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Abstract 

The code provisions for the design of reinforced concrete slabs are based on empirical 

and mostly statistical formulations derived from the tests. The available testing database consists 

of different types of slabs and in some cases it is limited due to the extensive cost and time that a 

punching shear test requires. Thus, there is a need for verification of the actual code provisions 

and this can be done in part by using finite element (FE) simulations. The finite element analyses 

(FEA) can supplement the existing testing background and can be used for parametric 

investigation, since they can indicate different aspects on punching shear failure, leading to 

possible recommendations for the design codes and models. 

In this thesis, 3D FEA of reinforced concrete slabs with the FE software ABAQUS using 

the concrete damaged plasticity model are presented. The appropriate calibration of the concrete 

model, is done in this study based on an interior slab-column connection without shear 

reinforcement (SB1), considered as the control specimen, which was tested under vertical 

loading in a previous study. The predictive capability of the calibrated model was demonstrated 

by simulating and analyzing different types of slabs without shear reinforcement. Interior 

specimens under static and reversed cyclic loadings and edge slabs under static and horizontal 

loadings are examined. The predicted capability of the calibrated model is then examined by 

simulating slab-column connections with shear reinforcement. Four different modelling 

approaches for the shear bolts are presented. Discussion and comparison between the design 

codes are also presented. A parametric study based on the different shear reinforcement patterns 

that ACI code (rectangular) and EC2 (radial) propose is conducted. This study also involves the 

investigation of the effect of openings on the punching shear behaviour of the reinforced 
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concrete slabs without shear reinforcement. The effect of the location, the distance from the 

column and the size of the opening on the punching shear resistance, are investigated. The 

results, confirm that the punching shear resistance is decreased with an increase in the opening 

size and with a decrease in the opening distance from the column. Finally, the compressive 

membrane action effect on reinforced concrete slabs is examined. FEA are performed 

considering an isolated interior flat slab (SB1) as continuous. The predictive capability of the 

FEA models enhance their effectiveness for further investigation on the effect of membrane 

action by supplementing the limited testing background in this area. 
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Chapter 1 

Introduction 

1.1 Research significance and objectives 

Reinforced concrete flat slabs supported on columns are used as a construction system 

worldwide due to the advantages that they offer; such as reduction of floor height, easy 

construction and formwork and reduction of the construction cost. However, high stresses in the 

slab-column connection area can be developed resulting in a punching shear failure. This failure 

mostly happens without warning and may lead to a progressive collapse of the structure. In order 

to avoid the punching shear failure, the punching shear capacity of the reinforced concrete flat 

slab should be enhanced. This can be done in many ways; such as, creating larger columns, 

increasing the effective depth of the slab, increasing the flexural reinforcement ratio, increasing 

the compressive strength of concrete and finally installing shear reinforcement around the slab-

column connection area. Among these methods, the most effective way to increase the strength 

of a slab-column connection is to use shear reinforcement in the punching shear zone, around the 

column. Various forms of punching shear reinforcement are used such as stirrups, bent up bars 

and shear studs.  

Many tests have been conducted in order to investigate the punching shear failure of the 

reinforced concrete flat slabs and their experimental results were used as the basis of the current 

punching shear design codes. Therefore, the actual code provisions for the design and 
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construction of reinforced concrete slabs are based on empirically and statistically developed 

formulations. However, the existing testing background does not satisfy geometrical similarity or 

similarity in the material properties. The reason for not having the required repeatability in the 

testing background is the extensive cost and required time of performing experiments. Thus, the 

properly calibrated finite element analysis (FEA) can be used in order to supplement the test 

results and to overcome these testing shortcomings. Nonlinear finite element analysis can be a 

powerful and useful source of information on slabs behaviour; such as, the ultimate punching 

shear loads, the activation of the flexural reinforcement and the formation of the flexural and 

shear cracks. These FE models must be calibrated based on selected experimental results, and 

then can be used for parametric investigations addressing different aspects of the punching shear 

failure of flat slabs.  

A literature survey on punching shear tests and researchers who contributed in this field 

is presented in Chapter 2, however, at this point it is important to trace and write about the 

pioneers in finite element methods. Who first developed the idea that led to the finite element 

analysis method and who first used the term “finite element method”? Finite element method 

was first invented by M.J.J. Turner at Boeing in the 1950s using the direct stiffness method. 

Pioneers in developing and transferring the practice from the aerospace industry to general 

applications were: J.H. Argyris, R.W. Clough, H.C. Martin and O.C. Zienkiewicz. The first 

published “pioneering” paper using FEM belongs to Turner, Clough, Martin and Topp (1956) 

entitled: Stiffness and deflection analysis of complex structures. They developed the triangular 

element stiffness matrix and they studied the displacement convergence characteristics of planar 

elements. Clough was the first that used the term “finite element” in 1960, trying to show the 

difference between the continuum analysis and the structural analysis using the matrix method. 
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The first published paper using the term “finite element” belongs to Clough (1960) and its title 

is: The finite element method in plane stress analysis. During the following years the finite 

element method (FEM) started to be used and its validity was recognized. Fully developed FEA 

software started during the 1970s and 1980s. Nowadays, many researchers conduct research 

using finite element methods and FEA software packages. However, all researchers must apply, 

as Clough stated, good engineering judgment in interpreting the results of the analysis, based on 

a thorough knowledge of the finite element stiffness formulation. 

In this thesis, FEA of selected previously tested reinforced concrete slabs are analyzed 

using the finite element software ABAQUS. The concrete damaged plasticity model that 

ABAQUS offers is studied and considered for the constitutive modelling of concrete. The 

complexity of this model necessitates proper investigation on its parameters, starting with FEA 

of simple problems and finally moving to the punching shear examples. The simulated punching 

shear examples are chosen from tests that have been done at the University of Waterloo. El-

Salakawy et al. (1998) tested edge slab-column connections subjected to unbalanced moments 

and it was found that the shear stresses increase with the higher moment to the shear ratio. In 

1999, El-Salakawy et al. presented the experimental results of reinforced concrete edge slab-

column connections examining the effect of openings. The effect of the shear studs in the 

reinforced concrete slabs was studied in 2000 by El-Salakawy, Polak and Soliman and it was 

found that the shear studs increase the stiffness of the edge slabs and enhance the shear strength 

and ductility of the slabs. Shear studs are the reinforcement that can be installed into the slabs 

before casting. Another type of shear reinforcement, the shear bolts, can be installed in existing 

slab-column connections as a retrofit method. El-Salakawy et al. (2003) presented test results of 

slab-column connections strengthened with shear bolts. They found that the shear bolts increase 
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the capacity and ductility of the edge slab-column connections, and also can change the failure 

mode from punching shear to flexural. Adetifa and Polak in 2005, tested interior slab-column 

connections with shear bolts subjected to vertical loading. They observed that shear bolts prevent 

the propagation of the shear cracks in strengthened slabs and improve the performance of the 

slabs with openings. Bu and Polak (2009) investigated the behaviour of slab-column connections 

subjected to cyclic lateral drift and constant gravity loading. The specimens were retrofitted 

using shear bolts and the results indicated that the shear bolts increased the punching shear 

capacity and ductility of the connections. Thus, in this work, selected specimens from the above 

mentioned tests are considered in the FEA for examining the punching shear failure of the 

reinforced concrete flat slabs. The general objective of this thesis is the development of the FEA 

predictive tool for punching shear in concrete slabs that can be used to investigate slab 

behaviour, supplement the existing test database and help in the development of future code 

provisions.  

The specific objectives of this research are the following: 

1. The efficient calibration of the concrete damaged plasticity model in ABAQUS; 

2. The predictive capability of the proposed and calibrated model in ABAQUS in 

punching shear simulations; 

3. The applicability of the calibrated model in reinforced concrete slabs without 

shear reinforcement and then the use of the model in slabs with punching shear 

reinforcement;  

4. The investigation of the opening effect in the concrete slabs and the critical 

review on the design provisions addressing this issue and;  



5 

 

5. The investigation of the compressive membrane action effect of the continuous 

slabs. 

By achieving the above specific objectives of this research, the use of the calibrated 

concrete damaged plasticity model in punching shear FEA is proposed; where testing 

background can be supplemented by giving more information regarding the crack formation and 

propagation, where the test measurements are not known. Finally, parametric analyses can be 

conducted in order to identify different aspects in punching shear with final goal all the 

parametric studies to be used for future code modifications. 

1.2 Outline  

The outline of the thesis is presented with the following order:  

After the introduction (Chapter 1), where the research objectives and the outline of the 

thesis are presented, Chapter 2 starts discussing the critical phenomenon of punching shear 

failure in reinforced concrete flat slabs. Then, a review on the existing testing database of slabs 

without and with punching shear reinforcement is presented. Additionally, a brief description on 

the code provisions and the mechanical models in punching shear is shown. Chapter 3 presents 

an overview on the material behaviour of concrete, the non-linear modelling of concrete with 

respect to cracking models, plasticity theory, continuum damage mechanics and damage 

mechanics coupled with plasticity. In Chapter 4, the description of the constitutive concrete 

material model in ABAQUS can be found. The concrete damaged plasticity model is discussed 

in detail and its calibration is presented. FEA examples are presented in order to verify the 

accuracy of the constitutive concrete material model. Based on the calibrated material modelling, 

Chapter 5 presents the development of a nonlinear finite element approach in ABAQUS in order 
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to investigate the punching shear failure of reinforced concrete slabs without shear 

reinforcement. Chapter 6 shows the adoption of the calibrated concrete damaged plasticity model 

in modelling and analyzing reinforced concrete slabs with punching shear reinforcement. 

Different modelling approaches for the shear bolts are presented and finally the most appropriate 

is chosen. The comparison between the numerical and test results indicates that the concrete 

damaged plasticity model works in a proper way for simulating the shear-reinforced specimens. 

Chapter 7 discusses the critical issue of the effect of openings in flat concrete slabs where a 

comparison between the tests, numerical results and the code predictions is provided. Then, 

Chapter 8 discusses the membrane action effect on the reinforced concrete slabs. The isolated 

test specimens do not consider the increased punching shear strength compared to the continuous 

real slabs that are influenced by the membrane action. Continuous slabs are analyzed with the 

calibrated concrete damaged plasticity model and compared to the isolated specimens. 

Compressive membrane action effect increases the ultimate capacity of the slabs while the 

design codes do not consider that increase as they are based on test results coming from isolated 

specimens. Finally, Chapter 9 presents the summary and the conclusions of the research with the 

future considerations and suggestions. 
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Chapter 2 

Punching shear in reinforced concrete slabs 

2.1 Introduction 

Reinforced concrete flat slabs are often used for monolithic concrete construction. Their 

construction started in the beginning of the 20
th

 century in the North America and Europe. Such 

type of construction is efficient, economical and provides many advantages, such as, no beams 

are needed, no overhead obstacles, more ceiling height, easy construction. The first slabs that 

were built supported on columns included large column capitals in order to avoid shear problems 

when the loads were transferred from the slab to the column. Slabs without column capitals 

and/or drop panels appeared in the 1950s. These slabs developed high shear stresses near the 

column and thus they were considered as vulnerable to the punching shear failure. The first flat 

slabs were designed by George M. Hill in 1901, however, the most famous contributors were 

C.A.P. Turner (1869-1955) in USA and R. Maillart (1872-1940) in Switzerland. Shear, in the 

design, was taken into account through larger column capitals creating a system that functioned 

like “mushroom plates”. Figure 2.1 shows one of the first mushroom flat slab floor systems 

constructed in Minneapolis by Turner (1906). In this chapter, the punching shear failure as a 

phenomenon that occurs in flat slabs is presented first and then, a review on the punching shear 

testing background is given. Then, some of the most important developed punching shear models 

are presented and finally, the design code provisions against punching shear are discussed. 
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Figure 2.1 Johnson Bovey Building in Minneapolis, 1906 (http://www.mbjeng.com/wp-

content/uploads/2011/03/NL13_Oct2010-Meghans-article.pdf). 

2.2  Punching shear failure 

Two-way reinforced concrete slabs are a unique type of floor construction. It is an 

efficient, economical, and widely used structural floor system. In practice, two-way slabs take 

various forms, as shown in Figure 2.2 and Figure 2.3. 

 

Figure 2.2 Flat-slab and two-way slab with beams (McGregor and Bartlett, 2000). 
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Figure 2.3 Flat plate and waffle slab (McGregor and Bartlett, 2000). 

Concrete flat-slabs are one of the most common floor system employed in the 

construction of many multi-story buildings; such as parking garages, offices, hotels, and 

apartments. They are used in multistory building constructions because of such advantages as 

flat ceilings, simplified formwork and reduced story height. Reinforced concrete flat-slabs are 

considered in structures because their advantages result in reduction in material and 

construction cost. However, flat-slabs, depending on their design layout (i.e., concrete strength, 

reinforcement layout, slab depth, etc.), are susceptible to punching shear failure around the 

columns (Figure 2.4 and Figure 2.5). Punching shear failure is caused by the transfer 

mechanism of shear forces from the slab to the slab-column connection and occurs within the 

discontinuity D-region, where the 3D state of stress is complex. These shear stresses are 

developed from gravity loads and from unbalanced moments (combination of gravity loading 

and lateral deflections) and movement during events; such as earthquakes and high winds. 

Once these shear stresses exceed the slab’s shear capacity, punching occurs, and depending on 

the severity and intensity of the event, this can happen with little or no warning. Punching shear 

failures are generally brittle phenomena. Cracks occur inside the slab into the vicinity of the 

column and then they propagate through the slab’s thickness at an angle of 20°- 45° to the 
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bottom of the slab. This can lead to punching shear failure of the slab along the cracks. An 

inclined crack forms around the column and at the end the punching shear cone appears, where 

the column separates from the slab (Figure 2.6). 

 

Figure 2.2.4 Cracks after punching shear failure of flat slabs (MacGregor and Bartlett, 2000).  

 

 

Figure 2.2.5 Inclined cracks in a slab after a shear failure (MacGregor and Bartlett, 2000).  
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Figure 2.2.6 Failure surface of punching shear (MacGregor and Bartlett, 2000). 

2.3 Review on punching shear tests 

Punching shear testing started at the beginning of the 20th century and continued in 

1950s. Mostly, in all tests, the slab is considered as isolated specimen representing the slab 

around the column extending to the line of contra-flexure. According to Moe (1961), 

significant early contribution to punching shear testing was done by Talbot (1913), Bach and 

Graf (1915) and Graf (1933, 1938). Talbot (1913) tested reinforced concrete footings and 

proposed a formula for the assessment of concrete’s strength at the column. His formula is still 

used, after modifications, in many design codes. He introduced the concept of the critical 

perimeter (located at distance d from the loaded area) and he came up with the observation that 

the shear strength is increased with an increase in the amount of the flexural reinforcement. The 

test observations offered by Talbot (1913) led to the first recommendations for punching shear 

published in 1925 in ACI-American Code. 

The footings tested by Talbot (1913) were very thick and the results found to be not 

adequate for describing the punching shear strength of slabs. Thus, experimental investigation on 

concrete flat slabs started to be considered. Due to the fact that the test specimens in punching 
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shear use variety of test configurations, a review of selected experimental setups is presented. 

Isolated specimens subjected to gravity loading at the center of the slab were tested among others 

by Elstner and Hognestad (1956), Kinnunnen and Nylander (1960) and Moe (1961). Elstner and 

Hognestad (1956), Hanson and Hanson (1968) and Corley and Hawkins (1968) tested specimens 

with distributed uniform load. Most of the slabs, tested under gravity load, were supported at the 

edges (Elstner and Hognestad (1956), Moe (1961), Sieble et al. (1980), Swamy and Alo (1982), 

Harajli et al. (1995), Adetifa and Polak (2005), Naaman et al. (2007)). However, Broms (2007) 

and Brikle and Dilger (2008) tested specimens supported at discrete points and not around the 

edges in order to simulate the points of contra-flexure. Specimens subjected to gravity load and 

unbalanced moments were tested by Hawkins et al. (1974), Robertson et al. (2002), Pan and 

Moehle (1989), Elgabry and Ghali (1987) and El-Salakawy and Polak (1999). Pan and Moehle 

(1989) tested slab-column connections subjected to lateral displacement cycles and gravity load. 

They found that the lateral drift capacity of the connections is dependent on the gravity to shear 

ratio. An increase in the gravity shear ratio with the lateral cyclic loading led to a reduction of 

strength, stiffness and displacement. It was recommended that the 0.4 gravity to shear ratio as the 

upper limit in order to have a drift capacity in the range of 1.5%. Many important contributions 

regarding the lateral cyclic loading applied to the slab-column connections have been offered 

also by Robertson and Durrani (1992), Megally and Ghali (2000) and Bu and Polak (2009). 

First attempt to include shear reinforcement in the tested slabs was done by Graf (1933) 

and Wheeler (1936). The researchers tested flat slabs with different types of shear 

reinforcements. Graf (1933), Elstner and Hognestad (1956), Andersson (1963), Hawkins (1974), 

Islam and Park (1976) and Dilger and Ghali (1981) tested specimens with bent-up bars. Bent-up 

bars increase the punching shear resistance, however it is better to combine them with other 
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types of shear reinforcement, because punching shear failure can happen behind the bent-up bars. 

Hawkins (1974) reported tests performed with different punching shear reinforcements and he 

found that the shear reinforcement increases the punching shear capacity of the slabs. Broms 

(2000) combined the bent-up bars in the first two perimeters with closed stirrups and such 

arrangement was able to avoid any punching shear failure. Closed stirrups were also used by 

many researchers, as another type of shear reinforcement; among others Islam and Park (1976), 

Hanna et al. (1975), Pillai et al. (1982) and Robertson et al. (2002). Slabs with shear heads were 

tested by Corley and Hawkins (1968) and by Dilger and Ghali (1981). The shear studs that 

consist of individual vertical bars were used in slabs tested by Seible et al. (1980), Dilger and 

Ghali (1981), Elgabry and Ghali (1987), Megally and Ghali (2000), Robertson et al. (2002), 

Kang and Wallace et al. (2005) and Tan and Teng (2005). Shear heads are an expensive type of 

shear reinforcement, however, it is essential to be used in cases where large openings close to the 

connection area are needed and thus this demands large adjustments to the flexural 

reinforcement. The shear studs have been widely used due to the advantages that they provide 

such as mechanical anchorage and highly quality. Shear studs are difficult in installation, 

however they are the most popular punching shear reinforcement. Adetifa and Polak (2005) used 

a new type of shear reinforcement post-installed in flat slabs, called shear bolts.  

Important early contributions in understanding the punching failure came from Elstner 

and Hognestad (1956) who tested 39 slabs in order to estimate the influence of the flexural 

reinforcement ratio, concrete strength, compression reinforcement, size of the column, support 

conditions and amount of shear reinforcement in the punching shear capacity of the flat slabs. 

The outcomes from their tests were that all of these factors have an important influence on the 

shear strength, except the compressive reinforcement that was found to have the smallest 
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influence on the punching shear capacity of the slabs. Moe (1961) reported, after analyzing many 

tests that he conducted, the influence of the unbalanced moments in the slab-column 

connections. His work remains until now the basis for the ACI 318 code.  

The opening effect in flat slabs started to be examined only recently by researchers, such 

as, El-Salakawy et al. (1999), Teng et al. (2004), Bu and Polak (2009), Borges et al. (2013), and 

Anil et al. (2014). Unfortunately, this testing background is limited due to the time and cost 

demands on testing.   

Chana and Desai (1992) tested conventional slabs and continuous slabs in order to 

investigate the compressive membrane action effect. During their research, they concluded that 

the punching shear strength of a real slab is much higher compared to the strength of the isolated 

slab. Their research reported also the performance of a special punching shear reinforcement 

system, known as shear-hoop and compared it to the shear links.  

Figures 2.7, 2.8 and 2.9 show some from the discussed types of punching shear 

reinforcement used in many experiments. 
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Figure 2.7 Different types of shear reinforcement in plan and section view: a) stirrups; b)bent 

bars and c) shear heads (taken from Polak et al., 2005). 

 

Figure 2.8 Shear studs (taken from Polak et al., 2005). 
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Figure 2.9 a) Shear bolt and b) its installation (Polak and Adetifa, 2005). 

2.4 Review of punching shear mechanical models 

Due to the extensive research on punching shear, several analytical mechanical models 

have been proposed. Some of them formed the basis of the design formulae employed in code 

provisions. Below only few of some important models for punching shear are presented. 

Kinnunen and Nylander (1963) suggested their model based on 61 tests of circular 

columns and slabs with radial reinforcements done in the 1960’s. Significant findings of their 

research had to deal with the formation of the shear cracks, the deformation of the sector 

elements and the expansion of the concrete and the steel. In their model, the internal forces are 

dependent on the angle of the section α (see Figure 2.10) and the material properties. The failure 

criterion according to Kinnunen is: “The tangential compressive concrete strain on the bottom 

surface of the slab under the root of the shear crack reaches a characteristic value at which 

favorable embedment of the conical shell is impaired”. The ultimate load was determined from 

the equilibrium of flexure and shear. This theory was derived for slabs with ring reinforcement, 

however, then it was expanded to slabs with two-way reinforcements. 
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Figure 2.10 Kinnunen and Nylander punching shear model (1963). 

In 1976, Braestrup et al. proposed an upper bound plasticity model on an axisymmetric 

slab supported by a circle ring (Figure 2.11). The basic assumptions of their model were: a) 

concrete is a perfect plastic material, b) the failure criterion is based on the Coulomb’s law and c) 

the tensile strength of concrete is assumed to be low. 𝑃𝑢 denotes the ultimate load that is found 

by comparing the fracture energy of the conical shaped shell with the work carried out by the 

applied loads. As it is shown in Figure 2.10, the shape of the conical shell is added by the straight 

line and the catenary curve. This model is mostly able to give an upper bound solution for the 

ultimate loads. However, the model does not account for the flexural reinforcement ratio and also 

the first assumption of the model that the concrete behaves as a perfectly plastic material leads to 

many simplifications.  
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Figure 2.11 Predicted failure surface by Braestrup et al. (1976). 

Alexander and Simmonds (1986) (see Figure 2.12) suggested a truss model that considers 

the top reinforcement as a horizontal tie and the concrete as inclined strut. The punching shear 

resistance is dependent on the area of the flexural reinforcement near the column, considered as 

shear strut, the strength of the flexural reinforcement and the angle of the strut. Alexander and 

Simmonds in 1992 proposed the curved compression strut model, the so-called  bond model 

(Figure 2.13). According to this model, the shear is transferred to the column by the curved 

compression strut. In the truss model, the compression struts are straight and inclined while in 

the bond model the compression struts are considered curved. These curved arches are located in 

four radial strips and these strips separate the column from the slab in order for the load to be 

carried out by the radial strips. The reinforcement forces are limited by the bond failure or by 

yielding. That model combines the radial arch action associated with the critical shear stress 

(beam action shear). Also, the bond strength of the reinforcements seems to be a significant 

factor that reduces the beam action shear, especially for brittle punching shear failures.  
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Figure 2.12 Alexander and Simmonds – Truss model (1987). 

 

Figure 2.13 Alexander and Simmonds – Curved compression strut (1992). 

Rankin and Long (1987) proposed the yield line model. They indicated that as the 

flexural reinforcement yields, the slab can be divided into several elastic plates connected with 

plastic hinges. The equilibrium of all of these plates gives the ultimate load for the whole slab. 
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Figure 2.14 shows the yield line pattern that Rankin and Long proposed. The ultimate vertical 

load 𝑃𝑓𝑙𝑒𝑥 can be calculated according to Eq. 2.1.  

𝑃𝑓𝑙𝑒𝑥 = 8 ∙ (
𝑠

𝑎 − 𝑐
− 0.172) ∙ 𝑀𝑏 

(2.1) 

where, 𝑠 denotes the length of the slab, 𝑎 is the support length of the slab, 𝑐 is the dimension of 

the column and 𝑀𝑏 denotes the nominal capacity of the slab using tension reinforcement. Rankin 

and Long also proposed a formula for calculating the punching shear strength 𝑃𝑣𝑠 according to 

Eq. 2.2. 

𝑃𝑣𝑠 = 1.66 ∙ √𝑓𝑐′ ∙ (𝑐 + 𝑑) ∙ 𝑑 ∙ (100 ∙ 𝜌)
0.25 (2.2) 

where, 𝑑 denotes effective depth of the slab and 𝜌 is the flexural reinforcement ratio. 

 

Figure 2.14 Rankin and Long–Yield line pattern for conventional slab-column specimen (1987). 

Dilger (2000) and Dechka (2001) presented a shear friction model for calculating the 

punching shear resistance of a slab. This model can be used in reinforced concrete slabs under 

concentric loading and for slabs without or/and with shear reinforcement. In this model, there are 
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two forms; the general and the simplified. The general form can be used only for computer 

programming calculations and the simplified for hand calculations.  

The most recent mechanical punching shear model proposed by Muttoni (2008). The 

Critical Shear Crack Theory (CSCT) assumes that the punching shear resistance decreases as the 

rotation of the slab increases. The shear strength of a slab is reduced if a critical shear crack is 

present and propagates through the slab into the inclined compression strut that carries the shear 

force to the column. This reduction of the shear strength leads to punching shear failure. The 

width of the crack is assumed to depend on the product 𝜓𝑑 (see Figure 2.15) leading to a failure 

criterion proposed by Muttoni and Schwartz (1991). After, Muttoni (2003) modified this failure 

criterion considering that the capacity of the critical shear crack to carry shear forces can be 

accounted by dividing the nominal crack width 𝜓𝑑 by the quantity (𝑑𝑔𝑜 + 𝑑𝑔), where 𝑑𝑔𝑜 is a 

reference aggregate size equal to 16 mm and 𝑑𝑔 denotes the maximum aggregate size. The 

modified failure criterion was compared with 99 punching shear tests form the literature and was 

found to be in good agreement with the test results. The rotation 𝜓 is multiplied with  𝑑/(𝑑𝑔𝑜 +

𝑑𝑔) in order to cancel the effect coming from the slab thickness and aggregate size. Comparison 

with the ACI punching prediction was also given. ACI seems to be conservative for small values 

of 𝜓𝑑/(𝑑𝑔𝑜 + 𝑑𝑔), while for larger values of 𝜓𝑑/(𝑑𝑔𝑜 + 𝑑𝑔) predicts larger punching shear 

strength compared to the tests and seems to be unsafe. According to Muttoni (2008) that happens 

because the ACI code is based on tests with small effective depths where the influence of the 

size effect was not known. Muttoni (2008) derived the load-rotation relation for an isolated slab 

assuming that the deflected shape of the slab is conical after the critical shear crack. All 

expressions are given in Subsection 2.5.4. Then, in 2009 Fernandez Ruiz and Muttoni proposed a 
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model based on the Critical Shear Crack Theory that can be used for slabs with shear 

reinforcement. All equations are also given in the Subsection 2.5.4.  

 

Figure 2.15 Correlation between the critical shear crack opening, thickness and rotation of the 

slab (taken from Muttoni (2008)). 

2.5 Review of punching shear code provisions 

The first design provisions for punching shear (1916-1917) were based on the equation 

presented by Talbot (1913) in order to calculate the shear stresses using the critical perimeter at 

distance varying from d to d/2 from the column or in general the loaded area. These calculated 

stresses in order to satisfy the punching shear resistance of the slab should be smaller than the 

shear strength calculated based on the compressive strength of concrete. It was observed that the 

shear strength was related to the diagonal tension; however, the first time that the punching shear 

strength was compared to the percentage of the square root of the compressive strength of 

concrete was in ACI code in 1963.  

The research on punching shear failure in the United States of America started in the 

1950s. by Richart (1948), Elstner and Hognestad (1956) and Whitney (1957). In 1961, Moe 

suggested that the shear strength is proportional to the √𝑓𝑐′ and not to the 𝑓𝑐
′, showing that the 

shear failures are influenced primarily by the tensile strength of concrete. The research done by 
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Moe led to the ACI design provisions. In 1962, the ACI-ASCE Committee 326 specified the 

critical section to be at distance d/2 from the column’s face, based on the Moe’s work. In Europe, 

Kinnunnen and Nylander (1960), Regan (1981) and Regan and Braestrup (1985) proposed 

empirical equations that were used as the basis of the European punching shear codes. Regan 

considered that the punching shear strength is influenced by the reinforcement ratio and a size 

effect factor.  

Nowadays, the majority of the current code provisions for punching shear are based on 

the work done in 1970s and 1980s; with significant influence and contribution in USA by 

Hawkins (1974), Corley and Hawkins (1974), Langhor et al. (1976) and Dilger and Ghali (1981) 

and in Europe by Regan (1981) and Regan and Braestrup (1985). 

The current design code provisions (ACI 318 11 and EC2 2004) for punching shear are 

presented In addition, Model Code 2010 and the Critical Shear Crack Theory proposed by 

Muttoni (2008, 2009) are also presented. The CSA Standard A23.3-04 is not presented in this 

dissertation because it is based on the ACI code and it shows similar results.  

The design codes (ACI 318-11 and EC2), the Model Code (MC 2010) and the Critical 

shear crack theory (CSCT) adopt an approach involving a critical section, which is at a certain 

distance from the column perimeter. On the critical perimeter the shear stress should be less than 

the shear capacity. The critical section in EC2 is located at a distance 2d from the column faces 

(see Figure 2.16), while in ACI318-1, MC 2010 and CSCT is at 0.5d (see Figure 2.17). The main 

difference between them is that the ACI318-11 does not account for the flexural reinforcement 

ratio and size effects for the calculation of shear resistance directly, while the EC2, MC 2010 and 

CSCT consider the effects. The ACI318 is based on Moe’s research (1961), EC2 is based on 



24 

 

Regan’s research (1985), CSCT is a theory proposed by Muttoni (2008, 2009) and MC 2010 is 

based on the CSCT model. Below, the basic equations used by each code and model for 

calculating the punching shear resistance for slabs without and with shear reinforcement are 

described in detail. 

 

Figure 2.16 Control section according to EC2. 

 

Figure 2.17 Critical section according to ACI, Model Code and CSCT. 

2.5.1 ACI 318-11 

The factored shear force 𝑉𝑓 on the critical section should be more than the factored shear 

resistance 𝑉𝑛 times a shear strength reduction factor 𝜑 = 0.75. Thus, 𝑉𝑓 ≤ 𝜑𝑉𝑛 = 𝜑(𝑉𝑐 + 𝑉𝑅), 
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where 𝑉𝑐 is the shear resistance provided by concrete and 𝑉𝑅is the shear resistance provided by 

shear reinforcement. 

According to ACI 318-11 code the punching shear resistance of concrete for slabs 

without shear reinforcement is: 

 𝑉𝑐 = 𝑚𝑖𝑛

{
 
 

 
 0.33𝜆𝑏𝑜𝑑√𝑓′𝑐

0.17𝜆𝑏𝑜𝑑√𝑓
′
𝑐
(1 +

2

𝛽𝑐
)

0.083𝜆𝑏𝑜𝑑√𝑓′𝑐 (2 +
𝛼𝑠𝑑

𝑏𝑜
)

   (𝑓′
𝑐
 𝑖𝑛 𝑀𝑃𝑎) 

 

 

 

(2.3) 

where, 𝜆 is the concrete density factor equal with 1 for a normal-weight concrete, 𝑏𝑜 is 

the critical shear perimeter, 𝑑 is the effective depth of the slab, 𝑓′𝑐 is the compressive strength of 

concrete, 𝛽𝑐 is the ratio of the long to short side of the column and 𝛼𝑠 is 40 for interior columns, 

30 for edge columns and 20 for corner columns. 

The punching shear resistance of slabs with shear reinforcement (shear studs) is 

calculated according to Eq. (2.4), while the punching shear resistance of slabs with shear 

reinforcement (stirrups) is calculated according to Eq. (2.5): 

 𝑉𝑅 = 0.5𝑉𝑐 +
𝐴𝑣𝑠𝑓𝑦𝑣𝑑

𝑠
 ≤ 0.66𝑏𝑜𝑑√𝑓′𝑐  (𝑀𝑃𝑎) 

 

(2.4) 

 𝑉𝑅 = 0.75𝑉𝑐 +
𝐴𝑣𝑠𝑓𝑦𝑣𝑑

𝑠
≤ 0.5𝑏𝑜𝑑√𝑓′𝑐   (𝑀𝑃𝑎) 

 

(2.5) 

where, 𝑏𝑜 is the critical shear perimeter, 𝑑 is the effective depth of the slab, 𝑓′𝑐 is the 

compressive strength of concrete, 𝐴𝑣𝑠 is the cross-sectional area of all legs of shear 

reinforcement on one peripheral line, 𝑓𝑦𝑣 is the specified yield strength of the shear 
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reinforcement and 𝑠 is the spacing between the perimeters of shear reinforcement. According to 

ACI Code, the punching shear strength within the shear reinforced area can be calculated by 

adding the contribution from the shear reinforcement, whereby the contribution of the concrete 

corresponds to 0.5 times the punching shear strength of the slabs without shear reinforcement for 

the case of stirrups, while 0.75 times the punching shear strength of the slabs without shear 

reinforcement for the case of double headed studs. 

The calculated punching shear resistance for the shear reinforced slabs is calculated also 

outside the shear reinforced area according to Eq. (2.6): 

 
𝑉𝑅 = 0.17𝜆𝑏𝑜𝑢𝑡𝑑√𝑓′𝑐  (𝑀𝑃𝑎) 

 

(2.6) 

where, 𝑏𝑜𝑢𝑡 is control perimeter at distance 𝑑/2 from the last line of the shear 

reinforcement. 

For slabs under gravity load and unbalanced moment (𝑀𝑓), the moment in ACI318-11 

can be derived from the following equation: 

 𝑣𝑓 =
𝑉𝑓

𝑏𝑜𝑑
+ [
𝛾𝑣𝑀𝑓𝑐

𝐽𝑐
]
𝑥

+ [
𝛾𝑣𝑀𝑓𝑐

𝐽𝑐
]
𝑦

 

 

(2.7) 

where, 𝑣𝑓 is the factored shear stress, 𝑉𝑓 is the vertical factored shear force, 𝑏𝑜 is the control 

perimeter, 𝑑 is the effective depth of the slab, 𝐽𝑐 is the property of assumed critical section 

analogous to the polar moment of inertia, 𝛾𝜈 = 1 −
1

1+
2

3
√
𝑏1
𝑏2

 is the fraction unbalanced moment 
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transferred by shear eccentricity, where 𝑏1 is the width of the critical section perpendicular to the 

moment vector and 𝑏2 is the other side length and 𝑐 is the centroid of the shear perimeter.  

2.5.2 EC2 (2004) 

According to EC2 (2004) the following checks should be carried out: 

a) At the perimeter of the column (or loaded area), where the punching shear stress 

(𝑣𝐸𝑑) should less than the maximum punching shear stress (𝑣𝑅𝑑,𝑚𝑎𝑥). 

b) Punching shear reinforcement is not needed if 𝑣𝐸𝑑 < 𝑣𝑅𝑑,𝑐. 

c) If 𝑣𝐸𝑑 > 𝑣𝑅𝑑,𝑐, punching shear reinforcement is required. 

The maximum punching shear stress along the control section is calculated as: 

 𝑣𝑅𝑑,𝑚𝑎𝑥 = 0.5𝑣𝑓𝑐𝑑 

 

(2.8) 

where, 𝑣 is the strength reduction factor for concrete cracked in shear (Eq. 2.9) and 𝑓𝑐𝑑 is the 

design compressive strength of concrete (Eq. 2.10).  

 𝑣 = 0.6 (1 −
𝑓𝑐𝑘
250

)  (𝑀𝑃𝑎) 

 

(2.9) 

 𝑓𝑐𝑑 = 𝛼𝑐𝑐
𝑓𝑐𝑘
𝛾𝑐

 

 

(2.10) 

where, 𝛼𝑐𝑐 is a coefficient taking account for long term effects and recommended value is 

1. 𝛾𝑐 is the partial safety factor for concrete equal to 1.5. 
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If the support reaction is eccentric with regard to the control perimeter, the maximum 

shear stress is taken as: 

 𝑣𝐸𝑑 = 𝛽
𝑉𝐸𝑑
𝑢𝑖𝑑

 

 

(2.11) 

where, 𝑑 is the effective depth of the slab, 𝑢𝑖 is the length of the considered control perimeter 

and 𝛽 is given by: 

 𝛽 = 1 + 𝑘
𝑀𝐸𝑑

𝑉𝐸𝑑

𝑢1
𝑊1

 

 

(2.12) 

where, 𝑢1 is the length of the basic control perimeter, 𝑘 is a coefficient based on the ratio 

between the column’s dimensions (for a square column 𝑘 = 0.6) and 𝑊1 corresponds to a 

distribution of shear and is a function of the basic control perimeter.  

For a rectangular column 𝑊1 is given as: 

 𝑊1 =
𝑐1
2

2
+ 𝑐1𝑐2 + 4𝑐2𝑑 + 16𝑑

2 + 2𝜋𝑑𝑐1 

 

(2.13) 

where, 𝑐1 is the column dimension parallel to the eccentricity of the load and 𝑐2 is the dimension 

of the column that is perpendicular to the eccentricity of the load. 

For an internal rectangular column where the loading is eccentric to both axes 𝛽 is taken 

as: 
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 𝛽 = 1 + 1.8√(
𝑒𝑦

𝑏𝑧
)
2

+ (
𝑒𝑧
𝑏𝑦
)

2

 

 

(2.14) 

where, 𝑒𝑦 and 𝑒𝑧 are the eccentricities 
𝑀𝐸𝑑

𝑉𝐸𝑑
 along 𝑦 and 𝑧 axes, respectively and 𝑏𝑦 and 𝑏𝑧 are the 

dimensions of the control perimeter. 

For edge slab-column connections the control perimeter can be considered according to 

Figure 2.18 as 𝑢1∗. 

 

Figure 2.18 Reduced basic control perimeter for edge and corner columns. 

If eccentricities exist in both orthogonal directions, 𝛽 can be determined using the 

following equation: 

 𝛽 =
𝑢1
𝑢1∗

+ 𝑘
𝑢1
𝑊1

𝑒𝑝𝑎𝑟 

 

(2.15) 
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where, 𝑒𝑝𝑎𝑟 is the eccentricity parallel to the slab edge resulting from a moment about an axis 

perpendicular to the slab edge. 

For a rectangular column 𝑊1 is calculating using the following equation: 

 𝑊1 =
𝑐2
2

4
+ 𝑐1𝑐2 + 4𝑐1𝑑 + 8𝑑

2 + 𝜋𝑑𝑐2 

 

(2.16) 

According to EC2 the punching shear resistance of concrete for slabs without shear 

reinforcement is defined as: 

 𝑉𝑅𝑑,𝑐 = 𝐶𝑅𝑑,𝑐𝑘𝑏𝑜𝑑(100𝜌𝑙𝑓𝑐𝑘)
1/3 ≥ 𝑉𝑚𝑖𝑛 = 0.035(𝑘)

3/2(𝑓𝑐𝑘)
1/2 𝑏𝑜𝑑  

 

(2.17) 

where, 𝐶𝑅𝑑,𝑐 = 0.18/𝛾𝑐, 𝛾𝑐 is the partial safety factor for concrete equal to 1.5, 𝑏𝑜 is the control 

perimeter at distance 2𝑑 from the column, 𝑑 is the effective depth of the slab, 𝜌𝑙 is the flexural 

reinforcement ratio limited to the maximum value of 0.02, 𝑓𝑐𝑘 is the characteristic compressive 

strength of concrete and 𝑘 is the size effect factor that is defined as: 

 

 

 

 

 

 

𝑘 = 1 + √
200

𝑑
≤ 2     (𝑑 𝑖𝑛 𝑚𝑚) 

 

 

 

 

 

(2.18) 

The punching shear resistance for slabs with vertical shear reinforcement is defined as: 

𝑉𝑅𝑑 = 0.75𝑉𝑅𝑑,𝑐 + 1.5(𝑑/𝑠)𝐴𝑣𝑠𝑓𝑦𝑤𝑑,𝑒𝑓 

 

(2.19) 

where, 𝐴𝑣𝑠 is the area of one row of the vertical shear reinforcement, 𝑠 is the spacing between 

the perimeters of shear reinforcement and 𝑓𝑦𝑤𝑑,𝑒𝑓 is the effective design strength of the shear 

reinforcement that is defined according to Eq. (2.20). The concrete resistance in Eq. (2.17) is 

taken as 75% of the design strength of a slab without shear reinforcement. That reduction 
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accounts for the activation of the shear reinforcement and also shows that the strength of 

concrete reduces due to the vertical movement of the punching cone after the yielding of the 

shear reinforcement. 

𝑓𝑦𝑤𝑑,𝑒𝑓 = (250 + 0.25𝑑) ≤ 𝑓𝑦𝑤𝑑    (𝑀𝑃𝑎) 

 

(2.20) 

where, 𝑓𝑦𝑤𝑑 is the yield strength of the shear reinforcement.  

Next to the column the punching shear resistance is limited to a maximum of: 

𝑣𝐸𝑑 =
𝛽𝑉𝐸𝑑
𝑢𝑜𝑑

≤ 𝑣𝑅𝑑,𝑚𝑎𝑥 

 

(2.21) 

where, 𝑢𝑜 is length of the column periphery for interior column. For edge column 𝑢𝑜 = 𝑐2 +

3𝑑 ≤ 𝑐2 + 2𝑐1 and for corner column 𝑢𝑜 = 3𝑑 ≤ 𝑐1 + 𝑐2. 

The control perimeter at which shear reinforcement is not required 𝑢𝑜𝑢𝑡 is calculated as: 

𝑢𝑜𝑢𝑡,𝑒𝑓 =
𝛽𝑉𝐸𝑑
𝑣𝑅𝑑,𝑐𝑑

 

 

(2.22) 

The outermost perimeter of shear reinforcement should be placed at a distance not greater 

than 𝑘𝑑 within the 𝑢𝑜𝑢𝑡,𝑒𝑓 . Recommended value for 𝑘 is 1.5. 

2.5.3 Model Code (MC 2010) 

The Model Code (MC 2010) is based on the Critical Shear Crack Theory that is described 

later in Subsection 2.5.4, where the punching shear strength depends on the rotation of the slab. 

Model Code 2010 adopts different levels of approximation. Level I can be used for the 
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conception. Level II is recommended for the design of a new structure. Level III may be used for 

special cases or in general for an analysis of an existing structure and finally, Level IV is 

recommended for special cases and for an accurate assessment of an existing structure. Herein, 

the Level III of approximation is described because that is used for the calculation of the 

punching shear strength of the tested slabs in the next chapters. 

For slabs without shear reinforcement the punching shear resistance is equal to Eq. 

(2.23): 

𝑉𝑅,𝑐 = 𝑘𝜓√𝑓𝑐𝑘𝑏𝑜𝑑 

 

(2.23) 

where, 𝑏𝑜 is the control perimeter  at distance 0.5𝑑 from column’s face, 𝑑 is the effective 

depth of the slab, 𝑓𝑐𝑘 is the characteristic compressive strength of concrete and 𝑘𝜓 is a parameter 

that is defined as: 

𝑘𝜓 =
1

1.5 + 0.9 𝜓 𝑑 𝑘𝑑𝑔
≤ 0.6 

 

(2.24) 

where, 𝜓 is the rotation of the slab and  𝑘𝑑𝑔 is a factor depending on the aggregate size (𝑑𝑔) as: 

𝑘𝑑𝑔 =
32

16 + 𝑑𝑔
≥ 0.75 

 

(2.25) 

For the Level of approximation III, the rotation of the slab is calculated according to Eq. 

(2.26) as: 

 

 

 

 

 

𝜓 = 1.2
𝑟𝑠
𝑑

𝑓𝑦𝑠

𝐸𝑠
(
𝑚𝑆

𝑚𝑅
)
3/2

𝑖𝑓  𝑚𝑆 ≤ 𝑚𝑅 

 

 

 

(2.26) 
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where, 𝑟𝑠 is the distance between the axis of the column and the contraflexure, 𝑓𝑦𝑠 is the yield 

strength of the tensile flexural reinforcement, 𝐸𝑠 is the modulus of elasticity of the tensile 

flexural reinforcement, 𝑚𝑆 is the average moment per unit length in the support strip and 𝑚𝑅 is 

the flexural strength. 

The punching shear strength of slabs with shear reinforcement is defined according to Eq. 

(2.27) as: 

 

 

 

 

 

 

𝑉𝑅 = 𝑉𝑅,𝑐 + 𝑉𝑠 (2.27) 

The punching shear resistance provided by the shear reinforcement (𝑉𝑠) in Eq. (2.27) can 

be expressed according to Eq. (2.28) as: 

 

 

 

 

 

 

𝑉𝑠 =
𝐸𝑠𝜓

6
𝐴𝑠𝑤 ≤ 𝑓𝑦𝑤𝑑  𝐴𝑠𝑤  

(2.28) 

where,  𝐴𝑠𝑤 is the amount of one row of shear reinforcement and 𝑓𝑦𝑤𝑑  is the yield 

strength of the shear reinforcement.  

The punching shear resistance outside the shear reinforced area is defined as: 

𝑉𝑅,𝑜𝑢𝑡 = 𝑘𝜓√𝑓𝑐𝑘𝑏𝑜𝑢𝑡𝑑 

 

(2.29) 

where, 𝑏𝑜𝑢𝑡 is the control perimeter at distance 𝑑/2 from the outermost perimeter of the shear 

reinforcement.  

Model Code (MC 2010) calculates the punching shear resistance due to failure of the 

concrete strut by increasing the punching shear strength of slabs without shear reinforcement by 

a factor, (𝑘𝑠𝑦𝑠).  
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𝑉𝑅 = 𝑘𝑠𝑦𝑠𝑘𝜓√𝑓𝑐𝑘𝑏𝑜𝑑 ≤ √𝑓𝑐𝑘𝑏𝑜𝑑 

 

 

 

 

The 

(2.30) 

The factor 𝑘𝑠𝑦𝑠 corresponds to 2.4 for slabs with stirrups and to 2.8 for slabs with double-

headed studs.  

2.5.4 Critical Shear Crack Theory (CSCT 2008, 2009) 

The punching shear strength of a slab without shear reinforcement is defined according to 

Eq. (2.31) as: 

 

 

 

 

 

 

𝑉𝑅,𝑐 =
3

4

𝑏𝑜𝑑√𝑓′𝑐

1 + 15
𝜓𝑑

𝑑𝑔0 + 𝑑𝑔

 

 

 

 

 

 

(2.31) 

where, 𝑏𝑜 is the critical shear perimeter, 𝑑 is the effective depth of the slab, 𝑓′𝑐 is the 

compressive strength of concrete, 𝑑𝑔0 is a reference aggregate size equal to 16mm, 𝑑𝑔 is the 

maximum aggregate size and 𝜓 is the rotation of the slab expressed according to Eq. (2.32). 

 

 

 

 

 

 

𝜓 = 1.5
𝑟𝑠
𝑑

𝑓𝑦𝑠

𝐸𝑠
(
𝑉𝐸
𝑉𝑓𝑙𝑒𝑥

)

3/2

𝑖𝑓 𝑉𝐸 ≤ 𝑉𝑓𝑙𝑒𝑥 

 

 

 

 

 

(2.32) 

where, 𝑟𝑠 is the distance between the axis of the column and the contra flexure, 𝑓𝑦𝑠 is the yield 

strength of the tensile flexural reinforcement, 𝐸𝑠 is the modulus of elasticity of the tensile 

flexural reinforcement, 𝑉𝐸 is the applied shear force and 𝑉𝑓𝑙𝑒𝑥 is the resistance to flexure that can 

be defined according to yield line theory by Rankin and Long (1987).  

The punching shear strength of a slab with shear reinforcement is defined according to 

Eq. (2.33) as: 

 

 

 

 

𝑉𝑅 = 𝑉𝑅,𝑐 + 𝑉𝑠 (2.33) 
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The punching shear resistance provided by the shear reinforcement (𝑉𝑠) in Eq. (2.33) can 

be expressed according to Eq. (2.34) as: 

 

 

 

 

 

 

𝑉𝑠 =
𝐸𝑠𝜓

6
𝐴𝑠𝑤 ≤ 𝑓𝑦𝑤𝑑  𝐴𝑠𝑤  

(2.34) 

where,  𝐴𝑠𝑤 is the amount of one row of shear reinforcement and 𝑓𝑦𝑤𝑑  is the yield strength of 

shear reinforcement.  

The punching shear resistance outside the shear reinforced area is defined as: 

𝑉𝑅,𝑜𝑢𝑡 =
3

4

𝑏𝑜𝑢𝑡𝑑√𝑓′𝑐

1 + 15
𝜓𝑑

𝑑𝑔0 + 𝑑𝑔

 

 

(2.35) 

where, 𝑏𝑜𝑢𝑡 is the control perimeter  at distance 𝑑/2 from the outermost perimeter of the shear 

reinforcement.  

CSCT calculates the punching shear resistance when the concrete strut crushes. 

According to this failure criterion, the compressive strength of the concrete depends on the 

transverse strains, and these strains depend on the rotation of the slab. Therefore, the failure 

criterion of crushing of concrete strut is a function that multiplies the punching shear strength of 

the slabs without shear reinforcement by a factor 𝜆 that depends on the different punching shear 

reinforcement systems that can be used. For studs or in general for systems with perfect 

anchorage conditions the factor 𝜆 can be assumed equal to 3. For other systems, such as stirrups 

where the reinforcement is developed by bond, the factor 𝜆 can be assumed equal to 2.5.  

 

 

 

 

 

𝑉𝑅 = 𝜆 
3

4

𝑏𝑜𝑑√𝑓′𝑐

1 + 15
𝜓𝑑

𝑑𝑔0 + 𝑑𝑔

 

 

 

 

(2.36) 
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2.6 Review on finite element methods/analyses of punching shear 

Nonlinear finite element analyses of reinforced concrete slabs can provide an insight into 

the slabs behaviour; predict the possible modes of failure; support the experimental conclusions; 

and extend these conclusions in cases where the test measurements are not known. FEA of 

reinforced concrete slabs have been performed by many researchers (Menétrey (1994), Hallgren 

(1996), Ožbolt et al. (2000), Polak (2005), Guan and Polak (2007), Negele at al. (2007), Eder et 

al. (2010), Mamede et al. (2013)); with the recent publication by Genikomsou and Polak (2015). 

Menétrey (1994) and Hallgren (1996) studied reinforced concrete slabs with two dimensional 

models using rotationally symmetric elements. The results obtained from Menétrey (1994) and 

Hallgren (1996) show that the rotational symmetric continuum elements can simulate the 

punching shear failure. However, the 2D elements cannot be considered for applications where 

orthogonal reinforcement or unsymmetrical punching should be modelled. Therefore, 3D 

elements became the state-of-the-art for recent research. Ožbolt et al. (2000) examined and 

analyzed concrete slabs using three-dimensional systems based on the micro-plane material 

model and a smeared crack approach. The mesh sensitivity was avoided with the improved crack 

band approach or the nonlocal integral approach. Nevertheless, the analysis of larger structures 

using three-dimensional elements is difficult. Shell elements according to Polak (2005) can be 

reasonable for large structures. However, FEA of shear reinforced concrete slabs are limited due 

to the complexity in modelling the punching shear reinforcement. Polak (2005) used shell 

elements with layered integration where the reinforcement was modeled as property of the 

concrete by modifying the stiffness in the reinforcement’s direction. Also, Guan and Polak 

(2007) used layered finite element methods to investigate the influence of shear stud 

reinforcement of flat slabs. Negele et al. (2007) used 3D nonlinear finite element analyses with a 
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micro-plane material model using the smeared crack approach together with the crack band 

method. The simulations were able to predict the ultimate load for the slabs tested by Adetifa and 

Polak (2005), but in terms of the ultimate deflection the predictions were not able to illustrate the 

influence of the amount of the shear bolts. Eder et al. (2010) used 3D finite elements for the 

simulation of the concrete and shell elements embedded into the solid elements for the 

simulation of the shear heads. 

2.7  Summary and Conclusions 

Chapter 2 presents a brief literature review that starts by discussing the development of 

the flat slabs in construction. Going back to the beginning of the 20
th

 century, flat slabs started to 

be used in many multistory buildings due to their benefits. However, flat slabs are vulnerable in 

punching shear and thus the appropriate testing started by examining the punching shear failure. 

Many researchers tested and studied reinforced concrete flat slabs without shear reinforcement 

and then continued their research on shear reinforced specimens. Different types of shear 

reinforcement were used and all observations led to the code design provisions for punching 

shear. However, the code provisions were also influenced from many developed mechanical 

models.  

From the short discussion on the testing background presented herein, comes out that 

even though the experiments are many, sometimes they cannot easily be grouped and analyzed. 

The design formulas differ as they are based on different research. The finite element 

formulations can be used in order to supplement the punching shear tests and provide more 

information regarding the punching shear failure mechanism. With that way, the existing testing 

database can be used as a tool to calibrate the finite element models. Then, based on the 
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calibrated models many and different analyses and parametric investigation can be performed. 

Chapter 3 that follows presents the constitutive modelling and behaviour of concrete.   
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Chapter 3 

Constitutive modelling of concrete  

3.1 Introduction 

Concrete is an isotropic heterogeneous composite material made by cement, water and 

aggregates, however, macroscopically, it is considered as homogeneous. The compressive 

strength of concrete is much higher than its tensile strength and its complex behaviour requires 

the development of appropriate constitutive models for its simulation and analysis. All of the 

proposed constitutive models, e.g. (Willam and Warnke 1975, Simo and Ju 1987, Mazars and 

Pijaudier-Cabot 1989, Yazdani and Schreyer 1990, Feenstra and de Borst 1995, Lee and Fenves 

1998, Imran and Pantazopoulou 2001, Grassl et al. 2002, Addessi et al. 2002, Jirasek et al. 2004, 

Salari et al. 2004); may show limitations and they are not suitable for all types of analysis. In 

continuum mechanics, the macroscopic response of concrete can be characterized through its 

evolution law of the failure envelope in multi-axial loading. A brief description on the 

mechanical behaviour of concrete and then an overview on its non-linear modelling with respect 

on cracking models, plasticity theory, continuum damage mechanics and damage coupled with 

plasticity, are presented in this chapter. 

3.2 Mechanical behaviour of concrete 

The mechanical behaviour of concrete is nonlinear in both tension and compression. In 

uniaxial compression, concrete shows a linear elastic behaviour up to 30% of the maximum 
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compressive stress 𝑓𝑐
′ and beyond that bond cracks start to be formed. Then, from 0.3𝑓𝑐

′ to 

0.75𝑓𝑐
′, micro-cracks open and join the bond cracks creating continuous cracks. After the stress 

level of 0.75𝑓𝑐
′, strain softening occurs depending on the size of the tested specimen and the 

strength of concrete. The stress-strain curve of long specimens compared to short specimens is 

sharper, because of the localized deformation in some regions during the unloading. During the 

strain softening, mortar cracks join the bond cracks and form a fracture zone creating internal 

damage. At the end, major cracks appear parallel to the direction of loading.  

The initial modulus of elasticity of concrete depends on its compressive strength and 

actually it is related to the square root of the compressive stress. According to Park and Paulay 

(1975), the modulus of elasticity of concrete can be taken as: 𝐸𝑐 = 𝑤1.533√𝑓𝑐′. 𝑤 is the density 

of concrete in pounds per cubic foot and 𝑓𝑐
′ is the compressive cylinder strength in psi. For 

normal weight concrete, the modulus of elasticity can be considered as: 𝐸𝑐 = 57000√𝑓𝑐′ (𝑝𝑠𝑖) 

or 𝐸𝑐 = 4730√𝑓𝑐′ (𝑁/𝑚𝑚2). 

Poisson’s ratio, 𝜈, for concrete denotes the ratio of the transverse strain to the strain in the 

loading direction. That ratio for concrete ranges between 0.15 to 0.20. However, according Park 

and Paulay (1975) values between 0.10 to 0.30 have been defined. According to Chen (1982), 

during uniaxial loading the Poisson’s ratio is constant until around 80 percent of the 𝑓𝑐
′ and then 

it starts to increase. During the crushing phase of concrete, the Poisson’s ratio becomes larger 

than 0.5. There is no information regarding the dependence of the Poisson’s ratio with the 

properties of concrete, however, the Poisson’s ratio is considered lower for high strength 

concrete.  
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In uniaxial tension, concrete shows a linear response up to a stress about 60% to 80% of 

its tensile stress (𝑓𝑡
′), where micro-cracks appear making the concrete to be softer and highly 

non-linear. After the tensile stress of 𝑓𝑡
′, the strength, due to the quasi-brittle nature of concrete, 

does suddenly drop to zero. Under tensile applied loading, the direction of the crack propagation 

is transverse to the stress direction. In the weakest regions of the concrete member, damage 

initiates during unloading of the other parts. Due to the aggregate interlock, stress is transferred 

in the fracture zone across the crack zone of the crack opening direction, until a complete crack 

is formed which cannot transfer any stress and finally tensile failure happens. The concrete 

during this process undergoes tension softening. The strain of the specimen increases because of 

the effect of the fracture zone and decreases in the rest of the specimen that is under elastic 

unloading.  

The ratio between the uniaxial tensile and compressive strength ranges from 0.05 to 0.1. 

Under uniaxial tension the modulus of elasticity becomes higher, however, the Poisson’s ratio is 

lower. The direct tensile strength of concrete, 𝑓𝑡
′, is difficult to be obtained from tests, however, 

it is normally considered as: 𝑓𝑡
′ = 4√𝑓𝑐′  (

𝑙𝑏
𝑖𝑛2⁄ ). The modulus of rupture 𝑓𝑟

′ and/or the splitting 

tensile strength are often used to estimate the tensile strength of concrete. The modulus of 

rupture is taken as: 𝑓𝑟
′ = 7.5√𝑓𝑐′  (

𝑙𝑏
𝑖𝑛2⁄ ). The split-cylinder tensile strength is around 50 to 75 

% lower than the modulus of rupture.  

Biaxial stresses appear when the principal stresses act only in two in-plane directions and 

the third principal stress is zero. The biaxial behaviour of concrete was studied, among others, by 

Kupfer et al. (1969). They observed that the biaxial strength envelope can be found through three 

different loading conditions; biaxial tension, biaxial compression and tension-compression (see 
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Figure 3.1). They concluded that when the concrete is subjected to biaxial compression its 

strength may be around 27% higher than its uniaxial strength. When equal-biaxial compressive 

stresses are applied, its strength increases around 16%. Biaxial tension shows almost the same 

strength to the uniaxial tensile strength. When the concrete is subjected to combined tension and 

compression, both tensile and compressive strength at failure are reduced. Under biaxial stresses 

the ductility of concrete has different values depending on the loading conditions (compressive 

or tensile). For uniaxial and biaxial compression based on the tests done by Kupfer et al. (1969) 

it was found that the average maximum compressive strain is about 0.003 and the average 

maximum tensile strain ranges between 0.002 to 0.004. The tensile ductility was observed 

greater in biaxial compression compared to this one under uniaxial compression. During 

compression-tension, both compressive and tensile strains are decreased as the tensile stress 

increases.  

During the loading and as the failure is approached, the volume of concrete increases as 

the compressive loading increases (Figure 3.2). That inelastic increase of the volume is called 

dilatancy and it is a characteristic of the progressive growth of the major cracks in concrete. 

Figure 3.2 shows the volumetric strain under biaxial compression, where the strain decreases up 

to 0.75 to 0.9 of the failure stresses and after that, the stresses are increased.  
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Figure 3.1 Biaxial strength envelope of concrete (Kupfer et al. 1969). 

 

Figure 3.2 Volumetric strain under biaxial compression (Kupfer et a al., 1969) (taken from 

Chen and Han, 1988). 

The strength of concrete is increased under tri-axial loading. Figure 3.3 shows that the 

lateral confining pressure has a significant effect on the deformation of the tested cylinders. As it 
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is obvious in Figure 3.3, an increase in the lateral pressure increases significant the ductility and 

the strength. That effect is due to the confinement of the concrete that comes from the lateral 

pressure that reduces the tedency for internal cracks and volume increase before the failure.  

 

Figure 3.3 Stress-strain curves under tri-axial compression (Palaniswamy and Shah, 1974) 

(taken from Chen and Han, 1988). 

The tri-axial behaviour of concrete is characterized by the strength envelope of the 

concrete and its evolution that is a function of the three principal stresses. Figure 3.4 shows the 

elastic limit surface and the failure surface where the last  illustrates the maximum strength of the 

concrete. When the hydrostatic compressive stresses along the 𝜎1 = 𝜎2 = 𝜎3 axis (see Figure 

3.4) increase, the deviatoric sections, that are perpendicular to the axis 𝜎1 = 𝜎2 = 𝜎3, of the 

failure surface are almost circular. That shows that the failure at that region is independent of the 

third stress invariant. When the hydrostatic pressure is smaller, the deviatoric sections become 

non-circular.  
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Figure 3.4 Failure surface of concrete in three-dimensional stress space (Chen, 1982).  

3.3 Cracking models of concrete 

When concrete fails in tension it is characterized by a progressive development of 

cracking. This process is considered as brittle because the tensile strength goes abruptly to zero 

after the cracking has been formed. However, when reinforcement exists, it bridges the cracks 

and the strength mechanism becomes more complex. Cracked concrete can be modelled by a 

linear elastic fracture approach. The commonly used fracture criteria are: the maximum principal 

stress criterion and the maximum principal strain criterion. When the stress or strain exceeds a 

specified limit, then cracking occurs normal to the direction of the principal stresses or strains, 

and then the cracking direction is set for all following applied load conditions. Once the cracking 

is formed, the stiffness in that direction is reduced due to the fact that the tensile stresses cannot 

be sustained across the cracks. Nevertheless, when the material is not normal to the cracking 

direction is still able to retain stresses. Further loading leads to more cracking that also appears 

perpendicular to the initial crack. While cracking can be open to the normal direction, it can be 

also possible that the opposite faces subjected to parallel motion will interlock. That depends on 

the grain of the cracked surface and the constrained force that prevent the crack surfaces to 
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move. In normal weight concrete the cracked surfaces are rough, however, in present of 

reinforcement, the surfaces are able to transfer shear forces by the significant phenomenon that is 

called aggregate interlock.  

In order to model the cracking of concrete in finite element analysis methods, there are 

two different models: the discrete crack approach and the smeared crack approach. 

Discrete crack approach 

This approach is based on the spread of the discontinuities in concrete with two different 

ways: the inter-element and the intra-element. In the inter-element crack way, as it is shown in 

Figure 3.5a, the cracks are modeled by a separation on the element edges. However, this 

approach has two disadvantages; first, the crack path is restricted because it follows the 

predefined boundaries of inter-elements and second, separated nodes are created when the 

cracking opens, adding extra degrees of freedom that increase the computation time and maybe 

decrease the efficiency of the solution. In the intra-element crack approach (see Figure 3.5b) the 

cracks propagate through the elements. Two different types of the intra-element approach can be 

found: the embedded discontinuous model that is used for strain localization problems and the 

partition-of-unity concept which adds degrees of freedom in the nodes in order to show the 

displacement that shows up beyond the cracks. The discrete crack approach is mostly used in 

structures where the localization of cracking is significant but in other cases the smeared crack 

approach is more capable. 
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                                            a)                                       b) 

Figure 3.5 Discrete crack model: a) Inter-element crack approach, b) Intra-element crack 

approach. 

 

Figure 3.6 Smeared crack model. 

Smeared crack approach 

The smeared crack method assumes that the cracking is smeared (see Figure 3.6), by 

reducing the concrete stiffness in the direction of the principal stresses. The already cracked 

concrete, in the smeared crack approach, is assumed to remain continuum. After the cracking, the 

concrete becomes orthotropic or transversely isotropic (Chen, 1982). The main benefit of this 

approach is that when the cracks are developed and then propagated, the already meshed 

structure does not need a new mesh. However, the disadvantage of the smeared crack model is 

that localizes the cracks into a single row of elements, leading to mesh sensitive results and in 

some cases not proper results. In the smeared crack approach, the cracking propagates in 

alignment with the mesh direction and thus three approaches are used depending on the crack 
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planes. The fixed crack model assumes that the cracking is fixed during the loading and 

propagates normal to the principal stresses. In the rotating crack model the cracking propagates 

also normal to the principal stresses, but the direction of the cracks rotates if the principal 

stresses change direction during the loading. Finally, the multi-directional fixed crack model 

assumes again that the cracking develop fixed and normal to the principal stresses. However, 

new developed cracks can propagate at different directions. 

3.4 Interaction between concrete and reinforcement – Tension stiffening 

The stress-strain curve for steel appears a linear elastic region up to its yield. Then, a 

yield plateau is observed up to the strain hardening strain. Afterwards, a strain-hardening region 

occurs until its ultimate strain and following its fracture strain. The ultimate stress of steel is 

approximately 1.55 times its yield strength (Chen, 1982). The stress-strain behaviour for steel in 

tension and compression are assumed identical. In the design of reinforced concrete structures, 

the reinforcement is considered as one-dimensional and for that reason no multi-axial 

complexities in its constitutive behaviour are considered. Three different idealizations for the 

stress-strain curve of reinforcement are considered: a) the elastic perfect plastic, b) the tri-linear 

and c) the complete curve.  

The material incompatibility between concrete and reinforcement due to their different 

behaviours leads to: a bond failure, sliding of the steel bars, local deformations and cracking. 

When large shear forces are applied in the structure (e.g. supports at a beam), sliding of the rebar 

occurs and the reinforcement is pulled out. This pullout effect can be modeled by using spring 

elements that simulate the contact between concrete and reinforcement. When both concrete and 

reinforcement tension forces are applied, then large cracks appear. Bond failure and opening of 
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the cracks happen together, and the shear forces at the contact surface create tensile stresses in 

concrete. This creates higher stiffness of the reinforced concrete than the steel alone and it is 

called tension stiffening. The tension stiffening effect was, first, introduced by Scanlon (1971) 

and it was considered indirectly by assuming the loss of the tension in concrete to happen 

gradually by a descending branch of the concrete stress-strain curve. One other way to consider 

the tension stiffening effect can be by increasing the stiffness and stress of the reinforcement. 

This additional stress in reinforcement at the same strain shows the total tensile force carried by 

reinforcement and concrete between the potential cracks. However, the dowel effect that takes 

place when the reinforcement bars act as dowels after the tensile cracking, can be considered in 

the same way as the aggregate interlock effect by using the shear stiffness and stresses of the 

cracked concrete. 

3.5 Plasticity of concrete 

The uniaxial stress-strain curves for concrete in tension and compression are presented in 

Figure 3.7. 

 

Figure 3.7 Uniaxial stress-strain curve of concrete (Chen, 1982). 
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The concrete in tension is linear elastic until its failure and no plastic strains appear. In 

compression, the concrete has linear behaviour until point A. After that point, the concrete shows 

internal micro-cracks until the end of the perfect plastic region CD at point D. Region AC shows 

the behaviour of hardening of concrete and region CD corresponds to the elastic perfect plastic 

concrete. The total strain 𝜀 can be considered as the summation of the elastic strain 𝜀𝑒 and the 

permanent plastic strain 𝜀𝑝. When the permanent (plastic) strain under constant stress appears, 

the concrete can be considered as perfect plastic. After the initial yield stress is reached, the 

stress-strain curve rises although the slope becomes less, until it falls and failure happens. With 

that way the stress is further increased as the strain increases and the material is able to withstand 

more stress after the plastic deformation happens. This is known as strain hardening or work 

hardening. After the failure the slope of the stress-strain curve becomes negative, such behaviour 

is called strain softening. In the inelastic behaviour of reinforced concrete structures, the steel in 

both tension and compression can be considered as an elastic perfect plastic material and the 

concrete as an elastic perfect plastic material in compression and as an elastic brittle material in 

tension.  

Over the previous years, different constitutive models for concrete have been proposed. 

All macro-mechanical constitutive models should represent mathematically the macroscopic 

stress-strain behaviour of concrete under different loading conditions; microscopic behaviour is 

not considered explicity in such modelling. The plasticity modelling approach belongs in this 

category and its origin starts with research done for the behaviour of metals. A plasticity model 

is based on three conditions: 1) the definition of the initial yield surface, which defines the level 

at which plastic deformation starts; 2) the definition of the hardening rule, which shows the 

changes of the loading surface; and 3) the definition of the flow rule, which together with the 



 

51 

 

plastic potential function shows the plastic stress-strain relationship of concrete. In general, a 

constitutive model requires a detailed description of the concrete’s behaviour, including the pre-

failure (hardening) and post-failure (softening). 

The initial isotropic behaviour of concrete has been accepted and considered in several 

experiments, indicating that concrete has a consistent failure surface in the three-dimensional 

principal stress space (Chen, 1982). The shapes of the failure surface in the meridian and 

deviatoric planes are shown in Figure 3.8. The deviatoric sections of the failure surface have 

different shape and size, depending on the hydrostatic pressure. The meridians 𝜌𝑡, 𝜌𝑠, 𝜌𝑐 

correspond to the values of the angle 𝜃 of 0°, 30° and 60°, respectively (see Figure 3.8). 

 

Figure 3.8 Failure surface in the meridian and deviatoric planes (Chen and Han, 1988). 

The failure surface based on the three coordinates can be calculated according to Eq. 

3.1. Following, Eq. 3.2 to 3.4 provide the relationship between the coordinates and the stress 

invariants (𝐼1, 𝐽2, 𝐽3 ).  

𝑓(𝜉, 𝜌, 𝜃) = 0 (3.1) 

𝜉 =
𝐼1

√3
 and 𝐼1 = 𝛿𝑖𝑗𝜎𝑖𝑗 = 𝜎11+𝜎22 + 𝜎33 

 

(3.2) 
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𝜌 = √2𝐽2 and 𝐽2 =
1

2
𝜎𝑖𝑗

′ 𝜎𝑖𝑗
′  and 𝜎𝑖𝑗

′ = 𝜎𝑖𝑗 −
1

3
𝛿𝑖𝑗𝜎𝑘𝑘 (3.3) 

cos 3𝜃 =
3√3

2

𝐽3

𝐽3
3/2 and 𝐽3 =

1

3
𝜎𝑖𝑗

′ 𝜎𝑗𝑘
′ 𝜎𝑘𝑖

′  
(3.4) 

Some of the most popular concrete models are presented in Figure 3.9. All these models 

are categorized with the number of the material parameters found in their expressions. The one-

parameter models, among them, the von Mises, are mostly used for metals but also they were 

used in analyzing concrete under compressive loadings by the early attempts of using finite 

element methods. These models have pressure-independent yield surface and in order to account 

for the tensile capacity, their surface is increased by the maximum principal stress surface or by 

the tension cut-off surface. Among the two-parameter models (pressure dependent); the Drucker-

Prager is mostly used for soils, while the Mohr-Coulomb model for concrete.  

 

Figure 3.9 Failure models (Chen and Han, 1988). 



 

53 

 

The hardening rule, in a plasticity model, defines the motion of the yield surface during 

the plastic loading. If the yield function depends on the loading through the hardening variable 𝑘, 

and it can only expand or shrink in the stress space, without translation or rotation; it is called 

isotropic hardening. As previously mentioned the shape of the yield surface at any given loading 

condition can be determined by the hardening rule. The connection between the yield surface and 

the stress-strain relationship is defined by a flow rule. Concrete can exhibit a significant volume 

change when is subjected to inelastic loads. This change in volume, usually called as dilatancy, is 

caused by the plastic deformation and can be reproduced by using a proper plastic potential 

function, 𝐺. When the plastic potential function coincides with the yield function, the plastic 

flow develops normal to the yield surface and this is called associated flow rule, because the 

plastic flow is associated with the yield function. However, there is also the non-associated flow 

rule, where two separate functions are adopted for the plastic flow rule and the yield surface, and 

these two functions do not coincide. In such flow rule, the plastic flow develops along the normal 

to the plastic flow potential and not to the yield surface. Figure 3.10 illustrates the non-uniform 

hardening plasticity model proposed by Han and Chen (1988) in the hydrostatic plane. 

 

Figure 3.10 A non-uniform hardening plasticity model (Chen and Han, 1988). 
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The strain-softening plastic behaviour of a material according to Chen and Han, 1988, 

can be described with three ways as it is illustrated in Figure 3.11. The elastic-plastic behaviour 

happens when the slopes of the unloading and reloading do not change with the plastic 

deformation (Figure 3.11a). However, the elastic-plastic behaviour does not describe the 

behaviour of concrete.  Due to cracking and fracturing the stiffness of concrete decreases as the 

strain increases. The progressively fractured behaviour (Figure 3.11b) describes a perfect elastic 

material. During the unloading the material returns to its initial stress-strain state without 

permanent deformation. The stiffness degradation that occurs due to the micro-cracking cannot 

be explained using the plasticity theory. Therefore, the fracture theory was developed further to 

the recent damage theory that is described in the next section. Finally, the plastic fracturing 

behaviour (Figure 3.11c) can describe the concrete that exhibits both plastic deformation and 

stiffness degradation. This behaviour, nowadays, is called coupled damage plasticity behaviour 

and it is also discussed later.  

   

a) b) c) 

Figure 3.11 Typical material behaviours for strain softening: a) elasto-plastic, b) progressively 

fracturing, c) plastic-fracturing (Chen and Han, 1988). 
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3.6 Damage mechanics in concrete 

All solid materials can appear surface and volume discontinuities (micro-cracks). In 

engineering, this phenomenon is called damage. Continuum damage mechanics is a constitutive 

theory that considers the damage macroscopically as a variable that affects the stiffness 

degradation of the material. The pioneer in continuum damage mechanics in creep rupture was 

Kachanov (Lemaite, 1992).   

Continuum mechanics considers the “Representative Volume Element” which represents 

averages of a certain volume where the stress-strain values should be determined as mean 

quantities over this volume element. Considering the Representative Volume Element (RVE) 

oriented by a plane defined by its normal 𝑛⃗ , along the direction 𝑛⃗  , the damage value 𝐷 is defined 

as: 

𝐷 =
𝑆𝐷

𝑆
 

 

(3.5) 

where, 𝑆 is the area of the intersection of the plane with the RVE and 𝑆𝐷 is the effective 

area of intersections of all microcracks in 𝑆 (Figure 3.12). The value of the damage parameter 𝐷 

ranges between 0 (undamaged) to 1 (fully damaged). When anisotropic damage is considered, 

the damage of the RVE depends on the direction 𝑛⃗ . 

Damage mechanics describes the deterioration of the material microscopically by means 

at the macroscopic level. If the micro-cracks are uniformly distributed over the RVE, it can be 

assumed that the damage is isotropic and does not depend on the direction of 𝑛⃗ . That is the 
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simplest version where the damaged stiffness is assumed as a scalar multiplied with the initial 

elastic stiffness. 

 

 

 

 

 

Figure 3.12 Definition of damage. 

In order to introduce the damage mechanics concepts, we can consider the uniaxial stress 

state. In uniaxial tension with scalar damage variable, the cross sectional area is reduced (𝑆 − 𝑆𝐷) 

and the nominal stress (𝜎) is replaced by the effective stress (𝜎̅) according to Eq. (3.6): 

𝜎 =
𝐹

𝑆 − 𝑆𝐷 
=

𝜎𝑆

𝑆 − 𝑆𝐷 
=

𝜎

1 −
𝑆𝐷

𝑆  
=

𝜎

1 − 𝐷 
 (3.6) 

During the unloading from tension to compression the effective cross sectional area 

becomes larger than (𝑆 − 𝑆𝐷), because some micro-cracks close. In such a case that all micro-

cracks close, the stress and the effective stress are equal. This should be considered in the 

constitutive modelling of concrete. Although there are many ways to show the damage, in the 

microscopic constitutive modelling, the physical interpretation of the damage variables 

sometimes becomes complicated. However, the definition of the damage variable 𝐷 related to 
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the effective stress-strain relationship is the most widely adopted way in constitutive modelling 

in literature. 

Continuum damage mechanics can be used in constitutive modelling for elements 

subjected only to monotonic loading, as it can reproduce the softening response without 

capturing any permanent deformation. The damage theory employed in any constitutive model is 

considered with a stress-strain relationship together with a damage variable in order to describe 

the material deterioration, with a damage criterion and sometimes with a damage evolution law.  

This damage progress is adopted in the damaged-based models and it can be different in each 

continuum damage mechanics model. 

Due to the different responses of concrete in tension and compression, the damage in the 

constitutive modelling, can be adopted and used in two different ways where separate damage 

variables in tension and compression are used in order to simulate the stiffness degradation. The 

first approach considers different damage criteria for tension and compression (Comi 2001, 

Comi and Perego 2001) and the second that is based on the decomposition of the stresses and 

strains into positive and negative parts (Ladeveze 1983, Ortiz 1985, Simo and Ju 1987, Mazars 

and Pijaudier-Cabot 1989), considers two different loading surfaces. However, it is difficult by 

using only two scalar damage variables for tension and compression in constitutive modelling to 

observe different responses for concrete subjected to arbitrary loads. Therefore, the hardening 

and softening processes are assumed isotropic with a uniform expansion and contraction of the 

failure surface. Many researchers (Jirasek and Patzak 2002, Jirasek et al. 2004, Comi and Perego 

2001) tried to consider this evolution of the failure surface by using the uniaxial behaviour of the 

material. However, concrete in continuum mechanics should be simulated under multi-axial 

loading and the initial stress-strain response using the damage criteria should be in good 
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agreement with the experiments observations. Among others, some researchers could not 

properly simulate the multi-axial response of concrete (Peerlings 1999, Jirasek and Patzak 2002, 

Addessi et al. 2002), because even if it is easy to model the stress-strain relationship by using the 

scalar variables, the damage criterion and the damage evolution law, it becomes difficult to 

model the macroscopic concrete behaviour. This drawback in modelling becomes significant 

when the unloading and reloading should be considered. Also, the damage model cannot capture 

the permanent deformation of the concrete as in the experimental results. Therefore, the coupling 

between damage and plasticity is essential for the macroscopic behaviour of concrete and it 

should be taken into consideration in constitutive modelling. 

3.7 Coupled plasticity and damage 

According to Lemaitre (1992), in the constitutive modelling of concrete there are two 

approaches for coupling damage and plasticity. The first approach is called state coupling and 

considers the coupling between damage and elasticity and the second approach is called kinetic 

or indirect coupling and examines the coupling between damage and plasticity.  

The concept of the effective stresses in damage mechanics permits the coupling between 

damage and elasticity. However, the coupling between damage and plasticity is introduced 

implicitly in the yield and damage criteria with the material strength being decreased due to the 

damage variable 𝐷 (Luccionni et al. 1996, Nguyen 2002, Nguyen and Houlsby 2004, Salari et al. 

2004). With that implicit coupling, the effective stress used in the yield function replaces the 

nominal stress (Lemaitre and Chaboche 1990, Lemaitre 1992) and thus the constitutive 

modelling adopts separate forms for the yield and failure criteria and can solve problems that 
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need a combined yield-failure criterion. Also, there is no dependency between the damage 

variable and the plastic strains in the coupled model. 

Other researchers (Lemaitre 1992, Lee and Fenves 1998, Faria et al. 1998, Lemaitre 

2000) use a different approach for coupling the damage and the plasticity. They use only one 

loading function in order to examine the dissipation process. This loading function is a damage 

function with  an evolution law for the plastic strains (Faria et al. 1998) and sometimes requires a 

damage criterion based on the equivalent plastic strains in terms of the internal variables that 

control the plastic flow (Lemaitre 1992, Lee and Fenves 1998, Lemaitre 2000). By using one 

loading surface it can be easier than using two separate; one for the damage and one for the 

yield.  

 

Figure 3.13 Stress-strain curves in uniaxial loading (Omidi and Lotfi, 2010). 

In this coupling model, the plasticity theory describes the permanent deformation and the 

damage theory describes the modelling of the material deterioration (Figure 3.13). This approach 

in constitutive modelling of concrete combines the two theories (Plasticity theory and Damage 

theory) and despite its complexity; it has been widely used by many researchers (Simo and Ju 

1987, Yazdani and Schreyer 1990, Luccioni et al. 1996, Lee and Fenves 1998, Hansen et al. 
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2001, Addessi et al. 2002, Ung-Quoc 2003, Jefferson 2003, Salari et al. 2004) over the previous 

years.  

3.8 Summary and Conclusions 

The mechanical behaviour of concrete and its non-linear modelling based on cracking 

models, plasticity theory, continuum damage mechanics and damage coupled with plasticity are 

presented in Chapter 3. All plasticity models have three major assumptions: 1) the definition of 

the initial yield surface; 2) the definition of the hardening rule; and 3) the definition of the flow 

rule. A constitutive model requires a detailed description of the concrete’s behaviour, including 

the hardening and the softening processes. Fracture mechanics and damage mechanics theories 

were developed in order to explain and consider the plasticity modelling of concrete, the 

permanent deformation and changing in loading and unloading. In the combined approach 

(coupled damage-plasticity), the plasticity theory is used for the description of the permanent 

deformation and the damage theory for modelling the material deterioration. Chapter 4 that 

follows describes the coupled damaged plasticity model for concrete and its calibration in 

ABAQUS. That model is considered for all of the analyses done in this work. 
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Chapter 4 

Calibration of the Concrete Damaged Plasticity 

model in ABAQUS 

4.1 Introduction 

ABAQUS is a finite element analysis software that allows to evaluate the behaviour of 

the structures under applied loads. ABAQUS can be used for analyzing static and/or dynamic 

structural problems as it offers an advanced element and material library for simulating 2D and 

3D elements with different shapes and contacts. For analyzing concrete structures, ABAQUS 

offers three different constitutive models: 1) the concrete damaged plasticity model, that can be 

used in both ABAQUS/Standard and ABAQUS/Explicit; 2) the concrete smeared cracking 

model in ABAQUS/Standard only; and 3) the cracking model for concrete only in 

ABAQUS/Explicit. The cracking model for concrete is considered for applications where the 

concrete fails by tensile cracking considered as anisotropic and thus the compressive failure is 

not dominant (elastic behaviour in compression is assumed). The concrete smeared cracking 

model is used for monotonic loading when the concrete fails due to tensile cracking and/or 

compressive crushing. The cracking of concrete is considered as the most important failure in 

this model with a post-cracking anisotropic behaviour to be dominant. Finally, the concrete 

damaged plasticity model is based on the scalar isotropic damage assumption considering the 

stiffness degradation in both compression and tension and also it accounts for the stiffness 
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recovery under cyclic loading. In this work, the concrete damaged plasticity model is chosen for 

the punching shear simulations due to the arbitrary loading conditions that it can consider, such 

as cyclic loading. However, many researchers have conducted research using the concrete 

damaged plasticity in order to examine the behaviour of different reinforced concrete structures, 

e.g., prestressed concrete beams (Mercan, Schultz and Stolarski, 2010) and reinforced concrete 

bridge columns (Babazadeh, Burgueno and Silva, 2015). 

In this chapter, the concrete damaged plasticity model is firstly presented and then some 

examples in order to verify its accuracy are shown and discussed. The concrete model is 

calibrated based on tests from literature. Selected tests by Kupfer et al. (1969) in plain concrete 

specimens are analyzed using the concrete damaged plasticity model. These specimens were 

tested under uniaxial/biaxial compression, uniaxial/biaxial tension and tension-compression. 

Then, a reinforced concrete shear panel tested by Vecchio (1999) is analyzed in order to verify 

the accuracy of the concrete damaged plasticity model simulating shear stresses-strains. A 

reinforced concrete beam without stirrups tested by Leonhardt (1962) and two beams, one with 

stirrups and the other without stirrups, tested by Aoude et al. (2012), are simulated and analyzed 

in order to investigate the effect of the dilation angle. Finally, the model is used for the analysis 

of a reinforced concrete flat slab (SB1) tested by Adetifa and Polak (2005) that failed in 

punching shear. SB1 is considered as the control specimen for all punching shear analyses in this 

thesis.  

4.2 Concrete damaged plasticity model in ABAQUS 

The concrete damaged plasticity model from ABAQUS is presented herein. This model is 

a continuum, plasticity, damaged-based model considering both tensile cracking and 



63 

 

compressive crushing of concrete as possible failure modes. This model was firstly called as 

Barcelona model and it was developed by Lubliner et al. (1989). The main components of the 

plasticity based models are the yield function, the flow rule and the hardening rule. Lubliner and 

the co-authors developed the yield function of the model (1989) and then, this yield function was 

modified by Lee and Fenves (1998). The form of the yield function is defined according to Eq. 

(4.1):  

 𝐹 =
1

1 − 𝛼
(𝑞̅ − 3𝛼𝑝̅ + 𝛽(𝜖̃𝑝𝑙)〈𝜎̅̂𝑚𝑎𝑥〉 − 𝛾〈−𝜎̅̂𝑚𝑎𝑥〉) − 𝜎𝑐(𝜖𝑐̃

𝑝𝑙) 

 

(4.1) 

Parameter 𝛼 is calculated according to Eq. (4.2), where (𝜎𝑏0) and (𝜎𝑐0) denote the biaxial 

compressive strength and the uniaxial compressive strength, respectively. The default value of 

the ratio (
𝜎𝑏0

𝜎𝑐0
⁄ ) is 1.16, according to ABAQUS (ABAQUS Analysis user’s manual 6.12-3, 

2012) . The Macauley bracket 〈∙〉 is found out as: 〈𝑥〉 =
1

2
(|𝑥| + 𝑥). 

 𝛼 =
(

𝜎𝑏0
𝜎𝑐0

⁄ ) − 1

2(
𝜎𝑏0

𝜎𝑐0
⁄ ) − 1

, 0 ≤ 𝛼 ≤ 0.5 

 

 

(4.2) 

In Eq. (4.1), 𝑝̅ denotes the hydrostatic pressure stress and 𝑞̅ the Mises equivalent effective 

stress. Function 𝛽(𝜖̃𝑝𝑙) appears in the yield function, when the algebraically maximum principal 

effective stress (𝜎̅̂𝑚𝑎𝑥) is positive. The effective stress in concrete damaged plasticity model is 

defined as: 𝜎 = 𝛦𝑜 ∙ (𝜖 − 𝜖𝑝𝑙). Also, 𝛽(𝜖̃𝑝𝑙) is determined as: 

 𝛽(𝜖̃𝑝𝑙) =
𝜎𝑐(𝜖𝑐̃

𝑝𝑙)

𝜎𝑡(𝜖𝑡̃
𝑝𝑙)

(1 − 𝛼) − (1 + 𝛼) 

 

(4.3) 

where, 𝜎𝑐(𝜖𝑐̃
𝑝𝑙) and 𝜎𝑡(𝜖𝑡̃

𝑝𝑙) are the effective compressive and tensile cohesion stresses, 

respectively. These effective compressive and tensile cohesion stresses, as they called in the 
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concrete damaged plasticity model, determine the size of the yield surface. The  𝜎̅̂𝑚𝑎𝑥 in biaxial 

compression becomes zero and the parameter 𝛽(𝜖̃𝑝𝑙) becomes not active and the only remaining 

parameter is the 𝛼. 

The shape of the yield surface is determined by the parameter 𝛾 according to Eq. (4.4). 

Parameter 𝛾 is active in Eq. (4.1) when the maximum effective principal stress (𝜎̅̂𝑚𝑎𝑥) becomes 

negative (tri-axial compression). 

 𝛾 =
3(1 − 𝐾𝑐)

2𝐾𝑐 − 1
, 0.5 < 𝐾𝑐 ≤ 1 

 

(4.4) 

The parameter 𝐾𝑐 in E q. (4.4), denotes the ratio of the tensile to the compressive meridian 

and also defines the shape of the yield surface in the deviatory plane (Figure 4.1). 

 

Figure 4.1 Yield surfaces in plane stress. 

In the concrete damaged plasticity model the flow potential function, 𝐺(𝜎), is a non-

associated Drucker-Prager hyperbolic function and is defined according to Eq. (4.5) 

 𝐺(𝜎) = √(𝜀𝜎𝑡0 𝑡𝑎𝑛 𝜓)2 + 𝑞̅2 − 𝑝̅ 𝑡𝑎𝑛 𝜓 (4.5) 
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where, 𝜀 is the eccentricity that gives the rate at which the plastic potential function 

approximates the asymptote, 𝜎𝑡0 is the uniaxial tensile stress and 𝜓 is the dilation angle 

measured in the 𝑝 − 𝑞 plane at high confining pressure. Figure 4.2 shows the plastic potential 

function compared to the yield surface, where the plastic strain increment is normal to the plastic 

potential function. In Figure 4.3 is illustrated schematic the dilation angle and the eccentricity. 

According to ABAQUS (ABAQUS Analysis user’s manual 6.12-3, 2012) the default value for 

the eccentricity is equal to 0.1, showing that the concrete has the same dilation angle through a 

wide range of confining pressure stresses. By increasing the value of the eccentricity a more 

curvature potential function occurs, where the dilation angle increases rapidly as the confining 

pressure decreases. The dilation angle also shows the direction of the plastic strain increment 

vector. With the non-associated flow rule adopted in the concrete damaged plasticity model the 

plastic strain vector is normal to the plastic potential function, which is different from the yield 

surface.  

 

Figure 4.2 Plastic potential and yield surfaces in the deviatory plane. 
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Figure 4.3 Dilation angle and eccentricity in meridian plane. 

 Damage is introduced in the model according to Eq. (4.6): 

 𝜎 = (1 − 𝑑)𝜎 ̅ = (1 − 𝑑)𝛦0: (𝜖 − 𝜖𝑝𝑙) (4.6) 

where 𝑑 denotes the damage parameter and is defined in terms of compression and tension, 𝑑𝑐 

and 𝑑𝑡, respectively, such that: 

 (1 − 𝑑) = (1 − 𝑠𝑡𝑑𝑐)(1 − 𝑠𝑐𝑑𝑡) (4.7) 

where 𝑠𝑡 and 𝑠𝑐 describe the tensile and compressive stiffness recovery, respectively and they are 

defined as:  

 𝑠𝑡 = 1 − 𝑤𝑡𝑟(𝜎) (4.8) 

 𝑠𝑐 = 1 − 𝑤𝑐(1 − 𝑟(𝜎)) (4.9) 

where, 𝑤𝑡 and 𝑤𝑐 are weight factors (see Figure 4.4), and  𝑟(𝜎) is a direction weight prescribed 

by the principal stresses. The damage variables can take values from zero (undamaged material) 

to one (fully damaged material). 
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Figure 4.4 Uniaxial load cycle (tension-compression-tension) assuming default values for the 

stiffness recovery factors: 𝑤𝑡 = 0 and 𝑤𝑐 = 1 . 

 Viscoplastic regularization according to Devaut-Lions approach can be defined in the 

concrete damaged plasticity model. By introducing the viscous parameter (𝜇) the plastic strain 

tensor is upgraded and the damage is deduced using additional relaxation time. Eq. (4.10) shows 

the relationship between the strain rates using the viscoplastic regularization. 

 𝜖𝑣̇
𝑝𝑙 =

1

𝜇
(𝜖𝑝𝑙 − 𝜖𝑣

𝑝𝑙) (4.10) 

By using the viscous parameter, the viscoplastic damage increment is determined in Eq. 

(4.11): 

 𝑑̇𝑣 =
1

𝜇
(𝑑 − 𝑑𝑣) (4.11) 

where 𝑑𝑣 is the viscous stiffness degradation variable. Finally, the relationship between stress 

and strain according to the viscoplastic model is given in Eq. (4.12). 
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 𝜎 = (1 − 𝑑𝑣)𝛦0: (𝜖 − 𝜖𝑣
𝑝𝑙) (4.12) 

From the stress-strain diagram that describes the compressive curve for concrete 

damaged plasticity model in ABAQUS, the inelastic strain 𝜀𝑐̃
𝑖𝑛 = 𝜀𝑐 −

𝜎𝑐

𝐸0
 is calculated first. The 

plastic strain is equal to: 𝜀𝑐̃
𝑝𝑙 = 𝜀𝑐̃

𝑖𝑛 −
𝑑𝑐

(1−𝑑𝑐)

𝜎𝑐

𝐸0
. Therefore, the elastic strain 𝜀𝑐̃

𝑒𝑙 is equal to 

𝜀𝑐̃
𝑒𝑙 = 𝜀𝑐 − 𝜀𝑐̃

𝑝𝑙
. And the damage parameter for compression is equal to 𝑑𝑐 = 1 −  

𝜎𝑐

𝜀̃𝑐
𝑒𝑙 𝐸0⁄ .  

 

Figure 4.5 Definition of the compressive inelastic (or crushing) strain 𝜀𝑐̃
𝑖𝑛 used for the definition 

of compression hardening data.  

From the stress-strain diagram that describes the tensile curve for concrete damage 

plasticity model in ABAQUS we can calculate first the cracking strain 𝜀𝑡̃
𝑐𝑘 = 𝜀𝑡 −

𝜎𝑡

𝐸0
. The plastic 

strain is equal to 𝜀𝑡̃
𝑝𝑙 = 𝜀𝑡̃

𝑐𝑘 −
𝑑𝑡

(1−𝑑𝑡)

𝜎𝑡

𝐸0
. The elastic strain 𝜀𝑡̃

𝑒𝑙 is equal to 𝜀𝑡̃
𝑒𝑙 = 𝜀𝑡 − 𝜀𝑡̃

𝑝𝑙
. After the 
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calculation of the elastic strain we can calculate the damage parameter for tension as, 𝑑𝑡 = 1 −

 
𝜎𝑡

𝜀̃𝑡
𝑒𝑙 𝐸0⁄ . 

 

Figure 4.6 Illustration of the definition of the cracking strain 𝜀𝑡̃
𝑐𝑘 used for the definition of 

tension stiffening data.  

The uniaxial stress-inelastic strain curves are converted automatically in ABAQUS into 

stress-plastic strain curves. The hardening behaviour of concrete is considered by varying the 

size and shape of the yield and/or failure surface. This evolution of the yield and/or failure 

surface is controlled by two hardening variables (𝜀𝑡̃
𝑝𝑙, 𝜀𝑐̃

𝑝𝑙
) referred as tensile and compressive 

equivalent plastic strains, respectively.  

For the visualization of cracking, concrete damaged plasticity model assumes that 

cracking starts at points where the tensile equivalent plastic strain is bigger than zero and the 

maximum principal plastic strain is positive. The direction of the cracking is assumed to be 
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parallel to the direction of the maximum principal plastic strain and it is viewed in the 

Visualization module of ABAQUS/CAE. 

4.3 Adopted concrete modelling   

The concrete material parameters in the concrete damaged plasticity model that should be 

used are: the modulus of elasticity 𝛦0, the Poisson’s ratio 𝑣 and the compressive and tensile 

strengths of concrete. The uniaxial stress-strain response of concrete in tension is linear elastic 

up to its tensile strength, 𝑓𝑡
′. After cracking, the descending branch is modeled by a softening 

process, which ends at a tensile strain 𝜀𝑢, where zero residual tensile strength exists (Figure 4.9). 

Concrete in tension can be characterized by stress-crack displacement response instead of a 

stress-strain relationship due to its brittle behaviour. The stress-crack displacement relationship 

can be described with different options: linear, bilinear or exponential tension softening response 

(Figure 4.7). The exponential stiffening curve can be calculated according to Cornelissen et al. 

(Cornelissen et al., 1986), where the following equations should be considered: 

 𝜎 𝑓𝑡⁄ = 𝑓(𝑤) − (𝑤 𝑤𝑐)𝑓(𝑤𝑐)⁄  (4.13) 

 
𝑓(𝑤) = (1 + (

𝑐1𝑤

𝑤𝑐
)

3

) 𝑒𝑥𝑝 (−
𝑐2𝑤

𝑤𝑐
) 

(4.14) 

 
𝑤𝑐 = 5.14

𝐺𝑓

𝑓𝑡
 

(4.15) 

where 𝑐1 and 𝑐2 are material constants and can be considered equal to 3 and 6.93 for normal 

concrete, respectively.  
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Figure 4.7 Stress-crack width curves  in tension for concrete.  

In this study, bilinear stiffening response is used and can be calculated according to 

Figure 4.8, where, 𝑓𝑡
′ is the maximum tensile strength and 𝐺𝑓 is the fracture energy of concrete 

that represents the area under the tensile stress-crack displacement curve. The fracture energy 𝐺𝑓 

is related to the concrete’s strength and aggregate size and can be calculated using the Eq. (4.16) 

(CEB-FIP Model Code 90).  

𝐺𝑓=𝐺𝑓𝑜(𝑓𝑐𝑚/𝑓𝑐𝑚𝑜)0.7               (𝑁 𝑚𝑚⁄ ) 

 

(4.16) 

According to CEB-FIP Model Code 90, 𝑓𝑐𝑚𝑜 = 10 𝑀𝑃𝑎, 𝑓𝑐𝑚 is the mean value of the 

compressive strength associated with the characteristic compressive strength (𝑓𝑐𝑘 ), (𝑓𝑐𝑚 = 𝑓𝑐𝑘 +

8 𝑀𝑃𝑎) and 𝐺𝑓𝑜 is the base fracture energy that depends on the maximum aggregate size, 𝑑𝑚𝑎𝑥. 

The value of the base fracture energy 𝐺𝑓𝑜 can be obtained from the CEB-FIP Model Code 90 and 

for example for an aggregate size 𝑑𝑚𝑎𝑥 equal to 10 mm, 𝐺𝑓𝑜 is equal to 0.026 N/mm. According 

to ABAQUS (ABAQUS Analysis user’s manual 6.12-3, 2012), one possible way to minimize the 
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localization of fracture is the adoption of the tensile stress-strain relationship. The tensile strains 

can be defined by dividing the cracking displacement (𝑤) by the characteristic length of the 

element (𝑙𝑐). For 3D first order elements the characteristic length is adopted as the cubic root of 

the element’s volume. The tensile stress-strain graph is illustrated in Figure 4.9. 

 

Figure 4.8 Uniaxial tensile stress-crack width relationship for concrete. 

 

Figure 4.9 Uniaxial tensile stress-strain relationship for concrete. 

Concrete in compression can be modeled with the Hognestad parabola (Figure 4.10). The 

stress-strain behaviour of the concrete under uniaxial compressive loading can be divided into 

Crack width (mm)

Tensile stress (MPa)

Tensile strain 

Tensile stress (MPa) 3D Element

ε ε
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three domains. The first one represents the linear-elastic branch, with the initial modulus of 

elasticity, 𝐸𝑜 = 5500√𝑓𝑐
′. The linear branch ends at the stress level of 𝜎𝑐𝑜 that here is taken as: 

𝜎𝑐𝑜 = 0.4 𝑓𝑐
′. The second section describes the ascending branch of the uniaxial stress-strain 

relationship for compression loading to the peak load at the corresponding strain level, 𝜀𝑜 =

2𝑓𝑐
′ 𝐸𝑠𝑒𝑐⁄ . The secant modulus of elasticity is defined as: 𝐸𝑠𝑒𝑐 = 5000√𝑓𝑐

′. The third part of the 

stress-strain curve after the peak stress and until the ultimate strain 𝜀𝑢 represents the post-peak 

branch.  

Damage can be introduced in concrete damaged plasticity model in tension and 

compression according to Figure 4.11 and Figure 4.12, respectively. Concrete damage occurs in 

the softening range in both tension and compression. In compression the damage is introduced 

after reaching the peak load corresponding to the strain level, 𝜀𝑜.  

 

Figure 4.10 Uniaxial compressive stress-strain relationship for concrete. 

Compressive strain

Compressive stress (MPa)

Hognestad type parabola
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Figure 4.11 Tensile damage parameter-strain relationship for concrete.  

 

Figure 4.12 Compressive damage parameter-strain relationship for concrete (simplified in linear 

form). 
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4.4 Numerical examples – Calibration of the concrete damaged plasticity 

model 

A few examples, taken from literature, are analyzed and presented in order to show how 

the model is studied and calibrated for the following punching shear examples.  

4.4.1 Tests by Kupfer et al. (1969) 

In order to investigate the modelling behaviour of the concrete under uniaxial/biaxial 

compression, uniaxial/biaxial tension and tension-compression using the concrete damaged 

plasticity model in ABAQUS, a finite element model is analyzed and compared with the test 

results by Kupfer et al. (1969). The tested plain concrete specimens with dimensions 20x20x5 

cm are simulated with an eight-node brick element with reduced integration (C3D8R) by 

performing displacement control analysis in ABAQUS/Standard. The compressive strength of 

concrete is 32 MPa. All used model and material parameters are considered based on the 

previous given and presented information in Sections 4.2 and 4.3. The eccentricity is adopted 

equal to 0.1, the ratio of biaxial compressive strength to uniaxial compressive strength is 

considered equal to 1.16, the parameter that defines the shape to yield surface is taken equal to 

0.667 and finally no viscosity is considered in the model. The effect of the dilation angle is 

investigated. Five different values for the dilation angle are given range from 10-50 degrees. 

Figure 4.13 shows the tested failure modes of the specimens under biaxial compression and 

tension, respectively. 
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a) Biaxial compression b) Biaxial tension 

Figure 4.13   Failure modes of specimen under biaxial stresses by Kupfer et al. (1969). 

 

 

Figure 4.14 Comparison between FEA and tested uniaxial compressive stress-strain curves 

(dilation angle investigation). 
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Figure 4.15 Comparison between FEA and tested biaxial compressive stress-strain curves 

(dilation angle investigation). 

Figure 4.14 and Figure 4.15 illustrate the comparison between FEA and tested 

compressive stress-strain curves for uniaxial and biaxial loading, respectively. The variation of 

the dilation angle has no effect on the responses in the loading direction (i.e., direction 1 for the 

uniaxial compression and directions 1 and 2 for the biaxial compression). However, the response 

of the FEA model depends on the value of the dilation angle for the unloading directions. An 

increase in the dilation angle makes the response of the model to behave in a more ductile 

manner. Comparing the test and analytical results in uniaxial compression, it is shown that the 

dilation angle of 10, 20 and 30 degrees gives a response that is close to the tested response. In the 

biaxial compression the dilation angle of 10 degrees seems to capture the stress-strain response 

of the test in the unloading direction. The dilation angle determines the plastic strain direction 

based on the deviatoric stresses in the meridian plane and actually controls the volumetric 

expansion of concrete. According to Lubliner et al. (1989) a dilation angle of 15 degrees should 
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be used for a low-confined concrete. In these two presented examples a small value for the 

dilation angle seems to give a good prediction compared to the test results, as the specimen is 

unconfined concrete and in particular plain concrete. 

 

Figure 4.16 Comparison between FEA and tested uniaxial tensile stress-strain curves (dilation 

angle investigation). 

Figure 4.16 and Figure 4.17 illustrate the comparison between FEA and test stress-strain 

curves for uniaxial and biaxial tensile loading, respectively. Similar to the compressive loading, 

the variation of the dilation angle has no effect on the responses in the loading direction (i.e., 

direction 1 for the uniaxial tension and directions 1 and 2 for the biaxial tension). However, the 

response of the model depends on the value of the dilation angle for the unloading directions. In 

tension, compared to the compressive loading, an increase in the dilation angle makes stiffer the 

response of the model. The test results in tension do not allow for any comparison in order to 

consider the most appropriate value for the dilation angle in the unloading directions. However, 
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we have to consider that in the tensile tests the concrete specimen does not expand as happens in 

the compressive tests. Under biaxial tension the tensile stress of concrete is the same with the 

tensile stress under uniaxial tension. 

 

Figure 4.17 Comparison between FEA and tested biaxial tensile stress-strain curves (dilation 

angle investigation). 

Then, the case of tension-compression (0.103σ1=σ2) is investigated (see Figure 4.18). 

Figure 4.19 illustrates the compressive strain ε1, while Figure 4.20 and Figure 4.21 show the 

tensile strains, ε2 and ε3, respectively. Displacement control analysis is performed in all of the 

analyses, where the applied displacement is calculated based on the tested strains in directions 1, 
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Figure 4.18 Specimen subjected to tension-compression (0.103σ1=σ2). 

 

Figure 4.19 Stress-strain curves for tension-compression (0.103σ1=σ2) – direction 1. 
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Figure 4.20 Stress-strain curves for tension-compression (0.103σ1=σ2) – direction 2. 

 

Figure 4.21 Stress-strain curves for  tension-compression (0.103σ1=σ2) – direction 3. 
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4.4.2 Shear panel tested by Vecchio (1999) 

The shear panel PDV-1 tested by Vecchio (1999) is simulated in ABAQUS using the 

concrete damaged plasticity model. The dimensions of the tested panel are 890x890x70 mm with 

reinforcement ratios: 1.82 percent in x-direction (longitudinal) and 0.91 percent in y-direction 

(transverse). The geometry of the panel and the reinforcements are shown in Figure 4.22 and 

Figure 4.23, respectively. The compressive strength of concrete is 26.8 MPa corresponding to a 

strain level of 0.00162 mm/mm and the yield strength of steel is 282 MPa. The nominal diameter 

of the reinforcement bars is 6 mm. The panel was tested under biaxial compression and shear in 

proportions of (-0.4:-0.4:1) and was subjected to monotonically increased loading. During the 

test the panel failed in shear of concrete at the same time with the yielding of the flexural 

reinforcement in x-direction (longitudinal). The transverse reinforcement had yielded before the 

failure. This panel is analyzed herein with the concrete damaged plasticity model using the 

surface tractions in the fixed proportions in order to simulate the shear and the compression, 

using a force-control procedure in ABAQUS/Standard. The concrete is modeled using C3D8R 

hexahedral elements and the reinforcement is modelled with (T3D2) 2-noded 3D linear truss 

elements embedded into the solid concrete elements. The embedded region constraint method in 

ABAQUS embeds a region of the model within a “host” region of the model or in general within 

the whole model. As embedded region is considered the reinforcement and as “host” region is 

considered the concrete member. The dilation angle is considered equal to 30 degrees after 

investigation. In this example the dilation angle is increased compared to the previous shown 

plain concrete elements, as the shear panel is a reinforced concrete member. The shear strain is 

calculated as the displacement at the lower right corner of the specimen. Figure 4.24 shows the 

tested crack pattern of the panel at failure, while Figure 4.25 illustrates the shear stresses 
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obtained from the numerical analysis. Finally, Figure 4.26 presents the comparison of the shear 

stress-strain obtained from the test and FEA. The numerical results are in good agreement with 

the experimental. The adopted dilation angle is equal to 30 degrees. All other material 

parameters of the model are considered same as in the previous examples. 

  

Figure 4.22 Hexahedral mesh elements for 

concrete. 

Figure 4.23 Truss elements simulate the 

reinforcement. 

  

Figure 4.24 Crack pattern Vecchio (1999). Figure 4.25 Crack pattern from ABAQUS. 
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Figure 4.26 Tested and numerical shear stress-strain of panel PDV1. 

 

4.4.3 Beam tested by Leonhardt and Walther (1962) 

This example shows a reinforced concrete beam tested by Leonhardt and Walther (1962). 

The simply supported beam without stirrups failed in shear. The dimensions of the beam are 

2550x320x190 mm and that beam is reinforced with two longitudinal bars with diameter 26 mm 

and total cross-sectional area 1060 mm
2 

and
 
cover 37 mm. The loading during the test was 

applied at two points. In ABAQUS, the beam is modeled using C3D8R elements for concrete 

and T2D3 elements for the steel. Symmetry is considered and only half of the beam is simulated. 

Concrete is modeled using different values for the dilation angle in order to investigate the most 

appropriate value in order the test and numerical response of the specimen to be in good 

agreement. The dilation angle of 30 degrees is the chosen value that simulates the beam leading 

to a good agreement between experimental and numerical results (see Figure 4.27). The 
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comparison between crack patterns observed from test and FEA are in good agreement (see 

Figure 4.28, Figure 4.29).  

 

Figure 4.27 Tested and numerical load-displacement response (dilation angle investigation). 

 

Figure 4.28 Cracking at failure during the test (Leonhardt and Walther, 1962). 

 

Figure 4.29 Cracking at failure from FEA (half beam). 
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4.4.4 Beam tested by Aoude at al. (2012) 

Two reinforced concrete beams with the same material properties and dimensions tested 

by Aoude et al. (2012), are analyzed with the concrete damaged plasticity model. The length of 

the beams is 4400 mm with 300 mm width and 500 mm height. The longitudinal reinforcement 

consists of four 25M bars for the bottom reinforcement and two 20M bars for the top 

reinforcement. The compressive strength of concrete is equal to 23.3 MPa and the clear cover of 

the longitudinal reinforcement is equal to 40 mm. The only difference between the two beams is 

that the beam B0% is reinforced with only three stirrups of 10M (one in the middle and the other 

two at the supports), while the specimen BF0% has 10M stirrups at 275 mm. Figure 4.30 shows 

half of the beams’ configuration as it is simulated in ABAQUS. For the beam BF0%, the 

adoption of higher value for the dilation angle is considered. The dilation angle of beam B0% is 

adopted equal to 30 degrees while the given value for the beam BF0% is equal to 42 degrees. 

According to the test results, beam B0% failed at a load of 125.1 kN, while specimen BF0% 

failed at a load of 245 kN.  

 

 a)                                                                          b)  

Figure 4.30 Modelling of the beams in ABAQUS: a) BO% beam and b) BFO% beam. 
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Figure 4.31 illustrates the cracking of the beam BO% (beam without stirrups) at the failure load 

as it is observed after the numerical analysis, while Figure 4.32 shows the cracking of the beam 

BFO%. 

 

Figure 4.31 Cracking at ultimate load from the numerical analysis of beam BO%. 

 

 

Figure 4.32 Cracking at ultimate load from the numerical analysis of beam BFO%. 
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Figure 4.33 Load-deflection response of specimen BO%. 

 

Figure 4.34 Load-deflection response of specimen BFO%. 

The comparison between test and FEA results in terms of load versus mid-span deflection 

response are presented in Figure 4.33 for the specimen BO% and in Figure 4.34 for the specimen 

BFO%. For the beam without stirrups the proper value for the chosen dilation angle is 30 

degrees, while for the beam with stirrups the value of the dilation angle is 42 degrees. Therefore, 
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amount of reinforcement require higher value for the dilation angle in the concrete damaged 

plasticity model. 

4.4.5 Slab tested by Adetifa and Polak (2005) 

Specimen SB1 belongs to the test series of reinforced concrete slabs tested by Adetifa 

and Polak (2005) and in this thesis this slab is considered as the control specimen for all the 

numerical analyses. In this subsection, a detailed parametric investigation is performed with 

respect to all appropriate modelling and analysis parameters for the slab SB1. The already 

described concrete model is adopted and herein the investigation examines the boundary 

conditions, the type of analysis, the mesh sensitivity, the type of the 3D elements and finally 

some material parameters of the model. This specimen is an interior slab-column connection 

without shear reinforcement that was previously tested at the University of Waterloo by Adetifa 

and Polak (2005). The compressive strength of concrete is 44 MPa and the tensile strength of 

concrete is 2.2 MPa. The yield strength of the flexural reinforcement is 455 MPa. This specimen 

was tested under static loading through the column stub. The column is square with dimensions 

150x150 mm and is extended 150 mm from the top and the bottom faces of the slab. The height 

of the slab is 120 mm and the effective depth is 90 mm. The overall dimensions of the slab in 

plan are 1800x1800 mm with simple supports at 1500x1500 mm. The slab during the test failed 

in punching shear at a load of 253 kN and at this load the displacement was equal to 11.9 mm. In 

FEA only one quarter of the slab is simulated due to the double symmetry. For simulating the 

concrete, 8-node hexahedral elements with reduced integration (C3D8R) are used in order to 

avoid the hourglassing effect. To model the reinforcement, 2-node linear truss elements (T3D2) 

are used and the embedded method is adopted to simulate the perfect bond between concrete and 
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reinforcement. Restraints are introduced at the bottom edges of the specimen in the loading 

direction. Figure 4.35 shows the geometry and the boundary conditions of the control specimen 

SB1 in ABAQUS.  

 

Figure 4.35 Geometry and boundary conditions of specimen SB1. 

Two types of analysis are performed: static analysis using the ABAQUS/Standard with 

viscoplastic regularization and quasi-static analysis in ABAQUS/Explicit. Figure 4.36 illustrates 

the comparison between the results that are obtained after performing the static and quasi-static 

analyses. The FEA results are compared with the test results in terms of load-deflection response. 

Two values for the viscosity parameter in the static analysis are considered: 𝜇 = 0.00001 and 

𝜇 = 0.00005. The chosen value of the viscosity parameter should be around to 15 percent of the 

time increment step in order for the solution to be improved without causing any changes into the 

results. Due to the high nonlinearity in FEA solution of slab SB1, the time increment step could 

not be fixed and it is set as automatic. Thus, the viscosity parameter is found through numerical 

investigation and the value of 0.00001 is considered as the most appropriate. The viscoplastic 
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regularization parameter can also be considered as time relaxation parameter. The results 

obtained from both analyses (static with viscosity parameter equal to 0.00001 and quasi-static), 

are in good agreement compared to the test results in terms of ultimate load and deflection (see 

Figure 4.36). Brittle punching shear failures are observed from both analyses with the sharp peak 

in the load-deflection diagrams. Quasi-static analysis requires less computational time compared 

to the static analysis. In all subsequent analyses of specimen SB1 and in general in this work, the 

quasi-static analysis is considered.  

 

Figure 4.36 Load-displacement response performing static and quasi-static analyses. 
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Figure 4.37 Load-displacement response for different mesh sizes. 

A mesh convergence study is considered in SB1 specimen. The smeared crack approach 
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of 20 mm and 24 mm, give 6 and 5 elements, respectively. The chosen 24 mm mesh size is 

considered as the upper limit in the chosen mesh sizes, because less than 5 mesh elements 

through the slabs’ thickness lead to hourglassing numerical effect and distortion of the C3D8R 

elements. The tensile strains are calculated by dividing the cracking displacements to the 

characteristic lengths of the elements. However, the results remain mesh size dependent. Figure 

4.37 shows the analyses’ results that are obtained from each mesh size.  The results are mesh size 

dependent, especially in terms of failure displacements. All of the mesh sizes give similar results 

in terms of the failure load. The mesh size of 20 mm gives the most accurate results compared to 

the test data. The mesh size of 24 mm seems to be too coarse and not able to converge giving a 

ductile and not realistic behaviour to the slab. The mesh size of 15 mm seems to be too small 

(close the aggregate size) and for that reason it cannot be considered. These observations are 

made after performing quasi-static analysis. The results with the viscoplastic regularization in 

ABAQUS/Standard by performing static analysis for the same mesh sizes (15 mm, 20 mm and 

24 mm) are still mesh size dependent. The viscous parameter is obtained as a material property 

for the concrete, introducing rate dependence into the material as relaxation time. The value of 

the chosen viscous parameter is 0.00001. The consideration of the viscoplastic component in the 

model does not seem to fully resolve the mesh sensitivity of the problem. However, the mesh 

size of 20 mm gives the most accurate results compared to the test load-deflection response and 

this mesh size is chosen in all subsequent simulations of all slabs. This choice has been based not 

only on the load-deflection responses but also on the comparison with the cracking patterns 

(Figure 4.38).  
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Figure 4.38 Crack patterns at failure for different mesh sizes. 
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Further investigation is performed to analyze the specimen (SB1) by changing its 

boundary conditions. After installing simple supports, neoprene is simulated around the bottom 

of the slab as happened in the real test (neoprene pads 25 mm thick and 50 mm in width were 

installed along the supporting lines). Neoprene is a hyper-elastic material considered as isotropic 

and nonlinear. Neoprene exhibits instantaneous elastic response up to large strains and as most 

elastomers it has low compressive strength compared to its shear flexibility. In finite element 

analyses when the elastomer materials are modeled with three-dimensional solid elements the 

numerical solution could be sensitive to the compressive behaviour of the material, therefore 

special attention is required. The Poisson’s ratio for the hyperelastic materials is close to 0.5. 

Hyperelastic materials are described in terms of a “strain energy potential’’ 𝑈(𝜖), which defines 

the strain energy stored in the material per unit of reference volume as a function of the strain at 

that point in the material. There are several forms of strain energy potentials available in 

ABAQUS to model approximately in-compressive isotropic elastomers. Between these models 

the Mooney-Rivlin model is chosen for the analysis below. However, the mechanical properties 

of the neoprene are determined by performing uniaxial compressive test on a neoprene specimen. 

The testing facility consists of a servo-controlled MTS machine equipped with a load cell with a 

capacity of 100 kN. The grips that are used had 100 mm diameter and the specimen is attached to 

the upper and lower set of the grips. The lower set is fixed during the test and the upper set is 

able to move downwards in a displacement control mode with a low speed of movement (Figure 

4.39). The specimen’s dimensions are 110x50x25 mm in the undeformed configuration. The 

stress-strain data collected from the experiment until the 80 kN load in which no failure is 

observed are presented in Figure 4.40.  Calculating the load that the neoprene supports carried 

during the test of the slab SB1, the level of stress that the specific specimen reached was 1.0542 
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MPa at the strain level of 0.1268 mm/mm, shown in Figure 4.40. At this stress-strain level the 

response of the tested specimen can be considered as linear and easily the initial modulus of 

elasticity can be found. However, ABAQUS allows the option of defining the uniaxial 

compression test data that can be used for the parametric modelling identification of the material 

coefficients. By using the material evaluation option in ABAQUS we can obtain all needed 

material coefficients for specifying the Mooney-Rivlin form for the neoprene.  

According to ABAQUS (Analysis user’s manual 6.12-3, 2012) the strain energy potential 

in Mooney-Rivlin form is: 

                                           𝑈 = 𝐶10( 𝐼̅1 − 3) + 𝐶01( 𝐼2̅ − 3) +
1

𝐷1
(𝐽𝑒𝑙 − 1)2 

 

(4.17) 

(4.14) where, 𝐶10, 𝐶01 and 𝐷1 are temperature-dependent material parameters, 𝐼1̅ and 𝐼2̅ are the first and 

the second deviatoric strain invariants and 𝐽𝑒𝑙 is the elastic volume ratio. The initial shear 

modulus and the bulk modulus are given according to Eq. (4.18) and Eq. (4.19), respectively: 

𝜇𝑜 = 2(𝐶10 + 𝐶01) 

 

 (4.18) 

 
𝑘𝑜 =

2

𝐷1
 

 

(4.19) 

 The ABAQUS material evaluation gives the values for the material parameters 𝐶10, 𝐶01 

and 𝐷1 (𝐶10 = 0.2292, 𝐶01 = 1.3203 and 𝐷1 = 1.2994𝑒 − 02). Therefore, the initial shear 

modulus is equal to 3.099 MPa and the initial modulus of elasticity that can be considered as 

three times the shear modulus is equal to 9.297 𝑀𝑃𝑎. The Poisson’s ratio is equal to 𝜈 =

[(
3𝑘𝑜

𝜇𝑜
) − 2] [(

6𝑘𝑜

𝜇𝑜
) + 2]⁄ = 0.49. The numerical results using the neoprene to simulate the 
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boundary conditions of the isolated specimen are in good agreement with the test results and they 

describe better, especially in the initial un-cracked state, the real load-deflection response of the 

isolated slab (Figure 4.41). The simulation of the boundary conditions using the neoprene 

overcomes the initial stiffer response obtained from the simulations by considering simple 

supports (Figure 4.42). 

 

Figure 4.39 Test specimen (neoprene). 

 

Figure 4.40 Compressive stress-strain behaviour of neoprene. 
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The numerical results after the material evaluation in ABAQUS (𝐸 = 9.297 𝑀𝑃𝑎, 𝜈 =

0.49) are close to the assumption that was discussed earlier by considering the neoprene as 

elastic material (𝐸 = 8.31 𝑀𝑃𝑎, 𝜈 = 0.5). 

Investigation using different 3D mesh elements is also performed on the slab SB1. Three 

different types of elements are adopted in the study: 3D linear hexahedral 8-noded (C3D8R) with 

reduced integration elements, 3D 4-noded linear tetrahedral elements (C3D4) and 3D 10-noded 

quadratic tetrahedral elements modified (C3D10M). Only these three types are used due to the 

ABAQUS/Explicit solution procedure that for example does not allow using (C3D20R) 3D 20-

noded quadratic brick elements or C3D10 linear elements. Two different boundary conditions 

are used during the mesh element investigation: neoprene supports and simple supports around 

the edges. Figure 4.41 illustrates the load-displacement response of the specimen SB1 supported 

on neoprene, while the Figure 4.42 shows the response of the simply supported slab SB1. The 

first important observation comes comparing the two different types of supports: neoprene 

supports simulate in better manner the initial stiffness of the load-deflection response and the 

results are in good agreement with the experimental results. However, due to the simplicity of 

our modelling, the next analyses are performed using only simple supports. The C3D4 elements 

for both types of supports overestimate the load capacity of the specimen. These elements are 

poor (fine mesh is needed to get accurate results) and in general they should be placed far from 

regions where the accuracy is important. Comparing the next two chosen element types, we can 

conclude that both (C3D8R and C3D10M) elements simulate the slab’s response in such way 

that the obtained results are in good agreement with the experimental results. The modified 

quadratic tetrahedral elements are robust for large displacement problems. However, the only 

disadvantage of using this type of elements is the large computational cost. The analysis needs 



99 

 

much longer time to run compared to the hexahedral elements. All numerical analyses are 

performed using a workstation with 16 GB RAM and an Intel Core i7 Processor running at 3.4 

GHz. The ABAQUS version that is used was the 6.12-3 and during all of the analyses 

parallelization is considered using 7 processors and 7 domains in ABAQUS/Explicit. The 

computational cost in terms on demand time for each of the next presented analyses using 

neoprene supports is around; 29 min. for the C3D8R elements, 190 min. for the C3D4 elements 

and 5,130 min. for the C3D10M elements. Figure 4.43 shows the crack patterns coming from 

ABAQUS at the failure for each type of element and each type of boundary condition. Neoprene 

supports seem to present in more realistic way the cracking without to have concentrated strains 

in the supports as it happens in the simply supported slabs. The crack pattern using neoprene 

supports and C3D10M elements shows in a better way the cracking compared to the real slab. 

That actually happens because the C3D10M elements are quadratic elements compared to the 

linear C3D4 and C3D8R. The tetrahedral elements due to their shape can simulate in better way 

the radial cracking in the slab, compared to the rectangular hexahedral elements. 

 

Figure 4.41 Load-deflection response for different mesh elements using neoprene supports. 
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Figure 4.42 Load-deflection response for different mesh elements using simple supports. 
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 C3D8R elements C3D8R elements 

 C3D10M elements C3D10M elements  

Figure 4.43 Cracking at failure for different mesh elements using neoprene and simple supports. 

Figure 4.44 illustrates the investigation on the influence of the damage parameters. The 

damage parameters in the concrete damaged plasticity model take into consideration the 

degradation of concrete after cracking. The maximum value for the damage parameters in both 

tension and compression is chosen to be equal to 0.9. The tensile damage parameter at the strain 

level 𝜀1 is chosen to be as 0.85. The definition of the compressive damage parameters simplified 

linear relationship is adopted by given the minimum damage parameter equal to zero at the strain 

level 𝜀𝑜 and the maximum value 0.9 at the strain level, 𝜀𝑢. The results obtained from the analysis 

considering the damage parameters show that the failure of the control specimen SB1 happens 

earlier compared to the analysis results without considering damage parameters. This becomes 

clear if one realizes that, the plastic strains are lower compared to the inelastic strains. The latter 

are considered in the model without the definition of the damage parameters. Without 

considering the damage parameters, the model behaves with only plasticity, assuming the plastic 

and inelastic strains to be equal. It could be noted that the damage has no effect at the early stage 

when the load is 100 kN (see Figure 4.44). This happens because the concrete at this load is 

almost elastic and no or little damage has occurred. If only tensile damage is considered the 
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results overestimate the ultimate loading capacity of the slab. When the damaged model is 

applied to both tension and compression, the model appears to underestimate the ductility of the 

slab-column connection. Damage in compression seems to have significant effect on the 

numerical results. Based on the observations of the effect of the damage parameters, it can be 

said that the damage parameters in the concrete damaged plasticity model in ABAQUS are 

similar to the hardening parameters used in the classic plasticity theory. For the described 

problem of punching shear the definition of the damage parameters should not be taken into 

consideration as it is supposed that the damage parameters are important for cyclic or dynamic 

loadings where unloading should be defined by plastic strains. 

The fracture energy of concrete is related to the strength of concrete and the aggregate 

size. For the 44 MPa strength of concrete of SB1, the fracture energy is equal to 0.082 N/mm 

based on the CEB-FIP Model Code 90. The CEB-FIP Model Code 2010 considers a different 

equation to calculate the fracture energy (𝐺𝑓 = 73 ∙ 𝑓𝑐𝑚
0.18). By using this formula the fracture 

energy for the slab specimen SB1 is equal to 0.148 N/mm. Figure 4.45, illustrates the influence 

of the fracture energy on the slabs’ response. Three different values (0.07 N/mm, 0.082 N/mm 

and 0.1 N/mm) are studied. The different responses depending on the value of the fracture 

energy show that the contribution of the tensile behaviour of the concrete to the response of the 

slab is significant, which is logical since punching shear failure for slabs without shear 

reinforcement is dependent on the tensile response of concrete. For the following analyses, the 

fracture energy of 0.082 N/mm is used for the slab specimen SB1. Thus, Eq. (4.16) is used for 

defining the values of fracture energy for all other specimens.  
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Figure 4.44 Load-displacement response (damage investigation). 

 

Figure 4.45 Load-displacement response (fracture energy investigation). 
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Figure 4.46 Load-displacement response for different shapes of the yield surface. 

Figure 4.46 shows the obtained results by performing analyses with different values for 

the parameter 𝐾𝑐 that gives the shape to the yield surface. According to ABAQUS (Analysis 

user’s manual 6.12-3, 2012) the parameter 𝐾𝑐 should satisfy the condition: 0.5 < 𝐾𝑐 ≤ 1 and the 

default value that is given for it; is 0.667. Three different values are given for investigation of the 

parameter, 𝐾𝑐; 0.667, 0.9 and 1. The results indicate that the difference in the load-displacement 

response of the slab-column connection by giving different shape to the yield surface is not 

significant. Considering 𝐾𝑐 equal to 1, the simulation gives stiffer results and as the parameter 𝐾𝑐 

is getting less the load and the ultimate displacement are going to be increased. Consequently, 

for all of the next analyses the parameter 𝐾𝑐 is defined with its default value of 0.667.  
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Figure 4.47 Load-displacement response using different values for dilation angle. 

The effect of the dilation angle into the model’s response is under investigation for the 

control specimen SB1, as the concrete damaged plasticity model was considered sensitive to the 

dilatancy in the previous presented examples. Concrete as a brittle material undergoes 

considerable volume change, which is caused by inelastic strains. This volume change is called 

dilatancy. In concrete damaged plasticity model the dilatancy can be modeled by defining a 

value for the dilation angle. According to Chen and Han, 1988, the non-associated flow rule 

should control the dilatancy, especially for frictional materials such as concrete. Therefore, the 

dilation angle can be considered as a material parameter for the concrete. Lee and Fenves 

(1998a) defined the dilatancy parameter 𝛼𝑝 equal to 0.2 in the Drucker-Prager plastic potential 

function (Eq. (4.20)). Other researchers (Wu et al., 2006 and Voyiadjis and Taqieddin, 2009) 

defined the parameter 𝛼𝑝 to range between 0.2 and 0.3. 

 𝐺 = √2𝐽2 + 𝛼𝑝𝐼1 
(4.20) 
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Concrete damaged plasticity model uses Eq. (4.21) for the flow potential function, which 

derives from Eq. (4.20).  

 
𝐺(𝜎) = √(𝜀𝜎𝑡0 𝑡𝑎𝑛 𝜓)2 + 𝑞̅2 +

1

3
𝛪1 𝑡𝑎𝑛 𝜓 (4.21) 

 
In the analysis of SB1 slab the dilation angle for the model is examined with values 

varying from 20 degrees to 42 degrees (see Figure 4.47). It can be shown that the difference in 

ultimate load is small between 38 to 42 degrees. Therefore, the dilation angle is chosen to be set 

as 40 degrees because it provides a good agreement between the test and numerical results in 

terms of load-deflection. In order to be accurate for the calculation of the dilation angle let’s 

consider in ABAQUS, the asymptote line for the potential function according to Eq. (4.22). 

 
𝐺 = 𝑞 + 𝑝𝑡𝑎𝑛𝜓 − 𝑐 = 0 (4.22) 

 By calculating the derivatives of the function 𝐺 we can have a relationship between the 

angle 𝜃 and 𝜓. 𝑑𝐺 𝑑𝑝⁄ = tan 𝜓 and 𝑑𝐺 𝑑𝑞⁄ = 1, and by considering the Figure 4.48, tan 𝜃 =

(𝑑𝐺 𝑑𝑝⁄ ) (𝑑𝐺 𝑑𝑞)⁄⁄ = 𝑡𝑎𝑛𝜓 1⁄ = 𝑡𝑎𝑛𝜓. 

With the same way we can consider Eq. (4.22), where 𝑞 = √3𝐽2 and 𝑝 = 𝐼1 3⁄ . By 

calculating the derivatives of the function 𝐺, 𝑑𝐺 𝑑𝑝⁄ = 3𝑎𝑝 and 𝑑𝐺 𝑑𝑞⁄ = √2 3⁄ , and then by 

considering the Figure 4.48, tan 𝜃 = (𝑑𝐺 𝑑𝑝)⁄ (𝑑𝐺 𝑑𝑞)⁄⁄ = 3𝑎𝑝 √2 3⁄⁄ = 3.67𝑎𝑝. Therefore, 

the relationship between the angle 𝜃 and 𝜓 is the following: 

 𝑡𝑎𝑛𝜃 = 𝑡𝑎𝑛𝜓 = 3.67𝑎𝑝 (4.23) 

 For a given value of 𝑎𝑝 = 0.2, 𝑡𝑎𝑛𝜓 = 3.67 ∙ 0.2 = 0.734 → 𝜓 = 36.3°. 
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Figure 4.48 Linear yield surface. 

 

4.5 Summary and Conclusions  

In this chapter, the concrete damaged plasticity model is presented and used into some 

examples in order to verify its accuracy. The appropriate calibration of the model is considered 

by evaluating its parameters. Selected tests by Kupfer et al. (1969) in plain concrete specimens 

are analyzed using the concrete damaged plasticity model. These specimens were tested under 

uniaxial/biaxial compression, uniaxial/biaxial tension and tension-compression. Then, a 

reinforced concrete shear panel tested by Vecchio (1999) is analyzed in order to verify the 

accuracy of the concrete damaged plasticity model simulating shear stresses-strains. A reinforced 

concrete beam without stirrups tested by Leonhardt and Walther (1962) is also simulated and 

analyzed. Two reinforced concrete beams; one with stirrups and the other without stirrups, are 

analyzed in order to further study the effect of the dilation angle in the concrete damaged 

plasticity model. The main outcome from the presented examples is that the concrete modelling 

is very sensitive to the chosen dilation angle value. As the amount of the reinforcement 
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increases, higher value for the dilatancy is required in order the numerical results to be in good 

agreement with the experimental. Finally, the model is used for the analysis of a reinforced 

concrete flat slab (SB1) tested by Adetifa and Polak (2005) that failed in punching shear. This 

specimen is considered as the control specimen and its parametric investigation in ABAQUS 

proposes that the calibrated numerical model can be effectively used for the all of the punching 

shear analyses in this dissertation.  

Specimen SB1 is analyzed in both ABAQUS/Standard and ABAQUS/Explicit in order to 

verify the most appropriate type of analysis for simulating punching shear problems. 

ABAQUS/Standard is able to provide convergence after the introduction of the viscosity 

parameter that provides extra relaxation time to the concrete model. However, the chosen 

relaxation time requires a parametric investigation in order to be a small value without changing 

the specimen’s response. Both types of analysis (static in ABAQUS/Standard and quasi-static in 

ABAQUS/Explicit) offer similar results and are in good agreement with the experiment. The 

quasi-static analysis is chosen in this work, herein, due to the less computation time that requires. 

A mesh convergence study is considered in SB1 specimen. The smeared crack approach used in 

ABAQUS model appears strain localization due to strain softening nature of concrete that 

depends on the dimensions of the elements. Three different mesh sizes (15 mm, 20 mm and 24 

mm) are used in the analysis of the specimen SB1 in order to investigate the mesh sensitivity of 

the FEA model. The chosen mesh values should be larger than the aggregate size (10 mm) 

however not to too large resulting in a coarse mesh. However, the mesh size of 20 mm gives the 

most accurate results compared to the test load-deflection response. The mesh size of 20 mm is 

chosen in all subsequent simulations of all slabs. This choice has been based not only on the 

load-deflection responses but also on the examination of the cracking patterns. In that study, 
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further investigation is performed analyzing the specimen (SB1) by changing its boundary 

conditions. After analyzing the SB1 with simple supports, neoprene is also simulated around the 

bottom edges of the slab as happened in the real test. Neoprene is a hyper-elastic material 

considered as isotropic and nonlinear. Investigation using different elements is performed on the 

slab SB1. Three different types of elements are adopted in the study: 3D linear hexahedral 8-

noded (C3D8R) with reduced integration elements, 3D 4-noded linear tetrahedral elements 

(C3D4) and 3D 10-noded quadratic tetrahedral elements modified (C3D10M). A comparison 

between the numerical results obtained from the different type of elements and boundary 

conditions and considering also the required computational time, the simple supports with the 

C3D8R elements are chosen for all subsequent analyses. Damage parameters are also 

investigated in the material modelling of concrete in specimen SB1. For the described problem 

of punching shear the definition of the damage parameters should not be taken into 

consideration. It is supposed that the damage parameters are important for cyclic or dynamic 

loadings where unloading should be defined by plastic strains. Finally, the dilation angle is 

further examined in the analysis of the SB1 slab. The 40 degrees seem to describe in an 

appropriate way the load-deflection response of the slab SB1 compared to the experimental 

results. This value (40 degrees) is going to be adopted for the next presented numerical 

simulations of all slabs.  
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Chapter 5 

Reinforced concrete slabs without shear 

reinforcement 

5.1 Introduction 

After the investigation and the calibration of the concrete damaged plasticity model 

presented in the previous chapter; herein, nonlinear finite element analyses of reinforced 

concrete slab-column connections under static and pseudo-dynamic loadings are conducted to 

investigate their failures modes in terms of ultimate load and crack patterns. The 3D finite 

element analyses (FEA) are performed with the appropriate modelling of element size and mesh, 

and the constitutive modelling of concrete. The material parameters of the damaged plasticity 

model in ABAQUS are calibrated based on the test results of an interior slab-column connection 

(SB1) that was presented on the previous chapter. The predictive capability of the calibrated 

model is demonstrated by simulating different slab-column connections without shear 

reinforcement. Interior slab-column specimens under static loading, interior specimens under 

static and reversed cyclic loadings, and edge specimens under static and horizontal loadings are 

examined. The comparison between experimental and numerical results indicates that the 

calibrated model properly predicts the punching shear response of the slabs.  

Five slab-column specimens (SB1, SW1, SW5, XXX and HXXX) without shear 

reinforcement are analyzed. The slab, SB1, is an interior slab-column connection that was tested 
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by Adetifa and Polak (2005) under static loading through the column. The slabs, SW1 and SW5, 

are interior slab column connections that were tested by Bu and Polak (2009) under gravity static 

loading through the column and pseudo seismic horizontal loading. Finally, the specimens, XXX 

and HXXX, are edge slab-column connections that were tested by El-Salakawy (1998) under 

vertical loading through the column and an unbalanced moment at the columns. The numerical 

results are compared to the test results in terms of deflections, strength and crack patterns. The 

aim of this chapter is to present the effectiveness of the proposed calibrated finite element model 

in describing and analyzing punching shear tests of slabs without shear reinforcement. 

5.2 Test specimens 

The test specimens used for the finite element analyses have no shear reinforcement and 

the height of all slab specimens is 120 mm. These specimens are isolated slab-column 

connections loaded through the column stub and simply supported along the edges that represent 

the lines of contra flexure in the parent slab-column system. The first analyzed specimen is the 

interior connection (SB1) that is tested under static loading through the column. The material 

properties and the dimensions of the slab SB1 are described in the previous chapter. Then, the 

two interior slab-column connections (SW1, SW5) that were tested under gravity static and 

pseudo seismic loadings are analyzed. These slabs were loaded in two stages during the test. In 

the first stage, a vertical load was applied through the top column with a loading rate of 20 

kN/min. The slab SW1 was loaded up to 110 kN vertical load, the slab SW5 was loaded up to 

160 kN. Then, the vertical loads were kept constant and the two horizontal actuators started to 

apply horizontal drift to the top and bottom columns at a distance 565 mm from the slab’s faces 

following a specific loading path. The total height of the columns is 700 mm. The gravity shear 
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ratio, 𝑉/𝑉𝑛, for the slab SW1 is 0.54 and for the slab SW5 0.68, where 𝑉𝑛 = 0.33 ∙ √𝑓𝑐
′ ∙ 𝑏𝑜 ∙

𝑑 (MPa),  𝑏𝑜 denotes the perimeter length of the critical section and 𝑑 the effective thickness of 

the slab equal to 90 mm. All interior connections have overall dimensions in plan 1800x1800 

mm with simple supports at 1500x1500 mm. Corners were restrained from lifting during the test. 

Finally, the two edge slab-column connections (XXX, HXXX) are analyzed. These slabs were 

tested under a vertical shear force (𝑉) that was applied on the top of the upper column and two 

horizontal forces (𝐻), leading to the unbalanced moment, that were applied to the columns in 

three stages at a distance 600 mm from the slab’s faces. The total height of the columns is 700 

mm. The slabs’ in-plane dimensions are 1540x1020 mm. In the first stage of testing, the loads 

were increased with a rate of 2.5 kN/min. until reaching the service load, 𝑉 = 43 𝑘𝑁. Then the 

loads were cycled 10 times between the dead loads and the dead plus the live loads, in order to 

simulate the repetition of the live loads. At the final stage, the loads were increased at 1.5 

kN/min. rate until failure. The ratio between the unbalanced moment (𝑀) produced by the two 

horizontal forces (𝐻) and the vertical shear force (𝑉) is equal to 0.3 m for the specimen XXX 

and 0.66 m for the specimen HXXX. These ratios were kept constant during the whole loading 

process. The dimensions of the specimens and the loading process are presented in Figure 5.1.  

The material properties of each tested slab are presented in Table 5.1. The compressive 

strength of concrete was found from the concrete cylinders, tested at the time of the slabs’ tests 

(over 28 days), and the tensile strength was obtained from the split cylinder tests. The yield 

strength for the tension and compression longitudinal reinforcement was the same for the slabs 

SB1, SW1 and SW5. Slabs XXX and HXXX had different yield longitudinal strength for the 

tension and compression reinforcements. Table 5.2 presents the material properties of the 

reinforcement. In ABAQUS, the reinforcement is modelled with a uniaxial stress-strain relation 
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with Young’s modulus (𝐸𝑠) and Poisson’s ratio (𝑣) equal to 200000 MPa and 0.3, respectively. 

Plastic behaviour is defined in a tabular form, including yield stress and corresponding plastic 

strain. The plastic properties are defined based on the test results with a bilinear strain hardening 

yield stress - plastic strain curve. 

All specimens failed in punching shear. The information regarding their failure loads and 

comparisons with the simulation results, are presented in Section 5.4 together with the numerical 

results.  

Table 5.1  

Material properties of the tested slabs. 

Slab specimen 

Compressive 

strength of 

concrete (MPa) 

Tensile 

strength of 

concrete 

(MPa) 

Yield strength of flexural 

reinforcement (MPa) 

SB1 44 2.2 455 

SW1 35 2 470 

SW5 46 2.2 470 

XXX 33 

 

1.9 

 

545(tension), 430(compression) 

HXXX 36.5 

 

2 

 

545(tension), 430(compression) 

 

Table 5.2 

Material properties of the reinforcement. 

 
Slab specimen 𝒇𝒚 (𝑴𝑷𝒂)  𝜺𝒚  𝒇𝒕(𝑴𝑷𝒂)  𝜺𝒕  

Interior 
SB1 455 0.0023 650 0.25 

SW1, SW5 470 0.0024 650 0.20 

Edge 

XXX, HXXX 

(compression) 
430 0.0022 600 0.15 

XXX, HXXX 

(tension) 
545 0.0027 900 0.10 
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Figure 5.1 Schematic drawings of the specimens - dimensions & loading. 

5.3 Finite Element Simulations 

By considering specimens’ symmetry, one quarter of the control specimen SB1 and half 

of all of the other slabs (SW1, SW5, XXX and HXXX) are used for the simulations. 8-noded 

hexahedral (brick) elements are used for concrete with reduced integration (C3D8R) to avoid the 

shear locking effect. 2-noded linear truss elements (T3D2) are used to model reinforcements. 

The embedded method is adopted to simulate the bond between the concrete and the 

reinforcement, assuming perfect bond. 6 brick elements are considered through the thickness of 

the 120 mm slabs’ with all concrete elements having the same size of 20 mm. The specimen SB1 
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has 9211 elements and 11194 nodes, the specimens SW1 and SW5 had 22028 elements and 

26767 nodes and the specimens XXX and HXXX are meshed with 18150 elements and 22123 

nodes. Restraints are introduced at the bottom edges of the specimens in the direction of the 

applied load. The summation of the reactions at the edges, where the boundary conditions are 

introduced, yields the reactions equal to the punching shear loads. Figure 5.2 shows the geometry 

and the boundary conditions of the specimens that are used for the simulations. The control 

specimen SB1 is analyzed using both static analysis in ABAQUS/Standard and quasi-static 

analysis in ABAQUS/Explicit. In the static analysis, the displacement is applied through the 

column stub, while in the quasi-static analysis a low velocity is applied. In the quasi-static 

analysis the load is applied so slowly, that the structure deforms also slowly and the inertia force 

is ignored. This last type of analysis is used for all specimens. The velocity is increasing with a 

smooth amplitude curve from 0 (mm/sec) to a different velocity (mm/sec) depending on the 

specific slab. Slabs SB1, SW1, SW5 and XXX are loaded by applying a velocity that increases 

from 0 mm/sec to 40 mm/sec, such that the slab displaces at a rate of 20 mm/sec. Slab HXXX is 

loaded by applying a velocity that increases from 0 mm/sec to 20 mm/sec in order the center of 

the slab to displace 10 mm/sec.  
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Figure 5.2 Geometry and boundary conditions of the slabs. 

 At this point, some details about the adopted finite elements and the analysis type are 

discussed. In discrete finite element modelling, the concrete is modelled by using 3D solid 

elements and the reinforcement is modelled with truss or beam elements. The truss or beam 

elements are generally used to simulate the internal reinforcing bars. In some cases where 

planner reinforcement such as fiber reinforced polymer (FRP) is required in modelling, shell or 

membrane elements are used. Reinforcement such as steel bolts could also be modelled using 
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solid 3D elements. The bond between concrete and reinforcement can be modelled with two 

ways: a) a bond element (usually spring element) is considered at the interface and b) a perfect 

bond is assumed, where concrete and steel share the same nodes. The perfect bond method 

(embedded method) is computationally more efficient especially when it is considered for 

smeared cracking approaches as the ABAQUS does. The finite elements that are adopted and 

used in this thesis include: continuum, shell, beam and truss elements. The 3D continuum/solid 

stress-displacement elements are considered herein for modelling the concrete slab and 

especially the linear (first-order) 8-noded hexahedra/brick (C3D8R) reduced-integration 

elements. In these elements, each node has three dimensional and translational degrees of 

freedom. These elements have nodes only at their corners using linear interpolation in each 

direction and this is why they called linear or first-order elements. The first-order elements can 

predict the same behaviour with the quadratic (second-order) elements; however a finer mesh it 

is required. Regarding the formation of the elements, in the absence of an adaptive mesh, all of 

the stress-displacement elements are using the Lagrangian description of their behaviour, where 

the material is associated with the element and remains associated with the element during the 

analysis. The ABAQUS for the integration uses Gaussian quadrature and evaluates the response 

of the material at each integration point of each element. The reduced integration elements use 

one integration point less in each direction compared to the fully integrated elements. Fully 

integrated linear elements appear shear locking causing the elements to be too stiff in bending, 

thus reduced integration linear elements are preferable. The shear locking in linear fully 

integrated elements denotes that the shear stress in the elements under pure bending is nonzero. 

The edges of the linear elements cannot curve in bending. Thus, the horizontal dotted lines that 

pass through the integration points change in length (Figure 5.3). The vertical dotted lines do not 
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change in length as it is assumed that the displacements are small. Thus, σ22 at all integration 

points is zero. However, the angle between the vertical and horizontal lines has changed (initially 

was 90º) indicating that the shear stress σ12 at the integration points is not zero. This does not 

happen under pure bending, where the shear stress is zero. For that reason, reduced integration 

linear elements are used. The reduced integration linear elements have only one integration point 

located at the centroid of the element. Considering again one single element subjected to pure 

bending, this time linear reduced integration element (see Figure 5.4), the dotted lines do not 

change in length and the angle between them remains 90º showing that all components of stress 

at the integration point are zero. However, linear reduced-integration elements suffer from their 

own numerical problem called hourglassing (mesh instability) that results these elements to be 

too flexible. The bending mode of deformation of the linear reduced integration elements is a 

zero energy mode as there is no strain by the distortion of the element. That means that the 

element cannot resist that deformation because it has no stiffness in this mode. In order to avoid 

or limit that effect, it is required the linear reduced integration elements to have a fine mesh. 

According to ABAQUS (Analysis user’s manual 6.12-3, 2012) reasonable results suggest that at 

least four elements should be considered through the thickness of a structure carrying bending 

loads. The fine mesh of the linear reduced integration elements will also help to avoid the 

distortion of these elements that many times happens. Truss elements that are used for modelling 

the reinforcement are rods that can carry only tensile or compressive loads, while they do not 

have resistance in bending. The three dimensional truss elements used in this research have three 

degrees of freedom.    
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Figure 5.3 Deformation of a linear fully integrated element subjected to bending moment. 

 

Figure 5.4 Deformation of a linear reduced integration element subjected to bending moment. 

ABAQUS has two main analysis products, the ABAQUS/Standard and the 

ABAQUS/Explicit. ABAQUS/Standard solves the equations of the system implicitly at each 

solution increment, while ABAQUS/Explicit goes with the solution forward through small time 

increments without solving the equations of the system at each increment. ABAQUS/Standard 

uses a stiffness-based solution technique that is always stable, while ABAQUS/Explicit uses an 

explicit integration solution technique, which is conditionally stable. Thus, the characteristics of 

each procedure (implicit or explicit) should define which method is the most appropriate for a 

given structural problem. It can be said herein, that some analysis problems even if they can be 

effectively solved in ABAQUS/Standard, they appear difficulty converging because of the 

material complexity, resulting in many iterations. Such analyses become expensive in 

ABAQUS/Standard because each of the iterations demands many equations that have to be 

solved. On the other hand, ABAQUS/Explicit determines the solution without iterating by 
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explicitly taking advantage of the kinematic state of the previous increments, making the analysis 

more efficient and less time consuming.  

Each structural analysis in ABAQUS can be linear or nonlinear. A nonlinear structural 

problem shows stiffness changes as it deforms. The sources of nonlinearity in structural 

mechanics are three: a) material nonlinearity, b) boundary nonlinearity and c) geometric 

nonlinearity. ABAQUS/ Standard uses the Newton-Raphson method in order to get into the 

solutions of the nonlinear problem. The solution is found by applying the loads gradually and 

incrementally by having many load increments. Then, it finds the approximate equilibrium at the 

end of each load increment, where the summation of all of the incremental responses is the 

approximate solution of the nonlinear analysis. ABAQUS/Explicit defines a solution to the 

dynamic equilibrium without iterating but by explicitly using the kinematic state of the previous 

increment. Table 5.3 provides the summary of the concrete material parameters used in concrete 

damaged plasticity model in ABAQUS for each slab-column connection and details regarding 

the type of the connection and loading. 

Table 5.3 

Details of the simulated slabs in ABAQUS. 

 Slab 

specimen 
Type of loading 

𝒇𝒄
′  

(𝑴𝑷𝒂) 

𝒇𝒕
′  

(𝑴𝑷𝒂) 

𝑬𝒄 

(𝑴𝑷𝒂) 

𝑮𝒇 

(𝑵/𝒎𝒎)  

Interior 

SB1 Static 44 2.2 36483 0.082 

SW1 
Static and reversed 

cyclic 
35 2 32538 0.072 

SW5 
Static and reversed 

cyclic 
46 2.2 37303 0.085 

Edge 

XXX Static and horizontal 33 1.9 31595 0.081 

HXXX Static and horizontal 36.5 2 33228 0.085 
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5.4 Finite Element Analysis Results 

Figure 5.5 compares the FEA and test results in terms of load-displacement for the 

control slab SB1. The simulation gives brittle punching shear failure as happened in the 

experiment. The predicted ultimate load and displacement by the simulation and the test are 

presented in Table 5.4. The FEA shows a stiffer response compared to the test due to the simple 

supports that are adopted. The crack pattern on the tension side of the slab at failure is presented 

in Figure 5.6. The cracking propagates inside the slab adjacent to the column. It starts 

tangentially near the column and then extends radially as the load increases. At the ultimate load 

the punching shear cone is visible due to the sudden opening of the cracks. Concrete damaged 

plasticity model assumes that the cracking initiates when the maximum principal plastic strain is 

positive. The orientation of the cracks is considered to be perpendicular to the maximum 

principal plastic strains and thus, the direction of the cracking is visualized through the 

maximum principal plastic strains. The yielding of the flexural reinforcement occured at the 

failure in both test and FEA. The tensile longitudinal reinforcement yielded under the column at 

the failure load.  

 

Figure 5.5 Load-displacement curves for slab SB1.  
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Figure 5.6 Cracking pattern on tension surface at ultimate load for slab SB1 (Load applied 

upwards on the column) . 

Table 5.4  
Test and FEA results. 

 Test results FEA results 

Slab specimen Failure load (kN) 
Displacement at 

failure (mm) 
Failure load (kN) 

Displacement at 

failure (mm) 

SB1 253 11.9 234 13.9 

 

The maximum tensile principal stresses are shown in Figure 5.7 for the two surfaces of 

the slab at the failure. The tensile principal stresses can be used in FEA in order to show the 

crack patterns. However, the maximum plastic equivalent principal strains, as they are presented 

in Figure 5.6, give a better representation of the cracks. For that reason the strains and not the 

stresses are going to be used for showing the crack patterns for all of the following analyses. 
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a) Compressive surface (top). b) Tensile surface (bottom). 

Figure 5.7 Maximum tensile principal stresses in concrete at the failure. 

The calibrated model for specimen SB1 is also applied for the analyses of slabs SW1 and 

SW5. These slabs were tested under gravity load and horizontal reversed cyclic displacements. 

The response of the specimens is described by means of horizontal load and drift response. The 

hysteretic loops in the specimen exhibited pinching, denoting strength and stiffness degradation 

and subsequently low energy dissipation capacity. In contrast, when the cyclic loading analysis 

was performed in ABAQUS, the hysteretic loops obtained from the analyses did not exhibit the 

pinching effect. It must be mentioned that the complexity in constitutive modelling of concrete 

and the adoption of perfect bond between concrete and reinforcement, created problems in the 

hysteretic simulations in ABAQUS. Alternatively, in this research, monotonic loading analysis is 

presented and the results of the finite element simulations show good agreement compared to the 

experimental results (Figure 5.8 and Figure 5.9). Simulations of specimens show brittle failure 

after obtaining maximum lateral load similar to the test maximum loads. Figure 5.10 and Figure 

5.11 present the crack patterns at failure for slab SW1 and SW5, respectively. Table 5.5 

compares the experimental and numerical results in terms of ultimate lateral failure load and drift 

ratio at the failure load. Yielding of the flexural reinforcement during the test, for the specimen 
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SW1 appeared first at the tension reinforcement under the column in the direction of the cyclic 

loading at drift ratio 1.33%, while for the specimen SW5 at the compression reinforcement under 

the column in the direction of the cyclic loading at drift ratio 1.04%. The FEA results have 

proved similar yielding of the flexural reinforcement. 

Table 5.5 

 Gravity shear ratio, test and FEA results. 

  Test results FEA results 

Slab 

specimen 
V/Vn 

Peak lateral 

load (kN) 

Drift ratio at 

peak lateral 

load (%) 

Peak lateral 

load (kN) 

Drift ratio at 

peak lateral 

load (%) 

SW1 0.54 56  2.8 55  2.7 

SW5 0.68 60  2.6 61  2.4 

 

 

Figure 5.8 Horizontal load versus lateral drift ratio for specimen SW1. 
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Figure 5.9 Horizontal load versus lateral drift ratio for specimen SW5. 

 

 

Figure 5.10 Cracking pattern at ultimate load for specimen SW1.  

 

-70

-50

-30

-10

10

30

50

70

-6 -4 -2 0 2 4 6

H
o

ri
zo

n
ta

l L
o

ad
 (

kN
)

Lateral drift ratio (%) 

SW5

Cyclic loading -
Test
Monotonic loading
- FE Analysis



126 

 

 

Figure 5.11 Cracking pattern at ultimate load for specimen SW5. 

 

The edge slab-column specimens are examined using the FEA model identical to the one 

used for SB1. These slabs, tested under constant gravity load to horizontal moment ratios, 

providing information for the effect of the unbalanced moments on punching shear. Table 5.6 

shows the comparison between the slabs XXX and HXXX in terms of failure horizontal load and 

displacement and subsequently compares the tested and FEA results. Figure 5.12 and Figure 5.13 

present the FEA load-displacement results compared to the test results for the slab XXX and 

HXXX, respectively. All of the simulated responses, in terms of ultimate load and displacement 

are in good agreement with the results observed from the experiments. For the slab XXX the 

relative error is within 10% percent, however the relative error for the specimen HXXX is within 

20% percent. This difference may be attributed to many reasons. The numerical load-deflection 

response of the slab HXXX is stiffer compared to the tested response due to possible initial pre-
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cracking prior to the test (e.g. shrinkage, handling). It is important to state herein that the 

numerical results of slab HXXX in terms of failure displacement are in good agreement with the 

test results. The cracking propagation at the ultimate load for these slabs is presented in Figure 

5.14 for the specimen XXX and in Figure 5.15 for the slab HXXX. The FEA cracking of 

specimen HXXX is concentrated near the column with only some developed radial cracks. The 

same cracking pattern was observed in the test. The comparison between the predicted crack 

patterns of slabs XXX and HXXX, show the effect of the higher unbalanced moment at the slab-

column connection. The increased unbalanced moment in slab HXXX, reduce the ultimate 

punching shear load and deflection resulted to a more sudden and brittle punching shear failure. 

The tensile longitudinal reinforcement under the column has yielded in tests and FEA for both 

XXX and HXXX slabs. The reinforcement of the slab XXX yielded at 78 kN load and the 

reinforcement of the slab HXXX yielded at 48 kN load during the tests. The FEA showed almost 

the same results. The reinforcement of the slab XXX yielded at 73 kN load and the 

reinforcement of the slab HXXX yielded at 55 kN load for FEA. Good agreement is observed for 

the activation of the flexural reinforcement in the test and analysis before and after the yielding.   

Table 5.6  

M/V ratios, test and FEA results. 

  Test results FEA results 

Slab 

specimen 
M/V (m) 

Failure 

horizontal 

load (kN) 

Displacement at 

failure load (mm) 

Failure 

horizontal 

load (kN) 

Displacement at 

failure load (mm) 

XXX 0.3 125  15.06 
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17.69 

 
HXXX 0.66 69 

 

5.96 

 

84 

 

6.77 
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Figure 5.12 Vertical load-deflection for edge slab XXX.  

 

 

Figure 5.13 Vertical load-deflection for edge slab HXXX. 
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Figure 5.14 Cracking pattern at the ultimate on the tension surface for edge slab XXX. 

 

Figure 5.15 Cracking pattern at the ultimate on the tension surface for edge slab HXXX. 
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5.5 Summary and Conclusions  

Finite element analyses with the concrete damaged plasticity model in order to predict the 

punching shear behaviour of slabs without shear reinforcement, are presented. In particular, five 

different slab-column connections without shear reinforcement are simulated and analyzed in 

terms of ultimate load and crack patterns. The constitutive formulation adopted herein is the 

calibrated damaged plasticity model. The results of the analyses are compared to the test results 

showing good agreement. That predicts the capability of the calibrated model to simulate the 

response of reinforced concrete flat slabs without shear reinforcement in terms of ultimate load 

and cracking pattern. Chapter 6 that follows examines the capability of the calibrated FEA 

concrete model in reinforced concrete slabs with shear reinforcement. The shear bolt system is 

modelled in the numerical analyses and a critical review on the code provisions for the shear 

reinforced slabs is provided. 
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Chapter 6 

Reinforced concrete slabs with shear 

reinforcement 

6.1 Introduction 
 

Nonlinear finite element analyses (FEA) of reinforced concrete slab-column connections 

with shear reinforcement that failed in punching shear and/or flexure tested under static loading 

are conducted in order to investigate their failures modes in terms of ultimate load and crack 

pattern. The damaged plasticity model in ABAQUS previously calibrated based on test results of 

slabs without shear reinforcement is implemented in all studies. The predictive capability of the 

calibrated model in slabs without shear reinforcement is demonstrated herein by simulating slab-

column connections with shear reinforcement. Four interior specimens are examined and the 

comparison between experimental and numerical results indicates that the developed model 

predicts well the punching shear response of these slabs. The proper modelling of the punching 

shear reinforcement in order to contribute in an increase of punching shear capacity of the slabs 

is essential in the FEA. Four different modelling approaches for the shear bolts are presented and 

discussed. The analyses of these approaches are performed on the specimen (SB4) and the 

comparison between these modelling approaches based on the ultimate load, ductility and crack 

pattern of the slab SB4 have shown the most appropriate modelling approach that can be used for 

all other analyses. Discussion and comparison between the design codes (ACI, EC2), the CEB-
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FIB Model Code (MC 2010) and the Critical Shear Crack Theory (CSCT) analyzing the slab 

specimens are presented. Parametric study based on the different shear reinforcement patterns 

that ACI code and EC2 propose is described.  

The research work done using FEA for shear reinforced slabs is limited due to the 

complexity of the nonlinear finite element models and due to the difficulty in modelling shear 

reinforcement. In this chapter, the calibrated damaged-plasticity model, is used for the 3D finite 

element simulations of four interior reinforced concrete flat slabs (SB1, SB2, SB3 and SB4) that 

were previously tested by Adetifa and Polak (2005). The main objective of this chapter is to 

provide information and propose advanced methods of modelling shear reinforcement for slabs 

and in particular the shear bolts. Specimen SB1 (slab without shear reinforcement) has already 

been simulated using the concrete damaged plasticity model by Genikomsou and Polak (2015). 

Herein, the calibrated model is applied for the simulation of three other specimens (SB2, SB3, 

SB4) – specimens with shear reinforcement. It should be noted that the slab SB1 was a control 

specimen in a test series that included 6 slabs, one slab without shear reinforcement and 5 with 

shear reinforcement. The concrete in all slabs was from the same batch and the dimensions, the 

boundary conditions and loading were the same for all tested slabs. Therefore the model 

calibration that was done for the SB1 is also applicable for the analysis of the slabs SB2, SB3 

and SB4. 

The numerical results are compared to the test results in terms of deflections, strength and 

crack patterns. Comparison between ACI 318-11, EC2 (2004), Model Code 2010 and Critical 

Shear Crack Theory –CSCT (2008,2009) is conducted in terms of ultimate punching shear 

strength and failure modes of the tested slabs. Differences in design codes and models are 
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discussed. Parametric study is performed to examine the influence of different shear 

reinforcement patterns to the punching shear capacity and ductility of the slabs.  

6.2 Test specimens 

Four interior slab-column connections were tested under static loading through the 

column by Adetifa and Polak (2005). The schematic drawings of the specimens are presented in 

Figure 6.1. The dimensions of these square slabs were 1800x1800x120 mm, in which simple 

supports at 1500x1500 mm were applied. All slabs were reinforced in the same way, using 10M 

bars at 100 mm and 90 mm for the tension mat and 10M bars at 200 mm for the compression 

mat. The yield strength of the flexural reinforcement was 455 MPa. The concrete cover was 20 

mm and the dimensions of the cross-section of the square columns were 150x150 mm. The 

columns extended 150mm beyond the top and the bottom surfaces of the slabs and they were 

reinforced with four 20M bars and 8M ties. The shear reinforcement consisted of shear bolts that 

were post-installed in the slabs. The shear bolts consist of smooth steel bars having a forged 

circular head on the one end and the other end threaded (Figure 6.2a). SB1 slab is the control 

specimen without shear reinforcement. The other slabs; (SB2, SB3 and SB4) were retrofitted 

with the shear bolts. Prior to the testing, holes with 16 mm diameter were drilled in the slabs to 

install 9.5 mm diameter shear bolts. The arrangement of the shear bolts was with concentric rows 

parallel to the perimeter of the column. Each row had two parallel bolts to each face of the 

column, therefore eight bolts in each row in total. The first row of the shear bolts was placed at 

distance 45 mm from the column’s face and the next rows were spaced at approximately 80 mm 

(see Figure 6.2b). The yield strength of the shear bolts was 381 MPa. Slab SB2 had two rows of 
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shear bolts and SB3 and SB4, three and four rows, subsequently. The material properties of the 

slabs are presented in Table 6.1. 

Table 6.1 

Material properties of the slabs. 

 
Concrete Flexural Reinforcement 

Shear 

Bolt 

Slab 

 specimen 
𝑓𝑐

′ 
(MPa) 

𝑓𝑡
′ 

(MPa) 

𝐺𝑓 

(N/mm) 

𝐸𝑐 
(MPa] 

𝑓𝑦 

(MPa) 

𝑓𝑡 
(MPa) 

𝐸𝑠 
(MPa) 

𝑓𝑦 

(MPa) 

SB1 44 2.2 0.082 36483 455 620 200000 - 

SB2, SB3, SB4 

 

41 2.1 0.077 35217 455 620 200000 381 

 

 

Figure 6.1 Schematic drawings of the specimens.  
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The yield line theory can be considered in order to estimate the flexural capacity of a 

reinforced concrete slab. According to Rankin and Long (1987), the theoretical flexural yield 

line capacity of the slabs (𝑉𝑓𝑙𝑒𝑥) is equal to 358 kN (Adetifa and Polak, 2005). In slabs without 

shear reinforcement where the flexural reinforcement ratio is high, the flexural strength of the 

slab (𝑉𝑓𝑙𝑒𝑥) is higher than the shear strength provided by the concrete (𝑉𝑐). In such slabs the 

failure mode is punching. Slab SB1 (control specimen without shear reinforcement) was 

designed to fail in punching shear and according to the test observations it failed in a such 

manner (𝑉𝑡𝑒𝑠𝑡 = 253 𝑘𝑁). However, in some cases, it is hard to estimate the failure modes, 

especially in slabs that failed in flexure, because punching can cause a secondary failure. All of 

the shear reinforced specimens (SB2, SB3 and SB4), failed outside the shear reinforced area, 

indicating that punching is critical at the outer critical section. Specimen SB2 (two rows of shear 

bolts), failed in a punching/flexure mode. The load-displacement curve that drops in a brittle way 

after reaching the flexural capacity of the tested slab enhances the mixed failure mode. Slab SB3 

(three rows of shear bolts) failed in a flexure mode, but after some further deflections the 

punching cone formed. Finally, the specimen SB4 failed also in flexure, and the graph that 

presents the load-displacement response of that slab shows the flexure failure mode followed by 

punching after substantial deformations. The punching shear cone for the specimens SB2, SB3 

and SB4 was formed outside the shear bolt zone. Thus, according to the test observations, it was 

found that the shear bolts increased the ductility of the slabs and provided means for changing 

the failure modes; from punching to flexure. Figure 6.3 presents the test observations in terms of 

ultimate load versus displacement for the tested slabs. Table 6.2 shows the yield line flexural 

capacity, the failure load, the failure displacement and the failure mode for each specimen. 
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a) 

a 

 

 

b) 

Figure 6.2 a) Shear bolt used in the tested slabs; b) Cut section of SB4 slab with the shear bolts. 

 

Figure 6.3 Load-deflection response of tested slabs (SB1, SB2, SB3, SB4). 

Table 6.2 

Test results. 

Specimen 

No. of 

rows of 

shear bolts 

Yield line 

Flexural 

Capacity (kN) 

Failure 

load (kN) 

Displacement 

at failure (mm) 
Failure Mode 

SB1 0 358 253 11.9 Punching 

SB2 2 358 366 17.1 Punching/Flexure 

SB3 3 358 378 25.9 Flexure 

SB4 4 358 360 29.8 Flexure 
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6.3 Methodology of the Finite Element Simulations 

Considering the symmetry, one quarter of the slab-column connections is simulated and 

analyzed in ABAQUS. The concrete is modeled by using 8-noded hexahedral (brick) elements 

with reduced integration (denoted as C3D8R in ABAQUS) and the longitudinal reinforcement is 

implemented using 2-noded linear truss elements (denoted as T3D2 in ABAQUS). The concrete 

and the reinforcement are connected via the embedded method that considers perfect bond. 

However, the interaction between concrete and reinforcement is enforced through the tension 

stiffening behaviour of concrete after cracking, that can be considered by the concrete plasticity 

model. Through the thickness of the slabs (120 mm), 6 mesh elements with 20 mm mesh size are 

used. This mesh size was considered after a mesh sensitivity analysis that was performed on slab 

SB1 by Genikomsou and Polak (2015). Quasi-static analysis in ABAQUS/Explicit is 

implemented and simple supports are applied at the bottom edges of the specimens. 

The shear bolt modelling is examined by using different approaches and its investigation is 

performed on SB4 that is considered as the control specimen for the shear reinforced slabs. The 

next section presents the modelling approaches and the observations made in each case. In all 

approaches, the shear bolts were not able to prevent the concrete damage at the column, as 

happened in the real tests where the heads of the shear bolts contributed to an additional restraint 

at the compressive zone. For that reason in the following numerical analyses of the shear 

reinforced slabs, the concrete at the column is simulated as linear elastic. In the tests, and in the 

real continuous slabs, the volume of the column that is within slab’s depth is highly confined and 

the failure (punching) happens not in the column but in the slab. In the FEA model that 

confinement has to be addressed in some manner. One way would be to create a complicated 
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concrete model within the column that includes confinement.  However, this is not necessary for 

this case, as we do not investigate the column’s behaviour. Thus, a linear elastic model for the 

concrete in the column is created, in order to make sure that the failure will not happen in the 

column. This approach has been also used by other researchers (Liu, Tian and Orton, 2015).  

6.4 Shear Bolt modelling investigation on slab SB4 

The finite element modelling of the reinforced concrete slabs without shear reinforcement 

examined by Genikomsou and Polak (2015) was performed using 3D solid elements for the 

concrete and 3D truss elements for the flexural reinforcement. In the shear reinforced slabs, the 

main concern is the modelling of the shear bolts. The questions that are raised, are: a) what type 

of finite elements (trusses/beams/solids) should be used for modelling the shear bolts, b) what 

type of geometry for the possible truss or beam elements should be adopted, and c) what type of 

constraint should be applied. The investigation is presented considering four different ways to 

model the shear bolts: truss elements, beam elements, shell elements and finally solid elements. 

The obtained numerical results are presented and discussed. 

The computational cost in terms of demand time for each of the next presented analyses 

is approximately; 2 min. for the truss elements, 14 min. for the beam elements, 3 min. for the 

shell elements and 330 min. for the solid elements. 
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Truss elements –Beam elements 

First, 2-noded 3D linear truss elements (T3D2) are used for the simulation of the shear 

bolts. The main disadvantage of the truss elements is that they can carry only tensile or 

compressive loads and they have no resistance to bending due to the only three translational 

degrees of freedom. This problem, according to Negele et al. (2007), could be solved by 

distributing the load to the surrounding nodes by connecting additional truss elements to these 

nodes. Additional truss elements are modeled at the top and bottom of the shear bolts as it is 

shown in Figure 6.4. These anchorage types of truss elements are considered in order also to 

prevent from local failures of concrete at the nodes. The T3D2 elements representing the shear 

bolts are embedded into the solid concrete elements. Configuration of the truss elements 

representing the shear bolts is shown in Figure 6.4. After performing the appropriate mesh in the 

model, there were 11,534 nodes and 9,539 elements from which 8,470 are C3D8R and 1,069 

T3D2.  

Then, as a second option, beam elements are adopted for the shear bolt design. The 3D 

quadratic beam elements (denoted as B32 in ABAQUS) are shear deformable and account for 

finite axial strains, having six degrees of freedom. The shear bolt configuration is the same as the 

previous one by using truss elements (Figure 6.4). Again, perfect bond between concrete and 

steel is considered through the embedded method. After performing the appropriate mesh in the 

model, there were 11,838 nodes and 9,539 elements from which 8,470 are C3D8R, 765 T3D2 

and 304 B32. 



140 

  

 

a) Truss/beam elements simulate the 

shear bolt. 

 
 

b) Mesh design on SB4 specimen. 

Figure 6.4 Truss/beam configuration for shear bolt modelling on SB4 specimen. 

 

Shell elements 

3D continuum shell elements with reduced integration (denoted as S4R in ABAQUS) are 

also considered for modelling the shear bolt system. S4R elements have six degrees of freedom 

and they are embedded into the concrete-brick elements. The rebar layer definition is used in 

order to define the amount and position of the shear reinforcement. With this procedure the shear 

bolts are considered as smeared layer with constant thickness. The thickness can be calculated 

equal to the area of the cross section of the shear bolt divided by the spacing between the shear 

bolts. Figure 6.5 illustrates the shear bolt configuration using shell elements. 11,508 nodes and 

9,475 elements from which 8,470 are C3D8R, 765 T3D2 and 240 S4R, are used in the model. 
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Figure 6.5 Shell elements simulate the shear bolts on SB4 specimen. 

 

Solid elements 

The last examined solution to simulate the shear bolts is to use 3D solid elements. 9.5 

mm diameter is used for the bolts’ stud, 30 mm diameter for the heads and 44 mm diameter for 

10 mm thick washers. The bolts are installed into the 16 mm drilled holes of the slab. Tie 

constraints are adopted to model the interaction between the washers of the bolt and the slab 

surface and the contact between the different parts of the bolt. Tie constraints tie two separate 

surfaces together in order no relative motion between them to exist. The advantage of this type of 

constraint is that allows the two regions to be fused together even if their meshes are not similar. 

Very important is the proper mesh of the slab due to the present of holes. For that reason the 

mesh is created after the proper partition of the slab. Figure 6.6 illustrates the shear bolt 

modelling done by using solid elements and the mesh configuration of the bolt and the 

surrounding area on the slab. The adopted mesh provides 44,551 nodes and 35,437 elements 

(34,672 C3D8R and 765 T3D2). 
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a) Solid elements simulate the shear bolt. 

 

b) Mesh design on SB4 specimen. 

Figure 6.6 Solid elements for shear bolt modelling on SB4 specimen. 

 

The comparison between the load-deflection responses obtained from the above 

modelling approaches is presented in Figure 6.7. Based on the slab’s load-deflection response, 

the approach using beam finite elements for simulating the shear bolts, seems to be better and the 

response of the slab is reasonable compared to the test results. The truss elements cannot 

contribute to such an increase of the punching shear capacity of the slab as it was observed from 

the test; however they improve the ductility of the slab. Shell and solid elements seem to be able 

to simulate the increase in the load but they do not show the same deflection as happened in the 

test.  



143 

  

 

Figure 6.7 Load-deflection response of slab SB4 (shear bolt modelling investigation). 

Comparison between the crack patterns from the FEA and real test is presented in Figure 

6.8. It should be noted that cracking is perpendicular to the direction of the maximum principal 

plastic strains due to the smeared crack approach that concrete damaged plasticity model in 

ABAQUS adopts. Therefore, the crack formation in FEA can be tracked through the maximum 

principal plastic strains in concrete. The crack propagation starts tangentially at the area of the 

maximum bending moment near the column and then spreads radially towards the slab edges as 

the load increases. During the test, SB4 experienced bending cracks near the column on the 

tension side of the slab. The shear cracks were developed outside the shear reinforcement area 

causing the secondary failure. Cracks were also observed between the first and second row of the 

shear bolts leading to a second post-failure shear cracking. Comparing the crack patterns 

obtained from the FEA and test, the case where the shear bolts are modeled with beam elements 

(Figure 6.8c), captures best the test cracking. 
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a) (test)  

 

b) (truss elements) 

 

c) (beam elements) 

 

d) (shell elements) 

 

e) (solid elements) 

Figure 6.8 Crack patterns of slab SB4 (shear bolt modelling investigation). 
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6.5 Finite Element Analysis Results 

Load-deflection 

Figure 6.9 shows the comparison between experimental and analytical results in terms of 

load-deflection for all specimens. The FEA results for the slabs SB2, SB3 and SB4 that had been 

retrofitted with the shear bolts are in good agreement with the tested results in terms of ultimate 

punching shear capacity and displacement. The beam elements that are employed to simulate the 

shear bolts seem to increase the ductility of the slabs and the punching shear resistance.  

Crack pattern 

The failure crack development of all slabs from tests and FEA is presented in Figure 

6.10. The punching shear cone of specimen SB1 that failed by punching is noticed due to the 

sudden opening of the shear cracks. All other specimens, failed in flexure first, and they 

experienced shear cracks outside the shear reinforced area and bending cracks around the 

column. As the shear reinforcement is increased (SB3, SB4) more cracks can be seen at the 

column area. The simulated cracks match the experimentally observed cracks well.  
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Figure 6.9 Load-deflection response of slabs (SB1, SB2, SB3, SB4). 

 

 
 

a) SB1 slab (Cracking from FEA and test) 

 
 

b) SB2 slab (Cracking from FEA and test) 

 1 

 2 

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

L
o

a
d

 [
k
N

]

Deflection [mm]

SB2 - FE Analysis

SB3 - FE Analysis

SB4 - FE Analysis

SB2-Test

SB3-Test

SB4-Test



147 

  

 
 

b) SB3 slab (Cracking from FEA and test) 

 
 

c) SB4 slab (Cracking from FEA and test) 

Figure 6.10 Crack pattern at ultimate load. 

 

Strains on longitudinal reinforcement 

The strains on the tensile longitudinal reinforcement were measured during the test. The 

obtained results for the specimen SB1 showed that the first yielding occurred at a load of 240 kN 

just before the failure. The yielding of the reinforcement of the slab SB2 was observed at load of 

224 kN, while for specimens SB3 and SB4 the first yielding occurred at loads 260 kN and 242 

kN, respectively. The FEA results show almost the same results for the yielding of the flexural 

longitudinal reinforcements. The first yielding of the flexural reinforcement of the slab SB4 in 
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FEA is observed at a load of 285 kN. Yielding of the tension reinforcement is observed for slabs 

SB1, SB2 and SB3 at loads 228 kN, 275 kN and 297 kN, respectively. Figure 6.11 presents the 

FEA strains on the flexural reinforcement at the positions that first yielded for the SB1, SB2, 

SB3, SB4 specimens. During the tests the strain gages were damaged at strains around 0.007 

mm/mm. For that reason, the test results for the ultimate loads are not comparable to the FEA 

results and are not presented herein.  

 

 

Figure 6.11 Strains on flexural reinforcement in FEA. 

 

Activation of the shear bolts 

The strains were measured on the shear bolts stem during testing. Small strains were 

observed until the ultimate load of the slabs. Only the first bolt started to be activated earlier at a 

load of 200 kN. In general, the bolts started to be activated at loads higher than the ultimate load 

of the specimen without shear reinforcement (SB1), because the cracking occurs at similar 
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loading for the slabs without and with shear reinforcement. However, the bolts limit the opening 

of the shear cracks. The first row of bolts experiences higher strains compared to the subsequent 

rows due to the presence of the shear cracks at the area near the column. The outer rows of the 

bolts were strained suddenly at the ultimate load suggesting that shear cracking reached all of the 

way to the last row of bolts. After the peak load, approximately 350 kN for all specimens, the 

bolts showed the highest strains. In the finite element analyses the activation of the shear bolts 

starts earlier compared to the tests, due to the modelling that is adopted with the assumed perfect 

bond between the shear reinforcement and concrete. Figure 6.12 presents the strains on the bolts 

obtained from the test and FEA results for the specimen SB2. Figure 6.13 and Figure 6.14 show 

the bolt strains for slabs SB3 and SB4, respectively. 
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Figure 6.12 Load versus bolt strains for slab SB2 (Comparison between FEA and test). 

 

 

Figure 6.13 Load versus bolt strains for slab SB3 (Comparison between FEA and test). 
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Figure 6.14 Load versus bolt strains for the slab SB4; a) Bolts 1,2 and b) Bolts 3,4. 

 

6.6 Comparison with the codes provisions  

Design codes (ACI 318-11 and EC2), Model Code (MC 2010) and Critical Shear Crack 

Theory (CSCT) adopt an approach involving a critical section at a certain distance from the 

column perimeter. On this perimeter the shear stress should be less than the shear capacity of the 

slab. The critical section in EC2 is located at a distance 2d from the column faces, while in 
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ACI318-1, MC 2010 and CSCT at 0.5d. For the shear reinforced slabs in order to calculate the 

punching shear resistance outside the shear reinforced area, the control perimeter for the ACI 

code, Model Code 2010 and CSCT is calculated at distance 0.5d from the outer perimeter of the 

shear reinforcement, while for EC2 is calculated at distance 1.5d from the outer perimeter of the 

shear reinforcement. Figure 6.15 shows the critical control perimeters according to all codes. 

 

Figure 6.15 Control perimeter according to ACI, EC2, MC 2010 and CSCT. 

One other difference between codes and model is that the ACI318-11 code does not 

account for the effect of the flexural reinforcement ratio and size effects for the calculation of 

shear resistance direct, while the EC2, MC 2010 and CSCT consider these effects. The ACI318 
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is based on Moe’s research (1961), the EC2 is based on Regan’s research (1985), the CSCT is a 

theory that was proposed from Muttoni (2008, 2009) and MC 2010 is based on the CSCT model. 

One difference between the design codes (ACI and EC2) compared to the MC 2010 and CSCT, 

is that both MC 2010 and CSCT examine the failure of the shear reinforced slabs due to the 

crushing of concrete struts near the column. However, the design codes have already accounted 

for the failure due to crushing of concrete in the equations by limiting the maximum punching 

shear strength of slabs without shear reinforcement (ACI) or by reducing the concrete strength 

(EC2). All basic equations used by each code and model, are described in details in Chapter 2.  

Table 6.3 shows the calculations for all slab specimens according to ACI, while Table 6.4 

shows all calculations for all slabs according to EC2. Table 6.5 shows the failure loads for all 

specimens according to the test, FEA, design codes and CSTC model. Figure 6.16 and Figure 

6.17 present the load-rotation curves according to the Model Code 2010 and CSCT, respectively. 
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Table 6.3 

Ultimate load (kN) from ACI318-11.  

Slab  
𝒇𝒄

′   
[MPa] 

𝒃𝒐 
[mm] 

𝒃𝒐𝒖𝒕 
[mm] 

𝒅 
[mm] 

𝑨𝒗𝒔 
[mm

2
] 

𝒇𝒚𝒅 

[MPa] 

𝒔 
[mm] 

𝑽𝒄 
[kN] 

𝑽𝑹 
[kN] 

𝑽𝒐𝒖𝒕 
(kN) 

SB1 44 960 - 90 - - - 189 - - 

SB2 

 

41 960 1589 90 566.4 381 80 - 381 151 

SB3 41 960 2042 90 566.4 381 80 - 381 194 

SB4 41 960 2495 90 566.4 381 80 - 381 237 

 

 

Table 6.4 

Ultimate load (kN) from EC2.  

Slab  
𝒇𝒄𝒌  

[MPa] 
𝒃𝒐 

[mm] 
𝒃𝒐𝒖𝒕 
[mm] 

𝒅 
[mm] 

𝑨𝒗𝒔 
[mm

2
] 

𝒇𝒚𝒘𝒅 

[MPa] 

𝒔 
[mm] 

𝑽𝒄 
[kN] 

𝑽𝑹 
[kN] 

𝑽𝒐𝒖𝒕 
[kN] 

SB1 42.4 1730 - 90 - - - 202 - - 

SB2 

 

39.4 1730 2032 90 566.4 313 80 - 445 232 

SB3 39.4 1730 2132 90 566.4 313 80 - 445 243 

SB4 39.4 1730 2204 90 566.4 313 80 - 445 251 

 

 

Table 6.5  

Comparison of ultimate load (kN) between test, code provisions and CSCT. 

Slab specimen Test results  FEA results ACI EC2 MC 2010 CSCT 

SB1 253 234 189 202 198 219 

SB2 

 

366 317 151 232 282 237 

SB3 378 350 194 243 324 281 

SB4 360 365 237 251 339 317 
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Figure 6.16 Punching shear strength of specimens according to MC 2010.  
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Figure 6.17 Punching shear strength of specimens according to CSCT.  

By comparing the observed results, we can conclude that ACI318-11 predicts the most 

conservative failure loads. This happens because ACI318-11 does not consider the effect of the 
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predict accurate the punching shear strength of the slabs, however, provides a lower limit. All of 

the presented calculation results support the above statement. The disadvantage of EC2 is that it 
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For the slab without shear reinforcement (SB1), all codes and CSCT give quite similar 

results. However, the prediction of the punching shear strength for the slabs with shear 

reinforcement provides significant differences between the codes and the mechanical model. It is 

remarkable to note that the slab SB2 according to ACI318-11 fails at a load of 151 kN; lower 

strength than for the specimen SB1. This is unrealistic and happens because of the equation that 

is used in order to calculate the punching shear resistance for slabs with shear reinforcement 

outside the shear reinforced area. In contrast, the predicted capacity of SB2 by EC2, Model Code 

2010 and CSCT is increased compared to the strength of SB1. Quite interesting is the failure 

analysis of the slab SB4. Based on ACI318-11 and EC2, SB4 failed outside the shear reinforced 

area at loads 237 kN and 251 kN, respectively. The MC 2010 predicts that SB4 fails due to 

flexure failure (339 kN) within the shear reinforced area, while CSCT predicts that SB4 fails due 

to flexure outside the shear reinforced area, at a load of 317 kN. It can be concluded that both 

MC 2010 and CSCT are able to take into consideration the effect of the amount of the shear 

reinforcement, predicting really well the increase in the strength with the increase of the amount 

of the shear bolts, as the results correspond very well with the test results. Figure 6.18 compares 

the results in terms of load-rotation between MC 2010 and CSCT for the four slab-column 

connections. 
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Figure 6.18 Load-rotation curves according to MC 2010 and CSCT. 

The effectiveness of the shear reinforcement to increase the punching shear capacity of a 

slab-column connection depends also on the arrangement of the shear reinforcement around the 

column. Two different approaches are proposed in the design codes; the rectangular (ACI) and 

the radial arrangement (EC2). All slabs had the rectangular arrangement for placement the shear 

bolts as suggested by ACI318-11. In order to investigate the difference between rectangular and 



159 

  

radial arrangement, in terms of failure load, ductility and cracking, the slabs are analyzed with 

the same amount of shear bolts but this time with the radial placement. Figure 6.19 presents the 

comparison between the two different types of arrangement of the shear bolts. The failure load in 

FEA of the SB4 with the rectangular arrangement is 365 kN and the displacement at such load is 

29.5 mm. The analysis of the SB4 with the radial arrangement of the shear bolts increases both 

punching shear capacity and ductility. The slab fails at a load of 380 kN and at a displacement of 

47.5 mm. This can be explained by the reduction of the radial cracking provided by the radial 

arrangement of the shear bolts. The failure load and the deflection are also increased for the slabs 

SB2 and SB3, when the radial placement of the shear bolts was considered. However, the 

increase is not as significant as it is for the slab SB4. The numerical results of slab SB2 analyzed 

with the rectangular placement of the bolts are shown failure at a load of 317 kN and at a 

displacement of 17.8 mm. The radial arrangement increased the failure load to 321 kN and the 

displacement to 18.9 mm. Specimen SB3, according to the FEA results using the rectangular 

arrangement, failed at a load of 349 kN and at a displacement of 21.4 mm. The adoption of the 

radial arrangement increased the failure to 356 kN and the deflection to 22.9 mm. Figure 6.20 

illustrates the cracking at the bottom side of the slab with the radial arrangement at failure and 

this can be compared with the Figure 6.10 that shows the crack pattern at failure with the 

rectangular placement of the shear bolts.  
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Figure 6.19 Load-deflection response comparing the rectangular and radial placement of the 

shear reinforcement: a) SB2, b) SB3 and c) SB4. 
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a) 

 

b) 

 

c) 

Figure 6.20 Crack pattern using the radial arrangement of shear reinforcement: a) SB2, b) SB3 

and c) SB4. 
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6.7 Summary and Conclusions 

The finite element simulations of shear reinforced concrete slabs using the concrete 

damage plasticity model are undertaken and analyzed. Four interior slab-column connections are 

analyzed in terms of ultimate load, displacement and cracking propagation. The outcomes of 

these analyses assess the capability of the proposed model in analyzing punching shear of shear 

reinforced concrete slabs. The proposed calibrated concrete model, which was used for the 

analysis of slabs without shear reinforcement is also effective for simulating shear reinforced 

slabs. 

The most reliable modelling approach of the shear reinforcement (shear bolts) is carried 

out with beam elements, while three other different modelling approaches for the shear bolts are 

presented. The proposed modelling approach could be applicable for modelling also other types 

of shear reinforcement. Cracking propagation of all slabs provided by the FEA is in good 

agreement with the experimental crack patterns. All of the shear reinforced specimens fail 

outside the shear reinforced area as happened in the real tests. Yielding of the longitudinal 

reinforcement is also verified by FEA. The first yielding of all specimens appears on the tensile 

reinforcement near the column. This is in a good agreement with the test observations. The FEA 

of the shear reinforced slabs are in good agreement with the experimental results in terms of 

ultimate load-ductility and cracking development. That shows and verifies that the calibrated 

concrete damaged plasticity model could accurately predict the punching shear response of 

concrete slabs with shear reinforcement.  

Code provisions and models are assessed in terms of ultimate load. ACI code presents the 

most conservative results. Both design codes (ACI and EC2) seem to underestimate the 
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contribution of the amount of the shear reinforcement. In contrast, MC 2010 and CSCT account 

for the contribution of the increased shear reinforcement. The results that MC 2010 and CSCT 

give for all slabs are closer to the test results. MC 2010 predicts that the SB4 fails inside the 

shear reinforced area, while all others show that the SB4 slab fails outside the shear 

reinforcement area. The two shear reinforcement arrangements proposed by the design codes are 

simulated and compared. The rectangular arrangement suggested by ACI code is compared to the 

radial placement recommended by EC2, in terms of failure load and displacement. Radial 

arrangement seems to increase both failure load and deflection. 
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Chapter 7 

Parametric studies: Opening effect on punching 

shear resistance 

7.1 Introduction 

The opening effect investigation is presented for edge and interior slabs, in order to show 

the capability of the proposed model in such simulations and compare the obtained results with 

the code provisions. The effect of the location, the distance from the column and the size of the 

opening on the punching shear resistance, are investigated. The results, confirm that the 

punching shear resistance is decreased with the increase in opening size and with the decrease in 

opening distance from the column. 

Punching shear failure can happen in reinforced concrete flat slabs due to the 

development of high shear stresses in the slab-column connection area. These shear stresses 

become higher when openings and unbalanced moments exist. Unbalanced moments are present 

due to the geometry and location of the slab, the loading conditions and due to openings in slabs. 

These openings are often created for reasons such as ventilation, air conditioning, heating, or 

electrical ducts. Due to architectural reasons openings are usually needed next to the columns, 

leading to a reduction of the volume of concrete that can resist the punching shear. While, flat 

slabs started to be tested in the 1950s by Elstner and Hognestad (1956) and later by Moe (1961), 

the phenomenon of opening in flat slabs started to be examined only nowadays by recent 
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researchers, such as, El-Salakawy et al. (1999), Teng et al. (2004), Bu and Polak (2009), Borges 

et al. (2013) and Anil et al. (2014).  

To supplement testing, FE analyses can be a method to examine flat slabs with openings 

and to reinforce the test conclusions. In the study presented herein, 3D finite element analysis 

(FEA) is adopted simulating the edge slabs tested by El-Salakawy et al. (1999). The analyses are 

conducted using the calibrated concrete damaged plasticity model. The slabs are without shear 

reinforcement and with different sizes and locations of openings. Nine edge slab-column 

connections previously tested are simulated under gravity and lateral loadings. The numerical 

results are compared to the test results in terms of deflections, strength and crack patterns.   

The code provisions are based on the limited available empirical data. Herein, the 

punching shear capacity of all test specimens is going to be assessed using the ACI 318-11 code. 

ACI 318-11 adopts the critical shear perimeter at a distance d/2 from the loaded area (column), 

while the EC-2 2004 considers the critical or basic control perimeter, at a distance 2d from the 

column face. EC-2 2004 considers the critical shear perimeter with circular ends, while the ACI 

318-11 adopts the critical shear perimeter to be rectangular. Both codes adopt a reduction of the 

critical perimeter depending on the size and the location of the opening. A part of the controlled 

perimeter contained between two tangents drawn to the outline of the opening from the center of 

the loaded area (top surface of column) is considered to be ineffective. The EC-2 adopts the 

previous reduction in the controlled perimeter if the shortest distance between the perimeter of 

the loaded area (column) and the edge of the opening is smaller or equal to 6d, where d is the 

effective slab’s depth. The ACI 318 code considers this distance as 10h, with h to be the 

thickness of the slab (see Figure 7.1).  
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Figure 7.1 Control perimeter near an opening according to ACI 318 and EC2. 

7.2 Test specimens 

Nine edge slab-column connections (XXX, SF0, SE0, SF1, SF2, CF0, HXXX, HSF0, 

HSE0) were tested under a vertical shear force P that was applied on the top of the upper column 

and two lateral forces F that were applied to the column ends in three stages. Seven of them had 

openings in the slabs (SF0, SE0, SF1, SF2, CF0, HSF0, HSE0). In the first stage of loading, the 

loads were increasing with a loading rate of 2.5 kN/min. until reaching the service load of P=43 

kN. Then the load was cycled 10 times between the dead and the dead plus the live loads in order 

to simulate the fluctuations of the live loads. At the final stage, the load was increased with 1.5 

kN/min. loading rate until each specimen failed. The ratio between the unbalanced moment M 

produced by the two horizontal forces F and the vertical shear force P was equal to 0.3 m for the 

specimens XXX, SF0, SE0, SF1, SF2, CF0 and 0.66 m for the specimens HXXX, HSF0, HSE0 

to account the additional moment, which may affect the slab-column connection due to the 

horizontal loads. These ratios were kept constant in the whole loading process. All of the 
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specimens had the same dimensions (1540x1020x120 mm) with top and bottom column stubs 

(250x250 mm) extending out 700 mm. The column was reinforced with 6-25M bars and with 

8M@115 mm ties. The effective depth of all slabs was 90 mm with clear cover of concrete 20 

mm. The horizontal loads were applied at distance 600 mm from the top and bottom faces of the 

slab. The size of the openings was 150x150 mm for all slabs, except the slab CF0 which had an 

opening 250x250 mm, same size as the column. Information about the compressive strength of 

concrete and the test results of all slabs are given in Table 7.1. Additional reinforcement was 

placed around the openings in specimens SF0, SF1, SF2, CF0, SE0, HSF0 and HSE0 equivalent 

to that interrupted by the openings. The properties for the reinforcements are shown in Table 7.2. 

The average tension reinforcement ratio of the slabs in both directions was equal to 0.75% and 

the compression reinforcement ratio in both directions was 0.45%. The loading process, the 

dimensions of the specimens and the location of the openings are presented in Figure 7.2. These 

slabs failed in punching shear and in the next sections are presented their failure loads together 

with the simulations’ results.  

 

Figure 7.2 Schematic drawings of the nine edge specimens. 
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Table 7.1 
Material properties of  concrete and test results. 

Slab 𝒇𝒄
′  (MPa) M/P (m) 

Failure load  

(kN) 

Maximum 

displacement (mm) 

XXX 33 0.3 125 15.06 

SF0 31.5 0.3 110 15.95 

SE0 32.5 0.3 120 15.55 

SF1 33 0.3 115 15.02 

SF2 30 0.3 114 13.44 

CF0 30.5 0.3 86 11.01 

HXXX 36.5 0.66 69 5.96 

HSF0 36 0.66 58 6.95 

HSE0 36.5 0.66 65 5.26 

 

 

Table 7.2 
Material properties of flexural reinforcement. 

Steel layer Bar size 𝒇𝒚 (𝑴𝑷𝒂) 𝜺𝒚 𝒇𝒕 (𝑴𝑷𝒂) 𝜺𝒕 𝑬𝒔 (𝑴𝑷𝒂) 

Compressive 5M 430 0.0022 600 0.15 195000 

Tensile 10M 545 0.0027 900 0.10 180000 

7.3 Finite element simulations 

One half, of the slab-column connections, is used for the simulations in ABAQUS. The 

symmetry is not effective for the specimens SE0 and HSE0, and for that reason the whole slabs 

are analyzed. Six 20 mm mesh elements are used through the depth of the slabs. Concrete is 

modelled with 8-noded hexahedral with reduced integration elements (C3D8R) and the 

reinforcement is modeled using 2-noded 3D truss elements (T3D2) that can transmit only axial 

loads. In ABAQUS, the C3D8R finite elements are continuum stress/displacement 3D solid 

elements of first order with reduced integration. Perfect bond between concrete and 

reinforcement is assumed through the embedded method. This means that the interaction 

between concrete and reinforcement is indirectly considered through the concrete material 

modelling by using the tension stiffening response for the tensile behaviour. Simple supports are 
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introduced at the bottom of the slabs. Quasi-static analysis in ABAQUS/Explicit solver is 

performed for all specimens. For accuracy in quasi-static analyses a smooth amplitude curve 

should be adopted simulating the increasing velocity. In our analyses, the velocity is applied 

through the column stub simulating the displacement control analysis that is performed in tests. 

Mass scaling is not considered for reducing the computational solution time in the analyses and 

the energy balance equation is evaluated at the end of each analysis in order to estimate whether 

or not each simulation produces a proper quasi-static response.  

7.4 Finite element analysis results 

The nine edge slab-column connection specimens failed in punching shear. The response 

of the specimens is described in terms of ultimate vertical load and deflection. The results 

obtained from the nonlinear finite element analyses describe accurately the response of the tested 

slabs. In all specimens the FEA results predicted the punching shear capacity almost 10% lower 

compared to the test results. The test and the FEA results for each specimen are described in 

Table 7.3. In both test and numerical results the tensile reinforcement yielded first under the 

column. The cracking propagation in both test and the FEA started on the tension side of the 

slabs. For specimens with ratio M/P=0.3 m, the cracking started at an approximately vertical load 

of 40-50 kN while for the specimens with ratio M/P=0.66 m, the cracks are initiated at an 

approximately vertical load of 30-40 kN. The cracks started from the inner corners of the 

columns and developed towards the edges of the slabs. Cracks on the compressive side of the 

slabs are developed at approximately 75% of the ultimate load for the specimens with ratio 

M/P=0.3 m, compared to the specimens with ratio M/P=0.66 m which did not develop cracks on 

the compressive side of the slabs. It should be noted that the first cracks for the specimens SF0 
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and CF0 started from the inner corners of the openings and developed in a similar way to those 

that started from the columns’ corners.  

The effect of the location of the opening size of 150x150 mm, in terms of the distance 

from the front column face, on the punching shear capacity is small. The comparison between 

the slabs SF0, SF1 and SF2, in terms of vertical load versus deflection, shows that the slab SF0 

with the opening in front of the front column face has the lower punching capacity compared to 

the two other slabs. However, the differences between these three specimens were not 

significant. The opening is located at a distance 90 mm and 180 mm from the front column face 

for the slab SF1 and SF2, respectively. It is observed from both test and analytical results that 

both slabs (SF1 and SF2) have almost the same response in terms of ultimate vertical load and 

displacement (Figure 7.3a).  

As illustrated in Figure 7.3b, the slab with the side face opening (SE0) has stiffer 

response compared to the slab SF0 that has a face front opening. In terms of ultimate load the 

slab SE0 has about 10% higher ultimate load compared to the slab SF0. Test and numerical 

results in terms of load-deflection response are in good agreement for the specimen SE0.  

Figure 7.3c presents the effect of the opening size. Three slabs are compared in terms of 

ultimate load and displacement. Slab XXX is the control specimen without opening, slabs SF0 

and CF0 have the opening located at the front column face, with size 150x150 mm and 250x250 

mm, respectively. Both experimental and analytical results show that as the opening is larger, 

both stiffness and strength are reduced. 

The effect of the unbalanced moments to the ultimate load is presented in Figure 7.3d. 

The slabs HXXX and HSF0 with unbalanced moment to shear force ratio 0.66 m are compared 
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to the slabs XXX and SF0 with unbalanced moment to shear force ratio 0.3 m, for both tested 

and analytical results. The slab HXXX had lower tested punching shear capacity (about 50% 

less) compared to the slab XXX. The finite element simulations showed that the punching shear 

capacity of the slab HXXX was 25% lower compared to the slab XXX. The tested slab HSF0 

had lower punching shear capacity (about 47%) compared to the tested slab SF0. The finite 

element simulations showed that the punching shear capacity of the slab HSF0 was 38% lower 

compared to the slab SF0.  

Table 7.3 

Comparison between test and FEA results.  

 Test results FEA results 

Slab 

specimen 

Failure 

load (kN) 

Maximum 

displacement 

 (mm) 

Failure 

load (kN) 

 Maximum 

displacement 

 (mm) 

XXX 125 15.06 112 

 

17.69 

SF0 110 

 

15.95 

 

97 

 

14.94 

 
SE0 120 

 

15.55 

 

109 

 

17.75 

 
SF1 115 

 

15.02 

 

102 

 

14.57 

 
SF2 114 

 

13.44 

 

106 

 

13.74 

 
CF0 86 

 

11.01 

 

86 

 

12.75 

 
HXXX 69 

 

5.96 

 

84 

 

6.77 

 
HSF0 58 

 

6.95 

 

60 

 

6.93 

 
HSE0 65 

 

5.26 

 

76 

 

6.23 
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Figure 7.3 Vertical load-deflection responses of the slabs. 

 

Figure 7.4 illustrates the cracking patterns on the tension side of the slab at failure, as it 

was observed from the tests and FEA. Crack patterns at failure of three slabs were chosen for 

comparison. The cracking in concrete damaged plasticity model can be illustrated through the 

positive maximum principal plastic strains. It is clear that all cracking patterns obtained from the 

finite element simulations are in good agreement with the cracking propagation observed from 
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the tests. The adopted perfect bond between concrete and reinforcement shows a more 

continuous cracking and not so discrete compared to the real cracking from the tests and the 

cracking that can be provided from the FEA by considering a not perfect bond. However, the 

bond-slip effect is considered in the concrete damaged plasticity model through the tension-

stiffening model.  

 

a) 

  

b) 
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c) 

Figure 7.4 Comparison between tested and FEA cracks at the failure: a) slab SF0, b) slab SE0 

and c) slab HSF0. 

The cracks on the tension surface of the slabs SF0, SF1 and SF2 are presented in Figure 

7.5. These three slabs have the same size of opening (150x150 mm) located in front of the 

column in the direction of the unbalanced moments but at different distances from the column’s 

face. Specimen SF0 has the opening adjacent to the column, while specimens SF1 and SF2 have 

the opening located at a distance of 90 mm and 180 mm from the column’s face, respectively. It 

is noticed from both experimental and analytical results, that these three slabs have almost 

similar ultimate loads and deflections. However, the cracking patterns are different due to the 

location of the opening. The cracking propagation from the numerical analyses could be 

presented into three loading stages. Up to 40% of the ultimate load the cracking is concentrated 

for all specimens around the column with some radial cracks on the tension side of the slab on 

the diagonal (Figure 7.5a). It is quite interesting to notice that this diagonal cracks in the case of 

specimens SF0 and SF1 start to develop at the corner of the opening, while for specimen SF2 

start to develop at the corner of the column. At the 80% of the ultimate load the shear cracks 
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have already developed and extended further, and tangential cracks have developed and 

continued to the diagonal of the slab (Figure 7.5b). At this load stage more radial cracks have 

occurred and become visible. At the ultimate load, the shear cracks open suddenly. As it is 

obvious from Figure 7.5c, the shear cracks of the specimen SF1 form next to the column with 

secondary developed cracks starting from corner of the opening. However, the cracks at failure 

of the specimen SF2 do not develop past the opening.  

 

a)  

 

b)  
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c)  

Figure 7.5 Cracking process at the tension surface of the slabs SF0, SF1, SF2: a) 40% of 

ultimate load, b) 80% of ultimate load and c) ultimate load. 

7.5 Unbalanced moments according to ACI318-11  

The tested edge slab-column connections consist of slabs without shear reinforcement. 

The loading in all specimens was vertical and lateral, at the same time. In this section, the test 

and numerical results are compared with the punching shear loads that ACI 318-11 provides. 

Herein, a detailed description on how ACI calculates the punching shear loads is given. Two 

slab-column connections, one without opening (XXX) and one with opening (SF0), are 

considered. 

ACI 318-11 

For slabs under gravity load and connection moment (𝑀), the moment in ACI318-11 can 

be derived from the following equation: 

 𝑣𝑓 =
𝑉𝑓

𝑏𝑜𝑑
+
𝛾𝑣𝑀𝑓𝑐

𝐽𝑐
 (7.1) 
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where, 𝑣𝑓 is the factored shear stress, 𝑉𝑓 is the vertical factored shear force, 𝑏𝑜 is the control 

perimeter, 𝑑 is the effective depth of the slab, 𝐽𝑐 is the property of assumed critical section 

analogous to the polar moment of inertia, 𝛾𝜈 = 1 −
1

1+
2

3
√
𝑏1
𝑏2

 is the fraction unbalanced moment 

transferred by shear eccentricity, where 𝑏1 is the width of the critical section perpendicular to the 

moment vector and 𝑏2 is the other side length and 𝑐 is the centroid of the shear perimeter.  

According to ACI318-11 the punching shear resistance of the slabs without shear 

reinforcement (𝑉𝑐) is: 

 𝑉𝑐 = 𝑚𝑖𝑛

{
 
 

 
 0.33𝜆𝑏𝑜𝑑√𝑓′𝑐

0.17𝜆𝑏𝑜𝑑√𝑓′𝑐 (1 +
2

𝛽𝑐
)

0.083𝜆𝑏𝑜𝑑√𝑓′𝑐 (2 +
𝛼𝑠𝑑

𝑏𝑜
)

   (𝑓′
𝑐
 𝑖𝑛 𝑀𝑃𝑎) 

 

 

(7.2) 

 

Slab-column connection XXX (slab without opening) 

The compressive strength of slab XXX is 𝑓′𝑐 = 33 𝑀𝑃𝑎 and the effective depth 𝑑 =

90 𝑚𝑚. Figure 7.6 shows the control perimeter measured at distance 𝑑/2 = 45 𝑚𝑚 from the 

face of the column and the eccentricity. 
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Figure 7.6 Control perimeter and eccentricity for slab XXX. 

The control perimeter for the slab XXX is 𝑏𝑜 = 2 ∙ 𝑐𝑥 + 𝑏2 = 2 ∙ 295 + 340 = 930 𝑚𝑚. 

The eccentricity is equal to 𝑐 =
(𝑐𝑥+

𝑑

2
)
2

𝑏𝑜
=

(250+
90

2
)
2

930
= 93.6 𝑚𝑚.  

The fraction of the unbalanced moment transferred by the eccentricity is equal to 

𝛾𝜈 = 1 −
1

1+
2

3
√
𝑏1
𝑏2

= 1 −
1

1+
2

3
√
295

340

= 0.383. The polar moment of inertia is equal to 𝐽𝑐 = 2𝑏1
𝑑3

12
+

2𝑑
𝑏1
3

12
+ 2𝑏1𝑑 (

𝑏1

2
− 𝑐)

2

+ 𝑏2𝑑𝑐
2 = 2 ∙ 295 ∙

903

12
+ 2 ∙ 90 ∙

2953

12
+ 2 ∙ 295 ∙ 90 (

295

2
− 93.6)

2

+

340 ∙ 90 ∙ 93.62 = 8.43 ∙ 108 𝑚𝑚4. 

The punching shear resistance of the slab XXX (𝑉𝑐) is calculated using Eq. 7.2: 
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𝑉𝑐 = 𝑚𝑖𝑛

{
  
 

  
 0.33𝜆𝑏𝑜𝑑√𝑓′𝑐 = 0.33 ∙ 1 ∙ 930 ∙ 90 ∙ √33 = 159 𝑘𝑁

0.17𝜆𝑏𝑜𝑑√𝑓′𝑐 (1 +
2

𝛽𝑐
) = 0.17 ∙ 1 ∙ 930 ∙ 90 ∙ √33 ∙ (1 +

2

250
250

) = 245 𝑘𝑁

0.083𝜆𝑏𝑜𝑑√𝑓′𝑐 (2 +
𝛼𝑠𝑑

𝑏𝑜
) = 0.083 ∙ 1 ∙ 930 ∙ 90 ∙ √33 ∙ (2 +

30 ∙ 90

930
) = 196 𝑘𝑁

    

The ratio of the moment (𝑀) to the vertical force (𝑉) is equal to 𝑀 𝑉⁄ = 0.3. Thus, Eq. 

7.1 can be used in order to calculate the value of the vertical force (𝑉). We consider that 𝑣𝑓 =

𝑣𝑐. 

𝑣𝑓 =
𝑉𝑓

𝑏𝑜𝑑
+
𝛾𝑣𝑀𝑓𝑐

𝐽𝑐
→ 0.083 ∙ 1√33 ∙ (2 +

30 ∙ 0.09

0.93
) = 

=
𝑉𝑓

0.93 ∙ 0.09
+
0.383 ∙ (0.3𝑉𝑓 − 𝑉𝑓(0.125 − 0.0486)) ∙ 0.0936

0.000843
→ 𝑉𝑓 = 88 𝑘𝑁 

 

Slab-column connection SF0 (slab with opening) 

The compressive strength of slab SF0 is 𝑓′𝑐 = 31.5 𝑀𝑃𝑎 and the effective depth 

𝑑 = 90 𝑚𝑚. Figure 7.7 shows the control perimeter considering the opening measured at a 

distance 𝑑/2 = 45 𝑚𝑚 from the face of the column and the eccentricity. 
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Figure 7.7 Control perimeter and eccentricity for slab SF0. 

The control perimeter for the slab SF0 is 𝑏𝑜 = 930 − 204 = 726 𝑚𝑚. The eccentricity 

is equal to 𝑐 =
(𝑐𝑥+

𝑑

2
)
2

𝑏𝑜
=

(250+
90

2
)
2

726
= 119.9 𝑚𝑚.  

The fraction of the unbalanced moment transferred by the eccentricity is equal to 

𝛾𝜈 = 0.383. The polar moment of inertia is equal to 𝐽𝑐 = 2𝑏1
𝑑3

12
+ 2𝑑

𝑏1
3

12
+ 2𝑏1𝑑 (

𝑏1

2
− 𝑐)

2

+

(𝑏2 − 204)𝑑𝑐
2 = 2 ∙ 295 ∙

903

12
+ 2 ∙ 90 ∙

2953

12
+ 2 ∙ 295 ∙ 90 (

295

2
− 119.9)

2

+ (340 − 204) ∙

90 ∙ 119.92 = 6.37 ∙ 108 𝑚𝑚4. 

The punching shear resistance of the slab SF0 (𝑉𝑐) is calculated using Eq. 7.2: 

𝑉𝑐 = 𝑚𝑖𝑛

{
  
 

  
 0.33𝜆𝑏𝑜𝑑√𝑓′𝑐 = 0.33 ∙ 1 ∙ 726 ∙ 90 ∙ √31.5 = 121 𝑘𝑁

0.17𝜆𝑏𝑜𝑑√𝑓′𝑐 (1 +
2

𝛽𝑐
) = 0.17 ∙ 1 ∙ 726 ∙ 90 ∙ √31.5 ∙ (1 +

2

250
250

) = 187 𝑘𝑁

0.083𝜆𝑏𝑜𝑑√𝑓′𝑐 (2 +
𝛼𝑠𝑑

𝑏𝑜
) = 0.083 ∙ 1 ∙ 726 ∙ 90√31.5 (2 +

30 ∙ 90

726
) = 174 𝑘𝑁
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The ratio of the moment (𝑀) to the vertical force (𝑉) is equal to 𝑀 𝑉⁄ = 0.3. Thus, Eq. 

7.1 can be used in order to calculate the value of the vertical force (𝑉). 

𝑣𝑓 =
𝑉𝑓

𝑏𝑜𝑑
+
𝛾𝑣𝑀𝑓𝑐

𝐽𝑐
→ 0.083 ∙ 1√31.5 ∙ (2 +

30 ∙ 0.09

0.726
) = 

=
𝑉𝑓

0.726 ∙ 0.09
+
0.383 ∙ (0.3𝑉𝑓 − 𝑉𝑓(0.125 − 0.0486)) ∙ 0.1199

0.000637
→ 𝑉𝑓 = 56 𝑘𝑁 

 

Based on the design equations and the material properties of each slab, Table 7.4 

compares the failure punching shear loads according to tests, FE analyses and ACI318-11. The 

results from the finite element analyses are close to the experimental results. However, ACI318-

11 appears conservative predictions. Especially, for the slabs with openings, ACI predicts much 

lower punching shear loads compared to the results from the tests and FEA.  

Table 7.4 
Ultimate load for edge specimens according to test, FEA and ACI results. 

 Failure load (kN) 

Slab 

specimen 
Test results FEA results ACI 318-11 

XXX 125 112 88 

SF0 110 97 56 

SE0 120 109 78 

SF1 115 102 70 

SF2 114 106 72 

CF0 86 86 33 

HXXX 69 84 54 

HSF0 58 60 33 

HSE0 65 76 53 
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7.6 Parametric investigation on the effect of opening location and size 

Parametric analyses to investigate the effect of the opening location and size are 

conducted. Figure 7.8 presents the edge specimens considered for the numerical analyses. The 

slabs SF0, SF1, SF2 and CF0, are the tested slabs that were presented earlier and the others are 

the specimens that are created for the parametric investigations. Two opening sizes are 

considered: 150x150 mm and 250x250 mm. The distance of these openings from the column 

ranges from 0 mm to 450 mm depending on the d (effective depth of the slab), (450 mm=5d, 

where d=90 mm). Figure 7.9 presents the effect of the opening location and size for the slabs. All 

FEA show that as the opening is located further to the column the punching shear capacity of the 

slab increases; if the opening is located at distance 5d (450 mm), the strength of the slab becomes 

almost the same with the strength of the specimen that has no opening (XXX). At distance 450 

mm the punching strength of the specimen SF5 and CF5 is 110 kN and 109 kN, respectively. 

The FEA ultimate load of the slab XXX is 112 kN. Therefore, the punching shear load of the 

slab SF5 is 1.8% less and the punching shear load of the slab CF5 is 2.7% less, both compared 

with the ultimate load of the slab without opening (XXX). Also, the difference in the ultimate 

loads between the slabs with the smaller and larger openings seems to be not significant after the 

distance 4d. Therefore, the reduction of slab’s strength, due to openings should be considered 

when the opening is located in distance less than 5d from the column. 
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Figure 7.8 Schematic drawing of the edge slabs with different openings and at different location.  

 

Figure 7.9 Distance effect of the opening on the punching shear resistance of the edge slabs. 

Then, interior slab-column connections are considered for parametric investigation on the 

effect of opening size and location on the slabs’ capacity. The parametric analyses for the interior 

slabs are chosen based on the specimen SB1 that was tested under gravity load through the 

column. During the test, specimen SB1 failed in punching shear at a load of 253 kN. The FEA 

results showed the punching shear  failure at a load of 234 kN. Figure 7.10 shows the interior 

specimens considered for the numerical analyses. Two opening sizes are considered for the 

parametric studies: 70x70 mm and 150x150 mm. Analyzing one quarter of the slab SB1 due to 
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the symmetry, two openings are adopted in each case. The distance of these openings from the 

column ranges from 0 mm to 450 mm (450 mm=5d, where d is the effective depth of the slab 

equal to 90 mm).  

 

Figure 7.10 Schematic drawing of the interior slabs with different size and location of the 

openings. 

Figure 7.11 shows the effect of the opening location and size for the interior slabs. All of 

the numerical results show that as the opening is located further to the column, the punching 

shear capacity of the slab is increased; when the openings are located at a distance more than 4d 

from the column, the ultimate loads are almost the same for all specimens. At opening distance 

of 5d (450 mm), the strengths of the specimens SB1-5 and SB-5 are 223 kN and 219 kN, 

respectively. The ultimate load of the SB1 (slab without openings) was found equal to 234 kN. 

Therefore, the ultimate loads of the slabs SB1-5 and SB-5 compared to the punching shear load 

of specimen SB1, are 4.7% and 6.4% lower. The higher difference on the ultimate loads 

compared to the previous shown edge slabs, can be explained due to the existence of two 

openings in the interior slabs.  
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Figure 7.11 Distance effect of the opening on the punching shear resistance of the interior slabs.  

The cracking at the tension surface of six chosen interior slabs SB1-0, SB-0, SB1-1, SB-

1, SB1-5 and SB-5 is presented in Figure 7.12. The slabs SB1-0, SB1-1 and SB1-5 have the 

same size of openings (70x70 mm) located at different distances from the column’s face. 

Specimen SB1-1 has the openings adjacent to the column, while specimens SB1-1 and SB1-5 

have the openings located at a distance of 90 mm and 450 mm from the column’s face, 

respectively. For comparison, the cracking pattern of the slabs SB-0, SB-1 and SB-5 that have 

larger openings (150x150 mm) is presented. The cracking patterns are different due to the 

location and size of the opening.  
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a) 

 

b) 
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c) 

Figure 7.12 Crack pattern of interior slabs: a) openings at distance 0d, b) openings at distance 1d 

and c) openings at distance 5d. 

With respect to the code predictions (ACI and EC2), Table 7.5 presents the ultimate loads 

of the interior slab-column connections from the FEA and the design codes. In all the cases, the 

design codes appear safe results; while ACI gives the most conservative. Figure 7.13 illustrates 

the comparison of the punching shear loads between FEA and design codes for the specimens 

with openings of 70x70 mm. When the openings are located direct next to the column, both 

design codes give almost the same predictions, however, when the openings are further located, 

the design codes give different results. In case of the slab SB1-0 the difference in the design 

codes is 2 kN but in case of the slab SB1-5 the difference is 11 kN. Therefore, as the opening is 

located further from the column, the difference in the design codes becomes higher and if we 

examine the slab SB1 that has no openings, ACI predicts a punching shear load of 189 kN and 

EC2 a resistance of 202 kN, leading to a difference of 13 kN. Considering now the slabs with 
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openings of 150x150 mm (see Figure 7.14) again the highest difference (9 kN) between the two 

design codes appears when the opening is located at the distance of 450 mm. It can be concluded 

that both design codes for the most worst scenario, when the openings are located next to the 

column, even if they adopt different formulae for calculating the punching shear resistance with 

different control perimeter, they predict similar failure loads. When the openings exist further 

from the column and in the case that no openings exist, the difference in the predicted results 

becomes higher. 

 Table 7.5 
Comparison of ultimate load between FEA and codes for interior specimens. 

Specimen 
Distance from 

the column (mm) 

Size of 

openings(mm) 

FEA 

Punching 

load (kN) 

ACI 

Punching 

load (kN) 

EC2 

Punching 

load (kN) 

SB1-0 0 70x70 182 145 147 

SB-0 0 150x150 145 95 101 

SB1-1 90 70x70 198 169 177 

SB-1 90 150x150 180 146 149 

SB1-2 180 70x70 213 176 185 

SB-2 180 150x150 197 161 167 

SB1-3 270 70x70 218 180 190 

SB-3 270 150x150 212 169 176 

SB1-4 360 70x70 220 182 192 

SB-4 360 150x150 215 173 181 

SB1-5 450 70x70 223 183 194 

SB-5 450 150x150 219 176 185 
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Figure 7.13 Distance effect of the opening on the punching shear resistance of the interior slabs 

with openings (70x70 mm) – Comparison with the design codes. 

 

Figure 7.14 Distance effect of the opening on the punching shear resistance of the interior slabs 

with openings (150x150 mm) – Comparison with the design codes. 

Figure 7.15 compares the punching loads of the two design codes for the two sizes of 

openings. The punching shear loads are calculated for openings located from 0d until 9d from the 

face of the column. EC2 after the distance 6d considers the punching strength of the slab same as 

the capacity of the slab without any opening. ACI will predict the same load with the specimens 
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that have no openings, only if the opening is located at a distance 10h=1200 mm from the 

column. 

 

Figure 7.15 Distance effect of the opening on the punching shear resistance of the interior slabs. 

7.7 Summary and Conclusions  

The opening effect is studied on edge specimens and parametric investigation is 

performed on edge and interior slab-column connections. The openings in existing slabs reduce 

the punching shear strength. This reduction is dependent on the distance from the opening to the 

face of the column. However, when the opening is located at distance d (SF1 slab) and 2d (SF2 

slab) from the column, the punching shear capacity of the slabs remained almost the same during 

the tests. The finite element analysis can give an insight into slabs’ behaviour by showing the 

cracking propagation. The propagation of cracking shows that the shear cracks are observed 

around the column and also at the corners of the openings and in the cases that the openings are 

located at a distance from the column (SF1 and SF2) and not next to it (SF0); secondary cracks 
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are illustrated beginning from the corners of the openings. The results obtained from the 

parametric investigation regarding the influence of the size and location of the opening have 

shown that when the opening is located at a distance larger than 4d from the column the 

punching shear capacity of the slab remains almost the same as for the slab without openings. 

The code provisions of ACI 318-11 and EC-2 2004 give safe results compared to the test and 

numerical observations. All presented analyses of that chapter show that the concrete damaged 

plasticity model correctly predicts the punching shear response of the analyzed slabs. The good 

agreement between test and numerical results for all the slab-column connections indicate that 

the calibrated model in ABAQUS could be considered for future parametric investigation in 

reinforced concrete slabs with openings. The FEA can supplement the experimental data for 

slabs with openings. These verified and calibrated finite element models can be used to calibrate 

the code provisions for the punching shear capacity of the slabs with openings. 
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Chapter 8 

Parametric studies: Continuity effect on 

punching shear capacity 

8.1 Introduction 

Design codes for punching shear resistance of flat slabs are based on test results from 

isolated slab-column connections. However, by testing isolated slabs, the compressive membrane 

action of the continuous slab-column system is ignored. This can result in lower punching shear 

strength compared to the actual strength of the real slab systems. Testing continuous slab system 

is very uneconomical and in most cases not possible. In this chapter, finite element analyses 

(FEA) are performed in order to investigate the effect of the compressive membrane action in 

flat concrete slabs by comparing results from isolated specimens and continuous floor systems. 

The adopted FE formulation and the material parameters were previously calibrated on the 

isolated test specimen (SB1) under gravity loading. In this study, this calibrated model is 

considered for analyzing the slab SB1 as continuous, where its boundary conditions are 

modified, and also the slab is considered to have larger in-plane dimensions in order to examine 

slab’s continuity. Finally, numerical analyses of existing punching shear tests that examine the 

compressive membrane action effect are conducted to show the accuracy of the FEA model. All 

numerical analyses indicate that the shear capacity of a continuous slab is higher compared to the 

capacity of the conventional isolated slab specimen. The predictive capability of the FEA models 
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can allow future investigations on the effect of membrane action in order to supplement the 

limited testing background on this area, and for future recommendations for the code provisions.  

8.2 Compressive membrane action effect 

Punching shear failure in reinforced concrete flat slabs occurs due to the development of 

a three-dimensional state of stresses that is created by the high transverse stresses around the 

column and the in-plane stresses. Inclined cracks are created inside the slab, which then 

propagate and form a major inclined crack. When this crack reaches the compressive zone, a 

punching shear cone around the column is formed leading to the punching shear failure. 

Punching failure is brittle and sometimes can lead to a progressive collapse of the building. 

Many researchers performed studies in order to examine the punching shear failure in concrete 

slabs and on the methods to prevent it. Several tests have been done starting in 1950s and then 

several theories and models have been proposed. In these experiments, isolated slabs were 

considered, representing a slab-column connection limited by the line of contra-flexure for radial 

moments, which become zero at a distance approximately 0.22L, where L is the center-to-center 

span between the columns. All of these isolated tested slabs had no restraint for lateral in-plane 

movement and they were simply supported around the edges. These test results were the basis of 

design codes’ design methods for punching shear resistance of flat slabs. However, the in-plane 

restraining forces creating the compressive membrane action in the concrete slabs were ignored.  

In continuous reinforced concrete slabs, the tensile strains at the mid-depth of a slab lead 

to an expansion of the slab, creating horizontal displacements. These mid-depth tensile strains 

are the result of concrete material nonlinearity. However, the lateral stiffness of the columns 

opposes this expansion by imposing compressive membrane forces (in-plane restraining forces) 
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(see Figure 8.1). The result of this phenomenon, that is called compressive membrane action, is 

the increase of the flexural and the shear capacity of a slab.  

 

Figure 8.1 Membrane action. 

The first investigations on the effect of the membrane action in concrete slabs can be 

found in the observations done by Westergaard and Slater (1921). Later, other researchers 

performed tests in order to explain and examine the effect of the membrane action connected 

with the boundary conditions on the concrete slab’s capacity. These include work done by 

Ockelston (1955), Elstner and Hognestad (1956), Christiansen (1963), Park (1964), Long and 

Bond (1967), Hopkins and Park (1971), Lander et al. (1977), Long et al. (1978), Rankin and 

Long (1987), Guice and Rhomberg (1988), Vecchio and Collins (1990), Vecchio and Tang 

(1990), Chana and Desai (1992), Alexander and Simmonds (1992), Sherif (1996), Choi and Kim 

(2012).  

Elstner and Hognestad (1956) conducted tests by changing the boundary conditions of the 

slabs. They considered: a) all edges to be simply supported; b) only two opposite edges to be 

simply supported and c) only the corners to be simply supported. The test results indicated a 

significant strength reduction in such cases where the edges were not continuously supported. 
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Long and Bond (1967) performed full panel tests showing an increase in the capacity of the slabs 

compared to the isolated test specimens. Rankin and Long (1987) tested 17 specimens that 

ranged from the isolated specimens having their edges at the line of contra-flexure (0.22L) to the 

full panel specimens. All specimens were simply supported at the line of the contra-flexure. The 

test results show an increased ultimate load with an increase of the slabs’ size. The lowest 

increase was noticed to be around 30% for full panels with reinforcement ratio 1.1% and around 

50% for full panels with reinforcement ratio 0.5%. Other researchers tested slab subsystems in 

order to investigate the membrane action effect on slab’s capacity. Vecchio and Collins (1990) 

examined the collapse of a four-story warehouse building with flat slabs that happened in 1978. 

When the collapse took place, Vecchio and Collins found that the total load of the third floor of 

the building was about 4.5 times higher compared to the design load. The investigation’s results 

showed that high strength was created due to the effect of the membrane action. Vecchio and 

Tang (1990) tested two slab strip specimens to isolate the influence of the membrane action. The 

two specimens were different only in the support conditions; in the first specimen the end 

supports were allowed to move only horizontally, in the second specimen the edge supports were 

fixed. The second specimen (fixed supports) failed at a higher load compared to the first 

specimen. Alexander and Simmonds (1992) examined three different types of boundary 

conditions for the slabs: a) rotations at the edges and restrained corners, b) rotations and 

restrained edges and c) restrained rotations at the corners. The obtained test results showed that 

the rotational restraint increased the punching shear capacity of the slabs. Chana and Desai 

(1992) tested isolated and continuous slabs. The side lengths of the slabs were equal to 0.4L and 

1.5L for the isolated and continuous slab, respectively. The test results indicated a significant 
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increase in the ultimate load of the continuous slab, around 52%, compared to the strength of the 

conventional specimen. 

In addition to the test programs described herein, Einpaul et al. (2015) presented a 

numerical method to calculate the capacity of continuous slabs. Comparing the results coming 

from their model to specific test results, they concluded that the membrane action effect 

increases the strength capacity of a slab. Numerical analyses of two-way slabs using finite 

element methods examining the membrane action effects are limited. Finite element analysis 

using shell elements to simulate the concrete in order to investigate the compressive membrane 

action against the progressive collapse of the flat slabs can be found in the work done by Dat and 

Hai (2013), Keyvani et al. (2014) and Liu et al. (2015). In these works, the compressive 

membrane action was found to be important source of enhancement for the punching shear 

strength of the slabs preventing a progressive collapse of the slab structures. 

Three dimensional nonlinear finite element analyses (FEA) are presented and applied to 

simulate continuous slabs and then to compare their behaviour with the isolated slab test results. 

FEA can be used effectively, after appropriate modelling and material calibration, to supplement 

the existing test background. Parametric investigations can be performed via FEA modelling, 

exploring a variety of issues related to punching shear. In this work, the ABAQUS software is 

used with the simulation of the concrete material done using the concrete damaged plasticity 

model. The concrete damaged plasticity model has been previously calibrated on the interior 

concrete slab (SB1) in order to examine its punching shear failure. Herein, the calibrated model 

is used to analyze the isolated specimen SB1 as continuous; using different boundary conditions 

and also different dimensions. The analysis of the whole floor system, from which the SB1 

specimen has been taken, is also simulated and analyzed. Following this, two test specimens 
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from literature, in which the membrane action effect was examined, are presented and analyzed 

to show and prove the effectiveness and the accuracy of the FEA model in continuous slabs 

modelling. FEA results of all of these slabs are compared to the test results, and the discussion is 

provided. Finally, discussion based on the code provisions for punching shear and comparison 

with the numerical results of the continuous slabs is presented. 

8.3 Finite element simulation of the system continuity 

The increased punching shear capacity of a reinforced concrete flat slab due to the 

membrane action effects can be evaluated by examining the restraining in-plane forces acting in 

the slab. The magnitude of these restraining forces is hard to find, because it depends on the 

stiffness of the flat slab structure provided by the supports and the slab itself. Also, it is difficult 

to test continuous slabs and for that reason, a common empirical approach is to test slabs simply 

supported at the outer edge. Non-linear finite element analysis can be performed to examine all 

possible sources of restraint for the continuous slab specimens. In this section, the previously 

shown slab SB1 is examined considering the membrane action effect, and then, two slabs tested 

by Chana and Desai (1992), where the membrane action effect was evaluated, are modeled and 

analyzed. In both cases the modelling and the analysis of the slab supported at the outer edges, as 

it is explained earlier, show the enhancement in the punching shear due to the membrane action. 

However, taking the advantage of the FEA, the aim of this study is to analyze also different 

support conditions that have not been examined in the experiments, and to simulate and analyze 

a real floor system. All of these studies are presented in the subsection 8.3.1 where SB1 and 

varietions of its boundary conditions are shown. Then, subsection 8.3.2 shows the comparison 

between numerical and experimental results for the slabs tested by Chana and Desai (1992), who 
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tested both isolated and continuous slabs, in order to verify the accuracy of the proposed FEA 

model for analyzing continuous slabs. 

8.3.1 Slab-column connection SB1 tested by Adetifa and Polak (2005) 

The previously shown isolated specimen SB1 is now examined as continuous. Figure 8.2 

illustates the two continuous models: 

Continuous Model 1: Restrained supports with both horizontal and vertical restraints 

(pinned supports) at the locations of the lines of the contraflexure in order to provide lateral 

restraints and simulate the continuous scenario (Figure 8.2a). The lateral restraints are applied 

not only at the bottom of the slab but also at the whole height of the slab. 

Continuous Model 2: The slab is modeled with dimensions (1.6L=6000 mm) and simple 

supports are introduced at distance 0.4L=1,500 mm and at 1.5L=5,625 mm (Figure 8.2b), where 

L denotes the center-to-center span of the slabs (L=3,750 mm). That model is based on the 

bending moment diagram of a floor system simulating the zero moments with the support 

conditions. 

The FEA results are presented in Figure 8.3 in terms of load-deflection response and are 

compared to the numerical and experimental results of the isolated simply supported slab. The 

adopted methods that represent the continuity (Figure 8.2a, Figure 8.2b), show an increase in the 

failure load but decreased ductility, compared to the test and the FEA results of the conventional 

slab. In particular, Table 8.1 shows the analysis results in terms of failure load and displacement 

for all of the specimens. The load-deflection responses of the two continuous models are shown 

in Figure 8.3. The ultimate load of the continuous model 1 is increased by around 68% and the 
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ultimate load of the continuous model 2 is increased by around 50%, both compared to the 

numerical results of the isolated simply supported slab. 

 

 

Figure 8.2 Adopted continuous models for the slab SB1. 

 

Figure 8.3 Load-deflection curves of the continuous slabs (comparison with the simply 

supported isolated). 

 

0

100

200

300

400

0 5 10 15 20

Lo
ad

 (
kN

)

Displacement (mm)

Continuous Model 1

Continuous Model 2

Test
isolated FEA 

isolated



201 

 

Table 8.1 
FEA Results. 

Specimen Failure load (kN) Displacement at failure (mm) 

Isolated 234 13.9 

Continuous Model 1 

1 

392 2.7 

Continuous Model 2 352 4.5 

   

The developed crack patterns of the analyzed continuous slabs at failure, are presented 

below (Figure 8.4). The continuous slabs concentrate the crack propagation around the column 

and it does not spread to the edges, as it happens on the isolated slab (Figure 8.5). This can be 

explained by considering the smaller deflection that the continuous slabs have, compared to the 

deflection of the simply supported slab. Smaller deflection leads to lower crack widths and thus 

to larger punching shear capacity.   

 

 

 

 

 

 

 

 

 (a)  

 

 

 



202 

 

 

 

 

 

 

 

 

 

(b) 

Figure 8.4 Crack patterns: a) Continuous Model 1, b) Continuous Model 2. 

 

 

Figure 8.5 Crack pattern of the isolated simply supported slab SB1. 

Considering now that the punching shear capacity of a real slab is not the same as the 

capacity of the simply supported isolated slab and not such increased as this one of the isolated 

lateral restrained slab, the isolated slab is modeled with simple supports and axial spring 

elements in order to evaluate the effect of lateral restraint. Figure 8.6 shows the spring elements 

that are installed at the edges of the isolated simply supported slab at each element node. 

Different stiffness is given to each spring element and the results in terms of load-deflection 

response are shown in Figure 8.7. The given stiffness to the springs varies depending on the 

support conditions; low stiffness displays similar results to the simply supported slab and high 
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stiffness shows the fully restrained case. The spring stiffness of 30,000 N/mm gives almost the 

same load-deflection response to the continuous model 2.  

 

Figure 8.6 Spring elements simulate the later restraint. 

 

Figure 8.7 Load-deflection responses of the slabs with different stiffness of the spring elements 

(comparison with the isolated and two continuous slabs). 
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Then, the whole floor system, from which the SB1 slab was taken, is simulated and 

analyzed using the finite element methods. Due to symmetry, one quarter of the floor flat system 

is considered and the adopted boundary conditions are presented in Figure 8.8. A high uniformly 

distributed factored load of 18.5 kPa due to the high percentage of flexural reinforcement is 

applied to the floor system and the columns are restrained at the bottom. The punching shear 

load of the slab is measured as the reaction at the bottom of the column where the boundary 

conditions are introduced and the displacement is monitored at two points: at distance 0.2L from 

the column and at the middle of the slab. Figure 8.9 shows the numerical results in terms of load-

deflection of the slab SB1 after the analysis of the flat floor system. For comparison, in the same 

graph are shown the numerical responses of the isolated simply supported and continuous slabs. 

The ultimate punching shear load of the slab by analyzing the whole floor system is equal to 291 

kN, 24% higher than the load of the simply supported isolated slab, while the analysis of the 

continuous model predicts an ultimate load 50-68% higher than the isolated slab. Similar results 

presented by Keyvani et al. (2014) where the compressive membrane action was examined in the 

progressive collapse of flat concrete slabs. Keyvani et al. showed that the punching shear 

strength of a laterally restrained slab was increased 34% compared to the strength of the isolated 

slab and the punching shear strength of an actual flat slab system was around 17% higher 

compared to the strength of the isolated slab.  
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Figure 8.8 Boundary condition of one quarter of the whole floor system. 

 

Figure 8.9 Load-deflection responses of the floor slab system. 

The crack pattern at failure of the interior slab-column connection SB1 after analyzing 

the floor system is shown in Figure 8.10. The cracking is concentrated around the column and 

0

100

200

300

400

0 5 10 15 20

Lo
ad

 (
kN

)

Displacement (mm)

Whole floor system (Disp. @ middle)

Whole floor system (Disp. @0.2L)

Simply
supported isolated

Continuous Model 1

Continuous Model 2



206 

 

spreads at a distance of 300 mm from the face of the column. This development length of the 

cracks is smaller compared to this from the isolated simply supported slab (400 mm) and larger 

than the cracking development length of the continuous models (180-200 mm).  

 

 

 

 

 

Figure 8.10 Crack pattern of SB1 on the floor slab system. 

8.3.2 Slabs tested by Chana and Desai (1992) 

In order to validate the accuracy of the concrete damaged plasticity model in punching 

shear simulations of continuous slabs, the numerical model herein is applied to analyze punching 

shear tests reported in literature. Two tested interior slab-column connections, are simulated and 

analyzed. The purpose of these tests was to examine the effect of the membrane action on the 

punching shear capacity of the slabs. Both tested slabs had no shear reinforcement and were 

taken from a prototype structure, where the flat slab spans between the columns were equal to 

6000 mm. One slab was considered as continuous and its dimensions were equal to 9000x9000 

mm, while the second tested specimen was the isolated slab with dimensions 2400x2400 mm on 

plan. Both slabs were simply supported at the column foot. The thickness of the isolated slab was 

240 mm with effective depth 200 mm and the dimensions of its square column were 300x300 
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mm. The continuous specimen was 250 mm thick with effective depth 210 mm and the 

dimensions of its column were 400x400 mm. The load was applied for both slabs through eight 

points placed at a radius of 1.2 m from the center.  

Table 8.2 
Material properties, reinforcement and test results of slabs tested by Chana and Desai (1992). 

Specimen 𝒇𝒄
′ (𝑴𝑷𝒂) 𝒇𝒕

′(𝑴𝑷𝒂) 𝒇𝒚(𝑴𝑷𝒂) 𝑨𝒔(𝒎𝒎𝟐) 
Tensile 

𝝆𝒔(%) 

Failure 

load 

(kN) 

Displacement 

at failure 

(mm) 

Isolated 40.3 2.7 500 314 0.79 850 18 

Continuous 26.8 2.31 500 314 0.86 1225 2.49 

 

Table 8.2 shows the material properties, reinforcement and test results for the continuous 

and isolated slab. In the numerical analyses only one quarter of both slabs is simulated due to 

symmetry. Figure 8.11 illustrates the continuous and isolated specimen with the boundary 

conditions and applied load. 

 

 

Figure 8.11 Boundary conditions and loads of the slabs tested by Chana and Desai: a) isolated 

and b) continuous. 
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Parametric investigation is performed in order to calibrate the FEA model because these 

slabs were tested in a different way compared to the slab SB1 and also they were thick (250 mm-

the isolated and 240 mm-the continuous) compared to the thickness of the SB1 that was 120 mm. 

The parametric investigation is done on the isolated specimen, where only the mesh size is 

examined. The model in ABAQUS is mesh size dependent because it is a plasticity based model, 

therefore, a mesh convergence study should always be performed. Figure 8.12 shows the 

numerical results in terms of load-deflection response for the isolated specimen by using three 

different mesh sizes: 20 mm, 30 mm and 40 mm. The obtained results of all different mesh sizes 

are in good agreement, however the mesh size of 40 mm is chosen for the analyses of both 

isolated and continuous slab due to less computational cost. All other material parameters are 

considered same in slab SB1. 

  

Figure 8.12 Load-deflection response of the isolated slab for different mesh sizes. 

 

Figure 8.13 illustrates the comparison between the isolated and continuous slab in terms 

of tested and numerical failure load and deflection. The results from the FEA models are in good 
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agreement with the test results. The numerical analyses show an ultimate load of 752 kN and 

1248 kN for the isolated and continuous slab, respectively. The deflections at the loading points 

at failure are 16.7 mm for the isolated slab and 2.4 mm for the continuous slab. Both numerical 

load-deflection responses of the slabs appear stiffer compared to the tested responses. This seems 

to happen because of the adopted support conditions that are simplified compared to the test 

support conditions.  

 

Figure 8.13 Comparison between tested and FEA load-deflection curves of the isolated and 

continuous slab. 

According to the test observations, both specimens failed in a brittle punching. Radial 

cracking was developed on the tension side of both slabs; starting from the loading column and 

then propagating to the edges. Isolated specimen appeared the maximum crack width (0.3 mm) 

before failure, while the maximum crack width before failure for the continuous slab was equal 

to 0.15 mm. However, the radial cracks of the continuous slab stopped before the loading points, 

compared to the cracks of the conventional isolated slab that continued until the edges. This can 

be explained due to the membrane action effect that controls the crack width and its 
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development. Both tested crack patterns are effectively predicted by the FEA crack patterns (see 

Figure 8.14). The continuous slab failed in a significantly increased load compared to the 

isolated specimen. In the tests the ultimate load of the continuous slab is increased 52% 

compared to the ultimate load of the isolated slab. The FEA results show that the continuous 

specimen has 60% higher punching shear strength compared to the isolated slab. This increase of 

the ultimate load (60%) is higher compared to the numerical results presented earlier for the 

Continuous Model 2 of the slab SB1 (50%). That can be explained by considering that the 

specimens tested by Chana and Desai had lower both: the reinforcement ratio and the span to 

thickness ratio, compared to the slab SB1. According to tests done on one-way slabs by Gruice 

and Rhomberg (1988) with different flexural reinforcement ratio and span to thickness ratio, it 

was found that the compressive forces can enhance the strength of the slabs by 30-100%. Higher 

increase in the ultimate load was observed for slabs with lower reinforcement ratio and lower 

span to thickness ratio. Similar observations for the effect of the span-depth ratio to the punching 

shear strength of the slabs, were made by Lovrovich and McLean (1990). They concluded after 

performing a test series that as the span-depth ratio decresed the punching shear strength of a 

slab increases due to the development of compression struts between the loading point and the 

supports. In this arch mechanism, the in-plane compressive forces have also concurred to the 

increase of the punching shear strengths. 
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a) 

 

b) 

Figure 8.14 Crack patterns on tension side of the slabs: a) isolated and b) continuous.  
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Table 8.3 

Comparison of ultimate FEA load (kN) between isolated and continuous slabs. 

Slab specimen 
FEA load VI (kN) 

Isolated slab  

FEA load VC (kN) 

Continuous slab 
VC/ VI 

SB1 (Continuous Model 1) 234 392 1.675 

SB1 (Continuous Model 2) 234 352 1.504 

SB1 (whole floor) 234 291 1.244 

Slab tested  

by Chana and Desai 
752 1248 1.660 

 

Table 8.3 summarizes and compares the FEA results of all specimens. The analysis of the 

slab SB1 (Continuous Model 1) shows that the ultimate load is increased 67.5% compared to the 

ultimate load of the isolated slab SB1. The SB1 (Continuous Model 2) slab has an ultimate load 

50.4% higher than the ultimate load of the isolated slab SB1. At this point, if we consider the 

numerical results of the slabs tested by Chana and Desai [17], we can see that the ultimate load 

of the continuous slab is 66% higher compared to the load of the isolated slab. The continuous 

slab tested by Chana and Desai has the same boundary conditions with the slab SB1 (Continuous 

Model 2). Based on these results we can conclude that the contunuous models presented in this 

research increase the ultimate load of the isolated slabs between 50.4-67.5%. However, the 

numerical results of the slab SB1 considered in the whole floor system shows that the ultimate 

load of a real flat slab is about 24.4% higher than the the observed load of the isolated slab. 

8.4 Comparison with the design approaches 

The compressive membrane action effect is ignored in the design provisions. Comparing 

the results of the isolated slabs (test and FEA) with the recommendations of the design 

provisions (ACI318-11, EC2 2004), we can conclude that the design codes underestimate the 

punching shear capacity of the slabs (see Table 8.4) introducing of course safety margins. Only 
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for the isolated specimen tested by Chana and Desai [17] the code predictions are really close to 

the test results. We can state also herein that the formulae of both design codes are considered 

without the safety factors. However, if we compare now the numerical results of the continuous 

slab SB1 and the test and numerical results of the continuous slab [17] with the code predictions, 

we can actually conclude that the design codes are very conservative. If we compare only the 

SB1 (Continuous Model 2) slab with the design codes, we can observe that EC2 predicts an 

ultimate punching shear load about 150 kN less than the FEA load and ACI underestimates the 

FEA load about 163 kN. Now, if we compare the continuous slab [17] (same continuous model 

with slab SB1 (Continuous Model 2)) with the design codes, we can see that EC2 predicts a 

punching shear load 347 kN less that the FEA load and ACI predicts an ultimate punching shear 

load 373 kN less than the FEA load. Thus, the punching shear design provisions that are based 

on test results of isolated slabs are conservative and modifications accounting the membrane 

action effect can be taken into consideration. These modifications could be done after analyzing 

many and different continuous slabs. Slabs with shear reinforcement should be also considered. 

The calibrated FEA models can be used in this direction in order to future provide parametric 

studies  

Comparing now the results between the design codes, it can be said that EC2 gives higher 

punching shear resistance for all slabs, compared to the predictions that ACI provides. EC2 

shows 13 kN higher punching shear resistance compared to ACI for the slab SB1. However, for 

the isolated slab [17] the punching shear resistance from EC2 is around 9 kN higher compared to 

the load that ACI predicts. EC2 predicts an ultimate punching shear load about 26 kN higher 

than the ACI for the continuous slab [17]. Thus, the predictions from EC2 are closer to the 

punching shear resistance of the tested and FEA isolated slabs compared to ACI.  
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Table 8.4  

Comparison of ultimate load (kN) between test, FEA and design codes for slab SB1 and slabs 

tested by Chana and Desai. 

Slab specimen Test results FEA results ACI EC2 

SB1 isolated  253 234 189 202 

SB1 continuous 1 Not tested 392 189 202 

SB1 continuous 2 Not tested 352 189 202 

SB1 whole floor Not tested 291 189 202 

Chana and Desai 

isolated 
850 752 838 847 

Chana and Desai 

continuous 
1225 1248 875 901 

 

8.5 Summary and Conclusions 

3D nonlinear finite element methods can be effectively used in punching shear 

simulations to examine the continuity of reinforced concrete slabs. The existing test database of 

isolated slabs can be examined using FEA, considering a variety of boundary conditions in order 

for the continuity to be adopted in the simulations. The calibrated concrete damaged plasticity 

model in ABAQUS predicts accurately the responses of the continuous and isolated slabs. The 

lateral restraints combined with the simple supports at the edges of the isolated specimen SB1 

(Continuous Model 1) increase the punching strength 68%, while the simple supports in the SB1 

slab with dimensions 1.5L (Continuous Model 2), increase the punching strength by about 50%. 

Thus, the obtained numerical results of the two continuous models show quite similar increase of 

the punching shear load. Due to the membrane action effect, the deflections of all simulated 

continuous specimens are smaller compared to the isolated simply supported slab. For that 

reason the continuous specimens show smaller crack widths and the crack patterns are 

concentrated around the area of the column and they are not spread to the edges of the slabs. 

Subsequently, the continuous slabs have higher punching shear strength. 
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The whole floor system analysis shows that the actual slab has 24% higher punching 

shear resistance compared to the strength of the isolated simply supported slabs. This punching 

shear strength is less than the one found for the continuous slabs. Therefore, the continuous 

models overestimate the compressive membrane action effect and its contribution to the 

punching shear strength.  

The current design provisions of punching shear do not consider the membrane action 

effect. Design provisions, tests and FEA of isolated slabs give safe predictions compared to the 

actual flat slabs. However, the design code accuracy could be enhanced if membrane action is 

considered. Finite element analyses done of isolated specimens can be extended using the 

appropriate dimensions and boundary conditions in order to simulate and analyze the same slabs 

as continuous. These results can be helpful in future code developments. The aforementioned 

conclusions suggest further studies, both numerical and experimental, to better examine and 

understand the membrane action effect in reinforced concrete slabs in order to apply it for code 

calibration.  
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Chapter 9  

Conclusions and Future Research 

9.1 Summary and Conclusions 

Although, the testing database for punching shear is huge; it does not always provide 

consistency of results and the code provisions that are based on empirical formulations arising 

from these tests, raise critical questions and issues. At this point, the finite element analysis 

(FEA) can be used in order to supplement the testing database and to investigate different aspects 

in the punching shear failure of the concrete slabs. However, the FEA models should be 

calibrated and only then can be properly used in the numerical simulations.  

The work presented in this dissertation investigates the capability of the proposed 

calibrated concrete damaged plasticity model for punching shear simulations of reinforced 

concrete slabs. The chosen concrete damaged plasticity model is calibrated based on selected 

tests from literature. Then, a further calibration of the model is done by analyzing a previously 

tested interior slab-column connection (SB1) which is considered as the control specimen for this 

research. Many material parameters are studied, among them, the dilation angle, the fracture 

energy and the damage variables. The mesh size sensitivity issue of the model is addressed. 

Mesh-dependence remedies even if the characteristic length and the viscoplastic regularization 

were considered. However, it is observed that the cracking propagation together with the load-

deflection response of the slab should be taken into consideration for the adoption of the proper 

mesh size. The accurate modelling of the support conditions according to the real test is also 
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performed. Neoprene supports are modelled in slab SB1 and solve the stiffer response issue that 

the simple supports show in the load-deflection response. Also, a detailed study using different 

types of 3D elements for modelling the concrete slab is presented. The C3D10M and C3D8R 

elements using neoprene supports provide the most accurate prediction for the crack pattern of 

the slab SB1. Accurate prediction is also given for the load-displacement response.  

Then, the calibrated concrete damaged plasticity model is validated for predicting the 

punching shear response of different types of slab-column connections without shear 

reinforcement. In particular, five different slab-column connections without shear reinforcement 

are simulated and analyzed in terms of ultimate load and crack patterns. The results of the 

analyses are compared to the test results and show good agreement. The presented analyses 

indicate that the proposed model could be used in future parametric studies on different aspects 

influencing punching shear in concrete slabs. Some limitations are observed in the case of the 

cyclic loading, due to the simplicity of the adoption of the perfect bond between concrete and 

reinforcement, where the hysteretic simulations in ABAQUS are not successful. The tests have 

shown pinching, denoting strength and stiffness degradation and low energy dissipation capacity. 

However, the FEA do not exhibit the pinching effect. In that case, monotonic analysis is 

performed and the numerical backbone curves are found to be in good agreement with the 

experimental punching shear load. 

The effectiveness of using the calibrated model in shear-reinforced slabs is also 

examined. Four interior slab-column connections are simulated and analyzed in terms of ultimate 

load, displacement and cracking propagation. The FEA results confirm beyond reasonable doubt 

the accuracy of the proposed model predicting the punching shear failure in concrete slabs with 

shear reinforcement. The modelling of the shear reinforcement (shear bolts) in ABAQUS is done 
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with beam elements, which are found to be appropriate to simulate the increase in the ultimate 

load and displacement of the tested slabs. A detailed novel modelling description of the punching 

shear reinforcement is offered. Investigation on using different modelling approaches for the 

shear bolt modelling is performed. These different proposed modelling approaches could be 

adopted and used in the analysis of any reinforced concrete slab. The activation of the shear bolts 

seems to be effective in FEA even if it starts earlier due to the perfect bond that is assumed in the 

numerical analyses. Code provisions and models are assessed in terms of ultimate load for the 

shear reinforced slabs and compared to the test and FEA results. ACI code presents the most 

conservative punching shear loads. However, both design codes (ACI and EC2) seem to 

underestimate the contribution of the amount of the shear reinforcement. In contrast, MC 2010 

and CSCT account for the contribution of the increased shear reinforcement. The two proposed 

shear reinforcement arrangements by the design codes are simulated and compared. The 

rectangular arrangement used by the ACI code is compared in terms of failure load and 

displacement with the radial arrangement used by the EC2. Radial arrangement in the FEA 

increases both failure load and deflection.  

The calibrated concrete damage plasticity model is also considered in simulations of slabs 

with openings. The results obtained from the parametric investigation regarding the influence of 

the size and location of the opening show that when the opening is located at a distance larger 

than 5d from the column the punching shear capacity of the slab remains almost the same as for 

the slab without openings. Regarding the effect of the size of the openings, the numerical studies 

show that after the distance 4d the size of the opening does not affect the response of the slab. 

The numerical results are compared with the code provisions and show that ACI gives 

conservative results. 
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The compressive membrane action effect in reinforced concrete slabs is also investigated. 

The calibrated concrete damaged plasticity model in ABAQUS predicts accurately the responses 

of continuous slabs. The lateral restraints combined with the simple supports at the edges of the 

isolated specimen SB1 (Continuous Model 1) increase the punching strength by 68%, while the 

simple supports in the SB1 slab with dimensions 1.5L (Continuous Model 2), increase the 

punching strength by about 50%. Due to the membrane action effect, the deflections of all 

simulated continuous specimens are smaller compared to the isolated simply supported slab. For 

that reason the continuous specimens show smaller crack widths and the crack patterns are 

concentrated around the column. Subsequently, the continuous slabs have higher punching shear 

strength. The whole floor system analysis show that the actual slab has 24% higher punching 

shear resistance compared to the strength of the isolated simply supported slabs. This punching 

shear strength is less than the one found for the continuous slabs. That conclusion indicates that 

the design codes are really conservative as they are based on isolated slabs. The real slab-column 

system has a punching shear resistance about 24% higher than this one that the isolated simply 

supported slab shows.  

In conclusion, it can be said that the calibrated concrete damaged plasticity model 

accurately predicts the punching shear strength of concrete slabs. All of the numerical analyses 

in this research are performed with the same calibrated concrete model and the results that they 

show are in good agreement with the experimental findings. Thus, the concrete damaged 

plasticity model can be used for parametric studies in order to provide useful information for 

future code modifications. 

 



220 

 

9.2 Directions for future research 

The calibrated concrete damaged plasticity model can be used in various parametric 

studies. Further investigation on the effect of the unbalanced moments on interior and edge slab-

column connections can be conducted. From the analyses presented in this thesis, the unbalanced 

moments were studied for the edge slab-column connections showing the decrease in punching 

shear capacity of the specimens. However, a parametric investigation can be performed in 

accordance with studies in the distribution and magnitude of the internal forces, which cannot be 

measured directly from the tests. The rigorous nonlinear finite element methods can account for 

cracking, crushing of concrete and yielding of reinforcement. Therefore, the internal forces at the 

critical section can be calculated and then the fraction of unbalanced moment transferred by 

shear eccentricity can be estimated.  

The opening effect can be studied on continuous slabs in order to evaluate the punching 

shear strength of slabs having openings after the lines of the contra-flexure. The numerical 

results will be compared with the code predictions. Code recommendations for the compressive 

membrane action effect and opening effect will be offered.  

The calibrated concrete damaged plasticity model can be used for simulations where the 

post-punching behaviour of the slabs will be examined. Reinforced concrete slabs without shear 

reinforcement and with different flexural reinforcement ratios and also flat slabs with shear 

reinforcement will be simulated and analyzed. Useful and important outcomes can be offered for 

the effectiveness of using different shear reinforcements and theirs influence in the post-

punching response of the slabs. Extended finite element analyses and studies can be considered 

for analyzing reinforced concrete slabs with different types of shear reinforcement. In this work 
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the simulation of the shear bolt system was presented. Stirrups, shear studs and shear heads can 

also be modeled in future nonlinear finite element analyses, in order to provide recommendations 

and guidelines for the numerical simulations of shear reinforced concrete slabs. Parametric 

studies should be performed examining the effect of the reinforcement ratio, the thickness of the 

slab, the shear reinforcement layout/amount and the column rectangularity. All of these 

parametric studies will propose verifications to the code provisions.  

Future work can explore the effectiveness of the proposed calibrated model in cyclic 

loading simulations of reinforced concrete slabs. The adoption of the appropriate damage 

parameters should be examined to simulate the stiffness recovery and the opening-closing effect 

of concrete. As it was noticed from the cyclic loading analyses in the interior slab-column 

specimens, the pinching effect was not captured in the load-deflection response. That problem 

could be solved with further investigation that will take into consideration the proper modelling 

of the bond between concrete and reinforcement. 

Special cases regarding non-typical slab-column connections, where the concentrated 

load or/and the column is located near a linear support, can be analyzed in FEA using the 

calibrated concrete model. The simulation slabs supported on long walls will also be analyzed in 

order to gain information about the cracking and the strains in both concrete and reinforcement.  
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