
Temporal Logic Model Checking as
Automated Theorem Proving

by

Amirhossein Vakili

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Amirhossein Vakili 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Model checking is an automatic technique for the verification of temporal properties of a
system. In this technique, a system is represented as a labelled graph and the specification
as a temporal logic formula. The core of temporal logic model checking is the reachability
problem, which is not expressible in first-order logic (FOL); as a result, model checking of
finite/infinite state systems without the use of iteration or abstraction is considered beyond
the realm of automated FOL theorem provers. In this thesis, we focus on formulating
the temporal logic model checking problem as a FOL theorem proving problem and use
automated tools, such as SAT/SMT solvers to directly model check a system without the
need for a fixed-point calculation or abstraction.

We present CTL-Live: a fragment of computational tree logic whose model checking
for (infinite) Kripke structures is reducible to FOL validity checking. CTL-Live includes
the CTL connectives that are often used to express liveness properties. We also derive de-
cidability results about CTL-Live model checking by examining decidable subsets of FOL.
We evaluate our reduction technique for CTL-Live model checking. Our case studies show
that state-of-the-art SMT solvers are capable of verifying CTL-Live properties of infinite
systems; moreover, the verification of an infinite state model can sometimes complete more
quickly than verifying a finite version of the model. We prove the maximality of CTL-Live:
we show that CTL-Live is the largest fragment of CTL whose model checking is reducible
to FOL validity checking.

The maximality of CTL-Live implies that model checking safety properties requires
a logic more expressive than FOL; as a result, we examine FOL plus transitive closure
(FOLTC). We can reduce model checking of a more expressive fragment of CTL, which we
call CTL\EG, to validity checking in FOLTC. CTL\EG is more expressive than CTL-Live
and yet less expressive than CTL. By adding a finiteness restriction, we can reduce model
checking of all of CTL with fairness constraints (CTLFC) formulas to validity checking in
FOLTC. The finiteness restriction requires that the system under-study must have a finite
number of states, but it does not require this number to be known. Reduction of CTLFC
to FOLTC allows us to use the Alloy Analyzer for model checking. Our case studies show
that the Alloy Analyzer can analyze CTLFC formulas up to the same scopes that Alloy
models are analyzed.

v

Acknowledgements

A PhD is an investment, and in my case, it was a looooooooooong-term investment. From
a personal perspective, this investment has been a complete success, and without a doubt,
Professor Nancy A. Day played the leading role. Nancy taught me how to research, measure
real contribution, write, publish, teach, and be professional. Considering my almost empty
set of skills at the beginning of the PhD program makes me doubt her ability at choosing
good students :)

I would like to thank Professor Ganesh Gopalakrishnan for taking the time to read my
thesis. His feedback gave me a fresh perspective on my work. Professors Krzysztof Czar-
necki, Richard Trefler, and Peter van Beek are the best committee members one can ask
for. They have been always accessible and their constructive feedback has had a significant
impact on my work.

Special thanks to the members of the NECSIS project, in particular, Prof. Joanne Atlee,
Prof. Krzysztof Czarnecki, Dr. Michal Antkiewicz, and Dr. Shoham Ben-David. Their
constant feedback and support has taught me what teamwork is supposed to be. The
backbone of the Cheriton School of Computer Science is its staff members. I would have
been hopeless without Wendy Rush, Ronaldo Garcia, Margaret Towell, and Helen Jardine.
Helen must be thrilled by my graduation: no more bothering her for leaving my keys inside
my office and getting locked out.

I would like to thank my friends, Barbara O’Gorman, Reza, Yasaman, Vahed, Hadi, Pouria,
Rana, John, Adam, Vajih, and Amirali. Each one is unique in their own way. Vajih is
an outstanding software engineer who I learned a lot from. Katia, Ramin, and Doorsa
are my extended family in Canada; their kindness, warmth, generosity, and love cannot be
described by words.

My parents, Mahboubeh and Mohammad, are my role models. They made all possible
sacrifices and supported me during all the stages of my life. My education would have
been impossible without them. The support of my lovely siblings, Panteha, Ali, and Amin
has always helped me in different stages of my life, including this thesis.

My amazing in-laws, Fereshteh Tavallari and Mohammad Roohparvarzadeh, created an
outstanding environment for me to write my thesis. They took care of my wife’s cravings
during her pregnancy, and made their home into a thesis camp. Their love and support
has no parallel. I cannot thank them enough.

Sogol and I got married during my PhD and that prolonged my “investment.” I do not
blame her for that, but she is responsible for the extra 10 pounds that I’m carrying around
since we’ve been married. She is an excellent cook/mechanical engineer.

vii

dedicated to Sogoli, the most beautiful mama bear

ix

Table of Contents

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Thesis Overview . 2

1.2 Contributions . 4

1.3 Validation . 5

1.4 Thesis Outline . 5

I Foundations 7

2 Background 9

2.1 First-Order Logic . 9

2.2 Transitive Closure and FOL . 13

2.3 Temporal Logics and Model Checking . 13

2.3.1 CTL . 14

2.3.2 CTLFC . 16

2.3.3 Reducing Many Fairness Constraints to One 17

2.4 Summary . 19

xi

3 Symbolic Kripke Structures 21

3.1 Kripke Structures in FOL . 21

3.2 Model Checking of Symbolic Kripke Structures 23

3.3 Related Work . 24

3.4 Summary . 25

II Model Checking in FOL 27

4 Model Checking in FOL: Theory 29

4.1 Transitive Closure in FOL . 30

4.2 CTL-Live Model Checking . 33

4.3 Maximality of CTL-Live . 40

4.4 Incompleteness of Inductive Invariant Method 44

4.5 Some Decidability Results . 45

4.5.1 AE for CTL-Live Model Checking 46

4.5.2 DLs for CTL-Live Model Checking 47

4.6 Related Work . 49

4.7 Summary . 51

5 Model Checking in FOL: Practice 53

5.1 Case Studies . 54

5.1.1 Case Study 1: Leader Election Protocol 55

5.1.2 Case Study 2: Bakery Algorithm 57

5.1.3 Case Study 3: Collision Avoidance State-Flow Model 60

5.1.4 Case Study 4: File System . 60

5.2 Modelling for Better Performance . 62

5.3 Summary . 64

xii

III Model Checking in FOLTC 67

6 Model Checking in FOLTC: Theory 69

6.1 Model Checking CTL\EG . 69

6.2 EG and FOLTC . 72

6.3 Reducing CTLFC to FOLTC . 72

6.4 Related Work . 76

6.5 Summary . 77

7 Model Checking in FOLTC: Practice 79

7.1 CTLFC in Alloy . 79

7.2 Case Studies . 81

7.2.1 Address Book . 81

7.2.2 Features Interaction . 82

7.2.3 Traffic Light Controller . 82

7.2.4 Scalability of Case Studies . 82

7.3 Beyond Model Checking CTLFC . 83

7.4 Summary . 84

8 Conclusion 85

8.1 Future Work . 86

8.2 Final Word . 87

APPENDICES 87

A SMT-LIB Models 89

A.1 Leader Election Protocol . 89

A.2 Bakery Algorithm . 91

A.3 Collision Avoidance State-Flow Model . 93

A.4 File System . 99

xiii

B Alloy Models 101

B.1 CTLFC to FOLTC Module in Alloy . 101

B.2 Address Book . 104

B.3 Feature Interaction . 106

B.4 Traffic Light . 112

B.5 Lambda Terms . 117

References 125

xiv

List of Tables

2.1 Standard set and relational operators, where S, S1, S2 are sets and R, R1,
R2 are binary relations. 10

3.1 Summary of the satisfiability and validity notations 24

5.1 Run time of Z3 and CVC4 for each case study in seconds (DNV: Did Not
Verify) . 62

7.1 Alloy’s set and relational operators . 80

7.2 Experimental results. SS: Scope Size, min: minute, sec: seconds 82

xv

List of Figures

1.1 Temporal Logics Hierarchy . 3

2.1 Relation between CTLFC and CTL connectives 17

2.2 Computing [EF ϕ]K from [ϕ]K . 17

4.1 Possible values for RT . Let I = 〈D, .〉, I ∆, and I ′ = I plus an interpre-
tation for RT . 32

4.2 CTL-Live . 33

4.3 Reduction Procedure . 34

4.4 Definition of CTLive2FOL(ϕ) . 35

4.5 Decidable fragment of CTL-Live based on AE 46

4.6 ALC: A and R are atomic concepts and roles. 48

4.7 Decidable fragment of CTL-Live based on ALC 49

5.1 Overview of our method . 55

5.2 Leader election model: Z3 vs Alloy . 57

5.3 Collision Avoidance model in Cadence SMV (UB = UnBounded) 59

5.4 Z3 on different models for the leader election problem 63

5.5 Alloy and Z3 with different approaches for the leader election case study . 64

6.1 CTL\EG . 70

6.2 Definition of CTLEG2FOLTC(ϕ) . 70

xvii

6.3 State s satisfies EF P . 71

6.4 State s satisfies EG P . 73

6.5 Definition of FC2TC(P, FC) . 74

xviii

Chapter 1

Introduction

Model checking is an automatic technique for the verification of temporal properties of a
system [7, 25]. In this technique, a system is formalized as a set of states with transitions
between them. Each state represents a configuration of the system, transitions represent
how a system moves from one state to another. This representation is called a Kripke
structure. A temporal property is usually represented as a temporal logic formula. Tem-
poral logics, such as computational tree logic (CTL) [26], are used to represent concisely a
temporal property. A model checker takes a Kripke structure and temporal logic formula
as input, and it determines if the Kripke structure satisfies the temporal logic formula or
not: if it does, the model checker’s output is yes; otherwise, the output is a counterex-
ample that shows how the system under study violates the property that is formalized as
a temporal logic formula.

The automatic nature of model checkers has turned them into an effective (and popular)
technique to find bugs in both software and hardware systems. Holzmann used model
checking and found 112 major bugs within a real world protocol [39]. The errors revealed
by model checking have lead to major improvements in the IEEE Futurebus protocol [27].
Applications of model checking at IBM has shown it to be an effective technique in finding
bugs in a memory bus adapter [3, 51]. In these case studies, authors reported that 40% of
the bugs found by model checking would not have been found by simulation or testing.

Over the past 20 years, there have been significant advancements in the world of SAT
and satisfiability modulo theory (SMT) solving [9]. The input languages of such theorem
provers are usually at most as expressive as first-order logic (FOL), and (unlike temporal
logics) they do not provide any notion of time. The advancements in FOL theorem proving
has motivated researchers to design model checking techniques that use these solvers [14,16,

1

20,52]. In fact, according to the Hardware Model Checking Competition 2011 [1], leading
model checkers are based on SAT solving rather than traditional BDD-based methods [18]
or explicit-state search [36].

Model checking techniques based on automated FOL theorem provers, such as SAT
and SMT solvers, can be divided into two major categories: 1) bounded model checking
(e.g., [14, 52]) and 2) unbounded model checking (e.g., [17, 53]). Bounded methods check
whether a property holds for a certain length of execution path by creating a formula
consisting of the transition relation expanded to the desired bound. Since the bound is
finite, the problem can be expressed in FOL, therefore, an FOL theorem prover can be
used to solve the entire bounded (and therefore incomplete) model checking problem at
one time. Unbounded methods call an FOL theorem prover multiple times iteratively to
traverse the reachable state space may not guarantee termination. This iteration can result
in parts of the reasoning being redone multiple times. FOL theorem provers, such as SMT
solvers, have not been used to solve an entire unbounded model checking problem in one
call because model checking is a question of reachability within a graph (in this case a
Kripke structure), and the reachability relation (transitive closure) is not expressible in
FOL. Therefore, temporal logic model checking for infinite state systems without the use
of iteration or abstraction is usually considered beyond the realm of FOL theorem provers.

In this thesis, we focus on formulating the unbounded model checking problem as a
theorem proving problem for logics that have sophisticated automated provers.

1.1 Thesis Overview

First, we show that for a fragment of computational tree logic (CTL), which we call CTL-
Live, the model checking problem is reducible to FOL validity checking [56]. CTL-Live
includes the CTL connectives that are often used to express liveness properties (e.g., AF,
AU, etc.). Our key insight in this reduction is the use of the implicit higher-order universal
quantifier in the definition of the FOL validity relation. This universal quantifier allows us
to describe the semantics of CTL-Live formulas.

Based on this reduction, we use SMT solvers for model checking some case studies [58].
Our case studies show that SMT solvers, in particular Z3 [29], are effective in verifying
CTL-Live properties of infinite systems.

We also show that CTL-Live is the largest fragment of CTL whose model checking is
reducible to FOL validity checking [57]. Using this result, we also show that the inductive
invariant method for verification of safety properties is incomplete. Another theoretical and

2

CTL-Live

CTL\EG

CTLFC

FOL

FOLTC

FOLTC + finiteness

Figure 1.1: Temporal Logics Hierarchy

practical implication of CTL-Live maximality is that in order to reduce model checking to
validity checking, one needs to consider more expressive logics than FOL. For this reason,
next we focus on FOL plus transitive closure (FOLTC).

We reduce model checking of a more expressive fragment of CTL to validity checking for
FOLTC. We call this fragment CTL\EG. It is more expressive than CTL-Live and yet less
expressive than CTL. By adding a finiteness restriction, we can reduce model checking all
of CTL with fairness constraints (CTLFC) formulas [25] to FOLTC validity checking [55].
The finiteness restriction requires that the system under study must have a finite number
of states, but it does not require this number to be known. There are two major insights
in this reduction: 1) transitive closure contains reachability information, 2) given a finite
number of states, the only way to have an infinite path is through repetition of states.

Figure 1.1 depicts the hierarchy of temporal logics that we study in this thesis and the
logics for expressing their model checking problems. We do not have a maximality result
about CTL\EG. For this reason, dashes are used to represent the boundaries of CTL\EG
in Figure 1.1.

Thesis statement: There is a fragment of CTL whose model checking is
reducible to FOL validity checking. Using this reduction, modern SMT solvers

3

are capable of verifying infinite state systems without the need for abstraction,
invariant generation, or iteration. FOLTC, a more expressive logic, can be used
to encode more CTL formulas than FOL. Using FOLTC and focusing on finite
systems, every CTLFC formula can be encoded in FOLTC. This reduction
can be used to express temporal properties in a language like Alloy that is as
expressive as FOLTC.

1.2 Contributions

In this thesis we show that despite the fact that reachability is not expressible in FOL, there
are reachability queries that can be articulated in FOL by using a very novel approach.
We use this approach to automaticly verify some infinite systems. We also show that
to articulate more reachability queries, a more expressive logic than FOL is needed. In
particular, we focus on FOLTC and present reachability queries that can be formulated in
FOLTC.

The following lists the contributions of this thesis:

• Introducing CTL-Live: a fragment of CTL whose model checking problem is reducible
to FOL validity checking.

• Using SMT solvers, we have shown the effectiveness of SMT solvers in model checking
CTL-Live properties.

• Proving the maximality of CTL-Live: model checking of CTL connectives that are
not included in CTL-Live is not reducible to FOL validity checking.

• Showing that the inductive invariant method for verification of safety properties is
not complete.

• Deriving decidability results for CTL-Live model checking by examining some decid-
able fragments of FOL.

• Showing how CTL connectives, except EG, can be encoded as FOLTC formula.

• Showing how all of CTLFC formula can be encoded in FOLTC for finite systems.

• Using the Alloy Analyzer, we have shown CTLFC properties can be analyzed up to
the same scopes that the Alloy models are analyzed.

4

Our major philosophical contribution in this thesis is to show that expressibility and
verifiability of a property are two distinct things: a property may be verifiable despite
being inexpressible.

1.3 Validation

We have validated the practicality of our model checking technique for CTL-Live by using
SMT solvers verifying four infinite systems. These results are provided in Chapter 5.
Our results show that sophisticated SMT solvers, in particular Z3 [29], are effective in
verification of CTL-Live properties [58].

The practicality of our reduction technique of CTLFC to FOLTC has been validated
by case studies in Alloy [55]. Alloy is declarative relational language that is expressive
as FOLTC. The Alloy Analyzer provides automatic finite scope analysis for Alloy models.
The expressive power of Alloy and its automatic analyzer made it a perfect candidate
for validation our reduction of CTLFC to FOLTC. Our case studies show that CTLFC
formulas can be analyzed by the Alloy Analyzer up to the same scopes that non-temporal
properties are analyzed in Alloy.

1.4 Thesis Outline

This thesis is divided into three parts. In Part I, we present the foundations of our work:
Chapter 2 presents background material on FOL, temporal logics and model checking. In
this chapter, we also discuss transitive closure and its relationship to FOL. Chapter 3 is
an overview of how we represent Kripke structures in FOL. We call this representation a
symbolic Kripke structure (SKS).

In Part II, we examine the use of FOL for model checking. In Chapter 4, we present
CTL-Live and how its model checking is reducible to FOL validity checking. This chap-
ter also discusses the maximality of CTL-Live. Chapter 5 presents the practicality of
using SMT solvers in solving model checking problems based on the reduction technique
presented in Chapter 4.

Part III discusses the use of FOLTC for model checking. Chapter 6 presents our encod-
ing of CTL\EG and CTLFC in FOLTC. This encoding is evaluated in Chapter 7, by using
the Alloy Analyzer as the back-end solver. Chapter 8 concludes this thesis and presents
future directions. We discuss related work in each chapter.

5

Part I

Foundations

7

Chapter 2

Background

In this chapter, we present the background material and the notation that is used in this
thesis. Table 2.1 presents some set and relational operators.

Section 2.1 is an overview on first-order logic (FOL). In Section 2.2, we overview the
transitive closure operator and discuss its relationship to FOL. Section 2.3 presents com-
putational tree logic (CTL) and CTL with fairness constraints (CTLFC). In Section 2.3,
we overview some classical model checking algorithms as well.

2.1 First-Order Logic

Formulas in FOL are built from logical connectives, functional symbols, and relational
symbols [19]. The set of logical connectives and their semantics in FOL is fixed. The
following is a standard set of logical connectives for FOL: true (>), false (⊥), negation
(¬), conjunction (∧), disjunction (∨), implication (⇒), iff (⇔), existential quantifier (∃),
and universal quantifier (∀). Since for different problems different sets of functional and
relational symbols are used, we have the following definition:

Definition 1. (Base) A base B is a finite set of symbols that can be divided into the
three categories of relational symbols, functional symbols and variables:

B = {R0, .., Rn, F0, .., Fm, v0, .., vp}

Every relational and function symbol has a corresponding arity representing the number
of arguments that is required by that symbol. �

9

Table 2.1: Standard set and relational operators, where S, S1, S2 are sets and R, R1, R2

are binary relations.

Syntax Name Meaning
S1 ⊆ S2 Subset every element of S1 is an element of S2
S1 ∩ S2 Intersection {x | x ∈ S1 and x ∈ S2}
S1 ∪ S2 Union {x | x ∈ S1 or x ∈ S2}
S1 \ S2 Difference {x | x ∈ S1 and x 6∈ S2}
S1 × S2 Cartesian product {(x, y) | x ∈ S1 and y ∈ S2}
R1 ∩R2 Intersection {(x, y) | (x, y) ∈ R1 and (x, y) ∈ R2}
R1 ∪R2 Union {(x, y) | (x, y) ∈ R1 or (x, y) ∈ R2}
id(S) Identity relation {(s, s) | s ∈ S}
S;R Relational join {y | for some x ∈ S • (x, y) ∈ R}
R;S Relational join {x | for some y ∈ S • (x, y) ∈ R}
R1;R2 Relational join {(x, z) | for some y • (x, y) ∈ R1 and (y, z) ∈ R2}
S /R Domain restriction {(x, y) | x ∈ S and (x, y) ∈ R}
R . S Range restriction {(x, y) | y ∈ S and (x, y) ∈ R}

A functional (relational) symbol with arity 0 is called a constant (proposition). A
relational symbol X with arity n is denoted by X/n.

Definition 2. (Syntax of FOL) Let B be a base. The set of formulas over B is defined
as follows:

Φ ::= > | ⊥ | p where p ∈ B is a proposition,

::= R(t1, . . . , tn) | t1 = t2 where R ∈ B is a relational symbol, and ti is a term

::= ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Φ1 ⇒ Φ2 | Φ1 ⇔ Φ2

::= ∃v • Φ | ∀v • Φ where v ∈ B is a variable, (2.1)

t ::= v | c where v ∈ B and c ∈ B is a variable and a constant respectively,

::= F (t1, . . . , tn) where F ∈ B is a functional symbol and it is n-ary. (2.2)

�

Equations 2.1 and 2.2 represent the rules for constructing formulas and terms respec-
tively.

10

The semantics of FOL is defined by using interpretations. An interpretation defines
the meaning of a base by assigning values to variables, functional and relational symbols.
Using these values along with the fixed semantics of FOL logical connectives, a formula is
evaluated to true or false.

Definition 3. (Interpretation) Let B be a base for FOL. An interpretation of B is
a pair I = 〈D, .I〉, where D is a non-empty set, domain of I, and .I is a mapping that
assigns:

1. to every variable v ∈ B an element in D, vI ∈ D,

2. to every 0-ary functional symbol c ∈ B an element in D, cI ∈ D,

3. to every functional symbol f ∈ B of arity n ≥ 1 a total function from Dn to D,
fI : Dn → D,

4. to every 0-ary relational symbol p ∈ B either true or false, pI = true or pI = false,

5. to every relational symbol r ∈ B of arity n ≥ 1 a relation over Dn, rI ⊆ Dn.

�

Relations come from the world of semantics and relational symbols are from the world
of syntax. A relational symbol can be considered as a variable having different values under
different interpretations. Interpretations assign relations to relational symbols.

Before defining the semantics of FOL, we need to introduce a notation that is used to
define the semantics of quantifiers:

Definition 4. (Substitution for interpretations) Let B be a base for FOL and
I = 〈D, .I〉 an interpretation for B. For every d ∈ D and variable v ∈ B, Iv:=d is an
interpretation over B that is same as I except it maps v to d:

xI
v:=d

=

{
d if x = v,
xI otherwise.

�

Definition 5. (Satisfiability of an FOL formula) Let B be a base for FOL and I =
〈D, .I〉 an interpretation for B. The satisfiability relation over formulas and interpretations,
, is defined by using structural induction on the formula Φ and the term t knowing that
> is always satisfied (I >) and ⊥ is never satisfied (I ⊥):

11

I p iff pI = true, where p ∈ R with arity 0,
I r(t1, . . . , tn) iff rI(tI1 , . . . , t

I
n) holds,

I t1 = t2 iff tI1 is equal to tI2 ,
I ¬Φ iff I does not satisfy Φ,
I Φ1 ∧ Φ2 iff I Φ1 and I Φ2,
I Φ1 ∨ Φ2 iff I Φ1 or I Φ2,
I Φ1 ⇒ Φ2 iff I ¬Φ1 ∨ Φ2,
I Φ1 ⇔ Φ2 iff I Φ1 ⇒ Φ2 and I Φ2 ⇒ Φ1,
I ∃x • Φ iff there exists a d ∈ D such that Ix:=d Φ.
I ∀x • Φ iff for all d ∈ D, Ix:=d Φ.(
f(t1, . . . , tn)

)I
:= fI(tI1 , . . . , t

I
n)

The notation I 1 Φ denotes that I does not satisfy Φ. �

For a set of FOL formula Γ, and an interpretation I, we use the notation I Γ to
denote that I satisfies every formula in Γ.

Definition 6. (Validity in FOL) Let Γ be a set of FOL formulas. An FOL formula Φ
is valid with respect to Γ iff every interpretation I that satisfies all the formulas in Γ also
satisfies Φ. Validity is denoted by �. �

Validity checking for FOL is recursively enumerable [23, 37]. This means that validity
checking for FOL is not computable, but there is a procedure that given Γ and Φ produces
a proof in the case Γ � Φ holds.

Definition 7. (Consistency) A set of FOL formulas Γ is consistent iff there is an
interpretation that satisfies all the formulas in Γ. �

Next, we present two theorems about satisfiability and validity in FOL. The proofs of
these theorems can be found in [19].

Theorem 1. Let Γ be a set of FOL formulas and Φ an FOL formula. We have:

Γ � Φ iff Γ ∪ {¬Φ} is not consistent.

Theorem 2. (Compactness) A set of FOL formulas Γ is consistent iff every finite subset
of Γ is consistent.

12

2.2 Transitive Closure and FOL

This section is an overview of the transitive closure operator and how it is related to FOL.

Definition 8. (Transitive closure) Let D be a set and R a binary relation. The tran-
sitive closure of R, denoted by R+, is the smallest binary relation that contains R and it
is transitive:

R+ includes R : R ⊆ R+ (2.3)
R+ is transitive : R+;R+ ⊆ R+ (2.4)
R+ is the smallest : ∀RT • R ⊆ RT ∧RT ;RT ⊆ RT ⇒ R+ ⊆ RT (2.5)

�

Extending FOL with the transitive closure operator results in a new logic called FOL
with transitive closure (FOLTC). A base B for FOL is also used as a base for FOLTC. The
syntax of FOLTC is same as FOL with one addition: for every binary relational symbol
R/2 in B, R+ is also a binary relational symbol. The notation + is overloaded: it is
applied to binary relations (semantics) and relational symbols with arity 2 (syntax). For
every interpretation I, base B, and binary relational symbol R ∈ B, the value of R+

under I is defined as follows:
(R+)I := (RI)

+

Satisfiability, validity, and consistency for FOLTC are the same as for FOL.

The major difference between FOL and FOLTC is that FOLTC does not have the
compactness property of Theorem 2; as a result, FOLTC is essentially more expressive
than FOL. The intuition behind this is that the universal quantifier in Equation 2.5 is
higher-order and the syntax of FOL does not allow such quantification.

2.3 Temporal Logics and Model Checking

Temporal logics refers to a family of formal logics that are used to express dynamic prop-
erties of a system concisely: properties that describe some behaviour of a system over
time. In this section, we present computational tree logic (CTL) and CTL with fairness
constraints (CTLFC) [25,26].

The semantics of temporal logics are defined using Kripke structures. A Kripke struc-
ture is a directed labelled graph. The set of vertices and the set of edges of a Kripke

13

structure are often called the state space and the transition relation respectively. The
labels of each state show the local properties of the state: what holds and what does not
hold in a state. In practice, different combinations of the values of the variables that are
used to define a system represent the state space.

Definition 9. (Kripke structure) A Kripke structure is a four tuple K = 〈S,S0,N ,P〉,
where: S is a set of states; S0, the set of initial states, is a non-empty subset of S; N ,
the next-state relation is a binary relation over S; P is a finite set of unary predicates
over states. Predicates represent the local properties of the states, and are called labelling
predicates. �

A Kripke structure can be considered as a structure that defines a set of infinite paths:

Definition 10. (Infinite computation path) An infinite computation path, for short
computation path, in a Kripke structure K = 〈S,S0,N ,P〉 starting at state s ∈ S is a total
function δ from natural numbers N to S such that δ(0) = s and it satisfies the following
property:

∀i ∈ N • N
(
δ(i), δ(i+ 1)

)
�

2.3.1 CTL

CTL contains a set of propositional and temporal connectives. The syntax of CTL is
presented in Definition 11.

Definition 11. (Syntax of CTL) The set of CTL formulas over a set of labelling predi-
cates P is defined by the following grammar:

ϕ ::= > | P | ¬ϕ, where P ∈ P
::= ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2

::= EXϕ | AXϕ | EFϕ | AFϕ | EGϕ | AGϕ

::= ϕ1EUϕ2 | ϕ1AUϕ2 (2.6)

�

CTL is a branching-time temporal logic. A temporal connective of CTL consists of two
parts: a path and a state quantifier. The path quantifier is either E, there exists a path,

14

or A, for all paths. The state quantifiers are X (next state), F (eventually), G (globally),
and U (strong until). The satisfiability relation for CTL, c, is used to give meaning to
CTL formulae. The notation K, s c ϕ denotes that the state s of the Kripke structure K
satisfies the CTL formula ϕ and K, s 1c ϕ is used when K, s c ϕ does not hold.

Definition 12. Let K = 〈S,S0,N ,P〉 be a Kripke structure and ϕ a CTL formula. The
satisfiability relation for CTL, c, is defined by structural induction on ϕ knowing that
K, s c > always holds:

K, s c P iff s ∈ P for P ∈ P
K, s c ¬ϕ iff K, s 1c ϕ
K, s c ϕ1 ∧ ϕ2 iff K, s c ϕ1 and K, s c ϕ2

K, s c ϕ1 ∨ ϕ2 iff K, s c ϕ1 or K, s c ϕ2

K, s c EXϕ iff ∃s′ ∈ S • N (s, s′) ∧ K, s′ c ϕ
K, s c AXϕ iff ∀s′ ∈ S • N (s, s′)⇒ K, s′ c ϕ
K, s c EFϕ iff there exists a computation path δ starting at s, and an i such

that K, δ(i) c ϕ.
K, s c AFϕ iff for all computation paths δ’s starting at s, there exists an i such

that K, δ(i) c ϕ.
K, s c EGϕ iff there exists a computation path δ starting at s such that for all

i’s K, δ(i) c ϕ.
K, s c AGϕ iff for all computation paths δ’s starting at s, and i’s K, δ(i) c ϕ.
K, s c ϕ1EUϕ2 iff there exists a j and a computation path δ starting at s such that

K, δ(j) c ϕ2 and for all i < j K, δ(i) c ϕ1.
K, s c ϕ1AUϕ2 iff for all computation paths δ’s starting at s, there exists a j such

that K, δ(j) c ϕ2 and for all i < j K, δ(i) c ϕ1.

For a Kripke structure K = 〈S,S0,N ,P〉 and a CTL formula ϕ, we define the notation
[ϕ]K to be the subset of S that satisfy ϕ:

[ϕ]K := {s ∈ S | K, s c ϕ}

Definition 13. (Semantics of CTL) Let K = 〈S,S0,N ,P〉 be a Kripke structure and ϕ
a CTL formula. The Kripke structure K satisfies ϕ iff all of its initial states satisfy ϕ:

K c ϕ if and only if S0 ⊆ [ϕ]K

�

15

Definition 14. (rank(s)) Let s be a state in Kripke structure K such that K, s c

ϕ1 EU ϕ2. We define rank(s) to be the least number of steps required to reach a state
that satisfies ϕ2 from s:

rank(s) =

{
0 if K, s c ϕ2

1 + min{rank(s′) | N (s, s′) and K, s′ c ϕ1 EU ϕ2} otherwise.

rank(s) is defined similarly when K, s c ϕ1 AU ϕ2. �

2.3.2 CTLFC

CTL with fairness constraints extends CTL with the concept of fair paths. Intuitively, a
fair path is a computation path that satisfies some properties infinitely often.

Definition 15. (Fair path) Let K = 〈S,S0,N ,P〉 be a Kripke structure and C =
{ϕ1, ..., ϕn} a set of CTL formulas over P. A computation path δ of K is fair iff each ϕ ∈ C
is satisfied an infinite number of times along δ:

∀ϕ ∈ C • the set {i | K, δ(i) c ϕ} is infinite.

�

The syntax of CTLFC is same as CTL with the addition of a new temporal connective
ECG, where the index C indicates that we are only interested in fair paths:

Definition 16. (Semantics of ECG) Let K = 〈S,S0,N ,P〉 be a Kripke structure, C =
{ϕ1, ..., ϕn} a set of fairness constraints, and ϕ a CTLFC formula. The semantics of ECG
is defined as follows:

K, s c ECGϕ iff there exists a fair path δ with respect to C that starts from s
and for all i’s K, δ(i) c ϕ.

�

CTLFC has other temporal connectives that can be defined in terms of the ones that
we have presented so far. Figure 2.3.2 on the facing page presents all CTLFC connectives
and their relationship to each other and to CTL connectives.

Given a Kripke structure K where its set of states is finite, verifying if K satisfies a
CTL (CTLFC) formula ϕ (K c ϕ) is decidable [26]. The decision procedure for verifying

16

ECXϕ := EX
(
ϕ ∧ (ECG>)

)
ACXϕ := ¬ECX¬ϕ
ECFϕ := EF

(
ϕ ∧ (ECG>)

)
ACFϕ := ¬ECG¬ϕ
ACGϕ := ¬ECF¬ϕ
ϕ1ECUϕ2 := ϕ1EU

(
ϕ2 ∧ (ECG>)

)
ϕ1ACUϕ2 := ¬(ECG¬ϕ2) ∧ ¬

(
¬ϕ2ECU(¬ϕ1 ∧ ¬ϕ2)

)
Figure 2.1: Relation between CTLFC and CTL connectives

Set computeEF (Set [ϕ]K){
Set r e s u l t := [ϕ]K
do {

temp := r e s u l t
r e s u l t := r e s u l t ∪

(
N ; r e s u l t

)
} while (r e s u l t != temp)
return r e s u l t

}

Figure 2.2: Computing [EF ϕ]K from [ϕ]K

K c ϕ recursively goes through the structure of ϕ. For every sub-formula ψ of ϕ, the
procedure determines the set of state of K that satisfies ψ ([ψ]K). Eventually, the procedure
computes [ϕ]K and it checks if all the initial states belong to this set:

S0 ⊆ [ϕ]K

For example, Figure 2.2 presents a procedure that computes the set of states that satisfy
EF ϕ, [EF ϕ]K, from the set of [ϕ]K. This procedure computes a fixed-point.

For different connectives of CTL (CTLFC) procedures similar to the one in Figure 2.2
exists.

2.3.3 Reducing Many Fairness Constraints to One

In CTLFC, a Kripke structure may have any finite number of fairness constraints. In this
section, we show how a Kripke structure with n fairness constraint(s) can be transformed

17

into a Kripke structure with a single fairness constraint. The transformation we present
here was originally presented by Wolper and Vardi to transform a general Büchi automata
into a regular one [59,61].

Given a Kripke structure K = 〈S,S0,N ,P〉 and a set of n fairness constraints
{ψ1, ψ2, .., ψn}, we construct a Kripke structure L with a single fairness constraint FC that
behaves the same way as K. The major idea behind this construction is that in every fair
path of K, every fairness constraint is satisfied an infinite number of times; therefore, if
at some point along a fair path ψi is satisfied, at some point after this point ψi+1

1 is also
satisfied.

Lemma 1. Let K = 〈S,S0,N ,P〉 be a Kripke structure, {ψ1, ψ2, .., ψn} a set of fairness
constraints, and δ a fair path in K that starts from some state. If K, δ(j) c ψi, then for
some k > j, we have K, δ(k) c ψi+1.

Proof. Proof by contradiction: suppose K, δ(k) 1c ψi+1 for all k > j. This means that ψi+1

is only satisfied a finite number of times and this is in contradiction with the fact that δ is
a fair path.

Using Lemma 1, we introduce a “counter” that is incremented whenever a fairness
property is satisfied in order. Once all fairness properties are satisfied, we reset the counter
to zero. The counter being equal to n becomes the new fairness constraint. The Kripke
structure L is constructed as follows:

L = 〈S × {0, 1, .., n},S0 × {0},M,P〉

where M satisfies the following axiom:

∀s, t, i, j • M
(
(s, i), (t, j)

)
⇔ N (s, t) ∧ (2.7)

n∧
l=1

(i = l − 1 ∧ ψl(s)⇒ j = l) ∧ (2.8)

(i = n⇒ j = 0) ∧ (2.9)
n∧

l=1

(i = l − 1 ∧ ¬ψl(s)⇒ j = i) (2.10)

The above axiom states that in the new Kripke structure L, there is a transition from
state (s, i) to state (t, j) iff there is a transition from s to t in K (Equation 2.7); moreover,

1If i is n, we define i + 1 to be equal to 1.

18

if the value of counter in current state, i, is l − 1 and the lth fairness constraint is also
satisfied, the value of counter is incremented by a unit (Equation 2.8 on the preceding
page). If the counter reaches n, then it is reset to zero in the next state (Equation 2.9 on
the facing page); otherwise, the value of the counter is remained unchanged (Equation 2.10
on the preceding page).

This new Kripke structure L has a single fairness constraint FC that satisfies the
following axiom:

∀s, i • FC
(
(s, i)

)
⇔ i = n

To relate the behaviour of K to L, we define a function that converts a path in L into
a path of K:

Definition 17. (Converting paths) Let L be a Kripke structure derived by the trans-
formation described in this section from a Kripke structure K, and δ a path in L. The
operator remove counter converts δ into a path in K such that:

∀i ∈ N • remove counter
(
δ
)
(i) := Let (s, l) := δ(i) in s

�

The operator remove counter only removes the counter part of each state in L.

Theorem 3. Let L be a Kripke structure derived by the transformation described in this
section from a Kripke structure K. If δ is a fair path in L, then the path
remove counter(δ) is a fair path in K; moreover, for every fair path δ′ in K there is fair
path δ in L such that remove counter(δ) = δ′.

Proof. Proof can be found in [59,61].

2.4 Summary

This chapter was an overview of first-order logic (FOL), transitive closure, and temporal
logics. We presented the syntax and semantics of FOL. We also discussed the relationship
between the transitive closure operator and FOL. The syntax and semantics of CTL and
CTLFC were presented.

19

Chapter 3

Symbolic Kripke Structures

In the classic presentation of model checking, a system is represented as a Kripke structure
and the property that needs to be verified as a temporal logic formula. In Chapters 4 and 6,
we present model checking techniques that are based on FOL reasoning. In this chapter,
we discuss how we represent Kripke structures in FOL. We call this representation a sym-
bolic Kripke structure. The symbolic Kripke structure is a rich formalism for representing
systems. It supports both finite and infinite systems. An interesting characteristic of this
representation is that a single symbolic Kripke structure can represent a class of Kripke
structures rather than just a single one. In the following sections, we formally present
symbolic Kripke structures and discuss their properties in detail.

3.1 Kripke Structures in FOL

According to Definition 9 on page 14, in a Kripke structure K = 〈S,S0,N ,P〉, S0 and
every element of P = {P1, ..,Pn} are subsets of S, and N is a binary relation over S. Our
key insight is that K can be considered as an interpretation having S as its domain for the
base B = {S0, N, P1, .., Pn}. In the base B, we have S0, P1, .., Pn as relational symbols
of arity 1, and N is a binary relational symbol. The interpretation (Kripke structure) K
maps S0 to S0, P1 to P1, .., Pn to Pn, and N to N . This insight leads to the following
definition:

Definition 18. (Kripke base) A base B is a Kripke base iff it contains the relational
symbols S0/1, N/2, and for some positive natural number n, P1/1, .., Pn/1 (and possibly
more symbols). �

21

A Kripke base can be considered as a variable whose values are Kripke structures.
The values of a Kripke base is determined by interpretations. This is very similar to the
relationship between relational symbols and relations.

Obviously not every base is a Kripke base. For example, the base B = {p, q} where p
and q are propositional symbols is not a Kripke base.

Using the concept of a Kripke base in Definition 18 on the previous page, we define the
concept of a symbolic Kripke structure:

Definition 19. (Symbolic Kripke Structure) A set of FOL formulas Σ over a Kripke
base B is a symbolic Kripke structure. �

Symbolic Kripke structures (SKSs) can be considered as an axiomatic approach to
representing Kripke structures. Every satisfying interpretation of an SKS Σ is a Kripke
structure; as a result, an SKS may represent a set of Kripke structures. We define the
notation C

(
Σ
)

to be the set of Kripke structures represented by Σ:

C
(
Σ
)

= {K | K Σ}

Example 1. Let B = {S0/1, N/2, P/1} ∪ {f, a} ∪ {s, s′, t} be a Kripke base, where f
is a binary functional symbol and a is a constant. In this base s, s′, and t are variables.

Σ = { ∀s • S0(s)⇔ s = f(a, a),
∀s, s′ • N(s, s′)⇔ s′ = s ∨ s′ = f(s, s),
∀s • P (s)⇔

(
∃t • s = f(t, t)

)
}

This SKS has three constraints: the first one states that the state s is an initial state
if it is f(a, a). The second constraint states that the system moves from state s to s′

if they are the same or s′ is equal to applying f to (s, s). The third constraint is used
to define a single labelling predicate P . This SKS does not uniquely define a Kripke
structure. An interpretation K1 whose domain is {a}, and maps a to a, and defines f to
be fK1(a,a) = a denotes a Kripke structure with a single state a. In this Kripke structure,
we have PK1 = {a}:

ainitial

22

Moreover, an interpretation K2 whose domain is the set of natural numbers, and maps a
to 2, and maps f to the addition function on natural number represents a Kripke structure
with an infinite state space:

2initial 4 8 ...

In K2, the labelling predicate P is true for even numbers.

In Example 1 on the facing page, the SKS Σ does not uniquely define a Kripke struc-
ture because the functional symbol f is uninterpreted. The structure of a K ∈ C

(
Σ
)

is
determined by the values that K maps to the functional symbols f , and a.

In practice, the following are some reasons for Σ to represent a set of Kripke structures
that are not isomorphic to each other:

1. Under-specification: the formulae in Σ represent a user’s expectations of the un-
derlying system. If a user does not have enough information about the system, then
the constraints in Σ do not sufficiently define a single Kripke structure. This is de-
sirable during the early stages of development when a user would like to “explore”
different possibilities by under-specification.

2. Uninterpreted or semi-interpreted symbols: if there are not enough formulae
in Σ to uniquely identify the behaviour of relational and functional symbols used
in Σ, then Σ can have satisfying interpretations that assign different values to such
symbols.

3. Theoretical boundaries: if the description of a system requires the use of op-
erators that are not expressible in FOL, e.g., transitive closure, then a symbolic
Kripke structure that represents such a system may not have a unique satisfying
interpretation.

3.2 Model Checking of Symbolic Kripke Structures

Model checking a Kripke structure K against a CTL (CTLFC) formula ϕ means to deter-
mine if K c ϕ holds. A symbolic Kripke structure Σ may represent more than one Kripke
structure. What does it mean to model check a symbolic Kripke structure?

23

Table 3.1: Summary of the satisfiability and validity notations

Symbol Meaning Definition

I Φ FOL satisfiability Definition 5 on page 11
Γ � Φ FOL validity Definition 6 on page 12
K c ϕ Model checking a single Kripke structure Definition 13 on page 15
Σ �c ϕ Model checking a symbolic Kripke structure Definition 20

We define model checking of a symbolic Kripke structure Σ against a CTL (CTLFC)
formula ϕ to determine if all satisfying interpretations of Σ satisfy ϕ:

Definition 20. (Model checking symbolic Kripke structures) Let Σ be a symbolic
Kripke structure and ϕ a temporal property, such as a CTL (CTLFC) formula. Σ satisfies
ϕ, denoted by Σ �c ϕ iff all its satisfying interpretations satisfy ϕ:

Σ �c ϕ iff ∀K • K Σ ⇒ K c ϕ

or equivalently:
Σ �c ϕ iff ∀K ∈ C

(
Σ
)
• K c ϕ

The symbolic Kripke structure Σ does not satisfy the CTL (CTLFC) formula ϕ, denoted
by Σ 2c ϕ iff there exists a Kripke structure that satisfies all the formulae in Σ but does
not satisfy ϕ. �

The definition of �c is analogous to the definition of validity for FOL (Definition 6 on
page 12). Table 3.1 summarizes the satisfiability notations used in this thesis.

3.3 Related Work

State-of-the-art model checkers, such as Spin [40], NuSMV [24], and its successor
nuXmv [20], provide languages to represent a single Kripke structure. A user declares a
set of variables v1 : D1, .., vn : Dn such that the Di’s are finite sets. The state space of
such a Kripke structure is D1× ..×Dn, and the transition relation is defined by providing
a description of how variables change values based on the current state. Model checkers

24

such as ProB allow a user to use Di’s that represent a set of relations and functions [47].
Such Di’s are still finite.

There are two differences between our representation, symbolic Kripke structures, and
the input language of Spin, NuSMV and ProB: 1) a symbolic Kripke structure is capable
of representing infinite systems, 2) a symbolic Kripke structure can represent a class of
systems rather than a single one.

3.4 Summary

In this chapter, we presented the concept of symbolic Kripke structures as a means of
representing Kripke structures in FOL. A symbolic Kripke structure Σ can represent a set
of Kripke structures and we defined model checking Σ against a CTL (CTLFC) formula ϕ
as a problem of determining if all the Kripke structures represented by Σ satisfy ϕ. In the
following two chapters, we present methods for using FOL reasoners for model checking
symbolic Kripke structures.

25

Part II

Model Checking in FOL

27

Chapter 4

Model Checking in FOL: Theory

The semantics of CTL and CTLFC are defined by quantification over paths (Definitions 12
on page 15 and 13 on page 15). Paths are functions from natural numbers to states.
Quantification over functions is not possible in FOL; as a result using constraint-based first-
order solvers for model checking has remained elusive. In the mean time, the progress in
the development of SMT solvers [9] has turned first-order reasoners into powerful, efficient
verification tools. In this chapter, we examine the challenge of using FOL to express the
model checking problem for an SKS.

Our first contribution in this chapter is to show that model checking an interesting
fragment of computational tree logic (CTL), which we call CTL-Live, is reducible to validity
checking in FOL. To be precise, we show how to turn Σ �c ϕ into validity checking of Γ � Φ
for some set of FOL formulas Γ and an FOL formula Φ. This reduction implies that model
checking a CTL-Live property of an SKS be done completely using deductive techniques
of FOL. CTL-Live includes the CTL connectives that are often used to express liveness
properties (e.g., AF, AU, etc.).

Our second contribution is to show the maximality of CTL-Live: we prove that CTL-
Live is the largest fragment of CTL whose model checking problem is reducible to FOL
validity checking.

Finally, we address the verification of safety properties (which are not part of CTL-
Live). We show that the inductive invariant approach to verifying invariants is not complete
for infinite state systems: an inductive invariant for a safety property does not always exist.

Reduction of CTL-Live model checking to FOL validity checking does not imply any
decidability results. Our last contribution in this chapter is to derive decidability results

29

about model checking CTL-Live properties by considering fragments of FOL whose validity
checking is decidable.

Most of the content of this chapter has been published [56] and is present in a technical
report [57]. This chapter is organized as follows: in Section 4.1 we present the intuition
behind our reduction by first focusing on transitive closure and some queries about it that
can be formulated as validity problems in FOL despite the fact that transitive closure is
not expressible in it. CTL-Live is presented in Sections 4.2. In this section, we also show
how CTL-Live model checking is reducible to FOL validity checking. In Section 4.3, we
prove the maximality of CTL-Live. In Section 4.4 on page 44, we show that the inductive
invariant method for verification of safety properties is not complete. Decidability results
are presented in Section 4.5.

4.1 Transitive Closure in FOL

Expressing a property in FOL means to come up with an FOL formula that is only satisfied
by those interpretations that have the property. For example, the property “R is a transi-
tive relation” is expressible in FOL by the formula ∀x, y, z • R(x, y) ∧ R(y, z) ⇒ R(x, z).
For every interpretation I, we have:

RI is a transitive relation iff I ∀x, y, z •R(x, y) ∧R(y, z)⇒ R(x, z)

We know that not every property is expressible in FOL. For example, the property “b
is reachable from a via R in a finite number of steps” or equivalently “R+(a, b)” is not
expressible in FOL: it is not possible to come up with an FOL formula that is satisfied
only by those interpretations that make b reachable from a via R [41].

We are interested in verification: given a set of FOL formulas ∆ and some property,
do all satisfying interpretations of ∆ have the property of interest? Obviously, if we can
express a property as a FOL formula Ψ, verifying whether ∆ has the property of the
interest is equivalent to the following validity in FOL:

∆ � Ψ

Despite the fact that R+(a, b) is not expressible in FOL, we show that verifying whether ∆
has the property R+(a, b) is doable in FOL; in other words, there is a set of FOL formula
Γ, and an FOL formula Φ that have the following property:

∆ � R+(a, b) iff Γ � Φ (4.1)

30

The above equivalence states that verifying whether b is reachable from a via R under
all satisfying interpretations of ∆ can be formulated as a validity problem in FOL. This
enables us to use an FOL theorem prover to verify ∆ � R+(a, b). Now, we present the Γ
and Φ that satisfy Equation 4.1 on the facing page.

According to Definition 8 on page 13, the transitive closure of R, is an RT that has the
following three properties:

1. RT includes R: ∀x, y • R(x, y)⇒ RT (x, y)

2. RT is transitive: ∀x, y, z •RT (x, y) ∧RT (y, z)⇒ RT (x, z)

3. RT is the subset of any relation that satisfies Properties 1 and 2.

We add Properties 1 and 2 to ∆ and create Γ:

Γ := ∆ ∪ {∀x, y • R(x, y)⇒ RT (x, y), ∀x, y, z •RT (x, y) ∧RT (y, z)⇒ RT (x, z)}

Without loss of generality, we assume RT is a binary relational symbol that does not
appear in any formulas of ∆. Since Properties 1 and 2 do not uniquely characterize R+, an
interpretation I that satisfies ∆ can be extended to an interpretation I ′ that satisfies Γ in
different ways. Because of Properties 1 and 2, all those I ′ satisfy the following property:

RI = RI
′

and (RI)
+ ⊆ RT I

′

The reason RT under each I ′ includes the transitive closure of R under I is that Γ does
not include Property 3: the smallest relation that includes R and is transitive. Since the
smallest property is not included in Γ, all we can expect from RT is that it includes the
transitive closure of R. This is depicted in Figure 4.1 on the following page.

According to the definition of transitive closure, the pair (a, b) belongs to R+ iff (a, b)
belongs to every RT that satisfies Properties 1 and 2. This statement has a universal
quantifier over all possible values of RT . Such a quantifier is not available in FOL, but
it is implicitly used in the definition of validity. This means that we can use the implicit
universal quantification in Γ � RT (a, b) to check if (a, b) is included in all possible values
of RT . The following theorem states our observations:

Theorem 4. (Verifying reachability in FOL) Let ∆ be a set of FOL formula, RT a
binary relational symbol that does not appear in ∆, and Γ be defined as follows:

Γ := ∆ ∪ {∀x, y • R(x, y)⇒ RT (x, y), ∀x, y, z •RT (x, y) ∧RT (y, z)⇒ RT (x, z)}

We have the following:
∆ � R+(a, b) iff Γ � RT (a, b)

31

D ×D

(R+)I

RT I
′
0

RT I
′
1 RT I

′
3

RT I
′
2

Figure 4.1: Possible values forRT . Let I = 〈D, .〉, I ∆, and I ′ = I plus an interpretation
for RT .

Proof. We need to prove two statements:

1. If ∆ � R+(a, b) then Γ � RT (a, b).

2. If ∆ 2 R+(a, b) then Γ 2 RT (a, b).

• Case (1) suppose ∆ � R+(a, b), and I ′ is an interpretation such that I ′ Γ. We
need to show that I ′ RT (a, b). Since ∆ is a subset of Γ, we can conclude that the
interpretation I = I ′ − {RT} satisfies ∆: I ∆. Moreover, since ∆ � R+(a, b), by
the definition of validity we have:

I R+(a, b)

Because of the two constraints that we have added to ∆ to derive Γ, for every

interpretation I ′ we have R+I′ ⊆ RT I , we can conclude that I ′ RT (a, b).

• Case (2) suppose ∆ 2 R+(a, b). We need to show that an interpretation I ′ exists
such that I ′ Γ and I ′ 1 RT (a, b). Since ∆ 2 R+(a, b), there exists an interpretation
I such that it satisfies every formula in ∆ and I 1 R+(a, b). Extending I to an

interpretation I ′ that is the same as I except it maps RT to RT+I results in an
interpretation that satisfies Γ, but does not satisfy RT (a, b).

32

Temporal part
ϕ ::= π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

::= EXϕ | AXϕ | EFϕ | AFϕ
::= ϕ1EUϕ2 | ϕ1AUϕ2

Propositional part
π ::= P | ¬π | π1 ∨ π2

where P is a labelling predicate.

Figure 4.2: CTL-Live

Theorem 4 on page 31 states an interesting relation between expressing and verifying
in FOL: verifying a property in FOL does not necessarily imply the expressibility of that
property in it. It may be possible to verify a property without expressing it. Reachability
is an example of a property that is not expressible in FOL and yet it is verifiable.

4.2 CTL-Live Model Checking

The are two major mechanisms behind Theorem 4 on page 31:

1. Validity in FOL provides an implicit higher-order universal quantifier.

2. An element belongs to the smallest set in a family of sets iff it belongs to all the sets
in the family.

These two points allowed us to turn a problem of the form ∆ � R+(a, b) into Γ � RT (a, b)
where everything is in FOL and there is no occurrence of transitive closure. In this section,
we apply the same ideas to turn model checking into validity checking. Figure 4.2 presents
CTL-Live: a subset of CTL whose model checking problem is reducible to FOL validity
checking. CTL-Live contains the temporal connectives that are usually used to express
liveness properties.

CTL-Live’s grammar has two parts: temporal and propositional. CTL-Live disallows a
temporal connective to be within the scope of negation (¬); e.g., the CTL formula ¬(AF P)
is not part of CTL-Live, but AF (¬P) is.

33

Reduction Procedure:
INPUT:

Σ : a symbolic Kripke structure.
ϕ : a CTL-Live formula.

OUTPUT:
Σ ∪ CTLive2FOL(ϕ) � ∀s • S0(s)⇒ dϕe(s)

Figure 4.3: Reduction Procedure

We present a function CTLive2FOL() that takes a CTL-Live formula ϕ as input and
generates a finite set of FOL formulae that represent the satisfiability of ϕ. The function
CTLive2FOL() introduces a new relational symbol with arity 1 for every sub-formula of
ϕ including ϕ itself. We use the notation dϕe to refer to the relational symbol introduced
by CTLive2FOL() for the formula ϕ. The formulas generated by CTLive2FOL() are
constraints over these new relational symbols.

Figure 4.3 is an overview of our reduction. The input of the reduction is an SKS Σ
and a CTL-Live formula ϕ. The reduction procedure asserts whether the union of Σ with
the formulas generated by CTLive2FOL(ϕ) entails ∀s • S0(s)⇒ dϕe(s). We prove that
the validity generated by the reduction procedure of Figure 4.3 holds if and only if the
SKS Σ satisfies the CTL-Live formula ϕ (Σ �c ϕ). We dedicate the rest of this section to
presenting the details of CTLive2FOL() and to prove the correctness of our reduction.

Figure 4.4 on the facing page presents the reduction function. In this function, dϕe is
a new relational symbol that is introduced by CTLive2FOL() for the formula ϕ. For
every sub-formula ϕ′ of ϕ, CTLive2FOL() defines one or two FOL formulas over each
new relational symbol, dϕ′e. The complexity of CTLive2FOL() is linear with respect to
the size of ϕ.

The main contribution of this section is the following equivalence:

Σ �c ϕ iff Σ ∪ CTLive2FOL(ϕ) � S0 ⊆ dϕe

where Σ is an SKS and ϕ is a CTL-Live formula. We prove three lemmas that assist us in
proving this equivalence. For a Kripke structure K, these lemmas study the relationship
between the set of states of K that satisfy the formula ϕ ([ϕ]K) and the set of states
identified by the labelling predicate dϕe (dϕeK). In [ϕ]K, we consider K as a Kripke
structure, whereas in dϕeK, K is an interpretation.

34

CTLive2FOL(ϕ):
case ϕ of

1. P => {∀s • dϕe(s)⇔ P (s)} where P is a labelling predicate
2. ¬ϕ1 => {∀s • dϕe(s)⇔ ¬dϕ1e(s)} ∪ CTLive2FOL(ϕ1)
3. ϕ1 ∨ ϕ2 => {∀s • dϕe(s)⇔ dϕ1e(s) ∨ dϕ2e(s)} ∪

CTLive2FOL(ϕ1) ∪ CTLive2FOL(ϕ2)
4. ϕ1 ∧ ϕ2 => {∀s • dϕe(s)⇔ dϕ1e(s) ∧ dϕ2e(s)} ∪

CTLive2FOL(ϕ1) ∪ CTLive2FOL(ϕ2)
5. EXϕ1 => {∀s •

(
∃s′ • N(s, s′) ∧ dϕ1e(s′)

)
⇒ dϕe(s)} ∪ CTLive2FOL(ϕ1)

6. AXϕ1 => {∀s •
(
∀s′ • N(s, s′)⇒ dϕ1e(s′)

)
⇒ dϕe(s)} ∪ CTLive2FOL(ϕ1)

7. EFϕ1 => {dϕ1e ⊆ dϕe, ∀s •
(
∃s′ • N(s, s′) ∧ dϕe(s′)

)
⇒ dϕe(s)} ∪

CTLive2FOL(ϕ1)
8. AFϕ1 => {dϕ1e ⊆ dϕe, ∀s •

(
∀s′ • N(s, s′)⇒ dϕe(s′)

)
⇒ dϕe(s)} ∪

CTLive2FOL(ϕ1)
9. ϕ1EUϕ2 => {dϕ2e ⊆ dϕe, ∀s • dϕ1e(s) ∧

(
∃s′ • N(s, s′) ∧ dϕe(s′)

)
⇒ dϕe(s)} ∪

CTLive2FOL(ϕ1) ∪ CTLive2FOL(ϕ2)
10. ϕ1AUϕ2 => {dϕ2e ⊆ dϕe, ∀s • dϕ1e(s) ∧

(
∀s′ • N(s, s′)⇒ dϕe(s′)

)
⇒ dϕe(s)} ∪

CTLive2FOL(ϕ1) ∪ CTLive2FOL(ϕ2)

Figure 4.4: Definition of CTLive2FOL(ϕ)

35

If a CTL-Live formula π is derived from only the propositional part of Figure 4.2, the
sets [π]K (the set of states in the Kripke structure K that satisfy the CTL-Live formula π)
and dπeK (the set of states assigned to the labelling predicate dπe by the interpretation K)
for every K such that K Σ ∪ CTLive2FOL(π) are equal. This is due to the fact that
the constraints that are defined by CTLive2FOL(π) for these connectives are necessary
and sufficient to characterize the set of states that satisfy π:

Lemma 2. Let Σ be an SKS, π a CTL-Live formula derived from the propositional part of
Figure 4.2 on page 33. For every Kripke structure K such that K Σ∪CTLive2FOL(π)
the following holds:

[π]K = dπeK

Proof. Proof by structural induction on π. In the following cases, we assume K Σ ∪
CTLive2FOL(ϕ).

• Base case: let π = P where P is a labelling predicate. For every s, we have:
s ∈ [P]K iff s ∈ PK by semantics of CTL

iff s ∈ dP eK by Line 1 in definition of CTLive2FOL()
therefore [P]K = dP eK.

• Induction step: according to the structure of π, two cases are distinguished having
[π1]K = dπ1eK and [π2]K = dπ2eK as induction hypotheses:

1. Let π = ¬π1. For every s, we have:
s ∈ [¬π1]K iff s 6∈ [π1]K by semantics of CTL

iff s 6∈ dπ1eK by induction hypothesis
iff s ∈ d¬π1eK by Line 2 in definition of CTLive2FOL()

therefore [¬π1]K = d¬π1eK.

2. Let π = π1 ∨ π2. For every s, we have:
s ∈ [π1 ∨ π2]K iff s ∈ [π1]K ∨ s ∈ [π2]K by semantics of CTL

iff s ∈ dπ1eK ∨ s ∈ dπ2eK by induction hypotheses
iff s ∈ dπ1 ∨ π2eK by Line 3 in definition of

CTLive2FOL()
therefore [π1 ∨ π2]K = dπ1 ∨ π2eK.

A similar result to Lemma 2 can be proven for the CTL-Live formulas that are derived
from the temporal part of Figure 4.2 on page 33. The difference is that the set [ϕ]K

36

is a subset of dϕeK rather than being equal to it. The reason is that the constraints
CTLive2FOL(ϕ) do not completely characterize [ϕ]K: these constraints are necessary
but they are not sufficient; as a result, the set dϕeK includes [ϕ]K and possibly some other
states.

Lemma 3. Let Σ be an SKS, ϕ a CTL-Live. The following holds:

∀ K Σ ∪ CTLive2FOL(ϕ) • [ϕ]K ⊆ dϕeK

Proof. Proof by structural induction on ϕ. In the following cases, we assume K Σ ∪
CTLive2FOL(ϕ).

• Base case: let ϕ = π where π is a CTL-Live formula derived from the propositional
part of Figure 4.2 on page 33. By Lemma 2 on the preceding page, [π]K = dπeK, and
therefore [π]K ⊆ dπeK.

• Induction step: according to the structure of ϕ, eight cases are distinguished having
[ϕ1]K ⊆ dϕ1eK and [ϕ2]K ⊆ dϕ2eK as induction hypotheses. Since EFϕ (AFϕ) is
equivalent to >EUϕ (>AUϕ), we only go through six cases:

1. Let ϕ = ϕ1 ∨ ϕ2. For every s, we have:
s ∈ [ϕ1 ∨ ϕ2]K implies s ∈ [ϕ1]K ∨ s ∈ [ϕ2]K by semantics of CTL

implies s ∈ dπ1eK ∨ s ∈ dπ2eK by induction hypotheses
implies s ∈ dπ1 ∨ π2eK by Line 3 in definition of

CTLive2FOL()
therefore [ϕ1 ∨ ϕ2]K ⊆ dϕ1 ∨ ϕ2eK.

2. Let ϕ = ϕ1 ∧ ϕ2. Proof is similar to previous case.

3. Let ϕ = EX ϕ1. For every s, we have:
s ∈ [EX ϕ1]K implies ∃s′ • NK(s, s′) ∧ s′ ∈ [ϕ1]K by semantics of CTL

implies ∃s′ • NK(s, s′) ∧ s′ ∈ dϕ1eK by induction hypothesis
implies s ∈ dEX ϕ1eK by Line 5 in definition

of CTLive2FOL()
therefore [EX ϕ1]K ⊆ dEX ϕ1eK.

4. Let ϕ = AX ϕ1. Proof is similar to previous case.

5. Let ϕ = ϕ1 EU ϕ2, and s ∈ [ϕ1 EU ϕ2]K. By induction on rank(s) (Defini-
tion 14 on page 16), we prove that s ∈ dϕ1 EU ϕ2eK.

37

– Base case: suppose rank(s) = 0; in this case, the state s itself satisfies
ϕ2, which means s ∈ [ϕ2]K. Using the induction hypotheses from the outer
induction, we have s ∈ dϕ2eK, and according to the first constraint in
Line 9 of Figure 4.4 on page 35, we have s ∈ dϕ1 EU ϕ2eK; therefore, if
rank(s) = 0 then s ∈ dϕ1 EU ϕ2eK.

– Induction step: suppose rank(s) = m + 1. The induction hypotheses
for this inner induction is: if s′ ∈ [ϕ1 EU ϕ2]K and rank(s′) = m, then
s′ ∈ dϕ1 EU ϕ2eK. Since rank(s) = m+ 1 6= 0, s ∈ [ϕ1]K and there exists
s′ such that NK(s, s′) ∧ s′ ∈ [ϕ1 EU ϕ2]K, and rank(s′) = m. According
to the induction hypotheses of the inner induction, we have:

∃s′ •NK(s, s′) ∧ s′ ∈ dϕ1 EU ϕ2eK

Using the induction hypotheses of the outer induction ([ϕ1]K ⊆ dϕ1eK), we
derive s ∈ dϕ1eK. According to the second constraint in Line 9 of Figure 4.4
on page 35, and the above property, we have: s ∈ dϕ1 EU ϕ2eK; therefore
if rank(s) = m+ 1 then s ∈ dϕ1 EU ϕ2eK.

6. Let ϕ = ϕ1 AU ϕ2. Proof is similar to previous case.

Another way of proving Part 5 (6) in the induction step of Lemma 3 on the previous
page is to consider the encoding of CTL in mu-calculus [25]: the set of states satisfying
ϕ1EUϕ2 (ϕ1AUϕ2) is the smallest set that satisfies the constraints in Line 9 (10) of
CTLive2FOL().

Lemma 4. Let Σ be an SKS and ϕ a CTL-Live formula. For every K Σ there exists
K′ Σ ∪ CTLive2FOL(ϕ) such that:

SK0 = SK
′

0 and [ϕ]K = [ϕ]K′ = dϕeK′

Proof. Suppose Σ is over Kripke base B and K Σ. We define K′ as an interpretation
that has the same domain as K and its mapping function is defined as follows:

XK
′
=

{
XK X ∈ B,
[ψ]K X = dψe where ψ is a sub-formula of ϕ

According to the semantics of CTL, the constraints of CTLive2FOL(ϕ) for each sub-
formula ψ of ϕ are necessary constraints that the sets [ψ]K satisfy; therefore, K′ is a
satisfying interpretation of Σ ∪ CTLive2FOL(ϕ).

38

Now, we present the main contribution of this section:

Theorem 5. (CTL-Live model checking as FOL validity checking) Let Σ be an
SKS, and ϕ a CTL-Live formula from Figure 4.2 on page 33. We have the following
property:

Σ �c ϕ iff Σ ∪ CTLive2FOL(ϕ) � S0 ⊆ dϕe

Proof. We need to prove two statements:

1. If Σ �c ϕ then Σ ∪ CTLive2FOL(ϕ) � S0 ⊆ dϕe.

2. If Σ 2c ϕ then Σ ∪ CTLive2FOL(ϕ) 2 S0 ⊆ dϕe.

• Case (1) suppose Σ �c ϕ, and K Σ ∪ CTLive2FOL(ϕ). We need to show that
K S0 ⊆ dϕe. From K Σ∪ CTLive2FOL(ϕ), we can conclude K Σ, and since
Σ �c ϕ, we have the following:

SK0 ⊆ [ϕ]K

According to Lemma 3 on page 37, [ϕ]K ⊆ dϕeK. By the transitivity of the subset
relation over sets, we can conclude the following:

SK0 ⊆ dϕeK

and by the semantics of FOL, we have our goal:

K S0 ⊆ dϕe

• Case (2) suppose Σ 2c ϕ. We need to show that there exists an interpretation K
such that K Σ ∪ CTLive2FOL(ϕ) and K 1 S0 ⊆ dϕe. Since Σ 2c ϕ, there exists
K0 Σ and SK0

0 6⊆ [ϕ]K0 . By Lemma 4 on the facing page, there exists K such that
K Σ ∪ CTLive2FOL(ϕ) and it has the following property:

SK0
0 = SK0 and [ϕ]K0 = [ϕ]K = dϕeK

from the above property, we can conclude that SK0 6⊆ dϕeK; therefore, K 1 S0 ⊆ dϕe.

39

4.3 Maximality of CTL-Live

Theorem 5 on the previous page shows that model checking CTL-Live is reducible to va-
lidity checking in FOL. The logical connectives that are not included in CTL-Live are EG,
AG, and ¬ over temporal connectives. To show model checking of these three connectives
is not reducible to FOL validity checking, we reduce the complement of the halting problem
on an empty tape for a deterministic Turing machines (DTM) to the model checking of
EG and AG against an SKS. The complement of the halting problem is not recursively
enumerable [28] but FOL validity checking is; therefore, model checking of EG and AG
cannot be reduced to FOL validity checking, otherwise, the complement of halting problem
would be recursively enumerable. We call this result the maximality of CTL-Live.

In the following, we assume a DTM M = 〈Q, δ〉 is a pair where Q = {q0, . . . , qn} is
a finite set of states, the tape alphabet is {b, 0} and δ, the transition function, is a total
function from Q × {b, 0} to Q × {b, 0} × {L,R}. For example, the transition δ(q9, 0) =
(q2, b, L) means that if the DTM M is at state q9 and the tape head is scanning 0, in the
next step, M goes to state q2, writes b on the tape, and moves the head to the Left.

A DTM M = 〈Q, δ〉 starts in the state q0. We consider M to have halted if it reaches
state qn. The tape is one way infinite. In the initial state, the head tape is on the left most
square of the tape, and every square on the tape is blank (b).

The idea behind reducing the complement of the halting problem on an empty tape for
a DTM to model checking of EG or AG is that the set of all the configurations of a DTM
can be considered as the state space for a Kripke structure and the next state relation of
this Kripke structure can be derived from the transition function of the DTM. Since the
underlying DTM is deterministic, this Kripke structure has only one computation path,
and therefore, satisfying EG and AG would be equivalent. The Globaly part of EG and
AG can be used to state that no state along the path is a halting state.

Lemma 5. Let M = 〈Q, δ〉 be a DTM; the complement of the halting problem on an
empty tape for M is reducible to model checking of an EG formula against an SKS.

Proof. To prove this lemma, we create an SKS Σ from M such that Σ satisfies an EG
formula iff M does not halt on an empty tape. The SKS that encodes M is created over
the following Kripke base:

B = {0, inc/1, dec/1, Q/1, H/1} ∪ {b/2, S0/1, N/2, halt/1}

The constant 0 represents number zero. The functional symbols inc/1 and dec/1 are used
to model increment and decrement operations on natural numbers. We can refer to a

40

certain natural number by applying inc to 0; e.g., number 2 is represented as inc(inc(0)),
for short inc2(0). In this lemma and the following, natural numbers are short forms of
their representations using this base; e.g., in the formula Q(t) = 2, the symbol 2 is a short
form of inc2(0).

The natural numbers are used to represent configurations of M: the position of the
tape head, the current state of M, and to point to different squares of the tape. The
binary relational symbol b(t, i) represents whether at step t the ith square is blank or 0.
The functional symbol Q(t) = i represents that the state of M at step t is qi, and the
functional symbol H(t) = i represents that the tape head ofM at step t is on the ith square.
The relational symbols S0 and N are used to model the initial state and the next state
relation of the SKS. The relational symbol halt is a labelling predicate used to represent
whether a state is a halting state.

The constraints in the SKS Σ are divided into 5 parts:

1. Constraints for encoding an “acceptable” semantics for 0, inc, and dec:

• ∀i • inc(i) 6= 0

• ∀i, i′ • inc(i) = inc(i′)⇒ i = i′

• ∀i • i 6= 0⇒
(
∃i′ • inc(i′) = i

)
• dec(0) = 0

• ∀i • dec(inc(i)) = i

• ∀i • i 6= 0⇒ inc(dec(i)) = i

2. Constraint stating that at each step of computation at most one position of the tape
can be changed:

∀t, i • H(t) 6= i⇒
(
b(t, i)⇔ b(inc(t), i)

)
3. Constraints for encoding the initial configuration of M:

• Q(0) = 0 : at step 0, M is at state q0,

• H(0) = 0 : at step 0, the tape head of M is at position 0,

• ∀i • b(0, i) : at step 0, every position of the tape is blank.

4. Constraints for encoding the transition function δ: for every pair in Q × {b, 0} we
have a formula that mimics the computation of M. For example, the formula that
simulates δ(q9, 0) = (q2, b, L) is

41

∀t • Q(t) = 9 ∧ ¬b(t,H(t)) ⇒
Q(inc(t)) = 2 ∧ b(inc(t), H(t)) ∧ H(inc(t)) = dec(H(t))

and the formula that simulates δ(q6, b) = (q7, 0, R) is
∀t • Q(t) = 6 ∧ b(t,H(t)) ⇒

Q(inc(t)) = 7 ∧ ¬b(inc(t), H(t)) ∧ H(inc(t)) = inc(H(t))

5. Constraints for the initial state, next state relation, and halting state of the corre-
sponding Kripke structure. We use natural numbers as the state space of a Kripke
structure. The configuration ofM at state (step) t is represented by Q(t), H(t), and
b(t, .):

• ∀t • S0(t)⇔ t = 0 : initial state,

• ∀t, t′ • N(t, t′)⇔ t′ = inc(t) : next state relation,

• ∀t • halt(t)⇔ Q(t) = n : halting states.

We claim that the following holds:

Σ �c EG¬halt iff M does not halt on an empty tape.

We need to prove two statements:

1. If Σ �c EG¬halt, then M does not halt on an empty tape.

2. If M does not halt on an empty tape, then Σ �c EG¬halt.

• Case (1) Σ �c EG¬halt means that every Kripke structure that satisfies Σ, satisfies
EG¬halt. The standard interpretation of natural numbers, which satisfies Σ, corre-
sponds to the computation of M. Since EG¬halt means there exists a path along
which halt is never true, and the DTM M is deterministic, and therefore has only
one path, we can conclude that M does not halt on an empty tape.

• Case (2) By induction on the number of steps, we can prove that if at step t, M is
at state qi, every Kripke structure K that satisfies Σ, then K Q(t) = i. Assuming
M does not halt on an empty tape, we can conclude that for every K Σ has an
infinite path starting at 0:

0 7→ 1 7→ 2 7→ 3 7→ ..

where none of them is the halting state qn:

Q(0) 6= n, Q(1) 6= n, Q(2) 6= n, Q(3) 6= n, ..

42

Therefore, every K Σ satisfies EG¬halt:

Σ �c EG¬halt

Lemma 6. Let M = 〈Q, δ〉 be a DTM; the complement of the halting problem on an
empty tape for M is reducible to model checking of an AG formula against an SKS.

Proof. To prove this lemma, we create an SKS Σ fromM such that Σ �c AG¬halt iffM
does not halt on an empty tape. The SKS that we need to build for this reduction is same
as the one in Lemma 5 on page 40. We need to prove two statements:

1. If Σ �c AG¬halt, then M does not halt on an empty tape.

2. If Σ 2c AG¬halt, then M halts on an empty tape.

• Case (1) similar to Case 1 of Lemma 5 on page 40.

• Case (2) since Σ �c AG¬halt, there exists a Kripke structure K Σ that does not
satisfy AG¬halt. This means that there is a finite path from an initial state of K
that reaches a state satisfying halt. By induction on the length of this path, we can
show that this finite path corresponds to a finite sequence of configurations in M
that results in a halting configuration; as a result, M halts on an empty tape.

Using the two lemmas proved in this section, we present the main contribution of this
section:

Theorem 6. (Maximality of CTL-Live) It is not possible to reduce model checking
of EG, AG, or ¬ to FOL validity checking for all SKSs Σ; as a result, CTL-Live is the
“largest” fragment of CTL that its model checking is reducible to FOL validity checking.

Proof. In Lemma 5 on page 40 (Lemma 6), we showed that the complement of the halting
problem on an empty tape for a DTM is reducible to model checking of EG (AG). This
problem is not recursively enumerable, as a result, it cannot be reduced to validity checking
in FOL, which is a recursively enumerable problem. We also know that EGϕ is equivalent
to ¬(AF¬ϕ). Since AF is include in this fragment, ¬ cannot be added as well.

43

4.4 Incompleteness of Inductive Invariant Method

The verification of invariants is often of interest for safety properties of models. A property
P is an invariant iff it holds in every reachable state of a Kripke structure. According to
the semantics of CTL, P being an invariant of a Kripke structure K is equivalent to K
satisfying AG P .

A property P is an inductive invariant for a Kripke structure K iff it satisfies the
following two constraints:

1. ∀s • S0(s)⇒ P (s)

2. ∀s, s′ • P (s) ∧N(s, s′)⇒ P (s′)

The first constraint states that every initial state satisfies P , and the second one states
that if the state s satisfies P and s′ is reachable from s in one step, then s′ satisfies P .
It is easy to see that every inductive invariant is also an invariant of a Kripke structure,
but every invariant is not necessarily an inductive invariant. Checking if a property is an
inductive invariant is computationally easier than checking if it is an invariant.

According to Theorem 6, model checking AG is not recursively enumerable, whereas,
inductive invariant checking is. Motivated by this fact, the inductive invariant method
to check if a property P is an invariant has gained popularity for both finite and infi-
nite Kripke structures. Many researchers have found inductive invariants by hand. The
method of IC3 [16] is a way to find automatically inductive invariants for finite systems,
and this approach has been generalized in nuXmv [20] as an incomplete approach to find
automatically inductive invariants for infinite state systems.

Generally speaking, the goal is to find an inductive invariant that is strong enough to
prove the original invariant of interest. This method is essentially as follows: to prove that
P is an invariant, first check if it is an inductive invariant; if it is not, then try to compute
or guess an R so that P ∧R is an inductive invariant, and therefore, P is proved to be an
invariant. The formula R tries to eliminate unreachable states that do not allow P to be
an inductive invariant.

An important question is “does an R always exist when P is an invariant?” For finite
Kripke structures, the answer is “yes” since the number of states is finite, R can enumerate
all reachable states. However, for infinite state systems, we can now show that R is not
guaranteed to exist.

44

Theorem 7. (Incompleteness of inductive invariant method) There exists a Kripke
structure K and a property P such that P is an invariant of K and there is no formula R
such that P ∧R is an inductive invariant for K.

Proof. According to Lemma 6 on page 43, proving a DTM does not halt on an empty
tape is reducible to proving that a formula named ¬halt is an invariant. If an R exists
then we can enumerate all R’s and check if ¬halt∧R is an inductive invariant in parallel;
therefore, a semi-decision procedure for the complement of the halting problem exists and
it is recursively enumerable. This is a contradiction, and as a result, such an R does not
always exist.

4.5 Some Decidability Results

In Theorem 5 on page 39, we show how to reduce model checking an SKS against a CTL-
Live formula to FOL validity checking. Because validity for FOL is recursively enumerable,
a semi-decision procedure can be used to generate a proof in a finite number of steps if the
property holds. However, if the property does not hold, we cannot guarantee termination
of the deduction process. In this section, we draw on decidability results for fragments of
FOL to consider some restricted versions of the CTL-Live model checking problem that
are decidable, and therefore guaranteed to terminate (with enough resources).

A fragment of FOL achieves decidability by putting restrictions on the allowed signa-
tures and/or formulae. These restrictions reduce the expressive power of the fragment, and
as a result, not all fragments of FOL can be used for CTL-Live model checking based on
our reduction in Theorem 5 on page 39.

The FOL formulae that are generated by our CTLive2FOL() method have two main
characteristics: 1) the use of quantifiers and 2) the introduction of unary relational sym-
bols, which limit the relevant decidable fragments of FOL. For example, the theory of
uninterpreted functions (UIF), which is decidable, includes the use of new relational/func-
tional symbols but does not allow quantifiers, therefore UIF cannot be used for CTL-Live
model checking based on Theorem 5 on page 39. Another decidable logic that cannot be
used is Presburger arithmetic (PA). Unlike UIF, PA includes quantifiers, but it does not
permit the introduction of a new relational/functional symbol. In the following, we show
how the AE fragment of FOL [38] and a family of description logics (DLs) [6] can be used
for decidable CTL-Live model checking based on Theorem 5 on page 39.

45

ϕ ::= π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

::= EXϕ | EFϕ | ϕ1EUϕ2

π ::= P | ¬π | π1 ∨ π2
where P is a labelling predicate.

Figure 4.5: Decidable fragment of CTL-Live based on AE

4.5.1 AE for CTL-Live Model Checking

The AE fragment of FOL includes restrictions on both the allowed signatures and formulas.
A formula Φ is an AE formula iff no functional symbol with arity ≥ 1 occurs in Φ, and
no existential quantifier is within the scope of a universal quantifier when Φ is in normal
negation form. Equivalently, Φ belongs to the AE fragment iff Φ has a prenex normal
form (PNF):

∃x1, ..,∃xn,∀y1, ..,∀ym : Ψ ,

where no functional symbol with arity ≥ 1 occurs in Ψ. Checking the satisfiability of a set
of AE formulae is decidable.

If every formula in Σ belongs to AE and ϕ is a formula that belongs to the fragment of
CTL-Live presented in Figure 4.5, then the model checking problem falls within AE and
is therefore decidable. We must limit the CTL-Live connectives to those that have a PNF
format that belongs to AE; as a result, the connectives AX, AF, and AU are left out.

Theorem 8. Let Σ be an SKS such that every formula in Σ belongs to the AE fragment
of FOL, and ϕ a formula derived from the grammar in Figure 4.5. Checking Σ �c ϕ is
reducible to satisfiability checking of a set of AE formulas, and as a result, it is decidable.

Proof. Based on Theorem 5 on page 39 and the semantics of FOL, Σ �c ϕ holds iff the
following set of FOL formulas is unsatisfiable:

Σ ∪ CTLive2FOL(ϕ) ∪ {S0 6⊆ dϕe}

Since every formulae in Σ belongs to AE, all we need to show is that CTLive2FOL(ϕ)
and S0 6⊆ dϕe also belongs to AE. The formula S0 6⊆ dϕe in PNF is ∃s • S0(s)∧¬dϕe and
every formula in CTLive2FOL(ϕ), where ϕ is derived from the grammar in Figure 4.5,
belongs to AE as well. For example, the formulas generated for EF by CTLive2FOL()
are:

1. dϕ1e ⊆ dϕe

46

2. ∀s •
(
∃s′ • N(s, s′) ∧ dϕe(s′)

)
⇒ dϕe(s)

and their PNF belongs to AE:

1. ∀s • ¬dϕ1e(s) ∨ dϕe(s)

2. ∀s, s′ • ¬N(s, s′) ∨ ¬dϕe(s′) ∨ dϕe(s)

The AE fragment of FOL is decidable because it has the finite model property : a set
of AE formula is satisfiable iff it has a finite satisfying interpretation. The size of this
interpretation can be calculated based on the structure of an AE formula. From a model
checking perspective, the finite model property of AE implies that an SKS expressed in the
AE fragment is always isomorphic to a finite Kripke structure; in other words, a “truly”
infinite Kripke structure is not expressible in the AE fragment. In the next subsection, we
consider another decidable fragment of FOL that does not have the finite model property
and it can be used for CTL-Live model checking based on Theorem 5 on page 39.

4.5.2 DLs for CTL-Live Model Checking

The formulas in a description logic (DL) are made from atomic concepts and atomic
roles. Atomic concepts and roles are relational symbols having arity 1 and 2 respectively.
Intuitively, an atomic concept is a set and an atomic role is a binary relation. Different
DLs provide different sets of operators to create general concepts (sets) and roles (binary
relations) from the existing ones.

The DL ALC provides the operators: complement (¬), intersection (u), union (t), join
(∃.), and universal join (∀.). An interpretation I with the domain D, maps an atomic
concept A to a subset of D and an atomic role R to a subset of D × D (as in FOL).
Figure 4.6 on the following page presents the syntax and the semantics of general concepts
extending the mapping for atomic concepts and roles.

For two general concepts C1 and C2, C1 v C2 is a general concept inclusion (GCI) for-
mula, which intuitively states that the set C1 is a subset of C2

1. Formally, an interpretation
I satisfies C1 v C2 iff C1 under I is a subset of C2 under I:

I C1 v C2 iff CI1 ⊆ CI2
1The notation C1 ≡ C2 is a short form for C1 v C2, C2 v C1.

47

Syntax
C ::= A | ¬C | C1 u C2 | C1 t C2

::= ∃R.C | ∀R.C
Semantics

(¬C)I := D \ CI
(C1 u C2)

I := CI1 ∩ CI2
(C1 t C2)

I := CI1 ∪ CI2
(∃R.C)I := {a |∃b ∈ CI • (a, b) ∈ RI}
(∀R.C)I := {a |∀b • (a, b) ∈ RI ⇒ b ∈ CI}

Figure 4.6: ALC: A and R are atomic concepts and roles.

Given a set of GCIs Γ and a general concept C, the concept satisfiability problem, denoted
by Γ dl C, is to determine if there exists an interpretation I that satisfies every GCI in
Γ and CI is not empty:

Γ dl C iff ∃I Γ • CI 6= ∅

The concept satisfiability problem for ALC is decidable.

For the fragment of CTL-Live at the top of Figure 4.7 on the next page, the model
checking problem is reducible to concept satisfiability in ALC and therefore decidable. The
formulas generated by CTLive2FOL() for a CTL-Live formula ϕ can be considered as set
inclusion formulas and as a result, we can use the operators of ALC to express them. For
example, the formulas generated for EF by CTLive2FOL() can be expressed in ALC as
follows:

dϕ1e ⊆ dϕe dϕ1e v dϕe

∀s •
(
∃s′ • N(s, s′) ∧ dϕe(s′)

)
⇒ dϕe(s) ∃N.dϕe v dϕe

The bottom of Figure 4.7 on the facing page shows the function CTLive2DL() that is
the ALC version of CTLive2FOL() (defined in Figure 4.4 on page 35).

Theorem 9. Let Σ be an SKS such that every formula in it is a GCI, and ϕ be a CTL-Live
formula derivable from the grammar of Figure 4.7 on the facing page. We have:

Σ �c ϕ iff Σ ∪ CTLive2DL(()ϕ) 1dl S0 u ¬dϕe

Proof. By the definition of dl and Theorem 5 on page 39.

48

ϕ ::= π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

::= EXϕ | AXϕ | EFϕ | AFϕ
π ::= P | ¬π | π1 ∨ π2

where P is a labelling predicate.

CTLive2DL(ϕ):
case ϕ of

1. P => dP e := P
2. ¬ϕ1 => {¬dϕ1e ≡ dϕe} ∪ CTLive2DL(ϕ1)
3. ϕ1 ∨ ϕ2 => {dϕ1e t dϕ2e ≡ dϕe} ∪ CTLive2DL(ϕ1) ∪ CTLive2DL(ϕ2)
4. ϕ1 ∧ ϕ2 => {dϕ1e u dϕ2e ≡ dϕe} ∪ CTLive2DL(ϕ1) ∪ CTLive2DL(ϕ2)
5. EX ϕ1 => {∃N.dϕ1e v dϕe} ∪ CTLive2DL(()ϕ1)
6. AX ϕ1 => {∀N.dϕ1e v dϕe} ∪ CTLive2DL(()ϕ1)
7. EF ϕ1 => {dϕ1e v dϕe, ∃N.dϕ1e v dϕe} ∪ CTLive2DL(ϕ1)
8. AF ϕ1 => {dϕ1e v dϕe, ∀N.dϕ1e v dϕe} ∪ CTLive2DL(ϕ1)

Figure 4.7: Decidable fragment of CTL-Live based on ALC

ALCFI is another DL that extends ALC by functionality and role-inverse opera-
tors [6]. Since ALCFI includes ALC, and the concept satisfiability problem is decidable
for ALCFI, we can also use it for decidable CTL-Live model checking. An interesting
property of ALCFI is that it does not have the finite model property and yet it is de-
cidable. From the model checking perspective, this means that we can describe “truly”
infinite Kripke structures in ALCFI and have a decision procedure for verifying them.

4.6 Related Work

K-induction is a technique for unbounded model checking of safety properties of finite
systems [53]. This technique extends bounded model checking by proving that bounded
model checking for bound K is sufficient. The number K is dominated by the diameter
of a Kripke structure. The diameter is computed iteratively using a SAT solver to check
the equivalence of two formulae: the equivalence holds iff no new state can be reached by
taking more than K steps. In [53], termination is guaranteed due to the finiteness of the
Kripke structures under study.

49

Bultan, Gerber, and Pugh used Presburger formulae to represent infinite sets of states
symbolically [17]. Their model checking approach requires a fixed-point calculation, and
termination is achieved by using conservative approximation. This approach allows false
negatives.

Kesten and Pnueli presented a sound and relatively complete (oracle based) deductive
system for CTL* [45] to provide proof-like evidence for a model that satisfies a property.
CTL-Live is less expressive than CTL* but based on the completeness of FOL, CTL-Live
has a sound and complete deductive system, whereas CTL* does not have a complete
deductive system.

Beyene, Popeea, and Rybalchenko encoded CTL model checking of infinite state sys-
tems into forall-exists quantified Horn clauses (which we call ExQH) [12]. The contribution
of [12] is to develop a solver for ExQH and demonstrate its use for model checking CTL
properties. Their method requires the models and the model checking constraints to be
expressed in ExQH and to satisfy some well-foundedness conditions, whereas our results
hold for any set of FOL constraints, which may describe multiple Kripke structures. Ter-
mination of their method is not guaranteed.

Existing decidability results for infinite state model checking, e.g., [34], are derived by
restricting the form of Kripke structures and temporal properties. For example, Esparza
shows that model checking EF for Petri nets having an effectively semilinear reachability
relation is decidable. Our decidability results are by-products of our reduction of model
checking to validity checking, and considering the decidable fragments of FOL. It would be
interesting to compare the expressive power of decidable fragments of FOL for modelling
symbolic Kripke structures with the restricted Kripke structures introduced in the existing
decidability results.

Ben-David, Trefler, and Weddell reduced CTL model checking of finite Kripke struc-
tures to ALC concept satisfiability checking [11]. Their reduction relies on the finiteness
of the Kripke structure, whereas ours does not and our decidability result with respect to
DLs is for infinite systems as well.

Model checking a parametrized system means checking if every member of a (infinite)
family of finite Kripke structures satisfies a temporal property [25]. Each member of
such a family is derived by fixing a parameter, e.g., the number of processes that can
execute. A symbolic Kripke structure can represent a family of Kripke structures, and
our model checking approach is complete for parametrized systems as long as the model
and its parameter are expressible in FOL. In most cases, the parameter is an integer
and proving properties about all members requires induction and the generation of an
inductive invariant; in these cases, FOL reasoning alone is not sufficient. Investigating the

50

combination of our model checking technique with verification methods for parametrized
systems that are based on abstraction and invariants [46,60] could be a basis for verifying
infinite families of infinite systems.

4.7 Summary

We introduced CTL-Live: a fragment of CTL whose model checking problem is reducible
to FOL validity checking. CTL-Live includes CTL connectives that are used to express
liveness properties (e.g., AF, AU, etc.). Our reduction shows that FOL deductive tech-
niques are sufficient for model checking CTL-Live formulas, without the need for iteration,
abstraction, or induction. Our theory provides the basis for using first-order reasoners
directly for model checking CTL-Live properties of abstract and infinite Kripke structures
expressed symbolically in FOL. By avoiding iteration, the tool can reuse its internal deduc-
tions to increase productivity. The rapid improvements in the efficiency of SMT solvers,
FOL automated theorem proving, etc. have a direct effect on the practical application of
our results.

The key insight in our approach is to use the implicit higher-order quantifier in the
definition of validity to require that all initial states of a Kripke structure are within all
the sets of states that satisfy an overapproximation of a CTL-Live temporal operator, and
thereby, reducing model checking to validity in FOL. Validity checking for FOL is r.e.;
as a result, this reduction ensures that a proof can be automatically generated when a
CTL-Live formula is satisfied by a model.

An implicit result of our work is that some reachability queries can be verified and
expressed as a validity argument in FOL even though the reachability relation itself is not
expressible in FOL.

We proved that CTL-Live is maximal in the sense that if any other CTL connective is
added, non-FOL reasoning techniques would be required and the model checking problem
becomes harder than an r.e. problem.

We also examined the decidability of CTL-Live model checking for SKSs. We showed
how to derive decidability results for CTL-Live model checking by focusing on decidable
fragments of FOL, namely the AE fragment and some dialects of description logics.

51

Chapter 5

Model Checking in FOL: Practice

In Chapter 4, we introduced CTL-Live, a fragment of CTL whose model checking problem
is reducible to FOL validity checking (Theorem 5 on page 39). CTL-Live consists of
operators that are commonly used to describe liveness properties (e.g., AF, AU). We
also showed that CTL-Live is maximal with respect to FOL in the sense that the model
checking problem of CTL operators that are not within CTL-Live (e.g., invariants) are
not reducible to FOL validity checking (Theorem 6 on page 43).

Theorem 5 on page 39 creates the possibility of the following practical use: model
the system as an SKS, add automatically generated constraints based on the CTL-Live
property, and give the problem to an SMT solver to solve by itself. If the property is valid,
theoretically with enough resources, the SMT solver can complete the analysis because
FOL is recursively enumerable. This method is elegant in its simplicity: no iteration
or abstraction is required, and no user intervention is needed to determine reachability
constraints (inductive invariants).

An SMT solver differs from a general-purpose FOL satisfiability checker in one major
way: if a built-in type such as Integer is used in a formula, the SMT solver considers only
the “standard” interpretation for that type and the defined operations over it. SMT-LIB is
a standard notation that state-of-the-art SMT solvers accept as input [10]. A specification
of a problem in SMT-LIB consists of four parts: 1) declaration of user-defined types, 2)
declaration of functional symbols used in the model, 3) definitions that are used to simplify
the model, and 4) a set of constraints, where each constraint is a formula. SMT-LIB does
not distinguish between terms and formulae. A formula is a term of type Bool. To ease
the parsing of SMT-LIB specifications by SMT solvers, each SMT-LIB specification is a
sequence of S-expressions.

53

We evaluate the practical application of our theory through a set of case studies. In
this chapter, we focus on the following research questions:

1. Will this method work in practice? In other words, are state-of-the-art SMT solvers
efficient enough to analyze properties of the dynamic behaviour of infinite state sys-
tems?

2. How efficient is the model checking of an infinite state model in comparison to the
analysis of a finite version of the same model?

3. Are there modelling techniques that facilitate the use of SMT solvers for model
checking?

We have chosen a varied collection of four case studies drawn from different sources. Each
has an infinite state space through the use of integers or more complex data types. Our
results show that our approach does work in practice and can verify liveness properties of
infinite state models quickly using the SMT solvers Z3 [29] and CVC4 [8]. In fact, for some
of the case studies, we show that the verification of the infinite state system completes
more quickly than the verification of the same problem with limited ranges in finite solvers
such as the Alloy Analyzer [44] and Cadence SMV [49].

Most of the content of this chapter has been published [58]. This chapter is organized
as follows: Section 5.1 describes the case studies and the chain of tools that we use to
verify our case studies. In Section 5.2, we discuss modelling choices that have an effect on
the performance of the tools we use.

5.1 Case Studies

The approach that we use to implement our method is described in Figure 5.1 on the next
page. A model is created in FOL using a tool that we developed called Avestan. Our
current version of Avestan is a complete reengineering of our earlier tool [54] (also called
Avestan), which was a language and tool to support the creation of models in SMT-LIB.
It was strongly based on Alloy [43], but the tool translated the model into an SMT-
LIB specification. Our new tool is implemented in Python [2] and uses Python as both
the object and meta-language for expressing models in FOL. It produces specifications in
SMT-LIB for analysis by an SMT solver.

We implemented the function CTLive2FOL() (Figure 4.4 on page 35) in Avestan to
create the constraints needed for the verification of a CTL-Live property. Using Avestan,

54

SMT-LIB spec

CVC4 Z3

Avestan

Avestan Model CTL-Live Formula

Figure 5.1: Overview of our method

we transform a model plus these constraints into an SMT-LIB specification and check the
validity problem as a satisfiability problem using both CVC4 (version 1.3) and Z3 (ver-
sion 4.3.1). All our experiments were run on an Intel R©CoreTMi7-3667U machine running
Ubuntu 12.04 64-bit with up to 7.5GB of user memory. To analyze the case studies, we
used the solvers in their default mode, without any flags or a customized configuration.
The SMT-LIB specifications of the case studies and other models developed for this chapter
are available on-line1.

5.1.1 Case Study 1: Leader Election Protocol

The leader election model is a protocol to “elect” a process as the leader amongst a finite
set of processes that form a ring [21]. A finite instance of it was previously verified by
Jackson using the Alloy Analyzer [44]. In the leader election model, each process in the
ring can only communicate with its successor and predecessor, and there is no centralized
controller. Each process has a unique identifier (ID) and a value to represent who this
process thinks is the leader of the ring (my lead). The goal of the protocol is that every

1https://cs.uwaterloo.ca/˜nday/models/fse14/vakili-day-fse14-models.zip

55

https://cs.uwaterloo.ca/~nday/models/fse14/vakili-day-fse14-models.zip

process (including the leader) will eventually recognize that the process with the greatest
ID is the leader. We modelled a synchronous version of this protocol: at each moment,
every process passes to its predecessor its value for my lead and receives from its successor
the successor’s value for my lead. If the received value is greater than the process’s current
value of my lead, the process updates its value with the received one, otherwise, it is left
unchanged. In the initial state, the value passed by a process is its own ID.

We used unbounded integers to model IDs and time. For each process, we declared a
functional symbol my lead of type Int -> Int. We have a fixed number of processes.
The ring topology is enforced by an ordering on the processes, where the successor of the
last process is the 0th process and for any other processes such as i, the successor is i+ 1.

The properties we verified are that every process will eventually recognize the leader:

AF (my lead i = lead id)

where lead id is the largest ID amongst the current processes, my lead i the value
of my lead for the ith process. Thus, for i processes, we have i properties, which we
conjuncted together and checked. In this model, the set Int, which is used to represent
time, is also the state space of this system. The following table shows the performance of
Z3 for different numbers of processes:

of Processes 12 14 16 18 20
Time 8.48s 44.38s 3m24.64s 50m44.09s 2h37m11.69s

CVC4 with even 2 processes could not finish the verification.

When we modelled this problem with an unbounded number of processes, the verifi-
cation in either SMT solver does not complete. Verification for an unbounded number of
processes would likely require user intervention to deduce an invariant that would help the
SMT solver verify the problem.

We also modelled this synchronous version of the algorithm in Alloy [44]. To verify the
liveness properties using Alloy, we needed to finitize all sets, including time. We set the
bounds on time and IDs to be the number of processes. Figure 5.2 on the next page, which
is in logarithmic scale to increase the readability of the plot, compares the performance
of Z3 on models where there are no bounds on time and IDs to the performance of the
Alloy Analyzer (version 4.2 using minisat) where time and IDs are bounded. In the Alloy
models, the properties were conjuncted together and verified (as in Z3). As this figure
shows, our approach to the verification of this protocol with an infinite state space is much
faster than Alloy where every set needs to be finitized.

56

8 9 10 11 12

100

101

102

103

104

Number of Processes

T
im

e
(i

n
se

co
n
d
s)

Z3
Alloy

Figure 5.2: Leader election model: Z3 vs Alloy

While our verification does require a bound on the number of processes, it is significant
that it does not require a bound on time. When we finitize time (as in the Alloy model),
we are doing bounded model checking (BMC) [14]. When using BMC to verify a liveness
property, spurious counterexamples can result because the bound is insufficient to conclude
liveness. In general, computing a sufficient bound to get a reliable result is hard, and in
some infinite cases it is impossible. In our SMT-LIB models, we use unbounded integers
to represent time. Since SMT solvers check satisfiability with respect to standard inter-
pretations and this interpretation for integers guaranties that Int has an infinite set of
elements, our technique does not produce spurious counterexamples. For this case study,
we generated 559 SMT-LIB specifications. These specifications differ in the number of
processes that the process of interest. All of them are available on-line. As an example,
we have included one of them in Appendix A.1.

5.1.2 Case Study 2: Bakery Algorithm

The bakery algorithm ensures mutual exclusion between two processes that run concur-
rently and asynchronously [17]. Bultan, Gerber, and Pugh verified that in this algorithm
the two processes cannot get into their critical sections at the same time [17]. Their method
is an iterative approach that uses a Presburger arithmetic solver.

57

In the bakery algorithm model, the state of a process is determined by its control state
value and a ticket. The value of a control state is either Thinking, Waiting, or Critical. A
ticket is a non-negative unbounded integer. Since we have two processes, the state space
of this system, S, is the following:

S = { T, W, C } × Int × { T, W, C } × Int

We modelled the set {T, W, C} as an uninterpreted type, named ControlState, where
T, W, and C are three distinct constants of type ControlState. The following is a
fragment of the SMT-LIB specification that models ControlState ensuring that each
value is distinct:

1) (declare-sort ControlState 0)
2) (declare-fun T () ControlState)
3) (declare-fun W () ControlState)
4) (declare-fun C () ControlState)
5) (assert (not (= T W)))
6) (assert (not (= T C)))
7) (assert (not (= W C)))

Besides comparing the value of the tickets, this algorithm also manipulates the value of
tickets using the addition operation on integers; as a result, an uninterpreted type with a
total ordering would not be sufficient to express this model. Each transition in our model
is defined as a functional symbol of type S×S -> Bool. By combining these transitions,
we modelled the transition relation.

For this case study, we verified that any process, e.g., process 1, that is waiting to get
into its critical section, will eventually succeed:

AG
(
c1 = W ⇒ AF c1 = C

)
(5.1)

This is an invariant property, therefore to verify this property, we needed to show that
every reachable state satisfies c1 = W ⇒ AF c1 = C. AG is not part of CTL-Live, so
we cannot ask the SMT solver to prove this property directly. Instead, we created a more
general property that implies the formula of Equation 5.1: we proved that the set of all
states, which includes the reachable states, satisfies the following property:

c1 = W ⇒ AF (c1 = C ∨ dead end)

where dead end is true of a state iff that state does not have any next state. This model
has a non-total transition relation, however, according to the semantics of CTL, correct

58

250 2000 4000 6000 800010000 UB

100

101

102

Vehicle Speed

T
im

e
(i

n
se

co
n
d
s)

Cadence SMV
Z3

Figure 5.3: Collision Avoidance model in Cadence SMV (UB = UnBounded)

paths of the model must be infinite and only those should be considered when checking
a property. Rather than making the transition relation total, we introduced the idea of a
“dead-end” state: an state from which there are no next states and thus it satisfies a CTL
formula that has a universal path quantifier.

We stated this property by making the set of initial states be the set of all states. This
revised property is part of CTL-Live. Z3 verified this property in 0.08 seconds and CVC4
in 8.64 seconds. The generated SMT-LIB specification for this case study is provided in
Appendix A.2.

Another algorithm studied by Bultan, Gerber, and Pugh is the ticket mutual exclusion
algorithm [5, 17]. We tried to verify an invariant property similar to Equation 5.1 on the
preceding page for this model using a similar technique to the Bakery algorithm; however,
neither SMT solver terminates within a threshold of 3 hours. It is likely that this property
of this model is only satisfied within the reachable set of states and therefore it does not
hold for the entire set of states.

59

5.1.3 Case Study 3: Collision Avoidance State-Flow Model

Our third case study is a Stateflow model of a collision avoidance feature used in a mod-
ern vehicle [32]. It was previously used with other feature models to check for feature
interactions using Cadence SMV.

This case study has control state complexity in a hierarchical, non-concurrent state-
transition model with 9 basic states. However, there are two variables manipulated by the
transitions of the model: speed and threshold, which determine when collision avoidance
needs to be engaged. These variables are used in the triggers of transitions and thus, affect
the control logic of the system and therefore are not removed by standard cone of influence
reductions. In our model, the speed of a vehicle is modelled as an unbounded integer, and
threshold is a constant positive integer. We verified that every basic state is reachable
without a bound on speed and threshold. This property is a conjunction of 9 EF formulae.
Z3 verifies all these properties together in 0.58 seconds. CVC4 terminates in 0.89 seconds
having UNKNOWN as output. The UNKNOWN means the solver cannot verify nor refute the
property.

Because we had access to the original models, we can compare our results to using
Cadence SMV to analyze the Stateflow models for different finite bounds on speed and
threshold. Figure 5.3 on the preceding page presents these results. As this figure shows,
the performance of Cadence SMV degrades as the size of speed and threshold is increased.
The SMT-LIB specification of this case study is provide in Appendix A.3.

5.1.4 Case Study 4: File System

Our last case study is a file system that was originally modelled in Z [62]. Woodcock and
Davies use natural deduction to prove properties manually about this model.

The state of the file system is represented as a partial function from Keys to Data
named content. There are three operations that change the state of the file system:
adding a new entry, deleting an existing entry and writing new data to an existing key.

The major difference between the file system model and our other case studies is in its
state space: each state is a function whereas in the other case studies, a state is a tuple
that includes an infinite element. Since quantification over functions is not allowed in FOL,
we cannot directly use our technique to model check a CTL-Live property of this model.

Borrowing a technique used in Alloy models [44], in our model, we explicitly introduced
the state space as a new uninterpreted set State and declared content as follows:

content: State × Key -> Data

60

where content(s, k) = d is interpreted as the content of the file system at state s for
the key k is d. To model the fact that content is a partial function from Key to Data,
we declare a constant NULL of type Data: the value of content(s, k) being equal to
NULL means that the content of the file system at state s for the key k is empty. In Alloy,
this technique manifests itself in the use of a new set “State” to encapsulate the elements
of the state.

The disadvantage of explicitly introducing the set State is that it is uninterpreted,
and it may result in spurious counterexamples. For example, the following property is not
entailed by this model:

content(s, k) 6= NULL ⇒ ∃s′ • delete(k, s, s′) (5.2)

This property states that if at state s the content of key k is not empty, then we can
delete k from it and go to some state s′. The spurious counterexample for this property
is a single state with non-empty content. We need to ensure that interpretations that do
not include enough states are eliminated from the analysis. To eliminate these spurious
counterexamples, we need to “interpret” State by adding some axioms to the model.
These axioms are called generator axioms [44]. For our file system model where only a
performed operation can change the state, a set of standard generator axioms exist: for
every operation we needed to add a formula stating that if an operation OP is applicable
on a state s1, then there exists another state such as s2 that is the result of performing
OP on s1; in other words, we needed to state that all the operations are total. For example
the generator axiom for delete is same as the formula in Equation 5.2 except s and k
are bounded by universal quantifiers.

We verified a bisimilarity property that the operation write can be simulated by some
combination of add and delete for all possible states of the file system. For this purpose,
we remove the write operation from the model, and we assume that some state s2 is the
result of writing something to the file system at some state s1; then, we check in the new
model, which does not have the write operation, if s2 is reachable from s1:(

write(k, d, s1, s2) ∧ s = s1
)
⇒ EFs = s2

Z3 verified this property in 0.15 seconds and CVC4 in 0.69 seconds. The SMT-LIB speci-
fication of this case study is provided in Appendix A.4.

Our case studies show that our method is practical for a variety of different examples.
In all our models, we were able to leave some element of the model state unbounded
and complete verification of a property in CTL-Live. We used unbounded integers, user-
declared sorts, and a partial function as part of the state. Table 5.1 on the following page

61

Table 5.1: Run time of Z3 and CVC4 for each case study in seconds (DNV: Did Not Verify)

Case study Z3 CVC4

Leader election, 12 processes 8.48 DNV
Leader election, 14 processes 44.38 DNV
Leader election, 16 processes 204.64 DNV
Leader election, 18 processes 3044.09 DNV
Leader election, 20 processes 9431.69 DNV
Bakery algorithm 0.08 8.64
Collision avoidance 0.58 DNV
File system 0.15 0.69

summarizes the run times of Z3 and CVC4 for all the case studies. Z3 clearly performs
better than CVC4 for the data types used in our case studies.

5.2 Modelling for Better Performance

In this section, we provide some insights about factors that can be used by a modeller to
develop models that are more efficient to analyze in SMT solvers.

First, we consider the trade-off in the number of variables and the number of constraints.
For the leader election case study, we have two choices for expressing the ID of the leader:

1. Declare a new constant and assert that this constant is equal to the ID of some
process and that it is greater or equal to all the IDs; or

2. Use the if-then-else construct in SMT-LIB and compare all the IDs with each other
to determine the largest.

For example, if we have two processes, the maximum is defined using the following con-
straint based on the first option:

(max = id1 ∨ max = id2) ∧ (max >= id1) ∧ (max >= id2)

and in the second option, maximum is the following term:

if (id1 > id2) then id1 else id2

62

10 12 14 16 18 20

101

102

103

104

105

Number of Processes

T
im

e
(i

n
se

co
n
d
s)

1-1
ALL
ITE

Figure 5.4: Z3 on different models for the leader election problem

The first approach adds 2 × n constraints and a new variable, where n is the number
of processes. The second approach does not introduce any new constraints or variables,
but the term that represents the greatest ID is complex. Plot ITE of Figure 5.2 shows
the sum of the times for verifying n properties using the ITE modelling approach, where
n is the number of processes. Plot 1-1 shows the same problem using the first modelling
approach. Clearly, the approach of creating a single more complicated constraint performed
less efficiently that having a number of simple constraints with more variables in this case.

In addition, we can compare verifying n properties together (as a conjunction of con-
straints) to verifying each property individually and summing the total time of verification.
In Figure 5.2, plot ALL is the result of verifying the conjunction of the properties. For
larger numbers, ALL performs more poorly than plot 1-1, which is the sum of the times to
verify each property individually2. This result again supports the hypothesis that simple
constraints are better for SMT solvers than complex ones.

Next, we consider the effect of the use of quantifiers in these problems. Since we use
integers to model time in the leader election case study, rather than using our CTL-Live

2Since the Alloy models were analyzed using the ALL approach, in Subsection 5.1.1, we have reported
the results of the ALL approach using Z3 even though the 1-1 approach performs better.

63

7 8 9 10

0

20

40

60

80

Number of Processes

T
im

e
(i

n
se

co
n

d
s)

Alloy

Quantifier method
CTL-Live theory

10 11 12 13 14
0

2

4

6

8

Number of Processes
T

im
e

(i
n

se
co

n
d

s)

Z3

Quantifier method
CTL-Live theory

Figure 5.5: Alloy and Z3 with different approaches for the leader election case study

CTLive2FOL(), the eventuality property can be expressed using an existential quantifier
as in:

∃t:Int • t > 0 ∧ my lead i(t) = leader id

Since Alloy’s input language is as expressive as FOL, we can use our CTLive2FOL()
function to model check a CTL-Live property using the Alloy Analyzer. We set the size
of all the sets in the Alloy model equal to the number of processes. Figure 5.5 presents
the result of trying these two approaches both for Alloy and Z3. As this figure shows,
the Alloy Analyzer is on average 1.27X faster when using the quantifier method to express
the properties compared to our CTL-Live theory in Alloy. On the other hand, Z3 on the
SMT-LIB models that used our CTL-Live theory was on average 1.98X faster than using
the quantifier method on the model. Our conclusion from this observation is that the
modelling methods also depend on the analysis tool that is used. However, Z3 using the
CTL-Live theory with unbounded integers was the most efficient method by far.

5.3 Summary

In this chapter, we have shown that it is practical to use SMT solvers, in particular Z3, to
verify CTL-Live properties of infinite state models without the need for iteration, abstrac-
tion, or human intervention. The system is modelled as a (potentially infinite) symbolic

64

Kripke structure in FOL, a set of FOL constraints is automatically generated based on the
property, and the problem is given to an SMT solver to solve by itself. Because FOL is
recursively enumerable, with enough resources, the analysis will terminate if the property
is valid. We have also shown that the analysis of infinite state systems using an SMT solver
can be more efficient than the analysis of a finite version of the model. SMT solvers use
deductive analysis (rather than just state space search) and therefore can take advantage
of structures found in abstract models. We discussed modelling techniques that facilitate
efficient model checking using SMT solvers.

65

Part III

Model Checking in FOLTC

67

Chapter 6

Model Checking in FOLTC: Theory

In Chapter 4, we introduced CTL-Live: a fragment of CTL whose model checking problem
is reducible to FOL validity checking. According to Theorem 6 on page 43, CTL-Live is
the largest fragment of CTL whose model checking problem is reducible to FOL validity
checking. This implies that in order to formulate the model checking problem of CTL
connectives that are not included in CTL-Live (AG and EG) as validity checking, we
should consider a more expressive logic than FOL or (and) restrict the class of systems
under study.

In this chapter, we focus on FOL plus transitive closure (FOLTC). As our first step,
FOLTC allows us to formalize the model checking problem for AG. Our major insight is
that transitive closure contains reachability information and AG is about reachable states.
Next, we focus on finite Kripke structures. The finiteness restriction allows us to encode
all CTLFC formulas in FOLTC.

The rest of this chapter is organized as follows: in Section 6.1, we present CTL\EG,
which includes all CTL connectives except EG. In Section 6.2, we discuss why FOLTC is
sufficient for encoding EG. In Section 6.3, we show how the finiteness assumption allows
us to express all CTLFC formula in FOLTC. This reduction is only done when we have
one fairness constraint.

6.1 Model Checking CTL\EG

The grammar of CTL\EG is presented in Figure 6.1 on the next page. CTL\EG is same
as CTL-Live except it has EF in its propositional part.

69

Temporal part
ϕ ::= π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

::= EXϕ | AXϕ | EFϕ | AFϕ
::= ϕ1EUϕ2 | ϕ1AUϕ2

Propositional part + EF
π ::= P | ¬π | π1 ∨ π2 | EF π

where P is a labelling predicate.

Figure 6.1: CTL\EG

CTLEG2FOLTC(ϕ):
case ϕ of

1. P => {} where P is a labelling predicate
2. ¬ϕ1 => {∀s • dϕe(s)⇔ ¬dϕ1e(s)} ∪ CTLEG2FOLTC(ϕ1)
3. ϕ1 ∨ ϕ2 => {∀s • dϕe(s)⇔ dϕ1e(s) ∨ dϕ2e(s)} ∪

CTLEG2FOLTC(ϕ1) ∪ CTLEG2FOLTC(ϕ2)
4. ϕ1 ∧ ϕ2 => {∀s • dϕe(s)⇔ dϕ1e(s) ∧ dϕ2e(s)} ∪

CTLEG2FOLTC(ϕ1) ∪ CTLEG2FOLTC(ϕ2)
5. EXϕ1 => {∀s •

(
∃s′ • N(s, s′) ∧ dϕ1e(s′)

)
⇒ dϕe(s)} ∪ CTLEG2FOLTC(ϕ1)

6. AXϕ1 => {∀s •
(
∀s′ • N(s, s′)⇒ dϕ1e(s′)

)
⇒ dϕe(s)} ∪ CTLEG2FOLTC(ϕ1)

7. EFϕ1 => {∀s • dϕe(s) ⇔ dϕ1e(s) ∨
(
∃s′ • N+(s, s′) ∧ dϕ1e(s′)

)
} ∪ CTLEG2FOLTC(ϕ1)

8. AFϕ1 => {dϕ1e ⊆ dϕe, ∀s •
(
∀s′ • N(s, s′)⇒ dϕe(s′)

)
⇒ dϕe(s)} ∪

CTLEG2FOLTC(ϕ1)
9. ϕ1EUϕ2 => {dϕ2e ⊆ dϕe, ∀s • dϕ1e(s) ∧

(
∃s′ • N(s, s′) ∧ dϕe(s′)

)
⇒ dϕe(s)} ∪

CTLEG2FOLTC(ϕ1) ∪ CTLEG2FOLTC(ϕ2)
10. ϕ1AUϕ2 => {dϕ2e ⊆ dϕe, ∀s • dϕ1e(s) ∧

(
∀s′ • N(s, s′)⇒ dϕe(s′)

)
⇒ dϕe(s)} ∪

CTLEG2FOLTC(ϕ1) ∪ CTLEG2FOLTC(ϕ2)

Figure 6.2: Definition of CTLEG2FOLTC(ϕ)

70

s P

s′

Figure 6.3: State s satisfies EF P

The propositional part of CTL-Live has an important property that its temporal part
does not have: Lemma 2 on page 36. According to this lemma, the constraints introduced
by the reduction function CTLive2FOL() for a propositional formula fully capture the
semantics of those formulas, whereas the constraints generated for the temporal part ensure
an over-approximation of the set of states that satisfy the given formula. Now, by using
FOLTC, we are capable of fully capturing the semantics of EF. As a result, the reduction of
CTL\EG to FOLTC, CTLEG2FOLTC(), is the same as CTLive2FOL() except that the
formula that we introduce for EF is different. The function CTLEG2FOLTC() is presented
in Figure 6.2 on the preceding page.

The intuition behind the formula that encodes EF in FOLTC is as follows: For a
Kripke structure K = 〈S,S0,N ,P〉 and a labelling predicate P ∈ P we know that a state
s satisfying EF P means that it is possible to reach a state s′ that satisfies P from s in
a finite number of steps. This is depicted in Figure 6.3. From the definition of transitive
closure, we know that two states x and y belong to N+ iff y is reachable from x by taking
a finite number of steps. These observations lead to the following conclusion:

s ∈ [EF P] iff s ∈ P ∨ ∃s′ ∈ P • (s, s′) ∈ N+

s satisfies EF P , s ∈ [EF P], iff either s satisfies P itself, s ∈ P , or it can reach a state
s′ that satisfies P , ∃s′ ∈ P • (s, s′) ∈ N+. This means that EF can be formalized in a
logic that has transitive closure, such as FOLTC. The lesson here is that model checking
is about reachability of states from each other. Transitive closure contains the reachability
information, which can be used to formalize temporal logic properties.

Lemma 7. Let Σ be an SKS, π a CTL\EG formula derived from the propositional + EF
part of Figure 6.1 on the preceding page. For every Kripke structure K such that
K Σ ∪ CTLEG2FOLTC(π) the following holds:

[π]K = dπeK

71

Proof. Proof by structural induction on π. Due to Lemma 2 on page 36, we only need
to cover the induction step for EF π. By assuming [π]K = dπeK, we need to prove the
following:

s ∈ [EF π]K iff s ∈ dEF πeK

According to the semantics of CTL, s ∈ [EF π]K iff there is a finite path from s to a state
s′ that satisfies π. Constraint 7 of Figure 6.1 on page 70 expresses this fact.

Since AG ϕ is equivalent to ¬(EF ¬ϕ), and ¬ is included in the propositional part+EF
of Figure 6.1 on page 70, CTL\EG includes AG as well.

Theorem 10. (CTL\EG model checking as FOLTC validity checking) Let Σ be
an SKS, and ϕ a CTL\EG formula from Figure 6.1 on page 70. We have the following
property:

Σ �c ϕ iff Σ ∪ CTLEG2FOLTC(ϕ) � S0 ⊆ dϕe

Proof. Proof of this theorem is same as Theorem 5 on page 39, except every use of Lemma 2
on page 36 is replaced with Lemma 7 on the preceding page.

6.2 EG and FOLTC

FOLTC “seems” to be insufficient for expressing the model checking of EG. We do not
have a proof for this but the intuition behind this is that a state satisfies an EG P
formula iff it is on an infinite path such that every state along that path satisfies P . Using
transitive closure, we can only express if two states are reachable from each other using
a “finite” number of steps. This is not enough for expressing infinite paths. We call the
fragment of CTL whose model checking is definitely reducible to FOLTC validity checking
CTL\EG. We do not have a maximality result similar to Theorem 6 on page 43 for
CTL\EG. Immerman and Vardi also hypothesis that it is not possible to encode all EG
in FOLTC [42]. The intuition is that an infinite system can have an infinite path such that
no state along the path has appeared before. It seems like these kind of paths cannot be
formalized in FOLTC.

6.3 Reducing CTLFC to FOLTC

In order to express model checking of EG in FOLTC, we assume the Kripke structures un-
der study are finite. The finiteness restriction ensures that the only way to have an infinite

72

Ps P P P

t

P

P

P

Figure 6.4: State s satisfies EG P

path is through repetition of states. This implies that every path has a finite represen-
tation, which is expressible using transitive closure; moreover, this finiteness assumption
allows us to express the model checking problem of all CTLFC formulas in FOLTC. Our
finiteness restriction does not require the user to provide the size of Kripke structures
under study. The size can be an unknown number; as long as it is finite, our reduction
works. Next, we assume that the SKS under-study only represent finite Kripke structures.
This implies that the only way to have an infinite path is through repetition of states.
Here is how we encode EG in FOLTC assuming that K = 〈S,S0,N ,P〉 is a finite Kripke
structure and P ∈ P a labelling predicate: A state s satisfies EG P iff there exists an
infinite computation path starting from s such that all the states along this path satisfy
P . Since the state space is finite, the only way to have an infinite computation path is
through repetition of states; in particular, state s satisfies EG P iff it is on a lasso-shape
path [13], Figure 6.4.

As depicted in Figure 6.4, a lasso has two parts: a cycle and a tail. If a state s satisfies
EG P , it should either belong to the cycle section:

(s, s) ∈
(
P /N

)+
or it should belong to the tail section:

∃t • (s, t) ∈
(
P /N

)+ ∧ (t, t) ∈
(
P /N

)+
In these constraints, / is the domain restriction operator of Table 2.1 on page 10, and + is
the transitive closure operator. Putting these together, we have the following conclusion:

s ∈ [EF P] iff LetM := P /N in (s, s) ∈M+ ∨ ∃t • (s, t) ∈M+ ∧ (t, t) ∈M+

73

1. FC2TC(P, FC)(s) := P (s)
2. FC2TC(¬ϕ, FC)(s) := ¬ FC2TC(ϕ, FC)(s)
3. FC2TC(ϕ ∨ ψ, FC)(s) := FC2TC(ϕ, FC)(s) ∨ FC2TC(ψ, FC)(s)
4. FC2TC(EXϕ, FC)(s) := ∃t • N(s, t) ∧ FC2TC(ϕ, FC)(t)
5. FC2TC(ϕEUψ, FC)(s) := Let M(x, y) := FC2TC(ϕ, FC)(x) ∧ N(x, y) in

FC2TC(ψ, FC)(s) ∨(
∃t • M+(s, t) ∧ FC2TC(ψ, FC)(t)

)
6. FC2TC(ECGϕ, FC)(s) := Let M(x, y) := FC2TC(ϕ, FC)(x) ∧ N(x, y) in

∃t • FC(t) ∧ M+(t, t) ∧
(
s = t ∨ M+(s, t)

)
Figure 6.5: Definition of FC2TC(P, FC)

The finiteness assumption allows us to encode CTLFC in FOLTC. CTLFC is more
expressive than CTL. We present our encoding when we have a single fairness constraint.
We define a translation function FC2TC that recursively goes through a CTLFC formula
and generates a relational symbol plus an axiom for each sub-formula. Each generated
axiom encodes the semantics of the corresponding sub-formula. According the equalities
of Figure 2.3.2, we only need to present the encoding for ¬, ∨, EX, EU, and ECG. The
translation function FC2TC is presented in Figure 6.5.

Theorem 11. (Correctness of FC2TC function) Let B be a Kripke base, Σ a symbolic
Kripke structure over B, FC/1 a relational symbol that represents a fairness constraint,
and ϕ a CTLFC formula. For every Kripke structure K that satisfies Σ, we have:

[ϕ]K =
(
FC2TC(ϕ, FC)

)K
In other words, FC2TC(ϕ, FC) represents the set of states of K that satisfy ϕ, [ϕ]K.

Proof. Proof by structural induction on ϕ:

• Base case: let ϕ = P where P is a labelling predicate. For every s, we have:
s ∈ [P]K iff s ∈ PK by semantics of CTL

iff s ∈
(
FC2TC(P, FC)

)K
by Line 1 in FC2TC

therefore [P]K =
(
FC2TC(P, FC)

)K
.

• Induction step: according to the definition of FC2TC five cases are distinguished

having [ϕ1]K =
(
FC2TC(ϕ1, FC)

)K
and [ϕ2]K =

(
FC2TC(ϕ2, FC)

)K
as induction

hypotheses:

74

1. Let ϕ = ¬ϕ1. For every s, we have:
s ∈ [¬ϕ1]K iff s 6∈ [ϕ1]K by semantics of CTL

iff s 6∈
(
FC2TC(ϕ1, FC)

)K
by induction hypothesis

iff s ∈
(
FC2TC(¬ϕ1, FC)

)K
by Line 2 of FC2TC

therefore [¬ϕ1]K =
(
FC2TC(¬ϕ1, FC)

)K
.

2. Let ϕ = ϕ1 ∨ ϕ2. For every s, we have:
s ∈ [ϕ1 ∨ ϕ2]K iff s ∈ [ϕ1]K ∨ s ∈ [ϕ2]K by semantics of CTL

iff s ∈
(
FC2TC(ϕ1, FC)

)K∨
s ∈

(
FC2TC(ϕ2, FC)

)K
by induction hypotheses

iff s ∈
(
FC2TC(ϕ1 ∨ ϕ2, FC)

)K
by Line 3 of FC2TC

therefore [ϕ1 ∨ ϕ2]K =
(
FC2TC(ϕ1 ∨ ϕ2, FC)

)K
.

3. Let ϕ = EX ϕ1. For every s, we have:
s ∈ [EX ϕ1]K iff ∃s′ • N(s, s′) ∧ s′ ∈ [ϕ1]K by semantics of CTL

iff ∃s′ • N(s, s′)∧
s′ ∈

(
FC2TC(ϕ1, FC)

)K
by induction hypothesis

iff s ∈
(
FC2TC(EX ϕ1, FC)

)K
by Line 4 of FC2TC

therefore [EX ϕ1]K =
(
FC2TC(EX ϕ1, FC)

)K
.

4. Let ϕ = ϕ1 EU ϕ2. Proof of this case is same as the proof of Lemma 7 on
page 71.

5. Let ϕ = ECG ϕ1. We need to prove two cases:

– Case 1: if s ∈ [ECG ϕ1]K, then s ∈
(
FC2TC(ECG ϕ1, FC)

)K
. By the

semantics of CTLFC, we can conclude that there exists a path starting at
s, such that every state along the path satisfy ϕ1, and FC is satisfied an
infinite number of times. Since the state space is finite, there must exists
a state t that satisfies FC, and it appears more than once along the path.
Since t appears more than once, it can reach itself. Now there are two cases:
1) s is equal to t, 2) s is not equal to t, which in this case, t is reachable from
s. This observation is formalized by the constraint in Line 6 of Figure 6.5
on the preceding page:

∃t • FC(t) ∧ M+(t, t) ∧
(
s = t ∨ M+(s, t)

)
,

where, M is equal to restricting the domain of N to those states that satisfy
ϕ1:

M(x, y):= FC2TC(ϕ1, FC)(x) ∧ N(x, y)

75

– Case 2: if s ∈
(
FC2TC(ECG ϕ1, FC)

)K
, then s ∈ [ECG ϕ1]K. Because

of the constraint in Line 6 of Figure 6.5 on page 74, there exists a state t
that satisfies the fairness constraint, and it can reach itself (t is on a loop).
Moreover, s is either t or it can reach t. In both cases, we can conclude that
s is on an infinite fair path such that every state along the path satisfies ϕ1.

By putting the two cases together, we have the following:

[ECG ϕ1]K =
(
FC2TC(ECG ϕ1, FC)

)K

Corollary 1. (Model checking finite symbolic Kripke structures) Let B be a
Kripke base, Σ a symbolic Kripke structure over B, FC/1 a relational symbol that repre-
sents a fairness constraint, and ϕ a CTLFC formula. The following holds:

Σ �c ϕ iff Σ � ∀s • S0(s)⇒ FC2TC(ϕ, FC)(s)

6.4 Related Work

Our translation of CTLFC to FOLTC was inspired by Immerman and Vardi’s work on
translating CTL* to FOLTC [42]. The key difference from the work of Immerman and
Vardi is that in our work each formula can be defined directly; support for CTL* would
require the introduction of a new Boolean variable into the transition system for each
sub-formula of the property. Our translation of CTLFC to FOLTC does not require the
introduction of Boolean variables and it is linear with respect to the size of input formula.

The ordering module of Alloy can be used for bounded model checking of safety
properties. This approach does not support model checking liveness properties or even
safety with fairness constraints. Our approach, which is available as ctlfc and module
in Alloy, supports much more sophisticated temporal properties (see next chapter).

A declarative relational modelling language for Kripke structures has been proposed
by Chang and Jackson [22]. They augment the traditional languages of model checkers
by sets and relations and declarative constructs to specify a transition system. They
have developed a BDD-based model checker that supports relations as a data-type. Our
approach to model checking is to reduce it to validity checking and use constraint solvers
as model checkers. This allows one to explore structural properties along with dynamic
ones; moreover; their technique is not capable of model checking a class of models.

76

B [4] is a modelling language that has many similarities with Alloy. Models developed
in B are called B-machines, and the variables used to define the state space can be sets
and relations. ProB [48] is a tool for analyzing finite B machines, in particular, model
checking and automatic refinement checking of B machines. ProB provides LTL model
checking. LTL properties are checked by explicit state-space search. Since each single
state in a B machine represents some sets and relations, computing the set of the next
states of a single state is computationally very costly. The focus of ProB, similar to Chang
and Jackson [22], is to provide a more convenient language form expressing a single Kripke
structure.

The Abstract State Machine (ASM) method [15] is for high-level system design and
analysis. The ASM method can be used to specify an infinite transition system. Analysis
techniques for the ASM method include theorem proving [31,50], and model checking [30],
which consists of translating an ASM to SMV by fixing the size of the scopes in the ASM.

DynAlloy is an extension to Alloy for describing the dynamic properties of programs by
using actions [35]. It provides partial correctness analysis of DynAlloy models by using the
Alloy Analyzer. The major difference between a program and a Kripke structure is that
Kripke structures are used to express systems that do not terminate, whereas programs
need to terminate.

6.5 Summary

In this chapter, we introduced CTL\EG: a fragment of CTL whose model checking is
reducible to validity checking of FOLTC formulas. The transitive closure in FOLTC allowed
us to encode more temporal formulas than was possible in FOL. CTL\EG does not include
EG.

In order to express the model checking of EG, we restricted our attention to finite
Kripke structures. The finiteness assumption implies that the only way to have an infinite
path in a finite Kripke structure is through repetition of states. Using the finiteness
assumption and the transitive closure operator, we were able to encode all CTLFC formulas
in FOLTC. First, we presented our reduction when we have a single fairness constraint.

77

Chapter 7

Model Checking in FOLTC: Practice

Alloy is a formal modelling language that provides FOLTC for modelling and specifica-
tion [43]. The Alloy Analyzer is used to check the consistency of Alloy models for finite
scopes: checking if a set of formulas has a satisfying interpretation with a certain finite
size [44]. Since the number of interpretations that have a certain finite size is finite, finite
scope analysis is decidable. The Alloy Analyzer makes it possible to “explore” systemati-
cally finite instances of abstract models. These explorations are justified by the small scope
hypothesis : if there is an error in a model, it can be revealed by studying small instances
of the model.

In this chapter, we use our encoding of CTLFC in FOLTC to model check and analyze
temporal properties of some abstract models using the Alloy Analyzer. Most of the content
of this chapter has been published [55]. This chapter is organized as follows: Section 7.1
shows how relational constructs of Alloy can be used to concisely represent CTLFC formulas
in Alloy. In Section 7.2, we present evaluation results on how the Alloy Analyzer scales in
the presence of CTLFC formulas. Section 7.3 presents an application of our reduction of
CTLFC to FOLTC beyond model checking symbolic Kripke structures.

7.1 CTLFC in Alloy

Alloy provides FOL, set/relational operators similar to the ones on Table 2.1 on page 10,
and transitive closure for modelling. Alloy and FOLTC have the same expressive power,
and every set/relational operator in Alloy can be expressed in FOLTC. For example, if
R1/2 and R2/2 are two binary relational symbols, in Alloy one can write R1.R2 to form

79

Table 7.1: Alloy’s set and relational operators

Alloy syntax (A&B)I (A+B)I (A-B)I (A.B)I (A<:B)I (A:>B)I (ˆA)I iden

Semantics AI ∩BI AI ∪BI AI \BI AI ;BI AI / BI AI . BI (AI)
+

identity relation

a new binary relational symbol, and its semantics for an interpretation I is defined as
follows:

(R1.R2)
I := RI1 ;RI2

In FOLTC, one can introduce a new binary relational symbol R3 and have the following
axiom:

∀x, y • R3(x, y) ⇔ ∃z • R1(x, z) ∧R2(z, y)

With this axiom, R3 is equivalent to R1.R2. As this example shows, the benefit of set/re-
lational operators is the concision that they provide in modelling. Table 7.1 presents a
subset of the set/relational operators and their semantics in Alloy.

We rewrite the translation function FC2TC in Figure 6.5 on page 74 using the operators
of Table 7.1. We call this function FC2ALLOY: it takes a CTLFC formula ϕ and a fairness
constraint FC/1 as input, and it generates a set expression FC2ALLOY(ϕ, FC) in Alloy
that represents the set of states that satisfy ϕ with fairness constraint FC.

Definition 21. (Translation of CTLFC to Alloy) Let ϕ a CTLFC formula and FC/1
a predicate for a fairness constraint, and N a next-state relation. We have the following:

FC2ALLOY(ϕ, FC) :=
case ϕ of
P => P
¬ϕ => S - FC2ALLOY(ϕ, FC)
ϕ ∨ ψ => FC2ALLOY(ϕ, FC) + FC2ALLOY(ψ, FC)
EXϕ => N.FC2ALLOY(ϕ, FC)
ϕEUψ => Let M := FC2ALLOY(ϕ, FC)<:N in

FC2ALLOY(ψ, FC) +
(
(ˆM).FC2ALLOY(ψ, FC)

)
ECGϕ => Let M := FC2ALLOY(ϕ, FC)<:N in

Let L := FC &
(
S.(iden & ˆM)

)
in

L +
(
(ˆM).L

)
�

80

Given a symbolic Kripke structure Σ over a Kripke base B and a CTLFC formula ϕ,
the Alloy Analyzer can be used to check the following property, which is equivalent to
Σ �c ϕ:

Σ � S0 in FC2ALLOY(ϕ, FC)

To make model checking in Alloy easy and accessible, we have developed a parametrized
Alloy module ctlfc.als so that users can import the definitions of the temporal logic
operators. The parameter of this module is the set of states. The universal path quantifiers,
ACX, ACG, and ACU have been defined in terms of the existential operators. This
module is provided as Appendix B.1 on page 101.

7.2 Case Studies

We completed several examples to show that our method makes it possible to model check
CTLFC specifications of symbolic Kripke structures in the Alloy Analyzer, thereby vali-
dating the simplicity and utility of our approach. We used three examples from different
domains.: 1) the address book from Jackson [44], 2) a features interaction (FI) between
call-waiting and call-forwarding, 3) a traffic light controller [49]. These models satisfy their
temporal specifications. Our parametrized Alloy module for CTLFC hides the details of
model checking in Alloy for a user, so that temporal specifications can be added to models
smoothly. We used the Alloy Analyzer 4.2 along with the MiniSat SAT-solver [33]. The
experiments were run on an Intel Core 2 Due 2.40 GHz machine running Ubuntu 10.04
with up to 3G of user-space memory. In the following, we discuss the case studies. The
Alloy models are found in Appendix B.

7.2.1 Address Book

The subject of this case study is an address book system, which is an association between
names and addresses. The system moves from one state to another by applying operations,
such as add and delete, on the address book. We checked a safety property that was
originally analyzed for bounded computation paths [44]. The safety property states that
there is no state of the address book system where a name in the address book does not
have an associated address; in other words, the operations on the address book preserve
its integrity. Using our method, the Alloy Analyzer was able to analyze the address book
model with unbounded paths up to the same scope as bounded paths.

81

Table 7.2: Experimental results. SS: Scope Size, min: minute, sec: seconds

Address Book Features Interaction Traffic Light Controller
SS Time SS Time SS Time
14 1 min 14 sec 10 14.28 sec 7 4.71 sec
15 2 min 57 sec 11 2 min 7.6 sec 8 36.81 sec
16 9 min 15 sec 12 20 min 51 sec 9 12 min 42 sec
17 13 min 43 sec 13 > 1 hour 10 > 1 hour

Safety Safety Safety with fairness

7.2.2 Features Interaction

In this case study, we analyzed the interaction between two telephony features, call-waiting
and call-forwarding. Each state in this case study is represented by 6 relations: 1) idle: set
of phone numbers that are idle, 2) calling: a binary relation representing phone numbers
that are trying to reach others, 3) talkingTo: a binary relation representing phone numbers
that are successfully connected to each other, 4) waitingFor: a binary relation representing
phone numbers that call waiting has made them to wait, 5) forwardedTo: a binary relation
representing phone numbers that call forwarding has forwarded, 6) busy: a binary relation
for modelling busy phone numbers. We checked a safety property that stated no call is
being forwarded and is also made to wait by a priority-based protocol. We made this case
study ourselves.

7.2.3 Traffic Light Controller

This case study is about a three-way traffic light controller. We checked a safety property
with 3 fairness constraints. The safety property stated that no two lights are green at the
same time. The fairness constraints were used to enforce that there is a request for the
green light each way infinitely often.

7.2.4 Scalability of Case Studies

Table 7.2 presents data on the types of properties, scope size, and the Alloy Analyzer time
to check the property. With respect to scalability, we found that temporal specifications
can be analyzed up to the size of the scopes that non-temporal specifications are often

82

analyzed in Alloy. Thus, our method is immediately valuable to those who use Alloy for
modelling and analysis now relying on the small scope hypothesis. These models are not as
large as those that can be checked using a model checker such as SMV [49], however, the
declarative and relational aspects of Alloy have significant advantages for creating abstract,
concise models, and we now provide the ability to check CTLFC specifications directly on
small scopes of these models.

7.3 Beyond Model Checking CTLFC

Theorem 11 on page 74 states that FC2TC(ϕ, FC) represents the set of states that ϕ.
We have used this result to reduce verifying Σ �c ϕ to the following validity problem in
FOLTC:

Σ � ∀s • S0(s)⇒ FC2TC(ϕ, FC)(s)

The formula ∀s • S0(s) ⇒ FC2TC(ϕ, FC)(s) states that every initial state satisfies ϕ.
This formula could also be used as part of the description of a symbolic Kripke structure
and “enforce” the property ϕ declaratively. In this way, a modeller states “what” the
behaviour of the system is rather that “how” it is achieved.

Adding the formula ∀s • S0(s) ⇒ FC2TC(ϕ, FC)(s) to the description of a model
along with a finite scope analyzer, such as the Alloy Analyzer, could be used to answer
some interesting questions. The rest of this section discusses an application of adding
formulas of the form ∀s • S0(s)⇒ FC2TC(ϕ, FC)(s) to a symbolic Kripke structure.

Given a symbolic Kripke structure Σ and a CTLFC formula ϕ, Σ existentially satisfies
ϕ iff there is at least one Kripke structure K that satisfies Σ and ϕ. We define this as
existential model checking [55]. The difference between existential model checking and
Σ �c ϕ is that in the latter case every K that satisfies Σ must satisfy ϕ.

Existential model checking is useful for design exploration. For example, when details
to be added in the future will constrain a symbolic Kripke structure of interest, a user
needs to know whether the abstract model can be extended into a more detailed model
that satisfies the property.

To check if Σ existentially satisfies ϕ, all we need to do is to check for the satisfiability
of the following sef of FOLTC formulas:

Σ ∪ {∀s • S0(s)⇒ FC2TC(ϕ, FC)(s)}

83

We did a case study to show the value of existential model checking by encoding
the semantics of the untyped λ-calculus as a symbolic Kripke structure. We used ex-
istential model checking to generate a λ-term that does not have a normal form, e.g.,
(λx.xx)(λx.xx), and a term that has a normal form but not necessarily every reduction
path terminates, e.g., (λx.(λx.xx))((λx.xx)(λx.xx)). As this example suggests, one way of
using existential model checking is to generate interesting instances. In general, existential
model checking can help a user to have a better understanding about a declarative and
abstract model by checking the existence of specific instances; in other words, existential
model checking can be considered as an approach to “exploring” a declarative symbolic
Kripke structure. The Alloy model for this case study is available in Appendix B.5.

7.4 Summary

In this chapter, we showed how our reduction of CTLFC to FOLTC can be used to analyze
temporal properties in the Alloy Analyzer. Our case studies showed that the Alloy Analyzer
can be used to analyze CTLFC formulas up to the same scopes that Alloy models are
analyzed. We also used this encoding to solve the existential model checking problem. We
have developed an Alloy module that can be used to express CTLFC formulas in Alloy
(Appendix B.1). This module hides the details of the translation.

84

Chapter 8

Conclusion

In this thesis, we focused on formulating the unbounded model checking problem as
a theorem proving problem for logics that have sophisticated automated provers. We
showed that for a fragment of computational tree logic (CTL), which we called CTL-Live,
the model checking problem is reducible to FOL validity checking. CTL-Live includes
the CTL connectives that are often used to express liveness properties (e.g., AF, AU,
etc.). Our key insight in this reduction is the use of the implicit higher-order universal
quantifier in the definition of FOL validity. This universal quantifier allows us to describe
the semantics of CTL-Live formulas.

Based on this reduction, we used SMT solvers for model checking some case studies.
Our case studies showed that SMT solvers, in particular Z3, are effective in verifying
CTL-Live properties of infinite systems. Our case studies also showed that SMT solvers
are faster in model checking some infinite systems than model checking a finite version of
them. We also showed that there are some modelling techniques that alter the performance
of solvers, and these techniques are solver dependent.

By examining the AE fragment of FOL and some dialects of description logics, we
derived decidability results for CTL-Live model checking.

We also showed that CTL-Live is the largest fragment of CTL whose model checking is
reducible to FOL validity checking. The practical implication of this result is that in order
to reduce model checking of more temporal operators than those found in CTL-Live to
validity checking, one needs to consider more expressive logics than FOL. For this reason,
we then focused on FOL plus transitive closure (FOLTC). We reduced model checking of

85

a more expressive fragment of CTL, which we called CTL\EG, to validity checking for
FOLTC. CTL\EG is more expressive than CTL-Live and yet less expressive than CTL.
By adding a finiteness restriction, we reduced model checking all of CTL with fairness
constraints (CTLFC) formulas to validity checking. The finiteness restriction requires that
the system under study must have a finite number of states, but it does not require this
number to be known. There are two major insights in this reduction: 1) transitive closure
contains reachability information, 2) given a finite number of states, the only way to have
an infinite path is through repetition of states.

We used the Alloy Analyzer to analyze CTLFC properties of some Alloy models. Our
case studies have shown that CTLFC properties can be used in Alloy and analyzed up to
the same scopes that the Alloy models are analyzed.

The following lists the contributions of this thesis:

• Introducing CTL-Live: a fragment of CTL whose model checking problem is reducible
to FOL validity checking.

• Using SMT solvers, we have shown the effectiveness of SMT solvers in model checking
CTL-Live properties.

• Proving the maximality of CTL-Live: the model checking of CTL connectives that
are not included in CTL-Live is not reducible to FOL validity checking.

• Showing that the inductive invariant method for verification of safety properties is
not complete.

• Deriving decidability results for CTL-Live model checking by examining some decid-
able fragments of FOL.

• Showing how CTL connectives, except EG, can be encoded as FOLTC formula.

• Showing how all of CTLFC formula can be encoded in FOLTC for finite systems.

• Using the Alloy Analyzer, we have shown CTLFC properties can be used in Alloy
and analyzed up to the same scopes that the Alloy models are analyzed.

8.1 Future Work

Some future directions for research from the results of this research are the followings:

86

• Counterexample generation: The output of our model checking techniques is a
yes-no answer. In the case of no, we do not provide counterexamples, which are
effective in revealing the source of a bug. Techniques for counterexample generation
will increase the adaptability of our techniques in practice.

• Evidence generation from proofs: SMT solvers are capable of generating a proof
when a set of formulas is unsatisfiable. In the context of CTL-Live model checking,
this means that if a system satisfies a CTL-Live formula, the SMT solver will generate
a proof. We are interested in converting such a proof into a finite path or tree that
shows to the user why a CTL-Live formula holds. Such evidence can improve one’s
understanding of why a system satisfies a CTL-Live formula.

• Practicality of decidability results for CTL-Live model checking: the de-
cidability results of Section 4.5 on page 45 were derived by examining decidable
fragments of FOL. These fragments are less expressive than FOL. None of our case
studies fall into these decidable categories. We are planing to study the expressive
power of these fragments in formalizing systems.

8.2 Final Word

The complexity of the tools being used in the world of computer-aided verification is con-
stantly increasing. The birth of “solver competitions”, such as SAT, SMT, Hardware Model
Checking, Software Verification etc., is evidence of this fact. This complexity is making
it hard to be proficient in both developing a tool and applications of a tool; as a result,
research in computer-aided verification can be roughly divided into two categories: 1) tool
development, 2) those who use tools for solving verification problems. Both categories
benefit from each other’s advancements: advancements in tools result in improvements in
solutions that are based on them and applications of tools reveal their relevance and can
guide future improvements.

This thesis belongs to the latter category: applications of FOL reasoners in model
checking. We believe this kind of research is very important in the success of computer-
aided verification in practice.

87

Appendix A

SMT-LIB Models

A.1 Leader Election Protocol

1 ; Copyright (C) 2014 Amirhossein Vakili and
2 ; Nancy A. Day <https://cs.uwaterloo.ca/˜nday>
3 ;
4 ; Permission is hereby granted, free of charge, to any person obtaining a
5 ; copy of this software and associated documentation files (the "Software"),
6 ; to deal in ; the Software without restriction, including without
7 ; limitation the rights to use, copy, modify, merge, publish, distribute,
8 ; sublicense, and/or sell copies of the Software, and to permit persons to
9 ; whom the Software is furnished to do so, subject to the following
10 ; conditions:
11 ;
12 ; The above copyright notice and this permission notice shall be included in
13 ; all copies or substantial portions of the Software.
14 ;
15 ; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 ; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 ; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 ; THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 ; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 ; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 ; DEALINGS IN THE SOFTWARE.
22 ;
23 ;
24 (declare-fun LID () Int)
25 (declare-fun AFP (Int) Bool)
26 (declare-fun token3 (Int) Int)

89

27 (declare-fun token2 (Int) Int)
28 (declare-fun token1 (Int) Int)
29 (declare-fun token0 (Int) Int)
30 (declare-fun token7 (Int) Int)
31 (declare-fun token6 (Int) Int)
32 (declare-fun token5 (Int) Int)
33 (declare-fun token4 (Int) Int)
34 (declare-fun pid1 () Int)
35 (declare-fun pid0 () Int)
36 (declare-fun pid3 () Int)
37 (declare-fun pid2 () Int)
38 (declare-fun pid5 () Int)
39 (declare-fun pid4 () Int)
40 (declare-fun pid7 () Int)
41 (declare-fun pid6 () Int)
42 (assert (not (= pid0 pid1)))
43 (assert (not (= pid0 pid2)))
44 (assert (not (= pid0 pid3)))
45 (assert (not (= pid0 pid4)))
46 (assert (not (= pid0 pid5)))
47 (assert (not (= pid0 pid6)))
48 (assert (not (= pid0 pid7)))
49 (assert (not (= pid1 pid2)))
50 (assert (not (= pid1 pid3)))
51 (assert (not (= pid1 pid4)))
52 (assert (not (= pid1 pid5)))
53 (assert (not (= pid1 pid6)))
54 (assert (not (= pid1 pid7)))
55 (assert (not (= pid2 pid3)))
56 (assert (not (= pid2 pid4)))
57 (assert (not (= pid2 pid5)))
58 (assert (not (= pid2 pid6)))
59 (assert (not (= pid2 pid7)))
60 (assert (not (= pid3 pid4)))
61 (assert (not (= pid3 pid5)))
62 (assert (not (= pid3 pid6)))
63 (assert (not (= pid3 pid7)))
64 (assert (not (= pid4 pid5)))
65 (assert (not (= pid4 pid6)))
66 (assert (not (= pid4 pid7)))
67 (assert (not (= pid5 pid6)))
68 (assert (not (= pid5 pid7)))
69 (assert (not (= pid6 pid7)))
70 (assert (or (= LID pid0) (= LID pid1) (= LID pid2) (= LID pid3) (= LID pid4)

(= LID pid5) (= LID pid6) (= LID pid7)))

90

71 (assert (>= LID pid0))
72 (assert (>= LID pid1))
73 (assert (>= LID pid2))
74 (assert (>= LID pid3))
75 (assert (>= LID pid4))
76 (assert (>= LID pid5))
77 (assert (>= LID pid6))
78 (assert (>= LID pid7))
79 (assert (= (token0 0) pid0))
80 (assert (= (token1 0) pid1))
81 (assert (= (token2 0) pid2))
82 (assert (= (token3 0) pid3))
83 (assert (= (token4 0) pid4))
84 (assert (= (token5 0) pid5))
85 (assert (= (token6 0) pid6))
86 (assert (= (token7 0) pid7))
87 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token0 (+ t 1)) (i te (> (token0 t

) (token1 t)) (token0 t) (token1 t))))))
88 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token1 (+ t 1)) (i te (> (token1 t

) (token2 t)) (token1 t) (token2 t))))))
89 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token2 (+ t 1)) (i te (> (token2 t

) (token3 t)) (token2 t) (token3 t))))))
90 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token3 (+ t 1)) (i te (> (token3 t

) (token4 t)) (token3 t) (token4 t))))))
91 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token4 (+ t 1)) (i te (> (token4 t

) (token5 t)) (token4 t) (token5 t))))))
92 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token5 (+ t 1)) (i te (> (token5 t

) (token6 t)) (token5 t) (token6 t))))))
93 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token6 (+ t 1)) (i te (> (token6 t

) (token7 t)) (token6 t) (token7 t))))))
94 (assert (f o ra l l ((t Int)) (=> (>= t 0) (= (token7 (+ t 1)) (i te (> (token7 t

) (token0 t)) (token7 t) (token0 t))))))
95 (assert (f o ra l l ((t Int)) (=> (and (>= t 0) (= (token0 t) LID)) (AFP t))))
96 (assert (f o ra l l ((t Int)) (=> (AFP (+ t 1)) (AFP t))))
97 (assert (not (AFP 0)))
98 (check-sat)

A.2 Bakery Algorithm

1 ; Copyright (C) 2014 Amirhossein Vakili and
2 ; Nancy A. Day <https://cs.uwaterloo.ca/˜nday>
3 ;

91

4 ; Permission is hereby granted, free of charge, to any person obtaining a
5 ; copy of this software and associated documentation files (the "Software"),
6 ; to deal in ; the Software without restriction, including without
7 ; limitation the rights to use, copy, modify, merge, publish, distribute,
8 ; sublicense, and/or sell copies of the Software, and to permit persons to
9 ; whom the Software is furnished to do so, subject to the following
10 ; conditions:
11 ;
12 ; The above copyright notice and this permission notice shall be included in
13 ; all copies or substantial portions of the Software.
14 ;
15 ; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 ; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 ; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 ; THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 ; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 ; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 ; DEALINGS IN THE SOFTWARE.
22 ;
23 ;
24 (declare-sort State 0)
25 (declare-fun C () State)
26 (declare-fun T () State)
27 (declare-fun W () State)
28 (declare-fun AF (State Int State Int) Bool)
29 (define-fun init ((c1 State) (t1 Int) (c2 State) (t2 Int)) Bool (and (= c1 W

) (> t1 0) (or (= c2 T) (= c2 W) (= c2 C)) (>= t2 0)))
30 (define-fun eT ((c1 State) (t1 Int) (c2 State) (t2 Int) (c1p State) (t1p Int

) (c2p State) (t2p Int)) Bool (and (= c1 T) (= c1p W) (= t1p (+ t2 1)) (=
c2 c2p) (= t2 t2p)))

31 (define-fun eW ((c1 State) (t1 Int) (c2 State) (t2 Int) (c1p State) (t1p Int
) (c2p State) (t2p Int)) Bool (and (= c1 W) (or (< t1 t2) (= t2 0)) (=
c1p C) (= t1 t1p) (= c2 c2p) (= t2 t2p)))

32 (define-fun eC ((c1 State) (t1 Int) (c2 State) (t2 Int) (c1p State) (t1p Int
) (c2p State) (t2p Int)) Bool (and (= c1 C) (= c1p T) (= t1p 0) (= c2 c2p
) (= t2 t2p)))

33 (define-fun next ((c1 State) (t1 Int) (c2 State) (t2 Int) (c1p State) (t1p
Int) (c2p State) (t2p Int)) Bool (and (or (= c1 T) (= c1 W) (= c1 C)) (>=
t1 0) (or (= c2 T) (= c2 W) (= c2 C)) (>= t2 0) (or (= c1p T) (= c1p W)

(= c1p C)) (>= t1p 0) (or (= c2p T) (= c2p W) (= c2p C)) (>= t2p 0) (or (
eT c1 t1 c2 t2 c1p t1p c2p t2p) (eW c1 t1 c2 t2 c1p t1p c2p t2p) (eC c1
t1 c2 t2 c1p t1p c2p t2p) (eT c2 t2 c1 t1 c2p t2p c1p t1p) (eW c2 t2 c1
t1 c2p t2p c1p t1p) (eC c2 t2 c1 t1 c2p t2p c1p t1p))))

92

34 (define-fun dead_end ((c1 State) (t1 Int) (c2 State) (t2 Int)) Bool (f o ra l l
((c1p State) (t1p Int) (c2p State) (t2p Int)) (not (next c1 t1 c2 t2 c1p
t1p c2p t2p))))

35 (assert (not (= T W)))
36 (assert (not (= T C)))
37 (assert (not (= W C)))
38 (assert (f o ra l l ((c1 State) (t1 Int) (c2 State) (t2 Int)) (=> (or (dead_end

c1 t1 c2 t2) (= c1 C)) (AF c1 t1 c2 t2))))
39 (assert (f o ra l l ((c1 State) (t1 Int) (c2 State) (t2 Int)) (=> (f o ra l l ((c1p

State) (t1p Int) (c2p State) (t2p Int)) (=> (next c1 t1 c2 t2 c1p t1p c2p
t2p) (AF c1p t1p c2p t2p))) (AF c1 t1 c2 t2))))

40 (assert (not (f o ra l l ((c1 State) (t1 Int) (c2 State) (t2 Int)) (=> (init c1
t1 c2 t2) (AF c1 t1 c2 t2)))))

41 (check-sat)

A.3 Collision Avoidance State-Flow Model

1 ; Copyright (C) 2014 Amirhossein Vakili and
2 ; Nancy A. Day <https://cs.uwaterloo.ca/˜nday>
3 ;
4 ; Permission is hereby granted, free of charge, to any person obtaining a
5 ; copy of this software and associated documentation files (the "Software"),
6 ; to deal in ; the Software without restriction, including without
7 ; limitation the rights to use, copy, modify, merge, publish, distribute,
8 ; sublicense, and/or sell copies of the Software, and to permit persons to
9 ; whom the Software is furnished to do so, subject to the following
10 ; conditions:
11 ;
12 ; The above copyright notice and this permission notice shall be included in
13 ; all copies or substantial portions of the Software.
14 ;
15 ; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 ; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 ; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 ; THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 ; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 ; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 ; DEALINGS IN THE SOFTWARE.
22 ;
23 ;
24 (declare-sort State 0)
25 (declare-sort PRNDL 0)

93

26 (declare-sort Threat 0)
27 (declare-fun EF_IDLE (State) Bool)
28 (declare-fun WAHN () State)
29 (declare-fun EF_MITIGATE (State) Bool)
30 (declare-fun EF_DISABLED (State) Bool)
31 (declare-fun HALT () State)
32 (declare-fun MITIGATE () State)
33 (declare-fun G4 () PRNDL)
34 (declare-fun G3 () PRNDL)
35 (declare-fun G2 () PRNDL)
36 (declare-fun G1 () PRNDL)
37 (declare-fun G0 () PRNDL)
38 (declare-fun IDLE () State)
39 (declare-fun EF_OVERRIDE (State) Bool)
40 (declare-fun OVERRIDE () State)
41 (declare-fun DISENGAGED () State)
42 (declare-fun AVOID () State)
43 (declare-fun T2 () Threat)
44 (declare-fun T3 () Threat)
45 (declare-fun T0 () Threat)
46 (declare-fun T1 () Threat)
47 (declare-fun DISABLED () State)
48 (declare-fun THRESHOLD () Int)
49 (declare-fun EF_HALT (State) Bool)
50 (declare-fun FAIL () State)
51 (declare-fun EF_AVOID (State) Bool)
52 (declare-fun EF_WAHN (State) Bool)
53 (declare-fun EF_FAIL (State) Bool)
54 (declare-fun EF_DISENGAGED (State) Bool)
55 (define-fun in_engaged ((s State)) Bool (or (= s IDLE) (= s AVOID) (= s WAHN

) (= s MITIGATE)))
56 (define-fun in_enabled ((s State)) Bool (or (= s DISENGAGED) (in_engaged s)

(= s HALT)))
57 (define-fun t14 ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (= s DISABLED) ca_enable (= sp DISENGAGED)))

58 (define-fun t38 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (= s OVERRIDE) (not ca_enable) (= sp DISABLED)))

59 (define-fun t39 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (= s OVERRIDE) error (= sp FAIL)))

60 (define-fun t37 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (= s OVERRIDE) (< accel_pedal 35) (= sp DISENGAGED)))

94

61 (define-fun t15 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (in_enabled s) (not ca_enable) (= sp DISABLED)))

62 (define-fun t36 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (in_enabled s) (>= accel_pedal 35) (= sp OVERRIDE)))

63 (define-fun t27 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (in_enabled s) error (= sp FAIL)))

64 (define-fun t24 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (= s HALT) (not (not ca_enable)) (not (>= accel_pedal
35)) (not error) (> brake_pedal 10) (= sp DISENGAGED)))

65 (define-fun t16 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (= s DISENGAGED) (not (not ca_enable)) (not (>=
accel_pedal 35)) (not error) (> speed THRESHOLD) (= prndl G3) (= sp IDLE)
))

66 (define-fun t17 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (in_engaged s) (not (not ca_enable)) (not (>=
accel_pedal 35)) (not error) (or (and (not (= speed 0)) (<= speed
THRESHOLD)) (not (= prndl G3))) (= sp DISENGAGED)))

67 (define-fun t25 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (in_engaged s) (not (not ca_enable)) (not (>=
accel_pedal 35)) (not error) (= speed 0) (= sp HALT)))

68 (define-fun t19 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (or (= s IDLE) (= s AVOID) (= s MITIGATE)) (not (not
ca_enable)) (not (>= accel_pedal 35)) (not error) (not (or (and (not (=
speed 0)) (<= speed THRESHOLD)) (not (= prndl G3)))) (not (= speed 0)) (=
threat T1) (= sp WAHN)))

69 (define-fun t20 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (or (= s AVOID) (= s WAHN) (= s MITIGATE)) (not (not
ca_enable)) (not (>= accel_pedal 35)) (not error) (not (or (and (not (=
speed 0)) (<= speed THRESHOLD)) (not (= prndl G3)))) (not (= speed 0)) (=
threat T0) (= sp IDLE)))

70 (define-fun t22 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (or (= s WAHN) (= s IDLE) (= s MITIGATE)) (not (not
ca_enable)) (not (>= accel_pedal 35)) (not error) (not (or (and (not (=
speed 0)) (<= speed THRESHOLD)) (not (= prndl G3)))) (not (= speed 0)) (=
threat T2) (= sp AVOID)))

95

71 (define-fun t29 ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (or (= s WAHN) (= s IDLE) (= s AVOID)) (not (not
ca_enable)) (not (>= accel_pedal 35)) (not error) (not (or (and (not (=
speed 0)) (<= speed THRESHOLD)) (not (= prndl G3)))) (not (= speed 0)) (=
threat T3) (= sp MITIGATE)))

72 (define-fun next ((error Bool) (ca_enable Bool) (brake_pedal Int) (
accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) Bool (and (or (= s DISABLED) (= s OVERRIDE) (= s FAIL) (= s
DISENGAGED) (= s HALT) (= s IDLE) (= s WAHN) (= s AVOID) (= s MITIGATE))
(>= brake_pedal 0) (<= brake_pedal 100) (>= accel_pedal 0) (<=
accel_pedal 100) (>= speed 0) (or (= threat T0) (= threat T1) (= threat
T2) (= threat T3)) (or (= prndl G0) (= prndl G1) (= prndl G2) (= prndl G3
) (= prndl G4)) (or (t14 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t38 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t39 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t37 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t15 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t36 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t27 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t24 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t16 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t17 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t25 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t19 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t20 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t22 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp) (t29 error ca_enable brake_pedal accel_pedal speed
threat prndl s sp))))

73 (assert (>= THRESHOLD 0))
74 (assert (not (= DISABLED OVERRIDE)))
75 (assert (not (= DISABLED FAIL)))
76 (assert (not (= DISABLED DISENGAGED)))
77 (assert (not (= DISABLED HALT)))
78 (assert (not (= DISABLED IDLE)))
79 (assert (not (= DISABLED WAHN)))
80 (assert (not (= DISABLED AVOID)))
81 (assert (not (= DISABLED MITIGATE)))
82 (assert (not (= OVERRIDE FAIL)))
83 (assert (not (= OVERRIDE DISENGAGED)))
84 (assert (not (= OVERRIDE HALT)))
85 (assert (not (= OVERRIDE IDLE)))
86 (assert (not (= OVERRIDE WAHN)))
87 (assert (not (= OVERRIDE AVOID)))
88 (assert (not (= OVERRIDE MITIGATE)))

96

89 (assert (not (= FAIL DISENGAGED)))
90 (assert (not (= FAIL HALT)))
91 (assert (not (= FAIL IDLE)))
92 (assert (not (= FAIL WAHN)))
93 (assert (not (= FAIL AVOID)))
94 (assert (not (= FAIL MITIGATE)))
95 (assert (not (= DISENGAGED HALT)))
96 (assert (not (= DISENGAGED IDLE)))
97 (assert (not (= DISENGAGED WAHN)))
98 (assert (not (= DISENGAGED AVOID)))
99 (assert (not (= DISENGAGED MITIGATE)))

100 (assert (not (= HALT IDLE)))
101 (assert (not (= HALT WAHN)))
102 (assert (not (= HALT AVOID)))
103 (assert (not (= HALT MITIGATE)))
104 (assert (not (= IDLE WAHN)))
105 (assert (not (= IDLE AVOID)))
106 (assert (not (= IDLE MITIGATE)))
107 (assert (not (= WAHN AVOID)))
108 (assert (not (= WAHN MITIGATE)))
109 (assert (not (= AVOID MITIGATE)))
110 (assert (not (= T0 T1)))
111 (assert (not (= T0 T2)))
112 (assert (not (= T0 T3)))
113 (assert (not (= T1 T2)))
114 (assert (not (= T1 T3)))
115 (assert (not (= T2 T3)))
116 (assert (not (= G0 G1)))
117 (assert (not (= G0 G2)))
118 (assert (not (= G0 G3)))
119 (assert (not (= G0 G4)))
120 (assert (not (= G1 G2)))
121 (assert (not (= G1 G3)))
122 (assert (not (= G1 G4)))
123 (assert (not (= G2 G3)))
124 (assert (not (= G2 G4)))
125 (assert (not (= G3 G4)))
126 (assert (f o ra l l ((s State)) (=> (= s DISABLED) (EF_DISABLED s))))
127 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_DISABLED sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_DISABLED s))))

128 (assert (f o ra l l ((s State)) (=> (= s OVERRIDE) (EF_OVERRIDE s))))
129 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp

97

State)) (=> (and (EF_OVERRIDE sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_OVERRIDE s))))

130 (assert (f o ra l l ((s State)) (=> (= s FAIL) (EF_FAIL s))))
131 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_FAIL sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_FAIL s))))

132 (assert (f o ra l l ((s State)) (=> (= s DISENGAGED) (EF_DISENGAGED s))))
133 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_DISENGAGED sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_DISENGAGED s))))

134 (assert (f o ra l l ((s State)) (=> (= s HALT) (EF_HALT s))))
135 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_HALT sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_HALT s))))

136 (assert (f o ra l l ((s State)) (=> (= s IDLE) (EF_IDLE s))))
137 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_IDLE sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_IDLE s))))

138 (assert (f o ra l l ((s State)) (=> (= s WAHN) (EF_WAHN s))))
139 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_WAHN sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_WAHN s))))

140 (assert (f o ra l l ((s State)) (=> (= s AVOID) (EF_AVOID s))))
141 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_AVOID sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_AVOID s))))

142 (assert (f o ra l l ((s State)) (=> (= s MITIGATE) (EF_MITIGATE s))))
143 (assert (f o ra l l ((error Bool) (ca_enable Bool) (brake_pedal Int) (

accel_pedal Int) (speed Int) (threat Threat) (prndl PRNDL) (s State) (sp
State)) (=> (and (EF_MITIGATE sp) (next error ca_enable brake_pedal
accel_pedal speed threat prndl s sp)) (EF_MITIGATE s))))

144 (assert (not (and (EF_DISABLED DISABLED) (EF_OVERRIDE DISABLED) (EF_FAIL
DISABLED) (EF_DISENGAGED DISABLED) (EF_HALT DISABLED) (EF_IDLE DISABLED)
(EF_WAHN DISABLED) (EF_AVOID DISABLED) (EF_MITIGATE DISABLED))))

145 (check-sat)

98

A.4 File System

1 ; Copyright (C) 2014 Amirhossein Vakili and
2 ; Nancy A. Day <https://cs.uwaterloo.ca/˜nday>
3 ;
4 ; Permission is hereby granted, free of charge, to any person obtaining a
5 ; copy of this software and associated documentation files (the "Software"),
6 ; to deal in ; the Software without restriction, including without
7 ; limitation the rights to use, copy, modify, merge, publish, distribute,
8 ; sublicense, and/or sell copies of the Software, and to permit persons to
9 ; whom the Software is furnished to do so, subject to the following
10 ; conditions:
11 ;
12 ; The above copyright notice and this permission notice shall be included in
13 ; all copies or substantial portions of the Software.
14 ;
15 ; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 ; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 ; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 ; THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 ; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 ; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 ; DEALINGS IN THE SOFTWARE.
22 ;
23 ;
24 (declare-sort State 0)
25 (declare-sort Data 0)
26 (declare-sort Key 0)
27 (declare-fun EF (State) Bool)
28 (declare-fun S0 () State)
29 (declare-fun SW () State)
30 (declare-fun content (State Key) Data)
31 (declare-fun K0 () Key)
32 (declare-fun NULL () Data)
33 (declare-fun D0 () Data)
34 (define-fun empty ((s State)) Bool (f o ra l l ((k Key)) (= (content s k) NULL))

)
35 (define-fun write ((k Key) (d Data) (s State) (sp State)) Bool (and (not (=

d NULL)) (not (= (content s k) NULL)) (= (content sp k) d) (f o ra l l ((kp
Key)) (=> (not (= kp k)) (= (content s kp) (content sp kp))))))

36 (define-fun add ((k Key) (d Data) (s State) (sp State)) Bool (and (not (= d
NULL)) (= (content s k) NULL) (= (content sp k) d) (f o ra l l ((kp Key)) (=>
(not (= kp k)) (= (content s kp) (content sp kp))))))

99

37 (define-fun delete ((k Key) (s State) (sp State)) Bool (and (not (= (content
s k) NULL)) (= (content sp k) NULL) (f o ra l l ((kp Key)) (=> (not (= kp k)

) (= (content s kp) (content sp kp))))))
38 (define-fun next ((s State) (sp State)) Bool (exists ((k Key) (d Data)) (or

(add k d s sp) (delete k s sp))))
39 (assert (f o ra l l ((s State) (k Key) (d Data)) (=> (and (not (= d NULL)) (= (

content s k) NULL)) (exists ((sp State)) (add k d s sp)))))
40 (assert (f o ra l l ((s State) (k Key)) (=> (not (= (content s k) NULL)) (exists

((sp State)) (delete k s sp)))))
41 (assert (not (= D0 NULL)))
42 (assert (write K0 D0 S0 SW))
43 (assert (EF SW))
44 (assert (f o ra l l ((s State) (sp State)) (=> (and (EF sp) (next s sp)) (EF s))

))
45 (assert (not (EF S0)))
46 (check-sat)

100

Appendix B

Alloy Models

B.1 CTLFC to FOLTC Module in Alloy

1 /*
2 * Copyright (c) 2012, Amirhossein Vakili
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

101

27 */
28

29 module temporal_logics/ctlfc[S]
30

31 private one sig TS{
32 S0: some S,
33 sigma: S -> S,
34 FC: set S
35 }
36

37 fun initialState: S {TS.S0}
38

39 fun nextState: S -> S{TS.sigma}
40

41 fun fc: S {TS.FC}
42

43 // Helper functions for model checking
44

45 private fun bound[R: S -> S, X: S]: S -> S{X <: R}
46

47 private fun id[X:S]: S->S{bound[iden,X]}
48

49 private fun loop[R: S -> S]: S {S.(ˆR & id[S])}
50

51 // Fair is EcG true
52

53 private fun Fair: S{
54 l et R= TS.sigma|
55 l et LoopFC = loop[R] & TS.FC|
56 (*R).LoopFC
57 }
58

59 // Temporal operators of CTL and CTLFC
60

61 fun not_ctlfc[phi: S]: S {S - phi}
62

63 fun and_ctlfc[phi, si: S]: S {phi & si}
64

65 fun or_ctlfc[phi, si: S]: S {phi + si}
66

67 fun imp_ctlfc[phi, si: S]: S {not_ctlfc[phi] + si}
68

69 fun ex[phi: S]: S {TS.sigma.phi}
70

71 fun ecx[phi: S]: S {ex[phi & Fair]}

102

72

73 fun ax[phi:S]:S {not_ctlfc[ex[not_ctlfc[phi]]]}
74

75 fun acx[phi:S]:S {not_ctlfc[ecx[not_ctlfc[phi]]]}
76

77 fun ef[phi: S]: S {(*(TS.sigma)).phi }
78

79 fun ecf[phi: S]: S {ef[phi & Fair]}
80

81 fun eg[phi: S]: S {
82 l et R= bound[TS.sigma,phi]|
83 l et Loop = loop[R]|
84 (*R).Loop
85 }
86

87 fun ecg[phi:S]:S {
88 l et R= bound[TS.sigma,phi]|
89 l et LoopFC = loop[R] & TS.FC|
90 (*R).LoopFC
91 }
92

93 fun af[phi: S]: S {not_ctlfc[eg[not_ctlfc[phi]]]}
94

95 fun acf[phi: S]: S {not_ctlfc[ecg[not_ctlfc[phi]]]}
96

97 fun ag[phi: S]: S {not_ctlfc[ef[not_ctlfc[phi]]]}
98

99 fun acg[phi: S]: S {not_ctlfc[ecf[not_ctlfc[phi]]]}
100

101 fun eu[phi, si: S]: S {(*(bound[TS.sigma, phi])).si}
102

103 fun ecu[phi, si: S]: S {eu[phi, si & Fair]}
104

105 fun acu[phi, si: S]:S {
106 not_ctlfc[or_ctlfc[ecg[not_ctlfc[si]],
107 ecu[not_ctlfc[si],
108 not_ctlfc[or_ctlfc[phi, si]]]]]
109 }
110

111 // model checking constraint
112

113 pred ctlfc_mc[phi: S]{TS.S0 in phi}

103

B.2 Address Book

1 module tour/addressBook3d ----- this is the final model in fig 2.18
2

3 --open util/ordering [Book] as BookOrder
4 open temporal_logics/ctl[Book]
5

6 abstract sig Target { }
7 sig Addr extends Target { }
8 abstract sig Name extends Target { }
9

10 sig Alias, Group extends Name { }
11

12 sig Book {
13 names: set Name,
14 addr: names->some Target,
15 sigma: set Book
16 } {
17 no n: Name | n in n.ˆaddr
18 all a: Alias | lone a.addr
19 }
20

21 pred add [b, b’: Book, n: Name, t: Target] {
22 t in Addr or some lookup [b, Name&t]
23 b’.addr = b.addr + n->t
24 b != b’
25 }
26

27 pred del [b, b’: Book, n: Name, t: Target] {
28 b != b’
29 no b.addr.n or some n.(b.addr) - t
30 b’.addr = b.addr - n->t
31 }
32

33 fun lookup [b: Book, n: Name] : set Addr { n.ˆ(b.addr) & Addr }
34

35 pred init [b: Book] { no b.addr }
36

37 fact traces {
38 -- init [first]
39 -- all b: Book-last |
40 -- let b’ = b.next |
41 -- some n: Name, t: Target |
42 -- add [b, b’, n, t] or del [b, b’, n, t]
43 all b,b’:Book|

104

44 ((b’ in nextState[b]) implies
45 (some n: Name, t: Target | add [b, b’, n, t] or del [b, b’,

n, t]))
46 all b,b’:Book|((b.addr=b’.addr) implies b=b’)
47 }
48

49 --
50

51 assert delUndoesAdd {
52 all b, b’, b’’: Book, n: Name, t: Target |
53 no n.(b.addr) and add [b, b’, n, t] and del [b’, b’’, n, t]
54 implies
55 b.addr = b’’.addr
56 }
57

58 // This should not find any counterexample.
59 --check delUndoesAdd for 3
60

61 --
62

63 assert addIdempotent {
64 all b, b’, b’’: Book, n: Name, t: Target |
65 add [b, b’, n, t] and add [b’, b’’, n, t]
66 implies
67 b’.addr = b’’.addr
68 }
69

70 // This should not find any counterexample.
71 --check addIdempotent for 3
72

73 --
74

75 assert addLocal {
76 all b, b’: Book, n, n’: Name, t: Target |
77 add [b, b’, n, t] and n != n’
78 implies
79 lookup [b, n’] = lookup [b’, n’]
80 }
81

82 // This should not find any counterexample.
83 --check addLocal for 3 but 2 Book
84

85 --
86

87 assert lookupYields {

105

88 all b: Book, n: b.names | some lookup [b,n]
89 }
90

91 sig P in Book{}
92

93 fact{
94 all b:Book| (b in P) i f f (all n: b.names | some lookup [b,n])
95 init[initialState]
96 }
97

98 assert MC{
99 CTL_MC[AG[P]]

100 // S0 in Book - (*sigma).(Book - P)
101 }
102

103 // This should not find any counterexample.
104 --check lookupYields for 3 but 4 Book
105 // Scope 14: 1 min 14 sec
106 --check MC for 10 but 4 Book
107

108 // Scope 15: 2 min 57 sec
109 --check MC for 11 but 4 Book
110

111 // Scope 16: 9 min 15 sec
112 --check MC for 12 but 4 Book
113

114 //Scope 17: > 1 h
115 check MC for 13 but 4 Book
116

117 // This should not find any counterexample.
118 --check lookupYields for 6
119 --check MC for 6

B.3 Feature Interaction

1 module featureInteraction
2

3 open util/boolean
4

5 // Feature={CW,CF} is the set of features.
6 abstract sig Feature{}
7 one sig CW,CF extends Feature{}

106

8

9

10 // Each phone number can have some features. If a number has call-forwarding
(CF),

11 // fw points to forwarded number.
12 sig PhoneNumber{ feature: set Feature, fw: lone PhoneNumber}
13 fact{
14 all n:PhoneNumber| CF in n.feature i f f some n.fw
15 }
16

17

18 // Used to model the global states.
19 sig Environment{
20 // Numbers that are idle,
21 idle: set PhoneNumber,
22

23 // (a->b) in calling iff a is trying to call b
24 calling: PhoneNumber -> PhoneNumber,
25

26 // (a->b) in talking iff a is talking to b
27 talkingTo: PhoneNumber -> PhoneNumber,
28

29 // (a->b) in busy iff a wants to talk to b, but b is not idle
30 busy: PhoneNumber -> PhoneNumber,
31

32 // (a->b) in waitingFor iff a is waiting for b
33 waitingFor: PhoneNumber -> PhoneNumber,
34

35 // (a->b) in forwardedTo iff a is forwarded to b
36 forwardedTo: PhoneNumber -> PhoneNumber,
37

38 // represents whether a global state is safe or not
39 safe: Bool,
40

41 // the transition relation between global states
42 sigma: set Environment
43 }{
44 safe = True i f f (no waitingFor.PhoneNumber & forwardedTo.PhoneNumber

)
45 }
46

47 // IE is the initial state.
48

49 one sig IE extends Environment{}
50 fact{initial[IE]}

107

51

52 pred initial[e:Environment]{
53 e.idle = PhoneNumber
54 no e.calling
55 no e.talkingTo
56 no e.busy
57 no e.waitingFor
58 no e.forwardedTo
59 }
60

61 // The following predicates are used
62

63 pred idle_calling[e,e’: Environment,n,n’:PhoneNumber]{
64 n != n’
65 n in e.idle
66 e’.idle = ((e.idle) - n)
67 (n->n’) in e’.calling
68 e.calling = (e’.calling - (n->n’))
69 e.talkingTo = e’.talkingTo
70 e.busy = e’.busy
71 e.waitingFor = e’.waitingFor
72 e.forwardedTo = e’.forwardedTo
73 }
74

75 pred calling_talkingTo[e,e’:Environment,n,n’:PhoneNumber]{
76 n’ in e.idle
77 e’.idle = e.idle - n’
78 n -> n’ in (e.calling & e’.talkingTo)
79 e’.calling = e.calling - (n -> n’)
80 e.talkingTo = e’.talkingTo - (n -> n’)
81 e.busy = e’.busy
82 e.waitingFor = e’.waitingFor
83 e.forwardedTo = e’.forwardedTo
84 }
85

86 pred talkingTo_idle[e,e’:Environment,n,n’:PhoneNumber]{
87 n -> n’ in e.talkingTo
88 (n + n’) in e’.idle
89 e.idle = e’.idle - (n + n’)
90 e.busy = e’.busy
91 e.calling = e’.calling
92 e.waitingFor = e’.waitingFor
93 e.forwardedTo = e’.forwardedTo
94 }
95

108

96 pred calling_busy[e,e’:Environment,n,n’:PhoneNumber]{
97 n’ !in e.idle
98 e.idle = e’.idle
99 n -> n’ in e.calling & e’.busy

100 e’.calling = e.calling - (n -> n’)
101 e.talkingTo = e’.talkingTo
102 e.busy = e’.busy - (n -> n’)
103 e.waitingFor = e’.waitingFor
104 e.forwardedTo = e’.forwardedTo
105 }
106

107 pred busy_waitingFor[e,e’:Environment,n,n’:PhoneNumber]{
108 CW in n’.feature
109 n’ !in PhoneNumber.(e.waitingFor)
110 e.idle = e’.idle
111 e.calling = e’.calling
112 e.talkingTo = e’.talkingTo
113 n -> n’ in (e.busy & e’.waitingFor)
114 e’.busy = e.busy - (n -> n’)
115 e.waitingFor = e’.waitingFor - (n -> n’)
116 // if this line is commented, there will be feature interaction
117 e.forwardedTo = e’.forwardedTo
118 }
119

120 pred waitingFor_idle[e,e’:Environment,n,n’:PhoneNumber]{
121 n -> n’ in e.waitingFor
122 n in e’.idle
123 e.idle = e’.idle - n
124 e.calling = e’.calling
125 e.talkingTo = e’.talkingTo
126 e.busy = e’.busy
127 e’.waitingFor = e.waitingFor - (n -> n’)
128 }
129

130 pred waitingFor_talkingTo[e,e’:Environment,n,n’:PhoneNumber]{
131 n -> n’ in (e.waitingFor & e’.talkingTo)
132 n’ in e.talkingTo.n’
133 e’.waitingFor = e.waitingFor - (n -> n’)
134 e’.idle = e.idle - n’
135 e.talkingTo = e’.talkingTo - (n -> n’)
136 e.busy = e’.busy
137 e.forwardedTo = e’.forwardedTo
138 }
139

140 pred busy_forwardedTo[e,e’:Environment,n,n’:PhoneNumber]{

109

141 CF in n’.feature
142 n -> n’ in e.busy
143 e’.busy = e.busy - (n -> n’)
144 e.idle = e’.idle
145 e’.forwardedTo = e.forwardedTo + (n -> n’.fw)
146 e.talkingTo = e’.talkingTo
147 e.calling = e’.calling
148 // if this line is commented, there will be feature interaction
149 e.waitingFor = e’.waitingFor
150 }
151

152 pred forwardedTo_calling[e,e’:Environment,n,n’:PhoneNumber]{
153 e.idle = e’.idle
154 n -> n’ in (e.forwardedTo & e’.calling)
155 e’.forwardedTo = e.forwardedTo - (n->n’)
156 e.calling = e’.calling - (n -> n’)
157 e.busy = e’.busy
158 e.talkingTo = e’.talkingTo
159 e.waitingFor = e’.waitingFor
160 }
161

162 pred busy_idle[e,e’:Environment,n,n’:PhoneNumber]{
163 n -> n’ in e.busy
164 no n’.feature
165 e’.busy = e.busy - (n -> n’)
166 n in e’.idle
167 e.idle = e’.idle - n
168 e.talkingTo = e’.talkingTo
169 e.waitingFor = e’.waitingFor
170 e.forwardedTo = e’.forwardedTo
171 e.calling = e’.calling
172 }
173

174 fact TRANSITIONS{
175

176 no iden & (ˆfw)
177 all e,e’: Environment|
178 ((e->e’) in sigma) i f f
179 (some n,n’:PhoneNumber|(
180 idle_calling[e,e’,n,n’] or calling_talkingTo[e,e’,n,

n’] or talkingTo_idle[e,e’,n,n’] or
181 calling_busy[e,e’,n,n’] or busy_waitingFor[e,e’,n,n

’] or busy_forwardedTo[e,e’,n,n’] or
182 busy_idle[e,e’,n,n’] or waitingFor_idle[e,e’,n,n’]

or waitingFor_talkingTo[e,e’,n,n’] or

110

183 forwardedTo_calling[e,e’,n,n’]))
184

185

186 all e,e’:Environment|(
187 ((e.idle = e’.idle) and (e.calling = e’.calling) and
188 (e.talkingTo = e’.talkingTo) and (e.busy = e’.busy) and
189 (e.waitingFor = e’.waitingFor) and (e.forwardedTo = e’.

forwardedTo)) implies (e =e’))
190

191 Environment = IE.(*sigma)
192

193 all e:Environment| blackBox[e]
194 }
195

196 //These are the constraints that are not implemented in sigma, but sigma
needs

197 // to satisfy them.
198 pred blackBox[e:Environment]{
199 no (e.calling.PhoneNumber) & (PhoneNumber.(e.calling))
200 no e.idle & (e.calling.PhoneNumber + e.busy.PhoneNumber +

PhoneNumber.(e.busy))
201 no e.idle & (e.talkingTo.PhoneNumber + PhoneNumber.(e.talkingTo))
202 no e.idle & (e.waitingFor.PhoneNumber + PhoneNumber.(e.waitingFor))
203 all n:PhoneNumber| lone e.waitingFor.n
204 }
205

206 // AG safe
207

208 assert No_Feature_Interaction{
209 IE in Environment - (*sigma).(safe.False)
210 }
211 //Scope 10: 14.28 sec
212 --check No_Feature_Interaction for 6 Environment, 4 PhoneNumber
213

214 //Scope 11: 2 min 7.6 sec
215 --check No_Feature_Interaction for 7 Environment, 4 PhoneNumber
216

217 //Scope 12: 20 min 51 sec
218 --check No_Feature_Interaction for 8 Environment, 4 PhoneNumber
219

220 //Scope 13: > 1 h
221 check No_Feature_Interaction for 9 Environment, 4 PhoneNumber

111

B.4 Traffic Light

1 module TrafficLightController
2

3 open util/boolean
4 open temporal_logics/ctlfc[State]
5

6 // There are 3 sensors
7 abstract sig Sense{}
8 one sig N_Sense, S_Sense, E_Sense extends Sense{}
9

10 // Go is for modeling which direction is allowed to go
11 abstract sig Go{}
12 one sig N_Go, S_Go, E_Go extends Go{}
13

14 // Request is to latch the traffic sensors input.
15 abstract sig Request{}
16 one sig N_Req, S_Req, E_Req extends Request{}
17

18 sig State{
19 input: set Sense,
20 output: set Go,
21

22 req: set Request,
23 NS_Lock: Bool // NS_Lock is true iff East is not allowed to go
24

25 //sigma: some State // the transition relation
26 }
27

28 pred initial[s:State]{
29 no s.output
30 no s.req
31 s.NS_Lock = False
32 }
33

34 // setting the initial states
35 fact{ all s:State| initial[s] i f f (s in initialState)}
36

37

38 // Predicates for N_Go
39 pred N_Go_True[s:State]{
40 N_Req in s.req
41 N_Go !in s.output
42 E_Req !in s.req
43 }

112

44

45 pred N_Go_False[s:State]{
46 N_Go in s.output
47 N_Sense !in s.input
48 }
49

50 pred N_Go_[s,s’:State]{
51 N_Go_True[s] implies N_Go in s’.output else (N_Go_False[s] implies

N_Go !in s’.output else (N_Go in s.output i f f N_Go in s’.output))
52 }
53

54 // Predicates for S_Go
55 pred S_Go_True[s:State]{
56 S_Req in s.req
57 S_Go !in s.output
58 E_Req !in s.req
59 }
60

61 pred S_Go_False[s:State]{
62 S_Go in s.output
63 S_Sense !in s.input
64 }
65

66 pred S_Go_[s,s’:State]{
67 S_Go_True[s] implies S_Go in s’.output else (S_Go_False[s] implies

S_Go !in s’.output else (S_Go in s.output i f f S_Go in s’.output))
68 }
69

70 // Predicates for E_Go
71 pred E_Go_True[s:State]{
72 E_Req in s.req
73 E_Go !in s.output
74 s.NS_Lock = False
75 }
76

77 pred E_Go_False[s:State]{
78 E_Go in s.output
79 E_Sense !in s.input
80 }
81

82 pred E_Go_[s,s’:State]{
83 E_Go_True[s] implies E_Go in s’.output else (E_Go_False[s] implies

E_Go !in s’.output else (E_Go in s.output i f f E_Go in s’.output))
84 }
85

113

86 // Predicates for N_Req
87 pred N_Req_True[s:State]{
88 N_Sense in s.input
89 }
90

91 pred N_Req_False[s:State]{
92 N_Go_False[s]
93 }
94

95 pred N_Req_[s,s’:State]{
96 N_Req_True[s] implies N_Req in s’.req else (N_Req_False[s] implies

N_Req !in s’.req else (N_Req in s.req i f f N_Req in s’.req))
97 }
98

99 // Predicates for S_Req
100 pred S_Req_True[s:State]{
101 S_Sense in s.input
102 }
103

104 pred S_Req_False[s:State]{
105 S_Go_False[s]
106 }
107

108 pred S_Req_[s,s’:State]{
109 S_Req_True[s] implies S_Req in s’.req else (S_Req_False[s] implies

S_Req !in s’.req else (S_Req in s.req i f f S_Req in s’.req))
110 }
111

112 // Predicates for E_Req
113 pred E_Req_True[s:State]{
114 E_Sense in s.input
115 }
116

117 pred E_Req_False[s:State]{
118 E_Go_False[s]
119 }
120

121 pred E_Req_[s,s’:State]{
122 E_Req_True[s] implies E_Req in s’.req else (E_Req_False[s] implies

E_Req !in s’.req else (E_Req in s.req i f f E_Req in s’.req))
123 }
124

125 // Predicates for NS_Lock
126 pred NS_Lock_True[s:State]{
127 N_Go_True[s] or S_Go_True[s]

114

128 }
129

130 pred NS_Lock_False[s:State]{
131 (N_Go_False [s] and S_Go !in s.output) or (S_Go_False [s] and N_Go !

in s.output)
132 }
133

134 pred NS_Lock_[s,s’:State]{
135 NS_Lock_True[s] implies s’.NS_Lock = True else (NS_Lock_False[s]

implies s’.NS_Lock = False else s.NS_Lock=s’.NS_Lock)
136 }
137

138 fact TransitionRelation{
139 // all s,s’:State| (s.input = s’.input and s.output = s’.output and s.

req = s’.req and s.NS_Lock = s’.NS_Lock) implies s = s’
140 all s,s’:State| s’ in nextState[s] i f f (N_Go_[s,s’] and S_Go_[s,s’]

and E_Go_[s,s’] and N_Req_[s,s’] and S_Req_[s,s’] and E_Req_[s,s
’] and NS_Lock_[s,s’])

141 }
142

143 // Modeling fairness constraints:
144

145 fun N_fair[]:State{
146 State - (input.N_Sense & output.N_Go)
147 }
148

149 fun S_fair[]:State{
150 State - (input.S_Sense & output.S_Go)
151 }
152

153 fun E_fair[]:State{
154 State - (input.E_Sense & output.E_Go)
155 }
156

157 fact{
158 fc1 = N_fair
159 fc2 = S_fair
160 fc3 = E_fair
161 }
162

163 // Helper functions for model checking
164

165 fun bound[R:State->State,X:State]
166 :State->State{
167 X <: R

115

168 }
169

170 fun id[X:State]
171 :State->State{
172 bound[iden,X]
173 }
174

175 fun loop[R: State->State]
176 :State{
177 State.(ˆR & id[State])
178 }
179

180 // Set of states that satisfy E_CG true
181 // This is used for detecting fair paths
182 /*fun ECG_True[]:State{
183 let R = *sigma, idN_fair = id[N_fair], idS_fair = id[S_fair],

idE_fair = id[E_fair] |
184 R.(loop[sigma] & loop[R.idN_fair.R.idS_fair.R.idE_fair.R])
185 }
186

187 // safety: ˜ECF E_Go & (N_Go | S_Go) = ˜ EF(E_Go & (N_Go | S_Go) & E_CG
true)

188 fun safety[]:State{
189 State - (*sigma).(output.E_Go & output.(N_Go + S_Go) & ECG_True)
190 }*/
191

192 /*
193 pred show[]{
194 S0 in ECG_True
195 some S0
196 }
197

198 run show for 9 State
199 */
200

201 assert MC{
202 CTLFC_MC[not_ctlfc[ECF[output.E_Go & output.(N_Go + S_Go)]]]
203 }
204

205 //Scope 7: 4.71 sec
206 --check MC for 7 State
207

208 //Scope 8: 36.81 sec
209 --check MC for 8 State
210

116

211 // Scope 9: 12 min 42 sec
212 --check MC for 9 State
213

214 // Scope 10: > 1 h
215 check MC for 10 State

B.5 Lambda Terms

1 module lambda
2

3 open util/boolean
4

5 // Backslash (\) is used to represent lambda
6 // In this example, each lambda term represents a state
7

8 // ct is a functions that maps each variable to its corresponding term
9 sig Variable {ct: Term}
10

11 // A lambda term has one of the following three types:
12 // VARiable, ABStraction, APPlication
13 abstract sig TermType{}
14 one sig VAR, ABS, APP extends TermType{}
15

16

17 // A lambda term is represented by its abstract syntax tree (AST)
18 // if t= v then t.var = v and t.right = t.left = NULL
19 // if t=\x.M then t.var = v and t.right = M and t.left = NULL
20 // if t=MN then t.var = NULL and t.left = M and t.right = N
21 sig Term{
22

23 // type is used to represnt the type of a term
24 type: TermType,
25

26 // if type is VAR or ABS, var refers to the variable used.
27 var: lone Variable,
28

29 // right is used for ABS and APP, left is only used for APP.
30 right, left: lone Term,
31

32 // alpha conversion is modeled by AlphaC, a binary relation over
terms.

33 // beta reduction is modeled by BetaR, a binary relation over terms

117

34 BetaR, AlphaC: set Term,
35

36 // pv represents the variables that are present in term
37 pv: set Variable,
38

39 // bv represents the bounded variables of a term
40 bv: set Variable,
41

42 //fv represents the free variables of a term
43 fv: set Variable,
44

45 // sub is used to define the substitution relation
46 // [t’/v]t=t’’ if and only if (t -> t’ -> t’’ -> v) is in sub.
47 sub: Term -> Term -> Variable,
48

49 //normal represents whether a term is in normal form or not
50 normal: Bool
51 }
52

53

54 // This fact block is used to defined the well-formedness constraints.
55 fact WellFormedTerms{
56 all v:Variable| v.ct.type = VAR and v.ct.var = v
57 all t:Term| (t.type = VAR implies (((t.var).ct=t) and (no t.(right+

left)))) and
58 (t.type = ABS implies ((one t.var) and (one t.right) and (no t.left)

)) and
59 (t.type = APP implies ((no t.var) and (one t.right) and (one t.left)

)) and
60 (t !in t.(ˆ(right+left)))
61 }
62

63 fact VARIABLES{
64 all t:Term| (t.type = VAR implies t.pv = t.var) and
65 (t.type!=VAR implies t.pv = t.(right+left).pv)
66

67 all t:Term| (t.type = VAR implies (no t.bv)) and
68 (t.type = ABS implies t.bv = t.right.bv + t.var) and
69 (t.type = APP implies t.bv = t.right.bv + t.left.bv)
70

71 all t:Term| t.fv = t.pv - t.bv
72 }
73

74

75 // This fact block is used to define the substitution relation (sub)

118

76 fact SUBSTITUTION{
77 all t,t’,t’’:Term,v:Variable|
78 t -> t’ -> t’’ -> v in sub i f f (subVAR[t,t’,t’’,v] or subAPP

[t,t’,t’’,v] or subABS[t,t’,t’’,v])
79 }
80

81 pred subVAR[t,t’,t’’:Term,v:Variable]{
82 t.type = VAR
83 subVAR1[t,t’,t’’,v] or subVAR2[t,t’,t’’,v]
84 }
85

86 pred subVAR1[t,t’,t’’:Term,v:Variable]{
87 t.var = v
88 t’ = t’’
89 }
90

91 pred subVAR2[t,t’,t’’:Term,v:Variable]{
92 t.var != v
93 t’’ = t
94 }
95

96 pred subAPP[t,t’,t’’:Term,v:Variable]{
97 t.type = APP
98 t’’.type = APP
99 t.right -> t’ -> t’’.right -> v in sub

100 t.left -> t’ -> t’’.left -> v in sub
101 }
102

103 pred subABS[t,t’,t’’:Term,v:Variable]{
104 t.type = ABS
105 t’’.type = ABS
106 subABS1[t,t’,t’’,v] or subABS2[t,t’,t’’,v] or subABS3[t,t’,t’’,v] or

subABS4[t,t’,t’’,v]
107 }
108

109 pred subABS1[t,t’,t’’:Term,v:Variable]{
110 v = t.var
111 t = t’’
112 }
113

114 pred subABS2[t,t’,t’’:Term,v:Variable]{
115 v != t.var
116 v !in t.right.fv
117 t = t’’
118 }

119

119

120 pred subABS3[t,t’,t’’:Term,v:Variable]{
121 v != t.var
122 v in t.right.fv
123 t.var !in t’.fv
124 t’’.var = t’.var
125 t.right -> t’ -> t’’.right -> v in sub
126 }
127

128 pred subABS4[t,t’,t’’:Term,v:Variable]{
129 v != t.var
130 v in t.right.fv
131 t.var in t’.fv
132 some z:Variable,tt:Term|
133 (t’’.var = z)and(t.right->z.ct->tt->t.var in sub)and(tt->t

’->t’’.right->v in sub)
134 }
135 // End of substitution definition
136

137

138 // Constraint for defining alpha conversion
139

140 fact ALPHACONVERSION{
141 all t,t’:Term| t->t’ in AlphaC i f f ((t=t’) or alphac1[t,t’] or

alphac2[t,t’] or alphac3[t,t’])
142 }
143

144 pred alphac1[t,t’:Term]{
145 t.type = ABS
146 t’.type = ABS
147 t’.var !in t.right.fv
148 t.right -> t’.var.ct -> t’.right -> t.var in sub
149 }
150

151 pred alphac2[t,t’:Term]{
152 t.type = ABS
153 t’.type = ABS
154 t.var = t’.var
155 t.right -> t’.right in AlphaC
156 }
157

158 pred alphac3[t,t’:Term]{
159 t.type = APP
160 t’.type = APP
161 t.left -> t’.left in AlphaC

120

162 t.right -> t’.right in AlphaC
163 }
164 //End of alpha
165

166 // The following is used to define the beta reduction by using
167 // the substitution relation
168 // (\x.M)N is beta reducable to [N/x]M
169 fact BETAREDUCTION{
170 all t,t’:Term| t->t’ in BetaR i f f (betaABS1[t,t’] or betaABS2[t,t’]

or betaAPP1[t,t’] or betaAPP2[t,t’])
171 }
172

173 pred betaABS1[t,t’:Term]{
174 t.type=APP
175 t.left.type = ABS
176 t.left.right->t.right->t’->t.left.var in sub
177 }
178

179 pred betaABS2[t,t’:Term]{
180 t.type = ABS
181 t’.type = ABS
182 t.var = t’.var
183 t.right -> t’.right in BetaR
184 }
185

186 pred betaAPP1[t,t’:Term]{
187 t.type = APP
188 t’.type = APP
189 t.left = t’.left
190 t.right -> t’.right in BetaR
191 }
192

193 pred betaAPP2[t,t’:Term]{
194 t.type = APP
195 t’.type = APP
196 t.right = t’.right
197 t.left -> t’.left in BetaR
198 }
199 // End of beta reduction
200

201

202 // A term is in normal form if it has no beta-redex
203 pred isInNormalForm[t:Term]{
204 all st:t.(*(right+left))| st.type = APP implies st.left.type != ABS
205 }

121

206

207 fact {
208 all t:Term| t.normal = True i f f isInNormalForm[t]
209 }
210

211 // We use existential model checking to produce a term
212 // that does not have any normal form.
213 // The beta-reduction (BetaR) is used as the transition
214 // relation.
215 // In this case, a term that does not have a normal
216 // form can be expressed as: AG ˜normal
217

218 fun bound[R: Term-> Term, X: Term]
219 :Term->Term{
220 X <: R
221 }
222

223 fun id[X:Term]: Term -> Term {
224 bound[iden,X]
225 }
226

227 fun loop[R: Term->Term]: Term{
228 Term.(ˆR & id[Term])
229 }
230

231

232 // infinite is a term that does not have a normal form
233 // The output in this case is: infinite = (\x.xx)(\x.xx)
234 one sig infinite, infinite’ in Term {}
235

236 pred IrreducableTerm []{
237 infinite in Term - (*BetaR).(normal.True)
238

239 all t:infinite.(*BetaR)| some t.BetaR
240 }
241 --run IrreducableTerm for 4 but 1 Variable
242

243 // Existential model checking is used to produce a term
244 // that has a normal form, but not all reduction paths
245 // result in term that is in normal form.
246 // (EF normal) and (EG ˜normal) is used to express this property.
247 // One of the output is (\x.(\x.xx))((\x.xx)(\x.xx))
248

249 pred OrderInReducing[]{
250 infinite in Term - (*BetaR).(normal.True)

122

251 all t:infinite.(*BetaR)| some t.BetaR
252

253 l et R = bound[BetaR,normal.False] |
254 infinite’ in ((*BetaR).(normal.True)) & ((*R).(loop[R]))
255 }
256

257 run OrderInReducing for 6 but 1 Variable
258 //run OrderInReducing for 10 but 3 Variable

123

References

[1] Fourth Hardware Model Checking Competition.
http://fmv.jku.at/hwmcc11/hwmcc11.pdf.

[2] Python. http://www.python.org.

[3] Yael Abarbanel-Vinov, Neta Aizenbud-Reshef, Ilan Beer, Cindy Eisner, Daniel Geist,
Tamir Heyman, Iris Reuveni, Eran Rippel, Irit Shitsevalov, Yaron Wolfsthal, and
Tali Yatzkar-Haham. On the Effective Deployment of Functional Formal Verification.
Formal Methods in System Design, page 3544, 2001.

[4] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, New York, 1996.

[5] Gregory R. Andrews. Concurrent Programming: Principles and Practice. Benjamin-
Cummings Publishing Co., Inc., 1991.

[6] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, New York, 2010.

[7] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press; Cambridge, MA, 2008.

[8] Clark Barrett, ChristopherL. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovi, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Computer-Aided
Verification, Lecture Notes in Computer Science, pages 171–177. Springer, 2011.

[9] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability
Modulo Theories, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, February 2009.

125

[10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2010.

[11] Shoham Ben-David, Richard Trefler, and Grant Weddell. Model Checking Using
Description Logic. Journal of Logic and Computation, pages 111–131, 2010.

[12] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. Solving Existen-
tially Quantified Horn Clauses. Computer-Aided Verification, pages 869–882. Springer,
2013.

[13] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness Checking as Safety Check-
ing. In FMICS02: Formal Methods for Industrial Critical Systems, volume 66(2) of
ENTCS. Elsevier Science Publishers, B.V.; Amsterdam, 2002.

[14] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic Model
Checking without BDDs. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer,
1999.

[15] Egon Börger. The ASM Method for System Design and Analysis. A Tutorial Introduc-
tion. In Frontiers of Combining Systems, Lecture Notes in Computer Science, pages
264–283. Springer, 2005.

[16] Aaron R. Bradley. SAT-Based Model Checking without Unrolling. In Verification,
Model Checking, and Abstract Interpretation, volume 6538 of Lecture Notes in Com-
puter Science, pages 70–87. Springer, 2011.

[17] Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic Model Checking of
Infinite State Systems Using Presburger Arithmetic. In Computer-Aided Verification,
volume 1254 of Lecture Notes in Computer Science, pages 400–411. Springer, 1997.

[18] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. In Logic in Computer Science, pages 428–439, Jun
1990.

[19] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
1990.

[20] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro
Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The
nuXmv Symbolic Model Checker. In Computer-Aided Verification, pages 334–342.
2014.

126

[21] Ernest Chang and Rosemary Roberts. An Improved Algorithm for Decentralized
Extrema-finding in Circular Configurations of Processes. Communications of the
ACM, pages 281–283, 1979.

[22] Felix Sheng-Ho Chang and Daniel Jackson. Symbolic Model Checking of Declarative
Relational Models. In International Conference on Software Engineering, pages 312–
320, 2006.

[23] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics, pages 345–363, 1936.

[24] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An
OpenSource Tool for Symbolic Model Checking. In Computer-Aided Verification,
Lecture Notes in Computer Science, pages 241–268. Springer, 2002.

[25] Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press; Cambridge, MA, 1999.

[26] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop, pages
52–71. Springer, 1982.

[27] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha, David E. Long,
Kenneth L. McMillan, and Linda A. Ness. Verification of the Futurebus+ cache
coherence protocol. Formal Methods in System Design, page 217232, 1995.

[28] Martin Davis, Ron Sigal, and Elaine J Weyuker. Computability, Complexity, and
Languages: Fundamentals of Theoretical Computer Science. Morgan Kaufmann, 2
edition, 1994.

[29] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[30] Giuseppe Del Castillo and Kirsten Winter. Model Checking Support for the ASM
High-Level Language. In Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, pages 331–346. Springer, 2000.

[31] A. Dold. A Formal Representation of Abstract State Machines Using PVS. Verifix
Technical Report Ulm/6.2, Universität Ulm, 1998.

127

[32] Alma L. Juarez Dominguez. Detection of Feature Interactions in Automotive Active
Safety Features. PhD thesis, Cheriton School of Computer Science, University of
Waterloo, May 2012.

[33] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory and Appli-
cations of Satisfiability Testing, Lecture Notes in Computer Science, pages 333–336.
Springer, 2004.

[34] Javier Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, pages 85–107, 1997.

[35] Marcelo F. Frias, Juan P. Galeotti, Carlos G. López Pombo, and Nazareno M. Aguirre.
DynAlloy: Upgrading Alloy with Actions. In International Conference on Software
Engineering, pages 442–451, 2005.

[36] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech Eindhoven, D. Peled,
M. Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In In Protocol Specification Testing and Verification, pages 3–18.
Chapman & Hall, 1995.

[37] Curt Gödel. Über die Vollständigkeit des Logikkalküls. PhD thesis, 1929. Proof of
completenss theorem for FOL.

[38] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, New York, 2009.

[39] Gerard J Holzmann. The Theory and Practice of A Formal Method: NewCoRe. In
IFIP Congress (1), pages 35–44. 1994.

[40] G.J. Holzmann. The Model Checker Spin. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, may 1997.

[41] Michael Huth and Mark Ryan. Logic in Computer Science, Modelling and Reasoning
about Systems. Cambridge University Press, New York, second edition, 2004.

[42] Neil Immerman and Moshe Vardi. Model Checking and Transitive-Closure Logic.
In Computer-Aided Verification, Lecture Notes in Computer Science, pages 291–302.
Springer, 1997.

[43] Daniel Jackson. Alloy: a Lightweight Object Modelling Notation. 11(2):256–290,
2002.

128

[44] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. The MIT
Press; Cambridge, MA, 2006.

[45] Yonit Kesten and Amir Pnueli. A compositional approach to CTL∗ verification. Jour-
nal of Theoretical Computer Science, pages 397 – 428, 2005.

[46] R. P. Kurshan and K. McMillan. A Structural Induction Theorem for Processes. pages
239–247. ACM, 1989.

[47] Michael Leuschel and Michael Butler. ProB: A Model Checker for B. In FME 2003:
Formal Methods, Lecture Notes in Computer Science, page 855874. Springer, 2003.

[48] Michael Leuschel and Michael Butler. ProB : an automated analysis toolset for the
B method. International Journal on Software Tools for Technology Transfer, pages
185–203, 2008.

[49] K. L. McMillan. The SMV system, November 06 1992.

[50] G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The WAM
Case Study. Journal of Universal Computer Science, 3(4):377–413, 1997.

[51] T. Schlipf, T. Buechner, R. Fritz, M. Helms, and J. Koehl. Formal verification made
easy. IBM Journal of Research and Development, 41(4.5):567–576, July 1997.

[52] Tobias Schüle and Klaus Schneider. Bounded model checking of infinite state systems.
Formal Methods in System Design, pages 51–81, 2007.

[53] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking Safety Properties
Using Induction and a SAT-Solver. In Formal Methods in Computer-Aided Design,
volume 1954 of Lecture Notes in Computer Science, pages 127–144. Springer, 2000.

[54] Amirhossein Vakili and Nancy A. Day. Avestan: A declarative modeling language
based on SMT-LIB. In ICSE Workshop on Modeling in Software Engineering (MISE),
pages 36–42. June 2012.

[55] Amirhossein Vakili and Nancy A. Day. Temporal Logic Model Checking in Alloy.
In ASM, Alloy, B, and Z, volume 7316 of Lecture Notes in Computer Science, pages
150–163. Springer, 2012.

[56] Amirhossein Vakili and Nancy A. Day. Reducing CTL-live Model Checking to First-
Order Logic Validity Checking. In Formal Methods in Computer-Aided Design, pages
34:215–34:218. FMCAD Inc., 2014.

129

[57] Amirhossein Vakili and Nancy A. Day. Reducing CTL-live Model Checking to Se-
mantic Entailment in First-Order Logic (Version 1). Technical Report CS-2014-05,
Cheriton School of Comp. Sci., University of Waterloo, 2014.

[58] Amirhossein Vakili and Nancy A. Day. Verifying CTL-Live Properties of Infinite
State Models Using an SMT Solver. In Foundations of Software Engineering, FSE
2014, pages 213–223. 2014.

[59] Moshe Y. Vardi and Pierre Wolper. Reasoning about Infinite Computations. Infor-
mation and Computation, 115:1–37, 1994.

[60] Pierre Wolper and Vinciane Lovinfosse. Verifying properties of large sets of processes
with network invariants. In Automatic Verification Methods for Finite State Systems,
Lecture Notes in Computer Science, pages 68–80. Springer, 1990.

[61] Pierre Wolper, M.Y. Vardi, and A.Prasad Sistla. Reasoning about infinite computation
paths. In Foundations of Computer Science, 24th Annual Symposium on, pages 185–
194, Nov 1983.

[62] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Inc., 1996.

130

	List of Tables
	List of Figures
	Introduction
	Thesis Overview
	Contributions
	Validation
	Thesis Outline

	I Foundations
	Background
	First-Order Logic
	Transitive Closure and FOL
	Temporal Logics and Model Checking
	CTL
	CTLFC
	Reducing Many Fairness Constraints to One

	Summary

	Symbolic Kripke Structures
	Kripke Structures in FOL
	Model Checking of Symbolic Kripke Structures
	Related Work
	Summary

	II Model Checking in FOL
	Model Checking in FOL: Theory
	Transitive Closure in FOL
	CTL-Live Model Checking
	Maximality of CTL-Live
	Incompleteness of Inductive Invariant Method
	Some Decidability Results
	AE for CTL-Live Model Checking
	DLs for CTL-Live Model Checking

	Related Work
	Summary

	Model Checking in FOL: Practice
	Case Studies
	Case Study 1: Leader Election Protocol
	Case Study 2: Bakery Algorithm
	Case Study 3: Collision Avoidance State-Flow Model
	Case Study 4: File System

	Modelling for Better Performance
	Summary

	III Model Checking in FOLTC
	Model Checking in FOLTC: Theory
	Model Checking CTL\EG
	EG and FOLTC
	Reducing CTLFC to FOLTC
	Related Work
	Summary

	Model Checking in FOLTC: Practice
	CTLFC in Alloy
	Case Studies
	Address Book
	Features Interaction
	Traffic Light Controller
	Scalability of Case Studies

	Beyond Model Checking CTLFC
	Summary

	Conclusion
	Future Work
	Final Word

	APPENDICES
	SMT-LIB Models
	Leader Election Protocol
	Bakery Algorithm
	Collision Avoidance State-Flow Model
	File System

	Alloy Models
	CTLFC to FOLTC Module in Alloy
	Address Book
	Feature Interaction
	Traffic Light
	Lambda Terms

	References

