
programming technique (QP) to minimize losses diviidual vehicle batteries charging at residential
outlets [57]. Regarding the hourly distributiontbé vehicle’s trip, three charging periods are enos
based on their availability at home. Two differapproaches are compared regarding the load profile
at any charging duration. The first approach isetasn a deterministic (i.e. historical data) load
profile. However, due to the inadequacy of the mest data, the second approach applies an error in
the forecasted daily load profile (i.e. the stoticaapproach) They also compare the dynamic
programming (DP) approach with the QP to find thstdr optimization methédit has been proven
by Sortommeet al. that load factor (LF) and load variance correlateth system losses. They
demonstrate how loss minimization can be realize#d l@ss computational time through minimizing
LF as the objective function and consequently it lsatter support coordination of PEVs in real-time
[58].

' - The fixed input parameters are converted intmoan input variables with normal distribution.

’ - Due to larger matrices, DP is slower than QR.[57
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A methodology is proposed in [48] for schedulingBEenergy transactions in the same way of
the unit commitment (UC) practice for generatioiitsuriThe objective is to reduce carbon emissions
and to maximize profit while fulfilling different nactical constraints, such as the forecast load,
parking lot limitations, SOC, charging/dischargimdficiency. However, Khayyaret al. latter
declared, in [22], that adopting the UC method VviAtEs adds additional complications and that the
optimization cannot respond to operational requéet® in a timely manner. The proposed objectives
in [48] are also viewed only from the grid perspectwithout consideration of the needs of the
vehicle owners.

To determine the driver charging pattern, autharg5B] implement fuzzy logic system which
simulates the charging pattern based on the cutettery SOC level and parking duration.
Therefore, an estimation of vehicular charging Ipaafile and its impact on the total grid loadirsg i
addressed. This study argues that the battery’s &@Cthe estimated parking duration are the two
main factors that govern a driver’'s decision whetbrenot to charge. Other factors such as driver
income, electricity availability (especially duringn-peak demand hours), charging rates (i.e.,
slow/fast), and other economic factors have beghented in [59]. It also mentions that additional
factors such as climatic conditions may affectimeadts decision to charge. These additional factors
are not investigated by the authors due to thegilorespecific nature. However, the effect of climat
on the SOC is addressed in [8]. The proposed fureyence system in [59] uses the SOC and the
expected duration of parking as the inputs in tleeleh Using a centroid-based de-fuzzification, the
output indicates whether the driver will start afiag the vehicle or not. This decision-maker,
however, is only responsible to simulate a driveléxision to start the charging process. Once a
decision to charge is made, charging will continumgil the battery pack is fully charged or the
parking period ends, whichever occurs first.

To better formulate dynamics of vehicles’ arrivalsd its effects two solutions are proposed in
[52], namely, Global Scheduling and Local Schedulaptimization. The global optimal scheduling
searches for the optimal charging power for all BElUring a day by solving a single global
scheduling optimization in order to obtain the mmal total cost. However, the global scheduling
solution appears to be unreasonable due to ladgkfafmation regarding future loads, new vehicle
arrival time and SOC. Therefore, local schedulipgmization is performed in an independent and
distributed manner to tackle large numbers of PNt dynamic arrivals. Two assumptions were

considered in [52]: losses are negligible, and pagestion happens in lines. Although, these
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assumptions allow the algorithm to neglect the igpatectricity price on the study, it might over-
simplify the analysis and results due to neglectimgrloading issues as operational limits.

In contrast, a coordinated charging solution fobljustations is addressed in [59] using a
stochastic model for the PEV’s arrival at the pagKiot. It applies the Poisson model for the vediicl
arrivals and assumes that charging is constant. Two cuateti charge scheduling methods are
compared; (1) Shortest Charging-time First Serwe @) Longest Charging-time First Serve. Both
methods attempt to minimize the number of PEVs tn#s the deadline for getting charged
(meaning, to be served before departure). Thisystuglwever, neglects the effect of the SOC of the
batteries, which has a significant effect on tharghng schedules.

A few authors have addressed the PEV owners’ @eber in charging procedure. A real-time
PEV load management method is proposed in [51] imynmzing the total energy cost for charging
PEVs and the corresponding grid loss and voltageten. It assigns preference time zones, which
have different energy tariffs, to the customerscluarging their vehicle. In each step of the athoni
a sensitivity index was used to identify the moperapriate PEV to be recharged with the objective
of causing less of an increase in power lossea. different work, a method similar to theternet
traffic servicedifferentiation is proposed in [53] as a meangaitrolling charging of PEVs, based
on which, owners who are eager to pay more cangehamore quickly than other owners. Also in
[60], we see how historical driving data are useddsign the lowest adjusted electricity price agnon
the charging hours of an individual PEV. The aggteg clusters a set of transport behavior from
previous days and matches them with the most sifal/ that plugs in.

Moreover, a number of authors have considered PBarging coordination by means of
renewable DGs. Francet al. address PEV charging coordination in an unbalahcee-phase
distribution system with the presence of active seattive power injection by DG units [37]. Their
results indicate how unbalanced PEV-loading detst@s the voltage profile and increase the
operational costs. A priority scheme allows PEV ewsnto choose between charging the batteries as
quickly as possible and charging them with a minimrenergy tariff. An energy economic analysis is
conducted in [61] to charge PEVs using photo-volgaanels (PV) at a workplace parking garage.
Three cases (night time at-home charging, daytinaeging without a PV and daytime charging with
a PV panel) are compared. The results show theg then optimal size of the PV panels that balance

the installation cost and the cost of electricityghased from the power grid to give the smallest

! - The Poisson model was used for bus passengenugmedmarket customer arrivals before [49].
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payback period. It is discussed in [61] that emipigyPV panels to charge PEVs not only does help
to reduce the load from the power grid and afféleés cost of charging, but to help displace CO2
emissions from the power grid (specifically whee ttarbon tax is realized). Similarly, authors in
[46] present a real-time energy management schengrifi-connected commercial charging stations
with the presence of PV-based renewable resouftesalgorithm aims at reducing the overall daily
cost of charging the PEVs and contributing to sh@wihe peak of the load curve. Uncertainties
associated with PV power generation and PEVS S@@us and departure time are taken into
consideration through proposing a fuzzy controttermanage the random energy available in the
batteries.

In contrast, grid-connected and islanded fast-chgrgtations are analyzed in [62]. The main goal
is proper control of the fast charging infrastruefuin combination with wind-based renewable
generation, to compensate active and reactive pawdifferent conditions, so as to improve the
operation the system. Two supervisory control egigls are developed to manage the flow of active
and reactive power. Fast-charging stations is otlatt to optimize the operation of the network,
while in grid-connected condition, the frequencymaintained by a large external grid, and so the
main issue is how to control the fast-charging pdare to regulate reactive power for voltage
support. The control strategy includes applyingréauired reactive power in order to maintain zero
voltage variations. The supervisory control at ghhlievel first verifies the availability of poweno
each charging station and then decides the reamtiniibution per station, whereas in the islanding
condition, the concern is to maintain the balanewvben active and reactive power. A synchronous
generator is switched on to control the frequemaywltage of the islanded network.

In addition to public stations, some research foonsindividual homes, equipped with solar
panels, with one or few PEVs in the garage. A hbalgkelectricity management system is proposed
in [63, 64] with collaboration of PV panels and PB¥ditteries as a part of Yokohama Smart City
project. Using an agent-based transportation sitoyléhe authors in [63] find that to have carbon-
neutral vehicles PEVs need to be charged by rereveatergy sources such as PVs. However, this

finding seems like a significantly region-specsimution.

2.5 Applications of Grid-able PEVs in Smart Grids
The idea of vehicle-to-gridV2G), also named as Grid-able vehicle, establishe1997 by Willett

Kempton, explores the potential economics of PEMmected to the power grid. The basic goals of

- Providing power to the grid by electric vehicteithin their parking duration.
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V2G studies are basically to explore the envirortaleand economic benefits of the PEVs and
enhance the product market. Recently, a number28 ¥Wtudies were introduced as pilot projects.
The Electric Power Research InstitutdEPRI) estimates that, by 2050, V2G would reduce t
dependency on global, central-station generatipacity by up to 20% [65].

All studies investigated V2G applications focuscamtrolling the reverse power flow between the
charging station/plug-in and the connected nodeeaqrid regarding a specific objective and number
of constraints. However, the key issue in V2G delgseon the proper scheduling of grid-able vehicle
power transactions in parking lots/charging stati®mce PEVs have a limited capacity in the kW
range and grid demand power is carried out on MWhea, aggregation plays a vital role in
collecting the available energy of PEV batteries dad support. Studies confirm that, practically,
V2G cannot provide base load power at a competinee, and it should only be sold to high-value,
short-duration power markets that offer ancillaeywéces/spinning reserves to the grid [12].

More importantly, economic analysis indicates ttie profits from participating in frequency
regulation, as a component of the ancillary servége higher than those from reserve services [12,
66]. Consequently, as observed between 2008-202& kesearch and pilot projects have mostly
been dominated by utility-side profits of grid-alfEVs, such as grid regulation and balancing
renewable generation, [12, 49, 67, 68, 69], as waellminimizing losses through voltage profile

improvement [50, 51, 70].

2.5.1 Frequency Regulation

Frequency regulatior{or simply regulation) is an ancillary service pessible for maintaining the
frequency of the grid at its nominal valuee. controlling frequency fluctuations in thécgmainly
due supply-demand imbalanédsvo different regulation services can be foundeda®n the
matching between power generation and total loagl(e (2-16)) [12]:

» Regulation-down service: matching generation ardi lvhen the former is larger than the
latter, i.e., there is an excess of power in thd tirat causes an increase in the value of the
frequency.

» Regulation-up service: matching generation and lvaén load is larger than generation.
Regulation services can be provided by dispatchergeration to match the load.

1_Itis 60 Hz in North America, and 50 Hz in Eueognd Asia.
2. Frequency regulation is conventionally donedmpr plants by Automatic Generation Control (AGC).
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Fast-responding generators are usually requiredrémuency regulation in wind power systems,
photovoltaic generators, or natural gas and cods.uhlowever, they tend to be expensive and/or
have large carbon emissions. Controllable load$ siscbatteries and flywheels can also provide
regulation-up and -down services. Among the angiliervices provided by PEVs, regulation has
one of the highest market values. Moreover, ir@difable for both PEVs and market operators, since

they can quickly switch through their power eleotcanterface [12, 71].

Regulation up
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V
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Regulation
down areas

Expected load
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Figure2-16 Examples of the frequency regulation [12]

Frequency regulation by PEVs provides regulatiomstfop during battery charging/discharging,
respectively. If frequency regulation is neededh®y power grid, the ISO requests V2G regulation to
the aggregators and determines market pbesed on bids submitted by aggregators. The revenu
scheme adopted by [67] considers that although\a ireEeives energy while providing regulation-
down, it provides a service that must be paid fpratiowing some energy to be exchanfged
Therefore, the total revenue of PEVs will be theutieof both capacity price and electricity prigée
goal here is to allocate power among the PEVs fogrpart of an aggregator for frequency regulation
service while at the same time achieving the SO@PEVs regarding the minimum variance from

the average. The objective function optimizes tgregators’ profits.

1 . Different structures of the ancillary service rket price are available. A simple one is where phige has two
components: 1) a capacity price (which is paidifaving power available for a specific service fpr or down-regulation)
and, 2) an electricity price (which is paid for thewer actually being delivered in real time for @p down-regulation)
[71]. Capacity price is paid to have reserved add power, whereas electricity price is paid amhen power is actually
used. However, a study of market price structuteigond the scope of this proposal.

2_ The cost for regulation down is 0, given thajulation-down is the same as charging the vehibles, it is “free

charging” when the PEV provides regulation-down.
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On the other hand, vehicles under the control cdggregator have two strongly related aspects:
(1) the consumer side aspect, and (2) the supgitieraspect. It may seem reasonable that a vehicle
being charged could be interrupted by a regulatimmmand. Thus, even the charging duration of a
battery could be accounted for by regulatiofihe motivating idea regarding V2G is profit and
revenue. That is, if the vehicle changes from dhngrgs battery to providing service for the grilde
energy payment direction should be reversed’[4Tdw system-wide optimality would be achieved
by single vehicle optimality is discussed in [43{ich that the optimal charging control to maximize
revenue of each vehicle would lead to the maximememue of the aggregator.

Additionally, parking departure time is an impottéarctor in optimal charging/discharging control
for PEVs. A driver would sign a contract to keep tehicle connected to the grid for a certain
duration in return for incentives (such as, fotanse, a life-time battery warranty) [67]. Thereyma
however, be occasions when drivers drive away betioe pre-notified departure time and thus the
aggregator may not succeed in reaching the prededdcl optimal result to provide the contracted
regulation power. Optimal control depends on opittictaarging/discharging sequences, including
charging/discharging duration and rate. Since tiigk @perator initiates a contract based on theydail
and hourly basis of required power, a minimum dfirhocontrol unit would be applicable. In [67], a
charging sequence control problem for PEVS is axdde in order to maximize the aggregator’'s
revenue in a given charging period. By applying dyeamic programming technique, the optimal
charging sequence would maximize profit while $gitigy the state of charge at the end of the
charging period.

In [47], it is assumed that target SOC is alwaygegias a point value and solves the control
problem with respect to charging sequence and tiwargte only. Moreover, for charging control to
maximize revenue, the charging rate should be reitter 1. Therefore, the proposed method in [47]
considered only when to turn the charging operatioior off to achieve an optimal control result. To
do so, it employed dynamic programming to extrde optimal charging pattern for individual

vehicles.

L. However, as the scale becomes significant bycbsimultaneously operated by an aggregator, it wealse a serious
oscillation to the generation amount. Thereforeegulation request should not interrupt vehiclest #ire under-charging
operation for their own sake [47].

2. Regular one is a supplier-side operation and Wi&@le is a consumer-side operation, and hence mequ direction is
opposite.
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It is discussed by authors in [22] that the pricmgthod employed in [47] is based on day-ahead
pricing and that neither a frequency regulatiomaigqior real-time power is required for regulation.
However, [72] proposed an algorithm using real-tipnieingl. Shiet al. apply the Markov Decision
Process (MDP) to design a V2G control algorithmarngkice uncertainty, in which both frequency
regulation and bulk power selling were consideré2].[ They propose a real-time pricing model, in
which the aggregator receives the pricing infororata few minutes, e.g. 10 min, prior to the
beginning of each hour. Consequently, the V2G obralgorithm runs for each individual vehicle,
which will stay parked for the next hour, to asagrtwhether the aggregator should charge its lyatter
for the next trip, discharge for selling power,use its available power capacity to provide fregqyen
regulation service. After gathering the controllisignals of all of the PEVs, the V2G aggregator
sends the contract information (i.e., total poveebtly, total of power to sell, and total capaciy f
frequency regulation) to the electric utility priter the start of the next hour. This process isi@ar
out hourly. An energy management system from thityucompany will dispatch appropriate
regulation signals to the V2G aggregator basedhercontracted capacity.

Similar to [47], the objective of the V2G contrdgarithm in [72] is to maximize profit for PEV
owners. Profit here represents selling power amdiging frequency regulation service minus the
costs of purchasing power from the grid. This ofdjec needs to be maximized, as prices for
subsequent hours of a vehicle’s parking duratiom a@mknown and this uncertainty should be

modeled.

2.5.2 Voltage Regulation

In the same vein, much of the available literatnldress how PEVs charging management results in
dynamic voltage supports, while avoiding costlydgtipgrades [22, 50, 70, 73]. Grid losses are
minimized through voltage profile improvement irf©]%nd [70]. An energy flow is proposed which
acted as a control mechanism between PEVs andritheiging fuzzy logic controllers for voltage
compensation and peak shaving. Two fuzzy-basedatars are designed: (1) the charging station
controllef (at the charging station), and (2) V2G contrdligt the distribution node levél)The

L. Real-time pricing and day-ahead pricing are tiffecent pricing models in the electricity market.
2. This controller decides on the individual pagimiion of the EVs for charging or discharging.
5. The main purpose of the V2G controllef(2ontroller) is to control the power flow betweér tconcerned node and the
charging station.
4. The inputs include voltage and SOC, and thedtigenergy flow.
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objective of a V2G controller is to control the penvflow between a particular node and the charging
station to meet peak power demand and reduce eo#fag. Voltage rise caused by injection of PEV

energy into the"l node is approximated by (2-5):
AV, :( Py 1+ Qgy Xi)/Vi (2-5)

Grid support is provided by injecting active poweth a constant power factor of 0.9. However,
reactive support is not considered in this worke Plower injection by a PEV battery reduces power
losses and improves bus voltage of the network. @aeback of the model is its static and scenario-
based solution that does not take into considerdtie passage of time. A fuzzy-based solution is
proposed in [22], for controlling PEV charging, whetwo controllers continually regulates and
stabilizes the load and the voltage. The authoosvdtow large-scale aggregation of PEVs (such as
10 parking lots) would provide a significant powsrare for the grid and affect voltage and load
stabilization. The proposed smart grid model uses intelligent controllers for optimizing grid
stability of load and voltage, including: (i) fuziyad controllers, and (ii) fuzzy voltage controde
The controller measures the average of voltagés, god loading and total active generated power,
and continually regulates the generation to mateldemand loads.

» The fuzzy load controller (FLC) measures the vatagdotal load grid and total active power
generated. The controller, then, continually regpdahe generation to match the demand
loads.

* The fuzzy voltage controller (FVC) adjusts the cafoas and reactors in the power grid. It
measures the voltages, generation and consumptipoveer reactive from all buses. The
controller continually regulates the voltage arabgizes the grid. This controller regulates a
number of capacitors.

The proposed controllers were implemented in teoemarios, where a set of data for 10 parking lots
are employed:

» without parking loads and no intelligent control,
» with parking loads and no intelligent control;
» as intelligent controller of V2G.

However, [22] did not mention how to develop a fuzale basis for both controllers, which is an
essential part in fuzzy expert systems. More ingraly, there was no model evaluation to verify if
the results were the best possible results. Innaitysis of charging coordination, Fostdral. show

how effective PEV grid integration could minimizevsts, avoiding costly grid upgrades, and

disruptive impacts on the transmission and distiglou networks, coordinate with renewable
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generation, and incorporate individual users aeit tisage profiles [73]. Considering real-time pric
signals, on the time scale of seconds, PEVs previtlmamic voltage support for the distribution
network, which may allow increased penetrationdistributed photovoltaic (PV) solar arrays.

2.5.3 Phase balancing

Power grid operation is facing increasingly comptenditions arising from renewable generation
and domestic energy storage systems at the endsigeer Photovoltaic (PV) panels/solar units, a
good illustration of easy-to-setup intermittent rgyesource technology promoted for individual
household usage, are experiencing rapid growthfallidg costs worldwide. However, their large-
scale penetration will introduce challenges to pwver-grid daily operation, particularly in its
distribution sector [74, 75]n a more general sense, now that the graduaditiam to smart grid is
underway, the already-existing 3-phase electrid @gilikely to experience challenges due to the
random and stochastic nature of solar energy avtideinands [46, 76].

Research is currently being done to determine vemethirrent and voltage unbalance can be
diminished through the distributed action of enesgyrces or active loads, including PEVs. As
discussed by S. Weclet al, dynamic switching actions across the three phiaskalance residential
loads are costly [77]. Another approach is repla@imgle-phase inverters of PV units with 3-phase
ones, so as to inject more power into the phade tivé highest power consumption [77]. However,
this solution exposes owners to additional costsupgrading the infrastructure. Moreover, the
majority of residential areas are equipped with irkgle-phase power supply and only large
households have three-phase connections.

Additionally, the authors of [44] employ multi-agezontrol of solar units and PEVs to reduce the
imbalance factor. They do so by minimizing the cobtincreasing imbalance due to renewable
resources and PEV demand. To better understandebative effects of phase unbalance, some
research addresses the relevant issues througbreimanalysis. A linear approximation of voltage
drop and network constraints is used in [30] falt@ane smart charging coordination of PEVs in a
three-phase system. The study by J. A. Fernaetlak shows that one application of vehicle-to-grid
(V2G) and smart charging could be unbalance mirdtion by means of an economic profit

formulation [76].

2.5.4 Power quality enhancement

Although PEVs might cause some power quality issdee to their converters and frequent

switching, various studies contend that PEVs cgmrave power quality through contributing with a
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renewable energy source. For instance, PEVs dféeopportunity of storing wind and solar energy at
times of extra generation and use the power whenegeessary to improve power quality and
stability of renewable energy sources.

In [78], PEVs were employed as an active filterhwsblar energy sources. They present a control
design that allows for the correction of power dacdynamics as well as for the dynamic
compensation of harmonics currents. As photovolpawer varies with climatic conditions, there is
no explicit reference power for tuning. PV voltageeds to be adjusted according to solar radiation t
extract the maximum photovoltaic current. This atipent is made possible by regulating the
generator voltage and inductor current and by waryhe transistor cyclic ratio. Compensating
currents are then required for power oscillatione Tontroller measures the amount of current to be
injected by the active filter to compensate forlthemonics in the load.

The effectiveness of power quality V2G servicesadressed in [79] for keeping systems stable
through short-term local active and reactive powgrctions by PEVs connected to the grid through a
single-phase chargers. The reactive power injeat@mnpensates for voltage drops caused by motor
start-up or inductive loads, while active poweririgected shortly during PV transients in cloudy
weather or during low voltage ride-through of thé Bources. In a similar work, voltage sag is
mitigated by means of large dispersion of PEVs saagln airport parking aria or a mall parking lot
[80]. An index, called the compensation vehicletdadCVF) is defined as the ratio between the
energy requested by the vehicle batteries durinG ¢@mpensation and the total storage capacity
installed onboard. This index is used to analysergy and power and to evaluate the feasibility of
the V2G compensates for voltage sag. However, rafnthese studies address the uncertainty

associated with the availability of PEVs and theipacts on power quality enhancement.

2.5.5 Revenue Optimization

In contrast to utility-side profits of grid-able FE, some recent PEV research shifts attention to
customer-side profits, which seek to maximize psofif either the parking lot owner/aggregator or
the PEV owner by providing grid operators with mited number of capacity bids [81-84]. One
approach to maximizing aggregator revenue is syst@la optimality achieved by single-vehicle
optimality, such that the optimal charging contmmaximize the revenue of each vehicle would lead
to maximum revenue for the aggregator [12], [89, 8®dnversely, others assume that the aggregator

maximizes its profits, as a market participanthimita number of constraints set by PEV owners and

34



utilities [81, 84]. As a more up-coming and readistpplication of V2G, various studies propose V2B
applications to involve PEVs in benefits obtaineahf DR programs.

An energy cost sharing model and proposes a distiibalgorithm is designed in [85] using game
theory to encourage PEV owners to participate endharging and discharging batteries. Authors in
[86] optimize appropriate charge and discharge dinteroughout the day. Price curves from
California 1SO database are used to obtain realgiice fluctuations. Every vehicle is assumed to
have the same desired departure SOC of 60% (itnearr be discharged below this level). The
output of the optimization is presented as threguses, namely: vehicle selling power, vehicle
buying power, and vehicle not buying nor sellingiorscenarios are compared: (1) sell at maximum
price/purchase at minimum price for single transacper day, (2) multiple purchases and sells. Due
to issues surrounding the scheduling independehenah vehicle, separated optimization is applied
to schedule vehicles individually. However, the gmsed optimization solution does not reflect the
aggregation impacts of PEVs on the distributiorteays(especially in the case of multiple charging;
i.e. aggregated loads).

In another work dynamics of vehicles’ arrival araptoyed for scheduling charging-discharging
schedules, where two solutions are proposed: GiBblaéduling and Local Scheduling optimization
[52]. The global-optimum scheduling searches ferdptimum charging power for all PEVs over the
course of a day through solving a single-cost mirétion. However, the global scheduling solution
seems unreasonable due to a lack of informatidotofe loads and new vehicle arrival times as well
as their SOC. Therefore, the local scheduling dpttion is performed in an independent and
distributed manner to tackle a large number of PENte dynamic arrivals. Two assumptions are
considered: (1) losses are small and negligible @hdho congestion happened in lines. Although
these assumptions allow the algorithm to negleet gpatial electricity price in the study, they
nonetheless simplify the analysis and results lgyeméing overloading issues as operational limits.

Unlike [52], another study addresses energy lossethe cost optimization of PEV energy
transactions [51]. It proposes a real-time PEV loadnagement method by considering the
minimization of the total cost of purchasing/promhgc the energy for charging PEVs plus the
corresponding grid energy losses. It assigns prbertime zones, with different energy tariffsthe
customers for charging their vehicle. The enerdggepis employed in a similar work, establishing a
decision-making strategy for PEV batteries witharelgto the state of charge, time of day, elecyricit
prices and vehicle charging requirements [87]. d&&sion-making find an optimum strategy on how

to dispatch the battery power through three rulets:se(l) three states of
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Charging/Discharging/Undetermined are assigned he PEV based on the SOC, (2) an
enable/disable control signal from the aggregasoiintroduced to specify whether a vehicle is
available for V2G service, (3) the final rule udedselecting the level of discharge/charge curhent
time period reflects the prevailing price (i.e.,yQame/Night time price). The 3rd rule is desigrted
take into account the price arbitrage opportunityarging the PEV at the high current rate when
prices are low and discharging vice versa.

In [88], an aggregated charging management is dpedlfor a Danish power grid in which three
different entities — the aggregator, the retadéerd the distribution system operator (DSO) — influee
the charging schedules. This management approaictyrncancerns the planning of the aggregator’s
interaction with other power system entities. Thid gongestion is also considered to handle voltage
constraints. It benefits from a good estimationtlod future trip behaviour of PEVs using the
historical data. The data predicted includes tirhed@parture, time of arrival, energy need, and
location of each trip for each vehicle. The goabpfimization is to derive a charging schedule for
each vehicle that ensures sufficient energy for phedicted trips. The aggregator can buy the
electricity on the wholesale markets only if it eggpates a sufficient number of vehicles to meet the
minimum bid volumes. Then it can optimize its biscording to the predicted demand and the
available flexibility in time of charging. If theggregator does not aggregate sufficient vehicles to
enter these markets, it must be able to outsotreeharging flexibility to an existing market playe

such as a retailer.

2.5.6 V2G in Demand-side management, Demand Respons e and Outage management

For an electric utility, demand-side management MIPSis defined as “the planning,
implementation, and monitoring of distribution netk utility activities designed to influence
customer use of electricity in ways that will predudesired changes in the load shape,” which
includes peak clipping, valley filling, load shift, strategic conservation, strategic load groatit
flexible load shape”. However, as mentioned in ¢hiapne, for the utility end-users, DSM includes
two components: energy efficiency (EEand demand response (BR)The Federal Energy
Regulatory Commission (FERC) defines demand regpdBR) as changes in electric usage by

customers from their normal consumption patternseegponse to changes in the price of electricity

1. EE is designed to reduce electricity consumpdioring all hours of the year.
2. DR is designed to change on-site demand forggriarintervals and associated timing of electéenénd by transmitting
changes in prices, load control signals or otheentives to end-users to reflect existing produncéind delivery costs.
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over time or to incentive payments designed to éedower electricity use at times of high prices or
when system reliability is at risk. The utility amdstomer cooperatively participating in DSM will

provide benefits to the customer, utility, and sbgias a whole, as summarized in Table (2-2). The
DSM idea is simply to shift the charging time téower energy price rate than the discharging time
[2, 85]. Studies show that by utilizing DR usingnalti-agents system, a high penetration of PEVs
can reduce the consumer cost of electricity [89RanWl current pilot projects and studies pay
particular attention to the role of PEVs in DR mangs; various publications, such as [2, 11, 13, 19,

85, 90], have proposed promising solutions.

Table2-3 Benefits of the DMS for the utility and custani2]

Customer benefits Social benefits Utility benefits
Satisfy electricity demand Reduce environmentaladation Lower cost of service
Reduce/stabilize costs Conserve resources Improperhting efficiency
Improve value of service Protect global environment Flexibility of operation
Maintain/improve life style Maximize customer weHa Reduce capital needs

The idea of managing individual PEVs at the redidéndevel would be similar to other DR
programs in which a customer would respond to égialectricity prices. For instance, the impacts
of Time of Use (TOU) electricity tariff are analykén [55] to illustrate the customer’s behavior on
charging their PEV. The customer shifts charginghi less expensive electricity rates and receives
incentives for contributing in peak demand leveitcol.

In [2], PEVs are tackled as dynamically configueatispersed energy storage in a V2B ntgod
where the focus is DR during high demand and outageagement (OM) when the main supply is
accidentally lost. The batteries would contributéhie grid restoration process during OM applicatio
to increase reliability when a fault occurs. Thegmsed model is a cost-optimization problem, where
the cost of active power generation of vehiclemisimized. However, the results provided by the
authors indicate that the proposed solution expsgstem to significant unbalanced situation which

would cause considerable damage to the grid.

! - Authors in [2] believe that V2B is a more neam V2G application.
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An energy-cost sharing model is introduced in [B&8jween a building and a group of PEVs in the
garage to optimize the energy consumption profilthe building. The optimization method includes
a distributed algorithm in which each PEV owneredaiines independently its best charging and
discharging profile to minimize its total energyyp#ent to the building. The proposed distributed
algorithm can reduce both the total energy costhef building and the peak demand. From the
building controller viewpoint, the load profile gild be as constant as possible, taking into account
the extra energy demand of the vehicle’s battearging. Any energy demand less than the average
demand will cause poor utilization of the existimjrastructure system and any energy demand
exceeding the average demand will increase theygmast as well as endanger the reliability of the
building’'s operation. Therefore, the optimizatiomolpem searches for energy charging and
discharging schedule to minimize the square Euahddistance (SED) between the instantaneous
load profile and the average demand.

Similar work is proposed in [89] for optimizing tllemand response (DR) by updating the grid
generation resources and controlling the custoost. IThe multi-agent system is designed to switch
customer load and control the charging of PEVs déimg on their SOC to reduce cost and avoid

overload during peak hours.

2.5.7 Role of PEVs in Micro-Grid Context

Micro-grids, a new trend of power grid capable tainslalone operation from the main grid, facilitate
the integration of distributed generations, distrdnl energy resources (DERS), energy storage, and
controllable loads by their physical proximity fease of control, power sharing and management. In
combination with distributed renewable energy, PIESS be considered as a new form of distributed
storage and, specifically, can support buildingthenform of a micro-grid system. With a number of
considerations, PEVs' different mode of operatiompplicable to standalone micro-grids as to main
grids. Much of the current literature reveals tials more common, yet economical, to employ
aggregated PEV-batteries for flattening electricigmand of a small-scale micro-grid such as a
building during peak hours [32, 91]. Minimizing tlogerational cost of the micro-grid is another
initiative/motivation of PEV engagements/contriloutin standalone micro-grids [92].

To determine the economic benefits of PEVs, Bsedl. calculate energy costs using a detailed
representation of supply tariff structures and fpgktes along with operating and maintenance
(O&M) expenditures [91]. Two modes of operatiomr, ithe grid-connected and the islanded mode,

are compared to examine the impacts of the aggrédaEVs on the reliability of a building. The
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condition of the utility power grid decides whiclpeyation mode to choose. Normally, the grid-

connected mode would ensure sufficient energy tisfgacustomer demands, but the islanded mode
should be used when an unexpected disturbancesouttine utility-side or when the power rate is

higher than a customer’s willingness to pay.

The role of commercial buildings in future micrady is discussed in [32]. A heuristic operation
strategy is proposed to improve the self-consumpaioPV panels and reduce the dependence on the
power grid. The charging rate of PEVs is dynamjcaldjusted in the real-time mechanism
considering the battery SOC and variation of P\poutin another work, a number of comfort levels
are defined for the owners and the goal of optitremais maximizing these levels [93]. To tackle th
inherent intermittency and variability of renewal#eergy resources a stochastic formulation is
developed by authors in [92] to minimize the expdabperational cost and power losses of micro-

grids.

2.6 Discussion

In light of the research points addressed by psioidies, it can be concluded that coordinated
charging of PEVs is one of the main concerns inaj@pg mass operation of PEVs in near- future
smart grids. Furthermore, two other important themmerge from the studies discussed so far: (1)
the substantial impacts to be expected with asymenbigh penetration of PEV loading in LV
distribution grids and (2) the need to incorporgtiel-able PEVs into smart grids. Throughout this
chapter, the potential impacts of the PEVs on tiséridution sector (including phase imbalance,
power quality issues, line overloading, transforhegradation, circuit breaker and fuse blowout) and
the proposed remedy have been reviewed. Moreowigus objectives, solutions and scenarios
surrounding applications of PEVs and their aggredjdtatteries, as power back-up for grid support
such as voltage and frequency regulation, peakimfpawutage management, and three-phase
balancing, have been studied. Despite the ingemoeihiods proposed in the literature regarding
coordinated charging of PEVs, they fall short ohgidering a humber of additional issues required
for proper aggregation and control of PEVs:
» Most of the works involved in charging coordinatiame based on consideration of either safe
grid operation or financial benefit for the vehidener, mainly with respect to energy prices.
However, another key issue is owner satisfactidnichvis related to successful charging. Not

only should the charging strategy ensure normal gyperation, but the battery charge
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demanded by each PEV owner should also be guadcastethat vehicles leave their parking
lots with the specific amount of charge ordered.

A comprehensive evaluation of the decision-makiagiggmance on each individual vehicle
is lacking. Only in [93] is vehicle-owner satisfiact addressed, through a probabilistic model
of daily power consumption and vehicle chargingiating time based on drivers’ travelling
habits. However, only the qualitative satisfactiointhe aggregated group of PEVs with
respect to charging duration is measured in [98],(the longer the charging duration, the
greater the satisfaction for that group). More int@atly, probabilistic models would be more
practical for planning studies rather than reaktioperations, where the status of variables is

instantaneously exposed to change.

Returning briefly to the applications of PEVs inastngrids, we saw the shifting trends to customer-

side profits through employment of PEVs in DR pesgs. More importantly, it was discussed that

with pre-signed contracts, PEV owners’ profits eomtroversial. Looking at the PEV applications,

especially in the DR area, the following concenes\alid:

The issue of owner satisfaction would become eveawenpivotal with V2G mode
implementation. A conflict arises between the prynale of PEVs when parked (which is
providing required energy for the battery) andkbg idea of V2G applications (which is bi-
directional power transactions) for grid supportdyhamic, yet precise, model is required to
represent the behavior of vehicles as an elasd lg.e., an energy consumer-provider
component).

However, due to the frequent turnover of vehictea parking lot, scheduling issues arise that
make it difficult to determine the appropriate tifoe a given vehicle to buy or sell energy.
The conventional approach of PEV drivers signing-gwecified contracts in return for
annual cash back is unlikely to encourage the asvitecontribute to DR using their vehicles.
Most studies to date propose solutions for implamgnDR through proper real-time
scheduling of PEV charging, but, as discussed aaBaret al, in [94], they fail to include
the effect of upcoming PEV demand on real-time gbaroordination. In [94], a model based
on queuing theory is employed to predict the nunadfd?EVs that will arrive at parking lots
in the near-future, although only the worse scenaf full charge demand has been

implemented by these authors.

1. Here the term “dynamic” indicates 24-hour bebawif the grid and the PEVs.
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Further to charging coordination, many other cmgéss that will arise with mass usage of PEVs have
been outlined in Section (2-3). PEVs and asymnttiy’ chargers would cause un-reasonable phase
unbalance. However, PEVs could, on the other hanayide voltage support for the distribution
network, which may allow increased penetration isfributed photovoltaic (PV) solar arrays. From
the system-level perspective, further considerasameeded when it comes to incorporating PEVS in
three-phase systems. The following are highliglggols:

* The studies presented thus far provide importasigiis into PEV impacts on the grid.
However, particularly for system-level studies, gwmulations are mostly based on single-
phase models generalized to three-phase systems.

» All smart charging and DR programs would be momisgéc when three-phase operation
constraints are included in the decision-making elmd

Motivated by the above shortcomings, the existirid-gble PEV-related initiatives will be improved
by the research conducted in this thesis. The there chapters describe the work undertaken to
address these deficiencies and to develop a mdtgyddor better serving customers and utility

operators.
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Chapter 3
Online, Intelligent Demand Management of Plug-in EI  ectric Vehicles

in Future Smart Parking Lots

3.1 Introduction

This chapter introduces the proposed online igHt charging coordination of plug-in electric
vehicles (PEVs) in distribution systems. It expfaithe development of a strategy that enables
aggregators in public parking lots to manage PE&@ndemands dynamically. The strategy is based
on the prioritization of PEVs in order to determthe order in which they will be charged. Priostie
are assigned by an expert system based on PEVWudtsi The proposed solution addresses the
drawbacks mentioned in Chapter 2 by taking intamaatthe following:

* The uncertainty associated with human interactiires, PEV owners) involved in the

decision-making process,
» Variations in the load and type of customer secind

» Consideratiorf owner satisfaction in the performance evaluation.

The next two sections present the problem staterardtthe proposed algorithm. The last four
sections of the chapter describe and discuss thieliimg aspects, problem formulations, and case

studies.

3.2 Problem Statement: Demand Management in Public ~ Lots with PEVs

Investing vast sums on upgrading the distributiod fpr the charging of PEVs may be economically
unfeasible. Charge management scenarios have dheréken introduced as a component of
operational plans for facilitating the adoption PEVs in smart grids. No standard or inclusive
regulation is yet available for managing aggregatoith respect to producing an optimum decision
[60].

3.2.1 Benchmark 1: Uncoordinated Charging

No aggregator involves in management charging o/$PHsing uncoordinated charging scheme
(UNCR). In the UNCR, each PEV starts charging upbmgging in regardless of the distribution
system technical constraints and operational mec#s discussed in chapter 2, the uncoordinated

and random charging of PEVs could significantlyessr the distribution system causing voltage
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fluctuations, degraded system efficiency, and iasirgg the likelihood of tripping protection devices

due to network overloads.

3.2.2 Benchmark 2: First Come, First Served

A straightforward charging strategy for an aggregatvolves the tracking of real-time transformer
loading and the holding of charging if it is ovexted [95]. To implement this strategy, [56] suggest
a so-called “first come, first served” scenario S} as a benchmark solution for avoiding grid
overloading. Although this strategy satisfies dliiditations with safe operation, it is unfair and
inconvenient for those vehicles that may arriverddiut need urgent service because they will be
parked for a shorter time than earlier arrivald fflan to leave much later. Fig (3-1), symbolically
compares how FCFS would be unfair for a PEV arried¢t®r with shorter parking duration, which

needs the same amount of charge as for anothemiBVonger parking length.

PEV-j arrival PEV-j departure

PEV-i arrival¢ l l LPEV—i departure
I »time
R C———

PEV-i: charging ~ PEV-i: Finish charging
PEV-j:onHold  PEV-j: Start Charging

Figure3-1 Charging sequence using FCFS would be unfam f8EV arrives later and will leave earlier (PBV-j

3.3 Proposed Intelligent Decision-Making Algorithm

This section presents an online charging solutiat offers a trade-off between the concerns of the
utility and the needs of the vehicle owners, anagseguently results in more satisfaction. The method
proposed here is based on assigning each PEV gimfariority, named as scored-priority (SCR),
the determination of which includes consideratidnttee grid, the vehicle, the battery, and the
charger. Although the idea of owner fairness hanhesed before, it was only based on the departure
time of PEV; Geng Bet al attempt to address the owners’ fairness basedepartlire schedules,
where a charging coordination is employed to aahiawvell-shaped transformer load profile [96].
First, the overall charging power demand for thgraegator is determined. Then, the power demand
is allocated among all PEVs based on their depattare, in which the higher priority is assigned to
the vehicle scheduled to depart earlier. Althouwh dolution in [96] goes one step further to please
the vehicle owners, it only considers a vehiclepatture time, whereas additional factors suches t

SOC amount, battery capacity, etc., also havefsignt impacts on the charging priority of vehicles
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To allocate priorities to PEVs located in a parkiag the aggregator employs a number of decision
factors. The charging service will thus be allodate higher-priority PEVs but without violation of
the operational practice constraints of the gridanfework of the proposed SCR charging
coordination is demonstrated in Figure (3-2). Itisnpared with the FCFS bench mark to reveal a
wider range of decision possibilities and a bgtenformance. In the FCFES scenario (scenario 1), the
aggregator tracks new PEV arrivals and assignsife® based on their arrival times. During each
time step, vehicles that arrive earlier and thaindob violate the operational constraints of thedgri
begin charging; however, the second scenario, tbpoged SCR charging scheme, unfolds in the
same way as the FCFS, except for the manner inhwiie priorities are assigned. In the SCR
scheme, final decision is made within two levelsaofions. In the first level, PEVs with a higher
priority and not necessarily an earlier arrival scered. The scores are evaluated using a fuzarexp
system. Score decision factors include battery K\WWdguuirements, charger max power rating and
parking duration of the vehicle, all of which aretermined based on the data provided for the
aggregator through a smart dashboard/meter [60][@®]d Then, in the second level, charging is
delivered to the maximum number of highest-scoruicles, with respect to the final SOC required
and the technical constraints of the grid operation

Despite the fact that conforming to the technigaits of the distribution grid equipment means
that, in both scenarios (FCFS and SCR), limitedegetal numbers of PEVs would be charged; this
study shows how FCFS satisfies mostly the grid atoes (i.e. electric utility only), while the
proposed SCR solution is more convenient for thth ibe vehicle owners and the utility. The
followings are the main contributions of the propdsnethod:

» Adopting an intelligent expert system that meets fist response requirements for the grid

operation and that represents the dynamics of RiEMsl/departure;
» Superior performance of the aggregator with gresa#isfaction for vehicle owners in terms
of energy delivery, while other parties constraams considered with no violation;
» Preparing more robust satisfaction for the critRBNVs, that needs longer charging time;

» Ease of modeling and implementation.
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Figure3-2 Proposed SCR framework for the PEVs chargingagament

3.4 Modeling Aspects

This section presents the modeling of parking Ibargers and PEV batteries. Moreover, the
aggregator's decision making process includes tlopgsed fuzzy-based scoring model and the

decision-optimization is described accordingly.

3.4.1 Smart Parking lot Model: PEV Chargers and Bat teries

For system-level studies, an integrated PEV mosdelised, which includes the battery and the
charger. As discussed in Chapter 2, the most irmpbicomponent of a PEV is the battery, which
characterizes PEVs with respect to several elemeuath as capacity, all electric range (AER), and
lifetime.

Lithium-ion (Li-ion) batteries have become the mpgpular type of rechargeable battery for their

good energy density, no memory effect, and slow tdcharge. Neglecting the efficiency and loss in

45



constant temperature, SOC variation over the tigna function of nominal capacity of the battery;

therefore, the output voltag¥.f) is also a function of its SOC, as in (3-1).

Vo= 1(Q o Vo= f(SOG (3-1)

At a specific charging sampling time (Ts), the &attSOC dynamics varies as shown in (3-2) [96].
The level of the charger facility also affects theergy exchange. Since a level 2 charger is
recommended for public use [2], here, the assumpsidhat parking lots are equipped with level 2

chargers.

soq(t+1)= S0¢ }+ SOt} A )} 5 32)

Upon plugging in the PEV, the owner delivers thquieed data to the aggregator through a smart
dashboard, which is recognized bf),. These data cover the battery status includingainand
required SOCs§0G,; andSOG,,; respectively), as well as the departure time. édwer, for each
charger and PEV, the ID carries data, such as ehaaging and the battery capacity. From now on,
the following assumptions are considered in all eliog) of this thesis:
» Drivers use their PEVs as they would conventiomdkrnal combustion engine (ICE)
vehicles;
* No reactive power is injected by PEVSs;
» Battery efficiency remains constant as temperatarees;
» The aggregator is not a market participant, so anhyagent responsible for convenient PEV
charging;
* Vehicle owners own their batteries. Thus, no tlpedty, such as battery manufactures, is

involved.

3.4.2 Fuzzy Scoring Expert System

The first level of decision making tackles assignstores to PEVs and prioritizing them for the
charging demand queue using a fuzzy expert sysim. to having human interactions in the
decision making process, in which the departurestand the final SOC are announced by PEV
owners, a level of uncertainty exist in this stulijore importantly, the input variables are totatly

different directions and natures (i.e., departuretannounced by owners, battery required charging
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energy and the charger power rating). As a reanlexpert system would be more convenient to be
investigated in this study

The assigned scores are sent to the second lewtbeodecision process (i.e. the optimization
stage). As shown in Figure (3-3), the fuzzy scorgxpert system consists of four principal
components: fuzzification, a rule base, infererggc, and defuzzification. Inputs to the fuzzificak
block include three variables for each PEV: thadmatenergy required (KWhr), the charger max
power rating, and the parking duration of the cgpomding vehicle. The fuzzification interface
converts numerical inputs into fuzzy variables, #mel defuzzification interface changes the fuzzy
variables back into numerical output, i.e. the esoifhe scores are then utilized for the optinozati

stage, which is represented in Section 3-5.

s
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Figure3-3 Fuzzy inference blocks

3.4.2.1 Variables Membership Function
The input variables are measured/calculated upaggplg a PEV and are updated in every decision
making time window; accordingly, the output is aoanbusly subject to change. Crisp scores are

assumed a function of energy required, the charggéng and departure time; therefore, fuzzy

1. A common explanation of the smart grid is thasitie combination of the electric power and two-waymunication

infrastructures for bi-directional energy and dtiav. However, it might give a wrong impression ttoaly through the

employment of the advanced metering infrastructae implement a smart grid. Advanced sensing caaffotd the

smartness for data analysis and decision makinglliFent use of information can smarten the gridviany ways. In the
first place, an expert-system can assist the opevath anticipatory information. Generally, thempary goal of controlling

the grid is to maximize the overall comfort levéltiee controlled objects, which is distributed amatifferent layers, with
different functionalities in smart grids. As expiad earlier in Section 3-3, in PEV-Grid interactidhe concept of comfort
level indicates safe operation of the power grid assures vehicle owners with the delivered levetreergy to their
battery.
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relations are represented, as in (3-3). For bgtlutsrand the output, fuzzification is achieved by
means of membership functions u, determined priynbgised on the choice of shape and the number
of fuzzy signals. Table (3-1) lists the charactarssof the membership functions. By several trials
and practices, trapezoidal shape is chosen fobdlttery energy required and the parking duration,
respectively with three and five linguistic variabl(Figs. (3-4) and (3-5)). While, triangular shépe
selected for the charger rate and the scores,withand four linguistic variables, respectivelyd&i
(3-6) and (3-7)).

Fuzzy variables for the KW-hr required are caledatonsidering the battery capacities of the
PEVs available in the market, shown in Table (3a2) the initial state of charge and final required
state of charge, which is announced by the ownen @priving at the parking (as in (3-4)). Therefore
a range of 0-85KWhr is used for the energy requitedy variable. Moreover, the parking duration
is assumed as maximum of 10hrs (600min) for thersgduzzy variable regarding battery charging
durations as well as public parking hours for cortingupurposes. The last fuzzy variable is the
charger rating, which is usually much less thantepataccepting power. Here a range of 3-7.5 kW is
used for the charger.

f :reqEng, Chat,,, DeprtTime- PEV Scort

3-3
Hreqeng H chag,, +H Dep (PEV) - H Scor£ PEV) (3-3)

OPEV: rqungz( SOG, - SQQX Bat C. (3-4)

Where
reqEng, Chageand DeprtTime denotes required energy, charger rate, and depatime,
respectively;
U is the fuzzy membership function;

SOG4 andSOG, are required and initial SOC, respectively.

Table3-1 Characteristics of the Membership Functions

Parameters # of MF MF type Fuzzy Linguistic Variables

Bat. KWhr req. 3 Trapezoidal Low, Md, High

Input Max Charger Power Rate 2 Triangular Low, High
Parking Duration 5 Trapezoidal VSh, Sh, Md, L, VL
Output Scores 4 Triangular Low, Md, High, VHigh
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Table3-2 Battery capacity range available in market

PEV in market

Battery Size

Tesla Model S

Nissan Leaf
BMW ActiveE

Chevy volt

85 kW-h / 60kWh

24 kWh

32 kWh

16 kWh

Degree of membership

Degree of membership

e o9
o N S D
T T T T

1
08
0.6
04
0.2

0

—
T

o

Lo“KWhreq>< MdKWh-req HighKWh-req |
1 1 | 1 L
10 20 30 40 50

KWh-req

60 70 80

Figure3-4 Membership functions for the battery KWh regdi(input 1)

T T T
L \-shoX Short X Md
1 1

|
0 100

200

300
ParkDrtion

1 1
400 500 600

Figure3-5 Membership functions for the departure timer(ie) (input 2)
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Figure3-6 Membership functions for the Max charger po@®Y) (input 3)
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Figure3-7 Membership functions for the scoring (output)

3.4.2.2 Tuning the Rule Base: Sensitivity Analysis

Proper rule base plays a significant role in theigien success of the expert system. Three input
variables, with different natures, need carefukrafits on developing suitable rules. Hence, a
sensitivity analysis is run here to examine howdhbsigned expert system response to variations of
the input parameters, based on the logic behinddkésion making. Each individual input parameter
varies gradually for a sample set of 150 PEVs, evikiéeping the values of all other parameters
unchanged, as in (3-5). Running the sensitivitylysmsa several times and tuning the rules, a s&0of
rules is achieved for the final desired rule basesepresented in Table (3-3). The output of ealeh r

is deduced by the inference logic to arrive at lesdor each output membership function. An
intersection operation (i.e. fuzzy AND) is appliéere, in which the correspondence of the
membership function to each PEV is given by (3®7].

50



Table3-3 Proposed Rule Base

Park Duration (Departure time)

MaxChrRate
Low VShort Short Md Long VLong
High
Hos M Mos Los VL
Low
k5
§ Ho.2 Moo Mo.4 Loz VLlog
o
& VHg 5 Hog Hoe Mo.7 L
£ Md
=
é VHo4 Ho.7 Hos Mo Loo
2 VH; Hos VHoe H Hos
©
m High
VHog VHo7 VHos Ho.o Ho.7

*VH/H =Very High/High VL/L =Very Low/Low M=Medium
*Numbers indicate theiglgs assign to that specific rule

Score  _ ;
Snputvar =A SCOI’¢A Ilvarrqung, DeprtTime Char, (3-5)

:uScore(PEVi) :/Irqungm Chag.n Dep ( PEV)i

= min[ﬂrqung-:uChagte H Dep J PVEi di (3-6)

where
invar include the input variables of the fuzzy system.(ireqEng Depart Time Char,e);
n is the intersection operation used for setting yuzges based on the input fuzzy signals;
UscorelS the membership function assigned to the scoteeof’ PEV;
UreqenglS the membership function assigned to the batiegrgy required;
LcharratelS the membership function assigned to the chargeser rating;

Upep-1S the membership function assigned to the velsdeparture time.

In the defuzzification stage, a non-fuzzy value trus extracted as the numerical output. Several
methods are described in literature. Widely usefiiizy logic designs, the centroid method is based
on the center of gravity and is a relatively conmleepresentation since the size and shape of the
membership function affects the defuzzified valkexepfessed as in (3-7)), [97].

PEV, u( PE
sC= ZPEV'DS ,U( V) (3_7)
Y sH(PEV)
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where
SCis the defuzzified control action, i.e. assigneorss;
KL (PEV) is the membership function of the inference;

Sis the support set, i.e. all the PEVs inside tkipg.

3.5 Problem Formulation

This section includes the second level of decisiaking, where PEVS’ scores, and grid operational

limitations are utilized for the optimization.

3.5.1 Objective Function

Since the aggregator assigns appropriate scoréiset@vailable PEVs using fuzzy inference, the
objective function reflects serving maximum numbérPEVs with highest scores. Therefore, the
charging/holding decision for the PEVs is optimizeslin (3-8), where the score assigned to each
vehicle is the defuzzified function, as in (3-7).
Max Oﬁt) = z Z SQC(i),t) X >%C(i),t) O (3-8)

X iON  ¢;)OCT)
where

OF, is the objective function that must be optimized;

SCeiy is the PEV that is plugged in charggrat timet with assigned score &G

Xciyy 1S the binary variable representing the chargiagision for each individual chargeg at

timet;

N is the set of buses;

CT,, is the set of chargers in the parking lot conreetbebusi;

i andt are the indices of buses and time, respectively.

C;) is index of chargers at bus

3.5.2 Constraints

The objective function is subject to the followisignificant constraints:

3.5.2.1 Power flow constraints
Ratn ~Ran = 2 Vi Yk 1005641y + Oty = e )) DT N, (3-9)
kON
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Qi) = Qan) =2, Vo Yher) X1y SNG4y + Oy =Sy )) DT N, (3-10)
KON

3.5.2.2 Generated and consumed powers

The generated power at each bus is the injecte@mpbyany generation unit connected at this bus.
The demand at each bus is the summation of botmdhmal load and the PEV demands which
depend on the charging decision, battery charatiesj charger ratings, and the charger efficiency
((3-11)-(3-14)).

Rsin = Rnin + Ry = @i 00 NDG, t (3-11)
Pioy = Ran * Rvan, Qan = Qe DO Nt (3-12)
Fer (iyit) X Xiegy 0 .
P in = OiON,t
Even (i §Ti ,7CH (ciy) (3-13)
()0CTi) ()
P, = fBAT(soc, Vs 'wj 00N o0 CF,
(i) 0 (3-14)
where

kis the bus number;

NDGLI N is the set of buses where the generation units are;

PcandP_ are the generated and load active power levelgectisely;

V ando are the voltage magnitude and angle, respectively;

Y andé are the admittance magnitude and angle, respggtive

Qs andQ, are the generated and load reactive power lerespectively;

PnLandQy are the normal load active and reactive power &vekpectively;

Pen and Qg are the active and reactive power generated froyngameration source at bus
respectively. Although here there is no generasioarce at any bus, the formulation is adopted
properly to accommodate such case;

Pcyis the charging power in kW,

ncu IS the charger efficiency at bys

fearis the function that relates the power delivered t@hicle to its SOC.
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3.5.2.3 Feeder current and bus voltage limit constraints

"(i,k,t)‘s | max (i, Lit (3-15)
Voin =M <Viex Lit (3-16)
where

Vmin @ndVax are the voltage minimum and maximum limits, resipety;
lixy is the current flowing from busto busk in timet;

Imaxqx IS the feeder current limit between band buk.

3.5.2.4 Decision constraints

The decision variable X is a binary variable: 1tdea the charger, and 0 disables it (holds). This
binary variable should be 0 when the SOC valuéhefdonnected vehicle reaches the final required

value or when no vehicle is plugged into the charge in (3-17)-(3-19):

Xy n POL HiON @) OCTi, (3-17)
Xyt =01 SOG;),02 SO, pt U0 Nl G@F (3-18)
x(qi),t) ={0] Plug(%t) =0} OION @UCh, | (3-19)
where

SOCandSOG, are the actugbOCand the required final SOC, respectively;

Plugis a binary variable indicating whether or notehizle is plugged in.
Figure (3-8) represents details of the proposedrdiign and summarized sections (3-4) and (3-5). In
each sampling time (every 10 minutes here), data fthe newly plugged-in PEVs are received by
the aggregator, and the energy required for theefyats determined using equation (3-4). Then,
different priorities are assigned to the PEVs ie fazzy scoring sub-process. Accordingly, the
numbers of scored PEVs are maximized to serve thet nehicles, taking care not to violate the
power flow constraints of the grid.

After each decision action, the initial SOC is ujdafor PEVs that are charged but are still
plugged in. Due to the departure of some vehicles; spots will be available for PEVs that have a
lower score in the previous decision action. Thariag and optimization is executed repeatedly over

a short time interval in order to duplicate the ayics of departures and subsequent arrivals in
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parking lots. Obviously, the scores are updatedtieaend of each interval due to changes in valfies o

decision factors.

Start
Time interval #i

! Receiving the new PEVs Plugged-in ‘

Measuring the PEVs’ and the batteries status:
Battery Cap., initial SOC, final required SOC, and parking duration

Measuring the KWhr required for every PEV

Assigning the priority scores to the PEVs
through the fuzzy expert system

Maximizing the # of PEVs with the highest scores that could be
charged regarding the grid operation and power flow constrains

Replace with another
PEV in the priority qeue

Yes

‘ Updating the PEVs’

Yes Did the PEVi

Wnal SOC?

No

Figure3-8 Proposed SCR charging coordination algorithm

3.6 Case Study

To evaluate the proposed algorithm, two case studiere examined. The first case is a simple
example shows details of each of five individuahietes, and the second case is a more practical
illustration of a 38-bus system. The system undadysis modeled in a MATLAB® software

environment, where the values are measured anfdzhg-based scoring is evaluated. The scores are
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then sent to the aggregator, which is modeled iMSAsoftware to optimize of the decision through
the mixed integer nonlinear optimization. The resare sent back to MATLAB for the updating of
the batteries’ SOC and the remained required endrgig process is repeated every 10 minutes to
replicate the dynamics of parking lot transactions.

3.6.1 Case Study Involving Five PEVs

In this case, it is assumed that, during a peailogpefive PEVs arrive at a parking where only three
PEVs can be charged simultaneously. Figure (3-8jvshthe sequence of charging the PEVs in 15
intervals (a total of 150 min) based on the FCH&tasgy. PEV2 with 75% initial SOC arrives first
and plugs. PEVs3 and5 enter sequentially, and statging upon arrival. PEV1 and PEV4 then
arrive at the parking lot, where they must be hitlt. assumed that the battery capacities andyehar
ratings are equal in these five PEVSs.

As shown in Figure (3-9), PEV4 is not completehaded by the end of its parking duration.
PEVs 2 and 3, however, are fully served. In conta$CFS, the proposed SCR strategy, in Figure
(3-10), shows that upon the arrival of PEV1 witttie first three intervals, PEV2 is held due to the
higher priority assigned to PEV1. Similarly, wheBW! plugs in, PEV3 is being held due to its
greater SOC and longer parking duration. As shawigure (3-11), the total energy delivered to all
PEVs in case of SCR scheme is larger than the FBR&ing scheme by almost 25%, yet the system
constrains are still met. The SCR solution promigese efficient utilization of the system as wedl a

superior charging coordination.

30 30 30 36 41 47 52 58 63 69 74 80 _85
PEV1 —

75 81 86 92 97 100 <« Being Held > 100

PEV2
70 76 81 87 92 98 100 <Being Held | 16
PEV3
40 BeingHeld | 40
PEV4

PEVS 10 16 21 273

1 2 3 4 5 6 7 8 9 1011 12 13 14 15
-Plugged-in but not getting charged [JliPlugged-in and getting charged

Figure3-9 SOC (%) trend based on FCFS charging solution
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70 76 81 B o1 87 92 98100
PEV3
40 46 51 57 62
PEV4 ]

PEVS 10 16 21 27 32 38 43 49 54 60

1 2 3 4 5 6 7 8 9 1011 12 13 14 15
IlPlugged-in but not getting charged [JJPlugged-in and getting charged

Figure3-10 SOC (%) trend based on the proposed SCR cigpsgiution

FCFS = SCR

it
e —. e p——

A O N ——y

Time intervals

Figure3-11 Consumed power by the five PEVs through bb#rging scheme

3.6.2 Case Study Involving a 38-Bus System

The second case study compares both FCFS and Sé&Rirgh solutions in more detail. It is
implemented on a 38-bus distribution system (showRigure (3-12)) [98]. The feeder is energized
through a 12.66kV transformer in the main substatand the total system peak load is 4.37MVA.
Four buses (buses 22, 25, 33, and 37) were chosgarfking implementation, which are assumed to
be outcomes of a planning stage beyond the scopieisoftudy. Each parking lot sends measured
signals to the aggregator including the initial #mel final required SOC, as well as the departune t
for each PEV.

It is assumed that PL-1, PL-2, PL-3, and PL-4 apeipgped with 150, 40, 30, and 40 chargers,

respectively, which is proportional to the therdiaiiits of the feeders supplying the four parkingslo
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The total penetration of the PEVs represents al2d8 of the system load. The chargers are
assumed to be level 2. In addition to parking capathe daily vehicle transactions in the parking
constitute another essential factor that affectssotns. Due to lack of real data for PEVs, the ham

of PEV transactions per week-day is generated allsttbased on real data available in Toronto
Parking Authority (TPA) and is illustrated in Fi§-03). Moreover, it is assumed that the parking
duration is not less than the required charging amhof the battery. This assumption is due to
vehicle owner rational decision in choosing a mimmparking duration that is enough for his own

PEV to be properly charged.

«“®
14
4 |
PI-2
@ ! 36 113
38 .
37
g | 18 417 =115 :l_ 1
eI ” |
‘ —— 11
(P =
‘ - 24 35 w—— 10
: Pl-1 |-1
b —— 23 — 9
S, 2 3 4 5 6 7 8
s | | | | | _——
2 — I | — | l——\_
o viu®
Z
< —_ 19 _I@ P1-3 —— 26 34
—— 33
—— 20 —_—
—— 32
—_ 21 —_—
3! p 30
I | -L
— 2D — 20
W,

Q-

Figure3-12 The 38-bus distribution test feeder
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Figure3-13 Daily PEV transactions at each parking lot

Three charging schemes are compared: uncoordifdt¢@Rr), FCFS, and the proposed SCR. In the
UNCR, each vehicle connected to the system stadsging regardless of the power grid technical
constraints. Fig (3-14) compares the system loadingase case (i.e., no PEV charging) with the
three charging schemes. Also, the results of thd ftow analysis are summarized in Table (3-4). As
can be noted, although, there is no line limit aiimn in the base case; significant overloading of
298.6% occurs with no charge coordination. Moreptleg total energy loss (12.7MWhr) is almost

four times higher than in the base case (3.33MWithough, both FCFS and SCR schemes result in
total losses more than double the base case §i%e KWh), their outcomes are still feasible since

normal operation practice of the grid has not bé@etated. This significant rise in system losses is
mainly due to the concentration of the chargingi@ta only on four buses.

Details of the power delivered to the parking late illustrated in Figs (3-15)-(3-19). It is worth
mentioning that, as clearly illustrated in Figugeld) and Table V, both the FCFS and SCR schemes
result in an almost equal energy demand since #reyboth subject to the same optimization
constraints from the distribution grid perspecti&ecording to Figs (3-18) and (3-19), there myo
a small difference between the FCFS and SCR schanthe second parking lot, PL-2, from 10PM
to 12AM. Obviously, this is due to variations iretREVs’ charging sequences in both schemes and

not from the variation in the number of PEVs served
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Figure3-14 System loading in different PEV charging sceem
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Figure3-15 PEV charging demand at bus 22 (PL-4)
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Figure3-16 PEV charging demand at bus 25 (PL-1)
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Figure3-18 PEV charging demand at bus 37(PL-2)
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Figure3-19 A snap shot of the demand at PL-2
61

2.
Ay



Table3-4 Results of the Load Flow Analysis

Load Flow Results No PEV UNCR FCFS SCR
Daily Energy Loss (MWhr) 3.33 12.7 8.51 8.52
Max. Line Overloading - 298.6% - -
Feasibility Feasible Infeasible Feasible Feasible

3.7 Discussion: Performance Evaluation

In addition to energy flow management, the propdS€&R charging scheme is evaluated in terms of
vehicle owner satisfaction and fairness, in whioh deficiencies of both FCFS and SCR schemes are
compared by calculating the root mean square demidRMSD) between the delivered energy and
the required energy, as in (3-20). RMSD is a commueasure, [99], frequently used for the
differences between values predicted by a modelthadvalues actually observed (i.e., here, the

delivered energy and the required energy, respagjiv

n

%
1
RMSDQ:rg {EZ( reqENgey; — deEn&Vi)z] (3-20)
i=1

where

RMSDQxq is the total root mean square deviation betweenrdiguired energy and the delivered

energy among vehicles;

nis the number of PEVs;

delEngeyi is the energy delivered to tiEPEV.
To reveal how the decisions of the aggregator fgaitiglividual owners, another approach is also
considered where, all PEVs served throughout tlyeada classified based on their parking duration.
Those in the same class are also categorized lasteeir required charging time (i.e., the ratio of
the required energy to the charger rating for ewengle PEV, as in (3-21)). The higher the required
charging time, the more critical would be servihgttPEV (as in (3-22)). Therefore, it is expected
that the aggregator would serve them with lessgyngeficiency.

_ regEn i
OPEM  teq.char = ﬁ (3-21)
ate- PEVi
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IDEVCriticl = max:( Feq.char) (3-22)

Specific Park Duratior

where

PEV.iic denotes the critical vehicle with the highest givag time.

Table (3-5) demonstrates the RMSD values for thgrexgator and for the individual parking lots,

while the RMSD for the critical/non-critical PEVseashown in Table (3-6). Compared to FCFS, the
RMSD values in the SCR scheme are lower not omyeéezh individual parking lot, but also for the

aggregator (i.e., the whole system). According &bl& (3-5), there is a significant RMSD reduction
in using SCR for the second parking lot (PL-2)ldaded by PL-3, PL-4, and PL-1.

Table (3-6) also indicates that for those critieBNVs, which require higher charging durations, the
proposed SCR scheme outperforms in serving therth Britical and non-critical PEVs are served
much more robustly using the SCR scheme in thenskeparking lot (PL-2), as there is a meaningful
reduction in the energy deficiency (5.94 versus81RMSDs in SCR and FCFS schemes,
respectively). Looking at the RMSDs in PL-4, we that although both charging schemes serve
non-critical PEVs with almost the same RMSD (4.0id &4, respectively), the SCR scheme
outperforms FCFS in serving critical PEVs (RMSD 465 versus 6.52, respectively). The main
reason for varying deficiency values across difiegarking lots is the variety of PEVS’ transaction
dynamics in different lots, as these dynamics anelomly generated. In addition to RMSD, standard
deviation (S.D.) between the delivered energy dral required energy is also represented in the
Tables (3-5) and (3-6), using (3-23). S.D. is tgflicused to represent the confidence or signifiean

of the analysis.

1o 2\%2
S. D.:(HZ(A Boevi — H) ] (3-23)

i=1

where

AE is the difference between the delivered and thaired energy of th&" PEV, and  is the mean

of energy difference.
The S.D. values in Tables (3-6) illustrate a raofj8.1-4.9 kWh margin of error in the significance
analysis of the proposed SCR solution. However tlier FCFS method, the margin of error varies
between 3.73 and 7.78. Similarly, for critical armah-critical PEVs in Table (3-6), the margin ofagrr
remains lower in the SCR solution compared to t8€% method, between 0.8-4.8 kWh and 1.62-8.3
kWh, respectively.
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Overall, the results show that the proposed SCRsgiewer deficiencies in the energy demand of
the parking lots and is superior to FCFS. Undouitede UNCR scheme has no RMSD between the
required and the delivered energy. However, itoisfeasible, since it cannot secure proper operatio
of the power grid, especially during peak hourse BCR-coordinated charging solution addressed
here is formulated based on a simple algorithmehatrun in a few seconds and update the decision
action every 10 minutes. With a computer configoratof 6 GB RAM and a 2.8 GHz-4core
processor, the run time is 4.9 seconds for eactsidacsampling. However, the actual running time
in the field would be dependent more on analog ydelsuch as digital conversion delays,
communication delays, etc. The 10-minute time wimdeere can be significantly reduced based on

the hardware and the communication medium impleatkint the system.

Table3-5 RMSD Results for the Aggregator and ParkingsLot

SCR FCFS
RMSD S.D RMSD S.D
Aggregator (total System) 3.4 35 5 3.9
PL-4 (Bus 22) 4.04 3.94 4.95 3.9
PL-3 (Bus 33) 4.62 3.9 6.18 4.11
PL-2 (Bus 37) 5.73 4.9 13.4 7.78
PL-1 (Bus 38) 2.75 3.1 3.1 3.73

Table3-6 RMSD in energy delivered to the critical anch+aoitical PEVs

Critical PEVs Non-Critical PEVs
SCR FCFS SCR FCFS
RMSD S.D RMSD S.D RMSD S.D RMSD S.D

4.65 3.5 6.52 4.43 4.01 3.2 4 3.02
(PL-4) Bus 22

7.08 4.8 7.82 4.9 2.33 2.13 5.26 3.4
(PL-3) Bus 33

5.94 4.64 12.8 7.2 3.7 3.1 14.21 8.3
(PL-2) Bus 37

3.82 2.38 4.04 2.65 0.98 0.8 1.76 1.62
(PL-1) Bus 38
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3.8 Summary

This Chapter developed an online intelligent decisnaking strategy that enables aggregators in
public parking lots to dynamically manage PEV clvagg The strategy was based on prioritizing
PEVs in order to determine the order in which they charged. The priorities are based on designing
a fuzzy expert system for the aggregator using RENbutes including the SOC, battery capacity,
charger max power rating, and departure time of/dtecle.

Case studies were simulated for a typical distitusystem with different parking lots. The
simulation results prove the effectiveness of theppsed methodology in dealing with the fast-
changing dynamics of PEV charging coordination. &apecifically, using proposed SCR, an
aggregator can better address the energy demarmwdsicil PEVs, which have short parking duration
and high charging time. The proposed solution bksieefits from a simple and fast implementation
algorithm. However, there is a need for quantigtimeasure/regulation to reveal how much the
aggregator fails to satisfy all the PEVs. Such measieeds to employ a monetary penalty scheme,

which is under developed by the authors as a fugxiension and contribution of this study [100].
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Chapter 4
New Energy Management System for Incorporating Smar  t Parking

Lots into the Demand Response

4.1 Introduction

This chapter is focused on the methodology for em@nting demand response (DR) through the
development of an energy management system (EMSpdorporating aggregated plug-in electric
vehicles (PEVSs) into parking lot. This approachunes real-time interaction between the aggregator
and PEV owners, whereby the aggregator proposesndear of offers for charging/discharging and
the owner responds based on his/her preferencefollbwing considerations have been taken into
account in the proposed method:

» The fact that long-term pre-signed contracts betwB&V owners and the utility do not

guarantee the willingness of the owners to conteitto V2G,
* The variable hourly energy cost, and

* The prediction of new arrivals.

The next two sections present the problem staterardtthe proposed algorithm. The last four
sections of the chapter describe and discuss thieling aspects, problem formulations, and case

studies.

4.2 Problem Statement

Demand Response (DR) is a fundamental componentsdeks to involve end-use customers in
shaping energy demands, in turn, resulting in migking, valley filling, load shifting, and flexie
load shape. In other words, DR modifies customeilgctricity usage based on their normal
consumption pattern, offering incentive paymentgrioourage lower electricity use at times of high
prices or when system reliability is at risk [101].

Even though storage system integration offers majdvantages for DR programs, end-use
customer applications are still restricted duehtmrtinstallation costs. Deployment of grid-ableVRE
however, holds the promise of using their batterfies DR without imposing the additional
infrastructure and costs associated with domestiig-storage systems [11]. When used with proper
charging scheme and communication infrastructud/sPmay play a dual role in smart grids, either

turning into dispatch-able loads (DL) when plugdedor charging or acting as grid-able storage
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responding to pricing commands, a concept generafigrred to as vehicle-to-grid (V2G). These
features make PEVs appropriate source of short-taraillary services for the grid. Like other DR
programs, the idea behind V2G is simply to allownevs to make profit and to gain more revenue.
That is, if vehicle owners change the battery fidmarging to discharging back to the grid at a rated
power, the energy payment direction should be s®ebi[12]. Most research and studies reveal
potential profits that electric utilities or polieyakers would make from V2G. Questions, however,
have been raised about the vehicle owners’ inteiasV2G. Recent survey-based studies by Hidrue
et al. indicate that the conventional approach—PEV dsisgning pre-specified contracts, in return
for annual cash back is unlikely to appeal to dsuwender current market conditions [13, 14].

This paper provides an approach that realizes @grams by developing EMS for incorporating
aggregated PEVs in future smart parking lots. Hpproach includes real-time interaction between
the aggregator and the PEV owner, whereby the ggtpe proposes a number of offers and the
owner responds based on his/her preference. Theoged method contributes to existing V2G-
related efforts, mainly by providing owners witlexlble options for immediately deciding whether
they want to discharge their battery back intoghid. The paper’'s most significant contributions ar
as follows:

A new multi-stage decision-making approach basedeaftime interaction between PEV
owners and aggregators. This interaction provideeess with an appropriate scheme for
contributing to DR, while avoiding the inconvenieraf long-term contracts.

* A new stochastic prediction model of near-futunevats and their energy demand, employed
in the decision making, using collaboration of atifiaial neural network (ANN) and the

Markov Chain.

4.3 Framework of the proposed EMS method

Figure (4-1) demonstrates the aggregator’'s decismaking modules proposed in this chapter,
including: 1) Owner Interface, 2) Grid interface, BEV Prediction, 4) PEV Info and 5) Decision

optimization module. Once a PEV arrives at the iparkot, the owner plugs it in and communicates
with the aggregator to exchange the required aathe owner interface module. These data include
the vehicle ID, the battery status, and the vehildparture time, which are explained in detail in
Section IV. In addition to the already-present PEW® pattern of future arrivals also affects the

aggregator's decision making. PEV prediction modidean intelligent component inside the
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aggregator, responsible for estimating the loadifigct of this pattern. Moreover, the grid operator
requirements, SCADA data, and energy pricing infation are fed to the grid interface module.

Using all the data available, the aggregator, atingly, offers the owners charging options.
Based on the owners’ responses, the aggregatomiapf the decision making and sends
charging/discharging signals to individual charg@sviously, the decision is continuously subject t
change as all input data are updated in every idacisaking window. This study is based on the
following assumptions:

» Drivers use their PEVs as they would conventiontdrnal combustion engine (ICE) vehicles.

* No reactive power is injected by PEVs.

» Battery efficiency remains constant as temperataries.

* The aggregator is not a market participant, so anlyagent responsible for convenient PEV

Pricing Info
|

charging.
* Vehicle owners own their batteries. Thus, no thpedty, such as battery manufactures, is

involved.

T T T T T T T Ty e T T T T T T T T N [CTTTTTTTTTT |

Batt. Status | ! [

Q_ ‘ Owner ! |

7 Offer | ‘ Decision I

. A 1_, Interface ‘ |

Response ! [ ‘

| | Optimization |

Operator and SCADA System ! |

\ Module }

|

| |

| |

| |

Figure4-1 Aggregator’s modules for the proposed method
4.4 Aggregator’s Controlling Modules

4.4.1 Processing Modules

This section provides details of the first four mte$ of the aggregator (as in Figure 1), called
processing modules from now on. The data procesgedese modules are, accordingly, send to the

optimization module.

4.4.1.1 Owner Interface module

A set of parking lots is controlled by one aggregaigent. Determining the proper number of parking

lots per aggregator depends on various factorssahdyond the scope of this research. Hence, it is
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assumed that only one aggregator controls parkitggdemand and manages the DR program. Each
parking lot PL;) is equipped with a set of charge€&f;) represented by specific identitid®() and
only one PEV is connected per charger. An intedraggtery and charger model is used here, where
for the Lithium-ion (Li-ion) batteries; variationf SOC over time is a nominal function of battery
capacity, as in (4-1), wher&i,,) is the charging power of the battery over tirfte02].
SOCp41 = SOC, + f(SOC,, Pepy, ). Ts (4-1)

Upon plugging in the PEV, the owner delivers thguieed data to the aggregator through a smart
dashboard, which is recognized bf;,. These data cover the battery status includingalnand
required SOCs JOG,; and SOG.,;, respectively), as well as the battery capacByttg,).
Moreover, the owner announces the expected depditoe (uep).

As the aggregator receives PEV data, it determinescorresponding required enerd.§ and
the required charging time.), as in (2). Accordingly, PEVs are classified lzthea a criteria factor,
called the comfort criterionQC) here, which compares the departure timyg)(and the required
charging time t;). The aggregator then offers owners three chargptgpns, called DChrgasd,
(FIXChrgas9, and Chrgyas9 from now on. By choosinBChrg,,ss Offer, the owner agrees to receive
a discount through discharging the battery. Siryijathe owner who accepts tl&xChrg,,ss Offer
receives discounts. However, the latter discourtaised on accepting flexible charging by shifting
the battery charging process to lower tariff intdsv No tariff reduction goes for owners who accept
the Chrg..ss and their battery receives charging power imntetlia The PEVS' CC factor is
expressed by (4-3). Of course, offers differ in bemand content for PEVs. For a PEV with)(less
than .ep, the owner is offered all three options, while {&,) more than t{), only Chrgass is
offered by the aggregato€hr.q,_rq: is power ratings of charger facilities in kW anglyr is the

efficiency of the battery charging process.
_ (80Creq = SOCi) X Batcg

ten = 4-2

o Npar ChrCap—rat ( )
DChrg| FlxChrg| Chrg Vit <t

cC = { rg| FlxChrg| Chrg ¥ tep < taep (4-3)
Chrg Vien > taep

4.4.1.2 Grid interface module

The grid interface module receives information frone SCADA system about the grid status.
Moreover, it receives information from the grid oper regarding energy pricing and ancillary

services requirements. The Independent ElectriSggtem Operator (IESO) in Ontario offers a
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number of wholesale Real Time Pricing (RTP) paymdat large consumers, including businesses
and the public sector [103]. For business consumvélsinternal meters, payments are based on the

Hourly Ontario Energy Price (HOEP) scheme, whicthésbasis in this study.

4.4.1.3 PEV prediction module

The PEV prediction module includes two predictiaskis: number of future vehicle arrivals and their

corresponding charging/discharging options.

4.4.1.3.1Number of prospective arrivals

Decision results are prone to significant change tduenergy demands of PEVs that will arrive later
at the parking lot. Historical data are requiredbtold a prediction model of PEV arrivals. In this
study, annual historical data of the Toronto Paykéthority (TPA) is employed to build and train
an artificial neural network (ANN) for an hourlygeession forecast model of future arrivals.
Applications of ANN in power system planning andemgtion are not new. They have been
successfully utilized, in transmission and disttidi sectors, for short-term load forecasting sithee
1990s [104, 105]. Recently, several studies hawmied the capability of ANN, in PEV-related
research, including trip model development [108arging management and demand forecast [107,
108], as well as battery state of health estimdtl9].

Similar to [83], this study assumes owners drive/PECEs-similarly. Thus, historical data on
parking lot hourly transactions is valid for buidi the regression model for PEVs hourly
transactions. Fig (4-2) demonstrates average hqatied vehicles in a parking for a weekday in
downtown Toronto, and indicates that, with respe®TP tariffs, a correlation exists between typica
commercial electric load patterns and parking hanhsactions. Since this parking lot is located
downtown, the aggregator’s decision making on PEMald significantly reshape the load. Let the
number of PEV arrivals to the parking lot at¥ 1) time frame be a function of all previous interval
arrivals [1, 2,... 1] as represented in (4-4). Therefore, the struotfithe ANN as demonstrated in
Fig (4-3), includes a-dimension input vector and one output, correspagdiespectively, to®1till

" PEV arrivals, and next arrival at ¢ 1), as in (4-5).

Arvi*tt = f(Arvy, Arvg, Arv}, ..., Arv)) (4-4)
Arvy

inputs:{ output: (Arv*1) (4-5)
Arvg
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After several tests, the ANN structure in this stigla feed-forward multilayer perceptron (MLP),

accompanied with a Levenberg-Marquardt back-profi@garaining algorithm (LMA, which uses a

Jacobian based on the mean squared errors dusiegldulations [110]. Table (4-1) summarises the

characteristics of the final-trained ANN, train€fftime to generalize nonlinear relationships betwe

the inputs and the corresponding output. The PEdiption module uses the adopted ANN in every

decision making intervaky.

(ymyi/d 8oud
n
1 )

3

o
N
1

- 15

5

- 45
-1 4
--1 2

1

Energy demand loading pattern

= Hourly parking transaction

c

1.2 4-
9__
6 4 -

0.3+
0

0

o
"d) puewaq

A.

=}

Time (hr)

Figure4-2 Average hourly parked vehicles of a parking lot

—

ﬂ J -7 +]

w
b

*

Dt

w
[
b

Parking lot data

f

# of hourly
nputs

U]

a...

Figure4-3 Architecture of the ANN model

71



Table4-1CHARACTERISTICS OF THE ANN BUILD FOR PEV PREDICTION

ANN Type Multi-Layer Perceptron
Input Layer Hidden Layer Output Layer
Number of Neurons
r at intervak+1 15 1
Training algorithm LMA back-propagation
Performance Mean Squared Error (MSE)

4.4.1.3.2Expected Charging/discharging options

The ANN regression model deals only with estimati§V numbers arriving at the parking lot
within next decision intervals. Still, it is imparit for the aggregator to have an estimation of in-
coming PEVs’' charge/discharge status. One soluoassuming the extreme case, which only
considers requests for charging in future estimaf®]. However, it is more realistic to employ
various scenarios that include charging and digghgy rather than the charge-only extreme case.
This paper takes advantage of a stochastic solltased on the Markov Chain model (MC),
which, in general, is a memory-less random protesspresent the following state of an event based
only on the current state. MC is employed in soeeent studies of load modelling and demand
management, especially where the stochastic nafuraman interactions is involved. Munkhammar
et al. use MC for modeling the flexibility of the energgnsumption habits of householders [111,
112]. Similarly, in [113], user-activity profiles are Symesized regarding electrical appliance usage.
Here, PEV owners’ likely preferences to aggregaftars are modelled through the MC process. The
idea is based on the fact that there is a closdasity between the patterns of PEVs using one
particular parking lot within a specific time intat. Let STdenotes a state of an offer made by the

aggregator. At the decision-making instancg éach ownerjs offered one the three options of

“ QT T
SChrg- SleChrg

(ST - ST*1) with the transition probability oPZ*L. = P(SF*1|S7), as in (4-6). Transit probabilities

, and “Sy,;". Upon the owner’s response to an offer, a stedasition occurs

from state £) to any possible states Qf,ZG’I,Vi € S,) should satisfy (4-7). Thus, the transition
matrix (TM) among the states and the distribution over theestcan be, respectively, written as (4-8)
and (4-9). Figure (4-4) shows the mechanism by whawners’ responses are predicted.
Collaboration between the ANN outputs and the M@bpbilities complete the PEV prediction
module in the aggregator.
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PF|><Chrg - FIxChrg Dehrg - FixChrg IDD(:hrg > DChrg

Figure4-4 MC-based presentation of the responses anstdteetransitions

No.of PEVs that of fered and choose S*

PT+1* — 4-6
55 Total No.of PEVs of fered S (4-6)
D Pes = ) PGSISH =1 4-7)
PChrg—>Chrg 0 0
™ = Ple—»Chrg Ple—»le 0 (4-8)
PDChrg—>Chrg PDChrg—>le Ppchrg-pchrg
ST =§TxTM (4-9)

4.4.2 Decision Optimization Module

All information from other modules is utilized byhe optimization module to allocate
charging/discharging decision actions to PEVs irkipg lots under the aggregator’'s administration
area. The above-mentioned offers classify PEVdaset that should charge immediately and those
that can either hold/shift charging or discharge #o discount price. Therefore, the proposed
optimization is designed to satisfy different oljees: maximizing delivered energy and minimizing
the cost of energy. It solves a multi-stage noedmoptimization to satisfy PEVs in all offer class
The first stage maximizes the delivered energ@hog..ss The charging decisions @hrg..ssare not
subject to change in the following stages. Convgrdbe second stage is intended to optimize
resource utilization and minimize cost while sgiis§ other PEVs needs (i.eFIXChrg.ss and
DChrg.as9. However, due to the fact that the grid was migioally designed to accommodate the
extra load imposed by the PEV charging, satisfytimg required charging energy levels for these

classes may not be possible without violating §fetesm technical constraints.
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Thus, the second stage attempts to determine tkamma possible energy that can be delivered
for each vehicle, subject to the required chargingrgy by the customers and the grid technical
limits, according to the distribution system codeh® Ontario Energy Board [114]. This stage will
usually result in a maximum delivered energy edoathe required energy, as long as there is no
violation for the grid technical limits (this stageredundant if the grid is designed to accommmsdat
large penetration of PEVs with proper diversitytfmz The third stage aims at minimizing the
charging cost while maintaining the maximum deléceenergy for each vehicle from second stage.

Fig (4-5) shows data flow inside the optimizationdule.

Decisions for Target SOC
Run Stage 2: | target SOC | Run Stage 1: | for Chrgelass Data from
FIxChrgelass N Chrgclass - Processing
DChI‘gclass <€ Modules
Ru_n S ta}g_e 3 Charge/discharge
minimizing ——

decisions

charging cost Send decisions to each PEV

Figure4-5 Structure of the proposed decision optimizatrmdule

4.4.2.1Stage 1: Chrgssenergy maximization
The objective of this stage is to maximize energlvered toChrg,,ssbatteries in response to their
required SOC. At time instamf,,, energy delivered to thé" PEV (PEVychrg) Plugged in to thg"

charger in thé" parking lot (Chr;,OPL ) is dependent on the decision taken over the id@cisaking

windowr,, (Egei(jz,,,))- Accordingly, the objective function of this stagan be described as in
(4-10):
M“’CZZ Z @(D) - Egerj, v (4-10)
X iel Tt jEChrg

Where, X is the power exchange rate Ohr; € PL; of busT of the system, and(7) is a time-

weighting factor that gives priority to earlier gnslots (i.e., PEVs that plug in earlier). The cbje
function is subject to a number of constraints)uding the active and reactive power at each bus,

which is controlled by the voltage magnitudes angdles, represented as power flow constraints in
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(4-11, 4-12). Moreover, the voltage and thermaldiog limits of the system feeders expose the

objective function to additional constraints, ag4rl3, 4-14).

Vierl,t:
PGi,T - PLi,T — PPEVL'_.L- = E{Vi,TVil,‘[Yi,il COS(Qi’i, + 61'! - 61)} (4_11)
ir
Qe = Quyp = — Z{Vi,TVil,TYi,il sin( 6y, + 8 — 8))} (4-12)
ir
Vmin < Vi,‘L’ < Vmax Viel,t (4_13)
Ii,il,‘l.' < Imax Vl, i’ S F,T (4-14)

whereP;, Q, denote active and reactive generated powers,Rng; denote active and reactive
load powers, respectively.; . represents the per-unit current through the lirtevéen buses andi’
at timet. The demand at each bus is the summation of ietméormal load and the PEV demands
(Ppgv), which depend on the charging decisiof), (charger capacity, and the charger efficiency
(77che )s @S in (4-15).

Chrcaph_ X Xi,‘[ .
Ppgy,, = Z— Viel,t (4-15)
7 nChT'i

The energy delivered to a PEV battery can alsoelpeesented by the battery final reaching its
desired SOCS0Cry;), as shown in (4-16), wheBmCapj is the battery capacity in kWh of the PEV
connected to the chargg).(The final SOC needs to be controlled by the ireguSOC that has been

announced in advanced by the owner, as in (4-1@}o#lingly, at the end of each decision making
window, the SOC of a PEV is updated based on (4-18)

Eaet, = Batcap, ) {S0Cu, = S0Cin,} (4-16)
T

SOCtni; < SOCreq;, Vj € PL; (4-17)

Xjﬂ— X Chrcap].

S0Crny oy = SO0Ceny;  + JVieTT (4-18)

Npar Batcap,

Thus, the objective function of the charge-onlygstdi.e., equation (4-10)) is subject to all
constraints of (4-11)-(4-18), where:
X €0,1] (4-19)
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4.4.2.2Stage 2: FIxChrgssand DChrgassenergy maximization
In this stage, the aggregator optimally maximiZes ¢nergy delivered to both tiéxChrg,.ss and

DChrgyass Classes of PEVs without any consideration to tharging price. In other words, the
aggregator attempts to serve all PEVs through stdage up to the grid technical constraints, and
vehicle owner requirements, as in (4-20, 4-21)sTdtage has a structure similar to as stage one’s.
However, positive and negative charging decisiamsasiowed according to the class, € [-1, 1],
indicate charging and discharging, respectivelyrédger, the maximum delivered energy to Giyg

from stage 1 is maintained as a hard constrairt) é22). The power delivered(,) or consumed
(P,s) by each charger is then given by (4-23). Durimggliarge of the PEV batteries, no power is

allowed to be delivered to the grid; therefore, tibl parking lot power §

) always needs to be

positive, as in (4-24).

PLi,r < pmaxi'r , Viel,r (4-20)

g%?;z 2( Z EdelleChrg-,; + Z EdelDChrgT) (4_21)
' iel' © Jj€EFlx KEDChrg

Edelchrg Stage 1 = Edelchrg Stage 2 (4'22)

_ Xjﬂ- X Chrcapj ,
Pcns].'r = VX' =20
1j (4-23)

Pdeljﬂ- = Xj,T >< Cthapj X T’J VX,j,T S 0

Ppric,, 20, Vi€T,T (4-24)

4.4.2.3Stage 3: FIxChrgssand DChrgasscost minimization

In this stage, the charging costs FIRChrg,ssand DChrg. . are minimized, as in (4-25) while the
maximum delivered energies for all classes frongestd and stage 2 are maintained as hard
constraints, as in (4-26).

SubStg(z_z) .

}T(mX",z Z( z Prc(t) X Edetpiycnrg, T 2 Prc(t) X Egelpenyy, )

ieEl T JEFlx k€DChrg

(4-25)
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V class € Chrg, FlxChrg,DChrg :
(4-26)

EdelStage 1 EdelStagez

4.5 Implementation

As in Chapter 3, the performance of the proposethoteis comprehensively studied for a 38-bus
distribution system. Further details of the syssgacifications and loading demand and types can be
found in [98]. The test system, including two catade parking lots, connected to buses 25 and 33, is
displayed in Fig (4-6). The parking data for thpaeking lots are provided by TPA. Different PEVs,
already available on the market, are selected fa@ntheir battery capacity data for the simulation
They vary between 17-85kWh, for the TeslaS and @itet/\Volt, respectively. Chargers are assumed
to be Level-Il AC with a rating size of either 2B7 KW.

The MATLAB® software environment is used to model the systedeustudy. To implement the
aggregator’s different modules the General Algebidbdeling System (GAMS) is employed in
accordance with MATLAB, where the PEVS' battery ajathe offers, and the system data
measurement as well as future PEV prediction areeted in MATLAB and, accordingly, the
decision optimization is executed in GAMS. Chardiligcharging decisions are sent back from
GAMS to MATLAB to update the PEVS' status for thexh decision-making window. The

simulation covers 24 hr of a weekday.
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Figure4-6 The 38-bus test system with parking lots
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The performance of the trained model is verifietbtigh regression calculations over a typical
weekday. Fig (4-7) demonstrates the hourly goodiédit (R-value) for training, validating, and
testing sets. PEV-arrival prediction is executedrgwhour for the next hour. Fig (4-8) compares the
actual PEV arrival rates versus the predicted alrnigsults for both lots (The maximum number of
charger outlets are 1069 and 249, respectivelypdoking lot 25 and 33). The flowchart represented

in Fig (4-9) summarized how the aggregator’'s moslg®operate in every decision-making window.
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Figure4-7 R-values for training, validating, and testseg

4.6 Results and Discussions

Three case studies are examined on the 38-busyst®m to better evaluate the proposed method
performance in reshaping demand. The first twaganalysis compares charging PEVs through the
conventional first-come-first-serve (FCFS) methedth charge-only scenario (i.e. two charging

options). The third case study investigates th@@sed charging and discharging solution with three
charging options. Maximum parking lot loading i/8@f the total system loading. Figure 10 shows

the pattern of PEVs corresponding to the offelsis

4.6.1 Case (1): First come first serve (FCFS)

Here, charging is based on allocating high priotityPEVs that arrive earlier (i.e., FCFS) and no
flexible-charge option is available. The demandesatof the parking lot is illustrated in Figure (4
11).

4.6.2 Case (2): Charge-only

This case provides charge-only scenario, whereaffigegator offers only two charge options (i.e.,

Chrgass and FIXChrgues9. Figure (4-12) compares parking demands with gdyanly scenario to
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when it offers that of first case study. Althouglttbcases results in relatively similar demandepas,
Case (2) shows some shifts as the RTP variesc®larty, when the RTP increases, the charge-only

case attempts to decline the demand and shitidtietlower tariff intervals.

4.6.3 Case (3): Charge and discharge

To assess the effects of all offers, parking demarilustrated in Figure (4-13), in whioBhrg,ass
FIXChrg.ass and DChrgyass provides the aggregator with more flexibility in oi@on making.
Consequently, the demand drops more as RTP ridedis8harge (i.eDChrgas9 occurs within two
RTP peaks; between 10 am-2 pm and 7-10 pm, whest em@rgy saving is achieved. Comparison
case study (2) and (3) reveals that although thegehonly scenario helps reshape the RTP-based load

the charge-discharge scenario (i.e., case 3) datpgs in demand reduction at peak tariff hours.
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Figure4-8 Flowchart of the aggregator modules’ collabiorain decision making
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Figure4-11 Demand pattern of the parking lot through @haonly regime
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4.6.4 Discussion

Further to energy management and load reshapiegptbposed method is evaluated in terms of
vehicle owner fulfillment, in which the deficiensi®f the case studies are compared by calculating
the energy-not-supplied (ENS) using the mean sodewetion (MSD) between the delivered energy

and the required energy, as in (4-27). MSD is feely used to measure the differences between
values predicted by a model and those actually rgbde(i.e., the delivered energy and required

energy, respectively, representedbyrgysp in (4-27).
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1
ENRGuso =~ ) (Ereq; = Eaet) (4-27)

Table (4-2) (Ijemonstrates the energy requireg)(&Bnd the energy delivered ((f in each case
study. The results di,e/Eyeq ratio indicate that the third case study bettéistes the customers.
Table (4-2) also summarizes the energy-not-suppireduding the average, the maximum, and the
standard deviation (SD) of the ENS. The maximum EldBpens in case 1 (i.e., FCFS), followed by
charge-only scenario (i.e., case 2), and the cldiapharge scenario (i.e., case 3), respectivelly wi
26.7,16.73, and 2.94 kWh. The S.D. values illustearange of 0.46-4.88 kWh margin of error in the
significance analysis, belonging respectively teecatudy 3 and 1. On average, the proposed
charge/discharge solution results in ENS by 36% tlean the conventional FCFS strategy (0.54 kWh
versus 1.46 kWh). Moreover, Table (4-2) indicdtes the total charging cost is considerably lower
in case (3) compared to the other charging regimdsch reflects the effectiveness of shifting
charging in time to achieve cheaper tariffs for tehicle owners. Looking at total system losses
reveals that the second case results in higheatipeal cost for the distribution grid.

Further analysis compares the average ENS of dasé af offer in both parking lots (Fig (4-15)).
In both lot 25 and 33, ENS due to the proposedggidischarge solution (i.e. case (3)) is less than
kWh. However, there are significant ENS in lot 382do case (1) and case (2) (more than 3.5 kWh).
One interesting finding is that, overall, all catadies result in lower ENS in lot 25 than in I& 3
which could be interpreted as the outperformancthefproposed method in larger lots with more
vehicle transactions and consequently with morasdat making flexibility. Additional analysis is
needed to confirm this.

Table4-2 ENS comparison of the case studies

Case studies Bq (MWh)  Ege (MWh) ENS (kiwh) Eoe/Ereq
AVR.  MAX  SD. (%)
Case (1) 6.27 146 267  4.88 82
Case (2) 7.82 7.15 0.64 1673  2.95 91
Case (3) 7.24 054  2.94  0.46 95
I ® Case (1) Case (2) Case (3)
g ©  TotalLoss 100% 116% 949%
g 3 Charging 100% 93% 81%
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Figure4-14 ENS comparison based on class of offers

4.7 Summary

Deployment of grid-able PEVs holds the promiseshg their batteries for DR without imposing the
additional costs associated with domestic storagtesis. However, new studies debate that the
conventional approach—PEV drivers signing pre-dpgettontracts in return for annual cash back- is
unlikely to appeal to drivers. Thus, the presentlgtwas an interactive approach to realize DR
programs by incorporating aggregated PEVs intoipubhart parking lots, whereby an aggregator
offers various options based on the comfort catdector and vehicle owners respond based on
preference. The aggregator benefits from five diffé modules for decision-making. In other
renovation, an ANN-regression and a Markov Chainleh@ollaborate to include the effect of future
PEV arrivals in the decision results.

Case study simulations of a 38-bus distributiontegysindicate the effectiveness of real-time
interaction with vehicle owners in DR. Case-studymparisons ascertain that the conventional
charging regimes are not efficient and the resflthis study supports the idea of appreciatingrsma
charging solutions in our smart grids. Although thest promising performance seen in larger
parking lots with more vehicle transactions. Ybg proposed solution can be applied in any size of
lots [115, 116].
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Chapter 5
Managing Demand for Plug-in Electric Vehicles in Un  balanced Low

Voltage (LV) Systems

5.1 Introduction

This chapter addresses how smart charging candsetasupport more efficient energy delivery and
phase unbalance control, while improving demangaese (DR) contributions by plug-in electric
vehicle (PEV) owners. The DR concept, introducedCimapter 4, was extended to include an
investigation of the impact of PEVs in three-phasedistribution systems. The potential of PEVs
and the application of V2G with respect to mitiggtiphase unbalance are also explored. As
explained in Chapter 4, real-time interaction betthe aggregator and the owners has been applied.
To provide clarification of the unbalance conditigumotovoltaic (PV) units have also been included
in the analysis.

The problem statement and the framework of the ggeg method are described in sections 5-2
and 5-3. Section 5-4 then provides a brief explanaif the additional modeling features required fo
incorporating consideration of unbalance, as wetha PV unit specifications needed for the problem
formulation. The results of the case studies aesqnted in section 5-5, followed by a discussion of

the findings.

5.2 Problem statement

While the future impact of PEVs on distributiondgiis disputed, all parties agree that mass operati
of PEVs with uncontrolled charging regimes will ohatically affect overall load profiles and electric
grid assets. The large-scale penetration of domestergy storage systems into the edges of LV
grids, such as that arising from rooftop PV ungslso introducing increasing amounts of customer-
generated electricity. Unlike transmission networkdistribution grid is an inherently unbalanced
network that tends to become even more unbalandbdiive uneven spread of PV units and PEVs.
An additional factor is that the majority of resniel areas are equipped with a single-phase power
supply, and only large households have three-ple@s®ections. In general, the reasons for
conducting unbalance studies are (1) to ascertaih the voltage unbalance is within established

limits, (2) to determine how to maintain load baenand (3) to reduce grid losses [117].
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Certainly, collaboration of PEVs and local generatmould provide dynamic voltage support for
the distribution network, which may allow their irasing of penetration of smart grids. This chapter
extends the interactive EMS proposed in chapterifowhich PEV owners receive offers for various
charging options. Through this method owners camadiately choose whether they want to
discharge their battery back into the grid. Thigiactive structure not only provides owners with a
flexible scheme for contributing to DR while avaidithe inconvenience of long-term contracts, but
also ensures that the existing three-phase infietsiie distribution grid operates within acceptable
voltage unbalance limits. This part of the thesistdbutes in the following areas:

¢ Analysis of the ways in which under a charging lamd high penetration of PEVs affect

voltage unbalance;

« Examination of how the incorporation of PEVs antas@anels could mitigate unbalance

issues.

5.3 Framework of the Proposed Method

Modules similar to those in chapter 4 are used Farelecision making, as shown in Figure (5-1).
One module for receiving PV panel information isled. Data corresponding to energy pricing, PV
output power and system operation data are alltdethe Grid Interface module. When owners
respond, the aggregator optimizes the decision mgakind sends charging/discharging signals to
individual chargers. Obviously, decisions are scibfe® continuous change, as all input data are

updated in every decision-making window.

Operator and SCADA System

| ?

\
= |
Pricing Info | > .2 }
P Y ———— } ! } § ‘
"/'_'_'_\\‘ | | o= |
= - 1Es
QO B & g |
)/ 7| Owner Interface | | | PEV Info  [—— g = }
Ay L ———— O L :g |
\ 8 ‘
Status of Other Parked PEV: | } LA |
| ‘ |

Figure.5-1 ENS comparison based on class of offers
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5.4 Additional Aspects of Modeling

This section introduced the parameters requiregdoeralizing the proposed single-phase model to a

three-phase model. Moreover, the model for PV paagdut power is briefly explained.

5.4.1 Voltage unbalance constrain

The National Electrical Manufacturers AssociaticdEMA) and IEEE share one definition for
voltage unbalance, called the phase voltage untaleate (PVUR). Phase voltages are measured for
every bus i voltage at every hour h of the inspeciperiod, and the voltage deviation from the
average‘(é'g,“p) is calculated as in (5-1).

|Vi'ph¢ - Vaivrl

yophe = L. x 100 (5-1)
VCLUT
where,
N L Kl A el
Vavr = 3 (5-2)
Vo €{ab,c}

Accordingly, the PVUR% is then calculated for all of the system busassn (5-3) [118, 119].
The voltage unbalance should be limited as follow®-4).

% PVUR! = max{V;2, Vit ,vie ) (5-3)

dev’

% PVUR' < 3% (5-4)

5.4.2 PV module specifications

The PV-Info module is a measurement unit that seéheutput power of the PV panel to the Grid
Interface module. The output power of PV panefashastic which depends on a number of internal
features of the PV cells. The output power of thedpray is a function of the solar irradiance and
ambient temperature as well as the characteristitise array. According to [120], the output power
of the panel is calculated as follows in (5-5)-{5F®e hourly solar irradiance data used here atedi
in Table (5-1) [120]. As for the classification sdasons, Figure (5-2) represents the normalized sol
irradiances in March, May, September, and Decendmresponding respectively to winter, spring,
summer, and fall.
T, — 20)

0.8

I=Ir(Ise + K(T, — 25)) (5-6)

(5-5)

TC=TA+IT(
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V=V,—K,xT.
P, =NXFFxXVXI

Vipp X 1
FF = LMPP X MPP
‘/OC X ISC

where,
Ir is the solar irradiance (kWAn
T. is the cell temperature &t ('C);
Ta is the ambient temperatur€y;
K is the current temperature coefficient @)t
K, is the voltage temperature coefficient (W)
FF is the fill factor;
Isc is the short circuit current (A);
Vo is the open circuit voltage (V);
Impp is the current at the maximum power point (A);
Vuep IS the voltage at the maximum power point (V);

P, is the output power of the PV arraylafkW).

Table5-1Solar Irradiance Data

Module Characteristics Values

Watt peak (W)

Open circuit voltage (V)

Short circuit current (A)

Voltage at maximum power (V)

Current at maximum power (A)

Voltage temperature coefficient (mV/°C)
Current temperature coefficient (mA/°C)

Nominal cell operating temperature (°C)

75.00
21.98
5.32
17.32
4.76
14.40
1.22
43.00
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Figure.5-2 Seasonal PV output

5.5 Extended Problem Formulation

The structure of the decision optimization is deeit) to satisfy different objectives: maximizing
delivered energy and minimizing the cost of eneAyy.explained in Section (4-4), it solves a multi-
stage non-linear optimization to satisfy PEVs ihadler classes. The general form of the objective
functions and constraints are summarized as inO§{§8-13). Obviously, these formulations are
adopted for three-phase inside the decision-malkdlgprithm. Figure (5-3) shows the overall

structure of the decision making-algorithm.

Stage 1: Chrgssenergy maximization

(5-10)
Max 2 22 z @ (7). Edel(j, )
X phe€a,b,c ieET T jEChrg
Stage 2: FIxChrg,ssand DChrgassenergy maximization
5-11
Max E + E e
X X, ( delpixchrge delDCh?"gr)
’*" pheab,c i€l T JEFIx keDChrg
Stage 3: FIxChrgyssand DChrgassCcost minimization
. (512)
)Y(an’ 2 22( 2 Pre(t) X Egetgyyoprg. z Pre(t) X Egetpepyy, )
’*" phe€ab,c i€l T JEFIx keDChrg
(5-13)

Subject to:
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Eqg. (4-11)-(4-20)

Eq. (4-22)-(4-24)

Eq. (4-26)

Eq. (5-4): for phase-balancing
The effects of PV panel output powét() are included in (4-11) and (4-12), and accordirayle
modified as in (5-14) and (5-15):

VAVEYSP cos(0f +87 —88)
P-. + Poy/. — P, — P ) — ., _ icliir iir 514
Giza PViza Liza PEVita Zill:#iZ(p_a’b'c Vﬂ[VlipTYLa”(p COS(BLa;f +6(p 5“) ( )
VNS sin (01 + 37 ~o)
Q610 = QLire = z z (5-15)
iT,a iTa _ya (p ap @ a
ey VLTI/;,T L0 cos(@ +6;, —6{")

ir#i

whereP; and P, denote active generated and load powers, resplctivbusi and at time instant.
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Figure.5-3 The structure of the decision making algorithm

5.6 Case Studies

A number of case studies are considered to obsbevémpacts and the potential supports of PEVs
regarding phase-unbalance in LV systems. To deegific unbalance situations have been created
to better illustrate the role of PEVs on such ditues. The first set of analyses compares the impac
inherent in low and high penetrations of PEV chaggh the LV system. Then, unbalance mitigation
through V2G application is addressed accordingtherest of the case studies with the collabanatio

of PV panels.
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5.6.1 Test system

Figure (5-4) illustrates the IEEE 123-bus distribntsystem used for this study. It operates at a
nominal voltage of 4.16kV from the main substatithe total system load is 10 MVA, and further
details of the system specifications and loadingialed can be found in [121] and in Appendix B.

The typical weekday load pattern for the load-tyesilable in [98], are used here.
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As in chapter 4, battery capacities vary betwee83KiWh and chargers are assumed to be Level-lI
AC with a rating size of either 3.3 or 7 KW. Theximum output power of the solar units is assumed
to be 2kW and 5kW. The buses with PEV chargersagkipg lots are illustrated in Fig (5-4) and the

number of PEVs/PEVs'chargers per-phase are availablTable (5-2).The test system is a three-
phase feeder balanced under the operation of $elbad. Figure (5-5) shows the PVUR values over
24 hrs under base load operation. Once a numbBWefare randomly distributed over the system,

there is no guarantee that three-phase balancaticondill be maintained. A sample of violated

Figure.5-4 IEEE 123-bus test system
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PVUR is illustrated in Figure (5-6), indicating theven small scale roof-top PVs could disturb the

voltage.
Table 5-2 Number of PEVs per-phase in thesystem buses
Bus # Ph-a Ph-b Ph-c Bus # Ph-a Ph-b Ph-c

8 12 17 22 60 12 27 47
9 32 17 27 62 32 42 12
17 17 22 27 65 32 32 47
24 32 22 27 70 22 7 42
28 22 42 2 72 25 2 29
34 2 32 42 73 17 7 27
35 32 2 22 78 42 27 20
40 42 12 17 84 22 2 27
41 17 7 2 89 27 40 2

45 22 32 17 92 2 17 36
49 2 37 17 95 12 42 22
52 12 42 12 99 12 12 32
53 2 22 42 103 42 32 7

55 2 22 37 104 19 32 32
56 17 42 2 105 25 22 42
57 47 12 27 106 22 12 12
59 42 32 12 111 22 42 42
60 12 27 47 114 47 37 37

Figure.5-5 Hourly Max and min PVUR values: system is be&ghunder normal condition
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Figure.5-6 Hourly Max and min PVUR values: System is uahaéd when PVs are added

5.6.2 Case study 1: PEV charge-only (comparison bet  ween high/low penetration)

The goal of this case study is to analyze the impA®EV charging on system unbalance. This case
provides a charge-only scenario and no PVs areladlai Two penetration levels of PEVs are
compared to better illustrate the loading impaciswell. These buses are selected randomly.

Respectively, the low and high penetrations inclaldeost 1.9 and 3.7 MW of total system loading.

5.6.2.1High/Low penetration: no phase-balancing constsaint

It is assumed that all PEV owners choose charging, there is no control over phase-balancing in
this case. Figure (5-7) compares total loadingB®¥s for low and high penetrations of chargers in
three phases. Apparently, the more PEV charging, dieater the total demand will be. More
importantly, significant PVUR violations can be sér Figures (5-8) and (5-9), from the acceptable
threshold. This analysis indicates that randonritigion of PEVs in a LV system could result in

great phase unbalance, which consequently coutdase system losses and transformer degradation.
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5.6.2.2High/Low penetration: with phase-balancing conssai

Charging schemes are as in Section (5-6-2-1); hewehe aggregator controls phase-balancing
through an additional constraint, in this case, &&4), as illustrated in Figure (5-10). No battery
discharging is applied here; therefore, the dexis@riables are either one or zero, corresponding t
charging or holding, respectively. Table (5-3) canmgs the impact of phase-balancing on total system
losses, which with lower PEV penetration resultshie total losses dropping by 38.7%. Higher PEV

penetration clearly corresponds to greater demaddgstem losses.

Table5-3Impact of phase-balancing on total system losses

Total Ch i System
otal Charger size i
g Penetration (%) Total Loading Losses
(MW) (MW)
(MW)
Phase a b c a b c a b c

1.388

Low Penet. (NPhB/PhB) 1.88 1.99 2.05 188% 19.9% 205%  7.60 7.88 8.19 10.851

13.17 15.89 14.61 1.58

High Penet. (NPhB/PhB) @ 3.72 4.14 4.25 37.2% 41.4% 42.5%
/13.33 /15.98 /14.66 11.475

*NPhB/ PhB: No-Phase-Balancing/ Phase-Balancing

. 5. . . . 5. .
Tl % "% [/ €271 W 4771 I /71 W €77 [0
", A, A, 0, A, 6‘1@ *1, *1, *1, *1 !

Figure.5-10 Hourly Max and min PVUR%: adding the constr&am voltage unbalance

5.6.3 Case study 2: PEVs in the presence of PV pane Is/solar units

The second case employs PEVs in collaboration wiéhPV panels to determine whether proper
decision making in collaboration with end-usersulssin better utilization of the power grid
infrastructure. Based on the aggregator’s offeE8/ Batteries may be discharged partially. Offees ar

based on RTP tariff. Hourly output power of the pahels used here is based on solar irradiance in
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May (as in Figure (5-2)). Figure (5-4) also proddeusses with solar units, with total installed
capacity of almost 1100 KW.

The loading results obtained from case studiesafi) (2) can be compared in Figure (5-11).
Obviously, this is the loading seen from the giidkes The latter case study provides the aggregator
with more flexibility in decision making. Consequigm the demand drops more as RTP rises.
Extensive discharge (i.@Chrg,.s9 occurs within two RTP peaks; between 10am-2pmaGadpm,
where most energy saving is achieved. Comparisea study (1) and (2) reveals that the charge-
discharge scenario outperforms in demand reducttopeak tariff hours due to local supports of
PEVs and PVs. Table (5-4) also indicates that tsyatem losses is reduced trough the 2nd case
study, and, as can be seen in Figure (5-12), whidis@-balancing constraint the PVUR remained
inside the acceptable 3% limits.
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Energy Price

Figure.5-11 Chrg-only vs Chrg/Dchrg for High PenetratideM®

Table5-4 Total System Losses

Total Charger size ) Total Loading System
Penetration (%)
(MW) (MW) Losses (MW)
Phase a b c a b c a b c
Chrg_only 13.33 15.98 14.66 1.475
3.72 414 425 37.2% 41.4% 42.5%
Chrg/Dchrg 8.71 8.84 7.94 1.103
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Figure.5-12 Max and min PVUR%: V2G with PV, including pkasalancing constraint

5.7 Discussion

So far this chapter has revealed that PEVs canosupeshaping the load while smart charging
acquires phase balancing. This section evaluategehicle owner fulfillment by comparing the ENS
under different charging schemes and penetrativaldeof PEVs. Table (5-5) demonstrates the
energy required (Ereq) and the energy delivered) (i four different charging schemes including
charge-only and charge-discharge scenarios for dow high penetrations. Looking at the low
penetration case, we observe that there is a giifidrence in k, when the charge-only scenario
(Chrg_Low) is exchanged with the charge-dischargenario (i.e. 9.53 MWh vs 9.97 MWh).
Consequently, the ENS differs only by 0.44 MWh.(@&9 MWh vs 0.35 MWh).

In contrast, a significant difference exists foreEdinder high PEV penetration scenario. The
charge-discharge scheme ends in ENS of 2.24 MWiiewie ENS is almost three times greater
through charge-only scheme (i.e. 6.88 MWh).

These findings suggest that incorporation of PEVshort-term power supply, i.e., under V2G
application, outperforms more significantly wheeytighly penetrate the fleet. The results provide
further support for the hypothesis that demandaese is viable by decentralized collaboration of

small smart loads in future smart buildings.

Table5-5 The energy required vs the energy delivered

Ereq (MWh) E gei (MWh) ENS (MWh) System Losses
Chrg_Low 9.53 0.79 130%
10.32
Chrg/Dchrg_Low 9.97 0.35 100%
Chrg_High 18.99 6.88 173%
25.87
Chrg/Dchrg _High 23.63 2.24 148%
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5.8 Summary

This chapter improved the proposed distributed ggnenanagement system (EMS) in chapter 4. It
incorporates PEV owners in demand response (DR real-time interaction with an aggregator
and choosing among various charging options acegrthh personal preference. This interactive-
structure not only provides owners with an appeprscheme for contributing to DR while avoiding
the inconvenience of long-term contracts, but alssures that the three-phase existing infrastreictur
distribution grid operates within the acceptabléage unbalance limits. To provide clarification of
the unbalanced condition, photovoltaic (PV) unéséialso been included in the analysis. This study
shows how the proposed approach employs PEVs fort-sdrm battery discharging to mitigate
phase-unbalance while the PEV owners benefit fitmgir incorporation in DR [122, 123].
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Chapter 6

Conclusions

6.1 Thesis Summary

The research presented in this thesis involved ithestigation of smart charging for the
interconnection of plug-in electric vehicles (PEMsj)th the ultimate goal of supporting the growth o
greener cities in the near future. A framework haen created that will allow both public parking
lots and small residential garages to benefit fremart charging with end-user demand-side
management (DSM) and demand response (DR). The evagiled the development of methods that
enable an aggregator to handle decision making nbgracting with vehicle owners and thus
dynamically manage PEV charging in real time. Twaalitime interaction levels have been
implemented.

The first level, introduced in Chapter 3, is anraagh proposed for charging PEVs through a one-
round interaction, whereby the owner sends the Bfatis data to the aggregator and the aggregator
then optimizes the charging actions with respectotiser PEVs and the power-grid operating
practices. With this technique, a fuzzy-based expgstem assigns scores to the PEVs waiting in a
charging queue in order to prioritize them and tietermine the order in which they will be charged.
The priorities are based on a number of PEV atieiuincluding the SOC, battery capacity, the
maximum charger power rating, and the departure tiinthe vehicle. The case study simulation
results prove the effectiveness of the proposechadetiogy for dealing with the fast-changing
dynamics of PEV charging coordination. The mostiobs finding to emerge from this study is that,
based on the SCR solution, an aggregator can lzettieess the urgent energy demands of PEVs that
have a short parking duration and require a lengti@ayging time.

A second approach at a higher interaction level ingdemented as explained in Chapter 4 in
order to create an energy management system (E&E&dbon the incorporation of aggregated PEVs
into public, smart parking lot, whereby an aggregatffers a variety of options based on a comfort
criterion factor, and vehicle owners respond basegreference. The aggregator employs the input
from five different modules for decision making,tvian artificial neural network (ANN) regression
and a Markov chain model operating together touitel the effect of future PEV arrivals in the
decision results. Although the most promising pernfance would be evident in larger parking lots

with more numerous vehicle transactions, the preg@®lution can be applied for any lot size.
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The final research phase, presented in Chaptekténas the proposed interactively structured

EMS to include single or small garages distributeer a three-phase LV system. This structure

offers PEV owners a flexible scheme for contribgtito DR while avoiding the inconvenience and

limitations of long-term contracts. It also ensurdmt the existing three-phase infrastructure

distribution grid operates within acceptable vo#tagnbalance limits. The first step in the new

structure is an analysis of the voltage-unbalampact of charging under low and high PEV

penetrations. PEVs and solar panels are then eexglog combination for phase-unbalance

mitigation. The results of this study indicate tisggnificantly greater energy efficiency could be

achieved by discharging batteries when the pemetrat PEVs in the grid is high.

6.2 Thesis Contributions

The following major contributions of this study leathe potential to enhance existing V2G-related

initiatives:

The adoption of an intelligent expert system thatets the dynamics of PEV
arrivals/departures and offers a higher level tiE&ection for the owners of PEVs requiring
urgent and longer charging times;

A new multi-stage decision-making approach basedeaittime interactions between PEV
owners and aggregators, which provides owners avithppropriate scheme for contributing
to DR, while avoiding the inconvenience of longaterontracts;

A new stochastic prediction model of near-futunevats and their energy demand, which is
employed in the decision making, based on the coatioin of an ANN and a Markov chain;
and

The employment of PEV battery discharging for naitigg phase unbalance in LV
distribution systems characterized by high PEV patien and local single-phase generation

such as solar units.

6.3 Prospective Work

As a continuation of this work, the following aresre suggested for future investigation:

The DR approach could be extended to include futamart buildings in which a variety of
interruptible loads, PEVs, and on-site generatian enanage building demand through

interactive communication.
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A number of performance assessment methods couldiebeloped in order to create
guidelines for the future regulation of smart gridfiese performance assessment factors
would reflect the success of the aggregator wisipeet to different perspectives: the owners,
the utilities, and aggregator fairness/economy.

The EMS system could be enhanced to include extensbmmunication between solar
panels and public parking lots, which could advatiee goal of providing zero-cost PEV
charging stations in the future.

The possibility of the discharging of multiple kates per parking session and the impacts of
battery degradation would be explored through thplémentation of further mathematical

modeling of economics and incentives.
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Appendix A

The 38-bus test system data

Table (A-1)
Test system date
Line Impedance in p.u. Loads on
to-node (p.u)
F T Rpu X p.u. L St P Q Ly
1 2 0.000574 0.000293 1 4.6 0.1 0.06 R
2 3 0.00307 0.001564 6 4.1 0.09 0.04 I
3 4 0.002279 0.001161 11 29 0.12 0.08 C
R 5 0.002373 0.001209 12 29 0.06 0.03 R
5 6  0.0051 0.004402 13 29 0.06 0.02 I
6 7 0.001166 0.003853 22 1.5 0.2 0.1 8-
7 8 0.00443 0.001464 23 1.05 0.2 0.1 C
8 9 0.006413 0.004608 25 1.05 0.06 0.02 I
9 10 0006501  0.004608 27 .05 0.06 0.02 C
10 11 0001224 0.000405 28 1.05 0.045 0.03 C
11 12 0.002331 0.000771 29 1.05 0.06 0.035 R
12 13 0.009141 0.007192 31 0.5 0.06 0.035 C
13 14 0.003372 0.004439 32 0.45 0.12 0.08 R
14 15 0.00368 0.003275 33 0.3 0.06 0.01 C
15 16  0.004647 0.003394 34 0.25 0.06 0.02 I
16 17 0008026  0.010716 35 025  0.06 0.02 C
17 18  0.004558 0.003574 36 0.1 0.09 0.04 I
2 19 0.001021 0.000974 2 0.5 0.09 0.04 R
19 20 0.009366 0.00844 3 0.5 0.09 0.04 C
20 21 0.00255 0.002979 4 0.21 0.09 0.04 |
21 22 0004414  0.005836 5 011 0.0 0.04 R
3 23 0.002809 0.00192 7 1.05 0.09 0.05 C
23 24 0.005592 0.004415 8 1.05 0.42 0.2 C
24 25  0.005579 0.004366 9 0.5 0.42 0.2 C
6 26 0001264 0000644 14 1.5 0.06 0025 C
26 27 0.00177 0.000901 15 1.5 0.06 0.025 I
27 28 0.006594 0.005814 16 1.5 0.06 0.02 C
28 29 0.005007 0.004362 17 1.5 0.12 0.07 C
20 30  0.00316 0.00161 18 1.5 0.2 0.6 C
30 31 0006067  0.005996 19 0.5 0.15 0.07 R
31 32 0.001933 0.002253 20 0.5 0.21 0.1 R
3233 0002123 0003301 21 0.1 0.06 0.04 C
8 34 0012453 0.012453 24 0.5 0 0
9 35 0.012453 0.012453 26 0.5 0 0
12 36  0.012453 0.012453 30 0.5 0 0
18 37 0.003113 0.003113 37 0.5 0 0
25 38 0003113  0.003113 10 01 0 0

F=From node, T=To node, L=Line number, S; =Line MVA limit in p.u., P= Real
MW load in p.u. ,Q= Reactive MVAr load in p.u., Ly=Load Type, R=Residential,
I=Industrial, C=Commercial
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Appendix B
The 123-bus test system data

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3
F T L Model kW kVAr kW KkVAr kw
1 175 Y-PQ 40 20 0 0 0
2 Y-PQ O 0 20 10 0
4 Y-PR 0 0 0 0 40
5 6 250 Y- 0 0 20
6 Y-Z 0 0 40
7 8 200 Y-PQ 20 10 0 0 0
9 14 425 Y-PQ 40 20 0 0 0

10 Y-l 20 10 0 0 0
11 Y-Z 40 20 0 0 0
12 Y-PQ O 0 20 10 0
16 Y-PQ O 0 0 0 40
17 Y-PQ O 0 0 0 20
19 20 325 Y-PQ 40 20 0 0 0
20 Y- 40 20 0 0

22 Y-Z 0 0 40 20 0
24 Y-PQ O 0 0 0 40
28 29 300 Y-l 40 20 0 0

29 30 350 Y-Z 40 20 0 0 0
30 Y-PQ O 0 0 0 40
31 32 300 Y-PQ O 0 0 0 20
32 Y-PQ O 0 0 0 20
33 Y- 40 20 0 0 0
34 15 100 Y-Z 0 0 0 0 40
35 40 250 D-PQ 40 20 0 0 0
37 Y-Z 40 20 0 0 0
38 39 325 Y-l 20 10

39 Y-PQ O 0 20 10 0
41 Y-PQ 0 0 20
42 43 500 Y-PQ 20 10 0 0 0
43 Y-Z 0 0 40 20 0
45 46 300 Y-l 20 10

46 Y-PQ 20 10 0 0 0
47 48 150 Y-l 35 25 35 25 35
48 Y-Z 70 50 70 50 70

49 50 250 Y-PQ 35 25 70 50 35
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