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Abstract

Priority queueing systems are oftentimes set up so that arriving customers are

placed into one of N distinct priority classes. Moreover, to determine the order of

service, each customer (upon arriving to the system) is assigned a priority level that is

unique to the class to which it belongs. In static priority queues, the priority level of

a class-k (k = 1, 2, . . . , N) customer is assumed to be constant with respect to time.

This simple prioritization structure is easy to implement in practice, and as such,

various types of static priority queues have been analyzed and subsequently applied

to real-life queueing systems. However, the assumption of constant priority levels for

the customers may not always be appropriate. Furthermore, static priority queues

can often display poor system performance as their design does not provide systems

managers the means to balance the classical trade-off inherent in all priority queues,

that is: reducing wait times of higher priority customers consequently increases the

wait times for those of lower priority.

An alternative to static priority queues are accumulating priority queues, where

the priority level of a class-k customer is assumed to accumulate linearly at rate

bk > 0 throughout the class-k customer’s time in the system. The main benefit of

accumulating priority queues is the ability, through the specification of the accumu-

lating priority rates {bk}Nk=1, to control the waiting times of each class. In the past,

due to the complex nature of the accumulating prioritization structure, the control

of waiting times in accumulating priority queues was limited — being administered

only through their first moments. Nowadays, with the advent of a very useful tool

called the maximal priority process, it is possible to characterize the waiting time

distributions of several types of accumulating priority queues.

In this thesis, we incorporate the concept of accumulating priority to several

previously analyzed static priority queues, and use the maximal priority process to

establish the corresponding steady-state waiting time distributions. In addition, since

static priority queues may be captured from accumulating priority queues, useful

iii



comparisons between the considered accumulating priority queues and their static

priority counterparts are made throughout this thesis. Thus, in the end, this thesis

results in a set of extensive analyses on these highly flexible accumulating priority

queueing models that provide a better understanding of their overall behaviour, as

well as exemplify their many advantages over their static priority equivalents.
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Chapter 1

Introduction

1.1 Background information and preliminaries

1.1.1 Queueing theory: the mathematical study of queueing
systems

Queueing systems are comprised of the following two fundamental elements: (i)

entities commonly referred to as customers that arrive to the system and require a

particular servicing before departing, and (ii) the system’s server(s) that fulfill the

service requirements of these customers. The mathematical study of these systems

is called queueing theory. For obvious reasons, queueing theorists are concerned with

the study of queueing systems that are limited in resources, for which the likelihood

of congestion or the formation of large queues (of the customers) is great.

In 1909, A.K. Erlang introduced and analyzed the first mathematical queueing

model for the purpose of studying the congestion within telephone networks. Over

one hundred years have since passed, and a survey of the current literature on the

subject would easily verify the wide applicability of queueing theory. In particular,

countless mathematical queueing models have been analyzed by researchers study-

ing queueing systems inherent in various areas such as telecommunications (e.g., see

Giambene (2005)), vehicular traffic control (e.g., see Boon (2011)), and health care

scheduling (e.g., see Lakshmi and Iyer (2013)). Nevertheless, the rapid advance-

ment of technology necessitates the further advancement of queueing theory and the
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continued pursuit of the mathematical study of complicated queueing systems.

This thesis focuses on the study of a particular kind of queueing system, namely,

priority queueing systems. These systems are particularly useful for situations when

certain kinds of customers should (or need to) be given faster access times to the

server(s). An obvious example of such a situation deals with the classification and

overall care of patients arriving to an emergency room of a hospital. Another health

care application involves the scheduling of patients requiring a specific surgery or

transplant, for which a key factor in a patient’s position on the wait list is its current

health relative to that of the other patients. Several other examples of these sorts

of situations also arise from call center applications and the scheduling of computer

jobs.

While it is true that priority systems reduce the waiting times of the higher pri-

ority customers, they also necessarily increase the waiting times of the lower priority

ones. This is the trade-off that a systems manager is faced with when deciding to

incorporate a prioritization structure. For the classical static priority queue, this

trade-off cannot at all be controlled or lessened, and thus, at times, leads to poor

system performance. Hence, in an effort to provide a systems manager the ability to

control the waiting times (amongst other performance measures), this thesis focuses

on the analysis of accumulating priority queues.

The rest of the thesis is organized as follows. For the remainder of this chapter,

we provide the necessary background information on mathematical queueing models

as well as provide a literature review on priority queueing systems. In Chapter 2,

we analyze a certain single-server queueing model that is without a prioritization

structure. Nonetheless, this model and its analysis serves as a building block for

the two priority queueing models presented later in Chapters 3 and 4. Finally, we

offer some final remarks including several possible extensions for the models which

we investigate in this thesis.
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1.1.2 Mathematical setup of a queueing system

In developing a mathematical queueing model, we must always specify the char-

acteristics of the two fundamental elements of the queueing system. In addition,

there may be other characteristics of this queueing system which we may want to

incorporate into the mathematical model. A very convenient notation used for cat-

aloguing mathematical queueing models is the so-called Kendall’s notation, which

was first introduced in Kendall (1951).

In using Kendall’s notation, a queueing system is labelled as A/B/m/c, where

each individual letter specifies the characteristics of a certain element of the queueing

system. Specifically,

(i) A specifies the arrival process of the customers,

(ii) B specifies the service requirements of the customers,

(iii) m specifies the number of servers that the queueing system has,

(iv) c specifies the capacity of the queueing system (i.e., the maximum number of

customers that can occupy the system at any point in time).

Note that in queueing theory, there are commonly used symbols which can occupy

both the first and second positions of Kendall’s notation. These symbols, more of-

ten than not, are used to specify the distribution of inter-arrival times of customers

(i.e., for A) and/or the distribution of the service times of the customers (i.e., for

B). In the next subsection, we present two examples of such commonly used sym-

bols. Furthermore, if the last symbol c is omitted, then the queueing system under

consideration is assumed to have infinity capacity for customers.

In addition to the characteristics being specified through Kendall’s notation, an-

other very important characteristic of any queueing system is the so-called service

discipline, which governs the order of service of the customers. Examples of some

well-known service disciplines include the first-come-first-served (FCFS) and the last-

come-first-served (LCFS) disciplines, which stipulate the order of service as their

names suggest. Priority queueing systems employ priority service disciplines which
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dictate the order of service on the basis of the priority levels of the customers present

in the system.

Beyond these fundamental characteristics, several other assumptions can be made

such as those pertaining to customer behaviour (e.g., the so-called jockeying, balking,

and reneging of customers). In this thesis, we do not consider such assumptions.

However, for a review of such queueing systems, as well as numerous others, we refer

the reader to the notable queueing theory texts of Asmussen (2008), Bhat (2008),

Cohen (1982), Gross et al. (2008), Kleinrock (1975, 1976), Prabhu (1997), and Takács

(1962).

1.1.3 The M/G/1 queueing system and some of its funda-
mental results

In this subsection, we introduce the well-known M/G/1 queueing system and

provide some of the key results related to it. First of all, in using Kendall’s notation,

the symbol M , standing for Markovian or memoryless, implies that the character-

istic for which it is describing has an exponential distribution. Since M appears

in the first position of Kendall’s notation, this implies that an M/G/1 queue has

exponential inter-arrival times. In other words, the customer arrivals to this system

form a Poisson process. Another commonly used symbol within the Kendall nota-

tion framework is the symbol G, standing for general, which is used to imply that

the characteristic for which it is describing follows a general distribution. Hence, an

M/G/1 queue is a single-server queueing system in which customer service times are

generally distributed.

We next present some distributional results within the M/G/1 framework for two

of the most fundamental performance measures of any queueing system, namely the

busy period duration and the waiting time. To do this, we first need to introduce

some parameters for our M/G/1 queueing system. Hence, let λ denote the customer

arrival rate, thereby implying that the distribution function (df) of the inter-arrival

times is given by

F (t) = 1− e−λt, t ≥ 0. (1.1)
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Next, we let X represent the generally distributed service time random variable,

whose df and corresponding Laplace-Stieltjes transform (LST) we denote by

B(x) = P(X ≤ x) and B̃(s) = E(e−sX), (1.2)

respectively. Furthermore, note that we say that the server is idle whenever the server

is not servicing a customer (i.e., simply because there are no customers present in

the system). Conversely, when the server is not idle, it must mean that a customer

is being served, and so, at those times, we simply say that the server is busy.

Now, if T denotes the duration of a typical busy period, then T represents the

interval of time from the instant that the server first becomes busy to the next

moment in time that the server becomes idle. Furthermore, it has been shown that

the LST of T , Γ̃(s) = E(e−sT ), is the solution to the functional equation

Γ̃(s) ≡ Γ̃(s;λ,X) = B̃(s+ λ− λΓ̃(s)) (1.3)

(e.g., see Conway et al. (1967, Section 8-3)). Moreover, it is straightforward to obtain

the first two moments of T via differentiation of the above LST:

E(T ) =
E(X)

1− ρ
(1.4)

and

E(T 2) =
E(X2)

(1− ρ)3
, (1.5)

where ρ = λE(X) is known as the traffic intensity. It can be shown (e.g., see Takács

(1962, Theorem 3, p. 58)) that if ρ < 1, then busy periods have finite lengths with

probability 1 (i.e., P(T <∞) = 1). Conversely, if ρ > 1, then T has an improper df

(i.e., P(T <∞) < 1).

Remark 1.1 The distribution of the M/G/1 busy period is equivalent for all service

disciplines which do not add work or insert idleness (e.g., both the FCFS and the

LCFS disciplines).

Although the above results are essential to this thesis, we typically use the corre-

sponding results in a slight variant of the M/G/1 busy period. In particular, consider
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an M/G/1 system whose zero-wait customers (i.e., those customers who initiate the

busy period) have exceptional service so that their service time distributions differ

from the distribution of the other subsequent service times (pertaining to customers

who incur positive wait times). In general, we refer to such resulting busy periods as

delay busy periods. Let Td represent the complete duration of such a delay busy pe-

riod. Furthermore, suppose that X0, the zero-wait service time (or the initial delay),

has df B0(x) and corresponding LST B̃0(s). Then, the LST of Td is given by

Γ̃0(s) ≡ Γ̃0(s;λ,X,X0) = B̃0(s+ λ− λΓ̃(s)), (1.6)

where Γ̃(s) is the solution to Eq. (1.3). The associated first two moments are

E(Td) =
E(X0)

1− ρ
(1.7)

and

E(T 2
d ) =

λE(X2)

(1− ρ)3
E(X0) +

E(X2
0 )

(1− ρ)2
. (1.8)

When ρ < 1, we say that the system is stable or stationary. That is, limiting

distributions of certain random variables are known to exist. For example, under

such conditions, the limiting distribution for the waiting time of the n-th arriving

customer (denoted by Wn) exists (e.g., see Takács (1962, Theorem 10, p. 69)). The

associated LST is given by the Pollaczek-Khinchin formula for the M/G/1 system:

lim
n→∞

W̃n(s) = W̃ (s) =
s(1− ρ)

s− λ+ λB̃(s)
. (1.9)

For stationary queueing systems, ρ can be interpreted as the long-run fraction

of time that the server is busy. Hence, an alternate representation of the stationary

waiting time LST is

W̃ (s) = (1− ρ) + ρW̃BP (s), (1.10)

where W̃BP (s) is the waiting time LST for customers who arrive during busy periods.

From Eq. (1.9), it immediately follows that

W̃BP (s) =
(1− ρ)(1− B̃(s))

E(X)(s− λ+ λB̃(s))
. (1.11)
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The first and second moments associated with the waiting time are

E(W ) =
λE(X2)

2(1− ρ)
(1.12)

and

E(W 2) =
λE(X3)

3(1− ρ)
+

(λE(X2))
2

2(1− ρ)2
. (1.13)

In the M/G/1 variant with zero-wait customers having exceptional service, the

LST for the waiting time of a customer serviced within a delay busy period (with

the same inputs as above) is given by

W̃BP (s) =
(1− ρ)(1− B̃0(s))

E(X0)(s− λ+ λB̃(s))
. (1.14)

Note that if B̃0(s) = B̃(s), then Eq. (1.14) is equivalent to Eq. (1.11). The first

moment associated with the above LST is

E(WBP ) =
λE(X2)

2(1− ρ)
+

E(X2
0 )

2E(X0)
. (1.15)

1.2 Priority queueing systems: an introduction

and a brief review of the literature

Service rules which dictate the order of service through the priority (or urgency)

of the customers in the system are known as priority disciplines. Queueing systems

that employ a priority discipline give preferential treatment to customers of greater

urgency in the sense that at a service selection instant, the customer of (or with)

the greatest priority is usually selected (we call this rule the general Priority Ser-

vice Guideline). To remove the ambiguity in this notion of the “customer with the

greatest priority”, a mechanism for assigning priorities to the customers is required.

Oftentimes, the customers of a priority queueing system are categorized into

a fixed number of distinct priority classes labelled with class indices 1, 2, . . . , N .

Throughout the thesis, we use the symbol Ci which is to be read as “class-i customer”.

In general, we say that Cis are prioritized over Cjs whenever i < j. With this setup,
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one can assign priorities to customers quantitatively by using the so-called priority

functions, which are generally class-dependent. We denote the priority function for

the Cks by qk(t), where the argument t represents time.

A priority queueing system such that qk(t) is constant with respect to t for all

k = 1, 2, . . . , N is known as a static priority queue, satisfying

qk(t) = ak, k = 1, 2, . . . , N, (1.16)

where the set of constants {ai}Ni=1 are arranged so that a1 > a2 > · · · > aN . Further-

more, amongst all of the customers belonging to the same class, it is assumed that

the oldest such customer is the one with the greatest priority. In other words, the

service amongst the Cks is administered via the FCFS discipline.

Priority queues for which qk(t) is dependent on t have been more or less termed

in the literature as dynamic priority queues. If τk is the arrival time of a Ck, then a

dynamic priority discipline can be characterized (as in Netterman and Adiri (1979))

as having priority functions given by

qk(t) = φk(t− τk), t ≥ τk, k = 1, 2, . . . , N, (1.17)

where {φi(x)}Ni=1 is a sequence of functions satisfying

φ1(0) ≥ φ2(0) ≥ · · · ≥ φN(0) (1.18)

and

φ′1(x) ≥ φ′2(x) ≥ · · · ≥ φ′N(x) ≥ 0 for all x > 0. (1.19)

For i < j, note that Eq. (1.18) infers that a Ci arrives to the system with an initial

priority level which is at least as great as the initial priority level of a Cj. Similarly,

Eq. (1.19) implies that a Ci earns priority at least as fast as a Cj does. Hence, for

dynamic priority queues employing the general Priority Service Guideline, Eq. (1.18)

and Eq. (1.19) imply that, within a given class, service is administered based on the

order of arrival (as in the case of the static priority discipline).

Another very important distinction of priority queues is based on the decision of

whether or not to interrupt the servicing of a customer for another higher priority
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customer present in the system. In this regard, there are generally three types of

priority queues:

(i) Non-preemptive: service of customers proceeds to completion without any in-

terruptions,

(ii) Preemptive: service of lower priority customers is interrupted for higher priority

customers,

(iii) Mixed: subject to some discretionary rules, the service of lower priority cus-

tomers may or may not be interrupted for higher priority customers.

For the preemptive and mixed types of priority queueing systems, the rule gov-

erning the servicing of an interrupted customer, upon its re-entry into service, must

be specified, and can be performed via any one of the following three traditional

disciplines:

(i) Resume: service of the interrupted customer continues from where it was in-

terrupted,

(ii) Repeat-different : all previous work is lost and a new service time is indepen-

dently sampled from the corresponding service time distribution,

(iii) Repeat-identical : all previous work is lost and service is restarted with the

originally sampled service time.

In addition to these required specifications of a priority queueing system, addi-

tional features pertaining to customer behaviour may also be incorporated. For ex-

ample, priority queueing systems may also include customer reneging (i.e., customers

who abandon the queue while waiting for the server), jockeying (i.e., customers vying

for better position while in the queue), and balking (i.e., customers who arrive to

the system and decide not to enter the queue at all). We note, however, that this

thesis focuses on priority queueing systems that do not incorporate such customer

behaviours.
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We now provide a review of the literature on priority queueing models, beginning

with those queueing systems for which the assignment of priority to the customers

is static. The first static non-preemptive priority queue was analyzed by Cobham

(1954), while the idea of preemption seemed to originate in the paper by White and

Christie (1958). Nowadays, these priority models are coined as being the “classical”

priority queueing systems, which have been rigorously analyzed by numerous queue-

ing theorists. For a detailed analysis on both static non-preemptive and preemptive

priority queues, we refer the reader to the texts by Conway et al. (1967), Jaiswal

(1968), and Takagi (1991).

With regards to mixed priority queues, several researchers have previously consid-

ered various guidelines and discretion rules to dictate the interruptions of service. A

well-known guideline for prescribing interruptions based solely on the class indices is

the so-called preemption distance (PD) rule. The PD rule allows for preemption only

if the difference in the class indices of the two customers under consideration exceeds

a specified value. Adiri and Domb (1982, 1984) and Paterok and Ettl (1994) have

analyzed static priority queues implementing the PD rule. Mixed priority queues for

which the discretion rules are based on the service time of the customer currently

in service have also been previously considered. For example, three such discretion

rules are:

(i) Proportion-based (PB) policy: Once a certain proportion α, 0 ≤ α ≤ 1, of the

service time has been successfully rendered, further preemptions are prevented,

(ii) Front-end time-based (FETB) policy: Once T time units of service have been

successfully rendered, further preemptions are prevented,

(iii) Tail-end time-based (TETB) policy: Once the time remaining to successfully

complete service is less than t time units, further preemptions are prevented.

The above “threshold-based” discretion rules were first studied by Cho and Un

(1993). Later, Drekic and Stanford (2000) considered a generalized version of these

discretion rules by allowing the threshold parameters to be class-dependent.
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Shifting the focus of our discussion now to dynamic priority queues, we remark

that Jackson (1960, 1961, 1962) was the first to implement a dynamic priority disci-

pline into a discrete-time queueing system. In these articles, he considered priority

functions of the form

qk(t) = ak + (t− τk), t ≥ τk, (1.20)

where the initial priority levels were arranged such that a1 > a2 > · · · > aN . He

derived bounds for the mean waiting time of a Ck, and notably in Jackson (1962), he

obtained an approximation for the waiting time distribution.

The first to consider a dynamic priority discipline under a continuous-time frame-

work was Kleinrock (1964), who developed a recursion for calculating average waiting

times for a system with exponential inter-arrival and service times (i.e., an M/M/1-

type priority queue) using priority functions of the form

qk(t) = bk · (t− τk), t ≥ τk, (1.21)

where the accumulating priority rates {bi}Ni=1 were arranged so that b1 ≥ b2 · · · ≥
bN ≥ 0. Kleinrock termed this specific dynamic priority service discipline as the

delay dependent priority discipline. Kleinrock and Finkelstein (1967) subsequently

extended this work by considering the same M/M/1-type priority system but with

priority functions of the form

qk(t) = bk · (t− τk)r, t ≥ τk,

with r ≥ 0. A few years later, Holtzman (1971) considered an M/G/1-type priority

system characterized by Eq. (1.20) for which he derived both upper and lower bounds

for the marginal expected waiting times of each class.

Netterman and Adiri (1979) followed up and analyzed an M/G/1-type priority

system with a more general priority function in that the only requirement was that

φk(x) be concave. In their paper, they obtained an integral recursive function for

the expected class-k waiting time. In addition, the authors pointed out that, in

general, the extraction of expected waiting times via their recursive function is quite

difficult. Thus, they also obtained upper and lower bounds for the expected waiting
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times of each class. Others have also found expressions and corresponding bounds

of steady-state expected waiting times for more general linearly increasing priority

functions (e.g., see Bagchi and Sullivan (1985) and Sharma and Sharma (1994)).

Systems where priority levels are decreasing rather than increasing have also been

studied in the papers by Hsu (1970) and Bagchi (1984). Following along the lines of

Kleinrock (1964), these authors considered priority functions as in Eq. (1.21) with the

exception that the rates {bi}Ni=1 were arranged such that 0 ≥ b1 ≥ b2 · · · ≥ bN (i.e.,

the priority level of a Ci decreases at a slower rate compared to that of a Cj whenever

i < j). They derived recursions for the mean waiting times1. Kanet (1982) later

considered an M/G/1-type priority system for which the classes of customers were

divided into two sets: one set of classes whose customers accumulate priority, and the

other whose customers’ priority levels dissipate throughout time. Specifically, Kanet

(1982) considered priority functions as in Eq. (1.21) with accumulating priority rates

b1 ≥ · · · ≥ bi ≥ 0 ≥ bi+1 ≥ · · · ≥ bN

for some i = 1, 2, . . . , N . He obtained a recursion for the steady-state expected

waiting times for such a model.

From the mid-1980s to the end of the twentieth century, the literature on dynamic

priority queues was nearly non-existent, with the only published work in this area

being the paper by Sharma and Sharma (1994). Furthermore, it is clear that the

analysis of such priority queues had been essentially focused on deriving expressions

or bounds for the steady-state mean waiting times of each class. It is perhaps the

case that the overall complexity of these models is what deterred researchers from

determining the distributions of the steady-state waiting times.

In a recent paper, almost two decades removed from the last recorded work on

the subject, Stanford et al. (2014) revisited the delay dependent priority discipline

(i.e., Eq. (1.21)) and applied it to an M/G/1-type priority system. With a newly

defined stochastic process, called the maximal priority process, Stanford et al. (2014)

shed new light on the specific structuralization of such a dynamic priority queue.

Ultimately, by virtue of the maximal priority process, these authors derived the LST

1Bagchi (1984) points out two errors in Hsu’s (1970) derivation of mean waiting times.
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of the steady-state class-k waiting time distribution. In their paper, they renamed

the discipline as the accumulating priority queue on the basis that the term “delay

dependent” (or “time dependent”) had since gained several other meanings in the

queueing literature.

Unlike its counterpart (i.e., static priority queues), however, the existing litera-

ture on dynamic priority queueing systems is predominantly non-preemptive in na-

ture. With the exception of Kleinrock (1964) and Kleinrock and Finkelstein (1967),

where the authors find expressions for steady-state mean waiting times under the

preemptive resume discipline2, all of the aforementioned works have dealt with non-

preemptive systems. It seems that for the preemptive variant, the only other notable

publication is that of Trivedi et al. (1984), who considered the preemptive resume

discipline in Hsu’s (1970) decreasing priority model. Once again, the analysis therein

focused on finding the steady-state expected waiting times of each class.

In Chapter 3 of the thesis, we consider the preemptive priority queue with priority

functions of the form given by Eq. (1.21), whereas in Chapter 4, we analyze a mixed

priority queueing system using a generalization of the threshold-based discretion

rules introduced earlier. The analysis of both of these models borrows results from

the analysis of the M/G/1-type queueing system considered in Chapter 2, which

incorporates a new blocking policy called the q-policy.

1.3 Main contributions

As a whole, this thesis advances the study of accumulating priority queues. Specif-

ically, it furthers the knowledge of the maximal priority process, providing a better

understanding of how it can be used as tool in the analysis of accumulating prior-

ity queues. As a specific example, the maximal priority process is used to obtain

the waiting time distributions in the fully preemptive accumulating priority queue

under all three of the traditional preemption disciplines: resume, repeat-different,

and repeat-identical. In deriving the class-k waiting time LSTs for this accumulat-

2However, non-preemptive systems were still the main focus of Kleinrock (1964) and Kleinrock
and Finkelstein (1967).
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ing priority queue and for the others considered in this thesis, we empower systems

managers to control, through the specification of the accumulating priority rates

{bk}Nk=1, several aspects of the class-k waiting time distribution, including its mo-

ments and quantiles.

Our analyses of accumulating priority queues is indeed quite exhaustive in that,

in addition to establishing the waiting time distributions, formulas for several other

important quantities that provide further insight into the characteristics of these

queueing models (and which can provide alternate measures of overall system per-

formance) are obtained. It also bears mentioning that the models considered in

this thesis are quite general, capturing a wide variety of previously analyzed static

priority queues as special cases and allowing for useful comparisons between old

and new models to be made with ease. Finally, we remark that this thesis pro-

vides the first-ever (to the best of our knowledge) analysis on a dynamic preemptive

priority queue under the two preemptive repeat service disciplines (repeat-different

and repeat-identical), as well as the first-ever analysis on a mixed dynamic priority

queueing system.
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Chapter 2

M/G/1 queue under the q-policy

2.1 Introduction

In this chapter, we study an M/G/1-type queueing model in which the arrival

process is controlled by a systems manager so as to decrease the lengths of the general

busy period. In some applications, for example, a systems manager may be more

inclined to regularly decrease the overall length of the busy period if it is the case

that the server/machine becomes highly susceptible to expensive breakdowns after

operating for extended periods of time. These breakdowns can be costly both in

terms of the repair costs and the opportunity costs due to closures of the system. To

alleviate the risk of incurring an expensive breakdown, a systems manager may choose

to rest the server/machine during closedown periods on a regular basis. In addition,

cost-effective maintenance checks can be performed during these rest periods to

ensure the long-run functionality of the machine.

In what follows, we present one such policy which would allow a systems manager

to control busy period lengths. Specifically, during each busy period, the control is

exercised by closing the system to potential customers over a constant proportion

of the overall busy period. The flexibility to disallow (or to block) customers from

entering the system may be desirable if, for instance, a holding cost for customers

during their sojourn in the system exists. Our aim here is to study the effect of the

new policy, which we refer to as the q-policy, on various performance measures of
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interest such as the length of busy periods and the wait of serviceable customers.

The literature on the optimal design and control of queueing systems is quite

extensive. In regards to the arrival control of queueing systems, the usual goal

is to find the optimal policy which maximizes (or minimizes) a specific objective

function. In the seminal paper by Naor (1969), an M/M/1-type queueing system

is studied where the arrival process is controlled by the administration of a toll

charge for arriving customers. In particular, customers receive a fixed reward K

upon successful service but also incur a holding cost h per unit time spent in the

system. Naor studies the optimal policies from two perspectives, namely:

(i) individual optimization, where the objective function is the individual expected

net benefit rate function, and

(ii) social optimization, where the objective function is the expected overall net

benefit rate function.

Naor assumes that the optimal policies for both problems is of the critical number

form (i.e., customers are accepted for service if the number of customers currently

occupying the system is less than the critical number), and this form of optimal

policy can be validated through the use of Markov decision processes (see Stidham

(2002) and references therein). Under this framework, Naor establishes a key result

which states that an individually optimal policy admits more customers than its

counterpart, the socially optimal policy.

Naor’s work inspired several other researchers to consider various generalizations

for both the model and the net benefit rate structure. Rue and Rosenshine (1981)

considered Naor’s model and studied the effect of the arrival rate on the parameters

for both kinds of optimal policies. Yechiali (1971) extended Naor’s work by relaxing

the assumption of the arrival process to be merely a renewal process. The M/M/s

variant was considered by Knudsen (1972) where Naor’s main result was shown to

still hold true. Doshi (1977) considered the continuous-time arrival control of an

M/G/1 queueing system which operated under a policy that opened and closed

the system to potential arrivals depending on the level of the workload. Johansen

and Stidham (1980) showed that Naor’s main result actually holds true under a
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set of fairly general conditions (e.g., dependent arrivals, batch arrivals, and random

rewards). For excellent surveys of the literature, we refer the interested reader to

Stidham (1985, 2002). To the best of our knowledge, the q-policy presented in this

chapter has not been previously studied.

The optimal policies found by these researchers has usually resulted in the for-

mulation of threshold-form policies (i.e., thresholds for the number of customers in

the system or for the residual workload). We emphasize, however, that our focus

is not one that searches for an optimal policy which maximizes a specific objective

function, but instead analyzes the effects of a given policy which aims to lessen the

workload of a system. Nevertheless, we do formulate an optimization problem in

Section 2.6 which illustrates that, in certain situations, the reduction of the busy

period lengths via the q-policy can result in increased profits.

The rest of the chapter is organized as follows. In the next section, we introduce

the queueing model and the q-policy. Section 2.3 is devoted to the study of the

busy period as well as some fundamental steady-state probabilities associated with

the system. The steady-state waiting time distribution of serviceable customers is

analyzed in Section 2.4 by virtue of the level-crossing methodology. In Section 2.5,

we present a queueing model which enables a systems manager to block customers

during busy periods similar to the q-policy, but has the property that it does not

require knowledge of the service times upon arrival. A numerical example is provided

in Section 2.6. We remark that most of the work presented in this chapter is found

in Fajardo and Drekic (2015a).

2.2 The model and the q-policy

We assume that the Poisson arrival rate of customers to the system is λ > 0. If the

system is open (i.e., accepting of new customers) when a customer arrives, then this

customer joins the queue (which is assumed to have infinite capacity). Otherwise, the

customer is lost and unrecoverable. Let {Xi}∞i=1 denote the sequence of independent

and identically distributed (iid) customer service times having common mean µ =

E(Xi) and common second moment γ = E(X2
i ). Similar to the model studied by
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Johansen and Stidham (1980), the customer service times are assumed to be known

to the server (or systems manager) immediately upon a customer’s entry to the

system. We denote the corresponding df and LST by

B(x) = P(Xi ≤ x) and B̃(s) =

∫ ∞
0

e−sxdB(x), (2.1)

respectively. The FCFS service discipline is used to govern the order of service

for the admitted customers. We denote the traffic intensity of the classical (i.e.,

unblocked) M/G/1 queue, as usual, by ρ = λµ. Note that we reserve the notation

B̄(x) = P(Xi > x) for the complementary df of Xi.

Before formally introducing the q-policy, we recall that for an arbitrary busy

period of the classical (work-conserving) M/G/1 queue, any customer who arrives

during this busy period will always be admitted for service (i.e., they will eventually

be served in this busy period). However, suppose that a systems manager would like

to restrict (or control) the arrival process during a busy period, so that the system

is not obligated to serve all customers who arrive during the busy period. In such

a situation, a systems manager could, for intervals of time within the busy period,

close the system to potential arrivals. A blocking policy provides a set of guidelines

which allows a systems manager to administrate the openings and closures of the

system. We denote such a policy in general by π(t), where π(t) = 1 implies that the

system is open at time t, and similarly π(t) = 0 implies that the system is closed at

time t. An example of such a blocking policy is the q-policy, denoted by πq(·), which

we define next.

Definition 2.1 (The q-policy) Without loss of generality, assume that a customer

arrives to an empty queue at time τ1 = 0, thereby initiating the start of a busy period.

For all t ≥ 0 during this busy period, we define the process {R(t), t ≥ 0}, which is

similar to the workload process. In particular, for 0 ≤ q ≤ 1:

1. R(0) = (1− q)X1, where X1 is initial customer’s service time.

2. R(t) decreases at unit rate unless the process is at level 0.
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3. For the sequence of customer arrival epochs, {τi}∞i=2, during this busy period,

R(τi) =

{
R(τ−i ) + (1− q)Xi if R(τ−i ) > 0
0 if R(τ−i ) = 0

, (2.2)

where R(t−) = lim
ε→0

R(t− ε).

Then, for all t ≥ 0 during this busy period,

πq(t) =

{
1 if R(t) > 0
0 if R(t) = 0

. (2.3)

Remark 2.2 The process {R(t), t ≥ 0} acts as a timer for the busy period. That is,

R(t) represents the time remaining, at time t, before the system is closed to potential

arrivals.

Figure 2.1 illustrates a busy period under the q-policy. Here, at some point during

the servicing of the third customer (denoted by C3), the timer becomes drained

(i.e., R(·) hits level 0), and this results in the system becoming closed to potential

arrivals. Hence, both customers C5 and C6 are blocked from entering the system. It

is important to note that, although the system is closed at this point, the server must

still complete the servicing of C3 and C4. In other words, the busy period terminates

when all admitted customers have been fully served. Moreover, the end of the busy

period signals the reopening of the system and the commencement of the ensuing

idle period which ends at the next customer arrival instant. The busy period and

the subsequent idle period together form a busy cycle.

Clearly, under the q-policy, the resulting busy periods are stochastically smaller

than those corresponding to a system not implementing any sort of blocking policy.

It is also apparent that if we set q = 0, then {R(t), t ≥ 0} exactly becomes the so-

called workload process during a busy period in the classical M/G/1 queue. In fact, a

blocking proportion equal to zero simply implies that no customers are blocked from

service, and thus the resulting model is equivalent to the classical M/G/1 queue. On

the other hand, with q = 1, the system is closed to potential customers throughout

the entire busy period (i.e., R(t) = 0 for all t), implying that only the customers

that arrive to an empty system are accepted for service. As a result, we obtain the

M/G/1/1 queue as a special case when q = 1.
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Figure 2.1: A typical busy period under the q-policy

2.3 The busy period and some steady-state prob-

abilities

In this section, we first establish a functional equation for the LST corresponding

to the distribution of the busy period duration operating under the q-policy. Let T

be the length of such a busy period, whose df and LST are denoted by G(x) and

G̃(s), respectively.

To derive the LST of T , we note that the order in which serviceable customers are

served does not, in any way, affect the duration of the busy period. As in the classical

case, this important observation leads to the derivation of a functional equation for

G̃(s). We now introduce a new service discipline which we refer to as the q-restricted

last-come-first-served (q-restricted LCFS for short) discipline. First of all, recall

that {R(t), t ≥ 0} consists of up-jumps at the arrival epochs of each serviceable

customer, and further that the magnitude of the jump is equal to the service time
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of the customer multiplied by (1 − q). Let us refer to these entities simply as the

unblocked portions of the service times. Now, the order of service determined by the

q-restricted LCFS discipline is precisely the order of service obtained by applying the

usual LCFS discipline to a system in which the unblocked portions are effectively

considered as the actual service times (i.e., (1− q)Xi instead of Xi).
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Figure 2.2: A busy period under the q-restricted LCFS discipline

Figure 2.2 demonstrates the q-restricted LCFS discipline in a typical busy pe-

riod. Again, we determine the order of service under this discipline by effectively

considering the unblocked portions as the actual service times. Specifically, in Figure

2.2, one can determine the order of service by projecting the arrival epochs to the

a∗-axis and applying the usual LCFS discipline. Moreover, under the q-restricted

LCFS discipline, we see that the interval of time during which R(t) is positive (i.e.,

the system is open to accepting new customers) can be decomposed into smaller,

well-understood subintervals of time. Indeed, these subintervals are merely the ac-

ceptance periods of their corresponding sub-busy periods. For example, in Figure

2.2, C4 generates a sub-busy period in which C5 and C6 both are serviced; the length

of the acceptance period for this sub-busy period is equal to (1−q)×(X4 +X5 +X6).
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It is clear that these sub-busy periods are identically distributed to the overall busy

period (generated by C1). However, we do note that in the intermediate sub-busy

periods (i.e., sub-busy periods generated by C4 and C3 in Figure 2.2), customers

who fail to arrive in their acceptance periods are not blocked from the system, but

instead are serviced in the next sub-busy period.

Theorem 2.3 If λ(q) = λ(1 − q) and ρ(q) = λ(q)µ < 1, then T has a proper (i.e.,

non-defective) distribution and its corresponding LST satisfies the functional equation

G̃(s) = B̃(s+ λ(q)(1− G̃(s))). (2.4)

Proof. Similar to the LST derivation of the busy period duration in the classical

M/G/1 queue (e.g., see Kleinrock (1975, Section 5.8)), we invoke the fact that T is in-

dependent of the service discipline, so long as it is a work-conserving one. Kleinrock’s

derivation involves the usual LCFS discipline, but here, we employ the q-restricted

LCFS discipline. Define N to be the number of customers who arrive during the

unblocked portion of the initial customer’s service time. As discussed above, each

of the N customers generates a sub-busy period of their own which is identically

distributed to the overall busy period and, moreover, is mutually independent from

the others.

Conditioning on both N = n and the first service time X1 = x, we obtain

E(e−sT |X1 = x,N = n) = e−sx
(
G̃(s)

)n
. (2.5)

Given X1 = x, N is Poisson distributed with rate λ(q)x, and this leads to

E(e−sT |X1 = x) = e−sxe−λ
(q)x

∞∑
n=0

(
λ(q)xG̃(s)

)n
n!

= e−x(s+λ(q)−λ(q)G̃(s)). (2.6)

Lastly, removing the condition on X1 immediately yields

G̃(s) = E(e−sT ) = B̃(s+ λ(q)(1− G̃(s))), (2.7)

and the result is proven. �
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As in the classical case, we are left with an implicit expression for the LST of

T . Nonetheless, we are still able to obtain the moments of T through successive

differentiation. In particular, the first two moments of T are:

E(T ) =
µ

1− ρ(q)
, (2.8)

E(T 2) =
γ

(1− ρ(q))3
. (2.9)

Remark 2.4 Theorem 2.3 implies that the busy period under the q-policy is dis-

tributed equivalently to the busy period of a classical M/G/1 queue with arrival rate

λ(q) and service time distribution B(·) (i.e., G̃(s) = Γ̃(s;λ(q), Xi) as defined by Eq.

(1.3)). Furthermore, the busy period is also equivalently distributed to the busy period

of an M/G/1 queue with the following Bernoulli-type blocking policy:

(i) customers arrive according to a Poisson process with rate λ > 0;

(ii) at each customer arrival epoch, the server conducts a Bernoulli experiment,

where with probability (1 − q) the customer is admitted for service, and with

probability q the customer is blocked.

A common feature of this model with the system under the q-policy is that during

busy periods, the probability that an arriving customer is blocked from entering the

system is precisely q.

We next establish the form of the probability generating function (pgf) for Nbp,

the number of customers served in a busy period. We define m(z) = E(zNbp) to be

the pgf of Nbp. Like the duration of the busy period T , the number served in a busy

period is unaffected by the order of service. Hence, by implementing the q-restricted

LCFS discipline, we obtain

E(zNbp |N = n) = E(z1+M1+M2+···+Mn), (2.10)

where N is the number of customers in the initial queue (i.e., those customers ar-

riving during the unblocked portion of the initial customer’s service time) and Mi
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denotes the number of customers served in the i-th customer’s sub-busy period. By

independence, we have

E(zNbp |N = n) = z
(
m(z)

)n
. (2.11)

It immediately follows, by removing the condition on N , that

m(z) = zB̃
(
λ(q)(1−m(z))

)
, (2.12)

from which the first moment of Nbp is readily given by

E(Nbp) =
1

1− ρ(q)
. (2.13)

To conclude this section, we shift our focus to the derivation of some key steady-

state probabilities of the system, namely:

PI ≡ steady-state probability the server is idle;

PB ≡ steady-state probability the server is busy;

PB,0 ≡ steady-state probability the server is busy and the system is closed;

PB,1 ≡ steady-state probability the server is busy and the system is open.

To obtain these probabilities, we apply the theory of regenerative processes (e.g., see

Kao (1996, Section 3.6)). Define a busy cycle, D, to consist of a busy period T and

the ensuing idle period I (i.e., D = T + I). Clearly, the set of regeneration points

associated with D are the epochs defined by busy period commencements. Thus,

from elementary renewal theory, we readily obtain:

PI =
E(I)

E(D)
=

1− ρ(q)

1 + ρq
, (2.14)

PB =
E(T )

E(D)
=

ρ

1 + ρq
, (2.15)

PB,0 = qPB =
ρq

1 + ρq
, (2.16)

PB,1 = (1− q)PB =
ρ(q)

1 + ρq
. (2.17)
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2.4 Steady-state wait of serviceable customers

2.4.1 The workload and virtual wait processes

The motivation for our study of the virtual wait process stems from the well-

known fact that for M/G/1-type queues, the distributions of virtual wait and actual

wait are equivalent in steady-state. In what follows, we denote the (unfinished)

workload process under a q-policy by {Uq(t), t ≥ 0}, whereas the virtual wait process

is denoted by {Wq(t), t ≥ 0}.
Obviously, {U0(t), t ≥ 0} and {W0(t), t ≥ 0} are the corresponding workload and

virtual wait processes for the classical M/G/1 system. Now, for times t > 0 when

the system is open (i.e., πq(t) = 1), one notes that Uq(t) behaves in the same manner

as the U0(t) in that:

(i) Uq(t) decreases at unit rate, except during times of idleness,

(ii) Uq(t) up-jumps at customer arrival epochs, with the magnitude of the jumps

being equal to the arriving customer’s service time.

On the other hand, for times t > 0 when πq(t) = 0, we have that Uq(t) decreases

at unit rate. In particular, if t∗ > 0 is such that πq(t∗) = 0 and πq(t
−
∗ ) = 1, then

starting from time t∗, the workload depletes at unit rate until it hits level 0. Now,

similar to how {U0(t), t ≥ 0} and {W0(t), t ≥ 0} are equivalent processes, during

times t when the system is open, the processes {Wq(t), t ≥ 0} and {Uq(t), t ≥ 0} are

also equivalent. However, the virtual wait process is further complicated by the fact

that during a closure period for the system, the process is essentially undefined (i.e.,

does not exist).

Figure 2.3 depicts the sample paths of both processes for three consecutive busy

periods of the system. The grey-shaded regions correspond to the times during which

the system is closed (i.e., πq(t) = 0), and thus, also represent the times when Wq(t)

is undefined. Customer arrival epochs are marked on the time axis with diamond

symbols, and observe that both processes up-jump at arrivals occurring only during

times when the system is open. As is also evident from Figure 2.3, the instant in time
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T1 T2 T3

þqHtL=0

q × T1 q × T2
q × T3

t

UqHtL

(a) A typical sample path of the workload process

ì ì ì ì ì ì

T1 T2 T3

þqHtL=0

q × T1 q × T2
q × T3

t

WqHtL

(b) Corresponding sample path of the virtual wait process

Figure 2.3: Typical sample paths of the processes {Uq(t), t ≥ 0} and {Wq(t), t ≥ 0}
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at which the system becomes closed during a busy period is exactly the same instant

in time that Wq(t) (or equivalently Uq(t)) hits level qTi, where Ti is the duration of

the i-th busy period. In what follows, we define Gq(x) = 1− Ḡq(x) = P(qT ≤ x) =

G(x/q) as well as G̃q(s) = E(e−s(qT )) = G̃(sq).

In order to study the wait of admitted customers, it is clear that we must analyze

the virtual wait process only during times of its existence. Hence, we introduce the

censored virtual wait process {Wq(t), t ≥ 0}, as illustrated in Figure 2.4. This process

can be considered as {Wq(t), t ≥ 0} with the censorship (or removal) of the periods

of non-existence. Indeed, by simply removing these periods, the resulting censored

process will have a different time clock than the non-censored version. However, due

to the memoryless property of the Poisson arrival process, the analysis of {Wq(t), t ≥
0} during its times of existence is equivalent to the analysis of {Wq(t), t ≥ 0}.

As is evident in Figure 2.4, the sample path never continuously hits level 0 (unless

q = 0), but instead always down-jumps to level 0. Furthermore, the magnitude of

these down-jumps have distribution Gq(·). This simple observation allows us to

derive the steady-state integral equation for the probability density function (pdf)

of the virtual wait (during times of its existence).

ì ì ì ì ì ì

q × T1
q × T2

q × T3
x

t

WqHtL

Figure 2.4: Sample path up- and down-crossings of level x for {Wq(t), t ≥ 0}
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2.4.2 Steady-state integral equation for the pdf of the virtual
wait

We characterize the transient distribution of the censored virtual wait by the

functions
Ft(x) = P(Wq(t) ≤ x), x ≥ 0, t ≥ 0;

ft(x) = ∂
∂x
Ft(x), x > 0, t ≥ 0;

P0(t) = P(Wq(t) = 0), t ≥ 0.

 (2.18)

The steady-state distribution is obtained by letting t → ∞ in the functions of Eq.

(2.18), resulting in

F (x) = lim
t→∞

Ft(x), f(x) = lim
t→∞

ft(x), and P0 = lim
t→∞

P0(t). (2.19)

When appropriate, we will use f(x; q) equivalently as f(x) to specify the value of q

being used in the blocking policy. Also, in what follows, we extend the definition of

P0(t) by defining P0(t) = 0 for all t < 0.

Considering the censored virtual wait process, let Ut(x) and Dt(x) denote the

number of sample path up- and down-crossings of level x, respectively, during the

time interval (0, t). Moreover, let Dct (x) (and Djt (x)) denote the number of continuous

down-crossings (jump down-crossings) of level x in the time interval (0, t). Clearly,

Dt(x) = Dct (x) +Djt (x). (2.20)

Correspondingly, we remark that U jt (x) = Ut(x) for all x ≥ 0. The ingenuity of the

level-crossing methodology lies in the principle of set balance (e.g., see Brill (2008,

Section 2.4.6)). That is, in steady-state, the up-crossing and down-crossing rates of

level x are equal:

lim
t→∞

E(Dt(x))

t
= lim

t→∞

E(Ut(x))

t
, (2.21)

lim
t→∞

Dt(x)

t
a.s.
= lim

t→∞

Ut(x)

t
, (2.22)

where “a.s.” means almost surely, or with probability 1. Thus, to develop an integral

equation for the steady-state pdf of the virtual wait (provided it exists), we must

establish both the up- and down-crossing rates of level x. The next theorem provides

the means to do so.
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Theorem 2.5 The up- and down-crossing rates of level x are given by

lim
t→∞

E(Ut(x))

t
= λB̄(x)P0 + λ

∫ x

y=0

B̄(x− y)f(y) dy, x > 0, (2.23)

lim
t→∞

E(Dct (x))

t
= f(x), x > 0, (2.24)

lim
t→∞

E(Djt (x))

t
= λP0Ḡq(x), x > 0. (2.25)

Proof. The proof for both the up-crossing rate and the continuous down-crossing

rate (i.e., Eq. (2.23) and Eq. (2.24)) can be derived in the exact same manner as

for the classical M/G/1 virtual wait process (e.g., see Brill (2008, Theorems 3.3 and

3.4)). Thus, we omit their proofs and only prove Eq. (2.25).

To establish Eq. (2.25), we consider E(Djt+h(x)−Djt (x)) for very small h. Clearly,

Djt+h(x)−Djt (x) represents the number of jump down-crossings of level x in a small

interval of size h. Thus, Djt+h(x)−Djt (x) can take values in the set of non-negative

integers. Concerning the expectation of this quantity, we can obviously omit the case

of it being equal to 0. In addition, it is not difficult to see that P(Djt+h(x)−Djt (x) ≥
2) = o(h).

Therefore, the only event we must really consider is when Djt+h(x)−Djt (x) = 1.

This event implies that a busy period initiates before time t, and also that sometime

within the time interval (t, t+ h), the server finishes processing all but the last q-th

proportion of the workload of this busy period (assume again that the system is

empty at time 0). Conditioning on the length of this busy period leads to

P(Djt+h(x)−Djt (x) = 1) =

∫ ∞
y=x/q

λhP0(t− (1− q)y) dG(y) + o(h). (2.26)

The above result is obtained by recalling that the sample path immediately jumps

down to level 0 as soon as the censored virtual wait process hits level qy. In particular,

a jump down-crossing of level x will occur only if the busy period duration y is such

that qy > x. Thus,

E(Djt+h(x)−Djt (x)) =

∫ ∞
y=x/q

λhP0(t− (1− q)y) dG(y) + o(h). (2.27)
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Dividing the above equality by h and letting h→ 0, we subsequently obtain

∂

∂t
E(Djt (x)) = λ

∫ ∞
y=x/q

P0(t− (1− q)y) dG(y). (2.28)

It then follows (since E(Dj0(x)) = 0) that

E(Djt (x)) = λ

∫ t

s=0

∫ ∞
y=x/q

P0(s− (1− q)y) dG(y)ds. (2.29)

Finally, Eq. (2.25) follows since lim
s→∞

∫ ∞
y=x/q

P0(s− (1− q)y) dG(y) = P0Ḡq(x) via the

dominated convergence theorem (e.g., see Parzen (1962, Section 6-10)). �

Corollary 2.6 If ρ(q) < 1, then

lim
t→∞

Dct (x)

t
a.s.
= f(x), x ≥ 0 and lim

t→∞

Djt (x)

t
a.s.
= λP0Ḡq(x), x ≥ 0. (2.30)

Proof. By the memoryless property of Poisson arrivals, both {Djt (x), t ≥ 0} and

{Dct (x), t ≥ 0} are (delayed) renewal processes. The desired result then follows from

a well-known limiting theorem from renewal theory (e.g., see Parzen (1962, Section

5-3, Theorem 3A)). �

From Theorem 2.5, we can obtain an integral equation for the steady-state pdf

of the virtual wait (provided it exists). Specifically, by using Eq. (2.23) through Eq.

(2.25) along with the balance rate equation given by Eq. (2.21), we end up with

f(x) + λP0Ḡq(x) = λB̄(x)P0 + λ

∫ x

y=0

B̄(x− y)f(y)dy. (2.31)

Remark 2.7 An attractive feature of the level-crossing technique is that we are able

to intuitively explain each of the individual algebraic components of the resulting in-

tegral equation, which is indeed a renewal-type equation (e.g., see Kao (1996, Section

3.2)). We note that Eq. (2.31) is almost identical to the integral equation correspond-

ing to the classical M/G/1 virtual wait, with the only addition being the second term

on the left-hand side of the equality sign. This term (the jump down-crossing rate of

level x) can be explained as follows: the rate that a busy period initiates is λP0, where
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the proportion of these busy periods that result in a jump down-crossing of level x is

Ḡq(x) = P(qT > x). The other terms are interpreted in the same manner as for the

classical M/G/1 virtual wait.

Remark 2.8 Letting x → 0 in Eq. (2.31) results in f(0+) = 0 where, in general,

f(z+) = limε→0 f(z + ε). This result is as expected since f(x) represents the con-

tinuous down-crossing rate of level x, and under the q-policy, any sample path of

{Wq(t), t ≥ 0} never down-crosses level 0 continuously — it always jumps down to

level 0.

To find P0, we use the normalizing condition
∫∞

0
f(x) dx+ P0 = 1. Now,∫ ∞

0

f(x) dx = λP0(µ− E(qT )) + λ

∫ ∞
y=0

∫ ∞
x=y

B̄(x− y)f(y) dx dy, (2.32)

which implies that
∫∞

0
f(x)dx(1− λµ) = λP0(µ− qE(T )). Using Eq. (2.8), we get∫ ∞

0

f(x) dx = P0
ρ(1− ρ(q) − q)

(1− ρ)(1− ρ(q))

= P0
ρ(1− q)(1− ρ)

(1− ρ)(1− ρ(q))

= P0
ρ(q)

1− ρ(q)
. (2.33)

Therefore, P0 = 1− ρ(q). This result too is as expected, since P0 represents the long-

run proportion of time that the server is idle conditional on the system being open

for arrivals (i.e., conditional on the existence of the censored virtual wait process).

From Eq. (2.14) and Eq. (2.17), the long-run fraction of time the system accepts new

customers is PI + PB,1 = (1 + ρq)−1. Thus, P0 = PI/(1 + ρq)−1.

From Eq. (2.31), we can readily obtain the LST of the steady-state actual wait

of serviceable customers.

Theorem 2.9 The LST of W , the steady-state waiting time of serviceable cus-

tomers, is

W̃ (s) ≡ E(e−sW ) =
(1− ρ(q))(s− λ+ λG̃(qs))

s− λ+ λB̃(s)
. (2.34)
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Proof. Clearly, W̃ (s) =
∫∞

0
e−sxdF (x) = P0 +

∫∞
0
e−sxf(x)dx. Thus, the desired

result is readily obtained by first multiplying both sides of Eq. (2.31) by e−sx and

then integrating over x ∈ (0,∞). �

Alternatively, we can express the above LST as

W̃ (s) = (1− ρ(q)) + ρ(q)W̃+(s), (2.35)

where W+ represents the stationary waiting time for those customers who are ad-

mitted for service upon their arrival but incur a positive wait time prior to entering

service. We refer to W+ as the delayed waiting time whose LST W̃+(s) is given by

W̃+(s) =
(1− ρ(q))(G̃(qs)− B̃(s))

µ(1− q)(s− λ+ λB̃(s))
. (2.36)

One can obtain the first moment of waiting time by differentiating W̃ (s) and twice

applying L’Hôpital’s rule. After some algebra, we acquire the following illuminating

form of the mean waiting time:

E(W ) =
λ(q)γ

2(1− ρ(q))
× (1 + σ(q)), (2.37)

where σ(q) = q/(1 − ρ(q)). We observe that the first term of Eq. (2.37) is equal to

the average waiting time in the classical M/G/1 queue with arrival rate λ(q) and

service time distribution B(·). Clearly, σ(q) ≥ 0 since 0 ≤ q ≤ 1, which implies

that a system under the q-policy has a greater average waiting time than a classical

M/G/1 queue with the aforementioned parameters.

In addition, the first moment of waiting time can be re-written as

E(W ) =
λγ

2
× κ(q), 0 ≤ q ≤ 1, (2.38)

where

κ(q) =
1− q

1− ρ(q)
(1 + σ(q)) =

(1− q)(1− ρ(q) + q)

(1− ρ(q))2
. (2.39)

Differentiating κ(q) with respect to q yields

κ′(q) = − 2q

(1− ρ(q))3
. (2.40)
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Therefore, for ρ(q) < 1, E(W ) is a decreasing function of q. Considering E(W ) at

the extreme values of q, we see that for q = 0, E(W ) = λγ(1 − ρ)−1/2 which is

the classical M/G/1 average waiting time without a blocking policy, and for q = 1,

κ(1) = 0 so that E(W ) = 0. The latter result is due to the fact that during busy

periods, the system is closed to all potential arrivals, and above that, only customers

who arrive to an idle server will be served (and these customers experience zero wait).

Finally, we close this analysis by considering the first moment of delayed waiting

time, namely:

E(W+) =
E(W )

ρ(q)
=

γ

2µ
× 1− ρ(q) + q

(1− ρ(q))2
, 0 ≤ q ≤ 1. (2.41)

It is indeed true that for q = 1, there is zero probability that an arbitrary customer

will experience positive wait; however, as q → 1, we see that E(W+) becomes

E(W+)
∣∣
q=1

=
γ

µ
. (2.42)

We recognize Eq. (2.42) as the mean of the limiting total-life random variable of a

renewal process with B(·) serving as the inter-arrival time df (e.g., see Kao (1996,

Section 3.3)).

2.4.3 M/G/1 queue under a q-policy with closedown periods

We now consider a slight variant of the M/G/1 queue operating under the q-

policy. Specifically, we incorporate a closedown period, S, after each busy period.

It is assumed that the sequence of successive closedown periods are iid with df

A(x) = P(S ≤ x). The facility is closed to all potential arrivals during a closedown

period. Thus, the incorporation of a closedown period will increase the proportion of

customers that are blocked from the system. In addition, it is obvious that the close-

down periods do not affect the waiting time distributions for serviceable customers,

and so our analysis of waiting time in the previous subsections is still applicable.

We view the total idle period as the durations of time when the server is not

busy. Hence, similar to the partitioning of the steady-state probability of the system
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being busy, we define the following:

PI,0 ≡ steady-state probability the server is idle and the system is closed;

PI,1 ≡ steady-state probability the server is idle and the system is open.

In this variation, the busy cycle remains D = T + I (note though that the closedown

period is contained in I). Again, applying elementary renewal theory arguments, we

obtain:

PI =
E(I)

E(D)
=

(1− ρ(q))(1 + λE(S))

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (2.43)

PI,0 =
E(S)

E(I)
PI =

(1− ρ(q))λE(S)

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (2.44)

PI,1 =
λ−1

E(I)
PI =

1− ρ(q)

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (2.45)

PB =
E(T )

E(D)
=

ρ

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (2.46)

PB,0 = qPB =
ρq

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (2.47)

PB,1 = (1− q)PB =
ρ(q)

(1 + λE(S))(1 + ρq)− λE(S)ρ
. (2.48)

Thus, the long-run fraction of time the system is accepting of new customers is

PI,1 + PB,1 = [(1 + λE(S))(1 + ρq)− λE(S)ρ]−1.

2.4.4 Zero-wait customers having exceptional service

In this subsection, we consider yet another variant of the M/G/1 queue operating

under a q-policy by assuming that the service time distribution of those customers

who arrive to an idle system is given by V (·), possibly differing from B(·) (i.e., the

service time distribution of customers arriving to the system during busy periods).

In other words, in this queueing system, zero-wait customers have exceptional service

times. In what follows, we define the random variable V whose df and LST are given

by V (x) and Ṽ (s), respectively.
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We begin our analysis of the current system with the distribution of its busy

periods. In particular, if we define the random variable Td (whose df and LST we

denote by Gd(·) and G̃d(s), respectively) as the duration of a busy period in the

current system, then it easily follows from similar arguments to those made in the

proof of Theorem 2.3 that

G̃d(s) = Ṽ (s+ λ(q)(1− G̃(s))), (2.49)

where G̃(s) satisfies the functional equation given by Eq. (2.4). Furthermore, the

first two moments of Td are simply given by

E(Td) =
E(V )

1− ρ(q)
(2.50)

and

E(T 2
d ) =

λ(q)γ

(1− ρ(q))3
E(V ) +

E(V 2)

(1− ρ(q))2
. (2.51)

The steady-state probabilities of the current system are obtained by first realizing

that the busy cycle of this system is now given by D = I+Td, and then subsequently

applying the same renewal theory arguments as before. The result of this leads to

PI =
E(I)

E(D)
=

1− ρ(q)

1− ρ(q) + λE(V )
, (2.52)

PB =
E(Td)

E(D)
=

λE(V )

1− ρ(q) + λE(V )
, (2.53)

PB,0 = qPB =
λE(V )q

1− ρ(q) + λE(V )
, (2.54)

PB,1 = (1− q)PB =
λ(q)E(V )

1− ρ(q) + λE(V )
. (2.55)

Shifting our focus now to the wait of serviceable customers, we remark that

an integral equation for the pdf of virtual wait can be obtained via similar level-

crossing techniques as to those used in Section 2.4.2. Specifically, if we let Gd,q(x) =

1 − Ḡd,q(x) = P(qTd ≤ x) = Gd(x/q), then an integral equation for the pdf of the

virtual wait f(x) is given by

f(x) + λP0Ḡd,q(x) = λP0V̄ (x) + λ

∫ x

y=0

B̄(x− y)f(y)dy. (2.56)
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It is obvious that Eq. (2.56) is equivalent to Eq. (2.31) if V (x) = B(x). Furthermore,

it follows from the normalizing condition
∫∞

0
f(x) dx+ P0 = 1 that

P0 =
1− ρ(q)

1− ρ(q) + λ(q)E(V )
. (2.57)

Adding
∫∞

0
e−sxf(x) dx to the previous expression for P0 ultimately yields the follow-

ing expression for the LST of the steady-state waiting time of serviceable customers:

W̃ (s) =

(
1− ρ(q)

1− ρ(q) + λ(q)E(V )

)
×

[
s− λ(1− B̃(s)) + λ(G̃d(qs)− Ṽ (s))

s− λ+ λB̃(s)

]
. (2.58)

Similarly, the delayed waiting time LST is given by

W̃+(s) =
(1− ρ(q))(G̃d(qs)− Ṽ (s))

E(V )(1− q)(s− λ+ λB̃(s))
. (2.59)

The first moment of W can be obtained from Eq. (2.56) and from the fact that

E(W ) =
∫∞

0
xf(x) dx. Hence,

E(W ) =
λP0(E(V 2)− q2E(T 2

0 )− γ)

2(1− ρ)
+

λγ

2(1− ρ)
. (2.60)

Finally, a simple expression for the first moment of W+ can be obtained from the

relation E(W ) = (1 − P0)E(W+). After some straightforward but tedious algebra,

we obtain

E(W+) =
E(V 2)

2E(V )
×
(

1 +
q

1− ρ(q)

)
+

λγ

2(1− ρ)
×
(

1− q2

(1− ρ(q))2

)
. (2.61)

2.5 M/G/1 queue with accumulating priority

In order to implement the q-policy, a systems manager must know the service

times of the customers upon their arrival to the system. However, such knowledge

may not always be available. In this section, we introduce another M/G/1-type

queueing model which enables a systems manager to reduce the length of busy peri-

ods, in a similar fashion as the q-policy, without the knowledge of service times upon

36



arrival. In addition to maintaining the reduction in the busy period lengths, this

blocking mechanism also results in the same waiting time distribution for service-

able customers as the q-policy; however, it also results in some waiting (or holding)

times experienced by the unserviceable customers. Nevertheless, the same main ben-

efits of the q-policy are captured. We remark that this system is a variant of the

M/G/1 queue with accumulating priority, which was recently studied by Stanford

et al. (2014).

The first key aspect of the M/G/1 queue with accumulating priority has to do

with how priority is accumulated for customers. Specifically, customers arrive to the

system with zero initial priority, and throughout their sojourn in the system, earn

priority linearly at rate ξ1 > 0. At service completion epochs, the customer with

the greatest accumulated priority is serviced next. The second key feature of this

model lies in the concept of an accreditation threshold, which increases linearly at

rate ξ2 where 0 ≤ ξ2 ≤ ξ1. In fact, the accreditation threshold is a stochastic process

which we denote as {Θ(t), t ≥ 0}. It is important to note that the accreditation

threshold and its implementation does not, in any way, affect the order of service for

customers. Hence, the way in which the M/G/1 queue with accumulating priority

operates is actually equivalent to the classical M/G/1 queue under the FCFS disci-

pline. However, the incorporation of the accreditation threshold does shed new light

on the structuralization of the general busy period, providing a useful classification

of those customers who arrive during busy periods.

The above basic model was introduced by Stanford et al. (2014) in their analysis

of the non-preemptive accumulating priority queue. In order to analyze the M/G/1

queue with accumulating priority, these authors introduced something known as

the maximal priority process. To incorporate a blocking policy into this system,

we require a slight modification to their definition of the maximal priority process.

Following that, we establish the connection between our modified maximal priority

process and the censored virtual wait process of the previous section. We exploit this

connection to obtain the steady-state integral equation of the accumulated priority

of serviceable customers.

37



2.5.1 The maximal priority process

Upon arrival to the system, customers begin to accumulate priority at a linear

rate. During busy periods, a customer will be admitted for service only if its prior-

ity overtakes (i.e., becomes greater than) the accreditation threshold, governed by

{Θ(t), t ≥ 0}. At a service completion instant, if there are any admitted customers

present in the system, the one with the greatest accumulated priority is selected next

for service. The busy period ends at a service completion instant which leaves no

more admitted customers in the system. Note that the busy period may end while

there are still customers present in the system. In this situation, these customers

depart the system without ever entering into service.

Let τk denote the arrival epoch of customer Ck, so that we may define Φk(t) to

be this customer’s priority function (i.e., the amount of accumulated priority Ck has

at time t), namely:

Φk(t) = ξ1 · (t− τk), t > τk. (2.62)

Furthermore, let n(k) denote the arrival position of the k-th customer to be serviced.

The definition of the maximal priority process now follows.

Definition 2.10 The maximal priority process is a two-dimensional stochastic pro-

cess M(t) = {(M(t),Θ(t)), t ≥ 0}, satisfying the following conditions:

1. M(t) = (0, 0) for all t corresponding to idle periods.

2. For all t not corresponding to service commencement/completion instants, we have

dM(t)

dt
= ξ1 and

dΘ(t)

dt
= ξ2, (2.63)

where 0 ≤ ξ2 ≤ ξ1.

3. At the sequence of service completion times {δk}∞k=1,

M(δk) = 1
{

Φ∨(δ
−
k ) > Θ(δ−k )

}
· Φ∨(δ−k ), (2.64)

Θ(δ+
k ) = min{M(δk),Θ(δ−k )}, (2.65)
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where

Φ∨(δ
−
k ) = max

m∈{n(k)+1,n(k)+2,...}
Φm(δ−k ) (2.66)

and 1{A} is the indicator function of the event A.

The above definition shows that {M(t), t ≥ 0} is closely related to the well-known

age process (i.e., when ξ1 = 1, M(t) represents the age of the oldest admitted cus-

tomer at time t). Furthermore, the accreditation threshold process increases linearly

at rate ξ2 during busy periods. Stanford et al. (2014) referred to those customers who

arrive during busy periods and whose priority overtakes the accreditation threshold

as accredited customers.

With this definition in place, we can now introduce the blocking scheme for

our modified M/G/1 queue with accumulating priority. In particular, serviceable

customers consist of accredited customers and customers who arrive during idle times.

On the other hand, those customers whose priority fails to overtake the accreditation

threshold during a busy period are blocked, thereby departing the system without

ever entering into service. We refer to such customers as non-accredited customers.

Figure 2.5 depicts a typical sample path of {M(t), t ≥ 0}. Note that customers

C4, C5, and C9 are of the non-accredited type and thus end up being blocked from

service. Moreover, a notable difference between the current model and the one con-

sidered in the previous sections is that with the current system, blocked customers

experience some wait before being forced to depart the system.

Suppose now at the end of an arbitrary busy period, we wish to find the latest

time by which a customer would have to arrive in order to be admitted for service.

This can be done by simply dividing the height of the accreditation threshold at

time t∗ (i.e., the time at which the busy period completes) by ξ1 and subsequently

subtracting this quantity from t∗. For a sample path such as the one shown in

Figure 2.5, this is equivalent to determining the t-intercept of a line with slope ξ1

which crosses the point (t∗,Θ(t−∗ )).

For each busy period, we define the accreditation interval as the duration of time

within which customers must arrive in order to be admitted for service. An important

observation is that the ratio of the accreditation interval to the busy period is always
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Figure 2.5: A typical sample path of {M(t), t ≥ 0}

(1−ξ2/ξ1). Therefore, this model is similar to the one of Section 2.2 in that admitted

customers must arrive within the first (1− q)-th proportion of the busy period with

q = ξ2/ξ1. In fact, it can be shown that the LST of the busy period is the solution to

Eq. (2.4) with q = ξ2/ξ1 (see Stanford et al. (2014) and their discussion on accredited

busy periods). In addition, using the same argument as in Brill (1988), we can show

that the steady-state distribution of {M(t), t ≥ 0} when ξ1 = 1 is equivalent to the

steady-state distribution of the workload process {Uξ2(t), t ≥ 0} of Section 2.4.1.

2.5.2 The distribution of accumulated priority for accredited
customers

Recall that serviceable customers represent those customers who either arrive to

the system during idle periods or arrive to the system during busy periods and become

accredited. It is obvious that customers that arrive to the system during idle periods

experience zero wait, and thus have no accumulated priority immediately before

entering into service. On the other hand, accredited customers do experience positive

wait, and hence will have accumulated a positive amount of priority immediately

prior to entering into service. If we let P(acc) be the accumulated priority of an
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arbitrary accredited customer, then it must be that

P(acc) = ξ1 ×W+, (2.67)

where W+ is the wait of accredited customers.

It is straightforward to understand that the waiting time distribution of service-

able customers under the current blocking mechanism is equivalent to that of the

serviceable customers under a q-policy with q = ξ2/ξ1. Moreover, the waiting time

distribution of accredited customers W+ exactly follows the same distribution as

the delayed waiting time random variable introduced in Section 2.4.2. Therefore, it

readily follows from Eq. (2.36) that the LST of P(acc) is given by

P̃(acc)(s) = W̃+(ξ1s) =
(1− ρ(ξ2/ξ1))(G̃(ξ2s)− B̃(ξ1s))

µ(1− ξ2/ξ1)(ξ1s− λ+ λB̃(ξ1s))
. (2.68)

Similarly, in the case of zero-wait customers having exceptional service, Eq. (2.59)

leads to

P̃(acc)(s;V ) ≡ P̃(acc)(s) =
(1− ρ(ξ2/ξ1))(G̃d(ξ2s)− Ṽ (ξ1s))

E(V )(1− ξ2/ξ1)(ξ1s− λ+ λB̃(ξ1s))
. (2.69)

Clearly, if Ṽ (s) = B̃(s), then Eq. (2.69) becomes identical to Eq. (2.68). Note

that the notation P̃(acc)(s;V ) above symbolizes the LST of accumulated priority of

an arbitrary accredited customer serviced during a delay busy period with an initial

delay of V .

We remark that both Eqs. (2.68) and (2.69) were first presented by Stanford et al.

(2014). However, their result was obtained under a different setting, as they studied

a particular multi-class non-preemptive priority queueing system and obtained the

steady-state marginal waiting time distributions of each class. We emphasize that

in their model, there is no concept of customer blocking. The authors obtained their

result for a random variable which they called the additional accumulated priority.

We direct readers to their paper for more details. Moreover, the authors’ method of

analysis differs from ours in that their proofs of Eqs. (2.68) and (2.69) are inspired by

the Conway et al. (1967, Chapter 8-4) derivation of the flow time LST in a classical

FCFS M/G/1 system.
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In summary, our level-crossing analysis provides an alternate proof of Stanford

et al.’s (2014) main results (i.e., Eqs. (2.68) and (2.69)) and also yields the steady-

state integral equation for the pdf of P(acc). In particular, if we let gξ1(x) denote the

steady-state pdf of P(acc), then

gξ1(x) =
f(x/ξ1; ξ2/ξ1)

ξ1

, x > 0, (2.70)

where f(x; q) was defined in Section 2.4.2 (i.e., the steady-state pdf of virtual wait of

serviceable customers in a q-policy). Therefore, from Eq. (2.31), we ultimately get

gξ1(x) =
λB̄(x/ξ1)P0 − λP0Ḡξ2/ξ1(x/ξ1)

ξ1

+
λ

ξ1

∫ x

y=0

B̄((x− y)/ξ1)gξ1(y)dy. (2.71)

Remark 2.11 The integral equation of gξ1(x) for the case of zero-wait customers

having exceptional service can be similarly obtained from Eq. (2.56).

2.5.3 The overall distribution of wait

We next establish the distribution of the overall waiting time random variable.

First of all, let W0 and W1 represent the waiting times of unserviceable and service-

able customers, respectively. Clearly, by design of the model, customers who are

blocked from service will experience a (steady-state) waiting time (or total time in

the system) which follows the limiting distribution of the forward recurrence time of

qT . Hence, it must be that

W̃0(s) =
1− G̃ξ2/ξ1(s)

E(T )sξ2/ξ1

. (2.72)

Now, since the wait of serviceable customers under the current blocking mechanism

is equivalent to the wait of serviceable customers under a q-policy with q = ξ2/ξ1, it

immediately follows from Eq. (2.34) that

W̃1(s) =
(1− ρ(ξ2/ξ1))(s− λ+ λG̃(ξ2s/ξ1))

s− λ+ λB̃(s)
. (2.73)
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Using the steady-state probabilities given by Eq. (2.14) through Eq. (2.17), we derive

the overall LST of waiting time as

W̃ (s) =
1

1 + ρξ2/ξ1

W̃1(s) +
ρξ2/ξ1

1 + ρξ2/ξ1

W̃0(s). (2.74)

After some elementary algebra, we obtain

W̃ (s) =

(
1− ρ(ξ2/ξ1)

1 + ρ(ξ2/ξ1)

)
×

(
s− λ+ λG̃(sξ2/ξ1)

s− λ+ λB̃(s)
+
λ(1− G̃(sξ2/ξ1))

s

)
. (2.75)

Remark 2.12 Similar arguments combined with the results of Section 2.4.4 can be

applied to obtain the overall distribution of wait for the case of zero-wait customers

having exceptional service.

2.6 Numerical examples

In this section, we formulate a numerical study to demonstrate a potential usage

of the q-policy. We remark that the inspiration for this study originates from a

similar study considered by Kao (1996, Example 3.6.4). In what follows, we consider

a queueing system with closedown periods as described in Section 2.4.3. For this

system, suppose we have the following monetary parameters:

K ≡ the cost of each closedown period;
h ≡ the cost of holding one customer per unit time;
R ≡ the toll fee paid by each serviced customer.

The objective function which we seek to optimize is the long-run expected profit

per unit time. Clearly, the instants of busy period commencements define a set of

regeneration points. Thus, our objective function is

P (q) =
R · E(Nbp)−K − E(Cbp)

E(D)
, (2.76)

where E(Cbp) is the expected holding cost incurred during a busy period. We remark

that E(Nbp) is given by Eq. (2.13) and E(D) = E(T ) +E(S) + λ−1. Moreover, it can

be shown, following a similar line of reasoning to Kao (1996, pp. 139–140), that for
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all work-conserving service disciplines (e.g., both FCFS and the q-restricted LCFS

disciplines),

E(Cbp) = hE(Nbp)(µ+ E(W )). (2.77)

Note that the quantity µ+ E(W ) represents the long-run average flow time.

Recalling the form of E(W ) in Eq. (2.37), it is immediately clear that E(Cbp)

depends only on the first two moments of the service time distribution. Consequently,

the expected profit function P (q) is also affected by the variability of the service

time distribution. We use the coefficient of variation of the service time distribution,

denoted by CV =
√
γ − µ2/µ, to assess the effect of the variability of the service

time distribution on the profit function. In particular, we present five numerical

examples of nearly identical models, differing only in their respective coefficients of

variation of the service time distribution. In Examples 1 through 5, we consider

five service time distributions with common mean µ = 1, but with coefficients of

variation 0, 0.5, 1, 1.5, and 2, respectively. Furthermore, we set λ = 0.95, E(S) = 1,

h = 1, K = 5, and R = 50.

Figure 2.6 displays the profit functions corresponding to the five examples. With

the exception of the profit functions for Examples 1 and 2, we observe that the

expected profit per unit time can be maximized by implementing the q-policy. Letting

q∗ denote the optimal blocking proportion which maximizes P (q), we find q∗ (to 4

decimal places of accuracy) for Examples 1 through 5 to be 0, 0, 0.1000, 0.1710,

and 0.2538, respectively. In Table 2.1, we calculate the expected profit function and

several other quantities of interest corresponding to various values of the blocking

proportion q for Examples 1 through 5. We note that since µ = 1, Eq. (2.8) and Eq.

(2.13) together imply that E(T ) = E(Nbp) for all values of q.

Although it is indeed true that the maximum long-run expected profit per unit

time is obtained without the usage of a q-policy (i.e., q∗ = 0) for both Examples 1

and 2, there are other viable reasons for the implementation of a q-policy. In regard

to Example 2, let us define q∗r to be the relative maxima of P (q). By using standard

calculus-based methods, we find that q∗r = 0.0406. From Table 2.1 (and the rows

corresponding to Example 2), we see that the resulting expected profits with q = q∗ =

0 and q = q∗r differ only by a small amount. However, the advantage of implementing
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Figure 2.6: Expected profit per unit time for Examples 1 through 5

45



Table 2.1: Expected profit per unit time and other quantities of interest against
various q-values for Examples 1 through 5

M/G/1 queue with λ = 0.95; µ = 1; E(S) = 1; h = 1; K = 5; R = 50
Example 1: CV = 0; q∗ = 0.00

Quantity ——— q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) ——— 35.5967 34.5886 33.3634 30.0792 24.2058 20.8748 16.1395
E(D) ——— 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) ——— 210.0000 82.0681 41.2522 16.2616 5.3008 3.0254 1.3591
E(Nbp) ——— 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) ——— 9.5000 7.0016 4.9816 2.9028 1.2793 0.7321 0.1655

Example 2: CV = 0.5; q∗ = 0.00; q∗r = 0.0406
Quantity q = q∗r q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 33.1506 33.4427 33.1301 32.4037 29.5931 24.0359 20.7907 16.1245
E(D) 13.3439 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 117.2050 257.5000 100.0211 49.8411 19.2853 6.0446 3.3451 1.4074
E(Nbp) 11.2912 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 9.3802 11.8750 8.7521 6.2270 3.6285 1.5992 0.9151 0.2068

Example 3: CV = 1; q∗ = 0.1000
Quantity q = q∗ q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 29.5245 26.9809 28.7545 29.5245 28.1345 23.5263 20.5383 16.0795
E(D) 8.9491 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 75.6071 400.0000 153.8799 75.6079 28.3565 8.276 4.3041 1.5521
E(Nbp) 6.8965 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 9.9631 19.0000 14.0033 9.9631 5.8056 2.5587 1.4641 0.3309

Example 4: CV = 1.5; q∗ = 0.1710
Quantity q = q∗ q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 25.8100 16.2112 21.4619 24.7257 25.7036 22.6768 20.1176 16.0046
E(D) 6.7606 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 55.9079 637.5000 243.6445 118.5524 43.4751 11.995 5.9025 1.7933
E(Nbp) 4.7080 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 10.8751 30.8750 22.7553 16.1901 9.4340 4.1579 2.3792 0.5377

Example 5: CV = 2; q∗ = 0.2538
Quantity q = q∗ q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 22.6279 1.1337 11.2523 18.0075 22.3003 21.4876 19.5286 15.8997
E(D) 5.4881 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 42.5880 970.0000 369.3151 178.6748 64.6412 17.2016 8.1402 2.1309
E(Nbp) 3.4354 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 11.3967 47.5000 35.0082 24.9078 14.5139 6.3967 3.6603 0.8273
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Figure 2.7: Behaviour of the optimal blocking proportion q∗ as a function of CV

a q-policy still lies in the fact that both the cycle and busy period lengths are smaller

when compared to the system without a q-policy in place. Ultimately, with q =

q∗r , the system is essentially earning the same expected profit as for the case with

q = 0, but at the same time allowing for more frequent maintenance checks on the

server/machine. Similar remarks can be made for Example 1.

In these numerical examples, we showed that by reducing the cycle lengths, a

system manager can significantly decrease the incurred costs and thus capture the

potential profit (or, as in both Examples 1 and 2, obtain nearly maximal expected

profit). It is also apparent that as CV increases, so too does the optimal blocking

proportion q∗, as evidenced in Figure 2.7. It is interesting to note the presence of

a discontinuity point in Figure 2.7, which occurs for a certain value of CV residing

in the interval (0.6014, 0.6015). This particular value of CV corresponds to the first

instance in which a non-zero blocking proportion yields a higher expected profit.
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Chapter 3

The preemptive accumulating
priority queue

3.1 Introduction

This chapter has to do with the analysis of a certain dynamic preemptive priority

queueing system. In particular, we consider the preemptive variant of the model

considered by Stanford et al. (2014), which they referred to as the Accumulating

Priority Queue. For convenience, we instead refer to their priority queueing model

as the Non-Preemptive Accumulating Priority Queue (NPAPQ), and refer to the

preemptive priority model of this chapter as the Preemptive Accumulating Priority

Queue (PAPQ).

Similar to researchers who have previously studied dynamic priority queues, our

primary motivation for studying the PAPQ is the ability to control waiting times.

While this control has mainly been administered through the expected waiting times,

our analysis in this chapter also enables a systems manager to control waiting times

via other performance measures such as their quantiles. In particular, the main

objective of this chapter is to characterize the LSTs of the steady-state waiting time

distributions for each priority class in the PAPQ for all three preemption disciplines:

resume, repeat-different, and repeat-identical.

The rest of the chapter is organized as follows. In the next section, we provide the

model specifications of the PAPQ, as well as other preliminaries, including the in-
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troduction of several key random variables of interest. The maximal priority process

for the PAPQ is defined in Section 3.3, while Sections 3.4 and 3.5 are devoted to the

derivation of the LSTs corresponding to the service-structure elements. In Section

3.6, we provide a general recursive scheme for obtaining the marginal steady-state

waiting time LSTs. In Section 3.7, we investigate the PAPQ under a hybrid-based

preemption discipline comprised of a random mixture of the three traditional pre-

emption disciplines. Lastly, in Section 3.8, we provide several numerical examples to

illustrate the versatility of the PAPQ. We remark that most of the work presented

in this chapter is found in Fajardo and Drekic (2015c).

3.2 The model

A single-server dynamic priority queueing system with N distinct classes is con-

sidered. It is assumed that the arrivals of customers for the individual classes form in-

dependent Poisson streams at rates λ1, λ2, . . . , λN . The service times of customers are

mutually independent, where the class-k service time is distributed identically to X(k)

with df B(k)(x) = P(X(k) ≤ x) and corresponding LST B̃(k)(s) =
∫∞

0
e−sxdB(k)(x).

For each k = 1, 2, . . . , N , the class-k priority function is given by

qk(t) = bk · (t− τk), t ≥ τk, (3.1)

with b1 ≥ b2 ≥ · · · ≥ bN ≥ 0. In other words, upon arrival to the system, a customer

begins to accumulate priority linearly at a rate that is distinct to the class to which

it belongs. At a service selection instant (i.e., a departure instant of a customer),

the system employs the general Priority Service Guideline.

In addition, the current system is preemptive in nature, meaning that the service

of a customer is interrupted for any customer with a greater priority level. Since

priority is assigned via Eq. (3.1), this implies that a preemption does not necessarily

occur at the arrival instant of a higher priority customer, but rather at the instant

in time that the higher priority customer accumulates a priority level which is equal

to that of the customer currently in service. Note that the former situation describes

the case of the classical static preemptive priority queue (i.e., interruptions always
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occur whenever a higher priority customer arrives). Furthermore, we point out that

only those customers who belong to class i for any i ∈ {1, 2, . . . , k − 1} can cause a

preemption to a Ck. Thus, for convenience, we adopt the convention of Conway et al.

(1967) by referring to the aggregation of classes {1, 2, . . . , k − 1} as class a, whose

aggregated arrival rate we denote by Λk−1 =
∑k−1

i=1 λi. Finally, it is also important to

realize that a preemption instant is not considered to be a service selection instant.

We next define the class-k waiting time, W (k), as the total elapsed time from

a Ck’s arrival to the first time this customer goes into service. We also define the

class-k flow time, F (k), as the total time spent in the system for a Ck. The main

objective of this chapter is to establish the LST corresponding to the steady-state

distribution of W (k). We are also concerned with identifying the distributions of

other key random variables, which we refer to as the service-structure elements. In

fact, the LSTs of these random variables are required in order to obtain W̃ (k)(s). We

define these service-structure elements with respect to a Ck as follows:

Residence period R(k) ≡ The time elapsed between first en-
try to service of a Ck and its depar-
ture;

Gross service time G(k) ≡ The total amount of time that the
server spends solely servicing a Ck
before its departure from the sys-
tem;

Interruption period A(k) ≡ The time between a preemption in-
stant and the instant in which the
interrupted Ck next returns to ser-
vice.

With these definitions in place, the stability condition of the PAPQ is given by

U =
N∑
i=1

ρi =
N∑
i=1

λiE(G(i)) < 1, (3.2)

where U is known as the utilization factor. The stability condition given by Eq.

(3.2) is assumed throughout the chapter. At this juncture of the chapter, we are

not in position to provide the expression to calculate E(G(i)), which itself depends
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on the class-i preemption rate as well as on the specific preemption discipline in

place. Hence, the formulas for E(G(i)), i = 1, 2, . . . , N , are provided later in Section

3.5. Nonetheless, it is important to note that Eq. (3.2) can always be checked first

as the expression for E(G(i)) is comprised only of the fundamental elements of the

system (i.e., the service time distributions and the arrival rates). We also remark that

some important relationships do exist amongst the service-structure elements. For

example, we note that R(k) is comprised of G(k) and possibly several iid interruption

periods A(k). Furthermore, due to independence, the LST of F (k) can be expressed

as

F̃ (k)(s) = W̃ (k)(s)R̃(k)(s). (3.3)

Figure 3.1 illustrates the fundamental relationships between the service-structure

elements.

Ck arrives
Service

starts
Preemptions Service completes

time

WHkL GHkL

RHkL

FHkL

AHkL AHkL AHkL

Figure 3.1: Depiction of the service-structure elements for a preemptive priority
queue

3.3 The maximal priority process

In this section, we define an upper bound Mk(t) for the accumulated priority of

any Ck potentially present in the system at time t > 0. We say potentially present

since for bk > 0, this upper bound has the virtue of always being positive during busy

periods, even in the absence of Cks. The collection of these upper bounds (i.e., one

for each class, so N in total) is what Stanford et al. (2014) referred to as the maximal
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priority process, which in general, is an N -dimensional stochastic process. Later in

this section, we show that these upper bounds form the least upper bounds to the

accumulated priorities of customers when given only (certain) partial information to

the system. Nevertheless, the real importance of this process is that it provides a

useful structuralization for both the busy periods and the customers serviced within

them. In terms of the PAPQ, the maximal priority process allows us to analyze the

service-structure elements described in the previous section, and ultimately provides

a means of obtaining the LST of the steady-state class-k waiting time distribution.

As the PAPQ allows for the preemption of customers, the maximal priority pro-

cess defined here is slightly different than the one given by Stanford et al. (2014)

for the NPAPQ. We define Qi(t) to be the priority level of the oldest Ci at time t.

Note that our definition of Qi(t) is such that Qi(t) < 0 means that there are no

Cis present in the system at time t, and that the next Ci arrives to the system at

time t+Qi(t)/bi. Moreover, let χ(t) and Q∨(t) indicate the class and priority level,

respectively, of the customer in service at time t. Clearly, for any t during a busy

period, we have that χ(t) = arg max1≤i≤N{Qi(t)} and Q∨(t) = max1≤i≤N{Qi(t)}.
For any t during an idle period, we further define χ(t) = Q∨(t) = 0. Our formal

definition of the maximal priority process for the PAPQ now follows.

Definition 3.1 The maximal priority process is an N-dimensional stochastic process

M(t) = {(M1(t),M2(t), . . . ,MN(t)), t ≥ 0}, satisfying the following conditions:

1. The sample path of Mk(t) for each k = 1, 2, . . . , N is continuous with respect to

t, except possibly when t corresponds to a service selection instant.

2. M(t) = (0, 0, . . . , 0) for all t corresponding to idle periods.

3. For all t during the service of any class of customer,

dMk(t)

dt
= min{bk, bχ(t)}.

4. At the sequence of service selection instants {δi}∞i=1:

Mk(δ
+
i ) = min{Mk(δ

−
i ), Q∨(δ

+
i )},
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where Mk(t
−) = limε→0Mk(t− ε), Mk(t

+) = limε→0Mk(t+ ε), and

Q∨(t
+) = limε→0Q∨(t+ ε).

In what follows, we also (artificially) define bN+1 = 0 and MN+1(t) = 0 for

all t > 0. Definition 3.1 simply states that during busy periods Mk(t) increases

linearly at the rate corresponding to the smaller of bk and bχ(t), and down-jumps

at some of the service selection instants (i.e., customer departure instants). Figure

3.2 illustrates a typical sample path of M(t) for a 3-class PAPQ, where the bold

thick lines represent the components ofM(t) and the thin lines represent the actual

priority levels of the customers. Furthermore, the intersects between the thin lines

and the t-axis represent the times customers enter the queue with priority level zero.

u1
u2

u3

u4

u5 u6

u7

M1HtL, b1=1.25 M2HtL, b2=0.75 M3HtL, b3=0.40

Τ1
0 ∆1 ∆2 Κ1 ∆3 ∆4 Κ2 Κ3 ∆6∆5 ∆7

0

5

10

15

20
0 10 20 30 40

t

M
iHt

L

∆ º service selection instant
Κ º preemption instant

Figure 3.2: M(t) in a typical busy period of the PAPQ for N = 3

We next make the following observations about M(t):

(i) Observe that M1(t) = Q∨(t) for all t > 0, and, just as Q∨(t) does, M1(t)

down-jumps at every service selection instant.

(ii) Once a Ck commences service, its priority level is represented by Mk(t) up until

its departure from the system.
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(iii) The periods between successive down-jumps of MN(t) partition the general

busy period.

Observation (i) explains why M1(t) yields a least upper bound for class-1 priority

levels at time t. In other words, all class-1 priority levels must be less than the priority

level of the customer currently in service; a situation where a C1’s priority level is

greater than Q∨(t) for some time t is impossible as it would imply the occurrence of a

prior violation of the service discipline (i.e., either through a preemption that should

have occurred before time t or an incorrect customer selection at a previous service

selection instant). We proceed next to describe the type of least upper bounds that

the other components provide for their respective classes’ priority levels. First of

all, we stress that one is able to (progressively) draw M(t) given only the following

pieces of information:

(a) the sequence of busy period commencement times {τ 0
i }∞i=1,

(b) the sequence of service selection instants {δi}∞i=1, and for each of these, the

priority level of the incoming service ui = Q∨(δ
+
i ),

(c) the sequence of preemption instants {κi}∞i=1, and

(d) the class of the customer entering (or re-entering) service (i.e., χ(τ 0
i ), χ(δi), and

χ(κi) for all i = 1, 2, . . .).

In particular, M(t) represents the collection of least upper bounds to the accumu-

lated priorities of each class given only the partial information (a)–(d). Of course, to

draw these sample paths, one must also keep in mind the fundamental characteristics

of the system, namely: customers accumulate priority according to Eq. (3.1), cus-

tomers arrive with an initial priority level of zero, and preemptions occur whenever

a higher priority customer’s priority level matches that of the customer currently

in service. Note that the resulting Mk(t) provides the least upper bound of class-k

accumulated priorities which would not lead to a violation of the service discipline

similar to that described for M1(t) above. For example, one is able to reproduce the

sample path in Figure 3.2 given only the information found in Table 3.1. Finally, we
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emphasize that Mk(t) generally does not represent the priority level of the oldest Ck
at time t, Qk(t); it only does so for t corresponding to a class-k residence period.

Table 3.1: Partial information (a)–(d) required to recreate M(t) of Figure 3.2

τ 1
0 δ1 δ2 κ1 δ3 δ4 κ2 κ3 δ5 δ6 δ7

t 3 8 12 15 21 23 27 31 34 37 41
Q∨(t) 0 4.5 5 – 11.75 6 – – 12.85 11.6 0
χ(t) 1 1 2 1 2 3 2 1 2 3 0

3.3.1 Structuralization of the general busy period and its
customers

Following the convention of Stanford et al. (2014), we introduce some important

definitions. First of all, we say that a waiting Cj (for j ≤ k) is at level-k accreditation

at time t if its priority level lies within the interval [Mk+1(t),Mk(t)). Since priority is

earned linearly throughout time, it must be that the graph representing the priority

level of customers at level-k accreditation at time t must have intersected Mk+1(·)
at instants in time occurring before t. We refer to these instants in time as level-k

accreditation instants. Lastly, suppose at service selection instant δ that a Cj (for

j ≤ k) enters into service for the first time. Then, Q∨(δ
+) (i.e., the priority level of

this Cj immediately prior to entering service for the first time) must lie within one

of the following intervals:

[0,MN(δ−)), [MN(δ−),MN−1(δ−)), . . .

. . . , [Mk+1(δ−),Mk(δ
−)), . . . , [Mj+1(δ−),Mj(δ

−)).

Furthermore, we say that this Cj is served at level-m accreditation if

Q∨(δ
+) ∈ [Mm+1(δ−),Mm(δ−)) for m = j, j + 1, . . . , N.

In this chapter, we use the symbol C(acc:m) to denote a customer who is served

at level-m accreditation. Note that a C(acc:m) must belong to class i for some i ∈
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{1, 2, . . . ,m}, and that when necessary, we use the symbol C(acc:m)
i to refer to a Ci who

is served at level-m accreditation. For example, the service selection instants δ1, δ2,

and δ4 of Figure 3.2 represent the service commencements of a C(acc:1), a C(acc:2), and

a C(acc:3), respectively. The following result is crucial to our analysis of the PAPQ.

Lemma 3.2 Suppose that at service selection instant δ, a C(acc:m) enters into ser-

vice with priority level Q∨(δ
+). Then, the magnitude of the down-jump of Mm(t)

occurring at time δ has an exponential distribution with rate
∑m

i=1 λi/bi.

Proof. From Definition 3.1, Mm(t) will down-jump at δ to the level corresponding

to greatest priority level. In particular, the magnitude of the down-jump is given by

min
1≤i≤m

{Mm(δ−)−Qi(δ
−)}.

The result follows since Mm(δ−)−Qi(δ
−) has an exponential distribution with rate

λi/bi for all i = 1, 2, . . . ,m, which is independent of Mm(δ−)−Qj(δ
−) for j 6= i. �

Remark 3.3 Since a C(acc:m) can only belong to one class in the set {1, 2, . . . ,m},
this implies that one C(acc:m) may accumulate priority linearly at a rate which is

different to another C(acc:m) (i.e., if they belong to different classes). However, the

result in Lemma 3.2 holds true regardless of the specific class to which the C(acc:m)

belongs.

It is also possible for a Cj to enter into service by preempting a Ci (for i > j) out of

service. Specifically, suppose that a Cj enters into service at time κ, corresponding to

a preemption instant of a Ck+1. Then, from Definition 3.1, we have that the priority

level of the interrupting Cj upon entry into service is such that

Q∨(κ
+) = Mk+1(κ) = Mk(κ) = · · · = Mj(κ) = · · · = M1(κ).

We refer to such a Cj who preempts a C` (for ` > j) out of service as a class-`

interrupting customer, denoted by C(int:`). Therefore, a Cj who arrives during a busy

period must either be a C(acc:`) for some ` ≥ j or a C(int:`) for some ` > j. The next

result specifies the rate at which a preemption occurs.
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Lemma 3.4 The rate of preemption during the servicing of a Ck is Λ
(k)
k−1 =

∑k−1
i=1 λ

(k)
i ,

where λ
(k)
i = λi(1− bk/bi).

Proof. Suppose that at time t, a Ck enters into service with a priority level of u ≥ 0.

Hence, there can be no Ci (for i ∈ a, where a denotes the aggregation of classes

{1, 2, . . . , k− 1} as defined earlier) with a priority level greater than or equal to u at

time t. Next, define Ti to be the time, starting from t, until the first Ci accumulates a

priority level of u. Due to the memoryless property, Ti has an exponential distribution

with rate λi. Furthermore, let Yi represent the time, starting from t, until the priority

level of the Ci first matches that of the Ck in service. It is quite straightforward to

show that Yi = Ti(1− bk/bi)−1, and the result readily follows. �

We further this subsection with the introduction of a level-k accreditation interval,

which starts in one of three possible ways:

(i) at the moment when a Ck or a Ca arrives to an empty system, thereby initiating

a busy period,

(ii) when a C(acc:`)
k or a C(acc:`)

a for ` > k enters into service for the first time, or

(iii) at the moment when a C(int:`)
k or a C(int:`)

a preempts a C` (for ` > k) out of

service.

Regardless of how it starts, a level-k accreditation interval always ends once the

system becomes clear of the initial customer and all C(acc:i)s for i = 1, 2, . . . , k (i.e.,

all customers who have become level k or more accredited). Let u0 denote the priority

level of the initial customer of a level-k accreditation interval. Then, u0 is strictly

positive for level-k accreditation intervals starting according to (ii) and (iii), and

u0 = 0 otherwise. We note that the distribution of the length of an accreditation

interval depends only on the class to which the initial customer belongs and not

on the specific value of u0 (see Stanford et al. (2014, Lemma 4.3)). A recursive

scheme for the LST corresponding to the distribution of the duration of a level-k

accreditation interval is provided in the next section, but before that, we end this

section with one final important result and a remark on the difference between the

maximal priority process presented here and the one given in Section 2.5.1.
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It follows from Definition 3.1 that a level-k accreditation interval has the virtue

that throughout the entire interval, Mk+1(t) and Mk(t) increase with rates bk+1

and bk, respectively. Moreover, a level-k accreditation interval is partitioned by

subperiods which are defined by the successive down-jumps of Mk(t). Except for the

final one, these down-jumps correspond to the service selection instants of a C(acc:k);

the final down-jump represents either the end of a busy period, the commencement

of service of a C(acc:`), or the re-entry into service of an interrupted C` for some ` > k.

For a level-k accreditation interval with an initial priority level of u0, we say that a

Ci for i ≤ k arrives-to-the-interval if its priority level becomes equal to u0 before the

end of the interval. Figure 3.3 illustrates a level-k accreditation interval with four

class-i arrivals-to-the-interval.

Lemma 3.5 The steady-state proportion of Cis (for i ≤ k) that arrive-to-the-interval

and are served at level-k accreditation is (bk − bk+1)/bi.

Proof. Consider a level-k accreditation interval with an initial priority level of u0.

Suppose that the accreditation interval has an overall duration of T and that it has

n subperiods defined by the successive down-jumps of Mk(t). Let {Tj}nj=1 denote

the durations of these subperiods (e.g., see Figure 3.3). Now, observe first that the

proportion of T for which a Ci arrives-to-the-interval and fails to become level-k

accredited is given by bk+1/bi. For example, the fourth Ci to arrive-to-the-interval in

Figure 3.3 arrives within this proportion, and thus is not serviced in this interval.

Secondly, we observe that there are disjoint time periods of length Tj(1− bk/bi) for

each j = 1, 2, . . . , n, such that a Ci arrival-to-the-interval during any one of these

time periods would lead to a level-(k − 1) accreditation for the arriving customer.

As a result, the proportion of T for which a Ci arrives-to-the-interval and fails to

become level-(k − 1) accredited is given by bk/bi. Therefore, the proportion of T

for which a Ci arrives-to-the-interval and fails to become level-(k− 1) accredited but

yet succeeds in becoming level-k accredited is (bk − bk+1)/bi. Note that a Ci such as

the one previously described is precisely one that is serviced at level-k accreditation

(e.g., see the second Ci who arrives-to-the-interval in Figure 3.3). The result follows

because the above proportions and the fact that the class-i arrivals-to-the-interval
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form a Poisson process with rate λi hold true for every level-k accreditation interval.

�

T
T1 T2 T3

T jH1-bk�biL THbk+1�biL

Mk HtL Mk+1HtL class-i arrivals-

to-the-interval

ì ì ì ì

ì

t

u0

Figure 3.3: Supplemental illustration of a level-k accreditation interval for the proof
of Lemma 3.5. Note that T2 is initiated by a C(acc:k) not belonging to class i.

Remark 3.6 In Section 2.5.1, we defined the maximal priority process for an M/G/1-

type queueing system with only a single class of arriving customers. This process

consisted of two components, the second of which was called the accreditation thresh-

old and was used to determine which of the arriving customers would eventually be

serviced. In contrast, the maximal priority process of the PAPQ has N components,

and with the exception of M1(t), each plays the role of an “accreditation threshold” in

certain circumstances. Specifically, Mk+1(t) serves as the “accreditation threshold”

in a level-k accreditation interval.

3.4 Interruption periods and pseudo-interruption

periods

We begin with the class-(k+ 1) interruption period A(k+1). It is clear that only a

C(int:k+1)
a or a C(int:k+1)

k can initiate a class-(k+1) interruption period, and further that
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such a period ends as soon as the system is clear of all higher priority customers whose

priority level exceeds that of the interrupted Ck+1. From the previous section, such

customers are referred to as C(acc:i)s for some i ≤ k. Furthermore, from the previous

section, we acknowledge that A(k+1) is merely a level-k accreditation interval of type

(iii).

To establish a recursive scheme for Ã(k+1)(s), recall that a level-k accreditation

interval is partitioned by subperiods which are defined by the successive down-jumps

of Mk(t). It turns out that these time periods are either themselves level-(k− 1) ac-

creditation intervals or class-k residence periods. For example, if the initial customer

is a Ck (which from Lemma 3.4 occurs with probability λ
(k+1)
k /Λ

(k+1)
k ), then the initial

subperiod is merely a class-k residence period R(k). On the other hand, if the initial

customer is a Ca (which from Lemma 3.4 occurs with probability Λ
(k+1)
k−1 /Λ

(k+1)
k ), then

the initial subperiod is indeed a level-(k−1) accreditation interval of type (iii). This

level-(k − 1) accreditation interval has all of the same characteristics as a class-k

interruption period A(k) (i.e., it is initiated by a Ca and terminates once the system

is clear of all C(acc:i)s for i < k), with the exception that a Ck has not actually been

preempted (i.e., in this case, a Ck+1 is being preempted). As a result, we define our

first kind of pseudo-interruption period :

A
(m)
pk+1 (for m ≤ k + 1) ≡ A class-m pseudo-interruption period initiating

with the preemption of a class-(k + 1) customer.

We stress that A
(m)
pk+1 is a level-(m − 1) accreditation interval of type (iii). Thus, if

the initial customer is a Ca, then the initial subperiod is A
(k)
pk+1 .

For the subsequent subperiods of A(k+1), we realize from the previous section

that they can only be initiated by either a C(acc:k)
a or a C(acc:k)

k . Similar to the initial

subperiod, if a C(acc:k)
k enters into service (which from Lemma 3.2 occurs with prob-

ability (λk/bk)/
∑k

i=1 λi/bi), then the ensuing subperiod is R(k). On the contrary, if

the initial customer is a C(acc:k)
a , then the subperiod is a level-(k − 1) accreditation

interval. Again, it turns out that this level-(k−1) accreditation interval bears all the

same characteristics as A(k) with the exception that no customer is actually being
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preempted. This leads us to our second kind of pseudo-interruption period:

A
(m)
np (for m = 1, 2, . . . , N) ≡ A class-m pseudo-interruption period not initiating

at a preemption instant, but instead at the

commencement of service of a C(acc:`)
i for i < m

and any ` ≥ m.

We stress that A
(m)
np is a level-(m − 1) accreditation interval of type (ii). Thus, if a

C(acc:k)
a enters into service, then a subperiod A

(k)
np ensues.

Our previous observations suggest that A(k+1) may be viewed as a delay busy

period which services two kinds of customers (i.e., C(acc:k)
k s and C(acc:k)

a s), whose re-

spective initial delay and service time LSTs are given by

Ṽ (k)
pk+1

(s) =
k−1∑
i=1

λ
(k+1)
i

Λ
(k+1)
k

Ã(k)
pk+1

(s) +
λ

(k+1)
k

Λ
(k+1)
k

R̃(k)(s), (3.4)

and

Φk(s) =

∑k−1
i=1 λi/bi∑k
i=1 λi/bi

Ã(k)
np (s) +

λk/bk∑k
i=1 λi/bi

R̃(k)(s). (3.5)

In order to verify this claim, we make an important connection between (Mk(t),Mk+1(t))

during level-k accreditation intervals and the maximal priority process of the M/G/1

queue with accumulating priority and blocking introduced in Section 2.5. Recall that

this latter model represents a FCFS M/G/1 queue, whose customers, upon arrival

to the system, accumulate priority linearly at rate ξ1 > 0. The blocking of cus-

tomers occurs near the end of a busy period of the queue. In particular, at the

beginning of each busy period, an accreditation threshold increases linearly at rate

ξ2, where ξ1 > ξ2 ≥ 0, so that only those customers whose priority levels surpass

this accreditation threshold are serviced; customers who fail to surpass this thresh-

old depart the system without ever being serviced. The maximal priority process

for this model (introduced in Section 2.5.1) is a two-dimensional stochastic process

(M(t),Θ(t)), where M(t) provides the least upper bound of accumulated priorities

similar toM(t) defined in Definition 3.1 and Θ(t) gives the value of the accreditation

threshold at time t. Two important observations follow.
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Important Observation 3.7 A level-k accreditation interval is partitioned by sub-

periods defined by the successive down-jumps of Mk(t). The down-jumps of Mk(t)

during a level-k accreditation interval are exponentially distributed with rate
∑k

i=1 λi/bi.

The time from the start of the interval to the first time that Mk(t) down-jumps, which

we denote by V , depends on the initial customer of the interval. Furthermore, the

distribution of V may differ from that of the times between one down-jump of Mk(t)

to the next, which always has LST Φk(s). Lastly, if δ represents the end of a subpe-

riod, then δ also represents the end of the level-k accreditation interval if

min
1≤i≤k

{Mk(δ
−)−Qi(δ

−)} > Mk(δ
−)−Mk+1(δ−).

Important Observation 3.8 It follows from Important Observation 3.7 that the

evolution of (Mk(t),Mk+1(t)) throughout a level-k accreditation interval is equiva-

lent to that of the maximal priority process (M(t),Θ(t)) during busy periods of the

FCFS M/G/1 queue with accumulating priority and blocking having the following

characteristics:

(i) service time LST of Ṽ (s) for zero-wait customers,

(ii) service time LST of Φk(s) for customers arriving during busy periods,

(iii) arrival rate of γk =
∑k

i=1 λi(bk/bi),

(iv) accumulating priority rate of ξ1 = bk, and

(v) accreditation threshold rate of ξ2 = bk+1.

We exploit the connection outlined in Important Observation 3.8 to obtain two

fundamental results: the distribution of the duration of a level-k accreditation in-

terval and the distribution of the accumulated priority earned by a C(acc:k) during a

level-k accreditation interval. In particular, it follows from Important Observation

3.8 and Eq. (2.49) that the distribution of the duration of a level-k accreditation

interval has corresponding LST

Ãk(s) ≡ Ãk(s;V ) = Ṽ
(
s+ γ

(k+1)
k (1− ηk(s))

)
, (3.6)
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where

γ
(k+1)
k = γk(1− bk+1/bk) =

k∑
i=1

λi
bk − bk+1

bi

and ηk(s) satisfies

ηk(s) = Φk

(
s+ γ

(k+1)
k (1− ηk(s))

)
. (3.7)

Our previous arguments show that for this specific level-k accreditation interval,

the distribution of V has LST Ṽ
(k)
pk+1(s) as given by Eq. (3.4). Moreover, from Eq.

(3.6), we observe that

Ã(k+1)(s) = Ã(k+1)
pk+1

(s) = Ãk(s;V (k)
pk+1

). (3.8)

Eq. (3.8) also leads to the following recursive scheme which starts with Ã
(1)
pk+1(s) = 1

and holds for all m = 1, 2, . . . , k:

Ã(m+1)
pk+1

(s) =
Λ

(k+1)
m−1

Λ
(k+1)
m

Ã(m)
pk+1

(
s+ γ(m+1)

m (1− ηm(s))
)

+
λ

(k+1)
m

Λ
(k+1)
m

R̃(m)
(
s+ γ(m+1)

m (1− ηm(s))
)
. (3.9)

By taking the first and second derivatives of Ã
(m+1)
pk+1 (s), recursions for the first two

moments of A
(m+1)
pk+1 are obtained. In particular, for m = 1, 2, . . . , k, we get

E(A(m+1)
pk+1

) =
Λ

(k+1)
m−1 E(A

(m)
pk+1) + λ

(k+1)
m E(R(m))

Λ
(k+1)
m

(
1−

∑m−1
i=1 λi

bm−bm+1

bi
E(A

(m)
np )− λ(m+1)

m E(R(m))
) (3.10)

and

E
(
(A(m+1)

pk+1
)2
)

=
γ

(m+1)
m µm,2

(
Λ

(k+1)
m−1 E(A

(m)
pk+1) + λ

(k+1)
m E(R(m))

)
Λ

(k+1)
m

(
1−

∑m−1
i=1 λi

bm−bm+1

bi
E(A

(m)
np )− λ(m+1)

m E(R(m))
)3

+
(1− γ(m+1)

m µm,1)
(

Λ
(k+1)
m−1 E

(
(A

(m)
pk+1)

2
)

+ λ
(k+1)
m E

(
(R(m))2

))
Λ

(k+1)
m

(
1−

∑m−1
i=1 λi

bm−bm+1

bi
E(A

(m)
np )− λ(m+1)

m E(R(m))
)3 ,

(3.11)
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where µk,i is the i-th moment of the random variable whose distribution has LST

Φk(s).

It is clear that the recursive scheme of Eq. (3.9) requires that both R̃(m)(s) and

Ã
(m)
np (s) for m = 1, 2, . . . , k be priorly established. The former is the subject of the

next section. Consider A
(k+1)
np , which represents a level-k accreditation interval which

begins with the service of a C(acc:`)
k or C(acc:`)

a for some ` > k. It follows from Lemma

3.2 that the initial subperiod is either A
(k)
np with probability (

∑k−1
i=1 λi/bi)/(

∑k
i=1 λi/bi)

or R(k) with probability (λk/bk)/(
∑k

i=1 λi/bi). In other words, for the level-k accred-

itation interval A
(k+1)
np , V has LST Ṽ

(k)
np (s) = Φk(s). Therefore, we have that

Ã(k+1)
np (s) = Ãk(s;V (k)

np ) = ηk(s), (3.12)

which again yields a recursive scheme starting with Ã
(1)
np (s) = 1. Furthermore, the

corresponding first two moments are:

E(A(k+1)
np ) =

∑k−1
i=1 λi

bk
bi
E(A

(k)
np ) + λkE(R(k))

γk

(
1−

∑k−1
i=1 λi

bk−bk+1

bi
E(A

(k)
np )− λ(k+1)

k E(R(k))
) (3.13)

and

E
(
(A(k+1)

np )2
)

=

∑k−1
i=1 λi

bk
bi
E
(
(A

(k)
np )2

)
+ λkE

(
(R(k))2

)
γk

(
1−

∑k−1
i=1 λi

bk−bk+1

bi
E(A

(k)
np )− λ(k+1)

k E(R(k))
)3 . (3.14)

The recursive schemes of Eqs. (3.8) and (3.12) establish the LSTs of level-k

accreditation intervals of types (iii) and (ii), respectively. Hence, all that remains is

to establish a recursion for a level-k accreditation interval of type (i). This leads us

to our final pseudo-interruption period:

A
(m)
p0 (for m = 1, 2, . . . , N) ≡ A class-m pseudo-interruption period not initiating

at a preemption instant, but instead at the
arrival of a Ci for i < m to an empty system.

We consider A
(k+1)
p0 and remark that the initial subperiod is either R(k) with proba-

bility λk/Λk or A
(k)
p0 with probability Λk−1/Λk. Hence, for this level-k accreditation

interval, the initial subperiod V has LST

Ṽ (k)
p0

(s) =
λk
Λk

R̃(k)(s) +
Λk−1

Λk

Ã(k)
p0

(s).
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Thus,

Ã(k+1)
p0

(s) = Ãk(s;V (k)
p0

), (3.15)

and starting with Ã
(1)
p0 (s) = 1, a recursive representation for Ã

(k+1)
p0 (s) is given by

Ã(k+1)
p0

(s) =
Λk−1

Λk

Ã(k)
p0

(
s+ γ

(k+1)
k (1− ηk(s))

)
+
λk
Λk

R̃(k)
(
s+ γ

(k+1)
k (1− ηk(s))

)
. (3.16)

Through differentiation again, the associated first two moments work out to be

E(A(k+1)
p0

) =
Λk−1E(A

(k)
p0 ) + λkE(R(k))

Λk

(
1−

∑k−1
i=1 λi

bk−bk+1

bi
E(A

(k)
np )− λ(k)

k E(R(k))
) (3.17)

and

E
(
(A(k+1)

p0
)2
)

=
γ

(k+1)
k µk,2

(
Λk−1E(A

(k)
p0 ) + λkE(R(k))

)
Λk

(
1−

∑k−1
i=1 λi

bk−bk+1

bi
E(A

(k)
np )− λ(k+1)

k E(R(k))
)3

+
(1− γ(k+1)

k µk,1)
(

Λk−1E
(
(A

(k)
p0 )2

)
+ λkE

(
(R(k))2

))
Λk

(
1−

∑k−1
i=1 λi

bk−bk+1

bi
E(A

(k)
np )− λ(k+1)

k E(R(k))
)3 . (3.18)

For illustrative purposes, Figure 3.4 depicts the general structure of a class-3

pseudo-interruption period. We also remark that the pseudo-interruption periods,

A
(k)
p0 and A

(k)
pj for all j > k, are also inherent in the classical static preemptive priority

queue. However, since priority is assigned via Eq. (1.16) in this model, these pseudo-

interruption periods are equivalent in distribution to an actual interruption period

A(k).

We close this section with the following proposition which provides three useful

identities involving the means of each of the pseudo-interruption periods.

Proposition 3.9 Let U j =
∑j

i=1 λiE(G(i)) and U
(k+1)

j =
∑j

i=1 λ
(k+1)
i E(G(i)). For

k = 1, 2, . . . , N − 1,

γkE(A(k+1)
np ) =

∑k
i=1 λi(bk/bi)E(G(i))

1− U (k+1)

k

=
Uk − U

(k)

k−1

1− U (k+1)

k

, (3.19)
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Figure 3.4: General structure of a class-3 pseudo-interruption period

and for each value of k,

Λ(k+1)
m E(A(m+1)

pk+1
) =

U
(k+1)

m

1− U (m+1)

m

, m = 1, 2, . . . , k. (3.20)

Furthermore, for k = 1, 2, . . . , N − 1,

ΛkE(A(k+1)
p0

) =
Uk

1− U (k+1)

k

. (3.21)

Proof. We prove Eqs. (3.19) and (3.20) by induction. For k = 1, it readily follows

from Eq. (3.13) (since X(1) = R(1) = G(1)) that

E(A(2)
np ) =

λ1E(G(1))

γ1(1− λ(2)
1 E(G(1)))

=
λ1E(G(1))

γ1(1− U (2)

1 )
.

Similarly, from Eq. (3.10), we have that

E(A(2)
p2

) =
λ

(2)
1 E(G(1))

Λ
(2)
1 (1− λ(2)

1 E(G(1)))
=

U
(2)

1

Λ
(2)
1 (1− U (2)

1 )
.
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Next, we assume that Eq. (3.19) holds for k = 1, 2, . . . , n− 1, and also that for each

k, Eq. (3.20) holds for m = 1, 2, . . . , k. Hence, Eq. (3.19) with k = n− 1 yields

γn−1E(A(n)
np ) =

∑n−1
i=1 λi(bn−1/bi)E(G(i))

1− U (n)

n−1

, (3.22)

and Eq. (3.20) with m = k = n− 1 together with the result E(R(n)) = E(G(n))(1 +

Λ
(n)
n−1E(A

(n)
pn )) (as indicated in the next section) yields

E(R(n)) =
E(G(n))

1− U (n)

n−1

. (3.23)

On the other hand, Eq. (3.13) with k = n results in

E(A(n+1)
np ) =

∑n−1
i=1 λi(bn/bi)E(A

(n)
np ) + λnE(R(n))

γn

(
1−

∑n−1
i=1 λi((bn − bn+1)/bi)E(A

(n)
np )− λ(n+1)

n E(R(n))
) . (3.24)

Note that
∑n−1

i=1 λi(bn/bi)E(A
(n)
np ) = (bn/bn−1)γn−1E(A

(n)
np ). Thus, after appropriate

substitution of Eqs. (3.22) and (3.23), the numerator of Eq. (3.24) can be re-written

as ∑n−1
i=1 λi(bn/bi)E(G(i)) + λnE(G(n))

1− U (n)

n−1

.

Upon observing that
∑n−1

i=1 λi((bn−bn+1)/bi)E(A
(n)
np ) = ((bn−bn+1)/bn−1)γn−1E(A

(n)
np ),

it similarly follows that the denominator of Eq. (3.24) can be re-expressed as

γn
(
1− U (n)

n−1 −
∑n−1

i=1 λi((bn − bn+1)/bi)E(G(i))− λ(n+1)
n E(G(n))

)
1− U (n)

n−1

.

Therefore,

E(A(n+1)
np ) =

∑n−1
i=1 λi(bn/bi)E(G(i)) + λnE(G(n))

γn

(
1− U (n)

n−1 −
∑n−1

i=1 λi((bn − bn+1)/bi)E(G(i))− λ(n+1)
n E(G(n))

) ,
which, after some straightforward algebra, becomes

E(A(n+1)
np ) =

∑n
i=1 λi(bn/bi)E(G(i))

γn(1− U (n+1)

n )
.
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All that remains to complete the proof is to show that Eq. (3.20) holds for m =

1, 2, . . . , k when k = n. To accomplish this, we again employ a proof by induction.

Using Eq. (3.10) and the fact that X(1) = R(1) = G(1), it follows that

E(A(2)
pn+1

) =
λ

(n+1)
1 E(G(1))

Λ
(n+1)
1 (1− λ(2)

1 E(G(1)))
=

U
(n+1)

1

Λ
(n+1)
1 (1− U (2)

1 )
.

Next, we assume that when k = n, Eq. (3.20) holds for m = 1, 2, . . . , j − 1 where

j − 1 < n. Under this assumption, we therefore have for k = n and m = j − 1 that

Λ
(n+1)
j−1 E(A(j)

pn+1
) =

U
(n+1)

j−1

1− U (j)

j−1

. (3.25)

Moreover, it follows from our initial inductive hypothesis (since j < n− 1) that

γj−1E(A(j)
np ) =

∑j−1
i=1 λi(bj−1/bi)E(G(i))

1− U (j)

j−1

(3.26)

and

E(R(j)) = E(G(j))(1 + Λ
(j)
j−1E(A(j)

pj
)) =

E(G(j))

1− U (j)

j−1

. (3.27)

On the other hand, Eq. (3.10) with k = n and m = j gives us

E(A(j+1)
pn+1

) =
Λ

(n+1)
j−1 E(A

(j)
pn+1) + λ

(n+1)
j E(R(j))

Λ
(n+1)
j

(
1−

∑j−1
i=1 λi((bj − bj+1)/bi)E(A

(j)
np )− λ(j+1)

j E(R(j))
) . (3.28)

After using similar arguments to those made earlier in this proof, and following the

appropriate substitution of Eqs. (3.25)–(3.27) into Eq. (3.28), we ultimately obtain

E(A(j+1)
pn+1

) =
U

(n+1)

j−1 + λ
(n+1)
j E(G(j))

Λ
(n+1)
j

(
1− U (j)

j−1 −
∑j−1

i=1 λi((bj − bj+1)/bi)E(G(i))− λ(j+1)
j E(G(j))

)
=

U
(n+1)

j

Λ
(n+1)
j (1− U (j+1)

j )
.

We omit the details, but similar inductive arguments can be used to prove Eq. (3.21).

�
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3.5 Residence periods and gross service times

In this section, we derive the LSTs of R(k) and G(k). We begin with a general

observation concerning the composition of a class-k residence period in the PAPQ.

Specifically, it is possible that a Ck may experience several iid interruption periods

(each having LST Ã(k)(s)) between the moment of its first entry into service up until

its eventual departure from the system. It is important to realize that this general

observation also holds true for the class-k residence period in the classical static

preemptive priority queue. In fact, the only difference in the general compositions of

the class-k residence period in the PAPQ and that in the classical static preemptive

priority queue is the preemption rate during a class-k service. Thus, in order to

obtain the LSTs of R(k) and G(k) for the PAPQ, we simply apply the same analysis

used in Conway et al. (1967) except here we use the preemption rate supplied by

Lemma 3.4.

As a result, the LSTs and the first two moments of R(k) and G(k) for each of the

three preemption disciplines are as follows:

Resume:

R̃(k)(s) = B̃(k)
(
s+ Λ

(k)
k−1(1− Ã(k)(s))

)
(3.29)

E(R(k)) =
(
1 + Λ

(k)
k−1E(A(k))

)
E(X(k)) (3.30)

E
(
(R(k))2

)
=
(
1 + Λ

(k)
k−1E(A(k))

)2E
(
(X(k))2

)
+ Λ

(k)
k−1E(X(k))E

(
(A(k))2

)
(3.31)

G̃(k)(s) = B̃(k)(s) (3.32)

E(G(k)) =E(X(k)) (3.33)

E
(
(G(k))2

)
=E

(
(X(k))2

)
(3.34)

Repeat-different:

R̃(k)(s) =

(
s+ Λ

(k)
k−1

)
B̃(k)(s+ Λ

(k)
k−1)

s+ Λ
(k)
k−1 − Λ

(k)
k−1Ã

(k)(s)
(

1− B̃(k)(s+ Λ
(k)
k−1)

) (3.35)

E(R(k)) =
(
1 + Λ

(k)
k−1E(A(k))

)
E(G(k)) (3.36)
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E
(
(R(k))2

)
= (1 + Λ

(k)
k−1E(A(k)))E

(
(G(k))2

)
+ Λ

(k)
k−1E

(
(A(k))2

)
E(G(k))

+ 2Λ
(k)
k−1E(A(k))

(
1 + Λ

(k)
k−1E(A(k))

)(
E(G(k))

)2
(3.37)

G̃(k)(s) =

(
s+ Λ

(k)
k−1

)
B̃(k)(s+ Λ

(k)
k−1)

s+ Λ
(k)
k−1B̃

(k)(s+ Λ
(k)
k−1)

(3.38)

E(G(k)) =
1− B̃(k)(Λ

(k)
k−1)

Λ
(k)
k−1B̃

(k)(Λ
(k)
k−1)

(3.39)

E
(
(G(k))2

)
=

2(
Λ

(k)
k−1B̃

(k)(Λ
(k)
k−1)

)2

(
1− B̃(k)(Λ

(k)
k−1)− Λ

(k)
k−1E

(
X(k)e−Λ

(k)
k−1X

(k)
))

(3.40)

Repeat-identical:

R̃(k)(s) =E[E(e−sR
(k)|X(k))]

=

∫ ∞
x=0

(s+ Λ
(k)
k−1)e−(s+Λ

(k)
k−1)x

s+ Λ
(k)
k−1 − Λ

(k)
k−1Ã

(k)(s)(1− e−(s+Λ
(k)
k−1)x)

dB(k)(x) (3.41)

E(R(k)) =
(
1 + Λ

(k)
k−1E(A(k))

)
E(G(k)) (3.42)

E
(
(R(k))2

)
=
(
1 + Λ

(k)
k−1E(A(k))

)
E
(
(G(k))2

)
+ Λ

(k)
k−1E

(
(A(k))2

)
E(G(k)) (3.43)

+
2E(A(k))

(
1 + Λ

(k)
k−1E(A(k))

)
Λ

(k)
k−1

E
(
(eΛ

(k)
k−1X

(k) − 1)2
)

G̃(k)(s) =E[E(e−sG
(k) |X(k))]

=

∫ ∞
x=0

(s+ Λ
(k)
k−1)e−(s+Λ

(k)
k−1)x

s+ Λ
(k)
k−1 − Λ

(k)
k−1(1− e−(s+Λ

(k)
k−1)x)

dB(k)(x) (3.44)

E(G(k)) =E[E(G(k)|X(k))] = E

(
eΛ

(k)
k−1X

(k) − 1

Λ
(k)
k−1

)
=
B̃(k)

(
−Λ

(k)
k−1

)
− 1

Λ
(k)
k−1

(3.45)

E
(
(G(k))2

)
=E

[
E
(
(G(k))2|X(k)

)]
=E

[
2

(Λ
(k)
k−1)2

(
e2Λ

(k)
k−1X

(k) − eΛ
(k)
k−1X

(k) − Λ
(k)
k−1X

(k)eΛ
(k)
k−1X

(k)
)]

(3.46)
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=
2

(Λ
(k)
k−1)2

(
B̃(k)(−2Λ

(k)
k−1)− B̃(k)(−Λ

(k)
k−1)− Λ

(k)
k−1E(X(k)eΛ

(k)
k−1X

(k)

)
)

(3.47)

We next present a similar result to Lemma 3.5. Suppose that a class-(k + 1)

residence period begins with an initial priority level of u0. Then, as similarly done for

level-k accreditation intervals, we define the arrivals-to-the-residence-period to be the

time epochs (during a class-(k+1) residence period) at which a Ci for i ∈ {1, 2, . . . , k}
accumulates a priority level equal to the initial level u0.

Lemma 3.10 The steady-state proportion of Cis for i ∈ {1, 2, . . . , k} who arrive-to-

the-residence-period and become level-k accredited is 1− bk+1/bi.

Proof. One can use similar arguments as those used in the proof of Lemma 3.5 to

prove this particular result. Specifically, observe that for class i, i ≤ k, there exists

a subperiod during R(k+1) for which a class-i arrival-to-the-residence-period within

it would eventually lead to level-k accreditation for the Ci. Furthermore, the ratio

of this subperiod to the entire R(k+1) is always 1− bk+1/bi. Thus, the result follows

from the fact that the class-i arrivals-to-the-residence-period form a Poisson process

with rate λi. �

3.6 Waiting time distributions

In this section, we derive the marginal waiting time LSTs. It is clear that Cks
who arrive to the system during an idle period enter into service immediately, and

thus do not incur any amount of wait. Let W
(k)
BP be the waiting time incurred by a

Ck who arrives to the system during a busy period. Therefore, we have

W̃ (k)(s) = π0 + (1− π0)W̃
(k)
BP (s), (3.48)

where π0 = 1−U is the steady-state probability of the system being empty. We next

define P
(k)
BP to be the accumulated priority (immediately prior to entering service for
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the first time) of a Ck who arrives to the system during a busy period. Given that

priority is assigned via Eq. (3.1), it follows that

W̃
(k)
BP (s) = P̃

(k)
BP (s/bk). (3.49)

Hence, to find W̃ (k)(s), we first find P̃
(k)
BP (s) and subsequently apply Eqs. (3.48) and

(3.49).

Recall that a Ck who arrives to the system during a busy period can only either be

a C(acc:`) for some ` ≥ k or a C(int:`) for some ` > k. Let us denote a Ck of the former

kind by C(acc)
k , and a Ck of the latter kind by C(int)

k . Furthermore, let P̃
(k)
acc (s) and

P̃
(k)
int (s) denote the LSTs of the accumulated priority of a C(acc)

k and C(int)
k , respectively.

Therefore,

P̃
(k)
BP (s) =

1

1− π0

[
π

(acc)
k P̃ (k)

acc (s) + α
(int)
k P̃

(k)
int (s)

]
, (3.50)

where π
(acc)
k and α

(int)
k represent the steady-state probabilities that a Ck arrives during

a busy period and is a C(acc)
k or C(int)

k , respectively.

3.6.1 The distribution of accumulated priority of a C(acc)k

We present first a recursion for P̃
(k)
acc (s). To begin, let P

(k)
acc:k denote the accumu-

lated priority of a C(acc:k)
k . Let P

(k)
unacc:k denote the accumulated priority of a C(acc:`)

k

for some ` > k. Then, we have

P̃ (k)
acc (s) =

1

π
(acc)
k

[
π

(k)
k P̃

(k)
acc:k(s) +

N∑
`=k+1

π
(`)
k P̃

(k)
unacc:k(s)

]
, (3.51)

where π
(j)
k represents the steady-state probability that a Ck arrives to a busy period

and is serviced at level-j accreditation. It follows from Lemma 3.2 and Remark 3.3

that the distribution of accumulated priority of a C(acc:`) is the same regardless of

the specific class to which the customer belongs. This previous argument, coupled

with the fact that π
(`)
k = (bk+1/bk)π

(`)
k+1 for ` > k (as shown later in Section 3.6.3),

ultimately leads to the following recursive scheme for the desired LST:

P̃ (k)
acc (s) =

1

π
(acc)
k

[
π

(k)
k P̃

(k)
acc:k(s) +

bk+1

bk
π

(acc)
k+1 P̃

(k+1)
acc (s)

]
. (3.52)
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In order to find P̃
(k)
acc:k(s), we first note that a C(acc:k) (for any 1 ≤ k ≤ N) is always

served in a level-k accreditation interval. Suppose now that a level-k accreditation

interval starts with an initial priority level of u0. Then, the accumulated priorities of

all C(acc:k)s serviced in this interval must have an accumulated priority which is greater

than u0. In other words, the accumulated priority of a C(acc:k) is decomposed into two

parts: u0 and the additional accumulated priority after having accumulated priority

level u0, which we denote by P(acc:k). It is important to note that the distribution of

P(acc:k) is independent of the specific value of u0 (i.e., this independence is similar to

that which exists between W (k) and R(k)).

We next make our second use of the connection between the PAPQ and the

M/G/1 queue with accumulating priority and blocking, as outlined in Important

Observation 3.8. In particular, it readily follows from Important Observation 3.8

that the distribution of P(acc:k), associated with an initial delay V (i.e., the initial

delay of the level-k accreditation interval), can be expressed as an application of Eq.

(2.59) with q = bk+1/bk and LST argument bks, namely:

P̃(acc:k)(s) ≡ P̃(acc:k)(s;V ) =

(
1− γ(k+1)

k µk,1
)(
Ãk(bk+1s)− Ṽ (bks)

)
E(V )

(
1− bk+1/bk

)(
bks− γk + γkΦk(bks)

) . (3.53)

Note that in Eq. (3.53), Ãk(s) is given by Eq. (3.6) and µk,i is the i-th moment

of the random variable whose distribution has LST Φk(s). The first moment of

P(acc:k) can be found by substituting the appropriate parameters into Eq. (2.61) and

subsequently multiplying by bk, thus yielding

E(P(acc:k)) = bk

(
E(V 2)

2E(V )
·

[
1 +

bk+1/bk

1− γ(k+1)
k µk,1

]

+
γkµk,2

2(1− γkµk,1)
·

1−

(
bk+1/bk

1− γ(k+1)
k µk,1

)2
). (3.54)

We must consider all of the level-k accreditation intervals in which a C(acc:k) can

be serviced. From the previous sections, we know that there are only three types of

level-k accreditation intervals, all of which correspond to a specific kind of pseudo-

interruption period. In particular, a C(acc:k) must be serviced within A
(k+1)
p0 , A

(k+1)
np ,
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or A
(k+1)
pj for some j > k. Now, it follows from independence that the LST of

the accumulated priorities of C(acc:k)s serviced in each of these pseudo-interruption

periods is simply a product of the LST of the initial priority level and the LST of

the additional accumulated priority P(acc:k).

The initial priority level for a level-k accreditation interval of type (i) is clearly

zero. Therefore, the accumulated priority of a C(acc:k) serviced in A
(k+1)
p0 simply has

LST P̃(acc:k)(s;V
(k)
p0 ). A pseudo-interruption period A

(k+1)
np is initiated whenever a

C(acc:`)
a or a C(acc:`)

k for ` > k enters into service. Hence, the accumulated priority

of a C(acc:k) serviced in A
(k+1)
np and initiated by either a C(acc:`)

a or a C(acc:`)
k has LST

P̃
(`)
acc:`(s)P̃(acc:k)(s;V

(k)
np ) for all ` > k. Lastly, recall that the pseudo-interruption

period A
(k+1)
p` for ` > k initiates whenever a Ca or a Ck preempts a C` out of service.

Letting Pint:` be the accumulated priority of a customer who preempts a C` out of

service, the accumulated priority of a C(acc:k) serviced in A
(k+1)
p` and initiated by either

a C(int:`)
a or a C(int:`)

k has LST P̃int:`(s)P̃(acc:k)(s;V
(k)
p` ) for all ` > k.

We next define the following steady-state probabilities:

π
(k:i)
k ≡ probability that a Ck is serviced at level-k accred-

itation in an A
(k+1)
p0 ;

π
(k:ii:`)
k ≡ probability that a Ck is serviced at level-k accred-

itation in an A
(k+1)
np which is initiated by a C(acc:`)

a

or a C(acc:`)
k for ` > k;

π
(k:iii:`)
k ≡ probability that a Ck is serviced at level-k accred-

itation in an A
(k+1)
p` which is initiated by a C(int:`)

a

or a C(int:`)
k for ` > k.

Therefore, we have that

P̃
(k)
acc:k(s) =

1

π
(k)
k

[
π

(k:i)
k P̃(acc:k)(s;V (k)

p0
) +

N∑
`=k+1

π
(k:ii:`)
k P̃

(`)
acc:`(s)P̃

(acc:k)(s;V (k)
np )

+
N∑

`=k+1

π
(k:iii:`)
k P̃int:`(s)P̃(acc:k)(s;V (k)

p`
)

]
. (3.55)

Remark 3.11 In Important Observation 3.8, we described a key relation between

the maximal priority process of the PAPQ with the maximal priority process of the
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FCFS M/G/1 queue with accumulating priority and blocking (of Section 2.5), which

led to our expression for P̃(acc:k)(s). We stress that the idea of relating processes of a

priority queue to that of a related M/G/1 queue is commonly used in the analysis of

priority queueing systems. For example, one possible method for analyzing the static

non-preemptive/preemptive priority model is via level-crossing techniques, where the

analysis is simplified by relating the virtual wait process in those models to the virtual

wait process of the classical FCFS M/G/1 queue (e.g., see Brill (2008, Section 3.12)).

3.6.2 The distribution of accumulated priority of a C(int)k

Let P
(k)
int:` be the accumulated priority of a C(int:`)

k for ` > k. Similar to the

decomposition in the previous subsection, we have P
(k)
int:` = u0 + P(int:`) where u0

is the initial priority level of the class-` residence period R(`) and P(int:`) is the

additional accumulated priority earned by the interrupting customer after having

accumulated priority level u0. It is important to note that the distribution of P(int:`)

is independent of the value u0, which is equal to zero if the interrupted C` arrived

to an empty system and is greater than zero otherwise (i.e., assuming that b` > 0).

Clearly, u0 represents the accumulated priority of the C` immediately prior to the

first time it enters service, so that

P̃
(k)
int:`(s) =

α
(0:`)
k P̃(int:`)(s) + α

(1:`)
k P̃

(`)
BP (s)P̃(int:`)(s)

α
(`)
k

, (3.56)

where:

α
(`)
k ≡ probability that a Ck interrupts a C` (for ` > k)

out of service;

α
(0:`)
k ≡ probability that a Ck interrupts a C` (for ` > k),

who arrived to an empty system, out of service;

α
(1:`)
k ≡ probability that a Ck interrupts a C` (for ` > k),

who arrived to the system during a busy period,
out of service.

We show in the next subsection that α
(0:`)
i /α

(`)
i = π0 and α

(1:`)
i /α

(`)
i = 1− π0 for

all i ∈ {1, . . . , k, . . . , ` − 1}. This implies that the distribution of the accumulated
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priority of an interrupting customer is independent of the actual class to which the

interrupting customer belongs. Therefore, we can re-write Eq. (3.56) as

P̃
(k)
int:`(s) = P̃int:`(s) = π0P̃(int:`)(s) + (1− π0)P̃

(`)
BP (s)P̃(int:`)(s). (3.57)

Note that in the second equality above, we drop the superscript in the notation

to indicate that this distribution does not depend on the class of the interrupting

customer. Furthermore, Eq. (3.57) is used in Eq. (3.55). It is also clear that a Ck
can interrupt any Ci for i ∈ {k + 1, k + 2, . . . , N}. Therefore,

P̃
(k)
int (s) =

1

α
(int)
k

N∑
`=k+1

α
(`)
k P̃int:`(s). (3.58)

To conclude this subsection, we establish P̃(int:k) for each of the three preemption

disciplines.

Resume: Under this strategy, we can find P̃(int:k)(s) by conditioning on the par-

tially completed service time, X
(k)
past, and the number of preemptions N encountered

during that time. In particular,

E(e−sP
(int:k)|X(k)

past = x,N = n) = e−sbkx
[
Ã(k)(bks)

]n
. (3.59)

By Lemma 3.4, given that X
(k)
past = x, N is Poisson distributed with rate Λ

(k)
k−1x. On

the other hand, the LST of X
(k)
past is well-known, being given by (e.g., see Takagi

(1991, Eq. (1.52a)))

X̃
(k)
past(s) =

1− B̃(k)(s)

sE(X(k))
. (3.60)

Thus, by removing the conditional statements on both N and X
(k)
past, we readily obtain

P̃(int:k)(s) =
1− B̃(k)(sbk + Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks))

E(X(k))(sbk + Λ
(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks))
(3.61)

with corresponding first moment

E(P(int:k)) = bk

(
E[(X(k))2]

2E(X(k))
(1 + Λ

(k)
k−1E(A(k)))

)
. (3.62)
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Repeat-different: Under this strategy, we can view each time a Ck enters into

service as a Bernoulli experiment, where a successful outcome is defined as service

progressing to completion, which happens with probability B̃(k)(Λ
(k)
k−1). Following

the convention of Conway et al. (1967, pp. 171–172), we denote the wasted service

time random variable as X
(k)
w (i.e., an interrupted service attempt) whose LST is

given by

X̃(k)
w (s) =

Λ
(k)
k−1

(
1− B̃(k)(s+ Λ

(k)
k−1)

)(
s+ Λ

(k)
k−1

)(
1− B̃(k)(Λ

(k)
k−1)

) .
Considering only the times when a class-k residence period is in progress, we de-

fine the system to be in state m at a particular instant if the number of previous

interruptions (not including the current interruption period, if applicable) suffered

by the oldest Ck is m. Suppose now that a Ca preempts a Ck when the system is

in state m. This implies that, at the time our marked Ca begins service, the on-

going residence period is already comprised of m independent pairs of X
(k)
w + A(k),

followed by another independent X
(k)
w . Note that these 2m+ 1 random variables are

all independent, and so

E(e−sP
(int:k) |state m) =

[
X̃(k)
w (bks)

]m+1 [
Ã(k)(bks)

]m
.

If we define Pm to be the steady-state probability that the system is in state m (i.e.,

Pm = P(state m |R(k) in progress)), then the probability of a Ca becoming accredited

during a class-k residence period while the system is in state m is also Pm by virtue

of the PASTA property (e.g., see Wolff (1982)). Therefore,

E(e−sP
(int:k)

) =
∞∑
m=0

Pm

[
X̃(k)
w (bks)

]m+1 [
Ã(k)(bks)

]m
.

Using results from semi-Markov theory (e.g., see Kao (1996, Section 6.2)) and discrete-

time Markov chains, it follows that Pm = B̃(k)(Λ
(k)
k−1)[1− B̃(k)(Λ

(k)
k−1)]m, thereby lead-

ing to

P̃(int:k)(s) =
1− B̃(k)(bks+ Λ

(k)
k−1)

E(G(k))
(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)(1− B̃(k)(bks+ Λ
(k)
k−1))

) (3.63)
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with corresponding first moment

E(P(int:k)) = bk

(
E[(G(k))2]

2E(G(k))
+ Λ

(k)
k−1E(A(k))E(G(k))

)
. (3.64)

Repeat-identical: The derivation of P̃(int:k)(s) under the repeat-identical strategy

is similar to the repeat-different case; however, it is now necessary to condition on

the originally drawn service time of the Ck, which we denote as X
(k)
∗ . It can be shown

that the LST corresponding to X
(k)
∗ is given by

E(e−sX
(k)
∗ ) =

B̃(k)(s− Λ
(k)
k−1)− B̃(k)(s)

B̃(k)(−Λ
(k)
k−1)− 1

. (3.65)

From Eq. (3.65), we readily obtain that

P(x < X(k)
∗ < x+ dx) =

E[G(k)|X(k) = x]

E(G(k))
dB(k)(x). (3.66)

Following along the same line of reasoning as for the repeat-different case, we obtain

E[e−sP
(int:k)|X(k)

∗ = x] =
1− e−(sbk+Λ

(k)
k−1)x

E[G(k)|X(k) = x]
(
bks+ Λ

(k)
k−1(1− Ã(k)(bks)(1− e−(sbk+Λ

(k)
k−1)x))

) ,
(3.67)

which, after removing the condition X
(k)
∗ = x, yields

P̃(int:k)(s) =

∫ ∞
x=0

(
1− e−(sbk+Λ

(k)
k−1)x

)
E(G(k))

(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)(1− e−(sbk+Λ
(k)
k−1)x)

) dB(k)(x).

(3.68)

In addition, we can express the corresponding first moment as

E(P(int:k)) = bk

∫ ∞
x=0

{
E[(G(k))2|X(k) = x]

2E(G(k))

+
Λ

(k)
k−1E(A(k))(E[G(k)|X(k) = x])2

E(G(k))

}
dB(k)(x). (3.69)

The first and second conditional moments of G(k) found in the integrand of Eq. (3.69)

are given in Eqs. (3.45) and (3.46), respectively.
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3.6.3 Steady-state probabilities

We next derive formulas for the steady-state probabilities introduced in the pre-

vious subsections. Clearly, π
(acc)
k =

∑N
`=k π

(`)
k and α

(int)
k =

∑N
`=k+1 α

(`)
k . The following

proposition provides the forms of the steady-state probabilities π
(`)
k and α

(`)
k .

Proposition 3.12 The probability that a Ck arrives to a busy period and is serviced

at level-` accreditation is

π
(`)
k = U `(b` − b`+1)/bk for ` ≥ k. (3.70)

Furthermore, the probability that a Ck arrives to a busy period and preempts a C` out

of service is

α
(`)
k = ρ`(1− b`/bk) for ` > k. (3.71)

Proof. We consider first the case for ` = N . Note that a busy period is a level-

N accreditation interval. Thus, from our previous arguments, we observe that a

busy period is partitioned by subperiods which can only either be level-(N − 1)

accreditation intervals (i.e., class-N pseudo-interruption periods) or class-N residence

periods. Following the logic used in the proofs of Lemmas 3.5 and 3.10, the proportion

of a busy period which would lead to an eventual level-(N − 1) accreditation of a

Ck is always 1 − bN/bk. Therefore, by virtue of the PASTA property, we have that

π
(N)
k = UbN/bk. Now, some of those Cks who earn level-(N − 1) accreditation will

enter into service by preempting a CN out of service. In other words, these are the

Cks who become level-(N − 1) accredited during the servicing of a CN . The long-

run proportion of the busy period dedicated to the servicing of a CN is ρN/UN . It

therefore follows that α
(N)
k = ρN(1− bN/bk).

The remaining proportion of Cks who become level-(N − 1) accredited will do so

during the servicing of a Ci for i < N . This implies that these Cks are serviced in a

class-N pseudo-interruption period (or equivalently, in a level-(N − 1) accreditation

interval). Recall that a level-(N − 1) accreditation interval is again decomposed into

subperiods which can only either be a level-(N − 2) accreditation interval or a class-

(N − 1) residence period. Once again, the same logic applied above establishes that
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the proportion of level-(N−1) accredited Cks who also become level-(N−2) accredited

is (1− bN−1/bk)/(1− bN/bk). Therefore, we have that π
(N−1)
k = UN−1(bN−1− bN)/bk.

Furthermore, since ρN−1/UN−1 represents the conditional probability that a CN−1 is

in service given that some customer belonging to one of classes {1, 2, . . . , N − 1} is

in service, it follows that α
(N−1)
k = ρN−1(1 − bN−1/bk). By continuing along in this

fashion, we eventually establish the remaining probabilities. �

To find π
(k:i)
k , π

(k:ii:`)
k , and π

(k:iii:`)
k for ` > k, we first need to find the long-run

proportion of time that all of these level-k accreditation intervals are in progress. It

follows from Lemma 3.5 that the desired probabilities are found by multiplying the

previous proportions by (bk−bk+1)/bk. In particular, the long-run proportion of time

that an A
(k+1)
p0 is in progress is given by

π0ΛkE(A(k+1)
p0

) = π0
Uk

1− U (k+1)

k

,

where the equality holds by Eq. (3.21). Therefore, we have that

π
(k:i)
k = π0

Uk

1− U (k+1)

k

(
bk − bk+1

bk

)
. (3.72)

We similarly obtain the following results for ` > k:

π
(k:ii:`)
k =

[
U `

∑k
i=1 ρi

(
(b` − b`+1)/bi

)
1− U (k+1)

k

](
bk − bk+1

bk

)
(3.73)

and

π
(k:iii:`)
k =

[
ρ`U

(`)

k

1− U (k+1)

k

](
bk − bk+1

bk

)
. (3.74)

It is easy to verify that π
(k)
k = π

(k:i)
k +

∑N
`=k+1 π

(k:ii:`)
k +

∑N
`=k+1 π

(k:iii:`)
k . In addition,

we readily obtain from Lemma 3.10 that

α
(0:`)
k = π0ρ`(1− b`/bk) (3.75)

and

α
(1:`)
k = (1− π0)ρ`(1− b`/bk). (3.76)
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3.6.4 Connections between the PAPQ and other queueing
models

We begin with a remark concerning the LST of the waiting time distribution of

the lowest priority class, W̃ (N)(s). Note that since bN+1 = 0 (as defined on p. 53), it

follows that π
(acc)
N = U . Furthermore, it is clear that CNs can never preempt another

customer out of service, and thus it is readily observed from Eqs. (3.50) and (3.55)

that

P̃
(N)
BP (s) = P̃(acc:N)(s;V (N)

p0
) =

(
1− γ(N+1)

N µN,1
)(

1− Ṽ (N)
p0 (bNs)

)
E(V

(N)
p0 )

(
bNs− γN + γNΦN(bNs)

) . (3.77)

The waiting time LST of the lowest priority class is readily obtained via Eqs. (3.48)

and (3.49). Moreover, Eq. (3.77) serves as the starting point for the recursive

scheme to establish the remaining LSTs P̃
(N−1)
PB (s), P̃

(N−2)
PB (s), . . . , P̃

(1)
PB(s) given in

Eqs. (3.50), (3.52), (3.55), (3.56), and (3.58).

Under a preemptive resume service discipline, Eq. (3.77) yields after some algebra

the following expression for the class-N waiting time LST:

W̃ (N)(s) =

(
s+ Λ

(N)
N−1(1− ψN−1(s))

)
(1− U)

s−
∑N

i=1 λi(bN/bi)
(
1− B̃(i)

(
s+ Λ

(N)
N−1(1− ψN−1(s))

)) , (3.78)

where

ψN−1(s) =
N−1∑
i=1

λ
(N)
i

Λ
(N)
N−1

B̃(i)
(
s+ Λ

(N)
N−1(1− ψN−1(s))

)
. (3.79)

We remark that Eq. (3.78) is identical to the waiting time LST of the lowest priority

class in the NPAPQ (see Stanford et al. (2014, Eq. (65))). This relationship is

well understood due to the fact that the non-preemptive and preemptive resume

service disciplines are both work-conserving disciplines. We note that the same

relationship holds in the case of the static non-preemptive and preemptive resume

priority queueing models (e.g., see Takagi (1991, p. 345)).

We end Section 3.6 with two limiting cases of the PAPQ involving the ratio

bk+1/bk which must lie in the interval [0,1]. On the one hand, suppose that bk+1/bk ≈
1 for all k = 1, 2, . . . , N − 1. Under this setting, it is quite difficult for customers of
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higher priority to preempt customers of lower priority. Hence, as the ratio bk+1/bk

approaches one, the PAPQ approaches the FCFS M/G/1 queue whose arrival rate

is ΛN and service time LST is given by B̃(s) = (1/ΛN)
∑N

i=1 λiB̃
(i)(s).

On the other hand, suppose that bk+1/bk ≈ 0 for all k = 1, 2, . . . , N − 1. In

contrast to the previous situation, it is now easier for higher priority customers to

preempt lower priority ones out of service (i.e., preemptions essentially occur at

higher priority customer arrival instants). Therefore, as bk+1/bk gets closer to zero,

the PAPQ approaches the static preemptive priority model. These limiting cases

illustrate a potential benefit in that the PAPQ can be useful to systems managers of

FCFS queueing systems who wish to implement a static prioritization scheme, but

feel that the resulting congestion would still be too great. In such situations, the

PAPQ is a viable alternative as it could provide the desired balance between the two

extremes of FCFS and static preemptive priority.

3.7 The PAPQ under a Bernoulli-based decision

rule for the resumption of service

In this section, we consider a hybrid-based preemption discipline, which we refer

to as the Bernoulli-based decision rule for the resumption of service (BBD-resume for

short) discipline, that involves a certain combination of the traditional preemptive

resume and preemptive repeat disciplines. Specifically, the decision of whether to

resume the service attempt of an interrupted Ck is made through a Bernoulli-type

experiment, where the probability that the service is resumed is given by 1− νk for

some 0 ≤ νk ≤ 1. If a Ck’s service attempt is not resumed, then the entire previously

rendered service for this Ck is lost (or wasted), and one of the two preemptive repeat

disciplines are employed (i.e., repeat-different or repeat-identical) for the next service

attempt.

In what follows, we assume that the decision to resume the service of an inter-

rupted Ck is made at the precise moment that the preemption occurs (and the ensuing

interruption period begins). It is important to note that the decisions made at every

preemption instant are independent from one another (i.e., they are iid Bernoulli
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trials). Furthermore, it is clear that the exact timing of a decision has absolutely no

effect on the system, so long as one is being made for each preemption (and ensuing

interruption period).

For the sake of clarity in our analysis, we say that an interruption period A(k) is

non-resumable, denoted by A
(k)
+ , if the previously rendered service is wasted. Con-

versely, we say that an interruption period is resumable, denoted by A
(k)
− , if the

service is resumed after its completion. Furthermore, we use the symbol C(int:k)
+ to

denote a C(int:k) that causes an A
(k)
+ , and similarly use C(int:k)

− to denote a C(int:k)

that causes an A
(k)
− . It is important to realize that the decision to resume service

is made independently of the ensuing interruption period. As a result, it is obvious

that Ã(k)(s) = Ã
(k)
− (s) = Ã

(k)
+ (s).

Our main objective in this section is to establish the class-k steady-state waiting

time LST for the PAPQ under the BBD-resume discipline. Accomplishing this task

is actually quite simple, as we can borrow most of the results established in the pre-

vious sections pertaining to the PAPQ under the traditional preemption disciplines.

This is due to the fact that the same structural dependence among the service-

structure elements that was displayed for the PAPQ of the previous sections (i.e.,

under the three traditional preemption disciplines) is also inherent for the PAPQ

under the BBD-resume discipline. The previous observation implies that nearly all

of the results, including the general recursive procedure for obtaining the steady-

state waiting time LSTs derived in the previous section, apply equally to the PAPQ

under the BBD-resume discipline. In fact, to complete the current analysis for the

BBD-resume discipline, we need only provide updated expressions for the LSTs of

R(k), G(k), and P(int:k). We present the required results below for each combination

of BBD-resume with repeat-different and BBD-resume with repeat-identical.

Repeat-different: We begin by defining the following two random variables:

Wasted service time X
(k)
w ≡ The total amount of rendered ser-

vice for a class-k service attempt
before it is interrupted by a C(int:k)

+ .
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Successful service time X
(k)
suc ≡ The service time of a class-k service

attempt that is not interrupted by
a C(int:k)

+ .

If we let Y represent the time from the start of a class-k service attempt to the next

time that an A
(k)
+ occurs (i.e., the next time that a C(int:k)

+ enters into service), then

it is obvious that Y is exponentially distributed with rate Λ
(k)
k−1νk. Furthermore, we

understand that X
(k)
w = Y |(X(k) > Y ), which readily leads to

X̃(k)
w (s) =

Λ
(k)
k−1νk

(
1− B̃(k)(s+ Λ

(k)
k−1νk)

)(
s+ Λ

(k)
k−1νk

)(
1− B̃(k)(Λ

(k)
k−1νk)

) . (3.80)

Similarly, X
(k)
suc = X(k)|(X(k) < Y ), so that

X̃(k)
suc(s) =

B̃(k)
(
s+ Λ

(k)
k−1νk

)
B̃(k)

(
Λ

(k)
k−1νk

) . (3.81)

It is important to note that the servicing of X
(k)
w and X

(k)
suc can both be interrupted

several times for the processing of resumable interruption periods that are initiated

by C(int:k)
− s. As a result of this observation, we define the following random intervals

of time:

H
(k)
w ≡ The time interval from the start of a X

(k)
w to the moment that the

Ck returns to service following the completion of the associated non-
resumable interruption period A

(k)
+ .

H
(k)
suc ≡ The time interval from the start of a X

(k)
suc to the departure instant of

the Ck.

It is apparent that H
(k)
w = X

(k)
w +

∑N−
i=1 A

(k)
−i +A

(k)
+ , where N− represents the number of

resumable interruption periods occurring within X
(k)
w and A

(k)
−i is the i-th resumable

interruption period. Conditioning on X
(k)
w = x, N− has a Poisson distribution with

mean Λ
(k)
k−1(1− νk)x, and this ultimately leads to

H̃(k)
w (s) = Ã

(k)
+ (s)X̃(k)

w

(
s+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (s))
)
. (3.82)
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For similar reasons, we also obtain

H̃(k)
suc(s) = X̃(k)

suc

(
s+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (s))
)
. (3.83)

To obtain the LST of R(k), let N be the number of wasted service attempts that a

Ck experiences before departing the system. Observe that the probability that a class-

k service attempt is wasted is given by P (X(k) < Y ) = 1−B̃(k)(Λ
(k)
k−1νk), which implies

that N has a geometric distribution with mean
(
1 − B̃(k)(Λ

(k)
k−1νk)

)
/B̃(k)(Λ

(k)
k−1νk).

Conditional on N = n, it is clear that R(k) is comprised of n periods of time, each

having LST H̃
(k)
w , and one period of time having LST H̃

(k)
suc. Furthermore, these

n + 1 intervals of time are all mutually independent, so that E(e−sR
(k)|N = n) =(

H̃
(k)
w (s)

)n
H̃

(k)
suc(s). Removing the condition on N and using Eqs. (3.82) and (3.83)

yields

R̃(k)(s) =
X̃

(k)
suc

(
s+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (s)
)
B̃(k)(Λ

(k)
k−1νk)

1− Ã(k)
+ (s)X̃

(k)
w

(
s+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (s))
)
(1− B̃(k)(Λ

(k)
k−1))

. (3.84)

Substituting Eqs. (3.80) and (3.81) into Eq. (3.84), and using the fact that Ã(k)(s) =

Ã
(k)
− (s) = Ã

(k)
+ (s), leads to an alternate expression of R̃(k)(s), namely

R̃(k)(s) =
ωk(s)B̃

(k)
(
ωk(s)

)
s+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(s)
(
1− νkB̃(k)

(
ωk(s)

)) , (3.85)

where ωk(s) = s + Λ
(k)
k−1 − Λ

(k)
k−1(1 − νk)Ã(k)(s). The first two moments of R(k) are

obtained via differentiation of Eq. (3.85):

E(R(k)) = (1 + Λ
(k)
k−1E(A(k)))E(G(k)) (3.86)

and

E
(
(R(k))2

)
= Λ

(k)
k−1E

(
(A(k))2

)
E(G(k))

+ (1 + Λ
(k)
k−1(1− νk)E(A(k)))(1 + Λ

(k)
k−1E(A(k)))E

(
(G(k))2

)
+ 2Λ

(k)
k−1νkE(A(k))(1 + Λ

(k)
k−1E(A(k)))

(
E(G(k))

)2
. (3.87)
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A simple expression for the LST of G(k) is obtained by substituting Ã(k)(s) = 1

into Eq. (3.85), thereby leading to

G̃(k)(s) =
B̃(k)(s+ Λ

(k)
k−1νk)(s+ Λ

(k)
k−1νk)

s+ Λ
(k)
k−1νkB̃

(k)(s+ Λ
(k)
k−1νk)

. (3.88)

The first two moments of G(k) are

E(G(k)) =
1− B̃(k)(Λ

(k)
k−1νk)

Λ
(k)
k−1νkB̃

(k)(Λ
(k)
k−1νk)

(3.89)

and

E
(
(G(k))2

)
=

2
[
1− B̃(k)(Λ

(k)
k−1νk)− Λ

(k)
k−1νkE

(
X(k)e−Λ

(k)
k−1νkX

(k))](
Λ

(k)
k−1νkB̃

(k)(Λ
(k)
k−1νk)

)2 . (3.90)

All that remains is the derivation of the LST of P(int:k). For the current model,

it is necessary to condition on the type of interrupting customer that we are dealing

with. In particular, if we let P(int:k)
− and P(int:k)

+ denote the additional accumulated

priority (after having accumulated the intial priority level) for a C(int:k)
− and C(int:k)

+ ,

respectively, then obviously

P̃(int:k)(s) = (1− νk)P̃(int:k)
− (s) + νkP̃(int:k)

+ (s). (3.91)

We derive the LSTs of P(int:k)
− and P(int:k)

+ in a similar fashion to our derivation

of P(int:k) for the PAPQ under the preemptive repeat-different discipline (i.e., see

Section 3.6.2). First of all, we consider only the times that an R(k) is in progress

and say that the system is in state m if the oldest Ck has already experienced m ≥ 0

failed service attempts. It can be shown, using the same techniques as before, that

Pm = P(state m |R(k) in progress) =
(
1− B̃(k)(Λ

(k)
k−1νk)

)m
B̃(k)(Λ

(k)
k−1νk).

Next, observe that if either a C(int:k)
− or a C(int:k)

+ preempts a Ck while the system is

in state m, then it implies that the ongoing residence period has already experienced

m independent H
(k)
w periods of time. Now, for a C(int:k)

− , we must also consider

whether the service attempt which it is interrupting is a wasted one or a successful

one. In particular, we have the following:
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E(e−sP
(int:k)
− | state m and interrupt a X(k)

w )

=
(
H̃(k)
w (bks)

)m
X̃

(k)
w,past

(
bks+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (bks))
)

(3.92)

and

E(e−sP
(int:k)
− | state m and interrupt a X(k)

suc)

=
(
H̃(k)
w (bks)

)m
X̃

(k)
suc,past

(
bks+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (bks))
)
, (3.93)

where, in general,

Z̃past(s) =
1− Z̃(s)

sE(Z)
(3.94)

for a given random variable Z. If we let σk denote the probability that a C(int:k)

interrupts a wasted service time, then it must be that

E(e−sP
(int:k)
− | state m) = σkE(e−sP

(int:k)
− | state m and interrupt a X(k)

w )

+ (1− σk)E(e−sP
(int:k)
− | state m and interrupt a X(k)

suc). (3.95)

It can be shown, from semi-Markov theory (e.g., see Kao (1996, Section 6.2)) and

the PASTA property, that

σk =
(1− B̃(k)(Λ

(k)
k−1νk))E(X

(k)
w )

(1− B̃(k)(Λ
(k)
k−1νk))E(X

(k)
w ) + B̃(k)(Λ

(k)
k−1νk)E(X

(k)
suc)

. (3.96)

Therefore, by substituting Eq. (3.96) along with Eqs. (3.92) and (3.93) into Eq.

(3.95), we ultimately obtain

E(e−sP
(int:k)
− | state m) =

(
H̃(k)
w (bks)

)m
X̃

(k)
∗,past

(
bks+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (bks))
)
,

(3.97)

where X̃
(k)
∗ (s) = (1− B̃(k)(Λ

(k)
k−1νk))X̃

(k)
w (s) + B̃(k)(Λ

(k)
k−1νk)X̃

(k)
suc(s). Finally, removing

the condition of the system being in state m yields after some algebra

P̃(int:k)
− (s) =

B̃(k)(Λ
(k)
k−1νk)X̃

(k)
∗past

(
bks+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (bks))
)

1− H̃(k)
w (bks)

(
1− B̃(k)(Λ

(k)
k−1νk)

) . (3.98)
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Furthermore, it is straightforward but tedious to show that

X̃
(k)
∗past

(
bks+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (bks))
)

=

(
1− B̃(k)

(
ωk(bks)

))
Λ

(k)
k−1νk

ωk(bks)(1− B̃(k)(Λ
(k)
k−1νk))

. (3.99)

Substituting Eq. (3.99) into Eq. (3.98) ultimately yields the following simplified ex-

pression for P̃(int:k)
− (s):

P̃(int:k)
− (s) =

1− B̃(k)
(
ωk(bks)

)
E(G(k))

(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)
(
1− B̃(k)

(
ωk(bks)

))) . (3.100)

We can similarly find the LST of P(int:k)
+ . In particular, if a C(int:k)

+ causes an

interruption while the system is in state m, then in addition to the m previously ex-

perienced H
(k)
w periods of time, the ongoing residence period has also (most recently)

experienced one full X
(k)
w along with all of the resumable interruption periods A

(k)
−

occurring within it. Hence, it must be that

E(e−sP
(int:k)
+ | state m) =

(
H̃(k)
w (bks)

)m
X̃(k)
w

(
bks+Λ

(k)
k−1(1−νk)(1−Ã(k)

− (bks))
)
. (3.101)

Therefore,

P̃(int:k)
+ (s) =

B̃(k)(Λ
(k)
k−1νk)X̃

(k)
w

(
bks+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (bks))
)

1− H̃(k)
w (bks)

(
1− B̃(k)(Λ

(k)
k−1νk)

) . (3.102)

It is quite straightforward to show that Eq. (3.102) can be simplified to become

P̃(int:k)
+ (s) =

1− B̃(k)
(
ωk(bks)

)
E(G(k))

(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)
(
1− B̃(k)

(
ωk(bks)

))) , (3.103)

which is equivalent to P̃(int:k)
− (s) as given by Eq. (3.100). Therefore, it must be that

P̃(int:k)(s) = P̃(int:k)
− (s) = P̃(int:k)

+ (s), (3.104)

as given by Eq. (3.100) or Eq. (3.103). We obtain the first moment of P(int:k) through

the differentiation of its LST, leading to

E(P(int:k)) = bk

((
1 + Λ

(k)
k−1(1− νk)E(A

(k)
− )
)E((G(k))2

)
2E(G(k))

+ Λ
(k)
k−1νkE(A

(k)
+ )E(G(k))

)
.

(3.105)
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Repeat-identical: The arguments used for establishing the LSTs of R(k) and G(k)

for the repeat-different case are also applicable to the repeat-identical case, with the

exception that we now must condition on the originally sampled service time (since

this service time is simply restarted after each wasted service attempt). For instance,

given that X(k) = x, the conditional pdf of X
(k)
w is expressible as

P(p ≤ X(k)
w ≤ p+ dp|X(k) = x) =

Λ
(k)
k−1νke

−Λ
(k)
k−1νkp

1− e−Λ
(k)
k−1νkx

dp, p < x. (3.106)

Therefore,

E(e−sX
(k)
w |X(k) = x) =

Λ
(k)
k−1νk

(
1− e−(s+Λ

(k)
k−1νk)x

)(
s+ Λ

(k)
k−1νk

)(
1− e−Λ

(k)
k−1νkx

) . (3.107)

On the other hand, since each Ck eventually departs the system, it must be that

E(e−sX
(k)
suc|X(k) = x) = e−sx. (3.108)

From these results, it is also straightforward to show that

E(e−sH
(k)
w |X(k) = x) =

Λ
(k)
k−1νk

(
1− e−ωk(s)x

)
ωk(s)

(
1− e−Λ

(k)
k−1νkx

)Ã(k)
+ (s) (3.109)

and

E(e−sH
(k)
suc|X(k) = x) = e−(s+Λ

(k)
k−1(1−νk)(1−Ã(k)

− (s)))x. (3.110)

Moreover, if the service time of a Ck is X(k) = x, then the number of failed

service attempts that this Ck experiences before departing the system has a geometric

distribution with mean (1 − e−Λ
(k)
k−1νkx)/e−Λ

(k)
k−1νkx. Applying similar arguments to

those made in the repeat-different case ultimately yields

R̃(k)(s) =

∫ ∞
x=0

ωk(s)e
−ωk(s)x

s+ Λ
(k)
k−1 − Λ

(k)
k−1Ã

(k)(s)(1− νke−ωk(s)x)
dB(k)(x). (3.111)

The first two moments of R(k) are

E(R(k)) = (1 + Λ
(k)
k−1E(A(k)))E(G(k)) (3.112)
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and

E
(
(R(k))2

)
= Λ

(k)
k−1E

(
(A(k))2

)
E(G(k))

+ (1 + Λ
(k)
k−1(1− νk)E(A(k)))(1 + Λ

(k)
k−1E(A(k)))E

(
(G(k))2

)
+

2

Λ
(k)
k−1νk

E(A(k))(1 + Λ
(k)
k−1E(A(k)))E

(
(eΛ

(k)
k−1νkX

(k) − 1)2
)
. (3.113)

Also, substituting Ã(k)(s) = 1 into Eq. (3.111) yields

G̃(k)(s) =

∫ ∞
x=0

(s+ Λ
(k)
k−1νk)e

−(s+Λ
(k)
k−1νk)x

s+ Λ
(k)
k−1νke

−(s+Λ
(k)
k−1νk)x

dB(k)(x), (3.114)

from which we obtain

E(G(k)) = E
(
E(G(k)|X(k) = x)

)
= E

(
eΛ

(k)
k−1νkX

(k) − 1

Λ
(k)
k−1νk

)
=
B̃(k)(−Λ

(k)
k−1νk)− 1

Λ
(k)
k−1νk

(3.115)

and

E
(
(G(k))2

)
= E

[
E
(
(G(k))2|X(k) = x

)]
= E

[
2

(Λ
(k)
k−1νk)

2

(
e2Λ

(k)
k−1νkX

(k) − eΛ
(k)
k−1νkX

(k) − Λ
(k)
k−1νkX

(k)eΛ
(k)
k−1νkX

(k))]

=
2[B̃(k)(−2Λ

(k)
k−1νk)− B̃(k)(−Λ

(k)
k−1νk)− Λ

(k)
k−1νkE(X(k)eΛ

(k)
k−1νkX

(k)

)]

(Λ
(k)
k−1νk)

2
.

(3.116)

To find our final required result, namely P̃(int:k)(s), we again must condition on

the originally sampled service time of the interrupted Ck. Let X
(k)
∗ denote such a

service time. Similar to the repeat-different case, we first find E(e−sP
(int:k)
− |X(k)

∗ = x)

and E(e−sP
(int:k)
+ |X(k)

∗ = x), which also end up being equivalent to one another. Note

that if we consider only the times that a R(k) (with the service time of the associated

Ck being equal to x) is in progress, then it can be shown, via similar methods as before

(i.e., see Section 3.6.2), that the probability that the system is in state m (i.e., the

oldest Ck has suffered m previous interruptions) is given by (1−e−Λ
(k)
k−1νkx)me−Λ

(k)
k−1νkx.
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Recall that a C(int:k)
− can interrupt either a wasted service time X

(k)
w or a successful

service time X
(k)
suc. Conditioning on X

(k)
∗ = x and the system being in state m yields

E
(
e−sP

(int:k)
− |X(k)

∗ = x, state m, and interrupt a X(k)
w

)
=(

E(e−bksH
(k)
w |X(k) = x)

)mE(e−(bks+Λ
(k)
k−1(1−νk)(1−Ã(k)

− (bks)))X
(k)
w,past|X(k) = x

)
(3.117)

and

E
(
e−sP

(int:k)
− |X(k)

∗ = x, state m, and interrupt a X(k)
suc

)
=(

E(e−bksH
(k)
w |X(k) = x)

)mE(e−(bks+Λ
(k)
k−1(1−νk)(1−Ã(k)

− (bks)))X
(k)
suc,past|X(k) = x

)
. (3.118)

By removing the condition of the system state and after some algebra, we obtain

E
(
e−sP

(int:k)
− |X(k)

∗ = x and interrupt a X(k)
w

)
=

ωk(bks)(1− e−Λ
(k)
k−1νkx)− Λ

(k)
k−1νk(1− e−ωk(bks)x)(

bks+ Λ
(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)(1− νke−ωk(bks)x)
)
E(X

(k)
w |X(k) = x)

× 1

(eΛ
(k)
k−1νkx − 1)

(
bks+ Λ

(k)
k−1(1− νk)(1− Ã(k)

− (bks))
) (3.119)

and (since X
(k)
suc = x)

E
(
e−sP

(int:k)
− |X(k)

∗ = x and interrupt a X(k)
suc

)
=

ωk(bks)
(
e−Λ

(k)
k−1νkx − e−ωk(bks)x

)
x
(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)(1− νke−ωk(bks)x)
)

× 1

bks+ Λ
(k)
k−1(1− νk)(1− Ã(k)

− (bks))
. (3.120)

The probability that a C(int:k)
− interrupts a wasted service time can be found using

semi-Markov theory (e.g., see Kao (1996, Section 6.2)) as well as the PASTA property,

and is given by

σk,x =
(1− e−Λ

(k)
k−1νkx)E(X

(k)
w |X(k) = x)

(1− e−Λ
(k)
k−1νkx)E(X

(k)
w |X(k) = x) + xe−Λ

(k)
k−1νkx

, (3.121)
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which simplifies to become σk,x = Λ
(k)
k−1νkE(X

(k)
w |X(k) = x). Furthermore, it is

straightforward to show that 1− σk,x = x/E(G(k)|X(k) = x). Therefore,

E(e−sP
(int:k)
− |X(k)

∗ = x) = σk,xE
(
e−sP

(int:k)
− |X(k)

∗ = x and interrupt a X(k)
w

)
+ (1− σk,x)E

(
e−sP

(int:k)
− |X(k)

∗ = x and interrupt a X(k)
suc

)
=

1− e−ωk(bks)x

E(G(k)|X(k) = x)
(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)(1− νke−ωk(bks))
) .

(3.122)

For the additional accumulated priority of a C(int:k)
+ , we understand that

E(e−sP
(int:k)
+ |X(k)

∗ = x and state m) =
(
(1− e−Λ

(k)
k−1νkx)E(e−bksH

(k)
w |X(k) = x)

)m
× e−Λ

(k)
k−1νkxE

(
e−(bks+Λ

(k)
k−1(1−νk)(1−Ã(k)

− (bks)))X
(k)
w |X(k) = x

)
. (3.123)

Again, by removing the condition of the system being in state m and after some

algebra, we obtain

E(e−sP
(int:k)
+ |X(k)

∗ = x) =
1− e−ωk(bks)x

E(G(k)|X(k) = x)
(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)(1− νke−ωk(bks))
) ,

(3.124)

which is identical to Eq. (3.122). Therefore, it must be that P̃(int:k)(s) = P̃(int:k)
− (s) =

P̃(int:k)
+ (s). It is important to realize here that X

(k)
∗ does not have df B(k)(x) since we

are making the underlying assumption here that an interruption has occurred. As

for the traditional repeat-identical case, it can be shown that

P(x < X(k)
∗ ≤ x+ dx) =

E(G(k)|X(k) = x)

E(G(k))
dB(k)(x). (3.125)

The above result has the following intuitive interpretation: the probability that a

C(int:k) interrupts a Ck with service time x is proportional to E(G(k)|X(k) = x) as

well as to the relative occurrence of such a service time given by dB(k)(x). The

denominator is simply the normalization factor. Nevertheless, we therefore obtain

P̃(int:k)(s) =

∫ ∞
x=0

1− e−ωk(bks)x

E(G(k))
(
bks+ Λ

(k)
k−1 − Λ

(k)
k−1Ã

(k)(bks)(1− νke−ωk(bks))
)dB(k)(x).

(3.126)
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The associated first moment, obtained through differentiation of Eq. (3.126), works

out to be

E(P(int:k)) = bk

(
E
(
(G(k))2

)
2E(G(k))

(
1 + Λ

(k)
k−1E(A(k))

)
+
νkΛ

(k)
k−1E(A(k))

E(G(k))

∫ ∞
x=0

Λ
(k)
k−1νkxe

Λ
(k)
k−1νkx + 1− eΛ

(k)
k−1νkx(

Λ
(k)
k−1νk

)2 dB(k)(x)

)
. (3.127)

We close this subsection by stating that the BBD-resume discipline captures all

three traditional preemption disciplines. In particular, when νk = 0, every A(k) is

resumable, and thus the BBD-resume discipline becomes the traditional preemptive

resume discipline. On the other hand, when νk = 1, every A(k) is non-resumable,

implying that the BBD-resume with repeat-different (repeat-identical) discipline is

equivalent to the traditional repeat-different (repeat-identical) discipline.

3.8 Numerical examples

In this section, we present two numerical examples which illustrate the versatility

of the PAPQ. It is well understood that the main advantage of the PAPQ (and other

dynamic priority queues of the like) is the ability to control waiting times through

the selection of the accumulating priority rates {bk}Nk=1. For our first example, we

consider a 3-class PAPQ with class arrival rates λ1 = 0.25, λ2 = 0.2, and λ3 =

0.14. Furthermore, we assume that X(1) ∼ Gam(0.25,0.25), X(2) ∼ Gam(2,1.6), and

X(3) ∼ Gam(3,2), where “Gam(α,β)” denotes the gamma distribution with LST

B̃(s) = (1 + s/β)−α. This example was first considered by Drekic (2003, p. 69)

in which a static priority queue under a hybrid-based preemption discipline called

the preemptive resume with expiry time (PRWET) discipline was analyzed. The

accumulating priority rates are arranged as follows:

b1 = 1, b2 = e−x, and b3 = e−2x for some x ≥ 0. (3.128)

We conduct a mean value analysis for this particular PAPQ by tabulating, over

a range of values for x, the expected values of W (k) and F (k), k = 1, 2, 3, under all
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three traditional preemption disciplines. The results are reported to 4 decimal places

of accuracy in Tables 3.2 and 3.3. Moreover, if we define N (k) as the steady-state

number of Cks waiting in the queue, then it immediately follows via the distributional

form of Little’s Law (e.g., see Keilson and Servi (1990)) that the z-transform of N (k)

is given by

N̂ (k)(z) = E(zN
(k)

) = W̃ (k)
(
λk(1− z)

)
. (3.129)

Table 3.4 reports to 4 decimal places of accuracy the expected values of N (k), k =

1, 2, 3, over the same range of values for x.

Note that as x → ∞, Eq. (3.128) implies that bk+1/bk → 0 for k = 1, 2, and

the PAPQ becomes equivalent to the static preemptive priority model. Hence, when

x = 100 (corresponding to the first row of Tables 3.2–3.4), we expect the results to

be fairly close to the static preemptive priority model (see Drekic (2003, Tables 1 and

2)). This is indeed the case. Conversely, we observe that bk+1/bk → 1 as x → 0 for

k = 1, 2. As we move down the rows in Tables 3.2–3.4, the results are approaching

those of the limiting FCFS M/G/1 queue (as described in Section 3.6.4), and these

results are consistent under all three preemption disciplines.

In the second part of this example, we analyze the same 3-class PAPQ model,

but now under the BBD-resume discipline. Recall, from the previous section, that

the BBD-resume discipline leads to system performance that is essentially a balance

between the system performances of the PAPQ under the traditional preemptive

resume and repeat (-different or -identical) disciplines. To illustrate this fact, we

report to 4 decimal places of accuracy the mean flow times associated with the PAPQ

under a BBD-resume with repeat-different and with repeat-identical disciplines in

Tables 3.5 and 3.6, respectively.

Note that the mean flow times reported in Tables 3.5 and 3.6 correspond to a

PAPQ under a BBD-resume discipline with νk = P(A(k) > Tk) for some Tk ≥ 0.

In doing this, the BBD-resume discipline can be viewed as an approximation to the

PRWET discipline, for which a class-k interruption period is non-resumable if it

is longer than Tk units of time. Hence, the probability that a class-k interruption

period is non-resumable under the PRWET discipline is also given by νk. However,

recall that the classification of an interruption period as being non-resumable under
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Table 3.2: Expected waiting times for three preemption disciplines in Example 1

x
Resume Repeat-Different Repeat-Identical

E
(
W (1)

)
E
(
W (2)

)
E
(
W (3)

)
E
(
W (1)

)
E
(
W (2)

)
E
(
W (3)

)
E
(
W (1)

)
E
(
W (2)

)
E
(
W (3)

)
100.0000 0.8333 2.2917 7.3750 0.8333 2.5798 12.8610 0.8333 4.1539 101.6713
10.0000 0.8334 2.2918 7.3748 0.8334 2.5802 12.8604 0.8335 4.1579 101.6498
7.5000 0.8340 2.2934 7.3730 0.8341 2.5841 12.8542 0.8350 4.2033 101.4103
5.0000 0.8414 2.3130 7.3501 0.8436 2.6311 12.7792 0.8578 4.7368 98.5466
2.5000 0.9531 2.5401 7.0614 1.0031 3.1496 11.8632 1.4872 9.0468 70.4359
1.0000 1.6460 3.1987 5.8924 2.0340 4.2534 8.5789 4.1032 9.8782 23.1396
0.7500 1.9670 3.3600 5.4721 2.4439 4.3695 7.5254 4.4425 8.6005 16.1676
0.5000 2.4029 3.5121 4.9590 2.9137 4.3541 6.3174 4.5066 6.9804 10.5447
0.2500 2.9742 3.6310 4.3570 3.3717 4.1415 5.0067 4.2389 5.2549 6.4186
0.1000 3.3856 3.6743 3.9613 3.5887 3.8988 4.2086 3.9343 4.2807 4.6284
0.0100 3.6564 3.6868 3.7151 3.6797 3.7103 3.7389 3.7134 3.7444 3.7733
0.0010 3.6844 3.6874 3.6903 3.6867 3.6898 3.6926 3.6901 3.6932 3.6960
0.0001 3.6872 3.6875 3.6878 3.6874 3.6877 3.6880 3.6878 3.6881 3.6884
0.0000 3.6875 3.6875 3.6875 3.6875 3.6875 3.6875 3.6875 3.6875 3.6875

Table 3.3: Expected flow times for three preemption disciplines in Example 1

x
Resume Repeat-Different Repeat-Identical

E
(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
E
(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
E
(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
100.0000 1.8333 3.9583 10.3750 1.8333 4.3767 16.7380 1.8333 6.3121 107.6576
10.0000 1.8334 3.9585 10.3748 1.8334 4.3770 16.7374 1.8335 6.3161 107.6358
7.5000 1.8340 3.9598 10.3721 1.8341 4.3805 16.7298 1.8350 6.3607 107.3924
5.0000 1.8414 3.9759 10.3399 1.8436 4.4231 16.6381 1.8578 6.8860 104.4824
2.5000 1.9531 4.1624 9.9338 2.0031 4.8882 15.5157 2.4872 11.0992 75.8297
1.0000 2.6460 4.6833 8.2893 3.0340 5.8114 11.4456 5.1032 11.6157 26.8298
0.7500 2.9670 4.7999 7.6980 3.4439 5.8688 10.1226 5.4425 10.2404 19.3615
0.5000 3.4029 4.8985 6.9762 3.9137 5.7831 8.5921 5.5066 8.5060 13.1888
0.2500 3.9742 4.9542 6.1294 4.3717 5.4875 6.9106 5.2389 6.6500 8.4846
0.1000 4.3856 4.9547 5.5726 4.5887 5.1888 5.8727 4.9343 5.5903 6.3503
0.0100 4.6564 4.9399 5.2264 4.6797 4.9644 5.2554 4.7134 5.0004 5.2951
0.0010 4.6844 4.9377 5.1914 4.6867 4.9402 5.1943 4.6901 4.9438 5.1982
0.0001 4.6872 4.9375 5.1879 4.6874 4.9378 5.1882 4.6878 4.9381 5.1886
0.0000 4.6875 4.9375 5.1875 4.6875 4.9375 5.1875 4.6875 4.9375 5.1875
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Table 3.4: Expected number of waiting customers for three preemption disciplines
in Example 1

x
Resume Repeat-Different Repeat-Identical

E
(
N(1)

)
E
(
N(2)

)
E
(
N(3)

)
E
(
N(1)

)
E
(
N(2)

)
E
(
N(3)

)
E
(
N(1)

)
E
(
N(2)

)
E
(
N(3)

)
100.0000 0.2083 0.4583 1.0325 0.2083 0.5160 1.8005 0.2083 0.8308 14.2340
10.0000 0.2083 0.4584 1.0325 0.2084 0.5160 1.8005 0.2084 0.8316 14.2310
7.5000 0.2085 0.4587 1.0322 0.2085 0.5168 1.7996 0.2088 0.8407 14.1974
5.0000 0.2104 0.4626 1.0290 0.2109 0.5262 1.7891 0.2144 0.9474 13.7965
2.5000 0.2383 0.5080 0.9886 0.2508 0.6299 1.6608 0.3718 1.8094 9.8610
1.0000 0.4115 0.6397 0.8249 0.5085 0.8507 1.2011 1.0258 1.9756 3.2395
0.7500 0.4918 0.6720 0.7661 0.6110 0.8739 1.0536 1.1106 1.7201 2.2635
0.5000 0.6007 0.7024 0.6943 0.7284 0.8708 0.8844 1.1266 1.3961 1.4763
0.2500 0.7435 0.7262 0.6100 0.8429 0.8283 0.7009 1.0597 1.0510 0.8986
0.1000 0.8464 0.7349 0.5546 0.8972 0.7798 0.5892 0.9836 0.8561 0.6480
0.0100 0.9141 0.7374 0.5201 0.9199 0.7421 0.5234 0.9283 0.7489 0.5283
0.0010 0.9211 0.7375 0.5166 0.9217 0.7380 0.5170 0.9225 0.7386 0.5174
0.0001 0.9218 0.7375 0.5163 0.9219 0.7375 0.5163 0.9219 0.7376 0.5164
0.0000 0.9219 0.7375 0.5163 0.9219 0.7375 0.5163 0.9219 0.7375 0.5163

the BBD-resume discipline is made completely at random, thus independent of the

duration of that interruption period. Furthermore, under the BBD-resume discipline,

the probability that an interruption period is both non-resumable and greater than

Tk is equal to ν2
k . As a result, we expect the approximation of the PRWET through

the BBD-resume to be better for νk ≈ 0 or νk ≈ 1. In comparing the values found

in row x = 100 of Tables 3.5 and 3.6 to the appropriate values reported in Drekic

(2003, Tables 1 and 2), we see that, for this 3-class model, the BBD-resume discipline

reasonably approximates the PRWET discipline.

It should be noted here that in order to compute the probabilities corresponding

to νk, we implement the recursive-based method outlined in Abate and Whitt (1992)

coupled with the two numerical inversion methods found in Abate and Whitt (1995).

Both methods (referred to as EULER and POST-WIDDER) are used to confirm the

accuracy of the overall numerical inversion. In all of our examples, we employed

the EULER and POST-WIDDER methods using the authors’ suggested parameter

settings (see the Appendix for a brief overview of these methods) and found that
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both methods produced equivalent results.

Our second example takes inspiration from the 2-class static priority queue ana-

lyzed in Conway et al. (1967, p. 177) for which both class-1 and class-2 service times

are assumed to be exponentially distributed with mean one. Conway et al. (1967)

analyzed the overall mean flow time

λ1E(F (1)) + λ2E(F (2))

Λ2

across several different values of λ1 and λ2. Their results illustrated the generally

accepted assertion which states that the repeat-identical discipline suffers most from

congestion than the other two preemption disciplines.

In our investigation, we consider the same model as Conway et al. (1967) with the

exception that priority is assigned according to Eq. (3.1). The accumulating priority

rates are such that b1 = 1 and 0 ≤ b2 ≤ 1. Furthermore, we assume that λ1 = 0.4

and λ2 = 0.3. Our study focuses on the marginal waiting time distributions across

several values of b2. In particular, we compute waiting time probabilities for both

classes via numerical inversion of the LST defined by Eq. (3.48). To conduct the

numerical inversion, we again employ the EULER and POST-WIDDER methods

of Abate and Whitt (1995) and found that the two methods produced equivalent

results.

It is important to note that, in this example, the resume and repeat-different (RD)

disciplines yield the exact same results. This is due to the memoryless property of

the class-2 service time distribution. Figures 3.5 and 3.6 plot the waiting time dfs of

both classes (for various values of b2) under the resume/RD and repeat-identical (RI)

disciplines, respectively. Furthermore, in Table 3.7, we calculate to 2 decimal places

of accuracy several quantiles of the waiting time distributions under the resume/RD

and RI disciplines, where w
(k)
q denotes the q-th quantile of W (k) satisfying P(W (k) ≤

w
(k)
q ) = q. In addition, we compare in Table 3.8 the corresponding medians and

expected values of W (k) for k = 1, 2.

We observe that the PAPQ approaches a FCFS queue as b2 approaches one.

However, the convergence appears to be slower under the RI discipline than it is in

the resume/RD case. The benefit of the PAPQ here, as evidenced by Tables 3.7 and
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Table 3.5: Expected flow times for PAPQ in Example 1 under BBD-resume with
repeat-different

x
(T2, T3) = (6, 6) (T2, T3) = (2, 2)

E
(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U E

(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U

100.0000 1.8333 3.9813 10.7332 0.7153 1.8333 4.0290 11.5038 0.7259
10.0000 1.8334 3.9814 10.7329 0.7153 1.8334 4.0291 11.5034 0.7259
7.5000 1.8340 3.9829 10.7299 0.7153 1.8340 4.0308 11.4999 0.7259
5.0000 1.8416 4.0003 10.6939 0.7152 1.8418 4.0514 11.4571 0.7258
2.5000 1.9557 4.2006 10.2412 0.7148 1.9615 4.2849 10.9223 0.7248
1.0000 2.6641 4.7361 8.4434 0.7130 2.7112 4.8729 8.8413 0.7203
0.7500 2.9880 4.8471 7.8090 0.7123 3.0469 4.9788 8.1185 0.7186
0.5000 3.4235 4.9341 7.0429 0.7116 3.4879 5.0454 7.2524 0.7163
0.2500 3.9878 4.9726 6.1565 0.7107 4.0392 5.0413 6.2594 0.7135
0.1000 4.3916 4.9617 5.5815 0.7103 4.4182 4.9923 5.6212 0.7114
0.0100 4.6570 4.9406 5.2271 0.7100 4.6600 4.9438 5.2310 0.7101
0.0010 4.6844 4.9378 5.1915 0.7100 4.6847 4.9381 5.1918 0.7100
0.0001 4.6872 4.9375 5.1879 0.7100 4.6872 4.9376 5.1879 0.7100
0.0000 4.6875 4.9375 5.1875 0.7100 4.6875 4.9375 5.1875 0.7100

x
(T2, T3) = (0.5, 0.5) (T2, T3) = (0.001, 0.001)

E
(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U E

(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U

100.0000 1.8333 4.1082 13.1145 0.7457 1.8333 4.3166 15.9215 0.7734
10.0000 1.8334 4.1084 13.1141 0.7457 1.8334 4.3169 15.9209 0.7734
7.5000 1.8340 4.1106 13.1094 0.7457 1.8341 4.3202 15.9141 0.7734
5.0000 1.8422 4.1382 13.0522 0.7455 1.8433 4.3593 15.8304 0.7732
2.5000 1.9729 4.4463 12.3451 0.7434 1.9962 4.7887 14.8050 0.7699
1.0000 2.8099 5.1558 9.6765 0.7345 2.9844 5.6663 11.0593 0.7552
0.7500 3.1714 5.2541 8.7723 0.7309 3.3843 5.7344 9.8314 0.7488
0.5000 3.6257 5.2812 7.7005 0.7259 3.8519 5.6754 8.4033 0.7400
0.2500 4.1518 5.1905 6.4854 0.7192 4.3259 5.4255 6.8229 0.7276
0.1000 4.4780 5.0604 5.7112 0.7140 4.5662 5.1626 5.8401 0.7178
0.0100 4.6671 4.9511 5.2399 0.7104 4.6772 4.9618 5.2523 0.7108
0.0010 4.6855 4.9389 5.1927 0.7100 4.6865 4.9399 5.1940 0.7101
0.0001 4.6873 4.9376 5.1880 0.7100 4.6874 4.9377 5.1881 0.7100
0.0000 4.6875 4.9375 5.1876 0.7100 4.6875 4.9375 5.1876 0.7100
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Table 3.6: Expected flow times for PAPQ in Example 1 under BBD-resume with
repeat-identical

x
(T2, T3) = (6, 6) (T2, T3) = (2, 2)

E
(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U E

(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U

100.0000 1.8333 4.0364 11.2813 0.7219 1.8333 4.2110 13.6522 0.7478
10.0000 1.8334 4.0366 11.2810 0.7219 1.8334 4.2112 13.6517 0.7478
7.5000 1.8340 4.0382 11.2775 0.7219 1.8341 4.2136 13.6461 0.7477
5.0000 1.8418 4.0574 11.2348 0.7218 1.8428 4.2424 13.5780 0.7475
2.5000 1.9607 4.2754 10.7036 0.7207 1.9804 4.5580 12.7459 0.7448
1.0000 2.6928 4.8211 8.6639 0.7166 2.8300 5.2210 9.7534 0.7337
0.7500 3.0203 4.9209 7.9655 0.7152 3.1850 5.2913 8.7864 0.7296
0.5000 3.4542 4.9883 7.1358 0.7135 3.6261 5.2874 7.6700 0.7243
0.2500 4.0079 5.0002 6.1941 0.7116 4.1380 5.1755 6.4447 0.7177
0.1000 4.4005 4.9722 5.5938 0.7106 4.4656 5.0476 5.6878 0.7132
0.0100 4.6579 4.9416 5.2282 0.7101 4.6652 4.9494 5.2371 0.7103
0.0010 4.6845 4.9379 5.1916 0.7100 4.6853 4.9387 5.1925 0.7100
0.0001 4.6872 4.9375 5.1879 0.7100 4.6873 4.9376 5.1880 0.7100
0.0000 4.6875 4.9375 5.1875 0.7100 4.6875 4.9375 5.1875 0.7100

x
(T2, T3) = (0.5, 0.5) (T2, T3) = (0.001, 0.001)

E
(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U E

(
F (1)

)
E
(
F (2)

)
E
(
F (3)

)
U

100.0000 1.8333 4.5440 21.5219 0.8026 1.8333 5.7975 66.2128 0.9019
10.0000 1.8334 4.5445 21.5206 0.8026 1.8335 5.7997 66.2032 0.9019
7.5000 1.8342 4.5499 21.5061 0.8026 1.8348 5.8248 66.0965 0.9018
5.0000 1.8447 4.6160 21.3296 0.8021 1.8532 6.1222 64.8114 0.9008
2.5000 2.0351 5.2995 19.2548 0.7957 2.3001 8.7490 51.2013 0.8878
1.0000 3.2135 6.3102 12.7877 0.7699 4.4891 9.9071 22.2998 0.8338
0.7500 3.6280 6.2667 10.9723 0.7601 4.9034 9.0685 16.8989 0.8130
0.5000 4.0650 6.0378 9.0200 0.7473 5.1224 7.8518 12.0941 0.7861
0.2500 4.4499 5.5902 7.0438 0.7308 5.0541 6.4024 8.1519 0.7519
0.1000 4.6159 5.2197 5.9060 0.7189 4.8660 5.5108 6.2560 0.7277
0.0100 4.6819 4.9668 5.2576 0.7109 4.7070 4.9936 5.2875 0.7118
0.0010 4.6870 4.9404 5.1945 0.7101 4.6895 4.9431 5.1974 0.7102
0.0001 4.6874 4.9378 5.1882 0.7100 4.6877 4.9381 5.1885 0.7100
0.0000 4.6875 4.9375 5.1876 0.7100 4.6875 4.9376 5.1876 0.7100
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3.8, is the ability to control waiting time distributions, allowing one to select the

appropriate value of b2 to satisfy a certain performance metric.
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Figure 3.5: Marginal waiting time dfs for various values of b2 (under RESUME/RD)
in Example 2
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Figure 3.6: Marginal waiting time dfs for various values of b2 (under RI) in Example
2
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Table 3.7: Some quantiles of W (k) (k = 1, 2) for various values of b2 in Example 2

Resume/Repeat-Different

b2 w
(1)
0.70 w

(2)
0.70 w

(1)
0.80 w

(2)
0.80 w

(1)
0.90 w

(2)
0.90 w

(1)
0.95 w

(2)
0.95 w

(1)
0.99 w

(2)
0.99

0.01 0.51 4.12 1.18 6.63 2.34 11.24 3.50 16.08 6.18 27.75
0.25 1.52 3.71 2.28 5.82 3.57 9.60 4.83 13.49 7.70 22.69
0.50 2.08 3.36 3.08 5.16 4.76 8.30 6.43 11.49 10.25 18.97
0.75 2.49 3.07 3.69 4.62 5.72 7.29 7.74 9.98 12.44 16.23
0.99 2.81 2.83 4.16 4.19 6.46 6.52 8.76 8.84 14.10 14.23

Repeat-Identical

b2 w
(1)
0.70 w

(2)
0.70 w

(1)
0.80 w

(2)
0.80 w

(1)
0.90 w

(2)
0.90 w

(1)
0.95 w

(2)
0.95 w

(1)
0.99 w

(2)
0.99

0.01 1.49 61.06 2.22 96.87 3.54 172.01 4.95 268.94 8.92 654.36
0.25 4.90 16.79 7.34 26.67 12.19 46.36 17.98 69.65 36.24 142.91
0.50 4.12 7.37 6.19 11.51 10.10 19.41 14.48 28.21 26.50 52.32
0.75 3.36 4.21 5.02 6.42 8.01 10.41 11.16 14.62 19.02 25.12
0.99 2.84 2.86 4.20 4.24 6.54 6.60 8.88 8.96 14.32 14.46

Table 3.8: Comparison of the median and mean of W (k) (k = 1, 2) for various values
of b2 in Example 2

Resume/Repeat-Different Repeat-Identical

b2 w
(1)
0.50 w

(2)
0.50 E(W (1)) E(W (2)) w

(1)
0.50 w

(2)
0.50 E(W (1)) E(W (2))

0.01 0.05 1.36 0.69 3.86 0.65 24.39 1.41 74.99
0.25 0.57 1.29 1.26 3.33 2.20 6.42 4.83 17.62
0.50 0.82 1.23 1.71 2.92 1.75 2.83 3.79 7.08
0.75 0.99 1.17 2.06 2.59 1.38 1.66 2.92 3.75
0.99 1.12 1.12 2.32 2.34 1.13 1.14 2.35 2.37
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Chapter 4

A general mixed priority queue

4.1 Introduction

In this chapter, we consider an M/G/1 mixed priority queue with N distinct

priority classes of customers that are each designated as either urgent or non-urgent.

Specifically, the urgent set of classes refers to those classes which have preemptive

resume priority over at least one lower priority class, whereas those classes which only

have non-preemptive priority amongst lower priority classes form the non-urgent set.

Moreover, urgent customers are assigned static priority in accordance to Eq. (1.16),

while the non-urgent customers are assigned dynamic priority as defined by Eq.

(1.21).

The resulting priority queueing system is quite general and can be used to model

several real world situations. For example, the main motivation of Stanford et al.

(2014) was to study the effectiveness of triage policies in an emergency room of a

hospital. Their model was universally non-preemptive; however, it is quite reasonable

to assume that some arriving patients will be more urgent than others and should

require a doctor’s attention immediately. The priority queueing model of this chapter

allows for the consideration of such types of patients with preemptive priority over

those which are less urgent. Moreover, in some instances, a doctor may decide to

continue the servicing of a lower priority patient even in the midst of an arrival of

an urgent-type patient. The new model can also have potential use in computer job
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scheduling applications, as well as other areas (such as those discussed in Drekic and

Stanford (2000, 2001) and Paterok and Ettl (1994)).

The rest of the chapter is organized as follows. In the next section, we provide a

more detailed description of the model and other preliminaries. Section 4.3 describes

the general methodology which is employed for deriving the LSTs of the marginal

waiting time distributions. In Section 4.4, we establish the LSTs for the auxiliary

random variables used to obtain the waiting time distributions. Finally, two numer-

ical examples, comparing our new priority system to previously analyzed priority

models of a similar nature, are given in Section 4.5. We remark that most of the

work presented in this chapter is taken from Fajardo and Drekic (2015b).

4.2 The model

Similar to the priority queueing model of Chapter 3, we consider a single-server

queueing system featuring N distinct priority classes of customers. The arrival pro-

cesses for each class of customers form individual and independent Poisson processes,

where λi denotes the arrival rate for class i, i = 1, 2, . . . , N . We also let Λi =
∑i

j=1 λj

for i = 1, 2, . . . , N . The service requirements for each customer are assumed to be

class-dependent and independent of the arrival streams. As before, let X(i) represent

the class-i service time random variable whose df and LST are denoted by

B(i)(x) = P(X(i) ≤ x) and B̃(i) = E(e−sX
(i)

),

respectively. The utilization factor associated with the current priority queueing

model is given by

ρ =
N∑
i=1

λiE(X(i)),

which we assume satisfies the stability condition ρ < 1. Note that, in general, we

let Y (x) = 1 − Ȳ (x) = P(Y ≤ x) and Ỹ (s) = E(e−sY ) represent the df and LST,

respectively, of a random variable Y .

In addition to the assumption that Cis have priority over Cjs whenever i < j, the

N classes of customers are further categorized into two distinct types:

103



(i) urgent : classes which have preemptive resume priority over at least one lower

priority class;

(ii) non-urgent : classes which only have non-preemptive priority amongst lower

priority classes.

In general, we say that there are 0 ≤ m ≤ N urgent classes so that the set U ≡ {i :

1 ≤ i ≤ m} represents the collection of all urgent classes of customers. Conversely,

N ≡ {i : m < i ≤ N} denotes the aggregated set of non-urgent classes. For

convenience, we refer to urgent and non-urgent customers as class-U and class-N

customers, to be represented by the symbols CU and CN , respectively.

The assignment of priority to a CU differs from that of a CN . In particular, we

use the following class-k priority functions:

• For k ∈ U :

qk(t) = ak, (4.1)

where a1 > a2 > · · · > am > 0.

• For k ∈ N : if τk is the arrival time of a Ck, then

qk(t) = bk · (t− τk), t ≥ τk, (4.2)

where bm+1 ≥ bm+2 ≥ · · · ≥ bN ≥ 0.

It is further assumed that

am >> bm+1, (4.3)

which guarantees that at no point in time could a CN ever have greater priority

than a CU . Moreover, we assume that a Ci has preemptive resume priority over a

Cj whenever i < j and only if i ∈ U ; otherwise, if i ∈ N , then the Ci has only

non-preemptive priority over the Cj. To illustrate, Table 4.1 represents the priority

relations matrix (similar to those found in Adiri and Domb (1982)) for a 7-class

mixed priority queue with m = 3. The (i, j)-th element of this matrix indicates

the type of priority that class i has over class j for i ≤ j, where p and np denote

preemptive and non-preemptive priority, respectively.
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Table 4.1: The priority relations matrix of a 7-class mixed priority queue with m = 3

i
j

1 2 3 4 5 6 7

1 FCFS p p p p p p
2 FCFS p p p p p
3 FCFS p p p p
4 FCFS np np np
5 FCFS np np
6 FCFS np
7 FCFS

We next describe, in careful detail, the service discipline of this priority queueing

model. First of all, recall that when we speak of a service selection instant, we are

referring to an instant in time when a customer departs the system (i.e., after being

completely serviced) and the server must subsequently select, from all the remaining

customers in the system, the next customer to be serviced. It is important to realize

that we do not consider a preemption instant to be a service selection instant. In

general, mixed priority queues, such as the one considered in this chapter, employ

the general Priority Service Guideline (as defined earlier in Chapter 1) at service

selection instants; however, certain policies may further be put into place so as to

override this guideline at a special kind of service selection instant. We provide the

details to these exceptions later on in this section.

For simplicity, in what follows next, we describe the service discipline from the

perspective of a Ck. Note that for each k ∈ {1, 2, . . . , N}, a convenient partition of the

remaining N − 1 classes can be constructed on the basis of the priority relationship

between those classes and class k, namely:

b ≡ The set of classes which class k has priority over,

anp ≡ The set of classes which have non-preemptive priority over class
k,
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ap ≡ The set of classes which have preemptive priority over class k,

a = anp ∪ ap ≡ The set of classes which have priority over class k.

To begin, suppose that a Ck enters into service for the first time. For systems

with at least one urgent class (i.e., m > 0), ap must be a non-empty set if k > 1,

and hence, it is possible for the service of this Ck to be interrupted by a Cap . An

interruption may take place if there exists a Cap with greater priority than the Ck
currently in service. Since ap ⊂ U , it follows as a consequence of Eqs. (4.1) and

(4.3) that any interruption period must commence immediately upon the arrival of

the interrupting Cap to the system.

Although it is true that the set of classes in ap have preemptive priority over

class k, the ultimate decision on whether to interrupt the current servicing of the

Ck is made according to the three threshold-based discretion rules which were first

mentioned in Chapter 1. For convenience, we restate these discretion rules here:

(i) Proportion-based (PB) policy: Once a certain proportion α, 0 ≤ α ≤ 1, of the

service time has been successfully rendered, further preemptions are prevented,

(ii) Front-end time-based (FETB) policy: Once T time units of service have been

successfully rendered, further preemptions are prevented,

(iii) Tail-end time-based (TETB) policy: Once the time remaining to successfully

complete service is less than t time units, further preemptions are prevented.

As previously noted, Drekic and Stanford (2000) investigated the class-dependent

case by allowing αk, Tk, and tk to represent the corresponding class-k threshold

parameters. We extend this idea one step further by allowing these threshold pa-

rameters to also depend on the class of the customer causing the interruption. Thus,

we introduce αi,k ∈ (0, 1), Ti,k ≥ 0, and ti,k ≥ 0 as the corresponding class-k thresh-

old parameters pertaining to a newly arriving high priority Ci, i ∈ ap. Furthermore,

for any k > 1 and i < j ∈ ap, we assume that

αi,k ≥ αj,k, Ti,k ≥ Tj,k, and ti,k ≤ tj,k. (4.4)
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Figure 4.1: The protection of a class-k service time

We say that a class-k service becomes class-i protected the moment that the

service of the Ck can no longer be preempted by a Ci, i ∈ ap. Hence, the consequences

of Eq. (4.4) are that a class-k service becomes class-j protected before it becomes

class-i protected for i < j ∈ ap. For illustrative purposes, Figure 4.1 depicts the

general sequence of protection for a class-k service time.

Remark 4.1 Under various parameter settings, our mixed priority queueing model

includes a number of previously analyzed priority queueing models as special cases.

For example, by setting m = 0, our priority model exactly becomes the one considered

by Stanford et al. (2014). By setting m = N and assigning threshold parameters to

be αi,k = αk, Ti,k = Tk, and ti,k = tk, our priority model is equivalent to the one

considered by Drekic and Stanford (2000). Moreover, by setting m = N and using

threshold parameters of the form

αi,k =

{
1 if k − i ≥ d
0 otherwise

,

Ti,k =

{
∞ if k − i ≥ d
0 otherwise

,

and

ti,k =

{
0 if k − i ≥ d
∞ otherwise

,

our priority queueing model is equivalent to the one using the PD rule (resume-IPF

case, where IPF denotes “interrupted processing first”) as analyzed by Paterok and

Ettl (1994, p. 1148), where d is the so-called preemption distance parameter (see

Section 1.2 of the thesis when the PD rule was first introduced). Finally, it is also

evident that the classical non-preemptive and preemptive priority queues, as well as

the
∑N

i=1Mi/Gi/1 FCFS queue, are all special cases of our general model.
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Whenever a Ck is preempted out of service, the server returns to the interrupted

Ck once the work associated with the following two items are completed:

(i) the complete servicing of the interrupting customer (which itself may also be

interrupted), and

(ii) the complete servicing of all those Caps that the interrupting customer leaves

behind whom, if they had arrived to the system at the time of the preemption,

would have also caused an interruption.

Hence, at the end of an interruption period, the Ck re-enters service despite the fact

that there may be customers of higher priority in the system (i.e., these are the higher

priority customers who either never could, or can no longer cause an interruption to

the Ck). As an example, a class-k interruption period that occurs at some point after

a class-k service time (as illustrated in Figure 4.1) becomes class-(k − 1) protected

but before it becomes class-(k − 2) protected can only consist of the servicing of Cis
for i = 1, 2, . . . , k − 2.

Let {δi}∞i=1 represent the sequence of service selection instants. Furthermore, we

define a type-2 service selection instant to refer to a service selection instant which

coincides with the instant in time that an interruption period ends. All other types

of service selection instants are referred to as being of type 1. The service discipline

for the current priority queueing model now follows:

• For type-1 service selection instants, the general Priority Service Guideline is

used to select the next customer for service.

• For type-2 service selection instants, the most recently interrupted customer

re-enters into service.

• Preemption instants within the service of a Ck (k > 1) occur at the arrivals of

Caps in accordance with the threshold-based discretion rules of PB, FETB, and

TETB.

We close this section with the mention of several key random variables of interest.

In addition to the class-k waiting time W (k), residence period R(k), and flow time
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F (k) (which were all previously defined in Chapter 3), we require yet another service-

structure element, namely, the class-k completion period which we define as follows:

Completion period (C(k)) ≡ The total elapsed time between the initial entry
of a Ck into service and the first instant that the
server is ready to select the next Ck for service.

To find the LST of the class-k flow time F (k), we use the relation

F̃ (k)(s) = W̃ (k)(s)R̃(k)(s),

which readily follows from the independence of W (k) and R(k). Furthermore, in order

to derive the LST of W (k) (which is the focus of the next section), we require the

LSTs of the following two auxiliary random variables:

Υ
(k)
i ≡ The interval of time starting with the service of a Ci (i ∈ a) and ending at the

first moment that the server is ready to select the next Ck for service,

Φ
(k)
i ≡ The interval of time starting with the service of a Ci (i ∈ b) and ending at the

first moment that the server is ready to select the next Ck for service.

The derivations of the LSTs of C(k), R(k), Υ
(k)
i , and Φ

(k)
i are carried out in Section

4.4.

Remark 4.2 For k ∈ U , the first time that the server is ready to select a Ck after

any one of these time intervals have started represents the first time that the system

is clear of all Cas. However, for the case of k ∈ N , the first time that the server is

ready to select a Ck represents the first time that the system is clear of all CU s and

all those CN s which are level-(k − 1) accredited.

Remark 4.3 Throughout the remainder of this chapter, we extend the definition of

Υ
(k)
i to include the case when i = k, with the understanding that Υ

(k)
k = C(k).
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4.3 Derivation of the waiting time LST

To derive an expression for W̃ (k)(s), we employ two analytical approaches: one

for each of the cases k ∈ U and k ∈ N . The reason for the two different approaches

lies in the fact that the assignment of priority for a CU (which is via Eq. (4.1)) differs

from that for a CN (which is via Eq. (4.2)). For the case k ∈ U , we apply a similar

level-crossing argument to the one used in Paterok and Ettl (1994). As evidenced in

their work, the level-crossing method provides a straightforward approach to obtain

the integral equation for the pdf of the steady-state class-k virtual wait. For dynamic

priority queues, it is quite difficult to define the class-k virtual wait. Hence, we apply

the same approach to the one used in Chapter 3 to establish W̃ (k)(s) for k ∈ N .

4.3.1 Waiting time LST for k ∈ U

Let {Vk(t), t ≥ 0} denote the class-k virtual wait process whose steady-state

distribution we characterize as follows:

Fk(x) = lim
t→∞

P(Vk(t) ≤ x), fk(x) = lim
t→∞

∂
∂x
P(Vk(t) ≤ x), and P0,k = lim

t→∞
P(Vk(t) = 0),

subject to the normalizing condition

P0,k +

∫ ∞
0

fk(x)dx = 1. (4.5)

Note that this process is at level 0 only during times that the server is either idle or

is attending to a Cb in its class-k preemptible portion of service. During such times,

we say that the system is in a virtually idle state. Hence, P0,k represents the long-run

fraction of time that the system is virtually idle. Moreover, since the arrivals of the

Cks form a Poisson process, it readily follows that

W̃ (k)(s) =

∫ ∞
x=0

e−sxdFk(x) = P0,k +

∫ ∞
0

e−sxfk(x)dx. (4.6)

To obtain the desired LST, we apply a level-crossing approach to establish an

integral equation for fk(x). Let Ut(x) and Dt(x) denote the respective number of

up- and down-crossings of level x of the class-k virtual wait process during the time
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interval (0, t). Recall the principle of set balance (e.g., see Brill (2008, Section 2.4.6))

which states that

lim
t→∞

E(Dt(x))

t
= lim

t→∞

E(Ut(x))

t
.

This fundamental relation between the up- and down-crossing rates of level x is

precisely all we need to establish an integral equation for fk(x).

To find the up-crossing rate of level x of {Vk(t), t ≥ 0}, we observe that a sample

path of {Vk(t), t ≥ 0} up-jumps in three instances of time: (i) whenever a Ck arrives

to the system, (ii) when a newly arriving Ca finds the system in the virtually idle

state, and (iii) the moment when a Cb’s service becomes class-k protected. A typical

sample path of {Vk(t), t ≥ 0} is illustrated in Figure 4.2. It is important to note

that depending on the specification of the threshold-based discretion parameters,

the service of a Cb may either be entirely, partially, or not at all class-k protected. In

Figure 4.2, both the first and third waiting Cbs have service times which are entirely

class-k protected, whereas the second waiting Cb has a service time that is only

partially class-k protected.

type of up- jump
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HkL

Uk
HkL

Fi
HkL
Uk
HkL

Uk
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HkL
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HkL
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HkL
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idle system

a waiting Cb

enters into

service

a waiting Cb

enters into

service

service of Cb
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protected

a waiting Cb

enters into

service

ì ì ì ì

level x

t

VkHtL

Figure 4.2: A typical sample path of {Vk(t), t ≥ 0}

Let κk,i denote the probability that the service of a Ci (i ∈ b) ever becomes class-k

protected. Under the PB rule, κk,i = 1 as long as αk,i < 1 and is zero otherwise.
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Similarly, under the TETB rule, κk,i = 1 if tk,i > 0 and is zero otherwise. However,

under the FETB rule, a class-i service becomes class-k protected only if the service

time is greater than Tk,i, and so κk,i = B̄(i)(Tk,i) under this rule. The next theorem

establishes the up- and down-crossing rates of level x.

Theorem 4.4 The up- and down-crossing rates of level x are given by

lim
t→∞

E(Ut(x))

t
= P0,k

k∑
i=1

λiῩ
(k)
i (x) +

N∑
i=k+1

κk,iλiΦ̄
(k)
i (x)

+ λk

∫ x

y=0

Ῡ
(k)
k (x− y)fk(y) dy, x > 0

(4.7)

and

lim
t→∞

E(Dt(x))

t
= fk(x), x > 0. (4.8)

Proof. We present intuitive explanations for each term of Eq. (4.7). For i ∈ a

or i = k, the rate of up-jumps caused by a Ci arriving to a virtually idle system

is simply λiP0,k. Furthermore, only the proportion Ῡ
(k)
i (x) of these up-jumps lead

to an up-crossing of level x. The rate at which a Ci (i ∈ b) arrives to the system

that eventually induces a delay to the Cks is λiκk,i. Such arrivals eventually result

in up-jumps of {Vk(t), t ≥ 0} which cross level x with probability Φ̄
(k)
i (x). Finally,

the long-run probability of an up-jump occurring from level y is fk(y)dy, and the

probability that an up-crossing of level x occurs from level y is Ῡ
(k)
k (x − y). The

justification of Eq. (4.8) is similar to that for the down-crossing rate of the virtual

wait process in an M/G/1 queue (e.g., see Brill (2008, Theorem 3.3 and Corollary

3.2)). �

From the principle of set balance, we equate Eqs. (4.7) and (4.8) to yield the

following integral equation for fk(x):

fk(x) = P0,k

k∑
i=1

λiῩ
(k)
i (x) +

N∑
i=k+1

λiκk,iΦ̄
(k)
i (x) + λk

∫ x

y=0

Ῡ
(k)
k (x− y)fk(y) dy, x > 0.

(4.9)
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By multiplying Eq. (4.9) by e−sx and integrating with respect to x over (0,∞), we

obtain∫ ∞
x=0

e−sxfk(x) dx =
P0,k

(∑k
i=1 λi(1− Υ̃

(k)
i (s))

)
+
∑N

i=k+1 λiκk,i(1− Φ̃
(k)
i (s))

s− λk + λkC̃(k)(s)
.

It follows from Eq. (4.6) that for k ∈ U ,

W̃ (k)(s) =
P0,k

(
s+

∑k−1
i=1 λi(1− Υ̃

(k)
i (s))

)
+
∑N

i=k+1 λiκk,i(1− Φ̃
(k)
i (s))

s− λk + λkC̃(k)(s)
. (4.10)

An expression for E(W (k)) can be obtained by multiplying Eq. (4.9) by x and inte-

grating with respect to x over (0,∞), leading to

E(W (k)) =
P0,k

∑k−1
i=1 λiE

(
(Υ

(k)
i )2

)
+ λkE

(
(C(k))2

)
+
∑N

i=k+1 λiκk,iE
(
(Φ

(k)
i )2

)
2
(
1− λkE(C(k))

) .

(4.11)

The LST of W
(k)
BP (i.e., the wait of a Ck arriving to the system during a busy period)

can easily be obtained from Eq. (4.6) and the fact that W̃ (k)(s) = P0,k + (1 −
P0,k)W̃

(k)
BP (s). In particular, we have that

W̃
(k)
BP (s) =

∫ ∞
x=0

e−sxfk(x)dx/(1− P0,k). (4.12)

Moreover, we establish a formula for P0,k by first observing that∫ ∞
0

fk(x) dx =
P0,k

∑k
i=1 λiE(Υ

(k)
i ) +

∑N
i=k+1 λiκk,iE(Φ

(k)
i )

1− λkE(C(k))
.

It then follows, from the normalizing condition Eq. (4.5), that

P0,k =
1− λkE(C(k))−

∑N
i=k+1 λiκk,iE(Φ

(k)
i )

1 +
∑k−1

i=1 λiE(Υ
(k)
i )

. (4.13)

We end the current subsection with a remark on the level-crossing approach used

here and the one employed by Paterok and Ettl (1994).
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Remark 4.5 The level-crossing analysis of {Vk(t), t ≥ 0} carried out by Paterok and

Ettl (1994) differs slightly from the one we use here. While their approach compares

the expected number of up- and down-crossings of level x of {Vk(t), t ≥ 0} within a

single regeneration cycle, our level-crossing analysis compares the long-run up- and

down-crossing rates of level x. The latter level-crossing approach was first introduced

by Brill (1975), whereas the former approach was independently developed by Cohen

(1977).

4.3.2 Waiting time LST for k ∈ N

Since a CN can never preempt another customer out of service, any CN who

arrives to the system during a busy period must necessarily wait a positive amount of

time before entering into service. Therefore, only those CN s who arrive to the system

during idle periods enter into service immediately upon arrival, without experiencing

any wait. From these observations, an expression for the class-k waiting time LST

is given by

W̃ (k)(s) = (1− ρ) + ρW̃
(k)
BP (s), k ∈ N . (4.14)

Similar to our derivation of W̃
(k)
BP (s) for the PAPQ in Section 3.6, we first derive

the LST of P
(k)
BP and then apply the relation

W̃
(k)
BP (s) = P̃

(k)
BP (s/bk). (4.15)

In order to determine P̃
(k)
BP (s), we again make use of the maximal priority process,

which must be defined for the current priority queueing model. For the NPAPQ,

Stanford et al. (2014) defined the maximal priority process in terms of the service

commencement times and departure instants of the system. Since the current pri-

ority queueing model allows for a CN to be preempted out of service, we require a

slightly more general definition of the maximal priority process. Our definition of

the maximal priority process follows below.

Definition 4.6 The maximal priority process is an (N −m)-dimensional stochastic

process M(t) = {(Mm+1(t),Mm+2(t), . . . ,MN(t)), t ≥ 0}, satisfying the following

conditions:
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1. The sample path of Mk(t) for each k ∈ N is continuous with respect to t, except

possibly when t corresponds to a service selection instant.

2. M(t) = (0, 0, . . . , 0) for all t corresponding to idle periods.

3. For all t during the service of any customer,

dMk(t)

dt
= bk, k ∈ N .

4. At the sequence of service selection instants {δi}∞i=1,

Mk(δ
+
i ) =

{
min{Mk(δ

−
i ), q∨(δ

+
i )} if δi is of type 1

Mk(δ
−
i ) if δi is of type 2

, (4.16)

where q∨(t) represents the greatest (accumulated) priority amongst all the cus-

tomers present at time t, which is zero during idle periods. In Eq. (4.16), note

that

Mk(δ
−
i ) = lim

ε→0
Mk(δi−ε), Mk(δ

+
i ) = lim

ε→0
Mk(δi+ε), and q∨(δ

+
i ) = lim

ε→0
q∨(δi+ε).

In what follows, we (artificially) set bN+1 = 0 (which correspondingly implies that

MN+1(t) = 0 for all t > 0). Definition 4.6 simply implies that during busy periods,

Mk(t) increases linearly at rate bk and down-jumps at some of the service selection

instants. Figure 4.3 illustrates a typical sample path of the maximal priority process

for a 5-class mixed priority queue with m = 2. In Figure 4.3, the actual accumulated

priorities of the customers present in the system are given by the thin lines.

Suppose that δ represents a type-1 service selection instant for which at least one

component ofM(t) down-jumps (or, equivalently, δ represents an instant for which a

down-jump in the first component Mm+1(t) occurs). It then follows (from the general

Priority Service Guideline) that if there are any customers present at time δ, the CN
with the greatest accumulated priority enters into service. Thus, the following two

statements about the system at time δ must necessarily be true: (i) the system is

clear of all CU s, and (ii) the system is clear of all previously interrupted customers.

Let Si denote the i-th instant in time when Mm+1(t) down-jumps. In other

words, Si represents the i-th type-1 service selection instant satisfying requirements
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M3HtL, b3=1.0 M4HtL, b4=0.5 M5HtL, b5=0.2

u1
u2

u3

u4

u5

u6 u7

u8=0

Τ1 S1 S2 S3 S4 S5 S6 S7 S8

t

MHtL

Figure 4.3: A typical sample path of {M(t), t ≥ 0} for a 5-class mixed priority queue
with m = 2 (i.e., N = {3, 4, 5})

(i) and (ii) for δ above. We refer to Si as the i-th service selection instant for a

CN . Furthermore, let S = {Si}∞i=1 be the sequence of service selection instants for

the CN s. It is important to note that Si represents the service commencement of a

CN only if there are still customers remaining in the system at Si. Otherwise, Si

represents the end of a busy period, which is signalled by a down-jump of Mm+1(t)

to level 0 (e.g., see S8 in Figure 4.3).

The main reason for defining S, however, is stated in the next observation. The

maximal priority process defined for the non-urgent classes in our new priority queue

behaves identically to the maximal priority process for the NPAPQ (i.e., see Stanford

et al. (2014)). In other words, we can similarly analyze the waiting times for a CN of

the new priority queue as we would for a customer in the NPAPQ. In this equivalent

non-preemptive priority queue, S would play the role of the sequence of departure

instants of the customers, while C(k), Υ
(k)
i , and Φ

(k)
i would serve as the effective

service times.

Remark 4.7 Similar to the interpretation of the upper bounds that the maximal

priority process provides for the PAPQ and the NPAPQ, Mk(t) is the least upper

bound of class-k accumulated priorities which would not result in a violation of the
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service discipline. Furthermore, one can think ofM(t) as the collection of these least

upper bounds for accumulated priorities that one would sketch when given only the

following three pieces of information:

(i) the sequence of busy period commencement times {τi}∞i=1,

(ii) the sequence S of service selection instants for the CN s, and

(iii) for each i = 1, 2, . . ., the value ui = q∨(S
+
i ) corresponding to the greatest accu-

mulated priority at each service selection instant Si.

To sketchM(t), one must also bear in mind some of the fundamental characteristics

of the priority queueing system, namely that Cks accumulate priority via Eq. (4.2),

CN s arrive to the system with initial priority levels of zero, and CN s cannot preempt

service. For example, one can reproduce the sample path ofM(t) in Figure 4.3 given

only τ1 and the pairs (Si, ui) for i = 1, 2, . . . , 8.

We next provide some fundamental concepts and results pertaining to the current

priority queueing model. First of all, recall from Chapter 3 that a Cj (j ≤ k, j ∈ N )

is served at level-k accreditation if

q∨(δ
+) ∈ [Mk+1(δ−),Mk(δ

−)),

where δ represents the time at which this Cj first enters into service and q∨(δ
+) is its

priority level at that time. An important result pertaining to the proportion of Cks
arriving during busy periods and that are C(acc:k)s is provided in the next lemma.

Lemma 4.8 The steady-state probability that a Ck who arrives during a busy period

and is serviced at level-k accreditation (i.e., is also a C(acc:k)) is given by 1− bk+1/bk

for any k ∈ N .

Proof. Within every busy period, there are intervals of time during which if a Ck
arrives within them, then it eventually would be serviced at level-k accreditation. It

is not difficult to see that for every busy period, the ratio of the sum of the lengths

of these intervals over the duration of the busy period is always 1 − bk+1/bk. The
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result then follows from the fact that Cks arrive to the system according to a Poisson

process. �

Level-k accreditation intervals, similar to those of the PAPQ and the NPAPQ,

are also inherent in the current priority queueing model. Specifically, similar to the

PAPQ and the NPAPQ, a level-k accreditation interval is a period of time that

either starts at the beginning of a busy period, or when a C(acc:`) for ` > k enters

into service for the first time. However, for the current priority queueing model, a

level-k accreditation interval ends once the system becomes clear of both the initial

customer and all C(acc:i)s for i = m + 1,m + 2, . . . , k (i.e., all customers that have

become at least level-k accredited).

Note that if δ represents the service selection instant for a C(acc:`) where ` > k,

then this implies that Mk+1(t) must have down-jumped at time δ (i.e., q∨(δ
+) <

Mk+1(δ−)). In addition, if there are still customers present at the end of the ensuing

level-k accreditation interval, then clearly, at this same instant, another C(acc:`) for

` > k will commence service. Therefore, we observe that during busy periods, the

commencement/termination instants of level-k accreditation intervals coincide with

the service selection instants S for which Mk+1(t) down-jumps. In other words,

during busy periods, the level-k accreditation intervals are the time periods between

successive down-jumps of Mk+1(t). It is also obvious that a termination instant of a

level-k accreditation interval which clears the system of all customers does not also

represent a commencement instant of the next level-k accreditation interval, but

rather signals the end of the busy period. Figure 4.4 illustrates the general structure

of a level-4 accreditation interval for a 6-class mixed priority queue with m = 2.

Within a level-k accreditation interval, we note further that Mk(t) down-jumps at

instants corresponding to the service selection instants of all the C(acc:k)s. However,

a down-jump of Mk(t) also marks the commencement/termination of a level-(k − 1)

accreditation interval. Therefore, a level-k accreditation interval is partitioned by

a sequence of level-(k − 1) accreditation intervals. This suggests that it may be

possible to view a level-k accreditation interval as a delay busy period of C(acc:k)s,

whose effective service times are level-(k − 1) accreditation intervals. We show that

this is precisely the case in Section 4.4.
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level-4 accreditation interval starting

at the beginning of busy period

level-4 acc. interval starting when a CHacc:5L

enters into service for first time

initial delay V initial delay Vdelay busy period of CHacc:4Ls delay busy period of CHacc:4Ls

M3HtL, b3=1.25 M4HtL, b4=0.75 M5HtL, b5=0.40 M6HtL, b6=0.25

a CHacc:5L

enters into

service

a CHacc:6L

enters into

service

t

MHtL

Figure 4.4: Level-4 accreditation intervals in a 6-class mixed priority queue with
m = 2 (i.e., N = {3, 4, 5, 6})
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We next proceed to establish the relation between level-k accreditation intervals

and the previously introduced auxiliary variables (including the completion periods).

First of all, observe that of the service selection instants S, only those resulting in

a down-jump of Mk+1(t) represent the possible selection instants for a Ck+1. As

a result, the end of a level-k accreditation interval also represents the instant in

time that the server is ready to select a Ck+1 for service. Hence, the distribution

of the level-k accreditation interval depends on the class of the initial customer and

is given by the corresponding auxiliary random variable. Table 4.2 summarizes the

distributions of the types of level-k accreditation intervals, including the distribution

of the initiating level-(k− 1) accreditation interval, which we denote by V and refer

to as the initial delay of the interval.

Table 4.2: Distributions of the level-k accreditation intervals

Initial customer of level-k accreditation interval Initial Delay V Entire Interval

Ci for i = 1, 2, . . . ,m,m+ 1, . . . , k Υ
(k)
i Υ

(k+1)
i

Ck+1 Φ
(k)
k+1 C(k+1)

Ci for i = k + 2, k + 3, . . . , N Φ
(k)
i Φ

(k+1)
i

Remark 4.9 The resulting structuralization of the busy period for this mixed priority

queueing system is similar to that of the NPAPQ in that the entire busy period is

partitioned by level-k accreditation intervals. Recall that for the PAPQ, the busy

period is partitioned by subperiods that are either level-k accreditation intervals or

class-(k + 1) residence periods.

In order to obtain our recursive procedure for P̃
(k)
BP (s) pertaining to the PAPQ, we

exploited in the previous chapter the decomposition of the accumulated priority of a

Ck who arrives during a busy period. In particular, we decomposed the accumulated

priority earned (immediately prior to entering service for the first time) by a C(acc:k)

into two independent parts: (i) the initiating priority level u0, and (ii) P(acc:k), the

additional priority accumulated during the accreditation interval after having accu-

mulated priority level u0. As a result, our recursive procedure in Section 3.6 for
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P̃
(k)
BP (s) relied heavily on the LST of P(acc:k). Note that the recursive procedure of

Section 3.6 also relied heavily on P(int:k).

The decomposition of priority earned by a C(acc:k) in the current mixed priority

queueing model is similar to that of a C(acc:k) in the PAPQ and NPAPQ. Figure

4.5 illustrates such a decomposition of the accumulated priority for a C(acc:4) in a

5-class mixed priority queue with m = 2. In addition, since there is no preemption

between the CN s in the current priority queueing model, P(int:k) is non-existent and

the corresponding recursive scheme for P̃
(k)
BP (s) only depends on the LST of P(acc:k).

level-4 accreditation interval

initial delay V

a CHacc:5L enters

into service with

priority level u0

additional accumulated

priorities of two

CHacc:4Ls after having

accumulated u0

M3HtL, b3=1.25 M4HtL, b4=0.75 M5HtL, b5=0.50

t

u0

MHtL

Figure 4.5: Decomposition of the accumulated priority for a C(acc:4) in a 5-class mixed
priority queue with m = 2 (i.e., N = {3, 4, 5})

An expression for P̃(acc:k)(s) can be readily obtained after observing the con-

nection between the current priority queueing model and the M/G/1 queue with

accumulating priority of Section 2.5. Before making this necessary observation, we

state four important properties of the maximal priority process. We remark that

these properties were first derived by Stanford et al. (2014). We do not provide

the proofs of these properties but instead direct interested readers to Stanford et al.

121



(2014, Theorems 3.2 and 7.2) for their proofs. The four properties are as follows:

(P.1) The accumulated priorities of the CN s still present in the queue at time t

are distributed as independent Poisson processes, each with rate λi/bi on the

intervals [0,Mi(t)) for i ∈ N .

(P.2) The accumulated priorities of the CN s still present in the queue at time t are

distributed as independent Poisson processes, each with piecewise constant

rate zero on the interval [Mm+1,∞) and rate
∑k

j=m+1 λj/bj on the interval

[Mk+1(t),Mk(t)) for k ∈ N .

(P.3) A waiting CN whose priority, at time t, lies in the interval [Mk+1(t),Mk(t))

belongs to class i with probability (λi/bi)/(
∑k

j=m+1 λj/bj), independently of

the class of all other customers present in the queue.

(P.4) The statements (P.1)–(P.3) above also hold at any random time δ that is a

stopping time for the raw filtration of M(t).

Important Observation 4.10 Observe that from properties (P.2) and (P.4), it

must be that the down-jumps of Mk(t) during the level-k accreditation interval are

exponentially distributed with parameter
∑k

j=m+1 λj/bj. Moreover, during a level-k

accreditation interval, the k-th and (k + 1)-th components of the maximal priority

process (Mk+1(t),Mk(t)) behave like the maximal priority process (during busy peri-

ods) of the FCFS M/G/1 queue with accumulating priority and blocking having the

following characteristics:

(i) arrival rate of γk =
∑k

i=m+1 λi(bk/bi),

(ii) service time LST of β̃(k)(s) =
∑k

i=m+1(λi(bk/bi))/γk)Υ̃
(k)
i (s) for customers ar-

riving during busy periods,

(iii) service time LST of Ṽ (s) for zero-wait customers,

(iv) accumulating priority rate of ξ1 = bk, and

(v) accreditation threshold rate of ξ2 = bk+1.
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From Important Observation 4.10 and after an application of Eq. (2.59) with

q = bk+1/bk and LST argument bks, it follows that an expression for the LST of

P(acc:k) (associated with an initial delay V ) is given by

P̃(acc:k)(s) ≡ P̃(acc:k)(s;V ) =

(
1− γ(k+1)

k µk,1
)(
Ã(bk+1s)− Ṽ (bks)

)
E(V )

(
1− bk+1

bk

)(
bks− γk

(
1− β̃(k)(bks)

)) , (4.17)

where Ã(s) = Γ̃0(s; γ
(k+1)
k , β(k), V ) from Eq. (1.6), γ

(k+1)
k = γk(1− bk+1/bk), and µk,i

represents the i-th moment of the random variable (to be denoted by β(k)) whose

LST is β̃(k)(s) above. Furthermore, upon substitution of the appropriate parameters

into Eq. (2.61), the first moment of P(acc:k) works out to be

E(P(acc:k)) = bk

(
E(V 2)

2E(V )
·

[
1 +

bk+1/bk

1− γ(k+1)
k µk,1

]

+
γkµk,2

2(1− γkµk,1)
·

1−

(
bk+1/bk

1− γ(k+1)
k µk,1

)2
). (4.18)

Remark 4.11 Note the fact that a C(acc:k) must belong to one of the classes in

{m+1,m+2, . . . , k}. This of course implies that one C(acc:k) may accumulate priority

linearly at a different rate from another C(acc:k) (i.e., if they each belong to two dif-

ferent classes). Nevertheless, the distribution of P(acc:k) remains the same regardless

of the specific class to which the C(acc:k) belongs.

We are now ready to present the recursive procedure for obtaining P̃
(k)
BP (s), k ∈

N . Let P
(k)
acc be the accumulated priority of a C(acc:k)

k . Similarly, we define P
(k)
unacc as

the accumulated priority of a C(acc:`)
k for some ` > k. For convenience, let C(acc:>k)

k

denote a C(acc:`)
k for some ` > k. It therefore follows from Lemma 4.8 that

P̃
(k)
BP (s) =

bk − bk+1

bk
P̃ (k)
acc (s) +

bk+1

bk
P̃ (k)
unacc(s). (4.19)

To develop a recursion for (4.19), Remark 4.11 implies that C(acc:>k)
k s have an

accumulated priority that is identically distributed to that of a Ck+1 who arrives

during a busy period, so that P̃
(k)
unacc(s) = P̃

(k+1)
BP (s). This result is an intuitive one as
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both types of customers possess the property that their accumulated priorities are

always bounded above by Mk+1(t). We may now re-write Eq. (4.19) as

P̃
(k)
BP (s) =

bk − bk+1

bk
P̃ (k)
acc (s) +

bk+1

bk
P̃

(k+1)
BP (s), (4.20)

thereby achieving a recursive relation.

To obtain P̃
(k)
acc (s), we must consider whether the level-k accreditation interval in

which the C(acc:k)
k is serviced starts at the beginning of a busy period or at the service

commencement of a C(acc:`) for some ` > k. We define P
(k)
acc,0 to be the accumulated

priority of a C(acc:k)
k serviced within a level-k accreditation interval that starts at the

beginning of the busy period. We obtain the LST of P
(k)
acc,0 using the relation

P̃
(k)
acc,0(s) = P̃(acc:k)(s;V

(k)
0 ), (4.21)

where V
(k)

0 is the random variable whose distribution is defined via its LST, namely

Ṽ
(k)

0 (s) =
k∑
i=1

λi
ΛN

Υ̃
(k)
i (s) +

N∑
i=k+1

λi
ΛN

Φ̃
(k)
i (s).

To understand Eq. (4.21), note that the initial priority level of a level-k accredita-

tion interval which starts at the beginning of a busy period is zero. Therefore, the

accumulated priority of a C(acc:k)
k serviced within these kinds of level-k accreditation

intervals is simply equal to the priority accumulated during the interval. Further-

more, the initial delay V0 is a level-(k−1) accreditation interval which can be initiated

by any customer arriving to an empty system.

Similarly, let P
(k)
acc,1 represent the accumulated priority of a C(acc:k)

k serviced within

a level-k accreditation interval initiated by a C(acc:`) for some ` > k. An expression

for the LST of P
(k)
acc,1 is given by

P̃
(k)
acc,1(s) =

∑k
j=m+1 π

(k)
j P̃

(k+1)
BP (s)P̃(acc:k)(s; Υ

(k)
j ) +

∑N
j=k+1 π

(k)
j P̃

(j)
BP (s)P̃(acc:k)(s; Φ

(k)
j )∑N

j=m+1 π
(k)
j

,

(4.22)

where π
(k)
j is the long-run fraction of time that the system processes a level-k ac-

creditation interval initiated by a Cj (j ∈ N ) arriving to the system during a busy
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period. To understand Eq. (4.22), recall that the priority level of a C(acc:k)
k serviced

within a level-k accreditation interval starting at the service commencement of a

C(acc:`) for some ` > k can be decomposed into two independent components: (i)

u0, the accumulated priority of the initiating C(acc:`), and (ii) P(acc:k), the additional

priority accumulated after having accumulated the initial priority level u0. Hence,

the accumulated priority of such a C(acc:k)
k has LST which takes on the general form

P̃
(k)
acc,1(s;V ) = ũ0(s)P̃(acc:k)(s;V ),

where V is the initial delay of the level-k accreditation interval.

The distributions of both u0 and V depend solely on the class of the initial

customer. In particular, if the initial customer is of class j for m < j ≤ k, then

ũ0(s) = P̃
(k+1)
BP (s) and Ṽ (s) = Υ̃

(k)
j (s). Otherwise, for j > k, ũ0(s) = P̃

(j)
BP (s) and

Ṽ (s) = Φ̃
(k)
j (s). If we define π

(k)
0 as the long-run fraction of time that the system

spends processing a level-k accreditation interval initiated by a customer who arrived

to an empty queue, then it must be that

P̃ (k)
acc (s) =

1

ρ

(
π

(k)
0 P̃

(k)
acc,0(s) + (ρ− π(k)

0 )P̃
(k)
acc,1(s)

)
. (4.23)

Eqs. (4.20)–(4.23) together form our recursive procedure to obtain P̃
(k)
BP (s).

We end this section with the derivation of the steady-state probabilities π
(k)
j for

j ∈ {0,m + 1,m + 2, . . . , N}. First of all, it is clear that any Cj (j > k) arriving

during a busy period will eventually initiate a level-k accreditation interval with an

initial delay of Φ
(k)
j . Hence, we have

π
(k)
j = ρ

λjE(Φ
(k)
j )

1− γ(k+1)
k µk,1

, j > k. (4.24)

Next, for a Cj (m < j ≤ k) to initiate a level-k accreditation interval, this customer

must be served at level-` accreditation for some ` > k. The probability of such a

Cj arriving to the system is ρ(bk+1/bj). Furthermore, since the initial delay of the

resulting level-k accreditation interval is Υ
(k)
j , we have that

π
(k)
j = ρ

λj(bk+1/bj)E(Υ
(k)
j )

1− γ(k+1)
k µk,1

, m < j ≤ k. (4.25)
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Finally, a Cj arriving to an empty system initiates a level-k accreditation interval

whose initial delay is either Υ
(k)
j if j ≤ k or Φ

(k)
j if j > k. Thus,

π
(k)
0 =

1− ρ
1− γ(k+1)

k µk,1

[ k∑
j=1

λjE(Υ
(k)
j ) +

N∑
j=k+1

λjE(Φ
(k)
j )

]
. (4.26)

Since level-k accreditation intervals partition the general busy period, it is immediate

that π
(k)
0 +

∑N
j=m+1 π

(k)
j = ρ.

4.4 Characterization of the service-structure ele-

ments and auxiliary random variables

In this section, we derive expressions for the LSTs of class-k completion periods,

residence periods, and the auxiliary random variables introduced earlier in Section

4.2. Since the preemptive resume service discipline is a work-conserving one, it is

straightforward to show that the LSTs of the class-k (k ∈ U ) auxiliary random

variables are given by

Υ̃
(k)
i (s) = B̃(i)

(
s+ Λk−1(1− Υ̃

(k)
1:k−1(s))

)
, i ∈ a (4.27)

and

Φ̃
(k)
i (s) = Z̃

(i)
k

(
s+ Λk−1(1− Υ̃

(k)
1:k−1(s))

)
, i ∈ b, (4.28)

where, from Eq. (1.3), Υ̃
(k)
1:k−1 = Γ̃

(
s; Λk−1,

∑k−1
i=1 (λi/Λk−1)X(i)

)
is the busy period

LST of the Cas and Z
(i)
k represents the class-k protected portion of a class-i service.

Table 4.3 summarizes the various forms of Z
(i)
k and Z̃

(i)
k (s) under each of the three

threshold-based discretion rules. Moreover, the class-k completion period LST is

simply given by

C̃(k)(s) = Υ̃
(k)
k (s) = B̃(k)

(
s+ Λk−1(1− Υ̃

(k)
1:k−1(s))

)
. (4.29)

For the case k ∈ N , both Υ̃
(k)
i (s) and Φ̃

(k)
i (s) are obtained recursively. Specif-

ically, it immediately follows from Table 4.2, Important Observation 4.10, and Eq.

(2.49) that for each k ≥ m+ 1:

Υ̃
(k+1)
i (s) = Υ̃

(k)
i

(
s+ γ

(k+1)
k (1− Υ̃

(k+1)
m+1:k(s))

)
, i ≤ k (4.30)
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Table 4.3: Various forms of Z
(i)
k and its corresponding LST

Threshold Rule Z
(i)
k Z̃

(i)
k (s)

PB (1− αk,i)X(i) B̃(i)
(
(1− αk,i)s

)
FETB (X(i) − Tk,i)|(X(i) > Tk,i)

( ∫∞
x=Tk,i

e−s(x−Tk,i)dB(i)(x)
)
/B̄(i)(Tk,i)

TETB min{X(i), tk,i} e−stk,iB̄(i)(tk,i) +
∫ tk,i
x=0

e−sxdB(i)(x)

and

Φ̃
(k+1)
i (s) = Φ̃

(k)
i

(
s+ γ

(k+1)
k (1− Υ̃

(k+1)
m+1:k(s))

)
, i > k + 1, (4.31)

where Υ̃
(k+1)
m+1:k(s) = Γ̃(s; γ

(k+1)
k , β(k)) from Eq. (1.3). Furthermore, the class-(k + 1)

completion period LST is given by

C̃(k+1)(s) = Υ̃
(k+1)
k+1 (s) = Φ̃

(k)
k+1

(
s+ γ

(k+1)
k (1− Υ̃

(k+1)
m+1:k(s))

)
. (4.32)

The respective starting points for the recursive expressions given in Eqs. (4.30)–

(4.32) are Υ̃
(m+1)
i (s) for all i ≤ m + 1, Φ̃

(m+1)
i (s) for all i > m + 2, and Φ̃

(m+1)
m+2 (s).

Since U also represents the set of classes which have priority over class m+1, it turns

out that the formulas for Υ̃
(k)
i (s), Φ̃

(k)
i (s), and C̃(k)(s) given by Eqs. (4.27)–(4.29)

also hold true when k = m + 1. Note that in using Eq. (4.28) with k = m + 1, it is

necessary to define the threshold parameters αm+1,i = 0, Tm+1,i = 0, and tm+1,i =∞
for all i > m+ 1.

Remark 4.12 The above formulas illustrate the fact that a level-k accreditation in-

terval is merely a delay busy period of C(acc:k)s whose service times are level-(k − 1)

accreditation intervals, corresponding to Υ
(k)
i for i = m+ 1,m+ 2, . . . , k.

Remark 4.13 With k = N , Eq. (4.30) yields a recursive procedure for calculating

Υ̃
(N+1)
i (s), i = 1, 2, . . . , N . We remark that Υ

(N+1)
i represents the duration of a busy

period which is initiated by a Ci.

To obtain R̃(k)(s), we require the joint transform of the preemptible and non-

preemptible periods of a class-k service time. In particular, similar to the analysis
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conducted by Drekic and Stanford (2000), we segment the class-k service time X(k)

into its preemptible portion X
(k)
p and its non-preemptible (or protected) portion

X
(k)
p0 . For the current priority queueing model, however, we must further partition

the preemptible portion X
(k)
p as follows:

X(k)
p = X(k)

pk−1
+X(k)

pk−2
+ · · ·+X(k)

p1
,

where X
(k)
pi , i ∈ a, represents the portion of the class-k service time which is pre-

emptible only by a Cj with j ∈ {1, 2, . . . , i}. It is important to note that X
(k)
pi = 0 for

i ∈ anp. Furthermore, for the purpose of formulating a single expression for R̃(k)(s)

that holds true for both k ∈ U and k ∈ N , we define αi,k = 0, Ti,k = 0, and ti,k =∞
if i = k or if i < k and i ∈ N .

If we let s = [s1, s2, . . . , sk−1, s0] be a k-dimensional row vector, then the joint

transform of all the portions of X(k) is given by

Θ(k)(s) = E(e−s1X
(k)
p1
−s2X(k)

p2
−···−sk−1X

(k)
pk−1

−s0X(k)
p0 ).

We remark that the above transform depends on the specific threshold-based discre-

tion rule in effect for the Cks. Hence, we have three expressions for Θ(k)(s), each of

which is readily obtained by conditioning on X(k) = x and subsequently characteriz-

ing X
(k)
pi via the corresponding threshold parameters αi,k, Ti,k, and ti,k for each i ∈ a.

The expressions for Θ(k)(s) are as follows:

(PB) Θ(k)(s) =

∫ ∞
x=0

e−(
∑k−1

i=1 si(αi,k−αi+1,k)+s0(1−α1,k))xdB(k)(x)

= B̃(k)
(∑k−1

i=1 si(αi,k − αi+1,k) + s0(1− α1,k)
)
, (4.33)

(FETB) Θ(k)(s) =
k−1∑
i=1

e−
∑k−1

j=i+1(sj−sj−1)Tj,k

∫ Ti,k

x=Ti+1,k

e−sixdB(k)(x)

+ e−(
∑k−1

j=2 (sj−sj−1)Tj,k+(s1−s0)T1,k)

∫ ∞
x=T1,k

e−s0xdB(k)(x),

(4.34)
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and

(TETB) Θ(k)(s) =
k−1∑
i=1

e−(
∑i

j=2(sj−1−sj)tj,k+(s0−s1)t1,k)

∫ ti+1,k

x=ti,k

e−sixdB(k)(x)

+

∫ t1,k

x=0

e−s0xdB(k)(x). (4.35)

During a class-k residence period, only those Cas participating in the interruption

periods extend the overall residence period. Therefore, we obtain

R̃(k)(s) = Θ(k)
(∑k−1

i=1 1i(s+ Λi(1− Ã(k)
pi (s))) + s1k

)
, (4.36)

where 1i denotes a k-dimensional row vector whose i-th entry is one and all other

entries are zero, and A
(k)
pi represents an interruption period occurring within the X

(k)
pi

portion of the class-k service time (i.e., an interruption period in which only Cjs for

j ≤ i can participate). From Eq. (1.3), we ultimately have

Ã(k)
pi

(s) = Γ̃
(
s; Λi,

∑i
j=1(λj/Λi)X

(j)
)
. (4.37)

The first two moments of the auxiliary random variables can be obtained in

a straightforward fashion by either differentiating their corresponding LSTs, or by

applying the well-known formulas for the first two moments of an M/G/1 delay

busy period (e.g., Eqs. (1.7) and (1.8)) with the appropriate parameters. Letting

Uk =
∑k

i=1 λiE(X(i)), we obtain for k = 1, 2, . . . ,m+ 1:

E(Υ
(k)
i ) =

E(X(i))

1− Uk−1

, i ≤ k,

E
(
(Υ

(k)
i )2

)
=

∑k−1
j=1 λjE

(
(X(j))2

)
(1− Uk−1)3

E(X(i)) +
E
(
(X(i))2

)
(1− Uk−1)2

, i ≤ k,

E(Φ
(k)
i ) =

E(Z
(i)
k )

1− Uk−1

, i > k,

E
(
(Φ

(k)
i )2

)
=

∑k−1
j=1 λjE

(
(X(j))2

)
(1− Uk−1)3

E(Z
(i)
k ) +

E
(
(Z

(i)
k )2

)
(1− Uk−1)2

, i > k.
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For the case k > m+1, the first two moments are computed recursively. In particular,

we have for k = m+ 1,m+ 2, . . . , N :

E(Υ
(k+1)
i ) =

E(Υ
(k)
i )

1− γ(k+1)
k µk,1

, i ≤ k,

E
(
(Υ

(k+1)
i )2

)
=

γ
(k+1)
k µk,2

(1− γ(k+1)
k µk,1)3

E(Υ
(k)
i ) +

E
(
(Υ

(k)
i )2

)
(1− γ(k+1)

k µk,1)2
, i ≤ k,

E(Φ
(k+1)
i ) =

E(Φ
(k)
i )

1− γ(k+1)
k µk,1

, i > k + 1,

E
(
(Φ

(k+1)
i )2

)
=

γ
(k+1)
k µk,2

(1− γ(k+1)
k µk,1)3

E(Φ
(k)
i ) +

E
(
(Φ

(k)
i )2

)
(1− γ(k+1)

k µk,1)2
, i > k + 1,

E(Υ
(k+1)
k+1 ) =

E(Φ
(k)
k+1)

1− γ(k+1)
k µk,1

,

E
(
(Υ

(k+1)
k+1 )2

)
=

γ
(k+1)
k µk,2

(1− γ(k+1)
k µk,1)3

E(Φ
(k)
k+1) +

E
(
(Φ

(k)
k+1)2

)
(1− γ(k+1)

k µk,1)2
.

Similarly, the following expression for the first moment of A
(k)
pi is obtained:

E(A(k)
pi

) =
U i

Λi(1− U i)
, i < k.

For k = 1, 2, . . . , N , expressions for the first two moments of Z
(i)
k and the mean

of R(k) under each threshold-based discretion rule are as follows:

PB rule

E(Z
(i)
k ) = (1− αk,i)E(X(i)), i > k,

E
(
(Z

(i)
k )2

)
= (1− αk,i)2E

(
(X(i))2

)
, i > k,

E(R(k)) = E(X(k))

[ k−1∑
i=1

(
1 + ΛiE(A(k)

pi
)
)
· (αi,k − αi+1,k) + (1− α1,k)

]
.

FETB rule

E(Z
(i)
k ) =

(∫ ∞
x=Tk,i

(x− Tk,i) dB(i)(x)

)
/B̄(i)(Tk,i), i > k,
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E
(
(Z

(i)
k )2

)
=

(∫ ∞
x=Tk,i

(x− Tk,i)2 dB(i)(x)

)
/B̄(i)(Tk,i), i > k,

E(R(k)) = E(X(k)) +
k−1∑
i=1

[(
B(k)(Ti,k)−B(k)(Ti+1,k)

) k−1∑
j=i+1

ΛjE(A(k)
pj

) · (Tj,k − Tj+1,k)

+ ΛiE(A(k)
pi

)

(
(Ti,k − Ti+1,k)B̄

(k)(T1,k) +

∫ Ti,k

x=Ti+1,k

(x− Ti+1,k) dB(k)(x)

)]
.

TETB rule

E(Z
(i)
k ) =

∫ tk,i

x=0

x dB(i)(x) + tk,iB̄(i)(tk,i), i > k,

E
(
(Z

(i)
k )2

)
=

∫ tk,i

x=0

x2 dB(i)(x) + t 2
k,iB̄

(i)(tk,i), i > k,

E(R(k)) = E(X(k)) +
k−1∑
i=1

[
ΛiE(A(k)

pi
)

∫ ti+1,k

x=ti,k

(x− ti,k) dB(k)(x)

+
(
B(k)(ti+1,k)−B(k)(ti,k)

) i−1∑
j=1

ΛjE(A(k)
pj

)(tj+1,k − tj,k)
]
.

4.5 Numerical examples

We now present two numerical examples which illustrate the potential use of

our mixed priority queueing model. Our first example takes inspiration from the

example found in Stanford et al. (2014). The Canadian Triage and Acuity Scale

(CTAS) provides five priority classifications for the triage assessment of patients

arriving to a hospital emergency room. Furthermore, each class is given a “time to

assessment” standard and an accompanying compliance target, which specifies the

desired proportion of that class’s patients to meet the standard. Table 4.4 reports

these time to assessment standards along with their compliance targets, as taken

from Stanford et al. (2014, p. 299).

As an attempt to meet these standards, we model an emergency room whose 5

classes of patients are defined by the CTAS and invoke a mixed priority queueing

scheme with m = 3 (i.e., U = {1, 2, 3} and N = {4, 5}). The service times

corresponding to each patient class are assumed to be exponentially distributed with
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Table 4.4: CTAS key performance indicators

Category Class Time to Assessment Compliance Target (%)
1 Resuscitation Immediate 98
2 Emergent 15 minutes 95
3 Urgent 30 minutes 90
4 Less Urgent 60 minutes 85
5 Not Urgent 120 minutes 80

mean times of 30 minutes for class 1, 20 minutes for classes 2 and 3, and 10 minutes

for classes 4 and 5. We assume further that the server (or doctor) implements a PB

rule to govern how preemptions to patients take place. For the Resuscitation class,

we assume that α1,i = 1 for i = 2, 3, 4, 5 (i.e., C1s always preempt lower priority

customers). We consider several different values for the other threshold parameters

such as α2,i for i = 3, 4, 5 and α3,i for i = 4, 5. The remaining parameters of the

system correspond to the accumulating priority rates of the CN s for which we assume

b4 = 1 and 0 ≤ b5 ≤ 1.

For each k = 1, 2, . . . , 5, we are interested in calculating P (W (k) ≤ t∗k), where t∗k
denotes the class-k time to assessment standard given in Table 4.4. To do this, we nu-

merically invert W̃ (k)(s) by employing the EULER and POST-WIDDER algorithms

of Abate and Whitt (1995) with their suggested parameter settings (and found that

the two methods produced equivalent results). We remark that in conducting the

numerical inversions, there were several instances for which implicit functionals of

LSTs (resembling those of an M/G/1 busy period) had to be evaluated at com-

plex arguments. This was performed following the iterative procedure outlined in

Abate and Whitt (1992). The main details associated with the use of these numeri-

cal inversion algorithms are provided in the Appendix. In addition to reporting the

desired probabilities, we provide the mean class-k waiting times and flow times for

k = 1, 2, . . . , 5. The results under three separate settings are tabulated to 4 decimal

places of accuracy in Table 4.5. Note also that the reported values are given in scaled

multiples of 10 minutes.

In their example, Stanford et al. (2014) analyzed a 2-class NPAPQ, modelling
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Table 4.5: Performance measures in Example 1 under various settings

Setting 1 (ρ = 0.863)

α2,3 = 0.9, α2,4 = 1, α2,5 = 1, α3,4 = 0.5, α3,5 = 0.75, and b5 = 0.10
Class k λk P (W (k) ≤ t∗k) E(W (k)) E(F (k))

1 0.001 0.9970 0.0090 3.0090

2 0.01 0.9885 0.0511 2.0571

3 0.02 0.9815 0.2775 2.3204

4 0.4 0.8873 2.7217 3.7671

5 0.4 0.6590 11.7522 12.8085

Setting 2 (ρ = 0.833)

α2,3 = 0.75, α2,4 = 0.9, α2,5 = 1, α3,4 = 0.25, α3,5 = 0.5, and b5 = 0.30
Class k λk P (W (k) ≤ t∗k) E(W (k)) E(F (k))

1 0.001 0.9970 0.0090 3.0090

2 0.005 0.9931 0.0361 2.0421

3 0.01 0.9832 0.4128 2.4341

4 0.4 0.8308 3.1880 4.2054

5 0.4 0.7781 7.5744 8.5980

Setting 3 (ρ = 0.815)

α2,3 = 0.5, α2,4 = 0.75, α2,5 = 1, α3,4 = 0.25, α3,5 = 0.5, and b5 = 0.275
Class k λk P (W (k) ≤ t∗k) E(W (k)) E(F (k))

1 0.001 0.9970 0.0090 3.0090

2 0.001 0.9958 0.0433 2.0494

3 0.005 0.9891 0.3652 2.3733

4 0.4 0.8795 2.6638 3.6709

5 0.4 0.8175 6.4787 7.4888
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only CTAS classes 4 and 5. In our treatment, we utilized the same arrival rates and

service rates for the two lowest priority classes as in their example. Moreover, they

determined that without the presence of the three highest priority classes, the CTAS

4 and 5 compliance targets were both met as long as the accumulating priority rate

of the lowest class did not exceed 0.5. As evidenced by the results in Table 4.5, this is

not the case for our 5-class priority model. In fact, of the three settings considered,

only in Setting 3, where the arrival rates of the 3 highest priority classes are the

smallest, were all the CTAS compliance targets satisfied. It is also interesting to

observe the changes in the mean flow times under the various settings.

In our second example, we consider the 9-class mixed priority queue studied by

Paterok and Ettl (1994, pp. 1157–1159). The arrival rates and service time distri-

butions, including the priority group of each class, are given in Table 4.6. Priority

groups are used to specify the type of priority that the higher priority customers have

over lower priority ones. In particular, a Ci has preemptive priority over a Cj (i < j)

if they belong to different priority groups; otherwise, the Ci has only non-preemptive

priority over the Cj. It is straightforward to obtain these specific priority relations

using our mixed priority model. For example, if we define α(r,s), T(r,s), and t(r,s) for

all 1 ≤ r < s ≤ 3 as the threshold-based discretion parameters between priority

groups (e.g., ti,j = t(r,s) whenever a Ci belongs to priority group r and a Cj belongs

to priority group s), then the desired priority relations are achieved by considering

a 9-class mixed priority model with m = 6 and the following threshold parameters:

α(r,s) = 1, T(r,s) = ∞, and t(r,s) = 0 for all r < s. We note that in their analysis,

Paterok and Ettl (1994) used a 15-class priority queue for which the arrival rates

of six of the classes were set equal to zero in order to obtain the desired priority

relations.

We define the weighted average flow time as F =
∑9

i=1(λi/Λ9)E(F (i)), and simi-

larly let F i represent the weighted average flow time of classes belonging to priority

group i, i = 1, 2, 3. In our numerical study, we report the expected flow times of

each class, as well as the weighted average flow times under various settings for each

of the threshold-based discretion rules. The results for the original Paterok and Ettl

(1994) setting (denoted as the resume-IPF case) are tabulated to 3 decimal places of
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Table 4.6: Parameters of the Paterok and Ettl (1994) example

Class k Priority Group λk E(X(k)) Service Time Distribution
1 1 0.062 0.5 Exponential
2 1 0.040 1.0 Erlang-2
3 2 0.020 4.0 Erlang-2
4 2 0.010 3.0 Erlang-3
5 2 0.030 5.0 Exponential
6 2 0.020 4.0 Erlang-2
7 3 0.003 3.0 Exponential
8 3 0.005 6.0 Erlang-3
9 3 0.010 5.0 Erlang-2

accuracy in Table 4.7. The results for the PB, FETB, and TETB rules are provided

in Tables 4.8, 4.9, and 4.10, respectively.

For the CN s, we implement accumulating priority rates of the form b7 = 1,

b8 = e−x, and b9 = e−2x for some x ≥ 0. We note that as x → ∞, the resulting

accumulating prioritization becomes equivalent to that of the static non-preemptive

priority service discipline. Conversely, with x = 0, the CN s are serviced according to

their order of arrival (i.e., regardless of the specific class to which they belong). As

a consequence of having x = 0, the mean waiting times for each class belonging to

the lowest priority level would all be identical — a potentially desirable setting. In

Tables 4.7–4.10, we compute mean flow times for each of the non-urgent classes using

x = 0.1, 1, 10. Similar to the PAPQ and NPAPQ, we emphasize that for this mixed

priority queueing model, a systems manager is able to achieve a desired balance

between the two extremes of FCFS and static non-preemptive priority between the

CN s by simply fine-tuning the parameter x. We also note that the mean flow times

of the CU s are unaffected by the choice of x.

It is evident from the results in Tables 4.8–4.10 that the new priority model is

quite flexible. In testing several different parameter values for each of the threshold-

based discretion rules, we are, in some instances, able to achieve a lower overall

weighted average flow time F . Furthermore, if instead a systems manager is more

concerned with reducing the average flow time of the lowest priority level F 3, and
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is less concerned with minimizing F , then it is clear that our priority model can

achieve this objective while still maintaining reasonable weighted average flow times

for both F 1 and F 2.

Table 4.7: Mean flow times in Example 2 under the original Paterok and Ettl (1994)
setting

Paterok and Ettl (resume-IPF)

Class k E(F (k))
1 0.547
2 1.051
3 5.999
4 5.150
5 7.820
6 7.695

x = 10 x = 1 x = 0.1

7 9.982 10.154 10.649

8 15.422 15.591 15.819

9 14.562 14.429 14.203

F 4.443 4.443 4.445

F 3 14.037 14.039 14.060

F 1 = 0.744 F 2 = 7.000
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Table 4.8: Mean flow times in Example 2 under PB rule

PB rule
α(1,2) = α(2,3) = 0.70, α(1,3) = 0.85 α(1,2) = α(2,3) = 0.50, α(1,3) = 0.75

Class k E(F (k)) E(F (k))
1 0.675 0.901
2 1.188 1.432
3 5.945 5.952
4 5.124 5.156
5 7.760 7.781
6 7.680 7.754

x = 10 x = 1 x = 0.1 x = 10 x = 1 x = 0.1

7 9.388 9.560 10.055 8.992 9.165 9.659

8 14.235 14.404 14.632 13.443 13.612 13.841

9 13.572 13.440 13.214 12.913 12.780 12.554

F 4.405 4.405 4.407 4.478 4.478 4.480

F 3 13.059 13.061 13.081 12.407 12.409 12.429

F 1 = 0.876 F 2 = 6.957 F 1 = 1.109 F 2 = 6.989
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Table 4.9: Mean flow times in Example 2 under FETB rule

FETB rule
T(1,2) = T(2,3) = 5, T(1,3) = 10 T(1,2) = T(2,3) = 2, T(1,3) = 4

Class k E(F (k)) E(F (k))
1 0.922 1.435
2 1.455 2.006
3 6.037 6.072
4 5.244 5.331
5 7.815 7.911
6 7.828 8.010

x = 10 x = 1 x = 0.1 x = 10 x = 1 x = 0.1

7 9.622 9.794 10.289 8.964 9.136 9.631

8 14.261 14.430 14.658 12.721 12.890 13.119

9 13.700 13.567 13.341 12.468 12.336 12.110

F 4.584 4.584 4.586 4.783 4.783 4.785

F 3 13.176 13.178 13.198 11.955 11.957 11.977

F 1 = 1.131 F 2 = 7.053 F 1 = 1.659 F 2 = 7.153
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Table 4.10: Mean flow times in Example 2 under TETB rule

TETB rule
t(1,2) = t(2,3) = 1.0, t(1,3) = 0.50 t(1,2) = t(2,3) = 2.0, t(1,3) = 0.15

Class k E(F (k)) E(F (k))
1 0.587 0.682
2 1.094 1.196
3 5.936 5.902
4 5.088 5.059
5 7.766 7.751
6 7.643 7.638

x = 10 x = 1 x = 0.1 x = 10 x = 1 x = 0.1

7 9.418 9.590 10.085 9.063 9.236 9.731

8 14.765 14.934 15.162 14.197 14.366 14.594

9 13.916 13.784 13.557 13.398 13.265 13.039

F 4.384 4.384 4.386 4.381 4.381 4.383

F 3 13.402 13.404 13.424 12.897 12.899 12.920

F 1 = 0.786 F 2 = 6.943 F 1 = 0.884 F 2 = 6.924
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Chapter 5

Conclusions

In many real-life queueing systems, it is often necessary and/or desirable to pro-

vide certain types of customers prompt access to the server(s). For such queueing

systems, priority service disciplines are appropriate. The goal of priority queueing

systems is to provide shorter wait times for those customers of higher priority. How-

ever, an obvious consequence of reducing wait times for the higher priority customers

is the increase of that for the lower priority ones. This is the trade-off that systems

managers are faced with when designing priority queueing systems. Unfortunately,

this trade-off cannot at all be controlled in static priority queues, and so, these sys-

tems can oftentimes display poor performance. In an effort to remedy such issues, the

central theme of this thesis is the generalization of static priority queueing systems

via the concept of accumulating priority.

As evidenced by the research of this thesis, the main benefit in assigning priority

via the accumulating priority mechanism is the ability, through the selection of the

accumulating priority rates (e.g., the set of parameters {bk}Nk=1 for the PAPQ), to

control the waiting time distributions of each class. Moreover, through the appropri-

ate selection of the accumulating priority rates, both the FCFS and classical static

priority service disciplines can be captured. Therefore, by characterizing the waiting

time distributions of these dynamic priority queues, we provide systems managers the

flexibility to design highly efficient queueing systems that are capable of satisfying a

wide variety of system performance goals.
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An important tool in the analysis of accumulating priority queues is the maximal

priority process. Essentially, the maximal priority process provides a useful struc-

turalization of a queueing system’s busy period and the customers serviced within

it. It is ultimately with this structuralization that we are able to decompose a cus-

tomer’s waiting time (or equivalently, its accumulated priority level prior to entering

service) into several independent components. To obtain the LSTs of these indi-

vidual components, the methodology employed combined several classical applied

probability techniques such as those found in renewal theory, semi-Markov theory,

and level-crossing analysis. Therefore, a major contribution of this thesis is that it

sheds new light on the maximal priority process, providing a clearer understanding

on how it can be used as a tool in the analysis of accumulating priority queues.

In Chapter 2, we analyzed an M/G/1 queue under a new blocking policy which

we referred to as the q-policy and also highlighted a key connection between the vir-

tual wait process of this system and the maximal priority process of a related M/G/1

queue with accumulating priority. This connection, along with the waiting time re-

sults established in this chapter, served as the foundation for our subsequent analyses

of the accumulating priority queues considered in Chapters 3 and 4. In Chapter 3,

we analyzed the fully preemptive accumulating priority queue. In Chapter 4, we an-

alyzed a general mixed priority queueing system in which some classes of customers

are assigned priority levels via accumulating priority while others are assigned static

priority levels. In both of these chapters, we exploited the relationship between their

respective maximal priority processes and the maximal priority process of Chapter

2 to obtain the LSTs of several key random variables of interest (such as P(acc:k),

the pseudo-interruption periods of Chapter 3, and the auxiliary random variables of

Chapter 4), required for the overall recursive procedure to obtain the steady-state

class-k waiting time LST.

In addition to characterizing the steady-state waiting time distributions, we have

established mathematical expressions for the LSTs of several other important random

variables of interest such as the service-structure elements (i.e., residence periods,

flow times, and gross service times) and the newly defined additional accumulated

priority of a class-k interrupting customer P(int:k). By acquiring probabilistic knowl-
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edge of these random variables, we gain more insight into the nuances and technical

details of accumulating priority queues (including their advantages over static pri-

ority counterparts). Thus, the extensive analyses of these accumulating priority

queueing models represent another main contribution of the thesis.

The recent success in characterizing waiting time distributions in accumulating

priority queues has given rise to numerous viable future research problems. First of

all, if the goal, as queueing theorists believe, is truly to construct efficient queueing

systems, then there needs to be a strong sense of responsibility and desire to gen-

eralizing and converging currently existing designs. Hence, one notable avenue for

future research deals with the continued improvement of previously analyzed static

priority queues through the implementation of an accumulating priority mechanism.

For example, of particular interest is the analysis of a priority queueing system sim-

ilar to the one studied in Chapter 4, but with the additional assumption that the

priority levels of the CU s, as well as that of the CN s, accumulate linearly throughout

time. The resulting priority queueing system would be quite flexible, serving as a

generalization of the PAPQ and the NPAPQ, as well as those static priority queues

mentioned in Chapter 4.

As another example, one can consider the implementation of an accumulating

priority mechanism in polling-type queues (i.e., systems in which the server serves

multiple streams of customers in cyclical fashion). An exceptional source for recent

research developments in the implementation of a prioritization structure within

polling-type queues is the doctoral thesis by Boon (2011). There, the author il-

lustrates another trade-off which cannot be controlled through static prioritization,

namely that the reduction in mean waiting times for higher priority customers leads

to greater variability in their waiting times (i.e., increase in the associated coefficient

of variation). However, as one might expect, this trade-off can be controlled if an

accumulating priority mechanism is implemented. Other future research ideas in-

volve optimization problems, where, for example, one searches for the optimal set of

accumulating priority rates {bk}Nk=1 under a specified objective function, and analy-

ses of dynamic preemptive priority models in which priority levels accumulate in a

non-linear fashion.
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Before the advent of the maximal priority process, controlling the class-k waiting

time of accumulating priority queueing systems (such as the NPAPQ) was limited

and essentially administered only through its first moment. Nowadays, as evidenced

in the study by Stanford et al. (2014) and the research of this thesis, it is possible to

establish the class-k waiting time LSTs for the NPAPQ and several other types of

accumulating priority queues. In doing so, it is possible to control several other im-

portant aspects of the class-k waiting time distribution, including its higher moments

and, perhaps more importantly, its quantiles. Therefore, the recent advancements

in the study of accumulating priority queues necessitates their consideration in the

endeavour to attain optimal design and functionality of real-life priority queueing

systems.
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The Appendix

To conduct the numerical inversions of the LSTs derived in this thesis, we imple-

ment the EULER and POST-WIDDER algorithms developed by Abate and Whitt

(1995). Specifically, each of these algorithms provide the means to compute, for

various values of t > 0, f(t) from its LST

f̃(s) =

∫ ∞
0

e−stf(t)dt, (A.1)

where s is a complex number with a non-negative real part. Since the EULER and

POST-WIDDER methods are based on two different mathematical approaches to

invert Eq. (A.1), they can be used together to confirm the overall accuracy of the

numerical inversion (i.e., the computations resulting from the EULER and POST-

WIDDER methods should agree within a desired precision). We next describe in

brief these two numerical inversion methods.

The EULER method provides an approximation to the Bromwich contour inver-

sion integral, which can be expressed as

f(t) =
2eat

π

∫ ∞
0

<(f̃(a+ iu)) cos(ut) du, (A.2)

where <(s) is the real part of s and a is chosen so that the vertical line s = a

is such that f̃(s) has no singularities on or to the right of it. In particular, the

EULER method computes an approximation of the right-hand side of Eq. (A.2) via

the following two steps: (i) apply the well-known trapezoidal rule (e.g., see Hass

et al. (2007, p. 479)) with h = π/2t to the right-hand side of Eq. (A.2) and (ii) use

Euler summation to accelerate the convergence of the infinite sum involved in the
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approximation employed in (i). The final approximation computed via the EULER

method is given by

f(t) ≈ E(m,n, t) =
m∑
k=0

(
m

k

)
2−msn+k(t), (A.3)

where

s`(t) =
eA/2

2t
<
(
f̃
(A

2t

))
+
eA/2

t

∑̀
j=1

(−1)j<
(
f̃
(A+ 2jπi

2t

))
, ` > 0. (A.4)

Note the re-parametrization of a = A/2t. The parameter A controls the discretiza-

tion error of the approximation in step (i) above. Abate and Whitt (1995) suggest

using A = 18.4, m = 11, and n = 15 to achieve a discretization error of 10−8.

The POST-WIDDER method is based on the so-called POST-WIDDER Theorem

which provides a sequence of functions {fn(t)}∞n=1 that converge to f(t) as n → ∞,

namely

fn(t) =
(−1)n

n!

(
n+ 1

t

)n+1

f̃ (n)((n+ 1)/t), (A.5)

where f̃ (n)(s) is the n-th derivative of f̃(s). Note that it is possible to re-express

Eq. (A.5) so as to involve an integral over a finite interval of real values. Hence,

by subsequently applying the trapezoidal rule (with h = π/n) to this alternate

expression, the following approximation to Eq. (A.5) is obtained:

fn(t) ≈ n+ 1

2tnrn

(
f̃((n+ 1)(1− r)/t) + (−1)nf̃((n+ 1)(1 + r)/t)

+ 2
n−1∑
k=1

(−1)k<
(
f̃
(n+ 1

t
(1− reπik/n)

)))
, r > 0. (A.6)

We remark that the parameter r in Eq. (A.6) controls the discretization error of this

approximation to Eq. (A.5). To enhance the accuracy of the inversion, the POST-

WIDDER method utilizes a linear combination of fn(t) for various values of n > 0.

Therefore, the final approximation of f(t) provided by the POST-WIDDER method

consists of three parameters (r, j,m) and is given by

f(t) ≈
m∑
k=1

(−1)m−k
km

k!(m− k)!
fj·k(t). (A.7)
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To achieve a discretization error around 10−8, Abate and Whitt (1995) suggest using

r = 10−4, j = 10, and m = 6.

It is important to realize that in order to extract f(t) from f̃(s) via either inversion

algorithm, one must be able to evaluate the real part of f̃(s) for specific values of

complex s. This task is straightforward when f̃(s) is given in an explicit form.

However, in queueing related problems, it is often the case that f̃(s) is defined via

an implicit function. For example, evaluating f̃(s) could involve the evaluation of

the implicit functional corresponding to the LST of an M/G/1 busy period Γ̃(s),

as defined by Eq. (1.3). To evaluate Γ̃(s) for complex s, we employ the iterative

procedure described by Abate and Whitt (1992): starting with D0(s) = 0 (or with

D0(s) = 1), recursively compute Dn(s) via

Dn(s) = B̃(s+ λ− λDn−1(s)), n > 0. (A.8)

The fact that Dn(s) converges to Γ̃(s) as n → ∞ was proven by Abate and Whitt

(1992, Section 2, Theorem 3). Furthermore, they showed that satisfactory accuracy

can be obtained after performing a modest number of iterations. In this thesis, we

used 30 such iterations.
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