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Abstract

One of the most widely used lossy image compression formats in the world is JPEG. It
operates by splitting an image into blocks, applying a frequency transform to each block,
quantizing each transformed block, and entropy coding the resulting quantized values. Its
popularity is a results of its simple technical description and its ability to achieve very
good compression ratios.

Given the enormous popularity of JPEG, much work has been done over the past two
decades on quantizer optimization. Early works focused on optimizing the table of quan-
tizer step sizes in JPEG in an adaptive manner, yielding significant gains in rate-distortion
(RD) performance when compared to using the sample quantization table provided in the
JPEG standard; this type of quantizer optimization is referred to as hard decision quan-
tization (HDQ). To address the problem of local adaptivity in JPEG, optimization of the
quantized values themselves was then considered in addition to optimizing the quantization
table; this type of optimization is referred to as soft decision quantization (SDQ). But even
SDQ methods cannot fully overcome the problem of local adaptivity in JPEG; nonetheless,
the results from SDQ optimization suggest that overcoming this problem has potentially
significant gains in RD performance.

In this thesis, we propose a new kind of quantization called context adaptive space
quantization (CASQ), where each block in an image is quantized and subsequently entropy
coded conditioned on a quantization context. This facilitates the use of different quantizers
for different parts of an image. If an image contains regions of varying amounts of detail,
for example, then those regions may be assigned different quantization contexts so that
they may be quantized differently; then, quantizer optimization may be performed over
local regions of an image rather than other the entire image at once. In some sense, CASQ
provides the ability to overcome the problem of local adaptivity. We also formulate and
solve the problem of quantizer optimization in both the HDQ and SDQ settings using
CASQ.

We then propose a practical image coder based on JPEG using CASQ optimization.
With our coder, significant gains in RD performance are observed. On average, in the
case of Huffman coding under HDQ we see a gain of 1.78 dB PSNR compared to baseline
JPEG and 0.23 dB compared to the state-of-the-art method. In the worst cases, our
image coder performs no worse than state-of-the-art methods. Furthermore, the additional
computational complexity of our image coder when compared to baseline JPEG encoding
without optimization is very small, on the order of 150 ms for a 2048×2560 image in the
HDQ case and 4000 ms in the SDQ case.
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Chapter 1

Introduction

1.1 Motivation

One of the most widely used lossy image compression formats in the world is JPEG. First
published as a standard in 1992 [2], it remains the de facto lossy image compression format
of choice in all forms of digital entertainment, digital photography, web browsing, and more.
Part of its success may be attributed to its ability to compress an image to a fraction of
its uncompressed size with little perceivable difference in reconstructed image quality.

JPEG employs a transform coding approach to compression, summarized in Fig. 1.1.
First, the input image is partitioned into non-overlapping 8×8 blocks. A discrete cosine
transform (DCT) is applied to each of these blocks. Then, the transformed values are
quantized into discrete integers in a process called quantization. Finally, the quantized
values are further compressed in a lossless process called entropy coding, resulting in a
compressed bit stream to be transmitted and ultimately decoded for reconstruction. A
JPEG decoder (summarized in Fig. 1.2) simply reverses the entire process to produce a
reconstructed image that is a close approximation to the original.

In JPEG, quantization is uniform. The quantizer is represented by a table of 64 step
sizes, one for each of the 64 DCT frequency positions. Each DCT coefficient in an 8×8
block is uniformly quantized using the step size corresponding to its frequency position
within that block. The quantization process is generally irreversible, meaning that ap-
plying the reverse quantization process (called dequantization) will not always yield the
original transformed values; this places JPEG into one of two overall classes of coders called
lossy coders, with the other class being lossless coders. Thus, when quantizing the DCT
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Figure 1.1: Overview of a JPEG encoder
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Figure 1.2: Overview of a JPEG decoder

coefficients, some information about the image is lost permanently and the reconstructed
image will only be an approximation of the original; in other words, quantization causes
the image to incur some kind of distortion. This distortion is typically measured as a
quantity called mean-squared error (MSE), which is inversely related to a common image
quality measure called peak signal-to-noise ratio (PSNR) in units of decibels (dB); a lower
MSE corresponds to a higher PSNR, which corresponds to a higher quality reconstructed
image compared to the original.

Not only is quantization the cause of distortion, but it also has the biggest influence
on the bit rate of the compressed bit stream, assuming that the entropy coder is efficient.
Therefore, quantization is central to the rate-distortion (RD) trade-off in JPEG image com-
pression. Motivated by this centrality, many authors have attempted to solve the problem
of finding optimal quantizers (in the RD sense) for JPEG [3–7]. These solutions fall into
two categories, namely hard decision quantization (HDQ) and soft decision quantization
(SDQ). In HDQ, only the quantization table is optimized. In SDQ, some attempt is also
made to optimize the quantized indices themselves, jointly with the quantization table.
In [6] specifically, the problem of jointly optimizing both the quantization table and the
quantized indices was fully solved, and an efficient algorithm was also given by the au-
thors; this resulted in superior RD performance and remains the state-of-the-art JPEG
quantization method.

However, despite even the superiority of the quantization method proposed in [6], a
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significant limitation of JPEG remains: only one quantization table may be specified per
colour component (equivalently, in the case of single-channel greyscale images, only one
table may be specified per image). This is sometimes referred to as the problem of local
adaptivity: it is not possible to adapt a quantization table to local parts of an image since
the same quantization table must be used for every block.

With this limitation in mind, we consider the natural tendency for images to contain
local regions of differing perceptual importance. For example, an image might feature a
relatively detailed tree with many branches and leaves in the foreground against a rather
solid and featureless sky in the background. This foreground region would contain a rela-
tively high amount of energy content in the AC frequencies compared to the background
region. When using a quantizer with coarse step sizes, much of this information will be
lost resulting in a low quality image; on the other hand, when using a quantizer with fine
step sizes, many bits will be spent on the smooth background region with little impact on
its perceptual quality. These two competing scenarios are largely irreconcilable as long as
JPEG only allows a single quantization table to be defined for all the blocks of an image.

Motivated by this limitation of JPEG, we wish to approach quantization in a funda-
mentally new way that will not only allow us to quantize different parts of an image in
different ways, but also to jointly optimize this quantization over all of the different regions
of an image, resulting in potentially significant gains in RD performance.

1.2 Contributions

In this thesis, we propose a new kind of quantization dubbed context adaptive space
quantization (CASQ), where quantization of each block of an image is conditioned on
some kind of context and, furthermore, this quantization is optimized jointly across all
step sizes and all contexts. We re-formulate the problem of optimal quantizer design in
the HDQ setting and solve it using modifications to the theory presented in [7]. We also
re-formulate this problem in the SDQ setting and solve it using modifications to [6] and [8].

To demonstrate our CASQ scheme, we further propose a new image coder based on
JPEG, summarized in Fig. 1.3. In addition to CASQ, there are two major blocks in Fig. 1.3
that are designed in order to complete the image coder, which are the classifier and the
entropy coder. We propose an efficient and effective online classifier whose purpose is to
assign a quantization context to each block of an image. For simplicity we restrict ourselves
to two such contexts, namely homogeneous (relatively smooth and featureless) and non-
homogeneous (relatively detailed); however, the theory of CASQ is presented in a way that

3
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Figure 1.3: Proposed image coding scheme

any number of contexts is permitted. We complete our image coder with two different
kinds of entropy coders that are based on JPEG-style Huffman coding and the adaptive
runlength coding (ARL) advocated for in [1], respectively.

1.3 Thesis Organization

This thesis is organized as follows.

In Chapter 2, we discuss some details of entropy coding in JPEG. We then discuss
the problem of optimal quantizer design in the RD sense as a mathematical optimization
problem, in both the HDQ and SDQ settings. Finally, we review some previous works on
solutions to the optimal quantizer problem in both of these settings.

Then, in Chapter 3, we introduce introduce a new kind of quantization called context
adaptive space quantization (CASQ). We introduce the notion of quantization contexts and
we reformulate the problem of optimal quantizer design in consideration of these contexts.
We then solve this problem in both the HDQ and SDQ settings.

In Chapter 4, we propose a new image coder based on JPEG which demonstrates our
CASQ theory using two quantization contexts. We first discuss context selection and
propose an efficient and effective online classifier for this purpose. Then, we propose two
different entropy coders based on Huffman coding and ARL coding, respectively. Finally,
we present experimental results and compare the RD performance and computational
performance of the proposed image coder to several benchmarks, including state-of-the-art
quantization methods.

Finally, in Chapter 5 we conclude the thesis and discuss some potential applications
and future work.

4



Throughout this thesis, we restrict ourselves to single-channel greyscale images for sim-
plicity. However, the works discussed and theories presented extend trivially to scenarios
where multiple colour channels are encoded independently.
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Chapter 2

Background

In this chapter, we discuss some background topics and works that are relevant to this
thesis. We begin with entropy coding in JPEG. We then discuss quantizer optimization in
JPEG in both the hard decision quantization (HDQ) and soft-decision quantization (SDQ)
settings. Finally, we review some previous works which address quantizer optimization in
both of these settings.

2.1 Entropy Coding in JPEG

2.1.1 Run-Length Coding

The basic operation of a JPEG coder was described in Section 1.1 and summarized in
Fig. 1.1. In this subsection, we elaborate a bit more on the run-length coding of quantized
DCT coefficients in JPEG.

After the DCT coefficients are quantized, what we are left with is essentially a two-
dimensional array of 8×8 blocks of integers. These values must be converted to a one-
dimensional sequence for coding. This is done by scanning the blocks in raster order;
within each block, the values are scanned in the so-called zig-zag scanning order shown in
Fig. 2.1. For each block, the DC value is coded separately before the AC values and is not
included in the zig-zag scan.

Since most images contain little high-frequency content, there will tend to be a high
amount of zeroes in the sequence of quantized values. These zeroes can manifest as long
runs of zero values in the zig-zag scanned sequences. To exploit this, JPEG represents

6
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Figure 2.1: Zig-zag scanning order in JPEG

the AC part of the zig-zag sequence from each block as a sequence of run-length codes.
Whenever a run of zeroes is encountered in the sequence, it is skipped and represented
by a run value indicating the length of the run. This run value (denoted by r) is paired
with a size value sAC which denotes how many bits are required to represent the first
non-zero quantized AC coefficient following the run of zeroes. Immediately following sAC
is the quantized index id of the following non-zero AC coefficient, represented as a binary
sequence LAC containing the lowest sAC bits of id. r and sAC are paired together as a
single codeword, denoted by (r, sAC) where r and sAC are each represented by four bits,
for a total of eight bits. The AC subscript may be dropped from sAC when only the AC
coefficients are being considered, which simplifies the run-size pair notation to (r, s).

There are two special run-length codewords, (15, 0) and (0, 0). Since r is represented
by four bits, the maximum run length is 15. However, it is possible for a run of greater
length to occur since there are 63 AC coefficients in a block. To overcome this problem, the
(15, 0) codeword is emitted to indicate that a run of length greater than 15 has occurred,
which skips the next 16 zeroes in the run. Several of these codewords may be emitted
in succession if the run is very long. In the case where a run of zeroes is encountered
that spans the remainder of the block (i.e., there are no remaining non-zero quantized AC
coefficients), then a (0, 0) code (called an end-of-block or EOB code) is emitted.

The DC value is treated as the difference between the actual quantized value and the
previously coded quantized DC value (from the previously coded block):

DIFF := DC(current block)−DC(previous block) (2.1)

The DC difference DIFF is represented by two values: a size category sDC denoting how

7



many bits are required to represent DIFF , and a binary sequence LDC containing the
lower sDC bits of DIFF (or DIFF − 1 if it’s negative).

2.1.2 Huffman Coding

Once all of the run-size sequences sDC and (r, sAC) are determined, they are coded into
a binary sequence using Huffman coding. There are two Huffman tables defined for this
purpose: one for coding the sAC sequence and one for coding the (r, sAC) sequence. The
DC table is a mapping between each sDC value and a binary codeword. The AC table is a
mapping between each eight-bit (r, sAC) value and a binary codeword. After each codeword
is sent to the bit stream, the corresponding binary LDC or LAC sequence immediately
follows.

The Huffman tables are transmitted with the image as side information. Sample Huff-
man tables are provided in Annex K of the JPEG standard [2]. Better RD performance
can be achieved by designing tables that are tailored to the statistics of the actual run-size
sequences for the image; an algorithm for designing such tables is given in Section K-2 of
the JPEG standard [2].

2.1.3 Adaptive Runlength Coding

As an alternative to Huffman coding, a scheme dubbed adaptive runlength coding (ARL)
was proposed in [1] by Tu, Liang and Tran. The authors mainly aim to overcome the
problem in a JPEG coder of having too many Huffman codewords, resulting in large
codeword lengths. Furthermore, the authors aim to exploit certain statistical patterns and
correlations commonly found in run-level sequences.

A practical description of the ARL scheme in [1] now follows. In brief, the run and level
values are encoded separately using an adaptive binary arithmetic coder with contexts.
Three different kinds of values can be encoded: DC values, RUN values and LEV EL
values. Each of these values is associated with set of contexts from which a context is
chosen for arithmetic coding.

The binarization of each value to be sent to the arithmetic coder is exemplified in
Table 2.1. To binarize a RUN value, RUN + 1 “0”s are sent to the arithmetic coder
followed by a “1”. In the special case of an EOB code, a single “1” is sent to the coder.
To binarize a LEV EL value, a sign bit is first sent to the coder, followed by |LEV EL|− 1
“0”s and a single “1”, where | · | denotes the magnitude.

8



Table 2.1: Binarization of RUN and LEV EL values [1]

RUN Binarization LEV EL Binarization
EOB 1 1 0 1

0 0 1 -1 1 1
1 0 0 1 2 0 0 1
2 0 0 0 1 -2 1 0 1
3 0 0 0 0 1 3 0 0 0 1
4 0 0 0 0 0 1 -3 1 0 0 1
...

...
...

...

The DC value is predicted as the mean of the reconstructed DC values of the upper
and left neighbouring blocks; it is actually the residue from this prediction that is encoded.
First, one bit is encoded indicating whether or not this residue is zero. For this bit, one
of three context models is used. Define z as the total number of neighbouring blocks
(upper and left) that have non-zero quantized residues. Then, the three context models
are denoted by

(z = 0)(z = 1)(z = 2) (2.2)

If the residue is indeed non-zero, then it is coded in the same manner as a LEV EL value.

Next, define f as the number of neighbouring blocks (upper and left) that contain non-
zero quantized AC coefficients. To code the first bit of the first RUN value in a block, one
of the following three contexts is used:

(f = 0)(f = 1)(f = 2) (2.3)

Two further models are used for coding the second bit and the remaining bits, respectively,
of the first RUN value.

Subsequent RUN values use contexts based on the magnitude m and AC index (in
zig-zag scanning order) l of the previously coded LEV EL value. Five contexts are defined
for this purpose, for coding the first bit of the current RUN value.

(l < 6 and m = 1)(l < 6 and m > 1)

(6 ≤ l < 15 and m = 1)(6 ≤ l < 15 and m > 1)

(l ≥ 15)

(2.4)
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Two more copies of these five models are defined for the second bit and remaining bits,
respectively, of the RUN value; thus, the total number of context models for encoding a
RUN value is twenty.

To code a LEV EL value, one model is used when encoding its sign bit. For the next
bit, four contexts are defined based on the AC index l of the current LEV EL value and
the value r of the corresponding RUN :

(l = 0)(0 < l < 3)(3 ≤ l < 15 and r < 3)

(15 ≤ or r ≥ 3)
(2.5)

The remaining bits use another set of the four models described above. Thus, a total of
nine contexts are used to code a LEV EL value. In total, 32 contexts are used in ARL
coding.

The authors of [1] report a gain in PSNR performance of 1.8 dB on average when
compared to baseline JPEG Huffman coding with comparable complexity.

2.2 Quantizer Design in JPEG

The JPEG standard permits a customized quantization table to be transmitted as side
information along with the compressed bit stream. The standard also provides a sample
quantization table that can be used for any image; however, as this quantization table is
static and independent of the image being coded, it tends to perform poorly in the RD
sense. Thus, we have both the ability and the desire to design a customized quantization
table that performs optimally in the RD sense.

In the following discussion, it is important to note the difference between a quantization
table and a quantizer. A quantization table is merely a collection of step sizes that the
decoder must use to reconstruct the DCT coefficients from a sequence of quantized indices.
A quantizer is essentially a process that takes a sequence of DCT coefficients as input and
produces a sequence of quantized indices as output, along with an appropriate quantization
table for the purpose of reconstruction; the means by which these quantized indices are
determined are not necessarily bound to any particular mapping.

The problem of designing an optimal quantizer can be approached in two different
settings: hard decision quantization (HDQ) and soft decision quantization (SDQ). These
two approaches are discussed in the following subsections.
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2.2.1 Hard Decision Quantization

Hard decision quantization (HDQ) describes a quantization setting where the quantized
index for a given DCT coefficient is the output of a simple mapping based only on the
coefficient value and the step size corresponding to its frequency position. This mapping
can be described by the following equation, where Ci denotes the DCT coefficient at the
ith frequency position (in zig-zag order) of the current block, qi denotes the step size for
the ith frequency position, and Ki denotes the resulting quantized index:

Ki = round

(
Ci
qi

)
(2.6)

Since the DCT coefficients are fixed, then the free parameter to be optimized is the
quantization table Q = {qi}, 0 ≤ i < 64. The problem of finding the optimal Q in the RD
sense is typically formulated as the following constrained optimization:

inf
Q
R(Q) s.t. D(Q) ≤ DT (2.7)

In (2.7), R(Q) denotes the bit rate resulting from using Q to quantize and subsequently
compress the image, D(Q) denotes the corresponding distortion incurred from quantization
using Q, and DT is a distortion budget. Equation (2.7) can equivalently be written as

inf
Q
D(Q) s.t. R(Q) ≤ RT (2.8)

where RT denotes a bit rate budget. The problem may also be converted to an uncon-
strained optimization using a Lagrange multiplier θ, where θ represents the rate-distortion
trade-off and is equivalent to a rate or distortion budget:

inf
Q

(R(Q) + θD(Q)) (2.9)

Since the only parameter being optimized is Q, then a solution to (2.7) or (2.8) will
be a quantization table with step sizes chosen optimally in the RD sense. Previous works
which propose solutions to this problem will be discussed in Section 2.3.

2.2.2 Soft Decision Quantization

In soft decision quantization (SDQ), the quantized indices themselves are also treated as
a free parameter, in addition to Q. This is facilitated by a mapping Q′Q which maps a
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sequence of transform coefficients of length n at the ith frequency position to a sequence
of quantized indices of length n to be reconstructed using the quantization table Q:

Q′Q : Rn −→ {0,±1,±2, ...}n (2.10)

Given an entropy coding method φ, the problem of finding an optimal quantizer may
then be formulated as

inf
Q

inf
Q′Q

Rφ

(
Q,Q′Q

)
s.t. D

(
Q,Q′Q

)
≤ DT (2.11)

where Rφ

(
Q,Q′Q

)
denotes the bit rate resulting from using φ to code an image quantized

by Q and Q′Q, D
(
Q,Q′Q

)
denotes the corresponding distortion from quantization, and DT

is a distortion budget. This can also be converted to an unconstrained optimization using
a Lagrange multiplier θ, much like in the HDQ case:

inf
Q

inf
Q′Q

[
Rφ(Q,Q′Q) + θD(Q,Q′Q)

]
(2.12)

In the specific case of JPEG coding, one can change Q′Q to the quantized run-size-index
sequence (r, s, id) and, furthermore, one can also include the Huffman table H as a free
parameter rather than fixing it as φ. This problem can be formulated as follows:

inf
(r,s,id),H,Q

R((r, s), H) s.t. D((r, s, id)Q) ≤ DT (2.13)

where R((r, s), H) denotes the bit rate resulting from compressing (r, s, id) using H, and
D((r, s, id)Q) denotes the distortion between the original image and the image recon-
structed from (r, s, id) using Q. Note that id is omitted from the rate calculation because
it is not necessary: the bit rate can be entirely determined from (r, s) since the number
of bits transmitted for id can be determined by s. The quantization table Q is also omit-
ted from the rate calculation because the quantized image is already captured in (r, s, id).
Just as before, (2.13) can be converted to an unconstrained optimization using a Lagrange
multiplier θ:

inf
(r,s,id),H,Q

[R((r, s), H) + θD((r, s, id)Q)] (2.14)

Since more free parameters (in addition to Q) are being optimized in (2.11), then
an optimal solution to (2.11) will generally perform better in the RD sense compared to
an optimal solution to (2.7). However, the solution to (2.11) is often more complex by
comparison. Therefore, it is worthwhile to investigate solutions to both the HDQ and the
SDQ quantization problems: HDQ for its relative simplicity and SDQ for its superior RD
performance. Previous work relating to SDQ is also discussed in Section 2.3.
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2.3 Previous Work on Quantizer Optimization

Many authors have attempted to solve the problem of quantization table optimization in
both the HDQ and SDQ settings. In this section, we review some of the major works in
these two areas.

2.3.1 HDQ Methods

Locally Optimized Search using Laplacian Modelling

In [3], Hung and Meng proposed a gradient search method for finding locally optimal
quantizer step sizes. The authors used Laplacian distributions to model the statistics of
the DCT coefficients; thus, the expressions for approximate bit rate and distortion can
easily be calculated.

The algorithm begins by choosing an initial Q with small step sizes so that the actual
distortion (mean-squared error, or MSE) from using Q is much smaller than some target
distortion. Next, the algorithm calculates the slopes ∂D/∂qi and ∂R/∂qi for each frequency
position i, where D and R are computed at both qi and qi + 2. The i which maximizes
the ratio ∂D/∂R is then found by a simple search, and the corresponding step size in Q
is then updated. As a result, the total distortion is increased minimally for some decrease
in bit rate. This process is iterated until the target overall distortion is met.

The authors of [3] reported a gain of around 0.5 dB – 1 dB in PSNR performance when
compared to using the default quantization table given in the JPEG standard. However,
the performance depends highly on the accuracy of the Laplacian model which, while a
reasonable choice of distribution, does not exactly fit the statistics of the image.

Locally Optimized Search using Real Coding Rates

To overcome the problem of modelling accuracy, an algorithm was given in [4] by Wu
and Gersho that is based on the actual statistics of the image. The overall idea of the
algorithm is similar to that in [3]: update one step size at a time which optimizes some
RD trade-off until a target is met. There are three main differences in the algorithm
presented in [4]. First, a rather trivial difference: the algorithm targets a rate budget
rather than a distortion budget, so the initial quantization table actually contains large
step sizes which are decreased at each iteration. Second, the optimal step size update is
actually found at each iteration, rather than using only a fixed difference of 2 as in [3].
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Third, and most importantly, the actual coding rate R is used instead of a statistics-based
approximation. Consequently, the bit encoding process must be simulated at each iteration
in order to compute the real coding rate, resulting in a significant increase in computational
complexity.

The authors reported an RD performance which slightly exceeds that of [3]; however,
since the actual bit rate is computed at each iteration, the algorithm performs very poorly
in the computational sense.

RD-OPT

In [5], Ratnakar and Livny described their so-called RD-OPT algorithm. The authors
chose to estimate the rate using the empirical entropy of the quantized coefficients, rather
than any specific statistical model or full coding simulation. The distortion is closely
approximated using a histogram-based approach, where the DCT coefficients of each block
are grouped into specially-chosen bins. The bins are chosen such that every value grouped
into a particular bin is always quantized to the same value; then, the DCT coefficient
values can be approximated by the midpoint value of the bin in which they are placed,
and thus the distortion can easily be computed without scanning the entire image at each
iteration (aside from an initial one-time grouping of coefficients into bins). The authors
showed that the root-mean-square error of this approximate distortion is within ±0.25 of
the actual root-mean-square error. The entropy calculation for the rate is done in a similar
way.

The authors then proposed an efficient binary search algorithm to minimize the La-
grangian in (2.9). Furthermore, if an actual rate budget is desired, then the θ correspond-
ing to that budget can efficiently be found from a bisection search. As a result of this
efficient approach, the authors reported RD performance similar to [4] with much lower
computational complexity.

OptD

The RD-OPT algorithm described in [5] remained the state-of-the-art HDQ method until
the so-called OptD theory was proposed in [7] by Yang, Sun and Meng. OptD theory is
actually formulated in the setting of SDQ. Specifically, it attempts to solve for Q in (2.11)
without explicitly solving for Q′Q by jointly optimizing all of the step sizes in Q. However,
since only Q is actually being found by OptD, then in some sense it may still be viewed as
a solution to quantization table design under HDQ, despite being formulated under SDQ.
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The authors of [7] also presented an efficient algorithm to compute a very close approx-
imation to the optimal Q based on Laplacian modelling of the DCT coefficients. Interest-
ingly, the Q generated by this algorithm is superior to that of RD-OPT in the RD sense
with only a fraction of the computational complexity: the authors reported an average gain
of 0.5 dB PSNR performance with complexity reduced by a factor of more than 2000 when
compared to RD-OPT. Furthermore, OptD theory is presented in a manner that makes it
easily compatible with any efficient block-based coding method with any number of step
sizes in Q. With all of these things considered, we choose OptD theory as the basis for our
CASQ method in the HDQ setting to be formulated in Chapter 3.

2.3.2 SDQ Methods

Thresholding

A sub-optimal SDQ technique called thresholding or zeroing was investigated in [9] by
Ramchandran and Vetterli. The goal of thresholding is to drop (or threshold) coefficients
to zero in order to save bits with minimal impact on the resulting distortion.

The authors noted that the optimal solution to the RD optimization can be found
independently on a per-block basis; thus, their analysis was limited to one block, which
can be repeated for each block in the image to find an overall solution. The optimization
problem was presented as follows:

min
S⊆T

D(S) s.t. R(S) ≤ RT (2.15)

where T = {0, 1, ..., 63} is the set of all possible coefficient indices in a block in zig-zag
scanning order, S is a subset of T , D(S) is the distortion resulting from retaining the
coefficients indexed by S and R(S) is the corresponding rate, and RT is a rate budget.
This is converted to an unconstrained optimization via the Lagrange multiplier λ:

min
S

[J(λ) = D(S) + λR(S)] (2.16)

The authors then proposed an efficient dynamic programming algorithm to find S for
each block. If a rate or distortion budget is required, then the corresponding λ can be
efficiently found by a bisection search.

Note that this algorithm only finds the optimal set of coefficients S to threshold to zero.
The quantization table Q is actually fixed as the example table from the JPEG standard,
scaled by some constant. Thus, this method does not optimize the quantization table step
sizes at all.
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Joint Thresholding and Table Optimization

The problem of jointly optimizing both the set of threshold coefficients and the quantization
table was addressed in [10] by Crouse and Ramchandran. The authors formulated the
problem as the following minimization:

min
T,Q,H

D(T,Q) s.t. R(T,Q,H) ≤ RT (2.17)

In the problem above, T now refers to a binary mapping that signals whether each DCT
coefficient should be quantized as normal (represented by a “1”) or instead be thresholded
to zero (represented by a “0”); not to be confused with the definition of T from the previous
discussion on thresholding. The remaining parameters Q (quantization table), H (Huffman
table), D (distortion), R (bit rate) and RT (bit rate budget) are all consistent with their
previous definitions.

The problem in (2.17) is converted to an unconstrained problem via the Lagrange
multiplier λ:

min
T,Q,H

[J(λ) = D(T,Q) + λR(T,Q,H)] (2.18)

where J(λ) denotes the Lagrangian cost associated with the RD trade-off parameter λ.

A sub-optimal, iterative solution that converges to a local minimum was proposed.
This solution works by first fixing an initial quantization table Q, threshold table T , and
Huffman table H. Then, each of these three parameters is updated sequentially to a more
optimal choice by fixing the other two parameters; this process repeats iteratively until
some convergence criterion is met. To update Q given that T and H are fixed, the authors
use a method similar to that in [4]. To update T , the same method from [9] is used. H is
updated based on the statistics of the quantized image given that Q and T are fixed. The
algorithm only converges to a local optimum due to the initial Q, T and H being fixed to
somewhat arbitrary values. Despite this sub-optimality, the authors reported an average
gain in PSNR performance of about 1 dB when compared to [9]. The authors of [10] briefly
discussed the possibility of allowing DCT coefficients to be quantized to any level in order
to achieve maximal gain in the RD sense, rather than simply thresholding some coefficients
to zero; however, they also remind us that when the quantization table Q is fixed, then
simply thresholding coefficients to zero performs approximately as well as allowing them
to be quantized to arbitrary levels.
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Full SDQ Solution

The possibility of allowing quantized values to be changed to arbitrary levels for RD perfor-
mance gain in the JPEG setting was finally explored in full in [6] by Yang and Wang. The
authors of [6] proposed a solution to (2.13). Similarly to [10], the authors of [6] proposed
an efficient iterative solution to (2.13) that converges to a local optimum. The main differ-
ences are that the optimization of (r, s, id) involves a full search, thus allowing quantized
values to be changed to any level, rather than only possibly dropping them to zero; also,
the iterative step which updates Q is much more efficient compared to the method used
in [10]. The solution in [6] works as follows. First, since the probability distribution P of
run-size pairs (r, s) completely determines the Huffman table H, then H may be replaced
by P in (2.13). The empirical entropy of this distribution is then used to estimate the
bit cost of each run-size pair. This change is justified if custom Huffman tables are used,
because then actual bit cost is very close to the empirical entropy. Next, an initial Q is
chosen and the image is subsequently quantized using the initial Q in order to determine
an initial run-size distribution P . The core part of the algorithm now begins: fix Q and P
and optimize (r, s, id) (referred to as “Step 2” by the authors of [6]), which is written as
the following minimization:

min
(r,s,id)

[J(λ) = D((r, s, id)Q) + λR((r, s), P )] (2.19)

Then, fix (r, s, id) and optimize Q and P (referred to as “Step 3”), which is written as:

min
(Q,P )

[J(λ) = D((r, s, id)Q) + λR((r, s), P )] (2.20)

These two steps iterate back and forth until a convergence criterion is met. At the end, a
customized Huffman table is generated based on the final run-size statistics of the quantized
image.

The authors of [6] proposed an efficient graph-based dynamic programming algorithm
to solve the minimization in Step 2. The algorithm operates on each block independently,
allowing for an efficient parallel implementation. For each block, a graph is created with 65
nodes: 64 corresponding to the DCT indices of a block, and an additional block denoting
an end-of-block (EOB) code. A set of paths is then generated between every possible pair
of nodes that includes every possible run-size transition between those two nodes. Each
path from node i to node j corresponding to a size group s has an associated incremental
Lagrangian cost J for quantizing the DCT value at node j into size group s and quantizing
all nodes in between nodes i and j to zero. This cost is computed using the MSE dis-
tortion metric and the empirical entropy of run-size pairs for rate estimation. A dynamic
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programming algorithm then searches for the path from the first node to the end node
which minimizes the sum of incremental Lagrangian costs. This path is equivalent to a full
run-size-index sequence for the corresponding block, which in fact represents the optimal
quantized version of that block for a fixed Q.

Step 3 is easily solved if D(·) is the squared-error distortion metric. Recall that Step
3 optimizes Q and P only, given that (r, s, id) is now fixed from Step 2. Note that the
rate does not depend on Q once (r, s) is fixed. Therefore, only the distortion term actually
remains in the minimization for Step 3 which, being convex, continuous and differentiable,
has a trivial closed-form solution for Q. The run-size probability distribution P is directly
computed from the fixed (r, s).

The full SDQ solution from [6] is the current state-of-the-art JPEG quantization method
with full baseline compatibility, in that it has the best RD performance out of all the HDQ
and SDQ methods investigated so far. It performs even better than wavelet-based schemes
in many cases. The only sub-optimality of the full SDQ solution comes from the choice of
the initial quantization table, which was addressed in [7]. The problem of finding a globally
optimal Q in the SDQ setting remains an open problem.

In addition, the authors of [6] also solved a similar problem for SDQ in a JPEG-style
setting where adaptive runlength coding (ARL) is used instead of Huffman coding [8]. In
ARL coding (to be described in detail in Section 2.1.3), RUN and LEV EL values are
coded separately (r and l for short) using a context-based binary arithmetic coder. In [8],
the problem of jointly optimizing Q and (r, l) over all possible values and all possible
context models M is formulated using the Lagrange multiplier λ as

min
(r,l),M,Q

[J(λ) = D((r, l)Q) + λR((r, l),M)] (2.21)

The process of solving (2.21) is largely based on the exact same ideas from the Huffman
case, so the details are omitted here. The reader is referred to [8] for a complete description.

2.4 Summary

In this chapter, we discussed the run-length coding and Huffman coding methods of base-
line JPEG, as well as an alternative method to Huffman coding called ARL coding. We
then introduced the problem of optimal quantizer design in both the HDQ and SDQ set-
tings. Finally, we reviewed some past works, including current state-of-the-art methods,
on solving this problem under HDQ and SDQ. All of these topics lead into the theories
presented in the next chapter.
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Chapter 3

Context Adaptive Space
Quantization

3.1 Overview

In Chapter 1, we briefly discussed a major limitation of JPEG: that it lacks local adaptivity.
Even though custom quantization tables and Huffman tables may be defined and optimized
(for example, using the methods discussed in Section 2.3.1), they must be applied in the
same manner to every single block in the image. This is one of the major motivations for
SDQ methods, where local adaptivity can be achieved to some extent by optimizing the
quantized DCT coefficients themselves [6, 8–10].

But even the SDQ methods discussed in Section 2.3.2 are still limited by the lack of local
adaptivity supported by JPEG. Motivated by this, we propose a new approach to image
quantization called context adaptive space quantization (CASQ). In CASQ, quantization
(and dequantization) of a given block of DCT coefficients is performed conditioned on a
quantization context. More specifically, a quantization context is a piece of side information
that is associated with each block prior to quantization, so that quantization itself may be
conditioned on that context, allowing different blocks to be quantized (and subsequently
dequantized) in different ways.

A novel way to demonstrate this concept for a JPEG-style image coder in the HDQ
setting is to define an arbitrary number nC of quantization contexts and associate each of
them with its own quantization table Qc, 0 ≤ c < nC . Suppose that there are nB blocks in
an image, indexed from 0 to nB − 1. A context index c is then selected for each block Bj,
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c {Q0, Q1, ..., Q(nC−1)}

Quantizer B′j

Qc

B′j

c {Q0, Q1, ..., Q(nC−1)}

Dequantizer B̂j

Qc

(a) Quantization (b) Dequantization

Figure 3.1: General CASQ process

0 ≤ j < nB, in any manner desired. Quantization of Bj into B′j would then use Qc. The

same process is followed to dequantize B′j into B̂j using Qc, where B̂j is the reconstructed
approximation of Bj at the decoder side. This is summarized in Figs. 3.1(a) and 3.1(b).

In the extreme case, one could define a separate context for each block; that is, nC
is equal to the number of blocks in the image, and the jth coded block would use the
jth context for quantization/dequantization. Then, we would have direct control over the
quantizer step size for every single coefficient in the image, potentially allowing for superior
RD performance. Obviously, there would be an enormous amount of overhead in having to
transmit the definition of each quantization table to the decoder; nonetheless, this example
demonstrates one particular way for CASQ to operate.

A more realistic scenario would be to define a small number of contexts and then group
regions of blocks into those contexts according to some rule. For example, one could define
a “flat, smooth” context for all blocks that are relatively featureless, and then associate
with that context a quantization table with coarse step sizes. One could then group
all remaining blocks into a second “detailed” context, which could be associated with a
quantizer with fine step sizes. If the contexts are selected properly and the quantizers are
all optimized jointly, then some gain may be had in the RD sense compared to having
only a single quantizer applied to all blocks unconditionally as in JPEG. The gain would
come from being able to spend fewer bits on quantizing the relatively featureless region of
blocks, while simultaneously preserving more information in the detailed region.

This two-context approach will be explored in a practical image coding system later
in Chapter 4, which includes an efficient and effective classifier for the purpose of context
selection. For the remainder of this chapter, we leave the exact definitions of the contexts
as an implementation detail; we will simply assume that there are nC contexts in total,
indexed from 0 to nC−1. We will assume that context selection for each block is done prior
to quantization/dequantization, is fixed, and is known to the encoder and decoder. The
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problem of optimizing context selection itself is discussed as a future work in Section 5.2.2.

Based on the discussion in Chapter 2, an important question arises: under CASQ in
the HDQ setting, how do we formulate the problem of optimal quantization table design
(in the RD sense) across all contexts and all step sizes jointly? In the SDQ setting, how do
we formulate this problem across all contexts, quantization tables, quantized coefficients
and entropy coders jointly? In the following sections, we will formulate these problems
and subsequently solve them with efficient and computationally cheap solutions based on
some of the previous works described in Chapter 2.

3.2 CASQ Design: Problem Formulation

In this section, we formulate the problem of optimal quantizer design (in the RD sense)
under CASQ across all contexts jointly.

Definitions

Assume that we have an input image I0 that is divided into evenly spaced non-overlapping
blocks, where the size of each block is N ×M . Let nB denote the total number of blocks.
Let L = NM denote the number of coefficients contained within each block (for example,
L = 8 ·8 = 64 in the 8×8 DCT setting of JPEG). Assume that some N ×M transform has
been applied to each block in I0 (for example, the 8×8 DCT). Note that L is also equal to
the number of transform frequency positions within a block.

Define nC contexts indexed from 0 to nC − 1. For the cth context, we define a corre-
sponding quantization table Qc for the purpose of uniform reconstruction; hence, Qc may
be represented by its step sizes via

Qc = {qc0, qc1, ..., qc(L−1)} (3.1)

Assume that each Qc contains the same number of step sizes L. Uniform reconstruction
in this scenario means that given a quantization context index c and a quantized index
u ∈ {0,±1,±2,±3, ...} at the ith frequency position, the corresponding reconstructed value
will be u · qci. Note that the frequency position in Qc is indexed one-dimensionally, while
in general each block is a two-dimensional array of coefficients. It is assumed that some
one-to-one mapping exists between the two-dimensional frequency positions in a block and
the one-dimensional frequency positions in Qc (for example, by the zig-zag scanning order
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in JPEG). We will use one-dimensional frequency indexing throughout this chapter for
simplicity.

We define an overall quantization table Q as the collection of per-context quantization
tables:

Q = {Q0, Q1, ..., QnC−1} (3.2)

Note that because each block is associated with one of the nC contexts, then each fre-
quency position within a block is also associated with that context. Thus, there are a total
of nC · L possible combinations of transform frequency position and context. Accordingly,
the number of step sizes contained in Q is also nC ·L; we can then also view Q as a single
quantization table containing nC · L step sizes.

Whenever the term “context” is used after this point, we are referring to quantization
context unless otherwise specified. A distinction only needs to be made whenever arithmetic
coding is being discussed alongside quantization, in which case we will refer to quantization
context and arithmetic coding context as distinct, unrelated things.

3.2.1 HDQ Setting

The problem of quantizer optimization in the HDQ setting under CASQ can still be for-
mulated in the same way shown in (2.7), which we recall here:

inf
Q
R(Q) s.t. D(Q) ≤ DT (3.3)

where Q is now the overall set of quantization tables described above. The rate R(Q)
now denotes the bit rate resulting from compressing an image under CASQ using this
new definition of Q, and the distortion D(Q) now denotes the corresponding distortion.
But given that Q is now a collection of individual quantization tables, then we cannot
necessarily apply any of the methods discussed in Section 2.3.1 directly to solve (3.3).

Instead, in light of the discussion of OptD theory in Section 2.3.1, we will take a slightly
different approach to quantizer design in the HDQ setting.

The OptD theory from [7] discussed earlier, despite being formulated in the SDQ set-
ting, presents an ideal basis on which we formulate optimal quantizer design in the HDQ
setting, for the following reasons. First, OptD is not limited to any particular transform
method, entropy coding method, block size or quantization table size; this gives us the
freedom to generalize our HDQ problem formulation and solution accordingly. Second, the
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problem of extending OptD to fit the multi-context scenario of CASQ is easily solved, as
we will see in Section 3.3. Third, it has been shown in [7] that OptD performs superior
to previous state-of-the-art methods in the HDQ setting, in both the RD sense and the
computational complexity sense. Finally, recall that OptD only produces a quantization
table and does not otherwise modify the quantized coefficients in any way, making it a
valid HDQ framework despite being formulated in the SDQ setting.

We now present our formulation of the problem of optimal Q design in the HDQ setting.
Recall (2.11):

inf
Q

inf
Q′Q

Rφ(Q,Q′Q) s.t. D(Q,Q′Q) ≤ DT (3.4)

where Q is now the overall quantization table defined earlier, and Q′Q is now defined as an
overall collection of per-contexts mappings:

Q′Q =
{
Q′Q0

, Q′Q1
, Q′Q2

, ..., Q′Q(nC−1)

}
(3.5)

In the above definition, Q′Qc is a mapping from a sequence of transform coefficients of length
nc at the ith frequency position corresponding to the cth context to an index sequence of
length nc to be uniformly reconstructed using the quantization table Qc:

Q′Qc : Rnc −→ {0,±1,±2, ...}nc (3.6)

Equation (3.4) can be converted to an unconstrained optimization using the Lagrange
multiplier θ:

inf
Q

inf
Q′Q

[
Rφ(Q,Q′Q) + θD(Q,Q′Q)

]
(3.7)

where θ is fixed and represents the rate-distortion trade-off. In practice, θ corresponds to
some bit-rate budget or distortion budget

We then define the optimal quantizer Q in the HDQ setting to be the solution for Q
in (3.4) or (3.7) when Q′Q is intentionally left unsolved. This will be solved in Section 3.3.

3.2.2 SDQ Setting

Recall from Section 2.2.2 that the problem of optimal quantizer design in the SDQ setting
is tightly coupled to the entropy coder. While the problem in HDQ is generalized to any
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entropy coder, we must explicitly define the entropy coder in SDQ. For this purpose, we
will consider two entropy coding methods: JPEG-style Huffman coding and ARL coding.
The actual implementation of Huffman coding under CASQ differs slightly from that of
baseline JPEG; similarly, the actual implementation of ARL coding under CASQ differs
slightly from that of [1]. These differences are minor and the reader is assured that the
details of these differences are not necessary for following this section of the thesis. These
differences are described later in Section 4.4.

We only consider the AC coefficients for optimization under SDQ. Optimization of
the DC coefficients under SDQ is typically not explored by the authors of previous works
relating to SDQ [6,8–10]. As such, we remove the optimization of the DC coefficients from
consideration in this thesis. We assume that DC coefficients are quantized and coded in
the same manner as in JPEG (in the Huffman case) or in ARL.

Huffman Coding

In the Huffman case, we define an AC Huffman table Hc corresponding to the cth context,
one for each 0 ≤ c < nC . Assume that Hc will be used for the entropy coding of all run-size
sequences associated with the cth context. We define H to be the collection of Huffman
tables over all contexts:

H = {H0, H1, ..., H(nC−1)} (3.8)

Define (r, s, id)c as the sequence of run-size pairs (r, s) and quantized indices id associ-
ated with the cth context. Let (r, s, id) be the sequence of all run-size pairs and quantized
index values across all contexts:

(r, s, id) = {(r, s, id)0, (r, s, id)1, ..., (r, s, id)(nC−1)} (3.9)

Let Q be the collection of quantization tables over all contexts as defined earlier. We
formulate the problem of optimal quantizer design in the same manner as (2.13):

inf
(r,s,id),H,Q

R((r, s), H) s.t. D((r, s, id)(Q)) ≤ DT (3.10)

where R now represents the bit rate resulting from compressing the run-size sequences
(r, s) using all Huffman tables in H and D represents the corresponding distortion.

As before, this can be converted to an unconstrained optimization via the Lagrange
multiplier θ:

inf
(r,s,id),H,Q

[
R((r, s), H) + θD((r, s, id)(Q))

]
(3.11)
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Optimal quantization under CASQ in the SDQ setting using Huffman coding then
corresponds to the set of (r, s, id), H and Q which minimizes (3.10) or (3.11). Since
(r, s, id), H and Q are defined over all contexts, then a full solution for (r, s, id), H and Q
implies that the individual (r, s, id)c, Hc and Qc, 0 ≤ c < nC , are optimized jointly over
all contexts.

ARL Coding

The case of ARL coding is very similar to the Huffman case. Define (r, l)c as the sequence of
run-level pairs corresponding to the cth quantization context. Define (r, l) as the collection
of all sequences of run-level pairs across all quantization contexts:

(r, l) = {(r, l)0, (r, l)1, ..., (r, l)(nC−1)} (3.12)

As we will see in Section 4.4.2, we define a separate set of arithmetic coding contexts
for each quantization context. Define Mc as the collection of arithmetic coding context
models corresponding to the cth quantization context. Define M as the set of all Mc:

M = {M0,M1, ...,M(nC−1)} (3.13)

Then, the problem of quantizer optimization can be written in the same way as (2.21):

inf
(r,l),M,Q

R((r, l),M) s.t. D((r, l)Q) ≤ DT (3.14)

where R now denotes the bit rate resulting from compressing the run-length sequences (r, l)
from all quantization contexts using the arithmetic coding contexts M , and D denotes the
corresponding distortion.

This can be converted to an unconstrained optimization problem via the Lagrange
multiplier λ:

min
(r,l),M,Q

[J(λ) = D((r, l)Q) + λR((r, l),M)] (3.15)

Optimal quantization under CASQ in the SDQ setting using ARL coding then corre-
sponds to the set of (r, l) and Q which minimizes (3.14) or (3.15). We do not optimize
the arithmetic context selection in M , but it remains a parameter upon which the optimal
(r, l) and Q depend; rather, the arithmetic coding context selected for coding each run or
level value is chosen in the normal manner described in Section 4.4.2. Since (r, l) and Q
are defined over all quantization contexts, then a full solution for (r, l) and Q implies that
the individual (r, l)c and Qc are optimized jointly over all quantization contexts.
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3.3 OptD with Variable-Length Sources

In this section, we present the details of OptD theory from [7] by describing each step of
the solution with the necessary modifications to solve (3.4).

Modelling

Recall that each transform frequency position i, 0 ≤ i < L, can be associated with any
context index c, 0 ≤ c < nC . Thus, there are L′ = nC ·L possible combinations of transform
frequency positions and context indices. Recall as well that there is a separate step size
associated with each of these combinations (Q contains L′ step sizes). Thus, the step size
corresponding to one combination of transform frequency position and context index may
be optimized separately from the step size of a combination of the same frequency position
and another context index. Under OptD theory, we can simply treat these combinations
as separate “frequency positions” for the purpose of optimization of Q, indexed by i,
0 ≤ i < L′. Thus, from this point on, the notion of having separate contexts is largely
absorbed into this new simplified definition of frequency position indexed from 0 to L′− 1.
This simplifies the syntax of the math that follows.

We begin by modelling the transform coefficients located at each frequency position
i, 0 ≤ i < L′, as an independent random source Xi with some probability distribution.
In [7], each source Xi is assumed to have equal length. However, under CASQ there is
no guarantee that the number of blocks associated with one context is equal to that of
any other context. Keeping in mind that two different values of i may correspond to two
different contexts, then the assumption that each source Xi has equal length no longer
holds. Therefore, the first necessary modification to the OptD theory from [7] is to relax
this assumption and allow different Xi to have different lengths. We then define ni to
be the length of source Xi, and we further define nT =

∑
i ni to be the total number of

coefficients in I0. Even though all ni corresponding to one context will be equal (this easily
follows from the fact that each block has the same size as every other block, regardless of
the contexts), we make no assumptions whatsoever about the relationships between any
ni.

With the assumption that the Xi are independent, then we may also assume that
the coefficients from any one frequency position can be optimally quantized and encoded
separately by quantizing and encoding each Xi separately. We also assume that each Xi

has zero mean; this is approximately true in practice. Even if the mean of a source Xi is
significantly far from zero, it can simply be subtracted first.

26



Optimization

We now provide explicit definitions of the rate Rφ(Q,Q′Q) and distortion D(Q,Q′Q). In [7],
these are defined as the average rate and average distortion, respectively. Let Rφ(Xi, qi, Q

′
qi

)
denote the average rate, in bits per coefficient, of quantizing and encoding source Xi using
step size qi and quantizer mapping Q′qi with entropy coding method φ. Let D(Xi, qi, Q

′
qi

)
denote the average distortion per coefficient between Xi and the reconstructed approxima-
tion X̂i given by qi and Q′qi . Keeping in mind that the sources may have different lengths,
then the contribution of Rφ(Xi, qi, Q

′
qi

) to the total rate (and likewise for the distortion)
should be weighted by ni. Thus, we define Rφ(Q,Q′Q) as the average rate where the con-
tribution from each source is weighted appropriately. Likewise, we define D(Q,Q′Q) as the
average distortion:

Rφ(Q,Q′Q) ,
L′−1∑
i=0

ni
nT
Rφ(Xi, qi, Q

′
qi

) (3.16)

D(Q,Q′Q) ,
L′−1∑
i=0

ni
nT
D(Xi, qi, Q

′
qi

) (3.17)

As in [7], we rewrite (3.7) as

inf
Q

inf
Q′Q:D(Q,Q′Q)≤DT

Rφ(Q,Q′Q) (3.18)

where DT is the distortion budget in units of distortion per coefficient.

Under the assumption that the Xi can be quantized and encoded independently, then as
in [7] we may split up the inner minimization in (3.18) by optimizing each frequency position
separately according to some average per-frequency distortion budget Di, 0 ≤ i < L′.
These individual distortion budgets Di are then chosen optimally by an additional outer
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minimization. Hence, the inner minimization in (3.18) may be written as

inf
Q′Q:D(Q,Q′Q)≤DT

Rφ(Q,Q′Q) = inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT

inf
Q′qi :D(Xi,qi,Q

′
qi
)≤Di

0≤i<L′

L′−1∑
i=0

ni
nT
Rφ(Xi, qi, Q

′
qi

)

= inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT

L′−1∑
i=0

ni
nT

 inf
Q′qi

D(Xi,qi,Q
′
qi
)≤Di

Rφ(Xi, qi, Q
′
qi

)



= inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

ni
nT

 inf
Q′qi

D(Xi,qi,Q
′
qi
)≤Di

Rφ(Xi, qi, Q
′
qi

)

 (3.19)

where D(Xi, qi) is defined as the minimal average distortion per coefficient for Xi that is
achievable by uniform reconstruction using qi. From [7], we note that D(Xi, qi) is equal to
the average distortion from the HDQ of Xi with quantization step size qi. Also from [7],
the last equality in (3.19) follows from the fact that if Di < D(Xi, qi), then there does not
exist a quantizer such that D(Xi, qi, Q

′
qi

) ≤ Di (since D(Xi, qi) was defined as the minimal
achievable distortion).

The next step from [7] uses universal redundancy results from lossy source coding
theory [11], which say that when φ is universal and optimal, then

inf
Q′qi

D(Xi,qi,Q
′
qi
)≤Di

Rφ(Xi, qi, Q
′
qi

) = Rqi
Xi

(Di) +K

(
1 + 2

⌊
1 +

A

qi

⌋)
lnni
ni

+ o

(
lnni
ni

)
(3.20)

where Rqi
Xi

(Di) is the Shannon rate distortion function of Xi with respect to the recon-

struction alphabet
{

0,±1qi,±2qi, ...,±
⌊
1 + A

qi

⌋
qi

}
, A is the largest possible magnitude

that a transform coefficient could have, and K = O(1) is some positive bounded term. We

can simplify this by noting that 1 + 2
⌊
1 + A

qi

⌋
is proportional to 1/qi and absorbing it into

K, which leaves us with

inf
Q′qi

D(Xi,qi,Q
′
qi
)≤Di

Rφ(Xi, qi, Q
′
qi

) = Rqi
Xi

(Di) +
K

qi

lnni
ni

+ o

(
lnni
ni

)
(3.21)
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Substituting (3.21) back into (3.19) and (3.18), we now have

inf
Q

inf
Q′Q:D(Q,Q′Q)≤DT

Rφ(Q,Q′Q)

= inf
Q

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

ni
nT

[
Rqi
Xi

(Di) +
K

qi

lnni
ni

+ o

(
lnni
ni

)]

= inf
Q

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

[
ni
nT
Rqi
Xi

(Di) +
K

qi

lnni
nT

+ o

(
lnni
nT

)]
(3.22)

The next step in [7] is to further lower bound Rqi
Xi

(Di) by the Shannon lower bound
to the rate distortion function of Xi, because there is no analytic formula for Rqi

Xi
(Di) in

general. This lower bound is given by R
(SL)
Xi

(Di):

Rqi
Xi

(Di) ≥ R
(SL)
Xi

(Di)

= max

{
H(Xi)−

1

2
log 2πeDi, 0

}
=

{
H(Xi)− 1

2
log 2πeDi if σ̂2

i > Di

0 otherwise
(3.23)

where H(Xi) is the differential entropy of Xi, and σ̂2
i is chosen such that H(Xi) =

1
2

log 2πeσ̂2
i (assume log(·) is base 2).

Substituting into (3.22), we have

inf
Q

inf
Q′Q:D(Q,Q′Q)≤DT

Rφ(Q,Q′Q)

≥ inf
Q

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di) +
K

qi

lnni
nT

+ o

(
lnni
nT

)]
(3.24)

In the above equation, we can further limit Q to only those which satisfy

L′−1∑
i=0

niD(Xi, qi) ≤ nTDT (3.25)
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since there exists no choice of {Di} that satisfies
∑

i niDi = nTDT with Di ≥ D(Xi, qi)
if (3.25) is not satisfied.

Suppose that Q is now given (but is not necessarily optimal) and satisfies (3.25). We
are now interested in solving for the optimal {Di} from the inner minimization of (3.24)
given this Q:

inf
Q

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di) +
K

qi

lnni
nT

+ o

(
lnni
nT

)]
(3.26)

Note that the last two terms do not depend on Di; hence, solving the inner minimization
in (3.26) is equivalent to solving

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di)

]
(3.27)

The next step in [7] solves the above minimization when all ni are equal. However,
since we cannot assume that they are equal under CASQ, then we must re-solve the above
minimization accordingly.

Since R
(SL)
Xi

(Di) is a convex function of Di, then there is a neat closed-form solution
which can be found using the Karush-Kuhn-Tucker (KKT) conditions.

Let ~D = [D0, D1, ..., D(L′−1)] be a row vector of the per-context distortion budgets.

Define the objective function f( ~D) (we multiply out the constant nT for simplicity, as it
will not affect the solution):

f( ~D) =
L′−1∑
i=0

niR
(SL)
Xi

(Di) (3.28)

Define gi( ~D) to be an inequality constraint function, 0 ≤ i < L′:

gi( ~D) = D(Xi, qi)−Di (3.29)
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Define h( ~D) to be an equality constraint function:

h( ~D) =
L′−1∑
i=0

niDi − nTDT (3.30)

Note that all of f(·), gi(·) and h(·) are convex (recall from (3.23) that R
(SL)
Xi

(Di) is

convex). Suppose that f( ~D), gi( ~D) and h( ~D) are all differentiable at a point ~D. Let {µi}
and λ, 0 ≤ i < L′, be the KKT multipliers. We now investigate the KKT conditions for ~D
to be an optimum.

Stationarity: For minimization of f( ~D), the following must hold:

−∇f( ~D) =
L′−1∑
i=0

µi∇gi( ~D) + λ∇h( ~D) (3.31)

For now, assume that Di < σ̂2
i , 0 ≤ i < L′. Expanding the left-hand side,

−
(
∇f( ~D)

)
i

= −
L′−1∑
j=0

nj
d

dDi

R
(SL)
Xj

(Dj)

= −ni
d

dDi

R
(SL)
Xi

(Di)

= −ni
d

dDi

H(Xi) +
ni
2

d

dDi

log 2πeDi

=
ni

Di · 2 ln 2
(3.32)

where (∇·)i denotes the ith entry of the gradient.

Expanding the right-hand side of (3.31),(
L′−1∑
j=0

µj∇gj( ~D) + λ∇h( ~D)

)
i

=
L′−1∑
j=0

µj
d

dDi

(D(Xj, qj)−Dj) + λ
d

dDi

(
L′−1∑
j=0

njDj − nTDT

)
= λni − µi (3.33)

31



Combining (3.33) with (3.31),

λni − µi =
ni

Di · 2 ln 2

µi = λni −
ni

Di · 2 ln 2
, 0 ≤ i < L′ (3.34)

Dual feasibility: The dual feasibility condition from KKT requires µi ≥ 0, 0 ≤ i < L′.
We use this to turn the above equation into an inequality (assuming ni > 0):

λni ≥
ni

Di · 2 ln 2

λ ≥ 1

Di · 2 ln 2
, 0 ≤ i < L′ (3.35)

Complementary slackness: The following must hold for ~D to be an optimum:

µigi( ~D) = 0, 0 ≤ i < L′ (3.36)

Expanding,

µigi( ~D) = µi(D(Xi, qi)−Di) = 0 (3.37)

Substituting from (3.34),(
λni −

ni
Di · 2 ln 2

)
(D(Xi, qi)−Di) = 0(

λ− 1

Di · 2 ln 2

)
(D(Xi, qi)−Di) = 0, 0 ≤ i < L′ (3.38)

Suppose that λ < 1/(D(Xi, qi)2 ln 2). From (3.35), we have

1

D(Xi, qi)2 ln 2
> λ ≥ 1

Di2 ln 2
1

D(Xi, qi)
>

1

Di

Di > D(Xi, qi) (3.39)
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Hence, the term (D(Xi, qi) − Di) in (3.38) is strictly non-zero and may be cancelled
out, leaving

λ− 1

Di · 2 ln 2
= 0

Di =
1

λ2 ln 2
, d (3.40)

Note that from the above definition of d, the condition λ < 1/(D(Xi, qi)2 ln 2) is equivalent
to D(Xi, qi) < d.

On the other hand, suppose now that λ ≥ 1/(D(Xi, qi)2 ln 2). There are two cases:
either µi = 0 or µi > 0. In the latter case, from (3.37) we see clearly that Di = D(Xi, qi).
In the former case, the inequality in (3.35) becomes an equality, implying

λ =
1

Di2 ln 2
≥ 1

D(Xi, qi)2 ln 2

Di ≤ D(Xi, qi) (3.41)

But the primal conditions of the problem state that Di ≥ D(Xi, qi); therefore, Di =
D(Xi, qi) necessarily.

Putting all of this together, we have

Di =

{
d if d > D(Xi, qi)

D(Xi, qi) otherwise
(3.42)

where d is a constant, referred to as the “water level” in [7], chosen such that
∑

i niDi =
nTDT .

Now we address the previous assumption that Di < σ̂2
i , 0 ≤ i < L′. Suppose that a

particular Di instead meets or exceeds σ̂2
i . In this case, no matter what the value of Di

is, the rate contribution from coding source Xi is zero (see (3.23)). There would be no
point in allowing Di to increase beyond σ̂2

i for any i: if we did allow this, it would cause
at least one Dj, j 6= i to decrease due to the constraint

∑
i niDi = nTDT . This leads to

a corresponding increase in rate contribution for coding source Xj, and thus an increase
in the objective function (3.28). In other words, a more optimal solution can be found
if Di > σ̂2

i by forcing Di = σ̂2
i , since the rate contribution from coding source Xi is zero

either way. Therefore, σ̂2
i is an upper bound on Di if {Di} is optimal. This leads to our
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final solution to (3.27):

Di = Di(Q) =


D(Xi, qi) if d ≤ D(Xi, qi)

d if D(Xi, qi) < d ≤ σ̂2
i

σ̂2
i d > σ̂2

i

(3.43)

where d is chosen such that
∑

i niDi = nTDT . Interestingly, the expression for Di is
identical to the one found in [7]; the only difference is in the selection of d.

Substituting (3.43) back into (3.26),

inf
Q

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di) +
K

qi

lnni
nT

+ o

(
lnni
nT

)]

= inf
Q

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di(Q)) +
K

qi

lnni
nT

+ o

(
lnni
nT

)]

= inf
Q

[
L′−1∑
i=0

ni
nT
R

(SL)
Xi

(Di(Q)) +
L′−1∑
i=0

(
K

qi

lnni
nT

+ o

(
lnni
nT

))]
(3.44)

The next step in [7] is to consider the minimization of the first summation:

inf
Q

L′−1∑
i=0

ni
nT
R

(SL)
Xi

(Di(Q)) (3.45)

If we go back a step, we can rewrite the above as

inf
Q

L′−1∑
i=0

ni
nT
R

(SL)
Xi

(Di(Q)) = inf
Q

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di)

]
(3.46)

We now know from (3.43) that having a fixed Q in the above inner minimization is
equivalent to placing a lower bound on each Di, where that lower bound is the minimal
achievable distortion from using HDQ on Xi with step size qi, 0 ≤ i < L′. Therefore, it is
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not hard to see that solving the above inner minimization over all possible Q is equivalent
to removing the lower bound on each Di. Hence,

inf
Q

inf
{Di}L

′−1
i=0∑L′−1

i=0 niDi=nTDT
Di≥D(Xi,qi)

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di)

]
= inf

{Di}L
′−1

i=0∑L′−1
i=0 niDi=nTDT

L′−1∑
i=0

[
ni
nT
R

(SL)
Xi

(Di)

]
(3.47)

This optimization problem is similar to the one solved earlier, except now we omit the
inequality constraint functions gi( ~D) and the solution simplifies from the KKT conditions
to the Lagrange conditions (and λ becomes a Lagrange multiplier).

Specifically, we are now led to solving (for some optimum point ~D∗)

−∇f( ~D∗) = λ∇h( ~D∗) (3.48)

Similar to before, we find (for D∗i < σ̂2
i )

−
(
∇f( ~D∗)

)
i

=
ni

D∗i · 2 ln 2

λ
(
∇h( ~D∗)

)
= λni

=⇒ D∗i =
1

λ2 ln 2
, d∗ (3.49)

By the same argument as before, we upper bound D∗i by σ̂2
i , giving the solution

D∗i =

{
d∗ if d∗ < σ̂2

i

σ̂2
i otherwise

(3.50)

where d∗ is chosen such that

L′−1∑
i=0

niD
∗
i = nTDT (3.51)

Again, the expression for D∗i above is identical to the one found in [7]; the only difference
is in the selection of d∗.

By the next step in [7], we now define a quantization table Q∗ = {q∗0, q∗1, ..., q∗(L′−1)}
where

q∗i = sup{qi : D(Xi, qi) ≤ D∗i }, 0 ≤ i < L′ (3.52)
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Assume that D(Xi, qi) is a strictly increasing and differentiable function of qi (this holds
for the mean-squared error distortion metric). Then from the above definition of q∗i , clearly

D(Xi, q
∗
i ) = D∗i (3.53)

Di(Q
∗) = D∗i (3.54)

Since Di(Q
∗) = D∗i , it is implied that Q∗ is the optimum of (3.45).

We note that among all Q satisfying (3.25) and Di(Q) = D∗i , Q
∗ is the largest in the

sense that the following holds:

δ(Q) , max{qi − q∗i : 0 ≤ i < L′} ≤ 0 (3.55)

We now draw a connection between Q∗ and the optimal quantization table to (3.44).
Define Q0 as the optimal quantization table to (3.44). Note that the first summation
in (3.44) is a non-decreasing function of each qi, while the second summation is a strictly
decreasing function of each qi. In some sense, the second summation represents the “quality
cost” of increasing qi and facilitates the rate-distortion trade-off in choosing the optimal
Q. However, we note that as ni grows large for every i, the first summation will dominate.
Therefore, when ni is large for every i, we expect Q∗ to be very close to the actual optimal
Q∗. We formalize and prove this in the following theorem.

Theorem 1. Assume that D(Xi, qi), 0 ≤ i < L′, is a strictly increasing and differentiable
function of qi. Assume that each source Xi has a corresponding length ni. Define nm =
mini ni. Then the optimal Q0 = (q00, q

0
1, ..., q

0
(L′−1)) satisfies

∣∣Q0 −Q∗
∣∣ = O

(
log nm
nm

)
(3.56)

where Q∗ = (q∗0, q
∗
1, ..., q

∗
(L′−1)) is defined via (3.52) and | · | denotes the Euclidean distance.

Proof. The proof largely follows that of Theorem 1 in [7], with some minor details changed.
We reproduce the proof here for completeness.

For any Q satisfying (3.25) (but not necessarily satisfying Di(Q) = D∗i ), we define

F (Q) ,
L′−1∑
i=0

ni
nT
R

(SL)
Xi

(Di(Q)) +
L′−1∑
i=0

(
K

qi

lnni
nT

+
o(lnni)

nT

)
(3.57)

D(Q) , (D0(Q), D1(Q), ..., D(L′−1)(Q)) (3.58)

We want to compare F (Q) with F (Q∗). We define four different cases:
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(i) δ(Q) < 0

(ii) δ(Q) ≥ C1

√
lnnM
nM

(iii) C2
lnnm
nm
≤ δ(Q) < C1

√
lnnM
nM

(iv) 0 ≤ δ(Q) < C2
lnnm
nm

where C1 > 0 and C2 > 0 are constants to be discussed later, and nM , maxi{ni}. Assume
that nm = O(nM), which is apparent from the definitions of nm and nM when they are
both large. We will work towards placing Q0 into one of the cases above, the bounds of
which will imply a bound on |Q0 −Q∗|.

Case (i): From (3.52) and (3.55), it should be clear that if δ(Q) < 0 then Di(Q) =
D∗i = Di(Q

∗), 0 ≤ i < L′. Therefore, the first summation in F (Q) is equal to that of
F (Q∗). Furthermore, since δ(Q) is strictly less than zero, it is implied that qi < q∗i is also
strict for every i. Consequently, the second summation in F (Q) is strictly greater than
that of F (Q∗), and thus F (Q) > F (Q∗). Since F (Q) is exactly the RD cost function being
minimized over Q in (3.44), then Q cannot possibly be optimal. We conclude that Q0

cannot fall into this case.

Case (ii): Recall that δ(Q) denotes the largest value of qi−q∗i over all i. In this case, it is

guaranteed that for at least one i, qi−q∗i ≥ C1

√
lnnM
nM

. Recall the assumption that D(Xi, qi)

is a strictly increasing function of qi; then, it is also true that D(Xi, qi) − D(Xi, q
∗
i ) ≥

Ĉ1

√
lnnM
nM

for some positive constant Ĉ1, for the same i as previously mentioned. Since

D(Xi, qi) is a lower bound to Di(Q) (see (3.43)), it is further implied that Di(Q)−Di(Q
∗) ≥

Ĉ1

√
lnnM
nM

as well. Therefore,

|D(Q)−D(Q∗)| ≥ c1C1

√
lnnM
nM

(3.59)

for some positive constant c1.

Next, define the function

G(D(Q)) =
L′−1∑
i=0

ni
nT
R

(SL)
Xi

(Di(Q)) (3.60)

Note that G(D(Q)) is the same as the objective function from (3.45), for which Q∗ is a
strict minimum. This implies that the gradient of G(D(Q)) evaluated at Q∗ is zero:

∇G(D(Q∗)) = ~0 (3.61)
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Let A , D(Q)−D(Q∗). If we take the Taylor expansion of G(D(Q)) around Q∗,

G(D(Q)) = G(D(Q∗)) +∇G(D(Q∗)) · A+
1

2
A · ∇2G(D(Q̂))AT

= G(D(Q∗)) +
1

2
A · ∇2G(D(Q̂))AT (3.62)

for some point D(Q̂) in the neighbourhood of D(Q∗). Since Q∗ is a strict minimum
of G(D(Q)), then necessarily G(D(Q)) > G(D(Q∗)) for any Q 6= Q∗, implying that the
Hessian must be positive definite at D(Q̂). From the differentiable property of D(Xi, qi), it
follows that the Hessian is also symmetric, meaning there exists a Cholesky decomposition

∇2G(D(Q̂)) = LLT (3.63)

where L is a lower triangular L′ × L′ matrix. Hence,

G(D(Q)) > G(D(Q∗)) +
1

2
(AL)(AL)T

= G(D(Q∗)) +
1

2
|AL|2

= G(D(Q∗)) + C|D(Q)−D(Q∗)|2 (3.64)

for some positive constant C.

We therefore have

L′−1∑
i=0

ni
nT
R

(SL)
Xi

(Di(Q)) >
L′−1∑
i=0

ni
nT
R

(SL)
Xi

(Di(Q
∗)) + ĉ1c

2
1C

2
1

lnnM
nM

(3.65)

for some positive constant ĉ1. Hence,

F (Q)− F (Q∗)

> ĉ1c
2
1C

2
1

lnnM
nM

+
L′−1∑
i=0

K

qi

lnni
nT
−

L′−1∑
i=0

K

q∗i

lnni
nT

+
L′−1∑
i=0

o(lnni)

nT

> ĉ1c
2
1C

2
1

lnnM
nM

−
∑
i:qi<q∗i

K

q∗i

lnni
nT

+
L′−1∑
i=0

o(lnni)

nT

≥ ĉ1c
2
1C

2
1

lnnM
nM

−
∑
i:qi<q∗i

K

q∗i

lnnM
nM

+
L′−1∑
i=0

o(lnni)

nT
> 0 (3.66)
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for large nm and nM , and when C1 is chosen properly. The last line follows from the fact
that nM = O(nT ) and ni = O(nM), 0 ≤ i < L′. Therefore, F (Q) > F (Q∗), and Q0 cannot
fall into this case.

Case (iii): Similarly to Case (ii), we have

F (Q)− F (Q∗)

> ĉ1|D(Q)−D(Q∗)|2 −
∑
i:qi>q∗i

(
K

q∗i
− K

qi

)
lnni
nT

+
L′−1∑
i=0

o(lnni)

nT
(3.67)

From the same argument in Case (ii), we know that c2C2
lnnm
nm

≤ |D(Q) − D(Q∗)| <

c1C1

√
lnnM
nM

. Therefore, if we write |D(Q)−D(Q∗)|2 as |D(Q)−D(Q∗)| · |D(Q)−D(Q∗)|,
then we can replace one of the terms with ĉ3δ(Q), ĉ3 > 0 to establish an asymptotic lower

bound since C2
lnnm
nm
≤ δ(Q) < C1

√
lnnM
nM

:

F (Q)− F (Q∗)

> ĉ3δ(Q)|D(Q)−D(Q∗)| −
∑
i:qi>q∗i

(
K

q∗i
− K

qi

)
lnni
nT

+
L′−1∑
i=0

o(lnni)

nT
(3.68)

Note that for large nM , the bounds on δ(Q) imply that qi is very close to q∗i when qi > q∗i .
Therefore, we can approximate 1/q∗i − 1/qi by its tangent at q∗i . Noting that q∗i is fixed,
we get

1

q∗i
− 1

qi
≈ ĉ4(qi − q∗i ) ≈ ĉ4δ(Q) (3.69)

for some positive constant ĉ4. Therefore,

F (Q)− F (Q∗)

> ĉ3δ(Q)

[
|D(Q)−D(Q∗)| − c4

lnni
nT

]
+

L′−1∑
i=0

o(lnni)

nT
(3.70)
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for some positive constant c4. From the lower bound on |D(Q)−D(Q∗)|, we then have

F (Q)− F (Q∗)

> c3δ(Q)

[
c2C2

lnnm
nm

− lnni
nT

]
+

L′−1∑
i=0

o(lnni)

nT

≥ c3δ(Q)

[
c2C2

lnnm
nm

− lnnM
nM

]
+

L′−1∑
i=0

o(lnni)

nT
(3.71)

for some positive constant c3. Note that since nm = O(nM) and since ln x/x decays towards
zero for large x, then lnnm/nm is an upper bound on lnnM/nM for large nm. Therefore,

F (Q)− F (Q∗)

> c3δ(Q)

[
c2C2

lnnM
nM

− lnnM
nM

]
+

L′−1∑
i=0

o(lnni)

nT
> 0 (3.72)

for large nm.

This implies that Q0 cannot fall into Case (iii). Given that it cannot fall into Case (i)
or Case (ii) either, it must then fall into Case (iv), where

0 ≤ δ(Q0) < C2
lnnm
nm

(3.73)

This, together with (3.43) and (3.50) implies that q0i ≥ q∗i − O( lnnm
nm

) for any q0i < q∗i ,
therefore

|Q0 −Q∗| = O

(
lnnm
nm

)
(3.74)

Remark. Note that this is a slightly weaker version of Theorem 1 in [7]. The weakness comes
from the fact that even if nT grows large, there is no guarantee that each ni will also grow
large with nT ; consequently, for any i for which ni = o(nT ), it cannot be shown that the
corresponding q∗i will always converge to q∗i for large nT . Nonetheless, this weakness is not
significant in practice for two reasons. First, for any reasonable context selection method
for the blocks of an image (including the classifier proposed in Section 4.2.2), the number of
blocks associated with each context should grow roughly linearly with the overall size of the
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image, implying that ni = Θ(nT ) for all i and, therefore, that |Q0−Q∗| = O (log(nT )/nT ).
Second, and more generally: although Q∗ may not converge to Q0 in general when nT is
large, it is intuitive that the RD performance under Q∗ will nonetheless converge in general
to the RD performance under Q0 because the relative RD contribution from any source Xi

for which ni = o(nT ) will become negligible as nT grows large. This follows from the fact
that in (3.16) and (3.17), the RD contribution from source Xi is weighted by ni, 0 ≤ i < L′.
As nT grows large, the contributions to overall rate and distortion from the sources where
ni = Θ(nT ) will dominate the contributions from the sources where ni = o(nT ), and thus
the sub-optimality of qi for those sources being dominated will have negligible impact on
the overall RD performance.

With this in mind, we can compute Q∗ and be assured by Theorem 1 and the remarks
above that the RD performance under Q∗ will be close to the RD performance under Q0

when nT is large; in other words, the RD performance under Q∗ is nearly optimal for
sufficiently large images. In the following sub-section, we will apply our modified OptD
theory to DCT-based image coding under CASQ.

Application to DCT-based Image Coding under CASQ

In [7], an efficient algorithm is proposed to compute Q∗ for a DCT-based image coding
system, where the distortion function D(Xi, qi) is approximated based on modelling each
source Xi as a certain distribution. Despite the lengthy re-derivation of OptD theory
under CASQ, this algorithm applies directly to CASQ without modification. The only
considerations that need to be made are for the calculation of the “water level” d and for the
fact that, when there are multiple contexts, then there may also be multiple DC frequencies;
accordingly, care should be taken in modelling the random sources corresponding to those
frequencies, because the DC models are chosen differently from the AC models. We will
re-produce the algorithm here for completeness but we omit the details of its derivation,
which are completely unchanged from [7]. Assume that the source variance σ2

i is used in
place of σ̂2

i ; the purpose of this is to simplify the computation of Q∗ without having to
compute the differential entropy of each Xi.

In the case of a DC frequency when only one context is used (i = 0), the source is
simply modelled as a uniform random sequence, and thus we have D(X0, q0) = q20/12. In
the case of AC frequencies, each source is modelled as a Laplacian source with parameter
λi. The probability density function fi(x) is given by

fi(x) =
1

2λi
e
− |x|
λi (3.75)
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D(Xi, qi) for the AC frequency positions is then approximated by the distortion of a
dead-zone quantizer with uniform reconstruction, denoted by DLap(λi, qi), 1 ≤ i < L′:

DLap(λi, qi) , 2λ2i −
2qi(λi + si − 0.5qi)

esi/λi(1− e−qi/λi)
(3.76)

where the dead-zone size si is

si = qi − λi +
qi

eqi/λi − 1
(3.77)

The derivations for (3.76) and (3.77) may be found in [12]. Note that the Laplacian
parameters {λi} may be efficiently estimated via maximum likelihood from the sample
values xi(0), xi(1), ..., xi(ni − 1) of Xi by

λi =
1

ni

ni−1∑
j=0

|xi(j)| , 1 ≤ i < L′ (3.78)

Under CASQ with multiple contexts, the models used are completely identical to the
ones described above, but with careful consideration that there may be multiple DC fre-
quencies whose corresponding sources Xi should be modelled as uniform distributions.
More formally, define SDC ⊆ {0, 1, ..., L′− 1} as the index set of all i corresponding to DC
frequencies, 0 ≤ i < L′. Define SAC ⊆ {0, 1, ..., L′− 1} as the index set of all i correspond-
ing to AC frequencies. Then each Xi where i ∈ SDC should be modelled as a uniform
distribution, and each Xi where i ∈ SAC should be modelled as a Laplacian distribution
with parameter λi.

To compute Q∗ = {q∗0, q∗1, ..., q∗(L′−1)}, we first choose a maximum integer step size qmax.

If the water level d is greater than the source variance σ2
i for some 0 ≤ i < L′, then all

coefficients at the ith frequency position are to be quantized to zero (since the theoretical
rate contribution from coding Xi is zero). While it may seem like a violation of the HDQ
principle to force quantization of some coefficients to zero, note that in this case we are
quantizing every coefficient at the ith frequency position to zero, which would in fact be
equivalent to setting q∗i to a very large number (large enough that each coefficient in Xi is
implicitly quantized to zero); thus, it can still be considered HDQ. In practice, we manually
force the quantization of each coefficient in Xi to zero and instead set q∗i to an arbitrary
number since the reconstructed values will always be zero (it is set to qmax in [7]).

If the water level d is not greater than the source variance σ2
i for some 0 ≤ i < L′, then
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we instead select q∗i according to the following:

q∗i =

{
min

{⌊√
12d
⌋
, qmax

}
if i ∈ SDC

max {qi ∈ Q : DLap(λi, qi) ≤ d} if i ∈ SAC
(3.79)

whereQ = {1, 2, ..., qmax}. It can be shown that DLap(λi, qi) is a strictly increasing function
of qi. Therefore, the maximization above can easily be solved by a bisection search. This
takes negligible time in practice due to the small search space and simple computation of
DLap.

This algorithm is summarized below in Algorithm 1, which is almost identical to Algo-
rithm 1 in [7].

Algorithm 1 Optimal quantization table design for JPEG-type DCT-based coding under
CASQ

1: Predetermine a desired distortion level DT and maximum quantization step size qmax
2: Predetermine the CASQ context selection for each block in the image
3: Determine SDC and SAC according to the above context selection
4: Determine the water level d according to (3.50) and (3.51)
5: for each i, 0 ≤ i < L′ do
6: if σ2

i < d then
7: set q∗i = qmax
8: signal that all coefficients in Xi be quantized to zero
9: else
10: if i ∈ SDC then
11: set q∗i = min{b

√
12dc, qmax}

12: else
13: set q∗i = max{qi ∈ Q : DLap(λi, qi) ≤ d}
14: end if
15: end if
16: end for

3.4 Context-Dependent SDQ

In this section, we propose a quantizer optimization method in the SDQ setting for CASQ
when applied to JPEG-style DCT-based image coding. While the OptD theory in Sec-
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tion 3.3 needed to be re-derived for HDQ CASQ based on [7], it turns out that the theoret-
ical and practical aspects of our SDQ solution are nearly identical to [6] and [8]; only subtle
modifications are necessary for their application to CASQ. In the following sub-sections,
we separately discuss the Huffman and ARL cases.

Note that we still only consider the AC coefficients in the SDQ setting. Assume that
there are nC quantization contexts. Since we are considering JPEG-style DCT-based cod-
ing in this section, assume that the 8×8 DCT is applied to each block. Assume that the
AC frequencies associated with quantization context c, 0 ≤ c < nC , are indexed by i,
1 ≤ i < 64, in zig-zag order.

3.4.1 Huffman Case

Recall the iterative SDQ solution discussed in Section 2.3.2, which comes from [6]:

Step 1) Determine an initial quantization table Q(0) from the given image and the cor-
responding run-size distribution P0. Set t = 0 and specify a tolerance ε as the
convergence criterion. Fix a value of λ.

Step 2) Fix P (t) and Q(t) for any t ≥ 0. Find an optimal sequence (r(t), s(t), id(t)) that
achieves the following minimum:

min
(r,s,id)

{J(λ) = D[(r, s, id)Q(t) ] + λR[(r, s), P (t)]} (3.80)

Denote J (t)(λ) by D[(r(t), s(t), id(t))Q(t) ] + λR[(r(t), s(t)), P (t)]. For t > 0, if

J (t−1)(λ) − J (t)(λ) ≤ ε, stop the iterative algorithm and output (r(t), s(t), id(t))
and Q(t). Otherwise, continue to Step 3.

Step 3) Fix (r(t), s(t), id(t)). Update Q(t) and P (t) into Q(t+1) and P (t+1) respectively so
that Q(t+1) and P (t+1) together achieve the following minimum:

min
Q,P
{J(λ) = D[(r(t), s(t), id(t))Q] + λR[(r(t), s(t)), P ]} (3.81)

where the above minimization is taken over all quantization tables Q and all
run-size probability distributions P . Note that P (t+1) can be selected as the
empirical run-size distribution of (r(t), s(t)).

Step 4) Return to Step 2 with t = t+ 1.

Under CASQ, we define one quantization table Qc per context, 0 ≤ c < nC . Since there
is one Huffman table for each context, we also define one run-size probability distribution
Pc for each context.
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To solve the minimization in Step 2, the authors of [6] proposed an efficient graph-based
algorithm, the details of which remain identical under CASQ and need not be reproduced
here. However, its usage differs in a subtle way. The algorithm used in Step 2 can be
run independently in a block-by-block manner, since the Lagrangian cost J(λ) is block-
wise additive given Q and P . Under CASQ, each block being optimized has an associated
quantization context; accordingly, care needs to be taken in passing the correct quantization
table Q

(t)
c and run-size distribution P

(t)
c , where c is the context index for the current block.

The algorithm itself remains identical once Q
(t)
c and P

(t)
c are given.

The minimization in Step 3 is easily solved in [6] in closed-form if the squared-error
distortion measure is used. The solution remains identical to that in [6] under CASQ, but
with some differences in notation which we describe here. Denote the “new” quantization
table for context c by Q̂c (that is, we will update Qc into Q̂c). Denote the ith step size
of Qc by qc,i. Denote the number of blocks in the image associated with the cth context
as NBc . Denote the DCT coefficient of the image at frequency position i of the jth block
associated with the cth context as Cc,i,j. Denote the corresponding quantized index of Cc,i,j
by Kc,i,j, such that the reconstructed value is qc,i ·Kc,i,j.

The minimum in Step 3 is achieved when [6]

q̂c,i =

NBc−1∑
j=0

(Cc,i,j ·Kc,i,j)

NBc−1∑
j=0

K2
c,i,j

, 1 ≤ i < 64, 0 ≤ c < nC (3.82)

In consideration of the above discussion, we now summarize our SDQ solution under
CASQ in the following steps, which are essentially the same as the steps described earlier
but with correct syntax under CASQ.

Step 1) Determine initial quantization tables Q
(0)
c from the given image and the cor-

responding run-size distributions P
(0)
c , 0 ≤ c < nC . Set t = 0 and specify a

tolerance ε as the convergence criterion. Fix a value of λ.

Step 2) Fix P
(t)
c and Q

(t)
c for every 0 ≤ c < nC and for any t ≥ 0. Find an optimal

sequence (r(t), s(t), id(t)) that achieves the following minimum:

min
(r,s,id)

{
J(λ) = D

[
(r, s, id){

Q
(t)
c

}nC−1

c=0

]
+ λR

[
(r, s),

{
P (t)
c

}nC−1
c=0

]}
(3.83)
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Denote J (t)(λ) by

J (t)(λ) = D

[
(r(t), s(t), id(t)){

Q
(t)
c

}nC−1

c=0

]
+ λR

[
(r(t), s(t)),

{
P (t)
c

}nC−1
c=0

]
For t > 0, if J (t−1)(λ) − J (t)(λ) ≤ ε, stop the iterative algorithm and output

(r(t), s(t), id(t)) and Q
(t)
c , 0 ≤ c < nC . Otherwise, continue to Step 3.

Step 3) Fix (r(t), s(t), id(t)). Update Q
(t)
c and P

(t)
c into Q

(t+1)
c and P

(t+1)
c respectively so

that Q
(t+1)
c and P

(t+1)
c together achieve the following minimum:

min
{Qc}

nC−1
c=0 ,{Pc}

nC−1
c=0

{
J(λ) = D

[
(r(t), s(t), id(t)){Qc}nC−1

c=0

]
+ λR

[
(r(t), s(t)), {Pc}nC−1c=0

]}
(3.84)

where the above minimization is taken over all quantization tables Qc and all
run-size probability distributions Pc, 0 ≤ c < nC . Note that P

(t+1)
c can be

selected as the empirical run-size distribution of (r(t), s(t)).

Step 4) Return to Step 2 with t = t+ 1.

Initial Quantization Table Selection

Recall from [6] that the iterative solution only converges to a local minimum. The choice
of initial quantization tables has a significant impact on the overall RD performance under
SDQ. The optimal choice of initial quantization tables is an open problem. We propose
using the table Q generated by our modified OptD method in Section 3.3 as the intial
table, where the target distortion DT is chosen such that the bit-rate resulting from the
HDQ of the image using Q is slightly higher than the target bit-rate corresponding to
λ under SDQ. The purpose of targeting a slightly higher bit rate with OptD is to “give
room” for subsequent optimization under SDQ. Our experiments have shown that this is
a reasonably good choice of initial quantization table.

3.4.2 ARL Case

Likewise in the ARL case, our solution is nearly identical to the one proposed in [8], with
only some minor changes to the syntax.

Denote P (Mc) as the collection of context model distributions for Mc. We summarize
our solution in the steps below:
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Step 1) Determine initial quantization tables Q
(0)
c from the given image and the corre-

sponding context model distributions P (M
(0)
c ). Set t = 0 and specify a tolerance

ε as the convergence criterion. Fix a value of λ.

Step 2) Fix P (M
(t)
c ) and Q

(t)
c for every 0 ≤ c < nC and any t ≥ 0. Find an optimal

sequence (r(t), l(t)) that achieved the following minimum:

min
(r,l)

{
J(λ) = D

[
(r, l){

Q
(t)
c

}nC−1

c=0

]
+ λR((r, l), {P (M (t)

c )}nC−1c=0 )

}
(3.85)

Denote J (t)(λ) by

J (t)(λ) = D

[
(r(t), l(t)){

Q
(t)
c

}nC−1

c=0

]
+ λR((r(t), l(t)), {P (M (t)

c )}nC−1c=0 ) (3.86)

For t > 0, if J (t−1)(λ) − J (t)(λ) ≤ ε, stop the iterative algorithm and output

(r(t), l(t)) and Q
(t)
c , 0 ≤ c < nC . Otherwise, continue to Step 3.

Step 3) Fix (r(t), l(t)). Update P (M
(t)
c ) and Q

(t)
c into P (M

(t+1)
c ) and Q

(t+1)
c respectively

so that P (M
(t+1)
c ) and Q

(t+1)
c together achieve the following minimum:

min
{P (Mc)}

nC−1
c=0 ,{Qc}

nC−1
c=0

{
J(λ) = D

[
(r(t), l(t)){Qc}nC−1

c=0

]
+ λR((r(t), l(t)), {P (Mc)}nC−1c=0 )

}
(3.87)

Step 4) Return to Step 2 with t = t+ 1.

The minimization in Step 2 is achieved using the exact same block-wise graph-based
dynamic programming algorithm from [8], where we only need to take care in passing the
correct P (Mc) and Qc to the algorithm corresponding to the context index c of the current
block. Updating Qc, 0 ≤ c < nC , in Step 3 is identical to the Huffman case as described in
the previous section. Mc, 0 ≤ c < nC , is updated based on the default arithmetic context
selection method to be discussed in 4.4.2.

However, note that in [8] and as well in our solution, we use a fixed arithmetic con-
text for the first bit of the first run, rather than the neighbour-dependent arithmetic
contexts described in Section 2.1.3 and Section 4.4.2. This is because a full optimization
over neighbour-dependent arithmetic contexts would greatly increase the complexity of the
graph-based algorithm. Since coding the first bit of the first run contributes to a very small
fraction of the bit rate, this change is justified.
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Like in the Huffman case, initial quantization table selection is an issue here as well. We
simply propose the same method as described previously: use the HDQ CASQ algorithm
to generate initial quantization tables, where the bit rate resulting from HDQ is slightly
higher than the target bit rate for SDQ.

3.5 Summary

In this chapter, we reviewed the shortcomings of JPEG regarding local adaptivity and
proposed a new type of quantization framework, called context adaptive space quantization
(CASQ), to address these shortcomings by quantizing the blocks of an image conditioned on
a quantization context. We subsequently formulated and solved optimal quantizer design
under CASQ in both the HDQ and SDQ settings. The quantizer optimization solutions
presented in this chapter facilitate the development of a practical image coder based on
CASQ, to be discussed in the next chapter.
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Chapter 4

CASQ-Based Image Coder

In this chapter, we describe a new image coding scheme based on JPEG that incorporates
the CASQ framework derived in Chapter 3.

4.1 Overview

Our image coder is summarized in Fig. 1.3. Similar to JPEG, our coder begins by parti-
tioning an input image I0, consisting of Nrow rows and Ncol columns of pixels, into non-
overlapping 8×8 blocks. This is followed by a block-wise 8×8 DCT. The next logical step
would be quantization under CASQ; but before that can occur, we first need to perform
quantization context selection.

In general, context selection may be performed at any point before CASQ; it need not
even be image-dependent. Any number of contexts nC may also be used. In our coding
scheme we define two contexts, namely “homogeneous” (relatively flat and featureless) and
“non-homogeneous” (relatively detailed features). We construct an online classifier based
on the statistics of the DCT coefficients of I0 for the purpose of assigning a context label
to each block. The details relating to context selection will be discussed in Section 4.2.
We may also alternatively refer to these contexts as “regions”, where the “homogeneous
region” refers to the set of blocks corresponding to the homogeneous context and the “non-
homogeneous region” refers to the set of blocks corresponding to the non-homogeneous
context.

After context selection has been completed by the classifier, we use the CASQ method
proposed in Chapter 3 for quantizing the DCT coefficients. Finally, the quantized indices
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Figure 4.1: Proposed image coding scheme (decoder)

from each block, along with their associated context labels, are passed to the entropy coder
(to be discussed in Section 4.4) in raster order to form the final bit stream. We propose
both JPEG-style Huffman coding and ARL coding for this purpose. The quantization
tables, Huffman tables (in the Huffman case) and context labels are transmitted as side
information. Encoding of the quantization tables and Huffman tables is identical to JPEG.
Encoding of the context labels will be discussed in detail in Section 4.2.2.

The decoding process (summarized in Fig. 4.1) is essentially the reverse of the encoding
process, except that classification is not performed since the context labels are available
to the decoder as side information. First, each compressed block is passed to an entropy
decoder (either Huffman or ARL) along with its context label, resulting in the quantized
indices for that block. Then, the quantized indices for that block are dequantized according
to the uniform reconstruction rule in JPEG using the quantization table Qc, where c is the
context index associated with that block. Finally, once all blocks have been dequantized,
the inverse DCT is performed and the reconstructed image is sent to the output.

4.2 Context Selection

Context selection is the process whereby a context index c, 0 ≤ c < nC , is selected for
each block. In our image coding scheme, nC = 2. We only loosely describe these contexts
as “relatively flat and featureless” and “relatively detailed”, respectively. The idea behind
this distinction is that flatter blocks will tend to have lower energy in the AC frequencies,
and thus would benefit more in the RD sense from a quantization table with higher step
sizes. On the other hand, more detailed blocks will tend to have higher energy in the AC
frequencies, which would benefit more from a quantization table with lower step sizes.

Motivated by this idea, we seek a context selection method that can distinguish blocks
between “flat” and “detailed”. To this end, we apply Laplacian transparent composite

50



modelling (LPTCM) to detect blocks which contribute significantly to the perceptual de-
tails of the image. The details of LPTCM and its application to context selection will be
discussed in the following sub-sections.

4.2.1 Laplacian Transparent Composite Modelling

Laplacian transparent composite modelling (LPTCM) is a type of statistical model which
can accurately describe the distribution of DCT coefficients [13]. Similar to [14], we define
one model for each of the 63 AC frequency positions. We ignore the DC frequency because
it does not capture any information about intra-block details.

We define a zero-mean probability density function fk(y), 1 ≤ k < 64, corresponding
to the kth frequency position (in zig-zag order). The purpose of fk(y) is to model the
statistics of all of the DCT coefficients at the kth frequency. LPTCM defines two parts for
this density: a central truncated Laplacian part and an outer, uniformly distributed tail
part. The density function is given by

fk(y) =


bk

2λk

(
1−e(−Yk/λk)

)e− |y|λk , if |y| < Yk

1−bk
2(Ak−yk)

, if Yk < |y| ≤ Ak

0, if |y| > Ak

(4.1)

where Ak denotes the maximum magnitude among the DCT coefficients at frequency k,
0 ≤ bk ≤ 1 is a constant denoting the fraction of coefficients which fall into the Laplacian
part, λk is the scale parameter for the Laplacian part, and Yk is the cut-off boundary
between the Laplacian part and the uniform part. Coefficients which fall into the central
part are referred to as “inliers”, and those which fall into the tail part are referred to as
“outliers”. A schematic plot of fk(y) is shown in Fig. 4.2, where the scaling has been
exaggerated in order to more easily display the important parameters of fk(y).

The parameter Ak can be determined by a simple scan of the DCT coefficients:

Ak = max |Ck,l|, 1 ≤ k < 64 (4.2)

where Ck,l denotes the DCT coefficient at frequency position k in the lth block. The
remaining parameters bk, λk and Yk can be efficiently estimated online using Algorithm 1
and Algorithm 2 in [13]. Note that since each frequency position is modelled independently,
then parameter estimation over all frequencies can easily be implemented in a parallel
manner.
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Figure 4.2: Schematic plot of fk(y)

4.2.2 Classification and Outlier Map

Our classifier is built upon the separation between inlier coefficients and outlier coefficients
as defined by LPTCM. Assume that the LPTCM parameters for each of the AC frequen-
cies are given (for example, by the estimation algorithms in [13]). We define a classifier
L(B) : R64 −→ {“homogeneous”, “non-homogeneous”}, where B is an 8×8 block of DCT
coefficients, as follows. Denote the 8×8 block of DCT coefficients at the ith block-row and
jth block-column by Bi,j, 0 ≤ i < Nrow/8, 0 ≤ j < Ncol/8. Denote the coefficient at the
kth frequency position (in zig-zag order) in block Bi,j by (Bi,j)k. Define T (Bi,j) as the
number of outlier coefficients contained within Bi,j:

T (Bi,j) =
63∑
i=1

Ik((Bi,j)k) (4.3)

where Ik(y) is an indicator function:

Ik(y) =

{
0, |y| < Yk

1, |y| ≥ Yk
(4.4)

Our classifier is then defined by

L(Bi,j) ,

{
“homogeneous”, if T (Bi,j) = 0

“non-homogeneous”, if T (Bi,j) > 0
(4.5)
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In other words, if at least one AC coefficient in a given block falls into the outlier region
defined by its respective LPTCM model, then we classify the block as non-homogeneous.
Otherwise, all AC coefficients in the block fall into their respective inlier regions and we
classify the block as homogeneous.

Context selection, therefore, is the result of applying this classifier to every block in the
image. The output of the classifier for each block is a context label which must be provided
to both CASQ and the entropy coder. To help us draw a connection to CASQ as described
in Chapter 3, we can define a mapping between L ∈ {“homogeneous”, “non-homogeneous”}
and c ∈ {0, 1}, where L is a context label and c is its corresponding context index.

Outlier Map

The output of the classifier must also be transmitted to the decoder as side information. To
this end, we define an “outlier map” denoted by m(i, j) to be the binarized representation
of the result of applying the classifier L to the block at the ith row and jth column:

m(i, j) ,

{
0, if L(Bi,j) = “homogeneous”

1, if L(Bi,j) = “non-homogeneous”
(4.6)

We can think of m(i, j) as a two-level image consisting of Nrow/8 rows and Ncol/8
columns of pixels. Note that m(i, j) is only 1/64th the area of I0 and contains only binary
values; as such, it tends to contribute very little to the overall bit rate when compared
to compressing I0. For simplicity, we use an adaptive binary arithmetic coder with 16
arithmetic coding contexts to compress m(i, j). We code m(i, j) for every block-row i and
every block-column j in I0 in raster order, 0 ≤ i < Nrow/8, 0 ≤ j < Ncol/8. The arithmetic
coding context used to code m(i, j) depends on its four causal neighbours:

coding-context(i, j) = 1 ·m(i− 1, j − 1)

+ 2 ·m(i− 1, j)

+ 4 ·m(i− 1, j + 1)

+ 8 ·m(i, j − 1) (4.7)

Since each m(i, j) has a binary state then there are 16 possible state combinations of the
four causal neighbours, hence there are 16 arithmetic coding contexts.

An example outlier map generated from our classifier when applied to the Lena image
is shown in Fig. 4.3(b), with the original image shown for reference in Fig. 4.3(a). A
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value of “0” from the outlier map is represented by a black pixel, while a value of “1” is
represented by a white pixel. We observe that the more detailed parts of the image, such
as sharp edges, facial features and the part of the hat hanging down, have been classified
as non-homogeneous; while the more flat areas, including most of the background, have
been classified as homogeneous. Around 26% of the blocks have been classified as non-
homogeneous in this example.

(a) Lena, original image (b) Lena, outlier map

Figure 4.3: Lena with corresponding outlier map

4.3 Quantization

Given the output of running the classifier on each block in I0, we can proceed with quan-
tization under CASQ. In our image coder, either HDQ or SDQ may be considered for
quantizer optimization; optimal quantizer design in both settings under CASQ was de-
scribed in detail in Chapter 3.

If HDQ is used, then we apply Algorithm 1 described in Section 3.3, where we set nC = 2
(L′ = 128). The output of this process is a set of quantization tables {Q0, Q1}, where
Q0 corresponds to the homogeneous region and Q1 corresponds to the non-homogeneous
region. We then quantize all blocks of DCT coefficients in the homogeneous region using Q0

and the HDQ mapping from (2.6). Similarly, we quantize all blocks in the non-homogeneous
region using Q1. These quantized blocks are then entropy coded using either Huffman or
ARL coding as described in the next section.
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If SDQ is used, then we apply the optimization solution from Section 3.4 (specifically,
we apply the solution corresponding to either Huffman or ARL coding, depending on which
entropy coding method is being used by our image coder), again with nC set to 2. This
process will produce not only the quantization tables Q0 and Q1, but it will also produce
all of the quantized DCT coefficients across all blocks and all quantization contexts. Since
quantization has already been completed, we can proceed directly to entropy coding.

4.4 Entropy Coding

Entropy coding is the process whereby quantized DCT coefficients are losslessly compressed
to form the final bit stream. In our image coder, we employ two different kinds of en-
tropy coding, namely Huffman coding and adaptive runlength (ARL) coding. In both the
Huffman and ARL cases, compression is achieved by exploiting the empirical statistics of
the quantized DCT coefficients, which depend directly on the quantization method used.
Given that blocks may be quantized differently from one another under CASQ depending
on their respective quantization contexts, then it makes sense to perform entropy coding
conditioned on those quantization contexts as well.

In this section, we describe entropy coding for our image coder under CASQ. We base
our methods on those already been described in detail in Section 2.1; since the core details
of these methods have already been discussed, we will focus only on how they are different
under CASQ.

4.4.1 Context-Dependent Huffman Coding

Huffman coding for JPEG was already described in Section 2.1.2. To apply JPEG-style
Huffman coding to our image coder under CASQ, we define separate AC Huffman tables
H0 and H1 corresponding to the homogeneous and non-homogeneous regions, respectively;
note that this was alluded to in our discussion of CASQ in the SDQ setting in Section 3.2.2.
Since there is a separate step size defined for the DC frequency position for each context,
we also define separate DC Huffman tables HDC

c . All Huffman tables for all contexts are
transmitted to the decoder as side information in the same manner as JPEG.

In our image coder, all blocks corresponding to the cth quantization context are com-
pressed using the exact same run-length and Huffman coding method from JPEG, where
the DC Huffman table HDC

c and the AC Huffman table Hc are used. Other than selecting
which tables to use based on c, the encoding process is identical to that of JPEG.
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To actually determine Hc and HDC
c for the two quantization contexts, we use the

customized method from [2] whereby the tables are optimized based on the statistics of the
quantized DCT coefficients. To build Hc, the statistics from the quantized AC coefficients
corresponding to context c only are used. Similarly, to build HDC

c the statistics from the
quantized DC coefficients corresponding to context c only are used. This is done for each
of the two quantization contexts.

4.4.2 Context-Dependent ARL Coding

ARL coding for JPEG was already described in Section 2.1.3. In ARL coding, the empirical
statistics of the quantized DCT coefficients (or rather, of the run-level values generated from
the quantized coefficients) are gathered by adaptively updating the probability distribution
models contained inside the arithmetic coder. These updates are performed once for every
bit coming into the encoder. The coder keeps track of a separate model for each of the
32 arithmetic coding contexts defined by ARL. Hence, if we wish to exploit the differing
statistics of quantized coefficients between different quantization contexts, then we must
define separate arithmetic coding contexts as well.

To this end, we start with the most obvious choice: simply duplicate the set of 32
arithmetic coding context models used by ARL, so that there is one set of 32 models
corresponding to the homogeneous region and another set of 32 models corresponding to
the non-homogeneous region. Then, if we are encoding a run-level value coming from a
block that corresponds to the homogeneous region, we pick the arithmetic coding context
model from the set of 32 models associated with the homogeneous region. Similarly, if we
are encoding a value from the non-homogeneous region, then we pick the model from the
set of 32 models associated with the non-homogeneous region. Within each of these sets,
we would use the same process as ARL described in Section 2.1.3 to determine which of
the 32 arithmetic coding contexts to use.

However, recall that some of the models used in ARL depend on properties of neigh-
bouring blocks. Specifically, to code whether or not each DC residue value is zero, one of
three models is used depending on whether the upper and/or the left neighbouring blocks
also have zero residue. Since these blocks may be associated with different quantization
contexts from the current block, then these three models may not be sufficient. For exam-
ple, if the current block is from the homogeneous region and one of the neighbouring blocks
is from the non-homogeneous region, then it is more likely that the DC residue value for
the current block will be non-zero since the DC coefficients may have been quantized using
different step sizes.
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We therefore propose a further modification to the context models defined under ARL.
Denote a as a binary flag indicating whether or not either of the upper or left neighbouring
blocks is associated with a quantization context that is different from the current block
(a = 0 if both neighbouring blocks have the same quantization context as the current
block and a = 1 otherwise). Recall from Section 2.1.3 that z is defined as the number
of neighbouring blocks which contain non-zero quantized DC residue values. Then, we
modify the aforementioned DC context models as follows:

(z = 0 and a = 0)(z = 1 and a = 0)(z = 2 and a = 0)

(z = 0 and a = 1)(z = 1 and a = 1)(z = 2 and a = 1) (4.8)

This brings the total number of context models from 32 to 35 for each of the two quanti-
zation contexts.

Similarly, we also propose a modification to the three context models used to code the
first bit of the first run value. Recall that f is defined as the number of neighbouring
blocks which contain non-zero quantized AC coefficients. We modify those three models
as follows:

(f = 0 and a = 0)(f = 1 and a = 0)(f = 2 and a = 0)

(f = 0 and a = 1)(f = 1 and a = 1)(f = 2 and a = 1) (4.9)

Thus, the total number of context models for each of the two quantization contexts is
actually 38. Since there are two quantization contexts, then the grand total number of
context models over all quantization contexts is 76.

4.4.3 JPEG Compatibility

It should be noted that our image coder in Huffman mode is not directly compatible with
a baseline JPEG coder. However, it may be implemented instead as a simple front-end to
any existing baseline JPEG coder. The encoding process of such a front-end may be as
follows:

1. Perform the DCT and context selection
2. Apply CASQ to obtain the optimal Q0 and Q1

3. Assemble the blocks from the homogeneous region into an image consisting of a single
row (or column) of blocks, in some predefined order

4. Use any baseline JPEG encoder to compress this single-row (or single-column) ho-
mogeneous image using Q0 and a customized Huffman table
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5. Transmit the resulting bit stream, which is JPEG-compatible
6. Repeat steps 3 to 5 for the non-homogeneous region
7. Compress and transmit the outlier map

A decoder front-end would receive two JPEG-compatible bit streams (one for each
region) in addition to the compressed outlier map. Any baseline JPEG decoder can de-
compress the two image streams, which may then be reassembled into the original image
using the outlier map.

4.5 Experimental Results

4.5.1 RD Performance

We tested our image coder over the following input parameters:

• Input image
• Target bit rate
• Quantization mode (HDQ or SDQ)
• Entropy mode (Huffman or ARL)

For the input image, we tested seven standard test images: 512×512 Lena, 512×512
Airplane (F16), 512×512 Goldhill, 2048×2560 Bike, 2048×2560 Woman, 1280×720 Stock-
holm (first frame) and 1920×1080 Kimono (first frame). For the bit rates, we tested eight
different rates spaced uniformly from 0.25 bpp (bits per pixel) to 2 bpp. Both of the HDQ
and SDQ modes were tested. Both Huffman coding and ARL coding were tested.

For each input image, target bit rate, quantization mode and entropy mode, the fol-
lowing test was performed. The input image was compressed to the target bit rate using
our image coder, where either HDQ or SDQ was used for quantization and either Huff-
man or ARL coding was used for entropy coding. The configurations corresponding to
the quantization mode and the entropy mode are abbreviated as “Huffman-HDQ-CASQ”,
“Huffman-SDQ-CASQ”, “ARL-HDQ-CASQ” and “ARL-SDQ-CASQ”. The compressed
image was then reconstructed and the distortion between the reconstructed image and the
original image was measured. We used the peak signal-to-noise ratio (PSNR) distortion
measure, in units of dB (decibels). For all tests, the overhead incurred from transmitting
quantization tables, Huffman tables and the outlier map are included in the reported bit
rate.

In order to judge the RD performance of our image coder, we compared our RD results
from each of the aforementioned tests to the RD results from performing the exact same
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tests on some benchmark image coders instead. We selected three benchmarks in the HDQ
setting and one benchmark in the SDQ setting. For HDQ, the first benchmark was baseline
JPEG coding where the sample quantization table from [2] was scaled by some constant to
achieve rate control. The configurations for this benchmark are abbreviated as “Huffman-
HDQ-JPEG” and “ARL-HDQ-JPEG”. The second benchmark, representing the current
state-of-the-art HDQ method, was baseline JPEG coding using the OptD method from [7]
for quantization table selection. The configurations for this benchmark are abbreviated
as “Huffman-HDQ-OptD” and “ARL-HDQ-OptD”. The third benchmark was JPEG2000
using the JasPer [15] codec with default settings (6 levels of DWT). In the Huffman case,
the comparisons between our image coder and the three HDQ benchmarks are abbreviated
as “H1”, “H2” and “H3”, respectively. In the ARL case, these comparisons are abbreviated
as “A1”, “A2” and “A3”. For SDQ, the benchmark was the baseline JPEG SDQ method
from [6] in the Huffman case and from [8] in the ARL case. The configurations for this
benchmark are abbreviated as “Huffman-SDQ” and “ARL-SDQ”. In the Huffman case,
the comparison between our image coder and the SDQ benchmark is abbreviated as “H4”.
In the ARL case, this comparison is abbreviated as “A4”.

The average PSNR gains resulting from comparing our image coder to the benchmarks
are summarized in Table 4.1. An average positive gain is reported for nearly every image
under test against every benchmark, except for JPEG2000 in the Huffman case. In the
cases of Goldhill H4 and Kimono H4, a very slight loss is reported. These two particular
images are much more detailed from the other ones and do not benefit as much from CASQ,
although CASQ still performs at least as well as the benchmarks regardless; the observed
losses can be attributed to the overhead incurred in transmitting the outlier map.

The average overall gains are very promising: almost 3 dB PSNR gain is observed in
the case of Woman using ARL coding when compared to baseline JPEG with no quantizer
optimization. The average gain across all images tested in this configuration is also very
significant at 2.00 dB. When ARL coding is used, we tend to see higher gains compared to
when Huffman coding is used. Even for the more “difficult” images, CASQ still performs at
least as well as the previous state-of-the-art quantizer optimization found in [6–8]. These
gains still have the potential to be exploited even further if we consider that more advanced
context selection techniques than the one proposed in this thesis are possible.

The results further show that our image coder is comparable to JPEG2000 in RD
performance when Huffman coding is used, and it outperforms JPEG2000 by over 0.6 dB
PSNR on average when ARL coding is used.

Detailed results for each test in the form of RD tables can be found in Section A.1
of Appendix A. Sample RD curves for Lena, Kimono and Woman (corresponding to the
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Table 4.1: Average PSNR gain (in dB) summary

Huffman ARL JPEG2000
Image H1 H2 H4 A1 A2 A4 H3 A3
Lena 1.63 0.17 0.06 1.89 0.30 0.14 0.053 0.67
Airplane 1.94 0.35 0.14 2.24 0.44 0.25 -0.039 0.58
Goldhill 1.50 0.02 -0.008 1.65 0.05 0.004 -0.10 0.48
Bike 2.34 0.47 0.23 2.58 0.54 0.32 -0.52 0.00058
Woman 2.63 0.53 0.19 2.89 0.54 0.23 -0.021 0.67
Stockholm 1.41 0.05 0.02 1.58 0.09 0.06 0.062 0.57
Kimono 1.03 0.003 -0.009 1.19 0.04 0.03 0.79 1.31
Average 1.78 0.23 0.09 2.00 0.28 0.15 0.032 0.61

average, worst and best cases, respectively) coded using HDQ and Huffman modes are
shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6, respectively.
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Figure 4.4: RD curves for Lena using Huffman coding and HDQ
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Figure 4.5: RD curves for Kimono using Huffman coding and HDQ
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Figure 4.6: RD curves for Woman using Huffman coding and HDQ
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To get an idea of the subjective performance of our image coder, a comparison is shown
in Figs. 4.7(a)-(d). In Figs. 4.7(b)-(d), the Lena image was compressed to a bit rate of
0.25 bpp using different quantization methods and a portion of the resulting reconstructed
image is shown. The original image is shown in Fig. 4.7(a) for reference. In Fig. 4.7(b), the
standard JPEG table (scaled by a constant to achieve rate control) was used. We observe
that many distortion artifacts are present, especially along the edges and in the eyes.
In Fig. 4.7(c), the OptD method was used to optimize the quantization table. Although
much of the artifact distortion has been mitigated, it is still difficult to discern some details,
especially in and around the eyes. In Fig. 4.7(d), CASQ optimization was applied. The
irises appear to be more defined and the eyelashes are much more clearly visible compared
to the other versions. Parts of the hat also appear to be more clear.

(a) Original (b) Standard JPEG table; PSNR = 31.61 dB

(c) OptD; PSNR = 31.84 dB (d) CASQ; PSNR = 32.23 dB

Figure 4.7: Subjective comparison of Lena at 0.25 bpp between different quantization
methods

Outlier Map

All of the above numbers and figures include the bit rate overhead incurred from compress-
ing the outlier map. To help get an idea of how significant the outlier map is in the RD
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sense, we show the bit rates of the compressed outlier maps for each image in Table 4.2.
Note that since the outlier map is compressed losslessly and depends only on context selec-
tion, it is not affected by the target bit rate of the image; hence, the relative contribution
of the outlier map to the overall bit rate becomes smaller as the target bit rate increases.
This is shown in Figure 4.8 for Lena.

Table 4.2: Compressed outlier map bit rates

Image Rate (bpp)
Lena 0.00769

Airplane 0.00769
Goldhill 0.00763

Bike 0.00785
Woman 0.00482

Stockholm 0.00874
Kimono 0.00882
Average 0.00761
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Figure 4.8: Relative outlier map rate contribution for Lena
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4.5.2 Computational Performance

One of the largest contributors to additional complexity incurred by our image coder
(when compared to baseline standard JPEG coding) is LPTCM parameter estimation,
which is necessary for the online classifier. Quantizer optimization and compressing the
outlier map also add some computational overhead to our image coder; overhead which
is absent when using a baseline JPEG coder with the sample quantization table. These
processes encapsulate nearly all of the additional computational complexity incurred by
our image coder when compared to baseline JPEG coding without quantizer optimization.
The DCT process is identical to JPEG and the complexity of our entropy coders has not
changed either. We are only interested in the additional complexity incurred from our image
coder: to this end, we focus on the computational complexity of the LPTCM estimation,
quantizer optimization and compressing the outlier map. Note that the first two processes
are performed only at the encoder side: the additional complexity is completely absent at
the decoder side. The complexity from compressing (and decompressing at the decoder
side) the outlier map is very low, as we will see shortly.

For LPTCM parameter estimation, we measured the time taken to estimate the LPTCM
parameters across all 63 AC frequency positions using the algorithms presented in [13].
Estimation using these algorithms requires the input data to be sorted; we have included
the sorting time in our measurements, as it in fact contributes a majority to the overall
computation time.

For HDQ quantizer optimization, we measured the time taken to gather the DCT
statistics and the time taken to compute the quantization table according to Algorithm 1.
DT was arbitrarily chosen to be 10 and qmax was set to 46. For SDQ quantizer optimization,
we measured the time taken to perform the iterative optimization algorithm described in
Section 3.4.1 in the case of Huffman coding and in Section 3.4.2 in the case of ARL coding.
A convergence criterion value of ε = 0.1 was used for SDQ. We do not include the time
used for initial quantization table selection, which itself (in our image coder) amounts to
HDQ optimization anyway.

For compressing the outlier map m(i, j), we measured the time taken to compress
m(i, j), 0 ≤ i < Nrow/8, 0 ≤ j < Ncol/8, into a compressed bit stream as described in
Section 4.2.2, as well as the time taken to subsequently decompress it.

For the sake of comparison between our HDQ quantizer optimization algorithm (CASQ
with two contexts) and OptD from [7], we have also measured the time taken to run
Algorithm 1 from [7] on the same input images. We found that the time difference is
negligible: our quantizer optimization over two contexts (from Section 3.3) is just as fast
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as the original OptD algorithm from [7]. Likewise, for comparison in the SDQ setting,
we have also measured the time taken to perform the iterative optimization algorithm
described in [6] in the Huffman case and [8] in the ARL case; our method runs in roughly
the same time as the benchmarks.

All tests were performed on an Intel i7-4790 processor at 3.60 GHz, with multi-threading
additionally enabled for LPTCM parameter estimation and SDQ block-wise run-size se-
quence optimization (step 2 of the iterative SDQ algorithms in Section 3.4.1 and Sec-
tion 3.4.2). Two images were tested: Lena (512×512) and Woman (2048×2560; the largest
in our test set). The tests for LPTCM estimation, HDQ optimization and compressing the
outlier map were repeated 1000 times and the average time taken to complete each process
was recorded. For SDQ optimization, the tests were repeated 10 times and the average
time was recorded.

The average computation times are summarized in Table 4.3. Test results correspond-
ing to the proposed image coder are in bold; test results corresponding to benchmarks for
comparison are in regular type. Even for the largest image in our test set, LPTCM param-
eter estimation only takes 110 ms on average; subsequent HDQ optimization under only
takes an additional 14 ms on average. These times are very promising and demonstrate
that CASQ can easily be made into a practical system.

Table 4.3: Computational performance summary

Image Lena Woman

# of blocks in image 4096 81,920
LPTCM estimation (ms) 39 108
Compressing and decompressing m(i, j) 0.5 8.8
HDQ opt. from [7] (ms) 1.2 13.5
HDQ opt. proposed, nC = 2 (ms) 1.5 13.7
SDQ opt. from [6] (Huffman) (ms) 175 3900
SDQ opt. proposed (Huffman), nC = 2 (ms) 208 3500
SDQ opt. from [8] (ARL) (ms) 220 3650
SDQ opt. proposed (ARL), nC = 2 (ms) 201 3420
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4.6 Summary

In this chapter, we proposed a new, practical image coder based on the CASQ framework
developed in Chapter 3. We discussed an overview of the coder and then discussed each
component of the coder individually. We proposed an efficient, effective online classifier
for the purpose of quantization context selection. We applied the quantizer optimization
solutions from Chapter 3. We then proposed some modifications to JPEG’s Huffman coder
and the ARL coder from [1] for compatibility with CASQ, thus completing the description
of our image coder. Finally, we discussed some of the experiments that we ran to confirm
both the superior RD performance and practical computational performance of our image
coder.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we discussed the concept of optimal quantizer design in JPEG. We pointed
out a serious shortcoming of JPEG, in that it lacks local adaptivity even when optimal
quantizer design is achieved. We discussed several previous attempts at optimal quantizer
design in both the HDQ and SDQ settings for JPEG, including current state-of-the-art
methods. Motivated by this shortcoming of JPEG, we proposed a new kind of image quan-
tization framework called context adaptive space quantization (CASQ), which attempts to
address this shortcoming by quantizing blocks of an image conditioned on a quantization
context. We subsequently formulated and solved the problem of optimal quantizer design
in both the HDQ and SDQ settings under CASQ (based heavily on OptD theory from [7]),
in addition to providing efficient algorithms for our solutions based on previous works.
Finally, we proposed a practical image coder based on CASQ, which was shown to achieve
superior RD performance compared to the current state-of-the art methods with very little
additional computational complexity.

5.2 Applications and Future Work

5.2.1 Video Coding

While Chapter 4 was entirely dedicated to image coding, it was based on the framework
developed in Chapter 3 which does not, in fact, have any inherent limitations to still image-
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only coding. It is believed that CASQ could be applied quite readily to video coding,
especially intra-frame coding (which is essentially still image coding). It could also be
applied to the residue images of inter-frame coding, where – depending on the goodness of
frame prediction, motion estimation, etc. – there are typically very large regions of little to
no detail. The main issues with applying CASQ to video coding are related to the syntax
of the quantizers, which makes it very non-obvious how the sources {Xi} (Section 3.3)
should be chosen. Recent video coders, such as HEVC, allow some flexibility in quantizer
design that can be taken advantage of in CASQ. However, the overhead of defining custom
quantizers can be significant depending on how the random sources {Xi} are chosen. The
potential applications of CASQ to video coding are currently being investigated.

5.2.2 Optimal Context Selection

Context selection is crucial to the performance of CASQ. There are two free parameters:
the number of contexts nC and the selection of contexts for each block. Due to the overhead
incurred from having many contexts defined, the best choice of nC is most likely a small
number. Thus, the more important free parameter here is context selection itself.

Suppose that context selection was performed at random, where two contexts are de-
fined. Then there is no reason to believe that any two blocks associated with the same
context will bear any resemblance to each other in any way. But the idea behind CASQ is
to group together blocks which have similar amounts of detail, because blocks with little
detail benefit more in the RD sense from quantizers with coarse step sizes; on the other
hand, blocks with lots of detail benefit more in the RD sense from quantizers with fine
step sizes. Therefore, randomized context selection will most likely perform poorly.

This was the motivation behind our LPTCM-based classifier from Chapter 4: it in-
corporates image understanding, in some sense, for the purpose of grouping blocks which
contribute significantly to the perceptual details of the image. It turns out that this works
rather well in our image coder, yielding significant gains.

However, our classifier is also greedy and has no feedback; that is, it has no idea if the
classification it produces is actually going to perform well on an image-by-image basis. For
this reason, we consider optimal context selection as a potential future work.

One way to approach this problem would be to add a simple feedback loop to the
system. Since CASQ optimization runs quite fast in practice, then a few dozen iterations
of a feedback loop could be performed in practice as well. This feedback loop would
involve some kind of “goodness” measure of the classifier based on the resulting rate and
distortion after quantization (and possibly entropy coding for higher accuracy, since it runs
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quite fast as well). Then, based on this goodness measure, an update could be applied
to the classifier in hopes that it will incrementally improve the RD performance upon a
subsequent iteration of running the image coder.

Another way to approach this problem is to formulate it as a constrained joint opti-
mization problem over all quantizers and classifiers:

min
L,Q,Q′Q

R(L,Q,Q′Q) s.t. D(L,Q,Q′Q) ≤ DT (5.1)

where the classifier is denoted by L, the quantization table is denoted by Q, the map-
ping between transform coefficient sequences and quantized index sequences is denoted by
Q′Q, the bit rate resulting from compressing the image using L, Q and Q′Q is denoted by
R(L,Q,Q′Q), the corresponding distortion is denoted by D(L,Q,Q′Q), and the distortion
budget is denoted by DT . A brute-force solution would have exponential complexity with
the size of the image and would not be tractable. It would be promising to investigate
solutions to this problem as a future work.

Human Visual System

Ultimately, there is no one “correct” way to perform context selection. In the above
discussion, we defined the “best” context selection as the one which performs the best
in the RD sense. An alternative approach to optimizing context selection would be to
incorporate the human visual system (HVS), where the “best” context selection is instead
the one which results in an image that is the most pleasing to the human eye. One way to
do this is to use an HVS-based distortion measure for D(·) in the minimization problem
from earlier; for example, the structural similarity (SSIM) index measure [16]. Another
method that may be applicable to context selection is the use of visual saliency modelling,
which has the ability to identify parts of an image that draw the most attention; it may be
argued that such parts of the image should be placed into the non-homogeneous region for
CASQ, for example. It would be interesting to investigate the incorporation of the HVS
as a future work, considering that the HVS plays a very important role in how we perceive
imagery in all forms.

5.2.3 Wavelet Compression

JPEG is a block-based frequency transform coder. An alternative method to this kind
of compression is wavelet compression, where an image is recursively decomposed into so-
called “sub-bands” using the discrete wavelet transform (DWT). Typically, an image is
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filtered in both the horizontal and vertical directions using both low-pass and high-pass
filters, resulting in four sub-bands; the sub-band corresponding to the low-pass filter in
both directions may be recursively decomposed to an arbitrary number of levels. This is
the type of compression used in JPEG2000.

CASQ may be applied to wavelet compression, as long as uniform quantization is used
and as long as there exists a mechanism for quantizing different regions of an image using
different step sizes. The performance of CASQ when applied to wavelet compression,
however, depends on how well the distributions of coefficients associated with the random
sources {Xi} in CASQ can be modelled. For sub-bands where a high-pass filter is used,
the coefficients tend to be distributed similar to the case of AC DCT coefficients; only
the coefficients from low-pass sub-bands need special consideration. If more DWT levels
are applied, then exponentially fewer coefficients will belong to the low-pass sub-band,
potentially allowing for even better modelling overall compared to DCT coding – where,
in the case of JPEG, DC coefficients always comprise 1/64th of the total coefficients.
Therefore, from a distribution modelling standpoint, we expect CASQ to apply reasonably
well to wavelet compression.

In JPEG2000, however, only one quantization step size may be specified for each sub-
band, and all coefficients within that sub-band must be quantized using that step size;
hence, it is not really possible to provide the local separation of coefficients into random
sources {Xi} that CASQ requires. In fact, the RD performance trade-off in JPEG2000
comes primarily from entropy coding rather than from quantization. Hence, CASQ would
probably not apply very well to JPEG2000 due to its coding syntax.

5.2.4 Entropy Coding

In Chapter 4, we proposed a practical image coding system based on CASQ which in-
volved simple modifications to standard JPEG Huffman coding and ARL coding. We
know from [1] that ARL outperforms Huffman coding by a significant margin. We also
observed that the gain margin achieved by our coder was higher with ARL coding than
with Huffman coding; thus, it may seem that having a more efficient entropy coder than
ARL may improve our gain margins even further. Recall from (3.20) that the accuracy of
OptD from [7] (and, by extension, CASQ) depends on the efficiency of the entropy coder.
Therefore, it is reasonably believed that investigation into better entropy coders would be
valuable as a future work.

70



Appendix A

Detailed Experimental Results

A.1 RD Tables

Table A.1: PSNR Performance using Huffman Coding for Lena

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 31.61 0.249 31.84 0.250 32.23 0.251 32.34 0.251 32.45 0.250 33.22
0.498 34.82 0.500 35.50 0.500 35.76 0.501 35.96 0.501 36.01 0.500 36.31
0.750 36.59 0.750 37.72 0.750 37.86 0.754 38.08 0.751 38.09 0.748 38.11
1.044 37.98 1.000 39.27 1.000 39.39 1.000 39.61 1.000 39.64 0.999 39.30
1.249 38.90 1.251 40.52 1.250 40.66 1.250 40.89 1.249 40.93 1.244 40.35
1.504 39.81 1.504 41.68 1.501 41.79 1.500 42.03 1.500 42.10 1.487 41.26
1.749 40.66 1.754 42.76 1.750 42.89 1.750 43.15 1.750 43.24 1.738 42.35
1.968 41.29 1.995 43.82 2.000 44.04 2.000 44.22 2.000 44.37 1.995 43.37
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Table A.2: PSNR Performance using Huffman Coding for Airplane

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 30.41 0.246 30.55 0.250 31.08 0.250 31.31 0.251 31.44 0.249 31.96
0.500 34.32 0.500 34.95 0.500 35.42 0.501 35.51 0.501 35.73 0.500 35.99
0.753 36.59 0.750 37.66 0.750 38.09 0.749 38.25 0.751 38.41 0.747 38.52
0.994 38.25 1.000 39.84 1.000 40.18 1.001 40.32 1.000 40.43 0.997 40.25
1.269 39.73 1.250 41.56 1.250 41.81 1.250 41.99 1.250 42.08 1.249 41.67
1.505 40.79 1.502 42.98 1.500 43.27 1.501 43.45 1.499 43.55 1.500 43.04
1.735 41.92 1.747 44.28 1.749 44.59 1.751 44.75 1.750 44.89 1.746 44.12
2.002 42.86 2.000 45.48 2.000 45.82 1.999 45.96 2.001 46.15 1.998 44.91

Table A.3: PSNR Performance using Huffman Coding for Goldhill

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 29.24 0.250 29.68 0.250 29.67 0.251 29.96 0.251 29.91 0.248 30.07
0.498 31.65 0.500 32.28 0.500 32.35 0.501 32.64 0.501 32.63 0.499 32.70
0.750 33.19 0.750 34.22 0.750 34.25 0.751 34.55 0.750 34.54 0.747 34.54
1.011 34.51 0.999 35.84 1.000 35.86 1.001 36.12 1.001 36.11 0.989 35.87
1.249 35.56 1.250 37.23 1.250 37.25 1.251 37.54 1.251 37.52 1.250 37.39
1.500 36.54 1.500 38.53 1.500 38.53 1.501 38.84 1.500 38.84 1.498 38.46
1.762 37.56 1.752 39.72 1.750 39.72 1.750 40.07 1.751 40.08 1.749 39.55
2.071 38.54 2.000 40.90 1.998 40.93 2.000 41.29 2.000 41.28 1.998 40.67
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Table A.4: PSNR Performance using Huffman Coding for Bike

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 27.21 0.250 27.17 0.250 27.85 0.250 28.07 0.250 28.20 0.250 29.05
0.505 30.47 0.500 31.25 0.500 31.96 0.501 32.14 0.501 32.41 0.500 32.93
0.750 32.64 0.750 34.04 0.750 34.54 0.751 34.80 0.751 35.07 0.750 35.38
0.998 34.37 1.000 36.19 1.000 36.69 1.001 36.89 1.001 37.16 1.000 37.32
1.303 36.07 1.250 38.07 1.250 38.46 1.251 38.68 1.253 38.89 1.250 38.96
1.500 37.25 1.499 39.68 1.500 40.09 1.500 40.26 1.500 40.42 1.500 40.27
1.750 38.43 1.749 41.21 1.750 41.47 1.750 41.63 1.750 41.84 1.750 41.45
2.000 39.61 2.000 42.47 2.000 42.79 1.999 42.93 2.000 43.16 2.000 42.77

Table A.5: PSNR Performance using Huffman Coding for Woman

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 27.99 0.250 28.28 0.250 28.93 0.251 29.08 0.252 29.30 0.250 29.27
0.500 30.89 0.500 32.02 0.500 32.61 0.504 32.76 0.505 33.01 0.500 32.85
0.773 33.07 0.750 34.75 0.750 35.23 0.753 35.41 0.755 35.66 0.750 35.45
1.003 34.62 1.000 36.90 1.000 37.38 1.005 37.58 1.004 37.73 1.000 37.52
1.273 36.12 1.250 38.62 1.250 39.09 1.254 39.28 1.252 39.42 1.250 39.15
1.509 37.48 1.498 40.02 1.500 40.55 1.501 40.72 1.502 40.90 1.500 40.46
1.745 38.68 1.749 41.34 1.750 41.91 1.754 42.02 1.755 42.22 1.750 41.55
2.000 39.88 2.000 42.58 1.999 43.15 2.001 43.19 2.003 43.43 2.000 42.76
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Table A.6: PSNR Performance using Huffman Coding for Stockholm

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 29.32 0.250 29.65 0.250 29.72 0.249 30.00 0.251 30.05 0.249 30.15
0.500 32.00 0.501 32.69 0.500 32.73 0.505 33.00 0.504 33.01 0.499 32.94
0.751 33.63 0.750 34.62 0.750 34.65 0.755 34.87 0.755 34.88 0.750 34.72
0.993 34.81 1.000 36.05 1.000 36.10 1.004 36.33 1.005 36.34 1.000 36.02
1.303 36.00 1.251 37.30 1.250 37.34 1.253 37.60 1.253 37.62 1.250 37.35
1.500 36.75 1.500 38.49 1.500 38.55 1.504 38.78 1.505 38.82 1.500 38.27
1.749 37.61 1.751 39.64 1.750 39.70 1.752 39.93 1.754 39.97 1.746 39.30
2.041 38.41 2.001 40.80 1.999 40.87 2.001 41.08 2.005 41.13 2.000 40.49

Table A.7: PSNR Performance using Huffman Coding for Kimono

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 39.71 0.250 39.98 0.250 40.12 0.254 40.35 0.255 40.36 0.250 41.21
0.504 42.80 0.498 43.05 0.496 43.04 0.503 43.20 0.505 43.19 0.499 42.91
0.746 43.94 0.745 44.29 0.753 44.31 0.755 44.48 0.752 44.45 0.750 43.78
1.032 44.76 1.001 45.33 0.997 45.30 1.002 45.54 1.004 45.54 1.000 44.43
1.228 45.24 1.252 46.30 1.245 46.26 1.247 46.56 1.250 46.57 1.248 45.08
1.456 45.71 1.507 47.39 1.499 47.34 1.502 47.64 1.502 47.63 1.498 45.77
1.747 46.29 1.758 48.41 1.740 48.36 1.755 48.61 1.751 48.60 1.749 47.28
1.994 47.03 2.010 49.31 2.003 49.26 1.999 49.72 2.004 49.73 1.998 48.08
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Table A.8: PSNR Performance using ARL Coding for Lena

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 32.19 0.250 32.52 0.250 32.89 0.250 32.88 0.250 33.05 0.250 33.22
0.497 35.27 0.500 36.02 0.500 36.36 0.500 36.39 0.500 36.52 0.500 36.31
0.752 36.96 0.750 38.17 0.750 38.42 0.750 38.56 0.750 38.65 0.748 38.11
1.011 38.23 1.000 39.70 1.000 39.93 1.000 40.10 1.000 40.17 0.999 39.30
1.254 39.22 1.250 40.97 1.250 41.24 1.250 41.37 1.250 41.48 1.244 40.35
1.555 40.22 1.495 42.09 1.501 42.44 1.500 42.49 1.500 42.68 1.487 41.26
1.748 40.92 1.746 43.22 1.749 43.56 1.750 43.66 1.750 43.84 1.738 42.35
1.996 41.65 1.998 44.43 1.996 44.75 2.000 44.82 2.000 45.14 1.995 43.37

Table A.9: PSNR Performance using ARL Coding for Airplane

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 31.00 0.250 31.40 0.250 31.90 0.250 31.84 0.250 32.03 0.249 31.96
0.499 34.85 0.500 35.59 0.500 36.09 0.500 36.02 0.500 36.27 0.500 35.99
0.749 36.98 0.751 38.41 0.750 38.78 0.750 38.76 0.750 39.00 0.747 38.52
1.028 38.68 1.003 40.36 1.000 40.77 1.000 40.79 1.000 41.00 0.997 40.25
1.255 39.90 1.249 42.00 1.251 42.41 1.250 42.44 1.250 42.62 1.249 41.67
1.506 41.11 1.499 43.43 1.499 43.83 1.500 43.87 1.500 44.09 1.500 43.04
1.754 42.11 1.751 44.70 1.751 45.13 1.750 45.13 1.750 45.47 1.746 44.12
1.971 43.01 2.001 45.97 2.000 46.48 2.000 46.36 2.000 46.75 1.998 44.91
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Table A.10: PSNR Performance using ARL Coding for Goldhill

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 29.48 0.250 29.94 0.250 30.05 0.250 30.16 0.250 30.17 0.248 30.07
0.500 32.02 0.500 32.67 0.500 32.71 0.500 32.89 0.500 32.89 0.499 32.70
0.754 33.63 0.750 34.68 0.750 34.72 0.750 34.91 0.750 34.90 0.747 34.54
0.992 34.96 1.000 36.34 1.000 36.39 1.000 36.61 1.000 36.60 0.989 35.87
1.251 36.08 1.250 37.84 1.250 37.87 1.250 38.12 1.250 38.12 1.250 37.39
1.505 37.05 1.500 39.20 1.500 39.24 1.500 39.54 1.500 39.55 1.498 38.46
1.758 37.93 1.751 40.50 1.748 40.53 1.750 40.88 1.750 40.90 1.749 39.55
1.983 38.81 2.001 41.75 2.000 41.80 2.002 42.20 2.000 42.21 1.998 40.67

Table A.11: PSNR Performance using ARL Coding for Bike

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 27.64 0.250 27.66 0.250 28.47 0.250 28.67 0.250 28.70 0.250 29.05
0.501 30.85 0.500 31.78 0.500 32.47 0.500 32.53 0.500 32.84 0.500 32.93
0.780 33.14 0.750 34.53 0.750 35.09 0.750 35.06 0.750 35.47 0.750 35.38
1.000 34.64 1.000 36.67 1.000 37.18 1.000 37.25 1.000 37.52 1.000 37.32
1.262 36.07 1.249 38.53 1.250 38.95 1.250 39.06 1.250 39.34 1.250 38.96
1.498 37.42 1.500 40.14 1.501 40.57 1.500 40.66 1.500 40.95 1.500 40.27
1.750 38.65 1.749 41.55 1.750 42.03 1.750 42.05 1.750 42.44 1.750 41.45
1.992 39.77 1.999 42.78 1.999 43.36 2.000 43.32 2.000 43.83 2.000 42.77
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Table A.12: PSNR Performance using ARL Coding for Woman

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 28.45 0.250 29.06 0.250 29.51 0.250 29.67 0.250 29.75 0.250 29.27
0.504 31.45 0.500 32.73 0.500 33.22 0.500 33.30 0.500 33.55 0.500 32.85
0.750 33.42 0.750 35.54 0.750 36.07 0.750 36.15 0.750 36.34 0.750 35.45
1.002 35.06 1.000 37.62 1.000 38.14 1.000 38.30 1.000 38.47 1.000 37.52
1.257 36.52 1.250 39.24 1.250 39.80 1.250 39.98 1.250 40.20 1.250 39.15
1.500 37.80 1.500 40.69 1.499 41.20 1.500 41.34 1.500 41.56 1.500 40.46
1.766 39.07 1.752 41.96 1.750 42.57 1.750 42.56 1.750 42.87 1.750 41.55
1.995 40.27 1.998 43.17 1.998 43.84 2.000 43.71 2.000 44.13 2.000 42.76

Table A.13: PSNR Performance using ARL Coding for Stockholm

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.250 29.62 0.250 30.03 0.250 30.16 0.250 30.33 0.250 30.34 0.249 30.15
0.497 32.35 0.500 33.05 0.500 33.13 0.500 33.34 0.500 33.35 0.499 32.94
0.753 34.02 0.750 34.96 0.750 35.04 0.750 35.26 0.750 35.28 0.750 34.72
1.002 35.19 1.001 36.43 1.000 36.50 1.007 36.76 1.000 36.79 1.000 36.02
1.257 36.22 1.251 37.76 1.250 37.84 1.250 38.07 1.250 38.11 1.250 37.35
1.509 37.09 1.502 39.02 1.501 39.11 1.500 39.31 1.500 39.38 1.500 38.27
1.764 37.92 1.748 40.28 1.749 40.40 1.750 40.53 1.750 40.64 1.746 39.30
1.989 38.77 2.000 41.54 1.996 41.66 2.000 41.79 2.000 41.92 2.000 40.49
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Table A.14: PSNR Performance using ARL Coding for Kimono

HDQ-JPEG HDQ-OptD
HDQ-CASQ
(proposed)

SDQ
SDQ-CASQ
(proposed)

JPEG2000

Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

0.251 40.23 0.249 40.42 0.250 40.58 0.250 40.63 0.250 40.71 0.250 41.21
0.498 43.12 0.503 43.37 0.501 43.40 0.500 43.49 0.500 43.50 0.499 42.91
0.758 44.29 0.753 44.65 0.750 44.66 0.750 44.78 0.750 44.79 0.750 43.78
0.966 44.92 1.003 45.79 1.001 45.81 1.000 45.91 1.000 45.93 1.000 44.43
1.183 45.42 1.253 46.83 1.259 46.86 1.250 47.05 1.250 47.07 1.248 45.08
1.560 46.17 1.497 47.96 1.507 48.04 1.500 48.17 1.500 48.20 1.498 45.77
1.740 46.77 1.753 48.97 1.760 49.03 1.750 49.21 1.750 49.26 1.749 47.28
1.989 47.47 2.005 50.17 1.992 50.16 2.000 50.47 2.000 50.53 1.998 48.08
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