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Abstract

Today, modern processors are equipped with a special unit named Performance Moni-
toring Unit (PMU) that enables software developers to gain access to micro-architectural
level information such as CPU cycles count and executed instructions count. The PMU
provides a set of programmable registers called hardware performance counters that can be
programmed to count the specific hardware events. In the Linux operating system, many
low-level interfaces are designed to provide access to the hardware counters facilities. One
of these interfaces is perf event, which was merged as a sub-system to the kernel mainline
in 2009, and became a widely used interface for hardware counters.

Firstly, we investigate the perf event Linux sub-system in the kernel-level by exploring
the kernel source code to identify the potential sources of overhead and counting error.
We also study the Perf tool as one of the end-user interfaces that was built on top of
the perf event sub-system to provide an easy-to-use measurement and profiling tool in the
Linux operating system. Moreover, we conduct some experiments on a variety of processors
to analyze the overhead, determinism, and accuracy of the Perf tool and the underlying
perf event sub-system in counting hardware events. Although our results show 47% error
in counting the number of taken branches as well as 5.92% relative overhead on the Intel
Pentium 4 processors, we do not observe a significant overhead or defect on the modern
x86 and ARM processors.

Secondly, we explore a memory management sub-system of Linux kernel called slab
allocator, that plays a crucial role in the overall performance of the system. We study three
different implementations of the slab allocator that are currently available in the Linux
kernel mainline and enumerate the advantages and disadvantages of each implementation.
We also investigate the binning effect of the slab allocator on the Linux system calls
execution time variation. Moreover, we introduce a new metric called “Slab Metric” that
is assigned to each system call to represent the interaction level with the slab allocator.
The results show a correlation coefficient of 0.78 between the dynamic slab metric and the
execution time variation of the Linux system calls.
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Chapter 1

Linux Perf: Linux Performance
Evaluation Tool

1.1 Introduction

Over the past several decades, computer hardware designers have attempted to keep pace
with the high demand for processing power by developing a new generation of processors,
which involves improving computer architecture, design, and implementation. Also, en-
hancements in other hardware components, such as main memory and internal bus, that
work closely with the CPU can increase the overall performance of the system. However, we
cannot always rely on hardware to deliver increased performance. At some point, we need
to create high-performance programs or improve our current programs to make the most of
the available hardware resources. Moreover, with the recent changes to the processors and
memory architecture such as Symmetric Multi Processing (SMP) and Non-Uniform Mem-
ory Access (NUMA), developers may experience performance issues after deploying their
programs to the new generation of hardware. For instance, software programs that use
algorithms that are not optimized for running on the SMP environment may face serious
performance degradation as a result of lower CPU frequency and the overhead imposed by
CPU cores’ synchronization in the operating system level. Therefore, developers need to
evaluate their software carefully to spot performance issues by conducting measurement-
based analysis and find the root cause of the problem through the performance debugging
tools.

Software performance analysis is one of the topics in computer science that is always
important to both individuals and industries. Performance-related bugs are the toughest
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to detect in software when a small change in the source code can cause a huge performance
degradation in the software. Rigorous measurement-based software performance analysis
is a method that can reveal software regression in the early stages of its development. In
rigorous measurement-based performance analysis, before releasing a new version of the
program, we run the program under a particular workload and measure the performance-
related metrics to make sure that the latest changes to the program did not impose any
unpredicted performance degradation. Many tools and methods are developed to help the
developers to find performance bottlenecks in the software. In the Linux operating system,
we have a variety of tools such as Perf, ftrace, strace, top and tcpdump. that are designed
for monitoring a specific part of the system. However, in this work, we are only interested
in identifying the performance issues that are related to the execution of the programs
on the CPU under a particular workload. These types of improvement and performance
tuning can be achieved by performing measurement-based performance analysis.

In general, three commonly used approaches are available for performing measurement-
based performance analysis:

• Sample based: The Sample based method is a low price method that offers a rel-
atively accurate results with low overhead. This method is suitable for root cause
performance analysis. Although all sampling-based techniques are associated with
blind spots, we still can use this method in most of the performance analysis projects
since the we are only interested in finding the time-consuming functions (hotspots).

• Instruction level Instrumentation: Instrumentation method provides a highly accu-
rate and low price technique in spite of high overhead that makes it impractical in a
real-time context.

• Hardware level trace: This method offers a 100% non-intrusive trace capture at
the finest possible granularity and accuracy. However, both technical and practical
limitations of this method in conjunction with the high price of the tracing equipment,
makes this approach less viable for conducting regular performance analysis. Also,
since we capture traces directly from the hardware, this method requires us to post
process the traces the traces to make them readable and meaningful to the end-user.

Table 1.1 shows a basic comparison between these three methodologies.

Choosing an appropriate method for conducting measurement-based performance anal-
ysis requires a special care since each approach has its advantages and disadvantages.

2



Method Cost Overhead Acuuracy Granularity Easy to Use

Hardware Trace High Low High High Low

Instrumentation Low High High Medium High

Sample-based Low Midium Low Low High

Table 1.1: Comparing performance analysis methods

Hardware performance counters made a significant contribution to the state-of-the-art
in the field of performance evaluation. It becomes a dominated measurement based ap-
proach for performance evaluation of the programs that provides micro-architectural level
information including CPU cycles, CPU stall cycles and Table Lookaside Buffer (TLB)
misses, directly from the CPU. Hardware performance counters (also known as Model Spe-
cific Register (MSR) in x86-64 architecture) are a set of registers integrated into the modern
microprocessors that enable one to count the number of hardware events that occurred dur-
ing an execution of a program. We usually have two types of hardware performance counter
registers namely, “counter” registers that keep the number of occurred events and “con-
trol” registers that are being used for selecting the hardware events, overflow interrupts
and controlling the counter registers.

We can distinguish the contribution of the Linux community around making use of
hardware performance counters into the following three categories:

• First, drivers development in different architectures that enables access to the Per-
formance Monitoring Unit (PMU) through the machine dependent instructions.

• Second, developing a kernel-level interface that uses PMU drivers to provide a safe
access to the hardware counters via the system calls. These type of developments are
usually published as a patch for the Linux kernel. Usually, a kernel re-compilation is
needed for using these kernel interfaces.

• Third, the user-space level interfaces that are created on top of the kernel inter-
faces that provide a high-level and easy-to-use tools for end-users. These programs
enable end-users to analysis their applications based on events count measurement
using hardware performance counters. Other core features in these programs include:
performance profiling, events count, call graph and advance performance reporting.

The following diagram(1.1) illustrates the hierarchy of access levels to the hardware
performance counters on the Linux operating system.
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Figure 1.1: Hardware Performance Counter Hierarchy

1.2 Problem Statement & Approach

In this work, we study the Linux Perf tool as an end-user interface that built on top
of the perf event Linux sub-system. To be more specific, we investigate the accuracy,
determinism and the overhead of the Linux Perf in utilizing the hardware counters as an
underlying mechanism for conducting the measurement-based performance analysis. Our
approach to evaluating the accuracy of the Perf is to compare the results of Perf with the
results we obtained from other approaches such as Hardware Trace and Instrumentation
that will be explained in detail in Section 1.6.

1.3 Literature Review

The very first appearance of hardware performance counters in literature dates back to
1994, specifically, Terje Mathisen refers to RDMSR and WRMSR assembly instructions as the
secrets of Intel Pentium series processors [6, 35].

In order to make use of hardware performance counters in the Linux operating system,
patches appeared soon after the release of Intel Pentium processors enabled the Linux
kernel to access the CPU PMUs [36, 25, 18, 29, 28, 27, 22, 30]. Although these early
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implementations allowed Linux users to access the hardware counter registers, a few of
them became popular among the Linux community.

The first well-stablished interface for accessing hardware performance counter facilities
was PAPI, which was introduced in 1999 [38]. In the early versions of PAPI, designers
implemented both a low-level hardware counters interface (as a kernel extension) and a
high-level interface for novice users. However, in recent versions of the tool, they switched
to other well-stablished low-level drivers for access to the hardware performance counters.
Currently, PAPI is using Permon2, Perfctr for the Linux kernel version 2.6.30 (and below),
and the perf event Linux kernel official sub-system for working with hardware performance
counters.

OProfile [33] is the name of another Linux-based tool written in C++ that provides
a high-level interface for end-users. It is also used to provide a low-level interface to the
hardware performance counters through patching the Linux kernel, but it recently adopted
perf event sub-system as the low-level interface for accessing performance counters. In the
latest version of OProfile, it supports both events sampling and aggregation mode, stack
trace analysis, per-process and system-wide profiling.

The following two interfaces were added to the Linux kernel as a patch to provide a
low-level access to the PMU in a variety of processors.

1. Perfctr: Perfctr [37] is a widespread low-level interface for accessing to the hardware
performance counters in Linux 3.6.x that was introduced in 1999. It provides access to
the performance counters through a device node in /dev/perfctr. Perfctr is suitable
for self-monitoring and basic sampling support and provides per-thread and system-
wide monitoring. An advantage that Perfctr has over Perfmon2 and perf event is its
ability to read the value of performance counters using readpmc instruction which
is much faster than invoking a system call. This interface was used by PAPI before
introducing Perfmon2 and perf event.

2. Perfmon2: Perfmon2 [24] is flexible performance monitoring interface for Linux that
provides a generic interface to access the processors’ PMU. Perfmon2 uses a helper
library called libpfm that works in kernel level and provides an abstracted model to
access performance counters on a broad range of hardware. In the earlier versions of
Perfmon2, it contained twelve system calls that were reduced to four system calls a
after code review conducted by the Linux community. Caliper(HP), PAPI and pfmon
end-user performance analysis tools use Perfmon2 interface underneath. Eventually,
in 2009, Perfmon2 was abandoned in favor of perf event sub-system in Linux kernel.
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In 2009, the perf event open system call was added to the mainline Linux souce code
(version 2.6.32) as a kernel component. In 2013, Vincent M. Weaver elaborated on perf event
features and overhead in comparison with other hardware performance counter interfaces.
In counting context switch event, he reported up to 20% overhead in average compared to
2% overhead in perfctr and perfmon2 [42].

Zaparanuks et al. [21] investigated the accuracy of PAPI, perfmon2 and perfctr on
different machines with the emphasis variation rather than overhead. They found that
variations were near similar across different machines (perf event was not available on that
time).

Moreover, Salayandia [40], DeRose et al. [23], Moore et al. [39] and Maxwell et al. [34]
studied variability and overhead of hardware performance counters and their underlying
operating system interfaces such as PAPI and perfmon2.

Vincent M. Weaver et al. evaluated the determinism of CPU PMU on a different
implementations of x86 64 architecture and reported an overcount and run-to-run variation
on even under highly restricted and controlled environment. He also investigated ARM,
SPARC, and POWER PC systems and found the events count more deterministic compared
to the x86 64 architecture [41].

In 2015, Vincent M. Weaver explores the overhead of perf event in self-monitoring with
a focus on the time overhead imposed by operating system interface. He uses Time Stamp
Counter (TSC) register counter that is available on all x86 processors as a low-overhead
measurement method. He has found a significant overhead in an order of magnitude larger
than perfmon and perfctr implementations. Also, he proposed a proper coding method to
significantly reduce the overhead of perf event in self-monitoring mode [43].

1.4 Linux perf event Sub-System

In this section, we briefly explain the perf event open system call functionality and how
it configures the underlying PMU and captures the generated hardware events.

The list below shows the features of perf event sub-system that are considered in its
design process:

• Supporting different counting modes

– Aggregate or Counting: In this mode, the PMU is configured in such a way
that only counts and reports the total number of hardware events during the
execution of a program.
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– Sampling: In sampling mode, after counting a specific amount of events, the
PMU stops the counter and raises an overflow hardware interrupt to allow the
kernel to take a sample record that consists of valuable information of the exe-
cution of the program. (i.e., stack frame, program counter)

• Supporting per-thread, per-process and per-CPU monitoring

– Saves and restores the states of counter registers on each context switch

– States presists per logical cpus on context switch

– Monitors events in processor wide mode

– Capturing Offcore and Uncore events

• Abstracting event-based API

– Abstracts away PMU registers events name from users

– Supports software events such as context switches and page faults

• Configuring more events to monitor than the actual available hardware counter reg-
isters

– Supports unlimited number of software events

– Scales the events count in case of multiplexing

• Event grouping

– Measures a set of events together in case of having more events to monitor than
the actual available counters

1.4.1 perf event Interface

The perf event sub-system only added one system call to the Linux kernel. The perf event open
system call returns a file descriptor to identify the configured event(s). It manages the
event(s) independently through file descriptors that allows one to configure and count
events with different configurations in a single session [12].

int perf_event_open(struct perf_event_attr *attr,

pid_t pid,

int cpu,

7



int group_fd,

unsigned long flags);

The first parameter that perf event open takes as an input has a complex structure with
over 45 fields that are being used to describe the events we are interested in counting as
well the counting configurations. The second argument is an identifier of the target thread
that either specifies the process PID of a particular program or the currently running
program for counting in self-monitoring mode. Passing 0 or -1 as the second parameter to
the function will enable the self-monitoring mode or the system-wide (count events of the
whole system) monitoring mode, respectively. The cpu argument limits the measurement
to a particular CPU if the specified number is greater than 0. In case of cpu = 0, hardware
events will be measured on all CPUs. The next argument is the file descriptor of the group
leader of the event(s). Events grouping enables one to measure all of the members of the
group at the same time. In other words, the measured values of the hardware events that
belong to the same group can be meaningfully compared. Providing this option will force
the kernel event scheduler to either put all of the group members on the CPU or avoid
measuring any group members in case of failure.

1.4.2 perf event open System Call

In this section, we will take a closer look at the perf event open system call in the kernel
level and will provide the minimum requirements for using the hardware counters in the
user level. The perf event open system call does not have any wrapper in the libc

library. Therefore, the system call has to be called using the syscall function with the
NR perf event open as the first parameter.

Most of the machine’s independent source code related to perf event open, including
the system call definition, resides in the "kernel/events/core.c" file. Also, for each
architecture, there are low-level drivers that abstract away access to the hardware counters.
In the x86 instruction set, PMU driver uses rdmsr and wrmsrt instructions to access the
MSR [8]. However, in ARM architecture, the PMU registers are accessible through the
CP15 system control coprocessor or external APB interface [5]. Moreover, in the MIPS32

and MIPS64 ISAs, the system control coprocessor provides performance counter facilities
through the PerfCtl and PerfCnt control registers.

With over 50 configurations, the perf event open system call is the heart of the
perf event Linux kernel sub-system. It also has the longest manual page among the
available Linux system calls. The functionality of this system call is quite different in
sampling and counting mode.
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In counting mode, the user can control the performance counter with three basic oper-
ations: reset, enable and disable.. These operations can be performed by calling the ioctl

system call with the perf event file descriptor as the first parameter, and the operation
number as the second parameter. The Snippet 1.1 shows the minimum required codes for
configuring a hardware event in counting mode.

1 s t r u c t p e r f e v e n t a t t r a t t r s ;
2 i n t fd ;
3 long long count ;
4

5 memset(&pe , 0 , s i z e o f ( s t r u c t p e r f e v e n t a t t r ) ) ;
6 a t t r s . type = PERF TYPE HARDWARE;
7 a t t r s . s i z e = s i z e o f ( s t r u c t p e r f e v e n t a t t r ) ;
8 a t t r s . c o n f i g = PERF COUNT HW INSTRUCTIONS;
9 a t t r s . d i s ab l ed = 1 ; //do not s t a r t count ing

10 a t t r s . e x c l u d e k e r n e l = 1 ; // exc lude ke rne l count ( x86 only )
11 a t t r s . exc lude hv = 1 ; //do not count hyperv i so r
12

13 p i d t pid = 0 ; // measure the cur rent p roce s s
14 i n t cpu = −1; // measure on any cpu
15 i n t group fd = −1; // no event grouping
16 unsigned long f l a g s = 0 ;
17

18 fd = s y s c a l l ( NR per f event open , &at t r s , pid , cpu , group fd , f l a g s ) ;
19

20 i f ( fd == −1) {
21 f p r i n t f ( s tde r r , ” Fa i l ed ! ” ) ;
22 e x i t (−1) ;
23 }
24

25 i o c t l ( fd , PERF EVENT IOC RESET, 0) ; // r e s e t hardware counter
26 i o c t l ( fd , PERF EVENT IOC ENABLE, 0) ; // enable hardware counter
27

28 /∗ s t a r t codes to count ∗/
29 f o r ( long i n t i = 0 ; i < 10000000000; i++){
30 asm ( ”nop” ) ;
31 }
32 /∗ end ∗/
33

34 i o c t l ( fd , PERF EVENT IOC DISABLE, 0) ; // d i s a b l e hardware counter
35

36 read ( fd , &count , s i z e o f ( long long ) ) ; // read ing counter va lue
37

38 p r i n t f ( ” count i n s t r u c t i o n s : %l l d \n” , count ) ;

Snippet 1.1: Perf event count in self-monitoring mode

9



Unlike counting mode, perf event configuration in sampling mode is more complicated
in both kernel and user levels. First of all, the perf event sub-system needs to configure
the PMU (using MSRWR on x86) to overflow when the hardware event count reaches to a
specific value called the “sampling period.” By invoking the perf event open system call
in sampling mode, the kernel would automatically adjust the sampling period based on
the frequency of hardware event generation and the sampling frequency that is provided
via the perf event attr.sample freq attribute. After each PMU overflow interrupt, the
kernel readjusts the sampling period using the formula below as long as we did not specify
a fixed sampling period at the time of creating the event.

new sampling period =
last sample period× 109

elapsed time× sample freq
(1.1)

To observe the impact of this adjustment technique on different hardware events in the
sampling period, we perform a simple experiment in which we use the instruction and the
branch events that have different event generation rates. Figure 1.2 shows the sampling
period of the first 100 samples taken from the hardware events while executing the following
command.

dd if=/dev/zero of=/dev/zero count=10000000

As we expected, the sampling period of the instruction hardware events is dramatically
increased in comparison to the branch event.

After configuring an event for counting in sampling mode, we need to map the file de-
scriptor that returned from the perf event open to the user address space. The following
snippet shows how we can use mmap function to map the file descriptor to the program
address space that can provide a direct access to the taken samples from the user space.

1 char ∗ mmap address = mmap(NULL, NR PAGES∗PAGE SIZE , PROT READ|PROT WRITE,
MAP SHARED, event fd , 0) ;

NR PAGES is the number of memory pages that is mapped from the kernel ring-buffer.
Also, MAP SHARED flags makes this mapping visible to the other processes that enables
the programs such as Perf tool to use hardware performance counters for measuring the
hardware events of other processes on their behalf.

The next step is to configure the user program that initiated the perf even open to
handle the wakeup signal and save the captured samples after the memory mapped pages
fill up (or a certain threshold is reached). To be more specific, a wakeup signal will be sent
to the user program when either the number of samples that are stored in the ring-buffer
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Figure 1.2: Kernel Level Sampling Period Adjustment

reaches the perf event attr.wakeup events value, or the ring-buffer consumes all of the
memory mapped pages. Wake up conditions can be captured by polling the perf event

file descriptor using the poll or the select system calls over the POLL IN event, or by
setting up a signal handler that handles the SIGIO signal using the fcntl system call. The
Linux Perf tool preferred to use the polling method rather than the signal handling as
it interrupts the execution flow of the program and makes it exceedingly slow. Once the
wakeup event is captured, the user-space program retrieves the pointer that points to the
beginning of the buffer (perf event mmap page->data head), and then starts to read the
captured samples from the next 2n pages.

A simplified control flow of a program that configures the PMU to monitor a particular
event in sampling mode is depicted in Figure 1.3.

In Figure 1.3, the wakeup signal is handled by the wakeup handler function that receives
the signal when the buffer becomes ready for reading. There are two potential sources of
miscounting which can make the results inaccurate. First, when an overflow occurs in the
PMU event counter that disables the counter until the perf event stores the sample into
the ring-buffer. For instance, setting the sampling period to a small number for a high-
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Figure 1.3: Sample-based self-monitoring using perf event

frequency event such as CPU cycle will generate excess event counter overflow that result
in missing a significant number of events. The second root cause of sample miscounting
is the wakeup signal handler. It can happen when the wakeup handler in the user-space
program takes too much time to store the samples. In this case, we will lose samples due
to the overwriting of the new samples that coming from hardware into the ring buffer that
has the old samples. In Section 1.7.2 we will investigate the impact of the potential sources
of miscounting on the accuracy of the Perf in sampling mode.

1.4.3 perf event Supported Events

perf event supports a variety of events from both hardware and software side. The
hardware events are coming from the hardware performance counters that are implemented
in the chipset. However, the software events are provided by the Linux uprobe and kprobe
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debugging facilities.

Figure 1.4 shows the software and hardware events that are accessible via the perf event

sub-system across the Linux operating system.
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Figure 1.4: perf event Hardware/Software Events Sources [26]

1.5 Linux Perf Tool

Perf is a Linux-based profiler and performance-measuring tool that was introduced in
Linux version 2.6.31. The Perf tool was originally designed to create a tool on top of
the perf event sub-system that uses hardware performance counters for counting the
hardware events. However, today, it is one of the most important performance evaluation
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tools among the Linux community. At the time of writing this thesis, Perf was capable of
performing a variety of performance measurements in both kernel space and user-space.
It currently supports the following features that are accessible through the following sub-
commands:

• Hardware Performance Counters (HPC)

• Software events counters

• Tracepoints

• Advanced reporting

• Analyze lock events

• Dynamic Probes (e.g. uprobes and kprobes)

• Top (system profiling tool)

• Profiling memory accesses

• Strace inspired tool that captures a profile of the invocations to the system calls

• Ftrace that is a front-end for kernel’s ftrace

• Annotate for source level analysis

The above list demonstrates that Linux Perf has shifted from only being a front-end for
accessing to the hardware performance counters to a powerful collection of the performance
evaluation tools that can be used in a variety of hardware to facilitate performance analysis
for the Linux performance community.

As previously mentioned,, we will focus on the Linux Perf hardware performance coun-
ters features, overhead, and its accuracy in different situations.

We normally use the following three Perf sub-commands to perform the HPC-based
measurements in Linux:

• stat: for counting the events → shows the results at the end of the measurement

• record: sample-based events collection → report perf.data in binary

• report: parse the perf.data file → high level analysis
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• anotate: parse perf.data file → source level analysis

HPC-based performance measurements can be conducted in two different modes: Count-
ing or Sampling modes. Counting or Aggrigation mode is suitable for gathering statistics
of a specific process or the entire system in a particular time interval. In this mode, Perf
simply aggregates the occurrence of the events and either reports them at the end of the
execution of the running process, or when the user sends a SIGINT signal to interrupt the
Perf’s process.

The following shows a sample output of the perf stat that runs the sleep Linux com-
mand:

$ perf stat sleep 5

Performance counter stats for ’sleep 5’:

0.339207 task-clock (msec) # 0.000 CPUs utilized

1 context-switches # 0.003 M/sec

0 cpu-migrations # 0.000 K/sec

59 page-faults # 0.174 M/sec

1,048,747 cycles # 3.092 GHz

740,254 stalled-cycles-frontend # 70.58% frontend cycles idle

669,591 instructions # 0.64 insns per cycle

# 1.11 stalled cycles per insn

139,229 branches # 410.454 M/sec

7,260 branch-misses # 5.21% of all branches

5.000645228 seconds time elapsed

The results above shows the total number of occurrence of each hardware and software
events as well as the total elapsed time for running the program.

The other mode of an HPC-based measurement in the Linux perf is the Sampling mode
in which the results not only contain the number of total events count, but also has the
program execution profile. Access to a program execution profile allows one to easily
identify the time-consuming function(s) of the programs that is the main goal of almost
every performance analysis project.

The Linux Perf tool in the sampling mode provides -c and -F flags to specify the
sampling period and the sampling frequency respectively. If the sampling frequency is not
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provided, then it uses a sampling frequency of 4,000 Hz for all of the hardware events.
In Section 1.7.2, we investigate the impact of the sampling period and frequency on the
accuracy and the overhead of the perf event sub-system.

To run the Perf in sampling mode we need to use perf record sub-command that
captures a profile of the program during its execution and stores the results in a single
binary file. After capturing the results, we can use the perf report sub-command for
parsing the resutls and generating reports. The following shows the perf record command
that runs the sleep commands:

$ perf record sleep 5

[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 0.017 MB perf.data (7 samples) ]

It took seven samples and wrote all of the information and the captured profile of the
program’s execution in a single ”perf.data” binary file. Also, the second line shows that
the perf event sub-system woke up the Perf tool only one time to read the samples from
the memory mapped pages and write them into the perf.data file.

The Perf tool provides an easy-to-use command called perf report for parsing the
perf.data files. The results below show the approximate total cycle events count alongside
a sorted list of the hottest symbols (functions).

$ perf report --stdio

# Total Lost Samples: 0

#

# Samples: 7 of event ’cycles’

# Event count (approx.): 3157333

#

# Overhead Command Shared Object Symbol

# ........ ....... ................ .........................

#

91.22% sleep [kernel.vmlinux] [k] unlock_page

8.49% sleep [kernel.vmlinux] [k] __inode_permission

0.28% sleep [kernel.vmlinux] [k] native_write_msr_safe

#

# (For a higher level overview, try: perf report --sort comm,dso)

#
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Another flag that is available on both perf record and perf stat tools is the -e flag
that enables one to specify the name of the event(s) that we want to monitor. The perf

list sub-command shows a list of available hardware and software events on the system.
In the following example we use -e flag to monitor the total number of taken branches
while executing the sleep command. Moreover, in some architectures such as x861 we can
specify a modifier for each event by appending them to the event name. Using modifiers
enables us to distinguish between the events generated in different CPU privilege levels.
For instance, we can only capture the events that occur in the kernel space. In Table 1.2,
a complete list of the modifiers that can be used in conjunction with each hardware event
is shown.

Modifiers Description Example

u monitor at privilege level 3, 2, 1 (user) event:u
k monitor at privilege level 0 (kernel) event:k
h monitor hypervisor events on a virtualization environment event:h
H monitor host machine on a virtualization environment event:H
G monitor guest machine on a virtualization environment event:G

Table 1.2: Perf events modifiers

In the example below, we run the perf stat sub-command with :u modifier to count
the number of taken branches and retired instructions2 that occur in the user-space during
the execution of the sleep program.

$ perf stat -e branches:u sleep 5

Performance counter stats for ’sleep 5’:

47,026 branches:u

209,787 instructions:u

5.000792210 seconds time elapsed

The sampling options can be enabled through the sample type field. For instance, in
the perf record program we can generate a full call graph of the program’s execution by
providing the -g flag. However, storing more information in each sample will introduce
more overhead. The list of avaiable sampling options is shown in Table 1.3.

1ARM CPUs do not support event’s modifiers.
2Instructions that are actually executed on the CPU and their results are written back to the CPU

registers.
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Flag Description

PERF SAMPLE IP Instruction Pointer

PERF SAMPLE TID Process or thread ID

PERF SAMPLE TIME Sample Timestamp

PERF SAMPLE ID Unique ID of the opened event

PERF SAMPLE CPU CPU number

PERF SAMPLE PERIOD Latest sampling period

PERF SAMPLE IDENTIFIER Placing SAMPLE IP in a fixed location in raw data

Table 1.3: List of Sampling Options

If we specify more events than there are actual hardware counters, the kernel uses a
time-based multiplexing method to give each hardware event a chance to access to the
hardware counters.

$ perf stat -e branches:u,branches:u,branches:u,branches:u,branches:u ./test

Performance counter stats for ’./test’:

9,693,894 branches:u (75.31%)

10,634,778 branches:u (82.51%)

10,159,684 branches:u (83.45%)

9,679,721 branches:u (83.67%)

9,868,784 branches:u (75.21%)

0.038256859 seconds time elapsed

It is important to understand that in multiplexing mode, an event is not measured all
the time as the hardware counters are shared among all of the monitored events. Hence,
at the end of the execution of the program, Perf tool scales up the results based on the
total time running and total time enabled values that can be accessed through the
perf event file descriptor. Formula 1.5 will be used to calculate the total number of
events in the final report.

estimated count = raw count× total time enabled
total time running (1.2)
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As an example, let’s assume that our CPU has N physical hardware counters and we
want to measure M hardware events in which M > N . Since the number of hardware
events that we need to count is more that the number of the available hardware counters,
the PMU will share the hardware counters among the requested events in a round-robin
fashion to give every event a chance to be measured on a real hardware counter. Also, for
each hardware event the kernel stores the total time that the event is acutually measured
on the hardware counters as well as the total number of events count. At the end of the
measurement, the kernel uses the Formula 1.5 to compute the total event count estimation
for each measured event. If we do not consider the hardware counter switching overhead,

then
total time enabled
total time running will be equal to the

M
N .

In a situation in which an event did not get a chance to access the hardware counter
total time running will be equal to zero and the Perf reports “not counted” in the out-
put for that particular event. These two values will be provided in user-space upon a
read on the perf event file descriptor if perf event attr.read format is configured with
PERF FORMAT TOTAL TIME ENABLED and PERF FORMAT TOTAL TIME RUNNING at the time of
creating the event using perf event open system call.

It is always good to know the maximum number of hardware performance counters
available on the CPU to prevent subsequent scaling and inaccurate results. The number
of hardware performance counters in the common processors is provided in the Table 1.4.

So far, we briefly explained the Perf subcommands that we need to know for conducting
the HPC-based measurements. In the rest of this section, we will evaluate the accuracy
of the Perf tool by performing a set of measurement based comparisons in both Counting
and Sampling modes on different architectures [2, 3, 10, 11].

1.6 Evaluation Methods

In order to evaluate the accuracy of the Perf results in this section, we first explore al-
ternatives to hardware performance counters. Next, we conduct a series of experiments
to compare and contrast the results of Perf with other methods in order to better assess
accuracy.

To evaluate the accuracy of a given tool, it is necessary to find other methods that are,
comparatively speaking, reliable. Accordingly, we use the following three methods:

• Event count estimation using static program analysis (mathematical model)
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Processor Hardware Counters

Intel Pentium 4 18

Intel Nahelem 11

Intel IvyBridge 11

Intel SandyBridge 11

Intel Atom 7

Intel Core 2 Duo 5

Intel Pentium III 5

intel Pentium Mobile 2

AMD Athlon 4

AMD G-Series 4

ARM Cortex-R4 3

ARM Cortex-A5 2

ARM Cortex-A8 4

ARM Cortex-A9 6

ARM Cortex-A53 6

POWER4 8

SPARC 2

MIPS 1004K 2

MIPS 74K 4

PowerPC 4

Table 1.4: Number of hardware counters on different CPUs

• Binary instrumentation methods

• Hardware traces

In the following three sections, we briefly explain these methods and the preferred tools
for performing the measurements.

1.6.1 Event Count Estimation using Static Analysis

In this method, we count the total number of occurrence of each event without actually
running the program; instead, we estimate the event counts based on the information
that we obtain from the program source code. The limitations of this method make it
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near impossible to model the occurrence pattern of some low-level events such as CPU L1
cache misses, TLB cache misses or even CPU cycles as we need to model the entire CPU
components.

We use this method to model the retired instructions and taken branches events as they
are easily modeled mathematically. It is important to note that, in this method, we do not
make any measurements; instead, we only count the number of instructions and branches
based on our assumptions about CPU concepts and their operations. Also, for counting
the retired instructions events, we need to analyze the source code of the C program in
assembly level.

Providing “-S” flag in GCC compilation command will generate a file that contains the
generated assembly code of instructions for a given C source code.

$ gcc my_program.c -O0 -S

To better understand the program execution flow at the assembly level from the be-
ginning of a program ( start entry function) execution to the end (exit function), we
can use the objdump Linux tool. The objdump tool disassembles the executable files and
extracts the actual instructions that will be executed from the beginning of the program
to the end. In the following example, the -d flag is used for extracting the contents of the
executable sections.

$ objdump -d ./program

We use a simple microbenchmark program to analyze the accuracy of Perf in counting
the number of retired instructions and taken branches in a user level by employing the
following mathematical method as a baseline.

1 #inc lude <s t d l i b . h>
2

3 #d e f i n e MILLION 1000000
4 #d e f i n e KILO 1000
5

6 i n t main ( i n t argc , char ∗∗ argv ) {
7 i n t loop count = argc > 1 ? s t r t o u l ( argv [ 1 ] , NULL, 0) : 1 ;
8 i n t c o e f = argc > 2 ? ( ( argv [ 2 ] [ 0 ] == ’m’ ) ? MILLION : ( ( argv [ 2 ] [ 0 ] == ’ k ’

) ? KILO : 1) ) : 1 ;
9 i n t long i t e r a t i o n s = c o e f ∗ l oop count ;

10 f o r ( long i = 0 ; i < i t e r a t i o n s ; i++){
11 asm ( ”NOP” ) ; //no opera t i on
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12 }
13 }

Snippet 1.2: noploop Micro benchmark program

The noploop program takes two optional parameters. The first parameter indicates
the number of loop iterations and the second parameters will multiply loop iteration by
106 (million) in case of providing m or 103 (kilo) in case of k.

In the noploop program, we expect to have one taken branch per each loop iteration.
Also, breaking down the code to the assembly level can tell us how many retired instructions
should be executed on each iteration of the loop. For counting the number of cycles
consumed on each loop iteration, we will use other low-level methods such as hardware
traces.

The Snippet 1.3 shows the basic block of the main loop of the noploop microbenchmark
program (x86-64 machine code).

1 . L5 :
2 NOP
3 addq $1 , −8(%rbp )
4 . L4 :
5 movq −8(%rbp ) , %rax
6 cmpq −24(%rbp ) , %rax
7 j l . L5

Snippet 1.3: noploop Basic block instructions

Therefore, on each iteration of the loop basic block, five instructions must be executed
on the machines that use x86-64 Instruction Set Architecture (ISA). This number varies
among the different machines as they might use different ISAs. It is important to note
that the Perf tool counts all retired instructions and taken branches that occur during
the complete execution of the program. Since we are only interested in counting the
events that occur during the execution of the loop basic block, the Perf’s results will be
subject to an overcount (because of counting unrelated events) when we compare it to the
computed values that we obtained from the static analysis method. To eliminate the effect
of overcounting, we first count the number of instructions and branches that are captured
from the empty C program. Next we subtract the total event counts from the results
captured from the original noploop program.
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1.6.2 Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI) is a technique that injects instrumentation codes
into the binary executable files to collect the desired information from the program at the
run time. The level of binary instrumentation has a significant impact on the overhead
imposed by the DBI tool. For example, if we want to count the number of executed
instructions using a DBI method, we need to instrument every single instruction of the
program that results in enormous overhead. However, in our case, we should not be worried
about the overhead induced by the instrumentation as we only need to use a DBI tool verify
the results the Linux Perf.

We select Pin, a dynamic binary instrumentation framework from Intel, that supports
Linux, Windows, and Android operating systems, as our DBI tool. The only limitation that
we have in using the Pin is that we need to limit our experiments to the x86-64 and IA-32
platforms. However, it gives us a freedom to select the real benchmark programs instead of
using microbenchmarks for conducting the instruction counts experiments (This option was
not available in a model-based analysis). Also, since DBI tools such as Pin only instrument
user-space programs, we would not be able to count the instructions that are executed in
the kernel space. For instance, if our program invokes a system call, the execution of the
program will be switched to the kernel space that results in not counting the instructions
that are executed in the kernel space. Therefore, to prevent any measurement error, we use
“:u” modifier to force the perf event to only measure events that occur in the user-space.

To perform a DBI-based measurement on our microbenchmark program, we use the
available icount and jumpmix Pin tools that are reside in the source/tools/SimpleExamples
directory. In Section 1.7.2, we evaluate the determinism of Perf’s results in counting the
number of taken branches and retired instructions events by employing the results of Pin
as a reference.

1.6.3 Hardware Traces

Hardware traces are relatively new technology that enable the capturing of hardware events
in real-time with zero overhead. Having no overhead makes it a fascinating tool for conduct-
ing a measurement-based performance analysis. Hardware trace is also a good approach for
those who need to analyze the behavior of their hard real-time programs in which missing
a deadline causes a total system failure. Most of the time, the performance measurement
in real-time environments needs a level of granularity that is often not provided by the
traditional debugging and profiling tools. Hardware traces are the best solution for a situ-
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ation in which a real-time program missed a deadline because of a subtle performance bug
that cannot be easily identified by using the traditional debugging methods.

Hardware traces on ARM microprocessors are provided with the aid of CoreSight ar-
chitecture. CoreSight architecture provides a real-time, on-chip, tracing and debugging
solution with respect to the following specifications [1].

• Supporting on-chip trace debug

• Tracing and debugging multi-core system

• Compatibility of the components from different vendors

• High bandwidth trace collection from multiple sources

• Non-intrusive access to the tracing and debugging components

• Attaching to the running target without performing any software or hardware reset

• Supporting embedded (internal) and external trace buffers

• Controlling access to the debug and trace functionality in the hardware level

• Capturing the trace for a large period and storing them on the external trace buffers

The ARM CoreSight Trace Macrocell offers the following solutions for a non-intrusive
program tracing across a System-On-Chip (SoC).

• PTM: PTM provides a real-time and cycle accurate instruction level traces from the
Cortex-A9 processor with zero overhead.

• Embedded Trace Macrocell (ETM): ETM is a non-intrusive and cycle accurate pro-
gram and data access traces.

• Instrumentation Trace Macrocell (ITM): ITM provides a high-level view through the
instrumentation in contrast to ETM and PTM trace sources that only provide a low-
level trace view. ITM trace source is only available on ARM Cortex-M processors.
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Figure 1.5: Ashling Vitra-XD setup

We use Xilinx Zynq-7000 All Programmable SoC[16] that integrates a Dual core ARM
Cortex-A9 processing system with an on-chip FPGA as our target development board. We
have made some modifications to the both software (FPGA) and hardware to bring out
the PTM traces from the processing cores. Figures 1.5, 1.6 show the hardware experiment
setup for the Ashling Vitra-XD and the ARM DSTREAM trace probes.

We use the ARM DSTREAM and the Ashling Vitra-XD trace probes that are specifi-
cally designed to capture the hardware traces from the ARM processors. Both of them are
capable of working with ETM and PTM trace modules on ARM processors. PTM gener-
ates the instruction traces based on the Program Flow Trace (PFT) architecture. Also, it
only generates the trace at certain points of the program execution flow, called waypoints,
that includes branches, exceptions and processor state change events to reduce the size of
the trace and prevent FIFO overflow. Trace tools use waypoints in conjunction with a copy
of the compiled program (with the debug information) to reconstruct the full execution
flow of the program. Also, PTM can be configured in a way to report the cycles count
between the two waypoints as well as the timestamp of each trace data. Figure 1.7 shows
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Figure 1.6: ARM DSTREAM setup

the raw trace format captured from the Ashling Vitra-XD trace probe that is extended by
the CPU core ID and the high-resolution timestamp 3

Figure 1.7: PTM Raw Trace Record Format

3This output format is not a standard output format for the PTM trace. The standard format only
contains Port Data field.
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The PTM raw trace data consists of the PTM packets that are represented on the
records. The length of the packets is not fixed and depends on the type of the packet. The
header of each packet starts with a special value of the Port Data field. Based on the type
of the packet and what is included in the packet, the size of the payload will be calculated.
We have eleven types of the packets in total that are defined in the PFT architecture that
are assembled in the PTM raw trace. Table 1.5 shows a list of the PFT packets and a
short description of each one.

Packet Type Header Format Category Discription

Atom 0b1xxxxxx0 Instruction
Information about taken or not taken branch
in the waypoint (and cycle count if enabled)

I-sync 0b00001000 Sync.
Generated to help the trace reconstructor to
synchronize the instruction address, Context
ID and security state

A-sync 0b00000000 Sync.
Generated when PTM is enabled or repro-

grammed (Alignment Sync.)

Waypoint Update 0b01110010 Instruction
PTM generates waypoint packet when a non-
deterministic branch instruction executed

Branch Address 0bCxxxxxx1 Instruction
Indicating a change in the program flow and
the new IP address

Trigger 0b00001100 Misc. Reporting an important PTM hardware events

Context ID 0b01101110 Instruction
Generated when the context ID register is
changed (context switch)

VMID 0b00111100 Instruction Reported when Virtual Machine ID is changed
(if the processor has Virtualization Extensions)

Timestamp 0b01000x10 Sync.
Provides processor core specific timestamp on
a multi-core environment

Exception return 0b01110110 Instruction
Indicates that the processor returns from an
execption handler

Ignore 0b01100110 Misc. It has no effect and is only inserted when there
are no sufficient trace to fill the data trace port

Table 1.5: PFT Packets Format

As we mentioned earlier in Section 1.1, ARM tried to overcome poor software visibility
of the hardware traces by including the value of the “Context ID” register in the Context
ID packet of the PTM trace. On ARM machines, c13 or Context ID register is one of the
system control coprocessor registers that keeps the Address Space Identifier (ASID)4 and
the current process ID. On the Linux operating system, we must compile the kernel with the

4ARM based processors use ASID in the TLB cache to prevent a TLB flush after each context switch
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CONFIG PID IN CONTEXTIDR=y option to force the kernel to write the PID of the executing
process into the Context ID register. Although process trace filtering is made possible using
the Context ID packet in a raw trace data, we still cannot differentiate between the traces
that are generated from the different threads that are living in a process. The current
version of the ARM DS-5 development studio does not support process trace filtering in
the hardware level. However, Ashling provides a hardware level solution to allow the users
to only capture the hardware traces of a specific process on the Linux operating system
(Context ID filtering is implemented in the hardware).

In this work, we take the advantage of the cycle accuracy of the PTM trace to verify
the results of the Linux Perf tool in counting the number of CPU cycle events. Figure 1.8
shows the total number of cycles that are consumed between the two waypoints that is
equal to the total number of cycles in each iteration of the main loop.

Figure 1.8: Main loop cycles count using PTM trace on ARM DS-5 development tools

In the next section, we will verify the results of the Linux Perf tool in counting hardware
events such as CPU cycles, retired instructions, and taken branches by conducting a set
of measurement-based experiments. For each event, we employ one or more measurement
methods as the baseline.

1.7 Evaluation

This section is dedicated to evaluating the Linux Perf tool based on its accuracy, deter-
minism and overhead. All the experiments have been performed on the Datamill open
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source benchmarking infrastructure to provide the most accurate results [9]. The software
configuration of the machines that we used in our experiments are listed in Table 1.6.

Architecture Linux Version Compiler Perf Version
x86 64 3.18.11-gentoo GCC 4.8.4 3.12
i686 3.18.11-gentoo GCC 4.8.4 3.12

armv7l 3.15.0-rc8 GCC 4.8.3 3.12

Table 1.6: Datamill Machines Configuration

1.7.1 Determinism

The ideal hardware performance counter in counting mode should provide a run-to-run
consistent results. However, our experiments reveals that the Linux Perf tool in counting
mode has failed to provide such deterministic results across most of the tested machines.
We ran the following “perf stat” command ten times and calculated the Median and
Mean Absolute Deviation (MAD).

perf stat -e <event name>:u ./noploop 10 m

We use taken branch and instruction events in conjunction with the :u modifier to only
count the user-space events. The experiment results are shown in Table 1.8.

Taken Branches Retired Instructions

Machine Median MAD Median MAD

AMD G-T56N 10,018,237 0.48 50,092,625 0.88

Intel Atom 10,018,750 0.72 50,094,353 0.42

Intel Core i5-2500 10,018,717 0.54 50,093,050 0.88

Intel Core i5-4300U 10,018,508 0.54 50,093,570 0.32

Intel Pentium 4 10,019,198 0 50,094,831 3082.56

Intel Pentium M 10,018,365 2.84 50,094,741 0.84

Intel Xeon 10,018,469 2.84 50,093,424 2.30

Table 1.8: Perf Determinism in Counting Mode
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The only event count that we found deterministic is the Taken Branch event on Intel
Pentium 4 CPU. However, on the same machine the Retired Instruction event suffers a
significant deviation in counting results.

Indeterministic results are not limited to the Linux Perf and the underlying perf event
sub-system as Vincent M. Weaver et al. reported the same results on Perfmon2 [41].
Therefore, we can conclude that the root cause of the indeterministic results is the under-
lying processor PMU that needs to be redesigned.

1.7.2 Accuracy

To evaluate the accuracy of the Perf’s results on x86 64 and i686 architectures, we use the
results from the Pin as a baseline. However, on ARM machines, we need to employ other
approaches due to the ARM’s PMU limitations in counting the user-space hardware events.
Hence, on armv7l machines we evaluate the results of Perf against the estimated value that
we will compute using the mathematical models. Also, we use the PTM hardware traces
to calculate an estimation of the total CPU cycles count.

Tables 1.10 and 2.4 show the results of the experiments which are performed on seven
x86 64 and i686 machines that are running on the Datamill. We use noploop as a mi-
crobenchmark program and the Coremark as a real benchmark for this experiment.

Taken Branches Retired Instructions

Machine Perf Pin Diff. Perf Pin Diff.

AMD G-T56N 10,018,257 10,018,213 -44 50,092,692 50,095,305 2,613

Intel Atom 10,018,769 10,018,728 -41 50,094,420 50,097,036 2,616

Intel Core i5-2500 10,018,738 10,018,696 -42 50,093,117 50,095,734 2,617

Intel Core i5-4300U 10,018,527 10,018,488 -39 50,093,638 50,096,255 2,617

Intel Pentium 4 10,019,198 10,018,570 -628 50,127,682 50,094,831 -32,851

Intel Pentium M 10,018,365 10,018,225 -140 50,094,232 50,094,739 507

Intel Xeon 10,018,482 10,018,444 -38 50,093,481 50,096,099 2,618

Table 1.10: Perf vs. Pin - noploop Microbenchmark

The results from Tables 1.10 and 2.4 indicate a quite small difference between the
results of Pin and Perf (in counting mode) with the exception of Intel Pentium 4. On the
Intel Pentium 4 machine we observe an average error of 3% and 47% when counting the
taken branches and retired instructions events, respectively.
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Taken Branches Retired Instructions

Machine Perf Pin Diff. Perf Pin Diff.

AMD G-T56N 770,861,452 770,861,330 -122 3,575,229,680 3,575,238,830 9,150

Intel Atom 770,861,970 770,861,846 -124 3,575,231,447 3,575,240,536 9,089

Intel Core i5-2500 770,861,969 770,861,764 -205 3,575,232,943 3,575,241,116 8,173

Intel Core i5-4300U 770,861,684 770,861,475 -209 3,575,230,882 3,575,239,088 8,206

Intel Pentium 4 747,147,835 762,483,700 15,335,865 5,368,338,190 3,518,532,826 -1,849,805,364

Intel Pentium M 765,904,479 765,903,761 -718 3,571,158,690 3,571,160,844 2,154

Intel Xeon 770,861,551 770,861,348 -203 3,575,230,446 3,575,238,631 8,185

Table 1.12: Perf vs. Pin - Coremark Benchmark

We have selected the Zynq-7000 platform which uses the ARM Cortex-A9 processor
to evaluate the reliability and accuracy of the Linux Perf tool and the underlying PMU
of the ARM processor. We employed the static program analysis method by providing a
mathematical model to estimate the total number of taken branches and retired instructions
events. Also, we used the PTM hardware trace to evaluate cycles event count. As we
mentioned earlier in Section 1.5, since the ARM processor is not able to distinguish between
the kernel and user events, we use two microbenchmark programs, namely noploop and
noloop, for estimating the total number of events generated in the mail loop. Hence, to
count the number of events that occurred in the for loop, we only need to subtract the
hardware event counts from the two microbenchmarks. Table 1.13 shows the results of
the experiment we ran on the Zynq-7000 development board. The expected value for each
event is calculated based on the information we have extracted from the instruction level
source code analysis, hardware traces and the mathematical model of the main for loop.

Event Name noploop Count noloop Count Diff. Estimation Percent Error

Retired Instruction 80,752,482 517,459 80,235,023 80,000,000 0.29%

Taken Branches 10,075,123 49,578 10,025,545 10,000,000 0.25%

Cycles 81,849,214 1,506,682 80,342,532 80,000,000 0.42%

Table 1.13: Perf’s Accuracy Evaluation on ARM Cortex-A9

Another source of measurement error that we could not eliminate is the context switch(es)
that may occur during the execution of the for loop basic block of the noploop program.
Therefore, the actual error might be less than the number we included in Table 1.13. De-
spite the measurement error that we could not eliminate from our experiment, the Perf’s
event counts result is quite close to our estimation.
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As previously stated, the total number of events reported by the perf record is not as
accurate as the counting mode (perf stat). However, our experiments show that in long
running programs (∼400 billion instructions) the relative error is small enough that the
accuracy of the reported number of the events is no concern. The results of the execution of
the Coremark benchmark program using the perf record sub-command with the default
options are shown in Figure 1.9. We use the results of the Perf in counting mode as a
baseline for comparision (The relative error is multiplied by 10,000).
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Figure 1.9: Accuracy of Perf in sampling mode (default settings)

There is a trade-off between the sampling granularity and the total counted events.
Therefore, a special care must be taken when one changes the sampling frequency or the
sampling period of the perf record for achieving a better granularity. In Equation 1.3 we
summarize the asymptotic relations between the factors in sampling mode.
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Granularity ∼ Sampling Frequency ∼ Error ∼ Overhead

∼ 1

Sampling Period

(1.3)

Since we did not provide any parameter for the perf record program, it uses the
default sampling rate which is hard-coded to the 4,000 Hz. Put differently, the kernel
(perf event) automatically adjusts the sampling period to record 4,000 samples per sec-
ond. We can change the sampling rate on the perf record by providing “-F” or “--freq”
arguments. Also, “-c” or “--count” arguments can force the kernel to use a fixed sam-
pling period. The Figure 1.10 shows the effect of changing the sampling frequency on the
sampling period and the total number of captured samples.
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Figure 1.10: Effect of sampling frequency on sampling period
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1.7.3 Overhead

Overhead is one of the most important factors to consider when selecting a method for
executing measurement-based performance analysis. The hardware performance counter
method is classified as a low-overhead approach since the performance-sensitive aspects are
already implemented in the hardware. We could not observe significant overhead in running
the Perf in counting mode as it only executes start|stop|read instructions for counting the
total number of the events. However, in the sampling mode both perf event in the kernel
space and the Perf tool in user-space add a run-time overhead to the sample-based profiling
system. In sampling mode, the PMU periodically interrupts the kernel to record a new
sample, and, on the other hand, the perf event occasionally wakes up the Perf tool to save
the samples that are stored in the ring-buffer. In Figure 1.11 we visualize the overhead
of the perf record for Cycles, Instructions and Branches hardware events on different
machines.
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34



Our experiment shows 5.92% relative overhead on the Intel Pentium 4 machine. An-
other observation that we can extract from this experiment is that the type of hardware
event does not have a significant impact on the overall run-time overhead. This correlation
can be explained by looking at the relatively equivalent number of taken samples for each
hardware event that are only affected by the sampling rate (not the hardware event type).
Therefore, we designed another experiment to find the impact factor of sampling frequency
on the overhead. The results of the experiment are visualized in Figure 1.12.
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Figure 1.12: Effect of Sampling Rate on Overhead

Figure 1.12 shows 9.8% error in average at the frequency of 12 KHz in Intel Pentium
4 machine. However, on the same machine, at the frequency sampling of 4 KHz, or the
default sampling rate of the perf record, we observe 2.5% relative error. In conclusion,
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our results show that the overall overhead does not increase significantly with an increase
in sampling frequency (except Intel Pentium 4 ).

1.8 Lessons Learned

Access to the perf event sub-system is provided through the perf event open system call
that enables users to interact directly with the hardware performance counter. However,
during our experiments, we realized that the implementation in which we interact with
the perf event sub-system has a significant impact on the accuracy and the overhead of
the measurement. In counting mode, we are limited to a start|stop|read model that is
associated with an negligible over-counting. In contrast, we have many tunable options
and implementation models in the sampling mode. As we discussed in Section 1.4.2, the
wakeup notification handling that indicates that the ring buffer is ready to be written by
the program is one of the main sources of the overhead. We find that the polling method
(over wakeup signal) that is used by the Linux Perf tool has much better performance over
the signal handling method.

Hardware trace is an amazing technology that enables us to record a complete history
of the program’s execution. There are many challenges in working with this technology
that limit its application to certain industry level projects. However, we introduced this
technology to the academy as a unique tool for performance debugging and analysis. We
began with the DS-5 debugger and ARM DSTREAM high-performance trace unit that
were equipped with a 4 Gigabyte trace buffer. Considering the high-speed of ETM/PTM
trace generation that is almost equal to the speed of the processor, we only could capture
and store a few seconds of a program execution in the limited trace buffer. In addition
to this limitation, the ARM DSTREAM trace probe did not provide a hardware level
trace filtering in the Linux kernel debugging mode to only capture the ETM/PTM traces
of the desired process. Therefore, we needed to take an extra post-processing step to
filter out the unwanted traces of other processes that were running on the system at the
time of capturing the hardware traces. Trace reconstruction was another challenge we
faced while working with the hardware traces. Since the PTM raw trace format that
we described in Section 1.6.3 is not in a an intellegible format, we need to perform a
reconstruction procedure by matching the trace packets against the program executable
file and the program source code. Unfortunately, the current sequential implementation of
the raw trace reconstruction algorithm makes this process quite slow. For instance, in the
ARM DS-5 debugger, downloading and re-constructing the PTM traces take about twelve
hours for each Gigabyte of the hardware raw traces that are stored in the DSTREAM
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internal buffer. We also have experience working with the Ashling Vitra-XD trace probe
that uses Sourcery Code Bench as the frontend software. The Ashling Vitra-XD trace probe
solves the trace buffer size limitation by employing a 500 GB trace buffer that enables one
to capture up to three hours of continuous hardware traces. Also, in the Ashling solution,
a process-based trace filtering is implemented in the hardware. This feature not only
removes the burden of an extra post-processing step, but also safeguards the internal trace
buffer from irrelevant process traces. The trace reconstruction on the Sourcery Code Bench
software is also a tedious process that makes downloading the entire reconstructed trace
to the host machine impractical. In the most recent version of the Ashling plugin for the
Sourcery Code Bench platform, the designers have added a new feature that enables one
to transfer the entire un-reconstructed data to the host machine. This add-on opens the
door for future research and the possible applications of these valuable traces.
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Chapter 2

Linux Kernel Binning Effect

2.1 Definition

“Binning” or “Bucketing” have different meanings in various contexts. In general, “Bin-
ning” is the act of placing items such as data into a fixed or variable set of containers called
“Bins” or “Buckets”. In computer software, we use this concept as a means of grouping
data of the same structure. For example, in many filesystems the main memory is virtually
divided into a fixed-sized (usually 4KB) blocks called memory page. Deviding memory into
the fixed-size blocks helps the operating system to improve the performance by reducing
the number of access requests to the memory and making the memory management more
efficient. Despite the fact that binning enhances the throughput of the system by grouping
relevant data into a set of buckets, sometimes it can have an adverse effect on the timing
aspect of the individual sub-systems. In the rest of our thesis, we refer to Binning (in
the Linux kernel) as a phenomenon in which the threshold of a particular bin (bucket) is
reached that forces the kernel to take an appropriate action in response to that event that
usually causes timing variability in the system.

2.2 Introduction

The Linux operating system understands binning in various levels such as hardware ab-
straction, resource management, and drivers. The concept of binning in Linux resource
management components can be applied to the both time and memory resources. As an
example of the time bins in the Linux kernel, we can refer to the scheduler time-slice known
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as the Linux quantum that has a significant impact on the execution time of the programs.
The Linux scheduler uses the timeslice to switch continuously between tasks and give every
running program a chance to access the CPU. The time binning takes place in the kernel
when the scheduler reclaims the CPU from a running process that already consumed its
time slice.

Our focus in this work is on memory binning that always happens across the Linux
kernel as it uses various types of bins for delivering the best throughput. A data buffer
is one example of a construct that exhibits binning. A buffer can fill up with relatively
little performance impact until a threshold is reached; at that point, and addition memory
must be allocated. These “buckets” in the kernel include the following: buffers, stacks,
queues, linked lists, and arrays. All of these buckets experience reallocation or resizing in
the kernel. These buckets and data structures are heavily used in the kernel for a variety
of different tasks, such as the task list data structure that keeps the state of the running
processes on the system.

In our research, we specifically investigate the impact of memory binnig on the execution
time of Linux system calls that is imposed by the Slab Allocation memory management
technique.

2.3 Slab Allocation

Linux kernel components and drivers frequently need to allocate memory for storing tem-
porary objects such as inode, task struct and files struct. These small, fixed size
objects are allocated and freed many times during the kernel’s life cycle. In earlier imple-
mentations of the Linux kernel, it satisfied the requests for allocating and releasing these
small objects through the kmalloc and kfree kernel functions that were initially optimized
for the large physical memory allocations. Therefore, for the small, temporary objects that
are often required by the kernel and drivers, the regular kmalloc and kfree allocation rou-
tines were inefficient, leaving the individual kernel drivers and modules to optimize their
memory usage by themselves. One proposed solution was to create a global object cache
in the kernel to isolate access to low-level page allocation and manage the kernel objects’
allocation on behalf of the kernel components and drivers. In this method, each kernel
component can create a private cache of a particular object type (C struct) and should
make a request to the cache allocator for allocating the objects of the specified type. The
cache allocator works in close collaboration with the memory management sub-system to
preserve a balance between the needs for the memory of each driver or module and the
system as a whole [19].
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The Slab allocation is a memory management technique that is introduced in the Solaris
5.4 kernel [20]. Later on, other Unix and Unix-like operating systems such as Linux and
FreeBSD integrated this technique into their kernel. The primary intention of using the
slab allocation technique was to efficiently manage the allocation of the kernel objects
and prevent memory fragmentation caused by memory allocation and deallocation. The
kernel objects in this context mean the allocated and initialized objects of the same type
that are usually represented in the form of struct in C programming language. These
objects are only being used by the kernel core, modules, and drivers that run in the kernel
space. Therefore, the access to these objects from the user-space programs is not possible
unless the kernel provides an interface for accessing the content of these objects. For
example, Linux uses taskstat struct to provide an interface to the user-space programs
for accessing the relevant information of a running process (e.g., process ID, CPU time
and major/minor page faults). The kernel uses slab allocation techniques to retain the
allocated kernel objects of the same type upon subsequent requests of the same object.
This action not only prevents excessive memory allocation and deallocation request but
also avoids the overhead of initialization of each object. Sometimes in large and complex
structures the cost of initialization of an object is more than the cost of memory allocation
and deallocation, which significantly affects the performance of the kernel.

The following list is a partial list of the caches that are maintained by the kernel
on our Linux machine (kernel version: 4.2.5). This information is provided from the
/proc/slabinfo file (Reading needs a root access).

# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>

cifs_request 7 12 16512 1 8

cifs_inode_cache 0 0 736 22 4

inode_cache 12362 13888 568 28 4

dentry 68479 69132 192 21 1

iint_cache 0 0 72 56 1

buffer_head 84948 86112 104 39 1

vm_area_struct 48262 57178 184 22 1

mm_struct 1317 1512 896 36 8

kvm_async_pf 0 0 136 30 1

kvm_vcpu 0 0 16832 1 8

taskstats 144 144 328 24 2

task_struct 928 1089 3520 9 8

ext4_io_end 1456 1512 72 56 1

ext4_extent_status 16014 16014 40 102 1

jbd2_journal_handle 340 340 48 85 1
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In the Linux kernel there are three different implementations of the slab allocation
technique, namely SLAB, SLUB and SLOB. The Linux kernel can only use one of these
implementations at a time. Therefore, we need to re-compile the kernel if we wish to
change the slab allocator. In the next section, we explain the design philosophy of each
implementation and enumerate their advantages and disadvantages.

2.4 Linux Slab Allocators

The first appearance of Slab allocators in Linux kernels dates back to 1996 when the first
implementation of the slab allocation technique (Solaris type allocator) was added to the
Linux kernel. Prior to that date, Linux uses the standard K&R heap allocator. In fact, the
memory allocation for Linux kernel objects was equivalent to memory allocation for the
user-space programs. Since the performance of the slab allocator sub-system has a signifi-
cant effect on the overall performance of the kernel, developers continuously propose new
methods to ameliorate current implementations. Figure 2.1 is a timeline that summarizes
improvements to the Linux kernel slab allocator sub-system over the last two decades.
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Figure 2.1: Slab Allocators Development Timeline

41



2.4.1 Understanding Slab Allocators

To understand Linux kernel slab allocators, we need to define the following terms, which
appear frequently in the slab allocator source code.

• Cache: Cache is a group of the kernel objects of the same type. Cache is identified
by a name that is usually the same as the C structure name. The kernel uses a
doubly-linked list to link the created caches.

• Slab: slab is the contiguous chunk of memory is stored in one or more physical page(s)
of the main memory. Each cache has a number of slabs that store the actual kernel
objects of the same type.

• Kernel Object : The kernel object is the allocated and initialized instance of a C
struct. Each slab may contain some objects (depending on the size of the slab and
each object). A kernel object in the slab can be either “Active” or “Free.”

– Active: The object is being used by the kernel

– Free: The object is in the memory pool and ready to be used upon request.

The Linux kernel slab allocation sub-system provides a general interface for creating
and destroying a memory cache regardless of the type of slab allocator. These interfaces
are defined in the mm/slab common.c file.

• kmem cache create: kmem cache create enables us to create a new memory cache.
This function allows five parameters:

– name: A unique string as an identifier

– size: The size of the object that will be stored in the cache

– align: Object cache allignment

– flgas : SLAB flags

– constructor : The constructor function that will be called for initializing after
object allocation

kmem cache create returns an object of type kmem cache that contains all of the
parameters listed above and also a pointer to the first slab.

42



• kmem cache destroy : This function allows one to destroy a memory cache by provid-
ing the kmem cache object of the desired cache.

SLOB, SLAB and SLUB allocators provide two functions for allocating (taking from
cache) and freeing (putting back into the cache) a kernel object.

• kmem cache alloc: Allocate an object of a specific type from a cache (a cache for
that specific object must be created before allocation). This function accepts the
following parameters.

– Cache pointer

– Get Free Page (GFP) flags

• kmem cache free: Free an object and put it back in the cache.

– Cache pointer

– Object pointer : A pointer to the object that must be released.

Figure 2.2 shows a simplified workflow of the kernel object allocation through the slab
allocator and the indirect communication between the kernel module and the page allocator
sub-system.
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Figure 2.2: Slab Allocator Workflow

In Figure 2.3 the general memory layout of the slab allocators is illustrated. However,
the internal implementation of the slab allocators might be different. For instance, the
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SLOB allocator only uses a simple list for managing the free objects (K&R style) and only
emulates the SLAB memory layout to provide a unified interface.
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Figure 2.3: Slab Allocation Overview

As an example, let’s assume that a kernel component such as network needs to allocate
often and release an object of type request sock for handling socket connection requests.
Therefore, it makes a request to the slab allocator through the kmem cache create interface
to create a cache of type request sock struct so that it can satisfy subsequent memory
allocations (and releases) on behalf of the network component. Based on the size of the
struct, the slab allocator calculates the number of memory pages required for storing each
slab cache (power of 2) and the number of objects that can be stored on each slab. Then,
it returns a pointer of type kmem cache to the network component as a reference to the
created cache. At the time of creating a new cache, the slab allocator generates a number
of slabs and populates them with the allocated and initialized objects (free objects). When
the network component needs to create a new object of type request sock, it makes a
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request to the slab allocator through the kmem cache alloc function with the pointer (of
type kmem cache) to the cache. If the cache has a free object, it immediately returns the
object that we call fast path. However, if all objects within the cache slabs are already in
use (active), the slab allocator grows the cache by making a request to the Page Allocator
through alloc pages to get free pages. After receiving free pages from the page allocator,
the slab allocator creates a one or more slabs (in the free physical pages) and populates
them with the new allocated and initialized objects (slow path). On the other hand, at the
time of releasing the active object, the Linux network component calls kmem cache free

with the cache and object pointers as the parameters. The slab allocator marks the object
as free and keeps the object in the cache for the subsequent requests (fast path). The free
slow path will be taken if all the objects within a slab are free; the memory pages of that
particular slab will be eligible for return to the free list of the free physical pages that is
managed by the page allocator.

The Linux kernel also allows the kmalloc and kfree interfaces to retain compatibility
with former modules that only use these functions for memory allocations. However, they
no longer directly use the page allocator for memory allocations anymore. Instead, they are
integrated into the slab allocator sub-system by providing a set of fixed size generic caches
(kernel asks the slab allocator to create these generic caches on initialization). Moreover,
these functions can be used for the objects that do not use a fixed structure (e.g., integer
arrays, strings, etc.). These generic caches are displayed in /proc/slabinfo under the
name of kmalloc-<size> and kamlloc-dma-<size> for GFP NORMAL and GFP DMA memory
zones, respectively. The sizes of these caches vary from 8 to 8192 (8, 16, 32, 64..., 8192).
Hence, the kmalloc interface satisfies the request of the memory allocation by obtaining a
free object from a cache that fits the requested object size.

2.4.2 SLOB

SLOB(Simple List Of Blocks) is one of the slab allocators implementation that is created
based on the conventional K&R heap allocator (The original kmalloc allocator in Linux
before replacing it with Slab sub-system). It simply keeps track of the free objects in a
doubly-linked list. SLOB satisfies the request of allocating a new kernel object by traversing
the list of empty objects and finding the first block of sufficient size. In case of failure,
it makes a request to the page allocator to grow the heap size. The SLOB allocator only
emulates the SLAB layer insofar as it keeps everything in one list. The SLOB allocator also
suffers greatly from internal fragmentation as well as other conventional K&R allocators.
In 2008, SLOB sought to overcome this limitation by establishing a patch that replaced a
single list with three lists of different sizes: small, medium, and large. The small source
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code size of the SLOB in conjunction with the small memory footprint for managing the
objects make this slab allocator a good choice for the embedded devices that have memory
limitations.

name
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list

object
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freelist

page frame

Free object Free object Free

. . .

. . .

kmem_cache page struct next page

object

Figure 2.4: SLOB Memory Layout [32]

2.4.3 SLAB

SLAB is the name of the first slab allocator that was integrated into the Linux kernel. This
implementation was the default Linux kernel slab allocator before SLUB. Although SLAB
is well-known for its design philosophy and optimized CPU cache utilization, it wastes an
enormous amount of memory for storing queues in multi-levels. SLAB uses a technique
called cache coloring in which the initial offsets for the allocated objects within the slabs
are different [32]. Since the slabs begin on page boundaries, the chance of mapping the
slabs objects into the same CPU L1 cache is higher. Therefore, using this technique in the
SLAB implementation prevents the possibility of cache false sharing [44] in the CPU L1
cache. The basic idea of the slabs cache coloring is shown in Figure 2.5.

The SLAB implementation has a complex data structure for managing free objects
within the slab caches. It maintains per-CPU and per-node (NUMA node) queues to
accelerate access to free objects. In SMP systems, the per-CPU queue (array cache) that
is available in the kmem cache data structure provides a LIFO1 queue of the free objects
for each CPU. As an example, an object that is released on the “CPU 1” will be re-used
(if possible) on the same CPU rather than other CPUs. The per-CPU queue works in an

1Last In First Out
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Figure 2.5: Slab Cache Coloring

LIFO ordering because it uses the cache warmed free objects to make the best use of the
L1 CPU cache. Also, the per node data structure uses three lists of slabs (full, partial,
free) to maintain slabs through the page struct. In the SLAB implementation, the free
objects metadata (indices of the free objects) is stored at the beginning of each slab that
imposes per-slab memory overhead. In Figure 2.6 we describe a simplified memory layout
of the SLAB implementation.

When a kernel module asks for a free object from the cache, the SLAB allocator at-
tempts to return a free object (if it has one) from the per-CPU free list (fast path). If the
per-CPU free list runs out of the free objects, it makes a call to the cache alloc refill

function to re-fill the per-CPU queue with the fresh free objects from either the free list

or the partial list of the cache node (slow path 1 ). In the event that all free objects in
cache node were consumed, the SLAB allocator will be forced to allocate the new memory
pages using the page allocator, which proves more time-consuming (slow path 2 ).

2.4.4 SLUB

The SLUB is a Unqueued slab allocator that introduced in Linux kernel version 2.6.22
(in 2007) and became the default kernel slab allocator on many Linux distributions [13].
Although SLUB’s memory layout is fairly similar to SLAB, it has a completely differ-
ent philosophy with regard to implementing slab allocator techniques. In Figure 2.7 the
memory layout of the SLUB slab allocator is shown.

We summarize the difference between SLUB and SLAB slab allocators in the list below
[17, 31, 32].
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1. SLUB eliminates the need for per CPU and per node queues. Instead, it only retains
a per CPU pointer for the first free object on the page.

2. Unlike SLAB, SLUB uses partial slabs in a per-CPU structure to improve CPU
locality

3. SLUB fast path uses per-CPU data and this cpu operations[14] to eliminate the need
for disabling interrupts and taking mutex lock. (SLAB does not have this feature)

4. The per slab memory footprint is reduced in SLUB implementation due to the relo-
cation of freelist metadata into the free objects.

5. SLUB supports debugging and defragmentation on multiple levels.
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6. The cache aliasing feature in SLUB implementation reduces the memory overhead
up to 50% by only unifying the caches of the same size.

7. Unlike the SLAB allocator, SLUB does not use cache coloring technique. However,
SLUB reduces the cache line size to improve hardware cache performance.

2.4.5 Monitoring Slab Alocators

As we mentioned in Section 2.3, the /proc/slabinfo file provides the slab allocator statis-
tics at run time. However, a tool named slabinfo that can be compiled from the Linux
source code gives more information about the current status of the slab allocator (e.g.,
cache aliasing, fragmentation and debugging). These values are also available in the
/sys/kernel/slab directory. Moreover, for real-time monitoring of slab allocator statis-
tics, we can use a top-like tool called slabtop. The following shows a partial snapshot of
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the slabtop output.

Active / Total Objects (% used) : 422887 / 490308 (86.2%)

Active / Total Slabs (% used) : 15169 / 15169 (100.0%)

Active / Total Caches (% used) : 78 / 102 (76.5%)

Active / Total Size (% used) : 100944.82K / 126741.17K (79.6%)

Minimum / Average / Maximum Object : 0.01K / 0.26K / 16.44K

OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME

79488 75681 95% 0.06K 1242 64 4968K kmalloc-64

67342 65050 96% 0.18K 3061 22 12244K vm_area_struct

51891 38420 74% 0.19K 2471 21 9884K dentry

48468 20864 43% 0.57K 1731 28 27696K radix_tree_node

31926 30514 95% 0.08K 626 51 2504K anon_vma

28704 28352 98% 0.10K 736 39 2944K buffer_head

26248 25582 97% 0.12K 772 34 3088K kernfs_node_cache

If the kernel is compiled with the SLUB allocator, the slabinfo tool will also enable us
to modify the tunable options within each cache and report the status of available caches.

2.5 Binning Linux Slabs

In Section 2.2, we briefly explain the different forms of binning that can happen across the
Linux kernel. Since the slab allocator became the core component to interact with the main
memory for allocating small objects in the kernel, we decided to investigate the binning
effect of the slab allocator on the user-space programs that interact with the kernel through
the system calls. To be more precise, we perform some experiments on a wide range of
system calls to see which of them are subjected to the binning effect imposed by the slab
allocator. Therefore, we can conclude that user-space programs that a specific system call
are prone to greater execution time variability compared to programs that do not use that
system call. Figure 2.8 shows user-space programs interaction with slab allocators through
the Linux kernel system calls.

2.5.1 Experiments

We start our experiments with a simple test that calls the mmap system call 1000 times and
measures the execution time of each iteration of the system call. Since mmap only reserves
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Figure 2.8: Indirect interaction between user-space programs and slab allocator

the address from the process address space, we do not expect it to actually allocate any
page from the memory. However, for keeping track of the memory mappings, the kernel
stores an object of type vm area struct for each call to the mmap function. Kernel uses
the slab allocator to allocate free objects of type vm area struct. In this experiment, we
use two different calling patterns to the mmap system call to investigate the possible slab
allocator binning. In the first calling pattern, we make a call to the mmap system call 1000
times without using unmmap to delete the mapped address (Binning). On the other hand,
in the second program, to prevent the binning effect, we call unmmap after each mmap system
call to delete the mapping (from user-space) and return the VMA object (in the kernel) to
the object cache (No Binning). The results are shown in Figure 2.9.

The binning effect appears in the Binning program as we observe the execution time
outliers (marked by cross) that happen in exactly a fixed distance from each other after 93
calls to the mmap system call. The outliers we observe in this experiments occur every 60
calls to the mmap function. Since the Linux kernel of the machine that runs the experiment
is compiled with the SLAB, we need to examine the bin(s) that trigger the slow path in
that particular slab allocator. As we explained earlier in Section 2.4.3, the first slow path
can be taken when the per-CPU “freelist” runs out of free objects and the second slow
path must be taken when all the free objects in per node slabs are consumed. In this
case, the magic number 60 is equal to the batchcount tunable field of the array cache

per-CPU structure. Also, the value of the limit field of the same structure (that is also
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Figure 2.9: Bin Vs. Nobin

tunable) is equal to 120 that can explain why the first binning happens at the 94th call.
Therefore, we can conclude that the other 25 per-CPU free objects of type vm area struct

were consumed before the execution of the loop.

We also perform the same Binning and No Binning experiment on other system calls
that have an interface similar to mmap/munmap. For instance, open/close was one of
the candidates that we investigated by conducting an experiment on two programs with
different calling patterns to the open and close system calls. The results are shown in
Figure 2.10.

Surprisingly, in the No Binning program, we can still see the patterned outliers that
indicate the slab allocator footprint. By tracing the open and close system calls in kernel
source code, we discovered that the close system call does not synchronously clear the
memory footprint of the opened file. Instead, it only removes the link to the process file
descriptor table and postpones the call to the fput functions (which releases the kernel
object) by adding the task to the kernel workqueue through the schedule delayed work

function. Therefore, the call to the kmem cache free function for releasing the kernel
object is made in an asynchronous fashion that results in the slab allocator binning effect.
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Figure 2.10: Binning vs. No Binning - open system call

We also conduct a one-way ANOVA study on the results of mmap and open system call
to see whether or not the calling pattern has a significant effect on the execution time
variability or not. Therefore, we can write the null hypothesis as follows:

Null Hypothesis: There is no significant difference between the mean (mean of vari-
ations) of the two groups. (Binning and No Binning)

The ANOVA summary of mmap and open experiments are shown in Tables 2.1 and 2.2,
respectively.

Df Sum Sq Mean Sq F value Pr(>F)
Binning Effect 1 614.18 614.18 3.9302 0.08273
Residuals 8 1250.17 156.27

Table 2.1: mmap ANOVA Analysis

The ANOVA results from the open system call experiment indicate that we cannot
reject the null hypothesis at the level of significance 0.05. In other words, there is no
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Df Sum Sq Mean Sq F value Pr(>F)
Binning Effect 1 171108 171108 2684 2.135e-11
Residuals 8 510 64

Table 2.2: open ANOVA Analysis

significant difference between the “Binning” and “No Binning” groups. On the other
hand, in the mmap experiment, the p value of 2.135e-11 shows that call patterns significantly
impact execution time variation.

In the second part of our experiments on Linux kernel binning effect we study the bin-
ning effect of the slab allocator on more than 40 widely used system calls. Our approach
commences with a definitions of a new metric called slab metric that represents the inter-
action between a particular system call and the slab allocator. For example, by performing
static or dynamic analyses on the getpid system call, we can determine any calls to the
slab allocator interfaces. Therefore, we can assign a value of zero to the slab metric of
this function as the getpid function does not use the slab allocator for memory alloca-
tion. Then, we continue our experiments by conducting a dynamic and static analysis on
each system call to find the slab metric value for each approach. Finally, by running the
benchmark programs and measuring the execution time variation of each system call, we
examine the possible correlation between the slab metric and execution time variation.

For dynamic analysis of the system calls we write one benchmark program for each
system call that calls the method with the specified arguments. Also, we use ftrace Linux
function tracing tool to dynamically monitor the execution of these benchmark programs.
Since the slab allocator has only a few functions for allocating or releasing the kernel
objects, we only configured the ftrace tool to monitor the calls to the following slab allocator
functions.

• kmem cache alloc

• kmem cache free

• kmalloc

• kfree

The only limitation of this approach that is also applied to other dynamic analysis
techniques is that we could only analyze one execution path of the function (depends on the
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passed arguments). Therefore, our dynamic analysis results are limited to only one form of
calling the system call functions. Moreover, we do not consider the requests for allocating
temporary objects (memory) from the slab allocator in our slab metric assignment. As
an example, the open system call allocates a memory object of size PATH MAX (4094) to
temporary store the path of the requested file to open. However, it releases the object to
the cache after opening the file. The snippet below shows the calls to the slab allocator
interfaces from the open system call. The results are captured via ftrace function profiler.

kmem_cache_alloc: (getname_flags+0x37) bytes_req=4096 gfp_flags=GFP_KERNEL

kmem_cache_alloc: (get_empty_filp+0x5c) bytes_req=256 gfp_flags=GFP_KERNEL|GFP_ZERO

kmem_cache_free: (putname+0x5b)

Therefore, the number we assign as the dynamic slab metric for the open system call is
one (The first allocation is canceled out by the last call to free). The other factors that we
do not consider (for the sake of simplicity) in dynamic slab metric assignment are the size
of the requested object and the memory allocation GFP flags. In fact, these factors might
have a significant contribution to the execution time of the slow paths that eventually
could affect the total variation.

In static-based analysis approach we only use the source code of the Linux kernel for as-
signing a number to each Linux system call that represents the size of interaction with slab
allocator memory management sub-system. We achieve this by extracting the callgraph of
each system call function from the Linux source code using a call graph generation utility
for C and C++ named CodeViz[4]. In contrast, the static analysis approach provides a
more comprehensive view of possible execution paths by examining the complete source
code of the kernel. However, on disadvantage of this method emerges out of the fact that
the size of the callgraph grows exponentially by tracing the paths that never get executed
(e.g., debug enabled paths). Therefore, we pruned the call graph tree by removing paths
that never reach the slab allocator functions. We show a pruned callgraph of the mmap

system call obtained from the Linux kernel (version 3.12.12) in Figure 2.11.

The static approach to the slab metric assignment is not as easy as the dynamic ap-
proach since knowledge of possible execution paths that will eventually interact with the
slab allocator sub-system are unknown in the preliminary level of static analysis. We sim-
ply use the number of distinct paths to the slab allocator interfaces from the root symbol of
the system call tree. Therefore, our naive method in assigning the slab metric to each sys-
tem call might contain false positive error as we assumed an equal chance of taking all the
paths (reporting high slab metric while the system function does not interact with the slab
allocator). Moreover, since we could not generate the call graph for the function calls in
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the kernel that made by reference, our results are also subjected to the false negative (e.g.,
reporting slab metric of zero while the system call uses the slab allocator sub-system). In
conclusion, the slab metric in static approach is not as accurate as the dynamic approach.
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Figure 2.11: Pruned callgraph of Linux mmap system call

2.5.2 Microbenchmarks Program

To demonstrate the impact of binning that is imposed by the slab allocator, we draw in-
spiration from the Libmicro microbenchmarks architecture in our microbenchmark design.
However, we remove unnecessary process and thread synchronization functions to reduce
the factors that can affect the variation. Therefore, we implement a simplified version of
the Libmicro that runs only on a single process and a single thread. The snippet below
shows a pseudo code of the Libmicro-inspired structure of our microbenchmarks.

1 in i t benchmark ( )
2 FOR counter = 1 to 1000
3 s t a r t b a t c h ( )
4

5 s t a r t = rd t s c ( )
6 benchmark ( )
7 end = rdt s c ( )
8

9 t imes [ counter ] = end − s t a r t
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10

11 end batch ( )
12 ENDFOR
13 f in i sh benchmark ( )
14

15 pr in t t imes

Snippet 2.1: Benchmark program pseudo code

Since the accuracy of recording the elapsed time of executing each iteration of the
system call is a critical factor in our experiment, we selected hardware TSC as a counter
that could deliver the highest accurate result. The TSC is a 64-bit hardware register that is
available on all x86 processors. Due to known possible flaws in the TSC, we are encouraged
to first, select the user-space CPU governer and set a fixed frequency to prevent any CPU
frequency scaling (e.g., power-saving mode), and second, run the program on only one
CPU core as there is no guarantee that the TSC register of multiple CPU cores on a single
processor socket will be synchronized [7]. In order to read the value of the TSC register
with the lowest possible overhead, the x86 ISA offers rdtsc and rdtscp instructions.
The rdtscp instruction that is only available on the recent CPUs, prevents instruction
reordering (out-of-order execution) around the call to this instruction [15]. We use rdtscp

instruction in our implementation of the rdtsc function.

1 i n l i n e unsigned long long
2 rd t s c ( void )
3 {
4 unsigned long long r e t ;
5 asm v o l a t i l e ( ”RDTSCP” : ”=A” ( r e t ) ) ;
6 re turn r e t ;
7 }

Snippet 2.2: rdtsc function

The benchmark function is implemented individually for each target system call. Also,
the rdtsc and benchmark functions are defined as “inline” functions to avoid function call
overhead.

2.5.3 Testing Environment

Since in this experiment we are only interested in the effect of the slab allocator Linux
sub-system on the program execution time variation, we try to eliminate all other sources
(hardware or software) that may affect our experiment. On the hardware side, we have
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a number of elements (e.g., CPU cache and CPU frequency scaling) that can potentially
mask out our desired factor. However, on the software side, we are facing a variety of
factors such as process context switch, software or hardware interrupts and kernel locking
in the SMP environment. We use the Datamill benchmarking infrastructure to ensure that
our experiment will be run in a clean and controlled environment. Also, since the TSC
counter is only available on x86 machines, we are limited to running our experiment on
these machines. In preemptive kernels, the scheduler is permitted to perform the context
switch at any time, even in in the midst of executing a system call. Therefore, performing
a context switch during system call execution could result in outliers that are even greater
than the slab allocator slow path outliers by several orders of magnitude. In these special
cases, we removed the data points (outliers) affected by context switch from the final
results. To make this process automated, we count the total number(n) of context switch
that occurs during the execution of the program’s loop through the getrusage system call
and remove n maximums data points from the raw results.

2.5.4 Results

In this section we present the measurement results of our experiments and the slab metrics
we computed based on dynamic and static analysis approaches. Since the measured mean
of the execution times (system calls) is not equal, we also report the “RSD” or “Coefficient
of Variation (CV)” that shows the variability in relation to the mean of the population.
RSD can be calculated using the formula below.

RSD =
σ(standard deviation)

µ(mean)
(2.1)

The results are shown in the Table 2.5.4. The Static Metric and Dynamic Metric are
referred to the Slab Metrics that are calculated based on static and dynamic analyses,
respectively.

System Call Static Metric Dynamic Metric SD(cycles) RSD

accept 17 2 775.31 12.84

bind 8 3 5,401.91 14.34

brk 23 0 69.64 5.70

chdir 0 0 148.67 4.93

close 1 0 78.76 5.96
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System Call Static Metric Dynamic Metric SD(cycles) RSD

dup 6 0 190.37 28.96

getcwd 1 0 10.10 1.05

getpid 0 0 4.78 5.14

getrusage 1 0 12.63 0.96

getsockname 6 0 258.47 11.03

gettimeofday 0 0 11.49 6.68

listen 0 0 253.16 9.49

lseek 0 0 27.58 7.31

mkfifo 0 0 53.15 3.12

mknod 0 0 25.82 1.15

mlock 11 0 198.17 5.70

mmap 14 1 663.66 16.67

msgget 0 0 10.50 2.57

msgrcv 3 1 311.53 32.15

msgsnd 6 1 228.94 27.77

munlock 8 0 231.28 6.05

munmap 7 1 381.00 15.25

open 13 1 411.22 11.45

pipe 42 6 2,209.85 36.91

read 7 0 18.17 1.65

readv 11 0 10.40 0.96

realpath 0 0 14.75 1.35

rename 57 3 9,176.14 31.77

semctl 10 0 44.15 4.60

semget 0 1 483.35 25.62

semop 0 0 10.85 1.31

sethostname 0 0 7.75 0.87

setsocketopt 0 0 11.41 2.02

sigaction 0 0 11.72 2.07

signal 0 0 12.41 0.30

signalfd 8 3 751.09 38.43
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System Call Static Metric Dynamic Metric SD(cycles) RSD

sigprocmask 0 0 9.74 2.09

socket 18 5 1,733.03 42.42

unlink 30 1 754.17 4.16

write 7 0 13.36 2.44

Table 2.4: Slab Metrics vs. RSD

Also, Figure 2.12 shows the correlation plot of the slab metrics and the RSD. (The
dynamic and static metrics are scaled to 10)
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Figure 2.12: Slab Metric vs. Variability (Correlation)

The correlation coefficient (r) of linear regression for dynamic and static analysis are
0.784 and 0.431, respectively.
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Chapter 3

Conclusion and Future Work

3.1 Thesis Summary

The act of optimizing a software program to run as fast as possible on a given hardware is
not a trivial task. The primary step in tackling an optimization task is to carefully analyze
the performance of the program by conducting a set of measurement-based experiments.
However, recent architectural changes to software and hardware platforms such as NUMA
and SMP comlicates this this task. For instance, the TSC hardware counter, which can be
used to measure the execution cycles of the programs, is not synchronized among the CPU
cores. Consequently, incorrect results may arise when the program execution migrates
from one core to another. Therefore, selecting a suitable approach and tool for performing
software performance analysis is necessary.

In Chapter 1, we investigate a variety of measurement-based performance analysis
methods with emphasis on hardware performance counters that are widely used in both
industry and academy. We explain the methods of accessing hardware counters on different
architectures and broadly explore the functionality of the perf event as the only long-lived
PMU interface that is merged to the Linux kernel mainline. To evaluate the Linux Perf
tool in terms of accuracy, determinism and overhead, we conduct a set of experiments that
compare the Perf results with other methods such as dynamic binary instrumentation and
hardware traces. On the subject of determinism in counting mode, our experiments show
that the only hardware event count that is deterministic is “taken branch” on the “Intel
Pentium 4” machine. However, the same event on the same machine seems to have 47%
error in reporting the total number of counted events when we compared with the Pin
results. Regarding overhead, we observe up to 5.92% relative error on the Intel Pentium 4
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machine in running perf record with the default sampling options. Moreover, we realized
that the type of hardware event does not have any impact on the overhead as long as we
do not change the sampling rate. Finally, regardless of the inaccuracy and overhead that
we observed on the “Intel Pentium 4” that is related to the implementation of the PMU
in hardware level [43], we found the Linux Perf tool and its underlying perf event sub-
system an accurate, low-overhead and easy-to-use method for performing measurement-
based performance analysis.

In Chapter 2 we study the effect of memory binning caused by the slab allocator memory
management technique on execution time variability of the Linux system calls. We define
a metric for each system call based on the number of requests to the slab allocator and
try to find a correlation between the execution time variation of the system calls and the
computed metric. In our experiments, we attempted to eliminate other possible sources
of timing variation in Linux kernel by running the benchmark programs in a clean and
controlled environment in both software and hardware aspects. The results showed a
stronger correlation coefficient for slab metric that we obtained from the dynamic analysis
approach than the static method.

3.2 Future Work

Our study in Chapter 1 was limited to only three hardware events, named CPU cycles,
retired instructions and taken branches. However, in the modern processors, there are
many hardware events such as cache and memory related events that require investigation.
We would also like to explore the overhead and accuracy of the PMU and test the Linux
perf event interface on other architectures such as MIPS, ARM, and Power. Moreover, as
we mentioned in Section 1.8, the other applications of the hardware traces for conducting
performance analysis in hard real-time systems will remain for future works.

The basic idea of the binning effect in the Linux kernel that we partially explore in
Chapter 2 was a unique research topic that remains unexplored at present. As we point
out in Section 2.2, the Linux kernel uses a variety types of binning that could potentially
affect the timing behavior of the programs that are running on the system. In this thesis,
we only explore a particular kind of memory binning that is imposed by a sub-system of
the kernel memory management called the slab allocator. Also, during our exploration of
Linux standard libraries such as libc we found some functions (e.g., malloc and free) that
use a binning mechanism in calling the brk system call for growing and shrinking the heap
size. Therefore, the binning effect is not only limited to the kernel level, but also includes
the low-level libraries (i.e., malloc) that need to be further investigated in future studies.
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