
Practical Lattice Cryptosystems:
NTRUEncrypt and NTRUMLS

by

John M. Schanck

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization (Quantum Information)

Waterloo, Ontario, Canada 2015

c© John M. Schanck 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Some sections of this work have appeared in publications and pre-prints co-authored by
myself, John M. Schanck. Such sections are designated with one of the following symbols:

∗ Denotes that the section appeared in the paper describing NTRUMLS:

[36] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. Transcript Secure Signatures Based on Modular Lattices. In Michele Mosca,
editor, Post-Quantum Cryptography, number 8772 in Lecture Notes in Computer
Science, pages 142–159. Springer International Publishing, October 2014.

† Denotes that the section appeared in a recent preprint on choosing NTRUEncrypt pa-
rameters:

[37] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William
Whyte, and Zhenfei Zhang. Choosing Parameters for NTRUEncrypt. Technical
Report 708, 2015.

An annotated list of such sections is provided below.

• Algorithm 1 of Section 3.1, Algorithms 4 and 5 of Section 3.3.3, and Algorithm 6 of
Section 3.5 all appear, either verbatim or with minor formatting changes, in [37].

• Section 3.4.4 has been adapted from [37]. A very early draft of the version from [37]
was written by my co-authors, the version that appears here is primarily my own.

• Algorithms 7, 8 and 9 of Section 4.3 appear verbatim in [36].

• Sections 4.4 and 4.5 appeared, with minor formatting modifications, in [36]. and
were written in collaboration with the other authors of that work. The proof of
Proposition 12 of Section 4.4 is due to Joseph Silverman.

• Section 5.5.2 and Section 5.8 appeared in [37].

iii

Abstract

Public key cryptography, as deployed on the internet today, stands on shaky ground.
For over twenty years now it has been known that the systems in widespread use are
insecure against adversaries equipped with quantum computers – a fact that has largely
been discounted due to the enormous challenge of building such devices. However, research
into the development of quantum computers is accelerating and is producing an abundance
of positive results that indicate quantum computers could be built in the near future. As a
result, individuals, corporations and government entities are calling for the deployment of
new cryptography to replace systems that are vulnerable to quantum cryptanalysis. Few
satisfying schemes are to be found.

This work examines the design, parameter selection, and cryptanalysis of a post-quantum
public key encryption scheme, NTRUEncrypt, and a related signature scheme, NTRUMLS.
It is hoped that this analysis will prove useful in comparing these schemes against other
candidates that have been proposed to replace existing infrastructure.

iv

Acknowledgements

I am, first and foremost, indebted to my colleagues at Security Innovation and Brown
University. In the order that we met: William Whyte, Mark Etzel, Jeff Hoffstein, Jill
Pipher, Joe Silverman, Virendra Kumar, and Zhenfei Zhang. It has been a great pleasure
working with each of you.

I owe William Whyte a special thanks. He brought me on at Security Innovation for a 90
day stint writing a reference implementation of “NTRUSign with Perturbations;” I was to
start on October 3rd of 2011. William received an email on the 30th of September notifying
him that Phong Nguyen and his student, Léo Ducas, had broken the scheme. Needless to
say there wasn’t much need for a reference implementation after that, so William put me
to work developing a new scheme instead. It wasn’t a job I was qualified for, but William
showed me the ropes and gave me the opportunity to educate myself. I certainly would
not be where I am today without his generosity.

Also a special thanks to Jeff Hoffstein for providing me with an abundance of challenge
problems in cryptanalysis, and for not being too miffed when I solved the few that I did.

Many thanks to Michele Mosca for advising me throughout my Masters and for alerting
me to the need for post-quantum cryptography at the Quantum Key Distribution summer
school at the University of Waterloo in the summer of 2011.

Lastly, I would like to express my eternal gratitude to my undergraduate advisor, Herb
Bernstein, who taught me to pay close attention to the value ladenness of knowledge work.

v

Dedication

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

1 Post-quantum cryptography 1

1.1 A step into the unknown . 1

1.2 Where we stand . 4

2 Preliminaries 7

2.1 Generalities on Lattices . 8

2.2 Computational Problems on Lattices . 14

2.3 Ideal Lattices and Module Lattices . 14

2.4 Convolution Polynomial Rings . 16

3 NTRUEncrypt 20

3.1 Primitives . 22

vii

3.2 The NTRU Lattice . 24

3.3 Standardized NTRUEncrypt . 26

3.3.1 Additional parameters . 26

3.3.2 Support functions . 27

3.3.3 SVES . 31

3.4 SVES Parameters . 32

3.4.1 Choice of N , q, and p . 32

3.4.2 Private key parameters . 33

3.4.3 Minimum message weight . 34

3.4.4 Probability of Decryption Failure in SVES† 35

3.4.5 Number of IGF calls . 38

3.5 Explicit algorithm for computing parameters† 40

3.6 Parameters for NTRUEncrypt . 42

3.6.1 EESS #1 v2 . 42

3.6.2 New parameters in EESS #1 v3 . 42

3.6.3 Parameters without decryption failure 43

3.6.4 Paramters with non-trivial f mod p 44

4 NTRUMLS 45

4.1 Modular Lattice Signatures (MLS) . 46

4.2 NTRUMLS . 47

4.3 NTRUMLS Algorithms∗ . 49

4.4 NTRUMLS Transcript Security∗ . 51

4.5 Probability of Generating a Valid Signature∗ 56

4.6 NTRUMLS Parameters . 58

viii

5 Cryptanalysis 60

5.1 Approximating a closest vector . 60

5.2 Enumeration . 61

5.3 Lattice reduction . 63

5.3.1 BKZ Simulation . 67

5.4 Meet-in-the-middle attacks . 67

5.5 The hybrid attack . 68

5.5.1 Preprocessing for general lattices 69

5.5.2 Matrix theoretic description for NTRU lattices† 72

5.5.3 Choosing r1 and r2 for NTRU lattices 72

5.5.4 Comparison with Lindner-Peikert Nearest Plane 74

5.6 Bounded Distance Decoding in an isomorphic module 76

5.7 Quantum Attacks . 77

5.7.1 Quantum hybrid attack . 78

5.7.2 Attacking NTRUEncrypt keys . 79

5.8 Approximate SVP in Λq(f , g) † . 80

5.9 Other considerations for NTRUEncrypt . 82

5.10 Other considerations for NTRUMLS . 82

A APPENDICES 85

APPENDICES 85

A.1 Software . 85

A.2 NTRUEncrypt Challenges . 85

A.3 N suitable for use when q is a power of two and p = 3 86

References 87

ix

Chapter 1

Post-quantum cryptography

1.1 A step into the unknown

A visitor to Chicago’s Century-of-Progress International Exhibition in the summer of 1933
might have seen a puzzling device: a whirling mass of gear driven wheels built by Derrick
N. and Derrick H. Lehmer – a father and son team of mathematicians. The Photoelectric
Number Sieve, as it was called, was a calculational tool for use in pure mathematics. The
machine had first been demonstrated nearly a year prior before a roomful of their colleagues.
It caused something of a sensation, in no small part due to the Lehmers’ showmanship. As
recalled by his father, before Derrick H. threw the switch that would set the device about
its task, he exclaimed: “Here we step out into the unknown!” [50].

He flipped the switch, gears cranked, a light flickered, minutes passed. Then click. The
device stopped. And the group gathered around learned that

5283065753709209 = 59957× 88114244437.

A small pencil and paper calculation then resolved their noble goal: the complete factor-
ization of 295 + 1 had been verified [50].

The elder Lehmer would later refer to these excursions in factorization as “hunting big
game” in the theory of numbers. This is not pure boasting. From the mathematics to
the circuitry, the mechanisms him and his son built were the absolute state of the art.
They had constructed “a new kind of calculating machine, applicable to [factorization], in
which modern physics has made its contribution to the oldest and least practical branch
of mathematics” [49].

1

Of course, the physics the machine relied on was purely classical; what was truly modern
was the engineering. The engineering of 1932 allowed for subtle enough control of a physical
system as to employ it in the solution of a mathematical problem too difficult for human
calculators. Here’s how it worked: The wheels were set based on the number to be factored,
then spun at a high rate. When holes in all of them aligned a light would shine through
and strike a photoelectric cell. The signal from the photoelectric cell would be amplified
to trigger a relay that would disengage the motor. Then the wheels could be turned back
until the light shone through once more. A counter identified how many revolutions it had
taken to reach that point, and the value of this counter could be used (by a skilled human
calculator) to compute a factorization of the input. The device was enormously effective
at its task – it would not be outperformed by fully electronic computers until the 1960s.

Less than a century-of-progress later, though, the number theoretic big game of 1932 is
no longer so big. The sieves of today – the algorithmic progeny of the Lehmers’ contraptions
– are far more subtle in their machinations (though more no adroit in their mechanics). A
specimen such as the RSA-768 challenge

N = 1230186684530117755130494958384962720772853569595334792197

3224521517264005072636575187452021997864693899564749427740

6384592519255732630345373154826850791702612214291346167042

9214311602221240479274737794080665351419597459856902143413

can be teased apart in just a few thousand years of CPU time.

Surely this would excite the Lehmers, but it also excites a great many non-mathematicians
today as well. Because over the past thirty years factoring has taken on new, wild,
grandiose, inflated importance as one buttress of our information security infrastructure.

Nearly every secure communications channel established on the internet today relies on
the hardness of factoring. At the very least to verify the identities of the communicating
parties, often for their confidentiality as well. Only one other problem is relied on for
public key cryptography at scale, that being the discrete logarithm problem in certain
finite abelian groups. For a few more years these problems will serve us well, but by the
centennial of the Lehmers’ accomplishment they will no longer be difficult enough to base
cryptography on with confidence.

In 1994 a mathematician at Bell Labs by the name of Peter Shor proposed an algorithm
capable of efficiently factoring arbitrary integers. By all accounts a feat that should have
terminated any further research into factoring – the problem was solved. In the same paper
he solved the discrete logarithm problem in finite fields, and extensions of his work have

2

solved the discrete logarithm problem in arbitrary abelian groups. Public key cryptography
has been in tatters since then – though we’ve only very recently started to act as though
that were the case.

That’s because there was a catch: a machine capable of running Shor’s algorithm did
not exist in 1994, and many did not think it could be built. The engineering of the day
was not ready to control physical systems with the subtlety needed.

Now, 21 years later that’s changing. There is widespread belief that the device, a
quantum computer, can be built. Some day soon a speech will be made in a voice raised to
be heard over the cha-chinks of dilution refrigerator compressors; a switch will be flipped,
the machine’s state will start precessing, and once again we will step out into the unknown.

The quantum computer is among the most daring and beautiful scientific ideas I’ve yet
encountered. To believe that one could be built, only a generation ago, would have been a
profound expression of faith in the quantum theory. A faith that all of the little quirks of
the theory would be quirks of experiment too – phenomena that had not been observed,
that could scarcely be believed, and frequently were not believed. Yet experiment after
experiment confirms that the quantum theory is correct, and more importantly experiments
are every day confirming that quantum systems can be manipulated with the deft touch
needed to encode, to preserve, and to transform information reified by their degrees of
freedom.

These extraordinary machines will be built, and – despite what I am about to say –
I even believe that they should be built. They should be built for the same reason the
Lehmers built their Photoelectric Sieve. Out of curiosity, with a sense of adventure, the
hope that they will push the boundaries of our knowledge just a little bit further.

But we cannot build the quantum machine for these reasons, because we cannot deny
that such a device will be used for cryptanalysis. The factoring and the discrete logarithm
problems are no longer an amusement of the pure mathematician – they have been politi-
cized. The unknown that those huddled around the device will step out into when it is
turned on will not be some small patch of terrain in the wilds of mathematics, but rather
the contents of a diplomat’s inbox, or a dissident’s chat log, or a corporation’s private
network.

Who will stand there on that day?
Who will be privileged to use the quantum computer?
To what ends will they use it?

These are questions we must ask ourselves, questions that must shape the work we do.

If the academic community is to push for the development of quantum computers it is
our ethical obligation to pursue, in parallel, the development of the information security

3

infrastructure necessary for a world in which quantum computers exist. To do otherwise
would not only be unethical, but, through arms regulations, would likely condemn quantum
technologies to military and espionage roles far removed from scientific applications.

So what are we to do?

There is a research program that can be pursued to make the world safe for quantum
computers – to make factoring and discrete logarithm curiosities once more. It involves
developing cryptosystems that are secure against quantum attackers, but that can be run
on present-day computers and present-day networks.

Such is the goal of post-quantum cryptography.

There are a number of candidate schemes already in the literature, and the prospects
for developing a handful of these to the point where we might have some confidence in
deploying them are good.

However, the situation is complicated by the fact that communications sent today may
be stored for decryption when quantum computers are finally available. Michele Mosca
has distilled the situation into an elegant conditional [60]

Let x be the time it will take to retool our existing infrastructure,

y be the duration for which our communications must remain confidential, and

z be how long we have before large quantum computers are built.

If x+ y > z, then we have a serious problem today.

Given the diversity of players interested in developing quantum computers we have little
hope of increasing z, and y is for each individual to decide – surely for some it is already
too late. The only parameter even partially in our control is x.

1.2 Where we stand

There are a variety of systems already in the literature that are conjectured to be secure
against quantum computers. This thesis is an attempt to bring two of those systems
closer to deployment through implementation, analysis, and the selection of parameters.
I do not claim that these are the best, nor that they should be deployed without further
consideration.

There are several excellent introductions to the field of post-quantum cryptography, in
particular [12]. To determine x (the time it will take to retool our existing infrastructure)
we first need to know what is broken.

4

Ciphers, hash functions, authenticators, and other symmetric primitives are weakened
by generic quantum search techniques, but only by a quadratic factor. As an example,
consider a preimage attack on a k-bit hash function. If h is an injective function (or is
nearly so) with a domain of size 2k then one can find a preimage of any value in the range
of h using Grover’s quantum search algorithm. Grover’s algorithm makes approximately
2k/2 calls to a subroutine, and this subroutine can be evaluated by a quantum circuit that
is of polynomial size with respect to a circuit for h. This polynomial overhead becomes
negligible as k tends to infinity, and one can reasonably say that Grover’s algorithm provides
a quadratic (2k 7→ 2k/2) speedup over the generic classical technique of brute force search.
In cryptography k will almost always be between 80 and 512, and it seems likely that
Grover’s algorithm outperforms brute force search for at least some values in this range.
However, careful analysis is required to determine whether there is a speedup for any
particular (h, k) pair1.

It should be mentioned that the analysis required to say whether or not a particular
symmetric primitive is broken by quantum techniques is not a purely technical analysis –
risk analysis should inform our decision of what “broken” means in quantum cryptanalysis
(and classical cryptanalysis, for that matter). A 256-bit hash function offers at most 128-
bit security against preimage attacks in a worst-case analysis based on Grover’s algorithm,
but this does not mean we should all rush to adopt wider primitives. I would argue that
the risk of someone developing a quantum computer capable of performing 2128 operations
of any type, let alone 2128 Grover iterations with a non-trivial h, in the next 100 years
is so astonishingly low as to be entirely dismissable. This is not to say that quantum
cryptanalysis has nothing to say about symmetric primitives – there may be more nuanced
quantum attacks against individual primitives and protocols – but merely that the generic
attacks based on Grover’s algorithm are unlikely to be a significant threat in most scenarios.

The case for asymmetric primitives is substantially more complicated. Signatures,
public key encryption, and key agreement based on factoring or discrete logarithm problems
are hopelessly broken. If fault tolerant quantum computers can be built at all, then it is a
near certainty that large enough machines can be built to run Shor’s algorithm. Fortunately
there are attractive post-quantum schemes in each category.

For signatures, if one’s concern for security outweighs one’s concern for efficiency, then
hash-based signatures such as XMSS and SPHINCS are the clear winners. These will
remain secure in a quantum setting as long as preimage resistant hash functions exist in

1Many authors ignore the dependence on h, but this is foolish if one cares about concrete estimates
rather than asymptotics. Logical quantum bits are expensive in any realistic model of quantum computa-
tion. A priori one should expect the cost of preimage search on a memory-hard hash function to be greater
than the cost of preimage search on a function tuned for high throughput or small circuit complexity.

5

a quantum setting, and this is overwhelmingly likely. As an added benefit these schemes
are mature enough to be deployed today.

Signature schemes based on systems of multivariate quadratic equations appear to
provide both efficient operations and a short signature length, but confidence in their
security is (perhaps unfairly) low. Signatures based on lattices, particularly ideal- or
module-lattices, provide the best known trade-off between key-size, signature-size, and
performance. Again, confidence needs to improve before these can be deployed.

For public key encryption the most serious candidate schemes are based on either
codes or lattices. Confidence in both codes and lattices without structure is high. The
most efficient schemes, however, are again those based on ideal- or module-lattices. Again,
confidence in such schemes could be improved.

For key exchange protocols there is a promising scheme based on elliptic curve isogenies
[45] that has received comparatively little attention. Lattices with structure are again a
prominent contender, and several systems have been proposed for deployment in the near
future [13, 64].

In summary, systems based on lattices with exceptional algebraic structure perform
well in all categories, but need further investigation before they can be deployed with
confidence. Both of the schemes considered below, NTRUEncrypt and NTRUMLS fall into
this category.

In the past year the number of voices discussing deployment of post-quantum systems
has dramatically increased.

In August 2015 the United States National Security Agency announced plans to in-
corporate post-quantum cryptography into its “Suite B” list of cryptographic algorithms.
This is a list of schemes that the NSA deems suitable for use in protecting classified and
unclassified communications [1]. They did not specify which algorithms they are investigat-
ing, but the announcement has produced a noticeable uptick in interest in post-quantum
cryptography.

In September 2015 the Horizon 2020 funded PQCRYPTO project announced initial
recommendations for “long-term secure” post-quantum systems [7]. For public key en-
cryption they recommend a particular parameter set for the McEliece system; a variant of
NTRUEncrypt due to Stehle and Steinfeld [75] was also mentioned to be under considera-
tion. For signatures they recommend either of two hash based schemes: XMSS, with any
of the parameters specified in the active Internet Draft for that system, or SPHINCS-256.

More recently NIST and NSA have announced that they plan to call for proposals for
standards in 2016 or 2017 [14].

6

Chapter 2

Preliminaries

The focus of this work will be two lattice-based cryptosystems: a public key encryption
scheme called NTRUEncrypt, and a signature scheme called NTRUMLS.

For the reader who wants only to understand the cryptographic constructions of Chap-
ters 3 and 4 the definition of a lattice given by Definition 1 will suffice and the remainder
of this section may be skipped and referred back to when new concepts are encountered.

Notation Elements of a Z-module are written in bold face, v. If the module is presented
as a submodule of, say, Zn, then v will be treated as a row vector where the ith coefficient
with respect to the standard basis is then written as vi. If v is an element of a polynomial
ring that is a finitely generated as a Z-module, e.g. R = Z[x]/(xn), we use the convention
that vi is the coefficient of xi.

Sets are denoted with a calligraphic font, e.g. S, matrices with upper case roman
letters, e.g. M , and integers as lowercase roman letters, q. An exception is the use of N .
By convention N is the rank of a particular Z-module used in NTRU.

We will make frequent use of extension of scalars to turn Z-modules into real vector
spaces. If this is unfamiliar, for a Z-module L the notation L⊗R may simply be thought of
as denoting the vector space spanR(B) for any basis B ⊂ L. Bases will always be ordered.
Matrices and ordered sets of vectors are treated interchangeably. In particular, if a basis
for a submodule of Zm is given as B = {bi}1≤i≤n we may treat B as a matrix in Zn×m
(hence we use a roman font).

Equivalence modulo q and reduction modulo q will be distinguished by parenthesizing
(mod q) for equivalence and not for reduction. To be precise, a = b mod q is the unique

7

representative of b+(q) in Z∩[−q/2, q/2), in other words a is the smallest integer in absolute
value satisfying a ≡ b (mod q). This primarily simplifies descriptions of algorithms in
which we must work with a specific representative of an equivalence class.

The notation BN(r) denotes the subset of ZN contained in the euclidean ball of radius
r centered at the origin, and CN(r) denotes the subset of ZN contained in the hypercube
of radius r.

An element sampled randomly from a set S is written x ←$ S. We will only sample
from finite sets, and sampling is always performed with respect to the uniform distribution.

2.1 Generalities on Lattices

The definition of a lattice that one normally encounters in lattice based cryptography is
as follows:

Definition 1 (Euclidean lattice). A lattice of rank n is the set of all integer combinations
of n linearly independent vectors in Rm, i.e.

L = Zb1 + Zb2 + · · ·+ Zbn.

We will need more robust definitions than one normally encounters on a first tour of
lattice crypto. Hence our lattices will not be just integer combinations of some set of
vectors, or subgroups of Zn (or Rn), even though such definitions are sufficient for many
purposes.

The treatment here is inspired by Henri Cohen’s excellent text [17].

Definition 2 (Lattice). A lattice (L, ρ) is a free Z-module L of finite rank with an asso-
ciated positive definite quadratic form ρ : L⊗ R→ R.

Recall that ρ is a quadratic form iff the map 〈·, ·〉ρ defined by

(x,y) 7→ 1
2
(ρ(x+ y)− ρ(x)− ρ(y))

is a symmetric bilinear form, i.e. for all x,y ∈ L⊗ R, we have

1. 〈x,y〉ρ = 〈y,x〉ρ
2. 〈x+ y, z〉ρ = 〈x, z〉ρ + 〈y, z〉ρ

8

3. 〈cx, z〉ρ = c〈x, z〉ρ.

The condition that ρ is positive definite means that ρ(x) > 0 for all x 6= 0.

We will typically restrict ourselves to the study of euclidean lattices, i.e. those for which
the associated quadratic form is the squared euclidean length,

ρ(v) = ‖v‖2 =
n∑
i=1

v2
i ,

and the symmetric bilinear form is the usual inner product. For euclidean lattices we will
omit the subscript on the inner product and write 〈v,w〉. Also, provided that doing so is
unambiguous, we will refer to L itself as the lattice.

In general, a rank n latttice may be presented as a submodule of Zm for some m ≥ n.
A basis for a rank n lattice is any spanning set of size n.

While all free Z-modules of rank n are isomorphic to Zn, lattices fall into different
equivalence classes depending on the associated quadratic form, as the following definition
demonstrates.

Definition 3 (Lattice isomorphism). Two lattices (L, ρ) and (L′, ρ′) are said to be isomor-
phic if there exists a length-preserving Z-module isomorphism between them, i.e. if there
exists a bijection φ : L→ L′ such that ρ(v +w) = ρ′(φ(v +w)) = ρ′(φ(v) + φ(w)) for all
v,w ∈ L.

To emphasise this point let’s momentarily examine lattices from a quadratic-form cen-
tric viewpoint by looking at the lattice isomorphism induced by an isomorphism between
L and Zn. We’ll specify that L is euclidean so we’re looking for a lattice isomorphism
(L, ‖ · ‖2) → (Zn, ρ) for some yet unknown ρ. We get an appropriate Z-module isomor-
phism simply by choosing a basis B = {bi}1≤i≤n for L. Every element of L can be written
uniquely as an integer combination of the bi, and every integer combination of the bi gives
us an element of the lattice; the isomorphism we’re after is given by the correspondence
between v =

∑n
i=1 vibi ∈ L and (v1, . . . , vn) ∈ Zn. So, keeping in mind that we need to

preserve the euclidean length, we see that ρ is given by

ρ((v1, . . . , vn)) = ‖
∑n

i=1 vibi‖
2

=

〈
n∑
i=1

vibi,
n∑
j=1

vjbj

〉

=
n∑
i=1

n∑
j=1

vivj〈bi, bj〉.

9

Or, equivalently, ρ can be expressed by the real symmetric matrix Q:

ρ(v) = vQvT where (Q)i,j = 〈bi, bj〉.

Matrices such as Q are useful enough to get their own name.

Definition 4 (Gram matrix). Let {bi}1≤i≤n be a basis for a lattice (L, ρ). Then the matrix
of scalar products

(Q)i,j = 〈bi, bj〉ρ
is the Gram matrix of the bi.

Just as the above shows that picking a basis can be viewed as a lattice isomorphism,
so can changing bases. A change of basis B 7→ B′ = UB induces the lattice isomorphism
(Zn, ρ)→ (Zn, ρ′) where ρ′(v) = ρ(vU) = vUQUTvT .

It may also be useful to consider orthogonal transformations, such as coefficient per-
mutations, of the ambient space. These may also be seen as lattice isomorphisms: if L
is presented as a submodule of Zm and O ∈ GLm(R), then the map x 7→ xO induces a
lattice isomorphism.

Definition 5 (Volume of lattice). The volume of a lattice (L, ρ) is the covolume of L in
L ⊗ R. If B = {bi} is a basis for L and Q is the Gram matrix associated to ρ then the
volume of (L, ρ) is

vol(L, ρ) = det(Q)1/2.

For euclidean lattices (or when ρ is otherwise unambiguous) we will denote the volume
of L as vol(L).

Note that the volume is an invariant of the lattice – isomorphic lattices have equal
volumes. A related lattice invariant is the set of successive minima.

Definition 6 (Succesive minima). The successive minima of a lattice are a set of n invari-
ants that encode the lengths of the lattice’s shortest non-zero vectors. The ith successive
minima is the radius of the smallest closed ball that contains i linearly independent vectors
of L:

λi(L) = inf{r | dim(span(Bn(r) ∩ L)) ≥ i} (1 ≤ i ≤ n). (2.1)

Estimating the successive minima is an issue of fundamental importance in the study
of lattices. The following theorem is one of the most essential tools for achieving this task.

10

Theorem 1 (Minkowski’s Convex Body Theorem). Let L be a euclidean lattice, and let S
be a point set of volume vol(S) that is symmetric about the origin, compact, and convex. If
vol(S) ≥ m2nvol(L) then S contains at least m distinct pairs of points in L: {±ui}1≤i≤m.

Minkowski’s convex body theorem immediately yields an upper bound on the first
successive minima of a lattice with respect to any norm. The n dimensional (euclidean)
ball of radius R has volume

vol(Bn(R)) =
πn/2

Γ(n
2

+ 1)
·Rn. (2.2)

By Theorem 1 with S = vol(Bn(λ1(L))) we have:

λ1(L) ≤ 2√
π

(
vol(L) · Γ

(n
2

+ 1
))1/n

. (2.3)

A heuristic variant of this bound, dubbed the Gaussian heuristic, claims that the factor
of 2 may be omitted. Many authors additionally use the Sterling approximation for Γ and
define the Gaussian heuristic as follows:

Definition 7 (Gaussian heuristic). The Gaussian Heuristic is a claim that

λ1(L) ≈
√

n

2πe
· vol(L)1/n (2.4)

for “most” lattices. In fact, for random lattices this same approximation is expected to
hold for all n successive minima. We define GH(L) as the right hand side of Eq. 2.4.

Better bounds on the successive minima of a lattice tend to look at information encoded
in a given basis of the lattice. Much of this information is extracted through the familiar
Gram-Schmidt process.

Definition 8 (Gram-Schmidt orthogonalization). Given an ordered basis B = {bi}1≤i≤n
of a rank n lattice L the Gram-Schmidt vectors of B are denoted by B∗ = {b∗i }1≤i≤n and
defined by

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j (1 ≤ i ≤ n) (2.5)

wherein the Gram-Schmidt coefficients, {µi,j}1≤j<i≤n, are defined by

µi,j =
〈bi, b∗j〉
〈b∗j , b∗j〉

(1 ≤ j < i ≤ n). (2.6)

11

Lemma 2. The Gram-Schmidt vectors {b∗i }1≤i≤n of any basis of L satisfy

| det(L)| =
n∏
i=1

‖b∗i ‖.

Proof. It is readily seen that b∗i is the projection of bi onto the orthogonal complement
of spanR({bj}1≤j<i) = spanR({b∗j}1≤j<i). Hence B∗ is an orthogonal (but not necessarily
orthonormal) basis for L⊗R. Equation 2.5 inductively expresses the coordinates of the b∗i
in terms of those of the bi and it can be seen that this change of basis is given by a lower
triangular matrix with diagonal entries equal to 1. Thus

∏n
i=1 ‖b

∗
i ‖ = det(B∗) = det(B) =

| det(L)|.

Orthogonal projections like those used to define the b∗i are used frequently enough in
lattice cryptanalysis to reserve notation for them. Hence, for any basis of a rank n lattice L
we define πB,i : L⊗R→ L⊗R as the projection orthogonal to spanR({b∗j}1≤j≤i−1). When
the basis is clear from context we will write πi. Note that πB,i(v+w) = πB,i(v) +πB,i(w),
so it is natural to consider projection as a lattice homomorphism.

Definition 9 (Projected lattice). The ith projected lattice of (L, ρ) with respect to the
basis B is (πB,i(L), ρ) where πB,i(L) = {πB,i(v) : v ∈ L}. When it will not introduce
ambiguities we may write B(i) to denote πB,i(L).

Clearly it is always the case that short vectors in L have short projections, i.e. ρ(πB,i(v)) ≤
ρ(v), so it is natural to attempt to find short vectors in L by “lifting” short vectors from a
projected lattice B(i) to L. More generally one can consider a sequence of lattices such as

L = B(1) πB,2−−→ B(2) πB,3−−→ B(3) πB,4−−→ · · ·
πB,n+1−−−−→ B(n+1) = {0}

and iteratively lift short vectors from B(i) to B(i−1). Enumeration algorithms (Section 5.2)
proceed precisely in this fashion by performing a depth first search on a tree of vectors
that is rooted at {0} and has (a subset of) the elements of B(i) at depth i.

There are infinitely many bases for a lattice related by unimodular transformations,
some of which are more useful than others. Fortunately there is limit on how “bad” a basis
can be, as there exists an efficiently computable normal form for bases of Z-modules, the
Hermite Normal Form or HNF. For algorithms we can insist that input bases are either
in the normal form or are “reduced” in some sense, and this allows us to prove complexity
bounds that depend only on invariants of the lattice.

12

Definition 10 (Hermite Normal Form (adapted from [17])). An n × m matrix M with
integer coefficients is in Hermite Normal Form (HNF) if there exists r ≥ 0 and a strictly
increasing map f from [r + 1, n] to [1,m] satisfying the following properties

1. The first r rows of M are equal to 0.

2. Mj,f(j) ≥ 1 for j ∈ [r + 1, n].

3. Mk,f(j) = 0 for k ∈ [f(j) + 1, n]

4. 0 ≤Mi,f(j) < Mj,f(j) for i ∈ [0, j − 1].

When det(M) 6= 0, Definition 10 says that M is in HNF if and only if M is upper
triangular with positive diagonal and the entries in each column are non-negative and
bounded above by the diagonal entry in that column, i.e. 0 ≤Mj,i < Mi,i for j > i.

One final set of invariants that are useful in analyzing lattices are the elementary
divisors. These determine the structure of the finite abelian group Zn/L.

Theorem 3 (Elementary divisor theorem (adapted from [17])). Let L be a Z-submodule of
L′, and suppose rank(L) = rank(L′) = n. The elementary divisors of L in L′ are uniquely
determined positive integers s1, . . . , sn that satisfy

1. For 1 ≤ i < n we have si+1|si.
2. As Z-modules, we have the isomorphism

L′/L '
⊕

1≤i≤n

(Z/siZ).

3. There exists a Z-basis (v1, . . . ,vn) of L′ such that (s1v1, . . . , snvn) is a Z-basis of L.

The lattices we will consider have very distinctive elementary divisors.

Definition 11 (q-ary lattice). A full-rank lattice (L, ρ) of rank n for which qZn ⊆ L ⊆ Zn
is a q-ary lattice.

Any lattice is q-ary for q that is an integer multiple of the least common multiple of
the elementary divisors of L, i.e. lcm(s1, . . . sn)|q. An extreme case that occurs frequently
in lattice based cryptography is when there exists k for which s1 = · · · = sk = q and
sk+1 = · · · = sn = 1.

13

The q-ary lattices that one frequently encounters in the literature on lattice based
cryptography are presented with respect to a matrix A ∈ Zm×n, either as Λq(A) or Λ⊥q (A)
where:

Λq(A) = {y ∈ Zn : xA ≡ y (mod q) has a solution x ∈ Zm} (2.7)

Λ⊥q (A) = {y ∈ Zn : AyT ≡ 0 (mod q)}. (2.8)

2.2 Computational Problems on Lattices

The main computational tasks associated to lattices are the shortest and closest vector
problems. The cryptosystems we consider will have reductions to these problems, and
they will play an essential role in the concrete cryptanalysis of the schemes. Of course,
it may be possible to attack the cryptosystems from an entirely different perspective, so
these may not be the end of the story.

Definition 12 (The Approximate Shortest Vector Problem, SV Pγ). Given a basis B for
a lattice L of rank n, find a non-zero element of v ∈ L such that

‖v‖ ≤ γ · λ1(L)

Definition 13 (The Approximate Closest Vector Problem, CV Pγ). Given a basis B for a
lattice L of rank n, and an element t ∈ L⊗ R, find an element of v ∈ L such that

‖v − t‖ ≤ γ ·min
x∈L
‖x− t‖.

Definition 14 (Bounded Distance Decoding, BDDα). Given a basis B for a lattice L of
rank n, and an element t ∈ L ⊗ R that is promised to be within distance α · λ1(L) of L,
find the closest vector to t.

2.3 Ideal Lattices and Module Lattices

It is often cumbersome to work with lattices – basic operations such as matrix multiplication
take cubic time and quadratic space with respect to the rank. Consequently, there has been
significant interest in developing cryptography based on lattices with algebraic structure
that enables fast operations and more compact representations.

14

There are a wealth of interesting algebraic objects that have underlying Z-module struc-
ture, and any of these can be turned into a lattice. Group rings and the rings of integers of
algebraic number fields are the objects most frequently used to construct compact lattices
for cryptographic use. Of these, the integers of cyclotomic fields of prime or power-of-two
conductor are by far the most common.

For the remainder of this section, let R be a ring that is a free abelian group of finite
rank under addition.

Definition 15 (Module lattice). A lattice (L, ρ) is called a module lattice if there exists
an R-module M and a Z-module isomorphism M → L.

Ideal lattices, as one might guess from their name, are a special case of module lattices
for which the module under consideration is an R-submodule of R itself.

Definition 16 (Ideal lattice). A lattice (L, ρ) is called an ideal lattice if there exists an
ideal I ⊆ R and a Z-module isomorphism I → L.

Note that module lattices are defined as lattices with the structure of R-modules, and
not as R-modules with the structure of lattices. As such, they inherit notions such as rank
and volume from lattices. For example, “the rank of L” is its rank as a Z-module, not as
an R-module.

The notion of q-ary lattice (Definition 11) generalizes readily. Mirroring Equations 2.7
and 2.8 for any ~a ∈ Rm we define the q-ary module lattices

Λq(~a) = {~y ∈ Rm : s · ~a ≡ ~y (mod q) has a solution s ∈ R} (2.9)

Λ⊥q (~a) = {~y ∈ Rm :
m∑
i=1

aiyi ≡ 0 (mod q)}. (2.10)

Note that these definitions only apply to cyclic R-modules1, but they can be extended
to arbitrary generating sets of R-modules in the obvious way. We defer making this gener-
alization as will only utilize it briefly when discussing intersections of lattices of the type
from Equation 2.9.

1A cyclic R-module is one that is generated by a single element of Rm.

15

2.4 Convolution Polynomial Rings

The first module lattices considered in the context of cryptography came from modules
over the group ring of a cyclic group, and these were presented as the ring of integer
polynomials modulo xN − 1.

These rings will be of primary importance for us, so we will henceforth define

RN = Z[x]/(xN − 1). (2.11)

Such rings are occasionally called convolution polynomial rings, owing to the fact that
multiplication in RN has the form of cyclic convolution2:(

N−1∑
i=0

fix
i

)(
N−1∑
j=0

gjx
j

)
=

N−1∑
i=0

N−1∑
j=0

figjx
i+j ≡

N−1∑
k=0

(
N−1∑
i=0

figk−i

)
xk (mod xN − 1).

We represent elements of RN as either polynomials or as elements of ZN according to
the natural isomorphism

f0 + f1x+ · · ·+ fN−1x
N−1 7→ [f0, f1, . . . , fN−1].

To provide the most flexibility we may even mix notation by letting RN act on ZN by
right multiplication, i.e. by defining

[f0, f1, . . . , fN−1] · x = [fN−1, f0, . . . , fN−2]

and extending this action by linearity. In this way we obtain an algebra isomorphism
between RN and the sub-algebra of End(ZN) corresponding to circulant matrices. The
isomorphism is given explicitly by the map Circ : RN → End(ZN):

Circ(f) =


f0 f1 . . . fN−1

fN−1 f0 . . . fN−2
...

...
. . .

...
f1 f2 . . . f0

 . (2.12)

As convolution polynomial rings are the core algebraic objects underlying NTRUEn-
crypt and NTRUMLS, so some general statements about their structure are in order.

2Note that the index arithmetic is modulo N in this equation

16

First note that xN − 1 is reducible over Z for all N > 1, as can be seen from the
familiar formula for the summation of a geometric series: xN − 1 = (x− 1)

∑N−1
i=0 x

i. For

prime N , the polynomial
∑N−1

i=0 x
i can be seen to be irreducible over Z by performing

the substitution x 7→ x + 1 and applying Eisenstein’s criterion. In general, for arbitrary
composite N , this polynomial is reducible, but its factorization can be determined using a
bit of number theory.

For d ∈ Z≥2 we will denote by ζd ∈ C a primitive dth root of unity. Clearly xN − 1 has
roots at exactly the N distinct powers of ζN ; thus

xN − 1 =
N∏
i=1

(x− ζ iN). (2.13)

A standard result in number theory (see, for instance, [78]) is that the minimal polynomial
of ζd over Q is given by the so called dth cyclotomic polynomial

Φd =
∏

1≤k≤d
(k,d)=1

(x− ζkd) ∈ Q[x]. (2.14)

The minimality of Φd establishes that it is irreducible. We will additionally show that
Φd has integer coefficients, and finally that xN −1 has a complete factorization over Z into
cyclotomic polynomials.

The roots of Φd are also roots of the monic polynomial with integer coefficients xd− 1,
hence the roots of Φd are algebraic integers. By the well known relationship between the
coefficients of a polynomial and elementary symmetric functions of its roots this implies
that Φd has coefficients that are algebraic integers. Since Φd ∈ Q[x] its coefficients must
be algebraic integers in Q, hence Φd ∈ Z[x].

The claimed factorization of xN − 1 is given by

xN − 1 =
N∏
i=1

(x− ζ iN) =
∏
d|N

∏
1≤k≤d
(k,d)=1

(x− ζkN/dN) =
∏
d|N

Φd. (2.15)

For convenience we now list a few easy to compute cyclotomic polynomials:

• Φ1 = x− 1

• Φ2k = x2k−1
+ 1

17

• Φp = xp−1 + xp−2 + · · ·+ x+ 1 for prime p

• Φn =
∏

d|n(xn/d − 1)µ(d) for all N (by Möbius inversion of Equation 2.15).

It is customary at this juncture to point out that not all cyclotomic polynomials have
coefficients in {−1, 0, 1}. In fact an elegant argument due to Schur shows that there are
cyclotomic polynomials with coefficients of arbitrary magnitude. In particular, for t > 2
primes p1 < · · · < pt such that p1 + p2 > pt, there is a coefficient of Φp1···pt equal to 1− t.
As the first integer satisfying the constraints is 3 · 5 · 7 = 105 it’s quite easy to be deceived
by small examples. A bit of trivia: it was Emma Lehmer, spouse of the Derrick H. Lehmer
we met in the introduction, who gave the first unconditional proof that the coefficients of
ΦN can be arbitrarily large as N ranges over products of just t = 3 primes [51].

Returning to our main task, an application of the Chinese remainder theorem reveals
the structure of RN :

Fact 4 (Structure of RN).

RN = Z[x]/(xN − 1) '
∏
d|N

Z[x]/(Φd). (2.16)

We will quite frequently work in RN,q = RN/qRN for a prime or prime-power q ∈ Z.
Another standard result in the study of cyclotomic fields yields the factorization of Φd in
Z[x]/(p) for prime p.

Fact 5 (Primes above p in Q(ζd)). Let r = ordZ∗d(p). Note that r|ϕ(d) where ϕ(d) is
Euler’s totient function, and ϕ(d) = deg(Φd). There are ϕ(d)/r irreducible factors of Φd

in Z[x]/(p) each of degree r.

Let q = pk and let r(d) = ordZ∗d(p). Fact 5 immediately gives us an analogue of Equation
2.16 for RN,q:

Fact 6 (Structure of RN,q).

RN,q '
∏
d|N

Z[x]/(q,Φd) '
∏
d|N

(
Fqr(d)

)ϕ(d)/r(d)
. (2.17)

Finally, calculating the number of invertible elements of RN/qRN is entirely analogous
to the case of the integers modulo a composite and is given by a suitable generalization of
the totient formula.

18

Fact 7 (Number of invertible elements in RN,q).∣∣(RN/qRN)∗
∣∣ = qN

∏
d|N

(
1− q−r(d)

)ϕ(d)/r(d)
. (2.18)

19

Chapter 3

NTRUEncrypt

NTRUEncrypt is a public key encryption scheme developed in the mid-90s by Jeff Hoffstein,
Jill Pipher and Joe Silverman at Brown University [34]. The scheme was first presented
in August 1996 in a minutes-long talk at the rump session of CRYPTO ’96, and a paper
was submitted to CRYPTO ’97 in February of the following year. Perhaps surprisingly,
given the enormous impact that NTRUEncrypt has had on the cryptographic community
in the 18 years since then, the paper was rejected. It did eventually appear in print in the
proceedings of ANTS ’98 [39].

Lattice based cryptography, and the use of lattice reduction algorithms as a tool for
cryptanalysis, had been considered previously. Lattice reduction, the LLL algorithm in
particular, played an essential role in showing that early attempts at building cryptosystems
based on the knapsack problem were insecure [4]. It was also used by Don Coppersmith
to attack textbook RSA with partial knowledge of the plaintext [19]. On the constructive
side, lattices burst onto the scene in 1996 with Ajtai’s demonstration of a function that is
provably one-way assuming that the shortest vector problem is hard in the worst-case [5].
This was quickly followed by a proposal from Ajtai and Dwork for a public key encryption
scheme with security that depends on the nc-unique shortest vector problem being hard in
the worst-case [6]. Then at CRYPTO ’97 a heuristic, but much more efficient, public key
encryption scheme was proposed by Goldreich, Goldwasser, and Halevi [30].

Even the heuristic lattice based systems failed to be competitive with existing systems
based on the RSA or discrete logarithm problems. They relied on full rank lattices pre-
sented as submodules of Zn, and hence had public and private keys of length O(n2) bits, and
required matrix multiplication as a basic operation. The primary benefit of NTRUEncrypt,
from a practical perspective, is its use of lattices with exceptional algebraic structure. The

20

module-lattices used in NTRUEncrypt admit linear presentations of keys, and quasilinear
multiplication operations.

Practice-oriented systems have largely followed NTRUEncrypt in using lattices with
algebraic structure as lattice cryptography has matured. The theoretical community, in
parallel, has made great improvements in the efficiency of schemes that can be said to
rely only on worst-case assumptions. In between are systems such as Ring-LWE that are
provably as hard as worst-case problems on lattices with some algebraic structure.

We are left with a spectrum of schemes along an axis between efficiency and prov-
able security. At the far end towards efficiency is NTRUEncrypt, followed by Ring-LWE
instantiated at parameters for which its security proof carries little weight, followed by ag-
gressively optimized unstructured lattice schemes, then Ring-LWE in general, and finally
general lattice schemes with a worst-case security assumption.

No significant attacks have emerged that exploit the algebraic structure of NTRUEn-
crypt as presented below, or Ring-LWE in prime or power-of-two conductor cyclotomic
fields, though it is possible to instantiate either scheme insecurely by choosing the ring
poorly.

The inventors of NTRUEncrypt have also pursued commercialization and standardiza-
tion. A patent was filed in 1997 (U.S. Patent No. 6081587) that will expire on August
19, 2017. The patent was assigned to Security Innovation, the current owner, in 2009. In
2013 Security Innovation made the patent free to use in software licensed under the GPL
or similar free software licenses. Additional patents were filed for related schemes, such
as NTRUSign, and for efficiency enhancements. U.S. Patent No. 7031468 covers the use
of “product-form” keys and blinding polynomials, was filed in 2001, and will expire on
August 24, 2021.

The primary goal of this chapter is to provide concrete parameter sets for NTRUEncrypt;
however it also stands as a self-contained description of the scheme. In Section 3.3.3
we discuss the variant of NTRUEncrypt standardized in the Efficient Embedded Security
Standard #1 [2]. Any system seeking to use NTRUEncrypt should make the modifications
to the textbook scheme required by this standard. Some details concerning how to do so
are omitted here; the interested reader should refer to the standard.

21

3.1 Primitives

The first step in instantiating NTRUEncrypt is to select the ring in which operations will
take place. The canonical choice, and the choice we make here, is

RN = Z[x]/(xN − 1).

The degree, N , is typically taken to be a prime between four hundred and one thousand.
It should be noted that there are instantiations that use other rings such as Z[x]/(x2k + 1)
and Z[x]/(xN − x− 1) – we will not consider these here.

The other public parameters are: q, an integer modulus defining the ring

RN,q = RN/(q) = (Z/qZ)[x]/(xN − 1);

p, an integer or polynomial of small degree; and subsets of RN designating the key-,
message- and blinding-spaces1.

Specific considerations for the choice of q and p are discussed in Section 3.4.1. For
now assume that they take the common values: q is a power of 2, q ≈ 8N , and p = 3.
We will examine several choices for the requisite subsets of RN , all based around trinary
polynomials with a fixed number of coefficients equal to ±1. To facilitate this discussion
we introduce the following sets:

Definition 17 (Common subsets of RN).

TN =
{

trinary polynomials in RN

}
TN(d, e) =

{
trinary polynomials in RN with
exactly d ones and e minus ones

}
PN(d1, d2, d3) =

{
product form polynomials in RN

a1a2 + a3 : ai ∈ TN(di, di)

}
.

The last of these is optional. Product form keys and blinding polynomials were intro-
duced in [41] and are covered by U.S. Patent No. 7031468 until August 2021.

An NTRUEncrypt private key consists of a pair of elements (f , g) of RN , each drawn
from one of these sets. A parameter set will specify whether the private key element f is of
product form or not. If it is then f is chosen as f = 1 + pF , otherwise F ∈ PN(d1, d2, d3)
or F ∈ TN(df , df).

1Blinding polynomials are used for ciphertext randomization

22

The element g is chosen from TN(dg + 1, dg). In all cases, df , dg, d1, d2, and d3 are
chosen such that an element drawn from one of the aforementioned sets will have roughly
N/3 coefficients equal to +1, N/3 coefficients equal to 0, and N/3 coefficients equal to −1.
Product form elements may end up with coefficients outside of {−1, 0, 1}, however they
will still be expected to have 1-norm of roughly 2N/3.

An NTRUEncrypt public key is h ∈ RN with coefficients in [−q/2, q/2) such that

fh ≡ g (mod q).

Well chosen parameter sets ensure that h exists with overwhelming probability with respect
to a uniform choice of (f , g) in the private key space. Equivalently, well chosen parameter
sets ensure that almost all choices of f are invertible in RN,q.

As NTRUEncrypt is a public key encryption scheme its essential primitives are key gen-
eration, encryption, and decryption. We have essentially covered key generation already,
but the basic sketch of the process is shown in Algorithm 1 for completion.

Algorithm 1 NTRUEncrypt Key Generation

Input: A full set of NTRUEncrypt parameters.
1: repeat
2: F ←$ PN(d1, d2, d3) or TN(df , df)
3: f = 1 + pF ∈ RN,q

4: until f is invertible in RN,q

5: repeat
6: g ←$ TN(dg + 1, dg)
7: until g is invertible in RN,q

8: h = f−1g ∈ RN,q

Output: Private key (f , g), Public key (1,h)

We will delay giving algorithmic descriptions of encryption and decryption until Section
3.3.3, as there are some details that must be covered before we can sketch primitives that
are secure. Here we give just a flavor of how the operations work.

The encryption procedure will output elements of RN/(p), hence the message space
must be some set of coset representatives for (p)RN in RN . For p = 3 we select the set of
minimal norm representatives: the trinary polynomials2 TN .

2In practice we will restrict to a subset of fixed hamming weight, see Section 3.4.3.

23

Encryption of m ∈ TN to the public key h is a randomized process that involves select-
ing a “blinding polynomial” from one of the sets of Definition 17. A typical instantiation
will define the set of blinding polynomials as either TN(df , df) or PN(d1, d2, d3). The en-
crypting party selects the blinding polynomial, r, uniformly at random from this set and
computes the ciphertext as

c = prh+m.

Decryption is deterministic, but is not be guaranteed to succeed for all parameteriza-
tions. The decrypting party computes

fc ≡ prg + fm (mod q),

then computes the minimal norm representative of fc+ (q) and calls this a. If the param-
eters have been chosen well this satisfies

a ≡ fm (mod p),

with overwhelming probability over the encrypting party’s choice of r. Supposing that this
is the case, from f = 1 + pF we obtain

a ≡ (1 + pF)m ≡m (mod p),

thus the decryption process has succeeded in recovering m.

Note that it is possible to instantiate NTRUEncrypt with an arbitrary f that is invertible
modulo p. In this case one must perform a final multiplication by f−1 mod p to recover
m.

3.2 The NTRU Lattice

NTRUEncrypt is readily described as a lattice based encryption scheme in which the main
objects interest are RN -module lattices of the type given by Equation 2.9. Specifically, the
lattice associated to a user’s key is

Λq ((f , g)) = {(a, b) ∈ R2
N : ∃s ∈ RN , s · (f , g) ≡ (a, b) (mod q)}.

The following lemma encapsulates some basic facts about these lattices.

24

Lemma 8. Suppose f and g are invertible modulo q. Let f q ∈ RN be such that ff q ≡ 1
(mod q), and h ∈ RN be such that of h ≡ gf q (mod q). Then

Λq ((f , g)) = Λq ((1,h))

and is an RN -module lattice of rank 2N and volume qN .

Proof. We will handle the equality of the two lattices first. We have

Λq ((f , g)) = {(a, b) : ∃s ∈ RN , s · (f , g) ≡ (a, b) (mod q)}
= {(a, b) : ∃s ∈ RN , (sf) · (1, gf q) ≡ (a, b) (mod q)}
= {(a, b) : ∃s′ ∈ RN , s

′ · (1,h) ≡ (a, b) (mod q)}
= Λq ((1,h)) .

In the third line we have used the fact that if s ∈ RN then so is sf .

For the rank 2N claim, one can easily verify that the rows ofCirc(1) Circ(h)
Circ(q) 0

0 Circ(q)

 (3.1)

are a spanning set for Λq ((1,h)). However, since (q, 0) = q · (1,h)−h · (0, q) the 2N rows
of

H =

(
Circ(1) Circ(h)

0 Circ(q)

)
(3.2)

are sufficient, and the lattice is of rank at most 2N . Finally, the lattice must be of rank at
least 2N , hence equal to 2N , since qZ2N ⊆ Λq ((1,h)).

Finally, for the volume, since H is a basis for the lattice the volume of the lattice is
given by

det(HHT)1/2 = det(H) = qN .

One may also check that if h is chosen as the unique representative of gf q + (q) with
coefficients in [0, q − 1], then the matrix 3.2 is in Hermite normal form by Definition 10.

The choices of f and g suggested above lead to lattices that are somewhat atypical
among lattices of rank 2N and volume qN . The Gaussian heuristic (Definition 7) estimates
the first minima of L = Λq ((f , g)) as

GH(L) =

√
2N

2πε
det(L)1/2N =

√
qN

πε
,

25

however we know that there are vectors in the lattice of norm

‖(f , g)‖2 ≈
√

4N/3.

Assuming that q ≈ 8N and that λ1(L) = ‖(f , g)‖ then we see that the shortest vectors
of NTRU lattices are unusually short. We have GH(L)/λ1(L) ≈

√
N , whereas for random

lattices we would expect this quantity to be approximately 1.

3.3 Standardized NTRUEncrypt

The simple “textbook” variant of NTRUEncrypt is not fit for use on the Internet or in
other potentially adversarial environments. This is commonly the case with public key
cryptosystems – it would be inadvisable to use unpadded RSA, for instance. For production
systems one should implement NTRUEncrypt as specified in the most recent version of the
Efficient Embedded Security Standard #1, currently v3.1 [2]. The standard specifies,
in particular, the Short Vector Encryption Scheme (SVES), a CCA-2 secure variant of
NTRUEncrypt. It also standardizes auxiliary functions, some of which are security critical,
and provides explicit parameter sets.

3.3.1 Additional parameters

This section provides a list of the additional parameters needed for SVESfor reference in
the following sections.

SVES Parameter (dm). The minimum number of +1 coefficients, −1 coefficients, and 0
coefficients that a polynomial m must have in order to be used for SVES encryption.

SVES Parameter (igfC). A constant depending on N such that there exists an integer
k for which kN/2c is close to 1. Used for sampling uniformly from [0, N − 1].

SVES Parameter (minCallsMask). The number of calls that the Mask Generation Func-
tion must make to ensure a negligible probability of exhausting its bit pool while generating
a mask.

SVES Parameter (minCallsR). The number of calls that the Index Generation Function
must make to ensure a negligible probability of exhausting its bit pool while generating a
blinding polynomial. Depends on igfC.

26

Remark. Both minCallsMask and minCallsR serve to prevent attacks based on timing
the decryption process, such as that presented in [73].

SVES Parameter (bLen). The number of octets provided to the Blinding Polynomial
Generation Function for ciphertext randomization.

Remark. Historically bLen has been taken to be equal to the security parameter, however
in recent parameter sets [37] it has been taken to be twice that so as to resist quantum
attacks.

SVES Parameter (mLen). The maximum length of a plaintext in bits.

SVES Parameter (hTruncLen). The number of bits of the public key to include in calls
to the Blinding Polynomial Generation Function.

Remark. Realistically, bLen, mLen, and hTruncLen will always be chosen as a multiple
of 8, and it might be better to define these explicitly as a number of octets instead of bits.

3.3.2 Support functions

Mask Generating Function

The use of Z[x]/(xN − 1) rather than, say, Z[x]/(ΦN) requires that we be careful not to
leak information through the ring homomorphism Z[x]/(xN − 1)→ Z[x]/(x− 1) given by
evaluation at 1.

The blinding polynomial r is generated such that r(1) = 0. Hence a ciphertext c ≡
prh+m (mod q) satisfies

c(1) ≡ p · r(1) · h(1) +m(1) (mod q) (3.3)

≡ p · 0 · h(1) +m(1) (mod q) (3.4)

≡m(1) (mod q). (3.5)

As a consequence, the sketch of NTRUEncrypt provided above is not even IND-CPA
secure – an adversary can simply select two messages such thatm(1) 6= m′(1) and they will
be able to distinguish their encryptions. In order for NTRUEncrypt to satisfy any reasonable
definition of security it is necessary that messages be padded prior to encryption.

A Mask Generating Function (MGF) for a set S takes as input a string seed of seedLen
bits (potentially � log2(|S|)) and outputs an element of S “uniformly at random.” Of

27

course, no actual function can satisfy this definition, but one can reasonably approximate
an ideal MGF using a hash function. EESS #1 defines a mask generating function,
MGF-TP-1 (Algorithm 2), for the set of trinary polynomials, TN .

Roughly, rather than computing the ciphertext as c = prh +m the encrypting party
first encodes prh as a bitstring R, and computes m′ ∈ TN such that

m′ ≡m+ MGF-TP-1(R) (mod p).

This final value is used to produce the ciphertext in the typical manner c = prh+m′.

The ordinary decryption procedure recovers m′ and consequently prh. The decrypting
party is then able to compute m = m′−MGF-TP-1(“prh”) mod p.

It is essential that MGF-TP-1 operate in constant time. Hence you will see in Algo-
rithm 2 that seed expansion is performed at the beginning of the routine. The amount
of expansion, controlled by minCallsMask must be sufficient to ensure that the pool of
bits is large enough to generate a trinary polynomial of degree N with all but negligible
probability.

The appropriate value of minCallsMask depends on the output length of the hash
function. Five uniform trits can be extracted from eight uniform bits with probability
35/28 = 243/256. Hence for an ` bit output minCallsMask should be the smallest k for
which

bN/5c∑
i=0

(
k`/8

i

)(
13

256

)i(
243

256

)k`/8−i
is negligible.

28

Algorithm 2 MGF-TP-1

Input: seed ∈ {0, 1}∗,minCallsMask,N
1: Z = Hash(seed)
2: buf = Hash(Z|0) | Hash(Z|1) | . . . | Hash(Z|minCallsMask)
3: v = 0 ∈ Z[x]
4: i = 0
5: for each octet O in buf do
6: if O < 35 then
7: Choose (c0, . . . , c4) ∈ {0, 1, 2}5 such that

∑4
j=0 cj · 3j = O

8: Let c′j ∈ {−1, 0, 1} be the minimal integer representative of cj mod 3.
9: v = v + c′0x

i + · · ·+ c′4x
i+4

10: i = i+ 5
11: end if
12: end for
Output: v mod xN {Truncate v to its first N coefficients}

Remark. Several small details have been omitted from Algorithm 2. See [2] for a complete
specification. Note that the procedure expands the seed to a fixed length up front. This is
to avoid timing attacks that analyze the number of calls made to the hash function during
mask generation. See section 3.4.5 for details.

Index Generating Function

In order to generate both keys and blinding polynomials one must be able to sample
uniformly from TN(d, e). EESS #1 defines routines for such sampling that make use of an
Index Generating Function, IGF-2. An Index Generating Function is a method for sampling
a fixed size subset of [0, N−1] – a procedure that is slightly more difficult to do in constant
time than mask generation since the indices cannot be sampled independently.

While there are a variety of possible techniques, it can be tedious to determine proba-
bilistic upper bounds on the number of bits any given technique will consume. In order to
avoid timing attacks the procedure must consume a fixed amount of randomness regardless
of the subset generated, in particular it must expand the input seed to a fixed length via
a fixed number of calls to the hash function.

29

Algorithm 3 IGF-2

Input: seed ∈ {0, 1}∗,minCallsR, igfC,N
1: Z = Hash(seed)
2: buf = Hash(Z|0) | Hash(Z|1) | . . . | Hash(Z|minCallsR)
3: indices = ∅
4: for each igfC-bit unsigned integer k in buf do
5: if k < 2igfC − (2igfC mod N) then
6: n = k mod N {in [0, N − 1]}
7: if n 6∈ indices then
8: indices = indices ∪ k
9: end if

10: end if
11: end for
Output: indices

As simple as generating random elements of TN(d, e) may seem, there are perhaps some
open problems here. It has been noted3 that a naive method of tracking used indices, e.g.
initializing a list of zeros of length N and switching entries to 1 after they has been selected,
could leak the selected subset through a cache timing attack. The obvious alternative is
to store a list of the selected elements, then perform a pairwise comparison with each new
candidate for entry. This O(N2) variant comes with a significant performance degradation,
particularly for parameter sets that use trinary, rather than product-form, elements. It may
be worthwhile to consider a different IGF entirely.

The parameter minCallsR is derived in Section 3.4.5.

Other functions

Before describing SVES we need two more utility function, one

EncodeN : {0, 1}bLen(N) × {0, 1}mLen(N) → TN ,

for converting bit strings to trinary ring elements. Unlike the mask generating func-
tion, EncodeN makes no attempt to produce coefficients that are uniformly distributed
in {−1, 0, 1}. It does however need to be an invertible transformation, and we will denote

3Scott Fluher, private communication. November 2015

30

its inverse by DecodeN . In actuality, EncodeN also takes a short string representing the
parameter set as input, but we will omit this detail here.

The second utility function, BGFN , uses IGF-2 to produce a blinding polynomial from
a bitstring and the public key,

BGFN : {0, 1}bLen(N) × {0, 1}mLen(N) ×RN → S,

where S is either TN(df , df) or PN(d1, d2, d3) depending on the parameter set. The trivial
implementation is satisfactory; assuming IGF-2 provides its output in random order, simply
take the first, say, df coefficients from IGF-2 as the indices of the positive coefficients and
the next df coefficients as the indices of the negative coefficients.

3.3.3 SVES

SVES key generation is identical to Algorithm 1. Encryption and Decryption are described
in Algorithms 4 and 5.

Algorithm 4 NTRUEncrypt SVES Encryption (sketch)

Input: Public key h, message M ∈ {0, 1}mLen, and a parameter set with p = 3.
1: repeat
2: b←$ {0, 1}bLen
3: m′ = EncodeN(b,M)
4: r = BGFN(b,M,h)
5: R = p · r · h mod q
6: v = MGF-TP-1(R)
7: m = m′ + v mod p
8: until The number of +1s, −1s, and 0s in m are each ≥ dm.
9: c = R+m

Output: Ciphertext c

31

Algorithm 5 NTRUEncrypt SVES Decryption (sketch)

Input: Key pair ((f , g), (1,h)), ciphertext c ∈ RN,q, and a parameter set with p = 3.
1: m = fc mod p
2: R = c−m
3: v = MGF-TP-1(R) where R is a bitstring representing R
4: m′ = m− v mod p
5: (b,M) = DecodeN(m′)
6: r = BGFN(b,M,h)
7: if prh = R mod q and the number of +1s, −1s, and 0s in m are each ≥ dm then
8: result = M
9: else

10: result = ⊥
11: end if
Output: result

3.4 SVES Parameters

3.4.1 Choice of N , q, and p

The earliest NTRUEncrypt parameter sets, those in the manuscript circulated at Crypto
’96 and in the paper from ANTS ’98 [34] [39], make use of prime N . Sophie-Germain
prime, in particular, were recommended as these would maximize the probability that f
and g were invertible modulo any prime factors of q or p. It was later suggested, in a
technical report on parameter selection [72], that N could be taken to be a power of 2 as
this would speed the computation of convolutions using FFT-based techniques. Gentry
quickly demonstrated that composite N were inadmissible [28].

For all φ that divide xN − 1 there is a ring homomorphism RN → Z[x]/(φ), and one
must consider this structure when evaluating the complexity of problems such as SVP and
CVP in RN -module lattices. It was observed by Gentry that, for composite N , there are
ring homomorphisms Θd : RN → Z[x]/(xd− 1) for d|N that have the potential to preserve
a significant amount of geometric information. Provided that N/d is small, short elements
will be mapped to short elements, and it may be possible to recover the secret key using
lattice reduction in dimension 2d [28].

As a consequence, NTRUEncrypt is always instantiated with prime N . For such N the

32

101, 139, 149, 163, 173, 197, 211, 269, 293, 317
379, 389, 461, 509, 557, 653, 677, 701, 773, 797
821, 859, 907, 941, 1061, 1109, 1123, 1229, 1277, 1291

1301, 1373, 1483, 1493, 1637, 1733, 1747, 1901, 1949, 1973

Table 3.1: First 40 primes N > 100 for which ord(Z/NZ)∗(2) = ord(Z/NZ)∗(3) = (N − 1)

ring modulus factors into irreducibles over Q as

xN − 1 = (x− 1)ΦN = (x− 1)(xN−1 + · · ·+ x+ 1).

The probability that a random element of RN is invertible modulo q is maximized when
ΦN is irreducible modulo q. In fact, in this case, an element v will be invertible in RN,q

provided that v(1) 6≡ 0 (mod q). As we saw in Section 2.4, if e is the order of r in (Z/NZ)∗

then ΦN modulo r has e factors of degree (N−1)/e for any prime r. Thus we should choose
N, p, and q in such a manner as to ensure that the order of each prime factor of pq is large,
say equal to (N − 1) or (N − 1)/2, in (Z/NZ)∗. This will ensure that there is a negligible
probability of failure per loop iteration in Algorithm 1. Similar considerations apply for
other choices of q.

The only other restrictions on p and q are that they generate coprime ideals of RN . If
p and q are both integers then we simply require that gcd(p, q) = 1. For SVES we fix p = 3
and only consider q that are a power of 2. This choice is motivated by the need for fast
arithmetic modulo q, and by the impact of p on decryption failure probability (see Section
3.4.4).

Table 3.1 contains a list of primes suitable for use as N when p = 3 and q is a power of
2. Appendix A.3 contains two larger lists that ignore the order of 3 in (Z/NZ)∗. When f
is of the form 1 + pF , these latter lists provide more flexibility in the choice of N without
increasing the risk of generating non-invertible f .

The justification for a choice of N and q is largely up to security considerations; we will
address these in Chapter 5.

3.4.2 Private key parameters

We will only consider private keys that are drawn from one of the sets in Definition 17.

In order to maximize the size of the key space, while keeping a prescribed number of
±1s in g, we take

dg = bN/3e,

33

and for non-product form f we select df = dg. For product form f we would like the one-
norm of F 1F 2 + F 3 to be roughly 2N/3. A simple calculation shows that it is expected
to be ≈ 4d1d2 + 2d3. So we let α ∈ R be the unique positive root of

2x2 + x−N/3,

and take d1 to be dαe, i.e.

d1 =

⌈√
3 + 8N

48
− 1

4

⌉
.

The choice of d2 and d3 is now somewhat arbitrary. But keeping with our goal of having
2d1d2 + d3 ≈ N/3 we might take

d2 =

⌈
N

6d1

− 1

2

⌉
and

d3 = max

(⌈
N

3
− 2d1d2

⌉
,

⌈
d1

2
+

1

2

⌉)
.

3.4.3 Minimum message weight

Since ciphertexts reveal the value of m(1) (see Eq. 3.3), we must ensure that extreme
values of m(1) do not help an adversary launch a plaintext recovery attack. A very
small (or large) value for m(1) signals that the message has a low (resp. high) number
of coefficients equal to +1, and this could be exploited by an adversary to reduce the
combinatorial search space for the message. In order to constrain m(1) to a narrow range,
the SVES encryption routine will reject a ciphertext and generate a new one with fresh
randomness unless sufficiently many coefficients take each value in {−1, 0, 1}.

The choice of dm also affects the decryption failure probability. Without the message
weight restriction an adversary could attempt to increase their probability of triggering a
decryption failure by searching for valid ciphertexts with large Hamming weight messages.

Finally the choice of dm affects the efficiency of the scheme, as a violation of the dm
constraint will force an entirely new ciphertext to be generated.

Let
I(dm) = {(i, j) : dm ≤ i < (N − 2dm), dm ≤ j < (N − dm − i)}.

34

For efficiency we will only consider dm satisfying:

2−10 ≥ 1− 3−N

 ∑
(i,j)∈I(dm)

(
N

i

)(
N − i
j

) . (3.6)

Security considerations will force us to take the maximum value satisfying Eq. 3.6.

3.4.4 Probability of Decryption Failure in SVES†

Having fixed the parameters we can finally give a meaningful probability that the SVES de-
cryption algorithm succeeds.

In order for the decryption of c ≡ prh +m (mod q) to succeed, it must be the case
that reducing cf modulo q recovers prg +mf exactly. A sufficient condition is that

‖prg +mf‖∞ < q/2. (3.7)

By the triangle inequality we have

‖prg +mf‖∞ ≤ ‖p‖1‖r‖1‖g‖∞ + ‖f‖1‖m‖∞, (3.8)

and specifying the spaces from which each term is drawn leads us to Fact 9.

Fact 9. Suppose p ∈ Z, g ∈ TN , and m ∈ TN . Then decryption succeeds with certainty if

q > 2(p‖r‖1 + ‖f‖1).

For a parameterization in which product form elements are drawn from PN(d1, d2, d3),
trinary elements are drawn from TN(bN/3e, bN/3e), and f = 1 + pF this is equivalent to:

(product form r,F) q > 8p(2d1d2 + d3) + 2,

(trinary r,F) q > 8pbN/3e+ 2.

These bounds are reasonably tight, in that we can exhibit r and m that would cause
a decryption failure with any q violating the relevant inequality. However such pairs are
extremely rare, and using SVES the decrypting party can be reasonably assured that even
an adversarial encrypting party would have had no control over the choice of r or m,
except indirectly through the choice of b in Line 2 of Algorithm 4. As such, it is fair to
model r and m as being uniformly distributed over their appropriate sample spaces. By

35

doing so it becomes meaningful to ask what the probability of decryption failure is for a
given choice of q.

Furthermore, since ciphertext expansion scales roughly as N log2(q), and ciphertext size
is one of the main drawbacks of NTRUEncrypt, it is advantageous to consider whether q
can be decreased by allowing a small probability of decryption failure.

We will argue that the probability

Prob (a given coefficient of rg +mF has absolute value ≥ c) (3.9)

can be analyzed rather well by an application of the central limit theorem. This was done
for the case of trinary r, g,m,F in [33].

In what follows suppose r and F are drawn uniformly from PN(d1, d2, d3), i.e. r =
r1r2 +r3 and F = F 1F 2 +F 3 with each of ri and F i having di coefficients equal to +1 and
di coefficients equal to −1. Furthermore suppose g is drawn uniformly from TN(dg + 1, dg),
and m is drawn uniformly from TN subject to the dm constraint.

Let X denote the constant coefficient of rg+mF . The spaces from which r and m are
drawn are invariant under permutations of indices, so the choice to analyze this particular
coefficient is without loss of generality4. Each of the four summands in

X = (r1r2g)0 + (r3g)0 + (F 1F 2m)0 + (F 3m)0, (3.10)

has mean zero since ri(1) = F i(1) = 0. Furthermore each summand is itself a sum of
either 4d1d2 or 2d3 coefficients of g or m (with repetition allowed).

For instance,

(r1r2g)0 =
∑
i,j

(r1)i(r2)j(g)−(i+j)

and only the 4d1d2 pairs of indices corresponding to non-zero coefficients of r1 and r2

contribute to the sum. We can think of each index pair as selecting a sign ε(i) and an
index a(i) and rewrite the sum as

(r1r2g)0 =

4d1d2∑
i=1

ε(i)(g)a(i).

4Note that while the individual coefficients have the same distribution, they are not independent.
Eventually we will argue, by a union bound, that the probability of decryption failure is less than or
equal to N times the probability that a single coefficient is too large. So we can ignore inter-coefficient
dependencies in our analysis.

36

While the terms in this sum are not formally independent (since the indices a(i) may not
be distinct, and g has a prescribed number of non-zero coefficients) extensive experiments
show that the variance of (r1r2g)0 is still well approximated by treating (g)a(i) as a random
coefficient of g, i.e. as taking a non-zero value with probability (2dg + 1)/N . Doing this we
calculate the variance as:

E
[
(r1r2g)2

0

]
≈

4d1d2∑
i=1

E
[
(ε(i)(g)a(i))

2
]

=

4d1d2∑
i=1

E
[
(g)2

a(i)

]
= 4d1d2 ·

2dg + 1

N
.

Identical arguments can be applied to approximate the variances of the other terms
of Eq. 3.10. Some care must be taken with the terms involving m as it could be chosen
adversarily to maximize its Hamming weight and hence the probability of a decryption
failure. Due to the dm constraint (Section 3.4.3), the number of non-zero coefficients of m
cannot exceed N − dm. As such we model the coefficients of m as taking ±1 each with
probability (1− dm/N) and 0 with probability dm/N .

With these considerations the variances of the four summands are found to be

σ2
1 = E

[
(r1r2g)2

0

]
= 4d1d2 ·

2dg + 1

N
, σ2

3 = E
[
(F 1F 2m)2

0

]
= 4d1d2 ·

N − dm
N

,

σ2
2 = E

[
(r3g)2

0

]
= 2d3 ·

2dg + 1

N
, σ2

4 = E
[
(F 3m)2

0

]
= 2d3 ·

N − dm
N

.

Using our assumption that it is reasonable to treat the coefficients of each summand as
being independent and identically distributed, the central limit theorem suggests that
each summand will be normally distributed. The distribution of X is then given by the
convolution of the four constituent normal distributions, so it will also be normal with
variance

σ2 = σ2
1 + σ2

2 + σ2
3 + σ2

4 = (4d1d2 + 2d3) · N − dm + 2dg + 1

N
. (3.11)

Applying the same line of argumentation in the non-product form (trinary) case yields,

σ2
5 = E

[
(rg)2

0

]
= 2dr ·

2dg + 1

N
, σ2

6 = E
[
(Fm)2

0

]
= 2df ·

N − dm
N

, (3.12)

σ2 = σ2
5 + σ2

6. (3.13)

The probability that a normally distributed random variable with mean 0 and standard
deviation σ exceeds c in absolute value is given by the complementary error function,
specifically erfc(c/(

√
2σ)). Applying a union bound, the probability that any of the N

coefficients of rg +mF is greater than c is bounded above by N · erfc(c/(
√

2σ)).

37

Decryption failure can only occur if a coefficient of rg+mF exceeds (q−2)/2. Putting
this all together we have Lemma 10 (marked with an asterisk due to the heuristics used
above).

Lemma* 10. For SVES with parameters N, q, dg, dm and (df, dr) or (d1, d2, d3)

Pr [Decryption fails] ≤ N · erfc((q − 2)/(2
√

2 · p · σ)) (3.14)

where σ as in Eq. 3.11 (product form) or Eq. 3.13 (trinary).

For an alternative instantiation identical to SVES except for the use of f = 1 + F

Pr [Decryption fails] ≤ N · erfc((q − 2)/(2
√

2 · σ)) (3.15)

with σ2 = p2(σ2
1 + σ2

2) + σ2
2 + σ2

4 or σ2 = p2σ2
5 + σ2

6.

3.4.5 Number of IGF calls

Recall that in NTRU-SVES-Decrypt (Algorithm 5) the blinding polynomial, r, is recon-
structed from a ciphertext, c = prh+m, during decryption. This process involves query-
ing the Index Generating Function with a value that depends on the private key (see Line
3 of Algorithm 5). Silverman and Whyte presented a timing attack on NTRUEncrypt that
exploits non-constant time implementations of the Index Generating Function [73]; we de-
fer to the original paper for details of the attack. The greatest source of non-constant time
behavior in IGF comes from the rejection sampling required to sample a uniform random
subset of [0, N), hence from the variable number of hash functions required to produce
a sufficiently long bitstring from the IGF input. The countermeasure recommended in
[73] and in EESS #1 is simply to fix the number of hash function calls made as a public
parameter. Doing so requires that we compute a number of uniform random bits sufficient
extract 2dr unique indices in [0, N) with overwhelming probability.

In practice we let t and c be positive integers such that tN/c is less than, but close to,
1. So one uniform sample from [0, c) can be converted into one uniform sample from [0, N)
with probability 1− tN/c. Silverman and Whyte define the probability

Pc,N,t(k, d) = Prob

A set of k integers, each chosen uniformly in [0, c)
contains exactly d integers in [0, nN] whose

values are distinct modulo N

 .

If c is a power of two, then the probability that k · log c random bits are insufficient to
produce a d-subset of [0, N) is

∑d−1
i=1 Pc,N,t(k, d). Hence given N, t, c, and d we can search

for k such that this cumulative probability is negligible in the security parameter.

38

Silverman and Whyte give a simple recursion for the probability Pc,N,t(k, d) that can
be evaluated via dynamic programming in time and space that is quadratic in k. While
not overly burdensome, this algorithm can consume a significant amount of memory when
used as a subroutine in a search for optimal parameters. As an alternative we present
an approximation that can be computed with constant space. The approximation is of
sufficient quality to completely supplant the exact method in the case of N = c. In other
cases the approximation should be used to provide an upper bound on k before calling the
exact routine.

Dupuis et al. [22] provide refined large deviation asymptotics for occupancy problems,
in particular they study the large deviation probability that fewer than d out of N urns
are occupied after k balls have been thrown into them at uniformly random.

Fix k, the number of balls to be thrown, N the total number of urns, and d the minimum
number of urns that must be filled. Define θ = k/N and ξ = d/N . Let ρ be the unique
positive root of

θ = −1

ρ
log(1− ρξ),

and let
σ =

√
ξ/(1− ρξ)− θ,

and let

J(θ) = (θ − ξ) log ρ+ (1− ξ) log(1− ξ)− (1− ρξ)
ρ

log(1− ρξ).

By [22, Theorem 2.1], for sufficiently large N , the probability that more than k balls would
be required to occupy at least d urns is given by

p1(k) ≈ e−N ·J(θ)

√
2πσ2N

(
ρ

ρ− 1

)√
1− ρξ
1− ξ

.

And in the limit as N →∞ the two sides are equal.

One can use this estimate to quickly search for a k for which p1(k) is negligible. As one
typically only has access to random bits, and N is not typically a power of two, one must
also calculate the number of bits required to generate k uniform samples in [0, tN) with
overwhelming probability. This is a simple calculation involving the binomial cumulative
distribution function with parameter tN/c. Combining these estimates gives a conservative
upper bound on the number of bits required to sample a uniform random d-subset of [0, N).
A single application of the exact routine recommended by Silverman and Whyte can then
be used to improve this bound if necessary.

39

3.5 Explicit algorithm for computing parameters†

Algorithm 6 determines the smallest recommended N from Table A.1 or Table A.2 that
allows for k bit security. Additional details, such as recommendations on how to efficiently
perform the search in Line 17, may be found in our implementation which is available at
https://github.com/NTRUOpenSourceProject/ntru-params.

40

https://github.com/NTRUOpenSourceProject/ntru-params

Algorithm 6 NTRUEncrypt parameter generation

Input: Desired security level k.
1: Let nj be the jth value, ordered by magnitude, from either Table A.1 or Table A.2.
2: Set j = 1.
3: Set N = nj.
4: Set dg =

⌊
N
3

⌉
.

5: Set d1 =
⌈

1
4

(√
1 + 8N

3
− 1
)⌉
{The next integer above the positive root of 2x2 + x −

N/3.}
6: Set d2 =

⌈(
N
3
− d1

)
/(2d1)

⌉
.

7: Set d3 = max
(⌈

d1+1
2

⌉
,
⌈
N
3
− 2d1d2

⌉)
.

8: Set dm to be the largest value satisfying Equation 3.6.
9: Set k1 =

⌊
1
2

log2 (|PN(d1, d2, d3)|/N)
⌋
. {Cost of direct combinatorial search gives an

upper bound on the security.}
10: if k1 < k then
11: Increment j.
12: Goto line 3.
13: end if
14: Set σ according to Equation 3.11:

σ =

(
(4d1d2 + 2d3) · N − dm + 2dg + 1

N

)1/2

.

15: Set q to be the smallest power of 2 satisfying

N · erfc
(

(q − 2)/(6
√

2σ)
)
< 2−k1 .

{Estimate security}
16: Search for a hybrid parameter K that minimizes the maximum of the cost estimates

for hybrid attacks. Equation 5.19 gives the cost of preprocessing a basis for the hybrid
attack, and Equation 5.18 gives the cost of combinatorial search on the key space.

17: Let k2 be the security estimate from Line 16.
18: if k > min(k1, k2) then
19: Increment j.
20: Go to Line 3.
21: end if
22: Let q′ = q/2.
23: if N · erfc

(
(q′ − 2)/(6

√
2σ)
)
< 2−k then

24: Set q = q′

25: Go to Line 16.
26: end if
Output: [N, q, d1, d2, d3, dg, dm].

41

3.6 Parameters for NTRUEncrypt

3.6.1 EESS #1 v2

The parameters in Table 3.2 were originally recommended in EESS #1 version 2 in 2007 and
are still believed to meet the security level advertised in 2007 against classical adversaries.
More recent versions of EESS #1 have deprecated the use of SHA-1, and hence the N = 401
and N = 439 parameter sets have been replaced. The security estimates presented here
are justified in Chapter 5.

EESS #1 Parameter Sets and Security Estimates

Hybrid Attack Product form log2 Advertised

N q d1 d2 d3 dg dm K Cost search cost dec. fail prob. security

401 2048 8 8 6 133 101 154 116 145 -217 112

439 2048 9 8 5 146 112 175 133 147 -195 128

593 2048 10 10 8 197 158 264 204 193 -139 192

743 2048 11 11 15 247 204 360 280 256 -112 256

Table 3.2

3.6.2 New parameters in EESS #1 v3

The parameters above do not take quantum adversaries into consideration. The time/space
tradeoff in the hybrid attack (Section 5.5) can be replaced by a Grover search to achieve
the same asymptotic time complexity as the hybrid attack with a space complexity that is
polynomial inN . One may expect that a quantum time/space tradeoff could do even better,
however this seems unlikely given the failure of quantum time/space tradeoffs against
collision problems in other domains [10]. Several proposals in this direction have been
made, such as [24], however these assume unrealistic models of quantum computation. For
now, it seems that the best quantum attack on NTRUEncrypt is the hybrid attack with
meet-in-the-middle search replaced by Grover search in the Kth projected lattice.

Fluhrer has noted that there are weaknesses in the EESS #1 parameter sets assuming
worst-case cost models for quantum computation [24]. In particular, if one Grover iteration
is assigned cost equivalent to one classical operation then attacks on the hash functions
used in key generation and encryption can break the EESS #1 parameter sets.

42

Post-Quantum Parameter Sets and Security Estimates

Estimate 2 Product form log2 Classical Quantum

N q d1 d2 d3 dg dm K Cost search cost dec. fail prob. security est. security est.

443 2048 9 8 5 148 115 177 134 147 -196 128 128

509 2048 9 9 8 170 134 214 164 176 -171 160 128

587 2048 10 10 8 196 157 260 201 193 -139 192 128

743 2048 11 11 15 247 204 360 280 256 -112 256 128

Table 3.3

Developing a realistic quantum cost model is outside the scope of this work. However,
we can easily provide parameter sets that are secure in Fluhrer’s model by using a 256 bit
hash function and sufficiently large seeds. The parameters in Table 3.3 all have 128 bit
security against quantum adversaries assuming that that BGF and MGF are instantiated
with SHA-256, and that bLen is taken to be 256 in Algorithm 4. One should also ensure
that any deterministic random bit generators used in key generation or encryption are
instantiated with at least 256 bits of entropy from a secure random source.

The parameter sets for N = 443, N = 509, and N = 587 in Table 3.3 are new, N = 743
is the same as ees743ep1 from IEEE 1363.1 [3]

3.6.3 Parameters without decryption failure

One can sacrifice some security against lattice reduction attacks in order to completely
eliminate decryption failures; see Table 3.4. In the case ofN = 743 this has no consequences
for the security of the scheme as combinatorial attacks outperform lattice reduction attacks
for that parameter set.

Estimate 2 Product form Classical Quantum

N q d1 d2 d3 dg dm K Cost search cost dec. fail prob. security est. security est.

587 4096 10 10 8 196 157 239 184 193 0 184 128

743 4096 11 11 15 247 204 332 258 256 0 256 128

Table 3.4: NTRUEncrypt parameter sets that eliminate decryption failures

43

3.6.4 Paramters with non-trivial f mod p

If one takes f = 1 +F with F ∈ TN(df , df) or F ∈ PN(d1, d2, d3) rather than f = 1 + pF
it is sometimes possible to decrease q and achieve a higher level of security. This comes at
the cost of a more computational intensive decryption procedure (an extra multiplication
in RN/(p)) and a higher probability of decryption failure.

For some N the resulting decryption failure probability is still small enough that it may
be acceptable for some use cases. Table 3.5 presents product form parameter sets for this
variant.

Hybrid Attack Product form log2 Classical Quantum

N q d1 d2 d3 dg dm K Cost search cost dec. fail prob. security est. security est.

401 1024 8 8 6 133 101 169 129 145 -90 129 128

443 1024 9 8 5 148 115 194 148 147 -81 147 128

Table 3.5: NTRUEncrypt parameter sets with non-negligible decryption failure rates

44

Chapter 4

NTRUMLS

The development of lattice based signature schemes has been substantially more fraught
than that of encryption schemes. A signature scheme was proposed in the same paper that
presented the GGH encryption scheme [30], and later an efficient instantiation, NTRUSign,
was proposed using NTRU lattices [38]. These schemes were completely broken by Nguyen
and Regev in 2006 [61]. They demonstrated that statistical information contained in
transcripts of signature/message pairs could be exploited to reveal the “shape” of the
signer’s private basis. These attacks were improved by Ducas and Nguyen in [21] to squash
several countermeasures to the original attack that has been proposed.

The first successful signature schemes based on lattices were proposed by Gentry, Peik-
ert, and Vaikuntanathan in 2008[29]. They introduced a notion of a pre-image sampleable
trapdoor function (PSF) and showed how to instantiate such a function using lattices. In
their scheme, a user’s public key is a PSF f and a signature is a point y such that f(y) is
equal to the hash of the message to be signed. The signer, using their trapdoor information
for f , is able to sample such a y from a fixed public distribution in a manner that reveals
nothing that an adversary could not have learned from f itself.

A second method for developing secure lattice signature schemes was developed by
Lyubashevsky in a series of papers starting in 2009 [56, 57]. These schemes are based on
the Fiat-Shamir transform and do not require the use of trapdoor functions.

A Fiat-Shamir type signature scheme, PASS, developed by Hoffstein, Pipher, and Sil-
verman in the mid 90s, was revived as PASSRS in 2013 using Lyubashevsky’s rejection
sampling technique to remove information from the transcript that had plagued earlier
variants [35].

45

The hardness assumption underlying PASSRS has not received the same amount of at-
tention as assumptions such as (Ring-)SIS, (Ring-)LWE, or the NTRU assumption. PASSRS
is unlikely to receive much attention given the existence of schemes based on more standard
assumptions with comparable efficiency. In late 2013 Jeffery Hoffstein set out to develop
a new transcript secure signature scheme that was more “NTRU-like” than PASS. The
result was a hash-and-sign type scheme called NTRUMLS [36].

The core idea of NTRUMLS is that a short basis for a lattice can be used to find lattice
points with coefficient vectors that satisfy arbitrary equivalence relations modulo a prime
p. Under suitable assumptions, the ability to produce a lattice point satisfying a random
relation is proof that one is in possession of a short basis.

The key recovery problem for NTRUMLS is identical to NTRUEncryptfor the same values
of N , q and p. Security against forgery attacks requires a new assumption, but the best
known attack is an approximate closest vector problem in the intersection of L and pZn.

The technique can also be applied to general lattices and NTRUMLS can be though
of as simply an explicit instantiation in NTRU lattices. We’ll first describe the generic
technique at a high level, then explore the specifics through NTRUMLS.

4.1 Modular Lattice Signatures (MLS)

The public parameters are N, p, r defined as follows. A signer’s secret key is a short basis,
M , for a lattice L of rank n, their public key is the HNF basis for L. Messages to be signed
are elements of (Z/pZ)n. A signature on m will be a lattice point inside a hypercube of
radius r with a coefficient vector that is congruent to m modulo p.

There are two restrictions on the lattices that may be used. First, it must be possible to
efficiently sample a lattice point uniformly at random from those within BN(r), the origin
centered hypercube of radius r. Second, the map from L → (Z/pZ)n given by reduction
modulo p must be onto. Otherwise it may not be possible to find a valid signature for
every message. A large class of lattices satisfying the first condition are q-ary lattices with
q = r + δ for some small positive δ. The second condition requires that any basis for the
lattice is invertible mod p.

To sign a message pointm ∈ (Z/pZ)n, the signer first chooses a lattice point s uniformly
at random in the origin centered hypercube of radius r. They then compute a such that

a ≡ (m− s)M−1 (mod p).

46

The lattice point σ = s+aM is taken to be a candidate signature for m. The final crucial
step in signing is to reject candidate signatures that may reveal partial information about
the initial point s that was chosen in generating the signature. This is fully explained in
Section 4.4, but is done by a simple infinity-norm based rejection sampling procedure.

The principal benefit of MLS is its simplicity compared with other lattice based sig-
nature schemes. There is no need to sample from a complicated distribution, such as a
discrete Gaussian distribution. Furthermore, while the scheme requires rejection sampling,
the rejection criteria is a simple infinity norm check.

4.2 NTRUMLS

NTRUMLS is a compact and efficient instantiation of MLS in NTRU lattices. As in Section
3.2 an NTRU lattice is an RN -module lattice of the form

Λq ((f , g))

from Equation 2.9, where f and g are known to be particularly short.

The pair (f , g) ∈ R2
N serves as a user’s private key. It is necessary for f to be invertible

modulo q, and for g to be invertible modulo p. As in NTRUEncrypt we may consider both
product form and trinary instantiations, i.e. the f component may be chosen as

f = pF with F ∈ TN(df + 1, df),

or as
f = p(1 + F) with F ∈ PN(d1, d2, d3).

Note the small difference with NTRUEncrypt keys: an NTRUMLS key always satisfies f ≡ 0
(mod p). Our analysis below will assume F ∈ TN , minor alterations to the proofs are
occasionally needed for product-form F .

Ignoring this small difference, NTRUMLS key generation is identical to NTRUEncrypt key
generation. The g component is an element of TN(dg + 1, dg), and the public key is

h = g/f mod q.

Note that the conditions of Lemma 8 are met, so Λq ((f , g)) = Λq ((1,h)), and this lattice
is of rank N and volume qN .

47

We define the subset of RN contained in a hypercube of radius k as:

C(k) = {f ∈ RN : ‖f‖∞ ≤ k}. (4.1)

For example C(1) is precisely the set of trinary polynomials TN .

We also define the subset of lattice points for which the first coordinate is within a
hypercube of radius k and the second is within a hypercube of radius `:

L(k, `) = Λq ((f , g)) ∩ (C(k)× C(`)). (4.2)

NTRUMLS Parameter (A). The largest integer such that C(A) ⊆ C(q/2) and C(A)
contains an equal number of points in each coset of pZN .
Explicitly, let

A′ =

⌊
q − p

2p

⌋
, and A =

⌊
pA′ +

p

2

⌋
.

Then
C
(
pA′ +

p

2

)
= C(A) ⊆ C(q/2),

To ease notation we will also keep this definition of A′ throughout.

NTRUMLS Parameter (Bs, Bt). Positive integers such that, for every key (f , g), the
probability that

a · (f , g) ∈ L(Bs, Bt)

is non-negligible with respect to a uniform choice of a ∈ C(1).

In generating a signature one first applies a hash function (more specifically, a mask
generating function as defined in Section 3.3.2) to the message and public key to obtain a
point (sp, tp) ∈ C

(
p
2

)
×C

(
p
2

)
. Then one samples a lattice point (s, t) uniformly at random

from L(A, q
2
−Bt) conditioned on (s, t) ≡ (sp, tp) (mod p).

For NTRU lattices this is best accomplished by first sampling s0 uniformly at random
from C (A) conditioned on s0 ≡ sp (mod p). The signer then computes t0 = s0h mod q
and

a = g−1 · (t0 − tp) mod p.

Finally the signer outputs (s, t) = (s0, t0) + a · (f , g) as a signature iff

1. a · (f , g) ∈ L(Bs, Bt), and

48

2. (s, t) ∈ L(A−Bs,
q
2
−Bt).

Verification simply involves hashing the message to (sp, tp), calculating t = sh mod q
and checking that

1. (s, t) ∈ L(A−Bs,
q
2
−Bt), and

2. (s, t) ≡ (sp, tp) (mod p).

Remark. Note the two asymmetries between the “s-side” and the “t-side,” first in the use of
different bounds Bs and Bt, then in the norm of valid signatures A−Bs and q

2
−Bt. The use

of Bs and Bt is due to the difference in the norms of f and g. We have ‖af‖∞ ≈ 3‖ag‖∞,
hence optimizing the probability of acceptance in signing necessitates the use of different
bounds.

The second asymmetry, the use of A − Bs instead of q
2
− Bs did not appear in [36],

but has come from our experience implementing NTRUMLS. To illustrate why A is used
instead of q

2
suppose q is even. If there is any chance that ‖s0 + sp‖∞ = q/2 then reducing

s modulo q might send q/2 to −q/2 and cause the s-side equivalence check to fail during
verification. This can be mitigated by simply not reducing s modulo q, but doing so
complicates the encoding of signatures for transmission. The use of A complicates our
description but simplifies the implementation.

4.3 NTRUMLS Algorithms∗

Key generation will look familiar– it is essentially identical to Algorithm 1.

Algorithm 7 NTRUMLS Product Form Key Generation

Input: A full set of NTRUMLS parameters.
1: repeat
2: F ←$ TN(df + 1, df) or PN(d1, d2, d3)
3: f = pF ∈ RN,q

4: until f is invertible in RN,q

5: repeat
6: g ←$ TN(dg + 1, dg)
7: until g is invertible in RN,q and RN,p

8: h = f−1g ∈ RN,q

Output: Private key (f , g), Public key (1,h)

49

Algorithm 8 NTRUMLS Signature Algorithm

Input: (f , g,h, µ), where (f , g) is a private key, h is the corresponding public key, and
µ ∈ {0, 1}∗ is a document to be signed.

1: (sp, tp)←− Hash
(
h, µ

)
2: repeat

3: r
$←− C(A′)

4: s0 = sp + pr
5: t0 = hs0 mod q
6: a = g−1(tp − t0) mod p
7: (s, t) = (s0, t0) + a · (f , g)
8: until ‖af‖∞ ≤ Bs and ‖ag‖∞ ≤ Bt and ‖s‖∞ ≤ A−Bs and ‖t‖∞ ≤ q

2
−Bt

Output: (s, t, µ)

Remark. Since t ≡ h ∗ s (mod q) it does not need to be published explicitly. Furthermore
since s ≡ sp (mod p) and sp can be obtained by hashing h with the message, the signer can
simply publish (s−sp)/p as the signature. The resulting signature is of length Ndlog2 q/pe
bits.

Algorithm 9 NTRUMLS Verification Algorithm

Input: (s, t, µ,h)
1: valid←− yes
2: (sp, tp)←− Hash(h, µ)
3: if t 6≡ h ∗ s (mod q) then
4: valid←− no
5: end if
6: if ‖s‖ > q

2
−Bs or ‖t‖ > q

2
−Bt then

7: valid←− no
8: end if
9: if (s, t) 6≡ (sp, tp) (mod p) then

10: valid←− no
11: end if
Output: valid

Proposition 11. The Signing Algorithm produces signatures that are verified as valid by
the Verification Algorithm.

Proof. This is an easy exercise.

50

4.4 NTRUMLS Transcript Security∗

In this section we prove that, under a reasonable assumption, a transcript of signatures
created using the signing algorithm contains no information that is not already available
to someone who knows the public verification key h. We do this by showing that an honest
signer produces signatures that are uniformly distributed on L

(
A−Bs,

q
2
−Bt

)
. We are

able to show that for any document hash, (sp, tp), the signer’s distribution is precisely the
uniform distribution on the subset of signature points in (sp, tp) + pZ2N (Proposition 12).
For uniformity on the entire signature region we must assume that each coset of pZ2N

contains roughly the same number of signature points (Assumption 15).

We further show that a party who knows h alone can produce a transcript of pairs

(Valid Signaturei,Document Hashi)i=1,2,3,...

that is statistically indistinguishable from an analogous transcript produced using the
signing algorithm and the private key (f , g). Specifically, the signature points produced
by such a party are uniform on L

(
A−Bs,

q
2
−Bt

)
, and the document hashes (obtained

by reducing the signature coefficients modulo p) are uniform on C(p/2).

We start by analyzing the transcript created using the signing algorithm and (f , g).
We note that the rejection sampling condition is what allows us to prove that the resulting
signatures are uniformly distributed in a certain space of allowable signatures.

We assume that our hash function outputs document hashes

(sp, tp) ∈ C(p/2)2

that are uniformly distributed on C(p/2)2. We use Steps 3 through 7 of the Signing
Algorithm to define a signing function

(s, t) = σ′(f , g, sp, tp, r).

Thus σ′ is a map

σ′ :

private key (f , g)︷ ︸︸ ︷
C (p)× C (1) ×

document hash (sp, tp)︷ ︸︸ ︷
C
(p

2

)
× C

(p
2

)
×

random element r︷ ︸︸ ︷
C (A′) −→ L

(
A+Bs,

q

2
+Bt

)
︸ ︷︷ ︸

potential signature (s, t)

given explicitly by
σ′(f , g, sp, tp, r) = (s0 + af , t0 + ag), (4.3)

51

where

s0 = sp + pr, (4.4)

t0 ≡ hs0 (mod q) with t0 ∈ C(q/2), (4.5)

a ≡ g−1(tp − t0) (mod p) with a ∈ C(p/2). (4.6)

We will write
Ω′ = C (p)× C (1)× C

(p
2

)
× C

(p
2

)
× C(A′)

for the domain of σ′.

We now introduce rejection sampling by defining

ΩBs,Bt =

(f , g, sp, tp, r) ∈ Ω′ :

(s, t) := σ′(f , g, sp, tp, r)
= (s0 + a ∗ f , t0 + a ∗ g),∥∥s∥∥ ≤ A−Bs,

∥∥t∥∥ ≤ q
2
−Bt,∥∥a ∗ f∥∥ ≤ Bs,

∥∥a ∗ g∥∥ ≤ Bt

 .

The restriction of σ′ to ΩBs,Bt , which we denote by σ, is then a map

σ : ΩBs,Bt −→ L
(
A−Bs,

q

2
−Bt

)
.

The following proposition says that every signature that is valid for the document hash
(sp, tp) has the same number of preimages in C(A′).

Proposition 12. The signature function σ has the following property : For a given

private key (f , g),

document hash (sp, tp) ∈ C
(p

2

)
× C

(p
2

)
,

the output of σ, when queried on uniformly random r ∈ C(A′), is uniformly distributed
over the set {

(s, t) ∈ Lh
(
A−Bs,

q

2
−Bt

)
: (s, t) ≡ (sp, tp) mod p

}
of valid signatures for (sp, tp). Equivalently, the size of the set

{r ∈ C(A′) : σ(f , g, sp, tp, r) = (s, t)}

is the same for all

(s, t) ∈ L
(
A−Bs,

q

2
−Bt

)
satisfying (s, t) ≡ (sp, tp) (mod p).

52

Proof. Since we know from Proposition 11 that σ(f , g, sp, tp, r) is congruent to (sp, tp)
modulo p, it is clear that there is zero probability of generating the signature (s, t) if
(s, t) 6≡ (sp, tp) (mod p). So we assume henceforth that

(s, t) ≡ (sp, tp) (mod p). (4.7)

The random element r used to generate a signature is chosen uniformly from the
set C(A′), so there are (2A′+1)N possible choices for r. Hence the probability of obtaining
(s, t) as a signature on (sp, tp) is equal to (2A′+ 1)−N times the number of elements in the
set

Σ(f , g, s, t) =
{
r ∈ C(A′) : σ(f , g, sp, tp, r) = (s, t)

}
. (4.8)

The key to counting the size of the set Σ(f , g, s, t) is the bijection described in the following
lemma.

Lemma 13. Let

V =
{
b ∈ C

(p
2

)
:
∥∥b ∗ f∥∥ ≤ Bs and

∥∥b ∗ g∥∥ ≤ Bt

}
,

and let
(s, t) ∈ L

(
A−Bs,

q

2
−Bt

)
satisfy (s, t) ≡ (sp, tp) (mod p).

Then there is a well-defined bijection of sets

φ : V −→ Σ(f , g, s, t),

b 7−→ s− sp
p
− bf

p
. (4.9)

Proof. First, since the coefficients of s−sp are multiples of p, and similarly f has coefficients
divisible by p, we see that the polynomial on the right-hand side of (4.9) has coefficients
in Z.

We next need to show that φ(b) ∈ Σ(f , g, s, t), which by the definition of Σ(f , g, s, t)
means showing that φ(b) ∈ C(A′) and

σ
(
f , g, sp, tp, φ(b)

)
= (s, t).

First note that because s ∈ C (A−Bs), sp ∈ C
(
p
2

)
, and bf ∈ C(Bs), the triangle

inequality gives ∥∥φ(b)
∥∥ =

∥∥∥∥1

p
(s− sp − bf)

∥∥∥∥ ≤ ⌊A−Bs + p
2

+Bs

p

⌋
= A′.

53

The use of the floor function is justified by noting that φ(b) has integer coefficients. This
establishes that φ(b) ∈ C (A′).

Next we use the four formulas (4.3)–(4.6) to compute the signature σ
(
f , g, sp, tp, φ(b)

)
:

s0 = sp + pφ(b)

= sp + p

(
s− sp
p
− bf

p

)
= s− bf , (4.10)

t0 ≡ hs0 (mod q)

≡ h(s− bf) (mod q)

≡ hs− bg (mod q) since h ≡ f−1g (mod q),

≡ t− bg (mod q) since (s, t) ∈ L. (4.11)

Since (s, t) ∈ L
(
A−Bs,

q
2
−Bt

)
and b ∈ C, we have∥∥s0

∥∥ ≤ ∥∥s∥∥+
∥∥b ∗ f∥∥ = A−Bs +Bs = A,∥∥t0∥∥ ≤ ∥∥t∥∥+
∥∥b ∗ g∥∥ =

q

2
−Bt +Bt =

q

2
,

i.e. (4.11), similar to (4.10), is an equality, not just a congruence. Continuing with the
computation of σ

(
f , g, sp, tp, φ(b)

)
, we use (4.7) to compute

a ≡ g−1(tp − t0) ≡ b (mod p).

(Note that t ≡ tp (mod p) from (4.6).) Since both a and b are in C(p/2), this tells us
that a = b.

We now use (4.3) to compute the signature

σ
(
f , g, sp, tp, φ(b)

)
= (s0 + af , t0 + ag) definition of σ,

= (s− bf + af , t− bg + ag)

from (4.10) and (4.11),

= (s, t) since a = b.

Hence directly from the definition (4.8) of the set Σ(f , g, s, t), we see that

φ(b) ∈ Σ(f , g, s, t).

54

We next fix an r ∈ Σ(f , g, s, t) and compute how many b ∈ C(p/2) satisfy φ(b) = r.
Since all coefficients of the polyomials s− sp and f are divisible by p, to ease notation we
write

s− sp = pS and f = pF .

We recall that by assumption, the polynomial F is invertible modulo p. We have

φ(b) = r ⇐⇒ S − bF = r

⇐⇒ b ≡ F−1(S − r) (mod p) and ‖b‖ ≤ p

2
.

There is thus exactly one value of b in C(p/2) satisfying φ(b) = r, namely the unique
element of C(p/2) that is congruent to F−1(S−r) modulo p. This shows that φ is bijective,
which concludes the proof of Lemma 13.

Resuming the proof of Proposition 12, we have, for all (s, t) ≡ (sp, tp) (mod p),

Probr←C(A′)

(
signature
is (s, t)

∣∣∣ private key is (f , g) and
document hash is (sp, tp)

)
=

#Σ(f , g, s, t)

#C(A′)
=

#C
#C(A′)

,

where the penultimate equality follows from Lemma 13. This completes the proof of
Proposition 12.

To give a complete proof of transcript security we need a slightly stronger version of
Proposition 2 to be true:

Proposition 14. The distribution of signatures produced by querying σ on uniformly ran-
dom (sp, tp) ∈ R(p/2)2 and uniformly random r ∈ C(A′) is indistinguishable from the
uniform distribution on L

(
A−Bs,

q
2
−Bt

)
.

Proposition 14 is an immediate consequence of Proposition 12 under the assumption
that, for any given h, the number elements of L

(
A−Bs,

q
2
−Bt

)
in each coset of pZ2N

is constant. This certainly fails to be the case for some lattices, for instance h = 1 has
vectors in only pN distinct cosets. However, it seems likely that this assumption holds for
the lattices used in NTRUMLS.

Assumption 15. The elements of L(A− Bs,
q
2
− Bt) are equidistributed among cosets of

pZ2N .

55

We conclude this section by noting that any party with access to h can sample the
uniform distribution on L

(
A−Bs,

q
2
−Bt

)
. One simply generates random s ∈ C(A−Bs)

until h ∗ s ∈ C(q
2
−Bt). Since the signing region contains a large fraction of L

(
A, q

2

)
, this

suceeds after a small number of iterations. A transcript of

((s, t)i, (sp, tp)i)i=1,2,3,...

where (s, t)i is produced in this manner and (sp, tp)i = (s, t)i (mod p) is uniformly dis-
tributed on L

(
A−Bs,

q
2
−Bt

)
× C(p/2) by Assumption 15. By Proposition 14, and the

assumption that the output of Hash is uniform on C(p/2)2, this transcript is indistin-
guishable from one produced by an honest signer. The only difference between the two
transcripts is that the party who used h alone does not know messages, µi, such that
Hash(h, µi) = (sp, tp)i.

4.5 Probability of Generating a Valid Signature∗

To simplify our analysis we let B = dp2N/4e and take

Bs = Bt = B.

With this assumption there is zero probability of rejecting a candidate signature due to∥∥a ∗ s∥∥ > Bs or
∥∥a ∗ t∥∥ > Bt, but the probability of rejection due to non-inclusion in

 L(A−Bs,
q
2
−Bt) is significant. Regardless, we can show that the probability of generating

a valid signature is approximately e−8/k, which is still practical. Further, the probability of
rejection can be made significantly lower by fine-tuning Bs and Bt; our proposed parameters
in Section 4.6 reflect this optimization.

For this section we assume that the various parameters satisfy the conditions given in
Table 4.1.

The rejection criterion says that we only accept signatures whose norm is smaller than
q/2−B, so we want q to be a lot larger than B, or it will be too hard to find an acceptable
signature. We consider the infinity norm of a potential signature

(s, t) = (s0, t0) + (af ,ag)

produced in Step 7 of the signing algorithm. The coefficients of s0 and t0 are in C(q/2),
the coefficents of af are in C(p2N/4), and the coefficients of ag are in C(pN/2). Hence
the coefficients of an (s, t) pair produced by Step 7 satisfy

‖(s, t)‖∞ ≤
q

2
+B. (4.12)

56

N a prime, say, 200 < N < 5000
p a small prime chosen so that N log2(p) is greater

than the desired bit security
B ≤ dp2N/4e
k a small constant, say 2 ≤ k ≤ 50
q an integer coprime with p and satisfying

q ≈ kNB ≈ kp2N2/4

Table 4.1: Parameter guidelines

We will make the simplifying assumption1 that the coefficients of s and t are equally likely
to take on each of the values in the interval (4.12). The rejection criterion says that we
only accept signatures whose coefficents are at most q/2−B. Since we need all 2N of the
coefficients of (s, t) to satisfy this condition, we find that

Prob
(
(s, t) is accepted

)
≈
(
q/2−B
q/2 +B

)2N

.

Using the chosen value

q ≈ kp2N2

4
≈ kNB

from Table 4.1, we find that

Prob
(
(s, t) is accepted

)
≈
(

1− 2B/q

1 + 2B/q

)2N

≈
(

1− 2/kN

1 + 2/kN

)2N

≈ e−8/k,

where for the last equality we use the estimate (1 + t/n)n ≈ et, valid when t is small and n
is large.

1In actuality, the coefficients of the products af and ag tend to cluster more towards 0, since they are
more-or-less hypergeometrically distributed.

57

4.6 NTRUMLS Parameters

Ideally the parameters that NTRUMLS has in common with NTRUEncrypt, namelyN, p, q, df , dg,
would be derivable in exactly the same manner for each system. This would provide some
assurance that at least the key recovery problem in NTRUMLS is precisely as hard as key
recovery in NTRUEncrypt. In order to attain a low rejection rate during signing it is,
unfortunately, necessary to take q larger than one would for the corresponding NTRUEn-
crypt parameter set. As the ratio of N to q has a strong impact on security, this implies
that NTRUMLS will generally be weaker than NTRUEncrypt for the same choice of N .

In the paper describing NTRUMLS the impact of such a large q was ignored, and
consequently the bit security estimates were severely overestimated. In Table 4.2 you can
find the original parameter sets, the original security estimates, and the revised security
estimates following the analysis of Chapter 5. The revised security estimates are based on
the cost of key recovery using the hybrid attack of Section 5.5 and Equation 5.19.

Set #1 Set #2 Set #3 Set #4

N 401 439 593 743
p 3 3 3 3

log2 q 18 19 19 20
Bs 240 264 300 336
Bt 80 88 100 112

d1, d2, d3 8,8,6 9, 8, 5 10, 10, 8 11, 11, 15
Key & signature
size (bytes)

853 988 1335 1765

≈ Prob[accept] 38% 55% 41% 53%
≈ bit security [36] 112 128 192 256
≈ revised bit security 65 70 110 146

Table 4.2: Sample NTRUMLS Parameters from [36]

These parameters were chosen to mirror the existing EESS #1 parameter sets for
NTRUEncrypt at the time. A revised set, using the same N that can be found in the more
recent version of EESS #1 , can be found in Table 4.3. The main difference here is that q
has been decreased, with a corresponding increase in the rejection probability, even when
N has been increased. The evaluation of these parameter sets, and other improvements to
the NTRUMLS scheme, is a topic of ongoing research.

58

Set #1 Set #2 Set #3 Set #4

N 443 563 743 907
p 3 3 3 3

log2 q 16 16 17 17
Bs 138 174 186 225
Bt 46 58 62 75
d1, d2 9,8,5 10, 9, 8 11, 11, 6 13, 12, 7

Public key
size (bytes)

886 1126 1579 1927

Signature
size (bytes)

831 1056 1486 1814

≈ Prob[accept] 8% 2% 6% 2%
≈ bit security 88 126 179 269

Table 4.3: Revised NTRUMLS Parameters

59

Chapter 5

Cryptanalysis

We now move on to the cryptanalysis of NTRUEncrypt and NTRUMLS. Both schemes
depend on the hardness of the approximate closest and shortest vector problems in RN -
module lattices, and our primary goal will be to estimate the concrete difficulty of such
problems. We begin with a discussion of a simple approximation algorithm, Babai’s Nearest
Plane algorithm, for the Closest Vector Problem. This algorithm will be used extensively
by the more sophisticated techniques of the later sections.

5.1 Approximating a closest vector

Recall the setup to a Closest Vector Problem: we are given a basis B = {bi} of a rank n
lattice L, and a target point v ∈ L ⊗ R. The goal is to find x ∈ L such that ‖v − x‖ is
minimized.

Perhaps the most obvious approach is to express v as
∑n

i=1 αibi, with αi ∈ R, and then
let x be the point obtained by rounding each αi to the nearest integer. While conceptually
simple, a treatment in which each coefficient is rounded independently is tantamount to
assuming that the input basis is orthogonal. Such an approach fails to leverage the available
information about the non-orthogonality of the input basis.

An alternative approach, the Nearest Plane algorithm, due to Babai [8], addresses
the issue of the non-orthogonality of the input basis using the Gram-Schmidt vectors.
Specifically, it solves a sequence of one-dimensional CVP instances in projected sublattices
spanned by individual Gram-Schmidt vectors.

60

Babai’s nearest plane algorithm starts by solving the one-dimensional CVP for πB,n(v)
in B(n) = πB,n(L). It then iteratively extends this solution to an approximate closest vector
in B(n−1), then B(n−2), and so on until it reaches B(1) = L. Partial solutions are lifted from
B(i) to B(i−1) by the natural injective map given by

πi(bk) 7→ πi−1(bk) ∀k ∈ [0, N − 1].

This map clearly does not increase the length of the vector’s projection in the B(i) ⊗ R
subspace, however it does introduce some component in the πi−1(bi−1) = b∗i−1 direction.
Hence, through this lifting, a partial solution in B(i) yields a CVP instance in B(i−1).

While this sounds complicated, the algorithm itself (Alg. 10) is the essence of simplicity.
Each one-dimensional CVP instance is solved by rounding an easily computed real number
to the nearest integer.

Algorithm 10 Babai’s Nearest Plane

Input: (B,B∗, t) where
B is a basis of a lattice L of rank n.
B∗ is the Gram-Schmidt orthogonalization of B.
t ∈ L⊗ R is the target point.

Output: A vector in L close to t.
1: w = 0
2: for i = n to 1 do
3: c = 〈t−w, b∗i 〉/〈b∗i , b∗i 〉
4: w = w + bcebi
5: end for
6: return w

The output of Algorithm 10, hereafter the Babai point of t ∈ L⊗R with respect to the
basis B, will approximate the true closest vector to t by a factor that depends crucially on
the “shape” of the input basis. Babai proved that when B is LLL reduced (see Section 5.3)
the distance between the t and the corresponding Babai point is no more than 2n/2−1‖b∗n‖
times the distance between t and the closest lattice point [8].

5.2 Enumeration

There are two ways to improve the quality of the approximation attained by Babai’s Nearest
Plane algorithm. The first, which we will address in coming sections, is to start with a

61

“better” basis. The second is to replace the choice of bce in Line 4 with a search over
integers in some interval about c.

The enumeration algorithms of Fincke-Pohst [23], Kannan [47], Schnorr-Euchner [66],
and Gama-Regev-Nguyen [26], are all variations on this theme. These algorithms differ
either in the initial preprocessing performed on the input basis, or in the strategy used to
control the size of the search space.

An enumeration tree for a basis B is defined by a partial order ≤ on L = ∪ni=0B
(i)

where x ≤ y iff there exists i ∈ [0, n] such that πB,i(y) = x. This partial order defines a
tree in which the nodes of depth i are elements of B(n−i+1); in particular, the root node is
B(n+1) = {0} and the leaves are elements of B(1) = L.

Since πB,i(y) ≤ y+cb∗i−1 for c ∈ Z the tree is of infinite width, however we can “prune”
the tree down to a finite set by imposing a norm constraint on the leaf nodes. For example,
let r ∈ R and consider only leaf nodes in L∩B(r). Since the norm is monotonic with respect
to the partial order on L this intersection yields a finite tree.

In slightly greater detail, if a lattice point x has squared length at most r, then, given
the ith projection of x, the admissible values for xi−1 are constrained by the requirement
that

x2
i−1 ≤

r − ‖πB,i(x)‖2

‖b∗i−1‖
2 −

n∑
j=i

µj,ixj.

This can then be iterated to obtain restrictions on all values j < i. Alternatively, we
may start from the root node, select r ≥ 0, and obtain bounds on all n coefficients:

x2
n‖b∗n‖

2 ≤ r

(xn−1 + µn,n−1xn)2 ‖b∗n−1‖
2 ≤ r − x2

n‖b∗n‖
2

...(
x1 +

n∑
j=2

µj,1xj

)2

‖b1‖2 ≤ r −
n∑
k=2

(xk +
n∑

j=k+1

µj,kxj

)2

‖b∗k‖
2

 .

One’s goal in selecting r is to minimize the number of candidates that must be enu-
merated, and hence the expected running time, while keeping at least one non-trivial leaf
in the pruned tree. Clearly the optimum value is r = λ1(L), but in general this quantity
is unknown. Kannan showed in [47] that using an LLL reduced basis and taking r to be
the length of the first vector of said basis results in a runtime of nO(n). Of course these

62

inequalities may be quite slack for an actual shortest vector. The first, with r = λ1(L) for
instance, would have one search for a shortest vector that is parallel to b∗n even when the
length of b∗n would suggest that such a vector is unlikely to exist.

Using the Gaussian Heuristic one expects the number of nodes at level k to be [27]:

Hk =
1

2
· vol(Bk(

√
r))∏n

i=n+1−k ‖b
∗
i ‖
, (5.1)

and the total number of nodes enumerated to be approximately
∑n

i=1Hk. Various rigorous
bounds are known for different choices of r; see [27] and references therein.

A slight change in strategy makes it possible to consider exponentially smaller (though
still exponentially sized) search spaces. Rather than a constant bound, πB,i(x) ≤ r, applied
at all levels, one can choose n bounds rn ≤ rn−1 ≤ · · · ≤ r1 and ask only that πBi

(x) ≤ ri.
Pruning strategies of this sort were first considered by Schnorr and Euchner [66], and then
expanded upon by Schnorr and Hörner [67]. The later work considered pruning strategies
for which the probability that a non-trivial leaf would remain was less than 1.

Determining optimal choices for the ri can be quite difficult. The current state of the
art is due to Gama, Nguyen, and Regev [27]. They suggest minimizing formulae similar
to Eq. 5.1 with the k-ball replaced by a particular intersection of cylinders. A surprising
outcome of their work is that one can get a roughly 2n/2 reduction in the number of nodes
enumerated while maintaining a non-negligible probability of success. Doing so involves
choosing very aggressive bounds, a strategy they call extreme pruning,

We will revisit extreme pruning after discussing lattice reduction; it is an essential
subroutine of the BKZ-2.0 algorithm and informs our “bit-security” estimates for NTRU-
Encrypt and NTRUMLS parameters.

5.3 Lattice reduction

Bounds on the runtime of enumeration algorithms depend crucially on the “quality” of
the input basis. One’s experience in dimensions one, two, and three might suggest that
one should be able to define a “best” or shortest basis for a lattice, and that this best
basis should consist of minimal elements, those contained in the ball of radius λn(L). This
intuition is flawed; Conway and Sloane proved in 1995 that there is a lattice of rank n = 11
that is generated by its minimal vectors but for which no basis may be found in that set
[18]. Regardless, there are ways to meaningfully rank the quality of bases. In particular

63

there are ways to say that one basis is more “reduced” than another. It is even possible, in
some sense, to define a set of bases that are best. The important question then becomes,
for any particular definition of reduction: is there an efficient algorithm for producing a
“reduced” basis?

Lattice reduction has a long history, but the major breakthrough came in 1982, when
Lenstra, Lenstra, and Lovász introduced a new notion of reduction and a polynomial time
algorithm to find a basis satisfying it [52].

Using the notation of Definition 8 the definition they gave was

Definition 18 (LLL reduced basis). A basis {bi}1≤i≤n of a rank n lattice is LLL reduced
if

1. For all 1 ≤ j < i ≤ n

|µi,j| ≤
1

2
(5.2)

2. For all 1 ≤ i ≤ n (
3

4
− µ2

i+1,i

)
‖b∗i ‖

2 ≤ ‖b∗i+1‖
2. (5.3)

Equation 5.2 is typically referred to as the size-reduction condition, and a basis that
meets only this condition is deemed size-reduced. Equation 5.3 is referred to as the Lovàsz
condition. The constant 3

4
can be replaced by any value δ ∈ (1

4
, 1), and we get a corre-

sponding notion of δ-LLL reduction. A δ close to 1/4 gives the fast runtime, while a δ
close to 1 gives a better reduction.

The following lemma encapsulates a few well known facts about LLL-reduced bases. A
proof may be found in [17], or in practically any reference on LLL.

Lemma 16 (LLL approximation factors). If {bi} is an LLL reduced basis of a rank n
lattice L, then

‖b1‖ ≤ 2(n−1)/2 · λ1(L), (5.4)

‖b1‖ ≤ 2(n−1)/4 · vol(L)1/n. (5.5)

The figure of merit typically used to describe lattice reduction algorithms, since λ1(L)
is rarely known, is the analogue of the constant in Equation 5.5 and is called the Hermite
factor.

64

Definition 19 (Hermite factor). Given a basis for a lattice of rank n an algorithm achieves
Hermite factor δn, or root Hermite factor δ, if it returns a basis with ‖b1‖ ≤ δnvol(L)1/n.

This is not to be confuesd with Hermite’s constant γn for lattices in Zn, which is the
least value such that for all L ⊆ Zn and 1 ≤ d ≤ n(

d∏
i=1

λi(L)

)1/d

=
√
γnvol(L)1/n.

If the inequality of Equation 5.3 is tight for all i, the lengths of the Gram-Schmidt
vectors of an LLL-reduced basis decay geometrically. The Geometric Series Assumption
(GSA), introduced by Schnorr in [68], is the assumption that these inequalities are, on
average, satisfied with equality.

Definition 20 (GSA). For “LLL-like” reduction methods there is a constant η < 1 such
that reduced bases satisfy, on average,

‖b∗i ‖/‖b1‖ = ηi−1.

The validity of this assumption should be checked experimentally in low dimensions
for any family of lattices to which one wishes to apply it. For NTRU, and other q-ary
lattices, the presence of easy-to-find vectors of length q causes the GSA to fail for small
i unless exceptionally strong lattice reduction is used. However, there typically exists an
index beyond which the assumption holds, and a suitable variant of the assumption may
be used.

It is often useful to translate between the GSA slope η and the root Hermite factor δ
that would yield such a slope. Substituting ‖b1‖ = δnvol(L)1/n into the GSA assumption
yields

‖b∗i ‖ = η−(i−1)δm det(Λ)1/m.

Furthermore since the determinant of the lattice is invariant under change of basis and
equal to the product of the Gram-Schmidt Lengths we have

1 =
1

det(Λ)

m∏
i=1

‖b∗i ‖ = η−m(m−1)/2 δm
2

.

Hence
η = δ2m/(m−1). (5.6)

65

Stronger definitions of reduction are also known, although not ones that achieve a
subexponential approximation factor in polynomial time. The strongest notion is that of
Korkine-Zolatarev reduction. Briefly, a Korkine-Zolatarev reduced basis is one that is sized
reduced, and satisfies

‖b∗i ‖ = λ1(B(i)).

That is to say b∗i , the first non-zero vector of the projected basis πB,i(B) is a shortest
vector in the lattice B(i). This is hopelessly difficult to achieve for large dimensions. A far
more useful notion of reduction applies the Korkine-Zolotarev condition to each of the n
sublattices spanned by successive blocks of (at most) k basis vectors from the input. The
LLL algorithm is a special case with k = 2.

Definition 21 (Block Korkine-Zolatarev (BKZ) reduced with blocksize k). A basis {bi}1≤i≤n
of a rank n lattice is BKZ reduced with blocksize k if it is size reduced and

‖b∗i ‖ = λ1 (πB,i({bi, . . . , bj})) (5.7)

where j = min(i+ k, n).

As the definition makes clear, achieving BKZ reduction involves solving SVP in pro-
jected sublattices of rank (at most) k. Schnorr proposed this definition in [65], but it
was several years before Schnorr and Euchner published an algorithm achieving the BKZ
definition [66].

Algorithm 11 BKZ

Input: An LLL reduced basis Bin and a blocksize β
Output: A BKZ-β reduced basis B

1: B = Bin

2: repeat
3: for k = 1 to n− 1 do
4: Find bnew s.t. πB,k(bnew) is a shortest vector in spanZ(πB,k({bk, . . . , bk+β}))
5: Insert bnew into B at index k, remove linear dependency with LLL.
6: end for
7: until no change in B occurs
8: return w

The runtime of their algorithm is difficult to analyze. It is not known, for instance,
whether the number of calls to the SVP subroutine is even polynomially bounded. However
in practice [26], and in reasonable theoretical models [32], this appears to be the case.

66

5.3.1 BKZ Simulation

For a given β we would like to determine the Hermite factor achieved by BKZ-β and
the cost of achieving that factor in terms of, say, the number of calls to the enumeration
subroutine. Any method of doing this will rely on heuristics that must be confirmed, by
experiment, for any particular class of lattices.

A simulation based method for determining the Hermite factor achieved by BKZ-β
was proposed by Chen and Nguyen in [16]. It makes extensive use of both the Gaussian
Heuristic and the Geometric Series Assumption, and additionally requires experimentally
derived average Gram-Schmidt vector lengths for random Korkine-Zolatarev reduced bases
in small dimension (typically ≤ 50).

Very recently Micciancio and Walter have proposed a “self-dual BKZ” algorithm the
analysis of which suggests that simulation is largely unnecessary [59]. In large dimension,
say β > 100, their experiments with self-dual BKZ indicate that the mean value of the
root Hermite factor achieved by block reduction with blocksize β is

δ(β) ≈ GH(Zβ)1/(β−1).

They emphasize that this is the mean root Hermite factor for a certain class of random
lattices, and little is known about, say, the standard deviation.

5.4 Meet-in-the-middle attacks

The private keys of NTRUEncrypt and NTRUMLS are sparse enough that direct combina-
torial attacks on them are often competitive with lattice based techniques.

The simplest approach is to enumerate candidates v and check whether v · (1,h) is
short. If S is the space from which the true private key f component was drawn then by
enumerating v ∈ S this approach will recover the private key after O(|S|/N) attempts.
The optimal S for such an attack is small enough that it is unlikely that any choice of v
other than f · xk would yield a short vector, hence the stated complexity.

One can do substantially better by leveraging a “meet-in-the-middle” style time/memory
tradeoff. Let S ′ be a set such that S ⊆ {a− b : a, b ∈ S ′} and suppose that f = s1 − s2

with s1, s2 ∈ S ′. Then since f · (1,h) = (f , g) mod q we have

s1 · (1,h) = (f , g) + s2 · (1,h) mod q.

67

Since f and g have small coefficients we infer that

s1 · (1,h) ≈ s2 · (1,h) mod q,

and hence we can find f by searching for approximate collisions in S ′ · (1,h).

The adaptation of meet-in-the-middle search algorithms to the structure of binary
NTRU keys is due to Odlyzko and described in [71]. Generalizations to other private
key types are described by Howgrave-Graham in [42]. In the best case |S ′| = O(

√
|S|),

so under the assumption that all approximate collisions can be detected, a meet in the
middle search on the full product form NTRUEncrypt key space would require both time
and memory of order O(

√
|PN(d1, d2, d3)|). Similarly for trinary keys the cost would be

O(
√
|TN(df + 1, df)|).

Of course, it’s possible that the map s 7→ s · (1,h) is not optimal for performing a
collision search, and in fact this appears to be the case. Suppose one has guessed the last
K coefficients of a shortest vector v, and let w be the corresponding zero-prefixed vector,
i.e. wi = 0 for i ∈ [0, n−K] and wi = vi for i ∈ [n−K,n− 1]. Then the Babai point of w
with respect to a suitably reduced basis may be v.

Schnorr’s “Generalized Birthday Sampling” [68] and Howgrave-Graham’s “Hybrid at-
tack” [42] both apply a meet-in-the-middle collision search to vectors output by the Nearest
Plane algorithm, as we shall see in the next section.

5.5 The hybrid attack

How should one incorporate knowledge of a particular coefficient distribution into pruned
enumeration? Such knowledge is common for lattice cryptosystems – if for no other reason
than that the key generation procedure is known. For NTRUEncrypt and NTRUMLS the
fact that the private keys are sampled from a distribution on sparse trinary polynomials
provides a tremendous hint for enumerating short vectors. However, the common pruning
strategies are too coarse to exploit this structure.

In 2007 Nick Howgrave-Graham developed an attack on NTRUEncrypt that led to a
major re-evaluation of the parameter sets that had been proposed until that time [42]. The
attack was presented as a combination of lattice reduction based preprocessing and meet-in-
the-middle combinatorial search, and was dubbed “the hybrid attack.” It makes essentially
no use of the algebraic structure of the NTRU lattice under attack, and can be readily
generalized to arbitrary lattices. In the following section we present a general exposition

68

using the language of projected lattices (Definition 9), and re-interpret the attack as a form
of pruned enumeration. In the sequel we present a more concrete description that follows
Howgrave-Graham’s paper.

5.5.1 Preprocessing for general lattices

The hybrid attack attack begins by partitioning the lattice into a set of projected sublattices
lying in orthogonal subspaces. The input is a Hermite normal form basis, H = {hi}1≤i≤n,
for a euclidean lattice L of rank n. Indices r1 and r2 are chosen such that 1 ≤ r1 < r2 < n,
and the basis is partitioned into three sets:

H1 = {hi : 1 ≤ i < r1}
H2 = {hi : r1 ≤ i < r2}
H3 = {hi : r2 ≤ i < n}.

The aforementioned projected sublattices are

L1 = spanZ(πH,1(H1)) = spanZ(H1)

L2 = spanZ(πH,r1(H2))

L3 = spanZ(πH,r2(H3)).

Each serves a distinct purpose: vectors are enumerated in L3, lifted to L after computing
an approximate closest vector in L2, and finally “binned” according to their value in Zn/L1.
With suitable assumptions on the enumerated vectors, and the quality of the approximate
closest vectors found in L2, the difference between the vectors forming an approximate
collision under the binning function will be a short vector in L.

Before delving into the details it should be noted that, in the author’s opinion, no
analysis of the hybrid attack presented thus far is entirely satisfactory. The discussion here
will not substantially improve the matter, but it is hoped that future work will answer some
of the outstanding questions related to the attack’s probability of success as a function of
the effort spent in lattice reduction and enumeration.

The three lattices, L1, L2, and L3 lie in mutually orthogonal subspaces of L⊗R. Hence
each element of L3, when presented as an integer combination of πH,r2(H3), can be mapped
to a point in L2 ⊗ R by composing the natural injective map from L3 → L given by

n∑
i=r2

viπH,r2(hi) 7→
n∑

i=r2

vihi

69

with the projection πH,r1 : L → L2 ⊗ R. We will refer to a point in L2 ⊗ R produced in
this way as the CVP Instance induced by the element of L3.

The attack proceeds in two stages:

1. Lattice reduction is applied to L2 to produce a reduced basis B2.

2. A subset S ⊂ L3 is identified for which the projection of a shortest vector in L is
likely to be found in S ⊕ S (where ⊕ is the Minkowski sum). For each element of
v ∈ S, the Babai point for the CVP instance induced by v with respect to the basis
H1∪B2 is computed and stored in such a manner that approximate collisions between
these points can be detected.

If v is a shortest vector in L then the quality of the reduction in Step 1 must be such
that the CVP instance induced by πH,r2(v) can be solved exactly using Babai’s Nearest
Plane algorithm (Algorithm 10). A sufficient condition on the quality of the reduction is
given by Proposition 17.

Proposition 17 (Furst and Kannan [25]). Suppose L is a euclidean lattice of rank n with
a basis {bi}1≤i≤n satisfying

‖b∗i ‖ ≥ 2k ∀i.

Let x ∈ L⊗R. There is at most one lattice point v ∈ L such that ‖x− v‖ ≤ k, and there
is a polynomial time algorithm (Algorithm 10) that finds this point if it exists.

Proof. Uniqueness of v is argued by contradiction. Suppose there is a second lattice point
v′ 6= v such that ‖x− v′‖ ≤ k. Then v − v′ ∈ L and ‖v − v′‖ ≤ 2k. Since v − v′ is a
nonzero lattice point, it has a component in the b∗i direction, for some i, that is at least 1
in magnitude. Hence

〈b∗i ,v − v′〉
‖b∗i ‖

≥ ‖b∗i ‖ > 2k,

contradicting ‖v − v′‖ ≤ 2k.

Suppose v exists, we will show that Algorithm 10 finds it. The projection of v−x in the
b∗n direction is of length at most k. Express v =

∑n
i=1 αibi with αi ∈ Z and x =

∑n
i=1 βib

∗
i

with βi ∈ R. Let j be the largest index such that αj is non-zero. We have

〈b∗j ,v − x〉
‖b∗j‖

= |αj − βj|‖b∗j‖ ≤ k hence |αj − βj| ≤
k

‖b∗j‖
<

k

2k
< 1/2

70

Hence the αj = bβje is the integer multiple of bj selected in Line 4 of Algorithm 10.
Iterating the argument with x − αjbj, and v − αjbj in place of x and v shows that
Algorithm 10 outputs v exactly.

When the basis is given as a lower triangular matrix, B, the addition in Line 4 of
Algorithm 10 affects only the first i coefficients ofw. Therefore, treating each loop iteration
as a one-dimensional CVP , Proposition 17 can be applied to the individual coefficients of
x− v.

Corollary 18. Suppose L is a rank n lattice with a lower triangular basis B with rows
{bi}, satisfying ‖b∗i ‖ ≥ 2k. If x ∈ L⊗ R and there exists v ∈ L satisfying ‖x− v‖∞ ≤ k
then Algorithm 10 outputs v on input x.

Note that any basis for a lattice, L ⊆ Zn, can be transformed into a lower triangular
basis for an isomorphic lattice, L′ ⊆ Rn, by applying an orthogonal transformation on
the right. Certainly the content of the corollary is identical to that of the proposition
if such a transformation is applied: a bound of k on the coefficients of a shortest vector
of L tells you little about the coefficients of a shortest vector of L′. The fact that the
orthogonal transformation could map a shortest vector of L to a vector with a single
coefficient equal to λ1(L) suggests the best bound we can take is k

√
n. However, if we

assume the triangularizing transformation is random, then we should not expect such a
conspiracy.

Howgrave-Graham’s analysis of the hybrid attack in [42] models the triangularizing
transformation as a random orthonormal matrix. Hence a vector of length ` is mapped
uniformly at random to a point on the (n − 1)-sphere of radius `. Under such an as-
sumption, the individual coefficients of a shortest vector in L′ can be modeled as normally
distributed random variables with standard deviation `2/ rank(L). Rather than relying
on such an approximation, Howgrave-Graham computed empirical estimates for coefficient
distribution of the transformed vectors.

With an estimate for the coefficient distribution in hand, one can determine the strength
of the lattice reduction that must be applied to L2 in order for the attack to succeed. This
is explained in Section 5.5.3.

71

5.5.2 Matrix theoretic description for NTRU lattices†

One first chooses 1 ≤ r1 < r2 < 2N and extracts a block, H ′2, of (r2 − r1) × (r2 − r1)
coefficients from the center of a Z-basis1 for the NTRU lattice in question:

H =

(
qIN 0
H IN

)
=

 qIr1 0 0
∗ H ′2 0
∗ ∗ I2N−r2

 . (5.8)

A lattice reduction algorithm is applied to find a unimodular transformation, U ′, such that
U ′H ′2 is reduced, and an orthogonal transformation, Y ′, is computed such that T ′ = U ′H ′2Y

′

is in lower triangular form. These transformations are applied to the original basis to
produce a basis for an isomorphic lattice:

T = UHY (5.9)

=

 Ir1 0 0
0 U ′ 0
0 0 I2N−r2

 qIr1 0 0
∗ H ′2 0
∗ ∗ I2N−r2

 Ir1 0 0
0 Y ′ 0
0 0 I2N−r2

 (5.10)

=

 qIr1 0 0
∗ T ′ 0
∗ ∗ I2N−r2

 . (5.11)

Notice that the lattice corresponding to T is isomorphic to that corresponding to H and
(g, f)Y is a short vector in the former.

5.5.3 Choosing r1 and r2 for NTRU lattices

It is not necessary for the extracted block to be taken from the center of H, and it is
sometimes useful to consider blocks shifted s indices to the top left along the main diagonal.
The entries on the diagonal of T will have values {qα1 , qα2 , . . . , qα2N}, where α1+· · ·+α2N =
N , and the αi, for i in the range [r1, r2], will come very close to decreasing linearly. That is
to say, the reduced basis for L2 will roughly obey the geometric series assumption (GSA).
The rate at which the αi decrease can be predicted very well based on the root Hermite
factor achieved by the lattice reduction algorithm used. Since L2 lies in a hyperplane

1Note that we have permuted the blocks here to draw out a correspondence between the diagonal entries
of the preprocessed basis and the Gram-Schmidt vector lengths, however the lattices generated by the rows
of Eq. 5.8 and Eq. 3.2 are easily seen to be isomorphic.

72

orthogonal to both L1 and L3, the reduction applied to L2 does not affect the lengths of the
Gram-Schmidt vectors for i 6∈ [r1, r2]. Hence logq(‖b∗i ‖) = 1 for i < r1 and logq(‖b∗i ‖) = 0
for i > r2, i.e. the profile of the basis will look like one of the examples in Figure 5.1.

Figure 5.1: Log length of ith Gram-Schmidt vector, logq(‖b∗i ‖).

Let αi = logq(‖b∗i ‖). The “height of the cliff,” the parameter that will determine
whether an adversary can expect to lift short vectors in L3 to L by Corollary 18, is αr2 .
Heuristically, we expect the attack to succeed with non-negligible probability provided that
αr2 > 2‖g‖∞.

In order to meaningfully apply the Geometric Series Assumption we will also need the
expected value of αr1 to satisfy αr1 ≤ 1. Otherwise the Gram-Schmidt vectors near the
beginning of the reduced block will be q-vectors, and the profile will be flat in a region
where we have assumed it to be decreasing linearly.

Since the volume of L2 is preserved throughout reduction we have

logq(vol(L2)) =

r2∑
i=r1

αi =

r2∑
i=r1

(
αr1 − (i− r1) logq η

)
= mαr1 −

m(m+ 1)

2
logq η,

which implies that

αr1 =
vol(L2)

m
+
m+ 1

2
logq η.

Applying the GSA yields

αr2 =
vol(L2)

m
− m− 1

2
logq η.

73

Substituting η = δ2m/(m−1) (Eq. 5.6), this gives us

αr1 =
1

m
logq(vol(L2)) +m

m+ 1

m− 1
logq(δ) ≈ logq(vol(L2)1/m · δm) (5.12)

αr2 =
1

m
logq(vol(L2))−m logq(δ) = logq(vol(L2)1/m/δm). (5.13)

The cliff must have height at least logq(2) for typical NTRU instantiations, hence the
preprocessing for the hybrid attack requires lattice reduction that achieves a root Hermite
factor, δ, satisfying:

vol(L2)1/m · δm ≤ q (5.14)

vol(L2)1/m · δ−m ≥ 2. (5.15)

The optimal choice of r1 and r2 is determined by the balancing the cost of combinatorial
search on K = 2N − r2 coordinates against the cost of the minimal lattice reduction that
satisfies these requirements. The blocksize and number of rounds of BKZ reduction required
to reach root Hermite factor δ in dimension m can be estimated using the simulation
method of Section 5.3.1. Finally the number of rounds can be multiplied by the number of
calls to the enumeration subroutine per round, and the estimated cost per call, to obtain a
rough estimate for the difficulty of performing the preprocessing step of the hybrid attack.

When using the classical meet-in-the-middle collision search rather than a quantum
search the optimal choice of r1 will also depend on the probability that near-collisions can
be detected on L1. For a quantum search the choice of r1 and r2 should be optimized over
all pairs satisfying Equations 5.14 and 5.15.

5.5.4 Comparison with Lindner-Peikert Nearest Plane

If we perform only the preprocessing of the hybrid attack, to create a basis with a profile
of the form shown in Figure 5.1, and perform an exhaustive search on L3 instead of a
meet-in-the-middle search, then the enumeration routine used in the hybrid attack can be
seen to be identical to that presented by Lindner and Peikert in [53] (Algorithm 12). In
particular the vector d defining the search space is given by di = 0 for i ∈ [0, N − K],
di = 2 for i ∈ [N −K,N]. Note of course that this is a slight simplification, an attacker
would typically not exhaustively search all 3K candidate vectors, as the distribution on
candidates, conditional on knowledge of the key generation process, is non-uniform.

74

Algorithm 12 Lindner-Peikert Nearest Plane [53]

Input: (B,B∗,d, t) where
B is a basis of a lattice L of rank n.
B∗ is the Gram-Schmidt orthogonalization of B.
d ∈ Zn is a vector of small positive integers.
t ∈ L⊗ R is the target point.

Output: A vector in L close to t.
1: S = ∅
2: for i = n to 1 do
3: T = ∅
4: for w ∈ S do
5: Let c1, . . . cdi be the di integers nearest to 〈t−w, b∗i 〉/〈b∗i , b∗i 〉
6: T = T ∪ {w + cibi : 1 ≤ i ≤ di}
7: end for
8: S = T
9: end for

10: return S

Nguyen and Liu noted in [54] that the Lindner-Peikert Nearest Plane variant also
subsumes the algorithm used by Schnorr’s Random Sampling reduction, wherein d is given
by (1, 1, . . . , 1, 2, . . . 2) and the index of the transition from 1s to 2s is a parameter of the
algorithm.

Nguyen and Liu go on to contextualize algorithms like Lindner-Peikert’s Nearest Plane
variant as secondary prunings of an enumeration tree

Propose the following variant:

Algorithm 13 Nguyen-Liu Nearest Plane [54]

Input: (B,B∗,d, t, `) where
(B,B∗,d, t) are as in Algorithm 12
` is a number of iterations

1: S = ∅
2: for i = 1 to ` do
3: Randomize and reduce B to obtain a new reduced basis B′

4: Call Algorithm 12 on (B′, (B′)∗,d, t) and join the result to S
5: end for
6: return S

75

In the context of the hybrid attack, the Nguyen-Liu variant of Nearest Plane suggests
producing a fixed number of random reduced bases for L2 during preprocessing. Assuming
the same quality of reduction is used each time, this gives an explicit means by which
to randomize the triangularizing transformation that makes Corollary 18 useful. The
assumption that the triangularizing transformation is a random orthogonal transformation
is one of the more difficult to justify parts of the hybrid attack, but it may be possible to
provide a rigorous justification if Algorithm 13 is used in place of Algorithm 12. I hope
this will be explored in future work.

By sampling exactly from the distribution on L3 induced by knowledge of the key-space,
the hybrid attack can be seen to be the optimal secondary pruning of a GNR enumeration
tree.

5.6 Bounded Distance Decoding in an isomorphic mod-

ule

One may wonder whether the different key structures for NTRUEncrypt change the difficulty
of key recovery. Perhaps the use of f = 1 + pF produces harder problems than simply
f ∈ TN(df + 1, df). Here we will show this is not the case.

Suppose f = 1 + 3F , then the point

3F · (1, h) = (1 + 3F) · (1, g/(1 + 3F))− (1, h) = (3F,−h+ g) mod q

is in the lattice. Since both F and g are small, this point is a good approximation to
(0,−h) (which is not in the lattice). So, näıvely, key recovery is no harder than bounded
distance decoding with radius ‖(3F, g)‖ ≈

√
20N/3/λ1(L), but we can show that, in fact,

key recovery is no harder than BDD with radius
√

4N/3/λ1(L) by considering the same
problem in an isomorphic module.

This technique was used by Ducas and Nguyen to solve the NTRU Challenges in RN

for N = 131, 139, 149, 163, and 173 as follows.

Let u be a unit in RN,q. The map τu : R2
N,q → R2

N,q defined by

(a, b) 7→ (u−1a, b)

is a bijection, and hence if M is an RN -module then τu(M) is isomorphic, as an RN,q-
module, to M . Of course, for most u, τu does not preserve the distance function on R2, i.e.

76

‖(a, b)‖ 6= ‖τu(a, b)‖, so τu(M) and M are not isomorphic as lattices. Despite this, there
may be short vectors of M whose images are also short in τu(M). We can use this property
to construct instances of a bounded distance decoding problem with an expected distance
from the closest vector that is smaller than what we could have constructed in M .

As an example,

τ3(3F, 3Fh) = τ3(3F,−h+ g) = (F,−h+ g) = (F, g) + (0,−h).

Hence the publicly constructable point (0,−h) is valid input to the bounded distance
decoding problem in τ3(M) with promise ≈

√
4N/3, whereas it is only a valid instance in

M if the promise is ≈
√

20N/3. While small, this difference in the BDD radii may have a
noticeable impact on the practical performance of BDD solvers.

In their solutions to the NTRU challenges thus far, Ducas and Nguyen have ap-
plied lattice reduction to a Z-basis for τ3(M), e.g. the circulant basis corresponding to
{(1, 3h), (0, q)}, and then applied the BDD algorithm of [54]. Their success up to N = 173
indicates that this is an extremely effective strategy.

Can one do better than τ3? Clearly τ3F would be a very nice, though improbable,
choice. In general one might try to guess a factor F ′ of F such that F/F ′ is sparser than
F . An obvious choice is (x−1), since each one of F1, F2, and F3 is divisible by (x−1). This
choice does not fit into the above description since x − 1 is not a unit in R, however one
can still consider the RN,q-module generated by (1, 3(x− 1)h) in which (F/(x− 1), g − h)
will be close to (0,−h). For most F this will be a harder instance of BDD than that which
would be obtained by considering the module generated by (1, 3h) – heuristically, F/(x−1)
will only be sparser than F if F has a large number of adjacent coefficients with opposite
signs.

5.7 Quantum Attacks

Quantum cryptanalysis is still a very new field – we know a few algorithms, Shor, Grover
PIP, and their asymptotic run times. A few more we know to be polynomial time, but we
do not have rigorous analyses of their exact runtimes. For a few more problems there are
no proven improvements, but we might expect quantum heuristics to outperform classical
techniques asymptotically. We are beginning to see what the first quantum computers
capable of solving interesting problems will look like.

The field of quantum cryptanalysis is still in its infancy, and we are only able to give
crude estimates for the costs of quantum computation. However it seems that many crypt-
analysts are unaware even of those estimates that can be made today. This is evident in the

77

oft repeated claim that Grover search requires one to double the length of ones symmetric
keys.

Certainly, if one is given a function f : {0, 1}` → {0, 1} that is promised to satisfy
f(x) = 1 iff x = s for some unknown bitstring s, it is the case that one will have a high
probability of determining s after Θ(2`/2) Grover iterations, whereas it would take Θ(2`)
calls to f classically. However to cost a Grover iteration and a call to f identically is
to ignore the enormous overhead involved in performing quantum operations. Until this
overhead can be reliably estimated we should keep in mind that while the call to double
keysizes is sound advice for the conservative cryptographer, it is overly optimistic about
the abilities of the cryptanalyst.

5.7.1 Quantum hybrid attack

The hybrid attack gives the lowest estimate for the time complexity of NTRU key recov-
ery amongst all known classical attacks. Likewise for message recovery. Perhaps this is
because it is overly optimisitic, in particular by ignoring the probability of failure in ap-
proximate collision search. In a quantum setting, there is an obvious algorithm with the
same temporal complexity and fewer assumptions.

Briefly: replace the meet-in-the-middle search with Grover search. Let M be the set
of projections of possible shortest vectors into L3. An optimal parameterization of the
classical hybrid attack would chose S of size Θ(

√
|M|) such that M⊆ S ⊕ S, and would

have to be tuned to ensure that approximate collisions can be identified. The quantum
variant attempts to find a preimage (of norm λ1(L)) of any element of M under πB,r2 .
The basis B is preprocessed in exactly the same way as in the classical attack. Preimages
are identified by simply lifting an element ofM from L3 to the corresponding Babai point
in L. Since λ1(L) = ‖(f , g)‖ is known exactly, and there are likely only N lattice points
with this norm, each with distinct projections, this requires Θ(

√
M/N) Grover iterations.

Each Grover iteration has a cost O(S + C) where S is the cost to sample M and C is the
cost of the nearest plane algorithm. These are negligible compared with the size ofM, but
larger than N , hence the entire algorithm runs in time |M|1/2+o(1). The only assumption
remaining is that the preprocessing is sufficient for Corollary 18 to hold.

Can we do better? Would it be better to replace the meet-in-the-middle stage with
a quantum collision search? Is the choice of r1 and r2 used for the classical attack also
optimal for the quantum variant?

A number of papers have attempted to address the complexity of quantum variants
of the hybrid attack [24, 76, 77, 79], however all of these assume an unrealistic model of

78

quantum computation in which the oracle used by the Grover iteration can be replaced
with an exponentially large, say |M|1/3+o(1) bit, table of classical data in which membership
of an element can be queried, in superposition, in O(1) time. There are no proposals for
quantumly accessible classical memory for which this is realistic.

Time/memory trade-offs for collision search on quantum computers was studied in

general in [15] and an algorithm with claimed |M|1/3 complexity was presented. However
it was later argued that, when instantiated in a realistic model of quantum computation,
this algorithm is no better than classical parallel collision search [10]. It is currently
unknown how to achieve a quantum speedup for collision search in a data locality-sensitive
model.

5.7.2 Attacking NTRUEncrypt keys

We will assume that we are given an explicit map {0, 1}∗ → TN(dg + 1, dg) used for gener-
ating the g component of the private key. Any concrete instantiation of NTRUEncrypt in
software must use some function of this sort. Let G denote the restriction of this function
to inputs of length dlog2(3)Ke bits – here we are assuming that the actual instantiation
uses at least dlog(3)Ke bits to seed its random number generator, otherwise we can choose
a more restricted input set.

Check(I, B, r2, b)

1. Use a IGF-2 with seed b to sample g ∈ TN(dg + 1, dg).

2. Let v = πB,r2((0, g))

3. Lift v from L3 to L using the nearest plane algorithm.

4. If the norm of the result is equal to λ1(L) output 1.

5. Otherwise output 0.

QHybridNTRU(I, H)

1. Determine optimal hybrid attack parameters r1, r2.

2. Preprocess H to obtain a reduced basis B as in Section 5.5.2.

3. Let t = dlog2 3 · (N − r2)e.
4. Let H⊗t denote the Hadamard transform on t qubits.

79

5. Let Q1 denote a quantum circuit that performs

|b〉 7→

{
− |b〉 if Check(I, B, r2, b)

|b〉 otherwise

6. Let Q2 denote a quantum circuit that performs

|b〉 7→

{
− |b〉 if b = 0

|b〉 otherwise

7. Let |ψ〉 = H⊗t |0〉
8. Apply the Grover iteration (−H⊗tQ2H

⊗tQ1) a number of 2t/2 times.

9. Measure the result.

5.8 Approximate SVP in Λq(f , g) †

Key recovery in both NTRUEncrypt and NTRUMLS reduces to an approximate shortest
vector problem in Λq(f , g), and we can therefore give the two schemes a unified treatment.

We will assume that the quantum hybrid attack is the best mechanism for exposing a
short vector of the lattice, and we will make the extremely conservative choice of costing
a Grover iteration as 1 operation. Thus we need only determine the quality of the lattice
reduction needed in preprocessing to balance the cost of Grover search for the last K
coefficients.

Our analysis will also assume that g is easier to search for than f . For the key spaces
recommended in this document, this assumption is valid.

Let Π : ZN → ZK be a projection2 onto K coordinates of ZN .

For large K it is unlikely that the distribution on ZK induced by sampling a key
uniformly from the keyspace and projecting through Π will be close to uniform on TK ,
so we must consider an adversary that chooses to target a small set of high probability
sequences. Consequently we must estimate the size of the set of elements that are typical
under the projection.

2We will abuse notation slightly and allow Π to act on elements of RN by acting on their coefficient
vectors lifted to ZN .

80

Fix N , K, Π, d = dg + 1, and e = dg. Let S = TN(d, e). Let p : TK → R be the
probability mass function on TK induced by sampling an element uniformly at random
from S and projecting its coefficient vector onto ZK through Π. We will estimate the size
of the search space in the hybrid attack as, roughly, 2H(p), where H(p) is the Shannon
entropy of p.

Let SΠ(a, b) be the subset of S consisting of vectors, v, such that vΠ has exactly a
coefficients equal to +1 and b coefficients equal to −1. By the symmetry of S under
coordinate permutations we have that p(vΠ) = p(v′Π) for all pairs v, v′ ∈ SΠ(a, b). We
choose a fixed representative of each type: va,b = vΠ for some v ∈ SΠ(a, b), and write

p(va,b) =
1(

K
a

)(
K−a
b

) |SΠ(a, b)|
|S|

=

(
N−K
d−a

)(
N−K−d+a

d−b

)(
N
d

)(
N−d
d

) . (5.16)

As there are exactly
(
K
a

)(
K−a
b

)
distinct choices for va,b this gives us:

H(p) = −
∑
v∈TK

p(v) log2 p(v) = −
∑

0≤a,b≤d

(
K

a

)(
K − a
b

)
p(va,b) log2 p(va,b). (5.17)

The size of the search space is further decreased by a factor of N since xi ∗ g is likely
to be a distinct target for each i ∈ [0, N − 1].

A reasonable way to sample from the typical distribution on projected keys is to simply
generate a random seed of length H(p) and run the key generation algorithm with that
seed. By rotational symmetry we expect that we can reduce the length of the seed to
H(p)− log2(N) and still have projections of short vectors in our set.

The cost of the Grover iteration, in log2 “operations,” or bits, will then be

1

2
(H(p)− log2(N)). (5.18)

The only variable not fixed by the parameter set itself is K. In order to fix K we must
consider the cost of lattice reduction.

The root Hermite factor required is determined by maximizing δ (large δ are easier
to achieve than small δ) over the choice of r1 and r2 in Equations 5.14 and 5.15. Then
the block size β, and the number of rounds required to reach δ can be obtained through
simulation. Finally the number of nodes visited per call to the enumeration subroutine can
be extrapolated from the estimates of [16]. Fitting curves to their table we have

81

LogNodes(β) = 0.000784314β2 + 0.366078β − 6.125

and following [16] in assuming a 27 cost per node, the total cost can be estimated as

Cost(β, dim,#rounds) = LogNodes(β) + log2(dimension ·#rounds) + 7. (5.19)

One must also check that a näıve meet-in-the-middle search on the keyspace will not
succeed with a lesser cost.

5.9 Other considerations for NTRUEncrypt

Message Recovery Attacks

Message recovery in NTRUEncrypt depends on the difficulty of Bounded Distance Decoding
with a promise distance that is related to the minimum length of a message vector. The dm
constraint sets this length as

√
2dm. The complexity is derived in [37], however in practice

dm ≈ N/3 and message recovery has essentially the same cost as private key recovery using
the analysis of the previous section.

5.10 Other considerations for NTRUMLS

Signature Forgery Attacks

To forge a signature on a document D one must find a point (s, t) ∈ L of bounded norm
such that

(s, t) ≡ Hash(D) (mod p).

Since p and q are coprime, and the lattice is q-ary, one can easily find elements of the lattice
satisfying the congruence. The difficulty lies in finding a point that lies in the requisite
hypercube.

A point in the correct equivalence class modulo p can be obtained by translating an
arbitrary lattice point by a suitable multiple of q.3 A natural strategy for constructing a
forgery from such a point is to solve an approximate closest vector problem in L ∩ pZ2N .

3Let v ∈ L and r be such that rq ≡ 1 (mod p). Then v+ r · q · ((sp, tp)− v)) is in L and in the correct
equivalence class modulo p. One can reduce (sp, tp) − v modulo p in the above expression to obtain a
shorter point.

82

The following lemma allows us to describe L∩ pZ2N when L is the lattice associated to
an NTRUMLS key.

Lemma 19. Let q and p be coprime prime-powers in Z. Let h be an arbitrary element of
RN . Then,

Λq ((1,h)) ∩ pZ2N = Λpq ((c, ch)) .

where c is a constant that depends on p and q.

Proof. By the definition of Λq ((1,h)) we have that ~y ∈ Λq ((1,h)) ∩ pZ2N iff there exists
s ∈ RN such that

s · (1,h) ≡ ~y (mod q), and

0 ≡ ~y (mod p).

Let cp be such that cpp ≡ 1 (mod q). Suppose ~y ∈ Λq ((1,h)) ∩ pZ2N and let s be such
that s · (1,h) ≡ ~y (mod q). By the Chinese remainder theorem we have

~y ≡ cp · p · s · (1,h) ≡ s · (cpp, cpph) (mod pq).

By definition, such a ~y is in Λpq ((cpp, cpph)). The reverse direction follows by noting that
(cpp, cpph) ≡ (1,h) (mod q). The claim follows with c = cpp.

Note that if cp 6≡ 0 (mod p) then we can take c = p. This is because the choice of
generator is free up to a unit in RN,pq.

We can now attempt to analyze the difficulty of approximating CVP in Λq ((1,h))∩pZ2N

to within a factor that is sufficient to forge NTRUMLS signatures. Of course, as we are
sketching a particular cryptanalytic algorithm, we will only obtain an upper bound on the
cost of forgery.

Let H be the Hermite normal form basis for Λpq ((c, ch)). The adversary selects r1 and
r2 (in a manner that is to be described momentarily) and performs the hybrid preprocessing
to obtain a reduced basis B. Let {αi = logpq(‖b∗i ‖)}1≤i≤2N be the profile of the reduced
basis. The quality of the reduction should be such that αr1+1 ≤ logpq(q − 2Bs). If such
reduction has been applied, then one can expect (making the same assumptions as for
Corollary 18) that the final 2N − r1 coefficients of an approximate CVP solution found via
Babai’s Nearest Plane algorithm will have coefficients in [− q

2
+ Bs,

q
2
− Bs]. Each of the

first r1 coefficients will be correct with probability 1/p. Hence all of the first r1 coefficients
will be correct with probability p−r1 .

83

The optimal strategy for the adversary is to choose r1 and r2 such that the cost of
lattice reduction to obtain the requisite profile is Θ(pr1).

For instance, with N = 443 if an attacker selects r1 = 64 and r2 = 2N they must reach
a root Hermite factor of approximately 1.006672. Using the simulation method of Chen
and Nguyen [16] this costs of approximately 2108 operations. Following preprocessing, each
attempt at forgery has a probability of success of roughly 3−r1 ≈ 2−101. The two costs
could be tuned slightly better by a more careful analysis, however the cost of forgery by
the above method can be expected to lie near 2108 operations. Since key recovery against
the N = 443 parameter set only costs 288 operations, the attacker’s best strategy is to
simply attack the private key directly.

This trend continues for the other parameter sets in Table 4.3; key recovery is consis-
tently easier than forgery.

84

Appendix A

APPENDICES

A.1 Software

Concurrent with the analyses presented above we have developed reference implementations
of NTRUEncrypt and NTRUMLS, as well as automated parameter generation tools for both.
These are available at https://github.com/NTRUOpenSourceProject.

Implementations instrumented for benchmarking may be found at the same URL.
Benchmarking results may be found at http://bench.cr.yp.to/.

A.2 NTRUEncrypt Challenges

In early 2015 a set of 27 challenges were posted to the Security Innovation website with
cash prizes ranging from 1000 − 5000 USD. Each provides a basic set of parameters
{N, q, d1, d2, d3, dg} and a single NTRUEncrypt public key. The challenge is to find an
element in the corresponding module that is shorter than the Gaussian heuristic length√
N · q/(π · ε).

Each of the parameter sets was generated according to the method of Section 3.5. As
of writing, the first 7 challenges, in dimensions ranging from N = 107 to N = 173 have
been solved.

85

https://github.com/NTRUOpenSourceProject
http://bench.cr.yp.to/

A.3 N suitable for use when q is a power of two and

p = 3

101, 107, 131, 139, 149, 163, 173, 179, 181, 197,
211, 227, 269, 293, 317, 347, 349, 373, 379, 389,
419, 421, 443, 461, 467, 491, 509, 523, 541, 547,
557, 563, 587, 613, 619, 653, 659, 661, 677, 701,
709, 757, 773, 787, 797, 821, 827, 829, 853, 859,
877, 883, 907, 941, 947, 1019, 1061, 1091, 1109, 1117,

1123, 1171, 1187, 1213, 1229, 1237, 1259, 1277, 1283, 1291,
1301, 1307, 1373, 1381, 1427, 1451, 1453, 1483, 1493, 1499,
1523, 1531, 1549, 1571, 1619, 1621, 1637, 1667, 1669, 1693,
1733, 1741, 1747, 1787, 1861, 1867, 1877, 1901, 1907, 1931.

Table A.1: First 100 primes > 100 for which ord(Z/NZ)∗(2) = (N − 1), i.e. (2) is inert

[h!] 103, 137, 167, 191, 193, 199, 239, 263, 271, 311,
313, 359, 367, 383, 401, 409, 449, 463, 479, 487,
503, 521, 569, 599, 607, 647, 719, 743, 751, 761,
769, 809, 823, 839, 857, 863, 887, 929, 967, 977,
983, 991, 1009, 1031, 1039, 1063, 1087, 1129, 1151, 1223,

1231, 1279, 1297, 1303, 1319, 1361, 1367, 1409, 1439, 1447,
1487, 1489, 1511, 1543, 1559, 1567, 1583, 1607, 1663, 1697,
1759, 1783, 1823, 1847, 1871, 1873, 1879, 1951, 1993, 2039.

Table A.2: First 80 primes > 100 for which ord(Z/NZ)∗(2) = (N − 1)/2, i.e. (2) is a product
of two prime ideals

86

References

[1] NSA Suite B Cryptography - NSA/CSS. https://www.nsa.gov/ia/programs/

suiteb_cryptography/.

[2] Implementation aspects of NTRUEncrypt and NTRUSign v. 2.0. Efficient Embedded
Security Standards (EESS) #1, June 2003.

[3] IEEE Standard Specification for Public Key Cryptographic Techniques Based on Hard
Problems over Lattices. IEEE Std 1363.1-2008, pages C1–69, March 2009.

[4] Leonard M. Adleman. On Breaking Generalized Knapsack Public Key Cryptosystems.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 402–412, New York, NY, USA, 1983. ACM.

[5] M. Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract). In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 99–108, New York, NY, USA, 1996. ACM.

[6] Miklós Ajtai and Cynthia Dwork. A Public-key Cryptosystem with Worst-
case/Average-case Equivalence. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages 284–293, New York, NY, USA,
1997. ACM.

[7] Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos, Johannes Buchmann,
Wouter Castryck, Orr Dunkelman, Tim Güneysu, Shay Gueron, Andreas Hülsing,
Tanja Lange, Mohamed Saied Emam Mohamed, Christian Rechberger, Peter Schwabe,
Nicolas Sendrier, Frederik Vercauteren, and Bo-Yin Yang. Initial recommenda-
tions of long-term secure post-quantum systems. http://pqcrypto.eu.org/docs/initial-
recommendations.pdf, September 2015. Revision 1.

[8] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Com-
binatorica, 6(1):1–13, March 1986.

87

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/

[9] William D. Banks and Igor E. Shparlinski. A Variant of NTRU with Non-invertible
Polynomials. In Alfred Menezes and Palash Sarkar, editors, Progress in Cryptology –
INDOCRYPT 2002, number 2551 in Lecture Notes in Computer Science, pages 62–70.
Springer Berlin Heidelberg, December 2002. DOI: 10.1007/3-540-36231-2 6.

[10] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In Workshop Record of SHARCS09: Special-purpose Hardware
for Attacking Cryptographic Systems. 2009.

[11] Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices. http://blog.
cr.yp.to/20140213-ideal.html, February 2014.

[12] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-Quantum
Cryptography. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[13] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem. Techni-
cal report, IACR Cryptology ePrint Archive, 2014. http://eprint. iacr. org/2014/599.
3, 16, 2014.

[14] Vincent Boyle, Lily Chen, and Adrian Stanger. NIST and NSA Future Plans for
Quantum Resistant Cryptography, October 2015.

[15] Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum Algorithm for the Collision
Problem. arXiv:quant-ph/9705002, May 1997. arXiv: quant-ph/9705002.

[16] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT
2011, number 7073 in Lecture Notes in Computer Science, pages 1–20. Springer Berlin
Heidelberg, December 2011. DOI: 10.1007/978-3-642-25385-0 1.

[17] Henri Cohen. A Course in Computational Algebraic Number Theory. Number 138 in
Graduate Texts in Mathematics. Springer Berlin Heidelberg, 1993. DOI: 10.1007/978-
3-662-02945-9 2.

[18] J. H. Conway and N. J. A. Sloane. A lattice without a basis of minimal vectors.
Mathematika, 42(01):175–177, June 1995.

[19] Don Coppersmith. Finding a Small Root of a Univariate Modular Equation. In
Ueli Maurer, editor, Advances in Cryptology – EUROCRYPT 1996, number 1070 in
Lecture Notes in Computer Science, pages 155–165. Springer Berlin Heidelberg, May
1996. DOI: 10.1007/3-540-68339-9 14.

88

http://blog.cr.yp.to/20140213-ideal.html
http://blog.cr.yp.to/20140213-ideal.html

[20] Don Coppersmith and Adi Shamir. Lattice Attacks on NTRU. In Walter Fumy, editor,
Advances in Cryptology – EUROCRYPT 1997, number 1233 in Lecture Notes in Com-
puter Science, pages 52–61. Springer Berlin Heidelberg, May 1997. DOI: 10.1007/3-
540-69053-0 5.

[21] Léo Ducas and Phong Q. Nguyen. Learning a Zonotope and More: Cryptanalysis of
NTRUSign Countermeasures. In Xiaoyun Wang and Kazue Sako, editors, Advances in
Cryptology – ASIACRYPT 2012, number 7658 in Lecture Notes in Computer Science,
pages 433–450. Springer Berlin Heidelberg, January 2012.

[22] Paul Dupuis, Jim (Xiao) Zhang, and Philip Whiting. Refined Large Deviation Asymp-
totics for the Classical Occupancy Problem. Methodology and Computing in Applied
Probability, 8(4):467–496, December 2006.

[23] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Mathematics of Computation, 44(170):463–
471, 1985.

[24] Scott Fluhrer. Quantum Cryptanalysis of NTRU. Cryptology ePrint Archive, Report
2015/676, 2015. http://eprint.iacr.org/2015/676.

[25] M. Furst and R. Kannan. Succinct Certificates for Almost All Subset Sum Problems.
SIAM Journal on Computing, 18(3):550–558, June 1989.

[26] Nicolas Gama and Phong Q. Nguyen. Predicting Lattice Reduction. In Nigel Smart,
editor, Advances in Cryptology – EUROCRYPT 2008, number 4965 in Lecture Notes
in Computer Science, pages 31–51. Springer Berlin Heidelberg, April 2008. DOI:
10.1007/978-3-540-78967-3 3.

[27] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme
pruning. In Proceedings of the 29th Annual international conference on Theory and
Applications of Cryptographic Techniques, EUROCRYPT’10, pages 257–278, Berlin,
Heidelberg, 2010. Springer-Verlag.

[28] Craig Gentry. Key Recovery and Message Attacks on NTRU-Composite. In Birgit
Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, number 2045 in
Lecture Notes in Computer Science, pages 182–194. Springer Berlin Heidelberg, 2001.

[29] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Proceedings of the 40th annual ACM sympo-
sium on Theory of computing, STOC ’08, pages 197–206, New York, NY, USA, 2008.
ACM.

89

http://eprint.iacr.org/2015/676

[30] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski Jr, editor, Advances in Cryptology –
CRYPTO 1997, number 1294 in Lecture Notes in Computer Science, pages 112–131.
Springer Berlin Heidelberg, August 1997. DOI: 10.1007/BFb0052231.

[31] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton Kaliski, editor, Advances in Cryptology –
CRYPTO 1997, volume 1294 of Lecture Notes in Computer Science, pages 112–131.
Springer Berlin / Heidelberg, 1997.

[32] Guillaume Hanrot, Xavier Pujol, and Damien Stehl. Analyzing Blockwise Lattice
Algorithms Using Dynamical Systems. In Phillip Rogaway, editor, Advances in Cryp-
tology – CRYPTO 2011, number 6841 in Lecture Notes in Computer Science, pages
447–464. Springer Berlin Heidelberg, August 2011. DOI: 10.1007/978-3-642-22792-
9 25.

[33] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William Whyte.
Choosing NTRUEncrypt Parameters in Light of Combined Lattice Reduction and
MITM Approaches. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, Applied Cryptography and Network Security, number 5536
in Lecture Notes in Computer Science, pages 437–455. Springer Berlin Heidelberg,
2009.

[34] J Hoffstein, J Pipher, and J. H. Silverman. NTRU: A new high speed public key
cryptosystem. Technical report, presented at the rump session of CRYPTO ’96, Aug
1996.

[35] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William Whyte.
Practical Signatures from the Partial Fourier Recovery Problem. In Ioana Boureanu,
Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptography and Network
Security, number 8479 in Lecture Notes in Computer Science, pages 476–493. Springer
International Publishing, June 2014.

[36] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William Whyte.
Transcript Secure Signatures Based on Modular Lattices. In Michele Mosca, editor,
Post-Quantum Cryptography, number 8772 in Lecture Notes in Computer Science,
pages 142–159. Springer International Publishing, October 2014.

[37] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte,
and Zhenfei Zhang. Choosing Parameters for NTRUEncrypt. Technical Report 708,
2015.

90

[38] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. NTRUSign: Digital Signatures Using the NTRU Lattice. In Marc
Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612, pages 122–140.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[39] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, number 1423
in Lecture Notes in Computer Science, pages 267–288. Springer Berlin Heidelberg,
June 1998. DOI: 10.1007/BFb0054868.

[40] Jeffrey Hoffstein and Joseph H Silverman. Protecting NTRU Against Chosen Cipher-
text and Reaction Attacks. Technical Report #016, NTRU Cryptosystems, 2000.
Version 1.

[41] Jeffrey Hoffstein and Joseph H. Silverman. Random small Hamming weight prod-
ucts with applications to cryptography. Discrete Applied Mathematics, 130(1):37–49,
August 2003.

[42] Nick Howgrave-Graham. A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack
Against NTRU. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007,
number 4622 in Lecture Notes in Computer Science, pages 150–169. Springer Berlin
Heidelberg, August 2007. DOI: 10.1007/978-3-540-74143-5 9.

[43] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H.
Silverman, Ari Singer, and William Whyte. The Impact of Decryption Failures on
the Security of NTRU Encryption. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, number 2729 in Lecture Notes in Computer Science, pages 226–246.
Springer Berlin Heidelberg, August 2003. DOI: 10.1007/978-3-540-45146-4 14.

[44] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing Param-
eter Sets for NTRUEncrypt with NAEP and SVES-3. Technical Report 045, 2005.

[45] David Jao and Luca De Feo. Towards Quantum-Resistant Cryptosystems from Su-
persingular Elliptic Curve Isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryp-
tography, number 7071 in Lecture Notes in Computer Science, pages 19–34. Springer
Berlin Heidelberg, November 2011. DOI: 10.1007/978-3-642-25405-5 2.

[46] Éliane Jaulmes and Antoine Joux. A Chosen-Ciphertext Attack against NTRU. In
Mihir Bellare, editor, Advances in Cryptology – CRYPTO 2000, number 1880 in Lec-
ture Notes in Computer Science, pages 20–35. Springer Berlin Heidelberg, August
2000. DOI: 10.1007/3-540-44598-6 2.

91

[47] Ravi Kannan. Improved Algorithms for Integer Programming and Related Lattice
Problems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, STOC ’83, pages 193–206, New York, NY, USA, 1983. ACM.

[48] Philip Klein. Finding the Closest Lattice Vector when It’s Unusually Close. In Proceed-
ings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’00, pages 937–941, Philadelphia, PA, USA, 2000. Society for Industrial and Applied
Mathematics.

[49] D. H. Lehmer. A photo-electric number sieve. The American Mathematical Monthly,
40(7):401–406, 1933.

[50] Derrick N. Lehmer. Hunting big game in the theory of numbers. Scripta Mathematica,
1932.

[51] Emma Lehmer. On the magnitude of the coefficients of the cyclotomic polynomial.
Bulletin of the American Mathematical Society, 42(6):389–392, June 1936.

[52] A. K. Lenstra, H. W. Lenstra Jr, and L. Lovsz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, December 1982.

[53] Richard Lindner and Chris Peikert. Better Key Sizes (and Attacks) for LWE-Based
Encryption. In Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, number
6558 in Lecture Notes in Computer Science, pages 319–339. Springer Berlin Heidel-
berg, February 2011. DOI: 10.1007/978-3-642-19074-2 21.

[54] Mingjie Liu and Phong Q. Nguyen. Solving BDD by Enumeration: An Update. In
Ed Dawson, editor, Topics in Cryptology – CT-RSA 2013, number 7779 in Lecture
Notes in Computer Science, pages 293–309. Springer Berlin Heidelberg, February 2013.

[55] Christoph Ludwig. A Faster Lattice Reduction Method Using Quantum Search. In
Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono, editors, Algorithms and Compu-
tation, number 2906 in Lecture Notes in Computer Science, pages 199–208. Springer
Berlin Heidelberg, December 2003.

[56] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In Advances in Cryptology – ASIACRYPT 2009, pages 598–616.
Springer, 2009.

[57] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, number

92

7237 in Lecture Notes in Computer Science, pages 738–755. Springer Berlin Heidel-
berg, January 2012.

[58] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A Toolkit for Ring-LWE Cryp-
tography. Technical Report 293, 2013.

[59] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction.
Cryptology ePrint Archive, Report 2015/1123, 2015. http://eprint.iacr.org/.

[60] Michele Mosca. Setting the scene for the etsi quantum-safe cryptography workshop.
In e-proceedings of the 1st Quantum-Safe-Crypto Workshop. ETSI, September 2013.

[61] Phong Nguyen and Oded Regev. Learning a Parallelepiped: Cryptanalysis of GGH
and NTRU Signatures. In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 271–288.
Springer Berlin / Heidelberg, 2006.

[62] Century of Progress International Exposition. Official Guide Book of the Fair: 1933.

[63] John Proos. Imperfect Decryption and an Attack on the NTRU Encryption Scheme.
Cryptology ePrint Archive, Report 2003/002, 2003. http://eprint.iacr.org/.

[64] John Schanck, William Whyte, and Zhenfei Zhang. A quantum-safe circuit-extension
handshake for tor. Cryptology ePrint Archive, Report 2015/287, 2015. http://

eprint.iacr.org/.

[65] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science, 53(23):201–224, 1987.

[66] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming, 66(1-3):181–199, Au-
gust 1994.

[67] C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest Cryptosystem by Im-
proved Lattice Reduction. In Louis C. Guillou and Jean-Jacques Quisquater, editors,
Advances in Cryptology – EUROCRYPT 1995, number 921 in Lecture Notes in Com-
puter Science, pages 1–12. Springer Berlin Heidelberg, May 1995. DOI: 10.1007/3-
540-49264-X 1.

[68] Claus Peter Schnorr. Lattice Reduction by Random Sampling and Birthday Methods.
In Helmut Alt and Michel Habib, editors, STACS 2003, number 2607 in Lecture Notes

93

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

in Computer Science, pages 145–156. Springer Berlin Heidelberg, February 2003. DOI:
10.1007/3-540-36494-3 14.

[69] Ernst S. Selmer. On the irreducibility of certain trinomials. Mathematica Scandinavica,
4(0):287–302, December 1956.

[70] Jean Pierre Serre. Topics in Galois theory. A K PETERS Limited (MA), 2008.

[71] Joseph H Silverman. A Meet-In-The-Middle Attack on an NTRU Private Key. Tech-
nical Report #004, NTRU Cryptosystems, 1997. Version 1.

[72] Joseph H Silverman. Wraps, Gaps, and Lattice Constants. Technical Report #011,
NTRU Cryptosystems, 2001. Version 1.

[73] Joseph H. Silverman and William Whyte. Timing Attacks on NTRUEncrypt Via
Variation in the Number of Hash Calls. In Masayuki Abe, editor, Topics in Cryptology
– CT-RSA 2007, number 4377 in Lecture Notes in Computer Science, pages 208–224.
Springer Berlin Heidelberg, February 2007.

[74] Ari Singer. NTRU Cipher Suites for TLS. Internet Draft draft-ietf-tls-ntru-00, IETF
Secretariat, 2001.

[75] Damien Stehl and Ron Steinfeld. Making NTRU as Secure as Worst-Case Problems
over Ideal Lattices. In Kenneth G. Paterson, editor, Advances in Cryptology – EU-
ROCRYPT 2011, number 6632 in Lecture Notes in Computer Science, pages 27–47.
Springer Berlin Heidelberg, May 2011. DOI: 10.1007/978-3-642-20465-4 4.

[76] Hong Wang, Zhi Ma, and ChuanGui Ma. An efficient quantum meet-in-the-middle
attack against NTRU-2005. Chinese Science Bulletin, 58(28-29):3514–3518, October
2013.

[77] Xiang Wang, WanSu Bao, and XiangQun Fu. A quantum algorithm for searching
a target solution of fixed weight. Chinese Science Bulletin, 56(6):484–489, February
2011.

[78] Lawrence C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate
Texts in Mathematics. Springer New York, New York, NY, 1997.

[79] Zhijian Xiong, Jinshuang Wang, Yanbo Wang, Tao Zhang, and Liang Chen. An
Improved MITM Attack Against NTRU. International Journal of Security and Its
Applications, 6(2):269–274.

94

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	Post-quantum cryptography
	A step into the unknown
	Where we stand

	Preliminaries
	Generalities on Lattices
	Computational Problems on Lattices
	Ideal Lattices and Module Lattices
	Convolution Polynomial Rings

	NTRUEncrypt
	Primitives
	The NTRU Lattice
	Standardized NTRUEncrypt
	Additional parameters
	Support functions
	SVES

	SVES Parameters
	Choice of N, q, and p
	Private key parameters
	Minimum message weight
	Probability of Decryption Failure in SVES
	Number of IGF calls

	Explicit algorithm for computing parameters
	Parameters for NTRUEncrypt
	EESS #1 v2
	New parameters in EESS #1 v3
	Parameters without decryption failure
	Paramters with non-trivial bold0mu mumu ffffff -5mumod5mu-p

	NTRUMLS
	Modular Lattice Signatures (MLS)
	NTRUMLS
	NTRUMLS Algorithms*
	NTRUMLS Transcript Security*
	Probability of Generating a Valid Signature*
	NTRUMLS Parameters

	Cryptanalysis
	Approximating a closest vector
	Enumeration
	Lattice reduction
	BKZ Simulation

	Meet-in-the-middle attacks
	The hybrid attack
	Preprocessing for general lattices
	Matrix theoretic description for NTRU lattices
	Choosing r1 and r2 for NTRU lattices
	Comparison with Lindner-Peikert Nearest Plane

	Bounded Distance Decoding in an isomorphic module
	Quantum Attacks
	Quantum hybrid attack
	Attacking NTRUEncrypt keys

	Approximate SVP in q(bold0mu mumu ffffff, bold0mu mumu gggggg)
	Other considerations for NTRUEncrypt
	Other considerations for NTRUMLS

	APPENDICES
	APPENDICES
	Software
	NTRUEncrypt Challenges
	N suitable for use when q is a power of two and p=3

	References

