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Abstract 

Electric transportation has attracted a great deal of interest within the transport sector because 

of its notable potential to become a low-carbon substitute for conventional combustion 

engine vehicles. However, widespread use of this form of transportation, such as plug-in 

electric vehicles (PEVs), will constitute a significant draw on power grids, especially when 

associated with uncontrolled charging schemes. In fact, electric utilities are unable to control 

individual PEVs in order to manage their charging and avoid negative consequences for 

distribution lines. However, a control strategy could be directed at a single vehicle or group 

of vehicles. One effective approach could be to build on a supervisory control system, similar 

to a SCADA system that manages the aggregation of PEVs, a role that could be filled by 

aggregators that exchange data and information among individual PEVs and energy service 

providers. An additional consideration is that advances in intelligent technologies and expert 

systems have introduced a range of flexible control strategies, which make smart grid 

implementation more attractive and viable for the power industry. These developments have 

been accompanied by the initiation of a new paradigm for controllable PEV loads based on a 

number of advantages associated with a smart grid context. One of the established goals 

related to smart grids is to build on their ability to take advantage of all available energy 

resources through efficient, decentralized management. To this end, utilities worldwide are 

using IT, communication, and sensors to provide enhanced incorporation of operational tools 

and thus create a more robust and interactive environment able to handle generation-demand 

dynamics and uncertainties. One of these tools is demand response (DR), a feature that 

adjusts customers’ electricity usage through the offer of incentive payments.  

Motivated by this background, the goal of the work presented in this thesis was to 

introduce new operational algorithms that facilitate the charging of PEVs and the 

employment of their batteries for short-term grid support of active power. To allow both 

public parking lots and small residential garages to benefit from smart charging for end-user 

DR, a framework has been developed in which the aggregator handles decision-making 

through real-time interactions with PEV owners. Two interaction levels are implemented. 

First, for charging coordination with only one-round interaction, a fuzzy expert system 
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prioritizes PEVs to determine the order in which they will be charged. Next, for smart 

charging, which includes battery discharging, a multi-stage decision-making approach with 

two-round interaction is proposed. Real-time interaction provides owners with an appropriate 

scheme for contributing to DR, while avoiding the inconvenience of pre-signed long-term 

contracts. A new stochastic model predicts future PEV arrivals and their energy demand 

through a combination of an artificial neural network (ANN) and a Markov chain.  

A new method is proposed for promoting collaboration of PEVs and photovoltaic (PV) 

panels. This technique is based on a determination of the ways in which smart charging can 

support simultaneous efficient energy delivery and phase-unbalance mitigation in a three-

phase LV system. Simulation results derived from 38-bus and 123-bus distribution test 

systems have verified the efficacy of the proposed methods. Through case-study 

comparisons, the inefficiency of conventional charging regimes has been confirmed and the 

effectiveness of real-time interactions with vehicle owners through DR has been 

demonstrated. 

The most obvious finding to emerge from this study is that the use of a scoring-based 

(SCR) solution facilitates the ability of an aggregator to address urgent PEV energy demands, 

especially in large parking lots characterized by high levels of hourly vehicle transactions. 

The results of this study also indicate that significantly greater energy efficiency could be 

achieved through the discharging of PEV batteries when PEV grid penetration is high. 
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Chapter 1 

Introduction 

The power grid is expected to change dramatically over the coming decades, in part because the 

number of customers, their requirements, and their expectations has grown dramatically. On the other 

hand, planners and operators need to operate the grid under progressively more complex conditions 

due to utilization of renewable generation, energy storage systems, to name a few. Accordingly, 

utilities all over the world are making efforts to incorporate operational tools into the power grid by 

means of information technology, communication, sensors, and digital knowledge so as to create a 

more robust and interactive intelligent environment better capable of handling all the uncertainties 

related to generation and demand. 

On the other hand, the automotive industry has devoted extensive efforts to explore alternative 

energy resources for transportation, largely due to concerns about increased emissions and increasing 

oil prices.  Electrification of vehicle fleets presents a promising solution, since the power sector has in 

place a reliable and highly efficient infrastructure that can provide energy for such vehicles. 

Furthermore, electric vehicles are inherently more efficient at turning energy into miles driven1, and 

they have a salient feature in common: their batteries. According to [1, 2], the average daily distance 

for North Americans to drive is 45 km (Figure (1-1)), and the average daily time during which cars 

are parked is 90% (almost 22hrs) [3]. Thus, the energy storage capacity in electric cars with 

significant well-aggregated penetration presents great opportunities for better integration of 

“intermittent” energy resources2 with the power grid [4]3. However, charging plug-in electric vehicles 

(PEVs) imposes an additional load on the power grid. More importantly, the penetration of PEVs is 

going to become relatively high compared to the electric generation capacity; 20% of eligible new 

Ontario Public Sector vehicle purchases will be electric by 2020 [4]. The trend towards additional 

electrical load growth in Ontario has been pointed out in [5]. Table (1-1) shows the significant 

additional demand expected due to PEV penetration, which can be compared to the in-service 

generation capacity illustrated in Figure (1-2) [6]. 

 

                                                      
1 - Electric cars are much more efficient than internal combustion engine (ICE) drive trains (about 75% vs. 25%) [7]. 
2 - Such as solar and wind energy. 
3 - This capability is of particular interest when combined with micro-grids; as a potentially self-sufficient segment of the 

grid that is connected to the power grid at large but has the ability to provide and manage its own energy.  
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Figure  1-1 American Daily Vehicle Travel [2] 

Table  1-1Additional Loads due Incremental Growth of EV Penetration [5] 

 Canada Ontario 

Number of vehicles 27,577,524 9,990,267 

10% penetration (GVA) 8.27 3 

50% penetration (GVA) 41.37 14.99 

100% penetration (GVA) 82.73 29.97 

 

 

Figure  1-2 In-service generation Capacity in Ontario (Dec. 2010), [6] 

Although, opinions are divided about the impact of PEVs on distribution grids, there is a general 

agreement with respect to the considerable effects that mass PEV operation under an uncontrolled 

charging scheme will have on electric grid assets (mainly on local distribution infrastructure and 

possibly on the transmission sector). Studies and reports classify the consequences of uncontrolled 

charging as follows:   

Other, 2 Regulated 
Nuclear, 

6606 MW

Regulated 
Hydroelectric
, 3312 MW

Unregulated 
Hydroelectric
, 3684 MW

Unregulated 
Thermal, 
6327 MW
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• Phase imbalance, 

• Harmonics and other power quality issues, 

• Line congestion, 

• Transformer degradation and failure due to thermal overloading, and 

• Circuit breaker and fuse blowout.    

Electric grid operators and planners are therefore concerned with deploying PEVs effectively and 

mitigate their impacts. Planning alternatives include meeting demand growth through upgrades to grid 

infrastructures or installation of Distributed Generation (DG) [8, 9]. However, planning alternatives 

reflect long-term horizons, and feasible solutions require consideration of several prospective factors, 

such as load growth, updated PEV models, and newer technologies.  

Operational solutions are thus being proposed as a means of minimizing the additional costs related to 

planning solutions. Demand Side Management (DSM) is a fundamental operation component that 

seeks to involve end-use customers in shaping energy demands, which, in turn, results in peak 

clipping, valley filling, load shifting, strategic conservation/load growth, and flexible load shape. 

Electric utilities often understand DSM to include two components: (1) Energy Efficiency (EE), 

which is designed to reduce electricity consumption during all hours of the year, and (2) Demand 

Response (DR), which modifies customers’ electricity usage from their normal consumption pattern, 

in response to incentive payments designed to encourage lower electricity use at times of high prices 

or when system reliability is at risk [2].  

Some DR studies propose scheduling of PEV charging during off-peak hours [3]. However, with a 

high penetration of PEVs, even if all charging occurs at off-peak hours, upward pressure on 

distribution components will still exist. As well, a convenient time for the owner to charge the vehicle 

and the preference of the utility might conflict [10]. Consequently, grid operators are trying flexible 

and smart charging scenarios that simultaneously accommodate the technical limits of the grid and 

also satisfy vehicle owners. The success of such strategies is dependent on a bidirectional medium, a 

role that can be filled by aggregators, which collect information from PEVs, send it to the energy 

service providers, and vice versa. 

Integration of storage systems would also lead to great opportunities for DR programs, even though 

their applications for end-use customers are still restricted due to the installation costs of such storage 

devices. Deployment of grid-able PEVs, however, holds the promise of using their batteries for DR 

without imposing the additional infrastructure and costs associated with domestic storage systems 

[11]. Along with proper charging and communication infrastructure, PEVs may play a dual role in 
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smart grids; they may eventually either turn into Interruptible Loads (IL) when plugged in for 

charging or act as grid-able storage responding to pricing commands, a concept generally referred to 

as vehicle-to-grid (V2G). These features make PEVs appropriate for providing short-term ancillary 

services for the grid. As with other DR programs, the idea behind V2G is simply to allow owners to 

profit and to gain more revenue. That is, if the vehicle owner changes the battery from charging to 

discharging back to the grid at a rated power, the energy payment direction should be reversed [12].  

Most research and studies reveal potential profits that electric utilities or policy makers would make 

from V2G. Questions, however, have been raised about vehicle owners’ interest in V2G. Recent 

surveys by Hidrue et al., [13, 14], indicate that, due to the stochastic nature of the arrival and 

departure of vehicles, the conventional approach–PEV drivers signing pre-specified contracts, in 

return for annual cash back– is unlikely to appeal to drivers under current market conditions. 

The research presented in this thesis investigates the collaboration of PEVs in customer-side demand 

management by means of smart charging. It explores the ways an aggregator can enable decision-

making by interacting with vehicle owners and thus dynamically manage PEV charging in real-time. 

Two different approaches are realized based real-time interaction with owners. In the first, PEV 

owners send data to the aggregator and the aggregator optimizes charging action with respect to other 

PEVs and power-grid operation practice. The second approach provides a higher interaction level, 

whereby the aggregator processes the data received from owners and offers charge and discharge 

options regarding real-time energy tariffs. Accordingly, owners choose among the options and based 

on the owners’ responses, the aggregator optimizes the decision making. The next sections move on 

to describe in greater detail the thesis objectives and outline.  

1.1 Research Motivations 

Investing vast sums to upgrade the distribution grid for the charging of PEVs (for a limited number of 

hours per day) would be economically non-viable. Although charge-management scenarios have been 

introduced as a component of operational plans for facilitating the adoption of PEVs, not all-

encompassing regulation is yet available for managing PEV aggregators with respect to producing 

optimal decisions. The motivation for the widespread adoption of PEVs and the development of 

regulations is predicated on a broad understanding of the possible benefits and advantages of PEVs, 

such as the following: 

• Economy and Environment: Not only is it costly to upgrade the existing power grid to 

accommodate PEVs, but doing so would also require the installation of additional power plants, 
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which would result in a larger carbon footprint and increased emissions, and would be counter to the 

primary goal of fleet electrification.    

• Demand Response and Load Management: Mass PEV operation would significantly amplify 

energy demand. Shifting PEV charging to off-peak hours or applying smart charging regimes based 

on demand control and the safe operation of the system would become primary concerns for electric 

utilities in the near future. Any consequent effects should ideally benefit both customers and utilities 

through reduced energy costs and lower grid-operating expenses, respectively. 

• Grid Support with Small-scale and Decentralized Power Sharing: Based on an enhanced 

“smart” concept, future smart grids will facilitate power sharing through the employment of all 

available energy resources and their efficient decentralized management. An additional consideration 

beyond charge management is the possible use of PEVs for supplying the electric grid in the form of 

short-term ancillary services. Theoretically, their power-electronics-based converters are able to 

switch quickly to the grid and provide such services as voltage/frequency regulation, peak shaving, 

and outage management contribution. It is worth mentioning that peak shaving would not only 

include shifts in the charging time, but also incorporate additional PEV battery power to serve some 

loads (such as supporting the charging of other PEVs in vehicle-to-vehicle (V2V) mode). Of course, 

the realization of this vision is dependent on a guarantee that society would move toward the 

widespread adoption of PEVs. 

1.2 Research Objectives  

The research presented in this thesis addressed five main objectives:  

• Accommodate the charging associated with high PEV penetration while meeting the 

operating constraints inherent in the available electric infrastructure. 

• Realize demand-side management (DSM) through flexible charging and V2G/V2B/V2V PEV 

moods to provide specific benefits for vehicle owners and to collaborate with electric utilities 

in the reshaping of the load so as to expand the capacity of the electric infrastructure to serve 

additional loads to some extent (i.e., from the utility’s economic perspective).  

• Work toward greater owner satisfaction by exploring real-time interactions and by offering a 

strategy that would encourage PEV adoption by drivers (i.e., from a vehicle owner’s 

economic and fairness perspective).  

• Implement a prediction module that would better facilitate charging coordination.  
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• Analyze charging coordination in a three-phase LV distribution system and so determine how 

smart charging could support unbalance mitigation while PEV owners participate in DSM. 

In view of smart grid’s components, as illustrated in Figure (1-3), this thesis contributes mainly in 

employments of PEVs, customer options, and energy efficiency under the smart grid umbrella. 

However, market and extensive incentive mechanisms roles in smart grids are beyond the scope of 

this study. Figure (1-4) presents the research objectives along with the corresponding chapters that 

cover them. The objectives are described in detail in the following subsections.   

 

 

Figure  1-3Smart Grid Components 
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Figure  1-4 Research Objectives 

1.2.1 Accommodate Charging High Penetration of PEVs   

This study begins by introducing a novel method of coordinating the charging of PEVs in smart 

parking lots. An intelligent and on-line control method is proposed based on a fuzzy expert system 

that assigns scores to PEVs in a charging queue. This methodology offers a trade-off between the 

concerns of the utility and the needs of the vehicle owners to achieve greater satisfaction for both. 

The developed solution assigns each PEV a charging priority, the determination of which includes 

consideration of the grid, the vehicle, the battery, and the charger. To allocate priorities to PEVs 

located in a parking lot, an aggregator employs a number of decision factors. The charging service 

will thus be allocated to higher-priority PEVs but without violation of the operational practice 

constraints of the grid. Two case studies evaluate the algorithm for the proposed method.  

1.2.2 Realize Demand-side Management/Demand Respons e by Incorporation of PEVs 

The second objective addresses an approach that realizes demand response (DR) by developing an 

energy management system (EMS) for incorporating aggregated PEV in parking lots. This approach 

includes real-time interaction between the aggregator and PEV owners, whereby the aggregator 

proposes a number of offers and the owner responds based on his/her preference. The offers include 

opportunities for both charging and discharging batteries, with a corresponding discount for the latter. 

Here, the aggregator incorporates a number of different modules to facilitate real-time decision-

making. Case-studies compare the proposed solution with conventional charging regimes, to ascertain 

the effectiveness of the real-time interactive model.   
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1.2.3 Explore Better Owner Satisfaction  

New studies debate that the conventional approach–PEV drivers signing pre-specified contracts in 

return for annual cash back– is unlikely to appeal to drivers. The third objective of this study thus 

focuses on giving PEV owners flexible options at the moment of plugging-in the vehicle, i.e., in the 

on-line interactive method. This approach supports the owner in DR-cooperation by providing 

convenience, whether or not he/she wants to discharge the battery for cash back, or he/she wants to 

postpone charging until the lower energy tariff interval arrives. Therefore, there will be no pre-signed 

contract violation penalty for these PEV owners.          

1.2.4 Prediction of Future PEV Arrivals and their S tatus to Support Smart Charging  

In addition to any already-present PEVs, the pattern of future arrivals also affects the aggregator’s 

decision making. The fourth objective of this research is to implement a prediction module for the 

aggregator, one that carries out two prediction tasks: the number of future vehicle arrivals and their 

corresponding energy-demand status. 

1.2.5 Analyses Smart Charging Impacts in 3-Phase LV  distribution system 

Significant growth of asymmetric single-phase chargers in the domestic area and, more importantly, 

the uncertainties associated with PEV charging time and duration, would present substantial phase-

unbalance and consequently reduce power-supply reliability and quality. 

The last main objective of this thesis is to apply the smart charging into the three-phase system 

through adopting a more generalized form of the proposed interactive-structure, not only to provide 

owners with an appropriate scheme for contributing to DR, but also to ensure that the three-phase 

existing infrastructure distribution grid operates within acceptable unbalance limits. 

1.3 Thesis Outline  

The thesis is structured into six chapters and is organized as follows: 

Chapter 2 provides a brief review of the relevant background and the literature related to this 

study. It begins by laying out the theories for PEV modeling and then goes on to review impacts and 

applications of PEVs in smart grids.  

Chapter 3 presents an online intelligent charging coordination of PEVs in distribution systems. It 

develops a strategy that enables aggregators in public parking lots to dynamically manage PEV 

energy demands. 
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Chapter 4 tackles the demand response (DR) by developing an energy management system (EMS) 

for incorporating aggregated PEVs in parking lots. This approach includes real-time interaction 

between the aggregator and PEV owners and explores the effect of various charge/discharge offers on 

total demands.  

Chapter 5 addresses how smart charging can be used to support more efficient energy delivery and 

phase unbalance control, while improve DR contributions by the PEV owners. It extends the idea 

presented in chapter 4 to evaluate the impacts of PEVs in three-phase LV distribution systems. 

Moreover, the potential of PEVs and V2G application in mitigating phase-unbalance is studied. 

Chapter 6 summarizes the thesis findings and outcomes, contributions, and suggests potential 

future works.  
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Chapter 2 

Literature Related to PEVs: Background and Previous  Research 

Interactions between plug-in electric vehicles (PEVs) and an electric grid, especially the distribution 

sector, can be viewed from two different standpoints: the impact of the PEVs on the grid and their 

potential applications with respect to grid support. This chapter first provides background about PEV 

modelling and then addresses the impact of high PEV penetration on the distribution grid. The 

research and solutions related to charge coordination that have previously been reported in the 

literature are then examined. The application of PEVs as smart grid loads that are controllable by 

means of smart charging/discharging schemes is then reviewed. The chapter ends with the 

identification and a discussion of the gaps in and drawbacks of prior studies. 

2.1 Infrastructure: Aggregation Role in Public Acce ptability 

Although emissions and oil prices are the primary drivers impelling policy makers to deploy electric 

cars, if customers are unwilling to pay for these vehicles, the transition to electric transportation will 

be impeded because very few drivers would rely on grid-based electricity as an energy resource. 

Public acceptance is therefore an essential component of policy making. With the goal of achieving 

customer acceptance, a number of alternatives are currently offered by the automobile and power 

industry; hybrid vehicles that provide the advantage of operating in a non-electric mode were the first 

of these solutions. However, a new generation of advanced vehicles, including fully electric PEVs, is 

emerging every day and will be available over the next few years (Fig (2-1)) [4].  

 
ICE: Internal combustion engine      BEV: Battery electric vehicle      FCV: Fuel cell vehicle 

Figure  2-1 Electrification trend of advanced vehicle technologies [4] 
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The fully electric cars of the near future will require an infrastructure of electric stations and parking 

lots distributed throughout cities, as well as batteries capable of rapid recharging. The infrastructure 

must be reliable and able to ensure the charge required to reach the next destination. According to 

SAE J17721, the North American standard for electric chargers, two connections are necessary [15]:  

• A power connection for electrical energy flow, and  

• Bidirectional communication between vehicles and the distribution sector as well as control  

Electrification of vehicle fleets presents a promising solution, since the power sector has in place a 

reliable and highly efficient infrastructure that can provide energy for such vehicles. However, 

charging plug-in electric vehicles (PEVs) imposes an additional load on the power grid. Although, 

opinions are divided about the impact of PEVs on distribution grids, there is general agreement with 

respect to significant effects of mass operation of PEVs with uncontrolled charging regime2 on 

electric grid assets. In fact, electric utilities cannot communicate with each individual PEV to manage 

their charging and avoid any congestion in the distribution line. A controlling strategy could be 

directed to a single vehicle, or to a group of vehicles. An effective approach would benefit from a 

supervisory control system, similar to SCADA systems that manage aggregation of PEVs. Therefore, 

the concept of an aggregator has been developed to represent a commercial medium/agent between a 

grid operator and multiple vehicles through a reliable bidirectional communication link (see Figure 

(2-2)) [16]. 

 

 

 

 

 

Figure  2-2 Aggregator’s Role as a Medium 

The aggregator collects the available energy of PEV batteries to deal with grid operators, or Energy 

Service Providers (ESPs), and to manage the charging schedules of the batteries. Aggregation of the 

                                                      
1 - SAE J1772 is a North American standard for electrical connectors for electric vehicles maintained by the Society of 

Automotive Engineers, which covers the general physical, electrical, communication protocol, and performance 

requirements for the electric vehicle conductive charge system and coupler. In Europe, IEC 61851 applies to equipment for 

charging electric road vehicles. 
2 - When a vehicle starts getting charge right after it is plugged in to the grid. 
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PEVs would also be utilized to support smart grids by offering ancillary. Stated simply, the 

aggregation role involves how the battery state-of-charge (SOC) is managed. 

2.2 PEV Modeling: Battery and Charger 

The literature proposes integrated models for PEVs in system-level studies. These models mainly 

include the battery and the charger. To model a battery’s real-time charging power and demand 

profile, the battery’s SOC, voltage, current, and grid side interface are required.  

As the most important component of a PEV, a battery characterizes the vehicle under several 

points of view, such as energy and power capacity, all electric range (AER), lifetime, etc. The 

lithium-ion (Li-ion) battery-type has become the most popular type of rechargeable battery1 due to its 

good energy density, memory-less effect, and slow loss of charge (when it is not in use). Recent 

studies have modeled vehicle batteries using SOC as the only state variable [17, 18]. Here, the battery 

is modeled using a controlled voltage source (Voc) in a series with an equivalent battery pack 

resistance (Ri), as shown in Fig (2-3). The terminal voltage of the battery is Vt, and the SOC, the only 

state variable, is defined as (2-1): 

nom

Q
SOC

Q
=  (2-1) 

where,  

Q = the actual capacity/energy (Ah) stored in the battery, 

Qnom = the nominal capacity (Ah) of the battery. 

 

Figure  2-3 A typical battery model [17] 

Neglecting the battery efficiency, the SOC variation during charging/discharging is expressed as (2-

2): 

                                                      
1 - According to [18], 70% of PEV batteries in 2015 are be Li-ion.   
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nom

d SOC i

dt Q
=  (2-2) 

where, 

i = the charging/discharging current  

In [18], battery voltage is shown as a function of the actual capacity, (Q), and consequently is a 

function of the SOC level. The terminal voltage of the battery pack, (Vpack), is thus in (2-3). Voltage 

drop is positive during charging and negative during discharging. Hence, an integrated PEV model 

could be represented simply as a battery and charger, as in Figure (2-4). On the grid side, the PEV 

charger is supplied with grid voltage (Vc) and absorbs the current ic during charging. On the battery 

side, Vpack and i identify the terminal voltage and the current absorbed by the battery. 

R .pack oc eqV V i= +  (2-3) 

 

Figure  2-4 A integrated PEV model [18] 

2.2.1 Charging Characteristics  

The standard charging of a Li-ion battery is composed of two distinct operational regions (Figure (2-

5)): the constant current (CC) until the voltage upper limit is reached, and constant voltage (CV) until 

a SOC level of 100% is reached [18]. Since the output voltage of the battery is a function of its SOC, 

the battery power is also being a function of it, as (2-4). Consequently, the energy exchange for each 

individual vehicle will vary based on the battery SOC. 

( ) ( ).BatP SOC v SOC i=  (2-4) 
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Figure  2-5 Voltage and current characteristics of the Li-Ion battery during charging [19] 

2.2.2 Discharging Characteristics 

Similar to charging characteristics, discharge voltage is a function of the SOC, which drops according 

to the SOC’s reduction. Figure (2-6) illustrates the voltage discharge curve versus the SOC of a Li-ion 

battery [20]. The non-linear voltage depends on the actual battery charge, meaning that when the 

battery is almost completely discharged and no current is flowing, the voltage will decrease 

significantly. The battery has a flat declining voltage curve in the usable discharge range. Studies 

show that an SOC window of 20-90% is a suitable energy window to use for PEV batteries [18]. 

 

Figure  2-6 Voltage and current characteristics of the Li-Ion battery during discharging [20] 



 

 15 

2.2.3 Li-Ion Battery Cycle Life  

The SOC vs. cycle-life curves show the percentage of the original charge capacity as a function of 

cycle use (i.e. charge, then discharge). Fig (2-7) shows the SOC vs. cycle-life for Li-Ion battery 

technology. As can be seen from this figure, the discharge capacity decreases approximately linearly 

with the cycle number. If the SOC criterion is set at 80%, this particular battery can last roughly 7,000 

cycles [21]. 

 

Figure  2-7 Battery SOC as a function of cycle-used [21]. 

2.2.3.1 Battery Efficiency 

At higher SOC, the battery has larger open circuit voltage and smaller resistance. These two 

parameters are sometimes regarded as constants, since they do not change much over the full battery 

operating range, e.g. 30/20–90%. Fig (2-8) illustrates the efficiency of the typical battery during 

discharging and charging. The battery has a high discharging efficiency with high SOC and a high 

charging efficiency with low SOC. It seems that the net cycle efficiency is maximized at the middle 

range of the SOC [22]. Therefore, the battery operation control unit of a PEV should control the 

battery SOC in its middle range so as to enhance the operating efficiency and depress the temperature 

caused by energy loss (high temperature would damage the battery). 
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Figure  2-8 Typical battery charge and discharge efficiency [22] 

2.2.4 Charger Characteristics in Smart Parking lots  

The introduction of smart garage with charger facility represents an interface between the 

transportation network and electric power system, where, the charging/discharging infrastructure and 

control system needs to be widely available [2]. The parking facility should be capable of bi-

directional power flow to either charge or discharge car batteries, and should be able to hold either 

process for more flexible controlling purposes. 

The bi-directional charger should charge the PEV’s battery while producing minimal harmonic 

currents, and also should be able to provide energy back to the grid (V2G) or to the building (V2B) or 

to other PEVs (V2V). The charger should function smoothly in both directions and draw a clean 

sinusoidal current in phase to avoid harmonic currents and poor power factor. Similarly in battery 

discharge mode, the charger should return current in a similar sinusoidal. Different electronic circuits 

with the same topology shown in Fig (2-9) can fulfill this requirement1 [23].      

                                                      
1 - In the battery charging mode, the AC current passes through a filter to remove unwanted frequency components. Then, 

the AC current is rectified into DC current as it passes through the bidirectional AC-DC converter.  Since this AC-DC 

converter output voltage might not match the voltage of the DC energy storage, a bi-directional DC-DC converter ensures 

the proper charging voltage is supplied to the battery. In discharge mode, the process is reversed. The leaves the battery and 

is changed back to the proper DC voltage with the bi-directional DC-DC converter. This DC current is then inverted into AC 

by the bi-directional AC-DC converter. Then, it passes through the filter, which smooths out the AC current so it is suitable 

for injection back into the grid [23].  
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Figure  2-9 General bi-directional charger topology for single/three phase [23] 

Charger facility level affects the energy exchange. EPRI introduced three levels of charger 

standard applicable for North America (Table (2-1)) [1]. For smart garage with charging and 

discharging abilities, Level-1 and Level-2 will be ideal choices, since a Level-3 charging station will 

dramatically increase the power flow capacity requirement. Level-1 charging only provides a small 

amount of power (maximum of up to 1.44 kW), and results in prolonged charging time. The Level-2 

(also known as fast charger) method uses a 208 to 240-VAC, single-phase, up to 80-amp branch 

circuit. Since the typical charging time for a 10 kWh battery pack will be 1-2 hrs, it is the primary 

charger facility for the PEV in both private and public facilities [2]. Table (2-2) also shows where 

charging stations can be located by charger type [25]. 

Table  2-1 Charging Levels Standard for North America [24] 

Charging Level Specification 

1 120 VAC, 15A* (12A), Single-phase, 1.44 kW/h 

2 240 VAC, 40A**  (32A), Single-phase, 7.7kW/h 

3 480 VAC, Three-phase, 60-150 kW/h 

                                 * Could be 20 A 
                                 ** Could reach to 80 A (100 amp rated circuit) 
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Table  2-2 Charging stations based on charger type [25] 

 Charging Station Type 

 Level-1 Level-2 Level-3 

Residential 
   

Single family houses �  �   

Multi-family units �  �   

Commercial/Employment Centers 
   

Privet (offices complex, business campus) �  �   

Commercial/Retail (fleet and delivery service) �  �   

Public access (airport, hotel, grocery store, hospital, mall) �  �  �  

Government, university, and municipal facility �  �   

Transit hubs  �  �  

Fueling stations  �  �  

Public 
   

Parking lots �  �  �  

Street  �  �  

Interstate and highways   �  

2.2.4.1 Communication and control 

Smart grid is all about how data are efficiently connected. The primary purpose of employing 

communication infrastructure is optimizing grid energy transfer to PEVs. There are two basic 

approaches currently being adopted for communication between PEVs and the aggregator. One is the 

wireless communication approach and the other is over-line signaling approach.  

In the first approach, control links mainly include wireless access, positioning, and on-board 

metering. Secure wireless communication between the aggregator and the PEVs, and between the 

aggregator and the control center is required include PEV verification, and PEV and owner privacy 

protection. The on-board charger needs to be equipped with Telematics1 communication unit is used 

for the transmission of data, GPS geographic location information, and receiving information from 

the aggregator and the control center. The standard called Wireless Access for the Vehicular 

                                                      
1 -  Telematics, which is the integrated use of telecommunications and informatics 
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Environment (WAVE)1, is the standard that addresses and enhances intelligent transportation system. 

An example of control panel, suggested in [26], is shown in Figure (2-10).  

The SAE standard series2 established various protocols for communication-over-power line 

including Level-2 outlet and on-board charger as well as DC chargers and PEVs. The data signals as 

follows: 

• Identifications: vehicle ID and customer ID; 
• Energy requests: energy request, power rate request, energy available, power available, 

etc.; 
• Timing information: time charging to start/end;   
• Pricing: request scheduled prices, publish price, define rate time period, etc.; 
• Load control: load control, cancel load control, report event status request/response, 

request scheduled events; 
• Vehicle info/status: time at connection, battery SOC start, battery SOC end, battery SOC 

actual, vehicle type, usable battery energy, customer mode preference.  

 

Figure  2-10 Suggested design of vehicle smart dashboard control [26] 

2.2.5 Cost of Charging versus Gas: A Case in Ontari o 

According to Ontario Ministry of transportation, [27], a PEV typical battery will cost less than $300 

per year on average, or about $0.78 per day to charge at night (Value for Nissan Leaf, adapted from 

Natural Resources Canada 2013 Fuel Consumption Guide, using Ontario off-peak electricity prices as 

of May 2013, based on an average annual driving distance of 20,000 km). 

While, a typical plug-in hybrid EV will cost about $700 per year, or $1.92 per day for fuel 

including gasoline and electricity costs (Value for Chevrolet Volt, adapted from Natural Resources 

                                                      
1 - From IEEE 1609 family. 
2 - SAE J1850, SAE J2293, SAE J2836.  
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Canada 2013 Fuel Consumption Guide, using Ontario off-peak electricity prices as of May 2013 and 

a gas price of $1.30/litre, based on an average annual driving distance of 20,000 km). Comparable 

gasoline cars can cost between $1,000 and $2,500 per year to fuel - up to eight times more money 

spent each day (Estimate based on values from Natural Resources Canada 2013 Fuel Consumption 

Guide and a gas price of $1.30/litre). 

2.3 Impacts of PEVs on the Distribution Grid  

Market trend estimation is important to precisely assess and predict the potential impacts of PEVs on 

the energy sector. By 2018, there will be at least 500 000 highway-capable PEVs on Canadian roads 

[28]. According to International Energy Agency (IEA), the number of charging stations has increased 

fivefold between 2010 and 2012, where slow charger infrastructures have been growing dramatically 

greater than the fast charging stations as shown in Fig (2-11) [29]. Significant growth of asymmetric 

single-phase chargers in the domestic area and, more importantly, the uncertainties associated with 

PEV charging time and duration, would present substantial phase-unbalance and consequently would 

reduce power-supply reliability and quality as well as the transformer utilization rate. In addition, 

phase-unbalance may lead to excessive current in the neutral line, and voltages at the customer side 

may fall outside acceptable levels [30, 31].  

 

Figure  2-11 AC fast charger growth versus slow charger growth between 2008-2013, [29] 

Preparing for the rapid growth of PEV penetration and proper installation of charging stations 

needs distribution networks to be expanded and developed through careful research, planning and 

investment. Overall, potential impacts of the PEVs on the power grid, especially on the distribution 

sector would include as follows [25]:   
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• phase imbalance; 

• harmonics at the battery charger and other power quality issues1; 

• line overloading and congestion; 

• reactive power demand;  

• transformer degradation and failure due to thermal overloading; 

• circuit breaker and fuse blowout.    

Recharging the PEV battery is typically carried out in residential garages equipped with standard 

outlets and taken several hours. The uneven distribution of single-phase chargers can results in severe 

voltage magnitude deviations and voltage unbalance [32, 33]. A qualitative analysis done in [34] 

illustrates that charging high penetration of the PEVs increases fault currents significantly. Different 

fault analyses have been simulated for a distribution system. Fig (2-12) shows two scenarios of fault 

current due to single phase to ground and phase to phase faults in the feeder. 

 

Figure  2-12 Feeder current with different penetration of the PEVs 

A study in the UK reports that with fewer chargers (e.g. lower percentage of PEVs being charged), 

the load diversity is lower, resulting in a larger variation in the current imbalance. Conversely, when 

the number of chargers switched on is high, the diversity was high, resulting in a lower average 

current imbalance [35]. It is shown in another work by F. Shahnia et al., [36], that PEVs have minor 

effect on the voltage unbalance at the beginning of a LV feeder. While, the voltage unbalance is 

increased at the end of the feeder to more than the standard limit.  

                                                      
1 - Such as sub-harmonics signal generation [24] 
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There are two approaches currently being adopted in unbalance studies of PEVs. One is the effect 

of converter-based PEV chargers on the distribution grid such as the research conducted [24] and the 

other is the aggregated effects of the PEVs on the system’s phase unbalance [37]. In [24] voltage 

unbalance is analyzed through incorporating the voltage source converted (VSC)-based PEV model 

into a three phase distribution power flow algorithm. The PEV model in load flow analysis comprises 

a voltage source converted (VSC) and a battery pack. The proposed schematic diagram and 

equivalent circuit of the VSC-based PEV for reactive power control in power flow studies are 

presented in Fig (2-13), where the model allows active power exchange and regulation of bus voltage 

magnitude. 

 

Figure  2-13 VSC-based PEV schematic and the equivalent diagram [24] 

To determine effects of PEV charging on the distribution transformer life-time, M.-J. 

Rutherford et al. compare transformer’s aging acceleration factor (FAA) and the Loss-of-Life (LOL) 

for different scenarios of Lithium-Ion battery charging load [38]. The author found that an intelligent 

residential charging station, in which charging would be delayed or coordinated so that one or limited 

number of them could be charged at once, can minimize the charging impact on the distribution 

transformer aging. Similarly, in [39] impacts of the PEV charging on transformer hot spot 

temperature and loss of life are simulated. The results confirm the findings of [38], in which charge 

control would help utilizing the capacity of transformers more efficiently. 

Perhaps harmonics are the most serious disadvantage of converter-based devices in smart grids. 

PEV battery chargers are high power nonlinear devices that can generate a significant amount of 

current harmonics by drawing low voltage AC power and converting it to DC. This process involves 

rectifying the AC signal and running the rectified signal through a DC/DC converter. Both of these 

processes produce harmonic distortion in the distribution system, which cause problems on the power 

system, including excessive neutral current and transformer hot spots. A number of studies address 

how fundamental and total harmonic distortion caused by battery chargers lead to suboptimal 

generation dispatch to serve the large PEV charging loads [40-42]. The analysis, presented in [42], is 

based on harmonic power flow for non-linear loads. At harmonic frequencies, the power system is 
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modeled as a combination of passive elements and harmonic current sources, each injecting harmonic 

currents at different frequencies into the system. Fig (2-14) and Fig (2-15) illustrate a sample of 

charger waveform, system load profile and total THD of voltage in a distribution system with a low 

penetration of the PEVs. 

 

Figure  2-14 Current waveform for the PEV charger and the system load profile [42] 

 

Figure  2-15 System total THD of voltage due to low penetration of the PEVs [42] 

2.4 PEV Charging Coordination   

Recent years have seen a rapid growth of large body of literature on the deployment of PEVs in smart 

grid. Energy flow direction is a major area of interest within the literature devoted to PEV charge 

scheduling, which is classified into two main categories: 1) charge-only and 2) V2G/V2B1 

scheduling. On the other hand, to tackle the probable pressure due to additional energy demand of 

PEVs, electric grid operators and planners have explored various solutions to properly adopt PEVs 

                                                      
1
 - Vehicle-to-Building 
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and mitigate their impacts. Planning alternatives mainly include meeting the demand growth through 

upgrades to grid infrastructures or installation of Distributed Generations (DG) [8, 43]. However, 

planning alternatives reflect long-term horizons, and feasible solutions require consideration of 

several prospective factors, such as load growth and updated PEV models and newer technologies. 

Operational and demand response solutions are thus being proposed as a means of minimizing the 

additional costs related to planning and renewal solutions. 

Among the studies that address PEV charging coordination, some propose scheduling of PEV 

charging during off-peak hours [3]. However, with a high penetration of PEVs, even if all charging 

occurs at off-peak hours, upward pressure on distribution components will still exist. As well, a 

convenient time for the owner to charge the vehicle and the preference of the utility might conflict 

[4]. Consequently, grid operators are trying flexible charging scenarios that simultaneously 

accommodate the technical limits of the grid and also satisfy vehicle owners. The literature reports 

the investigation of price-shift charging coordination as a more-easily managed strategy [44-46], or 

the use of variable charging power set points [32], both approaches involve different objective 

functions [9, 10, 12, 18, 22], [47- 56]: either through the adjustment of grid operational objectives, 

including loss minimization and maximizing load factor, peak shaving, reliability and demand 

response [3]-[55], or through the maximization of vehicle owner revenue [47] and [51-53]. The focus 

tends to be either on individual or aggregated PEV management [55,57, 58]. 

To determine the effect of PEV charging on power losses, Clement-Nyns et al. use the quadratic 

programming technique (QP) to minimize losses of individual vehicle batteries charging at residential 

outlets [57]. Regarding the hourly distribution of the vehicle’s trip, three charging periods are chosen 

based on their availability at home. Two different approaches are compared regarding the load profile 

at any charging duration. The first approach is based on a deterministic (i.e. historical data) load 

profile. However, due to the inadequacy of the measured data, the second approach applies an error in 

the forecasted daily load profile (i.e. the stochastic approach)1. They also compare the dynamic 

programming (DP) approach with the QP to find the faster optimization method2. It has been proven 

by Sortomme et al. that load factor (LF) and load variance correlates with system losses. They 

demonstrate how loss minimization can be realized with less computational time through minimizing 

LF as the objective function and consequently it can better support coordination of PEVs in real-time 

[58]. 
                                                      
1 - The fixed input parameters are converted into random input variables with normal distribution.  

2 - Due to larger matrices, DP is slower than QP [57]. 
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A methodology is proposed in [48] for scheduling PEVs energy transactions in the same way of 

the unit commitment (UC) practice for generation units. The objective is to reduce carbon emissions 

and to maximize profit while fulfilling different practical constraints, such as the forecast load, 

parking lot limitations, SOC, charging/discharging efficiency. However, Khayyam et al. latter 

declared, in [22], that adopting the UC method with PEVs adds additional complications and that the 

optimization cannot respond to operational requirements in a timely manner. The proposed objectives 

in [48] are also viewed only from the grid perspective without consideration of the needs of the 

vehicle owners. 

To determine the driver charging pattern, authors in [59] implement fuzzy logic system which 

simulates the charging pattern based on the current battery SOC level and parking duration. 

Therefore, an estimation of vehicular charging load profile and its impact on the total grid loading is 

addressed. This study argues that the battery’s SOC and the estimated parking duration are the two 

main factors that govern a driver’s decision whether or not to charge. Other factors such as driver 

income, electricity availability (especially during on-peak demand hours), charging rates (i.e., 

slow/fast), and other economic factors have been neglected in [59]. It also mentions that additional 

factors such as climatic conditions may affect a driver’s decision to charge. These additional factors 

are not investigated by the authors due to their region-specific nature. However, the effect of climate 

on the SOC is addressed in [8]. The proposed fuzzy inference system in [59] uses the SOC and the 

expected duration of parking as the inputs in the model. Using a centroid-based de-fuzzification, the 

output indicates whether the driver will start charging the vehicle or not. This decision-maker, 

however, is only responsible to simulate a driver’s decision to start the charging process. Once a 

decision to charge is made, charging will continue until the battery pack is fully charged or the 

parking period ends, whichever occurs first. 

To better formulate dynamics of vehicles’ arrivals and its effects two solutions are proposed in 

[52], namely, Global Scheduling and Local Scheduling optimization. The global optimal scheduling 

searches for the optimal charging power for all PEVs during a day by solving a single global 

scheduling optimization in order to obtain the minimal total cost. However, the global scheduling 

solution appears to be unreasonable due to lack of information regarding future loads, new vehicle 

arrival time and SOC. Therefore, local scheduling optimization is performed in an independent and 

distributed manner to tackle large numbers of PEVs with dynamic arrivals. Two assumptions were 

considered in [52]: losses are negligible, and no congestion happens in lines. Although, these 
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assumptions allow the algorithm to neglect the spatial electricity price on the study, it might over-

simplify the analysis and results due to neglecting overloading issues as operational limits. 

In contrast, a coordinated charging solution for public stations is addressed in [59] using a 

stochastic model for the PEV’s arrival at the parking lot. It applies the Poisson model for the vehicle’s 

arrivals1  and assumes that charging is constant. Two coordinated charge scheduling methods are 

compared; (1) Shortest Charging-time First Serve and (2) Longest Charging-time First Serve. Both 

methods attempt to minimize the number of PEVs that miss the deadline for getting charged 

(meaning, to be served before departure). This study, however, neglects the effect of the SOC of the 

batteries, which has a significant effect on the charging schedules.  

A few authors have addressed the PEV owners’ preference in charging procedure. A real-time 

PEV load management method is proposed in [51] by minimizing the total energy cost for charging 

PEVs and the corresponding grid loss and voltage deviation. It assigns preference time zones, which 

have different energy tariffs, to the customers for charging their vehicle. In each step of the algorithm 

a sensitivity index was used to identify the more appropriate PEV to be recharged with the objective 

of causing less of an increase in power losses. In a different work, a method similar to the Internet 

traffic service differentiation is proposed in [53] as a means of controlling charging of PEVs, based 

on which, owners who are eager to pay more can charge more quickly than other owners. Also in 

[60], we see how historical driving data are used to assign the lowest adjusted electricity price among 

the charging hours of an individual PEV. The aggregator clusters a set of transport behavior from 

previous days and matches them with the most similar PEV that plugs in.  

Moreover, a number of authors have considered PEV charging coordination by means of 

renewable DGs. Franco et al. address PEV charging coordination in an unbalance three-phase 

distribution system with the presence of active and reactive power injection by DG units [37]. Their 

results indicate how unbalanced PEV-loading deteriorates the voltage profile and increase the 

operational costs. A priority scheme allows PEV owners to choose between charging the batteries as 

quickly as possible and charging them with a minimum energy tariff. An energy economic analysis is 

conducted in [61] to charge PEVs using photo-voltaic panels (PV) at a workplace parking garage. 

Three cases (night time at-home charging, daytime charging without a PV and daytime charging with 

a PV panel) are compared. The results show that there is an optimal size of the PV panels that balance 

the installation cost and the cost of electricity purchased from the power grid to give the smallest 

                                                      
1 - The Poisson model was used for bus passenger and supermarket customer arrivals before [49].  
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payback period. It is discussed in [61] that employing PV panels to charge PEVs not only does help 

to reduce the load from the power grid and affects the cost of charging, but to help displace CO2 

emissions from the power grid (specifically when the carbon tax is realized). Similarly, authors in 

[46] present a real-time energy management scheme for grid-connected commercial charging stations 

with the presence of PV-based renewable resources. The algorithm aims at reducing the overall daily 

cost of charging the PEVs and contributing to shaving the peak of the load curve. Uncertainties 

associated with PV power generation and PEVs’ SOC status and departure time are taken into 

consideration through proposing a fuzzy controller to manage the random energy available in the 

batteries.  

In contrast, grid-connected and islanded fast-charging stations are analyzed in [62]. The main goal 

is proper control of the fast charging infrastructure, in combination with wind-based renewable 

generation, to compensate active and reactive power in different conditions, so as to improve the 

operation the system. Two supervisory control strategies are developed to manage the flow of active 

and reactive power. Fast-charging stations is controlled to optimize the operation of the network, 

while in grid-connected condition, the frequency is maintained by a large external grid, and so the 

main issue is how to control the fast-charging procedure to regulate reactive power for voltage 

support. The control strategy includes applying the required reactive power in order to maintain zero 

voltage variations. The supervisory control at a high level first verifies the availability of power on 

each charging station and then decides the reactive contribution per station, whereas in the islanding 

condition, the concern is to maintain the balance between active and reactive power. A synchronous 

generator is switched on to control the frequency and voltage of the islanded network.  

In addition to public stations, some research focus on individual homes, equipped with solar 

panels, with one or few PEVs in the garage. A household electricity management system is proposed 

in [63, 64] with collaboration of PV panels and PEV batteries as a part of Yokohama Smart City 

project. Using an agent-based transportation simulator, the authors in [63] find that to have carbon-

neutral vehicles PEVs need to be charged by renewable energy sources such as PVs. However, this 

finding seems like a significantly region-specific solution.     

2.5 Applications of Grid-able PEVs in Smart Grids  

The idea of vehicle-to-grid1 (V2G), also named as Grid-able vehicle, established in 1997 by Willett 

Kempton, explores the potential economics of PEVs connected to the power grid. The basic goals of 
                                                      
1 - Providing power to the grid by electric vehicles within their parking duration. 
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V2G studies are basically to explore the environmental and economic benefits of the PEVs and 

enhance the product market. Recently, a number of V2G studies were introduced as pilot projects. 

The Electric Power Research Institute (EPRI) estimates that, by 2050, V2G would reduce the 

dependency on global, central-station generation capacity by up to 20% [65]. 

All studies investigated V2G applications focus on controlling the reverse power flow between the 

charging station/plug-in and the connected node to the grid regarding a specific objective and number 

of constraints. However, the key issue in V2G depends on the proper scheduling of grid-able vehicle 

power transactions in parking lots/charging station. Since PEVs have a limited capacity in the kW 

range and grid demand power is carried out on MW ranges, aggregation plays a vital role in 

collecting the available energy of PEV batteries for grid support. Studies confirm that, practically, 

V2G cannot provide base load power at a competitive price, and it should only be sold to high-value, 

short-duration power markets that offer ancillary services/spinning reserves to the grid [12]. 

More importantly, economic analysis indicates that the profits from participating in frequency 

regulation, as a component of the ancillary service, are higher than those from reserve services [12, 

66]. Consequently, as observed between 2008-2012, V2G research and pilot projects have mostly 

been dominated by utility-side profits of grid-able PEVs, such as grid regulation and balancing 

renewable generation, [12, 49, 67, 68, 69], as well as minimizing losses through voltage profile 

improvement [50, 51, 70]. 

2.5.1 Frequency Regulation  

Frequency regulation (or simply regulation) is an ancillary service responsible for maintaining the 

frequency of the grid at its nominal value1, i.e. controlling frequency fluctuations in the grid mainly 

due supply-demand imbalances2.Two different regulation services can be found based on the 

matching between power generation and total load (Figure (2-16)) [12]:  

• Regulation-down service: matching generation and load when the former is larger than the 
latter, i.e., there is an excess of power in the grid that causes an increase in the value of the 
frequency.  

• Regulation-up service: matching generation and load when load is larger than generation. 
Regulation services can be provided by dispatching generation to match the load. 

                                                      
1 - It is 60 Hz in North America, and 50 Hz in Europe and Asia.  
2 - Frequency regulation is conventionally done in power plants by Automatic Generation Control (AGC).  
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Fast-responding generators are usually required for frequency regulation in wind power systems, 

photovoltaic generators, or natural gas and coal units. However, they tend to be expensive and/or 

have large carbon emissions. Controllable loads such as batteries and flywheels can also provide 

regulation-up and -down services. Among the ancillary services provided by PEVs, regulation has 

one of the highest market values. Moreover, it is profitable for both PEVs and market operators, since 

they can quickly switch through their power electronic interface [12, 71].  

 

Figure  2-16 Examples of the frequency regulation [12] 

Frequency regulation by PEVs provides regulation-down/up during battery charging/discharging, 

respectively. If frequency regulation is needed by the power grid, the ISO requests V2G regulation to 

the aggregators and determines market price1 based on bids submitted by aggregators. The revenue 

scheme adopted by [67] considers that although a PEV receives energy while providing regulation-

down, it provides a service that must be paid for by allowing some energy to be exchanged2. 

Therefore, the total revenue of PEVs will be the result of both capacity price and electricity price. The 

goal here is to allocate power among the PEVs forming part of an aggregator for frequency regulation 

service while at the same time achieving the SOC of the PEVs regarding the minimum variance from 

the average. The objective function optimizes the aggregators’ profits. 

                                                      
1 - Different structures of the ancillary service market price are available. A simple one is where the price has two 

components: 1) a capacity price (which is paid for having power available for a specific service for up- or down-regulation) 

and, 2) an electricity price (which is paid for the power actually being delivered in real time for up- or down-regulation) 

[71]. Capacity price is paid to have reserved available power, whereas electricity price is paid only when power is actually 

used. However, a study of market price structure is beyond the scope of this proposal.  
2 - The cost for regulation down is 0, given that regulation-down is the same as charging the vehicle; thus, it is “free 

charging” when the PEV provides regulation-down. 
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On the other hand, vehicles under the control of an aggregator have two strongly related aspects: 

(1) the consumer side aspect, and (2) the supplier side aspect. It may seem reasonable that a vehicle 

being charged could be interrupted by a regulation command. Thus, even the charging duration of a 

battery could be accounted for by regulation1. The motivating idea regarding V2G is profit and 

revenue. That is, if the vehicle changes from charging its battery to providing service for the grid, the 

energy payment direction should be reversed [47]2. How system-wide optimality would be achieved 

by single vehicle optimality is discussed in [47], such that the optimal charging control to maximize 

revenue of each vehicle would lead to the maximum revenue of the aggregator. 

Additionally, parking departure time is an important factor in optimal charging/discharging control 

for PEVs. A driver would sign a contract to keep the vehicle connected to the grid for a certain 

duration in return for incentives (such as, for instance, a life-time battery warranty) [67]. There may, 

however, be occasions when drivers drive away before the pre-notified departure time and thus the 

aggregator may not succeed in reaching the pre-calculated optimal result to provide the contracted 

regulation power. Optimal control depends on optimal charging/discharging sequences, including 

charging/discharging duration and rate. Since the grid operator initiates a contract based on the daily 

and hourly basis of required power, a minimum of hourly control unit would be applicable. In [67], a 

charging sequence control problem for PEVS is addressed in order to maximize the aggregator’s 

revenue in a given charging period. By applying the dynamic programming technique, the optimal 

charging sequence would maximize profit while satisfying the state of charge at the end of the 

charging period.     

In [47], it is assumed that target SOC is always given as a point value and solves the control 

problem with respect to charging sequence and charging rate only. Moreover, for charging control to 

maximize revenue, the charging rate should be either 0 or 1. Therefore, the proposed method in [47] 

considered only when to turn the charging operation on or off to achieve an optimal control result. To 

do so, it employed dynamic programming to extract the optimal charging pattern for individual 

vehicles.  

                                                      
1- However, as the scale becomes significant by being simultaneously operated by an aggregator, it would cause a serious 

oscillation to the generation amount. Therefore, a regulation request should not interrupt vehicles that are under-charging 

operation for their own sake [47]. 
2- Regular one is a supplier-side operation and V2G mode is a consumer-side operation, and hence the payment direction is 

opposite. 
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It is discussed by authors in [22] that the pricing method employed in [47] is based on day-ahead 

pricing and that neither a frequency regulation signal nor real-time power is required for regulation. 

However, [72] proposed an algorithm using real-time pricing1. Shi et al. apply the Markov Decision 

Process (MDP) to design a V2G control algorithm under price uncertainty, in which both frequency 

regulation and bulk power selling were considered [72]. They propose a real-time pricing model, in 

which the aggregator receives the pricing information a few minutes, e.g. 10 min, prior to the 

beginning of each hour. Consequently, the V2G control algorithm runs for each individual vehicle, 

which will stay parked for the next hour, to ascertain whether the aggregator should charge its battery 

for the next trip, discharge for selling power, or use its available power capacity to provide frequency 

regulation service. After gathering the controlling signals of all of the PEVs, the V2G aggregator 

sends the contract information (i.e., total power to buy, total of power to sell, and total capacity for 

frequency regulation) to the electric utility prior to the start of the next hour. This process is carried 

out hourly. An energy management system from the utility company will dispatch appropriate 

regulation signals to the V2G aggregator based on the contracted capacity. 

Similar to [47], the objective of the V2G control algorithm in [72] is to maximize profit for PEV 

owners. Profit here represents selling power and providing frequency regulation service minus the 

costs of purchasing power from the grid. This objective needs to be maximized, as prices for 

subsequent hours of a vehicle’s parking duration are unknown and this uncertainty should be 

modeled.  

2.5.2 Voltage Regulation   

In the same vein, much of the available literature address how PEVs charging management results in 

dynamic voltage supports, while avoiding costly grid upgrades [22, 50, 70, 73]. Grid losses are 

minimized through voltage profile improvement in [50] and [70]. An energy flow is proposed which 

acted as a control mechanism between PEVs and the grid using fuzzy logic controllers for voltage 

compensation and peak shaving. Two fuzzy-based controllers are designed: (1) the charging station 

controller2 (at the charging station), and (2) V2G controller3 (at the distribution node level)4. The 

                                                      
1- Real-time pricing and day-ahead pricing are two different pricing models in the electricity market. 
2- This controller decides on the individual participation of the EVs for charging or discharging. 
3- The main purpose of the V2G controller (2nd controller) is to control the power flow between the concerned node and the 

charging station. 
4 - The inputs include voltage and SOC, and the output is energy flow.  
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objective of a V2G controller is to control the power flow between a particular node and the charging 

station to meet peak power demand and reduce voltage sag. Voltage rise caused by injection of PEV 

energy into the ith node is approximated by (2-5): 

( )/EV EV i EV i iV P r Q x V∆ = +  (2-5) 

Grid support is provided by injecting active power with a constant power factor of 0.9. However, 

reactive support is not considered in this work. The power injection by a PEV battery reduces power 

losses and improves bus voltage of the network. One drawback of the model is its static and scenario-

based solution that does not take into consideration the passage of time. A fuzzy-based solution is 

proposed in [22], for controlling PEV charging, where two controllers continually regulates and 

stabilizes the load and the voltage. The authors show how large-scale aggregation of PEVs (such as 

10 parking lots) would provide a significant power share for the grid and affect voltage and load 

stabilization. The proposed smart grid model uses two intelligent controllers for optimizing grid 

stability of load and voltage, including: (i) fuzzy load controllers, and (ii) fuzzy voltage controllers. 

The controller measures the average of voltages, total grid loading and total active generated power, 

and continually regulates the generation to match the demand loads.  

• The fuzzy load controller (FLC) measures the voltages, total load grid and total active power 
generated. The controller, then, continually regulates the generation to match the demand 
loads. 

• The fuzzy voltage controller (FVC) adjusts the capacitors and reactors in the power grid. It 
measures the voltages, generation and consumption of power reactive from all buses. The 
controller continually regulates the voltage and stabilizes the grid. This controller regulates a 
number of capacitors. 

The proposed controllers were implemented in three scenarios, where a set of data for 10 parking lots 

are employed:  

• without parking loads and no intelligent control; 
• with parking loads and no intelligent control; 

• as intelligent controller of V2G. 

However, [22] did not mention how to develop a fuzzy role basis for both controllers, which is an 

essential part in fuzzy expert systems. More importantly, there was no model evaluation to verify if 

the results were the best possible results. In an analysis of charging coordination, Foster et al. show 

how effective PEV grid integration could minimize costs, avoiding costly grid upgrades, and 

disruptive impacts on the transmission and distribution networks, coordinate with renewable 
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generation, and incorporate individual users and their usage profiles [73]. Considering real-time price 

signals, on the time scale of seconds, PEVs provides dynamic voltage support for the distribution 

network, which may allow increased penetrations of distributed photovoltaic (PV) solar arrays. 

2.5.3 Phase balancing 

Power grid operation is facing increasingly complex conditions arising from renewable generation 

and domestic energy storage systems at the end-user side. Photovoltaic (PV) panels/solar units, a 

good illustration of easy-to-setup intermittent energy source technology promoted for individual 

household usage, are experiencing rapid growth and falling costs worldwide. However, their large-

scale penetration will introduce challenges to the power-grid daily operation, particularly in its 

distribution sector [74, 75]. In a more general sense, now that the gradual transition to smart grid is 

underway, the already-existing 3-phase electric grid is likely to experience challenges due to the 

random and stochastic nature of solar energy and PEV demands [46, 76].    

Research is currently being done to determine whether current and voltage unbalance can be 

diminished through the distributed action of energy sources or active loads, including PEVs. As 

discussed by S. Weckx et al., dynamic switching actions across the three phases to balance residential 

loads are costly [77]. Another approach is replacing single-phase inverters of PV units with 3-phase 

ones, so as to inject more power into the phase with the highest power consumption [77]. However, 

this solution exposes owners to additional costs of upgrading the infrastructure. Moreover, the 

majority of residential areas are equipped with a single-phase power supply and only large 

households have three-phase connections. 

Additionally, the authors of [44] employ multi-agent control of solar units and PEVs to reduce the 

imbalance factor. They do so by minimizing the cost of increasing imbalance due to renewable 

resources and PEV demand. To better understand the negative effects of phase unbalance, some 

research addresses the relevant issues through economic analysis. A linear approximation of voltage 

drop and network constraints is used in [30] for real-time smart charging coordination of PEVs in a 

three-phase system. The study by J. A. Fernandez et al. shows that one application of vehicle-to-grid 

(V2G) and smart charging could be unbalance minimization by means of an economic profit 

formulation [76].   

2.5.4 Power quality enhancement 

Although PEVs might cause some power quality issues due to their converters and frequent 

switching, various studies contend that PEVs can improve power quality through contributing with a 
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renewable energy source. For instance, PEVs offer the opportunity of storing wind and solar energy at 

times of extra generation and use the power whenever necessary to improve power quality and 

stability of renewable energy sources. 

In [78], PEVs were employed as an active filter with solar energy sources. They present a control 

design that allows for the correction of power factor dynamics as well as for the dynamic 

compensation of harmonics currents. As photovoltaic power varies with climatic conditions, there is 

no explicit reference power for tuning. PV voltage needs to be adjusted according to solar radiation to 

extract the maximum photovoltaic current. This adjustment is made possible by regulating the 

generator voltage and inductor current and by varying the transistor cyclic ratio. Compensating 

currents are then required for power oscillation. The controller measures the amount of current to be 

injected by the active filter to compensate for the harmonics in the load. 

The effectiveness of power quality V2G services are addressed in [79] for keeping systems stable 

through short-term local active and reactive power injections by PEVs connected to the grid through a 

single-phase chargers. The reactive power injection compensates for voltage drops caused by motor 

start-up or inductive loads, while active power is injected shortly during PV transients in cloudy 

weather or during low voltage ride-through of the PV sources. In a similar work, voltage sag is 

mitigated by means of large dispersion of PEVs such as an airport parking aria or a mall parking lot 

[80]. An index, called the compensation vehicle factor (CVF) is defined as the ratio between the 

energy requested by the vehicle batteries during V2G compensation and the total storage capacity 

installed onboard. This index is used to analysis energy and power and to evaluate the feasibility of 

the V2G compensates for voltage sag. However, none of these studies address the uncertainty 

associated with the availability of PEVs and their impacts on power quality enhancement. 

2.5.5 Revenue Optimization  

In contrast to utility-side profits of grid-able PEVs, some recent PEV research shifts attention to 

customer-side profits, which seek to maximize profits of either the parking lot owner/aggregator or 

the PEV owner by providing grid operators with a limited number of capacity bids [81-84]. One 

approach to maximizing aggregator revenue is system-wide optimality achieved by single-vehicle 

optimality, such that the optimal charging control to maximize the revenue of each vehicle would lead 

to maximum revenue for the aggregator [12], [82, 83]. Conversely, others assume that the aggregator 

maximizes its profits, as a market participant, within a number of constraints set by PEV owners and 
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utilities [81, 84]. As a more up-coming and realistic application of V2G, various studies propose V2B 

applications to involve PEVs in benefits obtained from DR programs.  

An energy cost sharing model and proposes a distributed algorithm is designed in [85] using game 

theory to encourage PEV owners to participate in the charging and discharging batteries. Authors in 

[86] optimize appropriate charge and discharge times throughout the day. Price curves from 

California ISO database are used to obtain realistic price fluctuations. Every vehicle is assumed to 

have the same desired departure SOC of 60% (it can never be discharged below this level). The 

output of the optimization is presented as three statuses, namely: vehicle selling power, vehicle 

buying power, and vehicle not buying nor selling. Two scenarios are compared: (1) sell at maximum 

price/purchase at minimum price for single transaction per day, (2) multiple purchases and sells. Due 

to issues surrounding the scheduling independency of each vehicle, separated optimization is applied 

to schedule vehicles individually. However, the proposed optimization solution does not reflect the 

aggregation impacts of PEVs on the distribution system (especially in the case of multiple charging; 

i.e. aggregated loads).  

In another work dynamics of vehicles’ arrival are employed for scheduling charging-discharging 

schedules, where two solutions are proposed: Global Scheduling and Local Scheduling optimization 

[52]. The global-optimum scheduling searches for the optimum charging power for all PEVs over the 

course of a day through solving a single-cost minimization. However, the global scheduling solution 

seems unreasonable due to a lack of information of future loads and new vehicle arrival times as well 

as their SOC. Therefore, the local scheduling optimization is performed in an independent and 

distributed manner to tackle a large number of PEVs with dynamic arrivals. Two assumptions are 

considered: (1) losses are small and negligible and (2) no congestion happened in lines. Although 

these assumptions allow the algorithm to neglect the spatial electricity price in the study, they 

nonetheless simplify the analysis and results by neglecting overloading issues as operational limits. 

Unlike [52], another study addresses energy losses in the cost optimization of PEV energy 

transactions [51]. It proposes a real-time PEV load management method by considering the 

minimization of the total cost of purchasing/producing the energy for charging PEVs plus the 

corresponding grid energy losses. It assigns preference time zones, with different energy tariffs, to the 

customers for charging their vehicle. The energy price is employed in a similar work, establishing a 

decision-making strategy for PEV batteries with regard to the state of charge, time of day, electricity 

prices and vehicle charging requirements [87]. The decision-making find an optimum strategy on how 

to dispatch the battery power through three rule sets: (1) three states of 
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Charging/Discharging/Undetermined are assigned to the PEV based on the SOC, (2) an 

enable/disable control signal from the aggregator is introduced to specify whether a vehicle is 

available for V2G service, (3) the final rule used for selecting the level of discharge/charge current in 

time period reflects the prevailing price (i.e., Day time/Night time price). The 3rd rule is designed to 

take into account the price arbitrage opportunity, charging the PEV at the high current rate when 

prices are low and discharging vice versa. 

In [88], an aggregated charging management is developed for a Danish power grid in which three 

different entities – the aggregator, the retailer, and the distribution system operator (DSO) – influence 

the charging schedules. This management approach mainly concerns the planning of the aggregator’s 

interaction with other power system entities. The grid congestion is also considered to handle voltage 

constraints. It benefits from a good estimation of the future trip behaviour of PEVs using the 

historical data. The data predicted includes time of departure, time of arrival, energy need, and 

location of each trip for each vehicle. The goal of optimization is to derive a charging schedule for 

each vehicle that ensures sufficient energy for the predicted trips. The aggregator can buy the 

electricity on the wholesale markets only if it aggregates a sufficient number of vehicles to meet the 

minimum bid volumes. Then it can optimize its bids according to the predicted demand and the 

available flexibility in time of charging. If the aggregator does not aggregate sufficient vehicles to 

enter these markets, it must be able to outsource the charging flexibility to an existing market player, 

such as a retailer. 

2.5.6 V2G in Demand-side management, Demand Respons e and Outage management  

For an electric utility, demand-side management (DSM) is defined as “the planning, 

implementation, and monitoring of distribution network utility activities designed to influence 

customer use of electricity in ways that will produce desired changes in the load shape,” which 

includes peak clipping, valley filling, load shifting, strategic conservation, strategic load growth, and 

flexible load shape”. However, as mentioned in chapter one, for the utility end-users, DSM includes 

two components: energy efficiency (EE)1 and demand response (DR)2. The Federal Energy 

Regulatory Commission (FERC) defines demand response (DR) as changes in electric usage by 

customers from their normal consumption patterns in response to changes in the price of electricity 

                                                      
1 - EE is designed to reduce electricity consumption during all hours of the year. 
2 - DR is designed to change on-site demand for energy in intervals and associated timing of electric demand by transmitting 

changes in prices, load control signals or other incentives to end-users to reflect existing production and delivery costs. 
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over time or to incentive payments designed to induce lower electricity use at times of high prices or 

when system reliability is at risk. The utility and customer cooperatively participating in DSM will 

provide benefits to the customer, utility, and society as a whole, as summarized in Table (2-2). The 

DSM idea is simply to shift the charging time to a lower energy price rate than the discharging time 

[2, 85]. Studies show that by utilizing DR using a multi-agents system, a high penetration of PEVs 

can reduce the consumer cost of electricity [89]. Many current pilot projects and studies pay 

particular attention to the role of PEVs in DR programs; various publications, such as [2, 11, 13, 19, 

85, 90], have proposed promising solutions. 

Table  2-3 Benefits of the DMS for the utility and customer [2] 

Customer benefits Social benefits Utility benefits 

Satisfy electricity demand Reduce environmental degradation Lower cost of service 

Reduce/stabilize costs Conserve resources Improved operating efficiency 

Improve value of service Protect global environment Flexibility of operation 

Maintain/improve life style Maximize customer welfare Reduce capital needs 

 

The idea of managing individual PEVs at the residential level would be similar to other DR 

programs in which a customer would respond to variable electricity prices. For instance, the impacts 

of Time of Use (TOU) electricity tariff are analyzed in [55] to illustrate the customer’s behavior on 

charging their PEV. The customer shifts charging to the less expensive electricity rates and receives 

incentives for contributing in peak demand level control. 

In [2], PEVs are tackled as dynamically configurable dispersed energy storage in a V2B mood1 , 

where the focus is DR during high demand and outage management (OM) when the main supply is 

accidentally lost. The batteries would contribute to the grid restoration process during OM application 

to increase reliability when a fault occurs. The proposed model is a cost-optimization problem, where 

the cost of active power generation of vehicles is minimized. However, the results provided by the 

authors indicate that the proposed solution exposed system to significant unbalanced situation which 

would cause considerable damage to the grid.  

                                                      
1 - Authors in [2] believe that V2B is a more near-term V2G application. 
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An energy-cost sharing model is introduced in [85] between a building and a group of PEVs in the 

garage to optimize the energy consumption profile of the building. The optimization method includes 

a distributed algorithm in which each PEV owner determines independently its best charging and 

discharging profile to minimize its total energy payment to the building. The proposed distributed 

algorithm can reduce both the total energy cost of the building and the peak demand. From the 

building controller viewpoint, the load profile should be as constant as possible, taking into account 

the extra energy demand of the vehicle’s battery charging. Any energy demand less than the average 

demand will cause poor utilization of the existing infrastructure system and any energy demand 

exceeding the average demand will increase the energy cost as well as endanger the reliability of the 

building’s operation. Therefore, the optimization problem searches for energy charging and 

discharging schedule to minimize the square Euclidean distance (SED) between the instantaneous 

load profile and the average demand. 

Similar work is proposed in [89] for optimizing the demand response (DR) by updating the grid 

generation resources and controlling the customer load. The multi-agent system is designed to switch 

customer load and control the charging of PEVs depending on their SOC to reduce cost and avoid 

overload during peak hours.  

2.5.7 Role of PEVs in Micro-Grid Context 

Micro-grids, a new trend of power grid capable of standalone operation from the main grid, facilitate 

the integration of distributed generations, distributed energy resources (DERs), energy storage, and 

controllable loads by their physical proximity for ease of control, power sharing and management. In 

combination with distributed renewable energy, PEVs can be considered as a new form of distributed 

storage and, specifically, can support buildings in the form of a micro-grid system. With a number of 

considerations, PEVs’ different mode of operation is applicable to standalone micro-grids as to main 

grids. Much of the current literature reveals that it is more common, yet economical, to employ 

aggregated PEV-batteries for flattening electricity demand of a small-scale micro-grid such as a 

building during peak hours [32, 91]. Minimizing the operational cost of the micro-grid is another 

initiative/motivation of PEV engagements/contribution in standalone micro-grids [92].  

To determine the economic benefits of PEVs, Beer et al. calculate energy costs using a detailed 

representation of supply tariff structures and fuel prices along with operating and maintenance 

(O&M) expenditures [91]. Two modes of operation, i.e. the grid-connected and the islanded mode, 

are compared to examine the impacts of the aggregated PEVs on the reliability of a building. The 
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condition of the utility power grid decides which operation mode to choose. Normally, the grid-

connected mode would ensure sufficient energy to satisfy customer demands, but the islanded mode 

should be used when an unexpected disturbance occurs in the utility-side or when the power rate is 

higher than a customer’s willingness to pay.  

The role of commercial buildings in future micro-grids is discussed in [32]. A heuristic operation 

strategy is proposed to improve the self-consumption of PV panels and reduce the dependence on the 

power grid. The charging rate of PEVs is dynamically adjusted in the real-time mechanism 

considering the battery SOC and variation of PV output. In another work, a number of comfort levels 

are defined for the owners and the goal of optimization is maximizing these levels [93].  To tackle the 

inherent intermittency and variability of renewable energy resources a stochastic formulation is 

developed by authors in [92] to minimize the expected operational cost and power losses of micro-

grids. 

2.6 Discussion  

In light of the research points addressed by prior studies, it can be concluded that coordinated 

charging of PEVs is one of the main concerns in deploying mass operation of PEVs in near- future 

smart grids. Furthermore, two other important themes emerge from the studies discussed so far: (1) 

the substantial impacts to be expected with asymmetric high penetration of PEV loading in LV 

distribution grids and (2) the need to incorporate grid-able PEVs into smart grids. Throughout this 

chapter, the potential impacts of the PEVs on the distribution sector (including phase imbalance, 

power quality issues, line overloading, transformer degradation, circuit breaker and fuse blowout) and 

the proposed remedy have been reviewed. Moreover, various objectives, solutions and scenarios 

surrounding applications of PEVs and their aggregated batteries, as power back-up for grid support 

such as voltage and frequency regulation, peak shaving, outage management, and three-phase 

balancing, have been studied. Despite the ingenious methods proposed in the literature regarding 

coordinated charging of PEVs, they fall short of considering a number of additional issues required 

for proper aggregation and control of PEVs: 

• Most of the works involved in charging coordination are based on consideration of either safe 

grid operation or financial benefit for the vehicle owner, mainly with respect to energy prices. 

However, another key issue is owner satisfaction, which is related to successful charging. Not 

only should the charging strategy ensure normal grid operation, but the battery charge 
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demanded by each PEV owner should also be guaranteed so that vehicles leave their parking 

lots with the specific amount of charge ordered.  

• A comprehensive evaluation of the decision-making performance on each individual vehicle 

is lacking. Only in [93] is vehicle-owner satisfaction addressed, through a probabilistic model 

of daily power consumption and vehicle charging initiating time based on drivers’ travelling 

habits. However, only the qualitative satisfaction of the aggregated group of PEVs with 

respect to charging duration is measured in [93] (i.e., the longer the charging duration, the 

greater the satisfaction for that group). More importantly, probabilistic models would be more 

practical for planning studies rather than real-time operations, where the status of variables is 

instantaneously exposed to change. 

Returning briefly to the applications of PEVs in smart grids, we saw the shifting trends to customer-

side profits through employment of PEVs in DR programs. More importantly, it was discussed that 

with pre-signed contracts, PEV owners’ profits are controversial. Looking at the PEV applications, 

especially in the DR area, the following concerns are valid:  

• The issue of owner satisfaction would become even more pivotal with V2G mode 

implementation. A conflict arises between the primary role of PEVs when parked (which is 

providing required energy for the battery) and the key idea of V2G applications (which is bi-

directional power transactions) for grid support. A dynamic1, yet precise, model is required to 

represent the behavior of vehicles as an elastic load (i.e., an energy consumer-provider 

component).   

• However, due to the frequent turnover of vehicles in a parking lot, scheduling issues arise that 

make it difficult to determine the appropriate time for a given vehicle to buy or sell energy. 

• The conventional approach of PEV drivers signing pre-specified contracts in return for 

annual cash back is unlikely to encourage the owners to contribute to DR using their vehicles.  

• Most studies to date propose solutions for implementing DR through proper real-time 

scheduling of PEV charging, but, as discussed by Shaaban et al., in [94], they fail to include 

the effect of upcoming PEV demand on real-time charge coordination. In [94], a model based 

on queuing theory is employed to predict the number of PEVs that will arrive at parking lots 

in the near-future, although only the worse scenario of full charge demand has been 

implemented by these authors.  

                                                      
1 - Here the term “dynamic” indicates 24-hour behavior of the grid and the PEVs.  
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Further to charging coordination, many other challenges that will arise with mass usage of PEVs have 

been outlined in Section (2-3). PEVs and asymmetrical LV chargers would cause un-reasonable phase 

unbalance. However, PEVs could, on the other hand, provide voltage support for the distribution 

network, which may allow increased penetration of distributed photovoltaic (PV) solar arrays. From 

the system-level perspective, further consideration is needed when it comes to incorporating PEVs in 

three-phase systems. The following are highlighted gaps:  

• The studies presented thus far provide important insights into PEV impacts on the grid. 

However, particularly for system-level studies, the simulations are mostly based on single-

phase models generalized to three-phase systems.   

• All smart charging and DR programs would be more realistic when three-phase operation 

constraints are included in the decision-making models.  

Motivated by the above shortcomings, the existing grid-able PEV-related initiatives will be improved 

by the research conducted in this thesis. The next three chapters describe the work undertaken to 

address these deficiencies and to develop a methodology for better serving customers and utility 

operators.  
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Chapter 3 

Online, Intelligent Demand Management of Plug-in El ectric Vehicles 

in Future Smart Parking Lots 

3.1 Introduction 

This chapter introduces the proposed online intelligent charging coordination of plug-in electric 

vehicles (PEVs) in distribution systems. It explains the development of a strategy that enables 

aggregators in public parking lots to manage PEV energy demands dynamically. The strategy is based 

on the prioritization of PEVs in order to determine the order in which they will be charged. Priorities 

are assigned by an expert system based on PEV attributes. The proposed solution addresses the 

drawbacks mentioned in Chapter 2 by taking into account the following: 

• The uncertainty associated with human interactions (i.e., PEV owners) involved in the 

decision-making process, 

• Variations in the load and type of customer sector, and 

• Consideration of owner satisfaction in the performance evaluation. 

The next two sections present the problem statement and the proposed algorithm. The last four 

sections of the chapter describe and discuss the modelling aspects, problem formulations, and case 

studies.   

3.2 Problem Statement: Demand Management in Public Lots with PEVs  

Investing vast sums on upgrading the distribution grid for the charging of PEVs may be economically 

unfeasible. Charge management scenarios have therefore been introduced as a component of 

operational plans for facilitating the adoption of PEVs in smart grids. No standard or inclusive 

regulation is yet available for managing aggregators with respect to producing an optimum decision 

[60]. 

3.2.1 Benchmark 1: Uncoordinated Charging 

No aggregator involves in management charging of PEVs using uncoordinated charging scheme 

(UNCR). In the UNCR, each PEV starts charging upon plugging in regardless of the distribution 

system technical constraints and operational practice. As discussed in chapter 2, the uncoordinated 

and random charging of PEVs could significantly stress the distribution system causing voltage 



 

 43 

fluctuations, degraded system efficiency, and increasing the likelihood of tripping protection devices 

due to network overloads. 

3.2.2 Benchmark 2: First Come, First Served  

A straightforward charging strategy for an aggregator involves the tracking of real-time transformer 

loading and the holding of charging if it is overloaded [95]. To implement this strategy, [56] suggests 

a so-called “first come, first served” scenario (FCFS) as a benchmark solution for avoiding grid 

overloading. Although this strategy satisfies grid limitations with safe operation, it is unfair and 

inconvenient for those vehicles that may arrive later but need urgent service because they will be 

parked for a shorter time than earlier arrivals that plan to leave much later. Fig (3-1), symbolically, 

compares how FCFS would be unfair for a PEV arrives latter with shorter parking duration, which 

needs the same amount of charge as for another PEV with longer parking length. 

 

Figure  3-1 Charging sequence using FCFS would be unfair for a PEV arrives later and will leave earlier (PEV-j) 

3.3 Proposed Intelligent Decision-Making Algorithm  

This section presents an online charging solution that offers a trade-off between the concerns of the 

utility and the needs of the vehicle owners, and consequently results in more satisfaction. The method 

proposed here is based on assigning each PEV a charging priority, named as scored-priority (SCR), 

the determination of which includes consideration of the grid, the vehicle, the battery, and the 

charger. Although the idea of owner fairness has been used before, it was only based on the departure 

time of PEV; Geng B. et al attempt to address the owners’ fairness based on departure schedules, 

where a charging coordination is employed to achieve a well-shaped transformer load profile [96]. 

First, the overall charging power demand for the aggregator is determined. Then, the power demand 

is allocated among all PEVs based on their departure time, in which the higher priority is assigned to 

the vehicle scheduled to depart earlier. Although the solution in [96] goes one step further to please 

the vehicle owners, it only considers a vehicle’s departure time, whereas additional factors such as the 

SOC amount, battery capacity, etc., also have significant impacts on the charging priority of vehicles. 



 

 44 

To allocate priorities to PEVs located in a parking lot, the aggregator employs a number of decision 

factors. The charging service will thus be allocated to higher-priority PEVs but without violation of 

the operational practice constraints of the grid. Framework of the proposed SCR charging 

coordination is demonstrated in Figure (3-2). It is compared with the FCFS bench mark to reveal a 

wider range of decision possibilities and a better performance. In the FCFS scenario (scenario 1), the 

aggregator tracks new PEV arrivals and assigns priorities based on their arrival times. During each 

time step, vehicles that arrive earlier and that do not violate the operational constraints of the grid 

begin charging; however, the second scenario, the proposed SCR charging scheme, unfolds in the 

same way as the FCFS, except for the manner in which the priorities are assigned. In the SCR 

scheme, final decision is made within two levels of actions. In the first level, PEVs with a higher 

priority and not necessarily an earlier arrival are scored. The scores are evaluated using a fuzzy expert 

system. Score decision factors include battery KWhr requirements, charger max power rating and 

parking duration of the vehicle, all of which are determined based on the data provided for the 

aggregator through a smart dashboard/meter [60] and [96]. Then, in the second level, charging is 

delivered to the maximum number of highest-scored vehicles, with respect to the final SOC required 

and the technical constraints of the grid operation. 

Despite the fact that conforming to the technical limits of the distribution grid equipment means 

that, in both scenarios (FCFS and SCR), limited yet equal numbers of PEVs would be charged; this 

study shows how FCFS satisfies mostly the grid operators (i.e. electric utility only), while the 

proposed SCR solution is more convenient for the both the vehicle owners and the utility. The 

followings are the main contributions of the proposed method: 

• Adopting an intelligent expert system that meets the fast response requirements for the grid 

operation and that represents the dynamics of PEVs arrival/departure; 

• Superior performance of the aggregator with greater satisfaction for vehicle owners in terms 

of energy delivery, while other parties constraints are considered with no violation; 

• Preparing more robust satisfaction for the critical PEVs, that needs longer charging time; 

• Ease of modeling and implementation. 
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Figure  3-2 Proposed SCR framework for the PEVs charging management 

3.4 Modeling Aspects  

This section presents the modeling of parking lot chargers and PEV batteries. Moreover, the 

aggregator’s decision making process includes the proposed fuzzy-based scoring model and the 

decision-optimization is described accordingly. 

3.4.1 Smart Parking lot Model: PEV Chargers and Bat teries  

For system-level studies, an integrated PEV model is used, which includes the battery and the 

charger. As discussed in Chapter 2, the most important component of a PEV is the battery, which 

characterizes PEVs with respect to several elements, such as capacity, all electric range (AER), and 

lifetime.  

Lithium-ion (Li-ion) batteries have become the most popular type of rechargeable battery for their 

good energy density, no memory effect, and slow loss of charge. Neglecting the efficiency and loss in 
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constant temperature, SOC variation over the time is a function of nominal capacity of the battery; 

therefore, the output voltage (Voc) is also a function of its SOC, as in (3-1). 

( )
( ) ( )oc oc

SOC g Q
V f Q V f SOC

=
= → =  (3-1) 

At a specific charging sampling time (Ts), the battery SOC dynamics varies as shown in (3-2) [96]. 

The level of the charger facility also affects the energy exchange. Since a level 2 charger is 

recommended for public use [2], here, the assumption is that parking lots are equipped with level 2 

chargers. 

( ) ( ) ( ) ( )( )1 , .t ac SSOC t SOC t f SOC t P t T+ = +  (3-2) 

Upon plugging in the PEV, the owner delivers the required data to the aggregator through a smart 

dashboard, which is recognized by IƊj. These data cover the battery status including initial and 

required SOCs (SOCin,j and SOCreq,j, respectively), as well as the departure time. Moreover, for each 

charger and PEV, the ID carries data, such as charger rating and the battery capacity. From now on, 

the following assumptions are considered in all modeling of this thesis: 

• Drivers use their PEVs as they would conventional internal combustion engine (ICE) 

vehicles; 

• No reactive power is injected by PEVs; 

• Battery efficiency remains constant as temperature varies; 

• The aggregator is not a market participant, so only an agent responsible for convenient PEV 

charging;  

• Vehicle owners own their batteries. Thus, no third party, such as battery manufactures, is 

involved.     

3.4.2 Fuzzy Scoring Expert System 

The first level of decision making tackles assigning scores to PEVs and prioritizing them for the 

charging demand queue using a fuzzy expert system. Due to having human interactions in the 

decision making process, in which the departure time and the final SOC are announced by PEV 

owners, a level of uncertainty exist in this study. More importantly, the input variables are totally in 

different directions and natures (i.e., departure time announced by owners, battery required charging 
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energy and the charger power rating). As a result, an expert system would be more convenient to be 

investigated in this study1.  

The assigned scores are sent to the second level of the decision process (i.e. the optimization 

stage). As shown in Figure (3-3), the fuzzy scoring expert system consists of four principal 

components: fuzzification, a rule base, inference logic, and defuzzification. Inputs to the fuzzification 

block include three variables for each PEV: the battery energy required (KWhr), the charger max 

power rating, and the parking duration of the corresponding vehicle. The fuzzification interface 

converts numerical inputs into fuzzy variables, and the defuzzification interface changes the fuzzy 

variables back into numerical output, i.e. the scores. The scores are then utilized for the optimization 

stage, which is represented in Section 3-5. 

 

Figure  3-3 Fuzzy inference blocks 

3.4.2.1 Variables Membership Function 

The input variables are measured/calculated upon plugging a PEV and are updated in every decision 

making time window; accordingly, the output is continuously subject to change. Crisp scores are 

assumed a function of energy required, the charger rating and departure time; therefore, fuzzy 

                                                      
1 - A common explanation of the smart grid is that it is the combination of the electric power and two-way communication 

infrastructures for bi-directional energy and data flow. However, it might give a wrong impression that only through the 

employment of the advanced metering infrastructure can implement a smart grid. Advanced sensing cannot afford the 

smartness for data analysis and decision making. Intelligent use of information can smarten the grid in many ways. In the 

first place, an expert-system can assist the operator with anticipatory information. Generally, the primary goal of controlling 

the grid is to maximize the overall comfort level of the controlled objects, which is distributed among different layers, with 

different functionalities in smart grids. As explained earlier in Section 3-3, in PEV-Grid interactions the concept of comfort 

level indicates safe operation of the power grid and assures vehicle owners with the delivered level of energy to their 

battery. 
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relations are represented, as in (3-3). For both inputs and the output, fuzzification is achieved by 

means of membership functions µ, determined primarily based on the choice of shape and the number 

of fuzzy signals. Table (3-1) lists the characteristics of the membership functions. By several trials 

and practices, trapezoidal shape is chosen for the battery energy required and the parking duration, 

respectively with three and five linguistic variables (Figs. (3-4) and (3-5)). While, triangular shape is 

selected for the charger rate and the scores, with Two and four linguistic variables, respectively (Figs. 

(3-6) and (3-7)).  

Fuzzy variables for the KW-hr required are calculated considering the battery capacities of the 

PEVs available in the market, shown in Table (3-2), and the initial state of charge and final required 

state of charge, which is announced by the owner upon arriving at the parking (as in (3-4)). Therefore, 

a range of 0-85KWhr is used for the energy required fuzzy variable. Moreover, the parking duration 

is assumed as maximum of 10hrs (600min) for the second fuzzy variable regarding battery charging 

durations as well as public parking hours for commuting purposes. The last fuzzy variable is the 

charger rating, which is usually much less than battery accepting power. Here a range of 3-7.5 kW is 

used for the charger. 

: , ,

, , ( ) ( )
rate

rate

reqEng Char Dep t i Score i

f reqEng Char DeprtTime PEV Score

PEV PEVµ µ µ µ−

→
→

 (3-3) 

( ): .req inPEV reqEng SOC SOC Bat Cap∀ = − ×  (3-4) 

Where 

reqEng, Charrate,and DeprtTime denotes required energy, charger rate, and departure time, 

respectively; 

µ is the fuzzy membership function; 

SOCreq and SOCin are required and initial SOC, respectively.  

Table  3-1 Characteristics of the Membership Functions 

Parameters # of MF MF type Fuzzy Linguistic Variables 

Input 

Bat. KWhr req. 3 Trapezoidal Low, Md, High 

Max Charger Power Rate 2 Triangular Low, High 

Parking Duration 5 Trapezoidal VSh, Sh, Md, L, VL 

Output Scores 4 Triangular Low, Md, High, VHigh 
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Table  3-2 Battery capacity range available in market 

PEV in market Battery Size 

Tesla Model S 85 kW·h / 60kWh 

Nissan Leaf 24 kWh 

BMW ActiveE 32 kWh 

Chevy volt 16 kWh 

 

 

Figure  3-4 Membership functions for the battery KWh required (input 1) 

 

 

Figure  3-5 Membership functions for the departure time (Minute) (input 2) 
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Figure  3-6 Membership functions for the Max charger power (kW) (input 3) 

 

 

Figure  3-7 Membership functions for the scoring (output) 

3.4.2.2 Tuning the Rule Base: Sensitivity Analysis 

Proper rule base plays a significant role in the decision success of the expert system. Three input 

variables, with different natures, need careful attempts on developing suitable rules. Hence, a 

sensitivity analysis is run here to examine how the designed expert system response to variations of 

the input parameters, based on the logic behind the decision making. Each individual input parameter 

varies gradually for a sample set of 150 PEVs, while keeping the values of all other parameters 

unchanged, as in (3-5). Running the sensitivity analysis several times and tuning the rules, a set of 30 

rules is achieved for the final desired rule base, as represented in Table (3-3). The output of each rule 

is deduced by the inference logic to arrive at a value for each output membership function. An 

intersection operation (i.e. fuzzy AND) is applied here, in which the correspondence of the 

membership function to each PEV is given by (3-6), [97]. 
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Table  3-3 Proposed Rule Base 

  Park Duration (Departure time) 

MaxChrRate 

VShort Short Md Long VLong                   Low 

High 
B

at
te

ry
 K

W
hr

 R
eq

ui
re

d 

Low 

    H0.3 

 

H0.2 

     M1 

 

M0.9 

   M0.5 

 

M0.4 

    L0.8 

 

L0.7 

    VL1 

 

VL0.9 

Md 

    VH0.5 

 

VH0.4 

     H0.8 

 

H0.7 

    H0.6 

 

H0.5 

    M0.7 

 

M0.6 

    L1 

 

L0.9 

High 

     VH1 

 

VH0.9 

    H0.8 

 

VH0.7 

  VH0.6 

 

VH0.5 

    H1 

 

H0.9 

   H0.8 

 

H0.7 

                          *VH/H =Very High/High       VL/L =Very Low/Low   M=Medium 
                          **Numbers indicate the weights assign to that specific rule 

var , ,var
rate

Score
input reqEng DeprtTime CharS Score in= ∆ ∆    (3-5) 

( ) ( )

min [ , , ]
rate

rate

Score i reqEng Char Dep t i

reqEng Char Dep t PVEi

PEV PEV

i

µ µ
µ µ µ

∩ ∩ −

−

=

= ∀
                                          (3-6) 

where 

invar include the input variables of the fuzzy system (i.e.,  reqEng, Depart Time, Charrate); 

∩ is the intersection operation used for setting fuzzy rules based on the input fuzzy signals; 

μscore is the membership function assigned to the score of the ith PEV; 

μreqEng is the membership function assigned to the battery energy required; 

μChar-rate is the membership function assigned to the charger power rating;  

μDep-t is the membership function assigned to the vehicle’s departure time. 

In the defuzzification stage, a non-fuzzy value must be extracted as the numerical output. Several 

methods are described in literature. Widely used in fuzzy logic designs, the centroid method is based 

on the center of gravity and is a relatively complete representation since the size and shape of the 

membership function affects the defuzzified value (expressed as in (3-7)), [97]. 

( )

( )
i

i iPEV S

ic S

PEV PEV
SC

PEV

µ

µ
∈

∈

=
∑
∑

                                                    (3-7) 
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where 

SC is the defuzzified control action, i.e. assigned scores; 

µ(PEVi) is the membership function of the inference; 

S is the support set, i.e. all the PEVs inside the parking. 

3.5 Problem Formulation  

This section includes the second level of decision making, where PEVs’ scores, and grid operational 

limitations are utilized for the optimization.  

3.5.1 Objective Function 

Since the aggregator assigns appropriate scores to the available PEVs using fuzzy inference, the 

objective function reflects serving maximum number of PEVs with highest scores. Therefore, the 

charging/holding decision for the PEVs is optimized as in (3-8), where the score assigned to each 

vehicle is the defuzzified function, as in (3-7). 

( ) ( )

( ) ( )

( ) ( , ) ( , )i i

i i

t c t c t
X i N c CT

Max OF SC X t
∈ ∈

= × ∀∑ ∑                                                                  (3-8) 

where 

OF(t) is the objective function that must be optimized; 

SC(c(i),t) is the PEV that is plugged in charger c(i) at time t with assigned score of SC; 

X(c(i),t) is the binary variable representing the charging decision for each individual charger c(i) at 

time t; 

N is the set of buses; 

CT(i) is the set of chargers in the parking lot connected to bus i; 

i and t are the indices of buses and time, respectively.  

c(i) is index of chargers at bus i; 

3.5.2 Constraints  

The objective function is subject to the following significant constraints: 

3.5.2.1 Power flow constraints 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )cos( ) ,G i t L i t i t k t i t i t k t i t
k N

P P V V Y i N tθ δ δ
∈

− = + − ∀ ∈∑  (3-9) 
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( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )sin( ) ,G i t L i t i t k t i t i t k t i t
k N

Q Q V V Y i N tθ δ δ
∈

− = − + − ∀ ∈∑  (3-10) 

3.5.2.2 Generated and consumed powers 

The generated power at each bus is the injected power by any generation unit connected at this bus. 

The demand at each bus is the summation of both the normal load and the PEV demands which 

depend on the charging decision, battery characteristics, charger ratings, and the charger efficiency 

((3-11)-(3-14)). 

( , ) ( , ) ( , ) ( , ), ,G i t Gn i t G i t Gn i tP P Q Q i NDG t= = ∀ ∈

 
(3-11) 

( , ) ( , ) ( , ) ( , ) ( , ), ,L i t NL i t EV i t L i t NL i tP P P Q Q i N t= + = ∀ ∈

 
(3-12) 

( , , ) ( , )( ) ( )
( , )

(c )( )( ) ( )

,
CH c i t c ti i

EV i t
CHc CT ii i

P X
P i N t

η∈

×
= ∀ ∈∑

 

(3-13) 

( , )( )

, , , ,(i) (i)CH BAT CH CH
c ti

P f SOC V I i N c CT t
 = ∀ ∈ ∈ 
 

 

(3-14) 

where 

k is the bus number; 

NDG⊂ N is the set of buses where the generation units are;  

PG and PL are the generated and load active power levels, respectively;  

V and δ are the voltage magnitude and angle, respectively; 

Y and θ are the admittance magnitude and angle, respectively; 

QG and QL are the generated and load reactive power levels, respectively;  

PNL and QNL are the normal load active and reactive power levels, respectively; 

PGn and QGn are the active and reactive power generated from any generation source at bus i, 

respectively. Although here there is no generation source at any bus, the formulation is adopted 

properly to accommodate such case; 

PCH is the charging power in kW;  

ηCH is the charger efficiency at bus i; 

fBAT is the function that relates the power delivered to a vehicle to its SOC. 
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3.5.2.3 Feeder current and bus voltage limit constraints 

( , , ) ( , ) ,i k t MAX i kI I i t≤ ∀  (3-15)

min ( , ) max ,i tV V V i t≤ ≤ ∀  (3-16)

where 

Vmin and Vmax are the voltage minimum and maximum limits, respectively; 

I(i,k,t) is the current flowing from bus i to bus k in time t; 

IMAX(i,k) is the feeder current limit between bus i and busk. 

3.5.2.4 Decision constraints 

The decision variable X is a binary variable: 1 enables the charger, and 0 disables it (holds). This 

binary variable should be 0 when the SOC value of the connected vehicle reaches the final required 

value or when no vehicle is plugged into the charger, as in (3-17)-(3-19): 

( )( , ) {0,1} , ,
i

(i) (i)c tX i N c CT t∈ ∀ ∈ ∈  (3-17)

( ) ( ) ( )( , ) ( , ) ( , ){0| } , ,
i i i

(i) (i)c t c t fnl c tX SOC SOC i N c CT t= ≥ ∀ ∈ ∈  (3-18)

( ) ( )( , ) ( , ){0| 0} , ,
i i

(i) (i)c t c tX Plug i N c CT t= = ∀ ∈ ∈  (3-19)

where 

SOC and SOCfnl are the actual SOC and the required final SOC, respectively; 

Plug is a binary variable indicating whether or not a vehicle is plugged in.  

Figure (3-8) represents details of the proposed algorithm and summarized sections (3-4) and (3-5). In 

each sampling time (every 10 minutes here), data from the newly plugged-in PEVs are received by 

the aggregator, and the energy required for the battery is determined using equation (3-4). Then, 

different priorities are assigned to the PEVs in the fuzzy scoring sub-process. Accordingly, the 

numbers of scored PEVs are maximized to serve the most vehicles, taking care not to violate the 

power flow constraints of the grid.  

After each decision action, the initial SOC is updated for PEVs that are charged but are still 

plugged in. Due to the departure of some vehicles, new spots will be available for PEVs that have a 

lower score in the previous decision action. The scoring and optimization is executed repeatedly over 

a short time interval in order to duplicate the dynamics of departures and subsequent arrivals in 
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parking lots. Obviously, the scores are updated at the end of each interval due to changes in values of 

decision factors. 

 

Figure  3-8  Proposed SCR charging coordination algorithm 

3.6 Case Study 

To evaluate the proposed algorithm, two case studies were examined. The first case is a simple 

example shows details of each of five individual vehicles, and the second case is a more practical 

illustration of a 38-bus system. The system under study is modeled in a MATLAB® software 

environment, where the values are measured and the fuzzy-based scoring is evaluated. The scores are 
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then sent to the aggregator, which is modeled in GAMS software to optimize of the decision through 

the mixed integer nonlinear optimization. The results are sent back to MATLAB for the updating of 

the batteries’ SOC and the remained required energy. This process is repeated every 10 minutes to 

replicate the dynamics of parking lot transactions. 

3.6.1 Case Study Involving Five PEVs 

In this case, it is assumed that, during a peak period, five PEVs arrive at a parking where only three 

PEVs can be charged simultaneously. Figure (3-9) shows the sequence of charging the PEVs in 15 

intervals (a total of 150 min) based on the FCFS strategy. PEV2 with 75% initial SOC arrives first 

and plugs. PEVs3 and5 enter sequentially, and start charging upon arrival. PEV1 and PEV4 then 

arrive at the parking lot, where they must be held. It is assumed that the battery capacities and charger 

ratings are equal in these five PEVs.  

As shown in Figure (3-9), PEV4 is not completely charged by the end of its parking duration. 

PEVs 2 and 3, however, are fully served. In contrast to FCFS, the proposed SCR strategy, in Figure 

(3-10), shows that upon the arrival of PEV1 within the first three intervals, PEV2 is held due to the 

higher priority assigned to PEV1. Similarly, when PEV4 plugs in, PEV3 is being held due to its 

greater SOC and longer parking duration. As shown in Figure (3-11), the total energy delivered to all 

PEVs in case of SCR scheme is larger than the FCFS charging scheme by almost 25%, yet the system 

constrains are still met. The SCR solution promises more efficient utilization of the system as well as 

superior charging coordination.  

 

Figure  3-9 SOC (%) trend based on FCFS charging solution 
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Figure  3-10 SOC (%) trend based on the proposed SCR charging solution 

 

Figure  3-11 Consumed power by the five PEVs through both charging scheme 

3.6.2 Case Study Involving a 38-Bus System  

The second case study compares both FCFS and SCR charging solutions in more detail. It is 

implemented on a 38-bus distribution system (shown in Figure (3-12)) [98]. The feeder is energized 

through a 12.66kV transformer in the main substation, and the total system peak load is 4.37MVA. 

Four buses (buses 22, 25, 33, and 37) were chosen for parking implementation, which are assumed to 

be outcomes of a planning stage beyond the scope of this study. Each parking lot sends measured 

signals to the aggregator including the initial and the final required SOC, as well as the departure time 

for each PEV.  

It is assumed that PL-1, PL-2, PL-3, and PL-4 are equipped with 150, 40, 30, and 40 chargers, 

respectively, which is proportional to the thermal limits of the feeders supplying the four parking lots. 
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The total penetration of the PEVs represents almost 21% of the system load. The chargers are 

assumed to be level 2. In addition to parking capacity, the daily vehicle transactions in the parking 

constitute another essential factor that affects decisions. Due to lack of real data for PEVs, the number 

of PEV transactions per week-day is generated virtually based on real data available in Toronto 

Parking Authority (TPA) and is illustrated in Fig (3-13). Moreover, it is assumed that the parking 

duration is not less than the required charging amount of the battery. This assumption is due to 

vehicle owner rational decision in choosing a minimum parking duration that is enough for his own 

PEV to be properly charged.   

 
Figure  3-12 The 38-bus distribution test feeder 
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Figure  3-13 Daily PEV transactions at each parking lot 

Three charging schemes are compared: uncoordinated (UNCR), FCFS, and the proposed SCR. In the 

UNCR, each vehicle connected to the system starts charging regardless of the power grid technical 

constraints. Fig (3-14) compares the system loading in base case (i.e., no PEV charging) with the 

three charging schemes. Also, the results of the load flow analysis are summarized in Table (3-4). As 

can be noted, although, there is no line limit violation in the base case; significant overloading of 

298.6% occurs with no charge coordination. Moreover, the total energy loss (12.7MWhr) is almost 

four times higher than in the base case (3.33MWhr). Although, both FCFS and SCR schemes result in 

total losses more than double the base case (i.e., 8.5 KWh), their outcomes are still feasible since 

normal operation practice of the grid has not been violated. This significant rise in system losses is 

mainly due to the concentration of the charging stations only on four buses. 

Details of the power delivered to the parking lots are illustrated in Figs (3-15)-(3-19). It is worth 

mentioning that, as clearly illustrated in Figure (3-14) and Table V, both the FCFS and SCR schemes 

result in an almost equal energy demand since they are both subject to the same optimization 

constraints from the distribution grid perspective. According to Figs (3-18) and    (3-19), there is only 

a small difference between the FCFS and SCR schemes in the second parking lot, PL-2, from 10PM 

to 12AM. Obviously, this is due to variations in the PEVs’ charging sequences in both schemes and 

not from the variation in the number of PEVs served. 
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Figure  3-14 System loading in different PEV charging scheme 

 
Figure  3-15 PEV charging demand at bus 22 (PL-4) 

 

Figure  3-16  PEV charging demand at bus 25 (PL-1) 
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Figure  3-17   PEV charging demand at bus 33 (PL-3) 

 
Figure  3-18 PEV charging demand at bus 37(PL-2) 

 

Figure  3-19 A snap shot of the demand at PL-2 
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Table  3-4 Results of the Load Flow Analysis 

Load Flow Results No PEV UNCR FCFS SCR 

Daily Energy Loss (MWhr) 3.33 12.7 8.51 8.52 

Max. Line Overloading - 298.6% - - 

Feasibility Feasible Infeasible Feasible Feasible 

 

3.7 Discussion: Performance Evaluation  

In addition to energy flow management, the proposed SCR charging scheme is evaluated in terms of 

vehicle owner satisfaction and fairness, in which the deficiencies of both FCFS and SCR schemes are 

compared by calculating the root mean square deviation (RMSD) between the delivered energy and 

the required energy, as in (3-20). RMSD is a common measure, [99], frequently used for the 

differences between values predicted by a model and the values actually observed (i.e., here, the 

delivered energy and the required energy, respectively).  

( )
1
2

2

1

1 n

Enrg PEVi PEVi
i

RMSD reqEng delEng
n =

 
= −  
 
∑  (3-20) 

where 

RMSDEnrg is the total root mean square deviation between the required energy and the delivered 

energy among n vehicles; 

n is the number of PEVs; 

delEngPEVi is the energy delivered to the i th PEV. 

To reveal how the decisions of the aggregator satisfy individual owners, another approach is also 

considered where, all PEVs served throughout the day are classified based on their parking duration. 

Those in the same class are also categorized based on their required charging time (i.e., the ratio of 

the required energy to the charger rating for every single PEV, as in (3-21)). The higher the required 

charging time, the more critical would be serving that PEV (as in (3-22)). Therefore, it is expected 

that the aggregator would serve them with less energy deficiency.  

.
PEVi

i req char
rate PEVi

reqEng
PEV t

Char −
∀ =  (3-21) 
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( ).max:criticl req char
Specific Park Duration

PEV t=  (3-22) 

where 

PEVcriticl denotes the critical vehicle with the highest charging time. 

Table (3-5) demonstrates the RMSD values for the aggregator and for the individual parking lots, 

while the RMSD for the critical/non-critical PEVs are shown in Table (3-6). Compared to FCFS, the 

RMSD values in the SCR scheme are lower not only for each individual parking lot, but also for the 

aggregator (i.e., the whole system). According to Table (3-5), there is a significant RMSD reduction 

in using SCR for the second parking lot (PL-2), followed by PL-3, PL-4, and PL-1.  

Table (3-6) also indicates that for those critical PEVs, which require higher charging durations, the 

proposed SCR scheme outperforms in serving them. Both critical and non-critical PEVs are served 

much more robustly using the SCR scheme in the second parking lot (PL-2), as there is a meaningful 

reduction in the energy deficiency (5.94 versus 12.8 RMSDs in SCR and FCFS schemes, 

respectively). Looking at the RMSDs in PL-4, we can see that although both charging schemes serve 

non-critical PEVs with almost the same RMSD (4.01 and 4, respectively), the SCR scheme 

outperforms FCFS in serving critical PEVs (RMSD of 4.65 versus 6.52, respectively). The main 

reason for varying deficiency values across different parking lots is the variety of PEVs’ transaction 

dynamics in different lots, as these dynamics are randomly generated. In addition to RMSD, standard 

deviation (S.D.) between the delivered energy and the required energy is also represented in the 

Tables (3-5) and (3-6), using (3-23). S.D. is typically used to represent the confidence or significance 

of the analysis.  

( )
1

2 2

1

1
. .

n

PEVi
i

S D E
n

µ
=

 
= ∆ −  
 
∑  (3-23) 

where 

ΔE is the difference between the delivered and the required energy of the i th PEV, and µ is the mean 

of energy difference. 

The S.D. values in Tables (3-6) illustrate a range of 3.1-4.9 kWh margin of error in the significance 

analysis of the proposed SCR solution. However, for the FCFS method, the margin of error varies 

between 3.73 and 7.78. Similarly, for critical and non-critical PEVs in Table (3-6), the margin of error 

remains lower in the SCR solution compared to the FCFS method, between 0.8-4.8 kWh and 1.62-8.3 

kWh, respectively.     
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Overall, the results show that the proposed SCR gives lower deficiencies in the energy demand of 

the parking lots and is superior to FCFS. Undoubtedly, the UNCR scheme has no RMSD between the 

required and the delivered energy. However, it is not feasible, since it cannot secure proper operation 

of the power grid, especially during peak hours. The SCR-coordinated charging solution addressed 

here is formulated based on a simple algorithm that can run in a few seconds and update the decision 

action every 10 minutes. With a computer configuration of 6 GB RAM and a 2.8 GHz-4core 

processor, the run time is 4.9 seconds for each decision sampling. However, the actual running time 

in the field would be dependent more on analog delays, such as digital conversion delays, 

communication delays, etc. The 10-minute time window here can be significantly reduced based on 

the hardware and the communication medium implemented in the system. 

Table  3-5 RMSD Results for the Aggregator and Parking Lots 

 SCR FCFS 

 
RMSD S.D. RMSD S.D. 

Aggregator (total System) 3.4 3.5 5 3.9 

PL-4 (Bus 22) 4.04 3.94 4.95 3.9 

PL-3 (Bus 33) 4.62 3.9 6.18 4.11 

PL-2 (Bus 37) 5.73 4.9 13.4 7.78 

PL-1 (Bus 38) 2.75 3.1 3.1 3.73 

 

Table  3-6 RMSD in energy delivered to the critical and non-critical PEVs 

 

Critical PEVs Non-Critical PEVs 

 SCR FCFS SCR FCFS 

 
RMSD S.D. RMSD S.D. RMSD S.D. RMSD S.D. 

(PL-4) Bus 22 
4.65 3.5 6.52 4.43 4.01 3.2 4 3.02 

(PL-3) Bus 33 
7.08 4.8 7.82 4.9 2.33 2.13 5.26 3.4 

(PL-2) Bus 37 
5.94 4.64 12.8 7.2 3.7 3.1 14.21 8.3 

(PL-1) Bus 38 
3.82 2.38 4.04 2.65 0.98 0.8 1.76 1.62 
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3.8 Summary 

This Chapter developed an online intelligent decision-making strategy that enables aggregators in 

public parking lots to dynamically manage PEV charging. The strategy was based on prioritizing 

PEVs in order to determine the order in which they are charged. The priorities are based on designing 

a fuzzy expert system for the aggregator using PEV attributes including the SOC, battery capacity, 

charger max power rating, and departure time of the vehicle.  

Case studies were simulated for a typical distribution system with different parking lots. The 

simulation results prove the effectiveness of the proposed methodology in dealing with the fast-

changing dynamics of PEV charging coordination. More specifically, using proposed SCR, an 

aggregator can better address the energy demands of critical PEVs, which have short parking duration 

and high charging time. The proposed solution also benefits from a simple and fast implementation 

algorithm. However, there is a need for quantitative measure/regulation to reveal how much the 

aggregator fails to satisfy all the PEVs. Such measure needs to employ a monetary penalty scheme, 

which is under developed by the authors as a future extension and contribution of this study [100].   
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Chapter 4 

New Energy Management System for Incorporating Smar t Parking 

Lots into the Demand Response 

4.1 Introduction 

This chapter is focused on the methodology for implementing demand response (DR) through the 

development of an energy management system (EMS) for incorporating aggregated plug-in electric 

vehicles (PEVs) into parking lot. This approach includes real-time interaction between the aggregator 

and PEV owners, whereby the aggregator proposes a number of offers for charging/discharging and 

the owner responds based on his/her preference. The following considerations have been taken into 

account in the proposed method:  

• The fact that long-term pre-signed contracts between PEV owners and the utility do not 

guarantee the willingness of the owners to contribute to V2G, 

• The variable hourly energy cost, and  

• The prediction of new arrivals. 

The next two sections present the problem statement and the proposed algorithm. The last four 

sections of the chapter describe and discuss the modeling aspects, problem formulations, and case 

studies.   

4.2 Problem Statement  

Demand Response (DR) is a fundamental component that seeks to involve end-use customers in 

shaping energy demands, in turn, resulting in peak clipping, valley filling, load shifting, and flexible 

load shape. In other words, DR modifies customers’ electricity usage based on their normal 

consumption pattern, offering incentive payments to encourage lower electricity use at times of high 

prices or when system reliability is at risk [101].  

Even though storage system integration offers major advantages for DR programs, end-use 

customer applications are still restricted due to their installation costs. Deployment of grid-able PEVs, 

however, holds the promise of using their batteries for DR without imposing the additional 

infrastructure and costs associated with domestic-only storage systems [11]. When used with proper 

charging scheme and communication infrastructure, PEVs may play a dual role in smart grids, either 

turning into dispatch-able loads (DL) when plugged in for charging or acting as grid-able storage 
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responding to pricing commands, a concept generally referred to as vehicle-to-grid (V2G). These 

features make PEVs appropriate source of short-term ancillary services for the grid. Like other DR 

programs, the idea behind V2G is simply to allow owners to make profit and to gain more revenue. 

That is, if vehicle owners change the battery from charging to discharging back to the grid at a rated 

power, the energy payment direction should be reversed [12]. Most research and studies reveal 

potential profits that electric utilities or policy makers would make from V2G. Questions, however, 

have been raised about the vehicle owners’ interests in V2G. Recent survey-based studies by Hidrue 

et al. indicate that the conventional approach–PEV drivers signing pre-specified contracts, in return 

for annual cash back is unlikely to appeal to drivers under current market conditions [13, 14].  

This paper provides an approach that realizes DR programs by developing EMS for incorporating 

aggregated PEVs in future smart parking lots. This approach includes real-time interaction between 

the aggregator and the PEV owner, whereby the aggregator proposes a number of offers and the 

owner responds based on his/her preference. The proposed method contributes to existing V2G-

related efforts, mainly by providing owners with flexible options for immediately deciding whether 

they want to discharge their battery back into the grid. The paper’s most significant contributions are 

as follows: 

• A new multi-stage decision-making approach based on real-time interaction between PEV 

owners and aggregators. This interaction provides owners with an appropriate scheme for 

contributing to DR, while avoiding the inconvenience of long-term contracts.   

• A new stochastic prediction model of near-future arrivals and their energy demand, employed 

in the decision making, using collaboration of an artificial neural network (ANN) and the 

Markov Chain.  

4.3 Framework of the proposed EMS method 

Figure (4-1) demonstrates the aggregator’s decision making modules proposed in this chapter, 

including: 1) Owner Interface, 2) Grid interface, 3) PEV Prediction, 4) PEV Info and 5) Decision 

optimization module. Once a PEV arrives at the parking lot, the owner plugs it in and communicates 

with the aggregator to exchange the required data to the owner interface module. These data include 

the vehicle ID, the battery status, and the vehicle departure time, which are explained in detail in 

Section IV. In addition to the already-present PEVs, the pattern of future arrivals also affects the 

aggregator’s decision making. PEV prediction module is an intelligent component inside the 
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aggregator, responsible for estimating the loading effect of this pattern. Moreover, the grid operator 

requirements, SCADA data, and energy pricing information are fed to the grid interface module. 

Using all the data available, the aggregator, accordingly, offers the owners charging options. 

Based on the owners’ responses, the aggregator optimizes the decision making and sends 

charging/discharging signals to individual chargers. Obviously, the decision is continuously subject to 

change as all input data are updated in every decision making window. This study is based on the 

following assumptions:   

• Drivers use their PEVs as they would conventional internal combustion engine (ICE) vehicles. 

• No reactive power is injected by PEVs. 

• Battery efficiency remains constant as temperature varies. 

• The aggregator is not a market participant, so only an agent responsible for convenient PEV 

charging.  

• Vehicle owners own their batteries. Thus, no third party, such as battery manufactures, is 

involved. 

 

Figure  4-1 Aggregator’s modules for the proposed method 

4.4 Aggregator’s Controlling Modules  

4.4.1 Processing Modules 

This section provides details of the first four modules of the aggregator (as in Figure 1), called 

processing modules from now on. The data processed by these modules are, accordingly, send to the 

optimization module.  

4.4.1.1 Owner Interface module 

A set of parking lots is controlled by one aggregator agent. Determining the proper number of parking 

lots per aggregator depends on various factors and is beyond the scope of this research. Hence, it is 
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assumed that only one aggregator controls parking lots demand and manages the DR program. Each 

parking lot (���) is equipped with a set of chargers (�ℎ��) represented by specific identities (IƊj) and 

only one PEV is connected per charger. An integrated battery and charger model is used here, where 

for the Lithium-ion (Li-ion) batteries; variation of SOC over time is a nominal function of battery 

capacity, as in (4-1), where, (��	
) is the charging power of the battery over time �[102].   �
���� = �
�� + ����
��, ��	
��. �� (4-1) 

Upon plugging in the PEV, the owner delivers the required data to the aggregator through a smart 

dashboard, which is recognized by IƊj. These data cover the battery status including initial and 

required SOCs (SOCin,j and SOCreq,j, respectively), as well as the battery capacity (������). 

Moreover, the owner announces the expected departure time (tdep).  

As the aggregator receives PEV data, it determines the corresponding required energy (Ereq) and 

the required charging time (tch), as in (2). Accordingly, PEVs are classified based on a criteria factor, 

called the comfort criterion (CC) here, which compares the departure time (tdep) and the required 

charging time (tch). The aggregator then offers owners three charging options, called (DChrgclass), 

(FlxChrgclass), and (Chrgclass) from now on. By choosing DChrgclass offer, the owner agrees to receive 

a discount through discharging the battery. Similarly, the owner who accepts the FlxChrgclass offer 

receives discounts. However, the latter discount is based on accepting flexible charging by shifting 

the battery charging process to lower tariff intervals. No tariff reduction goes for owners who accept 

the Chrgclass, and their battery receives charging power immediately. The PEVs’ CC factor is 

expressed by (4-3). Of course, offers differ in number and content for PEVs. For a PEV with (tch) less 

than (tdep), the owner is offered all three options, while for (tch) more than (tdep), only Chrgclass is 

offered by the aggregator. �ℎ� ��!
�" is power ratings of charger facilities in kW and #$%& is the 

efficiency of the battery charging process.  

� 	 =  (�
�
)* − �
��,) × ������#$%&  �ℎ����!
�"  (4-2) 

�� = / 0�ℎ�1| 345�ℎ�1| �ℎ�1   ∀ � 	 < �8)� �ℎ�1              ∀� 	 > �8)�                                (4-3) 

4.4.1.2 Grid interface module 

The grid interface module receives information from the SCADA system about the grid status. 

Moreover, it receives information from the grid operator regarding energy pricing and ancillary 

services requirements. The Independent Electricity System Operator (IESO) in Ontario offers a 
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number of wholesale Real Time Pricing (RTP) payments for large consumers, including businesses 

and the public sector [103]. For business consumers with internal meters, payments are based on the 

Hourly Ontario Energy Price (HOEP) scheme, which is the basis in this study.  

4.4.1.3 PEV prediction module 

The PEV prediction module includes two prediction tasks: number of future vehicle arrivals and their 

corresponding charging/discharging options. 

4.4.1.3.1 Number of prospective arrivals  

Decision results are prone to significant change due to energy demands of PEVs that will arrive later 

at the parking lot. Historical data are required to build a prediction model of PEV arrivals. In this 

study, annual historical data of the Toronto Parking Authority (TPA) is employed to build and train 

an artificial neural network (ANN) for an hourly-regression forecast model of future arrivals. 

Applications of ANN in power system planning and operation are not new. They have been 

successfully utilized, in transmission and distribution sectors, for short-term load forecasting since the 

1990s [104, 105]. Recently, several studies have examined the capability of ANN, in PEV-related 

research, including trip model development [106], charging management and demand forecast [107, 

108], as well as battery state of health estimation [109]. 

Similar to [83], this study assumes owners drive PEVs ICEs-similarly. Thus, historical data on 

parking lot hourly transactions is valid for building the regression model for PEVs hourly 

transactions. Fig (4-2) demonstrates average hourly parked vehicles in a parking for a weekday in 

downtown Toronto, and indicates that, with respect to RTP tariffs, a correlation exists between typical 

commercial electric load patterns and parking lot transactions. Since this parking lot is located 

downtown, the aggregator’s decision making on PEVs would significantly reshape the load. Let the 

number of PEV arrivals to the parking lot at (� + 1) time frame be a function of all previous interval 

arrivals [1, 2,… ,τ ] as represented in (4-4). Therefore, the structure of the ANN as demonstrated in 

Fig (4-3), includes a τ-dimension input vector and one output, corresponding, respectively, to 1st till 

τ
th PEV arrivals, and next arrival at (� + 1), as in (4-5).  ;�<���� = �(;�<��, ;�<�=, ;�<�>, … , ;�<��) (4-4) 

@ABC�D: F;�<��⋮;�<��H                IC�BC�: 〈;�<����〉 (4-5) 
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After several tests, the ANN structure in this study is a feed-forward multilayer perceptron (MLP), 

accompanied with a Levenberg-Marquardt back-propagation training algorithm (LMA, which uses a 

Jacobian based on the mean squared errors during its calculations [110]. Table (4-1) summarises the 

characteristics of the final-trained ANN, trained off-line to generalize nonlinear relationships between 

the inputs and the corresponding output. The PEV prediction module uses the adopted ANN in every 

decision making interval (τ).  

 

 

Figure  4-2 Average hourly parked vehicles of a parking lot 

 

 

Figure  4-3 Architecture of the ANN model 
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Table  4-1 CHARACTERISTICS OF THE ANN BUILD FOR PEV PREDICTION 

ANN Type Multi-Layer Perceptron 

Number of  Neurons 

Input Layer Hidden Layer Output Layer 

τ at interval τ+1 15 1 

Training algorithm LMA back-propagation 

Performance Mean Squared Error (MSE) 

4.4.1.3.2 Expected Charging/discharging options 

The ANN regression model deals only with estimating PEV numbers arriving at the parking lot 

within next decision intervals. Still, it is important for the aggregator to have an estimation of in-

coming PEVs’ charge/discharge status. One solution is assuming the extreme case, which only 

considers requests for charging in future estimation [94]. However, it is more realistic to employ 

various scenarios that include charging and discharging, rather than the charge-only extreme case.  

This paper takes advantage of a stochastic solution based on the Markov Chain model (MC), 

which, in general, is a memory-less random process to represent the following state of an event based 

only on the current state. MC is employed in some recent studies of load modelling and demand 

management, especially where the stochastic nature of human interactions is involved. Munkhammar 

et al. use MC for modeling the flexibility of the energy consumption habits of householders [111, 

112]. Similarly, in [113], user-activity profiles are synthesized regarding electrical appliance usage. 

Here, PEV owners’ likely preferences to aggregator offers are modelled through the MC process. The 

idea is based on the fact that there is a close similarity between the patterns of PEVs using one 

particular parking lot within a specific time interval. Let ��denotes a state of an offer made by the 

aggregator. At the decision-making instance (τ), each owner, is offered one the three options of 

“��	
L� ”, “ �MNO�	
L� ”, and “�P=Q� ”. Upon the owner’s response to an offer, a state transition occurs 

(�� → �∗���) with the transition probability of �T→T∗��� = �(�∗���|��), as in (4-6). Transit probabilities 

from state (��) to any possible states of (�∗,����, ∀@ ∈ �∗) should satisfy (4-7). Thus, the transition 

matrix (TM) among the states and the distribution over the states can be, respectively, written as (4-8) 

and (4-9). Figure (4-4) shows the mechanism by which owners’ responses are predicted. 

Collaboration between the ANN outputs and the MC probabilities complete the PEV prediction 

module in the aggregator.   
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Figure  4-4 MC-based presentation of the responses and the state transitions 
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L    �MNO→MNO 0�̀ �	
L→�	
L �̀ �	
L→MNO �`�	
L→`�	
L 
a (4-8) 

���� = �� × �] (4-9) 

4.4.2 Decision Optimization Module 

All information from other modules is utilized by the optimization module to allocate 

charging/discharging decision actions to PEVs in parking lots under the aggregator’s administration 

area. The above-mentioned offers classify PEVs as those that should charge immediately and those 

that can either hold/shift charging or discharge for a discount price. Therefore, the proposed 

optimization is designed to satisfy different objectives: maximizing delivered energy and minimizing 

the cost of energy. It solves a multi-stage non-linear optimization to satisfy PEVs in all offer classes. 

The first stage maximizes the delivered energy to Chrgclass. The charging decisions of Chrgclass are not 

subject to change in the following stages. Conversely, the second stage is intended to optimize 

resource utilization and minimize cost while satisfying other PEVs needs (i.e., FlxChrgclass and 

DChrgclass). However, due to the fact that the grid was not originally designed to accommodate the 

extra load imposed by the PEV charging, satisfying the required charging energy levels for these 

classes may not be possible without violating the system technical constraints. 
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Thus, the second stage attempts to determine the maximum possible energy that can be delivered 

for each vehicle, subject to the required charging energy by the customers and the grid technical 

limits, according to the distribution system code of the Ontario Energy Board [114]. This stage will 

usually result in a maximum delivered energy equal to the required energy, as long as there is no 

violation for the grid technical limits (this stage is redundant if the grid is designed to accommodate 

large penetration of PEVs with proper diversity factor). The third stage aims at minimizing the 

charging cost while maintaining the maximum delivered energy for each vehicle from second stage. 

Fig (4-5) shows data flow inside the optimization module.  

 

Figure  4-5 Structure of the proposed decision optimization module 

4.4.2.1 Stage 1: Chrgclass energy maximization 

The objective of this stage is to maximize energy delivered to Chrgclass-batteries in response to their 

required SOC. At time instant �"��, energy delivered to the nth PEV (�WX,,�	
L) plugged in to the j th 

charger in the i th parking lot ( ( )j iChr PL∈ ) is dependent on the decision taken over the decision making 

window tτ , (W8)N(�,�bcd)). Accordingly, the objective function of this stage can be described as in      

(4-10):  ]�5e \ \ \ f(�) .  W8)N(�,   �)�∈�	
L��∈g  (4-10) 

Where, X is the power exchange rate for �ℎ�� ∈ ��� of bus Γ of the system, and f(�) is a time-

weighting factor that gives priority to earlier time slots (i.e., PEVs that plug in earlier). The objective 

function is subject to a number of constraints, including the active and reactive power at each bus, 

which is controlled by the voltage magnitudes and angles, represented as power flow constraints in 
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(4-11, 4-12). Moreover, the voltage and thermal loading limits of the system feeders expose the 

objective function to additional constraints, as in (4-13, 4-14).  ∀@ ∈ Γ, � ∶ 
�Qj,� − �kj,� − �lmPj,� = \nX�,�X�o,�p�,�o cos(t�,�o + u�o − u�)v  �o  (4-11) 

wQj,� − wkj,� = − \nX�,�X�o,�p�,�o sin( t�,�o + u�o − u�)v �o  (4-12) 

(4-13)  Xz�, ≤ X�,� ≤ Xz�O  ∀@ ∈ Γ, � 

(4-14)  |�,�o,� ≤ |z�O    ∀@, @o ∈ Γ, � 

where �Q , wQ denote active and reactive generated powers, and  �k , wk denote active and reactive 

load powers, respectively. |�,�o,� represents the per-unit current through the line between buses i and 'i

at time �. The demand at each bus is the summation of both the normal load and the PEV demands 

(�lmP), which depend on the charging decision (X), charger capacity, and the charger efficiency         

( Chrη ), as in (4-15). 

�lmPj,� = \ �ℎ� ��j,� × e�,�#�	
j�      ∀@ ∈ Γ, � (4-15) 

The energy delivered to a PEV battery can also be represented by the battery final reaching its 

desired SOC (�
�},N), as shown in (4-16), where ������~ is the battery capacity in kWh of the PEV 

connected to the charger (j). The final SOC needs to be controlled by the required SOC that has been 

announced in advanced by the owner, as in (4-17). Accordingly, at the end of each decision making 

window, the SOC of a PEV is updated based on (4-18). 

W8)N~ =  ������~ \{�
�},N~� − �
��,~} (4-16) 

�
�},N~ ≤ �
�
)*~  ,    ∀� ∈ ��� (4-17) 

�
�},N~,   �cd = �
�},N~,   � + e�,� × �ℎ� ��~#$%&  ��� ��~       , ∀@ ∈ Γ, � (4-18) 

Thus, the objective function of the charge-only stage (i.e., equation (4-10)) is subject to all 

constraints of (4-11)-(4-18), where: e ∈ [0, 1] (4-19) 
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4.4.2.2 Stage 2: FlxChrgclass and DChrgclass energy maximization 

In this stage, the aggregator optimally maximizes the energy delivered to both the FlxChrgclass and 

DChrgclass classes of PEVs without any consideration to the charging price.  In other words, the 

aggregator attempts to serve all PEVs through this stage up to the grid technical constraints, and 

vehicle owner requirements, as in (4-20, 4-21). This stage has a structure similar to as stage one’s. 

However, positive and negative charging decisions are allowed according to the class, eo ∈ [−1, 1],  
indicate charging and discharging, respectively. Moreover, the maximum delivered energy to Chrgclass 

from stage 1 is maintained as a hard constraint, as in (4-22). The power delivered (delP ) or consumed 

( cnsP ) by each charger is then given by (4-23). During discharge of the PEV batteries, no power is 

allowed to be delivered to the grid; therefore, the total parking lot power (prkP ) always needs to be 

positive, as in (4-24). �kj,� ≤ �z�Oj,�  ,      ∀@ ∈ Γ, � (4-20)  ]�5e, e′ \ \( \ W8)N���������∈MNO + \ W8)N�������∈`�	
L��∈g ) 

 

(4-21) 

 W8)N���� �T"�L) � = W8)N���� �T"�L) = (4-22) 

� ,�~,� = e�,� × �ℎ� ��~#�                ∀e′�,� ≥ 0 

�8)N~,� = e�,� × �ℎ� ��~ × #�       ∀e′�,� ≤ 0 

(4-23) 

��
�j,� ≥ 0 ,   ∀@ ∈ Γ, � (4-24) 

4.4.2.3 Stage 3: FlxChrgclass and DChrgclass cost minimization 

In this stage, the charging costs for FlxChrgclass and DChrgclass are minimized, as in (4-25) while the 

maximum delivered energies for all classes from stage 1 and stage 2 are maintained as hard 

constraints, as in (4-26).  �C�T"L(���) :    �@Ae, e′ \ \( \ ��[(�) × W8)N���������∈MNO + \ ��[(�) × W8)N������  �∈`�	
L )��∈g  

(4-25) 
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∀ [4�DD ∈ �ℎ�1, 345�ℎ�1, 0�ℎ�1 ∶  W8)N�b��� d  = W8)N�b��� �   (4-26) 

4.5 Implementation 

As in Chapter 3, the performance of the proposed method is comprehensively studied for a 38-bus 

distribution system. Further details of the system specifications and loading demand and types can be 

found in [98]. The test system, including two candidate parking lots, connected to buses 25 and 33, is 

displayed in Fig (4-6). The parking data for these parking lots are provided by TPA. Different PEVs, 

already available on the market, are selected to employ their battery capacity data for the simulation. 

They vary between 17-85kWh, for the TeslaS and Chevrolet Volt, respectively. Chargers are assumed 

to be Level-II AC with a rating size of either 3.3 or 7 KW. 

The MATLAB® software environment is used to model the system under study. To implement the 

aggregator’s different modules the General Algebraic Modeling System (GAMS) is employed in 

accordance with MATLAB, where the PEVs’ battery data, the offers, and the system data 

measurement as well as future PEV prediction are modeled in MATLAB and, accordingly, the 

decision optimization is executed in GAMS. Charging/discharging decisions are sent back from 

GAMS to MATLAB to update the PEVs’ status for the next decision-making window. The 

simulation covers 24 hr of a weekday.  

 

Figure  4-6 The 38-bus test system with parking lots 
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The performance of the trained model is verified through regression calculations over a typical 

weekday. Fig (4-7) demonstrates the hourly goodness of fit (R-value) for training, validating, and 

testing sets. PEV-arrival prediction is executed every hour for the next hour. Fig (4-8) compares the 

actual PEV arrival rates versus the predicted arrival results for both lots (The maximum number of 

charger outlets are 1069 and 249, respectively, for parking lot 25 and 33). The flowchart represented 

in Fig (4-9) summarized how the aggregator’s modules cooperate in every decision-making window.  

 

Figure  4-7 R-values for training, validating, and testing set 

4.6 Results and Discussions 

Three case studies are examined on the 38-bus test system to better evaluate the proposed method 

performance in reshaping demand. The first two set of analysis compares charging PEVs through the 

conventional first-come-first-serve (FCFS) method, with charge-only scenario (i.e. two charging 

options). The third case study investigates the proposed charging and discharging solution with three 

charging options. Maximum parking lot loading is 30% of the total system loading. Figure 10 shows 

the pattern of PEVs corresponding to the offers in lots.   

4.6.1 Case (1): First come first serve (FCFS) 

Here, charging is based on allocating high priority to PEVs that arrive earlier (i.e., FCFS) and no 

flexible-charge option is available. The demand pattern of the parking lot is illustrated in Figure (4-

11). 

4.6.2 Case (2): Charge-only 

This case provides charge-only scenario, where the aggregator offers only two charge options (i.e., 

Chrgclass and FlxChrgclass). Figure (4-12) compares parking demands with charge-only scenario to 
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when it offers that of first case study. Although both cases results in relatively similar demand patterns, 

Case (2) shows some shifts as the RTP varies. Particularly, when the RTP increases, the charge-only 

case attempts to decline the demand and shifts it to the lower tariff intervals.  

4.6.3 Case (3): Charge and discharge 

To assess the effects of all offers, parking demand is illustrated in Figure (4-13), in which Chrgclass, 

FlxChrgclass, and DChrgclass provides the aggregator with more flexibility in decision making. 

Consequently, the demand drops more as RTP rises. All discharge (i.e. DChrgclass) occurs within two 

RTP peaks; between 10 am-2 pm and 7-10 pm, where most energy saving is achieved. Comparison 

case study (2) and (3) reveals that although the charge-only scenario helps reshape the RTP-based load, 

the charge-discharge scenario (i.e., case 3) outperforms in demand reduction at peak tariff hours. 

  
Figure  4-8 Flowchart of the aggregator modules’ collaboration in decision making 
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Figure  4-9 Patterns of plugged PEVs based on offers in lots 

 
Figure  4-10 Demand pattern of the parking lot through FCFS charging regime  

 
Figure  4-11 Demand pattern of the parking lot through Charge-only regime 
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Figure  4-12 Demand pattern of parking lot through Charge/discharge regime 

 
Figure  4-13 Demand pattern of parking lot comparing the case studies 

4.6.4 Discussion 

Further to energy management and load reshaping, the proposed method is evaluated in terms of 

vehicle owner fulfillment, in which the deficiencies of the case studies are compared by calculating 

the energy-not-supplied (ENS) using the mean square deviation (MSD) between the delivered energy 

and the required energy, as in (4-27). MSD is frequently used to measure the differences between 

values predicted by a model and those actually observed (i.e., the delivered energy and required 

energy, respectively, represented by EnrgMSD in (4-27). 
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WV���T` = 1� \(W
)*,� − W8)N,�)=
�  (4-27) 

Table (4-2) demonstrates the energy required (Ereq) and the energy delivered (Edel) in each case 

study. The results of E��� W
)*⁄  ratio indicate that the third case study better satisfies the customers. 

Table (4-2) also summarizes the energy-not-supplied, including the average, the maximum, and the 

standard deviation (SD) of the ENS. The maximum ENS happens in case 1 (i.e., FCFS), followed by 

charge-only scenario (i.e., case 2), and the charge/discharge scenario (i.e., case 3), respectively with 

26.7, 16.73, and 2.94 kWh. The S.D. values illustrate a range of 0.46-4.88 kWh margin of error in the 

significance analysis, belonging respectively to case study 3 and 1. On average, the proposed 

charge/discharge solution results in ENS by 36% less than the conventional FCFS strategy (0.54 kWh 

versus 1.46 kWh). Moreover, Table (4-2)  indicates that the total charging cost is considerably lower 

in case (3) compared to the other charging regimes, which reflects the effectiveness of shifting 

charging in time to achieve cheaper tariffs for the vehicle owners. Looking at total system losses 

reveals that the second case results in higher operational cost for the distribution grid.  

Further analysis compares the average ENS of each class of offer in both parking lots (Fig (4-15)). 

In both lot 25 and 33, ENS due to the proposed charge/discharge solution (i.e. case (3)) is less than 1 

kWh. However, there are significant ENS in lot 33 due to case (1) and case (2) (more than 3.5 kWh). 

One interesting finding is that, overall, all case studies result in lower ENS in lot 25 than in lot 33, 

which could be interpreted as the outperformance of the proposed method in larger lots with more 

vehicle transactions and consequently with more decision making flexibility. Additional analysis is 

needed to confirm this.  

Table  4-2 ENS comparison of the case studies 

Case studies Ereq (MWh) E del (MWh) 
ENS (kWh) Edel/Ereq 

(%) AVR. MAX S.D. 

Case (1) 

7.82 

6.27 1.46 26.7 4.88 82 

Case (2) 7.15 0.64 16.73 2.95 91 

Case (3) 7.24 0.54 2.94 0.46 95 

P
ric

e 
ra

tio
 

ov
er

 F
C

F
S

 

Total Loss 

Case (1) Case (2) Case (3) 

100% 116% 94% 

Charging 100% 93% 81% 
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Figure  4-14 ENS comparison based on class of offers 

4.7 Summary 

Deployment of grid-able PEVs holds the promise of using their batteries for DR without imposing the 

additional costs associated with domestic storage systems. However, new studies debate that the 

conventional approach–PEV drivers signing pre-specified contracts in return for annual cash back– is 

unlikely to appeal to drivers. Thus, the present study was an interactive approach to realize DR 

programs by incorporating aggregated PEVs into public smart parking lots, whereby an aggregator 

offers various options based on the comfort criteria factor and vehicle owners respond based on 

preference. The aggregator benefits from five different modules for decision-making. In other 

renovation, an ANN-regression and a Markov Chain model collaborate to include the effect of future 

PEV arrivals in the decision results.  

Case study simulations of a 38-bus distribution system indicate the effectiveness of real-time 

interaction with vehicle owners in DR. Case-study comparisons ascertain that the conventional 

charging regimes are not efficient and the results of this study supports the idea of appreciating smart 

charging solutions in our smart grids. Although the most promising performance seen in larger 

parking lots with more vehicle transactions. Yet, the proposed solution can be applied in any size of 

lots [115, 116]. 
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Chapter 5 

Managing Demand for Plug-in Electric Vehicles in Un balanced Low 

Voltage (LV) Systems 

5.1 Introduction 

This chapter addresses how smart charging can be used to support more efficient energy delivery and 

phase unbalance control, while improving demand response (DR) contributions by plug-in electric 

vehicle (PEV) owners. The DR concept, introduced in Chapter 4, was extended to include an 

investigation of the impact of PEVs in three-phase LV distribution systems. The potential of PEVs 

and the application of V2G with respect to mitigating phase unbalance are also explored. As 

explained in Chapter 4, real-time interaction between the aggregator and the owners has been applied. 

To provide clarification of the unbalance condition, photovoltaic (PV) units have also been included 

in the analysis.    

The problem statement and the framework of the proposed method are described in sections 5-2 

and 5-3. Section 5-4 then provides a brief explanation of the additional modeling features required for 

incorporating consideration of unbalance, as well as the PV unit specifications needed for the problem 

formulation. The results of the case studies are presented in section 5-5, followed by a discussion of 

the findings. 

5.2 Problem statement 

While the future impact of PEVs on distribution grids is disputed, all parties agree that mass operation 

of PEVs with uncontrolled charging regimes will dramatically affect overall load profiles and electric 

grid assets. The large-scale penetration of domestic energy storage systems into the edges of LV 

grids, such as that arising from rooftop PV units, is also introducing increasing amounts of customer-

generated electricity. Unlike transmission networks, a distribution grid is an inherently unbalanced 

network that tends to become even more unbalanced with the uneven spread of PV units and PEVs. 

An additional factor is that the majority of residential areas are equipped with a single-phase power 

supply, and only large households have three-phase connections. In general, the reasons for 

conducting unbalance studies are (1) to ascertain that the voltage unbalance is within established 

limits, (2) to determine how to maintain load balance, and (3) to reduce grid losses [117]. 
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Certainly, collaboration of PEVs and local generators could provide dynamic voltage support for 

the distribution network, which may allow their increasing of penetration of smart grids. This chapter 

extends the interactive EMS proposed in chapter four in which PEV owners receive offers for various 

charging options. Through this method owners can immediately choose whether they want to 

discharge their battery back into the grid. This interactive structure not only provides owners with a 

flexible scheme for contributing to DR while avoiding the inconvenience of long-term contracts, but 

also ensures that the existing three-phase infrastructure distribution grid operates within acceptable 

voltage unbalance limits. This part of the thesis contributes in the following areas: 

• Analysis of the ways in which under a charging low and high penetration of PEVs affect 

voltage unbalance; 

• Examination of how the incorporation of PEVs and solar panels could mitigate unbalance 

issues.  

5.3 Framework of the Proposed Method 

Modules similar to those in chapter 4 are used here for decision making, as shown in Figure (5-1). 

One module for receiving PV panel information is added. Data corresponding to energy pricing, PV 

output power and system operation data are all fed to the Grid Interface module. When owners 

respond, the aggregator optimizes the decision making and sends charging/discharging signals to 

individual chargers. Obviously, decisions are subject to continuous change, as all input data are 

updated in every decision-making window.  

 

Figure.  5-1 ENS comparison based on class of offers 
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5.4 Additional Aspects of Modeling 

This section introduced the parameters required for generalizing the proposed single-phase model to a 

three-phase model. Moreover, the model for PV panel output power is briefly explained.   

5.4.1 Voltage unbalance constrain 

The National Electrical Manufacturers Association (NEMA) and IEEE share one definition for 

voltage unbalance, called the phase voltage unbalance rate (PVUR). Phase voltages are measured for 

every bus i voltage at every hour h of the inspection period, and the voltage deviation from the 

average (V��¡¢,£¤¥) is calculated as in (5-1). 

X8)¦�,�	§ =  ¨X�,�	§ − X�¦
� ¨X�¦
� × 100 (5-1) 

where, 

X�¦
� = ¨X�,�¨ + ¨X�,©¨ + ¨X�, ¨3  

∀ « ∈ {�, �, [} (5-2) 

Accordingly, the PVURi % is then calculated for all of the system busses, as in (5-3) [118, 119]. 

The voltage unbalance should be limited as follows in (5-4). % �X­�� = maxnX8)¦�,�  , X8)¦�,©  , X8)¦�, v (5-3) 

% �X­�� ≤ 3% (5-4) 

5.4.2 PV module specifications 

The PV-Info module is a measurement unit that sends the output power of the PV panel to the Grid 

Interface module. The output power of PV panels is stochastic which depends on a number of internal 

features of the PV cells. The output power of the PV array is a function of the solar irradiance and 

ambient temperature as well as the characteristics of the array. According to [120], the output power 

of the panel is calculated as follows in (5-5)-(5-9).The hourly solar irradiance data used here are listed 

in Table (5-1) [120]. As for the classification of seasons, Figure (5-2) represents the normalized solar 

irradiances in March, May, September, and December, corresponding respectively to winter, spring, 

summer, and fall.  

�� = �% + |� ±�² − 200.8 µ (5-5) 

| = |��|� + ¶�(� − 25)� (5-6) 
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X = X² − ¶¦ × �  (5-7) �̧ 
 = V × 33 × X × | (5-8) 

33 = X�ll × |�llX² × |�  (5-9) 

where, 

Ir  is the solar irradiance (kW/m2); 

Tc is the cell temperature at Ir  (°C); 

TA is the ambient temperature (°C); 

Ki is the current temperature coefficient (A/°C); 

Kv is the voltage temperature coefficient (V/°C); 

FF is the fill factor; 

Isc is the short circuit current (A); 

Voc is the open circuit voltage (V); 

IMPP is the current at the maximum power point (A); 

VMPP is the voltage at the maximum power point (V); 

PIr is the output power of the PV array at Ir  (kW).  

Table  5-1Solar Irradiance Data 

Module Characteristics Values 

Watt peak (W)  75.00 

Open circuit voltage (V) 21.98 

Short circuit current (A) 5.32 

Voltage at maximum power (V) 17.32 

Current at maximum power (A) 4.76 

Voltage temperature coefficient (mV/°C) 14.40 

Current temperature coefficient (mA/°C) 1.22 

Nominal cell operating temperature (°C) 43.00 
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Figure.  5-2 Seasonal PV output 

5.5 Extended Problem Formulation 

The structure of the decision optimization is designed to satisfy different objectives: maximizing 

delivered energy and minimizing the cost of energy. As explained in Section (4-4), it solves a multi-

stage non-linear optimization to satisfy PEVs in all offer classes. The general form of the objective 

functions and constraints are summarized as in (5-10)-(5-13). Obviously, these formulations are 

adopted for three-phase inside the decision-making algorithm. Figure (5-3) shows the overall 

structure of the decision making-algorithm.      

Stage 1: Chrgclass energy maximization  ]�5e \ \ \ \ f(�) .  W8)N(�,   �)�∈�	
L��∈g�	∈�,©,  
(5-10) 

Stage 2: FlxChrgclass and DChrgclass energy maximization  ]�5e, e′ \ \ \( \ W8)N���������∈MNO + \ W8)N�������∈`�	
L��∈g )�	∈�,©,  
(5-11) 

Stage 3: FlxChrgclass and DChrgclass cost minimization  �@Ae, e′ \ \ \( \ ��[(�) × W8)N���������∈MNO + \ ��[(�) × W8)N������  �∈`�	
L )��∈g�	∈�,©,  
(5-12) 

Subject to: (5-13) 

-0.3

0

0.3

0.6

0.9

1.2

May

March

September

December



 

 89 

Eq. (4-11)-(4-20) 

Eq. (4-22)-(4-24) 

Eq. (4-26) 

Eq. (5-4): for phase-balancing  

The effects of PV panel output power (PPV) are included in (4-11) and (4-12), and accordingly are 

modified as in (5-14) and (5-15):   

�Qj,�,� +  �lPj,�,� − �kj,�,� − �lmPj,�,�  = ∑ ∑ º Pj,�� Pj,�»¼j,j½�,» ¾¿À(Áj,j½�» �Âj» !Âj� )!Pj,�� Pj½,�» ¼j,j½�,» ¾¿À(Áj,j½�» �Âj½» !Âj� )Ã§Ä�,©,   �½�oÅ�  (5-14) 

wQj,�,� − wkj,�,� = − \ \ ^ X�,�� X�,�§p�,�o�,§ sin Æt�,�o�§ + u�§ − u�� Ç−X�,�� X�o,�§ p�,�o�,§ cos(t�,�o�§ + u�o§ − u�� )a§Ä�,©,   �½�oÅ�
 (5-15) 

where �Q and  �k  denote active generated and load powers, respectively at bus i and at time instant �. 
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Figure.  5-3 The structure of the decision making algorithm 

 

5.6 Case Studies 

A number of case studies are considered to observe the impacts and the potential supports of PEVs 

regarding phase-unbalance in LV systems. To do so, specific unbalance situations have been created 

to better illustrate the role of PEVs on such situations. The first set of analyses compares the impact 

inherent in low and high penetrations of PEV charging in the LV system. Then, unbalance mitigation 

through V2G application is addressed accordingly in the rest of the case studies with the collaboration 

of PV panels.    
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5.6.1 Test system  

Figure (5-4) illustrates the IEEE 123-bus distribution system used for this study. It operates at a 

nominal voltage of 4.16kV from the main substation; the total system load is 10 MVA, and further 

details of the system specifications and loading demand can be found in [121] and in Appendix B. 

The typical weekday load pattern for the load-types, available in [98], are used here.  
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Figure.  5-4 IEEE 123-bus test system 

As in chapter 4, battery capacities vary between 17-85kWh and chargers are assumed to be Level-II 

AC with a rating size of either 3.3 or 7 KW. The maximum output power of the solar units is assumed 

to be 2kW and 5kW. The buses with PEV chargers or parking lots are illustrated in Fig (5-4) and the 

number of PEVs/PEVs’chargers per-phase are available in Table (5-2).The test system is a three-

phase feeder balanced under the operation of the base load. Figure (5-5) shows the PVUR values over 

24 hrs under base load operation. Once a number of PVs are randomly distributed over the system, 

there is no guarantee that three-phase balance condition will be maintained. A sample of violated 
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PVUR is illustrated in Figure (5-6), indicating that even small scale roof-top PVs could disturb the 

voltage.     

Table  5-2 Number of PEVs per-phase in the system buses 

Bus # Ph-a Ph-b Ph-c  Bus # Ph-a Ph-b Ph-c 

8 12 17 22 60 12 27 47 

9 32 17 27  62 32 42 12 

17 17 22 27  65 32 32 47 

24 32 22 27  70 22 7 42 

28 22 42 2  72 25 2 29 

34 2 32 42  73 17 7 27 

35 32 2 22  78 42 27 20 

40 42 12 17  84 22 2 27 

41 17 7 2  89 27 40 2 

45 22 32 17  92 2 17 36 

49 2 37 17  95 12 42 22 

52 12 42 12  99 12 12 32 

53 2 22 42  103 42 32 7 

55 2 22 37  104 19 32 32 

56 17 42 2  105 25 22 42 

57 47 12 27  106 22 12 12 

59 42 32 12  111 22 42 42 

60 12 27 47  114 47 37 37 

 

Figure.  5-5 Hourly Max and min PVUR values: system is balanced under normal condition 
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Figure.  5-6 Hourly Max and min PVUR values: System is unbalanced when PVs are added 

5.6.2 Case study 1: PEV charge-only (comparison bet ween high/low penetration) 

The goal of this case study is to analyze the impact of PEV charging on system unbalance. This case 

provides a charge-only scenario and no PVs are available. Two penetration levels of PEVs are 

compared to better illustrate the loading impacts as well. These buses are selected randomly. 

Respectively, the low and high penetrations include almost 1.9 and 3.7 MW of total system loading.   

5.6.2.1 High/Low penetration: no phase-balancing constraints  

It is assumed that all PEV owners choose charging, and there is no control over phase-balancing in 

this case. Figure (5-7) compares total loadings of PEVs for low and high penetrations of chargers in 

three phases. Apparently, the more PEV charging, the greater the total demand will be. More 

importantly, significant PVUR violations can be seen in Figures (5-8) and (5-9), from the acceptable 

threshold. This analysis indicates that random distribution of PEVs in a LV system could result in 

great phase unbalance, which consequently could increase system losses and transformer degradation. 

-8

-6

-4

-2

0

2

4



 

 94 

 

Figure.  5-7 Total loadings of PEVs for low and high penetrations 

 

Figure.  5-8 Hourly Max and min PVUR%: for high PEV penetration 

 

Figure.  5-9 Hourly Max and min PVUR%: for low PEV penetration 
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5.6.2.2 High/Low penetration: with phase-balancing constrains  

Charging schemes are as in Section (5-6-2-1); however, the aggregator controls phase-balancing 

through an additional constraint, in this case, Eq. (5-4), as illustrated in Figure (5-10). No battery 

discharging is applied here; therefore, the decision variables are either one or zero, corresponding to 

charging or holding, respectively. Table (5-3) compares the impact of phase-balancing on total system 

losses, which with lower PEV penetration results in the total losses dropping by 38.7%. Higher PEV 

penetration clearly corresponds to greater demand and system losses. 

Table  5-3Impact of phase-balancing on total system losses 

 
Total Charger size 

(MW) 
Penetration (%) 

Total Loading 
(MW) 

System 

Losses 

(MW) 

Phase a b c a b c a b c 
 

Low Penet. (NPhB/PhB)* 1.88 1.99 2.05 18.8% 19.9% 20.5% 7.60 7.88 8.19 
1.388 

/0.851 

High Penet. (NPhB/PhB) 3.72 4.14 4.25 37.2% 41.4% 42.5% 
13.17 

/13.33 

15.89 

/15.98 

14.61 

/14.66 

1.58 

/1.475 

*NPhB/ PhB: No-Phase-Balancing/ Phase-Balancing 

 

Figure.  5-10 Hourly Max and min PVUR%: adding the constraint for voltage unbalance 

5.6.3 Case study 2: PEVs in the presence of PV pane ls/solar units  

The second case employs PEVs in collaboration with the PV panels to determine whether proper 

decision making in collaboration with end-users results in better utilization of the power grid 

infrastructure. Based on the aggregator’s offers, PEV batteries may be discharged partially. Offers are 

based on RTP tariff. Hourly output power of the PV panels used here is based on solar irradiance in 
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May (as in Figure (5-2)). Figure (5-4) also provides busses with solar units, with total installed 

capacity of almost 1100 KW. 

The loading results obtained from case studies (1) and (2) can be compared in Figure (5-11). 

Obviously, this is the loading seen from the grid-side. The latter case study provides the aggregator 

with more flexibility in decision making. Consequently, the demand drops more as RTP rises. 

Extensive discharge (i.e. DChrgclass) occurs within two RTP peaks; between 10am-2pm and 6-10pm, 

where most energy saving is achieved. Comparison case study (1) and (2) reveals that the charge-

discharge scenario outperforms in demand reduction at peak tariff hours due to local supports of 

PEVs and PVs. Table (5-4) also indicates that total system losses is reduced trough the 2nd case 

study, and, as can be seen in Figure (5-12), with phase-balancing constraint the PVUR remained 

inside the acceptable 3% limits.    

 

Figure.  5-11 Chrg-only vs Chrg/Dchrg for High Penetration PEVs 

Table  5-4 Total System Losses 

 Total Charger size 

(MW) 
Penetration (%) 

Total Loading 
(MW) 

System 

Losses (MW) 

Phase a b c a b c a b c 
 

Chrg_only 

3.72 4.14 4.25 37.2% 41.4% 42.5% 

13.33 15.98 14.66 1.475 

Chrg/Dchrg 8.71 8.84 7.94 1.103 

0

1

2

3

4

5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

ȼ
 /

 K
w

h

M
W

Ph_1 Chrg/Dchrg Ph_2 Chrg/Dchrg Ph_3 Chrg/Dchrg
Ph_1 Chrg Ph_2 Chrg Ph_3 Chrg
Energy Price



 

 97 

 

Figure.  5-12 Max and min PVUR%: V2G with PV, including phase-balancing constraint  

5.7 Discussion   

So far this chapter has revealed that PEVs can support reshaping the load while smart charging 

acquires phase balancing. This section evaluates the vehicle owner fulfillment by comparing the ENS 

under different charging schemes and penetration levels of PEVs. Table (5-5) demonstrates the 

energy required (Ereq) and the energy delivered (Edel) in four different charging schemes including 

charge-only and charge-discharge scenarios for low and high penetrations. Looking at the low 

penetration case, we observe that there is a small difference in Edel when the charge-only scenario 

(Chrg_Low) is exchanged with the charge-discharge scenario (i.e. 9.53 MWh vs 9.97 MWh). 

Consequently, the ENS differs only by 0.44 MWh (i.e. 0.79 MWh vs 0.35 MWh). 

In contrast, a significant difference exists for Edel under high PEV penetration scenario. The 

charge-discharge scheme ends in ENS of 2.24 MWh, while the ENS is almost three times greater 

through charge-only scheme (i.e. 6.88 MWh). 

These findings suggest that incorporation of PEVs in short-term power supply, i.e., under V2G 

application, outperforms more significantly when they highly penetrate the fleet. The results provide 

further support for the hypothesis that demand response is viable by decentralized collaboration of 

small smart loads in future smart buildings.      

Table  5-5 The energy required vs the energy delivered 

 Ereq (MWh) E del (MWh) ENS (MWh) System Losses 

Chrg_Low 
10.32 

9.53 0.79 130% 

Chrg/Dchrg_Low 9.97 0.35 100% 

Chrg_High 
25.87 

18.99 6.88 173% 

Chrg/Dchrg _High 23.63 2.24 148% 
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5.8 Summary   

This chapter improved the proposed distributed energy management system (EMS) in chapter 4. It 

incorporates PEV owners in demand response (DR) through real-time interaction with an aggregator 

and choosing among various charging options according to personal preference. This interactive-

structure not only provides owners with an appropriate scheme for contributing to DR while avoiding 

the inconvenience of long-term contracts, but also ensures that the three-phase existing infrastructure 

distribution grid operates within the acceptable voltage unbalance limits. To provide clarification of 

the unbalanced condition, photovoltaic (PV) units have also been included in the analysis. This study 

shows how the proposed approach employs PEVs for short-term battery discharging to mitigate 

phase-unbalance while the PEV owners benefit from their incorporation in DR [122, 123]. 
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Chapter 6 

Conclusions 

6.1 Thesis Summary 

The research presented in this thesis involved the investigation of smart charging for the 

interconnection of plug-in electric vehicles (PEVs), with the ultimate goal of supporting the growth of 

greener cities in the near future. A framework has been created that will allow both public parking 

lots and small residential garages to benefit from smart charging with end-user demand-side 

management (DSM) and demand response (DR). The work entailed the development of methods that 

enable an aggregator to handle decision making by interacting with vehicle owners and thus 

dynamically manage PEV charging in real time. Two real-time interaction levels have been 

implemented.  

The first level, introduced in Chapter 3, is an approach proposed for charging PEVs through a one-

round interaction, whereby the owner sends the PEV status data to the aggregator and the aggregator 

then optimizes the charging actions with respect to other PEVs and the power-grid operating 

practices. With this technique, a fuzzy-based expert system assigns scores to the PEVs waiting in a 

charging queue in order to prioritize them and thus determine the order in which they will be charged. 

The priorities are based on a number of PEV attributes, including the SOC, battery capacity, the 

maximum charger power rating, and the departure time of the vehicle. The case study simulation 

results prove the effectiveness of the proposed methodology for dealing with the fast-changing 

dynamics of PEV charging coordination. The most obvious finding to emerge from this study is that, 

based on the SCR solution, an aggregator can better address the urgent energy demands of PEVs that 

have a short parking duration and require a lengthy charging time.  

A second approach at a higher interaction level was implemented as explained in Chapter 4 in 

order to create an energy management system (EMS) based on the incorporation of aggregated PEVs 

into public, smart parking lot, whereby an aggregator offers a variety of options based on a comfort 

criterion factor, and vehicle owners respond based on preference. The aggregator employs the input 

from five different modules for decision making, with an artificial neural network (ANN) regression 

and a Markov chain model operating together to include the effect of future PEV arrivals in the 

decision results. Although the most promising performance would be evident in larger parking lots 

with more numerous vehicle transactions, the proposed solution can be applied for any lot size.  
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The final research phase, presented in Chapter 5, extends the proposed interactively structured 

EMS to include single or small garages distributed over a three-phase LV system. This structure 

offers PEV owners a flexible scheme for contributing to DR while avoiding the inconvenience and 

limitations of long-term contracts. It also ensures that the existing three-phase infrastructure 

distribution grid operates within acceptable voltage unbalance limits. The first step in the new 

structure is an analysis of the voltage-unbalance impact of charging under low and high PEV 

penetrations. PEVs and solar panels are then employed in combination for phase-unbalance 

mitigation. The results of this study indicate that significantly greater energy efficiency could be 

achieved by discharging batteries when the penetration of PEVs in the grid is high.  

6.2 Thesis Contributions 

The following major contributions of this study have the potential to enhance existing V2G-related 

initiatives:   

• The adoption of an intelligent expert system that meets the dynamics of PEV 

arrivals/departures and offers a higher level of satisfaction for the owners of PEVs requiring 

urgent and longer charging times; 

• A new multi-stage decision-making approach based on real-time interactions between PEV 

owners and aggregators, which provides owners with an appropriate scheme for contributing 

to DR, while avoiding the inconvenience of long-term contracts;   

• A new stochastic prediction model of near-future arrivals and their energy demand, which is 

employed in the decision making, based on the combination of an ANN and a Markov chain; 

and 

• The employment of PEV battery discharging for mitigating phase unbalance in LV 

distribution systems characterized by high PEV penetration and local single-phase generation 

such as solar units.  

6.3 Prospective Work 

As a continuation of this work, the following areas are suggested for future investigation: 

• The DR approach could be extended to include future smart buildings in which a variety of 

interruptible loads, PEVs, and on-site generation can manage building demand through 

interactive communication.   
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• A number of performance assessment methods could be developed in order to create 

guidelines for the future regulation of smart grids. These performance assessment factors 

would reflect the success of the aggregator with respect to different perspectives: the owners, 

the utilities, and aggregator fairness/economy.  

• The EMS system could be enhanced to include extensive communication between solar 

panels and public parking lots, which could advance the goal of providing zero-cost PEV 

charging stations in the future. 

• The possibility of the discharging of multiple batteries per parking session and the impacts of 

battery degradation would be explored through the implementation of further mathematical 

modeling of economics and incentives. 
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Appendix A 

The 38-bus test system data 

Table (A-1) 

Test system date 
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Appendix B 

The 123-bus test system data  

Node   Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 

F T L Model kW kVAr kW kVAr kW 

1 2 175 Y-PQ 40 20 0 0 0 

2   Y-PQ 0 0 20 10 0 

4   Y-PR 0 0 0 0 40 

5 6 250 Y-I 0 0 0 0 20 

6   Y-Z 0 0 0 0 40 

7 8 200 Y-PQ 20 10 0 0 0 

9 14 425 Y-PQ 40 20 0 0 0 

10   Y-I 20 10 0 0 0 

11   Y-Z 40 20 0 0 0 

12   Y-PQ 0 0 20 10 0 

16   Y-PQ 0 0 0 0 40 

17   Y-PQ 0 0 0 0 20 

19 20 325 Y-PQ 40 20 0 0 0 

20   Y-I 40 20 0 0 0 

22   Y-Z 0 0 40 20 0 

24   Y-PQ 0 0 0 0 40 

28 29 300 Y-I 40 20 0 0 0 

29 30 350 Y-Z 40 20 0 0 0 

30   Y-PQ 0 0 0 0 40 

31 32 300 Y-PQ 0 0 0 0 20 

32   Y-PQ 0 0 0 0 20 

33   Y-I 40 20 0 0 0 

34 15 100 Y-Z 0 0 0 0 40 

35 40 250 D-PQ 40 20 0 0 0 

37   Y-Z 40 20 0 0 0 

38 39 325 Y-I 0 0 20 10 0 

39   Y-PQ 0 0 20 10 0 

41   Y-PQ 0 0 0 0 20 

42 43 500 Y-PQ 20 10 0 0 0 

43   Y-Z 0 0 40 20 0 

45 46 300 Y-I 20 10 0 0 0 

46   Y-PQ 20 10 0 0 0 

47 48 150 Y-I 35 25 35 25 35 

48   Y-Z 70 50 70 50 70 

49 50 250 Y-PQ 35 25 70 50 35 
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50 51 250 Y-PQ 0 0 0 0 40 

51 - 500 Y-PQ 20 10 0 0 0 

52 53 200 Y-PQ 40 20 0 0 0 

53 54 125 Y-PQ 40 20 0 0 0 

55 56 275 Y-Z 20 10 0 0 0 

56   Y-PQ 0 0 20 10 0 

58 59 250 Y-I 0 0 20 10 0 

59   Y-PQ 0 0 20 10 0 

60 61 550 Y-PQ 20 10 0 0 0 

62 63 175 Y-Z 0 0 0 0 40 

63 64 350 Y-PQ 40 20 0 0 0 

64 65 425 Y-I 0 0 75 35 0 

65 66 325 D-Z 35 25 35 25 70 

66   Y-PQ 0 0 0 0 75 

68 69 275 Y-PQ 20 10 0 0 0 

69 70 325 Y-PQ 40 20 0 0 0 

70 71 275 Y-PQ 20 10 0 0 0 

71   Y-PQ 40 20 0 0 0 

73 74 350 Y-PQ 0 0 0 0 40 

74 75 400 Y-Z 0 0 0 0 40 

75   Y-PQ 0 0 0 0 40 

76 77 400 D-I 105 80 70 50 70 

77 78 100 Y-PQ 0 0 40 20 0 

79   Y-Z 40 20 0 0 0 

80 81 475 Y-PQ 0 0 40 20 0 

82 83 250 Y-PQ 40 20 0 0 0 

83   Y-PQ 0 0 0 0 20 

84 85 475 Y-PQ 0 0 0 0 20 

85   Y-PQ 0 0 0 0 40 

86 87 450 Y-PQ 0 0 20 10 0 

87 88 175 Y-PQ 0 0 40 20 0 

88   Y-PQ 40 20 0 0 0 

90   Y-I 0 0 40 20 0 

92   Y-PQ 0 0 0 0 40 

94   Y-PQ 40 20 0 0 0 

95 96 200 Y-PQ 0 0 20 10 0 

96   Y-PQ 0 0 20 10 0 

98 99 550 Y-PQ 40 20 0 0 0 

99 100 300 Y-PQ 0 0 40 20 0 

100 - 800 Y-Z 0 0 0 0 40 

102 103 325 Y-PQ 0 0 0 0 20 
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103 104 700 Y-PQ 0 0 0 0 40 

104   Y-PQ 0 0 0 0 40 

106 107 575 Y-PQ 0 0 40 20 0 

107   Y-PQ 0 0 40 20 0 

109 110 300 Y-PQ 40 20 0 0 0 

111   Y-PQ 20 10 0 0 0 

112 113 525 Y-I 20 10 0 0 0 

113 114 325 Y-Z 40 20 0 0 0 

114   Y-PQ 20 10 0 0 0 

Total   1420 775 915 515 1155 
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