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Abstract

Event history studies based on disease clinic data often face several complications.

Specifically, patients visit the clinic irregularly, and the intermittent inspection times de-

pend on the history of disease-related variables; this can cause event or failure times to be

dependently interval-censored. Furthermore, failure times could be truncated, treatment

assignment is non-randomized and can be confounded, and there are competing risks of the

failure time outcomes under study. I propose a class of inverse probability weights applied

to estimating functions so that the informative inspection scheme and confounded treat-

ment are appropriately dealt with. As a result, the distribution of failure time outcomes

can be consistently estimated. I consider parametric, non- and semi-parametric estima-

tion. Monotone smoothing techniques are employed in a two-stage estimation procedure

for the non- or semi-parametric estimation. Simulations for a variety of failure time models

are conducted for examining the finite sample performances of proposed estimators. This

research is initially motivated by the Psoriatic Arthritis (PsA) Toronto Cohort Study at

the Toronto Western Hospital and the proposed methodologies are applied to this cohort

study as an illustration.
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Chapter 1

INTRODUCTION

Studies based on disease clinic data often face several complications. Patients may visit

the clinic irregularly, and the intermittent inspection times may depend on disease-related

variables. Intermittent observation can cause failure time outcomes to be dependently

interval-censored, and failure times may also be left-truncated by clinic enrolment time.

Additionally, treatment assignments are frequently not randomized and even can be af-

fected by disease-related variables. In this thesis, a class of inverse probability weighted

estimating function approaches will be proposed to consistently estimate failure time dis-

tributions by adjusting for the informative observation and measured confounders. Sim-

ulation studies are conducted to empirically examine the finite sample performances of

proposed methods. Data from the Psoriatic Arthritis (PsA) Toronto Cohort Study is used

for illustration.

In this chapter, first we provide some background of the PsA cohort study, which main-

ly motivates this thesis research. Secondly, some basic concepts of survival analysis and

causal inference will be briefly introduced. Last but not least, problems and challenges
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arising from intermittent outcome-dependent observation, model marginalization, and col-

lapsibility of association measures will be addressed.

1.1 Motivating Example

In clinical, epidemiological and sociological research, longitudinal studies, which involve

repeated observations on subjects over long periods of time, constitute a primary source of

information on outcomes of interest. For example, researchers may be interested in quanti-

fying the association between air pollution and lung function, where air pollution might be

measured weekly and lung function of individuals is evaluated at periodic clinic visits. In

clinical experiments, variables of interest are usually measured at regular and prespecified

time points, e.g. in months, for lung function assessments. However, in practice, many

longitudinal studies are observational studies in which subjects may miss scheduled visits,

or may visit a clinic at arbitrary time points. In “regular” longitudinal studies, visit times

are prespecified and often common to every subject, so they do not carry any information

related to the outcome of interest. However, in “irregular” longitudinal studies, visit times

are often associated with the outcome or outcome-related variables. If we do not take

this into account in the analysis, estimates can be severely biased. We will discuss this

in detail in a subsequent section. At present, irregular longitudinal data based on inter-

mittent observation or dependent follow-up times are insufficiently studied, but they are

very common in practice, especially in health-related research. In the following, we will

see a real example in which participants are interviewed or evaluated in continuous time,

but the frequency and timing of visits vary greatly and may be highly associated with the

values of previous outcomes or outcome-related variables.
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1.1.1 Data on Psoriatic Arthritis

Psoriasis is a chronic immune-mediated inflammatory skin disease affecting approximately

2% of the general population (Langley et al., 2005). Additionally, about 10−30% of patients

with psoriasis have psoriatic arthritis (PsA), which is defined as seronegative inflammatory

musculoskeletal disease associated with psoriasis. Recent studies indicate that PsA is a

progressive disease, leading to considerable joint pain, inflammation and destruction which

can ultimately cause serious disability and poor quality of life (Chandran et al., 2010;

O’Keeffe et al., 2011). The etiology of PsA is multifactorial, with genetic, environmental,

and immunologic factors involved in its development (Gladman, 1998; Mease and Goffe,

2005).

The Toronto Psoriatic Arthritis Clinic was established by Professor Dafna Gladman

at the University of Toronto in 1978. Since October 1995, it has been at The Centre for

Prognosis Studies in the Rheumatic Diseases (CPSRD) at the Toronto Western Hospital.

During the past 35 years, the clinic has collected comprehensive longitudinal information

on the course and prognosis of PsA. So far, it has enrolled over 1000 patients with PsA

who have been followed over many years. It constitutes one of the largest cohorts of

PsA in the world. The study is approved by the Research Ethics Board of the University

Health Network, Toronto, Ontario, Canada. Patients are assessed about every 6-12 months

according to a defined protocol and data is collected on clinical history, pharmacotherapy,

physician examination, laboratory evaluations such as routine blood and urine tests, and

biennially performed X-ray tests. Physician examination includes the rheumatological

assessment, which assesses the activity and clinical damage of peripheral joints and spine.

Demographic information and family disease history are also registered at recruitment.

Clinical damage of a joint is defined by the presence of a limitation in the range of
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movement of more than 20% of the range when there is no active inflammation, or if

the joint is deformed, flail, ankylosed or has undergone surgery (Siannis et al., 2006).

Clinical joint damage is determined on physical examination of the patient, which is done

at each visit. In general, damage is an irreversible process, while disease activity, which

is reflected by tenderness and/or effusion, is reversible. Therefore, most recent therapies

aim at reducing signs and symptoms of active arthritis so as to inhibit the progression of

structural damage. So far, a variety of therapies have been adopted to control the disease

activity of PsA. There are three main types of treatment. Non-steroidal anti-inflammatory

drugs (NSAIDs) and disease modifying anti-rheumatic drugs (DMARDs) are typically used

as the first- and the second-line treatments. More recently, due to the immunologic basis of

PsA, biologics have attracted increasing interest for treating disease activity. In addition,

if these front-line therapies are not effective at reducing inflammation, other treatments

such as intra-articular steroids injected directly into the specific active joint(s) may also

be considered (O’Keeffe et al., 2011).

At present, a major research objective is to identify genetic and genomic variants asso-

ciated with PsA disease progression. In addition, since joint damage mainly characterizes

the disease severity of PsA, much attention has been paid to investigating the link between

joint damage and the dynamic courses of pharmacotherapy and disease activity. Many

interesting questions can be addressed from the PsA cohort, for example, evaluating the

effects of recent therapies on certain joint damage events. Studying an event time outcome

defined with respect to joint damage and biologics will be the focus of Chapter 5.
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1.2 Introduction to Survival Analysis

This section aims to provide an overview of terminology, concepts and techniques for

survival analysis. Survival time (also referred to as lifetime or failure time) is defined as a

positive-valued random variable which typically represents the time to some specific event.

This event can be death, the development of some disease, recurrence of a disease or the

failure of a physical (or mechanical, electrical) component. It could also be a good event,

such as disease remission, cessation of smoking, and so forth. In the PsA example, one

event of interest is time to the appearance of the first joint damage since onset. Section

1.2.1 aims to introduce some basic measures commonly used in survival analysis. Section

1.2.2 focuses on various types of censoring which frequently occur in practice. Following

that, Section 1.2.3 discusses the likelihood function construction based on failure time data.

Finally, some widely used survival models are introduced in Section 1.2.4.

1.2.1 Basic Quantities

Let Ti be a nonnegative random variable that represents the failure time, i.e. time to the

event under study, for subject i, where i = 1, ..., n. Characterization of the distribution

of Ti and discussion of the association between failure time and potential risk factors are

often of interest. In addition to the cumulative distribution function (CDF) and probabil-

ity density (or probability mass) function, other functions including the survival function

and hazard function can be used to characterize the distribution of a failure time random

variable. It can be shown that if any one of these four quantities is known, then the oth-

ers are uniquely determined. In the following, we will introduce these basic quantities by

considering two cases: when Ti is a univariate continuous random variable and when Ti is

a univariate discrete random variable, by referring to Lawless (2003). All functions in the
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following, unless stated otherwise, are defined over (0,∞).

Continuous Quantities

Assume Ti’s are i.i.d. nonnegative random variables from some continuous distribution.

The CDF, denoted by F (t), of Ti, a continuous survival time variable, is defined by

F (t) = Pr(T ≤ t) =

∫ t

0

f(s)ds,

where f(s) = dF (s)/ds is the probability density function of Ti at time s.

The survival function, denoted by S(t), is the probability of an individual surviving

beyond time t, i.e. experiencing the event after time t. It is defined as

S(t) = Pr(T > t) = 1− F (t) =

∫ ∞
t

f(s)ds,

and hence,

f(t) = −dS(t)

dt
.

Another basic quantity, the most commonly used in survival analysis, is the hazard

function denoted by λ(t), which is the probability an individual experiences the event in

the next instant of time given the individual has not experienced an event by time t. The

hazard function is defined by

λ(t) = lim
∆→0+

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t

=
f(t)

S(t)

= −dln[S(t)]

dt
.

Roughly speaking, λ(t)∆t provides the approximate probability of failure during the time

period [t, t+ ∆t), given survival up to t.
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The cumulative hazard function, Λ(t), is defined by

Λ(t) =

∫ t

0

λ(s)ds,

which is related to the survival function by S(t) = exp{−Λ(t)}. It is clear that any of f(t),

F (t), S(t), λ(t) and Λ(t) uniquely determines the distribution of Ti.

Discrete Quantities

Sometimes, discrete random variables arise due to rounding off measurements or when

survival times refer to an integral number of units (Klein and Moeschberger, 2003). Suppose

T (subscript i suppressed) can take on values t1, t2,..., where 0 = t0 < t1 < t2 < ..., with

probability mass function p(tj) = Pr(T = tj), j = 1, 2, .... Then, the CDF of T is defined

as F (t) = Pr(T ≤ t) =
∑

tj≤t p(tj), and the corresponding survival function is given by

S(t) = Pr(T > t) =
∑
tj>t

p(tj).

Note, when T is continuous, S(t) is a monotone decreasing continuous function with S(0) =

1, while when T is discrete, under the above definition, S(t) is a right-continuous, non-

increasing step function, with S(0) = 1 and S(∞) = 0.

The discrete time hazard function is given by

λ(tj) = Pr(T = tj|T ≥ tj)

=
p(tj)

S(tj−1)

= 1− S(tj)

S(tj−1)
, j = 1, 2, ....

Since S(tj) = [1− λ(tj)]S(tj−1) and S(t0) = S(0) = 1, we have

S(t) =
∏
tj≤t

[1− λ(tj)].
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Moreover, as an analog of the continuous case, a discrete cumulative hazard function Λ(t)

equals
∑

j:tj≤t λ(tj) and −lnS(t). A general formulation of Λ(t) can be given by a Riemann-

Stieltjes integral to unify continuous, discrete, and mixed survival time distribution in one

framework of the form (Lawless, 2003):

Λ(t) =

∫ t

0

dΛ(s) =

∫ t

0

λ(s)ds+
∑
j:tj≤t

λj,

where λ(s) = f(s)/S(s) represents the hazard function for T at points where F (s) (or

S(s)) is continuous, and λj = Pr(T = tj|T ≥ tj) is the discrete hazard value at time tj for

which a jump in F occurs.

1.2.2 Varieties of Censoring and Truncation

In practice, survival data are often subject to censoring, which, broadly speaking, occurs

when some event is only known to have occurred within a certain interval but the exact

time is unknown. There are three primary types of censoring: right censoring, left censor-

ing and interval censoring. Each type leads to a certain likelihood structure which forms

the basis for likelihood-based inference.

Right Censoring

First, we introduce right censoring which occurs most often in practice, since the sur-

vival data are always under observation for a finite period of time. Right censoring happens

when a failure has not been observed during follow-up and it may occur later. Let Ci be

the right censoring time of subject i imposed by the follow-up period. Then, (0, Ci] is

the interval over which the failure time of subject i, i.e. Ti, can be observed. Obviously,

only the minimum of failure time Ti and right censoring time Ci can be observed, so define
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Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Then, the observed data are pairs of the realizations

of random variables (Xi, δi), i = 1, 2, ..., n, where Xi is referred to as an observed time and

δi is referred to as an event indicator.

Left Censoring

If it is known that the event of interest has already occurred by some time Li, but the

exact failure time is unknown, this is called left censoring. The observations still can be

characterized by (Xi, δi). But, in contrast to right censoring, here the observed time is

defined as Xi = max(Ti, Li) and the event indicator is defined as δi = I(Ti ≥ Li), where

Li denotes the left censoring time of subject i.

Interval Censoring

Interval censoring means that the failure time of interest is only known to lie within a

finite interval instead of being observed exactly. Such censoring usually happens in clinical

trials, industrial experiments or longitudinal studies where periodic follow-ups are assigned

and a patient’s failure time is only known to fall in a certain interval (til, tir] between two

visits, i.e. til < Ti ≤ tir. Note that if the event of interest occurs exactly at the moment of

one visit, then we have til = Ti = tir, which rarely happens in practice.

Left Truncation

In contrast to censoring where at least partial information is known about failure time,

another feature of failure time data, truncation, restricts the inference to conditional es-

timation. Truncation of failure times occurs when only subjects whose failure times lie

within certain observational window (Wil,Wir)’s are included in the analysis (Klein and
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Moeschberger, 2003). When Wir =∞, it is called left truncation which often occurs when

a subject’s study entry time is later than the origin of failure time. A left truncation time

Wil is also called a delayed entry time.

1.2.3 Likelihood Construction for Censored and Truncated Data

Although data may be subject to a variety of types of censoring, the methods for con-

structing likelihood functions are similar. Generally, suppose that data are subject to all

kinds of censoring such as right censoring, left censoring and interval censoring. Then,

under the assumption that censoring is independent and non-informative, the likelihood

function can be constructed as

L ∝
∏
i∈E

f(Ti)
∏
i∈R

S(Ci)
∏
i∈L

[1− S(Li)]
∏
i∈I

[S(til)− S(tir)], (1.1)

where E is the set of exactly observed failure times, R is the set of right-censored ob-

servations, L is the set of left-censored observations, and I is the set of interval-censored

observations. Here, f(·) and S(·) denote the density function and survival function of

failure time Ti, respectively, and Ci, Li, til, tir are defined as before.

Specifically, for right-censored data, the likelihood is of the form

L ∝
n∏
i=1

[f(Ti)]
δi [S(Ci)]

1−δi , (1.2)

where δi = I(Ti ≤ Ci) is the event indicator. For interval-censored data, the likelihood is

given by

L ∝
n∏
i=1

[S(til)− S(tir)]
δIi [S(Ci)]

δRi , (1.3)

where δRi is the indicator for right censoring and δIi is the indicator for interval censoring.
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When data is left truncated, all the quantities included in likelihood function (1.1)

would be conditional on Ti being greater than the left truncation time, say ti0 > 0. Then,

the general likelihood function of left-truncated data can be constructed as

L ∝
∏
i∈E

f(Ti)

S(ti0)

∏
i∈R

S(Ci)

S(ti0)

∏
i∈L

[
1− S(Li)

S(ti0)

]∏
i∈I

[S(til)− S(tir)]

S(ti0)
, (1.4)

where Ti, Ci, Li, til and tir are all greater than ti0. Specifically, if data is subject to

interval-censoring as well as left-truncation, the corresponding likelihood function can be

given by

L ∝
n∏
i=1

[
S(til)

S(ti0)
− S(tir)

S(ti0)

]δIi [S(Ci)

S(ti0)

]δRi
. (1.5)

1.2.4 Models in Survival Analysis

In this section, some foundational and widely used models in survival analysis will be briefly

introduced. First, accelerated failure time (AFT) model is usually applied parametrically,

while the other three, proportional hazards (PH) model, additive hazards (AH) model and

proportional odds (PO) model, are often known as being semiparametric. Semiparametric

model assumptions are usually more flexible and more robust than fully parametric models

but bring difficulties in inference due to an unspecified component in the model.

Accelerated Failure Time Regression Model

Suppose the logarithm of Ti follows a location-scale distribution with mean β0+β′Zi and

standard deviation σ, where Zi = (Zi1, ..., Zip)
′ is a p-dimensional vector of covariates for

subject i, β0 is the intercept and β = (β1, ..., βp)
′ is the p-dimensional vector of coefficients

of covariates Zi. That is,

ln(Ti) = β0 + β′Zi + σWi,
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where Wi is assumed to follow a standard location-scale distribution. If, for example, Wi

has a standard extreme value distribution, then the corresponding Ti has a Weibull distri-

bution with shape parameter 1/σ.

Cox Proportional Hazards Regression Model

Suppose that the hazard function is given by

λ(t;Zi) = λ0(t) exp(β′Zi),

where β = (β1, ..., βp)
′ and Zi = (Zi1, ..., Zip)

′. Here, λ0(t), known as the baseline hazard

function, is unspecified. The regression parameter, βj, can be interpreted as the log hazard

ratio when Zij is increased by one unit and other variables are kept unchanged. If the

baseline hazard is specified, a parametric PH model can be obtained. For example, when

λ0(t) = κρ(ρt)κ−1, we have a Weibull proportional hazards model, where κ is the shape

parameter and 1/ρ is the scale parameter of a Weibull distribution.

Additive Hazards Regression Model

The hazard is given by

λ(t;Zi) = λ0(t) + β′Zi,

where β = (β1, ..., βp)
′, Zi = (Zi1, ..., Zip)

′, and λ0(t) also denotes the baseline hazard and

can be unspecified. Here, βj represents the hazard difference when Zij is increased by one

unit and other variables remain unchanged. In addition, similar to the PH model, the

baseline hazard function can be specified to obtain a parametric AH model.
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Proportional Odds Regression Model

This model takes the form

O(t) = O0(t) exp(β′Zi),

where β = (β1, ..., βp)
′ and Zi = (Zi1, ..., Zip)

′. Here, O(t) = F (t)/{1 − F (t)} is the odds

for distribution function F (t), and O0(t) is the odds for the baseline distribution F0(t).

Similar to the PH model, βj is interpreted as the log odds ratio when Zij is increased

by one unit, with other variables fixed. Also, O0(t) can be unspecified. If F0(t) is speci-

fied by a parametric distribution, e.g. log-logistic, a parametric PO model can be obtained.

1.3 Introduction to Observational Studies and Causal

Inference

In practice, observational studies are often used to study human health, especially in epi-

demiological research. The PsA cohort we introduced in Section 1.1 is an observational

study. Patients may be prescribed treatments with NSAIDs, DMARDs and/or biologics

based on their clinical assessments. It is of interest to estimate the effect of specific treat-

ment such as biologics, but in an observational study, this is challenging because treatment

is prescribed according to a person’s condition. This is the focus of Chapter 3, but here

we review some causality concepts.
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1.3.1 Observational Studies and Causality

The key feature of randomized experiments is that treatments or interventions are randomly

allocated across individuals or experimental units. The simplest situation is that subjects

are assigned to be treated or untreated by the flip of a fair coin, i.e. patients are allocated

to be in the treatment arm or control arm with the same probability of 1/2. On the con-

trary, non-randomized treatments are commonly seen in observational studies. A random

assignment of treatment ensures balance across study groups in terms of measured and un-

measured risk factors and allows the greatest reliability and validity of statistical estimates

of causal effects. In fact, in a randomized experiment, association between treatment and

outcome implies a causal effect of the treatment on outcome.

In an observational study, we can attempt to estimate the effect of a treatment or an

exposure by comparing outcomes when “it is not feasible to use controlled experimenta-

tion, in the sense of being able to impose the procedures or treatments whose effects are

desired to be discovered, or to assign subjects at random to different procedures” (Cochran,

1965). In an observational study, there is no control over the treatment assignment, so

treated and untreated subjects may be quite different with respect to disease-related or

outcome-dependent characteristics: some subjects could be more likely than others to re-

ceive the treatment due to these characteristics. These characteristics which determine

if an individual will receive the treatment are referred to as confounders (or confounding

variables) if they are also risk factors of outcomes. For instance, if doctors are more likely

to assign a surgical treatment to sicker patients, while relatively healthier patients are more

likely to be assigned standard care. Then, while studying the effect of surgery on survival,

health status before treatment is a confounder. In an observational study, associations

cannot be generally interpreted as causal effects. Removing the selection biases caused
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by confounders is a central objective in the analyses of treatment effects in observational

studies.

1.3.2 Causal Diagrams

This section aims to introduce some graphical devices, which are often referred to as causal

diagrams. The graphical approach is helpful to summarize what we know about the study

and what we assume about the relationships between variables relevant to our particular

causal inference problem of interest. In practice, it is common to combine two approaches:

using causal diagrams to conceptualize problems and using the counterfactual approach,

e.g. the marginal structural model (MSM) and inverse probability weighting (IPW) that

we will introduce later, to analyze data and do inference.

A diagram like the ones in Figure 1.1 is known as a directed acyclic graph (DAG)(Pearl,

1995), which is a visual summary of the likely (known, suspected or hypothesized) causal

links between variables. They are called “directed” because one edge implies a direction,

i.e. X may cause A, but not the other way around. The term “acyclic” implies that there

are no cycles, i.e. a variable cannot cause itself, either directly or through another variable

(Hernán and Robins, 2016).

In a DAG, each variable is represented by a node (vertex), e.g. X, X∗, A and Y in

Figure 1.1. Relationships between variables are represented through edges (the arrows).

Directed edges represent causal associations. We adopt the convention that time flows

from left to right. Thus, Figure 1.1(a) represents a randomized experiment where there

is not an arrow from X to A. Figure 1.1(b) represents an observational study where X

is a common cause of outcome Y and treatment A. In this case, we say X is a known

confounder of the effect of A on Y . Figure 1.1(c) displays that there is an observed variable
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denoted by X∗ that is affected by treatment A and also predicts the outcome. Here, X∗

is called an intermediate variable which is on the causal pathway between A and Y . The

path A → Y represents the direct effect of treatment on outcome, while A → X∗ → Y

represents an indirect effect of treatment on outcome. To unbiasedly estimate the overall

effect of A on Y , one should consider both direct and indirect effects. More details about

DAGs can be found in a comprehensive book on this subject written by Pearl (2003).

X A Y

(a)

X A Y

(b)

A X∗ Y

(c)

Figure 1.1: Examples of randomized treatment (a), confounded treatment (b) and inter-

mediate variable (c) by DAGs, where Y is the outcome variable, A is the treatment whose

effect on Y is of interest, X is a confounder, and X∗ is an intermediate variable.

1.3.3 Causal Inference and Some Important Assumptions

Nowadays, two main competing perspectives on causal inference have risen: the coun-

terfactual perspective and the non-counterfactual perspective. Rubin (1974) proposed a

counterfactual approach for causal inference which is the focus of most recent statistical

research. For simplicity, assume only two interventions are compared: treated and untreat-

ed. Define Y 0
i as the outcome that would have resulted if subject i was untreated and Y 1

i

as the outcome that would have resulted had subject i been treated. The causal effect of

this treatment (denoted by A = 0 or 1) on outcome is based on the comparison of these

two counterfactual or potential outcomes, Y 0
i and Y 1

i . However, a subject usually can only
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receive one treatment status, i.e. either be treated or be untreated, so only one of these

two potential outcomes is observable. Therefore, one of the potential outcomes is counter-

to-the-fact, i.e. counterfactual. The causal effect, Y 1
i − Y 0

i , on one single subject can not

be observed, but the average causal effect (ACE), E[Y 1
i ]−E[Y 0

i ], can be estimated and is

often evaluated, under certain assumptions in causal inference. If outcome Yi is a binary

variable, the effect defined by E[Y 1
i ] − E[Y 0

i ] is called the causal risk difference. In addi-

tion, a causal risk ratio and causal odds ratio are defined by
Pr(Y 1

i =1)

Pr(Y 0
i =1)

and
Pr(Y 1

i =1)/Pr(Y 1
i =0)

Pr(Y 0
i =1)/Pr(Y 0

i =0)
,

respectively. Furthermore, there can be other effect measures which depend on the context

of a study.

The key difference between randomized experiments and observational studies is that

randomized experiments can balance observed risk factors as well as unobserved factors.

However, in observational studies, even applying appropriate analytical adjustments, we

can only balance the known risk factors and have to rely on some assumptions about

the unknown risk factors. Let L be a vector of measured covariates which describe the

characteristics of a subject prior to treatment assignment. We adopt the convention that

upper cases represent random variables, lower cases represent the realized values of random

variables, and upper cases in bold fonts denote a vector of random variables. Let Y a be

the counterfactual outcome of treatment status a and let A be a random variable which

denotes the actual treatment the subject received. As presented in Robins and Hernán

(2009), the important assumptions needed in causal inference are listed below.

(A0) Consistency: If A = a for a given subject, then Y a = Y for that subject.

(A1) Strongly Ignorable Treatment Assignment/No Unmeasured Confounders:

The exposure or treatment assignment must be independent of the counterfactual
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outcomes given the observed risk factors, i.e. for all a, we have

Y a q A|L, (conditional exchangeability),

and

0 < Pr(A = a|L) < 1, ∀ L (positivity).

(A2) Stable Unit-Treatment Value Assumption (SUTVA): Each subject’s poten-

tial outcomes are not influenced by the actual exposure of another subject.

Consistency, conditional exchangeability and positivity, described in Rosenbaum and

Rubin (1983), were referred to as three identifiability conditions by Robins and Hernán

(2009). The stable unit-treatment value assumption was labeled as “no interaction be-

tween units” by Cox in 1958 and was referred to as “no interference between subjects” by

Hernán and Robins (2016). Assumptions (A0)-(A2) are essential in casual inference, under

which consistently estimating causal effects from observational data is possible. Addition-

ally, correct model specification, accurate data measurement and data missing at random

(MAR) are generally required in statistical analyses. Note that all assumptions above are

generally untestable. However, investigators’ expert knowledge is helpful to enhance the

plausibility of these assumptions. In addition, sensitivity analysis could be a useful tool to

study the magnitude of hidden bias, if the proposed assumptions were violated.

1.3.4 Structural Models

Models for counterfactual outcomes are referred to as structural models (Hernán and Robin-

s, 2016). For example, Robins et al. (2000) proposed a class of marginal structural gener-

alized linear models, i.e.

E[Ya] = g−1(a;β), (1.6)
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where Ya denotes the counterfactual outcome under the treatment a and g is the link

function. Hernán et al. (2000) developed a class of marginal structural Cox proportional

hazards models for failure time outcomes, e.g.

λTa(t|V ) = λ0(t) exp(β1a+ β2V ), (1.7)

where λTa(t|V ) is the hazard of failure at t among subjects with baseline covariate V in

the population had, contrary to fact, all subjects received treatment a at t = 0; λ0(t) is

an unspecified baseline hazard. Model (1.6) and model (1.7) are called marginal structural

models (MSMs) (Robins, 1999; Robins et al., 2000; Hernán et al., 2000; Hernán and Robins,

2016). Model (1.6) and model (1.7) with a time-varying treatment variable can be found

in Robins et al. (2000) and Hernán et al. (2000), respectively.

In addition, Hernán et al. (2005) introduced a class of structural accelerated failure

time models, e.g. for a time-fixed treatment a, which have the form

ln(Ta) = β0 + β1a+ σW, (1.8)

or

Ta = T0 exp(β1a), (1.9)

where Ta is the counterfactual outcome under treatment a and W is a random variable that

follows a standard location-scale distribution. Model (1.9) can be developed for a time-

varying treatment and then the model is referred to as a structural nested AFT model

(SNAFTM) (Hernán et al., 2005; Young et al., 2008, 2010).

1.3.5 Inverse-Probability-of-Treatment (IPT) Weighting

Inverse probability weighting (IPW) was first proposed by Horvitz and Thompson (1952)

for surveys in which subjects are sampled with unequal probabilities; Zhao and Lipsitz
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(1992) applied that to designs and analysis of two-stage studies; later, Xie and Liu (2005)

applied the IPT weighting method to the Kaplan-Meier estimator (Kaplan and Meier, 1958)

and log-rank test for survival data; Robins et al. (2000) and Hernán et al. (2000) further

applied the IPT weighting to marginal structural models with time-varying treatment. In

sampling theory, a hypothetical population (often referred to as a pseudo-population) in

which characteristics are balanced across groups can created by weighting. For example,

in an observational study where a treatment effect is of interest, a randomized experiment

is imitated in the pseudo-population, and therefore associations can be used to estimate

causal effects. In practice, the pseudo-population is created by weighting each subject in

the original population by the inverse probability of the treatment this subject actually

received conditional on measured confounders denoted by Xi, i.e. w∗i = 1
Pr(Ai=a|Xi=x)

.

The denominator is referred to as a propensity score and also known as a balancing score

(Rosenbaum and Rubin, 1983). That is, the pseudo-population consists of w∗i copies of

subject i from the original population. In this sense, estimators constructed by the inverse

probability weighting method are called inverse-probability-of-treatment weighted (IPTW)

estimators.

1.4 Introduction to Intermittent Observation Schemes

and Outcome-Dependent Follow-up

In this section, we discuss problems and challenges in longitudinal cohort studies with

intermittent observation schemes and introduce the situation of outcome-dependent follow-

up. A preliminary analysis of gap times between consecutive clinic visits in the PsA case

will be provided as an illustration. In later chapters, methodology will be proposed to deal
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with the outcome-dependent follow-up problem in survival analysis.

1.4.1 Intermittent Observation

In clinical experiments or planned longitudinal cohort studies, individuals are usually sched-

uled to be evaluated at regular and pre-specified time points during their follow-up. How-

ever, in practice, it is frequently found that individuals may miss some scheduled visits.

They could return later at a scheduled or a non-scheduled time point, or they could even

come to visit at arbitrary time points. That is, observation is intermittent, and the fre-

quency and timing of visits may vary greatly across individuals. This could happen when

a planned visit schedule is not adhered to by everyone, or when additional information is

available from unplanned observation visits, or when studies are designed with no regular

observation schedule (Bůžková and Lumley, 2007). Therefore, broadly speaking, irregular

longitudinal studies could comprise discrete or continuous visit times or even a mixture

of them. For example, in the PsA example, X-ray tests are scheduled every two years for

assessing radiographical joint damage, but patients miss scheduled tests for various reason-

s. This is an example of discrete time observation scheme with missingness. In addition,

patients come to visit the clinic for lab tests and clinical assessments at non-homogeneous

times, though visits are planned every 6–12 months by the protocol. This is an example

of intermittent visits in continuous time. In addition, Lin et al. (2004) studied a random-

ized trial comparing several housing interventions for homeless people with mental illness.

Although investigators attempted to conduct follow-up interviews every 3 months, partic-

ipants often missed and showed up between scheduled interviews. In their case, the actual

visit times are a mixture of continuous random times and discrete prespecified times.
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1.4.2 Outcome-Dependent Follow-up

When the observation times are uniformly prespecified, e.g. participants were planned to

be assessed every month and actually adhered to the schedule, observation times would

be marginally independent of outcomes and other variables. Then, observation times are

automatically balanced among subjects, so they do not need to be adjusted for. On the

other hand, in longitudinal studies with intermittent inspection times, the frequency and

timing of visits are subject-specific. They could be highly associated with outcomes or

outcome-related variables including the past outcome history and past observation history.

As a result, follow-up times are unbalanced and could be dependent on the outcome pro-

cess. Terms used for this problem in literature are informative follow-up, biased follow-up,

personalized follow-up or observation, and outcome-dependent follow-up or observation.

Here, we adopt the term “outcome-dependent” follow-up. Pullenayegum and Lim (2014)

provided a detailed review of methods in longitudinal studies with irregular observation

times with a focus on visit processes, assumptions, and study design.

One illustration of outcome-dependent follow-up is the hypothetical example described

in Bůžková and Lumley (2007), where interest lies in quantifying the effect of air pol-

lution A(t) on lung function P (t), e.g. to estimate β in the (marginal) outcome model,

E[P (t)|A(t); β], where β is the regression coefficient of A(t). Define N(t) as the counting

process of the cumulative number of observations or visits by time t. Then, dN(t) = 1

means there is an observation at time t, dN(t) = 0 otherwise. We know air pollution

can trigger an asthma attack, and someone with asthma attacks usually has lower lung

function. Let L(t) indicate an asthma attack at time t, where L(t) = 0 or 1. It is shown in

Figure 1.2 that asthma attack behaves as an intermediate variable between air pollution

A(t) and lung function P (t). Therefore, if we want to estimate the overall effect of air
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pollution on lung function, L(t) should not be directly controlled in the outcome model.

On the other hand, a patient with an asthma attack is more likely to visit the doctor so

that her/his lung function can be measured, which means that asthma attack L(t) is a

common risk factor between observation dN(t) and outcome P (t). The DAG for this hy-

pothetical example is exhibited in Figure 1.2. Investigators study the distribution of lung

function P (t) based on the observed value P obs(t). In this example, if they ignored the

informative observation scheme, i.e. analyze the observed data only, they would very likely

to overestimate the influence of air pollution on lung function, since a high proportion of

observable data is contributed by persons who had asthma attacks. In other words, the

dependent observation scheme acts as a biased selection of the outcomes to be observed

and the resulting bias is similar to the bias induced by informative missing data. In this

case, an inverse probability weighting method can assist to eliminate the selection bias via

appropriately adjusting for the common risk factors between the outcome process and the

observation process.

dN(t)

A(t) L(t) P obs(t)

Figure 1.2: DAG for the air pollution and lung function example. A(t): air pollution

measured at t; L(t): asthma attack indicator at t; P obs(t): lung function measured at t;

dN(t): indicator of a clinic visit at t.
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1.4.3 Preliminary Analysis of Visit Times in the PsA Example

To date, over one thousand patients have been followed up over years in the PsA Toron-

to Cohort Study. Of the 1020 subjects who have at least two recorded clinic visits, we

first consider a subcohort of 880 patients with complete information on key disease and

treatment variables for a preliminary study of intermittent clinic visits. Among the 880

subjects, calendar dates of visits range from 1973-12-12 to 2013-03-25, because the admin-

istrative end of follow-up is Nov. 2013. Demographic information and disease onset times

are collected at enrolment. Time-varying variables such as joint activity, joint damage and

biomarkers are measured only at clinic visits, except treatments (i.e. NSAIDs, DMARDs

and biologics). Therapy history is recalled retrospectively at visits, so the full history of

taking a drug is ascertained. Figure 1.3 describes the visit process in this example. People

who have PsA are recruited in this cohort study, so clinic enrolment time ti0, which is the

first visit, is some time point past the PsA onset time. Clinical evaluation and lab tests are

conducted at visits, i.e. ti0, ..., ti,mi for subject i. Meanwhile, therapy history, e.g. names

of specific drugs, the start date and stop date of usage, and the reasons for termination or

switch, is recalled at visits.

PsA onset ti0 ti1 ti2 ti3 ti4 ti,mi τi time

Figure 1.3: Scenario of the visit process in the PsA example, where ti0 is the clinic enrolment

time and ti1, ..., ti,mi are the mi intermittent clinic visits, and τi is the administrative end

of follow-up for subject i.

To analyse the visit process, we consider the following stratified semi-Markov propor-
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tional hazards model for visit gap times:

λN(t|Zi(t−);α) = λsN0(B(t)) exp(α′Zi(t
−)), s = 1, ..., S, (1.10)

where t is the chronological time since the time origin, i.e. ti0, of the visit process; B(t) is

the gap time between the most recent past visit and time t; λsN0 is the stratified baseline

hazard function which is unspecified, where s denotes the strata defined by the decades of

the most recent visit prior to t, i.e. 1970, 1980,..., 2010; Zi(t
−) represents some features

of the observed history of risk factors prior to t where t− denotes the instant prior to t.

Later we will see from the analysis results that Zi(t
−) could include the history of outcome

or outcome-related variables. On average, patients have about 11 visits from enrolment

to τi. The length of follow-up ranges from 35 days to about 36 years, with a median of

approximately 7 years, and a standard deviation (SD) of about 8 years. The number of

visits ranges from 1 to 56, with a median of 7 and a SD of approximately 12. A “visit

gap” is defined by the time gap between two successive visits and has a median of 196

days (SD = 439 days), with a range from 5 days to about 25 years. Although 53% of visit

gaps are between 6 months and 12 months, as expected, there are some extreme cases such

as visit gaps longer than 20 years. In total, 34% of visit gaps are shorter than 6 months,

13% are longer than 12 months, and about 1.6% are longer than 5 years. Table 1.1 shows

the summary of fitting model (1.10) to the data. The attributes of variables that are

considered in the analysis are given in Table A.1 in Appendix A.1 at the end of the thesis.

From Table 1.1, we see that visit intensities are strongly associated with age, erythrocyte

sedimentation rate (ESR), treatment status of NSAIDs, DMARDs and biologics and the

median length of past visit gaps. Also, there is some evidence that family history of PsA

is also related to visit times. This preliminary analysis indicates that in the PsA example,

visit times are strongly dependent on disease-related variables, especially disease status

represented by biomarkers (e.g. ESR) and treatments, and the history of past visits. That
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is, the visit process will be informative to studies of disease progression.

1.5 Marginal or Partially Conditional Regression Mod-

els

Although multivariate regression models are widely used in observational data analyses,

scientific interests may also include the association between a particular risk factor and

outcome. As for the example described in Figure 1.2, controlling for an asthma attack

by including it as a regressor in the outcome model for lung function could avoid biased

analysis results due to a dependent observation scheme, but researchers’ interest might

lie in studying the marginal effect of air pollution on lung function. Then, the pathway

A(t) −→ L(t) −→ P (t) should not be blocked. Otherwise, not a marginal effect but a

direct effect of A(t) on P (t) will be given, since an asthma attack, L(t), plays the role

of an intermediate variable between air pollution and lung function. In this section, we

discuss marginal (or partially conditional, i.e. only conditional on a primary covariate, e.g.

treatment, of interest) models and the collapsibility of association measures in regression

models.

Suppose A(t) (time-fixed or time-varying) is a covariate of prime research interest. The

marginal effect of A(t) on outcome is a population-averaged association measure, but when

another risk factor, say L(t), is controlled, the effect of A(t) on outcome is interpreted

as the conditional effect of A(t) for a particular subset of individuals given L(t). The

adjusted exposure effect conditional on L(t) and the unadjusted effect can differ, when the

expected value of outcome is modeled as a nonlinear function of the exposure (Greenland

et al., 1999). The difference between the adjusted and unadjusted association measures is
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Table 1.1: Summary of fitting the stratified semi-Markov PH model (1.10) for visit gap

times in the analysis set composed of 880 PsA patients. Variable med.gap denotes the

median length of past visit gap times; coef denotes the coefficient estimate of a regressor,

and exp(coef) is interpreted as a relative risk or hazard ratio of one unit change of the

regressor, and se(coef) is the standard error of the coefficient estimate.

coef exp(coef) se(coef) z Pr(> |z|)

ESR -2.05E-03 9.98E-01 6.30E-04 -3.251 0.00115 **

sex 1.98E-02 1.02E+00 2.15E-02 0.924 0.35572

age 4.20E-03 1.00E+00 9.42E-04 4.461 8.17E-06 ***

PS duration 1.01E-03 1.00E+00 1.02E-03 0.997 0.31869

PsA duration -1.25E-03 9.99E-01 1.42E-03 -0.876 0.38086

family history of PS -1.26E-02 9.88E-01 2.21E-02 -0.567 0.57053

family history of PsA -6.28E-02 9.39E-01 3.34E-02 -1.879 0.06025 .

number of active joints -1.94E-03 9.98E-01 1.28E-03 -1.516 0.12951

number of damaged joints 2.88E-04 1.00E+00 8.76E-04 0.328 0.74267

NSAIDs 1.21E-01 1.13E+00 2.16E-02 5.581 2.40E-08 ***

DMARDs 2.16E-01 1.24E+00 2.14E-02 10.105 < 2e-16 ***

biologics:I(B(t) ≤ 180) -3.13E-02 9.69E-01 6.39E-02 -0.49 0.62418

biologics:I(B(t) > 180) 1.74E-01 1.19E+00 3.32E-02 5.244 1.57E-07 ***

biologics:I(B(t) > 365) 2.34E-01 1.26E+00 1.02E-01 2.304 0.02121 *

med.gap:I(B(t) ≤ 180) -8.07E-04 9.99E-01 1.53E-04 -5.281 1.28E-07 ***

med.gap:I(B(t) > 180) -8.64E-04 9.99E-01 8.17E-05 -10.573 < 2e-16 ***

med.gap:I(B(t) > 365) -8.66E-05 1.00E+00 5.50E-05 -1.574 0.11542

—

Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1
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referred to as non-linearity by Janes et al. (2010) and as non-collapsibility by Greenland

et al. (1999). Many widely used regression models are not collapsible due to non-linearity

of association measures. Specifically, Janes et al. (2010) discussed non-collapsibility for

logistic regression models, and Martinussen and Vansteelandt (2013) focused on the Cox

models and additive hazards models. In addition, Aalen et al. (2015) indicated that even

in a randomized survival study, a hazard model, λ(t), is not generally collapsible.

For example, suppose that a conditional Aalen’s additive model (Aalen, 1980, 1989) is

defined by

λ(t|A,L) = β0(t) + βA(t)A+ βL(t)L, (1.11)

then it was shown in Martinussen and Vansteelandt (2013) that the hazard model given A

alone is given by

λ(t|A) = β0(t) + βA(t)A+ βL(t)
E(e−BL(t)LL|A)

E(e−BL(t)L|A)
, (1.12)

where BL(t) =
∫ t

0
βL(s)ds. If L and A are independent and we define a new intercept as

β̃0(t) = β0(t) + βL(t)
E(e−BL(t)LL)

E(e−BL(t)L)
,

the collapsibility of βA(t) in model (1.11) is shown by

λ(t|A) = β̃0(t) + βA(t)A.

Martinussen and Vansteelandt (2013) also showed that for a Cox conditional effect model,

in general the marginal effect of A and the conditional effect of A with L controlled are

not equal, and the proportional hazards assumption does not hold for marginal hazards

λ(t|A), even if L and A are independent. Therefore, another issue is that some model

assumptions can be violated in the marginal effect models even though they hold in the

conditional effect models.
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The goal of this thesis is to study a marginal treatment effect when the observation

scheme is intermittent and informative and the treatment or exposure in an observational s-

tudy is likely confounded. A class of inverse probability weighting methods will be proposed

to eliminate the selection bias which arises from irregular inspection times and confounded

treatment for estimation of marginal effect models. Simulation studies will be employed to

investigate the performances of the resulting weighted estimates. However, there is very

limited literature on data generation mechanisms for inverse probability weighted estima-

tion because of the difficulty of model marginalization and non-collapsibility. For example,

suppose that the objective is to estimate the marginal distribution of T given A(t), which

is defined by a hazard model λ(t|A(t)). In addition, there are some other known risk fac-

tor(s) of T , denoted by L(t). A conditional model of T given both A(t) and L(t) is defined

by λ(t|A(t),L(t)). The marginal model given A(t) alone can be obtained theoretically

by marginalizing the conditional model λ(t|A(t),L(t)) over L(t). If L(t) is a time-fixed

discrete variable, the marginalization is relatively feasible, but for a time-varying L(t),

the integration over L(t) is not easy and rarely results in a neat form of model. Most

recent papers on this problem either make certain assumptions about T and the covariate

process L(t) which might not be plausible in practice or give approximate relationships of

simple forms, e.g. Young and Tchetgen Tchetgen (2014), Havercroft and Didelez (2012),

or do not result in a simple form of marginal model. Our simulations in Chapter 2 are

based on a mechanism suggested by Young and Tchetgen Tchetgen (2014), which allows

a time-varying ancillary variable L(t). Another simulation design of log-normal failure

time distribution and time-fixed covariates will be introduced in Chapter 3. Additionally,

Aalen’s additive hazards models will be a focus of Chapter 4, on semiparametric estimation

with intermittent observation.
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1.6 Outline of the Following Chapters

In Chapter 2 and Chapter 4, we will propose an inverse-intensity-of-visit (IIV) weighted

estimating function approach to adjust for intermittent and outcome-dependent inspection

times so that a marginal outcome model for failure time data can be consistently estimat-

ed. In Chapter 3, the estimation of causal effects of exposures or treatments on failure

time outcomes will be considered. In Chapter 5, the association between treatment with

biologics and a joint damage event in the PsA Toronto Cohort Study will be analysed as an

illustration of the methodologies proposed in the preceding chapters. Finally, concluding

remarks and future work will be discussed in Chapter 6.
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Chapter 2

PARAMETRIC ANALYSIS OF

INTERVAL-CENSORED FAILURE

TIME DATA WITH DEPENDENT

INSPECTION TIMES

In Section 1.5, we discussed the marginalization and collapsibility of regression models.

Marginal failure time distributions or the overall associations with some particular factors

are often of substantive interest, and then other covariates that are not the targets of

inference should not be conditioned on, especially when they act as intermediate variables

on the pathway between the primary factor and outcome. For example, in the Toronto PsA

Cohort Study introduced in Section 1.1, one interesting question is how treatment with

biologics is associated with disease-related outcomes such as joint activity or joint damage.

Thus, usage of biologics is the primary factor for scientific interest, and other risk factors
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like gender, age, health status, disease duration, and family history should not be included

in the key outcome model. However, when other factors affect the timing of clinic visits,

marginal analysis of observed data may lead to biased results, which we have discussed in

Section 1.4.2 and will show by simulations in Section 2.3.1. Although some information

obtained at or prior to treatment initiation may affect disease progression as well as the

treatment assignment, we will discuss this later in Chapter 3 which focuses on causal

inference. This chapter aims at the parametric estimation of the marginal distribution of

a failure time outcome variable and its marginal association with a time-fixed exposure or

treatment, like biologics, in the presence of intermittent and outcome-dependent inspection

times.

In the PsA study, patients are planned to be inspected every 6-12 months according

to a protocol. Although the median length of gap times between consecutive clinic visits

is about 6 months, the visit gaps are highly variable and range from 5 days to 25 years.

In Section 1.4.3, we have seen that how often patients come to visit the clinic depends on

demographic information, biomarkers, treatments, family disease history, and the history of

past visits. Therefore, the subject-specific visit times are informative or disease-dependent.

At each visit, disease status such as joint activity or damage is assessed, but the exact onset

time of a joint condition is not observable. That is, a joint event is subject to dependent

interval-censoring due to the irregular clinic visits, so standard estimation methods such

as maximum likelihood estimation (MLE) or generalized estimating equations (GEEs)

could lead to biased estimates. In this chapter, we propose an inverse-intensity-of-visit

(IIV) weighting method applied to estimating equations which can appropriately adjust

for outcome-dependent follow-up times and provide consistent estimation in parametric

survival models. Before Section 2.2.4, we assume that the visit process is not discontinued

by the occurrence of failure or event and that visit times are continuous. For the case
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where failure terminates visits, we convert to a discrete time visit process and pretend to

observe the responses after failure is known to have occurred. This will be discussed in

detail in Section 2.2.4.

2.1 Estimating Equations for Interval-Censored Fail-

ure Time Data

In survival analysis, if a continuous failure time is monitored at periodic visits, it is often

interval-censored. For example, consider a study of the time to onset of bladder cancer,

where participants are scheduled to visit clinic annually. Investigators know that a patient

was first diagnosed with bladder cancer at the jth visit and that bladder cancer was still

absent at the (j−1)th visit, but the exact onset time is unobservable. In the PsA example,

because joint damage is evaluated only at clinic visits, the exact time of appearance of a

damaged joint is not observable. If the inspection times of subject i, denoted by tij where

j = 1, ...,mi, are completely independent of outcomes or are conditionally independent

of outcomes given the covariates which have been included in the outcome model, the

likelihood for interval-censored data given below can produce consistent estimators:

L =
n∏
i=1

mi∏
j=0

[ST (tij)− ST (ti,j+1)]δij , (2.1)

where ti0 = 0 and ti,mi+1 = +∞, δij = I{tij < Ti ≤ ti,j+1}, and ST (t) = Pr(Ti > t)

is the survival function of Ti, i = 1, ..., n. For convenience, we suppress the dependency

of Ti on covariates in the notation. However, when inspection times are informative or

outcome-dependent, the likelihood in (2.1) can lead to biased estimates. One way to

control for the intermittent inspection times is to regress on all the risk factors that are
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related to the outcome process as well as the visit process, but the resulting regression

coefficient indexing the variable of interest will be interpreted as an association with failure

time conditional on the values of all other risk factors. Section 2.2 will introduce an

inverse probability weighting approach which can produce consistent estimates of marginal

regression parameters. This approach is based on estimating functions (White, 1982), so

we will first introduce some estimating functions for failure time data before considering

the adjustment for dependent inspection times.

As an aid to discussion and interpretation, notation will be defined in the context of

the PsA example. Let Ai = (Ai1, ..., Aiq)
′ be a q-dimensional vector of time-fixed exposure

or treatment variables measured at t = 0 for subject i, where i = 1, ..., n. For simplicity,

we assume that the time origin corresponds to a subject’s clinic entry time, unless stated

otherwise. In the PsA example, these variables of particular interest could be gender,

age at PsA’s onset time, family history of disease or treatments received at clinic entry.

Exposure can be considered fixed in three settings: first, if every subject’s exposure occurs

only once at the start of follow-up (e.g. vaccination, radiation from a bomb explosion, a

surgical intervention); second, if the exposure remains constant over time (e.g. genotype);

or third, if the exposure evolves over time in a deterministic way (e.g. age) (Robins and

Hernán, 2009). Then, define a time-to-event variable denoted by Ti, which can be the time

to the presence of some joint event from clinic entry for subject i, e.g. time to an increase

in the number of damaged joints since enrolment.

Instead of assessing Ti directly, we define a longitudinal binary outcome Pi(t) = I(Ti >

t) whose mean given Ai would be the marginal (or partially conditional) survival function

of Ti given Ai, i.e. E[Pi(t)|Ai] = ST (t|Ai). Then, Pi(t) is a monotone function from 1 to

0. In addition, let Ci be a random drop-out time and τi be the administrative end of follow-

up for subject i, and we define Ci ≤ τi. Additionally, let 0 < ti1 < ti2 < ... < timi ≤ Ci
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be the mi intermittent inspection times of subject i. Moreover, let Li(t) be a vector of

time-varying auxiliary variables which affect the risk of failure as well as the timing of

visits. Some of Li(t) may be defined for all t but measured only at clinic visits, e.g.

inflammation evaluated by lab tests. On the other hand, some factors change at certain

known time points, e.g. the exact start dates and stop dates of treatments such as NSAIDs,

DMARDs and biologics are reported retrospectively at visits, so their whole history is

known. Later, we will introduce an important assumption that the dependent inspection

times are based only on the “observed history” of relevant variables. Finally, we need

to introduce some notation for a counting process: let {Ni(t), t > 0} be the cumulative

number of visits for the ith individual through time t, and write Ni(t) =
∫ t

0
dNi(s), for

t > 0. Let Ci(t) = I(Ci > t) be the at-risk process and define dN∗i (t) = dNi(t)Ci(t), so we

have {ti1, ..., timi} = {t > 0 : dN∗i (t) = 1}.

To introduce the estimating function method for failure time data, firstly, we assume

that a subject can be followed up to the last visit, timi , before loss to follow-up, even if

failure occurred before timi . This is realistic in some cases, e.g. in the PsA example where

patients who have already been diagnosed with joint damage can still visit the clinic before

the administrative end of follow-up.

2.1.1 Estimating Function Methods for Interval-Censored Fail-

ure Times

We assume in this section that unless stated otherwise, the visit times, tij where j =

1, ...,mi, are conditionally independent of Ti given Ai. The dependent visit times case

will be considered in Section 2.2, but it is convenient to introduce the type of estimating

functions for failure time outcomes under independent visit scheme first. Suppose that Ti
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follows a parametric model whose survival function given Ai is denoted by ST (t|Ai;θ),

and our objective is to estimate the parameter θ. For example, we could assume that Ti

has a parametric proportional hazards model, i.e. its hazard function is given by

λT (t|Ai;θ) = λT,0(t;γ) exp [β′Ai] , (2.2)

where θ = (γ ′,β′)′, and λT,0(t;γ) is a parametric baseline hazard function, which could

be the hazard of a Weibull, log-normal, log-logistic, Gompertz, etc, and eβl is interpreted

as the marginal hazard ratio contributed by one unit change of Ail, l = 1, ..., q, with

other variables unchanged. The corresponding marginal survival function is ST (t|Ai;θ) =

exp
[
−
∫ t

0
λT (s|Ai;θ)ds

]
, provided that Ti is a continuous variable. Consider Pi(t), t =

ti,1, ..., timi , as the repeated measures of survival status; an estimating function for the

parameter θ can then be defined by

U(θ) =
n∑
i=1

∫ τi

0

c(t|Ai;θ)[Pi(t)− ST (t|Ai;θ)]dN∗i (t) (2.3)

=
n∑
i=1

mi∑
j=1

c(tij|Ai;θ)[Pi(tij)− ST (tij|Ai;θ)],

where dN∗i (t) = dNi(t)Ci(t) and Ci(t) = I(Ci > t) as defined earlier, and c(t|Ai;θ) is a

vector of known functions of t conditional onAi, with the same dimension as θ; components

of c(t|Ai;θ) are linearly independent functions of t for all θ. Note that the unbiasedness

of estimating function (2.3) holds regardless of the specification of c(·). Each Pi(t) has

a Bernoulli (Binomial) distribution with mean ST (ti,j|Ai;θ), so the estimating function

(2.3) is equivalent to the score function of n ×mi independent binary outcome Pi(t)’s, if

the function c(t|Ai;θ) is defined by

c(t|Ai;θ) =
∂ST (t|Ai,θ)/∂θ

ST (t|Ai,θ)[1− ST (t|Ai,θ)]
. (2.4)
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Generalized linear models or GEEs (Liang and Zeger, 1986) are widely used for survival

analysis, e.g. for current status data by Jewell and Shiboski (1990); Shiboski and Jewell

(1992), and for general interval-censored data by Sun (1997); Huang and Rossini (1997);

Zhang et al. (2005), and for competing risk models or multi-state models by Andersen

et al. (2003); Klein and Andersen (2005). If dN∗i (t) is independent of the value of outcome

Pi(t) given Ai, i.e. the condition (B0) to be introduced in Section 2.2.1 and independent

random drop-out are satisfied, it is obvious that (2.3) is an unbiased estimation function,

i.e. E{Ui(θ)|Ai} = 0. As a result, by White (1982), we know that the solution to

U(θ) = 0 is a consistent estimator of θ under mild regularity conditions.

In estimating function (2.3), we have assumed that ST (t|Ai;θ) is a parametric model,

e.g. (2.2). Although we consider semi-parametric models or non-parametric models in

Chapter 4, one simple way to gain flexibility for model (2.2) is to apply a piecewise constant

baseline proportional hazards model. That is, for a prespecified set of cut-points 0 = a0 <

a1 < ... < aK =∞, we assume that

λT (t|Ai;θ) =
K∑
k=1

ρkIk(t) exp (β′Ai) , (2.5)

where Ik(t) = I{t ∈ (ak−1, ak]} and ρk’s are unknown positive constants; θ = (ρ′,β′)′ are

the parameters we want to estimate. It has been discussed in Lawless (2003) that when

K → ∞ and ak − ak−1 ↓ 0, the profile likelihood function for β based on model (2.5) ap-

proaches the partial likelihood of Cox (semi-parametric) proportional hazards model and

the parametric MLE of the baseline hazard estimate of model (2.5) approaches the Bres-

low or generalized Nelson-Aalen estimate for the Cox model. This good approximation to

the Cox model makes model (2.5) more flexible than many ordinary parametric models.

In practice, a moderate value of K is often chosen, because experience indicates that re-

duction of the grid fineness beyond a certain point in model (2.5) yields little change in
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inferences. Actually, for many practical problems, choosing K to be 4 to 6 would be suffi-

cient (Lawless and Zhan, 1998; He and Lawless, 2003). Other choices of flexible parametric

proportional hazards models could be spline specifications (He and Lawless, 2003) or kernel

specifications for baseline hazard functions, especially when smooth estimates of hazard

functions are preferred. Likewise, an approximate non-parametric estimate of the survival

function can by obtained by fitting a piecewise constant baseline hazards models like (2.5)

without covariates. We note that for suitably defined parametric models, ST (t|Ai;θ) is

non-increasing in t. However, for non- or semi-parametric estimation, this is not implicit,

and then constrained estimation may be necessary, which will be discussed in Chapter 4.

Another interesting question in the PsA example is how to assess the time to the

appearance of the first clinical damaged joint from the onset of PsA with respect to some

baseline risk factors such as gender fixed at the onset time. In this case, the time origin

corresponds to the onset time of PsA rather than the clinic entry time, but the visit

process starts after the onset, because only patients who have PsA are enrolled. Then, we

can observe the time to the first damaged joint only if it occurs after clinic entry, so failure

time might be left-truncated at the clinic entry time which is denoted by ti0 for subject i.

An estimating function can still be developed to consistently estimate the parameters in

the outcome model ST (t|Ai;θ), if visit times, drop-out, and the delayed entry time (i.e. ti0)

are all independent of outcomes given Ai. Note that Ai and Ti are defined at t = 0 (≤ ti0),

but the visit process dNi(t) is defined for t > ti0. Here, we define a binary longitudinal

outcome as Pi(t) = I(Ti > t), for all t > ti0, which indicates survival past t. Its mean

conditional on Ai and Ti > ti0 is E[Pi(t)|Ti > ti0,Ai;θ] = ST [t|Ai;θ]/ST [ti0|Ai;θ], for all

t > ti0, if a parametric model for failure time Ti is assumed. Then, the estimating function
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for θ can be defined by

U(θ) =
n∑
i=1

∫ τi

ti0

c(t|Ai;θ, ti0)[Pi(t)− ST (t|Ai;θ)/ST (ti0|Ai;θ)]dN∗i (t), (2.6)

where c(·) is a vector of known functions with the same dimension as θ. Again, ST (·|θ)

could be any (flexible) parametric survival function for a failure time outcome.

2.1.2 Relation between Interval-Censored Maximum Likelihood

and Estimating Function Methods

When failure time is subject to interval censoring, one standard estimation method for

parametric models is to maximize likelihood (2.1), assuming that the inspection times,

tij and ti,j+1, which capture the occurrence of failure, are independent of outcome Ti.

Alternatively, the estimating function given in (2.3) can be used. Given the mi inspection

times and the true covariance matrix of Pi(t), at ti1, ..., timi , correctly specified for subject

i, it can be shown that an estimating function in the form of (2.3) and the score function

based on likelihood (2.1) are identical, as we discuss below.

Recall that 0 < ti1 < ti2 < ... < timi ≤ Ci are the inspection times of subject i. Now, we

define variables δij = I{Ti ∈ (tij, ti,j+1]}, where j = 0, ...,mi with ti0 = 0 and ti,mi+1 = +∞,

to indicate interval censoring or right censoring at the last visit and let πij = E(δij|Ai;θ),

where 0 < πij < 1. Then, we know that
∑mi

j=0 πij = 1 and
∑mi

j=0 δij = 1. The likelihood for

independently interval-censored Ti given in (2.1) can be rewritten as (2.7) below:

L(θ) ∝
n∏
i=1

mi∏
j=0

[ST (tij)− ST (ti,j+1)]δij

∝
n∏
i=1

mi∏
j=0

π
δij
ij . (2.7)
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Note that all the expectations or variances shown above are based on a parametric model

given Ai, but Ai and parameter θ are suppressed in expressions for simplicity. We no-

tice that equation (2.7) is the likelihood of n independent multinomial random variables

δi = (δi0, ..., δimi)
′ with the number of trials fixed as 1. It is known that the multinomial

distribution with a fixed number of trials is a member of the exponential family whose

probability density or mass function is of the form

f(δi;pi, φ) = exp{[δ′ipi − b(pi)− d(δi, φ)]/a(φ)}. (2.8)

Here, pij = ln(πij/πimi), j = 0, 1, ...,mi, pi = (pi0, ..., pimi)
′, and b(pi) = −ln(πimi),

a(φ) = 1 and d(δi, φ) = 0. Therefore, by Wedderburn (1974) and McCullagh (1983), it is

known that (2.7) is identical to the quasi-likelihood for δi, i = 1, ..., n, whose score function

has the form:

U(θ) =
n∑
i=1

D′i(δ)V
−1
i(δ)[δi − µi(δ)], (2.9)

where µi(δ) = E(δi|Ai,θ), Di(δ) = ∂µi(δ)/∂θ
′, and V −1

i(δ) is a generalized inverse of Vi(δ) =

V ar(δi|Ai,θ). Explicitly, for δij, µij = πij, V ar(Vij) = πij(1 − πij) and Cov(Vij, Vil) =

−πijπil, when j 6= l, j, l = 0, 1, ...,mi.

Now, we will show the the quasi-likelihood score function (2.9) is identical to the gen-

eralization of an estimating function given in (2.3) via a variable transformation from δi
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to Pi. By their definitions, we know

δi0

δi1
...

δi,mi−1

δimi


=



1− Pi1
Pi1 − Pi2

...

Pi,mi−1 − Pimi
Pimi



=



1

0
...

0

0


+



−1 0 0 · · · 0

1 −1 0 · · · 0
...

...
...

. . .
...

0 · · · · · · 1 −1

0 · · · · · · 0 1





Pi1

Pi2
...

Pi,mi−1

Pimi


,B0 +BPi, (2.10)

where Pi = (Pi1, ..., Pimi)
′, Pij = I(Ti > tij), j = 1, ...,mi, and the notation , denotes

equal to by definition. By the linear relation (2.10), we have E(δi) = B0 +BE(Pi), i.e.

µi(δ) = B0 + Bµi, where µi denotes E(Pi), and then δi − µi(δ) = B(Pi − µi). Also,

Di(δ) = ∂µi(δ)/∂θ
′ = B∂µi/∂θ

′ , BDi, where Di = ∂µi/∂θ
′, and Vi(δ) = V ar(δi) =

BV ar(Pi)B
′, and then we have V −1

i(δ) = (B′)−1V −1
i B−1, where Vi = V ar(Pi). Thus, the

quasi-likelihood score function (2.9) can be written alternatively as

U(θ) =
n∑
i=1

D′i(δ)V
−1
i(δ)[δi − µi(δ)]

=
n∑
i=1

D′iB
′(B′)−1V −1

i B−1B(Pi − µi)

=
n∑
i=1

D′iV
−1
i (Pi − µi), (2.11)
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where µi = E(Pi), Di = ∂µi/∂θ
′, and Vi = V ar(Pi), i = 1, ..., n. Note that it is an

extension of (2.3) with c(tij|Ai;θ) replaced by the jth column of D′iV
−1
i and ST (tij|Ai;θ)

replaced by the jth element of µi. This is also equivalent to a GEE for Pi with the true

covariance matrix of Pi specified for the working covariance matrix.

So far, we have shown that given the visit times, ti1, ..., timi , likelihood (2.1) for interval-

censored Ti and a GEE with the true covariance matrix for Pi correctly specified are

identical and lead to the same estimator for θ. Furthermore, when the random inspection

times tij, j = 1, ...,mi, are independent of Ti given Ai, maximizing the likelihood (2.1) or

solving an estimating equation given in (2.3) gives a consistent estimator for parameter θ.

However, if the random inspection times are outcome-dependent, Ti could be dependently

interval-censored. Then, maximizing the likelihood (2.1) or solving (2.3) may lead to biased

estimates. In the next section, we will introduce an inverse probability weighting method

that can be applied to (2.3) or (2.6) so that the resulting estimates obtained by solving

the weighted estimating functions are consistent, provided that an important assumption

which will be introduced in Section 2.2.1 is satisfied and that both the outcome model and

the weight model are correctly specified.

2.2 Methodology of Inverse-Intensity-of-Visit Weight-

ed Estimation

We have introduced intermittent and outcome-dependent observation in Section 1.4.1 and

Section 1.4.2. In principle, if observation times are discrete and finite and individuals have a

common set of prespecified potential visit times, the outcome-dependent follow-up problem

can be dealt with as a longitudinal missing data problem. Robins et al. (1995) presented the
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assumption of sequentially ignorable nonresponse and proposed using weighted estimating

equations for the adjustment of monotone missing responses, i.e. censoring, with the weight

at time t defined by the inverse probability of the outcome being observed at t. Imputation

and expectation-maximization (EM) algorithms based on a joint model for outcomes and

visits are also commonly employed for longitudinal studies in the presence of missing data.

In particular, Chen et al. (2010) studied the PsA data via a likelihood-based approach

based on multi-state models. They assumed that subjects are scheduled to be examined

at a common set of times, and then applied the EM algorithm to deal with the missing

data at unattended visits.

Most literature dealing with missingness under continuous observation schemes in lon-

gitudinal studies, especially for failure time outcome, considers monotone missingness, i.e.

random drop-out, first presented by Wu and Carroll (1988). A classification of drop-out

processes was defined by Diggle and Kenward (1994): completely random drop-out (CRD),

random drop-out (RD) and informative drop-out (ID), following the terminology in Rubin

(1976), and a class of inverse-probability-of-censoring (IPC) weighted estimating functions

were proposed by Robins (1993), Robins et al. (1995), Scharfstein et al. (1999), Robins

and Finkelstein (2000), and Satten et al. (2001) for various outcome models or censoring

time models. However, there are few papers about the intermittent observation scheme

in continuous time. When observation occurs in continuous time, missing data techniques

do not provide a useful method for the dependent observation problem, unless continuous

observation times are discretized by grouping.

Outcome-dependent observation in continuous time was first addressed by Lipsitz et al.

(2002) where they focused on the repeated measures following a multivariate Gaussian

distribution. They separated the likelihood into two parts: one for the outcome process

and one for the observation process and proposed that the latter can be ignored if it is
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likelihood-based and all the common risk factors between the outcome and observation

processes are conditioned on. Therefore, as we mentioned before, one way to adjust for

dependent intermittent observation is to introduce all common risk factors between the

outcome process and the visit process as covariates or stratifying variables in the analysis

of outcomes. Other methods could be like Sun et al. (2005) where they marginally modelled

the visit process and then modelled the outcome process conditional on visit history, but

this gives conditional regression parameters given the visit history. Alternatively, most

recent literature links the outcome process and the visit process by introducing common

(shared) latent variable(s), e.g. Sun et al. (2007) and Cai et al. (2012), or correlated latent

variable(s), e.g. Liang et al. (2009) and Sun et al. (2012), between these the two processes.

Their methods produce estimates of the regression parameters in the outcome model that

are conditional on unobservable latent variable(s), i.e. random effect(s). Moreover, most

joint modelling approaches for dependent visits via random effect(s) assume time-invariant

random effect(s), which are hardly plausible in many situations. The advantage of such

joint modelling methods is that they can handle the cases where the outcome process and

the visit process are correlated via unknown factors, as long as these effects are of the

assumed form.

However, in many applications, the regression parameters of a model for outcomes

conditional on ancillary variables are not the target of inference. Instead, a model for

the outcome given a smaller set of “primary” covariates is of interest (e.g. Bůžková and

Lumley (2007)). To estimate the marginal effect of a set of primary factors on outcomes

in the presence of time-varying ancillary variables, a more appropriate and convenient way

to adjust for outcome-dependent inspection times is weighting an estimating equation for

outcomes which is conditional on the primary factors only by an inverse intensity of visit.

Explicitly, Lin et al. (2004) considered the intermittent inspection times as a recurrent event
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process in continuous time; the visit intensity at t may depend on the history of previous

outcomes, previous visits and external covariates prior to t, in addition to the primary

factors included in the marginal outcome model. Bůžková and Lumley (2007) extended

their method to involve time-varying covariates and discontinuous visit intensities so that

visit schemes with a mixture of scheduled discrete time visits and unplanned continuous

time visits can be dealt with.

Inverse probability weighting (IPW) is a general estimating function methodology for

informative selection, e.g. missingness, censoring, sampling in surveys, treatment assign-

ment in causal inference, etc, when the selection mechanism is ignorable, i.e. at random,

following the notions and terminologies of missing at random (MAR) by Rubin (1976)

and coarsened at random (CAR) by Heitjan and Rubin (1991) and Jacobsen and Keid-

ing (1995). In longitudinal studies, there is a sequential ignorability assumption (Robins

and Rotnitzky, 1992; Hogan et al., 2004; Cook and Lawless, 2014), which states that the

missingness of outcome at time t is independent of the current outcome value given the

past history. This is similar to the important assumption which the inverse-intensity-of-

visit (IIV) weighting relies on. We will discuss this in the next section. Inverse probability

weighting is a very useful approach for outcome-dependent selection problems. It standard-

izes the selected data to the whole underlying population by weighting each observation

with the inverse of the probability that this subject is selected from the population. Horvitz

and Thompson (1952) applied the IPW idea in sampling contexts; later, it was applied

in a variety of studies by Manski and Lerman (1977), Kalbfleisch and Lawless (1988),

and Zhao and Lipsitz (1992); Robins (1993) showed that IPW can also handle dependen-

t censoring; Robins et al. (1994, 1995) developed the IPW estimation for missing data;

Robins et al. (2000) and Hernán et al. (2000) applied the IPW to adjust for confounders in

observational studies with time-varying treatment. In the studies of dependent follow-up
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times, Lin et al. (2004) and Bůžková and Lumley (2007, 2009) incorporated the intensity

of observation or visit as a weight into the estimation of marginal association measures for

irregularly observed longitudinal or repeated measures data, to adjust for ancillary vari-

ables associated with the outcome process as well as the observation process in randomized

experiments. Pullenayegum and Feldman (2013) further introduced the IIV weighting to

increment-based methods for irregularly observed longitudinal data and discussed the op-

timal truncation of IIV weights and a doubly robust IIV weighted estimator. In addition,

Pullenayegum and Lim (2014) gave a comprehensive literature review on longitudinal data

analysis with irregular observation.

Lin et al. (2004) and Bůžková and Lumley (2007)’s IIV weighting method focuses on

repeated responses over time based on parametric or semi-parametric linear or generalized

linear models. We aim to extend this approach to failure time data analysis, where failure

time status is periodically monitored until a known occurrence of failure or loss to follow-up.

In this sense, a known failure discontinues the visit process. For example, this can happen

when an individual who has experienced the failure event is withdrawn from the cohort or

switched to another cohort. Furthermore, if commonly used monotone measures of a failure

time such as the CDF, FT (t) = E{I(T ≤ t)}, and survival function, ST (t) = E{I(T > t)}

are targeted, monotonicity is a challenge for non-/semi-parametric estimation by using

estimating equations.

Outcome-dependent visit times cause failure time to be “dependently interval-censored”,

which makes standard analysis methods for interval-censored data inappropriate. In ad-

dition to likelihood-based methods, other approaches for interval-censored data include

multiple imputation, e.g. Pan (2000); Hsu et al. (2007); Chen and Sun (2010), but irreg-

ular visits which cause large variation of visit times make imputation difficult. Earlier,

van der Laan and Hubbard (1997) and van der Laan and Robins (1998) proposed locally
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efficient estimation for interval-censored data or current status data. If interval censoring is

independent and survival models are parametric, likelihoods involving time-varying covari-

ates can be constructed as in Sparling et al. (2006). Additionally, Finkelstein et al. (2002)

and Zhang et al. (2007) developed an EM algorithm for dependently interval-censored da-

ta. Finally, intermittent visits could also cause failure times to be left-truncated if the time

origin is set before the first visit, and then failures prior to the first visit are not included

in the analysis.

To sum up, the prime advantages of the IIV weighting method is that regression pa-

rameters indexing the marginal associations between the factors of primary interest and

outcomes can be consistently estimated when time-varying ancillary variables are adjusted

for but not directly regressed in the outcome model. Additionally, weighting methods can

be conveniently implemented by existing software such as R functions lm, glm, and geeglm.

The main constraint is that this weighting method relies on an important assumption of

conditional independence between the outcome process and the visit process given the ob-

served history of known variables which we will discuss in the subsequent section. This

condition is one that cannot be avoided without making assumptions that are uncheckable

given the type of data we consider, and other approaches such as imputation and EM

algorithms have the same or equivalent constraints.

2.2.1 Required Assumptions

Dependent observation arises when in addition to the covariates in the regression model

for outcomes, there are still some factors related to the observation process as well as the

outcome process. The values of these variables affect how often and when an individual

comes for a visit. For example, in the PsA example, patients who have more severe joint
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pain could be more likely to visit the clinic. Meanwhile, those patients who suffer more

from joint pain may have a higher risk of joint damage. The common factors between the

outcome process and the visit process could induce a selection bias, if we fail to properly

adjust for them. These common factors may include baseline or time-varying treatments

for PsA, baseline or time-varying biomarkers, and the history of previous outcomes and

previous visits, etc.

Let an overbar denote the history of a variable, i.e. Z̄(t) = {Z(s) : 0 ≤ s ≤ t} is the full

history of a time-varying variable Z(s) up to and including time t, and let Z̄obs(t) be the

corresponding observed history. Then, define Hobs
i (t−) = {P̄i

obs
(t−), N̄i(t

−),Ai, L̄i
obs

(t−)}

be the observed history, which includes not only the outcome model covariates, Ai, but

also the observed history of auxiliary external (time-varying) variables, L̄i
obs

(t−), and,

importantly, the observed history of the outcome process, P̄i
obs

(t−) where Pi(t) = I(Ti > t),

and history of the visit process, N̄i(t
−). We can let L̄i

obs
(t−) be left-continuous, i.e.

L̄i
obs

(t−) = L̄i
obs

(t) for all t. In general, Hobs(t−) can include the observed history of

everything except the current outcome value and current visit status. Then, let Zi(t
−) =

h{Hobs
i (t−)} represent some features of the observed history Hobs

i (t−), where h(·) is a

vector of certain known functions. The target of inference is to estimate parameter θ in a

parametric model for Ti:

ST (t|Ai;θ) = Pr(Ti > t|Ai;θ) = E{Pi(t)|Ai}. (2.12)

For the adjustment of intermittent visits, we consider the following two conditions for

the visit process:

(B0) Independent Observation Scheme

E{dNi(t)|Ai,Pi(t), Ci(t)} = Ci(t)E{dNi(t)|Ai}, ∀t > ti0, (a)
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E{dNi(t)|Ai} > 0, for all Ai and t > ti0. (b)

(B1) Conditionally Independent Observation Scheme

E{dNi(t)|Hobs
i (t−),Pi(t), Ci(t)} = Ci(t)E{dNi(t)|Hobs

i (t−)}, ∀t > ti0, (a)

= Ci(t)E{dNi(t)|Zi(t−)},

E{dNi(t)|Zi(t−)} > 0, for all Zi(t
−) and t > ti0. (b)

Note Pi(t) = {Pi(s) : s ≥ t} denotes the current and future outcomes, Ci(t) = I(Ci > t)

is the at-risk indicator at t where Ci is a random drop-out time, and ti0 = 0 if not stated

otherwise, for i = 1, ..., n. When ti0 > 0, it indicates that Ti is left-truncated and ti0 is the

delayed entry time. Condition B0 (b) and B1 (b) are referred to as positivity conditions

which are needed to guarantee the existence of n1/2-consistent estimators of θ (Robins et al.,

1995). In principle, we can weaken condition (b) in (B1) to allow E{dNi(t)|Zi(t−)} = 0

at certain t− values, as long as this holds for all possible Zi(t
−), but we will ignore this

in our development. In addition, we need to assume that the visit process distribution

and the outcome process distribution have distinct parameters, as for the ignorability of

coarsening mechanism discussed by Heitjan and Rubin (1991). Condition (B1) was referred

to as “sequential ignorability” by Robins and Rotnitzky (1992) and Robins et al. (1995) for

assuming that nonresponse at time t is independent of current and future outcomes given

the history through t− for the case of monotone missing responses in discrete time. This is

satisfied when data is missing at random in the sense of Rubin (1976) for the longitudinal

setting. Pullenayegum and Lim (2014) referred to the condition (B1) as visiting at random

(VAR), and a similar assumption was made for random drop-out by Diggle and Kenward

(1994) which is essential for IPC weighting methods.
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Condition (B0) indicates that given the covariates Ai controlled for in the targeted

outcome model (2.12), visits are outcome-independent, which is an analog to the condition

of “missing completely at random” (MCAR) by Rubin (1976). This was assumed for the

methods discussed in Sections 2.1.1 and 2.1.2. Condition (B1) means that given some

features of the observed past history, intermittent visits are ignorable. This is an analog

to the “missing at random” (MAR) by Rubin (1976). If condition (B0) is not satisfied but

(B1) holds, then consistent estimation of θ still can be achieved via appropriate adjustment

for Zi(t
−).

Condition (B1) requires that visits depend only on the observed history and known

factors. As Pullenayegum and Lim (2014) indicated, history-dependent protocol visits

and physician-driven visits usually satisfy (B1), but patient-driven visits are likely to be

not at random. In that case, (B1) may not hold, because a patient’s decision about

visit attendance may depend on some information which is not provided at past visits,

e.g. the true history H(t−). Condition (B1) is essential for the adjustment of irregular

visits by weighting, though it is usually untestable, like many other MAR conditions.

If (B1) is violated, it means that irregular visits are non-ignorable, and it is similar to

the case of “missing not at random”, which means visit times depend on some unknown

outcome-related factors. Missing not at random may result in weighting methods not being

applicable.

When condition (B1) is satisfied, weighting with an inverse-intensity-of-visit is useful

to adjust for informative past history so that characteristics are balanced between the

observed data and the unobserved data, and the marginal regression parameter θ in the

targeted outcome model (2.12) can be estimated consistently. As Bůžková and Lumley

(2009) emphasized, the outcome model covariates should be picked on scientific grounds

to answer a question of particular interest, while the weight model must be determined by
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the nature of the observation process. In this section, we will extend a class of inverse-

intensity-of-visit (IIV) weighted estimators proposed by Lin et al. (2004) and Bůžková and

Lumley (2007, 2009) for irregularly observed longitudinal data to failure time data based

on parametric models.

Lin et al. (2004) considered the visit or observation process {Ni(t), t > 0} as a continu-

ous time recurrent event process. As in Lin et al. (2004) and Bůžková and Lumley (2007,

2009), we can consider a continuous-time parametric or semi-parametric intensity model

for the visit process conditional on Zi(t
−), with intensity denoted by dΛN(t|Zi(t−);α) =

E{dNi(t)|Zi(t−)}, provided that condition (B1) holds. We will further discuss the mod-

elling of visit times and the estimation of IIV weights in Section 2.2.3.

2.2.2 Weighted Estimating Functions

As mentioned before, if (B0) holds, no weighting is required to adjust for visit times, given

the targeted outcome model ST (t|Ai;θ) = exp
[
−
∫ t

0
λT (s|Ai;θ)ds

]
is correctly specified.

However, if (B0) is not satisfied, (2.3) or (2.6) takes only the observed outcomes, i.e. when

dN∗i (t) = 1, into account and the intermittent inspection times predict which values of

outcomes would be observed. Thus, the resulting estimators obtained by solving (2.3) or

(2.6) could be inconsistent. However, if (B0) is not satisfied, but (B1) holds, then weighting

the observed outcomes by the inverse of the probability or intensity of being observed at

that time can balance the characteristics between observed and unobserved outcomes, and

as a result, selection bias caused by dependent observation is eliminated. First, consider the

case where there is no left truncation of Ti. By solving the following unbiased estimating

function weighted by the inverse-intensity-of-visit, we can obtain a consistent estimator of

θ under certain regularity conditions, provided that the outcome model and weight model
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are both correctly specified. We consider

Uw(θ,α) =
n∑
i=1

Uw
i (θ,α) =

n∑
i=1

∫ τi

0

wi(t;α)c(t|Ai;θ)[Pi(t)− ST (t|Ai;θ)]dN∗i (t), (2.13)

where the weight wi(t;α) is defined by

wi(t;α) = a(t|Ai)dt/E[dNi(t)|Zi(t−)], ∀t > 0

= a(t|Ai)/λN(t|Zi(t−);α), (2.14)

where a(t|Ai) is a stabilizing weight; we note that if ci(t) in the proof given below is

multiplied by an additional time-varying function a(t|Ai), (2.13) is still an unbiased esti-

mating function. We let a(t|Ai) = 1 in the following discussion of the thesis, unless stated

otherwise. Notation, e.g. Pi(t), dN
∗
i (t), and c(t|Ai;θ), is defined as in (2.3), and λN(t) is

the intensity of the visit process at time t. To show that (2.13) is an unbiased estimating

function, one needs to show E[Uw
i (θ,α)|Ai] = 0. For simplicity, we consider Ai as known

constants and suppress Ai and the parameter notation, θ and α, in the following proof,
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e.g. writing ci(t) for c(t|Ai;θ), ST i(t) = ST (t|Ai;θ), etc. The required expectation is then:

E

{∫ τi

0

1

λN(t|Zi(t−))
ci(t)[Pi(t)− ST i(t)]dN∗i (t)

}
= E

{∫ τi

0

1

λN(t|Zi(t−))
ci(t)[Pi(t)− ST i(t)]Ci(t)dNi(t)

}
=

∫ τi

0

ci(t)EZ,P,C
{

1/λN(t|Zi(t−))[Pi(t)− ST i(t)]Ci(t)E
[
dNi(t)|Hobs

i (t−), Pi(t), Ci(t)
]}

=

∫ τi

0

ci(t)EZ,P,C
{

1/λN(t|Zi(t−))[Pi(t)− ST i(t)]Ci(t)E
[
dNi(t)|Hobs

i (t−)
]}

by (B1)

=

∫ τi

0

ci(t)EZ,P,C
{

1/λN(t|Zi(t−))[Pi(t)− ST i(t)]Ci(t)λN(t|Zi(t−))dt
}

=

∫ τi

0

ci(t)EP,C {[Pi(t)− ST i(t)]Ci(t)} dt

=

∫ τi

0

ci(t)E[Pi(t)− ST i(t)]E[Ci(t)]dt by independent drop-out

=

∫ τi

0

ci(t)[ST i(t)− ST i(t)]E[Ci(t)]dt

= 0

as desired. Note Ci(t) = I(Ci > t) is the at risk indicator as defined earlier, and E with

subscripts denotes the expectation with respect to relevant variables. The last third line

depends on the assumption that random drop-out is independent of outcome given Ai, i.e.

Pi(t)q Ci(t)|Ai, ∀t > 0. Otherwise, dependent drop-out should be adjusted for as well. A

so-called inverse-probability-of-censoring (IPC) weighted estimator can be applied in that

case.

Secondly, when event time Ti is left-truncated, the estimating function (2.6) can be

weighted by the inverse-intensity-of-visit as well, i.e.

Uw(θ,α) =
n∑
i=1

∫ τi

ti0

wi(t;α)c(t|Ai;θ, ti0)[Pi(t)−ST (t|Ai;θ)/ST (ti0|Ai;θ)]dN∗i (t), (2.15)

where Pi(t), dN
∗
i (t) and c(t|Ai;θ, ti0) are defined as in (2.6) and wi(t;α) = 1/λN(t|Zi(t−);α),
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for all t > ti0. Note that, hereAi is a vector of time-fixed variables defined at t = 0. Assum-

ing that condition (B1) is true, and random drop-out (i.e. Pi(t)q Ci(t)|Ai, for t > ti0) and

left truncation (i.e. ti0 q Ti|Ai) are independent, the unbiasedness of estimating function

(2.15) can be proven in a similar manner as for (2.13).

2.2.3 Models for the Visit Process and Estimation of IIV Weights

The IIV weighted estimation is a two-step procedure. First, we fit a model for the visit

process to estimate weights. Then, by solving the weighted estimating equation (2.13)

or (2.15) with the estimated IIV weights, a consistent estimator of the parameter θ from

the outcome model ST (t|Ai,θ) can be obtained under mild regularity conditions, provided

that the outcome process model and the visit process model are correct.

In the first step, to estimate weights, we need to assume a model for the visit process.

First, we introduce a semi-parametric proportional intensities model employed by Lin et al.

(2004) and Bůžková and Lumley (2007, 2009). The visit intensity is assumed to be of the

form:

dΛN(t|Zi(t−);α) = E{dNi(t)|Zi(t−)}

= dΛN0(t) exp{Zi(t−)′α}

= λN0(t) exp{Zi(t−)′α}dt (2.16)

where λN0(t) is an unspecified non-negative function of t, which is known as the baseline

visit intensity function. More intensity-based models and theories for recurrent events can

be found in Cook and Lawless (2007).

Then, the weight for subject i at time t can be estimated by

wi(t; α̂, λ̂N0) =
1

λ̂N0(t) exp(Zi(t−)′α̂)
, (2.17)
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or

wi(t; α̂) =
1

exp(Zi(t−)′α̂)
, (2.18)

where α̂ can be obtained by maximizing the partial likelihood for the Cox model or by using

existing software for the Cox model such as R function coxph or SAS procedure PHREG.

Lin et al. (2004) proposed a kernel-smoothed Breslow estimator to estimate the baseline

intensity λN0(t) in formula (2.17). However, Bůžková and Lumley (2007) suggested that

baseline intensity λN0(t) can be exempted from the weight formula, i.e. they proposed to

use (2.18). This is analogous to introducing a stabilizing weight a(t|Ai) = λ0(t). Further-

more, omitting λ̂N0(t) in weight estimation can avoid the smoothing techniques applied to

λ̂N0(t) and achieve
√
n consistency of the final estimator of θ.

So far, we have been assuming that the visit process (2.16) satisfies a modulated Markov

proportional intensities assumption given covariates Zi(t
−). However, in the PsA example,

the clinic visits were nominally scheduled to be a certain length of time apart (e.g. 6

months), but actual visit gaps often deviated substantially from this. In this case, modeling

the gap times or the inter-arrival times between consecutive clinic visits may be more

plausible. That is, the visit intensity at t could be related to the elapsed time since the

most recent visit prior to t. An alternative assumption would be that, given the most

recent past visit time TN(t−), visit intensity has the form of a modulated renewal process

(or semi-Markov process) (Cook and Lawless, 2007), i.e.

λN(t|Zi(t−);α) = λ†N0(B(t)) exp(α′Zi(t
−)), (2.19)

where t is the chronological time, e.g. time from the clinic entry in PsA data (no left

truncation case) or the onset of PsA (left truncation case), and B(t) is the gap time or

elapsed time from the most recent past visit, i.e. B(t) = t − TN(t−). Once again Zi(t
−)

may include the features of prior visit history and outcome history. When we estimate
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the IIV weights based on (2.19), one difference from the former visit model (2.16) is that

the renewal baseline intensities λ†N0(B(t)) can not be exempted from the weight formula,

because λ†N0(B(t)) depends on the individual’s previous visit time TN(t−) which is random

and also informative for outcomes due to variables other than Ai. Thus, λ†N0(B(t)) also

needs to be estimated while estimating the weights wi(t), i.e.

wi(t; α̂, λ̂
†
N0) =

1

λ̂†N0[B(t)] exp(Zi(t−)′α̂)
. (2.20)

One way is to adopt the Breslow nonparametric estimator, which can be implemented

by most software, and then smooth the resulting baseline estimate to satisfy positivity

condition and achieve a certain convergence rate, like Lin et al. (2004) did. Also, parametric

visit time models can be considered to avoid smoothing of the baseline estimate. For

example, in the simulation studies we will show in Section 2.3.1, a semi-Markov gap times

model (2.19) with a piecewise-constant baseline is considered. Furthermore, in Section

2.2.5, large sample theory of the proposed estimator of θ from a parametric outcome

model with the IIV weights estimated by fitting a parametric semi-Markov visit gap time

model (2.19) will be discussed.

2.2.4 Discrete Observation Process Models

So far, we assume that the occurrence of failure does not terminate the visit process, e.g.

events of interest such as time to joint damage, time to relapse after surgery, or time to

the appearance of a tumor. Individuals are followed up to the end of follow-up, even if it

is known that she/he has already experienced a failure. In this section, we will consider

the case where a known failure occurrence terminates the visit process.
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Figure 2.1: Graphical demonstration of a continuous failure time under a discrete visit

process, with a potential visit time increment of 0.25 units, where {ti1, ..., timi} = {t > ti0 :

dN∗i (t) = 1}; ti1, ..., tim∗i are the actual visits and ti,m∗i+1, ..., timi(= Ci) are the pseudo visits

after failure occurrence; ti0 denotes the start of follow-up for subject i; responses Pi(t) at

{ti0, ti1, ..., timi} are given above the time axis; and the cross denotes a failure occurrence.

We assume that after a known failure, individuals discontinue being inspected. That

is, the “probability” of attending a visit at any t past the known failure occurrence is zero.

In this sense, the positivity assumptions in conditions (B0) and (B1) discussed in Section

2.2.1 are violated. On the other hand, we know a person’s survival status: Pi(t) = 0

for all t > Ti. In this case, it is necessary to artificially continue “observation” of the

individual so as to satisfy the positivity condition. One approach would be to randomly

generate pseudo visit times from the visit process model, and then apply the IIV weighted

estimating function approach as introduced in Section 2.2.2. A simpler alternative, which

we adopt, is to discretize the visit process and assume an individual “visits” at each possible

time following their observed failure, i.e. let dNi(t) = 1 when P̄ obs
i (t−) = 0, with probability

1 up to the end of follow-up to create pseudo visits. Suppose there are Mi prespecified

potential visit times, ti0 = ai0 < ai1 < ... < aiMi
= Ci, for subject i, where ti0 ≥ 0 is

the start of follow-up and ti0 > 0 indicates that Ti is left-truncated. In Figure 2.1, we set

the time increment ∆a = 0.25 for illustration, but Mi should be a fairly large integer to

make the grid fine enough to approximate a continuous visit process in cases where ties

of visit times rarely exist or we want to use existing software for continuous failure time
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or recurrent event time data to fit a model to estimate the weights. An actual continuous

visit time tij which falls in (aik, ai,k+1] will be carried forward to the upper bound ai,k+1,

k = 0, ...,Mi − 1. Since P (t) = I(T > t) is a monotone response from 1 to 0, it is obvious

that after the visit subsequent to the occurrence of failure, e.g. the visit ti,m∗i in Figure

2.1, P (t) = 0 is known. Therefore, dNi(t) can be considered equal to 1 with probability 1

between the first visit after failure occurrence (i.e. ti,m∗i ) and the drop-out time (i.e. Ci).

That is, we consider the visits ti,1, ..., ti,m∗i as actual visits and ti,m∗i+1, ..., timi as pseudo

visits. Because the distribution of the visit process changes after failure occurrence, i.e.

visits are associated with the observed outcome history, condition (B0) which states that

visits and outcomes are correlated only through Ai does not hold in this case. However,

condition (B1) can be modified as follows:

(B1*) Let P̄ obs
i (ai,k−1) be the most recently observed status of response Pi through ai,k−1,

and then when P̄ obs
i (ai,k−1) = 1 for any k = 1, ...,Mi, we assume

E{dNi(aik)|Hobs
i (ai,k−1),Pi(aik), Ci(aik)} = Ci(aik)E{dNi(aik)|Hobs

i (ai,k−1)} (a1)

= Ci(aik)E{dNi(aik)|Zi(ai,k−1)},

E{dNi(aik)|Zi(ai,k−1)} > 0, for all Zi(ai,k−1), (b)

and when P̄ obs
i (ai,k−1) = 0, we have

E{dNi(aik)|Hobs
i (ai,k−1),Pi(aik), Ci(aik)} = Ci(aik), (a2)

to create pseudo visits, where Pi(aik), Ci(aik), dNi(aik), and Zi(ai,k−1) = h{Hobs
i (ai,k−1)}

are defined similarly as in (B1), and we note that Hobs
i (a−ik) = Hobs

i (ai,k−1) in the discrete

time setting. If (B1*) is satisfied, we still say the observation scheme is conditionally inde-

pendent, and we see the independence is conditional on the observed history of outcome,

i.e. P̄ obs
i (ai,k−1).
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We can still consider the following two visit process models, a modulated Markov

proportional intensities model (2.21) or a modulated renewal (semi-Markov) process model

(2.22) given below, to estimate the IIV weights, when P̄ obs
i (ai,k−1) = 1, for k = 1, ...,Mi:

λN(aik;α) = λN0(aik) exp{Zi(ai,k−1)′α}, (2.21)

or

λN(aik;α) = λ†N0(B(aik)) exp(Zi(ai,k−1)′α), (2.22)

where λN(aik;α) denotes a discrete visit intensity at aik. The IIV weights are defined by

ŵi(aik) = 1/λN(aik; α̂), when P̄ obs
i (ai,k−1) = 1, and by 1, when P̄ obs

i (ai,k−1) = 0, if the

weight estimate is given by (2.17) based on model (2.21) or by (2.20) based on model

(2.22). Note that if model (2.21) is assumed for the visit process and ŵi(aik) is formulated

as (2.18) when P̄ obs
i (ai,k−1) = 1, then ŵi(aik) = λ̂N0(aik) when P̄ obs

i (ai,k−1) = 0.

The IIV weighted estimating functions (2.13) and (2.15) can be defined for a discrete

visit process by

U(θ;α) =
n∑
i=1

Mi∑
k=1

wi(aik;α)c(aik|Ai;θ, ti0)[Pi(aik)− µT (aik|Ai;θ, ti0)]dN∗i (aik), (2.23)

=
n∑
i=1

mi∑
j=1

wi(tij;α)c(tij|Ai;θ, ti0)[Pi(tij)− µT (tij|Ai;θ, ti0)],

where dN∗i (aik) = dNi(aik)I(Ci ≥ aik) and ti1 < ti2 < ... < timi are the mi visits, including

the m∗i actual visit times before failure occurrence and the mi − m∗i pseudo visit times

after failure occurrence, among the Mi potential visit times, ai1, ..., aiMi
, for subject i. The

mean function µT (aik|Ai;θ, ti0) is defined by ST (aik|Ai;θ)/ST (ti0|Ai;θ), where ti0 ≥ 0 is

the start of follow-up of subject i, and when ti0 > 0 indicates that Ti is left-truncated and

ti0 = 0 otherwise.
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2.2.5 Large Sample Theory

In this section, we will discuss the asymptotic distribution of the proposed IIV weighted

estimator θ̂ for a parametric failure time model where Ti may be subject to dependent

interval censoring. In the following, the case where failure occurrence does not stop visits

and the visit process is continuous will be considered. The case where failure terminates

visits and the visit process is discretized will be discussed at the end.

Let Ui1(θ,α) and Ui2(α) be the estimating functions contributed by the outcome pro-

cess and the visit process of subject i, respectively, and let Ui(θ,α) = (U ′i1(θ,α),U ′i2(α))′

be the combined estimating functions for all the parameters, (α′,θ′)′.

First, Ui1(θ,α) for the outcome process can be written as

Ui1(θ,α) =

mi∑
j=1

wi(tij;α)c(tij|Ai;θ, ti0)[Pi(tij)− µT (tij|Ai;θ, ti0)], (2.24)

where ti0 ≥ 0 is the start of follow-up for subject i, and the IIV weight wi(tij;α) =

[λN(tij|Zi(t−ij);α)]−1 is defined in (2.14). The above estimating function can be applied

for the left truncation case where some ti0’s are greater than zero, and the mean func-

tion µT (t|Ai;θ, ti0) = E[Pi(t)|Ti > ti0,Ai;θ] = ST (t|Ai;θ)/ST (ti0|Ai;θ) reduces to

ST (t|Ai;θ) when ti0 = 0 for the no left truncation case.

Secondly, for the visit process, assume that ti1 < ... < timi are the mi intermittent

visit times for subject i. Here, we consider a parametric semi-Markov model (2.19) for

illustration, but any parametric recurrent event or gap time model can be employed, e.g.

the proportional intensities model (2.16) if λN0(t) is parametric. Let Ui2(α) be the log

likelihood contribution of the mi+1 visit gap times based on model (2.19) with a parametric

baseline λ†N0(B(t);α0), i.e.

λN(t|Zi(t−);α) = λ†N0[B(t);α0] exp(α′1Zi(t
−)), (2.25)
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where α = (α′0,α
′
1)′, and B(t) denotes the gap time at t from the previous visit, e.g.

B(ti,j+1) = ti,j+1 − tij. We notice that visit gap times are exactly observed except for

the last one, which is right-censored at the end of follow-up, i.e. Ci. Therefore, the score

function based on the above semi-Markov model (2.25) is given by the log likelihood (4.47)

in Cook and Lawless (2007) for general parametric multiplicative intensity models for gap

times:

Ui2(α) =

mi∑
j=1

∂ln{λ[B(tij)]}
∂α

−
mi+1∑
j=1

∫ B(tij)

0

∂λ(s)

∂α
ds, (2.26)

where λ(B(t)) = λ(B(t);α) = λ†N0[B(t);α0] exp(α′1Zi(t
−)) and ti,mi+1 = Ci.

Since Ui1(θ,α) and Ui2(α) are both unbiased estimating functions, given the condition

(B1) is true and both the outcome process and the visit process are correctly modelled, by

Theorem 2.2 and Theorem 3.2 in White (1982), we have the following theorem:

Theorem 1. Given the regularity conditions in White (1982), (θ̂′, α̂′)′ by solving the IIV

weighted estimating equations
∑n

i=1Ui(θ,α) = (
∑n

i=1U
′
i1(θ,α),

∑n
i=1U

′
i2(α))′ = 0, where

Ui1(θ,α) and Ui2(α) are defined by (2.24) and (2.26) respectively, is a consistent estimator

of (θ′,α′)′ and is asymptotically normal distributed with covariance matrix Γ−1Σ (Γ−1)′,

where Γ and Σ are defined by

Γ =

 −E(∂Ui1/∂θ
′) −E(∂Ui1/∂α

′)

0 −E(∂Ui2/∂α
′)

 ,

 Γ11 Γ12

0 Γ22

 ,

and

Σ =

 E(Ui1 U
′
i1) E(Ui1 U

′
i2)

E(Ui2 U
′
i1) E(Ui2 U

′
i2)

 ,

 Σ11 Σ12

Σ′12 Σ22

 .

Then, the IIV estimator θ̂ has the following asymptotic distribution

√
n(θ̂ − θ)

D−→ N(0, Vθ),
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where

Vθ = Γ−1
11 (Σ11 − Γ12Γ−1

22 Σ′12 − Σ12Γ−1
22 Γ′12 + Γ12Γ−1

22 Γ′12) Γ−1
11 . (2.27)

If estimating function (2.24) is a GEE with an independent working covariance matrix

and is written in a matrix form by

Ui1 = D′iV
−1
i Wi[Pi − µi],

where Pi = (Pi(ti1), ..., Pi(timi))
′, µi = (µi1, ..., µimi)

′, µij = µT (tij|Ai;θ, ti0), Di =

∂µi/∂θ
′, Vi = diag{µi1(1−µi1), ..., µimi(1−µimi)}, andWi = diag{wi(ti1;α), ..., wi(timi ;α)},

then we have

Γ̂11 =
1

n

n∑
i=1

D′iV
−1
i Wi Di

∣∣
α̂,θ̂

, (2.28)

and

Γ̂12 =
1

n

n∑
i=1

mi∑
j=1

λ−2(B(tij); α̂)
∂λ(B(tij);α)

∂α′

∣∣∣∣
α̂

c(tij|Ai; θ̂, ti0)[Pi(tij)− µT (tij|Ai; θ̂, ti0)].

(2.29)

Additionally, since Ui2 is likelihood-based, Σ22 = Γ22 is the Fisher information matrix of

Ui2. If we employ likelihood-based software to estimate α in Ui2, e.g. R function phreg

with a piecewise constant baseline intensity, then Σ22 and Γ22 can be estimated by the

observed Fisher information matrix reported by the software divided by sample size n.

Finally, we can use Σ̂11 = 1
n

∑n
i=1Ui1 U

′
i1 and Σ̂12 = 1

n

∑n
i=1Ui1 U

′
i2.

Now, consider the case where failure occurrence terminates the visit process as we have

discussed in the preceding section. The IIV weighting approach is still applicable if we

discretize the visit process and set the weights equal to 1 when P̄ obs
i (t−) = 0. Then the

asymptotic theory discussed above still can be applied. For the outcome process, the IIV
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weighted estimating function is (2.23) and the required assumption is (B1*). For the visit

process, only the visits that occurred when P obs
i (t−) = 1 contribute to the estimation of α

using model (2.25), i.e. ti1,...,ti,m∗i in Figure 2.1, and the score function for visit gap times

becomes

U∗i2(α) =

m∗i∑
j=1

{
∂ln{λ[B(tij)]}

∂α
−
∫ B(tij)

0

∂λ(s)

∂α
ds

}
(2.30)

− I(P̄ obs
i (tim∗i ) = 1)

∫ Ci−tim∗
i

0

∂λ(s)

∂α
ds.

This follows because if Ti is interval-censored, all visit gap times when P obs
i (t−) = 1, which

contribute to the estimation of α, are exactly observed, while if Ti is right-censored at the

last actual visit tim∗i , the last visit gap time is right-censored at Ci. Theorem 1 still holds

with Ui2 replaced by U ∗i2. Note that since IIV weight wi(t) equals 1 when P obs
i (t−) = 0,

(2.29) is modified to

Γ̂12 =
1

n

n∑
i=1

m∗i∑
j=1

λ−2(B(tij); α̂)
∂λ(B(tij);α)

∂α′

∣∣∣∣
α̂

c(tij|Ai; θ̂, ti0)[Pi(tij)− µT (tij|Ai; θ̂), ti0].

(2.31)

2.3 Simulation Studies

This section aims to empirically examine the finite sample performances of the proposed

IIV weighted estimators in the presence of dependent follow-up times and to compare with

standard estimation approaches such as the unweighted GEE and MLE. To simplify, in

this section, we assume that random drop-out is absent. We will discuss three cases: (i)

subjects visit intermittently until the administrative end of follow-up; (ii) subjects visit

intermittently but stop visiting after a known failure; and (iii) failure stops visits and the
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failure time may be left-truncated at the first visit. We will also investigate how the IIV

weighted estimators perform under misspecification of the visit process model.

2.3.1 Performances of the IIV Weighted Estimators and Stan-

dard Estimators

In this simulation study, we examine the IIV weighted estimation of a parametric propor-

tional hazards model like (2.2) with a time-fixed treatment variable Ai of interest, and a

time-varying variable Li(t) which affects the visit process as well as the failure time Ti as

an intermediate variable. Another simulation study based on an AFT marginal outcome

model with a time-fixed intermediate variable Li will be introduced in Chapter 3. As we

discussed in Section 1.5, a specific model form for outcomes will not necessarily keep the

same structure or even have a neat closed form after some regressors have been marginalized

over, e.g. proportional hazards models like (2.2). However, for some particular distribu-

tions of the outcomes and under certain assumptions about the ancillary variable process,

proportional hazards can still hold, though the marginal regression parameters and the

conditional regression parameters differ. The following empirical studies will be based on

a model developed in Young and Tchetgen Tchetgen (2014).

Here, we consider a binary Ai, i.e. Ai = 0 or 1. In Section 2.2.4, we have introduced

the theory and methods under a discrete visit process. To make the simulated data ap-

plicable for all the three cases, (i)-(iii), throughout this section and simulation studies in

Chapter 3 and Chapter 4, the discretization of continuous time is based on a grid of 100

per time unit. We set the administrative censoring time for each subject as τ = 5. Let

a0 = 0, a1 = 0.01, ..., aM = τ be the universal prespecified potential visit times for all

individuals. For example, if we aim to study the effect of biologics on time to a joint dam-
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age event during the first episode of biologics, since the median length of the treatment

durations of the first episode of biologics in the PsA cohort study is about 3 ∼ 3.5 years,

then ∆a approximates 2 days. Additionally, since the median length of visit gap times

is approximately 6 months, we assume there is never more than one visit within 2 days.

Discretization in this way makes using the software for continuous survival data, e.g. R

functions survreg, phreg, coxph and coxreg a reasonable approach for estimating the param-

eter α in the visit process model, though data are simulated and “observed” in discrete

time. In the following, a variable with subscript m denotes the value or level of it at time

am, m = 0, 1, ...,M , where M = 500. We assume the whole history of Li(t) is known,

i.e. L̄i
obs

(t) = L̄i(t), for simplicity, e.g. physical temperature or blood pressure that can

be measured by patients, though it is more plausible in practice that the visit process is

associated with L̄i
obs

(t). Subscript i may be dropped for simplicity as well. In each of the

following simulation studies in this section, sample size is set as n = 1000 and the number

of simulation replicates is N = 500.

CASE I: Event occurrence does not terminate visits

Firstly, we consider a case where event occurrence does not prohibit a patient from

visiting the clinic. In the present simulation, we imitate a randomized trial with Pr[A =

1] = 0.5 and Pr[A = 0] = 0.5, and the ancillary variable Lm at am is assumed to be

independent of its previous history and be normally distributed given A, i.e.

Lm|A, L̄m−1 ∼ N(β1A, σl), (2.32)

where β1 is the effect of treatment A = 1 versus A = 0 on the mean of Lm for any m and

we let σl = 1. Here, we assume that the process Lm retains the same distribution before

and after the occurrence of the outcome event. Now, to generate the outcome process, it
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is assumed that the discrete time hazard of T at time am+1 has the following form:

Pr[Pm+1 = 0|L̄m, A, Pm = 1] = Φ(θ0 + θ1Lm + θ2A), (2.33)

where Φ denotes the CDF of a standard normal distribution N(0, 1) and Pm = I(T > am).

Once a zero has been generated for some Pm, we have Ps = 0 for all s > m, because survival

status P (t) is a decreasing function. Note that P0 = 1 for all individuals. We set θ0 = −2,

θ1 = 1, θ2 = −0.1 and β1 = −1 so that the treatment A has a negative effect on the risk

of failure and Lm behaves as an intermediate variable which is inhibited by treatment and

is positively related to the risk of failure. Model (2.33) can be rewritten proportionally as

Pr[Pm+1 = 0|L̄m, A, Pm = 1] = eη0 exp(η1Lm + η2A+ η3ALm),

where eη0 = Φ(θ0) is the baseline hazard, and

η1 = ln

[
Φ(θ0 + θ1)

Φ(θ0)

]
,

η2 = ln

[
Φ(θ0 + θ2)

Φ(θ0)

]
,

η3 = ln

[
Φ(θ0)Φ(θ0 + θ1 + θ2)

Φ(θ0 + θ1)Φ(θ0 + θ2)

]
.

Then, the marginal hazard function of T given A alone can be obtained by marginalizing

over Lm as

Pr[Pm+1 = 0|A,Pm = 1] = Φ {c · [θ0 + (θ2 + θ1β1)A]} , (2.34)

where c = 1/
√

1 + θ2
1σ

2
l and equation (2.34) can be rewritten in proportional hazards form

as well, i.e.

Pr[Pm+1 = 0|A,Pm = 1] = eψ0 exp(ψ1A), (2.35)

where ψ0 = ln {Φ(c · θ0)}, ψ1 = ln
{

Φ[c·(θ0+θ2+θ1β1)]
Φ(c·θ0)

}
. Here ψ0 and ψ1 are the parameters

we wish to estimate. Based on the values of θ0, θ1, θ2, β1 and σl given above, the baseline
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hazard rate eψ0
.
= 0.08 and the marginal hazard ratio eψ1

.
= 0.18 for A = 1 versus A = 0,

i.e. treatment results in about an 82% risk reduction.

The discrete visit process, {dNm : m = 1, ...,M}, is generated by a Markov proportional

intensities model with a constant baseline intensity:

Pr[dNm+1 = 1|A,Lm] = exp(γ0 + γ1Lm + γ2A), (2.36)

= eγ0 exp(γ1Lm + γ2A)

where γ0 = −4, γ1 = 0 or 1, and γ2 = −0.2, so that the average visit gap time is

approximately 0.59 in the untreated group and 0.63 in the treated group, when γ1 = 0,

and is about 0.33 in the untreated group and 1 in the treated group, when γ1 = 1. Since we

assume that the outcome event does not stop visits, the visit process generated by model

(2.36) is non-informative unless γ1 6= 0. Thus, the scenario where γ1 = 0 satisfies the

independent observation assumption (B0), while the scenario with γ1 = 1 gives dependent

visit times. In fact, when γ1 = 1 and θ1 = 1, Lm is a strong outcome-dependent risk

factor of the visit process which fails to be adjusted for when standard analysis methods

such as MLE and unweighted GEE are applied, and as a result, estimates could be biased.

On the other hand, model (2.36) ensures that the conditionally independent observation

assumption (B1) holds when both of A and Lm have been adjusted for via weighting, so

that resulting estimators are consistent. The scenario of this simulation study is illustrated

by a DAG shown in Figure 2.2, assuming M = 2 for simplicity.

Three methods, MLE, unweighted GEE and IIV weighted GEE, will be compared for

the estimation of parameters ψ0 and ψ1 from model (2.35). The unweighted GEE estimator
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A L0 L1 L2

P0 P1 P2

dN1 dN2

Figure 2.2: DAG for the simulation setting when individuals can still be followed up even

after event occurrence to the administrative end τ , where Pm = I(T > am), P0 = 1 and

dNm indicates a clinic visit at am, where m = 0, 1, 2.

will be obtained by solving the following estimating function:

U(ψ) =
n∑
i=1

M∑
m=1

c(am|Ai;ψ, ti0)[Pi(am)− µT (am|Ai;ψ, ti0)]dN∗i (am), (2.37)

where µT (am|Ai;ψ, ti0) = ST (am|Ai;ψ)/ST (ti0|Ai;ψ) and ti0 is the start of follow-up and

we assume dNi(am) = 0 for all am ≤ ti0. Here, we have ti0 = 0, since we are not considering

left-truncated failure times in the present case. In addition,

c(am|Ai;ψ, ti0) =
∂µT (am|Ai;ψ, ti0)/∂ψ

µT (am|Ai;ψ, ti0)[1− µT (am|Ai;ψ, ti0)]
,

i.e. the GEE given in (2.11) with an independent working covariance matrix specified. In

addition, based on model (2.35), ST (am|Ai;ψ) is given by

ST (am|Ai;ψ) = [1− eψ0 exp(ψ1Ai)]
m.

The IIV weighted GEE estimator will be obtained by similarly solving the estimating
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function (2.38) with the same c(·) function defined above:

U(ψ,α) =
n∑
i=1

M∑
m=1

wi(am;α)c(am|Ai;ψ, ti0)[Pi(am)− µT (am|Ai;ψ, ti0)]dN∗i (am). (2.38)

The IIV weights wi(am;α) can be estimated by fitting the following semi-Markov piecewise-

constant baseline proportional hazards model for visit gap times:

λN(am+1;ρ,α) =
K∑
k=1

ρkIk[B(am+1)] exp(α1Lm + α2A), m = 0, 1, ...,M − 1, (2.39)

where Ik(t) = I{t ∈ (dk−1, dk]}, 0 = d0 < d1 <, ..., < dK = +∞ are the cut-points of

visit gap times and ρ = (ρ1, ..., ρK)′ are positive unknown constants and α = (α1, α2)′.

We do this in order to reflect the desirability of using flexible models for the visit time

process. The actual visit time process model (2.36) in the simulation is of this form but

with K = 1. Here, we chose K = 4 and d1 = 0.40, d2 = 0.75 and d3 = 1.00, roughly

based on the quartiles of visit gap times. In general, K and cut-points can be chosen

by a graphical comparison of the resulting estimate of ρ based on model (2.39) with a

non-parametric estimate of the baseline intensity function based on the Cox model. Here,

ρ = (ρ1, ..., ρ4)′ and α = (α1, α2)′ are estimated by the R function phreg. Because the

common risk factors of failure risk and visit intensity at am+1 have been adjusted for by

model (2.39), given the condition (B1) with Zi(am) = (Ai, Lm)′ is true, the IIV weighted

GEE estimators should be consistent.

The MLE for ψ can be obtained by solving the score function based on the likelihood

given in (2.1). All the estimating equations for ψ, GEEs or score functions, are numerically

solved by using R function nleqslv with the Newton-Raphson method specified, setting ψ =

(−1,−1)′ as the initial value. The resulting estimates by IIV weighted GEE, unweighted

GEE and MLE are summarized in Table 2.1 for the case of independent follow-up times

(γ1 = 0) and the case of dependent follow-up times (γ1 = 1). Bias and mean squared error
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(MSE) are respectively estimated by

B̂IAS =
1

N

N∑
r=1

(ψ̂lr − ψlr), l = 0, 1,

and

M̂SE =
1

N

N∑
r=1

(ψ̂lr − ψlr)2, l = 0, 1.

where ψ̂lr is the rth estimate of ψl and N = 500 is the number of simulations. The coverage

probability (CP) for nominal 95% confidence intervals of an estimator of ψl, l = 0, 1, is

estimated by:

ĈP =
1

N

N∑
r=1

I{ψ̂lr − 1.96 se(ψ̂lr) < ψl < ψ̂lr + 1.96 se(ψ̂lr)}, l = 0, 1,

where se denotes the asymptotic standard error of an estimate, and ASE in Tables 2.1-2.4

denotes the average of asymptotic standard errors. The asymptotic distribution (2.27) and

asymptotic standard error of the proposed IIV weighted GEE estimator of ψ is given in

Theorem 1 in Section 2.2.5. The asymptotic standard error of an unweighted GEE esti-

mator can be estimated by the ordinary sandwich form variance formula given in White

(1982) and Liang and Zeger (1986), i.e. Vψ = Γ−1Σ (Γ−1)′, where Γ = −E(∂Ui(ψ)/∂ψ′)

and Σ = E{Ui(ψ)Ui(ψ)′}, where Ui(ψ) is the ith subject’s contribution for the estimating

function given in (2.37). The MLE’s asymptotic variance Vψ is the inverse of its Fisher

information matrix. It can be estimated by the negative Jacobian matrix of the score

function divided by the sample size. When we use nleqslv to solve the score function, the

Jacobian matrices at the resulting MLEs are outputted. In addition, the empirical stan-

dard error (ESE) is the sample standard deviation of estimates across the 500 simulated

data sets.
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Table 2.1: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for (ψ0, ψ1)′ in model

(2.35) when individuals still can be followed up even after failure occurrence. In (2.36),

γ1 = 0, which means that visit times are independent, i.e. assumption (B0) is satisfied;

γ1 = 1, which means that visit times are dependent, but we assume that (B1) is satisfied.

Sample size: n = 1000, and simulation replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

γ1 = 0

MLE
ψ0 -2.543 0.006 0.069 0.071 0.005 0.94

ψ1 -1.713 -0.002 0.085 0.085 0.007 0.95

Unweighted
ψ0 -2.543 0.010 0.072 0.075 0.006 0.93

ψ1 -1.713 -0.004 0.090 0.089 0.008 0.95

IIV Weighted
ψ0 -2.543 0.010 0.072 0.076 0.006 0.93

ψ1 -1.713 -0.004 0.090 0.089 0.008 0.95

γ1 = 1

MLE
ψ0 -2.543 0.111 0.060 0.062 0.016 0.53

ψ1 -1.713 -0.072 0.081 0.081 0.012 0.87

Unweighted
ψ0 -2.543 0.119 0.068 0.066 0.019 0.59

ψ1 -1.713 -0.075 0.091 0.088 0.013 0.87

IIV Weighted
ψ0 -2.543 0.004 0.085 0.090 0.008 0.93

ψ1 -1.713 -0.002 0.113 0.115 0.013 0.93
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From Table 2.1, when γ1 = 0, we see that when visit times are outcome-independent,

bias of all the three methods, MLE, unweighted GEE and IIV weighted GEE, is negligible

relative to the sampling standard error. The ASEs agree well with the corresponding ESEs,

which indicates that the asymptotic distribution and sandwich variance estimator given in

Theorem 1 in Section 2.2.5 provides satisfactory estimation of the asymptotic variances of

the proposed IIV weighted estimators for sample size n = 1000. Additionally, it is seen that

weighted GEE and unweighted GEE estimates have approximately the same ASEs, and

MLEs give slightly smaller ASEs, which suggests that the MLEs are a little more efficient.

In addition, all the three methods give coverage probabilities around 93% − 95% which

are close to the nominal level, 95%, so the overall performances of these three methods

with an independent observation scheme are satisfactory. We found that when sample

sizes are increased, the asymptotic variances can be more accurately estimated so that

coverage probabilities can be improved. Some simulation results for a smaller sample size

n, e.g. n = 500, can be found in Table 2.4 and Table 2.5, where we can see that coverage

probabilities become relatively lower.

The lower part of Table 2.1 summarizes the simulation results for the settings with

outcome-dependent visit times (γ1 = 1). We see that the bias of the IIV weighted es-

timator is still negligible and the coverage is close to the nominal level. However, MLE

and unweighted GEE estimator show large bias (over 80% of the ESE) and poor coverage

probabilities. The estimation of the asymptotic variances of IIV weighted estimators by

the sandwich form estimator given in Theorem 1 is satisfactory.

To summarize this simulation study for the case where failure does not prohibit visits,

we see when the intermittent visit times are non-informative for the inference of out-

comes, i.e. condition (B0) is true, standard estimation methods result in sound inference.

However, when the visit times are not independent, but adjustable by known factors, i.e.
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condition (B1) is true, standard methods fail. The proposed IIV weighting method results

in consistent estimates and comparable efficiency to the MLE when visits are independent,

and also leads to consistent estimates even when visits are dependent.

CASE II: Event occurrence terminates visits

Now, suppose subjects who have experienced the event of interest will not come to

visit the clinic any longer, i.e. follow-up discontinues once a failure is known. In this

case, we assume that the visit process follows a proportional intensity model conditional

on Zm = (A,Lm, P̄
obs
m )′ under assumption (B1*), i.e.

Pr[dNm+1 = 1|A,Lm, P̄ obs
m ]

=

 exp(γ0 + γ1Lm + γ2A), if P̄ obs
m = 1

1, if P̄ obs
m = 0

, m = 0, 1, ...,M − 1, (2.40)

where subscripts for subjects are suppressed for simplicity, and γ = (γ0, γ1, γ2)′ is specified

the same as in CASE I. Data generation for A, Lm, Pm and relevant parameter values are

also the same as in CASE I. The DAG of this scenario is displayed in Figure 2.3 where we

see that current visit intensity is associated with the previous outcome and previous visit

status. Therefore, the observed past outcome should be adjusted for to achieve consistent

estimation by using estimating function estimation methods, though Lm might not be a

common risk factor between outcomes and visit times. That is, even if γ1 from the visit

process model (2.40) equals zero the unweighted GEE without considering the difference of

visit intensities before and after failure occurrence leads to biased estimates, which we can

see from Table 2.2. On the other hand, comparing Table 2.1 with Table 2.2 and Table 2.3,

the MLE based on likelihood (2.1) gives the same estimates, because only the two actual

visits tij < Ti ≤ ti,j+1 are needed in the likelihood (2.1). To obtain the IIV weighted GEE
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estimates, the IIV weights needed in (2.23) are estimated by ŵi(am+1) = 1/λN(am+1; ρ̂, α̂)

by fitting the semi-Markov (discrete) visit gap times model given in (2.39) when P̄ obs
m = 1,

and ŵi(am+1) = 1 when P̄ obs
m = 0, and function c(·) is the same as for CASE I. The

unweighted GEE estimates are obtained similarly by letting ŵi(am+1) = 1 for all m =

0, ...,M − 1, and MLEs are computed by maximizing likelihood (2.1). The simulation

results for γ1 = 0 and γ1 = 1 are summarized in Table 2.2 and Table 2.3, respectively.

From Table 2.2, when γ1 = 0 in (2.40), we see that the bias of MLEs and IIV weighted

GEE estimator is negligible and their coverage probabilities are overall satisfactory. How-

ever, unweighted GEE estimates are biased, as we expected. For the unweighted GEE

method, we pretend to observe the outcome after failure occurrence, i.e. the visit process

changes distribution after failure occurrence, but the past observed outcome history fails

to be adjusted for, so the resulting estimates are biased. In addition, although both MLE

and the IIV weighted GEE estimator are consistent, MLE shows less variability than the

weighted GEE estimator, i.e. MLE is more efficient.

When γ1 = 1 in (2.40), it is seen from Table 2.3 that the bias of IIV weighted GEE

estimator is still negligible, the corresponding ASEs and ESEs are close to each other,

and coverage probabilities are around the nominal 95% level. On the other hand, likeli-

hood (2.1) leads to biased estimates and unsatisfactory coverage probabilities for MLE,

because the information (i.e. Lm) carried by visit times fails to be taken into account.

The unweighted GEE method results in heavily biased estimates and nearly zero coverage

probabilities, because more information fails to be adjusted for.
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A L0 L1 L2

P0 P1 P2

dN0 dN1 dN2

Figure 2.3: DAG for the simulation setting when individuals are assumed to stop visiting

after a known failure, where Pm = I(T > am) and let P0 = 1 and dNm indicates a clinic

visit at am, where m = 0, 1, 2.

Table 2.2: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for (ψ0, ψ1)′ in model

(2.35) when individuals stop visiting after a known failure, with γ1 = 0 in (2.40). Sample

size: n = 1000, and replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

MLE
ψ0 -2.543 0.006 0.069 0.071 0.005 0.94

ψ1 -1.713 -0.002 0.085 0.085 0.007 0.95

Unweighted GEE
ψ0 -2.543 0.748 0.054 0.057 0.562 0.00

ψ1 -1.713 0.434 0.069 0.070 0.193 0.00

IIV Weighted
ψ0 -2.543 0.006 0.072 0.076 0.006 0.92

ψ1 -1.713 -0.001 0.089 0.090 0.008 0.95
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Table 2.3: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for (ψ0, ψ1)′ in model

(2.35) when individuals stop visiting after a known failure, with γ1 = 1 in (2.40). Sample

size: n = 1000, and replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

MLE
ψ0 -2.543 0.111 0.060 0.062 0.016 0.53

ψ1 -1.713 -0.072 0.081 0.081 0.012 0.87

Unweighted GEE
ψ0 -2.543 0.844 0.051 0.054 0.715 0.00

ψ1 -1.713 0.425 0.071 0.069 0.185 0.00

IIV Weighted
ψ0 -2.543 0.009 0.081 0.086 0.008 0.95

ψ1 -1.713 0.007 0.109 0.114 0.013 0.95

CASE III: Event occurrence terminates visits and failure times

could be left-truncated

In the PsA example, only patients who have PsA are enrolled in the cohort, so onset

times of PsA occurred before clinic enrolment times. If we are interested in the time to

the appearance of the first joint damage since onset (t = 0), it may be left-truncated at

clinic entry time ti0 (> 0). To model left-truncation in the setting discussed above, we

simulate a delayed entry time ti0 as the maximum of 0 and a random number generated

from N(0.15, 0.1). As a result, 90% − 95% of ti0’s are greater than zero and the delayed

entry times are completely random. About 40% of subjects whose failures occurred before

ti0 are excluded from the analysis. The outcome process, treatment A and intermediate

variable Lm are generated the same as for CASE II. Visits are generated based on model

(2.40) onward from t0.
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The IIV weighted GEE and unweighted GEE estimates are obtained the same as in

CASE II but note that ti0 > 0 for most individuals. MLEs are found by maximizing the

likelihood (1.5). All these estimates are summarized in Table 2.4 for the scenario where

γ1 = 1 in (2.40). Table 2.4 shows that the IIV weighted GEE performs satisfactorily with

negligible bias and good coverage probabilities. Comparing with Table 2.3, ASEs and ESEs

are higher, because sample size is smaller and fewer visits contribute to the analysis when

failure times could be left-truncated. MLEs are still biased, because Lm is not adjusted

for if only A is conditioned on in the likelihood. Finally, the unweighted GEE method still

performs very poorly.

Table 2.4: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for (ψ0, ψ1)′ in model

(2.35) when individuals stop visiting after a known failure and failure time could be left-

truncated at ti0, with γ1 = 1 in (2.40). Initial sample size: n = 1000, analysis sample size:

n∗
.
= 600 (i.e. n∗ =

∑n
i=1 I{Ti > ti0}), and simulation replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

MLE
ψ0 -2.543 0.124 0.098 0.107 0.027 0.77

ψ1 -1.713 -0.079 0.116 0.124 0.021 0.89

Unweighted GEE
ψ0 -2.543 0.855 0.083 0.085 0.738 0.00

ψ1 -1.713 0.414 0.099 0.101 0.182 0.02

IIV Weighted
ψ0 -2.543 0.020 0.128 0.134 0.018 0.93

ψ1 -1.713 0.001 0.150 0.159 0.025 0.94
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2.3.2 Investigation of the IIV Weighted Estimator under Model

Misspecification for the Visit Process

In Section 2.2.1, we mentioned that in addition to the conditionally independent observa-

tion scheme condition (B1) or (B1*), the outcome model as well as the visit model need

to be correctly specified when the IIV weighting approach is applied. When a marginal

outcome model is the inference target, we should be careful with the model collapsibility

as discussed in Section 1.5. Moreover, if the model for the visit process is misspecified or

certain assumptions which the visit time model relies on are violated, the finally resulting

IIV weighted estimates could be biased. Therefore, this section aims to study the impact

on the IIV weighted estimator when the visit time model fails to be correctly specified.

Except for the model for generating intermittent visits, data are simulated from the same

scenario as CASE II in Section 2.3.1, where a known failure occurrence is assumed to

terminate visits and failure times are not left-truncated.

In CASE II of Section 2.3.1, we generated the visits from a constant baseline propor-

tional intensities model (2.40) when P̄ obs
m = 1, so both the weight formulated as (2.17)

which was considered by Lin et al. (2004) and our proposed weight (2.20) can be applied

to estimate the IIV weights when P̄ obs
m = 1. However, here we generate the visit process

from a semi-Markov model for (discrete) visit gap times given by

Pr[dNm+1 = 1|A,Lm, P̄ obs
m ]

=

 {[λ0B(am+1)]κ − [λ0B(am)]κ} exp{γ1Lm + γ2A}, when P̄ obs
m = 1,

1, when P̄ obs
m = 0,

(2.41)

where 1/λ0 is the scale parameter and κ is the shape parameter of a Weibull distribution.

We set λ0 = 1.8 and consider two values of shape parameter κ in model (2.41): κ = 1.0 and

κ = 1.5 and note that when κ = 1.0, model (2.41) reduces to model (2.40), since we know

78



am+1 − am = 0.01. Let γ1 = 1 in (2.41), so Lm should be adjusted for, and let γ2 = −0.2

as in CASE II. When κ = 1.0, the overall average length of visit gap times is 0.75: 0.34 for

the untreated (A = 0) group and 1.06 for the treated (A = 1) group, and when κ = 1.5,

the overall average length of visit gaps is 0.62: 0.35 for the untreated group and 0.80 for

the treated group.

Given the assumption (B1*) is true with Z(am) = (A,Lm, P̄
obs
m )′, we consider the

following two working visit models for estimating the IIV weights when P̄ obs
m = 1:

λN(am+1) = λN0(am+1;ρ) exp(α1Lm + α2A), (2.42)

and

λN(am+1) = λ†N0(B(am+1);ρ) exp(α1Lm + α2A), (2.43)

where baselines λN0(am+1;ρ) and λ†N0(B(am+1);ρ) are both piecewise constant. Although

Lin et al. (2004) proposed to adopt the Breslow estimator to estimate a non-parametric

baseline λN0(t) in (2.42) and then apply kernel smoothing to attain a certain conver-

gence rate, we consider a parametric baseline so that it can be fairly compared with our

weight formula (2.43) based on a piecewise constant baseline for visit gap times. Cut-

points for the piecewise constant baseline hazards are chosen to be equally spaced, e.g.

(0.30, 0.60, 0.90, 1.20, 1.50) for model (2.42) and (0.3, 0.6, 0.9) for model (2.43).

In Table 2.5, we see that when either κ = 1.0 or κ = 1.5, estimate ψ̃ based on weight

model (2.42) and ψ̂ based on weight model (2.43) have comparable mean squared errors.

We assume condition (B1*) is satisfied and both weight model (2.42) and (2.43) have

taken Z(am) into account, so they are supposed to give asymptotically unbiased estimates

of ψ, provided that the weight model is correctly specified. When κ = 1.0 in (2.41), i.e.

visit times are generated from a constant baseline intensity model, (2.42) and (2.43) are

actually equivalent. As a result, from Table 2.5, we can see that these two models result
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Table 2.5: Investigation of the IIV weighted estimator under different model specifications

for the estimation of IIV weights, where ψ̃ denotes the estimator based on weight model

(2.42) and ψ̂ denotes the estimator based on weight model (2.43). Line 5 and line 6

represent the case of weight model misspecification. BSE denotes the mean of bootstrap

estimated standard errors, and ECP denotes 95% empirical coverage probability; ESE

denotes empirical standard error; MSE denotes mean squared error. Sample size: n=500,

the number of replicates: 500, and bootstrap sample size: 100.

TRUE VALUE BIAS BSE ESE MSE ECP

κ = 1.0

ψ̃0 -2.543 0.015 0.112 0.130 0.017 0.90

ψ̃1 -1.713 0.017 0.150 0.163 0.027 0.92

ψ̂0 -2.543 0.014 0.112 0.129 0.017 0.91

ψ̂1 -1.713 0.010 0.151 0.163 0.027 0.92

κ = 1.5

ψ̃0 -2.543 0.034 0.121 0.127 0.017 0.92

ψ̃1 -1.713 0.067 0.149 0.155 0.028 0.91

ψ̂0 -2.543 0.010 0.126 0.134 0.018 0.93

ψ̂1 -1.713 0.009 0.158 0.166 0.028 0.92
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in estimates with similar bias and standard errors. However, when κ = 1.5, ψ̂ obtained

by using the correct visit process model leads to smaller bias than ψ̃ obtained by a wrong

visit process model. For example, the bias for ψ̃1 is about 0.43 times of the ESE, while

the bias for ψ̂1 is about 0.05 times of the ESE. To conclude, given the essential condition

(B1*) is true, from this study, we see that models should be assessed carefully based on

the characteristics of the real problem and data. Otherwise, biased estimates could result.

Later, in Chapter 6, we will introduce a doubly robust estimator for the IIV weighting

approach, which was also considered by Pullenayegum and Feldman (2013). In addition,

overall low coverage probabilities should be caused by the small sample size, but when the

weight model is correctly specified, coverage is a bit closer to the nominal level.
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Chapter 3

CAUSAL INFERENCE FOR

TREATMENT EFFECTS IN

OBSERVATIONAL STUDIES

WITH DEPENDENT INSPECTION

TIMES

In the previous chapter, our objective was to validly assess a marginal association when an

observational longitudinal cohort had features such as interval censoring, left truncation

and outcome-dependent intermittent inspection times. We did not discuss the estimation

of a (marginal) causal effect when these problems are present. In this chapter, we propose

a double weighting method which leads to consistent estimation of the causal effect of a

treatment variable on an interval-censored event time outcome under a outcome-dependent
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observation scheme. This method can be extended to the case with a time-varying treat-

ment which is assigned at a set of regular discrete times, but we will focus on a time-fixed

treatment in the context of the PsA example. The doubly weighted estimator can eliminate

the selection bias due to intermittent outcome-dependent follow-up times as well as poten-

tial confounding of the treatment effect. Similar methodology can be applied to the non-

and semi-parametric estimation which will be introduced in Chapter 4, but parametric

estimation is the focus of this chapter. We continue the discussion based on a parametric

proportional hazards model (2.2) as an example. Then empirical studies will be employed

to examine the finite sample performances of proposed estimators, with simulations of

both a randomized experiment and an observational study. The proposed method will be

applied to the PsA cohort in Chapter 5 where treatments such as biologics are confounded

with disease risk factors and the event time outcome is dependently interval-censored due

to intermittent visits.

3.1 A Doubly Weighted Estimator for Causal Infer-

ence with Intermittent Outcome-Dependent In-

spection Times

From the previous chapter, we know that IIV weights eliminate the selection bias caused

by outcome-dependent intermittent observation. Now, we will discuss how to deal with

the selection bias due to confounders in observational studies. See Section 1.3.1 for the

definition of causal effect and confounding. An example we mentioned earlier is to study

the effect of biologics on the time to some joint damage event, e.g. time to an increase in

the number of damaged joints since treatment started. In the PsA cohort study, the median
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durations of the first episodes of biologics is over 3 years, so treatment with biologics can

be considered as a time-fixed treatment, when the treatment effect of biologics on joint

damage event times is of interest. It is known that the prescription of biologics could

be determined by disease status, biomarkers, demographic information, family history, or

other concurrent treatments such as NSAIDs and DMARDs, which were assessed at or

prior to biologics’ assignment. On the other hand, those variables may be risk factors of

joint damage as well. The common causes between treatment assignment and outcomes are

confounders and result in selection bias in the analysis of outcomes. For example, patients

who have more joint activity are more likely to receive biologics and are also at higher

risk of joint damage. A crude estimate of the association between biologics and the joint

damage event by directly comparing the two treatment groups might be misleading, which

we will discuss in Section 5.1.2 and Section 5.2. In this chapter, we consider a longitudinal

observational study with confounding variables as well as dependent inspection times which

are adjusted for by double weighting so that causal marginal treatment effect(s) can be

validly evaluated and plausibly interpreted.

3.1.1 Structural Models versus Associational Models

Recall that model (2.2) which was introduced in Section 2.1.1 is a parametric proportional

hazards model which allows the estimation of the marginal association of a variable of

primary interest, e.g. A, and a failure time outcome, T , i.e.

λT (t|A = a;θ) = λT,0(t;γ) exp(βa), (3.1)

where we let A be a dichotomous treatment random variable, e.g. 1 if treated, or 0

otherwise; a denotes the realization value of A; λT (t|A = a;θ) is the hazard function of

T conditional on the actual treatment A = a; λT,0(t;γ) is a parametric baseline hazard
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function, and θ = (γ ′, β)′. An estimate of β from the above model represents association

between A and T , but can not be interpreted as a causal effect of A on T unless treatment A

is randomized, so models like (3.1) are referred to as associational models. Alternatively,

Robins et al. (2000) introduced a class of so-called marginal structural models (MSMs)

relating the hypothetical exposure or treatment, a, to the corresponding counterfactual

outcome, T a and allowing the unconditional or marginal effect of a to be estimated. The

MSM corresponding to model (3.1) is defined by

λTa(t;θ
∗) = λT 0(t;γ∗) exp(β∗a), (3.2)

where λTa is the hazard function of the counterfactual outcome T a under hypothetical

treatment a. Here, θ∗ = (γ∗′, β∗)′ and λT 0 , the parameter and baseline hazard in the

counterfactual outcome model (3.2), are the targets of inference. Specifically, T 0 and T 1

represent the counterfactual outcomes under being untreated and treated, respectively. As

we introduced in Section 1.3.3, usually only one of the counterfactual outcomes can be

observed for each subject, but the average causal effect (ACE), e.g. the causal hazard

ratio in MSM (3.2), can be evaluated for the population. In this MSM, eβ
∗

is interpreted

as the casual hazard ratio of being treated (a = 1) versus being not untreated (a = 0),

which is usually different from the crude hazard ratio, eβ, of A = 1 versus A = 0 from

model (3.1), when treatment A is non-randomized.

In a randomized experiment, the association parameter β and the causal effect β∗ are

equal, since randomization ensures the absence of measured or unmeasured confounder-

s. But in an observational study, they are usually different, unless it is evident that the

treatment is not confounded. Greenland et al. (1999) defined the difference between the

population-averaged causal effect, β∗, and the raw marginal association between treatment

and outcome, β, as the amount of confounding bias. Standard methods to estimate a causal
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effect, e.g. β∗, and eliminate the confounding bias are standardization, inverse probability

weighting, and propensity score adjustment approaches such as matching, stratification

and covariate adjustment. Among them, inverse probability weighting is commonly used

in practical applications. Explicitly, in an observational study, under the assumption of no

unmeasured confounders, i.e. (A1) in Section 1.3.3, parameters in MSMs can be consistent-

ly estimated by modifying the crude estimates obtained from an associational model, e.g.

(3.1), by weighting each subject with the inverse probability of receiving that treatment.

In this sense, treatment can be considered as unconfounded in the pseudo-population. As

a result, weighted estimates based on the associational model have causal interpretations.

In the following, we will introduce an inverse-probability-of-treatment (IPT) weight first

and then combine that with the IIV weight we proposed in Section 2.2.2 for parametric

survival models.

3.1.2 A Doubly Weighted Estimator

Section 1.3.5 provides a preliminary introduction to the inverse-probability-of-treatment

(IPT) weighting approach, which is also referred to as propensity score weighting method,

because the IPT weights are formulated as the inverse of propensity scores. This section will

further introduce the IPT weighting method and combine that with the IIV weighting to

remove various sources of selection bias. As we discussed earlier in Section 1.3.3, in addition

to the consistency assumption and stable unit-treatment value assumption (SUTVA), an

important assumption we need to assume is the conditional exchangeability of treatment,

i.e. no unmeasured confounders, which can be defined for our context as

(C1) Strongly Ignorable Treatment Assignment/No Unmeasured Confounders

P a(t)q A|V , ∀t > 0 and ∀a,
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where P a(t) = I(T a > t), a = 0 or 1 if treatment is a dichotomous variable, and

its mean is E[P a(t)] = Pr(T a > t) , STa(t). Also, we assume that for any a, the

following positivity assumption is satisfied

0 < Pr(A = a|V ) < 1, for all V .

Assuming that the vector Vi includes all the measured confounders between Ai and Ti

and there are no unmeasured confounders, we can construct the following weight:

w∗i =
1

Pr(Ai = a|Vi; ζ)
(3.3)

,
1

f(a|Vi; ζ)
,

where f(a|Vi, ζ) denotes a parametric mass function or a density function of random

treatment variable Ai at value or level a, conditional on confounders Vi. The measured

confounders Vi can be anything which predicts the assignment of treatment, affects the

outcome, and was measured before the assignment of treatment. Some good candidates

for the confounders of treatment with biologics could be age, gender, joint activity, PsA

duration, results of lab tests, family history of disease, and other treatments used concur-

rently. Further detailed theory about the propensity scores and IPT weighting methods

can be found in Rosenbaum and Rubin (1983) and Hernán and Robins (2006, 2016).

If Ai is binary, the parameter ζ in weight formula (3.3) can be estimated by fitting a

logistic regression:

ln

[
Pr(Ai = 1|Vi; ζ)

1− Pr(Ai = 1|Vi; ζ)

]
= ζ ′Vi, (3.4)

where Vi = (1, Vi1, ..., Viq)
′. Then, ζ can be estimated by solving the quasi-likelihood score

equation
∑n

i=1Ui3(ζ) = 0 based on the logistic regression model (3.4):

Ui3(ζ) =
∂p(Vi; ζ)/∂ζ

p(Vi; ζ)[1− p(Vi; ζ)]
[Ai − p(Vi; ζ)], (3.5)

87



where p(Vi; ζ) = Pr[Ai = 1|Vi; ζ]. This can also be done by using software for generalized

linear models such as R function glm. Next, the IPT weight w∗i can be estimated by

w∗i (ζ̂) = Pr[Ai|Vi; ζ̂]−1 = {exp(Aiζ̂
′Vi)/[1 + exp(ζ̂ ′Vi)]}−1. (3.6)

To consistently estimate the causal effect, e.g. β∗ in model (3.2), in an observation-

al study where treatment is confounded and failure times may be dependently interval-

censored, a double weight given below can be applied:

w†i (t) = w∗i wi(t), (3.7)

where wi(t) is the IIV weight defined by (2.14) for adjusting for the outcome-dependent

follow-up times, and w∗i is the IPT weight defined by (3.3) for adjusting for confounding.

For example, we can solve the estimating function (2.3) incorporated with the double

weight w†i (t) for the case where failure occurrence does not terminate visits (CASE I) and

visit times are continuous, i.e.

Uww(θ∗,α, ζ) =
n∑
i=1

∑
all a

∫ τi

0

w∗i (ζ)wi(t;α)I(Ai = a)c(t|a,θ∗)[Pi(t)− STa(t;θ∗)]dN∗i (t),

(3.8)

where STa(t;θ
∗) is a parametric survival function of the counterfactual outcome T a, with

assuming that a is a discrete treatment; I(·) is an indicator function; dN∗i (t) = dNi(t)Ci(t)

where Ci(t) is the at risk indicator, i.e. Ci(t) = I(Ci > t), and Ci is the random drop-out

time of subject i; c(t|a,θ∗) is defined similarly as in (2.3).

In the following, we will show the doubly weighted estimating function (3.8) is an

unbiased estimating function to estimate the parameter θ∗, provided that assumption (B1)

and assumption (C1) are satisfied and all the involved models are correctly specified. To

show (3.8) is an unbiased estimating function, we need to prove that E{Uww
i (θ∗,α, ζ)} = 0.
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We assume that there is no random drop-out for simplicity, i.e. Ci(t) = 1 and dN∗i (t) =

dNi(t) for all t > 0. Variable Zi(t
−) denotes some features of the observed history so that

the conditionally independent observation scheme assumption (B1) is satisfied. We assume

that {Ai,Vi} ⊂Hobs
i (t−) for all t and suppress the parameters θ∗, α and ζ in the notation

for convenience. Then,

E

{∑
all a

∫ τi

0

w∗iwi(t)I(Ai = a)c(t|a)[Pi(t)− STa(t)]dNi(t)

}

=
∑
all a

∫ τi

0

c(t|a)E

{
I(Ai = a)

f(a|Vi)
dt

E[dNi(t)|Zi(t−)]
[Pi(t)− STa(t)]dNi(t)

}
=
∑
all a

∫ τi

0

c(t|a)EA,V,Z,P

{
I(Ai = a)

f(a|Vi)
dt

E[dNi(t)|Zi(t−)]
[Pi(t)− STa(t)]EdN |A,V,P,Hobs [dNi(t)]

}
=
∑
all a

∫ τi

0

c(t|a)EA,V,Z,P

{
I(Ai = a)

f(a|Vi)
dt

E[dNi(t)|Zi(t−)]

× [Pi(t)− STa(t)]E
[
dNi(t)|Zi(t−)

]}
, by (B1)

=
∑
all a

∫ τi

0

c(t|a)EA,V,P

{
I(Ai = a)

f(a|Vi)
[Pi(t)− STa(t)]

}
dt

=
∑
all a

∫ τi

0

c(t|a)EA,V

{
I(Ai = a)

f(a|Vi)
[E(Pi(t)|Ai = a,Vi)− STa(t)]

}
dt

=
∑
all a

∫ τi

0

c(t|a)EA,V

{
I(Ai = a)

f(a|Vi)
[Pr(Ti > t|Ai = a,Vi)− STa(t)]

}
dt

=
∑
all a

∫ τi

0

c(t|a)EA,V

{
I(Ai = a)

f(a|Vi)
[Pr(T ai > t|Vi)− STa(t)]

}
dt, by (C1)

=
∑
all a

∫ τi

0

c(t|a)EV

{
[Pr(T ai > t|Vi)− STa(t)]

1

f(a|Vi)
E[I(Ai = a)|Vi]

}
dt

=
∑
all a

∫ τi

0

c(t|a)EV

{
[Pr(T ai > t|Vi)− STa(t)]

1

f(a|Vi)
f(a|Vi)

}
dt
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=
∑
all a

∫ τi

0

c(t|a) {EV [Pr(T ai > t|Vi)]− STa(t)} dt

=
∑
all a

∫ τi

0

c(t|a)[Pr(T ai > t)− STa(t)]dt

=
∑
all a

∫ τi

0

c(t|a)[STa(t)− STa(t)]dt

= 0,

where Pi(t) = I(Ti > t) is the observed response, and P a
i (t) = I(T ai > t) denotes the

counterfactual response under hypothetical treatment value or level a.

Let U1i(θ
∗,α, ζ) be Uww

i which is given in (3.8), the doubly weighted estimating func-

tion for the outcome process, Ui2(α) be an unbiased estimating function for the IIV weight

wi(t), and Ui3(ζ) be an unbiased estimating function for the IPT weight w∗i . Then, define

Ui = (U ′1i,U
′
i2,U

′
i3)′. Since Ui is a vector of unbiased estimating functions, by White

(1982), under mild regularity conditions, solving
∑n

i=1Ui(θ
∗,α, ζ) = 0 leads to consistent

estimators of parameters θ∗, α and ζ, given the outcome model STa(t;θ
∗) and the models

for weight w∗i (ζ) and weight wi(t;α) are all correctly specified.

Similar to the Theorem 1 given in Section 2.2.5, the proposed doubly weighted estimator

of θ∗ has an asymptotically Normal distribution with a sandwich form variance, i.e.

√
n(θ̂∗ − θ∗) D−→ N(0, Vθ∗), (3.9)
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where Vθ∗ is the r × r left upper block of A−1B (A−1)′, r is the dimension of θ∗, and

A =


−E(∂Ui1/∂θ

∗′) −E(∂Ui1/∂α
′) −E(∂Ui1/∂ζ

′)

0 −E(∂Ui2/∂α
′) 0

0 0 −E(∂Ui3/∂ζ
′)

 (3.10)

,


A11 A12 A13

0 A22 0

0 0 A33


and

B = E{Ui U ′i}

=


E(Ui1U

′
i1) E(Ui1U

′
i2) E(Ui1U

′
i3)

E(Ui2U
′
i1) E(Ui2U

′
i2) E(Ui2U

′
i3)

E(Ui3U
′
i1) E(Ui3U

′
i2) E(Ui3U

′
i3)

 (3.11)

,


B11 B12 B13

B21 B22 B23

B31 B32 B33

 .

Matrices A and B can be estimated by

Â =


− 1
n

∑n
i=1 ∂Ui1/∂θ

∗′ − 1
n

∑n
i=1 ∂Ui1/∂α

′ − 1
n

∑n
i=1 ∂Ui1/∂ζ

′

0 − 1
n

∑n
i=1 ∂Ui2/∂α

′ 0

0 0 − 1
n

∑n
i=1 ∂Ui3/∂ζ

′


∣∣∣∣∣∣∣∣∣
(θ̂∗,α̂,ζ̂)

,

and B̂ = 1
n

∑n
i=1Ui(θ̂

∗, α̂, ζ̂) Ui(θ̂
∗, α̂, ζ̂)

′
, respectively, where n is the sample size. Details

about the estimation of Vθ∗ will be discussed under specific models in simulation studies.
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3.2 Simulation Study

Now, we will empirically study the finite sample performance of the proposed doubly

weighted estimator. In Section 2.3, we investigated the IIV weighted estimator in a para-

metric proportional hazards outcome model. In this section, as an alternative, we consider

a structural accelerated failure time (AFT) model, e.g. model (1.8) which was introduced

in Section 1.3.4. We assume a Log-normal distribution for failure times Ti, i = 1, ..., n.

That is, the logarithm of Ti has a Normal location-scale distribution:

ln(Ti) = θ0 + θ1Ai + θ2Li + θ3Vi + σWi, Wi ∼ N(0, 1), (3.12)

where all the regressors Ai, Li and Vi are time-fixed. We set θ0 = 0.5, θ1 = 1, θ2 = −0.3,

θ3 = −0.3 and σ = 1.5 so that approximately 90% − 95% of the Ti are interval-censored

and the rest are right-censored at the last visit before the administrative end of follow-

up time τi = 5. Factors Vi and Li are assumed to be associated with shorter failure

times, while treatment Ai is supposed to prolong failure times. Here, Vi is a confounder

between treatment Ai and outcome Ti, and it is assumed to follow a Normal distribu-

tion N(µv, σv), where µv = 3 and σv = 1. Treatment Ai is a binary random variable

from BIN
(

1,
exp(ζ0+ζ1Vi)

1+exp(ζ0+ζ1Vi)

)
. Note that when ζ1 = 0, treatment Ai is independent of

Vi. Otherwise, it is confounded by Vi. We consider two scenarios: ζ = (ζ0, ζ1)′ = (0, 0)′

represents a randomized experiment, and ζ = (−6, 2)′ represents an observational study

where treatment is confounded. In either case, the probability of being treated, i.e. Ai = 1,

is approximately 0.5. Additionally, there is an intermediate variable Li that affects visit

times, with Li|Ai ∼ N(β0 + β1Ai, σl), where β0 = 4, β1 = −2, and σl = 1. Therefore, the
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distribution of (Ai, Li, Vi) in model (3.12) is designed to have:

f(Ai, Li, Vi) =fL(Li|Ai, Vi)fA(Ai|Vi)fV (Vi)

=fL(Li|Ai)fA(Ai|Vi)fV (Vi),

where fL, fA and fV are the probability density or mass functions of the relevant random

variables.

It can be shown that the (marginal) structural AFT model of T ai is given by

ln(T ai ) = θ∗0 + θ∗1a+ σ∗W, W ∼ N(0, 1), (3.13)

where θ∗0 = θ0 + θ2β0 + θ3µv, θ
∗
1 = θ1 + θ2β1 and σ∗ =

√
σ2 + θ2

2σ
2
l + θ2

3σ
2
v . This can be

shown as below by marginalizing over Li and Vi, assuming Ai is randomized, i.e. Ai q Vi:

E[ln(T ai )] =E[ln(T ai )|Ai = a]

=E{E[ln(Ti)|Ai = a, Li, Vi]|Ai = a}

=θ0 + θ1a+ θ2E[Li|Ai = a] + θ3E[Vi|Ai = a]

=θ0 + θ1a+ θ2E[Li|Ai = a] + θ3E[Vi]

=θ0 + θ2β0 + θ3µv + (θ1 + θ2β1)a.

Parameter θ∗ = (θ∗0, θ
∗
1, σ

∗)′ in (3.13) is the parameter of interest.

To imitate intermittent and dependent visit times, we assume a discrete time visit

process, as discussed in Section 2.2.4. Here, we consider the case: failure occurrence

terminates the visit process (i.e. CASE II). That is, dNi(t) is defined at 0 < a1 < ... <

aM = τ = 5, with a time increment of 0.01 and M = 500, and the visit process is generated
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by

Pr[dNi,m+1 = 1|Ai, Li, Vi, P̄ obs
im ]

=

 exp(γ0 + γ1Ai + γ2Li + γ3Vi), if P̄ obs
im = 1

1, if P̄ obs
im = 0

m = 0, 1, ...,M − 1, and i = 1, ..., n.

(3.14)

where γ0 = −5, γ1 = −0.2, γ2 = 0.2, and γ3 = 0.1, so that the median length of visit gaps

is about 0.45 ∼ 0.50 for the untreated group, and 0.80 ∼ 0.85 for the treated group. There-

fore, variable Zi(t
−) in the assumption (B1*) is actually defined by {Ai, Li, Vi, P̄ obs

i (t−)}.

We assume that there is no random drop-out for simplicity. Similar to the simulation stud-

ies in Section 2.3.1, IIV weights wi(t) are estimated by fitting a semi-Markov proportional

hazards model with a piecewise constant baseline for visit gap times, which is defined by

Pr[dNi,m+1 = 1|Ai, Li, Vi, P̄ obs
im ;α]

=


∑K

k=1 αkIk[B(am+1)] exp(αK+1Ai + αK+2Li + αK+3Vi), if P̄ obs
im = 1

1, if P̄ obs
im = 0

, (3.15)

where B(t) is the gap time between the most recent past visit prior to t and t; Ik[B(t)] =

I{B(t) ∈ (dk−1, dk]}, 0 = d0 < d1 <, ..., < dK = +∞ are the cut-points for the piecewise

constant baseline and they are set as (0, 0.40, 0.75, 1.0,+∞) when sample size is 500 and as

(0, 0.25, 0.50, 0.75,+∞) when sample size equals 1000 or 2000. Parameter α = (α1, ..., α7)′

can be approximately estimated by the R function phreg or by solving the following esti-

mating function:

Ui2(α) =

m∗i∑
j=1

{
∂ln{λ[B(tij)]}

∂α
−
∫ B(tij)

0

∂λ(s)

∂α
ds

}
(3.16)

− I(P̄ obs
i (tim∗i ) = 1)

∫ τ−tim∗
i

0

∂λ(t)

∂α
dt,
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where 0 < ti1 < ... < tij < ... < tim∗i < τ are the actual visits of subject i before a failure

is observed, and λ(s) =
∑K

k=1 αkIk(s) exp(αK+1Ai + αK+2Li + αK+3Vi), K = 4. The IIV

weights are computed by (2.14) when P̄ obs
im = 1 and are set to be 1 when P̄ obs

im = 0.

A

L

V

P0 P1 P2

dN0 dN1 dN2

Figure 3.1: DAG for the simulation setting with risk factors A (treatment), L (intermediate

variable), and V (confounder), when individuals are assumed to stop visiting after failure

occurrence, where Pm = I(T > am), with P0 = 1, and dNm indicates a clinic visit at am,

m = 0, 1, 2.

A DAG is displayed in Figure 3.1 to demonstrate the simulation scenario, where we can

see L is an intermediate variable on the pathway from treatment A to outcome P (t), and

V is a confounder between A and P (t). Furthermore, the visit process dN(t) and outcome

process P (t) share common risk factors, A, L and V . The visit process dN(t) is also

associated with dN(t−) and P (t−). Therefore, this example corresponds to a longitudinal

study with dependent follow-up times and a confounded treatment.
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Then, the doubly weighted estimating function of the outcome model for subject i is

defined by

Ui1(θ∗,α, ζ) =
1∑

a=0

mi∑
j=1

w∗i (ζ)wi(tij;α)I(Ai = a)c(tij|a;θ∗)[Pi(tij)− STa(tij;θ∗)], (3.17)

where tij’s include the m∗i actual visits and mi − m∗i pseudo-visits after failure occurred

and the survival function of the counterfactual outcome T ai based on model (3.13) is given

as

STa(tij;θ
∗) = 1− Φ

(
ln(tij)− θ∗0 − θ∗1a

σ∗

)
,

where Φ(t) is the CDF of a standard normal distribution at t. Regarding the IPT weight,

parameter ζ = (ζ0, ζ1)′ in the logistic regression (3.4) can be estimated by software for

generalized linear models or by solving the estimating equation
∑n

i=1Ui3(ζ) = 0 given in

(3.5).

Three estimators, (i) the MLE based on likelihood (2.1), (ii) the IIV weighted estimator

based on estimating function (2.38), and (iii) the proposed doubly weighted estimator based

on estimating function (3.17), will be examined and compared with each other. Function

c(·) needed in (ii) and (iii) is given in (2.4), so (ii) and (iii) are weighted GEE estimators

with independent working covariance matrices. The MLEs are obtained by R function

survreg which can handle interval-censored survival data for AFT models and yield robust

sandwich variance estimates. The GEE estimates with independent working covariance

matrices are obtained by R function glm with η = Φ−1(1 − µ) for binary responses P a
i (t)

and with relevant weights applied, where η = b0 + b1a+ b2ln(t) is the linear predictor and

µ = E[P a
i (t)] = STa(t;θ

∗) is the mean function. The reparameterization is θ∗0 = −b0/b2,

θ∗1 = −b1/b2, and σ∗ = 1/b2.

For each estimator, Bias, ASE, ESE, MSE and CP are summarized in Tables 3.1-3.6

for 500 simulation replicates; we considered three sample sizes, n = 500, 1000, and 2000.
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The asymptotic variance Vθ∗ of the proposed doubly weighted GEE estimator is estimated

by the sandwich form variance estimator Â−1B̂ (Â−1)′, where the estimators of Â11 and

Â12 in (3.10) can be derived similarly as for Section 2.3.1 by (2.28) and (2.31), respectively,

and A13 can be estimated by

Â13 =
1

n

n∑
i=1

1∑
a=0

mi∑
j=1

(2a− 1)wi(tij; α̂)w∗2i (ζ̂)
∂p(Vi|ζ)

∂ζ ′

∣∣∣∣
ζ=ζ̂

c(tij|a; θ̂∗)[Pi(tij)−STa(tij; θ̂∗)].

(3.18)

Since Ui2 and Ui3 are score functions, A22 = B22 and A33 = B33 can be estimated by the

observed Fisher information matrices provided by phreg and glm, respectively.

From Tables 3.1-3.6, we see that MLEs are biased both when treatment is randomized

and confounded. Especially, when A is confounded by V , i.e. in Tables 3.2, 3.4 and 3.6

when ζ = (−6, 2)′, the bias produced by MLEs is very large because likelihood (2.1) fails

to take the informative inspection times as well as the confounded treatment into account.

Tables 3.1, 3.3 and 3.5 show that the IIV weighted estimator results in negligible bias and

good coverage probabilities around the 95% nominal level. However, in Tables 3.2, 3.4 and

3.6, the IIV weighted estimates which do not adjust for confounding have some selection

bias caused by the non-randomized treatment. For the doubly weighted estimator, when

treatment is randomized, from Tables 3.1, 3.3 and 3.5, we see that bias is negligible and

coverage is good; when treatment is not randomized, from Tables 3.2, 3.4 and 3.6, bias

is mush less than that for the IIV weighted estimator, and coverage becomes close to

the nominal level when sample size grows. Slightly low coverage of the doubly weighted

estimates in Tables 3.2, 3.4 and 3.6 reflects the fact that ASEs are a bit smaller than the

ESEs, but when sample size increases the difference becomes smaller and coverage is closer

to 95%. Robins et al. (2000) commented that large variability in the weights can result

in weighted estimators with large variances. In our study, there are some extremely large
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weights, especially when wi(t) and w∗i are combined for the doubly weighted estimator. How

to deal with large variability in weights and improve the weighted estimators is discussed

in Chapter 6.

In this chapter, we applied the double weighting method to estimating functions for

parametric models. In fact, it can be applied to non- or semi-parametric estimation based

on estimating equations as well. We will illustrate that in the analyses of the PsA data in

Chapter 5.

Table 3.1: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for the case where Ai is

randomized, i.e. ζ = (0, 0)′. Sample size: n = 500. Number of replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

θ∗0 -1.600 0.109 0.108 0.097 0.021 0.85

MLE θ∗1 1.600 -0.124 0.152 0.141 0.035 0.88

ln(σ∗) 0.444 -0.079 0.040 0.039 0.008 0.48

θ∗0 -1.600 0.005 0.150 0.141 0.020 0.96

IIV Weighted θ∗1 1.600 -0.034 0.189 0.178 0.033 0.95

ln(σ∗) 0.444 -0.014 0.062 0.065 0.004 0.93

θ∗0 -1.600 0.003 0.150 0.140 0.020 0.96

Doubly Weighted θ∗1 1.600 -0.028 0.187 0.178 0.032 0.95

ln(σ∗) 0.444 -0.014 0.062 0.065 0.004 0.94
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Table 3.2: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for the case where Ai is

confounded by Vi, i.e. ζ = (−6, 2)′. Sample size: n = 500. Number of replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

θ∗0 -1.600 0.261 0.108 0.108 0.080 0.33

MLE θ∗1 1.600 -0.440 0.151 0.155 0.218 0.18

ln(σ∗) 0.444 -0.073 0.039 0.039 0.007 0.52

θ∗0 -1.600 0.176 0.144 0.155 0.055 0.73

IIV Weighted θ∗1 1.600 -0.371 0.184 0.197 0.176 0.46

ln(σ∗) 0.444 -0.017 0.061 0.066 0.005 0.92

θ∗0 -1.600 0.015 0.227 0.270 0.073 0.91

Doubly Weighted θ∗1 1.600 -0.061 0.295 0.360 0.133 0.91

ln(σ∗) 0.444 -0.015 0.090 0.110 0.012 0.90
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Table 3.3: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for the case where Ai is

randomized, i.e. ζ = (0, 0)′. Sample size: n = 1000. Number of replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

θ∗0 -1.600 0.104 0.077 0.075 0.016 0.73

MLE θ∗1 1.600 -0.117 0.107 0.103 0.024 0.81

ln(σ∗) 0.444 -0.076 0.028 0.028 0.007 0.22

θ∗0 -1.600 -0.005 0.107 0.111 0.012 0.93

IIV Weighted θ∗1 1.600 -0.020 0.134 0.132 0.018 0.94

ln(σ∗) 0.444 -0.009 0.044 0.045 0.002 0.95

θ∗0 -1.600 -0.006 0.106 0.110 0.012 0.94

Doubly Weighted θ∗1 1.600 -0.018 0.133 0.130 0.017 0.95

ln(σ∗) 0.444 -0.009 0.044 0.045 0.002 0.95
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Table 3.4: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for the case where Ai

is confounded by Vi, i.e. ζ = (−6, 2)′. Sample size: n = 1000. Number of replicates:

N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

θ∗0 -1.600 0.263 0.076 0.071 0.074 0.06

MLE θ∗1 1.600 -0.446 0.107 0.100 0.209 0.01

ln(σ∗) 0.444 -0.073 0.027 0.027 0.006 0.23

θ∗0 -1.600 0.181 0.102 0.099 0.043 0.54

IIV Weighted θ∗1 1.600 -0.380 0.130 0.126 0.161 0.16

ln(σ∗) 0.444 -0.017 0.043 0.043 0.002 0.94

θ∗0 -1.600 0.005 0.171 0.204 0.041 0.93

Doubly Weighted θ∗1 1.600 -0.026 0.225 0.259 0.068 0.93

ln(σ∗) 0.444 -0.012 0.069 0.085 0.007 0.91
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Table 3.5: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for the case where Ai is

randomized, i.e. ζ = (0, 0)′. Sample size: n = 2000. Number of replicates: N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

θ∗0 -1.600 0.111 0.054 0.050 0.015 0.47

MLE θ∗1 1.600 -0.124 0.076 0.071 0.020 0.64

ln(σ∗) 0.444 -0.074 0.020 0.018 0.006 0.02

θ∗0 -1.600 0.010 0.075 0.073 0.005 0.95

IIV Weighted θ∗1 1.600 -0.036 0.095 0.090 0.009 0.94

ln(σ∗) 0.444 -0.006 0.031 0.031 0.001 0.94

θ∗0 -1.600 0.008 0.075 0.073 0.005 0.95

Doubly Weighted θ∗1 1.600 -0.033 0.094 0.090 0.009 0.94

ln(σ∗) 0.444 -0.006 0.031 0.031 0.001 0.94
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Table 3.6: Bias, average of asymptotic standard errors (ASE), empirical standard error

(ESE), mean squared error (MSE) and coverage probability (CP) for the case where Ai

is confounded by Vi, i.e. ζ = (−6, 2)′. Sample size: n = 2000. Number of replicates:

N = 500.

TRUE VALUE BIAS ASE ESE MSE CP

θ∗0 -1.600 0.264 0.054 0.051 0.072 0.00

MLE θ∗1 1.600 -0.448 0.076 0.074 0.206 0.00

ln(σ∗) 0.444 -0.069 0.019 0.019 0.005 0.03

θ∗0 -1.600 0.184 0.072 0.071 0.039 0.30

IIV Weighted θ∗1 1.600 -0.383 0.092 0.092 0.155 0.01

ln(σ∗) 0.444 -0.012 0.031 0.030 0.001 0.94

θ∗0 -1.600 0.013 0.121 0.134 0.018 0.96

Doubly Weighted θ∗1 1.600 -0.044 0.160 0.166 0.029 0.92

ln(σ∗) 0.444 -0.010 0.049 0.053 0.003 0.94
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Chapter 4

NON- AND SEMI-PARAMETRIC

ESTIMATION FOR

INTERVAL-CENSORED FAILURE

TIME DATA WITH DEPENDENT

INSPECTION TIMES

In Chapter 2, we discussed parametric estimation of the distributions of failure times, in

the case where failure times could be dependently interval-censored due to intermittent and

outcome-dependent inspection times. This chapter focuses on non- and semi-parametric

estimation for interval-censored failure times with intermittent observation. The inverse-

intensity-of-visit (IIV) weighted estimating function approach will be extended and applied.
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4.1 IIV Weighted Non-Parametric Estimation of Dis-

tribution Functions

Non-parametric estimation of survival functions or distribution functions is important in

the analysis of lifetime or failure time data. First, a graphical display based on non-

parametric estimation of a distribution function or survival function can help one choose

models for fitting data or check certain model assumptions. For example, the proportional

hazards assumption which is needed for a Cox model can be graphically checked by the

ln(−ln) transformation of survival curves. If the assumption is satisfied, then the plot

of ln{−ln[ST (t)]} versus time t or ln(t) should show roughly vertical parallel curves for

individuals grouped according to covariate values (Lawless, 2003). Non-parametric esti-

mates of survival or distribution functions can also be employed for robustly estimating

distribution quantities, e.g. median or percentiles, and for multi-sample comparison with

respect to a particular risk factor without model fitting.

As discussed in the preceding chapters, the assessment of failure time distributions for

the whole population or subgroups stratified by some fixed variable is often of interest, e.g.

the marginal CDF, FT (t), or FT (t|A) for t > 0, of failure time T . To validly estimate the

CDF, FT (t), or survival function, ST (t), by standard methods such as the Kaplan-Meier

estimator for right-censored data, we need censoring times to be independent of failure

times. For interval-censored data, when inspection times are independent of failure times,

failure times are independently interval-censored. Then, Turnbull (1976)’s non-parametric

estimator of FT (t) is obtained by maximizing likelihood (2.1). The resulting estimate

F̂T (t) has positive support in specified intervals according to the observed interval-censored

observations but may be undefined over some intervals (Lawless, 2003). The validity of this

estimator relies on inspection times being independent of failure times. When inspection
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times til and tir in likelihood (1.3), or tij and ti,j+1 in likelihood (2.1), are not marginally

independent of failure times, estimators could be inconsistent, as we have shown in Section

2.3.1 in the simulations for parametric models.

Non-parametric estimation for dependently right-censored failure time data has been

heavily discussed in the literature via a variety of techniques: e.g. inverse probability

weighting by Robins (1993); Wang and Wells (1998); Robins and Finkelstein (2000); Satten

et al. (2001); Hajducek and Lawless (2013), and EM algorithm by Finkelstein et al. (2002);

Zhang et al. (2007); Chen et al. (2010). However, dependent interval censoring has received

limited attention so far. van der Laan and Robins (1998) considered this for current status

data, which involves a single observation time per individual. van der Laan and Hubbard

(1997) also considered current status data but did not develop estimation methods for more

general interval-censored data. Their methods assume that there exists a covariate Z(t)

such that given its history, the visit or observation time process is ignorable. Alternatively,

introducing latent variable(s) to connect the failure time process and the visit process,

which was reviewed in Chapter 2, is another way to deal with dependent interval censoring.

Additionally, Park et al. (2006) considered dependent censoring as a competing risk of

failure and their method for nonparametric inference can be used for dependently right-

censored as well as dependently interval-censored data. In the following, we will develop an

IIV weighted estimating function approach for the nonparametric estimation of distribution

function FT (t) so that dependent interval censoring caused by intermittent visits can be

handled.
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4.1.1 Monotone-Smoothed IIV Weighted Estimators of Distri-

bution Functions

Suppose that we are interested in the inference about the distribution function FT (t) of a

failure time outcome T . Estimator of the survival function ST (t) can be simply obtained

by 1 − F̂T (t). We define a set of finite discrete assessment times where FT (t) will firstly

be estimated, denoted by 0 < s1, ..., < sm ≤ τ . We assume that the administrative end of

follow-up time, τ , is the same for all individuals for simplicity. Later, we will refine the

crude estimates.

Let θl = FT (s`), where ` = 1, ...,m. First, we assume that the visit process is not ter-

minated by the occurrence of failure and that visit times are continuous. Then, motivated

by (2.13), for estimating θ = (θ1, ..., θm)′, with c(t; θ`) = {θ`(1 − θ`)}−1, we define IIV

weighted estimating functions for θ by

U`(θ) =
n∑
i=1

∫ τ

0

Kb(s` − t)wi(t)
θ`(1− θ`)

[Yi(t)− θ`]dN∗i (t), ` = 1, ...,m, (4.1)

where Yi(t) = I(Ti ≤ t), dN∗i (t) = dNi(t)Ci(t), dNi(t) is the indicator of a visit at t,

Ci(t) = I(Ci > t) and Ci denotes a random drop-out time for subject i. The function

Kb(u) = K(u/bm)/bm, where K(·) is a bounded kernel function defined to be zero outside

[−1, 1], e.g. uniform (rectangular), triangular, or Epanechnikov (quadratic), and {bm}

denotes a positive bandwidth sequence converging to 0 when
∑
mi → +∞, where mi

denotes the total number of visits for subject i.

Note that (4.1) is not an unbiased estimating function, even given the conditionally

independent observation assumption (B1) is true. That is, the solution to E(Ui`) = 0

gives θ∗` =
∫ τ
0 Kb(s`−t)FT (t)SC(t)dt∫ τ

0 Kb(s`−t)SC(t)dt
6= θ`, provided that (B1) holds and the random drop-

out is independent (i.e. Yi(t) q Ci(t), ∀t > 0), where SC(t) = Pr(Ci > t) = E[Ci(t)].
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Nevertheless, when the number of visits increases, i.e.
∑
mi → +∞, bm ↓ 0, and the

estimates solved from (4.1) approach θ`, i.e. FT (s`). Small bandwidths result in small bias

at the cost of large variance since fewer visits lie in [s` − bm, s` + bm] and contribute to

the estimation of FT (s`). In practice, people widely use data-driven bandwidth algorithms

to do bandwidth selection, e.g. least-squares cross-validation (Hall et al., 2004). A wise

selection of bandwidth can lead to good precision of estimation. In the simulation studies

in Section 4.1.2 and the real data analysis in Chapter 5, we simply chose bandwidths to

have about 50 − 100 visits fall in the window [s` − bm, s` + bm] so that the variances of

estimates are moderate and normal approximations are accurate.

When failure occurrence terminates the visit process, motivated by (2.23) in Section

2.2.4, the estimating function for θ with a discrete time visit process can be written by

U`(θ) =
n∑
i=1

M∑
k=1

Kb(s` − ak)wi(ak)
θ`(1− θ`)

[Yi(ak)− θ`]dN∗i (ak), ` = 1, ...,m, (4.2)

where {dNi(ak) : k = 1, ...,M} is a discrete time visit process with 0 < a1 < ... < aM = τ .

Also, we have dNi(ak) = 1 and wi(ak) = 1, when Ȳ obs
i (ak−1) = 1 since responses Yi(ak)’s

are all known as 1 after the visit following failure occurrence. Let m∗i denote the number

of actual visits when Ȳ obs
i (ak−1) = 0 and mi−m∗i denote the number of pseudo visits when

Ȳ obs
i (ak−1) = 1 for subject i.

The estimating equation U`(θ) = 0 given in (4.1) or (4.2) yields a closed form estimate

for FT (s`), ` = 1, . . . ,m, i.e.

Ȳ` =

∑n
i=1

∑mi
j=1K(

s`−tij
bm

)wi(tij)Yi(tij)∑n
i=1

∑mi
j=1K(

s`−tij
bm

)wi(tij)
, ` = 1, . . . ,m, (4.3)

where {ti1, ..., timi} = {t > 0 : dN∗i (t) = 1}, which denote the mi actual visit times for

subject i in (4.1) and include both the m∗i actual visit times and the mi−m∗i pseudo visit
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times which follow failure occurrence in (4.2). From (4.3), we see only visits which lie in

[s` − bm, s` + bm] contribute to the estimation of FT (s`) and only the s` with at least one

visit contained in [s`− bm, s` + bm] can be estimated. In an extreme case where bandwidth

equals zero and tij’s are all distinct, each solution Ȳ` to U`(θ) = 0 is either 0 or 1.

Note that the estimates given in (4.3) are non-monotone in general, so we call them

crude or raw estimates, and techniques for monotone smoothing will now be adopted.

Isotonic regression is one of the most commonly used methods for achieving monotonic-

ity; it yields non-decreasing estimates by minimizing a weighted sum of squares under a

non-decreasing constraint. However, the fitted values provided by isotonic regression are

generally step functions, so we consider the combination of an isotonic regression followed

by a kernel non-parametric regression, which was proposed by Mukerjee (1988) and recent-

ly applied by Datta and Sundaram (2006) to multistage models with current status data.

As discussed in He and Shi (1998), theoretically, monotone smoothing can be implement-

ed by combining isotonic regression with any smoothing tools, e.g. kernel or spline, and

smoothing can be done either before or after isotonic regression.

Analogous to Sun (2006) and Zhang and Sun (2010) where isotonic regression is ap-

plied to estimate distribution functions or survival functions with current status data, the

isotonic regression problem in our context is to minimize

Qw(θ) =
m∑
`=1

n∑
i=1

mi∑
j=1

K[(s` − tij)/bm]wi(tij){Yi(tij)− θ`}2

subject to θ1 ≤ ... ≤ θm. This is equivalent to minimizing

Q∗w(θ) =
m∑
`=1

w+(s`){Ȳ` − θ`}2, for ` = 1, ...,m, (4.4)

subject to the non-decreasing constraint, where

Ȳ` =
n∑
i=1

mi∑
j=1

K[(s` − tij)/bm]wi(tij)Yi(tij)/w+(sl),
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and

w+(s`) =
n∑
i=1

mi∑
j=1

K[(s` − tij)/bm]wi(tij).

The above equation can be solved by the max-min formula (Barlow et al., 1972; Robert-

son et al., 1988) for isotonic regression:

F̃T (s`) = max
r≤`

min
u≥`


u∑
v=r

w+(sv)Ȳv

u∑
v=r

w+(sv)

 , (4.5)

or by software based on the well known Pool-Adjacent-Violators Algorithm (PAVA) (Miles,

1959). More details about isotonic regression and PAVA can be found in Barlow et al.

(1972), Robertson et al. (1988) and de Leeuw et al. (2009).

The next step is to implement kernel non-parametric regression so that the estimated

survival curve of T is smooth and the estimates of FT (t) can be obtained at any t rather

than only at s`’s. We consider the local-constant estimator also known as the Nadaraya-

Watson estimator (Nadaraya, 1964; Watson, 1964), which is given below, with a log-concave

kernel function K∗(·) to smooth the estimates yielded by isotonic regression, i.e. F̃T (a`),

` = 1, ...,m.

F̂T (t) =

∑m
`=1 F̃T (s`)K

∗( s`−t
hm

)∑m
`=1K

∗( s`−t
hm

)
, ∀t > 0, (4.6)

where kernel K∗(·) is a log-concave density so that the monotonicity of (4.6) is retained

(Mukerjee, 1988) and {hm} is a positive bandwidth sequence converging to 0 when
∑
mi →

+∞. It is found that bias is mainly caused by a poor choice of bm in (4.3), since (4.1) or

(4.2) is not an unbiased estimating function for θ` or FT (t), though they are asymptotically

unbiased when bm ↓ 0. The selection of of hm in (4.6) is not sensitive to the final estimated

survival curves, so one can select {hm} to make the final estimates of survival curves have

reasonable curvature. Asymptotics are much harder here than in standard settings, e.g.
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Mukerjee (1988), involving a single kernel estimator. In the proposed two-stage estimation

procedure, we employ two kernels; especially in the first stage, the crude estimate Ȳ` solved

from (4.1) is not a consistent estimator of θ` but its limiting value θ∗` approaches θ` when

bandwidth bm goes to 0. Then, in the second stage we apply isotonic regression and kernel

again to achieve a monotone smoothing, which is extended from Mukerjee (1988) and

Datta and Sundaram (2006) to the present setting. Thus, the whole procedure demands

non-standard asymptotics for the final estimate F̂T (t). Instead, we consider the bootstrap

to estimate the standard error of F̂T (t) in simulation and real data analysis.

4.1.2 Simulation Study

To demonstrate the proposed method and examine the finite sample performance of re-

sulting estimates, a simulation study is conducted for the non-parametric estimation of

FT (t|A) for two treatment groups separately, A = 0 and A = 1. The simulation design

is basically the same as in Section 2.3 for parametric estimation, and we will discuss two

cases as usual: failure occurrence does not terminate visits (CASE I) and failure occur-

rence terminates visits (CASE II). Since bootstrap is very computationally intensive, the

sample size is set as 200 in total (about 100 for each treatment group) and the number of

simulation replicates is 500; 100 bootstrap samples are used to estimate a standard error.

At t = 0, treatment variable A is generated from BIN(1, p) with p = 0.5. The admin-

istrative end of follow-up time, τ , is set to be 5. For technical simplicity, time is discretized

in this simulation study for both CASE I and CASE II, with an increment of 0.01, so (4.2)

will be used for crude estimates and M in (4.2) equals 500. Then for any ak, k = 0, ...,M

with a0 = 0 and aM = 5, an ancillary variable Lk is generated by

Lk|A, L̄k−1 ∼ N(β1A, σl), (4.7)
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with β1 = −0.5 and σl = 1 so that treatment A is an inhibitor for Lk. Then, response Yk+1

is generated by

Pr[Yk+1 = 1|L̄k, A, Yk = 0] = Φ(η0 + η1Lk + η2A), (4.8)

where Φ denotes the CDF of a standard normal distribution N(0, 1) and Yk = I(T ≤ ak).

Parameters η0, η1 and η2 are given by −2.8, 0.5 and −0.1, respectively, so that treatment

A has a negative effect on the risk of failure and Lk is an intermediate variable between

A and failure time which has a positive strong effect on the risk of failure but is inhibited

by treatment. As a result, 98% of untreated individuals (A = 0) and 80% of treated

individuals (A = 1) fail before τ . After marginalizing over Lk, the marginal outcome

model can be presented as

Pr[Yk+1 = 0|A, Yk = 1] = eψ0 exp(ψ1A), (4.9)

where c = 1/
√

1 + η2
1σ

2
l , ψ0 = ln {Φ(c · η0)} = −5.09, ψ1 = ln

{
Φ[c·(η0+η2+η1β1)]

Φ(c·η0)

}
= −0.93,

so there is about a 60% risk deduction for A = 1 versus A = 0.

For the case where visits continue after failure occurs (CASE I), the discrete time visit

process, {dNk : k = 1, ...,M}, is generated by a Markov proportional intensities model

with a constant baseline intensity:

Pr[dNk+1 = 1|A, L̄k] = exp(γ0 + γ1Lk + γ2A) (4.10)

= eγ0 exp(γ1Lk + γ2A), k = 0, 1, ...,M − 1,

where γ0 = −3.5, γ1 = 0.5, and γ2 = −0.2 so that the average visit gap time is approxi-

mately 0.30 for the untreated group (A = 0) and about 0.44 for the treated group (A = 1).

From model (4.10), we see that the visit process is outcome-dependent via A as well as

L̄k. For the case where failure occurrence stops visits (CASE II), {dNk : k = 1, ...,M} are
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generated by

Pr[dNk+1 = 1|A, L̄k, Ȳ obs
k ]

=

 exp(γ0 + γ1Lk + γ2A), if Ȳ obs
k = 0

1, if Ȳ obs
k = 1

, k = 0, 1, ...,M − 1. (4.11)

To estimate FT (t|A) for a given A, we have proposed a two-stage estimation procedure

in the preceding subsection. First, we estimate the inverse-intensity-of-visit (IIV) weights

wi(t) for the crude estimator given in (4.3), which can be done by fitting a piecewise con-

stant proportional hazards semi-Markov model given in (2.39) for the gap times of “actual”

visits. Here, we use R function phreg with (0.40, 0.75, 1.0) as cut-points to estimate the IIV

weights. In addition, we let the kernel function in (4.3), K(·), be the Epanechnikov (EP)

kernel, i.e. k(x) = 3
4
(1− x2)I(|x| ≤ 1), which is bounded and smooth. The bandwidth bm

in (4.3) is selected to be 0.125, so m = 20. Then, there are about 70 actual visits contained

in interval [s` − bm, s` + bm] for crudely estimating FT (s`) in CASE I. Second, the isotonic

regression of crude estimates (Ȳ1, ..., Ȳm) with weights (w+(s1), ..., w+(sm)) is implemented

by the R function monoreg in package fdrtool. Finally, kernel smoothing for the monotone

estimates F̃T (s`)’s is done with a standard normal (Gaussian) kernel given for K∗(·) and

a bandwidth hm specified as 0.2 for the CASE I and 0.3 for the CASE II, which can be

implemented by the R function npreg in the package np. Simulation results are summarized

and the plots of estimated distribution function curves are shown for A = 1 versus A = 0

in the following.

CASE I: Failure occurrence does not terminate visits

Figure 4.1 shows the mean raw estimate Ȳ` at each s`, s` = 1, ...,m, in 500 simulation

replicates, for different m or bm. We can see bias is negligible in each plot, so estimation is
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not very sensitive to bandwidth selection, when the number of visits around s` is sufficient.

Therefore, we let m = 20, i.e. bm = 0.125 in the following. Figure 4.2 and Figure 4.3

demonstrate the crude estimates Ȳ`, isotonic estimates F̃T (s`) and kernel-smoothed isotonic

estimates F̂T (t) for A = 0 and 1 in one simulation sample, respectively. We see that isotonic

regression monotonizes the raw estimates and then the kernel smoothing with a bandwidth

of 0.2 produces smooth distribution function curves. It is seen that the raw estimates in

Figure 4.2 have relatively smaller variability than those in Figure 4.3, because untreated

individuals have more visits than the treated ones by design. Also, the raw estimates for

A = 0 in Figure 4.2 are close to monotone, while isotonic regression corrects relatively

more the raw estimates for A = 1 in Figure 4.3. For either group, the kernel-smoothed

isotonic estimate of distribution function, denoted by a solid curve agrees quite well with

the true distribution function curve denoted by a dashed curve. Figure 4.4 displays the

estimated and true distribution functions of the two groups as a comparison, where we

can see that for sample size n = 200 and the visit frequency for the treated (A = 1)

group, estimate of FT (t|A = 1) will not be really smooth. Additionally, note that Figures

4.2-4.4 display the performance of estimates in one simulation sample to demonstrate the

two-stage estimation procedure.

Table 4.1 summarizes the kernel-smoothed isotonic estimates of FT (t|A) by (4.6) at

t = 0.5, 1.0, ..., 4.5, 5.0, for the two groups across the 500 simulation samples and provides

95% pointwise empirical coverage probabilities (ECPs) to draw statistical conclusions. S-

tandard errors are estimated by non-parametric bootstraps, which can be implemented by

resampling with replacement using R function sample. The bootstrap sample size is set to

be 100. All the true values, estimates and standard errors are reported for FT (t|A), while

coverage probabilities and Z tests are presented after a ln(−ln(FT (t|A))) transformation.

If we let ln(−ln(F̂T (t|A))) be ϑ̂(t), then an empirical confidence interval is computed by
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ϑ̂(t)± 1.96 se(ϑ̂(t)) where se(ϑ̂(t)) is the bootstrap estimated standard error of ϑ̂(t). Ap-

proximate normality is checked in Figure 4.5 by histograms and QQ-plots of the pooled Z

tests across time, which are defined by z(t) = ϑ̂(t)−ϑ(t)

se(ϑ̂(t))
for all t = 0.5, 1.0, ..., 4.5, 5.0. We

see that estimates in either group have good coverage, except for the regions close to t = 0

or 5. The mean of bootstrap standard errors (BSEs) underestimate the empirical standard

errors (ESEs) slightly, which may be explainable by the small sample size (i.e. 200) and

should improve when sample size n increases. Poor coverage for t = 0.5 and t = 5.0 is

caused by the greater underestimation of ESE. For example, at t = 5.0, approximately 98%

of individuals fail in the untreated group, i.e. FT (t|A = 0) is close to 1. Also, we know that

kernel smoothing usually does not perform perfectly close to bounds, so underestimation of

standard errors and low coverage could result. Poor normal approximation close to t = 0

and t = 5 can be found in Figure 4.5 as well. Figure 4.6 shows the truncated histograms

and QQ-plots for t = 1.0−4.0, and we see that estimates appear to be normally distributed

over this range.

CASE II: Failure occurrence terminates visits

For the case where failure occurrence discontinues the visit process, Figure 4.7 shows the

mean raw estimate Ȳ` for different bandwidth bm selections in the 500 simulations. Each

plot shows that the raw estimates are essentially unbiased at each t. In addition, Figure

4.8 and Figure 4.9 show the raw estimates, isotonic estimates and kernel-smoothed isotonic

estimates (final estimates) for the untreated group (A = 0) and the treated group (A = 1)

in one simulation sample, respectively. Additionally, Figure 4.10 compares the estimated

and true distribution functions of the two groups. Overall, estimates F̂T (t|A = 0) and

F̂T (t|A = 1) shown in Figure 4.10 agree well with the true distribution functions, though

because of sampling variation they naturally fall above or below the true functions.
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Figure 4.1: Plot of the mean of raw estimates Ȳ` at s`, ` = 1, ...,m, for m = 10, 20, 50,

in 500 simulations, compared with the true FT (t|A) curves for two treatment groups in

CASE I. (a) is for m = 10, i.e. bm = 0.25, (b) is for m = 20, i.e. bm = 0.125, (c) is for

m = 50, i.e. bm = 0.05. Sample size is 200.
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Figure 4.2: The plot of raw estimates, isotonic estimates, kernel-smoothed isotonic esti-

mates and true FT (t|A = 0) of one simulation sample in CASE I. Sample size is about 100,

m = 20, and bandwidth hm in (4.6) is 0.2.
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Figure 4.3: The plot of raw estimates, isotonic estimates, kernel-smoothed isotonic esti-

mates and true FT (t|A = 1) of one simulation sample in CASE I. Sample size is about 100,

m = 20, and bandwidth hm in (4.6) is 0.2.
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Figure 4.4: The kernel-smoothed isotonic estimate by (4.6) and true FT (t|A), A = 1 versus

A = 0 of one simulation sample in CASE I. Sample size is about 100 for each treatment

group, m = 20, and bandwidth hm in (4.6) is 0.2.
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Table 4.1: Bias, empirical standard error (ESE), mean of bootstrap estimated standard

errors (BSE), and empirical coverage probability (ECP) of the kernel-smoothed isotonic

estimate at time t by (4.6) for CASE I. Sample size is 200 (about 100 for each treatment

group), number of simulation replicates is 500, with m = 20, i.e. bm = 0.125, and hm =

0.2. Note that ECPs are reported based on ln(−ln(F̂T (t|A))), while other quantities are

reported based on F̂T (t|A).

A=0 A=1

t True Value BIAS ESE BSE ECP True Value BIAS ESE BSE ECP

0.5 0.265 -0.007 0.050 0.048 0.93 0.114 -0.002 0.041 0.036 0.90

1.0 0.459 -0.009 0.056 0.057 0.95 0.215 -0.002 0.052 0.049 0.92

1.5 0.603 -0.007 0.059 0.056 0.92 0.305 0.002 0.057 0.055 0.93

2.0 0.708 -0.002 0.053 0.051 0.93 0.384 0.004 0.058 0.059 0.95

2.5 0.785 -0.002 0.049 0.046 0.94 0.454 0.002 0.062 0.059 0.93

3.0 0.842 -0.003 0.042 0.041 0.93 0.517 0.002 0.063 0.059 0.93

3.5 0.884 -0.003 0.038 0.035 0.93 0.572 0.001 0.064 0.058 0.92

4.0 0.915 0.000 0.032 0.030 0.93 0.621 0.002 0.061 0.057 0.92

4.5 0.937 0.003 0.027 0.025 0.93 0.664 0.009 0.060 0.057 0.93

5.0 0.954 0.003 0.025 0.021 0.86 0.702 0.013 0.070 0.063 0.92
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Figure 4.5: Histograms and QQ-plots of z(t)’s based on the transformed estimates,

ln(−ln(F̂T (t|A))), corresponding to Table 4.1 for CASE I.
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Figure 4.6: Histograms and QQ-plots of z(t)’s based on the transformed estimates,

ln(−ln(F̂T (t|A))), where t = 1.0− 4.0, corresponding to Table 4.1 for CASE I.
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The pointwise kernel-smoothed estimates of FT (t|A) at t = 0.5, 1.0, ..., 4.5, 5.0 are sum-

marized in Table 4.2, for the two groups separately. As in Table 4.1, true values, bias,

standard errors are reported in the original form, while coverage probabilities are reported

with a ln(−ln) transformation. Figure 4.11 shows the histograms and QQ-plots of pooled

z(t) values and Figure 4.12 shows the truncated histograms and QQ-plots for t = 1.0−4.0.

Similar to CASE I, it can be concluded that except when t is close to 0 or 5, estimates

have negligible bias and empirical coverage is close to the 95% nominal level.

4.2 IIV Weighted Semi-Parametric Estimation Based

on Additive Hazards Models

In the preceding section, we proposed an IIV weighted non-parametric estimator for FT (t)

of dependently interval-censored failure times due to intermittent and outcome-dependent

inspection times. In the present section, we will introduce the IIV weighted semi-parametric

estimation under additive hazards models (Aalen, 1980, 1989; Lin and Ying, 1994), which

have the form

λT (t|Ai(t
−)) = λT,0(t) + β′Ai(t

−), i = 1, .., n, (4.12)

where λT,0(t) is an unspecified baseline hazard function, and Ai(t
−) is a vector of time-

varying covariates which are usually assumed to be external covariates (Kalbfleisch and

Prentice, 2002). Semi-parametric analysis of model (4.12) with left-truncated and right-

censored data was studied by Lin and Ying (1994), and Lin et al. (1998) proposed a semi-

parametric estimation method for “case-I” interval-censored data (current status data), i.e.

when there is only one inspection time per subject. The appealing idea of Lin et al. (1998)

is to reduce the problem to ordinary Cox models so that the partial likelihood principle can
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Figure 4.7: Plot of the mean of raw estimates Ȳ` at s`, ` = 1, ...,m, for m = 10, 20, 50,

in 500 simulations, compared with the true FT (t|A) curves for two treatment groups in

CASE II. (a) is for m = 10, i.e. bm = 0.25, (b) is for m = 20, i.e. bm = 0.125, (c) is for

m = 50, i.e. bm = 0.05. Sample size is 200.
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Figure 4.8: The plot of raw estimates, isotonic estimates, kernel-smoothed isotonic esti-

mates and true FT (t|A = 0) of one simulation sample in CASE II. Sample size is about

100, m = 20, and bandwidth hm in (4.6) is 0.3.
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Figure 4.9: The plot of raw estimates, isotonic estimates, kernel-smoothed isotonic esti-

mates and true FT (t|A = 1) of one simulation sample in CASE II. Sample size is about

100, m = 20, and bandwidth hm in (4.6) is 0.3.
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Figure 4.10: The kernel-smoothed isotonic estimate by (4.6) and true FT (t|A) for A = 0

versus A = 1 of one simulation sample in CASE II. Sample size is about 100 for each

treatment group, m = 20, and bandwidth hm in (4.6) is 0.3.
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Table 4.2: Bias, empirical standard error (ESE), mean of bootstrap estimated standard

errors (BSE), and empirical coverage probability (ECP) of the kernel-smoothed isotonic

estimate at time t by (4.6) for CASE II. Sample size is 200 (about 100 for each group),

number of simulation replicates is 500. Let m = 20, i.e. bm = 0.125, and hm = 0.3. Note

that ECPs are reported based on ln(−ln(F̂T (t|A))), while other quantities are reported

based on F̂T (t|A).

A=0 A=1

time true value BIAS ESE BSE ECP true value BIAS ESE BSE ECP

0.5 0.265 0.004 0.041 0.041 0.94 0.114 0.006 0.034 0.032 0.92

1.0 0.459 -0.010 0.049 0.048 0.94 0.215 0.002 0.043 0.042 0.95

1.5 0.603 -0.009 0.051 0.049 0.93 0.305 0.004 0.047 0.048 0.96

2.0 0.708 -0.005 0.048 0.046 0.93 0.384 0.003 0.051 0.051 0.96

2.5 0.785 -0.003 0.045 0.042 0.94 0.454 0.003 0.055 0.052 0.95

3.0 0.842 -0.003 0.040 0.038 0.93 0.517 0.003 0.055 0.053 0.94

3.5 0.884 -0.003 0.035 0.033 0.93 0.572 0.002 0.055 0.053 0.93

4.0 0.915 0.000 0.030 0.028 0.93 0.621 0.003 0.054 0.052 0.94

4.5 0.937 0.002 0.026 0.024 0.93 0.664 0.007 0.055 0.052 0.93

5.0 0.954 -0.001 0.025 0.021 0.88 0.702 0.003 0.062 0.056 0.91

128



histogram for A=0

z(t)

D
en

si
ty

−15 −10 −5 0 5

0.
00

0.
15

0.
30

−4 −2 0 2 4
−

15
−

5
0

5

QQ plot for A=0

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

histogram for A=1

z(t)

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

−4 −2 0 2 4

−
2

0
2

4

QQ plot for A=1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 4.11: Histograms and QQ-plots of z(t)’s based on the transformed estimates,

ln(−ln(F̂T (t|A))), corresponding to Table 4.2 for CASE II.
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Figure 4.12: Histograms and QQ-plots of z(t)’s based on the transformed estimates,

ln(−ln(F̂T (t|A))), where t = 1.0− 4.0, corresponding to Table 4.2 for CASE II.
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be applied, with restricting inspection times under proportional hazards models. Later,

Ghosh (2001) and Martinussen and Scheike (2002) followed up their paper by discussing

and improving efficiency. For general interval-censored data, i.e. “case-II”, Zhao and Hsu

(2005) studied the problem via empirical likelihood and Zeng et al. (2006) proposed a

maximum likelihood estimation approach. However, most literature on semi-parametric

analysis for case-II interval-censored data under model (4.12) assumes that inspection

times or monitoring times, e.g. til and tir in (1.3), are independent of failure time Ti given

Ai(t
−). Work on the setting where inspection times are related to failure times is limited.

Recently, Wang et al. (2010) accommodated informative interval censoring by introducing

an unobservable random process to characterize the dependency between inspection times

and failure times, and Zhao et al. (2015) utilized copula models to model the correlation. In

this section, we will generalize the IIV weighted estimating function approach to the case of

semi-parametric estimation based on additive hazards models so that dependently case-II

interval-censored data can be consistently analysed. The procedure that will be introduced

below can be applied to proportional hazards models as well, and we will discuss that at

the end of this section.

4.2.1 An Iterative Two-Stage IIV Weighted Semi-Parametric Es-

timation Procedure

Given model (4.12) and the fact that ST (t) = exp{−ΛT (t)} for continuous failure times Ti

where ΛT (t) =
∫ t

0
λT (s)ds is the cumulative hazard function, the survival function is

ST (t) = ST,0(t) exp

{
−
∫ t

0

β′Ai(s)ds

}
, (4.13)

where ST,0(t) = exp(−ΛT,0(t)) is the baseline survival function. We now proceed in two

stages.
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First, we estimate the baseline survival function ST,0(t) for a given value of the regression

parameter β. Similar to Section 4.1.1, we define a set of finite time points where ST,0(t)

is estimated, i.e. 0 < s1 <, ..., < sm ≤ τ and let θ` = θ`(β) be ST,0(t;β) at s`, ` = 1, ...,m.

Then, given β = β0, an IIV weighted estimating function for θ = (θ1, ..., θm)′ can be

defined by

U1`(θ(β0)) =
n∑
i=1

mi∑
j=1

Kb(s` − tij)wi(tij) exp

{
−
∫ tij

0

β′0Ai(s)ds

}
×
{
Pi(tij)− θ` exp

[
−
∫ tij

0

β′0Ai(s)ds

]}
, (4.14)

for ` = 1, ...,m, where Kb(u) = K(u/bm)/bm; K(·) is a bounded kernel function; 0 < bm ↓ 0

is a bandwidth sequence; Pi(t) = I(Ti > t) is the response at t; ti1, ..., timi denote the actual

visits in CASE I (failure does not terminate visits) but include the actual visits and pseudo

visits in CASE II (failure terminates visits), and in general we define {ti1, ..., timi} = {t > 0 :

dN∗i (t) = 1}. Following the convention defined before, for CASE I we have {dNi(t) : t > 0}

as a continuous visit process; in CASE II, we consider the visit process as a discrete time

process, i.e. {dNi(ak) : k = 1, ...,M}. After the visit following failure occurrence in CASE

II, i.e. when P̄ obs
i (t−) = 0, we set the IIV weight wi(t) to be 1, provided that assumption

(B1*) is true. Only the actual visits in either CASE I or CASE II are used for estimating

the IIV weights wi(t) = 1/λN(t|Zi(t−)), where λN(t) is the visit intensity at t and Zi(t
−)

includes features in the observed history prior to t. We have proposed earlier to estimate

wi(t) by fitting a semi-Markov proportional hazards model for visit gap times, like (2.19).

Solving U1`(θ) = 0 gives a closed form estimate of θ`, i.e. ST,0(s`), as

θ̂` =

∑n
i=1

∑mi
j=1Kb(s` − tij)wi(tij) exp

{
−
∫ tij

0
β′0Ai(s)ds

}
Pi(tij)∑n

i=1

∑mi
j=1Kb(s` − tij)wi(tij) exp

{
−2
∫ tij

0
β′0Ai(s)ds

} . (4.15)

Note that only visits that happened within window [s` − bm, s` + bm] contribute to the

estimation of θ` and the selection of bandwidth bm depends on the number of visits that
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fall in [s` − bm, s` + bm], as well as concern for the variability and smoothness of final

estimate of ST,0(t).

If we define w+(s`) =
∑n

i=1

∑mi
j=1Kb(s` − tij)wi(tij) exp

{
−2
∫ tij

0
β′0Ai(s)ds

}
, then

(4.15) can be rewritten as

θ̂` =

∑n
i=1

∑mi
j=1Kb(s` − tij)wi(tij) exp

{
−
∫ tij

0
β′0Ai(s)ds

}
Pi(tij)

w+(s`)
.

To monotonize the raw estimates, θ̂`, based on the constraint θ1 ≥ θ2 ≥ ... ≥ θm, we can

adopt an antitonic (monotonically non-increasing) regression of (θ̂1, ..., θ̂m) with weights

(w+(s1), ..., w+(sm)) to produce non-increasing estimates of ST,0(s`)’s which are denoted

by θ̃`, ` = 1, ...,m. Following that, a kernel-smoothed estimate of baseline survival function

ST,0(t) is defined by

ŜT,0(t;β0) =

∑m
`=1 θ̃`K

∗
(
s`−t
hm

)
∑m

`=1K
∗
(
s`−t
hm

) , for all t > 0, (4.16)

where K∗(·) is a log-concave density and {hm} is a positive bandwidth sequence.

Second, we construct an IIV weighted profile GEE with the estimated baseline survival

ŜT,0(t;β0) plugged in to estimate the regression parameter β, defined by

U2(β|β0) =
n∑
i=1

mi∑
j=1

wi(tij)
∂e(Āi(tij);β)

∂β

[
Pi(tij)− ŜT,0(tij;β0) e(Āi(tij);β)

]
e(Āi(tij);β)

[
1− ŜT,0(tij;β0) e(Āi(tij);β)

] , (4.17)

where e(Āi(tij);β) = exp
{
−
∫ tij

0
β′Ai(s)ds

}
and ŜT,0(tij;β0) is obtained from (4.16) given

t = tij. Solving U2(β|β0) = 0 gives an estimate of β with β0 specified as an initial value.

The iterative algorithm for semi-parametric estimation of regression parameters β and

baseline survival function ST,0(t) in model (4.13) can be summarized by the following steps,

starting with l = 0:
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• Step 1: specify an initial value for β, denoted by β̂l, which can be given by a naive

estimate based on model (4.12) with informative censoring not adjusted for.

• Step 2: given β̂l, solve the estimating equation U1`(θ(β̂l)) = 0 from (4.14) and then

monotonize and smooth the raw estimates, θ̂`, ` = 1, ...,m, to obtain an estimate of

the baseline survival function ŜT,0(t; β̂l).

• Step 3: substitute ŜT,0(t; β̂l) in the estimating function U2(β|β̂l) given in (4.17) to

obtain a new estimate of β, denoted by β̂l+1.

• Step 4: use the new estimate of β as the initial value in Step 1 and repeat Step 2

and Step 3 until the estimates converge, i.e. |β̂l+1 − β̂l|
.
= 0.

As we obtain the estimate of β, then the baseline survival function ST,0(t) can be estimated

by repeating the Step 2 with β̂ plugged in.

4.2.2 Simulation Study

In this subsection, a simulation will be conducted to study the finite sample performance

of the proposed semi-parametric estimator of β based on an additive hazards model (4.12).

The Bootstrap will be utilized to estimate the standard errors of resulting estimates.

As mentioned before, Martinussen and Vansteelandt (2013) have shown the collapsibil-

ity of additive hazards models, and the model we use to generate failure times will be based

on that. Explicitly, the treatment variable of interest, Ai, is assumed to have a BIN(1, p)

distribution with p = 0.5, and an ancillary variable, Li, is generated from Li|Ai ∼ N(0, 1),

so Li and Ai are assumed to be independent. Failure time Ti is generated from an Expo-

nential distribution with a hazard rate given by λT (t|Li, Ai) = β0 + β1Li + β2Ai, where
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β0 = 1, β1 = 0.2, and β2 = −0.4, so that larger Li is associated with higher risk of failure

and treatment lowers the risk. Following the convention of simulations in this thesis, we

define an administrative end of follow-up time as τ = 5 and discretize time with a grid of

100 per unit, i.e. 0 = a0 < a1 <, ..., < aM = τ with a time increment of 0.01 and M = 500.

As a result, almost all untreated subjects have failed by τ and about 85%−90% of treated

subjects have failed by τ . As shown in Martinussen and Vansteelandt (2013), the model

of Ti conditional on Ai alone is still an additive hazards model with hazard function of the

form

λT (t|Ai) = λT,0(t) + β2Ai, (4.18)

where λT,0(t) = β0 + β1
E(e−β1tLiLi)

E(e−β1tLi )
.

Visit times are generated similarly to Section 4.1.2. That is, for the case where failure

does not discontinue the visit process (CASE I), visit indicators dNk+1’s are generated based

on model (4.10) with Lk replaced by L and with the subscript for subjects suppressed. For

the case where failure occurrence terminates visits (CASE II), dNk+1’s are generated based

on model (4.11) with Lk replaced by L and Ȳ obs
k = x replaced by P̄ obs

k = 1 − x, where

x = 0 or 1, since we defined Y (t) = I(T ≤ t) = 1 − P (t). Corresponding parameters in

model (4.10) and model (4.11) are given by γ0 = −4, γ1 = 0.5, and γ2 = −0.2, and as

a result, the average visit gap time is about 0.41 for the group with A = 0 and is about

0.50 for the group with A = 1 in CASE I, and is about 0.46 when A = 0 and about 0.59

when A = 1 in CASE II. The IIV weights wi(t) are estimated by fitting the semi-Markov

proportional hazards visit gap time model (2.19) with Zi(t
−) = (Li, Ai)

′ for CASE I and

Zi(t
−) = (Li, Ai, P̄

obs
i (t−))′ for CASE II, which is implemented by R function phreg. Cut-

points for the piecewise-constant baseline hazard are set as (0.42, 0.69, 0.92) for CASE I

and CASE II, by the principle of comparison with the non-parametric estimate of baseline

hazard produced by coxreg. Remember that in CASE II, when P̄ obs
i (t−) = 0 we fix wi(t)
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as 1.

The naive semi-parametric estimate of β2 is provided by the R function aalen in the

package timereg. If it is known that Ti ∈ (til, tir], we consider Ti = (tir + til)/2, i.e. we

use the mid-point to approximate an interval-censored failure time, so failure times are

completely observed or right-censored. Other than the mid-point approximation, informa-

tive inspection times are not adjusted for in the naive estimation, so naive estimates are

expected to have some bias. They are used as initial values for β2 in the proposed iterative

two-stage semi-parametric estimation and will be compared with the estimates yielded by

our proposed approach. The number of time points where raw estimates of ST,0(t) are

computed, i.e. m, is set to be 26, so in estimating function (4.14) bm = 0.1 so that for

example in CASE I, there are about 69 and 47 actual visits included in [s` − bm, s` + bm]

for A = 0 and A = 1, respectively. In addition, we let hm in the non-parametric kernel

regression (4.16) be 0.1. The antitonic regression for monotonizing the raw estimates of

baseline survival probabilities is implemented by monoreg, kernel smoothing is still imple-

mented by npreg, and the estimating function (4.17) is solved by nleqslv. Kernel function

K(·) in (4.15) is selected to be the EP kernel and K∗(·) in (4.16) is the Gaussian (stan-

dard normal) kernel. Sample size is 300 and 200 simulations are conducted for each case.

Standard errors are estimated for a given sample by a non-parametric bootstrap with 100

replicates. Estimates from the proposed approach, compared with the naive estimates, are

summarized in Table 4.3. A convergence is declared for the IIV weighted semi-parametric

estimator of β2 in model (4.18), when |β̂2,l+1− β̂2,l| < 10−3 where β̂2,l denotes the estimate

of β2 from the lth iteration. Empirical coverage probabilities (ECPs) are computed based

on the 95% empirical confidence intervals constructed by β̂2 ± 1.96 se(β̂2), where se is the

bootstrap estimated standard error. From Table 4.3, it can be seen that for either CASE,

the bias of the IIV weighted estimates is negligible and empirical coverage probabilities are
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close to the nominal level, even though sample size is only 300. On the other hand, the

coverage probabilities of naive estimates are much lower because of large bias.

Table 4.3: Bias, mean of bootstrap estimated standard errors (BSE), empirical standard

error (ESE), mean squared error (MSE) and empirical coverage probability (ECP) of the

proposed estimates and naive estimates for β2 in model (4.18) for two cases: CASE I and

CASE II. True value of β2 is -0.4. Sample size is 300. Number of simulation replicates is

200. Bootstrap sample size is 100.

CASE I

BIAS BSE ESE MSE ECP

naive 0.096 0.087 0.088 0.017 0.79

IIV 0.005 0.123 0.117 0.014 0.94

CASE II

BIAS BSE ESE MSE ECP

naive 0.095 0.087 0.088 0.017 0.79

IIV 0.001 0.122 0.120 0.014 0.94

4.2.3 Discussion on the Extension to the Cox Proportional Haz-

ards Models

For the Cox proportional hazards models, which have a form of

ΛT (t|Ai) = ΛT,0(t) exp(β′Ai), (4.19)

or written as

ST (t|Ai) = ST,0(t)exp(β′Ai). (4.20)
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Huang (1996) proposed a two-step maximum profile likelihood function procedure to esti-

mate (ΛT,0,β) based on model (4.19) for independently case-I interval-censored data, i.e.

current status data. Our proposed iterative two-stage weighted profile GEE approach also

can be applied to the Cox models.

Explicitly, the mean of Pi(tij) in (4.14) and (4.17) should be changed to be ST,0(tij)
exp(β′Ai).

With this form, equation solving might be more difficult. For example, for a fixed β0, the

estimating function (4.14) for baseline survival function θ` = ST,0(s`) can be modified here

as

U∗1`(θ(β0)) =
n∑
i=1

mi∑
j=1

Kb(s` − tij)wi(tij)exp(β′0Ai)
{
Pi(tij)− θ

exp(β′0Ai)
`

}
θ`

[
1− θexp(β′0Ai)

`

] , ` = 1, ...,m.

(4.21)

Unlike (4.14), which leads to a closed form estimate of θ`, θ̂` here has to be solved nu-

merically from U∗1`(θ) = 0. A similar change is made to the second estimating function

(4.17) to accommodate a proportional hazards model. Alternatively, piecewise-constant

baseline hazard can be assumed to make the additive hazards model (4.12) or the propor-

tional hazards model (4.19) be “flexibly” parametric, e.g. the piecewise-constant baseline

proportional hazards model (2.5), and then the methodologies introduced in Chapter 2 can

be applied.

So far, we have introduced parametric, non-parametric and semi-parametric estimation

of failure time distributions based on estimating functions weighted by a so-called inverse-

intensity-of-visit (IIV) weight to adjust for the intermittent and informative inspection

times which cause failure times dependently interval-censored. In addition, we also con-

sidered confounded treatments in observational studies in Chapter 3 and introduced an

inverse-probability-of-treatment (IPT) weighting method which is helpful to adjust for

measured confounders. In the next chapter, we will apply these methodologies to the PsA
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Toronto cohort to study treatment with biologics and joint damage as an illustration.
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Chapter 5

APPLICATIONS TO PSA COHORT

In Chapter 2 and Chapter 4, we introduced an inverse-intensity-of-visit (IIV) weighted

estimating function approach to estimate marginal association measure(s) for interval-

censored failure time outcomes. When the visit process is intermittent and informative,

interval censoring may not be independent of failure times. From the simulation studies

shown in the preceding chapters, we have seen that the proposed IIV weighting method

adjusts for outcome-dependent inspection times and eliminates the resulting selection bias.

In this chapter, we will apply this method to the PsA Toronto Cohort Study as an illus-

tration. We saw in Section 1.4.3 that visit times for individuals in this cohort were related

to prior disease status and other factors.

Biologics are presently widely used to reduce signs and symptoms of active arthritis and

to slow the progression of joint destruction in patients with PsA, especially in patients who

have had an inadequate response to one or more DMARDs such as Methotrexate (MTX).

One interesting question is to evaluate the effect of biologics on inhibiting the progression

of joint damage. That is, assess the association between treatment with biologics and time
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to an increase in the number of damaged joints after enrolment. Biologics are recently used

for treating rheumatoid arthritis, and a variety of biological agents have been developed

and licensed during the past few decades. It is noted that patients could be treated

with distinct biological agents at different chronological times. Therefore, our analysis

set is selected by a 1:1 matching of patients in terms of their status of using biologics

by calendar day. Although it is more reasonable to look at one particular drug to assess

a treatment effect, a limited number of one specific drug users makes it hardly feasible.

Thus, we hope that the matching could roughly adjust for the drug variety into account

in the analysis. Explicitly, we first take a patient who began an initial course of biologics

treatment on some calendar day after clinic enrolment and then randomly choose another

patient who had never taken biologics as of the same calendar day. As a result, 414

(207 treated and 207 untreated) patients are included in this analysis set. The calendar

years when the 207 treated patients received biologics and the 207 untreated patients

were randomly selected for matching range from 1981 to 2012 with a median of 2006 (1st

quartile = 2002, 3rd quartile = 2009). A histogram of the frequency of calendar years when

treated and untreated individuals were matched is displayed in Figure 5.1. Most patients

(approximately 85%) were matched between 2000 and 2010. In the present chapter, we

define ti0 as the time when subject i was matched. Let Ai = 1, or 0, be the indicator of

initial biologics status at ti0. Patients’ treatment status may change later, e.g. biologics

may be terminated, paused or switched for inefficacy, adverse effects or other reasons. Here,

we consider two studies: one is to investigate the treatment intention with biologics and

the other is to evaluate the treatment effect of biologics. For the former, since treatment

intention is of interest, patients’ treatment status is allowed to vary after matching. For

the latter, the change of treatment status is considered as a competing risk of the joint

damage event, and estimation of cumulative incidence functions (CIFs) will be the goal.
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We define a failure time outcome, Ti, as the time to an increase in the number of damaged

joints from ti0. Patients are followed up to the last visit prior to the administrative end of

follow-up which is Nov. 2013, and there are no random drop-outs in this case. However,

we consider patients who do not visit for longer than 3 years as lost to follow-up, since the

protocol suggests that patients should be assessed about every six to 12 months. That is,

we artificially censor visit gap times longer than 3 years. In addition, since joint damage

is inspected only at clinic visits and visits are intermittent, failure times Ti are subject to

interval censoring, or right censoring at the last visit. In this study, data is recorded in

days, and the occurrence of failure does not prohibit visits, so this is an example of CASE

I defined in preceding simulations. Since visit gap times are relatively shorter than joint

damage event times Ti, in this chapter, analyses of visit gap times are reported in days,

while analyses of Ti are reported in years. Additionally, the kernel functionK(·) in (4.3) and

(4.15) is selected to be the Epanechnikov (EP) kernel, i.e. K(u) = 3
4
(1−u2)I(|u| ≤ 1), and

the K∗(·) in (4.6) and (4.16) is selected to be the Gaussian kernel, i.e. K∗(u) = 1√
2π
e−u

2/2

all through this chapter. The convergence tolerance of the regression parameter estimates

in the iterative two-stage semi-parametric estimation procedure is set as < 10−6.

5.1 Association between Joint Damage and Intended

Biologics Treatment

In this study, A represents intended biologics treatment, and we will study its association

with the time T to an increase in the number of damaged joints. Among the 207 treated

patients, 105 have interval-censored failure times and 102 have right-censored failure times.

For the 207 untreated patients, 84 failure times are interval-censored and 123 failure times
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Figure 5.1: Histogram of frequency of the calendar year of matching time, ti0, for the 207

treated patients.
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are right-censored. On average, treated patients have 9 visits and untreated patients have

7 visits. The gap times between consecutive visits for the treated group have an average of

7.2 months, a median of 6.3 months and a standard error of 3.3 months. For the untreated

group, the average is 7.4 months, the median is 6.3 months, while the standard error is

4.0 months. Although visits are planned to be every 6 – 12 months in this cohort, and

the median of visit gap times is about 6 months in each treatment group, considerable

variability of the frequency and timing of visits is seen. It was mentioned earlier that visit

gap times longer than 3 years are artificially censored so as to avoid extremely large values

of IIV weights. As a result, 38 individuals have visit gap times artificially censored, and

115 visits are deleted in total.

5.1.1 Analysis of Visit Times and Estimation of IIV Weights

To investigate the visit process and to estimate IIV weights, a semi-Markov proportional

hazards model with a piecewise constant baseline, like (2.25), is used to analyse visit gap

times. Models of visit times are fitted in days. The range of calendar dates of visits in

this analysis set is from 1980-01-11 to 2013-03-25. To satisfy the proportional hazards as-

sumption, visit gap times are analysed within subgroups which are defined by the calendar

decade of the previous visit. They are [1980, 2000), [2000, 2010) and [2010, 2013]. For the

lth subgroup, where l = 1, 2, or 3, the model for the intensity of visit gap times has the

form

λN(t|Zi(t−);θl) = λ†N0(B(t);πl) exp(α′lZi(t
−)), (5.1)

where λ†N0[B(t);πl] =
∑K

k=1 πl,kIl,k(t), πl = (πl,1, ..., πl,K)′, Il,k(t) = I{B(t) ∈ (al,k−1, al,k]},

B(t) is the elapsed time or gap time from the previous visit and I is an indicator function

which equals 1 if true and 0 otherwise; πl,k, k = 1, ..., K, are the piecewise constant baseline
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hazards for the lth subgroup, and al,k, k = 1, ..., K, are the corresponding cut-points which

are selected by the comparison with a non-parametric estimate of baseline hazard; and

θl = (π′l,α
′
l)
′. Covariates Zi(t

−) may include the interaction of functions of the visit gap

time B(t) and some regressors which have time-varying coefficients, e.g. ESR measures

and the median length of past visit gap times. Proportional hazards assumptions have

been tested by R function cox.zph for a semi-parametric version of model (5.1), which are

accepted for all subgroups. Thus, R function phreg is used for fitting the piecewise constant

hazard semi-Markov model (5.1) with the baseline hazard estimated parametrically. All

regression summaries are given in Tables 5.1-5.3. The attributes of all regressors used in

Tables 5.1-5.3 are listed in Table A.1 in Appendix A.1 at the end of the thesis.

From Table 5.1 for visit times before 2000, we see that there is evidence that visit

intensities are significantly associated with ESR, sex, age, joint damage, at significance

level of α = 0.05. From Tables 5.2 for visit times between 2000 and 2010, factors significant

at α = 0.05 are family history of PsA, NSAIDs, DMARDs, biologics, ESR and the history

of past visits. In Table 5.3, since there are limited visits between 2010 and 2013, there is

not much evidence of significant associations between visit intensities and these risk factors

except for DMARDs and the history of past visits. In addition, we can see that the effects

of ESR and past visit history on the present visit intensities may vary over the period of

gap time B(t). The IIV weights used below are estimated by formula (2.20) defined earlier

with all the covariates that are considered in model fits based on (5.1) which are shown in

Tables 5.1-5.3. The estimated IIV weights ŵi(t) at actual visit times tij’s across subjects

have a minimum of 10.48, a median of 62.50, and a maximum of 8816.

From these analyses we can see that visit times are correlated with time-fixed as well

as time-varying disease-related variables and also associated with past visit history, which

might account for some unknown risk factors of visit intensities.
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Table 5.1: Summary for the 1st subgroup (< 2000) of visit gap times by model (5.1) for

the study of biologics intention. Time is in days. Cut-points selected for this subgroup

are 150, 240, 383, 414, 692. Except for treatment (i.e. ns, dm, bg) time-varying covariates

change only at visits. Variable med.gap denotes the median length of past visit gap times.

coef exp(coef) se(coef) z Pr(> |z|)

ESR -0.0163 0.9838 0.0052 -3.1381 0.0017

sex -0.4012 0.6695 0.2016 -1.9902 0.0466

age -0.0210 0.9793 0.0095 -2.2063 0.0274

PS duration 0.0061 1.0062 0.0082 0.7501 0.4532

PsA duration 0.0011 1.0011 0.0127 0.0887 0.9294

family history of PS 0.0264 1.0267 0.2249 0.1172 0.9067

family history of PsA -0.0197 0.9805 0.4146 -0.0475 0.9621

number of active joints 0.0049 1.0049 0.0094 0.5188 0.6039

number of damaged joints 0.0414 1.0423 0.0130 3.1827 0.0015

NSAIDs 0.3177 1.3739 0.1644 1.9324 0.0533

DMARDs 0.2320 1.2611 0.2288 1.0142 0.3105

biologics 0.0845 1.0882 0.2783 0.3036 0.7615

med.gap 0.0012 1.0012 0.0008 1.4919 0.1357
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Table 5.2: Summary for the 2nd subgroup (2000− 2010) of visit gap times by model (5.1)

for the study of biologics intention. Time is in days. Cut-points selected for this subgroup

are 170, 247, 375, 450, 1030. Variable med.gap denotes the median length of past visit gap

times.

coef exp(coef) se(coef) z Pr(> |z|)

sex 0.0774 1.0805 0.0477 1.6229 0.1046

age 0.0031 1.0031 0.0022 1.4419 0.1493

PS duration 0.0043 1.0043 0.0023 1.8874 0.0591

PsA duration -0.0008 0.9992 0.0029 -0.2864 0.7746

family history of PS -0.0288 0.9716 0.0451 -0.6397 0.5224

family history of PsA -0.2147 0.8068 0.0772 -2.7820 0.0054

number of active joints -0.0027 0.9973 0.0026 -1.0528 0.2924

number of damaged joints 0.0017 1.0017 0.0018 0.8978 0.3693

NSAIDs 0.0902 1.0944 0.0453 1.9919 0.0464

DMARDs 0.1299 1.1388 0.0454 2.8616 0.0042

biologics 0.1377 1.1477 0.0473 2.9130 0.0036

ESR:I(B(t) ≤ 180) 0.0052 1.0052 0.0020 2.5587 0.0105

ESR:I(B(t) > 180) -0.0088 0.9912 0.0020 -4.3467 0.0000

ESR:I(B(t) > 365) -0.0026 0.9974 0.0052 -0.5051 0.6135

med.gap:I(B(t) ≤ 180) -0.0068 0.9932 0.0004 -16.2028 0.0000

med.gap:I(B(t) > 180) -0.0009 0.9991 0.0003 -2.8924 0.0038

med.gap:I(B(t) > 365) 0.0005 1.0005 0.0005 0.9889 0.3227
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Table 5.3: Summary for the 3rd subgroup (≥ 2010) of visit gap times by model (5.1) for

the study of biologics intention. Time is in days. Cut-points selected for this subgroup

are 172, 196, 265, 307, 364. Variable med.gap denotes the median length of past visit gap

times.

coef exp(coef) se(coef) z Pr(> |z|)

ESR -0.0019 0.9981 0.0026 -0.7242 0.4689

sex -0.0204 0.9798 0.0704 -0.2894 0.7723

age 0.0019 1.0019 0.0033 0.5741 0.5659

PS duration 0.0010 1.0010 0.0033 0.3038 0.7613

PsA duration -0.0015 0.9985 0.0043 -0.3440 0.7308

family history of PS -0.0193 0.9809 0.0679 -0.2840 0.7764

family history of PsA -0.0193 0.9809 0.1127 -0.1712 0.8641

number of active joints 0.0008 1.0008 0.0049 0.1606 0.8724

number of damaged joints 0.0007 1.0007 0.0027 0.2376 0.8122

NSAIDs -0.0386 0.9622 0.0650 -0.5936 0.5528

DMARDs 0.1807 1.1980 0.0677 2.6672 0.0076

biologics 0.1109 1.1173 0.0701 1.5826 0.1135

med.gap:I(B(t) ≤ 180) -0.0068 0.9932 0.0008 -8.4731 0.0000

med.gap:I(B(t) > 180) -0.0016 0.9984 0.0005 -2.9983 0.0027

med.gap:I(B(t) > 365) -0.0007 0.9993 0.0016 -0.4552 0.6489
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5.1.2 Estimation of the Failure Time Distribution

In this section, we will apply the IIV weighting approach to non-parametric, parametric,

and semi-parametric estimation of distributions of failure time Ti (time to an increase in

the number of damaged joints) to deal with the intermittent and informative clinic visit

times. Note that all plots and regression parameters of failure time distributions will be

presented with time in years and that there is no censoring upon a change of biologics

status.

First, the non-parametric estimation of survival function or CDF of failure time Ti

which was introduced in Section 4.1.1 will be illustrated for each of the two treatment

groups. The bandwidths bm and hm in (4.1) and (4.6), respectively, are both selected to

be 365 (days). Then, for the treated group, about 138 visits, and for the untreated group,

about 145 visits, are contained in [s`− bm, s` + bm] on average, and contribute to the crude

or raw estimates of ST (s`|A) = Pr(Ti > s`|A) by (4.1), where A = 0 or 1. For each group,

the crude estimates are monotonized by an isotonic regression, and then are smoothed by

a non-parametric kernel regression by (4.6). The final estimate of the survival function of

T , i.e. ST (t|A), A = 0 or A = 1, is shown in Figure 5.2. The grey solid and dashed curves

are the pointwise empirical confidence intervals (ECIs) for the two survival curves, which

are given by ŜT (t|A)± 1.96 se(ŜT (t|A)), where se denotes a bootstrap estimated standard

error. Bootstrap sample size is set to be 100 in this analysis. Turnbull (1976)’s estimator is

utilized as a naive estimation method which does not adjust for the dependent inspection

or visit times for comparison with the proposed weighted approach. In Figure 5.2, it can be

seen that the Turnbull’s estimate of the survival curve, ST (t|A = 0), basically agrees with

the IIV weighted non-parametric estimate. However, Turnbull’s estimator overestimates

the survival probabilities of the treated group (A = 1). Additionally, there is some evidence
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that the weighted estimates of ST (t|A), A = 0 and A = 1, are significantly different, since

the corresponding ECIs hardly overlap. This suggests that patients who were intended to

be treated with biologics are at a higher risk of an increase in the number of damaged joints.

This is explainable because more severely sick patients will be prescribed biologics and these

patients are usually at higher risk of joint damage. Since the initial biologics assignments

are not randomized, later in this section we will apply the IPT weighting method which

was introduced in Section 3.1.2 to adjust for the bias caused by potential confounding

variables. However, the present analysis does not address the efficacy of treatment with

biologics since some patients who did not receive biologics at ti0 later switched to be on it

during follow-up. The analysis here is directed at whether there is an association between

the intended treatment with biologics at ti0 and joint damage.

Next, we will apply the parametric estimation introduced in Section 2.2 to this example.

A piecewise-constant proportional hazards model given treatment A is assumed for failure

times Ti, i.e.

λT (t|Ai) =
S∑
s=1

ρsIs(t) exp (βAi) , i = 1, ..., n, (5.2)

where Is(t) = I{t ∈ (as−1, as]}, s = 1, ..., 4, cut-points are a0 = 0 < a1 = 0.2 < a2 = 1.5 <

a3 = 6 < a4 = +∞, and ρs’s are unknown non-negative constants. The survival function

of Ti is then given by

ST (t|Ai) = exp{−
S∑
s=1

ρsvs(t) exp (βAi)}, i = 1, ..., n, (5.3)

where vs(t) =
∫ t

0
Is(u)du, s = 1, ..., 4. Figure 5.3 displays the non-parametric IIV weighted

estimates of the baseline distribution of failure times, i.e. A = 0. The left plot shows the

baseline cumulative hazard function, ΛT (t|A = 0), and the right plot shows the baseline

CDF, FT (t|A = 0). We can see that a piecewise exponential distribution can be applicable

150



t (in years)

S
T
(t

|A
)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

0
.
0
0

0
.
2
0

0
.
4
0

0
.
6
0

0
.
8
0

1
.
0
0

A=1 (Turnbull)
A=0 (Turnbull)
A=1 (IIVW)
A=0 (IIVW)
A=1 (IIVW ECI)
A=0 (IIVW ECI)

Figure 5.2: Non-parametric IIV weighted estimates of ST (t|A) where A = 0, or 1, where

A denotes biologics intention. The number of patients who were followed up to 1, 3, 5, 7

years respectively are 181, 131, 77, 42 for A = 0, and are 183, 140, 102, 63 for A = 1.
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Figure 5.3: Non-parametric IIV weighted estimates of baseline cumulative hazard,

ΛT (t|A = 0), and baseline CDF, FT (t|A = 0), where A denotes biologics intention.
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Figure 5.4: Plot of Turnbull estimates, non-parametric (denoted by non-par), parametric

and semi-parametric (denoted by semi-par) IIV weighted estimates of ST (t|A), where A =

0, or 1, A denotes biologics intention. The number of patients who were followed up to

1, 3, 5, 7 years respectively are 181, 131, 77, 42 for A = 0, and are 183, 140, 102, 63 for

A = 1.
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to this example, and later we will compare the parametric estimated distributions based

on model (5.2) with the non-parametric estimates we have obtained above.

A consistent estimate of β from (5.2) can be obtained by solving the weighted esti-

mating function given in (2.13) where IIV weights are estimated as in the non-parametric

estimation. Given the many parameters in the visit time model (5.1), it is computation-

ally intensive to compute the asymptotic variance by the large sample theory introduced

in Section 2.2.5, so the bootstrap is employed instead to estimate the standard errors of

estimates. As a result, the estimates of ρ1, ρ2, ρ3, ρ4 and β solved by the R function

nleqslv are: 1.033 (0.327), 0.061 (0.056), 0.111 (0.028), 0.079 (0.052), 0.607 (0.212), where

the values in brackets are the bootstrap estimated standard errors. The estimated survival

functions, ST (t|A), are displayed in Figure 5.4, denoted by a blue solid curve and a blue

dashed curve for the treated group (A = 1) and untreated group (A = 0), respectively.

We can see that the IIV weighted parametric estimates agree well with the IIV weighted

non-parametric estimates which are denoted by black solid and dashed curves, though for

A = 0 and when t > 5 years the parametric estimate is apart from the non-parametric

estimate since the fully parametric model (5.2) shapes the estimated curve. The estimat-

ed hazard ratio eβ̂ indicates that patients initially treated with biologics have about 1.83

times the risk of failure of the untreated patients. Also, there is some evidence that two

treatment groups have different risk of joint damage: the 95% empirical confidence interval

for β computed by β̂ ± 1.96 se(β̂) is (0.192, 1.022), which indicates that the difference is

significant at α = 0.05.

Next, we will illustrate the IIV weighted semi-parametric estimation based on an ad-

ditive hazards model which has a form of

λT (t|Ai) = λT,0(t) + γAi, i = 1, .., n, (5.4)
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where λT,0(t) is an unspecified non-negative function of t. The IIV weights are again esti-

mated as in the non-parametric estimation and parametric estimation. Then, the iterative

algorithm introduced in Section 4.2.1 is implemented with the naive estimate of γ given

by R function aalen in the package timereg as an initial value. As a result, the estimate

γ̂ in model (5.4) equals 0.152 with a standard error estimated by bootstrap of 0.043, and

the corresponding 95% empirical confidence interval equals (0.067, 0.237). Therefore, at a

significance level of 0.05, statistical evidence indicates that the two treatment groups have

a different risk of joint damage. Specifically, the intended to be treated patients are found

to be at a higher risk of an increase in the number of damaged joints. The average number

of iterations is about 9, so the algorithm converges well and is not very computationally

intensive in this case. The baseline hazard λT,0(t) can be estimated by solving estimating

function (4.14) and then monotonizing and smoothing the resulting raw estimates. Finally,

the estimated survival curves are also shown in Figure 5.4 by a green solid curve and a

green dotted curve for A = 1 and A = 0, respectively. Additionally, in Figure 5.4, we can

see that for each group, when the IIV weighting method is applied, non-parametric esti-

mates, piecewise exponential parametric estimates, and additive hazards semi-parametric

estimates agree well with each other, which justifies the selection of model (5.2) and model

(5.4) for failure times.

So far, we have demonstrated the IIV weighted estimation for the adjustment of inter-

mittent clinic visits. Nevertheless, it is known that biologics are usually assigned for adult

patients with moderate to severe joint activity. Some biologics such as Adalimumab can

be used alone or are recommended to be used in combination with Methotrexate (MTX)

or other DMARDs. Therefore, joint activity, disease duration, age and other concurrent

treatments could be potential confounders of the association between the initial intention to

treat with biologics and the joint damage event. To eliminate the bias caused by observed
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confounding variables in this observational study, we can employ the inverse-probability-

of-treatment (IPT) weighting method which was introduced in Section 3.1.2 for parametric

estimation. A logistic regression model is fitted for treatment intention, A, at ti0, to esti-

mate the IPT weights (3.6). The model fitting summary is presented in Table 5.4 where

we see that ESR, age, joint activity and NSAIDs are found to be significantly associated

with biologics assignment at α = 0.05. Although subjects for the analyses here were chosen

according to their treatment status (A = 0 or 1), this model, when applied to a randomly

selected person in the study group, will adjust for differences in risk factors across the two

treatment subgroups. For parametric model (5.2), a double weight (3.7) will replace the

IIV weight wi(t|α) in the estimating function (2.13), and the doubly weighted parametric

estimates of survival curves are shown in Figure 5.5 and are denoted by red solid and red

dashed curves. The estimates of ρ1, ρ2, ρ3, ρ4 and β are 0.821 (0.321), 0.102 (0.066), 0.104

(0.048), 0.128 (0.062), and 0.580 (0.260). Similarly, for additive hazards model (5.4), a

double weight (3.7) replaces the IIV weight in the estimating function (4.14) and (4.17)

and the resulting estimates are displayed in Figure 5.6. The estimate of γ in model (5.4)

is 0.155 with a bootstrap estimated standard error of 0.046. The 95% empirical confidence

interval for β in model (5.2) is (0.071, 1.089) and that for γ in model (5.4) is (0.064, 0.246).

Additionally, in Figure 5.5 or Figure 5.6, it is seen that the doubly weighted estimates and

the IIV weighted estimates are very close. That is, the confounders which we considered

in the analysis of Table 5.4 barely bias the estimates, which makes sense in this case, since

patients can change treatment status later but stay in the same group, which was defined

at ti0, for estimation. However, unmeasured confounders may exist, so the analysis results

still could have hidden bias.

We conclude that the patients who were intended to be treated with biologics are at a

relatively higher risk of an increase in the number of damaged joints than those who were
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not intended to be treated. Furthermore, we note again that because some individuals

in the untreated group actually switched to treatment later, we cannot make conclusions

about the efficacy of biologics treatment from this analysis.

Table 5.4: Logistic regression model fitting summary for A at ti0 where A denotes the

intention of biologics.

coef se(coef) z Pr(> |z|)

(Intercept) -1.6699 0.3830 -4.3600 1.30E-05 ***

ESR 0.0159 0.0070 2.2770 0.0228 *

year of enrolment 0.0394 0.0237 1.6580 0.0973 .

year of the visit before ti0 0.0223 0.0314 0.7100 0.478

sex 0.3383 0.2549 1.3270 0.1845

age -0.0483 0.0114 -4.2300 2.34E-05 ***

PS duration -0.0007 0.0124 -0.0580 0.9536

PsA duration 0.0019 0.0195 0.0950 0.9242

family history of PS 0.1907 0.2487 0.7670 0.4431

family history of PsA -0.0333 0.3930 -0.0850 0.9324

number of active joints 0.1261 0.0174 7.2580 3.93E-13 ***

number of damaged joints 0.0212 0.0123 1.7230 0.0849 .

NSAIDs 0.7318 0.2661 2.7500 0.006 **

DMARDs 0.1722 0.2544 0.6770 0.4984

—

Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1
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Figure 5.5: Plot of Turnbull, IIV weighted and IIV + IPT doubly weighted parametric

estimates of ST (t|A) based on model (5.3) for the study of biologics intention, where A = 0,

or 1. The number of patients who were followed up to 1, 3, 5, 7 years respectively are 181,

131, 77, 42 for A = 0, and are 183, 140, 102, 63 for A = 1.
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Figure 5.6: Plot of Turnbull, IIV weighted and IIV + IPT doubly weighted semi-parametric

estimates of ST (t|A) based on model (5.4) for the study of biologics intention, where A = 0,

or 1. The number of patients who were followed up to 1, 3, 5, 7 years respectively are 181,

131, 77, 42 for A = 0, and are 183, 140, 102, 63 for A = 1.
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5.2 Association between Joint Damage and Biologics

Treatment: Competing Risks Analysis

In this section, we want to study the efficacy of biologics treatment on time to an increase

in the number of damaged joints. The analysis set includes the 177 patients who initially

started using biologics after 2000 and the 177 untreated patients who were matched with

the treated ones by calendar day. Comparing this analysis set with that used in Section

5.1, we exclude 60 patients who received biologics or were matched prior to 2000, since

biologics, which are widely used recently, were mostly licensed around or after 2000. The

range of visit dates in this analysis set is from 2000-01-17 to 2013-03-25. Among the 177

treated patients, 8.3 clinic visits were attended on average. For the 177 untreated patients,

the average number of visits is 7.4. The estimation of IIV weights is conducted for two

subgroups of visit gap times: [2000, 2010) and [2010, 2013], and the corresponding model

fitting summaries based on model (5.1) are provided in Tables 5.5-5.6. We see that visit

intensities are significantly associated with family history of PsA, treatment with DMARDs

and biologics, ESR, and the history of past visits. The estimated IIV weights ŵi(t) at visit

times tij’s across subjects have a minimum of 11.22, a median of 61.54, and a maximum

of 8373. In this analysis, 14 individuals have long visit gap times artificially censored at 3

years, and 17 visits are deleted in total.

To study the time to joint damage increase under treatment with biologics, i.e. Ai, we

consider the joint damage event and time-to-treatment switch as a pair of competing risks

(CRs). Let Ti1 be the time to joint damage increase under the initial treatment fixed at ti0

and let Ti2 be the time to a treatment switch. Treatment history is recalled retrospectively

at clinic visits and the exact start date and stop date of the usage of a specific drug are

ascertained, so Ti2 can be observed exactly, whereas Ti1 is interval-censored. Since Ti1
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Table 5.5: Model fit summary for the 1st subgroup of visit gap times, i.e. the previous

visit lies in [2000, 2010), based on model (5.1) in the competing risks analysis. Model is

fitted in days. Cut-points selected for this subgroup are 170, 247, 375, 450, 1030. Except

treatment (i.e. ns, dm, bg) other time-varying covariates change only at visits. Variable

med.gap denotes the median length of past visit gap times.

coef exp(coef) se(coef) z Pr(> |z|)

sex 0.0555 1.0570 0.0512 1.0832 0.2787

age 0.0042 1.0042 0.0023 1.8184 0.0690

PS duration 0.0034 1.0034 0.0025 1.3937 0.1634

PsA duration 0.0004 1.0004 0.0034 0.1190 0.9053

family history of PS -0.0149 0.9852 0.0482 -0.3093 0.7571

family history of PsA -0.2433 0.7841 0.0820 -2.9673 0.0030

number of active joints -0.0050 0.9950 0.0028 -1.7866 0.0740

number of damaged joints -0.0008 0.9992 0.0020 -0.3969 0.6914

NSAIDs 0.0440 1.0450 0.0487 0.9053 0.3653

DMARDs 0.1038 1.1094 0.0487 2.1295 0.0332

biologics 0.1769 1.1935 0.0509 3.4721 0.0005

ESR:I(B(t) ≤ 180) 0.0062 1.0063 0.0023 2.7659 0.0057

ESR:I(B(t) > 180) -0.0114 0.9887 0.0024 -4.8263 0.0000

ESR:I(B(t) > 365) -0.0044 0.9956 0.0066 -0.6661 0.5053

med.gap:I(B(t) ≤ 180) -0.0069 0.9932 0.0004 -15.4485 0.0000

med.gap:I(B(t) > 180) -0.0007 0.9993 0.0003 -2.0712 0.0383

med.gap:I(B(t) > 365) 0.0009 1.0009 0.0005 1.7930 0.0730
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Table 5.6: Model fit summary for the 2nd subgroup of visit gap times, i.e. the previous

visit lies in [2010, 2013], based on model (5.1) in the competing risks analysis. Model is

fitted in days. Cut-points selected for this subgroup are 172, 196, 265, 307, 364. Except

treatment (i.e. ns, dm, bg) other time-varying covariates change only at visits. Variable

med.gap denotes the median length of past visit gap times.

coef exp(coef) se(coef) z Pr(> |z|)

ESR -0.0019 0.9981 0.0026 -0.7393 0.4597

sex -0.0232 0.9771 0.0725 -0.3199 0.7490

age 0.0030 1.0030 0.0033 0.8963 0.3701

PS duration 0.0003 1.0003 0.0034 0.0768 0.9388

PsA duration -0.0012 0.9988 0.0044 -0.2718 0.7858

family history of PS 0.0202 1.0204 0.0697 0.2898 0.7720

family history of PsA -0.0219 0.9784 0.1159 -0.1887 0.8503

number of active joints 0.0002 1.0002 0.0050 0.0356 0.9716

number of damaged joints 0.0006 1.0006 0.0029 0.1918 0.8479

NSAIDs -0.0491 0.9521 0.0673 -0.7304 0.4652

DMARDs 0.1641 1.1784 0.0701 2.3396 0.0193

biologics 0.1173 1.1244 0.0719 1.6308 0.1029

med.gap:I(B(t) ≤ 180) -0.0068 0.9933 0.0008 -8.3028 0.0000

med.gap:I(B(t) > 180) -0.0015 0.9985 0.0005 -2.7119 0.0067

med.gap:I(B(t) > 365) -0.0008 0.9992 0.0017 -0.4944 0.6211
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and Ti2 are not independent given the observed history up to the most recent past visit,

considering treatment switch as the censoring of Ti1 and applying the inverse-probability-

of-censoring weighting (IPCW) is not helpful. Following the convention of CR studies,

we define the observed failure time as Ti = min(Ti1, Ti2, Ci), where we know there is no

random drop-out in this example, so Ci = τi. We let εi be the cause of failure, where

εi = 1 if Ti = Ti1, εi = 2 if Ti = Ti2, and εi = 0 otherwise. First, the additive hazards

model (4.12) is assumed for the subdistribution hazard of cause 1, i.e. λ1(t|Ai), which was

defined by Fine and Gray (1999). One can consider λ1(t|Ai) as the hazard function of the

improper failure time variable Ti1 = I(εi = 1)Ti + I(εi 6= 1)∞. Then, we still have the

survival function model (4.13) which can be written as

S1(t|Ai) = S1,0(t) exp {−γAit} , (5.5)

where S1(t|Ai) = 1 − F1(t|Ai) and F1(t|Ai) = Pr(Ti1 ≤ t|Ai) = Pr(Ti ≤ t, εi = 1|Ai) is

referred to as the cumulative incidence function (CIF) for failure from cause 1 (i.e. joint

damage increase) given biologics status Ai, and S1,0(t) = 1−F1(t|Ai = 0) is unspecified. In

this section, we will investigate the effect of biologics on time to an increase in the number

of damaged joints via the estimation of F1(t|Ai) non-parametrically or semi-parametrically.

The responses in (4.1) for non-parametric estimation are defined as Yi(t) = I(Ti ≤

t, ε = 1), so the corresponding means are θ` = F1(`), for ` = 1, ...,m. For semi-parametric

estimation, the responses in (4.14) and (4.17) are defined as Pi(t) = 1− Yi(t) with means

E{Pi(t)|Ai} = S1(t|Ai) = 1 − F1(t|Ai) that are modelled by (5.5). The bandwidths, bm

and hm, in the non-parametric estimation and the semi-parametric estimation are selected

to be 180 days, so that for either group m equals 12 and there are 100− 120 visits lying in

[s` − bm, s` + bm].

We know that treatment is non-randomized at ti0, so to study the efficacy of biologics
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on a joint damage event, we apply the IPT weights estimated by (3.6) via fitting a logistic

regression like (3.4). The model fitting summary is presented in Table 5.7 where we see

treatment assignment is significantly associated with joint activity, age, ESR, and concur-

rent treatment with NSAIDs at α = 0.05. To adjust for these confounders, we substitute

the IIV weight wi(t) in estimating functions (4.1), (4.14), and (4.17) with the double weight

(3.7) where w∗i is the IPT weight.

Table 5.7: Logistic regression model fitting summary for A at ti0 where A denotes biologics

treatment status in the competing risks analysis.

coef se(coef) z Pr(> |z|)

(Intercept) -1.9146 0.4924 -3.8880 0.0001 ***

ESR 0.0166 0.0077 2.1580 0.0309 *

year of enrolment 0.0340 0.0256 1.3270 0.1844

year of the visit before ti0 0.0651 0.0465 1.4010 0.1613

sex 0.3094 0.2732 1.1330 0.2574

age -0.0478 0.0122 -3.9130 9.13E-05 ***

PS duration 0.0038 0.0130 0.2930 0.7694

PsA duration -0.0083 0.0217 -0.3800 0.7043

family history of PS 0.4130 0.2683 1.5390 0.1237

family history of PsA -0.0448 0.4322 -0.1040 0.9175

number of active joints 0.1256 0.0186 6.7580 1.40E-11 ***

number of damaged joints 0.0254 0.0130 1.9500 0.0512 .

NSAIDs 0.6965 0.2932 2.3760 0.0175 *

DMARDs 0.0254 0.2750 0.0920 0.9264
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Figure 5.7: Plot of unweighted, IIV weighted and IIV + IPT doubly weighted non-

parametric estimates of F1(t|A), where A = 0, or 1, A denotes biologics status in the

competing risks analysis. The number of patients who were followed up to 1, 3, 5, 7 years

respectively are 155, 109, 70, 38 for A = 0, and are, 153, 113, 82, 46 for A = 1.
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Figure 5.8: Doubly weighted non-parametric crude estimate, denoted by a circle, and

isotonic estimate, denoted by a plus, of F1(s`|A), where ` = 1, ...,m and A = 0, or 1.

Variable A denotes biologics status in the competing risks analysis. The number of patients

who were followed up to 1, 3, 5, 7 years respectively are 155, 109, 70, 38 for A = 0, and

are, 153, 113, 82, 46 for A = 1.
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Figure 5.9: Plot of unweighted, IIV weighted and IIV + IPT doubly weighted semi-

parametric estimates of F1(t|A) based on (5.5), where A = 0, or 1, A denotes biologics

status in the competing risks analysis. The number of patients who were followed up to

1, 3, 5, 7 years respectively are 155, 109, 70, 38 for A = 0, and are, 153, 113, 82, 46 for

A = 1.
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Figure 5.7 shows the IIV weighted and the doubly weighted non-parametric estimates

of F1(t|A) for A = 0 and A = 1. Unweighted estimates obtained by setting wi(t) (IIV

weight) and w∗i (IPT weight) as 1 are considered as naive estimates and are also displayed

in Figure 5.7 for comparison. The IIV weighted estimates and naive estimates shown in

Figure 5.7 indicate that treated patients have relatively higher cumulative incidence of an

increase in the number of damaged joints than untreated patients during the early years,

which is not expected and suggests that there may exist bias. Then, after the IPT weight is

further applied, it has been corrected a bit by the measured confounders considered in the

analysis of Table 5.7, and the doubly weighted estimates (red solid and red dashed curves)

in Figure 5.7 indicate that two treatment groups have no difference in terms of cumulative

incidence of joint damage increase. However, there may exist unknown factors which are

associated with joint damage as well as visit times and unmeasured confounders related

to treatment and disease progression that fail to be adjusted for, due to the limitation

of information or data; we will further discuss this later in this chapter and in the next

chapter. In addition to Figure 5.7, raw estimates Ȳ`, given in (4.3), and isotonic estimates

for each group when double weights are applied are shown in Figure 5.8.

Figure 5.9 displays unweighted, IIV weighted and doubly weighted semi-parametric

estimates of F1(t|A) versus A, based on the additive hazards model (5.5). We can see that

treated patients and untreated patients have no difference in terms of the incidence of joint

damage increase from the unweighted estimates of F1(t|A). When the IIV weight is applied,

it is found that the two treatment groups have slightly different cumulative incidences,

but when the IPT weight is further applied, it is easily seen that treated patients have

a lower cumulative incidence than untreated patients. The unweighted estimate of γ is

0.001 with a bootstrap estimated standard error (se) of 0.024 and the 95% empirical CI

is (−0.047, 0.049), which indicates there is no evidence that biologics have any effect on
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the risk of joint damage increase at α = 0.05. In this analysis, 500 bootstrap samples are

used to estimate standard errors. The IIV weighted estimate of γ equals -0.008 with a

standard error of 0.035 and the 95% empirical CI is (−0.076, 0.061), so there is once again

no evidence that biologics have an effect on decreasing the risk of joint damage increase.

Then, when the IPT weight is applied, the estimated γ equals -0.034 with a standard error

of 0.037 and a 95% empirical CI of (−0.107, 0.039).

Based on the results here, there is not sufficient evidence that biologics have an effect

on reducing the risk of an increase in the number of damaged joints, though Figure 5.9

based on the additive hazards model (5.5) suggests that treated patients have relatively

lower cumulative incidence of a joint damage increase than untreated patients when the

double weighting method is employed. However, we have to carefully draw conclusions

on these analysis results, because there are several concerns in our data set. Sample size

is small, which gives large standard errors and wide confidence intervals. Also, there are

actually eight specific drugs in the category of biologics and patients may use more than

one drug simultaneously. Here, we consider the class of all biologic drugs as one treatment

since sample size will be even smaller if we focus on one particular drug. Moreover, due to

unmeasured confounders, the bias induced by confounding may not be sufficiently corrected

by the IPT weights. This will be further discussed in the next section. In addition, the

doubly weighted semi-parametric estimates of F1(t|A) shown in Figure 5.9 do not agree

well with the non-parametric estimates shown in Figure 5.7, which may suggest a lack of

fit for the additive hazards model (5.4). By (5.5), we see that the additive hazards model

forces the proportion S1(t|A = 1)/S1(t|A = 0) to grow exponentially over time with a

negative estimate of γ. Model assumption could be relaxed by allowing a time-varying

coefficient γ in model (5.4). This demands further investigation, and it will be considered

as future work.
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5.3 Concluding Remarks on the Analyses

To conclude, intermittent inspection times are common in longitudinal cohort studies,

especially when the protocol is designed to be history-dependent, physician or patient-

driven. Since how often and when patients come to visit the clinic could be associated

with disease status or disease-related variables, naive analysis of the observed data may

lead to misleading conclusions due to the dependent interval censoring. From the above

analyses, we see that the IIV weighted estimates effectively adjust for the informative visit

times and lead to more plausible conclusions.

Like many weighting adjustment methods, the proposed IIV weighted estimating func-

tion approach requires some crucial assumptions. In addition to the condition (B1) about

conditionally independent observation scheme which was introduced in Section 2.2.1 and

the assumption of independent drop-out, we also need the visit time model and the failure

time model to be correctly specified, so careful selection of variables and models is essential.

It is noted that there may exist unknown or unobserved factors and their history between

the outcome process and the visit process in the PsA analyses; that is, the assumption (B1)

could be violated. Thus, the IIV weighting method may not sufficiently adjusts for the

selection bias caused by dependent follow-up. Sensitivity analysis tools, e.g. Scharfstein

et al. (1999), can be helpful to check the impacts of a non-ignorable observation scheme.

In observational studies, direct comparison of two treatment groups could lead to biased

results because of potential confounders, since treatment is not randomized, as we showed

and discussed at the ends of Section 5.1 and Section 5.2. The IPT weighting method can

help with eliminating the bias caused by confounding. However, to draw reliable causal

conclusions the assumption (C1) which assumes that there are no unmeasured confounders

has to be satisfied. In this data set, due to the missing or limited information on poten-
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tial confounding variables between treatment (biologics) and failure times, rigorous causal

conclusions cannot be drawn, but we see that the estimates which are adjusted by the

IPT weights are more plausible and presumably correct some bias induced by confound-

ing. We know that sicker patients are more likely to receive and adhere to biologics which

is known as a second-line treatment. In addition, economic status may be an important

factor because of the high expenses of biologics; we do not have information about this.

Therefore, biomarkers that reveal disease severity, efficacy of other treatments, economic

status, patients’ preferences, and information about side effects could be confounders be-

tween treatment and failure times. Although we have adjusted for potential confounders

such as ESR, joint activity, and joint damage measured at or prior to ti0, other variables

like Health Assessment Questionnaire (HAQ) score, Psoriasis Area Severity Index (PASI),

employment status or education status may be good candidates for confounders but they

have a lot of missingness in our database. Also, we don’t have information available to

check the positivity condition for treatment which was introduced in (C1). Due to the lim-

itation of data, this setting is not ideal for causal inference, because the assumption (C1)

is likely not satisfied. However, the analyses here illustrate the proposed estimation meth-

ods. Moreover, the problems that we discuss are present in the majority of observational

studies, where the assumption of no unmeasured confounders is rarely plausible.
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Chapter 6

CONCLUSION, DISCUSSION AND

FUTURE RESEARCH

In practice, the periodic inspection times of a longitudinal cohort study are often irregular.

For example, in the PsA Toronto Cohort Study, patients visit the PsA clinic at different

times due to circumstances that may relate to their health status, disease status, responses

to therapies, etc. Irregular inspection times may carry information about the outcomes

of interest, e.g. sicker patients visit the clinic more often and are also more likely to

experience disease progression or other disease-related events of interest. In this sense,

when and how often the investigators observe outcomes are dependent on the values of

outcomes or outcome-related variables. In other words, irregular inspection times could be

outcome-dependent and may lead to a biased sample for analysis. As a result, standard

analysis methods such as MLE and GEE methods based on observed data could yield

biased estimates and even misleading conclusions. This was seen in the simulation studies

and the analyses of the PsA cohort study in the preceding chapters. Although multivariate
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regression models which include all the potential common risk factors between the visit

process and the outcome process as covariates may take the outcome-dependent inspection

times into account, the targets of inference are often the marginal or partially conditional

effects of some primary factors on outcomes. The inverse-intensity-of-visit (IIV) weighting

method which is proposed in this thesis adjusts for informative inspection times and results

in the estimates of marginal associations or effects.

When the outcome of interest is a failure time or an event time, intermittent visits and

irregular inspection times could cause failure times to be dependently interval-censored.

Then, standard analysis methods, e.g. MLE based on likelihood (2.1) for interval-censored

data, may lead to biased estimates, because most standard methods and existing software

for failure time data assume that the censoring is independent and non-informative. Sensi-

tivity analysis tools can be used to check the dependence of censoring, e.g. Siannis (2004),

Siannis et al. (2005) and Zhang and Heitjan (2006). It is appealing that our proposed IIV

weighted estimating functions based on a class of (marginal) binary responses defined for

failure times, e.g. Pi(t) = I(Ti > t), can deal with dependent interval censoring and result

in the estimates of marginal or partially conditional effects. Meanwhile, other problems

in survival analysis such as left truncation, informative drop-out times, confounded treat-

ment, and competing risks can be dealt by similar formulations. When failure occurrence

discontinues visits, we proposed to discretize the visit process, create pseudo visits every

time unit after failure occurrence and consider the visit intensities as 1. The discretization

of the visit process is fine in practical studies, since data are recorded in certain time units,

e.g. the PsA data is recorded in days.

The assumptions (B1) in Section 2.2.1 and (B1*) in Section 2.2.4 that a visit time and

the response defined for failure time outcome is independent given the observed history of

covariates, past visits and past responses. This assumption is generally untestable as other
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assumptions for ignorable coarsening. If a visit time is associated with factors which are

not measured, e.g. patients’ preference and personalities, or the history of some variables

between the previous visit and the present one, then the assumption (B1) or (B1*) could be

violated. Random effect models can be considered in that case, but the estimates obtained

from a random effect model usually have a lack of interpretability and the assumption

regarding random effect(s) is usually untestable as well. A combination of the IIV weighted

estimating function approach and random effect models might be considered so that the

known factor or history can be adjusted for by weighting and unknown factors can be

represented by random effects. More discussion on that can be found in Pullenayegum and

Lim (2014).

We have introduced a variety of survival models in simulation studies, e.g. a propor-

tional hazards model, a log-normal AFT model and a semi-parametric additive hazards

model. Some assumptions based on recent articles are proposed to simplify the data gen-

eration and the forms of marginal outcome models, which might not always be plausible

in the real world. For example, we assumed that L̄obs(t−) = L̄(t−) and Lm is independent

of L̄m−1 given A in Section 2.3, following Young and Tchetgen Tchetgen (2014). The key

issue here is that there are few conditional outcome models that lead to marginal models

such as proportional hazards models, so simulations in the literature make very restrictive

assumptions, which do, however, allow assessment of the proposed methods of estimation.

In observational studies, treatments are non-randomized and are often confounded by

known and unknown factors which are common causes of treatment assignments as well as

outcomes. The inverse-probability-of-treatment (IPT) weighting method provides a useful

and convenient way to adjust for measured confounders and mimic a randomized trial so

that causal conclusions can be drawn. Other confounder adjustment methods via propen-

sity scores, such as matching, also could be helpful to eliminate the selection bias induced
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by confounders. However, the important assumption of strongly ignorable treatment as-

signment, i.e. (A1) or (C1), has to be satisfied to ensure no hidden bias is caused by

unmeasured confounders. However, this assumption is generally untestable and too ideal

to be true in practice. For example, in the PsA data, if patients’ unstated preference

about treatments also affects outcome, it could be an unmeasured confounder. Further-

more, in practical studies, even some known factors may fail to be measured properly,

as we discussed in Section 5.3. Good background information may help with the selec-

tion of appropriate potential confounders to reduce selection bias; sound collection and

manipulation of data is also suggested to support reliable causal inference.

In the simulations we have discussed in the preceding chapters, we see that in some

cases coverage probabilities are slightly lower than the nominal level and the empirical

standard errors (ESEs) are a bit greater than the average asymptotic standard errors (AS-

Es), especially when estimating functions are doubly weighted, e.g. in Table 3.2 and Table

3.4. In the PsA case, since some patients have extremely long visit gap times, e.g. longer

than 20 years, which may lead to extremely large values of the IIV weights, wi(t), if the

denominator is an estimated visit intensity of very small value, so we artificially censor visit

gap times longer than 3 years and consider those patients as lost to follow-up. It is known

that large variability in the weights can cause estimators with large variances and the

estimators may even fail to be approximately normally distributed (Robins et al., 2000).

One way to mitigate the variability caused by large weights is to stabilize weights. For

example, the IIV weight wi(t) can be replaced by swi(t) = a(t)/λN(t|Zi(t−)), where a(t)

stabilizes the weights and leaves the estimating functions unbiased (Bůžková and Lumley,

2007, 2009; Pullenayegum and Feldman, 2013; Pullenayegum and Lim, 2014). Alterna-

tively, we could truncate extremely large weights to reduce the variances of estimates at a

cost of some bias. For example, Bembom and van der Laan (2008) proposed a selection
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of truncation level of the IPT weights on a basis of minimizing the expected MSE of the

estimator. Later, Pullenayegum and Feldman (2013) extended their selection method to

truncate the IIV weights for irregularly observed longitudinal data.

Inverse probability weighting methods usually need the model for outcomes and the

models for weights correctly specified. A class of augmented inverse probability weighted

(AIPW) estimators have been proposed, e.g. Robins et al. (1994); Scharfstein et al. (1999);

Bang and Robins (2005); Seaman and Copas (2009); Pullenayegum and Feldman (2013).

An AIPW estimator is consistent when either the outcome model or the weight model is

correct, so it is also referred to as a doubly robust estimator. If applied to our IIV weighted

estimator, for example, the IIV weighted estimating function (2.23) can be modified as

UDR
ik =c(µT )

{
dNik

λN (aik|Zi,k−1)
[Pik − µT (aik)] +

[
1− dNik

λN (aik|Zi,k−1)

]
[E(Pik|Hobs

i,k−1)− µT (aik)]

}
=c(µT )

{
dNik

λN (aik|Zi,k−1)
[Pik − E(Pik|Hobs

i,k−1)] + [E(Pik|Hobs
i,k−1)− µT (aik)]

}
, (6.1)

where Pik = I(Ti > aik), µT (aik) = E(Pik), and note that Zi,k−1 = h{Hobs
i,k−1}. Here,

we consider a discrete visit process as an example and assume that there is no random

drop-out for simplicity. It can be shown that if either the IIV weight model λN(aik|Zi,k−1)

or a “working” outcome model E(Pik|Hobs
i,k−1), e.g. (2.33) given in Section 2.3.1, is correctly

specified, then (6.1) is unbiased. Furthermore, the augmented inverse probability weighting

method can be extended to our doubly weighted estimator so that a triply robust estimator

can be obtained, i.e.

UTR
ik =c(µTa)

{[
dNik

λN (aik|Zi,k−1)

I(Ai = a)

πi(a|Vi)
− dNik

λN (aik|Zi,k−1)
− I(Ai = a)

πi(a|Vi)

]
[P a

ik − E(P a
ik|H

obs
i,k−1)]

−[E(P a
ik|H

obs
i,k−1)− µTa(aik)]

}
, (6.2)

where P a
ik = I(T ai > aik); µTa(aik) = E(P a

ik) = Pr(T ai > aik); T
a
i is the counterfactual

outcome under treatment a; and we defined the IPT weight w∗i = 1/πi(a|Vi) = 1/Pr(Ai =

a|Vi). Here, we assume E(P a
ik|dNik,Hobs

i,k−1, Ai,Vi) = E(P a
ik|Hobs

i,k−1) for a “working” out-

come model, E(dNik|P a
ik,Hobs

i,k−1, Ai,Vi) = E(dNik|Zi,k−1) for the IIV weight model, and

E(Ai|P a
ik,Vi,Hobs

i,k−1, dNik) = E(Ai|Vi) for the IPT weight model. It can be shown that if
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any one of the IIV weight model, the IPT weight model, and a “working” outcome model

E(P a
ik|Hobs

i,k−1), e.g. (3.12) in Section 3.2, is correct, then (6.2) is an unbiased estimating

function. This is one of my future research directions.

The non- or semi-parametric estimation introduced in Chapter 4 is relatively robust

to the model assumption of the outcome process. Since kernel smoothing is employed,

the selections of bandwidths and kernel functions affect the final estimation results. For

instance, there is a tradeoff between bias and variance when different bandwidths are

chosen. Explicitly, small bandwidths result in smaller bias but larger variances, while

larger bandwidths lead to less variability but more bias. An optimal bandwidth or a data

driven bandwidth might be considered in the future, though a simple selection based on

the number of visits contained by a window, i.e. [t−h, t+h] where h denotes a bandwidth,

works in our simulations and real data analyses.

This thesis research is initially inspired by the intermittent inspection times in the P-

sA cohort study. The impacts of irregular (and potentially informative) inspection times

on the analysis of outcomes have been addressed. The IIV weighting method was pro-

posed and studied by a few authors for irregularly observed longitudinal data. We extend

this method to study time-to-event or failure time data with dependent follow-up. When

inspection times are outcome-dependent, failure times are subject to dependent interval

censoring. Literature on dependently interval-censored failure times is very limited, so

we believe this thesis contributes to this topic significantly. Parametric estimation, non-

and semi-parametric estimation of marginal failure time distributions in the presence of

dependent inspection times has been comprehensively discussed. Monotone smoothing

which can be implemented by existing software is introduced to conduct the IIV weight-

ed non- and semi-parametric estimation procedures. Additionally, causal inference is also

considered and the IPT weight can be easily combined with the IIV weighting method.
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Ideally, regular inspection times make the measured responses be a completely random

sample. Unfortunately, follow-up is often irregular for a variety of reasons in practice. We

suggest that reasons of missed visits or the deviation of planned visit gap times should be

investigated so that appropriate assessment and adjustment of visit times can be achieved.

Then, the introduced IIV weighting method is believed a useful and convenient approach

to eliminate the selection bias due to irregular inspection times.
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Appendix A

A.1 List of Regressors in the Analyses of Clinic Visit

Times and Treatment with Biologics
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Table A.1: Descriptions and center values of the variables regressed in the analyses of

Table 1.1 and Tables 5.1-5.7. Time-varying variables are measured only at visits, except

treatment variables (NSAIDs, DMARDs, biologics) that can change at arbitrary times

and whose full history is known. ESR denotes erythrocyte sedimentation rate (mm/hr);

med.gap denotes median length of past visit gap times (in days).

Variable Value/Level Center Fixed/Time-varying

sex 0: female, 1: male — fixed

year of enrolment continuous 2000 fixed

year of the visit before ti0 continuous 2000 fixed

family history of PS 0: No, 1: Yes — fixed at enrolment

family history of PsA 0: No, 1: Yes — fixed at enrolment

age (in years) continuous 40 time-varying

PS duration (in years) continuous 20 time-varying

PsA duration (in years) continuous 5 time-varying

number of active joints continuous — time-varying

number of damaged joints continuous — time-varying

NSAIDs 0: No, 1: Yes — time-varying

DMARDs 0: No, 1: Yes — time-varying

biologics 0: No, 1: Yes — time-varying

ESR continuous 20 time-varying

med.gap continuous 180 time-varying
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