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Abstract

Recently, the growing demand of compact energy harvesters for wireless sensor networks
has lead to an increasing interest in exploring the energy harvesting capabilities of smart
materials. Smart materials are a category of transducer that is able to convert dynamic
structural deformations into electricity and vice versa. To investigate the feasibility and
the potential of small-scale smart material-based harvesters to obtain energy from ambient
fluid environments, interactions between a vortex ring and smart material structure are
examined. Vortex rings are a class of coherent structure that is common in nature and act
as a canonical representation of vortex structures.

Herein, two energy harvesting configurations are considered. First, energy transfer
from a passing vortex ring to a cantilevered plate, which is oriented parallel to and offset
from the vortex ring’s path, is modeled and optimized. The three-dimensional problem
is simplified to a two-dimensional problem using a novel method that maintains the load-
ing characteristics of the vortex ring. Two-dimensional Kirchhoff-Love plate theory and
two-dimensional potential flow theory are utilized to represent the solid and fluid, respec-
tively. The coupled fluid-structure model is solved simultaneously and validated against
published experimental data. Employing this analytical model, the optimization study
aims at locating the resonance frequency with respect to the change in fluid and structure
parameters. The dimensionless resonance frequency is established as a specific ratio be-
tween the plate’s fundamental frequency and vortex convective time-scale using a classical
moving point load analysis. The result of the optimization study provides a description
and empirical formulation of the shift in dimensionless frequency as a result of various fluid
and structure parameter adjustments.

In the second configuration, the energy harvesting potential of a vortex ring impacting
an ionic polymer composite (IPMC) annulus is examined experimentally. The annulus
is axis-symmetrically aligned with an incoming vortex ring that is generated by a pis-
ton/cylinder setup. The tip deflection of the annular energy harvester is measured with
a laser displacement sensor, while the cross-sectional flow field is measured with particle
imaging velocimetry and the electrical energy accumulated by the IPMC is estimated with
the short-circuit current output. The experimental results unveiled that the annulus is first
pulled by the vortex ring low pressure core, and then pushed upon impact. A secondary
vortex ring is observed convecting away from the annulus. It is possibly formed out of the
vortex induced vorticity at the annulus tip, while the incoming vortex ring is destroyed
at impact. The experimental result is found to be in good agreement with an analytical
solution.
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Nomenclature

Chapter 2 Nomenclature

Re Reynolds number [−]
Γr Vortex ring circulation [m2/s]
ar Vortex ring radius [m]
br Vortex ring core radius [m]
Vc Vortex ring/pair convection speed [m/s]
hr Initial distance from the vortex ring center axis to the

undeformed plate plane
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T Plate thickness [mm]
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x Cartesian coordinate x-axis [m]
y Cartesian coordinate y-axis [m]
z Cartesian coordinate z-axis [m]
t Time [s]
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% Plate mass density per unit volume [kg/m3]
δ Plate deflection [m]
B Plate bending stiffness per unit width [Nm]
M Plate mass per unit surface area [kg/m]
C Plate structural damping [Ns/m]
JpK Pressure difference between top and bottom of the plate [Pa]
L0 Length scale [m]
V0 Velocity scale [m/s]
t0 Time scale [s]
p0 Pressure scale [Pa]
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ρ Fluid density [kg/m3]
β Dimensionless plate bending stiffness [−]
µ Dimensionless plate mass [−]
η Dimensionless plate structural damping [−]
Γp Vortex pair circulation [m2/s]
ap Vortex pair vortices initial separation distance [m]
hp Initial distance from the vortex pair midpoint to the undeformed

plate plane
[m]

ζ Complex coordinate [−]
w Complex velocity [m/s]
i Imaginary number [−]
ζ1 Vortex pair top vortex complex position [m]
ζ2 Vortex pair bottom vortex complex position [m]
Λ Dimensionless vortex pair vortices initial separation distance [−]
γ Plate vortex sheet vorticity distribution [m/s]
x0 Vortex pair initial x-axis locaiton [m]
H Dimensionless initial distance from the vortex pair midpoint to

the undeformed plate plane
[−]

ur Vortex ring axial velocity [m/s]
vr Vortex ring radial velocity [m/s]
Y Vortex ring Biot-Savart law constant [−]
Hr Dimensionless initial distance from the vortex ring center axis to

the undeformed plate plane
[−]

A Vortex ring Biot-Savart law constant [−]
B Vortex ring Biot-Savart law constant [−]
C Vortex ring Biot-Savart law constant [−]
Λr Dimensionless vortex ring vortices initial separation distance [−]
λ Vortex ring Biot-Savart law constant [−]
I1 Vortex ring Biot-Savart law constant [−]
I2 Vortex ring Biot-Savart law constant [−]
K Complete elliptic integral of the first kind [−]
E Complete elliptic integral of the second kind [−]
up Vortex pair axial velocity [m/s]
vp Vortex pair radial velocity [m/s]
Λp Dimensionless vortex pair vortices initial separation distance [−]
Hp Dimensionless initial distance from the vortex pair midpoint to

the undeformed plate plane
[−]

pr Vortex ring pressure [Pa]

xi



pp Vortex pair pressure [Pa]
U Conversion constant [−]
F Conversion constant [−]
f Net force per unit width [N/m]
E Plate energy [J ]
ωp Characteristic frequency of the pressure loading [rad/s]
ωres

i Resonance frequency of ith vibration mode of the plate [rad/s]
Ω Dimensionless natural frequency of the 1st vibration mode of the

plate
[−]
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r Cylindrical coordinate radial axis [−]
θ Cylindrical coordinate azimuthal axis [−]
x Cylindrical coordinate longitudinal axis [−]
ai Initial vortex ring core radius [mm]
a Vortex ring core radius [mm]
Ri Initial vortex ring radius [mm]
R Vortex ring radius [mm]
Γ Vortex ring circulation [mm2/s]
h Annulus thickness [mm]
Ro Annulus outer radius [mm]
Ri Annulus inner radius [mm]
t Time [s]
ξ Distance between the vortex ring and the annulus [mm]
δ Annulus deflection [mm]
ρ Ionic polymer-metal composite mass density per unit volume [kg/m3]
D Ionic polymer-metal composite bending stiffness [Nm2]
JpK Total pressure difference across the annulus [Pa]
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Chapter 1

Introduction

Research interest in the development of small-scale energy harvesting methods is primarily

motivated by the advancements in ultra low power electronic designs that allow miniature

wireless sensor nodes to be powered by built-in energy scavengers. One particular interest-

ing subset of small scale energy harvesting involves extracting energy directly from fluid

motion around the harvester via fluid-structure interactions (FSI). Due to the modeling

complexity of this multi-physics phenomena, it is difficult to optimize the harvester to meet

the demanding requirements of the current state-of-the-art wireless node. The aim of this

thesis is to examine analytically and experimentally the interaction between a highly de-

formable material and a single vortex ring. This simplified scenario provides insights into

the multi-physics coupling and vortex dynamics that can inform the design of small-scale

fluidic energy harvesters for use in more complex flow environments.
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1.1 Small Scale Energy Harvesting

For an overview of small scale energy harvesting as a potential source for powering re-

mote wireless sensor networks, the current state of wireless sensor nodes, smart material

harvesters, and ambient energy harvesting techniques from fluid environments are briefly

described in the following sections.

1.1.1 Wireless Sensor Network

Wireless sensor networks (WSN) have become a reality due, in part, to modern advance-

ments in integrated circuit (IC) designs and complementary metal-oxide-semiconductor

(CMOS) processes. These advances are making many exciting applications possible in the

near future, such as environmental monitoring and ambient intelligence [1]. Each node

in the network is a self-contained unit capable of wireless sensing, communication, and

computation. These nodes work in a dense ad-hoc network with a transmission range of

10 meters for each node [2]. Comparing to the rest of the powering solutions for WSN,

mainly, battery and wireless power transmission, the built-in energy scavenger is the most

attractive option. For the battery option, the limited energy storage capacity determines

the lifetime of a node and battery replacement costs would be enormous for a massive

WSN deployment, whereas a self-sustaining node eliminates such concerns [3]. For the

wireless power transmission using radio frequency (RF) radiation, Federal Communica-

tions Commission (FCC) and health concerns limit the amount power that is allowed to

be transmitted [3]. In the past decade, a few prototypes of wireless sensor nodes have

been successfully developed. A University of California Berkeley research group developed
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a wireless node called PicoCube for monitoring vehicle tire pressure [4]. It has a volume

of 1 cm3, an average power consumption of 6 µW, and is powered by a vibration-based

energy harvester made out of dielectric elastomers. A research group at the University of

Michigan developed a mm3-scale wireless intraocular pressure monitor powered by a solar

cell that harvests light entering the eye, which provides up to 80.6 nW and only requires 1.5

hours of sunlight or 10 hours of indoor lighting per day to operate [5]. NNT Corporation

in Japan developed a 1 cm3 event-driven wireless node that only requires 8 µJ to send

36-bit data per event using energy stored in its capacitor, which is harvested from a solar

source [6]. The GENESI project lead by the University of Rome La Sapienza developed a

hybrid energy supply for structural health monitoring WSN [7]. The power supply consists

of a 800mAh battery, a fuel cell, a solar energy harvester and a wind energy harvesting

component. It can achieve a sampling rate of 0.75% duty cycle using energy harvesters

only, and 1.5% duty cycle with the help of the fuel cell. As these successes highlight, there

is considerable promise for small-scale electronic devices that can be powered via energy

extraction from the local environment; this is still, however, a relatively new and immature

field that requires continuing efforts from the research community to improve the design

of each level of the system, including exploration of alternative energy harvesting methods

and modalities.

1.1.2 Smart Material-Based Harvesters

Despite the advantages of self-powered wireless sensors, there are also significant challenges

when it comes to the design of the energy scavenging unit. Unlike other designs, the self-
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powered design is highly dependent on the surrounding environment and the vast variety

of energy sources, which includes mechanical vibrations, thermal gradients, fluid flow, and

solar power [8]. Each scenario requires detailed study to facilitate harvester design and

optimization, which leads to the large, interdisciplinary research and development effort

on the topic of energy harvesting.

The present study focuses on energy harvesting from fluid sources using a subset of

electromechanical transducers, commonly referred as the smart materials. They are high

deformable materials that required time-dependent forcing from the fluid sources to gen-

erate electrical power. Piezoelectrics and ionic polymer-metal composite (IPMC) are two

popular choices of such transducers. Piezoelectrics are materials that exhibit direct and

converse piezoelectric effects. In short, the direct piezoelectric effect is an accumulation of

electrical charges at the electrodes when the material is subjected to the dynamic mechan-

ical strain; the converse piezoelectric effect is the mechanical deformation experienced by

the material when a voltage is applied to the electrodes [9]. The direct piezoelectric effect

is the principal mechanism for energy harvesting applications; however, due to voltage

feedback, the converse piezoelectric effect is still taking place when the material is used for

purely sensing purposes. In other words, piezoelectric materials have a strong bidirectional

electromechanical coupling, and it must be considered in the modeling for energy harvest-

ing applications [10, 11]. Design of a piezoelectric energy harvester commonly consists of

piezoelectric patches attached to one (unimorph) or both (bimorph) sides of a deformable

host beam [10]. Common options of piezoelectric materials are lead zirconate titanate

(PZT) and polyvinylidene difluoride (PVDF) [12]. Figure 1.1a shows a cantilevered bi-

morph Piezoelectric energy harvester design. Piezoelectric patches are glued to both sides

4



(a) (b)

Figure 1.1: Schematic of a bimorph Piezoelectric energy harvester (a) in undeflected state,
and (b) in deflected state. The host plate is colored in black, resistive load is colored in
green, and arrows indicates piezoelectric material poling direction. Unstrained piezoelectric
patch is colored in grey in (a), and the blue and red colors of the piezoelectric patch in (b)
indicate opposite signs of strain encountered by the patch.

of a host plate with opposite poling directions connected in a series. A resistive load is

commonly used to estimate the energy harvesting potential. When the harvester sustains

deflection, the patches are mechanically strained with opposite sign, indicated by the blue

and red colors in Figure 1.1b, thus needing opposite poling directions for a series electrical

connection. On the other hand, IPMCs are a type of electroactive ion-infused polymer [13].

It is capable of two-way electromechanical coupling that resembles piezoelectric materials.

A schematic of an IPMC energy harvester setup is shown in Figure 1.2. Energy harvesting

capability is estimated from short circuit current produced by the IPMC using an inverting

operational amplifier [14–18]. The structure of an IPMC consists of 5 layers. The center

layer is the electrically charged polymer (grey region in Figure 1.2) commonly made out
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(a) (b)

Figure 1.2: Schematic of an IPMC energy harvester setup (a) in undeflected state, and (b)
in deflected state. The electrodes are colored in black, electroactive polymer is colored in
grey, mobile ions are colored in red, and measurement circuit is colored in green.

of Nafion 117, and it is neutralized by mobile ions (red dots in Figure 1.2); the outer

layers are electrodes commonly made out of Platinum (black region in Figure 1.2); the

layer between electrode layer and the polymer is a composite layer consisting of a mixture

of both platinum and polymer (not shown in Figure 1.2) [13, 19, 20]. Note that IPMC

energy harvester does not require a host plate. Electrical sensing occurs when the mobile

ions in the polymer membrane are redistributed by mechanical deformation, as shown in

Figure 1.2b, which leads to charge accumulation near the electrodes [13, 19, 20]. When

the mobile ions are redistributed by an electric field generated by a voltage difference ap-

plied to the electrodes, a number of concurrent microscopic events occurs that result in

mechanical deformation [13, 19, 20]. Unlike piezoelectric materials, IPMCs have a much

weaker electromechanical coupling coefficient. In the application of energy harvesting, its
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electrical to mechanical feedback is negligible [14,16,20]. For the remainder of the thesis, a

weak electromechanical coupling is assumed; this allows the simplification of the three-way

electrical-mechanical-fluidic coupling and purely focus on the dynamics of FSI.

1.1.3 Ambient Fluidic Energy Harvesting

Fluidic energy is one of the major source of green energy, which provides 3619 TWh and

501 TWh world-wide in 2012 from hydro and wind, respectively [21]. The current study

focuses on small-scale ambient fluidic energy harvesting methods that utilize fluid-induced

vibration on highly deformable smart materials, due to its advantage of compactness and

simple construction. The working principles of the fluid induced vibrations methods have

three main categories: vortex induced vibration (VIV), aeroelasticity, and turbulent in-

duced vibration (TIV).

1.1.3.1 Vortex Induced Vibration

VIV makes use of the alternating pressure loading generated by passing vortices. The most

popular option is the Kármán vortex street behind a bluff body in a free stream. Taylor et

al. placed a cantilevered soft PVDF piezoelectric strip behind a plate with the tip pointing

away from the body and demonstrated a capability of producing 1 W with a 1 m/s flow

rate in water [22]. Bischur et al. developed a similar harvesting configuration, but using a

more rigid PZT piezoelectric material that is able to harvest 2 mW from an 8 m/s flow in a

wind channel [23]. Gao et al. demonstrated that a PZT unimorph cantilevered plate with

a cylindrical extension can harvest up to 30 µW from a 5 m/s wind speed fan [24]. Akaydin
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et al. investigated a configuration, where the cantilevered plate is behind a cylinder with

its free end pointing at the cylinder, that is able to provide up to 4 µW from a 7.23 m/s

free stream [25]. They also examined a self-exciting energy harvester with a cantilevered

plate that has a cylindrical tip; it can generate 0.1 mW from a 1.192 m/s free stream.

However, the performance of VIV from the wake of a bluff body is significantly impacted

by highly turbulent free streams [26].

1.1.3.2 Aeroelasticity

Galloping is a type of self-excited aeroelastic phenomenon that has low frequency and

large magnitude oscillations normal to the free stream [27]. The energy harvesters utiliz-

ing galloping motion have similar designs to some of the VIV energy harvesters, usually

consisting of a cantilevered plate with a non-circular tip or extension. Sirohi et al. used

a PZT bimorph cantilevered plate with a D-section extension to get a maximum output

of 1.14 mW from a 4.7 m/s wind [27], and with a triangle-section tip to get a maximum

output of 53 mW from a 5.2 m/s wind [28]. Yang et al. harvested 8.4 mW from a 2.5 m/s

wind using a PZT bimorph cantilevered plate with a square-section tip [29]. Fluttering

is also a type of self-excited aeroelastic phenomenon that commonly occurs in a flapping

flag motion. Li et al. achieved 615 µW using cross-flow fluttering with a cantilevered

PVDF plate [30]. Giacomello et al. harvested 0.1 nW from a heavy flapping flag that

hosted small IPMC strips placed in a steady water channel with flow rate in the range of

0.6− 1.1 m/s [31]. Michelin et al. optimized energy harvesting with a flapping flag using

Lighthill’s theory [32].
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1.1.3.3 Turbulent Induced Vibration

Turbulent flow is the most common fluid flow state in nature, but TIV harvesting is the

hardest to study due to its randomness and the complex vortex-structure interactions.

Akaydin et al. investigated energy harvesting from a turbulent boundary layer using the

same cantilevered piezoelectric plate employed in the study of harvesting behind a cylinder.

They managed an output of 0.06 µW, which is significantly lower compared to the cylinder

case of 4 µW [25]. Hobeck et al. harvested 1 mW per cantilever with an 11.5 m/s mean

flow rate and 1.2 µW with 7 m/s mean flow rate, using a series of PZT and PVDF strips,

respectively [33].

The fluid to structure energy transfer efficiency of these harvesters still have room to

improve. Out of the three discussed methods, VIV and TIV are difficult to analyze and

optimize due to the fluid-structure coupling and the strong viscous effects that occur in

many cases. Thus, it is instructive to examine the detailed interaction process with a single

vortex filament to inform the design of VIV harvesters and provide some insights into more

complex vortex-structure interactions for TIV harvesters.

1.2 Vortex-Structure Interaction

To investigate the vortex dynamics and fluid-structural coupling of the interaction between

a single vortex filament and a highly deformable structure, vortex rings are utilized in

the present study. An overview of vortex rings and recent studies of vortex-structural

interaction are briefly described in the following sections.
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1.2.1 Vortex Rings

Vortex rings are a class of self-convecting coherent fluid structures commonly found in

nature. For instance, vortex rings are formed during the discharge of blood in the human

heart [34], as a result of a flapping fish tail [35] and the initiation of an impulsively started

jet. In addition to their ubiquity in nature, vortex rings serve as a fundamental element in

the general study of vortex dynamics due to their amenability to analytical exploration, and

the ease with which they can be generated experimentally. Their formation process [36–40]

and dynamics [41–46] are well documented. They also have been studied extensively for

vortex dynamics [47–55], instabilities [56–58], turbulence [59–63], and interactions with

rigid structures [64–70].

(a) (b)

Figure 1.3: Laminar thin core vortex ring (a) cross-section flow visualization and (b) its
structure shown with respect to the moving frame at the center of the vortex ring.

The type of vortex rings employed in the present study is laminar thin core vortex
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rings, see Figure 1.3a. Its structure, as shown in Figure 1.3b, consists of a toroidal vortex

core inside of a vortex atmosphere, and it moves through an otherwise quiescent fluid

environment at convection speed Vc. The inside of the vortex atmosphere is a closed

volume of fluid that circulates the vortex core [71]. Its vorticity distribution is in the form

of a Gaussian distribution with the maximum vorticity at the center of the core and a net

circulation of Γr [71]. The core region is commonly defined as the area that encompasses

about half of the total vorticity [71]. The flow field outside of the vortex atmosphere

can be calculated using potential flow as a moving ellipsoid. The primary parameters that

determines the dynamic properties are ring radius ar, core radius br, and circulation Γr [71].

The thin core notion refers to vortex rings that have a low core to ring radius br/ar [43].

The advantage for this study of having a thin core is that it is relatively easy to analyze

and model due to its concentrated vorticity field. Additionally, potential flow methods can

resolve the thin core vortex ring’s flow field without difficulty, except within the vortex

core.

1.2.2 Vortex-Deformable Structure Interaction

Recently, there have been a few studies that have employed vortex rings as the energy

source for small-scale energy harvesting. Peterson and Porfiri examined the direct impact

of a vortex ring with a cantilevered IPMC and found that 0.2−1.5 nJ can be acquired from

the impact of a vortex ring with energy in the range of 7 − 18 mJ. They also concluded

that the interaction is split into two stages of far-field and near-field. In the far-field phase,

the plate is slowly deflected as the vortex ring approaches; then, in the near-field phase, as
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the vortex ring reaches the plate, there is a sudden increase in the plate deflection while

the vortex ring impacts and subsequently breaks down [72]. They further examined the

interaction by modeling it with a potential flow method in a two-dimensional setting, and

found that the energy transferred to the plate increases with increasing vortex circulation

and decreasing plate to fluid inertia ratio [73]. Furthermore, they modelled the interaction

numerically in two-dimensions with a vortex dipole impacting the tip of a semi-infinite plate

to examine the vortex dynamics in the presence of viscosity, and discovered that the plate

split the dipole into two portions, where one portion interacted with vorticity generated

along the plate, and the other portion interacted with vorticity shed from the tip [74].

Lastly, Zivkov et al. examined a vortex dipole impacting the tip of a deformable plate,

and discovered that maximum deflection is not significantly effected by the vortex dipole’s

Reynolds number, but the subsequent response varies with the Reynolds number [75].

Goushcha et al. investigated the cases where a single or multiple vortex rings passed

by a cantilevered deformable plate oriented parallel to the vortex ring’s path. They found

that the passing vortex ring first pushes on the plate as it approaches, then pulls on the

plate as the low-pressure vortex core passes over the plate. They also observed an increase

in the deflection by matching the fundamental frequency of the plate with the interval

between the subsequent vortex rings in a train [76].

Alben examined the inviscid interaction between a point vortex and a deformable sur-

face that is either an infinite straight line or a circle [77]. He found that the deformation

of the infinite straight line surface enhances the flow at the surface and accelerates the

vortex. He further found that there is a mutual amplification between the deflection and

force induced by the deflection as the vortex approaches the circular surface. Alben later
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investigated the attraction between a finite deformable flexible plate and a point vortex

in an inviscid fluid [78]. He found that in the vicinity of a vortex, the deformable plate

is pulled toward the vortex, due to the low pressure of the vortex core, resulting in a col-

lision, unlike a rigid plate, where the vortex stays in a stable orbit. To the best of the

author’s knowledge, the studies mentioned above are the only studies that aim to address

the coupling behaviours and vortex dynamics of the interaction between a deformable plate

and vortices; thus there is a need for further understanding of the complex interaction to

optimize the energy harvesters.

1.3 Study Objectives

The present study focuses on unitize vortex rings to further investigate vortex-deformable

structure interactions and to address the following specific research objectives:

1. analytically examine and optimize the energy transfer of the harvesting experiment

by Goushcha et al. [76] where a single vortex ring passes by a cantilevered deformable

plate

2. experimentally examine the vortex dynamics and energy harvesting capability of a

vortex ring coaxially impacting deformable annular disk.
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1.4 Thesis Overview

The thesis is organized as follows: Chapter 2 analytically studies and optimizes the fluid to

structure energy transfer of the configuration introduced by Goushcha et al. [76], using a

fully coupled two-dimensional fluid-structure potential flow method proposed by Peterson

and Porfiri [73]. Chapter 3 reports on the experimental investigation of the energy har-

vesting capability of impacting a vortex ring to an IPMC annular disk. Finally, concluding

remarks and recommendations are discussed in Chapters 5 and 6, respectively.
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Chapter 2

Energy transfer between a passing

vortex ring and a flexible plate in an

ideal quiescent fluid 1

In a timely experimental study conducted by Goushcha et al. [76], the energy harvesting

potential of single and multiple vortex rings passing by a cantilevered plate oriented parallel

to, and offset from the vortex ring trajectory was explored. The vortex ring was generated

by a speaker/cylinder setup in otherwise stagnant air, and it interacted with a flexible

cantilevered polycarbonate plate. The strain at the clamped edge was measured via a

small strain gauge, and time-resolved particle image velocimetry (PIV) was used to obtain

information about the flow kinematics. The pressure loading on the plate was subsequently

1The contents of this chapter is published in the Journal of Applied Physics [79]. Professor Sean D.
Peterson and Professor Maurizio Porfiri provided feedback and direction throughout the project.
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inferred from the flow kinematics using both control volume and direct integration methods.

The structural vibration of the cantilevered plate was found to be influenced by the pressure

fluctuation caused by the passing vortex ring. Subsequent rings could be timed such that

they either enhanced or mitigated the vibration amplitude of the beam, which is related

to the energy harvesting potential of the configuration.

In this chapter, we model the energy harvesting configuration introduced and explored

experimentally by Goushcha et al. [76] using a two dimensional potential flow model [73].

Specifically, the interaction between a single vortex pair and a cantilevered deformable plate

in an otherwise quiescent ideal fluid is proposed as a template for performing optimization

studies on the vortex-deformable structural energy transfer in which viscous fluid forces

are negligible, in pursuit of maximizing the energy scavenger’s harvesting potential. This

paper is organized as follows: the problem is formulated and the potential flow model is

introduced in §2.1; a scheme to proxy a vortex ring through a vortex pair is developed in

§2.2; the model is validated against published experimental data in §2.3; and optimization

of the energy transfer based upon the analytical is model is presented in §2.4.

2.1 Problem Formulation

Here, we analytically explore the problem addressed experimentally by Goushcha et al. [76]

of a vortex ring passing over a cantilevered plate oriented parallel to, and offset from, the

path of a vortex ring in an otherwise quiescent fluid, see Figure 2.1a. The vortex ring

has ring diameter ar, core diameter br, circulation Γr, initial distance of the ring center

axis to the plane of the undeformed plate hr, and initial convection speed Vc. A Cartesian
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coordinate system is defined at the geometric center of the plate, with x oriented along

the plate pointing from the fixed to the free end, y oriented normal to the plate in the

undeformed state and pointing towards the vortex ring, and z forming a standard right-

handed coordinate system, see Figure 2.1a. The plate has length L, width W , and thickness

T , and is clamped at x = −L/2.

(a) (b)

Figure 2.1: (a) Schematic of the experiment performed by Goushcha et al. [76] of a vortex
ring passing over a cantilevered plate; and (b) two-dimensional vortex pair-based represen-
tation of the experiment.

We assume that viscous dissipation of the vortex core while passing over the plate is

negligible, due to the short interaction time of the ring with the plate; thus, the circulation

Γr is assumed to be constant throughout the interaction. We further assume that the

vortex ring core diameter br is small in comparison with its overall diameter ar [43], and

the plate and the vortex ring are sufficiently far away from one another such that the

interaction between the vortex core and the induced vorticity on the plate is negligible.
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With these assumptions, the surrounding fluid is modeled as incompressible, inviscid, and

irrotational, except in the core of the vortex ring. We hypothesize that the plate length

is much larger than its thickness and that the plate vibration is of small amplitude and

confined to the xy-plane. The effective Young’s modulus of the plate and the mass density

per unit volume are Υ and %, respectively. As such, the plate is modeled as a Kirchhoff-

Love plate [80] undergoing cylindrical bending in response to the applied fluid loading. The

structural damping of the plate is captured using a distributed viscous damping model [81].

The governing equation for the plate dynamics is

Mδ̈(x, t) + Cδ̇(x, t) +BδIV(x, t) = −JpK(x, t) (2.1)

where δ is the plate deflection, B = ΥT 3/12 is the plate bending stiffness, M = %T

is the plate mass per unit surface area, C quantifies the structural damping, and JpK is

the pressure difference between the top (positive y-plane) and bottom (negative y-plane)

of the plate due to the fluid. The roman numeral indicates the order of differentiation

with respect to x, while a dot indicates differentiation with respect to time t. The initial

conditions for the plate are δ(x, 0) = δ̇(x, 0) = 0, while the fixed-free boundary conditions

are δ(−L/2, t) = δI(−L/2, t) = δII(L/2, t) = δIII(L/2, t) = 0. We note that Equation

(2.1) only applies to weakly electromechanically coupled harvesters, such as ionic polymer

metal composites [16,82,83]. Materials with stronger coupling, such as piezoelectrics, would

require taking into consideration bidirectional effects, whereby the electrical response would

directly influence the mechanical deformation, and vice versa [10,11].

Employing L0 = L/2 as the length scale, V0 = Vc as the velocity scale, t0 = L0/V0 as
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the time scale, and p0 = ρV 2
0 as the pressure scale, where ρ is the fluid density, Equation

(2.1) can be expressed in dimensionless form as

µ
¨̂
δ(x̂, t̂) + η

˙̂
δ(x̂, t̂) + βδ̂IV(x̂, t̂) = −Jp̂K(x̂, t̂) (2.2)

where β = B/(ρV 2
0 L

3
0) is the ratio of the plate restoring force to the applied fluid loading,

µ = M/(ρL0) is the plate mass to fluid mass ratio, and η = C/(ρV0) relates the structural

damping to the applied fluid loading. A hat over a variable indicates that it is dimen-

sionless. The dimensionless initial and boundary conditions are δ̂(x̂, 0) =
˙̂
δ(x̂, 0) = 0 and

δ̂(−1, t̂) = δ̂I(−1, t̂) = δ̂II(1, t̂) = δ̂III(1, t̂) = 0, respectively.

In order to gain analytical traction on the vortex ring/plate interaction problem de-

picted in Figure 2.1a, we recast the three-dimensional problem into a two-dimensional

analog by assuming that the diameter of the vortex ring ar is much larger than the width

of the plate W . Under this assumption, the vortex ring curvature in the vicinity of the

plate is small. Furthermore, we neglect three-dimensional effects along the edges of the

plate. A schematic of the two-dimensional model is presented in Figure 2.1b. In two-

dimensions, the vortex ring is represented by a pair of counter-rotating free vortices with

initial separation, convection speed, and circulation of ap, Vc, and Γp, respectively. The

midpoint between the pair is initially at a distance hp from the plane of the undeflected

plate. We note that the convection speeds of both the vortex ring and pair are denoted by

the same variable, Vc, which will be discussed in §2.2. For the remainder of the manuscript,

the subscript r will denote vortex ring properties, while a subscript p will be employed to

denote properties of the vortex pair.
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For convenience, we introduce the complex coordinate ζ = x + iy and the complex

velocity w = u− iv, where u and v are the velocity components in the respective x and y

directions, and i =
√
−1. The positions of the two vorticies in the vortex pair are given by

ζ1 and ζ2, respectively, see Figure 2.1b. Following Peterson and Porfiri [73], the velocity

field at any location ζ in the domain at given time t in non-dimensional form is

ŵ(ζ̂ , t̂) =
i

2π

2πΛ

(
1

ζ̂ − ζ̂1(t̂)
− 1

ζ̂ − ζ̂2(t̂)

)
−

1∫
−1

γ̂(α, t̂)

ẑ − α
dα

 (2.3)

where Λ = ap/L0. The first term on the right hand side of Equation (2.3) is the contribution

from the vortex pair, while the second term is the velocity induced by a bounded vortex

sheet whose vorticity distribution is given by γ̂(α, t̂), which represents the plate in the

fluid domain. We note that the relationship between the vortex circulation and the pair

convection speed, Vc = Γp/(2πap), is employed in the derivation and subsequent non-

dimensionalization of Equation (2.3), see Ref. [73].

The kinematics of each vortex in the pair is governed by the desingularized velocity [84]

at each respective vortex center as

˙̂
ζ1(t̂) = Conj

 i

2π

− 2πΛ

ζ̂1(t̂)− ζ̂2(t̂)
−

1∫
−1

γ̂(α, t̂)

ζ̂1(t̂)− α
dα

 (2.4a)

˙̂
ζ2(t̂) = Conj

 i

2π

 2πΛ

ζ̂2(t̂)− ζ̂1(t̂)
−

1∫
−1

γ̂(α, t̂)

ζ̂2(t̂)− α
dα

 (2.4b)

where Conj(·) represents complex conjugation, and
˙̂
ζ1 and

˙̂
ζ2 are the velocities of vortex 1
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and 2, respectively, see Figure 2.1b. The initial vortex positions are ζ̂1(0) = x̂0 +i(H+Λ/2)

and ζ̂2(0) = x̂0 + i(H − Λ/2), where H = hp/L0, and x̂0 is the initial x location.

The vortex sheet has an initial vorticity distribution γ̂(x̂, 0) = 0, and according to

Kelvin’s circulation theorem [85], at all subsequent times the vorticity distribution must

satisfy
1∫

−1

γ̂(α, t̂) dα = 0. (2.5)

The boundary conditions on the fluid are that the fluid is at rest with zero pressure at

infinity and the velocity component normal to the plate is equal to the plate velocity.

The first boundary condition is automatically satisfied by Equation (2.3), while the second

boundary condition [73] yields

1

2π
−

1∫
−1

γ̂(α, t̂)

x̂− α
dα =

˙̂
δ(x̂, t̂) + Λ<

{
1

x̂− ζ̂1(t̂)
− 1

x̂− ζ̂2(t̂)

}
(2.6)

where −
∫

(·) is Cauchy’s principal value integral and <(·) is the real part of the complex

variable. The pressure difference induced by the fluid across the plate can be computed

using unsteady Bernoulli’s equation [86] as

Jp̂K(x̂, t̂) =

x̂∫
0

˙̂γ(α, t̂)dα + γ̂(x̂, t̂)<{Conj[ŵ(x̂, t̂)]}. (2.7)

The fluid and structure models are solved simultaneously as outlined by Peterson and

Porfiri [73]. Briefly, the plate shape is projected onto a basis set of Chebyshev polynomials,

which facilitate solution of Equation (2.6) for the plate vorticity distribution. Combining

21



Equations (2.3) and (2.7), the pressure distribution is then substituted into Equation (2.2)

to solve for the plate motion. The vortices are advected via Equation set (2.4). This system

of equations is integrated in time to determine the overall system dynamics.

2.2 Vortex ring to vortex pair conversion

Due to the topological differences between a vortex ring, with its looping core, and a

two-dimensional vortex pair, with their infinitely long vortex line cores, the velocity and

associated pressure fields induced by these fluid structures differ considerably. As such,

a vortex ring cannot simply be represented by a vortex pair with identical geometric and

kinematic parameters. To encapsulate the salient physics of the fluid-structure interaction,

we propose a vortex ring to vortex pair conversion scheme that matches the pressure loading

time scale and magnitude on the plate.

The pressure loading time scale is matched between the potential flow model and the

experiment by ensuring that the vortex ring and the vortex pair pass the plate at the same

rate; that is, the pair and ring must have equal initial convection speed Vc. Note that we

are implicitly assuming that the ring and pair convection speeds do not vary significantly

during the interaction with the plate, as it is not expected that the influence of the plate

on the ring speed would necessarily be the same as that for the vortex pair. Since the

convection speeds in both cases are equated, the non-dimensonalization scheme introduced

in §2.1 applies to both the ring and the pair, with the plate dynamics parameters µ, β,

and η remaining unaltered after the conversion from the experimental configuration to the

two-dimensional potential flow representation. With the plate dynamics unaffected by the
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conversion, only the vortex pair geometric parameters Λ and H are impacted.

To match the pressure loading magnitude, we first simplify the problem by neglecting

the influence of the plate on the fluid. This assumption effectively reduces the matching to

a steady state relationship between the pressure distribution at the plane of the undeflected

plate in the reference frame of the moving ring/pair. This also neglects the pressure at the

back of the plate, which is primarily associated with the plate’s movement. Since the plate

vibrates in a similar manner as the ring/pair applies similar pressure loading, the differences

in the pressure on the back of the plate should be small between the two cases; thus, the

pressure loading on the back of the plate may be ignored as a first order approximation.

For simplicity, we employ the same coordinate system as depicted in Figure 2.1a at the

instant when the vortex ring/pair is passing through the xz-plane.

We begin with a model for an axisymmetric vortex ring with infinitesimal core thickness

in an ideal fluid. The axial and radial velocity components ûr and v̂r at the plane of the

plate (y = 0) induced by the ring can be expressed using the Biot-Savart law [87] in

dimensionless form as

ûr(x̂, ẑ) =
ΛrΓ̂r

8π

[(
Λr

2
+ Y
A
B

)
I2 −

Y

B
I1

]
(2.8a)

v̂r(x̂, ẑ) =
ΛrΓ̂r

8π

(
x̂

B

)
(I1 −AI2) (2.8b)
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where

Y =
√
ẑ2 +H2

r (2.8c)

A = x̂2 + Y 2 + Λ2
r/4 (2.8d)

B = −ΛrY (2.8e)

C =
√
x̂2 + (Y + Λr/2)2 (2.8f)

λ = 2ΛrY/C2 (2.8g)

I1 =
4

C
K(λ) (2.8h)

I2 =
4

C3

E(λ)

1− λ
(2.8i)

and Γ̂r = Γr/V0L0 is the dimensionless circulation for the vortex ring. K(λ) and E(λ)

represent complete elliptic integrals of the first and second kind, respectively. Similarly, to

obtain the steady state Cartesian velocity components ûp and v̂p at the plane of the plate

for an analogous vortex pair, we rewrite Equation (2.3), without the vortex sheet, as

ûp(x̂) = Λp

[
Λp/2−Hp

x̂2 + (Λp/2−Hp)2
+

Λp/2 +Hp

(x̂2 + Λp/2 +Hp)2

]
(2.9a)

v̂p(x̂) = Λp

[
x̂

x̂2 + (Λp/2−Hp)2
− x̂

x̂2 + (Λp/2 +Hp)2

]
(2.9b)

We note that while ûr and v̂r correspond to cylindrical velocity components of the ring

(azimuthal and radial components, respectively) and ûp and v̂p are Cartesian velocity

components of the pair (in the x and y directions, respectively), the components are aligned

when z = 0, corresponding to the centerline of the plate. In what follows, we often refer

24



to these components as û and v̂ for both models.

The pressure field at the plane of the plate due to the vortex ring p̂r(x̂, ẑ) and pair

p̂p(x̂) can be obtained from the steady state Bernoulli’s equation,

p̂r(x̂, ẑ) = −1

2

[
û2

r (x̂, ẑ) + v̂2
r (x̂, ẑ)

]
(2.10a)

p̂p(x̂) = −1

2

[
û2

p(x̂) + v̂2
p(x̂)

]
(2.10b)

Note that in obtaining Equation (2.10) we have assumed that the pressure and velocity of

the fluid both vanish to zero in the far field. An exact match of the pressure profile is not

expected; however, we find that the pressure profiles at the plane of the plate (along the x

axis) have similar bell curve-like profiles for both the ring and the pair, which enables the

determination of an optimal match by requiring the two profiles to have equal peak and

integrated values along the plane the plate.

To match the peak pressure value, which occurs directly beneath the ring/pair at x̂ = 0,

we set

p̂p(0)− 2

Ŵ

Ŵ/2∫
0

p̂r(0, ẑ) dẑ = 0 (2.11)

where Ŵ = W/L0. The integral is the average pressure across the width of the plate,

which accounts for variations in the pressure due to the vortex ring curvature in the ẑ

direction, see Figure 2.1a. By noting that only the û component of the velocity exists

at x̂ = 0 for both the ring and the pair, substitution of Equations (2.9a) and (2.8a) into
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Equation (2.10), and subsequent substitution into Equation (2.11) yields

Hp =

(
1

4
− 1

U

) 1
2

Λp (2.12a)

where

U =
2

Ŵ

Ŵ/2∫
0

ûr(0, ẑ) dẑ. (2.12b)

Equation (2.12) provides a relationship between the vortex pair geometric parameters

(spacing between the vortices, Λp, and distance of the pair from the plate, Hp) and the

vortex ring parameters, which are encapsulated in U .

An additional relationship is required to solve for Λp and Hp in terms of the vortex

ring parameters. This is accomplished by matching the force induced by the ring and the

pair at the plane containing the plate. Equating the integrated pressure for the ring and

the pair yields
∞∫

0

û2
p(x̂) + v̂2

p(x̂) dx̂− F = 0 (2.13a)

where

F =
2

Ŵ

Ŵ/2∫
0

∞∫
0

û2
r (x̂, ẑ) + v̂2

r (x̂, ẑ) dx̂ dẑ (2.13b)

The bounds of the integrals above are from x̂ = 0 to x̂ = ∞ since the pressure profile is

symmetric about the xy-plane.

Equations (2.12) and (2.13) can be solved simultaneously for the two unknown vortex

pair parameters Λp and Hp. We note that the vortex pair circulation Γp is a dependent

parameters since it can be computed from the known vortex pair convection speed and pair

26



geometry, as discussed previously. The vortex pair parameters Λp and Hp can be obtained

by first calculating the vortex ring constants U and F , then substituting Equation (2.12)

into Equation (2.13) to yield Λp. Finally, Hp can be found directly from Equation (2.12).

The solution procedure enables efficient estimation of the vortex pair parameters that best

match the pressure distributions for a given vortex ring/plate configuration without the

need to apply a more computationally expensive optimization procedure to minimize the

error between the vortex ring and the vortex pair pressure profiles at each point.

An example of the output of this conversion method is shown in Figure 2.2, which

compares the pressure and the velocity components at the plate centerline (x-axis) of a

vortex ring and its matched two-dimensional vortex pair for a plate of zero width (Ŵ = 0).

In this case, the integrals in Equations (2.11) through (2.13) with respect to ẑ are replaced

by their integrands, that is, there is no averaging across the plate width. From Figure 2.2a,

we see that the vortex pair pressure profile is nearly identical to that of the vortex ring

after matching. However, owing to the distinctly different topology of the vortex filaments

in the ring and pair cases, there are small differences in the individual velocity components,

as shown in Figure 2.2b and 2.2c. These differences in the velocity components in the two

cases can potentially lead to some error once the influence of the plate is included. For

finite width plates Ŵ > 0, the matched vortex pair pressure profile tends to under-predict

the pressure near the centerline of the plate and over-predict the values nearer the edges

of the plate due to the averaging effect. Overall, the matching enables representation of a

vortex ring by a two-dimensional pair with nearly identical pressure loading distributions

on a plate in the fluid, as well as identical interaction time scales due to matching the

convection speeds of the ring and pair.
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Figure 2.2: Comparison of the (a) pressure, (b) û velocity, and (c) v̂ velocity profiles
between a vortex ring and its matched vortex pair for a plate of zero width. Solid lines
and dash lines represent the vortex pair and the vortex ring, respectively.
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2.3 Model Validation

To validate the analytical solution, model predictions are compared with the experimental

results of Goushcha et al. [76]. Their experimental campaign employed a polycarbonate

strip of dimensions L = 0.1 m, W = 0.03 m, and T = 0.05 mm. Reported vortex ring

parameters are Γr = 0.77 m2/s and Vc = 2.81 m/s. Additionally, the ring diameter

ar = 0.14 m and distance of the ring from the plate hr = 0.096 m used in their study

were obtained through personal communication [88]. The value of hr used in the analytical

solution was slightly modified to hr = 0.1011 m to better match the reported pressure

loading on the plate. This modest adjustment is, however, within the uncertainty limits of

the experiments.

In addition to the plate geometry and vortex ring parameters, Goushcha et al. reported

the first mode natural frequency to be 48.3 rad/s. They further presented a time series

of the measured strain at the clamped end of the plate in their Figure 3. Estimating

the plate natural frequency from this time series yields a value of 40.0 rad/s, which is

within 20% of their reported value. Hypothesizing that the mass density per unit volume

of the polycarbonate is % = 1200 kg/m3 [89–93], matching the fundamental resonance

frequency to the reported value yields an effective Young’s modulus Υ = 109 GPa. Such

an estimate of the Young’s modulus is outside the range typical of polycarbonate which

is between 2.35 and 2.4 GPa [89–93]. It is tenable to hypothesize that the thickness was

higher than the reported value, which we thus change to T = 0.3 mm to set the effective

Young’s modulus at Υ = 2.4 GPa. We note that other possible contributors the discrepancy

include the impact of the strain gauge on the material stiffness and/or free vibration length,
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or incorrect material properties. A detailed study determined that these influences were

relatively small. The damping factor C is selected to match the decay rate of the free

vibration presented in their Figure 3.

The dimensionless parameters used for the analytical solution are β = 4.466, µ = 5.878,

η = 0.419, Λ = 1.004, and H = 1.335; the latter two parameters were obtained using the

conversion method discussed in §2.2. We only employ the first in-vaccuum mode of the

plate to simulate the plate dynamics in the analytical solution. This is in agreement

with the experimental observations of Goushcha et al. that the plate vibrates along its

fundamental mode shape. Including additional modes in the analysis does not significantly

affect the results.

Figure 2.3 presents details of the vortex pair/plate interaction predicted from the ana-

lytical model based upon the experimentally-derived governing dimensionless parameters.

The left-most column shows the positions of the vortex pair (circles) and the plate (solid

line), with the trajectories of the vortices depicted by dashed lines. The middle column

shows the corresponding plate deflection, while the right column shows the differential

pressure loading on the plate. Time is increasing from one row to the next. As the vortices

approach the plate from the right, there is a positive pressure jump across the plate, that

is, the pressure on the top of the plate is higher, which causes a negative plate deflection

(row 1). As the vortices pass above the plate, a strong negative pressure on the plate de-

velops due to the low pressure vortex core, which pulls on the plate (rows 2-4). In turn, the

plate motion influences the trajectory of the vortex pair, drawing the pair in the negative ŷ

direction. Once the vortex pair passes beyond the plate, there is again a positive pressure

loading on the plate (row 5). We note that due to the inertia of the plate, its deflection is
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Figure 2.3: Snapshots of the vortex pair/deformable plate interaction. The left column
displays the position (circles) and the trajectories (dashed lines) of the vortices with respect
to the plate (solid lines). The middle column displays the plate deflection, while the right
column shows the pressure jump across the plate. Row 1: t̂ = 9.02; row 2: t̂ = 10.08; row
3: t̂ = 11.15; row 4: t̂ = 12.16; and row 5: t̂ = 13.20.
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not necessarily in phase with the pressure loading. This process qualitatively agrees with

the experimental observations of Goushcha et al and a similar positive pressure jump is

observed for a vortex advecting past a structure in a free stream [94].

A more quantitative validation of the model is presented in Figure 2.4, which compares

the plate tip deflection δ̂(1, t̂), the pressure loading on the plate Jp̂K when the vortex

ring/pair is positioned at x̂ ≈ −0.04, and the net force per unit width f̂ as a function of

vortex ring/pair position between the analytical solution and the experimental data. The

experimental data for the tip deflection shown in Figure 2.4a were not published in the

original experimental paper, but were provided through personal communication and are

reproduced herein with permission [88]. The integrated force per unit width in Figure 2.4c

is computed as

f̂(t̂) = −
1∫

−1

Jp̂K(x̂, t̂) dx̂. (2.14)

with t̂ as a function of <{ζ̂2}.

The deflection (Figure 2.4a) shows generally good agreement between the present ana-

lytical solution and the experimental data. The analytical solution under-predicts the first

positive peak in both cases by ≈ 20%, though subsequent positive peaks match very well.

The pressure distribution on the plate when the vortex ring/pair is located over the

center of the plate is presented in Figure 2.4b for both the experimental data, obtained

using PIV, and the analytical prediction. The minimum pressure across the plate is located

at approximately the same x̂ position as the vortex ring/pair, which corresponds to t̂ ≈ 11

in Figures 2.4a. The minimum pressure peak is matched in both magnitude and location

between the experiment and the model, though the overall pressure distribution is slightly
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Figure 2.4: Comparison between model predictions and experimental measurements of (a)
the plate tip deflection, (b) the differential pressure loading on the plate when the vortex
ring/pair is located at x̂ ≈ −0.04, and (c) integrated force per unit width on the plate
versus position of the bottom vortex <{ζ̂2}. The analytical results are represented by solid
lines. The experimental data are depicted by a dashed line in (a), and circles in (b) and
(c).
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wider for the model prediction. In addition, experimental data have a relatively pronounced

positive peak in the pressure near the free end of the plate that is not captured by the

potential flow solution.

The integrated force on the plate is plotted as a function of bottom vortex position

<{ζ̂2} (see Figure 2.1b) in Figure 2.4c. Note, for the experimental data, “bottom vortex

position” refers to the x position of the portion of the vortex ring core that is closest to the

plate, see for example Figure 3 of Goushcha et al. In Figure 2.4c, the experimental data,

again obtained from PIV, are noisy, but agree well with the model prediction in terms of

trend and magnitude.
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Figure 2.5: Change of vortices separation distance with respect to its initial condition Λ
as a function of the bottom vortex location <{ζ̂2}.

The conversion procedure from vortex ring properties to a representative vortex pair

implicitly assumes that the vortex ring/pair convection speed is not significantly influenced

by the presence of the plate, as discussed in §2.2. We observe in Figure 2.3 that the

trajectories of the vortices constituting the vortex pair are modestly influenced by the
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plate. Given that the vortices have constant circulation, a relative change in trajectory

of one vortex in the pair with respect to the other can result in an altered convection

speed of the pair; that is, if the vortices move closer to one another their mutual induction

speed will increase, for example. Figure 2.5 plots the distance between the vortices in

the pair normalized by their initial separation, |ζ̂1 − ζ̂2|/Λ, as a function of the position

of the bottom vortex, <{ζ̂2}, as it passes over the plate. As the vortex pair approaches

the plate, <{ζ̂2} decreases from the initial value of x0, and the vortices begin to move

apart slightly, indicating that the convection speed decreases. Once the pair reaches the

free end of the plate (<{ζ̂2} = 1), the vortices start to move closer together as they are

deflected downwards due to the interaction with the plate; see also the first column in

Figure 2.3. The vortices continue to move closer together after advecting past the plate

before stabilizing into a new configuration with a final separation distance that is 5% closer

than their initial separation (Vc is increased by 5%). Over the course of the interaction,

changes in the convection speed of the pair are very modest, as originally assumed for the

vortex ring to pair conversion.

As a final note on the applicability of the potential flow model, the ideal fluid assumption

neglects vorticity generation, dissipation, and shedding along the plate [95]. These viscous

effects will introduce additional hydrodynamic loading onto the plate which the potential

model does not capture [14,96–99], as well as a train of wake vortices convecting away from

the tip of the plate [95, 100]. Based upon the agreement between experimental data and

model prediction presented above, these viscous effects are expected to play a secondary role

for a vortex pair sufficiently far from the plate during the initial interaction stage. Viscous

effects are partially accounted for by the structural damping coefficient η, which is identified
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Figure 2.6: Non-physical behavior of a vortex pair/plate interaction in an ideal fluid,
wherein the bottom vortex is “trapped” by the plate. In this case, vorticity interaction
between the plate and vortex pair would be non-negligible.

in in-air experiments rather than trials in-vacuum. As a result, η likely over-predicts the

inherent structural damping, compensating for some of the unmodelled viscous effects.

However, if the initial vortex pair positions and trajectory result in the pair coming too close

to the plate, then non-physical vortex trajectories can occur, as shown in Figure 2.6. In

this case, the trajectory of vortex 2 is significantly altered, with the vortex actually passing

around the bottom side of the plate before joining with vortex 1 again and advecting away

from the plate. The proximity of vortex 2 to the plate would, in fact, lead to non-negligible

viscous effects, namely, vorticity generation along the plate and subsequent interaction with

the pair vorticity [69, 74]. Thus, the potential flow model behavior should be expected to

deviate considerably from experimental observations of real fluids. For the remainder of the

document we restrict ourselves to cases in which viscous effects are small and the potential

flow model as described in §2.1 is reasonable. Lastly, we call attention to the fact that the
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matching method is only valid for cases where the width is small compared to the vortex

ring radius ar and the vortex ring to plate distance Hr.

2.4 Energy Transfer Optimization

With the analytical model for the energy harvesting configuration shown in Figure 2.1a

validated against the experimental data of Goushcha et al., we now focus on employing

the model to optimize the energy exchange between the vortex structure and the plate;

that is, we aim to optimize the plate properties for a given set of vortex parameters in

order to maximize the energy transferred to the plate. We note that energy harvesting

can be estimated through the addition of a damping term in the governing equations;

however, we are principally concerned with the total energy transferred from the fluid

to the plate, as the fluid is the sole energy source in this interaction. Details of the

energy transduction through electromechanical coupling, which is material dependent, is

not considered. In this case, we consider maximizing the total energy transferred from the

fluid to the plate as maximizing the total mechanical energy that is available for electrical

conversion, which in terms maximizing the energy harvesting potential. This assumes, of

course, weal electromechanical coupling. The nondimensional energy of the plate, Ê, is

given by [73],

Ê(t̂) =
1

2

1∫
−1

µ
[

˙̂
δ(x̂, t̂)

]2

+ β
[
δ̂II(x̂, t̂)

]2

dx̂ (2.15)

where Ê = E/ρV 2
0 L

2
0. The first term in Equation (2.15) corresponds to the plate kinetic

energy and the second term represents the material strain potential energy. Both terms
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comprise a non-dimensional parameter that is a function of the physical properties of the

plate coupled with the dynamic response of the plate. Note that for the energy transfer

optimization, we neglect damping (η = 0), which, in turn, neglects all losses in the system

in order to facilitate comparisons of the total plate energy acquired from the vortex pair.

This assumes that viscosity does not play a significant role in the initial vortex pair-plate

interaction, which was demonstrated in the previous section, and that structural damping

is relatively weak.
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Figure 2.7: The energy of the plate as a function of time; the solid line represents dimen-
sionless parameters matching the experiments of Goushcha et al. (µ = 5.878, β = 4.466,
H = 1.335, Λ = 1.004, η = 0); the dashed line represents an alternative parameter set
with lower mass and stiffness ratios (µ = 2.000, β = 1.000, H = 1.335, Λ = 1.004, η = 0).

The total plate energy as a function of time for two different plate/vortex pair parameter

sets is presented in Figure 2.7. The solid line corresponds to the parameters representative

of the experiments of Goushcha et al. in the absence of damping (µ = 5.878, β = 4.466,

H = 1.335, Λ = 1.004, and η = 0), while the dashed line has lower mass and stiffness ratios

(µ = 2.000 and β = 1.000). In both cases, as the pair approaches the plate it deflects,
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resulting in an increase in the total plate energy. The plate then reaches a local maximum

in energy, denoted as point A in Figure 2.7, when the vortex pair is near the free end of the

plate. After point A, the plate energy decreases slightly before rapidly rising to point B as

the vortex pair passes over the plate. Once the pair passes beyond the plate there is again

a drop in energy to point C, after which the plate settles into a free vibration state, which

is evident in the the harmonic oscillation in the plate energy after point C. We note that

the harmonic oscillation in the plate energy during free vibration is due to the exchange

between the kinetic energy of the vortex sheet [85] and the total energy of the plate via

fluid-structural coupling. Shvydkoy [101] demonstrated that a vortex sheet with zero total

circulation has finite energy, which is conserved in the absence of the interactions; this

condition is automatically satisfied for all time in the present model in Equation (2.5) and,

therefore, the vortex sheet simply acts as another energy storage element in the system

during steady state free vibration.

As mentioned previously, the total energy available for harvesting is related to the

total plate energy. As shown in Figure 2.7, the plate energy never settles to a fixed value,

making assessment of the total energy transferred somewhat nebulous. Herein, we define

the “steady state” plate energy Êss as the peak energy of the plate during the free vibration

of the plate once the vortex pair has advected away; this point is denoted as D in Figure 2.7.

Point D does not necessarily correspond to the maximum energy achieved by the plate due

to the interaction with the vortex pair; in fact, point B is considerably larger than point D

for the dashed line in Figure 2.7. However, the energy in the plate is quickly transferred

back to the fluid in this case, with the free vibration phase having considerably less total

energy than at point B. For the solid line, corresponding to the experimental conditions of
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Goushcha et al., point D is near the maximum energy obtained by the plate.
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Figure 2.8: Integrated force on the plate with respect to time; the solid line represents
dimensionless parameters matching the experiments of Goushcha et al. (µ = 5.878, β =
4.466, H = 1.335, Λ = 1.004, and η = 0); the dashed line represents an alternative
parameter set with lower mass and stiffness ratios (µ = 2.000, β = 1.000, H = 1.335,
Λ = 1.004, and η = 0).

Though qualitatively similar in behavior, there are significant differences in the plate

energy at the highlighted points in Figure 2.7 for the two cases; a 66% reduction in µ and

78% reduction in β results in a 154% increase at point A, a 4.7% increase at point B,

a 25% reduction at point C, and a 32% reduction in Êss (point D). To further elucidate

the physics associated with this behavior, we consider the integrated loading on the plate.

Figure 2.8 shows the integrated force along the plate as a function of time, computed using

Equation (2.14), for the two parameters sets presented in Figure 2.7. As the vortex pair

approaches the plate, there is a negative force on the plate that increases in magnitude as

the distance of the pair from the plate free end decreases (t̂ <∼ 10). As the vortices pass

over the plate (∼ 10 < t̂ <∼ 12.5), there is a strong positive force due to the low pressures
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of the vortex cores pulling the plate towards the pair. The force again goes negative once

the vortices are beyond the plate (∼ 12.5 < t̂ <∼ 14). Oscillations in the force on the

plate after the interaction t̂ >∼ 15 are due primarily to the plate free vibration. We note

that in the free vibration phase, the plate energy oscillates at twice the frequency of the

forcing, since maximum energy is achieved twice per period.

As evidenced by Figure 2.8, there is an inherent time scale to the vortex pair/plate

interaction, which is a function of the vortex parameters H and Λ. In both cases shown in

the figure, the vortex pair positions and parameters are identical, and as such, the time scale

of the interaction, denoted by the negative-positive-negative peaks around 9 < t̂ < 13, are

the same. There is a difference in the loading magnitude between the two cases, however,

due to the differing degrees of coupling between the fluid and the structure associated

with the differing mass and stiffness ratios. Specifically, for the dashed line, the mass and

stiffness ratio are smaller than for the solid line, and thus the plate more readily deflects due

to the incoming vortex pair, resulting in a lower peak loading. The plate natural frequency

for the two cases differ, resulting in divergence of the loading in the free vibration phase

(t̂ >∼ 15).

Figure 2.8 suggests a manner in which the plate dynamics may be optimized for energy

transferring; specifically, resonance will occur if the characteristic frequency of the pres-

sure loading matches the plate natural frequency. This will, in turn, lead to larger plate

deflection and an increase in the energy transfer capacity. Out of phase loading, however,

results in the plate energy returning back to the fluid after the vortex interaction, as seen

in point C of the dashed line in Figure 2.7. This is analogous to the frequency response of

a single degree of freedom system [102].
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To more clearly illustrate the coupling between the vortex pair convection and the plate

response, a simplified analysis can be performed by representing the pressure loading of

the vortex pair with a traveling point load with time-varying magnitude to mimic the

negative-positive-negative loading observed during the interaction in Figure 2.8. In this

case, the loading term in Equation (2.1) is

− JpK(x, t) = P0 sin(ωPt) δD(x− x0 + Vct) (2.16)

where δD is the Dirac delta distribution. The point load is travelling at a constant velocity

Vc, and has a harmonic magnitude with a frequency of ωP. We note that ωP represents

the characteristic frequency of the pressure loading in this simplified analysis, which is

a function of the advective time scale. Fryba [103] demonstrated that in this simplified

scenario, resonance occurs when

ωres
i = ωP ± (λiL)

Vc

L
(2.17)

where ωi and (λiL) are the natural frequency and the characteristic constant for each mode,

respectively. The simplified model neglects the loading distribution along the x-axis and

the fluid-structure coupling, but it does highlight the important relationship between the

vortex pair convection speed and the characteristic frequency of the loading, since both

terms in Equation (2.17) are functions of Vc. We note that even when the point load has

a constant magnitude, the resonance still occurs when ωres
i = Vc/L, see Ref. [103].

Based upon the above discussion, it is evident that the convection speed is key to
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achieve resonance; thus, we seek the appropriate plate natural frequency to loading time

scale ratio that maximize the steady state energy, Ess. Using the nondimensionalization

scheme discussed in §2.1, the dimensionless natural radian frequency of the first plate

vibration mode is defined as

Ω1 = 2
ω1L

Vc(λ1L)2
=

√
β

µ
. (2.18)

where ω1 is the plate fundamental natural radian frequency and λ1 = 1.8751/L is the

corresponding eigenvalue. To investigate the optimal plate/vortex pair parameters in terms

of energy transfer to the plate, we parametrically vary Ω1 and µ and evaluate the steady

state plate energy Êss. Figure 2.9a plots Ess as a function of Ω1 and µ for the experimental

configuration of Goushcha et al. in the absence in damping, that is H = 1.335, Λ = 1.004,

and η = 0.

It is clear from the parametric study result in Figure 2.9a that there is an optimal

dimensionless natural frequency that maximizes Êss at a given value of µ, which is indicated

by the dashed line. This dashed line corresponds to the resonance condition alluded to

in Equation (2.17), which results in a significant boost to the steady state plate energy.

The resonance condition occurs at the frequency of Ωres
1 ≈ 2.02 for µ = 1, and decreases

as µ increases. The rate of change in Ωres
1 decreases as µ increases, suggesting that the

coupling effect decreases as the mass ratio increases, which is in agreement with the study

by Peterson and Porfiri [73] for a vortex pair orthogonally approaching and passing around

a deformable plate. Additionally, there is an overall increase in Ess as µ decreases, which

suggests that one can improve the energy transferring by reducing the plate mass or,

more practically, adjusting its thickness. However, one should be aware that the bending
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Figure 2.9: (a) Parametric study of the steady state plate energy Êss for the experimental
vortex pair parameters H = 1.335 and Λ = 1.004 with zero damping η = 0; the dashed
line indicates the resonant frequency. (b) Parametric study of the resonance frequency Ωres

1

with respect to changes in H. Solid lines indicated where Êss is maximized for H ranging
from 1.2 to 2.2 with Λ = 1.004 and η = 0.

stiffness is sensitive to the plate thickness as well, which impacts the dimensionless natural

frequency.

Figure 2.9a focuses on optimizing the plate parameters for the experimental geometry

described by Goushcha et al., which has a fixed vortex ring height above the plate. That is,

for a given vortex ring/plate configuration, Figure 2.9a provides insight into the best µ and

Ω1 for maximum energy transfer to the plate. In terms of pressure loading on the plate, the

closer the vortex ring/pair passes by the plate, the larger the pressure loading magnitude,

and consequently the larger the plate deflection. Thus, it is important to examine how

the resonance frequencies vary with changing H. We note that by changing H for the
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vortex pair, the corresponding vortex ring parameters change as well due to the conversion

described in §2.2. Figure 2.9b presents the shift in the resonance peaks for H ranging from

1.2 to H = 2.2 with Λ = 1.004 and η = 0. As H increases, the dimensionless resonance

frequency shifts towards lower values. In addition, the resonant frequencies are a weaker

function of µ for larger values of H, demonstrating that coupling decreases as the pair is

further away from the plate.
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Figure 2.10: Integrated force on the plate normalized by its maximum value with respect
to time with H = 1.2, H = 1.6, and H = 2.0 represented by solid, long dashed, and short
dashed lines respectively. (µ = 5.878, β = 4.466, Λ = 1.004, and η = 0)

To understand the shift in resonance frequency as H changes, we compare the force

loading on the plate at H = 1.2, H = 1.6 and H = 2.0 in Figure 2.10. In order to observe

the differences in the loading characteristic frequency, the force is normalized by its max

value for direct comparison. As shown in Figure 2.10, the primary positive peaks have

similar profiles at different H, but the negative peaks vary noticably. The first negative

peak becomes wider and has a small increase in the relative magnitude in comparison to
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the primary positive peak as H increases, while the second negative peak becomes much

weaker. The significant drop in the relative magnitude of the second negative peak as H

increases is due to the fluid-structure coupling reduction, which results in a smaller vortex

pair path deflection towards the plate and leads to a drop in relative forcing.

To aid in energy harvester selection, we present the dimensionless plate bending stiffness

β that results in resonance for a given dimensionless plate mass µ and dimensionless vortex

pair height above the plate H. This is obtained by fitting the parametric study results in

Figure 2.9b, yielding

β = 4.264µe−0.7314H + 4.072H−1.737 (2.19a)

The coefficient of determination is R2 = 0.9998 for Equation (2.19a). The resonance

frequency Ωres
1 can subsequently be found from Equation (2.18). For very large mass

ratios, Equation (2.19a) can be simplified to

Ωres
1 = 2.065e−0.3657H (2.19b)

which suggests that the resonance frequency decreases exponentially as H increases for

µ→∞. We further note that for a given H, the values of µ and β that result in resonance

follow a simple linear relationship β = aµ+ b. Thus, for a given energy harvesting configu-

ration featuring a cantilevered electroactive polymer strip and a passing vortex ring/pair,

Equation (2.19) (in conjunction with the conversion strategy presented in §2.2, as required)

can be used to inform the harvester selection to maximize the energy transferred to the

structure. Herein, we have focused on cases where µ ≥ 1, which is generally valid for in-air

energy harvesting. Though not shown, cases where µ < 1 follow the same trend as in
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Figure 9. However, due to the increased fluid-structural coupling effects as µ decreases,

the computational time required for a converged solution increases.
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Chapter 3

Energy harvesting from a vortex ring

impinging on an annular ionic

polymer metal composite 1

In this chapter, we investigate the impact of a vortex ring with a thin, deformable, annular

IPMC for energy harvesting. The vortex ring and the annulus are configured such that the

center of the vortex ring is aligned with the hole in the annulus. An annulus is employed

as opposed to a full IPMC disk to maximize the IPMC curvature during impact, which is

proportional to the power output of the material. A similar configuration of a vortex ring

interacting with a solid wall with a coaxially-aligned aperture in an ideal fluid is discussed

in [104]. For an ideal fluid, vorticity is not generated along the solid wall or at the edge of

1The contents of this chapter is published in the Smart Materials and Structures [83]. Dr. Youngsu
Cha assisted with the theoretical modeling section. Professor Sean D. Peterson and Professor Maurizio
Porfiri provided feedback and direction throughout the project.
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the aperture; the interaction of a vortex dipole with a semi-infinite plate [105] demonstrates

the importance of induced vorticity on the interaction dynamics. Other studies involving

vortex rings impacting walls in viscous fluids have also indicated the significant role of

induced vorticity and the complex breakdown mechanics of the vortex ring [70,106,107].

The chapter is organized as follows: the problem and the modeling framework are

introduced in detail in §3.1; and the experimental setup is illustrated in §3.2; results and

discussion are presented in §3.3.

3.1 Problem Statement and Model Development

Herein, we explore the problem of a vortex ring propagating through a quiescent fluid and

impacting an annular IPMC. A cylindrical coordinate system r, θ, and x is defined at the

geometric center of the undeformed IPMC, with the longitudinal axis orthogonal to the

plane of the annulus, see Figure 3.1. The vortex ring has initial core radius ai, initial ring

radius Rr,i, and initial circulation Γ, and propagates through self-induction along the x axis

in the negative x-direction as it approaches the annulus. The annulus has thickness h and

is rigidly fixed at the outer radius Ro, while it is free at the inner radius Ri. The distance

between the vortex ring and the annulus at any time t is given by ξ(t), see Figure 3.1. As

the vortex ring approaches the annulus, the ring radius and the core radius can vary in

time. In an ideal fluid, the circulation is invariant, while in viscous flows the circulation

is expected to continually decrease via viscous dissipation [84]. However, due to the short

distance between the vortex ring creation and impact with the IPMC, we neglect variation

in the circulation, which is always equal to Γ.
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Figure 3.1: Schematic of the vortex ring and IPMC annulus configuration.

3.1.1 Structural Model

The thickness of the IPMC h is considerably smaller than the free vibration length Ro−Ri

and the deformation of the structure due to the vortex ring impact is assumed to be small,

axisymmetric, and confined to the x direction. Thus, we model the IPMC as a Kirchhoff-

Love plate undergoing axisymmetric bending [108]. The deflection of the plate is governed

by

ρhδ̈(r, t) +D

(
δ′′′′(r, t) +

2

r
δ′′′(r, t)− 1

r2
δ′′(r, t) +

1

r3
δ′(r, t)

)
= −JpK(r, t) (3.1)

where δ(r, t) is the plate deflection in the x direction at time t, ρ is the IPMC mass density

per unit volume, D is the bending stiffness, and JpK(r, t) is the pressure difference across

the plate produced by the vortex ring. Structural damping of the IPMC and viscous

normal stresses of the fluid are neglected. In addition, the effect of electromechanical
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coupling on the mechanical response of the IPMC is disregarded, as its contribution is

negligible [16, 82]. The bending stiffness can be written in terms of the effective Young’s

modulus E and Poisson’s ratio ν of the IPMC, namely, D = Eh3/(12(1 − ν2)). The

boundary conditions of the annulus are

δ(Ro, t) = 0 (3.2)

δ′(Ro, t) = 0

δ′′(Ri, t) +
ν

Ri

δ′(Ri, t) = 0

δ′′′(Ri, t)−
1

R2
i

δ′(Ri, t) +
1

Ri

δ′′(Ri, t) = 0

and the plate is initially at rest, δ(r, 0) = 0, when the vortex ring is generated.

Employing the initial vortex ring radius Rr,i as a length scale, Γ/Rr,i as a velocity scale,

R2
r,i/Γ as a time scale, and %Γ2/R2

r,i, where % is the fluid density, as a pressure scale, Eq. 3.1

can be written as

¨̃δ(r̃, t̃) +K

(
δ̃′′′′(r̃, t̃) +

2

r̃
δ̃′′′(r̃, t̃)− 1

r̃2
δ̃′′(r̃, t̃) +

1

r̃3
δ̃′(r̃, t̃)

)
= −µ−1Jp̃K(r̃, t̃) (3.3)

Here, µ = ρh/(%Rr,i) is the mass ratio, K = D/(ρhΓ2) is the dimensionless bending

stiffness, and the tilde indicates nondimensional variables. The boundary conditions for

the plate in dimensionless form are

δ̃(Ro/Rr,i, t̃) = δ̃′(Ro/Rr,i, t̃) = δ̃′′(Ri/Rr,i, t̃) +
ν

Ri/Rr,i

δ̃′(Ri/Rr,i, t̃)

= δ̃′′′(Ri/Rr,i, t̃)−
1

Ri/R2
r,i

δ̃′(Ri/Rr,i, t̃) +
1

Ri/Rr,i

δ̃′′(Ri/Rr,i, t̃) = 0 (3.4)
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and the initial condition reads as δ̃(r̃, 0) = 0. For the remainder of the document the tilde

notation is omitted for convenience and all variables are presented in dimensionless form

unless otherwise stated.

3.1.2 Fluid Model

The fluid encompassing the IPMC is modeled as inviscid, incompressible, and irrotational

except in the core of the vortex ring. Assuming that the outer radius of the annulus Ro is

large compared with the ring dimensions, the annulus can be approximated as an infinite

wall with an aperture. Further, assuming that the IPMC deflection is sufficiently small to

have negligible influence on the flow field, the potential function governing the fluid flow

for x ≥ 0, following [104], can be written in nondimensional form as

φ+(x, r, t) = φvr(x, r, t) + φimg(x, r, t) + φap(x, r, t) (3.5)

where

φvr(x, r, t) = −Rr(t)

2Rr,i

∫ ∞
0

e−k(ξ(t)/Rr,i−x)J0(kr)J1

(
k
Rr(t)

Rr,i

)
dk (3.6)

is the potential function for the vortex ring,

φimg(x, r, t) = −Rr(t)

2Rr,i

∫ ∞
0

e−k(ξ(t)/Rr,i+x)J0(kr)J1

(
k
Rr(t)

Rr,i

)
dk (3.7)
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is the image ring used to create the wall, and

φap(x, r, t) =
βRr(t)

πRr,i

∫ ∞
0

∫ ∞
0

∫ 1

0

e−kξ(t)/Rr,i−λxJ0(λr)J1

(
k
Rr(t)

Rr,i

)
× cos(βks) cos(βλs)dsdλdk (3.8)

is a correction for the aperture. Here, ξ is the distance of the ring from the annulus, as

defined in Figure 3.1, Jα is the Bessel function of the first kind of order α and β = Ri/Rr,i

relates the hole size to the initial ring radius. We assume zero net flux through the aperture

in the absence of the vortex ring, which eliminates a term in the potential function presented

in [104]. The potential function in the x < 0 half-space is given by

φ−(x, r, t) = −βRr(t)

πRr,i

∫ ∞
0

∫ ∞
0

∫ 1

0

e−kξ(t)/Rr,i+λxJ0(λr)J1

(
k
Rr(t)

Rr,i

)
× cos(βks) cos(βλs)dsdλdk (3.9)

These potential functions satisfy the boundary conditions of equal pressures and x velocities

at the aperture (r/β < 1) and null x velocity along the plate (r/β > 1).

The velocity field at any point in the domain can be obtained from

u =
∂φ

∂x
; v =

∂φ

∂r
(3.10)

where u and v are the nondimensional longitudinal and radial velocity components, re-

spectively. Note that for x ≥ 0 the velocities are found from the potential function φ+,

while the gradient of φ− provides the velocities for x < 0. The nondimensional pressure
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difference across the annulus can be computed from the unsteady Bernoulli equation as [85]

Jp0K(r, t) = −
U2

+(r, t)

2
− φ̇+(r, t) +

U2
−(r, t)

2
+ φ̇−(r, t) (3.11)

where U2 = u2 + v2.

Equation 3.11 rests upon the assumption that the IPMC is blocked during the impact

and thus neglect added mass and damping effects associated with the IPMC vibration

[109]. To indirectly account for the IPMC motion and more closely interpret experimental

findings, we propose to modify Eq. 3.11 by including on the right hand side an added mass

effect H(r, t) proportional to the acceleration of the IPMC. Specifically, we assume that

the pressure jump across the IPMC is

JpK(r, t) = Jp0K(r, t) +H(r, t) (3.12)

where Jp0K is given in Eq. 3.11 and the added mass contribution is described in §3.1.5 when

analyzing the IPMC vibration based upon [110].

3.1.3 Electrical Model

The IPMC electromechanical behavior is described using a black box model [111–113]

consisting of the series connection of a voltage source that depends on the mean curvature

of the IPMC, a resistor RIPMC, and a capacitor CIPMC. Specifically, the voltage source

is Vd(t) = γκ(t), where γ is a sensing gain which is determined from experimental data

and κ(t) = 2
R2

o−R2
i
(Roδ

′(Ro, t)−Riδ
′(Ri, t)) is the mean IPMC curvature [108]. The IPMC
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resistance and capacitance are related to the counterion diffusion in the IPMC core and

double layer phenomena taking place at the electrodes. Both these parameters are identified

from experiments on IPMC step response following [82]. In our study, we focus on the case

of short-circuited electrodes.

Based on the proposed lumped circuit model and assuming that the IPMC is initially

discharged, the short-circuit current Isc(t) is given by

Isc(t) =
γκ(t)

RIPMC

−
∫ t

0
γκ(t− τ)e

− τ
CIPMCRIPMC dτ

CIPMCR2
IPMC

(3.13)

Estimates of power harvesting when the IPMC electrodes are shunted with a resistor can

be obtained following [17].

3.1.4 Energy Transfer

Assuming the vortex core to be thin in comparison with the radius, its energy can be

estimated by following [43] as

Evr(t) =
1

2
%Γ2Rr(t) ln

(
8Rr(t)

a(t)
− 2.05

)
(3.14)

To elucidate the possibility of energy harvesting, we compare the energy of the vortex core

with the energy dissipated in the IPMC resistance during the impact, which is estimated

from the short-circuit current as

EIPMC = RIPMC

∫ ∞
0

I2
sc(t)dt (3.15)

55



3.1.5 Solution Procedure

The problem is solved by assuming uni-directional coupling between the fluid and the

IPMC, whereby the vortex dynamics results in a structural deformation, which does not

perturb the fluid flow. Thus, the fluid flow is solved independently through the procedure

described in §3.1.2 to obtain the contribution to the pressure loading on the annulus asso-

ciated with the vortex ring approaching the annulus. The IPMC deformation is computed

using modal analysis. Specifically, the fluid loading is projected onto the free vibration

mode shapes of the annulus, and the amplitude of each mode shape is independently com-

puted. Thus, we write the plate deflection as

δ(r, t) =
∞∑
n=1

an(t)∆n(r) (3.16)

where ∆n(r) is the nth mode shape of the annulus with eigenvalue λn and an(t) is its

corresponding amplitude. Expressions for the mode shapes and eigenvalues can be found

in [108]. The expansion in Eq. 3.16 is substituted into Eq. 3.3, which is, in turn, projected

on the annulus mode shapes by multiplying both sides of the equation by ∆m(r) and

integrating from Ri/Rr,i to Ro/Rr,i, with m = 1, 2, . . .. By considering the orthogonality of

the mode shapes we have

äm(t) +K

(
λmRr,i

Ro

)4

am(t) = −µ−1

∫ Ro/Rr,i

Ri/Rr,i

(Jp0K(r, t) +H(r, t)) ∆m(r)rdr (3.17)

Ultimately, the IPMC deflection is replaced in Eq. 3.13 to calculate the short-circuit

current. Based on the time scale of the process, only two modes are retained in the
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expansion. The modal contributions of the added mass, found by [110] for an annulus

oscillating along its axis of symmetry in an ideal fluid, are −µ−1
∫ Ro/Rr,i

Ri/Rr,i
H(r, t)∆1(r)rdr =

−µ−1(Ro/Rr,i)ä1(t) and −µ−1
∫ Ro/Rr,i

Ri/Rr,i
H(r, t)∆2(r)rdr = −(1/2)µ−1(Ro/Rr,i)ä2(t).

3.2 Experimental Scheme

Experiments are conducted in a custom vortex ring facility consisting of a piston/cylinder

vortex generator in a quiescent tank, see Figure 3.2a. The acrylic tank is 91× 61× 61 cm3

and the outlet of the sharp-edged vortex generator is located approximately 30 cm from

the edge of the tank. The main piston/cylinder has inner diameter of 10.2 cm, though the

outlet at the location of the vortex ring formation has a diameter of 12.7 mm. The piston

is actuated by a DC motor (Boston Gear PM9100ATF-1) attached to a motor controller

(Electro-Craft DC-35L) and controlled with a custom open loop LabVIEW VI. The motor

is electrically and mechanically isolated from the rest of the facility to minimize electrical

coupling and vibrations.

Vortex rings of various strength are formed by controlling the piston stroke length

[40]. The IPMC annulus is clamped in a custom fixture rapid-prototyped in ABS plastic.

Aluminum electrodes are flush-mounted on each side of the clamp to provide electrical

connectivity. The two sides of the clamp are held together firmly with the IPMC between

them using nylon bolts, see Figure 3.2b. The outer annulus radius is fixed by the clamp

geometry at Ro = 28.6 mm. The IPMC clamp is rigidly fixed to the acrylic tank via an

aluminum scaffolding built over the top of the tank. We note that while inserting the

IPMC into the clamp it is difficult to maintain uniform tension on the IPMC to keep it
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Figure 3.2: (a) Image of the experimental setup, and (b) close-up of the IPMC in the
clamp.

perfectly flat, particularly since IPMCs are susceptible to tearing. As such, minor warping

of the IPMC after installation into the clamp occurs, as seen in Figure 3.2b.

The vortex ring characteristics, including translation speed, approximate core radius,

and circulation are measured using a LaVision Inc. time-resolved particle image velocime-

try (PIV) system, for the operational theory of PIV see for example [114, 115]. The PIV

system consists of a Photron Fastcam SA-4 CMOS camera with a 1k by 1k pixel array and

a maximum frame rate of 3600 frames per second at full resolution. The flow is illuminated

with a 20 mJ/pulse Photonics Industries DM20-527 single cavity diode pumped Nd:YLF

laser with a 1 kHz repetition rate. The laser is spread into a sheet using an array of neg-

ative and positive cylindrical and spherical lenses and is aligned with the center of the

vortex ring, see Figure 3.2a. A mirror is used to enable illumination of the fluid upstream

and downstream of the IPMC annulus, and the camera is arranged orthogonal to the laser
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sheet. We note that the clamp is not optically clear, and thus data are not recorded in

this region.

An in-house manufactured Nafion-core platinum-electrodes IPMC is used in these ex-

periments. The overall IPMC dimensions are 66 × 68 × 0.2 mm3. A hole of radius

Ri = 8.0 mm is cut out of the center of the IPMC which, when placed concentrically into

the clamp, serves as the inner edge of the annulus. The IPMC density and Young’s modu-

lus are assumed to be 2126 kg/m3 and 497 MPa from [15]. The Poisson ratio is estimated

from [116] to be ν = 0.487. The IPMC capacitance and resistance are directly measured

following the procedure in [82] and are equal to CIPMC = 1.005 mF and RIPMC = 96.8 Ω,

respectively. During vortex impact, the circuit presented in Figure 3.3 is employed to

measure the short-circuit current. The circuit consists of two 9 V batteries as the power

supply, a UA741CN operational amplifier and a 1 kΩ resistor in an inverting current volt-

age amplification configuration. The amplification circuit has a nominal gain of 1000 V/A,

whereby a minute input of 1µA of short-circuit current is scaled to a measurable voltage

output of 1 mV. The batteries are used in lieu of a traditional power supply to improve the

signal-to-noise ratio by providing ground isolation to the IPMC and amplification circuit.

The displacement of the annulus due to the impact is measured using a laser Doppler

vibrometer (Wenglor OCP162H0180). The vibrometer laser is focused at a point 2 mm

from the inner edge of the annulus. To avoid interference between the vibrometer and PIV,

optical filters are used for removing the influence of one from the other. The vibrometer

is calibrated for use in water using a target affixed to a translation stage. A series of band

stop and low pass filters are used to condition the displacement signal.

In this study, vortex rings of two different strengths are propelled towards the IPMC
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Figure 3.3: Amplification circuit used for the energy harvesting experiments.

annulus. Each vortex ring has an initial radius of Rr,i = 11.4 mm, which is dictated by the

dimensions of the piston/cylinder exit. The vortex ring circulation is computed from

Γ =

∮
C

u · dl (3.18)

where u is the fluid velocity vector, whose components are u and v, and dl is a differential

line element along the contour C. The circulation data are extracted from the PIV results

by evaluating Eq. 3.18 along a square contour surrounding the core of the vortex ring in the

two-dimensional plane through the vortex ring center. Tests at both vortex ring circulations

are repeated 5 times, with the nominal circulations with standard deviation for the cases

being 3039± 100 and 5069± 333 mm2/s, respectively, at a distance of ≈ 20 mm from the

IPMC. The standard deviation in these experiments is in part due to the uncertainty in

estimating the circulation from the PIV data.

A third lower circulation was also tested, but was insufficient to measurably deflect the

annulus and is thus not included in this paper. Furthermore, other larger annulus geometry
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ratios (Ri/Ro) were also studied, however these also failed to result in any deflection due to

the reduced vibration length. As such, only the smallest annulus geometry (Ri/Ro = 0.28)

at the two circulation levels are presented herein.

3.3 Experimental Results

The vortex ring velocity and vorticity fields are presented in Figure 3.4 for a representative

experiment for both of the vortex ring circulation strengths. The top row (Figure 3.4a–3.4c)

shows the lower strength ring at three locations, while the bottom row (Figure 3.4d–3.4f)

displays the higher strength ring at similar locations. Note that since the advection speed

of the higher strength ring is larger than that of the lower strength ring, the physical time

between frames for the top and bottom rows are not the same. The gray block in each

frame of the figure indicates the position of the clamp holding the IPMC, which is not

optically clear. Consequently, the velocity field within this region is not measured. The

same vorticity scale is applied to all frames for comparison.

The vortex ring core is clearly evident in the vorticity contours, appearing as counter-

rotating vortices in the PIV slice. The associated velocity field is shown in the overlaid

vectors. The vortex ring propagates towards the IPMC due to self-induction. The regions

of concentrated vorticity are larger for higher circulation case, as seen by comparing images

in the same column in Figure 3.4; that is, Figure 3.4a versus Figure 3.4d. Trailing vorticity

is observed behind the vortex ring for both circulation levels in Figure 3.4b and 3.4e, with

the wake being more pronounced for the stronger ring. This trailing wake occurs when the

stroke-to-diameter ratio of the piston, referred to as the formation number, is greater than
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Figure 3.4: Velocity and vorticity fields showing the vortex ring pre- and post-impact for
the Γ = 3039,mm2/s (top row) and Γ = 5069 mm2/s (bottom row) vortex rings. The
maximum and minimum vorticity contours correspond to ±100 s−1, respectively. The gray
block indicates the location of the IPMC clamp, which is not optically clear.

approximately 4 [40]. In this case, the vortex ring is unable to entrain all of the vorticity

shed from the end of the cylinder during the formation process and consequently pinches

off prior to the piston reaching the end of its stroke. The remaining vorticity then forms

into a trailing wake as a series of smaller, connected rings, see [40].

The final column of Figure 3.4 suggests that the vortex ring survives the interaction

with the IPMC annulus. This, however, is very unlikely, since vorticity induced along the
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annulus will interact once the ring is close, which will, in turn, lead to break down of the

original ring [15]. Perhaps, the velocity field induced by the primary ring causes fluid to

pass through the hole, which results in vorticity production at the edge of the hole. This

vorticity subsequently rolls up into the secondary vortex ring observed in Figure 3.4c and

3.4f. The circulation of the secondary vortex ring is 2067± 152 mm2/s for the lower initial

circulation and 3312± 238 mm2/s for the higher initial case. In both cases, this secondary

ring has circulation approximately 33% lower than that of the initial primary ring, with

individual experiments ranging from 26− 40%.

The displacement of the IPMC annulus 2 mm from the free edge and the measured short-

circuit current during impact are presented in Figure 3.5 for all conducted experiments.

In all cases, the IPMC initially displaces towards the approaching vortex ring, indicated

by the initial positive displacement. Were the IPMC a full disk as opposed to an annulus,

the stagnation pressure at the center of the disk due to the induced fluid motion would

likely push the plate away from the oncoming vortex ring, as observed in two-dimensional

potential flow of a vortex pair approaching the center of a deformable plate [72]. However,

since the vortex ring is aligned with the center of the annulus and the ring radius is on the

order of the hole size, it is the lower pressure region associated with the vortex ring core

that initially interacts with the annulus, causing the IPMC to pull towards the approaching

ring. This is similar to the findings in [76], in which a horizontally oriented cantilevered

beam is drawn towards the low pressure core of a vortex ring as it passes over the beam.

Upon impact, however, the annulus is strongly pushed away from the ring as some of its

momentum is transferred to the structure. This is particularly evident for the stronger

ring in Figure 3.5b, which has a large negative deflection. After impact, the motion of the
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structure is rapidly damped by the surrounding fluid and the annulus returns to rest.
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Figure 3.5: IPMC normalized deflection at the initial ring radius (top row) and short-
circuit current (bottom row) for the low (left column) and high (right column) circulation
experiments. All five experiments are shown in each plot.

The short-circuit current (Figure 3.5c and 3.5d) roughly follows the magnitude of the
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displacement curves. As the IPMC starts to mechanically deform due to the interaction

with the vortex ring, the current measured through the IPMC begins to increase. The

peak in the measured current correlates with the peak in the displacement magnitude.

The current decays quickly, as the mechanical deformation reduces after the impact. The

results of all experiments, including pre- and post-impact vortex ring circulation, maximum

deflection, and maximum current are tabulated in Table 3.1.

Γpre [mm2/s] Γpost [mm2/s] Γpre−Γpost

Γpre
[%] δmax [mm] Imax [µA]

Low Circulation
2945 1835 37.7 0.23 9.87
3205 1994 37.8 0.26 9.89
2983 2157 27.7 0.28 6.35
3022 2208 26.9 0.28 6.58
3040 2142 29.5 0.18 7.24

High Circulation
4875 2986 38.7 0.65 21.9
4719 3258 31.0 0.66 17.4
4900 3624 26.0 0.75 10.9
5413 3252 39.9 0.75 13.2
5437 3441 36.7 1.13 16.2

Table 3.1: Summary of key experimental results. Here, Γpre is the pre-impact vortex ring
circulation computed when the ring is ≈ 20 mm upstream of the IPMC, Γpost is post-impact
vortex ring circulation computed when the ring ≈ 10 mm downstream of the IPMC, δmax

is peak displacement magnitude, and Imax is peak measured current.

Using the experimentally derived vortex ring circulation, radius, and core radius, the

trajectory and deformation of the ring as it approaches an annulus in an ideal fluid can be

computed using the model described in §3.1.2. The vortex ring position, ring radius, and
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core radius are presented in Figure 3.6 for both the high and low circulation cases. For both

considered ring strengths, as the ring approaches the annulus its radius starts to increase.

In order to conserve circulation of the vortex core, the core radius decreases accordingly,

see Figure 3.6b. Once the ring gets very close to the annulus, its motion is dominated by

the image vortex ring and its radius begins to increase rapidly. Note that in the absence of

viscosity, the ring radius continues to increase without bound while the distance of the ring

from the annulus asymptotically approaches a fixed value (Figure 3.6a); this is analogous

to the canonical problem of a pair of point vortices approaching a wall and subsequently

splitting apart and moving away from one another, see for example [84]. The initial rate

of approach is faster for the higher circulation ring, as expected, and upon reaching the

plate its radius grows faster than the lower circulation case. We note that while for these

test cases the vortex ring grows as it approaches the plate, for larger hole-to-ring diameter

ratios the vortex ring may instead pass through the hole [104]. In addition, the secondary

vortex ring observed experimental (Figure 3.4(c) and (f)) is not captured in this inviscid

model.

The predicted annulus deflection from the theoretical model is compared with exper-

imental results in Figure 3.7a and 3.7b for both the high and low circulation cases. Ex-

periment 2 from Figure 3.5 for both circulation levels is selected as a representative case

for comparison with model predictions. Predictions for the IPMC deflection at the inner

radius fail to capture the initial “pulling” on the annulus by the vortex ring observed in the

experiment. This is likely due to the fact that the model is based on an ideal fluid solution

as well as the fact that it does not include structural deformations in the computation of

the fluid flow. Nevertheless, the agreement between the model and the experiments for the
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Figure 3.6: (a) Trajectory and (b) ring and core radius for the high (solid line) and low
(dashed line) cases. In (b), the top two lines correspond to the right ordinate, while the
bottom two lines correspond to the left ordinate.

peak deflection after the impact is satisfactory, for both the low and high circulation cases.

While the peak values from the model overestimate the experimental values by 50− 100%

in some cases, we deem this to be good agreement based upon the difficulty achieving

repeatable results experimentally, as well as the uncertainty in material properties used in

the modeling. Since structural and fluid damping are not included in the model, once the

plate is set in motion by the impact it continues to vibrate differently from experimental

observations.

Figure 3.7c and 3.7d display the predicted short-circuit current corresponding to the

low and high circulations cases shown in Figure 3.7a and 3.7b with coupling coefficient

γ = −0.00162 V m. The latter coefficient is computed by averaging identified coupling

coefficients from all of the 10 experiments in Figure 3.5. The coefficient of determination
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Figure 3.7: Comparison of model predictions (dashed lines) with experimental data (solid
lines) for normalized plate deflection at the initial ring radius (top row) and short-circuit
current (bottom row) for the low (left column) and high (right column) circulation exper-
iments.

of the data fit to the experiments is R2 = 0.64, indicating some variation between the

experiments. We note that the predicted short-circuit current is in good agreement with the

68



experimentally measured values for both the low and high circulation cases. As evidenced

from the experiments, the peak current coincides with the peak deflection. The model

then predicts an alternating current as the plate vibrates back and forth in the absence of

damping.
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Figure 3.8: IPMC energy versus vortex ring circulation and core radius from the analytical
model.

The energy of the IPMC as a function of vortex ring circulation and core radius for a

fixed ring radius of Rr,i is presented in Figure 3.8 using dimensional values. As the vortex

ring circulation increases, the energy transferred to the IPMC increases. This increase is

slightly more rapid for smaller vortex ring core radii, though the dependence overall on core

radius is small. The energy transfer to the IPMC from the vortex ring in the experiments

is presented in Table 3.2. Comparison of these experimental data with Figure 3.8 indicates

that the model is successful in anticipating the effect of circulation on energy transfer to the

IPMC. To estimate the efficiency of such energy transfer, we calculate the ratio between
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the vortex ring energy computed from Eq. 3.14 and the experimental values of the energy

transfer to the IPMC in Table 3.2. In all experiments, approximately 0.0001-0.001% of the

ring energy is transduced into electrical energy that is dissipated in the IPMC. We note that

such conversion ratio is comparable with similar studies involving vortex rings impacting

IPMCs [72]. The relatively low energy transduction rates are expected to improve with

continued advancement of IPMC manufacturing techniques and further understanding of

its sensing modality. As of now, the limited energy conversion may be more valuable in the

design of underwater sensors rather than energy scavenging devices. While the analysis

presented herein is focused on harvesting using IPMCs, the proposed methodology, which

includes modeling the vortex ring and its interaction with the annulus, as well as the

electrical transduction, is expected to find application in the design of energy scavenging

devices incorporating other soft electroactive materials, such as polyvinylidene fluoride

(PVDF). For a comparison between IPMCs and PVDF, see [117].
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Γ [mm2/s] Evr [µJ] EIPMC [nJ] Transfer Ratio [%]
Low Circulation

2945 98 0.41 0.00041
3205 149 0.47 0.00031
2983 92 0.22 0.00023
3022 126 0.12 0.00009
3040 144 0.15 0.00010

High Circulation
4875 365 2.80 0.00076
4719 319 1.59 0.00049
4900 329 0.39 0.00011
5413 381 0.51 0.00013
5437 357 2.58 0.00072

Table 3.2: Energy harvested from the impinging vortex ring by the IPMC. Vortex ring
circulation and energy is computed when the ring is ≈ 20 mm from the IPMC.
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Chapter 4

Conclusions

Energy harvesting from a passing vortex ring using a cantilevered smart material plate,

and from an impacting vortex ring using an annular disk were examined. For the former,

a coupled, inviscid, two-dimensional fluid-structure interaction model was developed for

the cantilevered plate configuration, in which the plate was oriented parallel to and offset

from the path of the vortex ring in an otherwise quiescent fluid. The model was validated

against the experimental result, and employed to optimize the fluid to structure energy

transfer. In the latter study, the concentric impact of a vortex ring to an IPMC annular

disk was experimentally investigated and compared with a simplified model. The findings

of each configuration were summarized in the following sections.
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4.1 Energy harvesting from a passing vortex ring us-

ing a cantilevered smart material plate

The energy harvesting configuration of a vortex ring passing a cantilevered plate was

studied using the coupled two-dimensional fluid-structure analytical solution developed by

Peterson and Porfiri [73], which modeled the fluid domain with the potential flow theory

and the structure with the Kirchhoff-Love plate theory. In pursuance of analyzing the

three-dimensional problem with the two-dimensional model, a method of converting the

three-dimensional vortex ring/plate configuration into a two-dimensional vortex pair/plate

representation was developed. The analytical result was compared with a recent exper-

imental study conducted by Goushcha et al. [76]. The model predictions of the plate

kinematics and the fluid induced pressure loading on the plate were consistent with the

experimental measurements.

The analytical model was applied to a parametric study aimed at optimizing the energy

transferred from a given vortex ring to the plate. The key optimization parameter of

dimensionless plate natural frequency was established using the classical analysis of a

point load moving along a plate, which indicated that the resonance frequency occurs at

a specific ratio between the plate natural frequency and the convective time scale of the

moving load. The parametric study presented the fluid to structure energy transfer for

a given mass ratio as a function of the dimensionless plate frequency. The parametric

study demonstrated a significant increase in energy transfer at the resonance frequency, as

well as the decrease of resonance frequency towards asymptote as the mass ratio increases.

Additionally, a second parametric study examined the change in the resonant frequency
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with respect to the change in the distance between the vortex pair and the plate. It was

concluded that the resonant frequency shifts towards lower values as the distance increases.

From the result of the parametric studies, an empirical correlation for the shift in

resonant frequency with reference to mass ratio, dimensionless bending stiffness and dis-

tance from the vortex pair to the plate was formulated. The correlation, along with the

three-dimension to two-dimension conversion scheme, can be used to determine the plate

properties for a given passing vortex condition to achieve optimal energy transfer. The

result of the parametric studies also underlined the critical importance of the convective

time scale of the passing vortices in relation to the plate natural frequency for this type of

vortex-deformable structure interactions.

4.2 Energy harvesting from an impacting vortex ring

using an annular smart material disk

The energy harvesting configuration of a vortex ring impacting a concentric deformable

IPMC annulus was examined experimentally. The initial pulling of the annular disk as the

vortex ring approaches was observed from the experimental findings, likely caused by the

low pressure of the vortex core. Further, upon impact of the vortex ring, the plate was

pushed by the vortex ring, then, a secondary vortex ring was detected. The secondary

vortex ring was presumably formed out of the primary vortex ring induced vorticity at

the annulus edge and the primary vortex ring was believed to break down upon impact.

The experimental results reveal that the increase in the vortex ring circulation leads to
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an increase in plate deflection. The electrical energy harvested by IPMC was estimated

from the short-circuit current output. Approximately 0.0001-0.001% of the initial vortex

ring energy, evaluated with vortex ring thin core assumption, was converted to electrical

energy.

The experimental result was compared with an analytical model. The analytical frame-

work neglected the small deflection of the annulus. It modeled the annulus’ influence in

the fluid domain as a rigid circular aperture in an infinite plane with an axisymmetric

potential flow solution. The IPMC was represented with a linearized plate model. The

inviscid flow solution neglects any viscous effects, thus it does not predict the secondary

vortex ring generation and breakdown of the primary vortex ring. Overall, the analytical

solution agrees well with the experimental results, and it provides a groundwork for the

future energy harvesting capacity estimation.
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Chapter 5

Recommendations

From the experiences gathered from the study, the author makes the following recommen-

dations for future research regarding each energy harvesting configuration.

5.1 Vortex ring passing by a cantilevered deformable

plate configuration recommendations

1. The current study focused on the scenario of a single vortex ring. Goushcha et al. [76]

experimentally demonstrated that resonances can be achieved by matching the time

interval between multiple vortices and the plate’s natural frequency. The result of

the present study established that the convective time scale plays a critical role in

the interaction; thus, it would be of interest to examine the influence of the con-

vective time scale on the resonances frequency for the multiple vortex ring scenario.
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Additionally, the fluid-structure coupling behaviours should also be examined for the

multiple vortex ring scenario.

2. In the scenario of multiple passing vortex rings, leapfrogging phenomena occurs if

the interval between vortex rings is within certain ranges depending on the Reynolds

number [55]. Examining the influence of the additional vortex-vortex interaction

to vortex-deformable structure interaction can provide further insights into more

complex interactions in turbulent driven harvesters.

3. The current study assumed an ideal fluid; consequently, the induced vorticity at the

wall [70], vortex core distortion [118], vortex stretching [69], tip vortices [95] and the

interaction between these phenomena were all neglected. Numerical and experimental

investigation of the viscous effects will demonstrate the energy harvesting capability

when the vortex ring is close to the plate.

4. The current study only examined the energy transfer of the vortex-deformable struc-

ture interaction, and Goushcha et al. [76] only used a strain gauge as a surrogate for

piezoelectric materials, which seems to have impacted the beam dynamics. There

is not any study of this particular energy harvesting configuration that examines

the energy harvesting capabilities with actual smart materials. A study with piezo-

electrics and IPMC should be performed to demonstrate the feasibility, as well as to

examine how the electro-mechanical coupling alters the fluid-structure interaction.

5. A vortex ring passing by a cantilevered plate energy harvesting configuration was

examined in the present study, while direct orthogonal impact on a cantilevered
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plate was examined previously by Peterson and Porfiri [72]. By extension, the energy

harvesting potential of a vortex ring impacting a cantilevered plate at an angle should

also be studied. Additionally, Lim experimentally demonstrated very interesting

vortex dynamics when a vortex ring impinges on an inclined wall [69]. He showed

that bi-helical vortex lines formed due to variation in the rate of vortex stretching

which then compressed to the region of the vortex ring that is furthest from the

wall. Examining how a deformable wall influence this process will contribute to the

fundamental understanding of vortex-deformable structure interaction.

5.2 Vortex ring impacting a deformable annulus con-

figuration recommendations

1. Due to the IPMC fixture, the interaction between the vortex ring and the annulus

was not captured. To advance the understanding of the vortex dynamics, an addi-

tional investigation should be performed. Since the annulus deflection is relatively

small compared to its size, the annulus can be replaced with a rigid wall, thus elim-

inating the fixture. Consequently, flow visualization and PIV measurements can be

implemented. Additionally, Miloh illustrated that a vortex ring traveling coaxially

towards an annulus can either pass through or be blocked by it depending on the

ring, core and annulus radius in an ideal fluid [104]. Investigating how the viscous ef-

fects change the limit between the passing and blocking cases is beneficial for further

understanding the role of viscosity in fluid-structure interaction.
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2. During the experiment, the author noticed that when the centers of the annulus and

the vortex ring are not concentrically aligned, the secondary vortex ring convects

out of the annulus at an angle. Furthermore, as mentioned in §5.1, bi-helical vortex

lines are formed and compressed when the vortex ring is impacting a rigid wall

at an angle. It is appealing to examine the influence of the cutout on the vortex

dynamics, and the formation of the secondary vortex ring. It is important to explore

the above scenarios in order to demonstrate the feasibility and potential of this energy

harvesting configuration in real life conditions.

3. The formation of the secondary vortex ring hints at the possibility of secondary

energy harvesting to increase the harvesting efficiency. With this intention, multiple

annuli can be arranged in a cascade manner. This includes investigating the change

in the secondary vortex ring properties with respect to the annulus and the primary

vortex ring, as well as the influences of the secondary annulus on the formation of

the secondary vortex ring.

4. The stretching of the annulus as it deflects adds extra rigidity to the structure. To

achieve maximum deflection for optimal energy harvesting efficiency, the annulus can

be cut into a circular array of smart material elements, see Figure 5.1. This allows

the plate to vibrate similar to a cantilevered plate. It would be beneficial to study the

vortex dynamics of this interaction, as well as the influence of geometry parameters

(cutout radius Ri, fixture radius Ro, gap length Lg and number of element n) on the

hydrodynamic loading and vortex-structure interaction for optimization.
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Figure 5.1: Circular array of smart materials as new annulus energy harvester design. Red
color indicates the fixture and gold color indicates the smart material.
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