
Topological Quantum Computation

and Protected Gates

by

Sumit Sijher

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Applied Mathematics

Waterloo, Ontario, Canada, 2015

c© Sumit Sijher 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-

tributions included in the thesis. This is a true copy of the thesis, including any required final

revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

I am the sole author of all chapters of this thesis, with the exception of Chapter 7. In

Chapter 7, the paper “Protected gates for topological quantum field theories” is presented in

which I am a co-author. The other co-authors of this work are Michael E. Beverland, Oliver

Buerschaper, Robert Koenig, Fernando Pastawski, and John Preskill. Although credit must be

given to the others, this author would like to note their own contributions to the work. This

work was originally initiated without this author, and some results and general development of

the theory to classify protected gates was already achieved; namely, the background theory and

Chapter 7.3 were essentially complete in addition to initial attempts at characterizing protected

gates for abelian models. The particular contributions of this author were more focused on the-

ory building for characterizing protected gates for non-abelian models and developing methods

for analyzing the case of the n-punctured sphere. Moreover, personal efforts were invested in

carrying out the explicit calculations made in Section 7.6 regarding nonabelian anyon models.

In particular, calculations were made for the Ising model on the n-punctured sphere to arrive

at Theorem 7.6.2. In addition to general discussion and editing of the paper throughout the

process, this author was responsible for constructing many of the figures that appear in the

work.

iii

Abstract

This thesis serves to give a mathematical overview of topological quantum computation

and to apply the theory to characterize desirable fault-tolerant operations called protected

gates. Topological quantum computation is a novel paradigm for quantum computation which

seeks to harness certain exotic quantum systems known as topological phases of matter that

exhibit unique physical phenomena such as the manifestation of quasiparticle excitations called

anyons. The low energy effective field theories of these systems can be expressed by certain

topological quantum field theories, which in turn are described in terms of unitary modular

tensor categories that capture the essential properties of a topological phase of matter and its

corresponding anyon model. An overview of the relevant category theoretic concepts is given,

and the axioms of a unitary modular tensor category are made explicit. A topological quantum

field theory is then defined and used to describe topological quantum computation. Having

developed the necessary theoretical background, the theory is then applied to characterize

protected gates. The main result is a no-go theorem which states that, for any model, the set

of protected gates is finite, and hence, cannot be used to do universal quantum computation

using protected gates alone.

iv

Acknowledgments

I would like to thank my supervisor Robert Koenig for his guidance and the opportunity

that he has provided me for my graduate studies. In addition, I would like to thank my thesis

committee members Joseph Emerson and Bei Zeng for their patience and support. This thesis

would not have come to be as it is if it were not for my collaborators Michael Beverland,

Oliver Buerschaper, Fernando Pastawski, and John Preskill. I was fortunate enough to have

the opportunity to work with this group on this project, and am humbled and inspired by their

brilliance. Most importantly, I must extend a special thank you and acknowledgment to my

family—in particular to my Mother and Father, Harvinder and Charan Sijher, whose love and

support is the ultimate reason I have come this far. To all these people I will remain eternally

grateful.

v

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Outline . 6

2 The Toric code 7

2.1 The Toric Code . 7

2.1.1 The Hamiltonian . 7

2.1.2 The stabilizer group . 10

2.1.3 The code space . 13

2.1.4 Errors and anyons . 14

2.1.5 An error correction protocol . 24

2.1.6 The spectral gap . 27

2.1.7 The anyon model: Z2 × Z2 . 28

2.1.8 Logical operations . 30

2.1.9 Physical observables and the flux basis of Hg 33

vi

3 Topological Quantum Field Theory 35

3.1 Category Theory . 36

3.1.1 Categories and diagrams . 37

3.1.2 Functors and natural transformations . 41

3.2 Modular Tensor Categories . 42

3.2.1 Tensor categories . 43

3.2.2 Semisimple categories . 46

3.2.3 Rigid categories . 49

3.2.4 Braided categories . 51

3.2.5 Ribbon categories . 53

3.2.6 Traces and quantum dimensions . 54

3.2.7 Modular categories . 55

3.2.8 Unitary modular tensor categories (UMTC) 57

3.3 The Verlinde algebra . 57

3.4 TQFTs as monoidal functors . 59

3.4.1 Cobordism categories . 60

3.4.2 (2 + 1)-TQFTs . 61

4 Topology 64

4.1 Topology of surfaces . 64

4.1.1 Classification of surfaces . 64

4.1.2 DAP-decompositions . 66

4.1.3 The Mapping Class Group . 69

5 Topological quantum computation 72

5.1 The topological Hilbert space HΣ := TC(Σ) . 73

5.1.1 The flux basis of HΣ . 74

5.1.2 The Gluing Axiom . 76

5.1.3 Elementary surfaces . 77

5.1.4 The 4-punctured sphere . 78

5.1.5 The torus . 80

vii

6 Protected gates 82

6.1 Protected gates: definition and problem statement 82

6.2 Characterizing protected gates . 84

6.2.1 String operators . 85

6.2.2 Constraints from fusion consistency . 86

6.2.3 Constraints from basis changes . 88

6.2.4 Additional constraints . 89

6.3 Main Results . 90

7 “Protected gates for topological quantum field theories” 92

7.1 Introduction . 93

7.2 TQFTs: background . 99

7.2.1 String-like operators and relations . 99

7.2.2 The Verlinde algebra . 104

7.2.3 Bases of the Hilbert space HΣ . 106

7.2.4 Open surfaces: labeled boundaries . 108

7.2.5 The gluing axiom . 110

7.2.6 The mapping class group . 112

7.3 Constraints on locality-preserving automorphisms 113

7.3.1 A local constraint from a simple closed loop 114

7.3.2 Global constraints from DAP-decompositions, fusion rules and the gluing

axiom . 115

7.3.3 Global constraints from basis changes . 117

7.4 Global constraints from the mapping class group 118

7.4.1 Basis changes defined by the mapping class group 118

7.4.2 Density of the mapping class group representation and absence of pro-

tected gates . 119

7.4.3 Characterizing diagonal protected gates 120

7.4.4 Finiteness of the set of protected gates 122

viii

7.4.5 Necessity of restricting to equivalence classes 124

7.5 Global constraints from F -moves on the n-punctured sphere 125

7.5.1 Determining phases for the four-punctured sphere: fixed boundary labels 125

7.5.2 Determining phases for the four-punctured sphere in general 126

7.5.3 Localization of phases for higher-genus surfaces 129

7.5.4 Characterizing protected gates on the M -punctured sphere using F -moves 131

7.6 The Fibonacci and Ising models . 132

7.6.1 The Fibonacci model . 133

7.6.2 The Ising model . 137

7.7 Abelian anyon models . 141

7.7.1 The generalized Pauli and Clifford groups 143

7.8 Appendix: Density on a subspace and protected gates 146

8 Conclusion 148

APPENDIX 150

References 153

ix

Chapter 1

Introduction

Computation, although often thought about purely in the abstract, ought to be regarded as

a physical process. If a computer is to exist in the physical world, then it must be a physical

system which conforms to the laws of physics. The question of what can and cannot physically

computed then ultimately becomes a question of physics. Quantum computation offers a means

of bringing the abstract study of computation into the appropriate context of quantum physics.

In this regard, a quantum computer is one that uses some quantum system to encode and

process information, and can be thought of as a generalization of classical computation for

which classical computation is merely a special case.

There are many paradigms of quantum computation that may differ in their abstract for-

mulation as a model of computation and also by the choice of physical system to be harnessed

for quantum computation. These different paradigms have their own pros and cons, and there

seems to be no ideal method in practice for enacting quantum computation. Topological quan-

tum computation (TQC) is one such paradigm of quantum computation, which gets its name

from the topological nature of both the “hardware” and “software” utilized.

Perhaps the most prevalent feature of quantum systems is their inherent fragility and high

sensitivity to unwanted noise. Unlike the seemingly robust nature of the classical world, quan-

tum systems are vulnerable to phenomenon which seem to “destroy” their very own quantum

nature. Ideally, one would hope that a working quantum computer would be able to operate

without fault, but both intrinsic and extrinsic errors may inflict the system. Intrinsic errors may

be caused by imperfect or faulty implementations of certain operations. Moreover, extrinsic

errors in the form of external noise due to a quantum computer interacting with its environ-

ment may occur. Hence, the need for quantum error correction in order to ensure fault-tolerant

computation seems inevitable.

Many quantum error correction protocols exist which strive for fault-tolerance through

1

active algorithmic means. That is, these protocols require the monitoring and processing of

information in order to detect and correct possible errors. Furthermore, the resources required

to attempt error correction may themselves be prone to error. A main motivating feature

for TQC is that the physical system it utilizes is inherently fault-tolerant to some extent. In

addition, the way in which certain operations are to be performed on a topological quantum

computer is naturally robust to certain errors. In the context of extrinsic errors, it is often

assumed that external noise acts locally on some part of the system, and so satisfactory error

correction schemes must have a means of dealing with such local noise. If physical systems

can be harnessed which are immune to local noise, then they would make ideal candidates for

computation. This is precisely the property that is possessed by the quantum systems exploited

in TQC.

The physical systems that a topological quantum computer attempts to harness are referred

to as topological phases of matter. These are many-body condensed matter systems that exhibit

some exotic properties. Such systems are assumed to exist on some effectively two-dimensional

surface. The Hamiltonian of these systems is comprised of commuting projectors defined to act

on some local region of the surface. In the interesting case, the ground space of this Hamilto-

nian is a degenerate Hilbert space—meaning, it has dimension greater than one. An important

property of the ground space is that its dimension typically depends on the topology of the

surface on which the system resides. When considering such Hamiltonians defined on suffi-

ciently sophisticated surfaces, the dimension of the corresponding ground space may increase

exponentially. Thus, such spaces can serve as an arena for TQC.

An essential feature of interest that also defines a topological phase of matter is the nature of

excited states of the Hamiltonian. These excited states can manifest certain quasiparticles called

anyons that have some peculiar properties. Its worth noting that anyons are not elementary

particles in the traditional sense of the term, but rather an emergent property of the entire state

of the system. Yet, there is still some notion of an anyon being localized to some region of space

and being able to move around on the surface just as standard particles may. Moreover, anyons

may come in different types which can in principle be measured and distinguished through

some means.

The anyons that may arise from a topological phase of matter also possess some additional

properties pertaining to their dynamics. For instance, in a process referred to as fusion, two

anyons may be combined (or fused) together resulting in another type of anyon which depends

on the types of the original anyon. For some anyon models, the fusion outcome may not be

unique, and multiple anyons of potentially different types may result. In a process opposite to

fusion, a single anyon may also split to yield two other anyons of various types.

When anyons are present on a surface, a quantum state can be associated to their configu-

2

ration, and different configurations of anyons may correspond to different states of the system.

Interestingly, certain dynamics of anyons may induce a change in the state of the system. Con-

sider a scenario where two anyons exist at two respective locations of the system, and are made

to move around each other to interchange their respective positions and then return to their

starting positions. There are associated quantum states corresponding to the initial and final

configurations of these anyons. Naively, and quite naturally, one may expect the state of the

system before and after such an interchange to be equal by virtue of the initial and final anyon

configurations being the same. However, in certain situations (depending on the underlying

anyon model and the surface upon which the dynamics take place) these two quantum states

may be different. In this way, the process of moving the anyons effectively changes the state

of the system. One may be familiar of a similar phenomenon for fermions, where when two

fermions undergo such an exchange to return to a symmetric configuration the overall state of

the system picks up a −1 factor corresponding to a phase factor of π. For certain anyon types,

this phase factor may be some nonzero fraction of π. Hence, in this situation it is said that

anyons exhibit fractional exchange statistics, and this process of interchange is referred to as

“braiding” anyons.

In certain instances, when anyons are present on a surface, the state space of the system

may also be degenerate and have dimension greater than 1. If this is the case, then when

certain braidings of anyons are executed the corresponding transformation to the underlying

state space can be represented as a unitary matrix as opposed to a single phase factor. It is in

this fashion that quantum information can be processed if the appropriate dynamical process

can be controlled and its action known. When braidings of anyons are performed, it turns out

that the overall action on the system is independent of the precise paths traversed by the anyons

provided the overall braids are equivalent topologically. Therefore, if slight deviations result

in the anyon paths during a braid, say, through some intrinsic or extrinsic error, the overall

action on the state space remains the same. Herein lies the essence of topological quantum

computation.

To fully understand topological quantum computation, a mathematical theory is needed

which characterizes all the relevant anyon dynamics. The theory that will serve this purpose

is topological quantum field theory (TQFT), but this theory will in turn be described using

category theory. The latter offers a formal and mathematically rigorous means to make precise

all the relevant notions in an anyon model.

Many physical theories of the world implicitly refer to models of the three-dimensional

physical space in which the entities of interest reside and how this space changes in time. That

is, they are theories of conventional space-time. On the other hand, the standard mathematical

domain of quantum theory takes place in a Hilbert space, which is not a physical space in

3

the sense of ordinary space-time, but a more abstract mathematical space which describes

quantum states. In this regard, quantum field theories offer a way to model quantum mechanical

phenomenon while also taking into account that the quantum mechanical entities of interest

also exist in some space-time model.

As a mathematical formality, the objective of the quantum field theory is to provide a way

of associating appropriate Hilbert spaces to space-time, and transformations of this space-time

to transformations of the corresponding Hilbert spaces. However, one’s own mathematical

liberties offer a choice for what transformations of the space-time manifold are considered. For

instance, the theory may consider transformations of space-time that preserve the distance

and angles between relative points of the space under some suitable metric; in which case the

transformations should be taken as diffeomorphisms of the space-time. This general setting

is the main domain of standard quantum field theory. Perhaps the theory is not concerned

with operations that preserve distance, but only the relative angles of points in the space;

then conformal maps should be used instead of diffeomorphisms, and in this case the theory

is said to be a conformal field theory. Continuing in this forgetful manner, the theory may

not even be concerned with transformations of space-time which preserve both distance and

angles, but only preserve the fundamental topology of the manifold. In this latter case, the

appropriate transformations are homeomorphisms of the manifold, and the theory is referred to

as a topological quantum field theory (TQFTs, for short). Therefore, in some sense, TQFTs may

be regarded as the most fundamental theories when compared to more general quantum field

theories since they characterize the most essential features of the theory that are independent

or remain invariant under such general topological transformations.

For the purpose of topological quantum computation with anyons, TQFTs become relevant

because they offer an effective theory which precisely models the anyonic properties and their

dynamics. In particular, a (2+1)–dimensional TQFT will be of interest in this thesis, since the

anyon dynamics are assumed to take place on some oriented two-dimensional surface (where

time plays the role of the third dimension). Before proceeding to give a mathematical definition

of a TQFT, some effort will be invested in first developing an algebraic theory of anyons.

The main mathematical tool for anyon theory will be category theory, which describes in an

algebraic fashion all the data necessary to specify an anyon model. Namely, an anyon model will

be described mathematically by a unitary modular tensor category (UMTC), which contains

within it a very rich structure that captures essential anyonic properties of interest.

Roughly speaking, a TQFT takes the data provided by a particular anyon model and as-

signs certain Hilbert spaces to various surfaces upon which the anyonic dynamics take place.

The mathematical entity which describes this assignment will be referred to a unitary modular

tensor category functor (UMTC functor) and essentially specifies a particular TQFT given an

4

anyon model. The surface and certain topological transformations of the surface (called homeo-

morphisms), will get mapped by the UMTC functor to appropriate Hilbert spaces and unitary

transformations on this Hilbert space, respectively. More generally, transformations between

various surfaces are associated to certain linear transformations between the respectively as-

signed Hilbert spaces. The UMTC functor is essentially a category theoretic concept, and its

role can be thought of as providing a structure-preserving representation of the UMTC that

describes the anyon dynamics on surfaces to the category of Hilbert spaces, which itself can be

thought of as a UTMC.

Having sufficiently developed the relevant background theory to understand topological

quantum computation, the rest of this thesis will serve to characterize certain fault-tolerant op-

erations for topological quantum computation referred to as protected gates. The mathematical

characterization of these protected gates is essentially done using the underlying topological

quantum field theory that models the relevant anyon dynamics. The theory developed for this

problem and the results that are obtained are based off joint work done in the paper “Protected

gates for topological quantum field theories”, which is included as one of the final chapters of

this thesis. Thus, the ultimate aim of this thesis it to provide the reader with enough back-

ground knowledge and motivation to understand the results on protected gates.

A pictorial overview of the various topics discussed in this thesis, and how they relate to

each other is provided in Figure 1.1.

Figure 1.1: A pictorial overview of the topics discussed in this thesis and how they relate to
one another.

5

1.1 Outline

This thesis will initially proceed by introducing a basic example of a topological phase of matter

called the Toric code in Chapter 2. This section will serve as a primer for topological quantum

computation, and introduce some ideas that will be developed more formally throughout the

remainder of the thesis. Chapter 3 invests in the relevant background theory to help understand

topological quantum computation. For this purpose, Chapter 3.1 defines a category and some

other basic notions of category theory. Then Chapter 3.2 proceeds to define a unitary modular

tensor category through a series of axioms, while relating the concepts to the various anyon

dynamics in the physical picture. Once this is complete, a topological quantum field theory

is formally defined in Chapter 3.4. In Chapter 4, a brief investment is made to define some

basic concepts from topology. All these theoretical ingredients are then combined to define

and understand topological quantum computation in Chapter 5. Having invested in sufficient

background theory, the rest of the thesis will then proceed by applying this developed conceptual

framework to understand certain fault-tolerant operations for topological quantum computation

called protected gates. In Chapter 6, an explicit definition of protected gates is given and the

problem of characterizing protected gates is formally stated in Section 6.1. This is followed by

an overview in Section 6.2 of the methods developed and the main results in Section 6.3 obtained

in the collaborative work presented in the paper “Protected gates for topological quantum field

theories”. Chapter 7, then supplies this paper verbatim where all proofs, techniques, and results

are explicitly described. Following the conclusion in Chapter 8 of this thesis, an Appendix

that briefly overviews the stabilizer formalism for purposes of understanding the Toric code is

provided.

6

Chapter 2

The Toric code

2.1 The Toric Code

This section will serve the purpose of exemplifying some essential features of topological quan-

tum computation while also offering both physical and mathematical motivation for the theory

to be developed in later sections. The toric code was originally introduced as a paradigmatic

example in the pioneering work of A. Y. Kitaev[29], where a more general model for topological

quantum computation was also proposed. As the name suggests, the toric code is an example of

a quantum error correcting code—in particular, it is a stabilizer code. Moreover, the construc-

tion of the toric code involves inherently geometric notions through which unique topological

properties become manifest.

Although somewhat pedagogical in character, the description of the toric code given here is

presented in the context of the traditional stabilizer framework. The objective is to observe the

interplay between the topology and dynamics of anyonic excitations with hopes of demystifying

their emergence in the more general theory which is independent of the stabilizer framework.

Eventually such low-level, microscopic details pertaining to the Hamiltonian of the system

will become irrelevant for the purposes of this thesis, and the main content of this work will

proceed in a more high-level fashion using the underlying topological quantum field theory to

be developed.

2.1.1 The Hamiltonian

A topological phase of matter is a physical system whose Hamiltonian satisfies certain essential

properties. These properties, such as ground space degeneracy with a nonzero spectral gap, and

emergent quasiparticles called anyons with fractional exchange statistics, will be characterized

7

more rigorously throughout what follows. Topology will come into play, because the physical

system is assumed to exist on some surface or manifold. For our purposes, the quantum state

space of the physical system under consideration will be described by a Hilbert space H which

is the state space of some many-body system. That is,

H =
N⊗
j=1

Cd
j ,

where Cd
j is a d-dimensional complex valued space indexed by j representing some local degree

of freedom (i.e. a qudit in the quantum information nomenclature).

For the toric code, the physical system will consist of many qubits corresponding to the case

d = 2. At the physical level these qubits are meant to exist on the surface of the genus-1 torus

T . An explicit Hamiltonian Ĥ for the system will be defined with respect to some discrete

triangulation of the torus T . Therefore, there is some notion of geometric locality and what it

means for two qubits to be close or interact with one another. Unlike the traditional circuit

model, this locality property is essential for the emergence of topological quantum computation.

Furthermore, the definition of the Hamiltonian Ĥ of the physical system H will depend on the

surface topology of T in a fundamental way, and thereby relate the topological phase of matter

to the underlying effective topological quantum field theory.

To be more specific, first consider a k × k square lattice L consisting of k2 vertices V and

2k2 edges E, which form k2 square faces F . By identifying the edges along the top of the

lattice with the bottom, and the edges along the left side with the right side, the lattice can

be thought of as being embedded on the surface of the genus-1 torus (hence the name ‘toric’

code). Alternatively, the lattice L can be thought of as having periodic boundary conditions,

where a path leaving the lattice from the top side returns to the lattice from the corresponding

point on the bottom side of the lattice. Likewise, a path leaving the torus from either the left

or right sides would return from the opposite side. Instead of visualizing the lattice on the

surface of the torus, this latter picture will be used throughout for convenience.

In the toric code, a qubit is placed on each edge e ∈ E of the lattice L so that there are

N := 2k2 qubits which comprise the physical system for the k × k lattice L. Thus, the Hilbert

space of the system under consideration is a tensor product of the individual qubit state spaces:

HN =
N⊗
j=1

C2
ej
,

where the Hilbert space HN is parametrized in terms of the number of total qubits N and

indexed the qubits by edges ej ∈ E of the lattice.

8

For notational purposes, when some single qubit unitary operator U is applied to only qubit

j, write Uj in order to specify the appropriate Hilbert space C2
j that U is meant to act on. That

is,

Uj = I ⊗ · · · ⊗ I ⊗ U ⊗ I ⊗ · · · ⊗ I

will denote the unitary operator of the whole system HN that only applies the single qubit

unitary U to the qubit of C2
j , and acts trivially on all other qubits (here, I denotes the single

qubit identity operator on C2). In this way, the action of the unitary U on the space C2
j ⊂ HN

of a single qubit is extended to an operation that acts on the whole space HN . Therefore, if

two single qubit unitaries U and V are to be applied to qubits j1 and j2, respectively, it is well

defined to simply write this operation as the product Uj1Vj2 .

Before proceeding with an analysis of the ground space of the system’s Hamiltonian, it will

be worthwhile to understand some important properties of the operators which comprise the

Hamiltonian. There are two basic types of operators that act on the qubits of the lattice which

are defined for each vertex and face. These operators will be used to define the Hamiltonian for

the toric code, and also yield an algebraic set of operators important for the purpose of error

correction — in particular, they will define the stabilizer generators of the toric code. For each

vertex v ∈ V and face f ∈ F of the lattice L, define the following two operators on HN :

Av =
∏

j∈star(v)

σxj and Bf =
∏

j∈boundary(f)

σzj ,

where σx and σz are the standard single qubit Pauli operators. Here, star(v) represents the

set of 4 edges that meet at vertex v and boundary(f) represents the set of 4 edges that border

the face f . In other words, Av is the operator that applies σx to each of the 4 qubits adjacent

to vertex v, and Bf is the operator that applies σz to each of the 4 qubits that border the

particular face f . These operators are illustrated in Figure 2.1 for some particular choice of

vertex and face of the lattice.

9

x

x x

x

z

z
zz

Figure 2.1: The lattice in the toric code has qubits placed on its edges depicted as black dots.
The vertex operators Av applies σx operators to the four edges around vertex v, and the face
operators Bf applies σz operators to the four edges bordering a face f .

The toric code Hamiltonian is then defined as

Ĥ =
∑
v∈V

1

2
(I − Av) +

∑
f∈F

1

2
(I −Bf), (2.1)

where the sums range through all vertices v ∈ V and faces f ∈ F of the lattice L. Note that,

since both σx and σz are Hermitian operators, this implies that each Av and Bf operator is also

Hermitian. Consequently, arbitrary sums of these operators will also be Hermitian ensuring

that the definition given for Ĥ is well-defined as a physical Hamiltonian. Moreover, both Av and

Bf have eigenvalues +1 and −1. Also, note here that the Hamiltonian has been normalized so

that the lowest energy eigenstates of Ĥ correspond to a state with zero eigenvalue or energy. In

what follows, we will be interested in understanding the ground space spanned by zero energy

eigenstates of the system, and the spectral gap (or difference in eigenvalues) between the lowest

and first excited states.

2.1.2 The stabilizer group

The main claim of this section is that the set of operators

S := 〈Av, Bf | v ∈ V, f ∈ F 〉 ,

generated by all the Av and Bf operators, forms an abelian subgroup of the N -qubit Pauli

group PN . Then by definition, this commutativity implies that the set S forms a stabilizer

group (see Appendix).

10

That S ⊆ PN is a subgroup is clear by construction, since each of the Av and Bf operators

are simply tensor products of single qubit Pauli operators acting on the N qubit space HN .

For S to be a stabilizer group it must be the case that each of the Av and Bf commute with

one another. Since Av and Bp are either products of only σx or only σz operators, respectively,

and because σx and σz each commute with themselves, it follows that Av and Av′ commute for

any vertices v and v′, and that Bf and Bf ′ commute for any faces f and f ′. However, even

though σx and σz anti-commute with one another, meaning σxσz = −σzσx, it happens to be

the case that Av and Bf do indeed commute for any vertex v and face f . To see this, there

are two cases to consider. First, suppose v and f are sufficiently far apart so that there are

no qubits in common that are acted on by the operators Av and Bf . In this case, Av and Bf

trivially commute since the operators σxj and σzj′ , with j ∈ star(v) and j′ ∈ boundary(f), act

on different subspaces of HN .

The only other possibility to consider is when the vertex v happens to be one of the corners

of the face f . In this case, there are two distinct qubits in the intersection of star(v) and

boundary(f) as shown in Figure 2.2. Each of these two qubits is acted on by σx and σz, but

since σxσz = −σzσx there are two minus signs that result from the action of Av and Bf on each

of the two qubits which then cancel implying that AvBf = BfAv. Thus, it has been shown

that each of the Av and Bf commute with one another so that the set S generated by their

products is indeed a stabilizer group by definition.

x

x x

x

z

z
zz

Figure 2.2: Adjacent vertex and face operators commute because they have two edges in com-
mon.

It is worthwhile to calculate the number of independent generators of S in order to determine

further properties of the toric code. A generating set of S is a collection of elements of S such

that each element of S can be expressed as some product of elements from the generating set.

11

In addition, it is required that the elements of the generating set be independent, meaning that

no element of the generating set can be expressed as a product of the other elements of the

generating set. Since the elements of S are all expressible by products of the operators Av

and Bf , finding a minimal generating set of S comes down to determining if any of the Av or

Bf operators can be expressed in terms of the others.

In fact, it will now be shown that the following two relationships hold:

∏
v∈V

Av = IHN
and

∏
f∈F

Bf = IHN
,

where the products range over all vertices v ∈ V and faces f ∈ F of the lattice, and IHN
is the

identity operator on the whole space HN . This is easily seen by noting that for any operator

Av (or Bf) acting on a particular vertex v (or face f) of the lattice, there are four adjacent

operators Avi (or Bfi) where each of the adjacent operators have one edge in common with Av

(or Bf). Therefore, the action of two σx (or σz) operations on the common edges cancel since

σxσx = I = σzσz, which cancels the action of the original Av (or Bf). Similarly, each of these

four vertices vi adjacent to the original vertex v (or four faces fi adjacent to the face f) have

three other vertices (or faces) adjacent to them not including the original vertex v (or face f).

Then the action of the corresponding Av (or Bf) will cancel the σx (or σz) operations that act

on the shared edges. Continuing in this way, the simultaneous action of every Av (or Bf) on

the lattice will cancel each other resulting in the trivial action IHN
. This pattern is illustrated

in Figure 2.3.

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

xx

x x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

xx

x x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

xx

x x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

xx

x x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

x

x x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

Figure 2.3: The product of all vertex (or face) operators gives the identity IHN
since each qubit

of the lattice is acted on by two σx (or two σz) operators and σx2 = σz2 = I.

The relationship derived above implies that any single Av′ (or Bf ′) can be expressed as

the product of all other Av (or Bf) with v 6= v′ (and f 6= f ′). That is, since A2
v = IHN

and

12

B2
f = IHN

, each Av and Bf is its own inverse. It then follows that

∏
v 6=v′

Av = Av′ and
∏
f 6=f ′

Bf = Bf ′ .

Hence, since there are k2 many Av operators and also k2 many Bf operators defined on the

k × k lattice L, there are only k2 − 1 independent operators of each variety. This shows that

a minimal generating set for the stabilizer group S consists of G := 2(k2 − 1) independent

elements.

This size of the generating set of S will be relevant when analyzing the code space of the toric

code to be presented in the next section. The elements of S, and in particular the operators

forming the generating set of S, will play a crucial role in the detection of errors or anyonic

excitations by serving as check operators. Measuring the generators on the qubits of the lattice

will (in the ideal case) yield information on whether or not errors have been inflicted on the

system, and also serve as means to correct some of the possible errors.

2.1.3 The code space

As described in the previous section, the stabilizer group S generated by the operators Av and

Bf consists of operators that all commute with each other. Therefore, each of the terms in

the Hamiltonian Ĥ also commute with one another. It is a general result in the theory of

linear algebra that such a collection of operators can all be simultaneously diagonalized. This

implies the existence of a simultaneous eigenspace Hg corresponding to the groundspace of the

Hamiltonian. More precisely, the space Hg ⊆ HN is the vector subspace

Hg := span{|ψ〉 ∈ HN : Av|ψ〉 = |ψ〉, Bf |ψ〉 = |ψ〉 for all v ∈ V and f ∈ F},

which is the simultaneous eigenspace spanned by eigenvectors for each Av and Bf that have

eigenvalue +1. Recall that such considerations are possible since the Av and Bf have only

eigenvalues +1 and −1. In the context of error correcting codes, the subspace Hg ⊂ HN

is called the code space of the stabilizer group S. In regards to quantum computation, this

space is to be thought of as encoding information that is to remain protected from errors, or

processed in some coherent manner. How well suited such a space is, and the computational

richness allowed, is determined by the surface topology and Hamiltonian of the model under

consideration.

Each of the states |ψ〉 ∈ Hg are states of the entire physical system HN consisting of N

physical qubits. In the conventional error correcting nomenclature, the states |ψ〉 ∈ Hg are

13

often called code words. If dim(Hg) is the dimension of Hg, then Nc := blog2(dim(Hg))c can be

thought of as the maximal number of qubits that are effectively encoded in the code space Hg.

For sufficiently nontrivial manifolds, dim(Hg) > 1, and in this case the Hamiltonian Ĥ is said

to have a groundspace degeneracy.

There is one remarkable property of the space Hg which plays a crucial role even for more

general models. Unlike the physical state space HN which admits a natural tensor product

structure in terms of local degrees of freedom, the code space Hg will in general not permit

such a tensor product structure. Instead, the spaceHg is more naturally decomposed in terms of

nonlocal degrees of freedom. How this is done will be made more precise in later developments.

This property allows such topological models to have a more robust degree of protection from

errors, since the information encoded in the state cannot be extracted through local operators,

and it is often assumed that noise acts locally. Herein lies one of the motivating features of

topological quantum computation.

Of course, now the natural question to ask is how many qubits Nc are encoded by Hg. As

consequence of the stabilizer formalism, the number of logical qubits Nc encoded by the space

Hg in general is given by 2N−G, where N is the total number of qubits under consideration

and G is the number of independent stabilizer operators that generate S. For the toric code

defined on a k × k lattice L, the number of qubits is N = 2k2 and the number of generators is

G = 2(k2 − 1) as calculated in the previous section. Then the dimension of the code pace Hg

is given by dim(Hg) = 2N−2(k2−1) = 22. Hence dim(Hg) = 4 so that the code space Hg only

encodes Nc = 2 logical qubits. Intuitively, this result holds because each independent generator

of S can be thought of as halving the dimension of the global space HN where dim(HN) = 2N .

Note that this number Nc does not depend on the characteristic length scale k of the lattice

L. This implies that no matter how large the lattice is made in the toric code, the number

of encoded qubits always remains the same. This will have interesting consequences when

considering the error correcting abilities of the toric code for different lattice sizes.

After describing the properties of anyonic excitations through the manifestation of errors in

the toric code, it will be interesting to revisit and analyze the codespace Hg in order to more

explicitly understand the structure of the space in a more topological context. This will also

yield an alternate avenue, which is valid for more general models, for calculating the dimension

of the groundspace and the form of logical operators acting on the logical qubits.

2.1.4 Errors and anyons

Assume now that the state of the system HN is prepared in some ground state |ψ〉 ∈ Hg of the

Hamiltonian Ĥ. Then by definition, for any |ψ〉 ∈ Hg, measuring the Av and Bp operators will

14

all yield eigenvalue +1 since Av|ψ〉 = |ψ〉 and Bf |ψ〉 = |ψ〉 for all v ∈ V and f ∈ F . A violation

of any of these conditions, meaning some Av or Bf operator yields an eigenvalue of −1 instead,

implies that the state of the system is in some excited state |ψ′〉 /∈ Hg of the Hamiltonian Ĥ.

In the error correcting context, such a violation signals a possible error having occurred on the

encoded state |ψ〉 ∈ Hg. Thus, errors will be detected by performing syndrome measurements

using the stabilizer generators Av and Bf .

The physical nature of various excitations or errors in this model can be understood through

the dynamics of certain quasiparticles called anyons that exhibit some peculiar properties.

These anyons are not necessarily particles in the traditional sense of an elementary particle,

but rather an emergent property of the physical system. Regardless, there is some notion of

an anyon being present or localized to a certain region of space. Moreover, the anyons can

be mobile and may propagate in space. For a particular model, anyons may come in different

physically observable types which can fuse or annihilate with each other to yield other anyon

types or no anyon at all. Alternatively, a single anyon may split into multiple anyons of

potentially different types. The relative dynamics corresponding to anyons moving around one

another (often referred to in the literature as “braiding” anyons) may also enact nontrivial

transformations on the underlying state space of the system. In essence, it is through the

detection and control of these anyonic excitations of a system by which topological quantum

computation is realized.

In this section, an analysis of errors in the toric code will be given to see how some of these

anyonic properties manifest themselves. In what follows, the schemes for detecting possible

errors occurring on an encoded state |ψ〉 ∈ Hg will initially be described in a case-by-case basis

until enough intuition is gathered to describe a more general algebraic structure of the relevant

operators acting on the space. In particular, first we will only analyze σz errors, and then use

this understanding to analogously reason about σx errors. It will be the objective of a later

section to make these notions more precise and mathematically rigorous so that a more general

theory can be applied to arbitrary topological models.

The case of a single σz error

Suppose now that some σzj error occurs on qubit j of the lattice (but the location is not known)

so that an encoded state |ψ〉 ∈ Hg is transformed into the erred state |ξ〉 = σzj |ψ〉. In this case,

any Bv commutes with σzj as Bv only consists of a product of σz operators. Therefore, measuring

any of the Bv operators will also return a +1 eigenvalue yielding no useful information about

the error since

Bf |ξ〉 = Bfσ
z
j |ψ〉 = σzBf |ψ〉 = σz|ψ〉 = |ξ〉.

15

Any Av such that v is not one of the two vertices at the end of edge j, will trivially commute

with σzj by the mere fact that these operators act on different qubits of the lattice. However,

there exists precisely two Av operators that will anti-commute with σzj : namely, the two Av

that correspond to the two vertices at the ends of edge j. These anti-commute because the Av

operators are in terms of σx operators and σx and σz anti-commute. Hence, when the two Av

operators that act on the qubit on edge j are measured they will give an eigenvalue −1:

Av|ξ〉 = Avσ
z
j |ψ〉 = −σzAv|ψ〉 = −σz|ψ〉 = −|ξ〉.

The result of measuring these two Av operators gives information on exactly which qubit j was

inflicted with the σz error. Moreover, the error can be corrected by applying σzj to the erred

state which returns it back to the original state |ψ〉 ∈ Hg.

The pair of vertices at the ends of the edge j corresponding to the location of the σzj error

will be thought of as the locations of a pair of anyon excitations. For this, introduce the notation

z to represent a z-type anyon, and place two z anyons at these two vertex locations as shown

in Figure 2.4. In this way, the syndrome measurements given by applying some operator Av

can be thought of as detecting the presence of a z anyon at that particular vertex.

z
z z

Figure 2.4: A pair of z-anyons are present on the two vertices that uniquely determine the
location of a σz error acting on a qubit on some edge

The case of a single σx error

Instead, suppose now that a single σxj error is inflicted on the qubit located on edge j, but the

precise location of j is not known. The detection and correction of such an error proceeds in

an analogous manner to the σzj error described in the previous section. This time, the encoded

state is transformed into the erred state of the form |ξ〉 = σxj |ψ〉. Since each of the Av operators

16

are comprised of products of σx operators as well, they all commute with σxj . Thus measuring

each Av on the lattice gives an eigenvalue +1 yielding no information pertaining to the location

of the error since

Av|ξ〉 = Avσ
x
j |ψ〉 = σxAv|ψ〉 = σx|ψ〉 = |ξ〉.

On the contrary, every Bf operator will commute with the σxj error with the exception of two Bf

operators. In this case, the two anti-commuting operators will correspond to the two adjacent

faces of the lattice that share the common edge j. Measuring these these two operators leads

to the detection of the σxj error due to a −1 eigenvalue:

Bf |ξ〉 = Bfσ
x
j |ψ〉 = −σxBf |ψ〉 = −σx|ψ〉 = −|ξ〉.

Since these two Bf operators correspond to the only adjacent faces next to the error, they

uniquely determine the error’s location and the error can be corrected by simply applying

another σxj operator to bring the erred state |ξ〉 back to the encoded state |ψ〉 ∈ Hg. To signify

the presence of this error, a x-type anyon denoted by x will be introduced. This time, however,

two x anyons will be placed on the two faces adjacent to the location of the σxj error as shown

in Figure 2.5. Similar to how the Av operators are able to detect the presence of a z anyons

representing σz errors, the presence of the two x anyons representing σx errors are detected

instead by the Bf operators.

x
x

x

Figure 2.5: A pair of x-anyons are present on the two faces that uniquely determine the location
of the σx error

Strings of multiple σz errors

In the previous section, it was shown how a single σz and a single σx error can be detected

and corrected. This strategy will also work for correcting multiple σz and σx errors provided

17

that the errors act on qubits (edges) that are not adjacent (do not share a common vertex). If

there happens to be, say, multiple σz errors such that the location of the errors forms a chain,

or path, as depicted in Figure 2.6, then the error syndrome will be inherently ambiguous and

more care must be taken in attempting to correct the errors.

In order to better reason about a chain of adjacent errors, define a path P := {ej1 , ej2 , . . . , ejn}
as an ordered sequence of adjacent edges ejk ∈ E on the lattice, and introduce the following

string operator

Fz(P) =
∏
ej∈P

σzj ,

which applies a σzj along each edge ej that is a part of the path P . In this way the string Fz(P)

represents the case where a sequence of adjacent σz errors have inflicted the qubits along the

path P on the lattice as shown in Figure 2.6. The case of a σz error occurring on a single

qubit, as discussed in the previous section, is a special case of a string operator Fz(P) where

the path P = {ej} simply consists of a single edge.

zz

z

z
p

Figure 2.6: An error Fz(P) represents σz errors applied to all edges along the path P .

When the string Fz(P) effects an encoded state |ψ〉 ∈ Hg the erred state is of the form

|ξ〉 = Fz(P)|ψ〉. It will now be shown that detecting the exact locations of all the errors

induced by the string Fz(P) using the stabilizer operators Av and Bf is inherently ambiguous.

This is because the stabilizers will only be able to provide information about the two endpoints

of the path P , and not uniquely determine the entire path P since there can exist many different

paths which happen to share the same endpoints. Naturally, all Bf commute with Fz(P) since

Bf consists of σz operators, and so will not yield any useful syndrome information. One may

be tempted to think that any Av operator whose vertex v lies on any part of the path P will

anti-commute with Fz(P) thereby detecting the presence of all the σz errors, but this is not the

case. Actually, any Av whose vertex v lies on the path P with the exception of the two vertices

at the endpoints of the path P will also commute with the string Fz(P), because the path P

18

will always pass through two edges in star(v). For each of these two edges the σx from Av

anti-commutes with the error σz on that edge producing a −1, but since the other σx and σz

acting on the other common edge also produces a −1 the effect of the two will cancel yielding

a trivial syndrome measurement. The only two Av that manage to detect an error produced

by Fz(P) via a −1 syndrome are the two Av corresponding to the endpoints on edges ej1 and

ejn of the path P = {ej1 , ej2 , . . . , ejn}. These two Av anti-commute with Fz(P) because Av and

Fz(P) only act on a single common edge in this case. Hence, there are two z anyons that

reside at the endpoints of the path P as shown in Figure 2.7. This exemplifies the important

property of the z anyons that they will always appear as pairs whenever σz errors are present.

zz

z

z
p

z

z

Figure 2.7: Two z-anyons are placed at the endpoints of the error string Fz(P) to signify the
vertex locations with nontrivial syndrome measurements

Since the syndrome measurements in the case of a string Fz(P) of σz errors only gives

information specifying the endpoints of the error string Fz(P), how then are all the errors to

be corrected? It would be ideal if the exact path defining the string Fz(P) was known, because

then the errors can be corrected by simply applying all the σz operators comprising the string.

To understand how to overcome this obstacle consider the following.

Since the exact form of the error string Fz(P) is unknown, and only the endpoints of the

string can be detected, the best one could do is to guess a path Pg that has the same common

endpoints with the actual error path P . Thus, consider some string operator Fz(Pg), where the

path Pg has the same endpoints as the actual error path P . Recall that these endpoints are

just the locations at which the pair of z anyons reside. The union of these two paths P and

Pg (denoted by the concatenation PgP) forms a closed loop on the lattice, which we define as

a path L := PPg = {ej1 , ej2 , . . . , ejn} where the first and last edge are the same: ej1 = ejn . The

union of the two paths P and Pg then yields a product of string operators Fz(L) = Fz(Pg)Fz(P).

19

If the string Fz(Pg) is applied to the erred state |ξ〉 = Fz(P)|ψ〉, it is transformed to the state

|ξ′〉 = Fz(Pg)|ξ〉 = Fz(Pg)Fz(P)|ψ〉 = Fz(L)|ψ〉.

Depending on the structure of the loop L it may be the case that |ξ′〉 = |ψ〉 implying

that the state is returned to its original encoded state. However, it can also be the case that

|ξ′〉 6= |ψ〉, but yet |ξ′〉 ∈ Hg is another encoded state in the ground space. In this latter case,

the erred state |ξ〉 is not returned to the original state |ψ〉 ∈ Hg. Instead, it is transformed to

some other different encoded state |ξ′〉 ∈ Hg and error recovery fails. When this occurs a logical

operation has been performed on the encoded state—an undesired effect when the objective is

to merely preserve the state |ψ〉. However, it will be shown that such string operators can be

used to enact nontrivial operations on the codespace Hg in a controlled manner. To do this,

the topology of loops on the torus must first be understood.

Loops on the torus

The approach described in the previous section, of guessing a string operator Fz(Pg) in hopes

of correcting some error caused by the string Fz(P) by forming a loop L = PgP , succeeds

depending on the topological nature of the loop L. Since the lattice under considerations is

embedded on the surface of a torus, any loop on the lattice comes in essentially two varieties.

Whether or not the error is corrected depends on which type of loop is formed in Fz(L).

In general, a loop in a planar region always defines a boundary which partitions the plane

into two disjoint parts: an inside and an outside. Such loops can always be contracted to a

point on the surface. A loop of this variety will be referred to as a trivial loop. On the surface

of a torus, or even more generally for higher genus manifolds, this property of a loop being

able to contract to a point does not always hold. For instance, closed loops formed around the

handle of the torus or around the hole are nonconctractable loops. A noncontractible loop on

the torus does not partition the surface of the torus into two disjoint regions, and thus does

not have a well defined ‘inside’ or ‘outside’. A loop that cannot be contracted to a single point

will be called a nontrivial loop. For a torus, there are two such classes of nontrivial loops:

ones that loop around the handle of the torus, and ones that loop around the hole. Of course,

nontrivial loops may also loop multiple times around the handle or hole the torus in various

combinations.

In the lattice picture with periodic boundary conditions representing the surface of a torus,

the nontrivial loops may be ones that pass through the periodic boundary on any of the four

sides that define the boundary of the lattice. A path on this lattice will form a trivial loop if

it never passes through a boundary. Also, if a loop does pass through a boundary, it can still

20

form a trivial loop provided that it passes back through that same side of a boundary the same

number of times before joining itself.

In the next section, it will be shown that the action of the string operator Fz(L) on an

encoded state |ψ〉 ∈ Hg is trivial, so that Fz(L)|ψ〉 = |ψ〉, if the loop L is trivial. Otherwise,

if L is nontrivial, then Fz(L)|ψ〉 = |ψ′〉 for some |ψ′〉 ∈ Hg such that |ψ′〉 6= |ψ〉. In this latter

case, some logical operation is said to have been enacted on the code space. What operation is

performed will depend on the type of nontrivial loop L that defines the string operator.

Correcting σz errors

In regards to error recovery, consider some string operator Fz(L) that has been constructed

such that L is a trivial loop on the torus. In this case, the loop L forms the boundary of an

inner region as shown in Figure 2.8. In this case, Fz(L) can be expressed completely in terms

of a certain product of Bf operators as

Fz(L) =
∏

f∈inside(L)

Bf , (2.2)

where the (2.2) set inside(L) consists of all the faces inside of the boundary formed by the

loop L. This is true because in such a product of Bf operators, any edge inside of the loop is

acted on by two adjacent Bf operators so that the action of both of the two σz operators on

that edge is the identity map. The only participating edges in this product of Bf operators that

are acted on nontrivially are precisely those that comprise the loop L. Now, since every Bf is

an element of the stabilizer S, the action of Fz(L) on any state |ψ〉 ∈ Hg is trivial. Then if

some erred state is of the form |ξ〉 = Fz(P)|ψ〉 after the encoded state |ψ〉 is inflicted with a

the string operator Fz(P) acting on some path P , and another guessed string Fz(Pg) is applied

so that Fz(L) (where L = PgP) forms a trivial loop, the erred state |ξ〉 is transformed as

Fz(Pg)|ξ〉 = Fz(Pg)Fz(P)|ψ〉 = Fz(L)|ψ〉 =
∏

f∈inside(L)

Bf |ψ〉 = |ψ〉.

This shows that error recovery is successful if the error string is made into a trivial loop.

21

zz

z

z

L

zzz

z

z

z

z

z

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

z

z
zz

Figure 2.8: A trivial loop L can be expressed as the product of all face operators Bf corre-
sponding to the faces contained inside the boundary formed by the loop.

On the other hand, in the presence of a Fz(P) error string, suppose a string Fz(Pg) was

guessed so that the union of the two form a loop string Fz(L) such that L = PgP is a nontrivial

loop. Consequently, The loop L no longer partitions the surface into two disjoint regions. In

this scenario, it is impossible to express Fz(L) exclusively in terms of Bf operators as done in

the case of a trivial loop. This means that Fz(L) /∈ S, since it cannot be generated by elements

of S. Yet, Fz(L) still commutes with every element of S, because the loop L has no endpoints

by definition. More explicitly, for any vertex v on the loop, the loop will always pass through

exactly two edges in star(v) making Av commute with Fz(L). Hence, no element of S is able to

detect any of the errors inflicted by Fz(L). Therefore, despite attempting to correct the error

on the state |ψ〉 ∈ Hg, a logical operation is inadvertently applied to the state transforming it

to some other |ψ′〉 ∈ Hg and error recovery fails.

The Dual Lattice

Up until now, the discussion has been mostly focused on σz errors and how to correct them.

The focus will now shift to correcting strings of σx errors. Fortunately, the understanding and

intuition developed in the previous sections for the case of σz errors naturally extends over to

this scenario. This transition will be assisted by considering the dual lattice as an abstract aid

to reason about σx errors.

Relative to the actual square lattice under consideration, the dual lattice is the lattice that

has vertices at the center of the faces of the main lattice, and has the center of its faces at

the locations of the vertices of the main lattice. In the dual lattice, the qubits still reside on

the edges and remain in the same location as the main lattice. Naturally, the dual of the dual

22

lattice is just the main lattice again. The main lattice (in solid lines) and the dual lattice (in

dashed lines) are depicted together in Figure 2.9.

p'

x

x x

x

Figure 2.9: The main lattice and the dual lattice are depicted with the dual lattice as dashed
lines. A co-path P ′ of the dual lattice as shown. The vertex operators Av can be thought of as
a face operator on the dual lattice.

The utility in considering the dual lattice comes from being able to reason about σx errors

analogously to the way σz errors were analyzed. Just as paths and loops were considered on the

main lattice, paths P ′ and loops L′ will be considered on the dual lattice and will be referred

to as co-paths or co-loops. When displaying figures in the rest of this paper the dual lattice will

not be depicted, and co-paths will be drawn as dashed lines as shown in the figure above. One

useful consequence of considering the dual lattice is that the vertex operators Av represented in

terms of star(v) on the main lattice can now be perceived as face operators on the dual lattice

as shown in Figure 2.9.

Correcting σx Errors

Similar to the case of σz errors, to represent multiple σx errors that are adjacent to each other,

define the string operator

Fx(P
′) =

∏
v∈P ′

Av, (2.3)

where the product ranges over vertices v on the co-path P ′ of the dual lattice. For an open

co-path P ′, a string Fx(P
′) manifests two x anyons at its endpoints which lie on the faces

of the main lattice. Analogous to the correction of σz errors by applying string operators on

appropriately chosen paths, the objective of error recovery for σx errors will be to appropriately

guess co-paths P ′g so that the union P ′gP
′ forms trivial co-loops on the dual lattice. If P ′gP

′ is

23

a nontrivial co-loop, the string operator Fx(P
′
gP
′) applies a logical operation to the encoded

state instead.

Any trivial co-loop L′ can be expressed in terms of Av operators as

Fx(L
′) =

∏
v∈inside(L′)

Av,

where now the product ranges over all vertices of the main lattice contained inside of the co-

loop L′. Thus, Fx(L
′) ∈ S and so acts trivially on any encoded state in Hg. Moreover, any

nontrivial co-loop L′ lies outside of the stabilizer and so cannot be expressed in terms of the

operators in S. However, for a nontrivial co-loop L′ the operator Fx(L
′) commutes with every

element of the stabilizer S. Hence, an error of this form cannot be detected by any syndrome

measurement. If non-trivial loops of σx operators inflict some encoded state to be protected, a

logical operation will inevitably be applied and error recovery fails. The reason why this is all

the case follows from analogous arguments described in the previous section for σz errors.

2.1.5 An error correction protocol

When multiple strings of errors of the same type are present on the lattice, there is an inherent

ambiguity of what string operators should be applied in order to correct the errors since the

only information that is provided from a syndrome measurement is the locations of the anyons.

Any such matching of error strings will result in loops/co-loops (perhaps multiple) on the lattice

or dual lattice. Actually, the choice made in this error correction process is somewhat arbitrary.

For proper error recovery to take place all that is necessary is for none of the anyons to traverse

a nontrivial loop. However, ensuring that error recovery proceeds in this way is still difficult and

there is no sure way to guarantee all loops are made trivial. A configuration of errors illustrating

this general setting is shown in Figure 2.10. In addition, two other Figures, 2.11 and 2.12, are

shown where different guesses are made in an attempt to correct the same configuration of

errors. The lighter paths are meant to denote the actual string of errors that were originally

present on the lattice. The darker paths represent the paths that were guessed. In both cases,

it can be seen that some of the loops formed are trivial loops in which case those particular

errors will be corrected, but there are also some nontrivial loops present which result in logical

operations being applied to the encoded state.

24

Figure 2.10: In the general case of multiple errors, all that is revealed from the syndrome
measurements is the locations of anyon pairs at the endpoints of error strings whose exact
shape is unknown.

Figure 2.11: A possible correction attempt, where the lighter paths are the actuall error strings,
and the darker paths are the guessed paths. All errors in this case are corrected, except for the
leftmost string of σz errors where a nontrivial loop has been created.

25

Figure 2.12: Another possible correction attempt, where the lighter paths are the actual error
strings, and the darker paths are the guessed paths. All σx errors in the case are corrected, but
the σz error strings have been formed into one nontrivial loop.

The problem of being able to correct multiple errors in the toric code thus reduces to

another problem: that of matching error strings accordingly as to only form trivial loops. This

is essentially a problem that requires additional post-processing utilizing the information given

from the syndrome measurements. The most natural strategy is to guess strings that are of

minimal length in fusing the anyon pairs. In the literature, such a strategy is referred to

as minimal weight matching [14]. One reason why this strategy is justified is because if the

probability of a single error occurring on a qubit is small, then it us unlikely that the error

strings will be very long. It is more likely that, say, m isolated errors occur at different locations

of the lattice resulting in many small-length paths, than it is for all m errors to occur along

a single long path of length m. If this is the case, then anyon pairs will tend to stay close to

one another. Correcting the errors may then be achieved by connecting anyon pairs that are

closest to each other with the appropriate string operator.

For some string Fz(P) or Fx(P) of either σz or σx errors, define the length, or support, of

the string operator to be the number of edges in the path P defining the string. Then for a

k × k lattice, if some string were to form a nontrivial loop its length must be at least k. This

number k is the code distance of the toric code. This means that, at least in principle, any

error string of length less than k can be detected provided that error recovery proceeds in an

appropriate fashion. However, for errors of length greater than k it may not be possible to

recover from the error and a logical operation being performed on the encoded state may be

inevitable. Let bcc denotes the floor function defined as the largest integer less than or equal

to c. If some error string has length bk−1
2
c, then the error can always be corrected by joining

the anyon pair through a minimal length path.

26

Despite the toric code (as defined on the genus-1 torus) only ever being able to encode 2

logical qubits in the code space regardless of the size k of the lattice L, the benefit of using a

larger lattice is apparent. If the probability for an error happening on a single qubit is p, and

different errors remain uncorrelated, then it can be seen that the probability of an error string

with length k occurring decreases exponentially in k. Thus, the larger the k×k lattice is made,

meaning more physical qubits are used, the more unlikely it becomes for an error string to form

a nontrivial loop.

2.1.6 The spectral gap

Now that the nature of possible errors that may occur in the toric code is sufficiently understood,

the spectral gap of the toric code Hamiltonian Ĥ given in (2.1) can be determined. Let E0, E1 ∈
R, be the eigenvalues associated to the ground and first excited states of Ĥ, respectively. Then

the spectral gap can be defined as the difference E1 − E0 between these two eigenvalues. By

convention, we have constructed the Hamiltonian Ĥ of the system so that E0 = 0. Therefore,

the quantity of interest is just E1−E0 = E1, which can be determined as the minimal number

of vertex and face operators that are violated by an error corresponding to a first excited state

of Ĥ.

In the previous section, it was shown that the most primitive errors manifest themselves

as pairs of anyonic excitations: either a pair of z anyons corresponding to a violation of

two Av operators at the endpoints of the error string, or a pair of x anyons corresponding to a

violation of two Bf operators. Thus, denote some first excited state of Ĥ as |ψ1〉 := Fa(P)|ψ〉,
where |ψ〉 ∈ Hg, a ∈ {x, z} and P is some open path on the lattice or dual lattice. Then E1

satisfies Ĥ|ψ1〉 = E1|ψ1〉. Consider the case where |ψ1〉 := Fz(P)|ψ〉 and v1, v2 ∈ V are

the endpoints of P . Recall that AvFz(P) = Fz(P)Av for all v ∈ V such that v 6= v1, v2.

Otherwise, AviFz(P) = −Fz(P)Avi for vi = v1, v2. Moreover, BfFz(P) = Fz(P)Bf for all f ∈
F . Therefore, Avi |ψ1〉 = −|ψ1〉 for vi = v1, v2, and O|ψ1〉 = |ψ1〉, for all other stabilizer

27

generators O ∈ S. This implies that

Ĥ|ψ1〉 =
∑
v∈V

1

2
(I − Av)|ψ1〉+

∑
f∈F

1

2
(I −Bf)|ψ1〉

=
∑

v=v1,v2

1

2
(I − Av)|ψ1〉+

∑
v 6=v1,v2

1

2
(I − I)|ψ1〉+

∑
f∈F

1

2
(I − I)|ψ1〉

=
∑

v=v1,v2

1

2
(I − Av)|ψ1〉

=
∑

v=v1,v2

1

2
(I + I)|ψ1〉

= 2|ψ1〉,

which shows that eigenvalue of the a first excited state |ψ1〉 is given by E1 = 2. A similar

calculation holds for the excited state |ψ′1〉 = Fx(P)|ψ〉 resulting from a string of σx errors,

which also yields an eigenvalue E1 = 2. Thus, the spectral gap for the toric code Hamiltonian Ĥ

is E1 = 2. In a physical context, this nonzero gap in eigenvalues indicates that some nonzero

energy must be imparted into the system in order to transform some ground state to an excited

state of the system. This is one reason why the groundspace of Ĥ may be well suited as a code

space for quantum computation.

2.1.7 The anyon model: Z2 × Z2

An elegant physical interpretation of the nature of errors in the toric code can be given in terms

of the anyonic excitations. When the qubits of the lattice encode some state |ψ〉 ∈ Hg which

is error free, no anyons are present on the lattice since |ψ〉 is a +1 eigenstate of all stabilzer

generators Av, Bf ∈ S. As a formality, let 1 denote the trivial, or vacuum, anyon label which

is meant to represent the absence of a nontrivial anyon type. In this way, one may imagine the

“presence” of the trivial anyon 1 at any vertex or face of the lattice; however, such a depiction

will not be presented in the figures here and tacitly assumed instead. The groundspace Hg

of the Hamiltonian Ĥ then corresponds to the scenario where only the trivial anyon type 1

is present anywhere on the lattice of the surface, and excited states of Ĥ correspond to the

presence of nontrivial anyon types on the surface.

As mentioned previously, the existence of an open error string Fz(P) results in a pair of

z anyons at the endpoints of the path P . In creating a loop L = PgP by applying another

string Fz(Pg) that starts at one of the end points (where one of the z anyons is located) and

then joining the path to the other endpoint (where the other z anyon is located), the anyon

pair can be thought of as undergoing a dynamical process where a pair of z anyons is created

28

from a vacuum state at some location, then one of the anyons moves along the loop L until it

returns to fuse or annihilate with the other to the vacuum. This fusion of a pair of z anyons

to the trivial type 1 will be symbolically denoted as z × z = 1 . Thus, σz errors manifest

themselves as pairs of z anyons that reside on the lattice’s vertices, and can be made to move

around the lattice by applying strings of σz operators. The objective of successful error recovery

for σz errors is not only just to bring these pairs of z anyons together so they annihilate and

disappear to the vaccum 1 , but to do so in such a way that when they fuse no anyon would

have made a non-trivial loop around the torus in order to prevent some logical operation from

occurring to the encoded state. Similarly, for anyons of type x induced by σx errors, it is also

the case that x× x= 1 , and an analogous interpretation of their dynamics holds.

In the previous sections, σz and σx errors were analyzed separately in special cases where

only a single string of errors of either type were described. In a more general setting, it is

expected that multiple strings of errors of both types can occur on the lattice at any time.

Moreover, a particular qubit of the lattice may suffer from both a σx and a σz error, in which

case a σy = σzσx error is produced. In this case, a y anyon will be introduced and should

be thought of as the quasiparticle associated to the pair of z and x anyons at that site (a

vertex-face pair). Moreover, write z × x= y to denote the process in which a z anyon fuses

with a x anyon to form another anyon type y .

Algebraically speaking, the fusion properties of these various anyon types A := { 1 , x , z , y }
for the toric code can be understood as having some underlying group structure, where the ac-

tion of fusion × : A × A → A defines the group multiplication on A. In this way, 1 is the

identity element of the group since 1 × a = a for any a ∈ A. The inverse, or conjugate

anyon type, of a ∈ A will be denoted as ā and satisfies a × ā = 1 . In the case of the toric

code, the conjugate anyon type of a is just itself since a × a = 1 for all a ∈ A. The only

other multiplication relation necessary to completely specify the group structure is the fusion

rule z × x = y . Then by assuming that the group multiplication on A is also commutative,

it is readily observed that there is a group isomorphism A ∼= Z2 × Z2, where Z2 is the cyclic

group of order 2.

Later, it will be seen that a general anyon model A arising from some topological phase of

matter corresponding to some Hamiltonian will always carry with it some algebraic structure

that represents the fusion properties of the various anyon types. In general, however, this

structure will be much richer than that of an ordinary group as in the case of the toric code. To

be more precise, the fusion properties of some anyon model will be described by a commutative

C∗-algebra, which will be referred to as the Verlinde algebra. Additionally, there will be other

properties of an anyon model A which characterize the dynamics of anyons twisting and braiding

around one another. The mathematical structure necessary to describe these properties of

29

anyons is called a Unitary Modular Tensor Category, and will be defined in Chapter 3. In

regards to topological quantum computation, all of these features play a role in determining

the computational power of a particular anyon model.

2.1.8 Logical operations

In general error correcting schemes, a state |ψ〉 ∈ Hg of the code space is prepared and the main

objective is to keep the state unchanged. In the presence of errors the state may be mapped

outside of the encoded space, and ideally this error can be detected and corrected. This may

not always be the case however. Instead, it is possible that the original state get mapped to

another state |ψ′〉 ∈ Hg but yet |ψ〉 6= |ψ′〉. In such an occurrence, it was said that the encoded

state |ψ〉 experiences a logical operation. The aim of this section is to further characterize the

logical operations for the toric code.

For the toric code defined on the physical N -qubit Hilbert space HN , the N -qubit Pauli

group PauliN forms an operator basis of an algebra of operators A := {U : HN → HN} acting

on HN . Here, we will be interested in the subalgebra A0 ⊆ A that preserves the codespace

Hg ⊆ HN defined as A0 := {U ∈ A | U |ψ〉 ∈ Hg, for all |ψ〉 ∈ Hg}. For U ∈ A0, write

[U] : Hg → Hg to denote the logical action of U on the codespace Hg. In particular, this

algebra is to be understood in terms of more refined subalgebras defined in terms of string

operators associated to various loops of the torus. That is, given an arbitrary loop L defined

on the lattice of the torus and anyon type a ∈ A, we would like to characterize the logical

action [Fa(L)] of string operators on the codespace Hg.

Since the toric code happens to be a particular stabilizer code, the general theory developed

for the stabilizer formalism can be used to understand logical operations. Define the central-

izer C(S) of the stabilizer group S as the subgroup of PauliN consisting of all elements which

commute with those of S. That is,

C(S) := {u ∈ PauliN | us = su, for all s ∈ S}.

The group C(S) can be partitioned by considering the equivalence relation u ∼ u′ if and only

if there exists s ∈ S such that u′ = us. An equivalence class induced by this relation will be

denoted as uS, and is sometimes referred to as a coset. By construction, S ⊆ C(S) ⊆ PauliN ,

and S is a normal subgroup of C(S) so that the quotient group is well defined as

C(S)/S := {uS | u ∈ C(S)}

with corresponding group multiplication uS · u′S = uu′S. As operators, each uS ∈ C(S)/S

30

defines a logical operation on the codespace [uS] : Hg → Hg in such a way that, if u ∼ u′,

then [uS] = eiϕ[u′S] so that the two operators yield the same logical action on Hg up to some

unimportant global phase eiϕ. Furthermore, for the identity coset S ∈ C(S)/S, the logical

action is trivial [S] = IHg .

Returning to string operators for the toric code, recall that as a consequence of Equa-

tions (2.2) and (2.3), Fa(L) ∈ S if L is a topologically trivial loop regardless of the anyon

type a ∈ A. Therefore, it follows that [Fa(L)] = [S] = IHg yields a trivial action on the code

space Hg. Actually, it is illuminating to think of the stabilizer generators themselves as string

operators Bf = Fz(L) and Av = Fx(L
′), where L and L′ are the primitive loops or co-loops

consisting of the four edges around the face f or vertex v. In this regard, an arbitrary element

s ∈ S can be considered as a product of various string operators Fz(L) and Fz(L
′) defined on

topologically trivial loops L and co-loops L′.

Let L1 be an arbitrary loop, and consider a trivial loop L0 such that the intersection of

the supports of string operators Fa(L0) and Fa(L1) is nonempty. Then since Fa(L0) ∈ S,

it follows that [Fa(L1)] = [Fa(L1)Fa(L0)] so the logical action is equivalent. In this case,

the operator Fa(L1)Fa(L0) can be interpreted as another string operator Fa(L2) such that

[Fa(L2)] = [Fa(L1)], where the loop L2 is a deformation of the loop L0 which is of the same

topological type. More generally, if L1 and L2 are distinct loops belonging to the same topo-

logical type, then it will always be the case that [Fa(L1)] = [Fa(L2)]. Therefore, in order to

understand the logical action [Fa(L)] for a string operator defined on an arbitrary loop L, it

suffices to characterize the action for only different classes of topologically equivalent loop types.

As argued previously, nontrivial logical operations occurred when a string operator Fa(L)

was executed where L is a nontrivial loop and a 6= 1 (since F1(L) = IHg has a trivial action

for any loop L). To understand what kind of operations on the encoded state these nontrivial

string operators correspond to, recall that there were two types of nontrivial loops on the surface

of the lattice: ones that loop around the “handle” of the torus, or ones that loop around the

“hole” of the torus. In the lattice picture, one type of loop Lv passes through the ‘north-south’

boundary, and the other loop Lh through the ‘east-west’ boundary. Likewise, there were two

analogous types of nontrivial co-loops L′v and L′h for the dual lattice. However, for our purposes

a loop L and its corresponding co-loop L′ will be considered as belonging to the same topological

type.

For each of these loops, consider the string operators Fa(L) for some nontrivial anyon

type a ∈ A and observe the following commutation relations, where for operators A and B we

define the commutator as [A,B] := ABA−1B−1. For string operators of the same anyon type,

31

but having support on different loops,

[Fz(Lv), Fz(Lh)] = I and [Fx(L
′
v), Fx(L

′
h)] = I

since these string operators are both either products of only σz operators or only σz opera-

tors. Comparing string operators corresponding to different anyon types, but with support on

(co)loops of the same topological type,

[Fz(Lv), Fx(L
′
v)] = I and [Fz(Lh), Fx(L

′
h)] = I

since in this case the string operators Fz(Li) and Fx(L
′
i) have disjoint support. The only non-

commuting string operators are ones that are defined with different anyon types and different

loop types

[Fz(Lv), Fx(L
′
h)] = −I and [Fz(Lh), Fx(L

′
v)] = −I,

where the −I factor results from the loops Lv and L′h (and also loops Lh and L′v) having common

support on precisely one edge of the lattice, and from the anticommutation relation [σz, σx] =

−I between the Pauli operators acting on the qubit associated to that edge.

This analysis of commutation relations shows that logical action of the non trivial string

operators on Hg is isomorphic to the two-qubit Pauli group, C(S)/S ∼= Pauli2, through the

correspondence

X̄1 = [Fx(L
′
v)], Z̄1 = [Fz(Lh)], X̄2 = [Fx(L

′
h)], Z̄2 = [Fz(Lv)].

Here, X̄i and Z̄i correspond to logical σxi and σzi operators on qubit i, where i ∈ {1, 2}. Consider

now the subalgebras of string operators defined as FL := {Fa(L) | a ∈ A} for a nontrivial

loop L. Independently, each of the algebras FL are isomorphic to the commutative Verlinde

algebra given by the fusion rules of the model A ∼= Z2×Z2. Thus, Fa(L)Fb(L) = Fb(L)Fa(L) =

Fa×b(L), where a × b ∈ A is the result of fusing a , b ∈ A. Note that neither of the

subalgebras FLv or FLh
alone contain the full logical Pauli algebra Pauli2 of the two logically

encoded qubits ofHg. Moreover, string operators from both FLv and FLh
are needed to generate

the Pauli group for either one of the two logical qubits, which further emphasizes the nonlocal

nature of the logical qubit encodings in Hg. Similar properties of string operators and the local

algebras FL will also hold in the more general setting when considering arbitrary anyon models

and higher genus surfaces.

32

2.1.9 Physical observables and the flux basis of Hg

Any physical theory ought to come equipped with some notion of physical observables which

can be measured in principle. In the theory of topological quantum computation, the physical

observables correspond to the detection of the total charge or flux associated to a loop L on the

surface under consideration. The flux is given by some anyon type a ∈ A, or more generally, a

superposition of anyon types in A. There are two cases of interest that should be distinguished,

depending on whether the loop L is of trivial type as opposed to nontrivial type. Regardless,

for an arbitrary loop L there will be associated a projector Pa(L) on the Hilbert space Hg,

which defines a subspace of Hg corresponding to the situation where the state of the system is

observed to have flux of type a ∈ A on loop L. Moreover, the set of projectors {Pa(L)}a∈A will

define a complete set of observables for loop L. Later, it will be seen that these projectors can

be represented in a precise way in terms of the string operators {Fa(L)}a∈A. For now, some

more details about the string operators will be made explicit.

Recall that the stabilizer operators Av and Bf of the toric code can be thought of as

elementary string operators Fx(L
′) = Av and Fz(L) = Bf associated to primitive (co)loops on

the lattice, which can detect the presence of certain anyon types contained within the loops.

In the same way, a string operator defined on an arbitrary trivial loop L, or coloop L′, consists

of a product of stabilizer generators contained within the region defined by L or L′:

Fz(L) =
∏

f∈inside(L)

Bf and Fx(L
′) =

∏
v∈inside(L′)

Av.

In this case, a string operator Fa(L) can be thought of as detecting the total charge or flux

of anyons present inside the region defined by L. Here, if anyon types a1, a2, . . . am ∈ A are

present inside of some region inside(L), then the total charge is given by the resulting fusion

outcome of a1 × a2 × · · · × am ∈ A.

When considering a string operator Fa(L) acting on some nontrivial loop L, there is no well-

defined notion of a “region inside L”. However, in this setting a flux can still be associated to the

loop L, which will be labeled by some anyon type in A (or more generally, by a superposition of

anyon types). For the torus in particular, since there are two complimentary nontrivial loops Lv

and Lh which always intersect in at least one location, string operators defined on one loop can

be thought of as creating or detecting the flux present on the complementary loop.

Consider one particular nontrivial loop, say Lh, and let |1〉Lh
∈ Hg label the ground state

where loop Lh carries trivial flux. Define

|x〉Lh
:= Fx(Lh)|1〉Lh

, |z〉Lh
:= Fz(Lh)|1〉Lh

, |y〉Lh
:= Fy(Lh)|1〉Lh

= Fz(Lh)Fx(Lh)|1〉Lh
.

33

Then the set BLh
:= {|1〉Lh

, |x〉Lh
, |z〉Lh

, |y〉Lh
} can be taken to be an orthonormal basis of Hg

defined with respect to the string operators FLh
:= {Fa(Lh)}a∈A, which will be referred to as

the flux basis of loop Lh. Alternatively, the other complementary loop Lv of the torus could

have been considered together with string operators FLv to define a different flux basis given

by a state |1〉Lv ∈ Hg corresponding to loop Lv carrying trivial flux, and three other orthogonal

states

|x〉Lv := Fx(Lv)|1〉Lv , |z〉Lv := Fz(Lv)|1〉Lv , |y〉Lv := Fy(Lv)|1〉Lv = Fz(Lv)Fx(Lv)|1〉Lv .

Letting BLv := {|1〉Lv , |x〉Lv , |z〉Lv , |y〉Lv}, it should be expected that the two basis BLh
and BLv

be related via some unitary matrix U such that U |a〉Lh
= |a〉Lv for all a ∈ A. Such a change of

basis will play a key role in the general theory to be developed. For the torus, this change of

basis is often referred to as the S-matrix, and it is defined in terms of characteristic properties

of the anyon model A to be made more precise in the following chapter.

Note here, that the flux bases BLh
and BLv of Hg are indexed by the anyon types of A

implying that the dimension of Hg is given by the number of distinct anyon types |A|. For the

toric code |A| = 4, and this agrees with the dimension of Hg as it was calculated in Section 2.1.3

via the stabilizer framework. In that context, even the ground space of interest Hg was defined

with respect to the underlying Hamiltonian Ĥ defined for the system. The approach partially

outlined here in terms of the flux basis offers an alternative avenue for defining a computational

code space HT for the torus T under consideration such that HT
∼= Hg. A generalization of

this method will be used to define observables and basis states associated to various surfaces

in topological quantum field theory.

The effective topological quantum field theory describing an anyonic system A on some

surface Σ provides a way of constructing a Hilbert space HΣ which functions as the arena for

topological quantum computation. The basis states of HΣ are defined by appropriate labelings

of possible flux types to various nontrivial loops on the surface Σ. In this more abstract theory,

there will often be no mention of an explicit Hamiltonian of the system defined on Σ. Instead,

a starting point will simply be an anyon model A together with its underlying topological

data. It then becomes a question of physics whether or not there exists a Hamiltonian Ĥ

which manifests the anyon model A, with the further property that the ground space Hg of the

Hamiltonian Ĥ satisfies the isomorphism Hg
∼= HΣ.

34

Chapter 3

Topological Quantum Field Theory

Many physical theories of the world implicitly refer to models of the three-dimensional physical

space in which the entities of interest reside and how this space changes in time. That is, they

are theories of conventional space-time. On the other hand, the standard mathematical domain

of quantum theory takes place in a Hilbert space, which is not a physical space in the sense of

ordinary space-time, but a more abstract mathematical space which describes quantum states.

In this regard, quantum field theories offer a way to model quantum mechanical phenomenon

while also taking into account that the quantum mechanical entities of interest also exist in

some space-time model.

As a mathematical formality, the objective of the quantum field theory is to provide a way

of associating appropriate Hilbert spaces to space-time, and transformations of this space-time

to transformations of the corresponding Hilbert spaces. However, one’s own mathematical

liberties offer a choice for what transformations of the space-time manifold are considered. For

instance, the theory may consider transformations of space-time that preserve the distance

and angles between relative points of the space under some suitable metric; in which case the

transformations should be taken as diffeomorphisms of the space-time. This general setting

is the main domain of standard quantum field theory. Perhaps the theory is not concerned

with operations that preserve distance, but only the relative angles of points in the space;

then conformal maps should be used instead of diffeomorphisms, and in this case the theory

is said to be a conformal field theory. Continuing in this forgetful manner, the theory may

not even be concerned with transformations of space-time which preserve both distance and

angles, but only preserve the fundamental topology of the manifold. In this latter case, the

appropriate transformations are homeomorphisms of the manifold, and the theory is referred to

as a topological quantum field theory (TQFTs, for short). Therefore, in some sense, TQFTs may

be regarded as the most fundamental theories when compared to more general quantum field

theories since they characterize the most essential features of the theory that are independent

35

or remain invariant under such general topological transformations.

For the purpose of topological quantum computation with anyons, TQFTs become relevant

because they offer an effective theory which precisely models the anyonic properties and their

dynamics. In particular, a (2+1)–dimensional TQFT will be of interest in this thesis, since the

anyon dynamics are assumed to take place on some oriented two-dimensional surface (where

time plays the role of the third dimension). Before proceeding to give a mathematical definition

of a TQFT, some effort will be invested in first developing an algebraic theory of anyons.

The main mathematical tool for anyon theory will be category theory, which describes in an

algebraic fashion all the data necessary to specify an anyon model. Namely, an anyon model will

be described mathematically by a unitary modular tensor category (UMTC), which contains

within it a very rich structure that captures essential anyonic properties of interest.

Roughly speaking, a TQFT takes the data provided by a particular anyon model and as-

signs certain Hilbert spaces to various surfaces upon which the anyonic dynamics take place.

The mathematical entity which describes this assignment will be referred to a unitary modular

tensor category functor (UMTC functor) and essentially specifies a particular TQFT given an

anyon model. The surface and certain topological transformations of the surface (called homeo-

morphisms), will get mapped by the UMTC functor to appropriate Hilbert spaces and unitary

transformations on this Hilbert space, respectively. More generally, transformations between

various surfaces are associated to certain linear transformations between the respectively as-

signed Hilbert spaces. The UMTC functor is essentially a category theoretic concept, and its

role can be thought of as providing a structure-preserving representation of the UMTC that

describes the anyon dynamics on surfaces to the category of Hilbert spaces, which itself can be

thought of as a UTMC.

Many of the category theoretic notions to be developed in this chapter can be found in

any standard text on the subject. A quintessential text is by MacLane [33], who happens to

be one of the early founders of category theory. These introductory concepts together with

more advanced concepts pertaining to modular categories can be found in [13, 29]. A more

mathematically sophisticated text regarding modular categories is [2]. Suggested references for

topological quantum field theory are [1, 13, 42].

3.1 Category Theory

In this section, some basic definitions and constructions in category theory will be defined

which will be necessary for understanding the relevant structures used to describe an anyon

model and a topological quantum field theory. Category theory can be regarded as more of a

36

philosophical perspective of mathematics and how different subfields of mathematics may relate

to each other. Typically, in a particular branch of mathematics, the objective is to understand

and characterize the various objects or mathematical entities of interest such as sets, vector

spaces, or abstract manifolds for example. Category theory attempts to understand these

objects not as isolated entities by themselves, but rather how an object may relate to other

objects in the given category. These relations between objects in a given category are described

mathematically by certain maps, called morphisms, which preserve the appropriate structure

of interest in the category.

For example, in the category of sets the objects are sets and the relevant morphisms are just

the usual functions from one set to another defined in the conventional sense. The category

of vector spaces will have vector spaces as objects, and linear transformations between vector

spaces as the relevant morphisms of the category. The category of manifolds may take manifolds

as objects and consider, say, diffeomorphisms between manifolds as the morphisms. Category

theory is not so much concerned with the internal structure of a particular object (i.e. the

elements of a set), but instead regards the set itself as a single entity and proceeds to characterize

the object in a more extrinsic fashion (i.e. how the set relates to itself and other sets through

the existence of certain functions). The advantage of such an approach is that relationships in

category theory can be defined and understood abstractly without necessarily having to specify

a particular category, and thus serves as a more general means to understand the essential

features of various categories and branches of mathematics.

3.1.1 Categories and diagrams

Formally, a category is defined as follows.

Definition 3.1.1. A category C is a collection of objects Ob(C), and for every pair of

objects A,B ∈ Ob(C) a set of morphisms Hom(A,B). For f ∈ Hom(A,B), write f : A→ B,

and call A and B the domain and codomain of f , respectively, written dom(f) := A and

cod(f) := B. Moreover, objects and morphisms in a category C must satisfy the following:

• for all morphisms f ∈ Hom(A,B) and g ∈ Hom(B,C), there exists a composition

morphism h ∈ Hom(A,C) written as h = gf .

• the composition of morphisms is associative, meaning h(gf) = (hg)f , whenever the

composition is defined.

• for every A ∈ Ob(C), there exists an identity morphism iA ∈ Hom(A,A).

37

• for any f ∈ Hom(A,B), the identity morphisms iA ∈ Hom(A,A) and iB ∈ Hom(B,B)

form right and left units under composition: fiA = iBf .

Relationships in a given category presented through identities involving the compositions

of morphisms can be conveniently expressed by use of diagrams which depict various objects

and morphisms between them. More explicitly,

Definition 3.1.2. A diagram in a category C is a directed graph whose vertices are labelled

by objects in C and edges are labeled by morphisms in C. A diagram is said to commute, if

all compositions of (at least two) morphisms defined by different directed paths having the same

initial and the same final vertex in the diagram are equal.

The notion of a diagram commuting intuitively captures what can otherwise be equivalently

expressed using the more standard algebraic notation for the composition of morphisms. To

exemplify this, the properties given in the formal definition of a category can be expressed by

the following commutative diagrams:

• composition: for all morphisms f and g in C such that dom(g) = cod(f), there exists a

morphism h := gf : dom(f)→ cod(g) in C such that the following diagram commutes

A
f

- B

C

g

?

h
=
gf

-

• associativity: for all morphisms f, g, and h in C such that cod(f) = dom(g) and cod(g) =

dom(h), the following diagram commutes

B

A
h(gf) = (hg)f

f

-

- D

hg

-

C

g

?

h

-

gf

-

38

• identity: for any morphism f ∈ Hom(A,B) in C, the identity morphisms iA ∈ Hom(A,A)

and iB ∈ Hom(B,B) are such that the following diagram commutes

A
iA - A

B

f

? iB - B

f

?

f

-

Some examples of categories are:

• the category of sets, Set, where objects are sets A,B ∈ Ob(Set) and morphisms f ∈
Hom(A,B) of Set are standard functions f : A → B defined as mappings f(x) = y

where for all x ∈ A there is a unique y ∈ B such that f(x) = y.

• the category of groups, Grp, where objects are groups G,H ∈ Ob(G) and morphisms are

group homomorphisms ρ : G→ H which satisfy ρ(ab) = ρ(a)ρ(b) for a, b ∈ G.

• A group G which has only a single object, call it G ∈ Ob(G), and morphisms fg ∈
Hom(G,G) are indexed by the usual elements g ∈ G of the group corresponding to

the group multiplication: fg : G → G where fg(a) = g · a so that the composition of

morphisms is given by fhfg = fh·g.

• The category Veck where objects are vector spaces over a field k, and morphisms are

linear transformations.

Though perhaps somewhat trivial, it will be left as an exercise for the motivated reader to

verify the composition axioms and existence of identity maps for these various categories.

In the category Set a morphism f : A → B may be what is conventionally considered an

injection (“1-to-1”), a surjection (“onto”), or perhaps a bijection (both “1-to-1” and “onto”).

For an arbitrary category, there is a standard notion for when a morphism satisfies these anal-

ogous properties in Set, which are usually defined in an intrinsic fashion that makes reference

to the elements of the sets under consideration. These concepts can be generalized and stated

abstractly in the category theoretic context with the following definitions which only make

extrinsic reference to objects in a particular category through its morphisms.

Definition 3.1.3. A morphism f : A → B in a category C is a monomorphism if for any

morphisms g, h : C → A in C satisfying fg = fh, it is the case that g = h. Diagrammatically,

39

f is a monomorphism if any diagram in C of the form

C
g

- A

A

h

? f
- B

f

?

commutes, then it must be that g = h.

Definition 3.1.4. A morphism f : A → B in a category C is an epimorphism if for any

morphisms g, h : B → C in C satisfying gf = hf , it is the case that g = h. Diagrammatically,

f is a epimorphism if any diagram in C of the form

A
f

- B

B

f

? h
- C

g

?

commutes, then it must be that g = h.

Definition 3.1.5. A morphism f : A→ B in a category C is an isomorphism if there exists

a morphism g : B → A in C such that gf = iA and fg = iB; or equivalently, if there exists a

morphism g in C making the following diagram commute:

A
f

- B

A

iA

? f
-

�

g

B

iB

?

In the case that f ∈ Hom(A,B) is an isomorphism, let f−1 := g and call f−1 the inverse of

f ; moreover, it will be said that “A is isomorphic to B” and written A ∼= B.

By specializing the definitions above for the category Set, an equivalence is made between

the notions of a morphism f : A → B in Set being a monomorphism/injection, epimor-

phism/surjection, and isomorphism/bijection. These properties will be used to characterize

and define other category theoretic notions necessary to develop an anyon model.

40

3.1.2 Functors and natural transformations

A particular category C relates its objects through morphisms which preserve the relevant

structure of the category. Abstractly, however, a category is defined merely through axioms

for the compositions of these morphisms without concern for the particular kind of morphisms

used in the category; and so consequently these composition rules form the essential structure

of categories. Given two categories C and D there ought to be a way to relate them through

an appropriate “morphism” of categories. This is achieved through the notion of a functor be-

tween categories that assigns objects and morphisms in one category to objects and morphisms

in another category. Moreover, such an assignment must be functorial, meaning it satisfies

certain structure preserving properties of the given categories in order to serve the purpose of

appropriately relating the two. This is made explicit in the following definition.

Definition 3.1.6. A functor F between categories C and D, written F : C→ D, maps objects

A ∈ Ob(C) to objects F (A) ∈ Ob(D) and morphisms f ∈ Hom(A,B) in C to morphisms

F (f) ∈ Hom(F (A), F (B)) in D such that F is functorial, meaning

• F preserves identities: for every object A ∈ Ob(C), F (iA) = iF (A)

• F preserves composition: for all morphisms f and g in C such that the composition

gf is also defined in C, the composition F (g)F (f) in D satisfies F (gf) = F (g)F (f).

Note here that a slight abuse of notation will be permitted in specifying the argument for

the image F (·) of the functor F , written F (A) and F (f), where it is to be understood by

context whether F (·) is an object or morphism in the category D depending on whether the

argument is an object A or morphism f in the category C, respectively.

The existence of a functor F : C → D can be interpreted as modeling the category C by

creating an “image” or “representation” in another category D. In this way, commutativity

relations that hold in C also hold in in D, but such a modeling need not be completely faithful.

For instance, a trivial functor may send all objects in Ob(C) to a single object A ∈ Ob(D), and

all morphisms in C to the identity morphism iA in D.

As another example of a functor consider a group G thought of as a category with a single

object G ∈ Ob(G), and the category Veck of vector spaces over a field k. Then a functor

F : G → Veck defines a group representation as follows. The single object G ∈ Ob(G) gets

mapped to an object F (G) ∈ Ob(Veck), which is a vector space of some dimension n. Moreover,

the morphisms fg : G→ G in G map to morphisms F (fg) : F (G)→ F (G) in Veck, which are

just linear transformations from the vector space F (G) to itself (i.e. elements of the group of

linear transformations of dimension n over the field k denoted Ln(k) upon choosing a basis for

41

the vector space F (G)). Thus, the map ρ : Hom(G)→ Ln(k) defined as ρ(fg) := F (fg) yields a

group representation since F is functorial which implies that ρ is a valid group homomorphism.

With the interpretation that functors play the role of “modelling” one category in another,

consider now two functors F, F ′ : C → D which effectively yield two different models of the

category C in D. In certain circumstances two such functors or models may be related or

“translated” in an appropriate fashion. This notion is captured formally by a natural transfor-

mation between the two functors.

Definition 3.1.7. A natural transformation, α, between two functors F, F ′ : C → D,

written α : F =⇒ F ′, is a collection of morphisms αA ∈ Hom(F (A), F ′(A)) in D indexed

by all objects A ∈ C satisfying the property that for all morphisms f ∈ Hom(A,B) in C the

identity F ′(f)αA = αBF (f) holds in D; or equivalently that the following diagram commutes:

F (A)
F (f)

- F (B)

F ′(A)

αA

? F ′(f)
- F ′(B)

αB

?

A natural transformation is said to be a natural isomorphism if each of the morphisms αA

are isomorphisms in D.

For an illustrative example of a natural transformation consider again a group G thought of

as a category with a single object G ∈ Ob(G), and two group representations F, F ′ : G → Veck

given as functors. The existence of a natural transformation α : F =⇒ F ′ in this case is given

by a single isomorphism αG : F (G) → F ′(G), which is just a linear transformation from the

vector spaces F (G) to F ′(G) such that F (fg)αG = αGF
′(fg) for all morphisms fg in G. The

acquainted reader may recognize the map αG as an intertwining operator in the usual setting

of representation theory, which makes explicit the equivalence of the two representations via a

change of basis from one representation to the other.

In what follows, natural transformations will be utilized to capture the desired physical

concepts that characterize an anyon model and its possible dynamics.

3.2 Modular Tensor Categories

Many fields of mathematics make use of the familiar notion of a product defined on some set S

as a mapping S×S → S that takes two elements a, b ∈ S and returns another element a×b ∈ S.

42

For instance, there is the standard product of multiplication of two real numbers, and more

abstractly the notion of a tensor product of two vector spaces which yields another vector space.

Moreover, in this latter case, the tensor product space comes equipped with additional structure

to define a tensor product of vectors and linear transformations of the constituent spaces. In

the context of category theory, a similar product can be defined for a category C, which takes

two objects A,B ∈ Ob(C) and returns another object A ⊗ B ∈ Ob(C). Categories in which

such a product is defined are called monoidal categories or synonymously tensor categories. In

regards to the theory of anyons, the notion of fusing anyons will be captured by interpreting

anyons as objects A,B ∈ Ob(C) in a monoidal category C. In this way, the process of fusion

is described by a monoidal product ⊗, and the resulting anyon type after fusion is given by

another object A⊗B ∈ Ob(C) of the category.

Before defining a monoidal product and the appropriate axioms it should satisfy, the fol-

lowing construction for categories will be needed which serves to generalize the usual Cartesian

product of sets:

Definition 3.2.1. Given two categories C and C′, the Cartesian product category, denoted

by C×C′, is the category where:

• objects in C×C′ are ordered pairs (A,A′), where A ∈ Ob(C) and A′ ∈ Ob(C′).

• morphisms in C×C′ are ordered pairs (f, f ′) : (A,A′)→ (B,B′), where f : A→ B is a

morphism in C and f ′ : A′ → B′ is a morphism in C′.

• composition of morphisms (f, f ′) and (g, g′) in C×C′ such that cod((f, f ′)) = dom((g, g′))

is defined component-wise as (g, g′)(f, f ′) := (gf, g′f ′).

• the identity morphism for each object (A,A′) ∈ Ob(C×C′) is given as i(A,A′) := (iA, iA′),

where iA and iA′ are identity morphisms of A ∈ Ob(C) and A′ ∈ Ob(C′), respectively.

3.2.1 Tensor categories

In this section, the formal properties of a tensor/monoidal category will be given. Although

somewhat abstract, the notion of a monoidal product can be thought of as generalizing the

more familiar notion of a tensor product of vector spaces. Thus, it is worthwhile to consider

the properties of this standard tensor product of vector spaces when trying to understand the

properties given in the definition of a monoidal product. This analogy will be further clarified

after presenting the definition.

Definition 3.2.2. A tensor/monoidal category, C, is a category with the following:

43

• a tensor product functor ⊗ : C×C→ C whose action on objects (A,A′) ∈ Ob(C×C)

and morphisms (f, f ′) : (A,A′)→ (B,B′) in the category C×C is denoted as A⊗ A′ ∈
Ob(C) and f ⊗ f ′ : A⊗ A′ → B ⊗B′, respectively.

• a unit object I ∈ Ob(C),

• a natural isomorphism a, called the associator, given by isomorphisms in C indexed by

triples A,B,C ∈ Ob(C):

aA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

• natural isomorphisms, l and r, called the left and right unitors, respectively, given by

isomorphisms indexed by all objects A ∈ Ob(C):

lA : I ⊗ A→ A,

rA : A⊗ I → A.

subject to the condition that the following diagrams commute

• triangle equation: for all A,B ∈ Ob((C),

(A⊗ I)⊗B aA,I,B - A⊗ (I ⊗B)

A⊗B
�

IA
⊗ lB

r
A ⊗

I
B -

• pentagon equation: for all objects A,B,C,D ∈ Ob((C),

((A⊗B)⊗ C)⊗D aA⊗B,C,D- (A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

a
A,B,C⊗D

-

(A⊗ (B ⊗ C))⊗D

aA,B,C ⊗ ID

?

aA,B⊗C,D
- A⊗ ((B ⊗ C)⊗D)

IA
⊗ aB

,C
,D

-

44

In regards to objects of a monoidal category, the object A⊗B ∈ Ob(C) can be thought of

as another object consisting of A and B. When an anyon model is interpreted as a monoidal

category C, the tensor product of anyon types A,B ∈ Ob(C) is meant to represent the fusion

of anyon A with anyon B. In any category morphisms may be composed, but in a monoidal

category morphisms may also be done in “parallel”. The parallel process of two morphisms

f : A→ B and f ′ : A′ → B′ in C is given by the tensor product f⊗f ′ : A⊗A′ → B⊗B′, and can

be thought of as acting on the joint parallel object of A and A′ denoted by A⊗A′. Furthermore,

a monoidal category allows more than two objects and morphisms, say A,B,C ∈ Ob(C) and

corresponding morphisms acting on these objects, to be considered in parallel. Again, for an

anyon model, this situation represents the scenario when three different anyons A,B and C are

fused together. The existence of the associator, a, ensures that the two ways of considering such

a triple of objects through the orderings (A⊗B)⊗C and A⊗ (B ⊗C) are isomorphic. When

considering four objects A,B,C,D ∈ Ob(C), there are five different ways to order the tensor

product as depicted in the diagram for the pentagon equation. The pentagon equation (i.e.

commutativity of the diagram) ensures that all these different objects are isomormorphic. One

may wonder what other additional coherence relations would be necessary for establishing an

appropriate equivalence when considering some larger arbitrary number of objects in parallel

with the tensor product functor. Although it will not be stated here, MacLanes Coherence

Theorem [33] ensures that the axioms given above for a monoidal category suffice for establishing

the relevant isomorphisms between tensor products of an arbitrary number of objects.

The functoriality of the tensor product functor ⊗ : C×C→ C implies that all composable

pairs of morphisms (f, f ′) and (g, g′) in C×C satisfy

(g ⊗ g′)(f ⊗ f ′) = gf ⊗ g′f ′.

In particular, functoriality also implies that, for identity morphisms iA and iA′ in C, the tensor

product morphism satisfies iA ⊗ iA′ = iA⊗A′ .

In terms of anyons, the unit object I ∈ Ob(C) represents the trivial anyon type having the

property that when fused with any other anyon type A ∈ Ob(C) yields A again: A ⊗ I ∼= A.

The existence of a unit object I ∈ Ob(C) together with the left and right unitors can be thought

of as being analogous to the role a one-dimensional vector space plays in the standard tensor

product for vector spaces (i.e. Cn ⊗ C ∼= C ∼= C⊗ Cn where say Cn is some Hilbert space and

C is the one-dimensional Hilbert space). Moreover, the triangle equation ensures that the two

ways of considering the tensor product of the unit object I with two other objects A and B,

either as (A ⊗ I) ⊗ B or as A ⊗ (I ⊗ B), is isomorphic to simply taking the tensor product

A ⊗ B. In this way, any valid morphisms defined through compositions of associators and

left/right unitors is always itself an isomorphism.

45

3.2.2 Semisimple categories

When considering an anyon model as a certain monoidal category C, the monoidal product ⊗ :

C×C→ C introduced in the previous section serves as a mathematical tool to define the fusion

of two anyons A,B ∈ Ob(C) as another object A⊗B ∈ Ob(C). Thus, a monoidal category has

objects denoted as A,B ∈ Ob(C), but also as A⊗B ∈ Ob(C). However, in an anyon model the

object A⊗B may be isomorphic to another object, say C ∈ Ob(C), so that A⊗B ∼= C. Under

appropriate assumptions (as explained further below), an equivalence relation can be made

on the objects Ob(C) of the category which partitions Ob(C) into equivalence classes where

arbitrary objects A,B ∈ Ob(C) (or tensor products A⊗ B of objects) are in the same class if

A ∼= B in the category; that is, A and B are in the same equivalence class if there exists an

isomorphism f : A → B in C. Objects in a particular equivalence class can then be regarded

as being the same, and representative objects from each equivalence class can be chosen to

represent any of the objects in that class. These representative objects will be referred to as

simple objects in C and represent the different primitive types of anyons in a particular anyon

model corresponding to C. In what follows, the set of representatives from each equivalence

class will be denoted by [C].

In some anyon models, the fusion outcome of two anyons A ⊗ B may not be unique since

multiple anyons may result from the fusion. In order to further describe the properties of

anyon fusion, the monoidal category C will also come equipped with another product functor

⊕ : C×C→ C which is necessary to properly describe the resulting object A⊗B ∈ Ob(C) after

fusion. Recall that the object A⊗ B is to be interpreted as considering anyons A and B, but

as mentioned for certain anyon models the object resulting from fusion may itself be multiple

different objects, say C or D, where C,D ∈ Ob(C). Such a scenario may be represented

mathematically as A ⊗ B = C ⊕ D. More generally, the result of fusion will be described

though equations of the form

A⊗B =
⊕
C∈[C]

NC
A,BC,

where the “sum” ranges over simple objects C ∈ |C| ⊆ Ob(C) and NC
A,B are nonnegative

integers that represent how many copies of object C appear after the result of fusion. If

NC
A,B = 0 then C ∈ [C] is not a possible fusion outcome. The interplay between the two

“products” ⊗ and ⊕ defined on a category C, and the characteristic numbers NC
A,B, will be

used to describe the fusion of arbitrary anyon types in C, and will be referred to as the fusion

rules. A monoidal category C where the fusion of anyons can always be decomposed in this

way will be referred to as a semisimple category.

Appealing to an analogy pertaining to vector spaces, a familiar monoidal product in the

category VecC is just the usual tensor product of vector spaces. In this context, VecC often

46

comes equipped with another different product ⊕ : VecC×VecC → VecC given by the standard

direct sum V ⊕W of two vector spaces V,W ∈ Ob(VecC), and in turn allows direct sums of

linear transformations to be taken. In Veck, it is well known that the sets of morphisms of the

category Hom(V,W) themselves can be made into a vector space structure through the usual

addition and multiplication of linear transformations. The direct sum of vector spaces offers

another way of considering two vector spaces, but yet behaves differently in subtle ways when

compared to the tensor product. In VecC for instance, where the one-dimensional space C
serves as the tensor unit (C ⊗ Cn ∼= Cn), the zero-dimensional space {0} serves as the unit

under the direct sum operation ({0} ⊕ Cn ∼= Cn) and is refered to as the zero object or null

object. Moreover, this object {0} ∈ Ob(VecC) serves to define a zero morphism 0V,W : V → W

between two vector spaces V,W ∈ Ob(C), which is defined as 0V,W (v) = 0 for all v ∈ V .

The existence of zero objects and zero morphisms in a category such as Veck allow certain

relationships to hold which may otherwise get taken for granted. In particular, the notion of a

kernel of a linear transformations L : V → W in Veck can be defined as ker(L) := {v ∈ V |
L(v) = 0}, and special means to characterize the morphism L using the kernel can be deployed.

In Veck, one such property is that L : V → W is an isomorphism if it is both a monomorphism

and an epimorphism. Note that this property is a categorification of the otherwise obvious fact

that a function is a bijection if it is both an injection and a surjection in Set. Another familiar

property in Veck is that any injection (monomorphism) L : V → W is an isomorphism if and

only if it has a trivial kernel, meaning ker(L) = {0}.

Categories which possess this kind of direct sum structure and have notions of a kernel

as in Veck are called abelian categories in the literature. Although explicit details needed to

rigorously define abelian categories will not be given here, it will be sufficient for the purposes of

this thesis to work with the following high-level definition motivated by the previous exposition.

Definition 3.2.3. An abelian category is a category C such that:

• Every set of morphisms Hom(A,B) in C forms a k-vector space, and the composition of

morphisms in bilinear, meaning

(f + f ′)g = fg + f ′g and h(f + f ′) = hf + hf ′,

for all morphisms f, f ′ ∈ Hom(A,B), g ∈ Hom(D,A), and h ∈ Hom(B,C).

• There exists a zero object 0 ∈ Ob(C) such that for all A ∈ Ob(C), Hom(A, 0) = 0A,0

and Hom(0, A) = 00,A where 0A,0 and 00,A are the zero morphisms.

• Finite direct sums exist in C given by a functor ⊕ : C×C→ C.

47

• The kernel of any morphism f in C exists, and satisfies properties as in Veck.

With these remarks in mind, the concept of a simple object in an abelian category can be

more formally defined. Note that the notion of a simple object of C is only relevant for an

abelian category, and therefore it will be implicit that the category C under consideration is

an abelian category when speaking of simple objects in C.

Definition 3.2.4. A non-zero object A ∈ Ob(C) of an abelian category C is a simple object if

any monomorphism f : B → A (for arbitrary objects B ∈ Ob(C)) is either the zero morphism,

f = 0B,A, or an isomorphism.

This characterization essentially ensures that a simple object A does not contain any non-

trivial “subobjects” that are isomorphic to A. Furthermore, in this way an equivalence relation

on C can be made as described above, where each equivalence class is represented by a simple

object such that non-isomorphic simple objects belong to distinct equivalence classes.

Definition 3.2.5. For a category C, denote by [C] ⊆ Ob(C) a set of mutually non-isomorphic

simple objects.

The simple objects in [C] may be regarded as the primitive objects of a category through

which any object of C can be “built up” using the direct sum of objects. When this is the case,

the category C is said to be semisimple. More precisely:

Definition 3.2.6. An abelian category C is semisimple if any object A ∈ Ob(C) can be

expressed as

A ∼=
⊕
Ai∈[C]

NAi
Ai,

for some nonnegative integers Ni, where the Ai ∈ [C] index all nonzero, mutually non-isomorphic

simple objects of C.

A monoidal category C which is semisimple reveals characterizing information about the

interplay between the ⊗ and ⊕ operations. In the context of anyon fusion, it implies that the

fusion outcome of any two simple objects is given by a direct sum of simple objects.

Definition 3.2.7. For simple objects A,B ∈ [C], the fusion coefficients NC
A,B are nonnegative

integers which satisfy

A⊗B ∼=
⊕
C∈[C]

NC
A,BC,

48

Instead of having to consider all arbitrary objects in Ob(C) in a semisimple category, it

is sufficient to limit discussion of properties of anyons to just the simple objects [C] of the

category. Most of the remainder of this thesis will proceed in this fashion.

Recall that the definition of an abelian category had a choice of field k which defined the

vector spaces that the sets of morphisms formed. From here on, it will be assumed that this

field is the complex numbers k = C. This then implies that, for simple objects A ∈ [C],

Hom(A,A) = C (3.1)

as a vector space (this result holds more generally as long as the field k is algebraically closed).

Furthermore, for simple objects A,B ∈ [C] such that A 6∼= B,

Hom(A,B) = 0. (3.2)

For simple objects A,B,C ∈ [C], the fusion coefficients also determine the dimension of the

vector space Hom(A⊗B,C) via

dim Hom(A⊗B,C) = NC
A,B. (3.3)

The structure of a semisimple category with its fusion rules will play an important role in

later developments. For topological quantum field theories, it will also serve as a first step in

associating a vector space to a surface upon which the anyon dynamics take place. Moreover, it

will be used to define an essential algebra of observables for the theory of topological quantum

computation. The remaining part of this chapter will define additional categorical structures

and appropriate axioms for a UTMC. These structures are meant to algebraically encapsulate

the possible dynamics in an anyon model.

3.2.3 Rigid categories

Recall that a monoidal category C comes equipped with a tensor unit 1 ∈ [C] representing the

trivial anyon type such that A ⊗ 1 ∼= A ∼= 1 ⊗ A for every object A ∈ [C]. One important

feature of all anyon models is the notion of a dual anyon (also referred to as the conjugate

or antiparticle) for an anyon A ∈ [C], denoted as another object A∗, such that A ⊗ A∗ ∼= 1.

That is, when an anyon of type A fuses with its dual A∗, the result of fusion is the trivial

anyon type 1. This process A ⊗ A∗ → 1 will be referred to as annihilation. In a process

opposite annihilation, an anyon type may also be split into a pair of anyons in a process given

by a morphism 1 → A∗ ⊗ A. This process will be referred to as creation. Furthermore, such

49

processes should exist for each anyon type A ∈ [C]. The following definition is motivated by

this phenomenon.

Definition 3.2.8. A simple object A ∈ [C] has a dual A∗ ∈ |C| if there exists a pair of

morphisms

nA : 1→ A⊗ A∗ and uA : A∗ ⊗ A→ 1,

corresponding to the processes of anyon creation/fusion from/to the vacuum, respectively,

such that the following diagrams commute

A
l−1
A - 1⊗ A nA ⊗ IA- (A⊗ A∗)⊗ A

A

IA

?
�

rA
A⊗ 1 �

IA ⊗ uA
A⊗ (A∗ ⊗ A)

aA,A∗,A

?

and

A∗
r−1
A∗ - A∗ ⊗ 1

IA∗ ⊗ nA- A∗ ⊗ (A⊗ A∗)

A∗

IA∗

?
�

lA∗
1⊗ A∗ �

uA ⊗ IA∗
(A∗ ⊗ A)⊗ A∗

a−1
A∗,A,A∗

?

A rigid category is a monoidal category C, such that every object A ∈ [C] has a dual A∗ ∈ [C]

with corresponding pairs of morphisms nA and uA as defined above satisfying the commutation

relations.

The category VecC is an example of a rigid monoidal category. The dual of a vector space

V ∈ Ob(C) is given by the usual dual space V ∗ which consists of linear functions f : V → C.

Letting {ei}ni=1 be basis vectors of V , and fj : V → C be the functional in V ∗ defined by

fj(ej) = δi,j (the Kronecker delta function), the two rigidity morphisms are given as

nV : C→ V ⊗ V ∗ mapping 1 7→
n∑
i=1

ei ⊗ fi,

and

uV : V ∗ ⊗ V → C mapping fj ⊗ ej 7→ fj(ei).

In a rigid monoidal category C, the notion of a conjugate morphism f ∗ : B∗ → A∗ in C

50

can also be defined for a morphism f : A → B in C. Given f : A → B in C, the conjugate

f ∗ : B∗ → A∗ is given by the following composition

B∗
IB∗ ⊗ nA- B∗ ⊗ A⊗ A∗ IB∗ ⊗ f ⊗ IA∗- B∗ ⊗B ⊗ A∗ uB ⊗ IA∗- A∗

Note that here, the right unitor rB∗ and left unitor lA∗ have been implicitly omitted at the

beginning and end of the composition, respectively.

3.2.4 Braided categories

When anyons are present on some two-dimensional surface they may move around on the

surface. In certain dynamical processes the starting and ending configuration of two anyons

may be interchanged by moving them around one another. In the world-line picture, the paths of

these anyons will trace out a braid in time. Such a braiding yields either an “over-crossing” or an

“under-crossing” of the strings. However, these two interchanges can be seen as inverse processes

of one another. Categorically, such a braiding process will be given as a natural isomorphism

with component isomorphisms given as morphisms in Hom(A ⊗ B,B ⊗ A) representing the

interchange of anyons A,B ∈ [C]. Moreover, these braiding morphisms must satisfy certain

coherence relations that ensure a compatibility of the underlying monoidal structure of the

category. This is made explicit in the following definition and axioms.

Definition 3.2.9. A braided category is a monoidal category C equipped with a natural

isomorphism b, called the braiding, given by a family of isomorphisms in C indexed by pairs

A,B ∈ [C]

bA,B : A⊗B → B ⊗ A

such that the following diagrams commute for all A,B,C ∈ [C]. The identities satisfied by

these diagrams are called the hexagon equations:

51

A⊗ (B ⊗ C)
bA,B⊗C- (B ⊗ C)⊗ A

(A⊗B)⊗ C
�

a
−1

A,
B,
C

B ⊗ (C ⊗ A)

�

a −1B,C,A

(B ⊗ A)⊗ C
aB,A,C

-

b
A,B ⊗

I
C -

B ⊗ (A⊗ C)

IB
⊗ bA

,C

-

(A⊗B)⊗ C bA⊗B,C- C ⊗ (A⊗B)

A⊗ (B ⊗ C)
�

aA,
B,
C

(C ⊗ A)⊗B

�

a
C,A,B

A⊗ (C ⊗B)
a−1
A,C,B

-

I
A ⊗

b
B,C -

(A⊗ C)⊗B
bA,C
⊗ IB

-

Omitting the associators, the first of the hexagon equations essentially imply that braiding

a simple object A ∈ [C] with a tensor product B ⊗ C ∈ Ob(C) of objects is the same as first

braiding A with B and then A with C. That is, bA,B⊗C = (IB ⊗ bA,C)(bA,B ⊗ IC). Similarly,

the second hexagon equation states that bA⊗B,C = (bA,C ⊗ IB)(IA ⊗ bB,C).

As a consequence of these axioms, braiding with the tensor unit 1 ∈ [C] is trivial: bA,1 =

IA = b1,A.

The category Veck can be made into a braided category by simply defining the braiding as

the map bV,W : V ⊗W → W ⊗ V for vector spaces V,W ∈ Ob(Veck), which maps the tensor

product of vectors v ∈ V and w ∈ W as bV,W (v ⊗ w) = w ⊗ v. Later, after defining a TQFT,

more interesting braiding maps will be defined on appropriate Hilbert spaces in terms of the

underlying braided category that represents an anyon model. These braiding maps will serve

to enact nontrivial operations on the Hilbert spaces of interest, which will be the main avenue

52

for quantum computation.

3.2.5 Ribbon categories

In the definitions and axioms stated thus far, various morphisms were introduced that were

defined in terms of a tensor product of simple objects. Here, another important ingredient to

fully characterize an anyon model will be given in terms of a morphism A→ A, called the twist.

The twist map corresponds to the process where an anyon “twists” or rotates about itself. This

degree of freedom implies that anyons should actually be thought of as an extended object as

opposed to a point-like entities. Moreover, such a process must behave coherently with the

other constructs and morphisms introduced previously (i.e. the monoidal structure, rigidity,

and braiding).

Definition 3.2.10. A ribbon category is a rigid, braided tensor category C with a natural

isomorphism δ consisting of isomorphisms δA : A → A∗∗ indexed by objects A ∈ [C] subject to

the following consistency equations.

δA⊗B = δA ⊗ δB
δA∗ = (δ∗A)−1

δ1 = I1

The existence of the natural isomorphism δ which satisfies the defining properties above is

independent of the existing structure in a rigid, braided tensor category, and must be posited

instead. Regardless, in a rigid, braided tensor category the following morphism ψA : A∗∗ → A

can always be defined for every object A ∈ [C] via the composition

ψA : A∗∗
nA ⊗ IA∗∗- A⊗ A∗ ⊗ A∗∗

IA ⊗ b−1
V ∗,V ∗∗- A⊗ A∗∗ ⊗ A∗ IA ⊗ uA∗- A

Note here that the unitors have been omitted at the start and end of the composition for

convenience. With these morphisms just introduced, the desired twist map can be defined.

Definition 3.2.11. In a ribbon category C, a natural isomorphism θ, called the twist, consists

of isomorphisms given by θA := ψAδA : A → A indexed by objects A ∈ [C] satisfying the

following

θA⊗B = bB,AbA,B(θA ⊗ θB)

(θA ⊗ IA∗)nA = (IA ⊗ θA∗)nA
θ1 = I1

53

Instead of depicting dynamical processes of anyons as world-lines, a more faithful repre-

sentation can be achieved by using ribbons which can be twisted about their centers (hence

the name, “ribbon categories”). For the purposes of this thesis, such a convention will not

be adopted and instead it will be made implicit that anyon worldlines can be twisted in the

appropriate fashion.

For any simple object A ∈ [C], since Hom(A,A) ∼= C due to the assumed semisimple

structure of the ribbon category, it follows that θA ∈ Hom(A,A) can be represented by a scalar

quantity α ∈ C such that

θA = αIA

In what follows, for notational convenience, the twist map will simply be identified with this

scalar quantity so that θA := α ∈ C. The set of these scalars {θA}A∈[C] for simple objects are

characteristic numbers associated to the anyon model represented by the ribbon category C,

and will be used to define certain operations for the corresponding TQFT.

Returning to the definition of the twist map, the first of these equations states that twisting

together the tensor product A⊗B is the same as performing twists individually on the objects

A and B followed by a double braiding. The second establishes a consistency with the rigid

structure: after the creation of an anyon pair A and its dual A∗, applying the twist θA to A

has the same result as applying the twist θA∗ to A∗ instead. From these axioms, it can be seen

that the twists satisfy

θ1 = 1 and θA∗ = θA,

for all A ∈ [C]. Note that here θ1 = 1 ∈ C is the complex number 1, whereas the index for θ1

is the tensor unit 1 ∈ [C] (trivial anyon type).

3.2.6 Traces and quantum dimensions

In the category Veck, for linear transformations L,L′ : V → V acting on some vector space

V ∈ Ob(Veck), there is a standard notion of the trace operation which returns a scalar quan-

tity tr(L) ∈ k. Moreover, this trace operation satisfies worthwhile properties such as

tr(L⊗ L′) = tr(L)tr(L′), tr(LL′) = tr(L′L), tr(L∗) = tr(L).

In this setting of finite dimensional vector spaces, the trace also serves as a means to compute

the dimension of the vector space V as dim(V) = tr(IV) where IV : V → V is the identity

operation on V . Consequently, the relations

dim(V ⊗W) = dim(V)dim(W), dim(V ∗) = dim(V)

54

hold in V eck. Motivated by this construction for the category Veck, an analogous trace oper-

ation can be defined for a morphism f : A→ A in a ribbon category as follows.

Definition 3.2.12. The trace of a morphism f : A → A in a ribbon category C, denoted by

tr(f), is the morphism tr(f) : 1→ 1 given by the composition

tr(f) : 1
nA- A⊗ A∗ f ⊗ IA∗- A⊗ A∗ δA ⊗ IA∗- A∗∗ ⊗ A∗ uA∗ - 1.

Due to the semisimple structure assumed for the ribbon category, recall that Hom(1, 1) ∼= C.

Hence, the trace morphism tr(f) ∈ C is a scalar quantity. Likewise, for any simple object

A ∈ [C] the semisimple structure also implies that Hom(A,A) ∼= C, which motivates the

following definition.

Definition 3.2.13. For a simple object A ∈ [C], define the quantum dimension of A as the

positive real numbers dA := tr(IA) ∈ R, where IA : A→ A is the identity morphism of A.

The global quantum dimension of C is the positive quantity D given by D2 :=
∑
A∈[C]

d2
A.

The set of quantum dimensions {dA}A∈[C] will also serve as characterizing numbers for the

anyon model represented by the ribbon category C. With these definitions of the trace and

quantum dimension, the analogous properties of the trace that held for Veck can be verified. In

particular, from these definitions it is readily observed (as in [29]) that the quantum dimensions

satisfy d1 = 1, dA∗ = dA, and

dAdB =
∑
C∈[C]

NC
ABdC .

3.2.7 Modular categories

In this section, one of the last definitions will be made in order to define a modular category

which completely captures the algebraic properties of an anyon model. The notions previously

introduced to define a ribbon category are sufficient to understand what a modular category is.

Roughly speaking, a modular category is one that satisfies a certain nondegeneracy condition

on the braiding in the category. Given two simple objects A,B ∈ C, consider the morphism

bB,AbA,B : A ⊗ B → A ⊗ B which describes a double braiding of A with B. Now consider

55

diagrams of the following form for all simple objects A,B ∈ [C].

A⊗B

B ⊗ A

bA,B

?

bB,A
- A⊗B

I
A⊗
B

-

Essentially, a ribbon category is modular, if for all nontrivial simple objects 1 6= A ∈ [C],

there exists at least one object B ∈ C such that the diagram does not commute. That is,

bB,AbA,B 6= IA⊗B for some B ∈ [C].

Alternatively, this nondegeneracy property that modularity demands can be stated more

formally as follows. Since the double braiding bB,AbA,B is a morphism from A⊗B to itself, the

trace tr(bB,AbA,B) can be defined. This motivates the following

Definition 3.2.14. For a ribbon category C, the S-matrix is the square matrix whose rows/columns

are indexed by simple objects A,B ∈ [C], with coefficients given by (S)A,B = sAB where

sAB :=
1

D tr(bB,AbA,B).

The quantity sAB describes a certain invariant associated to anyon types A and B, and

characterizes the process where the two anyon world-lines form a Hopf link. For a fixed type A ∈
[C] (referring to a certain row/column of the S-matrix), consider the vector SA given by the Ath

row of the S-matrix (SA)B := sAB. The modularity condition of interest here is whether or not

the vectors SA for A ∈ [C] are linearly independent, which can be mathematically characterized

efficiently by means of the determinant of the S-matrix (i.e. a matrix S has linearly independent

rows/columns if and only if det(S) 6= 0). In this way, a modular category is one in which the

various quantities associated to the double-braidings are sufficiently nondegenerate.

Definition 3.2.15. A ribbon category C is modular is there are a finite number of simple

objects A ∈ [C] and the S-matrix satisfies det(S) 6= 0.

Why such categories are referred to as being “modular” in this setting will become more

apparent once various topological notions are established in Chapter 4. For the anticipating

reader, it will be seen that the S-matrix together with the T -matrix, defined as the diagonal

square matrix consisting of the twist scalars θA given as (T)A,B = θAδA,B, yield a projective

representation of the modular group SL2(Z). The modular group, to be defined more formally

later, is a group that captures the algebraic and topological properties of various homeomor-

phisms of the genus-1 torus.

56

3.2.8 Unitary modular tensor categories (UMTC)

The construction of a modular category and all its morphisms given here is motivated by finding

a mathematical structure that captures the essence of a physical anyon model and all of its

relevant dynamical processes. Continuing in this direction, since the ultimate objective is to

define a valid quantum theory of the anyon model, the ribbon category of interest must also

come equipped with a notion of morphisms being hermitian and unitary in order to properly

describe the observables and time evolution of the theory.

Definition 3.2.16. A ribbon category C is hermitian if for every morphism f : A→ B in C

there is a morphism f † : B → A such that

f †† = f, (f ⊗ g)† = f † ⊗ g†, (gf)† = f †g†

A ribbon category C is unitary if every morphism f : A → B has an inverse which satisfies

f−1 = f †. A unitary modular tensor category (written UMTC for short), is a modular

category that is unitary.

Having defined a UTMC, this now completes the description of the category theoretic con-

cepts needed to describe an anyon model. In what follows it will be assumed that the category

of interest that represents an anyon model is a UMTC. Consequently, both S and T matrices as

defined in the previous section will be taken to be unitary. Moreover, the S matrix is symmetric

so that the following symmetries hold

sAB = sBA = sA∗B∗ = s̄A∗B = s̄BA∗ = s̄AB∗ = s̄B∗A,

where z̄ denotes complex conjugation of z ∈ C.

3.3 The Verlinde algebra

For notational convenience, throughout the remainder of this thesis, objects of a UTMC C will

be denoted by lowercase letters a, b ∈ [C] with the exception of the tensor unit 1 ∈ [C]. Recall

that the underlying monoidal structure is described by fusion rules of the form

a⊗ b =
∑
c∈[C]

N c
a,bc.

where the fusion coefficients satisfy N c
a,b = dimHom(a⊗b, c). Since a braiding ba,b : a⊗b→ b⊗a

defines an isomorphism it follows that Hom(a⊗b, c) ∼= Hom(b⊗a, c) implying that N c
a,b = N c

b,a.

57

Hence, fusion is essentially commutative. Also note that N c
a,1 = N c

1,a = δa,c because of the

defining properties of the tensor unit 1 ∈ [C]. With this in mind, a commutative C∗-algebra

can be defined that captures the fusion properties of C.

Definition 3.3.1. The Verlinde algebra associated to the modular category C, denoted by

VerC, is the commutative C∗-algebra with basis elements {fa}a∈[C] with multiplication satisfying

fafb =
∑
C∈[C]

N c
a,bfc, (3.4)

and involution ∗ given by f ∗a = fa∗.

In the literature, the Verlinde algebra for a semisimple monoidal category C is often referred

to as the Groethendieck ring of C. Here, the basis element f1 ∈ VerC corresponds to the identity

element of VerC denoted as I = f1. It is a general theorem of commutative C∗-algebras that

states that such an algebra is isomorphic to a direct sum of copies of C. This structure theorem

for the Verlinde algebra will be important in deriving the results to follow.

Theorem 3.3.2. The Verlinde algebra VerC has dimension of size |[C]|, where |[C]| denotes

the number of simple objects in the category C, and is isomorphic as an algebra to a direct sum

of |[C]| copies of C written

VerC ∼= C⊕|[C]|.

Before establishing some further properties of VerC, consider the |[C]| × |[C]| matrices Na

(indexed by objects b, c ∈ [C]) defined for each object a ∈ [C] as (Na)b,c := N c
a,b. This matrix

gives the action of multiplication by some fixed fa on the basis {fb}b∈[C]. Since fusion is

commutative, NaNb = NbNa for all a, c ∈ [C]. Therefore, as a standard consequence of linear

algebra the matrices {Na}a∈[C] can all be simultaneously diagonalized via a change of basis.

In particular, the S matrix accomplishes this. To make this more precise, also define for each

a ∈ [C], define the diagonal matrix Da with entries (Da)b,c =
sa,b
s1b
δbc.

Theorem 3.3.3. The S-matrix diagonalizes the fusion rules. That is, for each a ∈ [C],

SNaS
−1 = Da.

Rearranging this expression in the theorem statement as Na = S−1DaS, and equating

matrix coefficients yields the following remarkable formula for the fusion coefficients N c
a,b which

expresses them exclusively in terms of the entries of the S-matrix.

Theorem 3.3.4. The fusion coefficients N c
a,b of a UMTC C satisfy

N c
a,b =

∑
x∈[C]

saxsbxsc∗x
s1x

, (3.5)

58

which is known as the Verlinde formula.

Returning now to the Verlinde algebra VerC, in order to better characterize VerC, define

the algebra elements {pa}a∈[C] as

pa :=
∑
b∈[C]

s1as̄bafb. (3.6)

These identities can be inverted to express the basis {fb}b∈[C] in terms of the {pa}a∈[C] as

fb =
∑
b∈[C]

sba
s1b

pb. (3.7)

The motivation for introducing the elements {pa}a∈[C] is to be able to decompose VerC in an

appropriate fashion as made explicit in the following

Theorem 3.3.5. The set of algebra elements {pa}a∈[C] form a unique and complete set of

minimal, orthogonal idempotents that span VerC, which can be decomposed as

VerC =
⊕
a∈[C]

Cpa, (3.8)

and satisfy the properties papb = δabpb, and
∑

a∈[C] pa = f1 =: I.

That the set {pa}a∈[C] spans VerC follows from the relation (3.7), and the fact that VerC

is constructed to be spanned by the basis {fa}a∈[C]. Here, “minimal” simply means that the

number of elements in {pa}a∈[C] is as small as possible, yet still spans VerC. The identity

papb = δabpb expresses the orthogonality condition, and as a special case when a = b yields

idempotency: papa = pa.

This analysis of the Verlinde algebra will be essential in defining an algebra of observables

for topological quantum computation by means a suitable representation of VerC acting on an

appropriate Hilbert space defined by the underlying TQFT. Furthermore, the decomposition

of VerC given in (3.8) will be exploited to characterize protected gates to be studied later.

3.4 TQFTs as monoidal functors

In general, a TQFT is specified by a positive integer n + 1 where n is the number of spatial

dimensions of the space-time manifold of interest. Time functions as an additional temporal

dimension to give a (n + 1)-TQFT. Temporal change of the space under consideration is then

described by certain transformations of the n-dimensional space and is given by a space-time

59

manifold having dimension n+1. Here it will be assumed that all manifolds under consideration

are smooth, compact and orientable in the case where the latter can be defined. Moreover,

the manifolds of interest can either be open or closed manifolds, meaning with or without

boundaries, respectively. For some manifold M , denote by ∂M , the boundary of M . If M is a

manifold of dimension n + 1, then the boundary ∂M will generally have some dimension less

than m. If M has no boundary, M will be called a closed manifold and ∂M will be the empty

manifold, denoted as ∅, and it will be written ∂M = ∅. For the purposes of this thesis, in the

case where M has a nonempty boundary, attention will be restricted to only the case where

∂M has dimension m− 1.

3.4.1 Cobordism categories

The relevant mathematical entity that will be used to define an (n + 1)-TQFT is a cobordism

category, denoted (n + 1)Cob, which has n dimensional manifolds as objects and certain n+ 1

dimensional manifolds as morphisms. In particular, since this thesis is only concerned with

(2 + 1)-TQFTs, the definition presented here will only be given specifically for 3Cob. Before

defining 3Cob formally, consider the following preliminary definitions. A 2-dimensional ori-

entable manifold, called a surface, can be oriented in 2 different ways. For a surface Σ with

a given orientation, denote as Σ the same surface but with the opposite orientation. Given

two surfaces Σ and Σ′ of dimension n, define an operation q which gives another n dimen-

sional manifold ΣqΣ′ through the disjoint union of the two manifolds. Roughly speaking, the

manifold Σ q Σ′ represents Σ and Σ′ being placed in the same ambient space together. This

operation will serve to equip the category 3Cob with a monoidal/tensor product on its objects.

Definition 3.4.1. A cobordism (M,Σ,Σ′) between n-dimensional manifolds Σ and Σ′ is a

(n+ 1)-manifold M whose boundary is the disjoint union of Σ and Σ′, so that ∂M = Σq Σ′.

In this definition, a cobordism is specified by a triple (M,Σ,Σ′), where Σ can be regarded as

an incoming boundary component and Σ′ an outgoing boundary component of M . Otherwise,

regarding some manifold M as a cobordism may be somewhat ambiguous since a particular

manifold M with boundary may have boundary components that can be decomposed in various

ways. When this is clear by context, a cobordism specified by a triple (M,Σ,Σ′) will simply

be denoted by just M .

Definition 3.4.2. The category 3Cob is a monoidal category with

• objects Σ,Σ′ ∈ Ob(3Cob) given as surfaces (2-dimensional manifolds)

• morphisms M : Σ→ Σ′ being 3-dimensional cobordisms (M,Σ,Σ′) such that ∂M = Σ̄qΣ

60

• composition of morphisms M : Σ → Σ′ and M ′ : Σ′ → Σ′′ given by M ′ ◦M : Σ → Σ′′

representing the cobordism (M ′ ◦M,Σ,Σ′′) with boundary ∂(M ′ ◦M) = Σ q Σ′′ which

glues M and M ′ along the common boundary Σ′.

• an identity morphism IΣ : Σ→ Σ, for each object Σ ∈ Ob(3Cob), given by the cobordism

called the cylinder of Σ defined as IΣ := Σ × [0, 1], where [0, 1] is the unit interval, so

that ∂IΣ = Σq Σ

• tensor products of objects given by the disjoint union Σ1 q Σ2 ∈ Ob(3Cob)

• tensor products of morphisms M1 : Σ1 → Σ′1 and M2 : Σ2 → Σ′2 given by M1 qM2 : Σ1 q
Σ2 → Σ′1qΣ′2, where M1qM2 is the cobordism with ∂(M1qM2) = (Σ1 q Σ2)q(Σ′1qΣ′2).

• a tensor unit given by the empty manifold ∅ so that Σq ∅ = Σ = ∅ q Σ

Though not explicitly stated for 3Cob as a monoidal category, the left and right unitors,

and associators for the category should be clear from context, and will not be too important

for further developments. Actually, as it will be seen later, the category 3Cob can be further

equipped with more structure making it a modular category with a rigid, braided, and ribbon

structure. This richer structure will become relevant for topological quantum computation, and

will be introduced in later developments when the data of a UMTC will come into play for a

TQFT.

3.4.2 (2 + 1)-TQFTs

The mathematical domain of quantum theory takes place on abstract vector spaces that are

Hilbert spaces, which describe the state space of the quantum system. On the other hand,

relativity theory is concerned with certain space-time manifolds on which various dynamics of

physical entities takes place. The objective of a topological quantum field theory is to associate

appropriate Hilbert spaces to topological manifolds that represent the space-time. Moreover,

this correspondence should be such that transformations of the space-time get associated to

appropriate linear transformations on the relevant Hilbert spaces. It is the focus of this thesis

to study (2 + 1) dimensional space-times, and so space-time will be modeled by 3-dimensional

cobordisms. Thus, a (2 + 1)-TQFT can be thought of as a rule which makes a correspondence

between two categories: 3Cob → VecC. More specifically, a TQFT will be defined as a

monoidal functor which maps objects and morphisms from one category to the other in a

way that preserves the monoidal structure of the two categories. This is made explicit in the

following definition.

61

Definition 3.4.3. A (2 + 1)-TQFT is a monoidal functor T : 3Cob → VecC which maps

surfaces Σ ∈ Ob(3Cob) to vector spaces T (Σ) ∈ Ob(VecC) and cobordisms M : Σ → Σ′ in

3Cob to linear transformations T (M) : T (Σ)→ T (Σ′) in VecC. If two cobordisms M and M ′

are homeomorphic as manifolds, written M 'M ′, then T (M) = T (M ′). Here, a functor T is

a monoidal functor if it satisfies the following:

1. The identity morphism (cobordism) IΣ : Σ→ Σ gets assigned to the identity linear trans-

formation T (IΣ) = I : T (Σ)→ T (Σ).

2. If M = M ′′ ◦M ′ in 3Cob, then T (M) = T (M ′′)T (M ′) in VecC.

3. An object Σ ∈ Ob(3Cob) given by the disjoint union Σ = Σ1 q Σ2 gets mapped to the

tensor product of vector spaces T (Σ) = T (Σ1)⊗ T (Σ2) ∈ Ob(VecC).

The disjoint union of two cobordisms M = M1 qM2 in 3Cob gets mapped to the tensor

product of linear transformation T (M) = T (M1)⊗ T (M2).

4. The empty surface ∅ ∈ Ob(3Cob) gets assigned to the field T (∅) = C ∈ Ob(VecC), and

the empty cobordism ∅ → ∅ to the unit 1 ∈ C.

Here, the condition that T (M) = T (M ′) if M ' M ′, meaning that two cobordisms M

and M ′ are homeomorphic as manifolds (defined formally in Definition 4.1.1), is a naturality

condition. This implies that a TQFT only considers homeomorphism classes of cobordisms,

which is an essential feature of a TQFTs and will be exploited later. Statements 1 and 2

are just explicit ways of saying that T is a functor of categories, and statements 3 and 4 are

the necessary conditions for the functor being a monoidal functor which preserves the tensor

product structure.

A closed 3 dimensional manifold M without boundary may be regarded as a cobordism

(M, ∅, ∅) since ∂M = ∅ q ∅ = ∅. Then as a consequence, since T (∅) = C, the TQFT will

associate the closed manifold M (thought of as a cobrdism M : T (∅) → T (∅)) to a linear

transformation T (M) : C→ C, which is uniquely specified by its action on the unit 1 ∈ C im-

plying that T (M) is a scalar value in C. Moreover, this quantity is the same for homeomorphic

manifolds M ' M ′ since in this case T (M) = T (M ′) by naturality. It is in this sense that a

TQFT is said to yield a topological invariant of closed 3-dimensional manifolds.

Despite describing the essence of a TQFT by means of a monoidal functor T : 3Cob →
VecC, the precise form of the associated vector spaces T (Σ) ∈ Ob(VecC) for some surfaces

Σ ∈ 3Cob has not been made explicit. To achieve such a description, the functor T requires

additional data that will be provided by a UMTC which specifies a particular anyon model.

Hence, for each UTMC C, a TQFT can be constructed via a monoidal functor TC. In Section

62

5.1, this construction will be described in detail and thereby provide an avenue for topological

quantum computation.

63

Chapter 4

Topology

4.1 Topology of surfaces

Before investing in further details, some standard notions and terminology in the field of topol-

ogy will be made in order to better understand the developing theory. Essentially, what is

needed is a description of the various relevant surfaces (2-dimensional manifolds), and the na-

ture of closed loops that can exist on them. Additionally, topological transformations called

homeomorphisms of these surfaces and how these transformations change loops on the surface

also need to be understood. A procedure for constructing more complicated surfaces from

more elementary ones through “gluing”, and deconstructing surfaces into simpler ones through

“cutting” will serve as a method of understanding general surfaces. This will provide a means

to construct the appropriate Hilbert spaces of interest, and the relevant algebra of observables,

which will be defined in terms of the surfaces, loops, and a choice of an anyon model represented

by a UMTC.

Most definitions presented here are standard notions in the field of topology and algebraic

topology; and hence, can be found in most standard texts. A particularly enlightening reference

is [25]. Although excessive for the purposes of this thesis, [17] offers an in-depth study on

mapping class groups of surfaces.

4.1.1 Classification of surfaces

Topology is the study of spaces without regard to any metric that may be put on the space.

Thus, the quantitative distance between two points is not relevant; yet, a topological space still

holds some notion of points being “close” to one another and can deal with notions of continuity.

The primary means of relating topological spaces is through the concept of a homeomorphism.

64

Definition 4.1.1. Two topological spaces X and Y are considered topologically equivalent,

written X ' Y , if there exists a map called a homeomorphism, ϑ : X → Y such that ϑ is a

bijection, continuous, and has an inverse map ϑ−1 that is also continuous.

An equivalence relation can be put on topological spaces using the relation X ' Y whenever

there exists a homeomorphism ϑ : X → Y . However, determining wether two spaces X and Y

are or are not homeomorphic can be a highly nontrivial task.

In what follows, the discussion will be limited to topological spaces that are surfaces (i.e.

are 2-dimensional manifolds), since this is the physical arena where anyons are manifest. In

addition, most surfaces under consideration will be assumed to be connected, roughly speaking

“one piece”, and otherwise considered disconnected being comprised of “many pieces”. This is

made formal in the following definition.

Definition 4.1.2. A surface Σ is path-connected, if for any two points x, y ∈ Σ there exists

a continuous function called a path P : [0, 1] → Σ such that P (0) = x and P (0) = y. If Σ is

not path-connected, then it is assumed to be disconnected and is given as the disjoint union

Σ = Σ1 q Σ2 q · · · q Σk, for some integer k ≥ 2, where each Σi is path-connected and called a

connected-component of Σ.

With this is mind, it is sufficient to simply understand connected surfaces, since more

general disconnected surfaces can be constructed through the disjoint union of these connected

surfaces. The following Theorem 4.1.3 offers a characterization of connected surfaces. It states

that orientable surfaces can be described by two values (g, b), where g is an integer representing

the genus of the surface and b is the number of boundary components of the surface. Roughly

speaking, the genus of a surface is the number of distinct “handles” that the surface has, and a

boundary component is a “hole” in the surface whose boundary forms some closed loop. Each

orientable surface can be oriented in two ways, and so one may regard two surfaces with the

same genus and number of boundary components, but with opposite orientation, as distinct

surfaces. Such distinctions between the choice of orientation assigned to a surface should be

taken into consideration in appropriate contexts. In what follows, it will simply be assumed that

a particular orientation is fixed when considering a surface, since the theory to be developed

will be ultimately concerned with orientation-preserving homeomorphisms of surfaces.

Theorem 4.1.3. A path-connected, compact, orientable manifold Σ is homeomorphic to pre-

cisely one surface Σ(g,b) having genus g and b boundary components so that ∂Σ = B1 q B2 q
· · · qBb, where each boundary component Bi is homeomorphic to the circle S1 ' Bi.

Note that the property that ∂Σ = B1 q B2 q · · · qBb consists of a disjoint union of circles

follows from making the assumption that the boundary ∂Σ is a closed 1-dimensional manifold.

65

Moreover, it will be assumed throughout that the orientations associated to each boundary

component Bi ⊂ ∂Σ of an open surface Σ is oriented so that moving along the boundary

component Bi in the direction of the orientation is such that the surface Σ appears on the

left-hand side.

4.1.2 DAP-decompositions

In algebraic topology, methods are deployed which seek to study topological spaces through

more algebraic means. In particular, a space X can be characterized by the properties of various

closed loops that may exist on the space. Formally,

Definition 4.1.4. A loop on a topological space X is the image of a continuous map C :

[0, 1]→ X such that C(0) = C(1).

The map which defines a loop C : [0, 1]→ X embeds some parametrization of the circle into

the space X. Technically speaking, it is the image C([0, 1]) ⊆ X thought of as a subspace of

X that corresponds to the actual loop on the space X. Regardless, for notational convenience,

when referring to a loop the map C will be conflated with the image C([0, 1]) throughout this

thesis.

Given two loops C,C ′ ⊆ X on a topological space X, one natural question to ask is whether

or not one loop can be continuously deformed into the other. This motivates the following

definition

Definition 4.1.5. Two loops C,C ′ : [0, 1] → X are said to be homotopic, if there exists a

continuous function called a homotopy H : [0, 1] × [0, 1] → X such that H(t, 0) = C(t) and

H(t, 1) = C ′(t). A loop C is said to be null-homotopoic or a trivial loop if it is homotopic

to a loop C0 : [0, 1]→ X which is a constant function; meaning C0(t) = x ∈ X for all t ∈ [0, 1].

In this definition, a trivial loop is essentially one which can be contracted to a single point

in X. For a topological space X, this notion of homotopy can be used to put an equivalence

relation on loops where two loops are in the same homotopy class if and only if they are

homotopic. Furtheremore, the set of equivalence classes of homotopic loops for a surface Σ(g,b)

is always finite. Every surface has trivial loops, but not all surfaces have non-trivial loops. An

example of the latter is the 2-dimensional sphere S2 ' Σ(0,0), which is a surface with zero genus

and no boundary components. In this case, the sphere S2 has only one trivial homotopy class

of loops on the surface. If there exists a non-contractable/non-trivial loop on a surface, then

the surface has either a non-empty boundary, and/or has a nonzero genus, implying that there

exists at least one other nontrivial homotopy class of loops on the surface.

66

Given some surface Σ and some loop C ⊂ Σ, a new surface ΣC can be defined which is

the resulting surface obtained by cutting Σ along the loop C. Depending on the topological

nature of the loop C as it exists on the surface this resulting surface can be of two types, either

a connected surface or a disconnected surface with two additional boundary components, as

made precise in the following definition.

Definition 4.1.6. Let Σ be a surface and C ⊂ Σ some loop. Define the cut surface ΣC to be

the surface that results from cutting Σ along the loop C.

A loop C is disconnecting if ΣC = Σ1 q Σ2 is a disconnected surface where the cut along

C yields two additional boundary components C1 ⊂ ∂Σ1 and C2 ⊂ ∂Σ2 on the resulting surfaces

Σ1 and Σ2, respectively.

A loop C is non-disconnecting or connecting if the surface ΣC which results from cutting

Σ along C is a connected surface with two additional boundary components C1, C2 ⊂ ∂ΣC such

that ∂ΣC = ∂Σq C1 q C2.

For two surfaces Σ1 and Σ2 such that each surface has at least one boundary component

(where by assumption each boundary is homeomorphic to the circle S1), a new surface can be

constructed that glues Σ1 and Σ2 along some choice of two boundary components from the

respective surfaces. This is made formal in the following definition.

Definition 4.1.7. Let Σ1 and Σ2 be two connected surfaces with nonempty boundaries, and let

B1 ⊂ ∂Σ1 and B2 ⊂ ∂Σ2 be some boundary component of Σ1 and Σ2, respectively. Define the

glued surface Σ1 ∪(B1,B2) Σ2 which identifies the two boundary components B1 and B2. If Σ1

and Σ2 are surfaces of type (g1, b1) and (g2, b2), respectively, then Σ1 ∪(B1,B2) Σ2 is a surface of

type (g1 + g2, b1 + b2 − 2).

For the cutting process a convention is adopted where the orientations of the additional

boundary loops C1, C2 that result from cutting, are chosen so that the orientation(s) of the

resulting surface(s) is consistent with the original(s).

Three particular elementary surfaces will play a special role in understanding more general

surfaces. For this reason, they are given the following names:

Definition 4.1.8. Call any surface Σ an elementary surface if it is homeomorphic to either

of the following:

• a disk if Σ ' Σ(0,1)

• an annulus if Σ ' Σ(0,2)

67

• a pant if Σ ' Σ(0,3)

With this in mind, the characterization of arbitrary surfaces Σ(g,b) can be further understood

through the cutting of Σ(g,b) into a collection of elementary surfaces. Equivalently, any general

surface Σ(g,b) can be constructing from gluing together some collection of elementary surfaces.

Theorem 4.1.9. Any surface homeomorphic to Σ(g,b), can be cut along a set C of nonintersect-

ing curves on the surface, so that the resulting surface(s) are homeomorphic to disks, annuli,

or pants.

A collection of nonintersecting curves C that achieves a decomposition mentioned in The-

orem 4.1.9, is not unique. It can be possible that two collections of curves C and C ′ both

yield decompositions into elementary surfaces, but only have some or no curves in common.

Moreover, the number of curves in some collection C can be made arbitrarily large while still

achieving such a decomposition. However, in this case, the resulting elementary surfaces may

be redundant. Therefore, attention will be restricted to a set of curves C that contains the

minimal number of curves such that cutting along the curves in C yields the smallest number

of constituent pieces that are homeomorphic to disks, annuli, and pants.

Definition 4.1.10. For a closed surface Σ, a collection of nonintersecting curves C is called a

DAP-decomposition if cutting along the set of curves yields a minimum number of surfaces

that are homeomorphic to only disks, annulli, and pants. For an open surface Σ, the DAP-

decomposition C must include curves that are homotopic to each boundary component of Σ.

Local moves

Even with the restricted Definition 4.1.10, a DAP-decomposition need not be unique. However,

in certain cases the loops in two different DAP-decompositions may be related through certain

local moves of the surface under consideration which interchange certain pairs of loops on the

surface. To illustrate this, consider the torus T := Σ(1,0), which has two nontrivial homotopy

classes of loops represented by C and C ′. Both singleton sets C = {C} and C ′ = {C ′} suffice to

yield valid DAP-decompositions which cut T into a single annulus. Note that these primitive

loops C and C ′ intersect each other once and will be called conjugate loops. In this case, there

exists a local move called the S-move which transforms one loop to the other. In fact, such

a transformation can be achieved by a homeomorphism s : T → T as described in the next

section.

For higher genus closed surfaces of the form Σ(g,0) there are g “handles” on the surface, and

for each handle a pair of conjugate loops Ci and C ′i (where 1 ≤ i ≤ g) that belong to distinct

68

nontrivial homotopy classes. Accordingly, for each pair there is a corresponding local S-move

that interchanges the two conjugate loops.

Now consider the genus-zero open surface Σ(0,4) referred to as the 4-punctured sphere. In

addition to the four loops homotopic to the four boundary components of Σ(0,4), a valid DAP-

decomposition C can be achieved with either of the two loops C and C ′ which cut the surface

into two pants Σ(0,3)qΣ(0,3). Despite intersecting each other, these two loops belong to distinct

nontrivial homotopy classes. The local move which interchanges C and C ′ on the 4-punctured

sphere is called the F-move.

Generalizing this scheme, for the Σ(0,n) referred to as the n-punctured sphere, valid DAP-

decompositions can be achieved by choosing n−2 loops Ci which cut the surface into n−2 many

pants. Each such loop has a corresponding conjugate loop C ′i that could alternatively be chosen

for the DAP-decomposition. Then analogously, for each pair there is also a corresponding local

F-moves which interchanges the conjugate loops Ci and C ′i.

A combination of the methods just described for surfaces of type Σ(g,0) and Σ(0,b), with

g, b ≥ 1, can be used to construct DAP-decompositions of an arbitrary surface Σ(g,b). Moreover,

a combination of local S-moves and F-moves can be used to relate various DAP-decompositions.

These local moves alone do not suffice to construct any possible DAP-decomposition from a

given one. As it will be seen in the next section, homeomorphisms of Σ(g,b) can also relate more

general DAP-decompositions to one another. Then with these homeomorphisms in addition to

the local moves, arbitrary DAP-decompositions of a particular surface can be related.

4.1.3 The Mapping Class Group

When considering a surface Σ it is natural to think of the surface as being embeded in the

higher 3 dimensional space which contains it, say R3. More formally:

Definition 4.1.11. An embedding of a surface Σ in R3 is given by an injective and continuous

function f : Σ→ R3, such that Σ is homeomorphic to its image f(Σ) ⊂ R3.

With this definition in mind, a loop C ⊂ Σ as defined in Definition 4.1.4, can be equivalently

defined as an embedding map f : S1 → Σ which embeds the circle S1 into a surface Σ. Again,

just as it was done with loops, the surface Σ and its embedding f(Σ) will be conflated for

notational convenience whenever it is implicit that the surface under consideration is embedded

since Σ ' f(Σ).

Of course, there can exist many ways to embed a particular object in a space. Consider

embeddings f, f1, f2 : Σ → R3 of a surface Σ. Then naturally by definition, the embedded

69

surfaces are always homeomorphic: f(Σ) ' f1(Σ) ' f2(Σ). Let ϑ1 : f(Σ) → f1(Σ) and

ϑ2 : f(Σ) → f2(Σ) be the corresponding homeomorphisms. Despite this natural equivalence

between different embeddings of a surface, a finer notion of equivalence between the different

homeomorphisms ϑ1 and ϑ2 can be made that is analogous to the notion of homotopy introduced

in Definition 4.1.5 for loops. This is the topic of the next discussion.

When there exists a homeomorphism ϑ : f1(Σ) → f2(Σ), a continuous map is defined that

maps points of f1(Σ) to points of f2(Σ). However, this is essentially a static notion relating the

two surfaces— a sort of “before-and-after” map. Instead, one can imagine a more dynamical

process in which the points of f1(Σ) continuously change in time rearranging themselves in

a form equivalent to the arrangement of points on the embedded surface f2(Σ) such that, at

every moment in time, the surface remains embedded and homeomorphic to itself. If such a

dynamical process exists, the two homeomorphisms ϑ1 and ϑ2 will be related and referred to

as being isotopic.

Now, restrict attention to self-homeomorphisms ϑ : Σ→ Σ of some surface Σ to itself that

preserve the orientation of Σ, and in the case that Σ has a nonempty boundary, the homeo-

morphism acts as the identity on the boundary components. All such self-homeomorphosms of

a surface Σ can be thought of as an abstract topological space denoted Homeo(Σ). A single

point in ϑ ∈ Homeo(Σ) is a homeomorphism ϑ : Σ → Σ. In general, the space Homeo(Σ)

may be disconnected, and a connected component of Homeo(Σ), called an isotopy class, con-

sists of homeomorphisms ϑ1 and ϑ2 which can be connected by a continuous path in the space

Homeo(Σ) that represents an isotopy. In this way, an equivalence relation can be put on

Homeo(Σ) where two homeomorphisms ϑ1, ϑ2 ∈ Homeo(Σ) are in the same equivalence class

if and only if they are in the same isotopy class. For ϑ ∈ Homeo(Σ), denote its equivalence

class as [ϑ].

Two homeomorphisms ϑ1, ϑ2 ∈ Homeo(Σ) can be composed to yield another homeomor-

phism ϑ := ϑ2ϑ1 : Σ → Σ. Moreover, a composition of isotopy classes of Homeo(Σ) can be

defined as [ϑ] = [ϑ2][ϑ1]. Since the identity homeomorphism is always defined for any surface,

and all homeomorphisms have inverses, this composition rule can be used to define a group

structure on the set of isotopy classes of Homeo(Σ).

Definition 4.1.12. The mapping class group of a surface Σ, denoted MCGΣ, is the group

of isotopy classes of orientation-preserving self-homeomorphisms ϑ : Σ → Σ which fix the

boundary and act as the identity on any boundary components of Σ. The group operation on

elements [ϑ1], [ϑ2] ∈ MCGΣ is given by the composition of isotopy classes: [ϑ2][ϑ1] = [ϑ2ϑ1].

As an analogy, when studying linear transformations of vector spaces, the action of a linear

transformation can be characterized by its action on vectors of the particular vector space which

70

serves as the domain of the linear transformation. In the same way, when studying homeo-

morphisms of a surface Σ, it is useful to characterize the action of a homeomorphism through

its action on various loops C ⊂ Σ that can exist on the surface. Thus, a homeomorphism

ϑ : Σ→ Σ will often be described by how it transforms a loop C 7→ ϑ(C) on the surface Σ.

With this in mind, consider a surface Σ and some DAP-decomposition C = {Ci}ni=1 of the

surface. Then given some homeomorphism ϑ : Σ → Σ, its action on loops Ci ∈ C transforms

them to loops ϑ(Ci) ⊂ Σ such that the set of loops {ϑ(Ci)}ni=1 yields another valid DAP-

decomposition of Σ. This property will play an essential role in understanding protected gates

in the context of topological quantum computation.

71

Chapter 5

Topological quantum computation

As described in the Section 3.4, a (2 + 1)-topological quantum field theory is essentially given

by a functor between categories

T : 3Cob→ VecC.

Given a surface Σ ∈ Ob(3Cob), a TQFT associates a Hilbert space T (Σ) ∈ Ob(VecC). How-

ever, no details were given to describe the precise form of the Hilbert space T (Σ). This is

because there exists a multitude of ways to construct such a functor which satisfies the ax-

ioms of a TQFT given in Definition 3.4.3. To accomplish this, first a choice of some UMTC

must be made. Then once the data provided by a UTMC C is given a particular functor

TC : 3Cob → VecC can be constructed which provides an explicit way to associate a Hilbert

space TC(Σ) for an arbitrary surfaces Σ. These spaces will function as the computational

Hilbert space associated to the arena where anyons are manifest. Section 5.1 will serve to

describe these topological Hilbert spaces through an axiomatic approach, and then explicitly

give certain basis representations of the spaces for certain surfaces.

Furthermore, the functor TC will also give explicit representations of a cobordism M : Σ→
Σ′, as linear transformations TC(M) : TC(Σ)→ TC(Σ′). In this context, the cobordisms M will

describe certain transformations of the surface Σ to another Σ′, which describe various anyon

dynamics that may take place. For most scenarios of interest in this thesis attention will be

restricted to cobordisms M : Σ → Σ from a surface to itself. In this case, the transformation

described by M will correspond to a self-homeomorphism ϑM : Σ→ Σ′. The linear transforma-

tions that represent these morphisms will be unitary operators U : HΣ → HΣ and be expressed,

for example, by S, T, F and R matrices (as they are commonly referred to in the literature)

that describe the action of certain basis changes and anyonic dynamics such as twisting and

braiding. Therefore, by considering all self-homemorphisms ϑM ∈ MCGΣ of the mapping class

72

group of Σ, the action of the functor TC provides a group representation of Σ

TC : Σ→ U(HΣ) (5.1)

ϑM 7→ TC(ϑM),

where U(HΣ) is the group of unitary operators acting on HΣ. Note that the single functor

TC defined by the TQFT gives such a group representation of Σ for each surface Σ. It is

through these transformations that quantum computation can be enacted on suitable Hilbert

spaces. The nature of the image under the representation TC(Σ) ⊆ U(HΣ) determines the

computational power the model can afford (i.e. what “quantum gates” can be performed).

Some useful references to the literature pertaining to topological quantum computation can

be found in the Appendix of [29], the lecture notes of [40], and in [13].

5.1 The topological Hilbert space HΣ := TC(Σ)

Let C be a UTMC representing some anyon model of interest, and consider the (2 + 1)-TQFT

TC : 3Cob→ VecC,

where TC is a functor which maps surfaces Σ ∈ Ob(3Cob) to some Hilbert space TC(Σ) ∈
Ob(VecC). The space TC(Σ) will be defined with respect to the anyon model C and surface Σ,

but since the category/anyon model C is fixed such a subscript will be notationally redundant

in specifying the Hilbert space TC(Σ). Therefore, make the following notational definition when

it is understood and made implicit what UMTC C is being used to define the TQFT TC.

Definition 5.1.1. Let HΣ := TC(Σ) denote the Hilbert space assigned to the surface Σ under

the TQFT TC.

In particular, the properties of HΣ which depend on Σ will be inherently topological and

provided through DAP-decompositions of Σ. In regards to the dependence of the UTMC C, all

that is essentially needed to define the space HΣ is the nature of the fusion rules of the anyon

model represented by C. Recall that the fusion rules of the model are expressed in terms of

the anyon types/simple objects [C] together with their corresponding fusion coefficients N c
a,b

as defined in Definition 3.2.7, and the richer categorical structure of C is not explicitly needed.

Therefore, the anyon types/simple objects will be denoted by a label set A and the following

notational conventions will be made.

73

Definition 5.1.2. Let A := [C] denote the finite set of labels which represent the anyon

types/simple objects of the UTMC C. Let 1 ∈ A denote the trivial anyon type, and let ā

denote the dual anyon type of a ∈ A.

Although the fusion rules of a UTMC C suffice to specify a basis ofHΣ, the richer categorical

structure of C arising from the modularity conditions will be necessary to relate different choices

of a basis forHΣ. In particular, this additional algebraic and topological data will be used to give

representations of various local moves that may be performed on loops as well as representations

of the mapping class group as in Equation (5.1). This will be further described in a later section

of this chapter.

5.1.1 The flux basis of HΣ

The general ingredients for constructing the Hilbert space HΣ will be given through axioms

which specify elementary Hilbert spaces HΣ for the elementary surfaces Σ(0,b) for b = 1, 2, 3 (a

disk, annulus, and pant). Then an additional axiom, called the gluing axiom will given which

serves as a recipe for constructing the Hilbert space associated to a surface Σ that results from

gluing together two boundary components B and B′ of a surface(s). These axioms will then

be sufficient to describe a basis for the Hilbert space HΣ for an arbitrary surface Σ by means

of a DAP-decomposition, which relates Σ to its constituent elementary surfaces that comprise

it. Different DAP-decompositions of Σ will yield different basis of HΣ.

A basis for HΣ is made explicit through certain labelings of the loops C ∈ C of some DAP-

decomposition C of Σ. In particular, the loops of C will be labeled by anyon types A of a fixed

model under consideration; hence, a labeling will be given by a map ` : C → A. Moreover,

various loops of C must be labelled according to some rules which satisfy fusion consistency

relations. In regards to faithfully modeling the actual physics of the theory, the motivation for

defining the Hilbert space HΣ in this way is that the loops of a valid DAP-decomposion of a

surface Σ are precisely those loops on the physical surface represented by HΣ that can carry a

physically observable flux along the loop. The flux associated to a loop is specified by an anyon

type in A, and the various types of flux associated to various possible loops on the surface must

be related in a physically consistent way as made mathematically formal in Definition 5.1.3

given below for a fusion consistent labeling.

Before proceeding, one technicality regarding open surfaces Σ(g,b) with b ≥ 1 must be men-

tioned. Recall that in Definition 4.1.10 of a DAP-decomposition C, loops Ci ⊂ ∂Σ(g,b) cor-

responding to the boundary loops must be included in C. When considering open surfaces,

an anyon type ai ∈ A will be associated to the boundary loops when considering the surface.

74

Hence, such surfaces will be denoted as Σ
(a1,...,ab)
(g,b) in order to specify that boundary loop Ci is

labelled with anyon type ai ∈ A. The reason for this is that open surfaces Σ
(a1,...,ab)
(g,b) in this

study correspond to the physical scenario where fixed anyon types ai, . . . , ab ∈ A are present on

the surface. The detection of one of these anyons can be made in principle by a measurement

corresponding to a closed loop containing a particular anyon. Furthermore, it is assumed that

the flux associated to the boundary loops cannot be changed. In this sense, considering the

surface Σ
(a1,...,ab)
(g,b) is like imposing certain “boundary conditions” which must be preserved.

Definition 5.1.3. A labelling is a map ` : C → A of a DAP-decomposition C of a surface Σ,

and is said to be a fusion consistent labeling if the following is true:

• If for any loop C ∈ C that defines the boundary of a disk Σ(0,1), then `(C) = 1.

• If for any pair of loops C1, C2 ∈ C that define the boundary of an annulus Σ(0,2), then

`(C1) = `(C2).

• If for any triple of loops C1, C2, C2 ∈ C that define the boundary of a pant Σ(0,3), the

labelling satisfies N
`(C3)
`(C1),`(C2) 6= 0.

• If Σ = Σ
(a1,...,ab)
(g,b) is an open surface with labelled boundary components C1, . . . , Cb ∈ C ,

then the labelling must satisfy `(Ci) = ai for 1 ≤ i ≤ b.

Denote by L(C) the set of all fusion consistent labelings of a DAP-decomposition C.

Having defined the set L(C) of fusion consistent labelings of a DAP-decomposition C of a

surface Σ, the axiom which describes the Hilbert space HΣ can be stated.

Axiom 1 (Flux Basis). Let C be a DAP-decomposition of Σ, then the Hilbert space HΣ is the

formal span of fusion consistent labelings ` ∈ L(C):

HΣ :=
∑
`∈L(C)

C|`〉,

where the set {|`〉}`∈L(C) forms an orthonormal basis of HΣ with an inner-product satisfying

〈` | `′〉 = δ`,`′ for `, `′ ∈ L(C).

To summarize the Flux Basis Axiom, let {Pa(C)}a∈A be a set of projectors corresponding to

some fixed loop C ⊂ Σ carrying a flux of type a ∈ A. There exists such a family of projectors

for every loop C ∈ Σ. Given a DAP-decomposition C of Σ, and a fusion consistent labelling

` ∈ L(C), a basis state |`〉 ∈ HΣ corresponds to the simultaneous +1 eigenspace of the set of

projectors {P`(C)}C∈C which correspond to a loop C ∈ C carrying a flux of type `(C). Thus, the

75

basis {|`〉}`∈L(C) represents the different compatible ways flux can be associated to the loops on

the surface Σ. A general state of HΣ, can then be arbitrary (normalized) linear combinations

of these basis states, which provides a notion of the flux to be in a “superposition” of different

flux types. Some more physical motivation for the Flux Basis axiom will be provided when

applying it to characterize the topological Hilbert spaces associated to the elementary surfaces

in Section 5.1.3.

5.1.2 The Gluing Axiom

A DAP-decomposition C of a surface Σ provides a way of thinking about Σ in terms of its

constituent elementary pieces. In this regard, the Gluing Axiom to be stated provides a means

of relating the Hilbert space HΣ to the Hilbert spaces associated to its constituent surfaces.

Given a connected surface Σ = Σ(g,b), cutting along a nontrivial loop C ⊂ Σ(g,b) results in a

potentially disconnected surface Σ′C which has two additional boundary loops B1, B2 ∈ ∂Σ′C
that result from cutting along C (which are assumed to be oppositely oriented as to preserve

the orientation of the resulting surface). Let Σ′C(a, a) denote the surface Σ′C where the two

boundary loops have been labeled by a, a ∈ A, respectively. The Gluing Axiom then relates

the Hilbert space HΣ to the spaces HΣ′C(a,a) in the case where C ∈ C is a loop that is part of a

DAP-decomposition of Σ.

Axiom 2 (Gluing). Let C ∈ C be a loop in some DAP-decomposition of a surface Σ, and

let Σ′C(a, a) denote the cut surface that results from cutting Σ along C with the two additional

boundary loops labeled by a, a ∈ A, respectively. Then

HΣ =
⊕
`∈L(C)

HΣ′C(`(C),`(C)). (5.2)

The Gluing Axiom can be interpreted in two equivalent ways. The first, as the name

suggests, considers a surface (possibly disconnected) with at least two boundary components

labelled with the pair a and a of dual anyon types, and defines the Hilbert space HΣ corre-

sponding to the surface Σ that results when the two labelled boundary components are glued

together by taking the direct sum of the Hilbert spaces over fusion-consistent labelings. The

second interpretation decomposes the Hilbert space HΣ into a direct sum of the Hilbert spaces

corresponding to the cut surfaces labelled according to fusion-consistent labelings. In this way,

the Hilbert spaces associated to arbitrary surfaces can be understood through elementary sur-

faces since there always exists a DAP-decomposition which relates the arbitrary surface to

constituent elementary surfaces

76

Assuming that Σ is a connected surface, whether or not the cut surface Σ′C is a (dis)connected

surface depends on whether the loop C ⊂ Σ is (dis)connecting (as defined in Definition 4.1.6).

If C is a disconnecting curve then Σ′C = Σ1qΣ2 is the disjoint union of two connected surfaces.

Let Σ′C(a, a) = Σ1(a) q Σ2(a) be the surface where the two additional boundary components

resulting from cutting along C are labelled by a, a ∈ A, respectively. Then by virtue of TC being

a monoidal functor (Definition 3.4.3, Property 3.) it follows that HΣ′C(a,a) = HΣ1(a) ⊗ HΣ2(a),

and so Equation (5.2) becomes

HΣ =
⊕
`∈L(C)

HΣ1(`(C)) ⊗HΣ2(`(C)). (5.3)

In general, by considering surfaces Σ with multiple cuts performed along various loops,

the Hilbert space HΣ can be decomposed as a direct sum over a many-fold tensor product of

the Hilbert spaces associated to the constituent surfaces resulting from the various cuts. This

method will be exemplified in later sections when describing the topological Hilbert space asso-

ciated to the surface Σ by considering loops belonging to some canonical DAP-decomposition

of Σ.

5.1.3 Elementary surfaces

With this Flux Basis Axiom 5.1.1, the Hilbert space HΣ for various elementary surfaces can be

understood. These elementary surfaces have the unique property that a DAP-decomposition of

Σ(0,b) is specified by just the b loops homotopic to the b boundary components of Σ(0,b), and no

others are necessary. In fact, this essentially motivates the particular explicitness in Definition

5.1.3 of a fusion consistent labeling. In this sense, these surfaces are the primitive constituent

pieces that a general surface can be decomposed as in order to apply the Gluing Axiom 5.1.2.

For the disk Σ
(a)
(0,1) with anyon type a ∈ A associated to the single boundary curve, H

Σ
(a)
(0,1)

=

Cδ1,a . That is, H
Σ

(a)
(0,1)

= {0} is the zero-dimensional space if a 6= 1, and otherwise H
Σ

(a)
(0,1)

= C
since there is only one fusion consistent labeling of a DAP-decomposition of H

Σ
(a)
(0,1)

. That this

is demanded by Axiom 5.1.1 can be physically justified by a main property that the topological

Hilbert space HΣ should satisfy. That is, HΣ is supposed to represent the “vacuum sector” of

the theory in which no nontrivial anyons are present on the surface (with the exception of fixed

anyon types corresponding to boundary components). Therefore, no anyonic flux should be

detected when observing a local region of the surface by making a flux measurement around a

homotopically trivial loop around the local region. These trivial loops are precisely those loops

that yield a disk when cut out of the surface.

For the annulus H
Σ

(a1,a2)

(0,2)

with its two boundary components labelled by a1, a2 ∈ A, the

77

axiom implies that H
Σ

(a1,a2)

(0,2)

= Cδa1,a2 . Therefore, H
Σ

(a1,a2)

(0,2)

is one dimensional if the anyon

types a1 and a2 associated to the boundary loops are dual to each other, and is otherwise zero-

dimensional. The physical motivation for this is that the anyonic flux should be preserved on

a surface that corresponds to a cylinder, which is homeomorphic to the annulus. Equivalently,

this statement of the axiom can be justified by claiming that the anyonic flux associated to

homotopically equivalent loops should be equal. In the case of the annulus (cylinder), the two

loops that define the boundary components are always homotopic.

For the pant Σ
(a1,a2,a3)
(0,3) with boundary loops labelled as `(Ci) = ai ∈ A for i = 1, 2, 3, fusion

consistency demands that H
Σ

(a1,a2,a3)

(0,3)

= CN
a3
a1,a2 . Therefore, the space has positive dimension

if and only if the fusion coefficient satisfies Na3
a1,a2

6= 0. The physical justification for this is

given by the following property of measuring the anyonic charge or flux contained within a

region enclosing two anyons (two labeled boundary components). Suppose anyon with type a1

and a2 exist on some surface. The type of each of these anyons can be observed through a

flux measurement around each anyon. If a flux measurement were to be made around a region

containing both anyons, and no others, then the measured flux must be a type that results

from the fusion a1 ⊗ a2.

For later notational convenience introduce the following.

Definition 5.1.4. Let Va := H
Σ

(a)
(0,1)

, V b
a := H

Σ
(a,b)
(0,2)

and V c
a,b := H

Σ
(a,b,c)
(0,3)

be the Hilbert spaces

associated to the labeled disk, annulus, and pant, respectively.

As finite dimensional Hilbert spaces of the form Cn, which are classified up to isomorphism

by their dimension n, the Hilbert spaces associated to the elementary surfaces can be character-

ized simply by their dimensions. Thus, in summary, for these elementary surfaces fusion con-

sistency of labelings demands that for the disk dim(Va) = δa,1, for the annulus dim(V b
a) = δa,b,

and for the pant dim(V c
a,b) = N c

a,b.

5.1.4 The 4-punctured sphere

In general, genus-zero surfaces with nonempty boundary of the form Σ(0,n) will be referred to

as n-punctured spheres, since these surfaces are homeomorphic to the sphere with n disks or

“punctures” removed. In this way, the elementary surfaces correspond to the cases n = 1, 2, 3

for the disk, annulus, and pant, respectively. Describing the Hilbert spaces for the n-punctured

sphere for n ≥ 4 can be understood in terms of the Hilbert space associated to the 4-punctured

sphere, which can in turn be understood in terms of the Hilbert space for the 3-punctured

sphere (a pair of pants).

78

Consider now the 4-punctured sphere Σ := Σ(0,4), and let Σ(i, j, k, l) := Σ(0,4)(i, j, k, l) repre-

sent the case where the four boundary components are labeled by fixed anyon types i, j, k, l ∈ A.

Physically, this labeled surface corresponds to the scenario where anyons i, j, k ∈ A fuse is some

order to yield a final anyon type k ∈ A. The two relevant orders of fusion are (i ⊗ j) ⊗ k or

i⊗ (j ⊗ k). That is, in the former case anyons i, j ∈ A can fuse first resulting in some interme-

diary anyon type a ∈ A which then fuses with k ∈ A to result in final anyon type l; and in the

second case anyons j, k ∈ A first resulting in some intermediary anyon type a′ ∈ A followed by

fusion with anyon i to result in the final anyon type l. The Hilbert space HΣ(i,j,k,l) will then

represent the different possible ways such a fusion process can occur, and the number of possible

fusion outcomes will be equal to the dimension of the Hilbert space HΣ(i,j,k,l). It may be the

case that there is only one intermediary anyon type in which case dim(HΣ(i,j,k,l)) = 1, but the

more interesting case occurs when there may exist more than one way this fusion process may

occur so that dim(HΣ(i,j,k,l)) > 1. In this latter case, by virtue of having a higher dimension,

the Hilbert space HΣ(i,j,k,l) may be used to enact nontrivial quantum operations.

Returning to the mathematical axioms that determine the space HΣ(i,j,k,l), as described in

Section 4.1.2, there exists two single loop DAP-decompositions C = {C} and C ′ = {C ′} of

the surface Σ(i, j, k, l). A choice of one of these two particular DAP-decompositions effectively

determines one of the two ways to order the fusion of anyons i, j, k ∈ A to yield in a final

anyon type k ∈ A. DAP-decomposition C corresponds to the ordering (i ⊗ j) ⊗ k, and DAP-

decomposition C ′ corresponds to the order i ⊗ (j ⊗ k). Each of these DAP-decompositions

decompose Σ into a disconnected surface consisting of two pants Σ(0,3) q Σ(0,3). In regards

to labelings of the surfaces in the context of the Gluing Axiom, Equation (5.3) takes on two

different forms depending on the choice of DAP-decomposition C or C ′. In the case of choosing

DAP-decomposition C, this becomes

HΣ(i,j,k,l) =
⊕
`∈L(C)

V
`(C)
i,j ⊗ V l

`(C),k
, (5.4)

and fusion consistency demands that a labeling ` ∈ L(C) must label loop C as `(C) = a such

that both Na
i,j 6= 0 and N l

a,k 6= 0. Therefore, define the set

Q(i, j, k, l) := {a ∈ A | Na
i,j 6= 0 andN l

a,k 6= 0},

which represents the possible intermediary fusion outcomes. Then Equation (5.5) can be equiv-

alently expressed as

HΣ(i,j,k,l) =
⊕

a∈Q(i,j,k,l)

V a
i,j ⊗ V l

a,k. (5.5)

79

Alternatively, for the case of DAP-decomposition C ′ Equation (5.3) becomes

HΣ(i,j,k,l) =
⊕
`∈L(C′)

V l
i,`(C′)

⊗ V `(C′)
j,k

=
⊕

a′∈Q′(i,j,k,l)
V l
i,a′ ⊗ V

a′
j,k, (5.6)

where in this case

Q′(i, j, k, l) := {a′ ∈ A | N l
i,a′ 6= 0 andNa′

j,k 6= 0}

denotes the possible intermediary fusion outcomes when fusing j and k first.

Note that Equations (5.5) and (5.6) both describe the same Hilbert space HΣ(i,j,k,l) and

therefore must have the same dimension which implies that dim(HΣ(i,j,k,l)) = |Q(i, j, k, l)| =

|Q′(i, j, k, l)|. Let BC := {|a〉C}a∈Q(i,j,k,l) and BC′ := {|a′〉C′}a′∈Q′(i,j,k,l) be the two respective

basis of HΣ(i,j,k,l,). The matrix that represents the change-of basis between BC and BC′ is given

by the F -matrix that corresponds to the local F-move.

5.1.5 The torus

In this section, an explicit construction for the Hilbert spaces associated to the torus Σ(1,0) will

be provided. Like the 4-punctured sphere Σ(0,4), a single loop can suffice to yield a valid DAP-

decomposition. However, for the torus such a DAP-decomposition is even simpler in terms

of the resulting elementary surfaces, and therefore also simpler to describe since the fusion

consistency requirements are less stringent. The Hilbert spaces for more general higher genus

surfaces can then be understood in terms of these.

Let T := Σ(1,0) be the genus-1 torus, and recall from Section 4.1.2 that a DAP-decomposition

can be achieved with a single loop {C} = C, where C ⊂ T is either of the two nontrivial simple

loops. As described previously, cutting along C yields an annulus. Therefore, let V a
a := H

Σ
(a,a)
(0,2)

be the Hilbert space of the annulus with its two boundaries labelled by the pair (a, a). Then

the Gluing Axiom 5.2 states that

HT =
⊕
`∈L(C)

V
`(C)
`(C) ,

where in this case any labeling ` : {C} → A assigning `(C) = a ∈ A arbitrarily is fusion

consistent since a = a for all a ∈ A (that is, the dual of the dual of an anyon is the anyon

itself). Therefore, the direct sum can be indexed as

HT =
⊕
a∈A

V a
a , (5.7)

80

implying that dim(HΣ) = |A| since dim(V a
a) = 1 for all a ∈ A as determined in Section 5.1.3.

Thus, a basis for HT for a particular anyon model can simply be indexed by the different anyon

types a ∈ A. To exemplify this in the case of the Toric code, where A = Z2 × Z2 and |A| = 4,

it is seen that dim(HT) = 4. This finally offers the alternative means for determining the

dimension of the code space as promised in Section 2.1.9.

Note again that Equation (5.7) describes the Hilbert space HT for any DAP-decomposition

of T . Letting C := {C} and C ′ := {C ′} be the two standard DAP-decompositions of T associated

to the pair of conjugate simple loops, two different basis can be given:

BC := {|a〉C}a∈A and BC′ := {|a〉C′}a∈A. (5.8)

The two basis BC and BC′ can be related through a change-of-basis matrix. This matrix is given

by a representation of the local S-move (as discussed in Section 4.1.2) which relates the two

loops C and C ′ that define the DAP decompositions C and C ′. The S-move actually corresponds

to a particular homeomorphism s ∈ T of the mapping class group of the torus T whose action

on the loops is related by s(C) = C ′.

81

Chapter 6

Protected gates

The objective of this part will be to motivate and describe certain fault-tolerant operations,

called protected gates, for topological quantum computation. The following sections will pro-

vide high-level details, methods, and statements of some results that characterize protected

gates. Further details and proofs can then be found in the proceeding part which contains the

paper “Protected gates for topological quantum computation” where the results were originally

obtained.

6.1 Protected gates: definition and problem statement

Ideally, quantum computation takes place on some Hilbert space HN =
⊗N

i=1 Cd
i which consists

ofN qudits representing some d-level elementary quantum system described by the Hilbert space

Cd having dimension d. Although more general operations are often considered, a quantum

computation may be performed by applying some unitary operation U : HN → HN on the

system and then measuring the resulting quantum state after such an operation has been

performed to yield the outcome of the computation. In practice however, implementing the

unitary operation U may not be perfect in the sense that errors may occur during the process.

The nature of these errors can be both intrinsic and extrinsic—meaning the methods used to

implement the operation may themselves be faulty, and also some external noise may inflict

the system corrupting the encoded information. This motivates the study of quantum error

correction, which is ultimately concerned with methods for performing fault-tolerant quantum

computation and characterizing the computational power of such fault-tolerant operations.

In the context of quantum error correction, a suitable subspace called the code space Hcode ⊂
HN is chosen which effectively encodes some number M < N of logical qudits. The code space

Hcode is to then serve as the computational space where quantum information can be encoded.

82

It is important to note that the Hilbert space Hcode is not necessarily a physical subsystem

of the full quantum system that defines the global Hilbert space HN , but rather a vector

subspace of HN which is still defined with respect to all N physical qudits of the system. The

relevant property here is that the code space satisfies the isomorphism Hcode
∼=
⊗M

i=1 Cd
i , which

functions as an isometry that allows it to encode the M logical qudits using all N physical qudits

of the actual system. In this regard, quantum error correction can be thought of as encoding

information through the means of redundancy in such a way that performing operations on

HN enacts desired unitary operations (called logical operations) on the code space Hcode ⊂ HN .

These logical operations then serve as a means to perform fault-tolerant quantum computation.

Definition 6.1.1. Given a code space Hcode ⊂ HN , a logical operation or automorphism

of the code is a unitary U : HN → HN that preserves the code space: UHcode = Hcode. The

restriction of U onto the code space is denoted as [U] : Hcode → Hcode, and its action on Hcode

is referred to as the logical action of U .

The protected gates of interest here will be a type of logical operation acting on a code space

defined in the context of topological quantum computation. Recall that topological quantum

computation assumes the existence of a physical Hilbert space Hphys of a many-body quantum

system which realizes some topological phase of matter. Typically, the system is thought of as

existing on some surface Σ, and the computational space of interest which is to serve as the code

space is precisely the topological Hilbert space HΣ ⊂ Hphys of Chapter 5.1. Protected gates

are then defined to be certain types of logical operations on HΣ that also satisfy an additional

fault-tolerant property known as locality preservation.

To understand what is meant by a locality preserving operation, recall again the N -body

physical Hilbert space associated to some topological phase of matter on a surface Σ given as

Hphys =
⊗

i∈LN Cd
i . Here, LN ⊂ Σ is a triangulation of the surface Σ that identifies the locations

of the N qudits that comprise the physical system of Hphys. Operators X : Hphys → Hphys can

then act on all or some of the physical qudits of the triangulation LN on the surface. Now

define the support of an operator X, written supp(X), to be the locations of the qudits on

the surface Σ for which the operator X acts non-trivially. Although this notion of support is

an inherently discrete one since the physical system only consists of some finite number N of

qudits, it will be convenient to think of the support of an operator X as a region (or set of

regions) of the surface supp(X) ⊆ Σ. This can be done by simply considering sufficiently small

neighborhoods around the locations of the qudits on the surface. By doing this the relevant

concepts can be thought about in a more geometrical or topological nature.

Definition 6.1.2. An operator U : Hphys → Hphys is locality-preserving if for any operator

X : Hphys → Hphys having support supp(X) ⊂ Σ, the support of the operator UXU † satisfies

supp(UXU †) ⊂ R ⊂ Σ, where R is a constant-size neighborhood of sup(X).

83

Thus, a locality-preserving operator U is one which does not significantly change the locality

properties of an operator X. Such a property is desirable due to its fault-tolerant nature: if an

error represented by an operator X does inflict the system, then a locality-preserving operator

U will not spread or propagate the errors too drastically throughout the rest of the system.

Therefore, typical errors can remain correctable even after a locality-preserving operator U has

been applied to the system. Hence, if an error X has support within some locally defined region,

its support will remain contained within a sufficiently local region. This is especially relevant in

the context of topological quantum computation when assuming a local noise model, since the

code space HΣ can correct errors whose supports are contained within a topologically trivial

region (one that is homeomorphic to a disk).

Finally, with Definitions 6.1.1 and 6.1.2 at hand, a protected gate can be defined:

Definition 6.1.3. A unitary operator U acting on a topological code HΣ is called a protected

gate if U is both a logical operation and locality-preserving.

Recall that the topological Hilbert space HΣ is defined with respect to an anyon model

A arising from some underlying UTMC C. Fixing a choice of A and a surface Σ, the main

problem of interest is to characterize the group generated by all protected gates acting on HΣ:

UA,Σ := 〈[U] | U : HΣ → HΣ is a protected gate〉 . (6.1)

The group UA,Σ ⊆ U(HΣ) then determines the computational power of protected gates for

the particular anyon model and surface. Here, U(HΣ) denotes the set of all general unitary

operations defined on HΣ. The main result of this work done in “Protected gates for topological

quantum field theories” is that the group of protected gates UA,Σ is always finite regardless of the

choice of anyon model A and surface Σ. Thus, this result can be understood as a no-go theorem:

protected gates alone cannot realize universal quantum computation. This implies that in order

to achieve computational universality, alternative means for performing quantum computation

must be utilized which involve non-local information processing. Further details regarding the

main results of this work will be stated more explicitly in Section ?? after highlighting the

methods used to characterize protected gates.

6.2 Characterizing protected gates

One way to understand the action of an operator U : H → H on some Hilbert space H is to

understand its action on a set of basis vectors of H. Alternatively, given an appropriate algebra

of operators A acting on H, the operator U can be equivalently understood by characterizing

84

its action under the conjugation ρU(X) := UXU † for operators X ∈ A. This latter approach is

essentially the one that is taken to characterize protected gates in this study. In what follows,

attention is fixed on some choice of an anyon model A and surface Σ. The underlying TQFT

then determines a topological Hilbert space HΣ for which a protected gate will act on. Different

choices for A and/or Σ will generally lead to a different Hilbert spaces HΣ and sets of protected

gates. Regardless, most of the methods to be developed in order to characterize protected gates

are independent of such choices, and can therefore be applied to any such model.

6.2.1 String operators

The particular algebra of operators of interest in this study are operators that act on the

physical Hilbert space Hphys associated to some surface Σ that also preserve the topological

Hilbert space HΣ. To be specific, define this algebra to be

AΣ := {X : Hphys → Hphys | XHΣ = HΣ}. (6.2)

Since an operator X ∈ AΣ preserves the code space, it makes sense to speak of the logical

action [X] : HΣ → HΣ of the operator. Therefore, also define the corresponding algebra

[AΣ] := {[X] : HΣ → HΣ | X ∈ AΣ}. (6.3)

Ultimately, it is this algebra [AΣ] which will be used to characterize a protected gate [U]. How-

ever the algebra [AΣ] itself will be understood in terms of certain subalgebras A(C) ⊂ AΣ which

consist of operators whose supports are contained within a constant-diameter neighborhood of

a closed loop C ⊂ Σ on the surface. As it will be seen, only a finite number of distinct loops

C ⊂ Σ will be needed to define various subalgebras A(C), and these subalgebras considered

together will comprise the entire general algebra AΣ.

To define the subalgebras A(C), recall the Verlinde algebra VerA of Chapter 3.3 and defined

in Definition 3.3.1 in terms of some anyon model A. By construction, VerA is spanned by

elements {fa}a∈A satisfying Equation (3.4):

fafb =
∑
c∈A

N c
a,bfc,

Now fix any closed loop C ⊂ Σ, and consider the following representation of VerA:

VerA → AΣ

fa 7→ Fa(C).

85

Such a representation maps the basis elements fa ∈ VerA to operators Fa(C) : Hphys → Hphys

preserving the code space HΣ and also satisfying

Fa(C)Fb(C) =
∑
c∈A

N c
a,bFc(C).

An operator Fa(C) will be referred to as a string operator. The set of operators {Fa(C)}a∈A
all have support contained within some constant diameter neighborhood of the loop C ⊂ Σ.

Let A(C) be the algebra generated by the string operators for some fixed loop C ⊂ Σ. Such

an algebra A(C) can be defined for each loop C ⊂ Σ of the surface, and each one of these

carries a representation of VerA so that the two are isomorphic as algebras: A(C) ∼= VerA.

Moreover, only a finite collection of loops C are required so that the collection of respective

subalgebras A(C) taken together comprise the complete global algebra AΣ as made precise in

Proposition 7.2.2.

Physically, a string operator Fa(C) corresponds to the process in which an anyon and its

dual a, a ∈ A are created from the vacuum and one of the anyons traverses the loop C on the

surface to return and fuse with its pair back into the vacuum. In fact, these string operators

correspond to the main observables of the theory, which serve to potentially change the flux

associated to loops conjugate to C. As an example, these string operators are precisely the

ones introduced for the Toric code in Section 2.1.8 where they served as the logical operators

acting on HΣ.

For a fixed loop C ⊂ Σ, since the string operators {Fa(C)}a∈A ⊂ A(C) form a representa-

tion and serve as a basis of an algebra isomorphic to the Verlinde algebra VerA, idempotents

{Pa(C)}a∈A of the algebra A(C) can be defined analogously to those given for VerA as in Equa-

tion (3.6). In this way, the set {Pa(C)}a∈A are orthogonal projectors onto states of HΣ that

correspond to a loop C carrying flux of type a ∈ A. Given a DAP-decomposition C of Σ, the

set of projectors {Pa(C)}a∈A,C∈C serve as a complete set to define basis states of HΣ.

6.2.2 Constraints from fusion consistency

In order to characterize a protected gate U acting on HΣ, the conjugation action ρU(Pa(C)) :=

UPa(C)U † is studied for loops C ∈ C of a DAP-decomposition C. The key insight is that, for

a fixed loop C, the conjugation action ρU : [A(C)] → [A(C)] is an automorphism of [A(C)].

Since [A(C)] ∼= VerA, and VerA is a commutative C∗-algebra, an automorphism of A(C) must

yield an automorphism of VerΣ. It is a standard result (given in Section 7.3.1), that such

automorphisms are in one-to-one correspondence with the permutations on |A| elements, and

effectively permute the idempotents of VerA. Therefore, the conjugation action of a U must be

86

of the form

ρU : [A(C)]→ [A(C)]

[Pa(C)] 7→ [PπC(a)(C)],

where πC : A → A is a permutation πC ∈ S|A| (the symmetric group of size |A|). This is

proved more rigorously in Proposition 7.3.1, and is referred to as a local constraint on U since

it pertains to a single, yet arbitrary, loop C.

Consider now some DAP-decomposition C of Σ, which is used to define a basis {|`〉}`∈L(C)

of HΣ from the set of fusion consistent labellings L(C). The local constraint on a protected

gate U just described associates some permutation πC of anyon labels to each loop C ∈ C. Let

~π := (πC)C∈C be a family of such permutations. In Proposition 7.3.2, a global constraints on

U pertaining to all loops of C is derived which states that ~π defines a permutation of L(C) as

~π : L(C)→ L(C)
` 7→ ~π(`),

where the labeling ~π(`) : C → A is given as ~π(`)(C) := πC(`(C)). This proposition effectively

states that a protected gate U permutes the basis states of HΣ via the permutation ~π acting

on fusion-consistent labelings. More specifically, it states that the logical action of U on basis

states |`〉 ∈ HΣ is given as

[U]|`〉 = eiϕ(`)|~π(`)〉, (6.4)

where eiϕ(`) is a phase factor associated to the labeling ` ∈ L(C). In some ordered basis of HΣ,

this characterization can be equivalently expressed in matrix form as

U = ΠD, (6.5)

where U is the |L(C)|×|L(C)| matrix representing the permutation ~π and D is a diagonal matrix

consisting of the phases whose matrix coefficients are given as (D)`,`′ = eiϕ(`)δ`,`′ .

The characterization of a protected gate U expressed by Equation (6.5) merely states that

a protected gate U must be of the form U = ΠD. In general, it is not true that any such

matrix will yield a valid protected gate. The permutation Π is essentially constrained by

fusion consistency requirements arising both locally and globally in regards to some DAP-

decomposition of the surface, and would therefore be dependent on the particular anyon model

A under consideration and choice of surface Σ.

87

6.2.3 Constraints from basis changes

Thus far, there has been no theory developed which puts constraints on the permissible phase

factors eiϕ(`) of the diagonal matrix D. To arrive at a necessary constraints on the possible

phases eiϕ(`) that may define a valid protected gate U = ΠD, basis changes of the Hilbert

space HΣ must be considered. In particular, the relevant bases of interest will be those defined

through DAP-decompositions. In this regard, consider two DAP-decompositions C and C ′ and

the corresponding bases BC and BC′ of HΣ that they define. Now consider some protected gate,

U . Note that the form of a protected gate as described in Equation (6.5) must hold for any

basis defined by a DAP-decomposition. Thus, let U = ΠD and U′ = Π′D′ be representations

of a protected gate U in the basis BC and BC′ , respectively. Suppose V gives the change-of-basis

from BC to BC′ . Then a necessary condition is that

VU = U′V, (6.6)

which yields constraints on the possible permutations and phases associated to the protected

gate U .

Recall that different DAP-decompositions C and C ′ of Σ can be related by mapping class

group elements ϑ ∈ MCGΣ and/or by the various local F -moves. The underlying TQFT

provides unitary matrix representations of these operations via T (ϑ) for ϑ ∈ MCGΣ and the

corresponding F matrix of the anyon model A which act as unitary operations on HΣ. If

ϑ ∈ MCGΣ transforms the loops in C to the loops in C ′, then T (ϑ) will correspond to a change-

of-basis between BC and BC′ so that Equation (6.6) becomes

T (ϑ)U = U′T (ϑ). (6.7)

Likewise, in regards to basis changes induced by the F matrix, a neccesary constraint is

FU = U′F. (6.8)

To better understand these constraints, define the set ∆ to be all matrices acting on HΣ of the

form ΠD as in Equation (6.5) where Π is a permutation of fusion-consistent labellings and

D is a diagonal matrix of phases. Now consider some U ∈ ∆ and any ϑ ∈ MCGΣ. Say that

U intertwines with ϑ if T (ϑ)UT (ϑ)† ∈ ∆, and let ∆ϑ ⊂ ∆ be the set of all matrices in that

intertwine with ϑ. Now define the set

∆MCGΣ
:=

⋂
ϑ∈MCGΣ

∆ϑ,

88

which is just the set of matrices in ∆ that intertwine with all ϑ ∈ MCGΣ. Then if U is a valid

protected gate, it must be the case U ∈ ∆MCGΣ
. This is one of the main characterizations for

protected gates.

6.2.4 Additional constraints

In practice, to calculate permissible protected gates U for HΣ, one would use explicit matrix

representations of mapping class group transformation T (ϑ) and F-moves to yield algebraic

equations from the change-of-basis constraint given in Equation (6.6) to infer the form of

U ∈ ∆MCGΣ
. However, some additional methods and constraints can be used in certain settings.

For instance, Proposition 7.3.3 gives another constraint from a fusion-consistency requirement

when applied in the context of the Gluing Axiom 5.2. Recall that the gluing axiom gives an

isomorphism

HΣ =
⊕
`∈L(C)

HΣ′C(`(C),`(C)),

where HΣ′C(`(C),`(C)) is the subspace of HΣ corresponding to loop C ∈ C carrying flux of type

`(C) ∈ A. For a protected gate U corresponding to a family of permutations ~π of fusion

consistent labellings L(C), Proposition 7.3.3 claims that the local permutation πC associated

to loop C ∈ C must satisfy the isomorphism HΣ′C(`(C),`(C))
∼= HΣ′C(πC(`(C)),πC(`(C)))

of the corre-

sponding subspaces. This naturally implies that the dimensions of these two subspaces must be

equal, which can also readily serve as an immediate constraint when determining permissible

permutation πC for various loops C ∈ C.

For characterizing protected gates for HΣ(0,n)
where Σ(0,n) is the n-punctured sphere, Sec-

tion 7.5 develops techniques with a reductionist flavor that give general constraints for the

n-punctured sphere in terms of constraints established for the special case of the 4-punctured

sphere. To be more specific, Proposition 7.5.1 states that for a protected gate U of HΣ(0,n)
, the

corresponding phase factor eiϕ(`) depends only on “local” information regarding the labellings

`(C) when the loops C ∈ C are certain loops of a DAP-deomposition C of Σ(0,n). With this

at hand, various constraints on a protected gate for HΣ(0,n)
can be determined by classifying

permissible permutations and phases for protected gates acting on spaces HΣ(0,4)
with suitably

labeled boundaries.

So far so good! Congratulations and thanks for reading this far into this epic tome. Take

a moment and treat yourself in a manner of your choosing. Then let us, in its fullest form,

proceed on to the main results.

89

6.3 Main Results

Having developed methods to characterize protected gates on the space HΣ for an arbitrary

anyon model A and surface Σ, the main objective is to determine the nature of the group of

protected gates UA,Σ ⊆ C(HΣ) in order to acces the computational power of protected gates

for the model. The main result of this work given in Theorem 7.4.5 essentially states that the

group of protected gates UA,Σ is finite, and hence cannot be universal for quantum computation.

This implies the necessity of alternative means outside of locality-preserving logical operations

to achieve universality.

There is one important subtle technicality regarding the group UA,Σ in the statement of

Theorem 7.4.5. For a gate set to be computationally universal it must be dense in the unitary

group U(HΣ), which implies that the group generated by the gate set must be infinite. Strictly

speaking, as a set there may be infinitely many distinct protected gates in UA,Σ. However, in

certain situations (as argued in Theorem 7.4.5), two distinct protected gates U and U ′ may

yield a certain equivalent action. Such an equivalence is made formal through an equivalence

relation that is placed on protected gates as described in Sections 7.4.3 and 7.4.4. By consid-

ering protected gates up to this equivalence relation, the potentially infinite set UA,Σ becomes

partitioned into only a finite number of equivalence classes. It is then this finite number of

equivalence classes that limits interesting protected gates to be finite as well.

One other general result obtained applies to anyon models A for which the logical operations

T (ϑ) on some space HΣ given by mapping class group elements ϑ ∈ MCGA are computationally

universal. In this case, Corollary 7.4.2 states that there are no nontrivial protected gates onHΣ

(up to the equivalence relations just described on protected gates). Thus, there seems to be an

interesting trade off in the computational capabilities of a given model: the more computational

power a model can afford through transformations corresponding to MCGA, the less can be done

using protected gates. This is further exemplified when analyzing various models.

The rest of the study applies various methods developed to characterize protected gates

to a few paradigmatic anyon models. In particular, Section 7.6 gives special attention to the

Fibonacci and Ising models, which are non-abelian anyon models. This property makes the

models worth considering in the setting of the n-punctured sphere. In this scenario, Theo-

rem 7.6.1 states that there are non non-trivial protected gates for the Fibonacci anyon model.

This result follows from Corollary 7.4.2 since for certain instances of the Fibonacci model in

the setting of the n-punctures sphere, it is known that braiding of anyons in the model achieves

computational universality. For the Ising model on the n-punctured sphere, the corresponding

mapping class group is not universal, and so the other methods described must be used to

characterize protected gates. Theorem 7.6.2, concludes that in suitable settings the set of pro-

90

tected gates is isomorphic to the Pauli group on some number of encoded logical qubits. This

existence of some nontrivial gates in this case, contrasts with the nonexistence of protected

gates for the Fibonacci model.

One final general result obtained that characterizes protected gates applies to abelian anyon

models. The Toric code of Chapter 2 is one such example of an abelian anyon model. Recall that

in this case the logical operations resulting from various string operators Fa(C), for nontrivial

loops C ⊂ Σ on some closed nonzero-genus surface Σ, correspond to Pauli operators on the

encoded logical qubits of HΣ. In this context, it is worth considering the Clifford group, which

is traditionally defined as the group of unitary operators U such that UPU † is contained within

the Pauli group for all Pauli operators P . For the Toric code, also recall that string operators

Fa(C) associated to multiple loops C ⊂ Σ must be considered in order to generate the full

Pauli group. That is, when restricting to a single loop C ⊂ Σ, the group generated by string

operators {Fa(C)}a∈A is a proper subgroup of the full Pauli group. This motivates defining a

restricted Pauli group as given in Definition 7.7.6:

PauliΣ(C) :=
〈 {
λ[Fa(C)]

∣∣ λ ∈ 〈e2πi/N〉, a ∈ A
} 〉

,

In this way, PauliΣ(C) is just the group generated by string operators associated to some fixed

loop C ⊂ Σ (with possible phase factors).

Now consider a set G of loops on Σ that generate MCGΣ, and define the group (as in

Definition 7.7.7)

Clifford?Σ := {λ[U] | [U]PauliΣ(C)[U]−1 ⊂ PauliΣ(C) for all C ∈ G, λ ∈ 〈e2πi/N〉} .

This group consists of operators [U] which map each of the restricted Pauli groups PauliΣ(C)

(for C ∈ G) to themselves. In the case of the Toric code, Clifford?Σ is a proper subgroup of

the standard Clifford group. The main result here is the statement that protected gate U

must be contained in Clifford?Σ. Although this statement was exemplified with the Toric Code,

an arbitrary anyon model A can be considered and analogous groups PauliΣ(C) and Clifford?Σ
can be defined in terms of the string operators Fa(C) for the particular anyon model A. The

general result regarding protected gates U for a general abelian model holds: [U] ∈ Clifford?Σ.

A summary of these results is given in Table 7.1.

91

Chapter 7

“Protected gates for topological

quantum field theories”

Authors:

Michael E. Beverland1, Oliver Buerschaper2, Robert Koenig3, Fernando Pastawski1, John

Preskill1, Sumit Sijher4

Afilliations:

1. Institute for Quantum Information & Matter, California Institute of Technology, Pasadena

CA 91125, USA

2. Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin,

Germany

3. IAS & Zentrum Mathematik, Technische Universität München, 85748 Garching, Germany

4. Institute for Quantum Computing & Department of Applied Mathematics, University of

Waterloo, Waterloo, ON N2L 3G1, Canada

92

Abstract:

We give restrictions on locality-preserving unitary automorphisms U , which are protected gates,

for topologically ordered systems in 2D. For generic anyon models, we show that such unitaries

only generate a finite group, and hence do not provide universality. For non-abelian models, we

find that such automorphisms are very limited: for example, there is no non-trivial protected

gate for Fibonacci anyons on the torus or theM -punctured sphere. More generally, systems with

computationally universal braiding have no such gates. For Ising anyons on the M -punctured

sphere, protected gates are elements of the Pauli group. These results are derived by relating

such automorphisms to certain symmetries of the underlying anyon model: protected gates

realize automorphisms of the Verlinde algebra. We additionally use the compatibility with

basis changes arising from local recoupling and the mapping class group to characterize the

logical action.

7.1 Introduction

In order to reliably compute, it is necessary to protect information against noise. For quantum

computations, this is particularly challenging because noise in the form of decoherence threatens

the very quantum nature of the process. Adding redundancy by encoding information into a

quantum error-correcting code is a natural, conceptually appealing approach towards building

noise-resilient scalable computers based on imperfect hardware.

Among the known quantum error-correcting codes, the class of so-called topological codes

stands out. Examples in 2D include the toric code and quantum double models [28], the surface

codes [9], the 2D color codes [5], variants of these codes [4, 19], and the Levin-Wen model [34]. In

3D, known examples are Bombin and Martin-Delgado’s 3D color code [7], as well as Haah’s [23]

and Michnicki’s [37] models. These codes are attractive for a number of reasons: their code

space is topologically protected, meaning that small local deformations or locally acting noise

do not affect encoded information. The degree of this protection (measured in information-

theoretic notions in terms of code distance, and manifesting itself in physical properties such

as gap stability) scales with the system size: in other words, robustness essentially reduces

to the question of scalability. Finally, the code space of a topological code is the degenerate

ground space of a geometrically local Hamiltonian: this means that syndrome information can

be extracted by local measurements, an important feature for actual realizations. Furthermore,

this implies that a topological code is essentially a phase of a many-body system and can

be characterized in terms of its particle content, their statistics, and the quantum field theory

emerging in the continuum limit. In particular, the quantum field theory provides a description

of such systems which captures all universal features, independently of microscopic details.

93

While quantum error-correcting codes can provide the necessary protection of information

against noise, a further requirement for quantum computation is the ability to execute gates

in a robust manner. Again, topological codes stand out: they usually provide certain intrinsic

mechanisms for executing gates in a robust way. More precisely, there are sequences of local

code deformations, under which the information stays encoded in a code with macroscopic

distance, but undergoes some unitary transformation. In principle, this provides a robust

implementation of computations by sequences of local, and hence, potentially experimentally

realizable actions. In the case of 2D-topological codes described by topological quantum field

theories, this corresponds to adiabatic movement (braiding) of quasi-particle excitations (also

called anyons).

Unfortunately, as is well known, braiding (by which we mean the movement either around

each other or more generally around non-trivial loops) of anyons does not always give rise to

a universal gate set. Rather, the set of gates is model-dependent: braiding of D(Z2)-anyons

generates only global phases on the sphere, and elements of the Pauli group on non-zero genus

surfaces. Braiding of Ising anyons gives Clifford gates, whereas braiding of Fibonacci anyons

generates a dense subgroup of the set of unitaries (and is therefore universal within suitable

subspaces of the code space). In other words, braiding alone, without additional tricks such

as magic state distillation [10] (which has a large overhead [18]), is not in general sufficient to

provide universal fault-tolerant computation; unfortunately, the known systems with universal

braiding behavior are of a rather complex nature, requiring e.g., 12-body interactions among

spins [34]. Even ignoring the question of universality, the use of braiding has some potentially

significant drawbacks: in general (in particular for non-abelian anyons), it requires an amount

of time which scales with the system size (or code distance) to execute a single logical gate.

(Mathematically, this is reflected by the fact that string-operators cannot be implemented

in finite depth.) This implies that error-correction steps will be necessary even during the

execution of such a gate, which may pose an additional technological challenge, for example, if

the intermediate topologies are different.

Given the limitations of braiding, it is natural to look for other mechanisms for implementing

robust gates in topological codes. For stabilizer quantum codes, the notion of transversal gates

has traditionally been used almost synonymously with fault-tolerant gates: their key feature is

the fact that they do not propagate physical errors. More generally, for topological stabilizer

codes, we can consider logical gates implementable by constant-depth quantum circuits as a

proxy for robust gates: they can increase the weight of a physical error only by a constant, and

are thus sufficiently robust when combined with suitable error-correction gadgets. Note that

finite-depth local circuits represent a much broader class than transversal gates.

Gate restrictions on transversal, as well as constant-depth local circuits have been obtained

94

for stabilizer and more general codes. Eastin and Knill [15] argued that for any code protected

against local errors, transversal gates can only generate a finite group and therefore do not

provide universality. Bravyi and König [11] consider the group of logical gates that may be

implemented by such constant-depth local circuits on geometrically local topological stabilizer

codes. They found that such gates are contained in PD, the D-th level of the Clifford hierarchy,

where D is the spatial dimension in which the stabilizer code is geometrically local.

In this work, we characterize the set of gates implementable by a locality-preserving unitary

in a system described by a 2D TQFT. By doing so, we both specialize and generalize the results

of [11]: we restrict our attention to dimension 2, but go beyond the set of local stabilizer codes

in two significant ways.

First, we obtain statements which are independent of the particular realization (e.g., the

toric code model) but are instead phrased in terms of the TQFT (i.e., the anyon model describ-

ing the system). In this way, we obtain a characterization which holds for a gapped phase of

matter, rather than just for a particular code representing that phase. On a conceptual level,

this is similar in spirit to the work of [16], where statements on the computational power for

measurement-based quantum computation were obtained that hold throughout a certain phase.

Here we use the term phase loosely – we say that two systems are in the same phase if they

have the same particle content. To avoid having to make any direct reference to an underlying

lattice model, we replace the notion of a constant-depth local circuit by the more general notion

of a locality-preserving unitary: this is a unitary operation which maps local operators to local

ones.

Second, our results and techniques also apply to non-abelian anyon models (whereas sta-

bilizer codes only realize certain abelian models). In particular, we obtain statements that

can be applied, e.g., to the Levin-Wen models [34], as well as chiral phases. Our approach

relates locality-preserving unitaries to certain symmetries of the underlying anyon model; this

imposes constraints on the allowed operations. We consider the Fibonacci and Ising models

as paradigmatic examples and find that there are no non-trivial gates in the former, and only

Pauli operations in the latter case. Our focus on these anyons models is for concreteness only,

but our methods and conclusions apply more generally. Some of our more general conclusions

are that

(i) protected gates generically (see Section 7.4.5 discussing the necessity of certain technical

assumptions) form only a finite group and

(ii) when the representation of the mapping class group is computationally universal (i.e.,

forms a dense subgroup), then there are no non-trivial protected gates.

95

Model mapping class group locality-preserving
contained in unitaries contained in

D(Z2) Pauli group restricted Clifford group
abelian anyon model generalized Pauli group generalized Clifford group
Fibonacci model universal global phase (trivial)
general anyon model universal global phase (trivial)
Ising model Clifford group Pauli group
generic anyon model model-dependent finite group

Table 7.1: We study different anyon models (first column). The second column describes the
properties of the unitary group generated by the (projective) representation of the mapping
class group (see Section 7.2.6) – this corresponds to braiding for punctured spheres. The third
column characterizes the set of protected gates. Our results suggest a trade-off between the
computational power of the mapping class group representation and that of gates implementable
by locality-preserving unitaries.

Our observations are summarized in Table 7.1.

Finally, let us comment on limitations, as well as open problems arising from our work.

The first and most obvious one is the dimensionality of the systems under consideration: our

methods apply only to 2D TQFTs. The mathematics of higher-dimensional TQFTs is less

developed, and currently an active research area (see e.g., [32]). While the techniques of [11],

which have recently been significantly strengthened by Pastawski and Yoshida [39], also apply

to higher-dimensional codes (such as Haah’s), they are restricted to the stabilizer formalism

(but importantly, [39] also obtain statements for subsystem codes). Obtaining non-abelian

analogues of our results in higher dimensions appears to be a challenging research problem. A

full characterization of the case D = 3 is particularly desirable from a technological viewpoint.

Even in 2D, there are obvious limitations of our results: the systems we consider are es-

sentially “homogenous” lattices with anyonic excitations in the bulk. We are not considering

defect lines, or condensation of anyons at boundaries; for example, our discussion excludes the

quantum double models constructed in [3], which have domain walls constructed from conden-

sation at boundaries using the folding trick. Again, we expect that obtaining statements on

protected gates for these models requires additional technology in the form of more refined

categorical notions, as discussed by Kitaev and Kong [30]. Also, although we identify possible

locality preserving logical unitaries, our arguments do not show that these can necessarily be

realized, either in general TQFTs or in specific models that realize TQFTs. Lastly, our work

is based on the (physically motivated) assumption that a TQFT description is possible and

the underlying data is given. For a concrete lattice model of interacting spins, the problem of

identifying this description (or associated invariants [27, 35, 24]), as well as constructing the

96

relevant string-operators (as has been done for quantum double models [28, 6] as well as the

Levin-Wen models [34]), is a problem in its own right.

Rough statement of problem

Our results concern families of systems defined on any 2-dimensional orientable manifold (sur-

face) Σ. Typically, such a family is defined in terms of some local physical degrees of free-

dom (spins) associated with sites of a lattice embedded in Σ. We refer to the joint Hilbert

space Hphys,Σ of these spins as the ‘physical’ Hilbert space. The Hamiltonian HΣ on Hphys,Σ is

local, i.e., it consists only of interactions between “neighbors” within constant-diameter regions

on the lattice. More generally, assuming a suitable metric on Σ is chosen, we may define locality

in terms of the distance measure on Σ.

We are interested in the ground space HΣ of HΣ. For a topologically ordered system, this

ground space is degenerate with dimension growing exponentially with the genus of Σ, and is

therefore suitable for storing and manipulating quantum information. We will give a detailed

description of this space below (see Section 7.2); it has a preferred basis consisting of labelings

associated with some set A. This is a finite set characterizing all distinct types of anyonic

quasiparticle excitations of HΣ in the relevant low energy sector of Hphys,Σ.

Importantly, the form of HΣ is independent of the microscopic details (in the definition of

HΣ): it is fully determined by the associated TQFT. In mathematical terms, it can be described

in terms of the data of a modular tensor category, which also describes fusion, braiding and

twists of the anyons. We will refer to HΣ as the TQFT Hilbert space.

The significance of HΣ is that it is protected: local observables can not distinguish between

states belonging to HΣ. This implies that HΣ is an error-correcting code with the property

that local regions are correctable: any operator supported in a small region which preserves the

code space must act trivially on it (otherwise it could be used to distinguish between ground

states).

To compute fault-tolerantly, one would like to operate on information encoded in the code

space HΣ by acting with a unitary U : Hphys,Σ → Hphys,Σ on the physical degrees of freedom.

There are a number of features that are desirable for such a unitary to be useful – physical

realizability being an obvious one. For fault-tolerance, two conditions are particularly natural:

(i) the unitary U should preserve the code space, UHΣ = HΣ so that the information stays

encoded. We call a unitary U with this property an automorphism of the code and denote

its restriction to HΣ by [U] : HΣ → HΣ. The action [U] defines the logical operation or

gate that U realizes.

97

(ii) typical errors should remain correctable under the application of the unitary U . In the

context of topological codes, which correct sufficiently local errors, and where a local error

model is usually assumed, this condition is satisfied if U does not significantly change the

locality properties of an operator: if an operator X has support on a region R ⊂ Σ, then

the support of UXU † is contained within a constant-size neighborhood of R. We call such

a unitary a locality-preserving unitary.

We call a unitary U satisfying (i) and (ii) a locality-preserving unitary automorphism of the

code (or simply a topologically protected gate). Our goal is to characterize the set of logical

operations that have the form [U] for some locality-preserving1 unitary automorphism U . For

example, if HΣ is a topologically ordered subspace of Hphys,Σ, the Hilbert space of a spin

lattice, then (ii) is satisfied if U is a constant-depth local circuit. Another important example

is the constant-time evolution U = T exp[−i
∫
dtH(t)] of a system through a bounded-strength

geometrically-local Hamiltonian H(t). Here, Lieb-Robinson bounds [36, 8] provide quantitative

statements on how the resulting unitary may be exponentially well approximated by a locality-

preserving unitary. This is relevant since it describes the time evolution of a physical system

and can also be used to model adiabatic transformations of the Hamiltonian [12].

From a computational point of view, the group

〈{[U] | U locality-preserving unitary automorphism}〉

generated by such gates is of particular interest: it determines the computational power of

gates that are implementable fault-tolerantly with locality preserving automorphisms.

Outline

In Section 7.2, we provide a brief introduction to the relevant concepts of TQFTs. We then

derive our main results on the characterization of protected gates in Section 7.3. Further

restrictions on the allowed protected gates are provided in Sections 7.4 and 7.5. In Section 7.6,

we apply our results to particular models, deriving in particular our characterizations for Ising

and Fibonacci anyons. Finally, in Section 7.7 we use additional properties of abelian models to

show that their protected gates must be contained within a proper subgroup of the generalized

Clifford group, which is similar to the result of [11], but goes further.

1As a side remark, we mention that our terminology is chosen with spin lattices in mind. However, the
notion of locality-preservation can be relaxed. As will become obvious below, our results apply more generally
to the set of homology-preserving automorphisms U . The latter can be defined as follows: if the support of an
operator X is contained in a region R ⊂ Σ which deformation retracts to a closed curve C, then the support
of UXU† must be contained in a region R′ ⊂ Σ which deformation retracts to a curve C ′ in the same homology
class as C. For example, for a translation-invariant system, translating by a possibly extensive amount realizes
such a homology-preserving (but not locality-preserving) automorphism.

98

7.2 TQFTs: background

In this section, we provide the necessary background on topological quantum field theories

(TQFTs). Our discussion will be rather brief; for a more detailed discussion of topological

quantum computation and anyons, we refer to [40]. Following Witten’s work [44], TQFTs have

been axiomatized by Atiyah [1] based on Segal’s work [41] on conformal field theories. Moore

and Seiberg [38] derived the relations satisfied by the basic algebraic data of such theories (or

more precisely, a modular functor). Here we borrow some of the terminology developed in full

generality by Walker [26] (see also [21]). For a thorough treatment of the category-theoretic

concepts, we recommend the appendix of [29].

Our focus is on the Hilbert spaceHΣ spanned by the vacuum states of a TQFT defined on the

surface Σ. Recall that this is generally a subspace HΣ ⊂ Hphys,Σ of a Hilbert space of physical

degrees of freedom. The TQFT is specified by a finite set of anyon labels A = {1, a, b, c . . . },
their fusion rules (described using a non-negative integer N c

ab for each triple of anyons a, b, c,

called fusion multiplicities), along with S, F , R and T matrices (complex valued matrices with

columns and rows indexed by anyon labels). If the TQFT arises from taking continuous limits

of a local Hamiltonian model such as the toric code, the anyons are simply the elementary

excitations of the model, and the fusion rules and matrices can be understood in terms of

creating, combining, moving and annihilating anyons in the surface. The anyon set must

contain a trivial particle 1 ∈ A such that when combined with any particle, the latter remains

unchanged N c
a1 = N c

1a = δca, and each particle a ∈ A must have an antiparticle a ∈ A such

that N1
aa 6= 0. We will restrict our attention to models where N c

ab ∈ {0, 1} for all a, b, c ∈ A for

simplicity (our results generalize with only minor modifications).

7.2.1 String-like operators and relations

We are interested in the algebra AΣ of operators X : Hphys,Σ → Hphys,Σ which preserve the sub-

space HΣ. We call such an element X ∈ AΣ an automorphism and denote by [X] : HΣ → HΣ

the restriction to HΣ. We call X a representative (or realization) of [X]. Operators of the

form [X], where X ∈ AΣ, define an associative ∗-algebra [AΣ] with unit and multiplica-

tion [X][Y] = [XY]. The unit element in [AΣ] is represented by the identity operator id

on the whole space Hphys,Σ.

Our constraints on protected gates are derived by studying how they transform certain

operators acting on Hphys,Σ (see Fig. 7.1). To define the latter, fix a simple closed curve C :

[0, 1] → Σ on the surface and an “anyon label” a ∈ A. (The set of labels A is determined by

the underlying model.) Then there is a “string-operator” Fa(C) acting on Hphys,Σ, supported

99

Figure 7.1: Closed 2-manifolds are characterized by their genus g. The figure illustrates the
3-handled torus Σg corresponding to g = 3. A canonical set of 3g−1 generators of the mapping
class group of the surface Σg can be specified in terms of a set G = {Cj}3g−1

j=1 of loops (each
associated with a Dehn twist). Dragging an anyon a around such loop C : [0, 1] → Σg and
fusing to the vacuum implements an undetectable operator Fa(C); homologically non-trivial
loops realize logical operations. The full algebra of logical operators is generated by the set of
operators {Fa(C)}a∈A,C∈G. However, these operators are generally not independent.

in a constant-diameter neighborhood of C. It corresponds to the process of creating a particle-

antiparticle-pair (a, a), moving a along C, and subsequently fusing to the vacuum. The last

step in this process involves projection onto the ground space, which is not trivial in general:

the operator Fa(C) can involve post-selection, in which case it is a non-unitary element of AΣ.

The operators {Fa(C)}a∈A form a closed subalgebra A(C) ⊂ AΣ: they preserve the ground

space and satisfy

Fa(C)Fb(C) =
∑
n

Nn
abFn(C) , Fa(C)† = Fa(C) and F1(C) = idHphys

(7.1)

for the fusion multiplicities Nn
ab (see Section 7.2.2). In addition, reversing the direction of C,

i.e., considering C−1(t) ≡ C(1−t), is equivalent to exchanging the particle with its antiparticle,

i.e.,

Fa(C
−1) = Fa(C) . (7.2)

Here a 7→ a is an involution on the set of particle labels A, again defined by the underlying

model. Properties (7.1) and (7.2) of the string-operators can be shown in the diagrammatic

formalism mentioned below (but this is not needed here; we will use them as axioms).

We denote the restriction of Fa(C) to the code space HΣ by [Fa(C)]. Note that, while

[Fa(C)] is unitary in abelian anyon models, this is not the case in general.

Example 7.2.1 (D(G) and Kitaev’s toric code). As an example, consider a model described

by the quantum double D(G) of a finite group G, for which Kitaev has constructed a lattice

model [28]. In the case where G is abelian, we have D(G) ∼= G × G, i.e., the particles and

fusion rules are simply given by the product group A = G×G.

100

Specializing to G = Z2 gives the particles commonly denoted by 1 = (0, 0) (vacuum), m =

(1, 0), e = (0, 1) and ε = m × e = (1, 1). For the toric code model, the associated ribbon

operators are

F1(C) = id Fe(C) = X̄(C) Fm(C) = Z̄(C) Fε(C) = X̄(C)Z̄(C) ,

where X̄(C) = ⊗j∈∂+CXj and Z̄(C) = ⊗j∈∂−CZj are appropriate tensor products of Pauli-X

and Pauli-Z-operators along C (as specified in [28]).

Specializing to G = ZN , with ωN = exp(2πi/N) and generalized N-dit Pauli operators X

and Z (and their inverses), defined by their action

X|j〉 = |j + 1 mod N〉 Z|j〉 = ωjN |j〉

on computational basis states {|j〉}j=0,...,N−1, we can consider such a model (the ZN -toric code)

with generalized ribbon operators. Here

F(a,a′)(C) = X̄(C)aZ̄(C)a
′
,

where X̄(C) is a tensor product of Pauli-X and its inverse depending on the orientation of the

underlying lattice, and similarly for Z̄(C).

It is easy to check that operators associated with the same loop commute, i.e.,

[F(a,a′)(C), F(b,b′)(C)] = 0 , (7.3)

and since ZaXb = ωabNX
bZa, we get the commutation relation

F(a,a′)(C1)F(b,b′)(C2) = ωab
′−a′b

N F(b,b′)(C2)F(a,a′)(C1) (7.4)

for any two strings C1, C2 intersecting once.

Returning to the general case, the algebra of string operators does not necessarily satisfy

relations as simple as (7.3) and (7.4). Nevertheless, some essential features hold under very

general assumptions. We express these as postulates; they can be seen as a subset of the

isotopy-invariant calculus of labeled ribbon graphs associated with the underlying category

(see e.g., [20] for a discussion of the latter) and are assumed to be valid for all anyon models

considered in this work.

Postulate 7.2.2 (Completeness of string-operators). Consider an operator U with support

in some region R which preserves the code space HΣ. Then its action on the code space is

101

Fa(C)

R
Fa(C′)

R

≡

Figure 7.2: The content of Postulate 7.2.3: We can deform a line without changing the logical
action of the string-operator.

equivalent to that of a linear combination of products of operators of the form Fa(C), for a

closed loop C : [0, 1]→ R which is supported in R. That is, we have

[U] =
∑
j

βj
∏
k

[Faj,k(Cj,k)] .

This postulate essentially means that, as far as the logical action is concerned, we may

think of [U] as a linear combination of products of closed-loop string operators. Such prod-

ucts Fam(Cm) · · ·Fa1(C1) can conveniently be thought of as ‘labeled’ loop gases embedded in

the three-manifold Σ × [0, 1], where, for some 0 < t1 < · · · < tm < 1, the operator Faj(Cj) is

applied at ‘time’ tj (and hence a labeled loop is embedded in the slice Σ × {tj}). Diagram-

matically, one represents such a product by the projection onto Σ with crossings representing

temporal order, as in

Fa2(C2)Fa1(C1) =

Fa2(C2) Fa1(C1)

(7.5)

One may manipulate every term in a linear combination representing U without changing the

logical action according to certain local ‘moves’; in particular, the order of application of these

moves is irrelevant (a fact formalized by MacLane’s theorem [33]).

For our purposes, we only require the following ‘local’ moves, which relate two products U

and U ′ of string-operators given by diagrams such as (7.5). More generally, they may be applied

term-by-term to any linear combination if each term contains the same local sub-diagram.

Postulate 7.2.3 (String deformation (see Fig. 7.2)). Suppose operators U,U ′ ∈ AΣ are identical

on the complement of some region R. Assume further that inside R, both U and U ′ contain a

single string describing the dragging of the same anyon type along a path C and C ′, respectively,

where C ′ can be locally deformed into C. Then the logical action of U and U ′ must be equivalent:

102

[U] = eiθ[U ′] for some unimportant phase eiθ (Fig. 7.2.3).

In particular, this postulate implies that if C and C ′ are two closed homologically equivalent

loops and a is an arbitrary anyon label, then the operators Fa(C) and Fa(C
′) realized by

“dragging” the specified anyon along C and C ′ respectively have equivalent logical action on

the code space, [Fa(C)] = eiθ[Fa(C
′)].

The next postulate involves local operators, and essentially states that the space HΣ is

a quantum error-correcting code protecting against local errors. While we may state it in a

form only referring to local operators, we will find it more intuitive to combine it with the

deformation postulate: this extends correctability from small regions to contractible loops (i.e.,

loops that are homotopic to a point).

Postulate 7.2.4 (Error correction postulate). If C is a contractible loop, then for each a ∈ A,

the operator Fa(C) has trivial action on the space HΣ up to a global constant da, that is,

[Fa(C)] = daidHΣ
. (7.6)

This postulate essentially means that we may remove certain closed loops from diagrams such

as (7.5).

An immediate consequence of these postulates is the following statement.

Proposition 7.2.1 (Local completeness of string operators). Consider an operator O ∈ AΣ

whose support is contained within a constant-diameter neighborhood of a simple loop C. Then

[O] = [X̃] for some X̃ ∈ A(C). In other words, the logical action of O is identical to that of a

linear combination of string-operators Fa(C).

This proposition can be seen as a consequence of the completeness condition for strings

(Postulate 7.2.2), the string deformation Postulate 7.2.3 and (7.1). A similar argument leads

us to the following conclusion.

Proposition 7.2.2 (Global completeness of few homology classes). The full logical algebra

[AΣ] is generated by the logical algebras [A(C)] associated with a finite number of inequivalent

non-contractible simple loops C.

Proof. That the algebra [AΣ] is finite-dimensional can be seen from the finite dimensionality

of the code space HΣ. By Postulate 7.2.2, the algebra [AΣ] is generated by {A(C)}C . Let us

start from a trivial algebra and build up [AΣ] from a finite number of loops. As long as the

algebra is not complete, we may include additional loops C such that [A(C)] is not included in

the partially generated algebra. Such a loop C must be inequivalent to the previously included

103

loops due to Postulate 7.2.3. After a number of steps no greater than the square of the ground

space dimension, we will have constructed the complete algebra.

Therefore there exists a finite, minimal set of loops which is sufficient to span [AΣ].

7.2.2 The Verlinde algebra

It is convenient to formally introduce some algebraic data defined by the underlying anyon

model. We will return to the discussion of string-operators in the next section and relate them

to this algebraic language.

As before, let A be the set of particle labels (generally a finite set), and let a 7→ a be the

involution giving the antiparticle associated with particle a. The fusion rules of the model are

encoded in integers N c
ab, which are called fusion multiplicites. We will restrict our attention

to models where N c
ab ∈ {0, 1} for all a, b, c ∈ A for simplicity (our results generalize with only

minor modifications).

The Verlinde algebra Ver is the commutative associative ∗-algebra spanned by elements {fa}a∈A
satisfying the relations

fafb =
∑
c

N c
abfc and f †a = fa . (7.7)

Note that f1 = id is the identity element because the numbers {N c
ab} satisfy N c

a1 = N c
1a = δac.

If braiding is defined, we have N c
ab = N c

ba, and Ver is a finite-dimensional commutative C∗-

algebra. Therefore Ver ∼= C⊕(dimVer) is a direct sum of copies of C. The fusion multiplicity

N c
ab may also be written in terms of the modular S-matrix, whose matrix elements are, in the

diagrammatic calculus, given by the Hopf link and the total quantum dimension D by

Sab =
1

D a b .

We consider the case where the S-matrix is unitary: here the isomorphism Ver ∼= C⊕(dimVer)

can be made explicit thanks to the Verlinde formula [43]

N c
ab =

∑
x

SaxSbxScx
S1x

. (7.8)

(Note that S1x = dx/D where D =
√∑

a d
2
a.) For this purpose, we define the elements

pa = S1a

∑
b

Sbafb for all a ∈ A . (7.9)

104

This relation can be inverted by making use of unitarity of the S-matrix

fb =
∑
a

Sba
S1a

pa for all a ∈ A . (7.10)

The main statement we use is the following:

Proposition 7.2.3 (Primitive idempotents). The elements {pa}a∈A are the unique complete

set of orthogonal minimal idempotents spanning the Verlinde algebra,

Ver =
⊕
a

Cpa . (7.11)

Furthermore, they satisfy ∑
a

pa = f1 = id . (7.12)

Proof. That {pa}a∈A span the algebra Ver is evident from the fact that {fa}a∈A span the algebra,

and each fa can be written in terms of {pa}a∈A via Eq. (7.10). To show they are orthogonal

idempotents papb = δa,bpa, first note that

papb = S1aS1b

∑
g,h

SgaShbfgfh

= S1aS1b

∑
g,h,j

SgaShbN
j
ghfj

= S1aS1b

∑
g,h,j,x

SgaShb
SgxShxSx

S1x

fj

where we used the Verlinde formula (7.8) in the second step. With the unitarity of the S-matrix,

we then obtain

papb = S1aS1b

∑
j,x

δa,xδb,x
Sx
S1x

fj

= δa,bS
2
1a

∑
j

Sa
S1a

fj

= δa,bS1a

∑
j

Safj .

It follows that papb = δa,bpa from the symmetry property Sa = Sja, see e.g., [29, Eq. (224)].

It remains to verify that the set of projectors is unique. Consider qb =
∑

a αbapa for some

105

constants αba ∈ C, such that qaqb = δa,bqa. This implies

qaqb =
∑
dc

αacαbdpcpd

=
∑
c

αacαbcpc = δa,b
∑
c

αacpc,

which implies αacαbc = δa,bαac for all a, c ∈ A by linear independence of the pa’s. This implies

αac = 0, 1, and can only form a complete basis for the algebra Ver if αac is a permutation

matrix, implying {qa}a∈A ≡ {pa}a∈A.

As explained in the next section, the string operators of anyons around a loop C give rise to

a representation of the Verlinde algebra. While the projections (introduced in Eq. (7.14) below)

associated with the idempotents are not a basis for the logical algebra [AΣ], they are a basis of

a subalgebra [AΣ(C)] isomorphic to the Verlinde algebra. This algebra must be respected by

the locality-preserving unitaries, and this is best understood in terms of the idempotents. This

is the origin of the non-trivial constraints we obtain on the realizable logical operators.

7.2.3 Bases of the Hilbert space HΣ

Eq. (7.1) shows that the collection of operators {[Fa(C)]}a∈A form a representation of the

Verlinde (fusion) algebra Ver. By linear independence of operators {[Pa(C)]}a∈A, we see that

the representation is faithful, such that the logical loop algebra is isomorphic to the Verlinde

algebra

[A(C)] ∼= Ver. (7.13)

This will be central in the following development. Considering the primitive idempotents (7.9),

it is natural to consider the corresponding operators in this representation, that is, we set

[Pa(C)] = S1a

∑
b

Sba[Fb(C)] . (7.14)

Since the set {[Fa(C)]}a∈A forms a representation of the Verlinde algebra, the {[Pa(C)]}a∈A are

orthogonal projectors as a consequence of Proposition 7.2.3. The inverse relation to (7.14) is

given by

[Fb(C)] =
∑
a

Sba
S1a

[Pa(C)] . (7.15)

106

C2

C1 C3

Figure 7.3: A simple DAP decomposition of a torus utilizing a disc enclosed by C1, an annulus
enclosed by {C2, C3} and a pair of pants enclosed by {C1, C2, C3}. This decomposition is not
minimal in that the same manifold could have been decomposed using a single loop.

While the projectors [Pa(C)] associated with a loop do not span the full logical algebra, they

do span the local logical algebra of operators supported along C which must be respected by

locality preserving unitaries. Intuitively, {Pa(C)}a∈A are projectors onto the smallest possible

sectors of the Hilbert space which can be distinguished by a measurement supported on C.

This is the origin of the non-trivial constraints we obtain on the realizable logical operators.

A state in the image of Pa(C) has the interpretation of carrying flux a through the loop C.

In particular, since the code space HΣ corresponds to the vacua of a TQFT, there are no anyons

present on Σ, however, there can be flux associated to non-contractible loops. We can use the

operators {Pa(C)}a,C to define bases of the Hilbert space HΣ.

Let us first define the Hilbert space HΣ in more detail.

Definition 7.2.5 (DAP-decomposition). Consider a minimal collection C = {Cj | Cj : [0, 1]→
Σ}j of pairwise non-intersecting non-contractible loops, which cut the surface Σ into a collection

of surfaces homeomorphic to discs, annuli and pants. We call C a DAP-decomposition.

A labeling ` : C 7→ A is an assignment of an anyon label `(C) to every loop C ∈ C of a DAP

decomposition. We call ` fusion-consistent if it satisfies the following conditions:

(i) for every loop C ∈ C enclosing a disc on Σ, `(C) = 1, the vacuum label of the anyon

model.

(ii) for every pair of loops {C2, C3} ⊂ C defining an annulus in Σ, `(C2) = `(C3) assuming

the loops are oriented such that the annulus is found to the left.

(iii) for every triple {C1, C2, C3} ⊂ C defining a pair of pants in Σ, the labeling ` satisfies the

fusion rule

N
`(C3)
`(C1),`(C2) 6= 0,

where the loops are oriented such that the pair of pants is found to the left.

107

Here we may assume `(C−1) = `(C), where C−1 denotes the loop coinciding with C but with

opposite orientation.

Now fix any DAP-decomposition C of Σ and let L(C) ⊂ A|C| be the set of fusion-consistent

labelings. The Hilbert space HΣ is the formal span of elements of L(C)

HΣ :=
∑
`∈L(C)

C` =
∑
`∈L(C)

C |`〉.

Any fusion-consistent labeling ` ∈ L(C) defines an element |`〉 ∈ HΣ such that the vectors

{|`〉}`∈L(C) are an orthonormal basis (which we call BC) ofHΣ, and this defines the inner product.

It is important to remark that this construction of HΣ is independent of the DAP-decom-

position C of Σ in the following sense: if C and C ′ are two distinct DAP-decompositions,

then there is a unitary basis change between the bases BC and BC′ . In most cases under

consideration, this basis change can be obtained as a product of unitaries associated with local

“moves” connecting two DAP decompositions C and C ′. One such basis change is associated

with a four-punctured sphere (the F -move), and specified by the unitary F -matrix in Fig. 7.4.

Another matrix of this kind, the S-matrix (which also arose in our discussion of the Verlinde

algebra), connects the two bases BC and BC′ of Htorus associated with the first and second non-

trivial cycles on the torus (Fig. 7.4). In this case, writing BC = {|a〉C}a and BC′ = {|a〉C′}a since

each basis element |`〉 is specified by a single label `(C), `(C ′) ∈ A, we have the relation

|a〉C′ =
∑
b

Sba|b〉C . (7.16)

Other unitary basis changes arise from the representation of the mapping class group, as dis-

cussed in Section 7.2.6. All these basis changes constitute the second ingredient for the non-

trivial constraints we obtain on the realizable logical operators.

A basis element |`〉 ∈ BC associates the anyon label `(C) with each curve C ∈ C. The

vector |`〉 spans the simultaneous +1-eigenspace of the projections {P`(C)}C∈C. It is also a

simultaneous eigenvector with respect to Dehn-twists along each curve C ∈ C with eigenvalue

eiθ`(C) . The action of Dehn-twists along curves C ′ not belonging to C can be obtained by

applying the local moves to change into a basis BC′ associated with a DAP-decomposition C ′
containing C ′.

7.2.4 Open surfaces: labeled boundaries

So far, we have been discussing the Hilbert space HΣ associated with closed surfaces; this does

not cover the physically important case of pinned localized excitations (which correspond to

108

FC C ′

C
C ′

S

Figure 7.4: Two DAP-decompositions C = {C} and C ′ = {C ′} of either the 4-punctured sphere
(left), or the torus (right), are related by an F -move or an S-move, respectively.

punctures/holes in the surface). Here we describe the modifications necessary to deal with

surfaces with boundaries. We assume that the boundary ∂Σ =
⋃M
α=1 Ĉα is the disjoint union

of M simple closed curves, and assume that an orientation Ĉα : [0, 1] → ∂Σ has been cho-

sen for each boundary component Ĉα such that Σ is found to the left. In addition, we fix

a label aα ∈ A for every boundary component Ĉα. We call this a labeling of the boundary.

Let us write Σ(a1, . . . , aM) for the resulting object (i.e., the surfaces, its oriented boundary

components, and the associated labels). We call Σ(a1, . . . , aM) a surface with labeled bound-

ary components; slightly abusing notation, we sometimes write Σ = Σ(a1, . . . , aM) when the

presence of boundaries is understood/immaterial.

A TQFT associates to every surface Σ(a1, . . . , aM) with labeled boundary components a

Hilbert spaceHΣ(a1,...,aM). The construction is analogous to the case of closed surfaces and based

on DAP-decompositions. The only modification compared to the case of closed surfaces is that

only DAP-decompositions including the curves {Ĉα}Mα=1 are allowed; furthermore, the labeling

on these boundary components is fixed by {aα}Mα=1. That is, “valid” DAP-decompositions are

of the form C = {C1, . . . , CN , Ĉ1, . . . , ĈM} with curves {Cj}Nj=1 “complementing” the boundary

components, and valid labelings are fusion-consistent, i.e., ` ∈ L(C) with the additional con-

dition that they agree with the boundary labels, `(Ĉα) = aα for α = 1, . . . ,M . To simplify

the discussion, we will often omit the boundary components {Ĉα}α and focus on the remaining

degrees of freedom associated with the curves {Cj}j. It is understood that boundary labelings

have to be fusion-consistent with the labeling {aα}α of the boundary under consideration.

As a final remark, note that boundary components labeled with the trivial particle 1 ∈ A
correspond to contractible loops in a surface without this boundary (i.e., obtained by “gluing

in a disc”). This means that they can be omitted: we have the isomorphism

HΣ(1)
∼= HΣ′ ,

where Σ′ is the surface with one boundary component less that of Σ.

109

z z z z

z zC1 C2 C3

S2(z6)

z zz z

zz x1 x2 x3

Figure 7.5: The ‘standard’ DAP-decomposition of the 6-punctured sphere, and the correspond-
ing fusion-tree notation representing the labeling which assigns `(Ci) = xi.

Example: the M-anyon Hilbert space

A typical example we are interested in is the labeled surface

S2(zM) = S2(z, . . . , z︸ ︷︷ ︸
M times

) ,

where S2(, , ... , ,) is the punctured sphere, and z ∈ A is some fixed anyon type (we assume

that each boundary component has the same orientation). The Hilbert space HS2(zM) is the

space of M anyons of type z. When M = N + 3 for some N ∈ N, we can choose a ‘standard’

DAP-decomposition C = {Cj}Nj=1 as shown in Fig. 7.5. A fusion-consistent labeling ` of the

standard DAP-decomposition C corresponds to a sequence (x1, . . . , xN) = (`(C1), . . . , `(CN))

such that

Nx1
zz = N z

xNz
= 1 and Nxj+1

xjz
= 1 for all j = 1, . . . , N − 1, (7.17)

as illustrated by Fig. 7.5.

7.2.5 The gluing axiom

Consider a closed curve C embedded in Σ. We will assume that C is an element of a DAP-

decomposition C; although this is not strictly necessary, it will simplify our discussion. Now

consider the surface Σ′ obtained by cutting Σ along C. Compared to Σ, this is a surface

with two boundary components C ′1, C
′
2 (both isotopic to C) added. We will assume that these

have opposite orientation. A familiar example is the case where cutting Σ along C results in

110

Σ

C

C ′
2C ′

1

Σ1 Σ2

Figure 7.6: Cutting a surface Σ along some closed curve C of a DAP-decomposition yields a
disconnected surface Σ′ = Σ1 ∪ Σ2 having additional boundary components C ′1 and C ′2.

two disconnected surfaces Σ′ = Σ1 ∪ Σ2, as depicted in Fig. 7.6 in the case where Σ is the

4-punctured sphere.

Let a be a particle label. We will denote by HΣ′(a,a) the Hilbert space associated with the

open surface Σ′, where boundary C ′1 is labeled by a and boundary C ′2 by a. The gluing axiom

states that the Hilbert space of the surface Σ has the form

HΣ
∼=
⊕
a

HΣ′(a,a) (7.18)

where the direct sum is over all particle labels a that occur in different fusion-consistent labelings

of C. In the special case where cutting along C gives two components Σ1,Σ2, we have HΣ
∼=⊕

aHΣ1(a) ⊗HΣ2(a).

The isomorphism (7.18) can easily be made explicit. A first observation is that HΣ decom-

poses as HΣ =
⊕

aHa,Σ(C), where

Ha,Σ(C) := span{|`〉 | ` ∈ L(C), `(C) = a} (7.19)

is the space spanned by all labelings which assign the label a to C. It therefore suffices to argue

that

Ha,Σ(C) ∼= HΣ′(a,a) . (7.20)

To do so, observe that the DAP-decomposition C of Σ gives rise to a DAP-decomposition C ′ =
C\{C} of Σ′. Any labeling ` ∈ L(C) with `(C) = a restricts to a labeling `′ ∈ L(C ′) of the

labeled surface Σ′(a, a). Conversely, any labeling `′ ∈ L(C ′) of the surface Σ′(a, a) provides a

labeling ` ∈ L(C) (by setting `(C) = a). This defines the isomorphism (7.20) in terms of basis

states {|`〉}`∈L(C) and {|`′〉}`′∈L(C′).

111

z z z z

z zC1 C2 C3

S2(z6)

z z

z C1 a

S2(z3, a) S2(ā, z3)
z z

zC3ā

Figure 7.7: The 6-punctured sphere S2(z6) shown with three curves C1, C2, C3 ∈ C of a DAP-
decomposition. Cutting along C2 with labeling `(C2) = a results in the two surfaces S2(z3, a)
and S2(a, z3).

Example: decomposing the M-anyon Hilbert space

Consider theM -punctured sphere Σ = S2(zM) with the standard DAP decomposition of Fig. 7.5

and boundary labels z (corresponding to M anyons of type z). Cutting S2(zM) along Cj gives

a surface Σ′j which is the disjoint union of two punctured spheres, with j + 2 and M − j

punctures, respectively. The resulting surface labelings are S2(zj+1, a) and S2(a, zM−1−j). That

is, if Σ = S2(zM) is the original surface and Σ′j(a, a) is the resulting one, then

HΣ′j(a,a) = HS2(zj+1,a) ⊗HS2(a,zM−1−j) . (7.21)

This is illustrated in Fig. 7.7 for the case M = 6 and j = 2.

7.2.6 The mapping class group

In the following, we denote by MCGΣ the mapping class group of the surface Σ. Elements of

this group are isotopy classes of orientation-preserving diffeomorphisms of Σ preserving labels

and commuting with boundary parametrization (see e.g., [21]). Slightly abusing notation, we

will often simply write ϑ ∈ MCGΣ for an equivalence class represented by a map ϑ : Σ→ Σ.

For example, if Σ is the torus, then the mapping class group is generated by two elements,

MCGΣ = 〈s, t〉 where s and t are the standard generators of the modular group. For the M -

punctured sphere S2(zM), we will also need the M − 1 elements {σj}M−1
j=1 , where σj braids

holes j and j + 1.

112

Recall that the Hilbert space HΣ is equipped with a projective unitary representation

MCGΣ → U(HΣ)

ϑ 7→ V(ϑ)
(7.22)

of the mapping class group MCGΣ. For example, for the torus, V(s) = S and V(t) = T are

the usual S- and T -matrices defined by the modular tensor category. For the M -punctured

sphere S2(zM) with M = N+3, we again use the standard DAP-decomposition with associated

basis {|x〉}x. Here the sequences x = (x1, . . . , xN) are subject to the fusion rules (see (7.17))

and the action on such vectors is

V(σ1)|x〉 = Rzz
x1
|x〉,

V(σk)|x〉 =
∑
x′

B(xk−1, xk+1)x′xk |x1, . . . , xk−1, x
′, xk+1, . . . , xN〉 for k = 2, . . . , N + 1,

V(σN+2)|x〉 = Rzz
x1
|x〉,

where B(a, b) = F−1RF is the braid matrix.

7.3 Constraints on locality-preserving automorphisms

In this section, we derive restrictions on topologically protected gates for general non-abelian

models. Our strategy will be to consider what happens to string-operators. We will first

consider operators associated with a single loop C, and derive restrictions on the map Fa(C) 7→
UFa(C)U †, or, more precisely, its effect on logical operators, [Fa(C)] 7→ [UFa(C)U †]. We will

argue that this map implements an isomorphism of the Verlinde algebra and exploit this fact

to derive a constraint which is ‘local’ to a specific loop. We will subsequently consider more

‘global’ constraints arising from fusion rules, as well as basis changes.

We would like to characterize locality-preserving unitary automorphisms U ∈ AΣ in terms

of their logical action [U]. A first goal is to characterize the map

ρU : [AΣ] → [AΣ]

[X] 7→ [UXU−1] ,
(7.23)

which determines the evolution of logical observables in the Heisenberg picture. (Clearly, this

does not depend on the representative, i.e., if [X] = [X ′], then ρU([X]) = ρU([X ′]).) In fact,

the map (7.23) fully determines U up to a global phase since [AΣ] contains an operator basis

for linear maps on HΣ. However, it will often be more informative to characterize the action

of [U] on basis elements of HΣ. This will require additional effort.

113

The main observation is that the map (7.23) defines an automorphism of [AΣ], since

ρU([X])ρU([X ′]) = ρU([X][X ′]) for all X,X ′ ∈ AΣ and ρ−1
U = ρU−1 . (7.24)

Combined with the locality of U , (7.24) severly constrains ρU . Using this fact, we obtain a

number of very general constraints, which will be worked out in more detail in the following.

7.3.1 A local constraint from a simple closed loop

Specifying the action of ρU on all of [AΣ] completely determines [U] up to a global phase.

However, this is not entirely straightforward; instead, we fix some simple closed curve C and

characterize the restriction to the subalgebra A(C) ⊂ AΣ, i.e., the map

ρU(C) : [A(C)] → [A(C)]

[X] 7→ [UXU−1] ,
(7.25)

Observe that this map is well-defined since UXU−1 is supported in a neighborhood of C (by

the locality-preservation of U), and hence [UXU−1] = [X ′] for some operator X ′ ∈ A(C) (here

we have used Proposition 7.2.1). It is also easy to see that it defines an automorphism of the

subalgebra [A(C)].

As we argued above, the algebra A(C) is isomorphic to Ver. This carries over to [A(C)] ∼=
Ver ∼= C⊕|A|. As Ver has idempotents pa∈A, the logical algebra for loop C has idempotents

{[Pa(C)]}a∈A. We use the following fact:

Lemma 7.3.1. The set of automorphisms of the algebra Ver is in one-to-one correspondence

with the permutations S|A|. For π ∈ S|A|, the associated automorphism ρπ : Ver→ Ver is defined

by its action on the central idempotents pa

ρπ(pa) = pπ(a) for a ∈ A (7.26)

Proof. It is clear that (7.26) defines an automorphism for every π ∈ S|A|. Also, from Eq. (7.24)

we see that papb = δabpb implies ρ(pa)ρ(pb) = δabρ(pb), such that ρ(pa) ∈ Ver are a complete

set of projectors (Proposition 7.2.3). As there is a unique set of complete projectors for Ver,

we conclude that ρ(pa) = pπ(a) for some permutation π ∈ S|A|.

Applying this to [A(C)] shows that a locality-preserving unitary automorphism realizes, up

toimportant phases, a a permutation of labelings. Let us emphasize that it is the projectors

(idempotents) [Pa(C)] which are being permuted, and not the string operators [Fa(C)].

114

Proposition 7.3.1 (Local constraint). Let U be a locality-preserving automorphism of the code,

and let ρU([X]) = [UXU−1].

(i) For each simple closed loop C on Σ, there is a permutation πC : A → A of the particle

labels such that

ρU : [A(C)] → [A(C)]

[Pa(C)] 7→ [PπC(a)(C)] for all a ∈ A ,
(7.27)

(and linearly extended to all of [A(C)]).

(ii) For some anyon model A with an associated S matrix, let Da,b = δa,b · da be the diagonal

matrix with the quantum dimensions on the diagonal. Let πC : A → A be a permutation

associated with a loop C as in (i), and let Π be the matrix defined by Πx,y := δx,πC(y).

Define the matrix

Λ := SΠ−1DΠD−1Π−1S−1 . (7.28)

Then

ρU([Fb(C)]) =
∑
b′

Λb,b′ [Fb′(C)] . (7.29)

Proof. We have already argued that (i) holds. For the proof of (ii), we use the relationship

between {Pa(C)}a and {Fa(C)}a (cf. (7.14) and (7.15)) to get (suppressing the dependence on

the loop C)

ρU([Fb]) =
∑
a

Sb,a
S1,a

[PπC(a)] =
∑
b′

(∑
a

Sb,a
S1,a

S1,πC(a)Sb′,πC(a)

)
[Fb′] .

The claim (7.29) follows from this using (Π−1S−1)a,b′ = (S−1)πC(a),b′ = Sb′,πC(a) by the unitarity

of S, as well as the fact that S1,a = da/D and hence
Sb,a

S1,a
S1,πC(a) = (SΠ−1DΠD−1)b,a.

7.3.2 Global constraints from DAP-decompositions, fusion rules and

the gluing axiom

For higher-genus surfaces, we can obtain information by applying Proposition 7.3.1 to all loops

of a DAP-decomposition; these must then satisfy the following consistency condition.

Proposition 7.3.2 (Global constraint from fusion rules). Let U be a locality-preserving au-

tomorphism of the code. Let C be a DAP-decomposition of Σ, and consider the family of

115

permutations ~π = {πC}C∈C defined by Proposition 7.3.1. Then this defines a permutation

~π : L(C)→ L(C) of the set of fusion-consistent labelings via

~π(`)(C) := πC [`(C)] (7.30)

for all C ∈ C. We have

U |`〉 = eiϕ(`)|~π(`)〉 for all ` ∈ L(C) (7.31)

with some phase eiϕ(`) depending on `.

Proof. Let us fix some basis element |`〉 ∈ BC. The vector |`〉 is a +1-eigenvector of P`(C)(C)

for each C ∈ C; hence according to (7.27), the vector U |`〉 is a +1-eigenvector of PπC [`(C)](C) =

P~π(`)(C)(C) for every C ∈ C. This implies that it is proportional to |~π(`)〉, hence we obtain (7.31).

Fusion-consistency of ~π(`) follows because U |`〉 must be an element of HΣ.

Proposition (7.3.2) expresses the requirement that a locality-preserving automorphism U

maps the set of fusion-consistent labelings into itself.

In fact, we can say more: it must be an isomorphism between the subspaces of HΣ aris-

ing from the gluing axiom (i.e., Eq. (7.18)). This allows us to constrain the set of allowed

permutations ~π = {πC}C∈C arising from locality-preserving automorphisms even further:

Proposition 7.3.3 (Global constraint from gluing). Let C be an element of a DAP-decomposition

of Σ. Recall that

HΣ =
⊕
a

Ha,Σ(C) , (7.32)

where the subspaces in the direct sum are defined by labelings associating a to C. Let U be a

locality-preserving automorphism of the code and let πC : A→ A be the permutation associated

with C by Proposition 7.3.1. Then for every a ∈ A occuring in Eq. (7.32), the restriction of U

to Ha,Σ(C) defines an isomorphism

Ha,Σ(C) ∼= HπC(a),Σ(C) . (7.33)

In particular, if Σ′ is the surface obtained by cutting Σ along C, then

HΣ′(a,a)
∼= HΣ′(πC(a),πC(a))

(7.34)

for every a ∈ A occuring in the sum (7.32).

116

The reason we refer to Proposition (7.3.3) as a global constraint (even though it superficially

only concerns a single curve C) is that the surface Σ′ and hence the spaces (7.34) depend on

the global form of the surface Σ outside the support of C.

Proof. Proposition (7.3.2) implies that UHa,Σ(C) ⊂ HπC(a),Σ(C) for any a in expression (7.32).

Since U acts unitarily on the whole space HΣ, this is compatible with (7.32) only if UHa,Σ(C) =

HπC(a),Σ(C) for any such a. This proves (7.33). Statement (7.34) then immediately follows

from (7.20).

A simple but useful implication of Proposition 7.3.3 is that

dim
(
HΣ′(a,a)

)
= dim

(
H

Σ′(πC(a),πC(a))

)
(7.35)

is a necessary condition that πC has to satisfy.

7.3.3 Global constraints from basis changes

Eq. (7.27) essentially tells us that a locality-preserving protected gate U can only permute

particle labels; it indicates that such a gate U is related to certain symmetries of the anyon

model. But (7.27) does not tell us what phases basis states may acquire. We show how to

obtain constraints on these phases by considering basis changes. This also further constrains

the allowed permutations on the labels of the idempotents.

Consider two DAP-decompositions C and C ′. Expressed in the first basis BC, we have

U |`〉 = eiϕ(`)|~π(`)〉 (7.36)

for some unknown phase ϕ(`) depending only on the labeling ` ∈ L(C). This means that with

respect to the basis elements of BC, the operator U is described by a matrix U = ΠD({ϕ(`)}`),
where Π is a permutation matrix (acting on the fusion-consistent labelings L(C)), and D is a

diagonal matrix with entries {eiϕ(`)}` on the diagonal.

Analogously, we can consider the operator U expressed as a matrix U′ in terms of the basis

elements of BC′ . We conclude that U′ = Π′D({ϕ′(`)}`), for ` ∈ L(C ′), with a (potentially

different) permutation matrix Π′, and (potentially different) phases {ϕ′(`)}`.

Let V be the unitary change-of-basis matrix for going from BC to BC′ . Then we must have

VU = U′V. (7.37)

117

We show below that this equation strongly constrains the phases as well as the permutations

in (7.31). More specifically, we will examine constraints arising when using basis changes V

defined by F -moves in Section 7.5. In Section 7.4, we consider basis changes V defined by

elements of the mapping class group.

7.4 Global constraints from the mapping class group

The following is based on the simple observation that we must have consistency conditions of

the form (7.37) for more general basis changes (in particular, basis changes not made up of

F -moves only). We are particularly interested in the case where the basis change is the result

of applying a mapping class group element.

7.4.1 Basis changes defined by the mapping class group

A key property of the representation (7.22) of the mapping class group MCGΣ is that it maps

idempotents according to

V (ϑ)Pa(C)V (ϑ)† = Pa
(
ϑ(C)

)
. (7.38)

Let us fix a ‘standard’ DAP-decomposition C, and let BC = {|`〉C}` be the corresponding

standard basis.

Let ϑ be an arbitrary element of MCGΣ. Consider the basis

Bϑ(C) := {V (ϑ)|`〉}`.

Because of (7.38), this basis is a simultaneous eigenbasis of the complete set of commuting

observables associated with the DAP decomposition ϑ(C) := {ϑ(Cj)}Mj=1. The change of basis

from BC to Bϑ(C) is given by the image V (ϑ) of the mapping class group element ϑ.

In particular, if V(ϑ) is the matrix representing V (ϑ) in the standard basis, then (7.37)

implies

V(ϑ)ΠD = Π(ϑ)D(ϑ)V(ϑ) (7.39)

for some permutation matrix Π(ϑ) and a diagonal matrix D(ϑ) consisting of phases.

Some terminology will be useful: Let ∆ be the set of matrices of the form ΠD, where Π

is a permutation of fusion-consistent labelings, and D is a diagonal matrix with phases (these

118

are sometimes called unitary monomial matrices). For U ∈ ∆ and ϑ ∈ MCGΣ, we say that U

intertwines with ϑ if

V(ϑ)UV(ϑ)† ∈ ∆ .

Let ∆ϑ ⊂ ∆ be the set of matrices that intertwine with ϑ, and let

∆MCGΣ
=

⋂
ϑ∈MCGΣ

∆ϑ

be the matrices that are intertwiners of the whole mapping class group representation. We have

shown the following:

Theorem 7.4.1. Let U be the matrix representing a protected gate U in the standard basis.

Then U ∈ ∆MCGΣ
.

As an example, consider the torus: since T = V(t) is diagonal, it is easy to see that for any

ΠD ∈ ∆, we have TΠDT−1 = ΠD′ for some D′. This implies that ∆t = ∆ is generally not

interesting, i.e., U ∈ ∆t does not impose an additional constraint. In contrast, mapping class

group elements such as s and st generally give different non-trivial constraints.

7.4.2 Density of the mapping class group representation and ab-

sence of protected gates

The following statement directly links computational universality of the mapping class group

representation to the non-existence of protected gates.

Corollary 7.4.2. Suppose the representation of MCGΣ is dense in the projective unitary group

PU(HΣ). Then there is no non-trivial protected gate.

Proof. Let U be an arbitrary protected gate and let U ∈ ∆ be the matrix representing it in the

standard basis. Assume for the sake of contradiction that U is non-trivial. Then U is a unitary

with at least two different eigenvalues λ1, λ2 ∈ U(1). In particular, there is a diagonalizing

unitary V1 such that V1UV†1 = diag(λ1, λ2) ⊕ Ũ for some matrix Ũ. Setting V2 = H ⊕ I,

where H is the Hadamard matrix

H =
1√
2

(
1 1

1 −1

)
,

119

and V = V2V1, we obtain that

VUV† 6∈ ∆ (7.40)

because this matrix contains both diagonal and off-diagonal elements. Note that if λ2 = −λ1

one may use the matrix

1

2

(
1 −

√
3√

3 1

)
instead of H.

Observe also that (7.40) stays valid if we replace V by a sufficiently close approximation

(up to an irrelevant global phase) Ṽ ≈ V. In particular, by the assumed density, we may

approximate V by a product Ṽ = V(ϑ1) · · ·V(ϑm) of images of ϑ1, . . . , ϑm ∈ MCGΣ. But then

we have

U 6∈ ∆ϑ1···ϑm ,

which contradicts Theorem 7.4.1.

Note that in general, the mapping class group is only dense on a subspace H0 ⊂ HΣ. This

is the case for example when the overall system allows for configurations where anyons can

be present or absent (e.g., a boundary may or may not carry a topological charge). In such

a situation, HΣ decomposes into superselection sectors which are defined by the gluing axiom

(i.e., having fixed labels associated with certain closed loops associated). Corollary 7.4.2 can

be adapted to this situation, e.g., as explained in Appendix 7.8 (Lemma 7.8.1).

7.4.3 Characterizing diagonal protected gates

Fix a DAP-decomposition C and let ϑ ∈ MCGΣ. Let us call two (fusion-consistent) labelings

`1, `2 connected by ϑ (denoted `1 ⇔ϑ `2) if there is a labeling ` such that

0 6= 〈`|V (ϑ)|`m〉 for m = 1, 2 .

(Here |`〉 is the associated basis element of BC.) More generally, let us say `1, `2 are connected

(written `1 ⇔ `2) if there exists an element ϑ ∈ MCGΣ such that `1 ⇔ϑ `2. Clearly, this notion

is symmetric in `1, `2, and furthermore, it is reflexive, i.e., `1 ⇔ `1 since `1 ⇔id `1. We can

therefore define an equivalence relation on the set of labelings: we write `1 ∼ `2 if there are

labelings k1, . . . , km such that `1 ⇔ k1 ⇔ · · · ⇔ km ⇔ `2. We point out (for later use) that

we can always find a finite collection {ϑk}Mk=1 ⊂ MCGΣ that generates the relation ∼ in the

120

sense that `1 ∼ `2 if and only if `1 ⇔ϑk `2 for some k (after all, we only have a finite set of

labelings `).

Observe that if the representation of MCGΣ has a non-trivial invariant subspace, then there

is more than one equivalence class. We discuss an example of this below (see Section 7.4.5).

However, in important special cases such as the Fibonacci or Ising models, there is only one

equivalence class for the relation ∼, i.e., any pair of labelings are connected (see Lemma 7.6.3

and Lemma 7.6.4 below).

Lemma 7.4.3. Consider a protected gate U acting diagonally in the basis BC as U |`〉 = eiϕ(`)|`〉.

(i) Suppose that U also acts diagonally in the basis Bϑ(C). Then ϕ(`1) = ϕ(`2) for any pair

`1 ⇔ϑ `2 connected by ϑ.

(ii) Suppose that {ϑk}Mk=1 ⊂ MCGΣ generates the relation ∼, and U acts diagonally in each

basis Bϑk(C). Then ϕ assigns the same value to every element of the same equivalence class

under ∼.

We will refer to a protected gate U with property (ii) as a ∼-trivial gate. One implication

of Lemma 7.4.3 is that any protected gate which is close to the identity acts as a ∼-trivial gate

(see the proof of Theorem 7.4.5). In Section 7.4.4, we will show how to use this statement to

prove that the set of protected gates is finite up to irrelevant phases.

Proof. Consider two labelings `1, `2 satisfying `1 ⇔ϑ `2. Then, writing V = V(ϑ), we know

that

V`,`1 6= 0 and V`,`2 6= 0 (7.41)

for some labeling `, where V`,k = 〈`|V (ϑ)|k〉. Since U acts diagonally in both bases BC and

Bϑ(C) by assumption, (7.39) becomes simply

VDV† = D(ϑ) (7.42)

when written in the standard basis. Here the diagonal matrices are given by D = diag({ϕ(`)}`)
and D(ϑ) = diag({ϕ′(`)}`). Taking the diagonal entry at position (`, `) in the matrix equa-

tion (7.42), we get the identity ∑
k

ei(ϕ(k)−ϕ′(`))|V`,k|2 = 1. (7.43)

By unitarity of the mapping class group representation, we also have∑
k

|V`,k|2 = 1. (7.44)

121

By taking the real part of (7.43), it is straightforward to see that compatibility with (7.44)

imposes that cos
(
ϕ(k)− ϕ′(`)

)
= 1 whenever |V`,k| 6= 0 or

ϕ(k) ≡ ϕ′(`) mod 2π for all k with |V`,k| 6= 0.

With (7.41), we conclude that ϕ(`1) = ϕ′(`) = ϕ(`2), which proves claim (i).

The claim (ii) immediately follows from (i).

We will show how to apply this result to the Fibonacci model in Section 7.6.1. Note that

Lemma 7.4.3 does not generally rule out the existence of non-trivial diagonal protected gates

in the standard basis (an example is a Pauli-Z in the Ising model, see Section 7.6.2): it is

important that the protected gate is diagonal in several different bases {Bϑk(C)}k.

A simple consequence of Lemma 7.4.3 is that any protected gate has a finite order up to

certain phases:

Lemma 7.4.4. There is a finite n0 (depending only on the dimension of HΣ) such that for

every protected gate U , there is an n ≤ n0 such that Un is a ∼-trivial phase gate.

Proof. Consider an arbitrary DAP-decomposition C and suppose U acts as (7.31) in the basis BC.
Since the permutation ~π acts on the finite set L(C) of fusion-consistent labelings, it has finite

order nC. This means that UnC acts diagonally in the basis BC.

Assume {ϑk}Mk=1 ⊂ MCGΣ generate the relation ∼. Setting n = lcm(nϑ1(C), . . . , nϑM (C)),

we can apply Lemma 7.4.3 to Un to reach the conclusion that Un is ∼-trivial. Furthermore,

since the number n depends only on the permutation ~π, and there are only finitely many such

permutations, there is a finite n0 with the claimed property.

7.4.4 Finiteness of the set of protected gates

In the following, we will ignore phase differences that are “global” to subspaces of vectors

defined by the equivalence classes of ∼. That is, we will call two protected gates U1 and U2

equivalent (written U1 ∼ U2) if

U1 = ΠD1

U2 = ΠD2

and (D2)`,` = eiϕ([`])(D1)`,` ,

i.e., they encode the same permutation of fusion-consistent labels, and their phases only differ

by a phase ϕ([`]) depending on the equivalence class [`] that ` belongs to. This is equivalent to

122

the statement that U−1
1 U2 = D−1

1 D2 acts as a phase dependent only on the equivalence class,

i.e., U−1
1 U2 is a ∼-trivial phase gate.

We obtain an Eastin and Knill [15] type statement, which is one of our main conclusions.

Theorem 7.4.5 (Finite group of protected gates). The number of equivalence classes of pro-

tected gates is finite.

In particular, this means that locality-preserving automorphisms on their own do not provide

quantum computational universality.

Proof. Assume that there are infinitely many equivalence classes of protected gates. Then we

can choose a sequence {Un}n∈N of protected gates indexed by integers and belonging to different

equivalence classes each. Since the number of permutations of fusion-consistent labels is finite,

there exists at least one permutation matrix Π such that there is an infinite subsequence of

protected gates Un with Un = ΠDn, i.e., they act with the same permutation. Applying

the Bolzano-Weierstrass theorem to this subsequence, we conclude that there is a convergent

subsequence of protected gates {Unj
}j∈N such that Unj

= ΠDnj
for all j. Let U = limj→∞ Unj

be the corresponding limit, and let us define Ũj := U−1Unj
. Clearly, each Ũj is a protected gate

and

Ũj = D−1Dnj
(7.45)

acts non-trivially on subspaces defined by equivalence classes, i.e., Ũj is a ∼-non-trivial phase

gate. This is because of the assumption that the original sequence {Un}n∈N has elements

belonging to different equivalence classes. Furthermore, we have that

lim
j→∞

Ũj = I , (7.46)

where I is the identity matrix.

For a mapping class group element ϑ ∈ MCGΣ, the matrix expressing the action of Ũj in

the basis Bϑ(C) is given by V(ϑ)ŨjV(ϑ)†. Because Ũj is a protected gate, we get

V(ϑ)ŨjV(ϑ)† = Π̃jD̃j (7.47)

for some permutation matrix Π̃j and a diagonal matrix D̃j of phases. Combining (7.46), (7.47),

using the unitarity of V(ϑ) and continuity, we conclude that there exists some N0 = N0(ϑ) such

that Π̃j = I for all j ≥ N0, i.e., V(ϑ)ŨjV(ϑ)† is diagonal for sufficiently large j. Equivalently,

for all j ≥ N0, Ũj acts diagonally in the basis Bϑ(C), as well as in the basis BC (by (7.45)).

123

The latter conclusion can be extended uniformly to a finite collection {ϑk}Mk=1 ⊂ MCGΣ of

mapping class group elements: there is a constant N = N(ϑ1, . . . , ϑM) such that for all j ≥ N ,

the protected gate Ũj acts as a diagonal matrix in all bases BC, Bϑ1(C), ..., BϑM (C). Taking a

finite collection {ϑk}Mk=1 ⊂ MCGΣ that generates the relation ∼ and applying Lemma 7.4.3, we

reach the conclusion that Ũj is a ∼-trivial phase gate for all j ≥ N . This contradicts the fact

that each Ũj is a ∼-non-trivial phase gate, as argued above.

7.4.5 Necessity of restricting to equivalence classes

Here we briefly argue that without imposing ∼-equivalence on protected gates, one can end up

with infinitely many protected gates (that are, however, not very interesting).

Concretely, consider a model such as the toric code, with local commuting projector Hamil-

tonian Htop = −∑j Πj acting on spins which we collectively denote by A. Let HΣ be its

ground space. We introduce a local spin-degree of freedom Bj associated with each term in the

Hamiltonian, and let B =
⊗

j Bj the space of these auxiliary degrees of freedom. Define an

Ising-like Hamiltonian HI = −∑〈j,j′〉 ZjZj′ coupling all nearest neighbors in B (according to

some notion). Finally, consider the following Hamiltonian:

H = J ·HI −
∑
j

Πj ⊗ |0〉〈0|Bj
−
∑
j

Πj ⊗ |1〉〈1|Bj
.

This Hamiltonian is local, and for large J , has a ground space of the form (HΣ ⊗ |00 · · · 0〉)⊕
(HΣ ⊗ |11 · · · 1〉). In other words, the ground space (and similarly the low-energy subspace)

splits as H(0)
Σ ⊕H

(1)
Σ into two isomorphic copies of the space HΣ.

Now take two arbitrary protected gates U (0), U (1) for Htop (these may be global phases, i.e.,

trivial), implementing logical operations U
(0)

, U
(1)

. Let us assume that they are implemented

by circuits acting locally, i.e., they can be written (arbitrarily – the details do not matter) in

the form

U (m) = U
(m)
j1

U
(m)
j2
· · ·U (m)

jMm

with each unitary Uj local near the support of Πj. Then we can define the unitary

U =

M0∏
k=1

(
U

(0)
jk
⊗ |0〉〈0|Bjk

+ id⊗ |1〉〈1|Bjk

) M1∏
k=1

(
id⊗ |0〉〈0|Bjk

+ U
(1)
jk
⊗ |1〉〈1|Bjk

)

124

on A⊗B. It is easy to check that U is a protected gate and its logical action is

U = U
(0) ⊕ U (1)

.

In particular, such a unitary can introduce an arbitrary relative phase between the “super-

selection” sectors H(0)
Σ , H(1)

Σ : we can choose U (0) = I and U (1) = eiϕI. The construction

here corresponds to the direct sum of two TQFTs; the mapping class group representation

is reducible and basis elements belonging to different sectors are inequivalent. Imposing the

relation ∼ on the set of protected gates renders all such relative-phase gates equivalent.

7.5 Global constraints from F -moves on the n-punctured

sphere

We first consider the four-punctured sphere, where there are two inequivalent DAP-decompositions

related by an F -move (i.e., the basis change V is the F -matrix). More generally (e.g., for the 5-

punctured sphere), we need to consider several different F -moves and obtain a constraint of the

form (7.37) for every pair of bases related by such moves. We describe such global constraints

in Section 7.5.3. The results obtained by considering F -moves are summarized in Section 7.5.4:

there we outline a general procedure for characterizing protected gates.

7.5.1 Determining phases for the four-punctured sphere: fixed bound-

ary labels

For a four-punctured sphere Σ, we can fix the labels on the punctures to i, j, k, l ∈ A. The

corresponding spaceHΣ(i,j,k,l) associated to this open surface with labeled boundary components

is the fusion space V ij
kl . (In the non-abelian case, this space can have dimension larger than

1.) We have two bases BC, BC′ of this fusion space, corresponding to two different DAP-

decompositions differing by one loop (Fig. 7.4). We can enumerate basis elements by the

label assigned to this loop. Let {|a〉C}a and {|a〉C′}a be the elements of the bases BC and BC′ ,
respectively. Note that a ranges over all elements consistent with the fusion rules.

For the models considered in this article, these are Na
ij = Na

kl = 1. Let Q = Q(i, j, k, l) be

the set of such elements. The basis change is given by the F -matrix

|m〉C′ =
∑
n

F ijm
kln |n〉C.

125

Considering a locality-preserving automorphism which preserves the boundary labels (this is

reasonable if we think of them as certain boundary conditions of the system), we can apply the

procedure explained above to find the action

U |a〉C = eiϕ(a)|πC(a)〉C

on basis states. Here πC : Q → Q permutes fusion-consistent labels. To apply the reasoning

above, we have to use the |Q×Q|-basis change matrix V defined by Vm,n = F ijm
kln .

Solving the consistency relation (7.37) (for the permutations πC , πC
′
and phases {ϕ(a)}a, {ϕ′(a)}a)

shows that for any permutation πC that is part of a solution, the function ϕ takes the form

ϕ(a) = η + f(a) , (7.48)

where η is a global phase and f belongs to a certain set of functions which we denote

Iso

(
i

j · k
l → i

j πC(·) k
l

)
. (7.49)

(The reason for this notation will become clearer when we discuss isomorphisms in the next

section; here we are concerned with relative phases arising from automorphisms.) In summary,

we have

U |a〉C = eiηeif(a)|πC(a)〉C where f ∈ Iso

(
i

j · k
l → i

j πC(·) k
l

)
.

(7.50)

Here the set (7.49) can be computed by solving the consistency relation

VΠD({ϕ(a)}a) = Π′D({ϕ′(a)}a)V (7.51)

with Vm,n = F ijm
kln . This scenario is a special case of the commutative diagram displayed in

Fig. 7.8.

7.5.2 Determining phases for the four-punctured sphere in general

Consider the four-punctured sphere Σ with fixed labels i, j, k, l ∈ A on the punctures. Let

ı̃, ̃, k̃, l̃ be another set of labels such that the spaces HΣ(i,j,k,l) and HΣ(ı̃,̃,k̃,l̃) are isomorphic. In

this situation, we can try to characterize locality-preserving isomorphisms between two systems

defined on Σ(i, j, k, l) and Σ(̃ı, ̃, k̃, l̃), respectively. This situation is slightly more general than

what we considered before (automorphisms of the same system), but it is easy to see that all

126

arguments applied so far extend to this situation. Note that we could have phrased our whole

discussion in terms of isomorphisms between different spaces. However, we chose not to do so

to minimize the amount of notation required; instead, we only consider this situation in this

section. This generalization for the 4-punctured sphere is all we need to treat automorphisms

on higher-genus surfaces.

ForHΣ(i,j,k,l), we have two bases BC, BC′ , corresponding to two different DAP-decompositions

differing by one loop. Similarly, for HΣ(ı̃,̃,k̃,l̃), we have two bases B̃C, B̃C′ , corresponding to two

different DAP-decompositions differing by one loop. We can enumerate the basis elements by

the label assigned to this loop. Let {|a〉C}a and {|a〉C′}a be the elements of the basis BC and

BC′ , respectively. Here a ranges over the set Q = Q(i, j, k, l) ⊂ A of all elements consistent

with the fusion rules, i.e., we must have Na
ij = Na

kl = 1. Similarly, let {|ã〉C}ã and {|ã〉C′}ã be

the elements of the basis B̃C and B̃C′ , respectively, where now ã ∈ Q̃ = Q(̃ı, ̃, k̃, l̃).

In this situation, we have two basis changes,

|m〉C′ =
∑
n

Vm,n|n〉C where Vm,n = F ijm
kln and |m̃〉C′ =

∑
ñ

Ṽm̃,ñ|ñ〉C where Ṽm̃,ñ = F ı̃̃m̃

k̃l̃ñ
.

Now consider a locality-preserving isomorphism U which takes the boundary labels (i, j, k, l)

to (̃ı, ̃, k̃, l̃). We can then apply the framework above to find the action

U |a〉C = eiϕ(a)|πC(a)〉C or U |a〉C′ = eiϕ′(a)|πC′(a)〉C′

on basis states. Here πC , πC
′
: Q → Q̃ take fusion-consistent labels on Σ(i, j, k, l) to fusion-

consistent labels on Σ(̃ı, ̃, k̃, l̃). Because the spaces are isomorphic, we must have |Q| = |Q̃|,
hence πC , πC

′
can be represented by permutation matrices Π,Π′ in the basis pairs (BC, B̃C) or

(BC′ , B̃C′), respectively. Proceeding similarly with U, we get the consistency equation ṼU =

U′V or

ṼΠD({ϕ(a)}a) = Π′D({ϕ′(a)}a)V, (7.52)

which is expressed in the form of a commutative diagram as in Fig. 7.8. Equation (7.52) only

differs from equation (7.37) in allowing boundary labels to change and the basis transformation

matrix Ṽ must change accordingly.

For a given set of boundary labels (i, j, k, l), (̃ı, ̃, k̃, l̃), and a fixed choice of πC (which

fixes Π), any solution (Π′, {ϕ(a)}a, {ϕ′(a)}a) of (7.52) has phases {ϕ(a)}a of the “universal”

form

ϕ(a) = η + f(a) for all a ∈ Q(i, j, k, l) , (7.53)

127

F ij
kl

i l

j k

C

k

li

j

F ĩj̃
k̃l̃

ĩ l̃

j̃ k̃

C

k̃

l̃ĩ

j̃

C ′

U U′

C ′

Figure 7.8: An isomorphism HΣ(i,j,k,l) → HΣ(ı̃,̃,k̃,l̃) of two 4-punctured spheres can be given as

either U, which relates the bases BC of HΣ(i,j,k,l) to B̃C of HΣ(ı̃,̃,k̃,l̃), or as U′ relating different

bases BC′ ofHΣ(i,j,k,l) to B̃C′ ofHΣ(ı̃,̃,k̃,l̃). The bases ofHΣ(i,j,k,l) andHΣ(ı̃,̃,k̃,l̃) are related through

the F -moves F ij
kl and F ı̃̃

k̃l̃
, respectively. The consistency equation (7.52) can be expressed as

a commutative diagram. In the case where Σ(i, j, k, l) = Σ(̃ı, ̃, k̃, l̃) have identical boundary
labels such an isomorphism becomes an automorphism, and this reduces to the consistency
equation (7.51).

128

where η ∈ [0, 2π) is an arbitrary global phase independent of a, and f belongs to a set

Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
of functions that can be computed from (7.52)

as discussed below.

In summary, we have shown that U acts as

U |a〉C = eiηeif(a)|πC(a)〉C with f ∈ Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
,

(7.54)

and where the latter set can be determined by solving the consistency relation (7.52).

7.5.3 Localization of phases for higher-genus surfaces

We now argue that the phases appearing in Eq. (7.31) of Proposition 7.3.2 also factorize into

certain essentially local terms, similar to how the overall permutation ~π of fusion-consistent

labelings decomposes into a collection ~π = {πC}C∈C of permutations of labels. More precisely,

we will argue that conclusion (7.54) can be extended to more general surfaces.

Consider a fixed DAP-decomposition C of Σ. We call a curve C ∈ C internal if the inter-

section of Σ with a ball containing C has the form of a 4-punctured sphere with boundary

components C1, C2, C3, C4 consisting of curves ‘neighboring’ C in the DAP decomposition. We

call N(C) = {C1, C2, C3, C4} the neighbors (or neighborhood) of C as illustrated in Fig. 7.9.

Key to the following observations is that a basis vector |`〉 whose restriction to these neigh-

bors is given by ` � N(C) =
(
`(C1), . . . , `(C4)

)
gets mapped under U to a vector propor-

tional to |~π(`)〉, which assigns the labels ~π(`) � N(C) =
(
πC1 [`(C1)], . . . , πC4 [`(C4)]

)
to the

same curves. This means that the restriction of U to this subspace satisfies similar consis-

tency conditions as the isomorphisms between Hilbert spaces associated with the 4-punctured

spheres Σ(` � N(C)) and Σ
(
~π(`) � N(C)

)
studied in Section 7.5.1. In particular, for a fixed

labeling ` the dependence of the phase ϕ(`) on the label `(C) is given by a function from

the set Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
, where (i, j, k, l) = ` � N(C) and

(̃ı, ̃, k̃, l̃) = ~π(`) � N(C). In the following, we simply write Iso
(
` � N(C)

πC

→ ~π(`) � N(C)
)

for

this set.

Proposition 7.5.1 (Localization of internal phases). Let U be a locality-preserving automor-

phism. Let C be a DAP-decomposition of Σ, and let ~π = {πC}C∈C be the family of permutations

defined by Proposition 7.3.1. Let ϕ(`) for ` ∈ L(C) be defined by (7.31). If C ∈ C is internal,

129

C3

C4

C2

C1

C

Figure 7.9: For some DAP-decomposition C of a surface Σ, a curve C ∈ C is considered internal
if its neighbors N(C) = {C1, C2, C3, C4} define the boundaries of a 4-punctured sphere.

then

ϕ(`) = η(`� C\{C}) + f~π�N(C)(` � N(C), `(C))

for some functions η and f . Furthermore, we have

f~π�N(C)(` � N(C), ·) ∈ Iso
(
` � N(C)

πC

→ ~π(`) � N(C)
)
.

In particular, the dependence of ϕ(`) on `(C) is “local” and “controlled” by the labeling ` � N(C)

of the neighbors.

In other words, if we fix a family of permutations ~π, and the labels on the neighbors N(C),

then the dependence on the label `(C) of the internal edge is essentially fixed.

Proof. We will focus our attention on the subspace H(i,j,k,l,?) ⊆ HΣ spanned by labelings ` with

(`(C1), `(C2), `(C3), `(C4)) = (i, j, k, l) and ` � C\{C,C1, C2, C3, C4} = ? fixed (arbitrarily). For

the purpose of this proof, it will be convenient to represent basis vectors |`〉 associated with

such a labeling ` ∈ L(C) as a vector

|`〉 = |`(C), `(C1), `(C2), `(C3), `(C4), ?〉 = |a, i, j, k, l, ?〉 .

Defining ı̃ = πC1(i), ̃ = πC2(j), k̃ = πC3(k), l̃ = πC4(l), we can rewrite (7.31) in the form

U |a, i, j, k, l, ?〉 = eiϕ(a,i,j,k,l,?)|πC(a), ı̃, ̃, k̃, l̃, ?̃〉 ,

where ?̃ = ~π�(?) for some map ~π� taking labelings of the set C\{C,C1, C2, C3, C4} consistent

with (i, j, k, l) to those consistent with (̃ı, ̃, k̃, l̃). We conclude that the restriction of U to

H(i,j,k,l,?) implements an isomorphism H(i,j,k,l,?)
∼= H(ı̃,̃,k̃,l̃,?̃). Since these spaces are isomorphic

to HΣ(i,j,k,l) and HΣ(ı̃,̃,k̃,l̃), respectively, we can apply the result of Section 7.5.2. Indeed, the

130

consistency relation imposed by the F -move is entirely local, not affecting labels associated

with curves not belonging to {C,C1, C2, C3, C4}. We conclude from (7.54) that

ϕ(a, i, j, k, l, ?) = η(i, j, k, l, ?) + f(a), where f ∈ Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
.

Since (a, i, j, k, l, ?) were arbitrary, this proves the claim.

For example, for S2(zN+3) (as described above), we can apply Proposition 7.5.1 to the j-th

internal edge Cj to obtain

ϕ(x) = ηj(x1, . . . , x̂j, . . . , xN) + fj(xj−1, xj, xj+1), (7.55)

where

fj(xj−1, ·, xj+1) ∈ Iso

(
z

xj−1 · xj+1

z → z
x̃j−1 πCj(·) x̃j+1

z
)
,

and

x̃j−1 = πCj−1(xj−1), x̃j+1 = πCj+1(xj+1).

Here, we use x̂j to indicate that this argument is omitted.

7.5.4 Characterizing protected gates on the M-punctured sphere

using F -moves

The results in this section give the following procedure for characterizing protected gates asso-

ciated with HS2(zM), the Hilbert space of M = N + 3 anyons of type z. We know from Propo-

sition 7.3.2 that the action U |`〉 = eiϕ(`)|~π(`)〉 on fusion-consistent labelings is parametrized by

certain families ~π = {πC}C∈C of permutations, as well as a function ϕ describing the phase-

dependence. To characterize the latter, we

(i) determine the set of allowed ‘local’ permutations πC and associated phases f for any

occuring internal curve C. This amounts to solving the consistency equation (7.52) for

the four-punctured sphere, with appropriate boundary labels. For the standard pants

decomposition of the N + 3-punctured sphere, this means finding all pairs

(
πCj , fj

)
where fj ∈ Iso

(
z

xj−1 · xj+1

z → z
x̃j−1 πCj(·) x̃j+1

z
)
.

131

These correspond to isomorphisms between the Hilbert spaces associated with the labeled

surfaces S2(z, xj−1, xj+1, z) and S2(z, x̃j−1, x̃j+1, z), where xj−1, x̃j−1 ∈ Q(j−1), xj+1, x̃j+1 ∈
Q(j + 1).

(ii) we constrain the family ~π = {πC}C∈C of allowed permutations by using the global con-

straints arising from fusion rules and gluing (Proposition 7.3.3). In the case of N + 3

Fibonacci anyons on the sphere with standard pants decomposition C, dimensional argu-

ments show that all πCj = id are equal to the identity permutation. For Ising anyons,

the fusion rules imply that every permutation with even index is equal to the identity

permutation, πC2j = id (in fact, there is only a single allowed label).

(iii) we determine the phases ϕ(`) by using the localization property of Proposition 7.5.1 for

internal curves C. For N+3 anyons of type z on the sphere, this results in the consistency

conditions

ϕ(x) = ηj(x1, . . . , x̂j, . . . , xN) + fj(xj−1, xj, xj+1) where

fj(xj−1, ·, xj+1) ∈ Iso

(
z

xj−1 · xj+1

z → z
x̃j−1 πCj(·) x̃j+1

z
)

for j = 1, . . . , N .

(7.56)

In Section 7.6.2, we apply this procedure to Ising anyons; in this case, the system of equa-

tions (7.56) can be solved explicitly.

7.6 The Fibonacci and Ising models

In what follows, we apply the results of the previous sections to the Fibonacci and Ising models.

These can be considered as representative examples of non-abelian anyon models. We illustrate

the use of the developed constraints in different scenarios:

In Section 7.6.1, we show that there is no non-trivial gate for the Fibonacci model on

the torus. This derivation uses the characterization of protected gates in terms of matrices

intertwining with the mapping class group representation obtained in Section 7.4.1. Note that

we cannot apply Corollary 7.4.2 because the representation of the mapping class group on the

torus is finite for the Fibonacci model.

In Section 7.6.1, we then consider a system with M Fibonacci anyons (where M ≥ 4 so that

the space HS2(τM) has non-zero dimension). We establish the following statement:

Theorem 7.6.1 (Fibonacci anyon model). For M ≥ 4, any locality-preserving automorphism

U on the M-punctured sphere S2(τM) is trivial (i.e., proportional to the identity).

132

This proof is a direct consequence of Corollary 7.4.2 and the known density of braiding [?, ?].

We additionally provide an independent proof not relying on this result.

Finally, we consider systems with M Ising anyons; the associated Hilbert space HS2(σM)

has non-zero dimension if and only if M ≥ 4 is even. In this case, there is a natural isomor-

phism HS2(σM)
∼= (C2)⊗M/2−1 (described below, see Eq. (7.62)). Defining the (M/2 − 1)-qubit

Pauli group on the latter space in the usual way, we get the following statement:

Theorem 7.6.2 (Ising anyon model). Any locality-preserving automorphism U of S2(σM),

where M ≥ 4 is even, belongs to the (M/2− 1)-qubit Pauli group.

Our derivation of this result relies on the use of F -moves, as discussed in Section 7.5.

7.6.1 The Fibonacci model

For the Fibonacci model, we have A = {1, τ} and the only non-trivial fusion rule is τ×τ = 1+τ

with dτ = φ = (1 +
√

5)/2.

On the torus

We first consider the torus Σ and show that every protected gate is trivial. We do so by

computing some of the sets ∆ϑ, ϑ ∈ MCGΣ defined in Section 7.4.1. Recall (see Section 7.2.6)

that the mapping class group of the torus is generated by two elements s, t.

The matrix V(s) = S representing s is the usual S-matrix (expressed with respect to the

ordering (1, τ))

S =
1√
φ+ 2

(
1 φ

φ −1

)
.

In particular, the consistency condition (7.39) becomes

SΠDS−1 ∈ ∆,

where D = diag(λ1, λτ) and λa ∈ U(1). We consider the two cases:

1. For Π = I, we get (using φ2 = φ+ 1)

SΠDS−1 =
1

φ+ 2

(
λ1 + λτ (φ+ 1) (λ1 − λτ)φ

(λ1 − λτ)φ λ1(φ+ 1) + λτ

)
.

For this to be a unitary monomial matrix, all entries must have modulus 0 or 1. Since

φ/(φ + 2) < 1/2, the off-diagonal elements always have modulus less than 1, and hence

133

must be zero. That is, we must have λ1 = λτ =: λ, and it follows that the right hand side

is in ∆. This implies that ΠD = λI.

2. For Π =

(
0 1

1 0

)
, we get

SΠDS−1 =
1

φ+ 2

(
(λ1 + λτ)φ λ1(φ+ 1)− λτ

λτ (φ+ 1)− λ1 −(λ1 + λτ)φ

)
.

To have the absolute value of the first entry equal to 0 (see above), we must have λτ = −λ1

and we get

SΠDS−1 = λ1

(
0 1

−1 0

)
,

which is a unitary monomial matrix. That is, we have ΠD = λ

(
0 1

−1 0

)
.

Summarizing, we conclude that

∆s =

{
λI, λ

(
0 1

−1 0

)
| λ ∈ U(1)

}
. (7.57)

The element t ∈ MCGΣ defined by twisting along one of the homologically non-trivial

cycles is represented by the matrix V(t) = T = diag(1, e4πi/5). We consider the consistency

condition (7.39) for the composition st ∈ MCGΣ:

(ST)ΠD(ST)−1 ∈ ∆,

where D = diag(λ1, λτ) and λa ∈ U(1). Again, we consider the following two cases:

1. For Π = I, we get

(ST)ΠD(ST)−1 =
1

φ+ 2

(
λ1 + λτ (φ+ 1) (λ1 − λτ)φ

(λ1 − λτ)φ λ1(φ+ 1) + λτ

)
.

This is identical to the first case above, thus ΠD = λI.

2. For Π =

(
0 1

1 0

)
, we get

(ST)ΠD(ST)−1 =
ζ

φ+ 2

(
(ζ3λ1 − λτ)φ ζ3λ1(φ+ 1) + λτ

−ζ3λ1 − λτ (φ+ 1) −(ζ3λ1 − λτ)φ

)
,

134

where ζ = eiπ/5. Since φ/(φ + 2) < 1/2, the diagonal elements must vanish, that is, we

have λτ = ζ3λ1. This indeed then gives an element of ∆, and ΠD = λ

(
0 e3πi/5

1 0

)
.

In summary, we have shown that

∆st =

{
λI, λ

(
0 e3πi/5

1 0

)
| λ ∈ U(1)

}
. (7.58)

Combining (7.57) and (7.58), we conclude that

∆s ∩∆st = {λI | λ ∈ U(1)},

and this means that ∆MCGΣ
⊂ ∆s ∩∆st = {λI | λ ∈ U(1)}. According to Theorem 7.4.1, this

implies that there is no non-trivial protected gate on the torus.

Note that this conclusion is consistent with the form of a Dehn twist, given by the logical

unitary U = diag(1, e4πi/5) (with the ‘topological’ phases or twists on the diagonal): Dehn

twists do not preserve locality! For example, for a Dehn twist along C1, an operator supported

on C2 may end up with support in the neighborhood of the union C1 ∪ C2 under conjugation

by the unitary realizing the Dehn twist.

On the M-punctured sphere

We now provide a proof of Theorem 7.6.1. As already mentioned, braiding of M ≥ 4 Fibonacci

anyons is known to be universal [?], [?], hence we could invoke Corollary 7.4.2. Instead, we

give a different proof by exploiting the equivalence relation introduced in Section 7.4.3 and

analyzing the dimension of the associated spaces (i.e., using the constraints arising from the

gluing axiom, see Section 7.3.2).

Consider the M -punctured sphere Σ = S2(τM) corresponding to M Fibonacci anyons. We

will use as our ‘standard’ basis the one arising from the standard DAP decomposition C of the

M -punctured sphere introduced in Section 7.2.5 (see Fig. 7.5). We then have the following

statement:

Lemma 7.6.3. There is only one equivalence class under the relation ∼. Furthermore, the set

of braids {σj}M−1
j=1 generates the relation ∼.

Proof. Let x and x′ be two fusion-consistent labelings that are related by interchanging τ = xj

and 1 = x′j (or vice versa) in the j-th entry (but are otherwise the same). Fusion-consistency

135

implies that xj−1 = x′j−1 = xj+1 = x′j+1 = τ . In particular, the relevant braid matrix describing

the action of V (σj) is B(τ, τ) which has non-zero entries everywhere. We conclude that

〈x′|V (σj)|x〉 6= 0 and 〈x′|V (σj)|x′〉 6= 0 .

This implies that x ⇔σj x
′. Since any fusion-consistent labeling can be obtained from the

sequence τN = (τ, . . . , τ) by such interchanges, we conclude that any two fusion-consistent

labelings are equivalent. That is, there is only one equivalence class under ∼.

We will now argue that the conditions of Lemma 7.4.3 (ii) apply in this situation: that is,

any protected gate U acts diagonally in any of the bases Bσj(C) obtained from the standard DAP-

decomposition by applying a braid group generator σj. In fact, we will argue more generally

that U acts diagonally in any basis defined by a DAP-decomposition.

To do so, consider first the standard DAP-decomposition and the spaces HΣ′j(a,a) for j ∈
{1, . . . ,M − 3} and a ∈ {1, τ} (cf. (7.21)), where Σ′j is obtained from Σ by cutting along the

curve Cj which leaves a j + 2-punctured and a (M − j)-punctured sphere, respectively. Note

that τ is its own antiparticle (τ = τ), and hence it suffices to consider Σ′j(τ, τ) and Σ′j(1, 1). Our

goal is to identify pairs (a, ã) such thatHΣ′j(a,a)
∼= HΣ′j(ã,ã) are isomorphic, this being a necessary

condition for a permutation satisfying πCj(a) = ã (see Proposition (7.3.3) and Eq. (7.35)). To

compute dimHΣ′j(a,a) for a ∈ {1, τ}, we make use of the general fact that dimHS2(τM) = ΦM−1

where ΦM denotes the M -th Fibonacci number, starting with Φ0 = 0 and Φ1 = 1 and satisfying

the recurrence relation ΦM+1 = ΦM + ΦM−1. From (7.21), we obtain dimHΣ′j(1,1) = ΦjΦM−j−2

and dimHΣ′j(τ,τ) = Φj+1ΦM−j−1, excluding the case j = 1 = M−3 which satisfies dimHΣ′1(1,1) =

Φ1ΦM−3 = dimHΣ′M−3(1,1) and dimHΣ′1(τ,τ) = Φ2ΦM−2 = dimHΣ′M−3(τ,τ), it follows from the

monotonicity and positivity of Φ that

dimHΣ′j(1,1) < dimHΣ′j(τ,τ) for M > 4, and all j ∈ {1, ...,M − 3}. (7.59)

Hence, according to the consistency condition (7.35), for M > 4, we only get an isomorphism

HΣ′(a,a)
∼= HΣ′(πC(a),πC(a))

with πC = id being trivial for any internal loop C in a standard DAP

decomposition. This shows that a protected gate acts diagonally in the standard basis.

Observe that this argument only involved the dimensions of the fusion spaces obtained by

cutting along a curve Cj in the pants decomposition. Since it is generally true that cutting along

a curve will decompose theM -punctured sphere into an j+2-punctured and a (M−j)-punctured

sphere, respectively (for some j), the argument extends to arbitrary DAP-decompositions. In

particular, U is diagonal with respect to each of the bases Bσj(C), as claimed.

We have shown that the conditions of Lemma 7.4.3 apply. With Lemma 7.6.3, Theorem 7.6.1

136

is immediate.

7.6.2 The Ising model

The Ising anyon model has label set A = {1, ψ, σ} and non-trivial fusion rules

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ.

On the 4-punctured sphere

Consider the possible spaces HS2(σ,j,k,σ) for {j, k} ∈ A, and observe that fusion consistency

implies

dimHS2(σ,j,k,σ) =

0 if j 6= k = σ or k 6= j = σ

1 if j, k ∈ {1, ψ},
2 if j = k = σ.

Therefore, the only nontrivial case to consider is HS2(σ,σ,σ,σ) = HS2(σ4) with an ordered basis

{|1〉, |ψ〉}. A locality-preserving automorphism of HS2(σ4) will act as

U |a〉 = eiηeif(a)|πC(a)〉 where f ∈ Iso

(
σ

σ · σ
σ → σ

σ πC(·) σ
σ

)
A valid permutation πC of {1, ψ} that defines the action of U , and the set of phases can be

determined as follows. Let BC = {|1〉C, |ψ〉C} and BC′ = {|1〉C′ , |ψ〉C′} be corresponding ordered

bases of HS2(σ4) for the two DAP-decomposition C and C ′, respectively. The F -matrix relating

these two bases is given in the ordered basis BC as

F =
1√
2

(
1 1

1 −1

)
.

Now consider some locality-preserving automorphism U expressed in the bases BC and BC′
as U = ΠD and U′ = Π′D′ respectively, for some 2 × 2 permutation matrices Π,Π′ and

diagonal matrices D = diag(λ1, λψ) and D′ = diag(λ′1, λ
′
ψ) with phases λa, λ

′
a ∈ U(1). Then

the consistency relation takes the form U′ = FUF−1. Next, we find all consistent solutions for

a given permutation Π.

1. For Π = I, we get

FΠDF−1 =
1

2

(
λ1 + λψ λ1 − λψ
λ1 − λψ λ1 + λψ

)
= Π′D′. (7.60)

137

Suppose that Π′ = I. Then the consistency relation (7.60) becomes

1

2

(
λ1 + λψ λ1 − λψ
λ1 − λψ λ1 + λψ

)
=

(
λ′1 0

0 λ′ψ

)
,

which implies λ1 = λψ = λ′1 = λ′ψ =: eiη. Therefore U expressed in the basis BC is trivial

up to a global phase:

U = eiηI.

Suppose instead that Π′ =

(
0 1

1 0

)
. The consistency relation (7.60) then becomes

1

2

(
λ1 + λψ λ1 − λψ
λ1 − λψ λ1 + λψ

)
=

(
0 λ′ψ
λ′1 0

)
,

which implies λ1 = −λψ and λ′1 = λ′ψ = λ1. Setting eiη := λ1, implies that U expressed

in the basis BC is given by

U = eiη

(
1 0

0 −1

)
.

These two solutions of the consistency relation, for the case Π = I, now determine the

only two functions of the set

Iso

(
σ

σ · σ
σ → σ

σ id(·) σ
σ

)
= {(f(1), f(ψ))} = {(0, 0), (0, π)}.

2. For Π =

(
0 1

1 0

)
, corresponding to the transposition (ψ, 1), we get

FΠDF−1 =
1

2

(
λ1 + λψ λ1 − λψ
−λ1 + λψ −λ1 − λψ

)
= Π′D′. (7.61)

By taking Π′ = I, this becomes

1

2

(
λ1 + λψ λ1 − λψ
−λ1 + λψ −λ1 − λψ

)
=

(
λ′1 0

0 λ′ψ

)
,

which implies λ1 = λψ = λ′1 = −λ′ψ. Letting eiη := λ1 allows U to be expressed in the

basis BC by

U = eiη

(
0 1

1 0

)
.

138

Instead, suppose now that Π′ =

(
0 1

1 0

)
. Then the consistency relation (7.61) is of the

form
1

2

(
λ1 + λψ λ1 − λψ
−λ1 + λψ −λ1 − λψ

)
=

(
0 λ′ψ
λ′1 0

)
,

implying that λ1 = −λψ = −λ′1 = λ′ψ. Let eiη := λ1, then this shows that U expressed in

the basis BC is given by

U = eiη

(
0 −1

1 0

)
.

Furthermore, these two solutions completely determine the relevant set of functions (which

happens to be the same as the previous case for Π = I):

Iso

(
σ

σ · σ
σ → σ

σ (ψ, 1)(·) σ
σ

)
= {(f(1), f(ψ))} = {(0, 0), (0, π)}.

By denoting the single qubit (logical) Pauli group as

P :=

{
λ

(
1 0

0 1

)
, λ

(
1 0

0 −1

)
, λ

(
0 1

1 0

)
, λ

(
0 −i

i 0

)
| λ ∈ U(1)

}
,

these results can be summarized as follows: If U is a locality-preserving automorphism of the

fusion space HS2(σ4) of the 4-punctured sphere, then U expressed in the basis BC is in P .

On the M-punctured sphere

Let M ≥ 4 and consider the M = N + 3-punctured sphere S2(σM) and corresponding space

HS2(σM). For the ‘standard’ DAP-decomposition C of S2(σM), a consistent labeling L(C) cor-

responds to a sequence
(
`(C1), . . . , `(CN)

)
=: (x1, . . . , xN) =: x. It is readily observed that

dimHS2(σM) = 0 if M is odd, as there are no consistent labelings in this case.

Therefore, in what follows we will restrict our discussion to the M = N + 3-punctured

sphere where N is any odd positive integer. In this case, any consistent labeling ` ∈ L(C) yields

a sequence (x1, . . . , xN) where xi ∈ {1, ψ} for odd i and xi = σ is fixed for even i. Actually any

such labeling of this form is consistent, giving an isomorphism defined in terms of orthonormal

basis elements by

W : HS2(σN+3) → (C2)(N+1)/2

|x〉 7→ |x1〉 ⊗ |x3〉 ⊗ · · · ⊗ |xN〉 .
(7.62)

139

Lemma 7.6.4. Consider the ‘standard’ basis of the M-punctured sphere S2(σM), where M ≥ 4

is even. Then there is only one equivalence class under the relation ∼. Furthermore, the set of

braids {σj}M−1
j=1 generates the relation ∼.

Proof. If two fusion-consistent labelings x, x′ differ only in location 2j+1, they can be connected

by σ2j+1: the relevant braid matrix is

B(σ, σ) =
e−3πi/8

√
2

(
i 1

1 i

)
.

We have x⇔σ2j+1
x′, and it follows that there is only one equivalence class under ∼.

Now consider a locality-preserving automorphism U of HS2(σN+3) and its associated fam-

ily ~π = {πCj} of permutations. Because only sequences x with x2j = σ for all j are fusion-

consistent, and ~π is a permutation on L(C), we conclude that πC2j(σ) = σ for all j. In other

words, we can essentially ignore labels carrying even indices. For odd indices, only labels

x2j+1 ∈ {1, ψ} are allowed, which means that πC2j+1 ∈ {id, (ψ, 1)} either leaves the label invari-

ant or interchanges ψ and 1. In conclusion, ~π = {πCj}Nj=1 are of the form πCj ∈ {id, (ψ, 1)} for

odd j, and πCj = id for even j.

For odd j = 2k + 1, we obtain the constraint

ϕ(x) = η2k+1(x1, . . . , x̂2k+1, . . . , xN) + f2k+1(x2k+1) for k = 0, . . . , (N − 1)/2

where f2k+1 ∈ Iso

(
σ

σ · σ
σ → σ

σ πC2k+1(·) σ
σ

)
given that for even labels

πC2m(x2m) = x2m = σ. Let us write

ϕ(x) = η(x) +

(N+1)/2∑
m=0

f2m+1(x2m+1) (7.63)

and show that η(x) = η is actually independent of the labeling x. Indeed, we can write

η(x) =
(
ϕ(x)− f2k+1(x2k+1)

)
−

(N+1)/2∑
m,m 6=k

f2m+1(x2m+1)

= η2k+1(x1, . . . , x̂2k+1, . . . , xN)−
(N+1)/2∑
m,m 6=k

f2m+1(x2m+1)

Since this holds for all k, we conclude that η(x) = η(x̂1, x2, x̂3, x4, . . .) is a function of the even

entries only. But the latter are all fixed as x2m = σ, hence η(x) = η is simply a global phase.

140

We can now combine these results into a general statement concerning locality-preserving

automorphisms of the M -punctured sphere S2(σM). Again, since dimHS2(σM) = 0 for odd M

and dimHS2(σ2) = 1, we are only concerned with the cases where M = N + 3 ≥ 4 is even. Let

{|x〉}x∈L(C) be a basis of HS2(σM). Then such an automorphism must act on HS2(σM) as

U |x〉 = eiϕ(x)|~π(x)〉, where ϕ(x) = η +

(N+1)/2∑
m=0

f2m+1(x2m+1)

and

f2k+1 ∈ Iso

(
σ

σ · σ
σ → σ

σ πC2k+1(·) σ
σ

)
=
{(
f(1), f(ψ)

)}
= {(0, 0), (0, π)}.

More explicitly, we have

U |x〉 = eiη

(N+1)/2∏
m=1

eif2m+1(x2m+1)

 |πC1(x1), x2, π
C3(x3), x4, . . . , π

CN (xN)〉.

In particular, under the isomorphism (7.62), we get

WUW−1 = eiη
(N+1)/2⊗
m=1

Um where Um|a〉 = eif2m−1(a)|πC2m−1(a)〉 .

From Section 7.6.2, we know that Um is a single-qubit Pauli for each m up to a global phase.

This concludes the proof of Theorem 7.6.2.

7.7 Abelian anyon models

Our goal in this section is to characterize topologically protected gates in general abelian anyon

models. For simplicity, we will restrict our attention to closed 2-manifolds Σ (see Fig. 7.1).

We have seen in Lemma 7.3.1 that in an arbitrary anyon model, protected gates permute the

idempotents along closed loops. In this section we show that for the case of abelian anyon

models, the protected gates can only permute the labels of string operators along closed loops

(up to phases), which refines Lemma 7.3.1 for abelian models. To formalize this notion, we

introduce the generalized Pauli and Clifford groups in Section 7.7.1. The main result of this

Section, can then be stated as follows:

Theorem 7.7.1. For an abelian anyon model, any locality-preserving unitary automorphism U

acting on HΣ has logical action [U] ∈ Clifford?Σ.

141

For abelian anyon models, the set A of particles is an abelian group and the fusion rules

(i.e., the Verlinde algebra (7.7)) are given by the group product, N c
ab = 1 if and only if c = ab

andN c
ab = 0 otherwise. In other words, any two particles a and b fuse to a unique particle c = ab,

and the identity element 1 ∈ A is the only particle satisfying 1a = a for all a ∈ A. Another

requirement is that the S matrix is composed entirely of phases (divided by the quantum

dimension D), and S1a = Sa1 = 1/D for all a ∈ A. Furthermore, the involution a 7→ a defining

the antiparticle associated to a ∈ A is simple the inverse a = a−1 with respect to the group

multiplication. Note that, by the fundamental theorem of finitely generated abelian groups,

the group A is isomorphic to ZN1 × ZN2 × · · · × ZNr for some prime powers Nj. The number

N = lcm(N1, . . . , Nr) will play an important role in the following, determining e.g., the order

of a protected gate.

It is well known that for abelian anyons a and b, and two inequivalent loops C and C ′ whose

minimal intersection number is 1 in the manifold Σ the relation

[Fb(C
′)][Fa(C)][Fb(C

′)][Fa(C)] = DSab[id] (7.64)

holds. As we will see, this provides an additional constraint on the logical action of a protected

gate U . The following consistency condition must hold

Lemma 7.7.2. Consider the action of a locality preserving unitary automorphism of the code

on the string operators of a pair of conjugate loops C and C ′, such that

ρU([Fb(C)]) =
∑
d

Λb,d[Fd(C)], ρU([Fb(C
′)]) =

∑
d

Λ′b,d[Fd(C
′)]. (7.65)

Then the matrices Λ and Λ′ must satisfy the following consistency condition

Λa,c Λ′b,d (Scd − Sab) = 0 ∀a, b, c, d ∈ A. (7.66)

Proof. Since in an abelian anyon model every string operator [Fa(C)] is unitary the rela-

tion (7.64) is equivalent to the commutation relation

[Fb(C
′)][Fa(C)] = DSab[Fa(C)][Fb(C

′)].

Conjugating this by U and rearranging terms yields

0 =
∑
c,d

Λa,c Λ′b,d (DScd −DSab) [Fc(C)][Fd(C
′)]. (7.67)

The claim follows from linear independence of the logical operators [Fc(C)][Fd(C
′)].

142

Invoking our previous result of Lemma 7.3.1, the following lemma is implied:

Lemma 7.7.3. The anyon labels of string operators along the loop are permuted by U

Λb,d = eiφbδd,π̃(b), (7.68)

for some phase φb, and where π̃ is a permutation of anyon labels.

Proof. Recall from (7.29) that

Λb,d =
∑
a

Sb,a
S1,a

S1,πC(a)Sd,πC(a) =
∑
a

Sb,aSd,πC(a), (7.69)

where πC is the permutation of the central idempotents associated with loop C, where the

second equality holds for abelian anyons. An analogous equation holds for loop C ′. Now sum

over all a ∈ A in (7.66). To evaluate the sum, we require
∑

a Λa,c and
∑

a Λa,cSab. Firstly,∑
a

Λa,c =
∑
a,g

Sa,gSc,πC(g) = D
∑
g

δg,1Sc,πC(g) = DSc,πC(1),

where we used unitarity of the S-matrix, δ1z =
∑

x Sx1Sxz =
∑

x Sxz/D. Secondly,∑
a

Λa,cSab =
∑
a,g

Sa,gSc,πC(g)Sab =
∑
a,g

Sa,gSc,πC(g)Sab =
∑
g

δg,bSc,πC(g) = Sc,πC(b).

Therefore (7.66) implies

(
DScdSc,πC(1) − Sc,πC(b)

)
Λ′b,d = 0 ∀b, c, d ∈ A. (7.70)

For any B ∈ A, there must exist at least one anyon D ∈ A such that Λ′B,D 6= 0. Then

DScDSc,πC(1) − Sc,πC(B) = 0 ∀c ∈ A. (7.71)

For each D′ 6= D, there must be some C ∈ A such that SCD 6= SCD′ . Therefore substituting

into (7.70) the values b = B, c = C and d = D′, the term in brackets must be non-zero, implying

Λ′B,D′ = 0 for all D′ 6= D. Unitarity of U yields the claim for loop C ′.

7.7.1 The generalized Pauli and Clifford groups

Consider the case where A = ZN1 × · · · × ZNr and set N = lcm(N1, . . . , Nr). We define the

following group associated with the surface Σ.

143

Definition 7.7.4 (Pauli group). Consider a genus-g surface Σ and let G = {Cj}3g−1
j=1 be the loops

associated with generators of the mapping class group as in Fig. 7.1. The Pauli group PauliΣ

associated with Σ is

PauliΣ :=
〈 {
λ[Fa(C)]

∣∣ λ ∈ 〈e2πi/N〉, a ∈ A, C ∈ G
} 〉

,

i.e., the set of logical operators generated by taking products of string-operators associated

with G, where 〈e2πi/N〉 is the subgroup of U(1) consisting of N-th roots of unity.

According to Eq. (7.64), we can always reorder and write each element P ∈ PauliΣ in the

standard form

P = λ[Fa1(C1)] · · · [Fa3g−1(C3g−1)] for some λ ∈ 〈e2πi/N〉, aj ∈ A .

This shows that the group PauliΣ is finite. Furthermore, since aN = 1 for every a ∈ A, we

conclude that PN = λ[id] is proportional to the identity up to a phase λ ∈ 〈e2πi/N〉. That is,

every element of the Pauli group PauliΣ has order dividing N .

Given this definition, we can proceed to give the definition of the Clifford group.

Definition 7.7.5 (Clifford group). The Clifford group associated with Σ is the group of logical

unitaries

CliffordΣ := {λ[U] | [U]PauliΣ[U]−1 ⊂ PauliΣ, λ ∈ 〈e2πi/N〉} .

In this definition, [U] is any logical unitary on the code space.

We can define a ‘homology-preserving subgroup’ of CliffordΣ. To do so, we first introduce

the following subgroup of PauliΣ associated with a loop on Σ.

Definition 7.7.6 (Restricted Pauli group). Let C ∈ G be a single closed loop. We set

PauliΣ(C) :=
〈 {
λ[Fa(C)]

∣∣ λ ∈ 〈e2πi/N〉, a ∈ A
} 〉

,

i.e., the subgroup generated by string-operators associated with the loop C.

It is straightforward to check that for any C ∈ G, the subgroup PauliΣg(C) ⊂ PauliΣg is nor-

mal; furthermore, any P ∈ PauliΣg(C) has the simple form of a product P = λ[Fa1(C)] · · · [Far(C)].

Given this definition, we can define a subgroup of Clifford group elements as follows:

144

Definition 7.7.7 (Homology-preserving Clifford group). The homology-preserving Clifford

group associated with Σ is the subgroup

Clifford?Σ := {λ[U] | [U]PauliΣ(C)[U]−1 ⊂ PauliΣ(C) for all C ∈ G, λ ∈ 〈e2πi/N〉} .

Note that this is a proper subgroup, i.e., Clifford?Σ (CliffordΣ, as can be seen from the

following example.

Example 7.7.8. Consider for example Kitaev’s D(Z2)-code on a torus Σ2 (cf. Example 7.2.1).

In this case, there are two inequivalent homologically non-trivial cycles C1 and C2. In the

language of stabilizer codes, the logical operators (X̄1, Z̄1) = (Fe(C1), Fm(C2)) and (X̄2, Z̄2) =

(Fe(C2), Fm(C1)) are often referred to as the logical Pauli operators associated with the first and

second logical qubit, respectively. Consider the logical Hadamard H̄1 on the first qubit, which

acts as

H̄1X̄1H̄
†
1 = Z̄1 and H̄1Z̄1H̄

†
1 = X̄1

but leaves X̄2 and Z̄2 invariant. Then H̄1 belongs to the Clifford group, H̄1 ∈ CliffordΣ. However,

H̄1 6∈ Clifford?Σ because X̄1 and Z̄1 belong to different homology classes (specified by C1 and C2,

respectively).

In the following, we make use of the existence of loops conjugate to a given loop C. Note

that this is not necessarily given, but works in the special case where C is one of the 3g − 1

curves {Cj}3g−1
j=1 associated with the generators of the mapping class group of the genus-g

surface Σg (cf. Fig. 1). We are now ready to prove Theorem 7.7.1, i.e., that a protected gate U

has logical action [U] ∈ Clifford?Σ.

Proof. By Lemma 7.7.3, we have that
∑

c Λa,cFc = λFb for some λ ∈ U(1) and b ∈ A. It

remains to show that λ is an N -th root of unity. We have

λN [id] = λN [Fb(C)N] = [λFb(C)]N = [U][Fa(C)]N [U †] = [id]

because the string operators Fa(C) have order dividing N , thus we must have λN = 1. Because

a and C were arbitrary, this concludes the proof that [U] ∈ Clifford?Σ.

145

7.8 Appendix: Density on a subspace and protected

gates

Lemma 7.8.1. Let H0 be an invariant subspace under the mapping class group representation,

and suppose the action of MCGΣ is dense in the projective unitary group PU(H0). Let H1 be the

orthogonal complement of H0 in HΣ. Assume that the decomposition H0 ⊕H1 stems from the

gluing axiom in the sense that Hj =
⊕

~a∈Λj
HΣ′(~a) for j = 0, 1, where Λ0,Λ1 are disjoint set of

labelings of the boundary components of the surface Σ′ obtained by cutting Σ along a family ~C

of pairwise non-intersecting curves. If dimH1 < dimH0 (or a similar assumption), then any

protected gate U leaves H0 invariant and acts as a global phase on it.

Proof. Extending ~C to a DAP-decomposition C, the unitary U expressed in the (suitably or-

dered) basis BC takes the form

U =

(
U00 U01

U10 U11

)
,

where Ujk describes the operator PHj
UPHk

obtained by projecting the domain and image of U

to Hk and Hj, respectively.

Consider the Schur decomposition U00 = W00ΓW†
00 of U00, i.e., W00 is a unitary matrix

and Γ is upper triangular. There are different cases to consider:

(i) If Γ is diagonal with a single eigenvalue λ, then

U =

(
λI U01

U10 U11

)
.

Assume for the sake of contradiction that λ = 0. Writing dj = dimHj, the d1×d0-matrix

U10, must have exactly d0 non-zero values, each in a different row because U ∈ ∆. This

is only possible if d1 > d0, contradicting our assumption.

We conclude that λ 6= 0. But then the condition U ∈ ∆ requires that λ ∈ U(1) and

U01 = U10 = 0 (since we cannot have more than one non-zero entry in each column or

row).

(ii) Γ has a non-zero off-diagonal element Γj,k, j < k. We will show that this is not consistent

with the fact that U is a protected gate (i.e., leads to a contradiction). By reordering

basis elements of BC, we can assume without loss of generality that Γ1,2 6= 0. By using,

e.g., Solovay-Kitaev on H0, we find a product Ṽ = V(ϑ1) · · ·V(ϑm) of images of mapping

146

class group elements approximating V = W†
00 ⊕W11, where W11 is an arbitrary unitary

on H1.

Consider the matrix VUV†. We have (VUV†)j,k = Γj,k for j, k = 1, . . . , dimH0. In

particular, (VUV†)1,2 6= 0 and (VUV†)2,1 = 0.

We claim that we must have (VUV†)1,1 = (VUV†)2,2 = 0. To show this, assume for the

sake of contradiction that one of these diagonal entries is non-zero. Then VUV† 6∈ ∆

since it has two non-zero entries in the same row or column. But this implies ṼUṼ† 6∈ ∆

since ṼUṼ† ≈ VUV†, a contradiction to the fact that U ∈ ∆ϑ1···ϑm .

Now letXj,k = (VUV†)j,k for j, k ∈ {1, 2} be the principal minor 2×2 submatrix. We have

established that its only non-zero entry is X1,2. Using the Hadamard matrix H, we then

have (HXH†)1,1 = X1,2/2 6= 0 and (HXH†)1,2 = −X1,2/2 6= 0. Let H = H ⊕ I(dimH0−2).

By Solovay-Kitaev, we can find a product Ṽ′ = V(ϑ′1) · · ·V(ϑ′`) of images of mapping

class group elements approximating V′ = H ⊕W′
11, where W′

11 is an arbitrary unitary

on H1. Then we have

(V′VUV†(V′)†)1,1 = X1,2/2 6= 0

(V′VUV†(V′)†)1,2 = −X1,2/2 6= 0 ,

which shows that V′VUV†(V′)† 6∈ ∆. By continuity, this shows that Ṽ′ṼUṼ†(Ṽ′)† 6∈ ∆,

contradicting the fact that U ∈ ∆ϑ′1···ϑ′`ϑ1···ϑm .

(iii) Γ is diagonal with distinct eigenvalues: in this case we can apply the same kind of argument

as in the proof of Corollary 7.4.2.

Acknowledgements

RK and SS gratefully acknowledge support by NSERC, and MB, FP, and JP gratefully acknowl-

edge support by NSF grants PHY-0803371 and PHY-1125565, NSA/ARO grant W911NF-09-1-

0442, and AFOSR/DARPA grant FA8750-12-2-0308. RK is supported by the Technische Uni-

versität München – Institute for Advanced Study, funded by the German Excellence Initiative

and the European Union Seventh Framework Programme under grant agreement no. 291763.

OB gratefully acknowledges support by the ERC (TAQ). The Institute for Quantum Informa-

tion and Matter (IQIM) is an NSF Physics Frontiers Center with support by the Gordon and

Betty Moore Foundation. RK and SS thank the IQIM for their hospitality. We thank Jeongwan

Haah, Olivier Landon-Cardinal and Beni Yoshida for helpful discussions.

147

Chapter 8

Conclusion

In summary, the main objective of this thesis was two-fold: first, to provide sufficient theo-

retical background to understand topological quantum computation; and second, to apply this

theory to characterize certain fault-tolerant operations for topological quantum computation

called protected gates. The former required investing in category theory for the purposes of

axiomatically defining a unitary modular tensor category, which served as a mathematically

formal and rigorous way to model the physical properties of anyons. Having developed the

sufficient categorical language, a topological quantum field theory was defined which was then

used to understand topological quantum computation. The entirety of this thesis focused on

the particular setting of two dimensional space where all anyon dynamics were assumed to take

place. To model this, a (2 + 1)- dimensional topological quantum field theory was utilized.

More generally, (n+ 1)-dimensional topological quantum field theories may be considered, and

be particularly relevant for physical purposes in the case of n = 1 and n = 3. Such theories

could be used to model more general anyonic excitations of a physical system, where anyons not

only manifest as point like entitties but may be “string-like” or “surface’-like”. Another avenue

of generalization beyond this setting is to consider more general surfaces with boundaries and

corners. In this case, a richer set of anyon dynamics on these surfaces can result where certain

anyon types may “condense” or become “confined” on various boundary components. Such

theories would require deeper mathematical machinery, and although progress in this regard

has been made in the field (see [9, 3, 31, 32]) it seems that considerable progress is still yet to

be made.

The second objective of this thesis was to motivate and understand the results obtained in

“Protected gates for topological quantum field theories”. Here, protected gates were defined

to be certain logical operations that act on relevant Hilbert spaces which are also locality-

preserving operations. These assumptions were made to conform to certain fault-tolerant con-

siderations in an attempt to understand permissible operations one may be able to perform in

148

a robust way. The main result here was that, for any given anyon model and choice of surface,

the set of protected gates is finite (under a suitable notion of equivalent protected gates). Thus,

computational universality cannot be achieved using protected gates alone as one may ideally

desire. Therefore, alternative means which go beyond locality-preserving operations must be

utilized in order to potentially achieve computational universality. Furthermore, it may be of

interest to more explicitly characterize the form of protected gates for various models to under-

stand precisely what group of operations are permissible. Again, this study was restricted to

the two-dimensional setting, and asking analogous questions in the context of dimensions other

than two remains an open problem.

It is important to note that these results characterizing protected gates were derived using

just the underlying topological quantum field theory at play. That is, no reference was made

to an explicit Hamiltonian which may realize a certain topological phase of matter of interest.

By ignoring such low-level, microscopic details of the system a sufficiently general theory to

characterize protected gates for arbitrary models was developed. At this expense, however, no

precise method on how to actually implement a particular protected gate can be given. In order

to so, it seems necessary to refer to specific Hamiltonian realizations of a topological phase of

matter (as done in [28, 6, 34]). Hence, these results merely provide restrictions on protected

gates that are permissible mathematically, and not necessarily implementable physically. More-

over, given a mathematical description of some Hamiltonian which realizes a topological phase

of matter, it ultimately becomes a question of physics whether or not such a system can be

found or manifested in nature.

149

APPENDIX

The Stabilizer Formalism

Consider the single qubit unitary matrices commonly referred to as the Pauli matrices defined

as:

I =

(
1 0

0 1

)
, σx =

(
0 1

1 0

)
, σy =

(
0 −1

1 0

)
, σz =

(
1 0

0 −1

)
.

It is worth noting that the operator Y is commonly defined instead as the operator σ̃y = iσy,

but the definition of σy introduced here will be convenient for our purposes. These operators

satisfy the following properties:

σx2 = σz2 = −σy2 = I

σxσy = −σyσx = σz,

σyσx = −σzσy = σx,

σzσx = −σxσz = σy.

These properties give the set P = {±I,±σx,±σy,±σy} a group structure under the usual

matrix multiplication. Define Pn := {U1 ⊗ · · · ⊗ Un | Uj ∈ P, 0 ≤ j ≤ n}, as the set of n-fold

tensor products of Pauli operators from P . The set Pn also forms a group structure under the

natural multiplication and is called the Pauli group with order |Pn| = 22n+1.

An important property about the Pauli operators is that they span the space of unitary

operators acting on a single qubit. That is, any single qubit unitary U can be expressed as

U = cII + cxσ
x + cyσ

y + czσ
z,

where the vector (cI , cx, cy, cz) consists of complex numbers and is of unit norm. Similarly, any

unitary operator acting on a n-qubit Hilbert space can be expressed in terms of elements of the

Pauli group Pn. Moreover, the Pauli Group Pn also satisfies the following properties:

150

1. Every M ∈ Pn in unitary: M † = M−1.

2. Every M ∈ Pn satisfies M2 = ±I⊗n.

3. If M2 = I⊗n, then M = M †; if M2 = −I, then M = −M †.

4. For any M,N ∈ Pn, either MN = NM (they commute) or MN = −NM (they anti-

commute).

Consider some abelian subgroup S ⊂ Pn, consisting of elements that all commute with one

another. Then all elements of S can be simultaneously diagonalized. The subspace HS ⊂ H2n

defined as

HS := {|ψ〉 ∈ H2n | M |ψ〉 = |ψ〉 for all M ∈ S}

consists of the simultaneous eigenspace with eigenvalue +1 of elements of S. The space HS is

called the stabilizer code associated with S, and S is called the stabilizer of the code.

A generating set of S is a collection of elements of S such that each element of S can be

expressed as some product of elements from the generating set. In addition, it is required that

the elements of the generating set be independent, meaning that no element of the generating

set can be expressed as a product of the other elements of the generating set. It can be shown

(as in [22]) that if S has n− k generators, then the codes space HS has dimension 2k implying

that it can effectively encode k qubits. In what follows, the elements of a generating set of a

stabilizer S will be indexed as {M1, . . . ,Mn−k}.

The utility of the stabilizer formalism for quantum error correction comes from the fact that

the elements of S serve as operators for detecting possible errors that may occur to an encoded

state of |ψ〉 ∈ HS. In general, an error can be represented in terms elements Ea ∈ Pn. Then

since every Ea either commutes or anti-commutes with some generator Mj ∈ S, the following

two cases may occur.

If Ea anti-commutes with some Mj, then for |ψ〉 ∈ HS,

MjEa|ψ〉 = −EaMj|ψ〉 = −Ea|ψ〉,

which implies that the error can be detected if the the erred state Ea|ψ〉 is acted on by Mj.

If Ea commutes with some Mj, then for |ψ〉 ∈ HS,

MjEa|ψ〉 = EaMj|ψ〉 = Ea|ψ〉,

and the error may go undetected when the erred state Ea|ψ〉 is acted on by Mj.

151

A more thorough error syndrome can be provided by measuring each of the n− k stabilizer

generators. That is for a particular error Ea, consider the set of values {sa,j}, where each

sa,j ∈ {0, 1} satisfies

MjEa = (−1)sa,jEaMj.

If it is the case that for every a 6= b, with sa,j 6= sb,j for all j, then the code is considered to be

non degenerate and there will be no ambiguity in what error occurred allowing for the error to

be corrected by measuring the n− k generators of S.

Another condition which must be satisfied by the stabilizer S in order to ensure complete

error recovery due to arbitrary errors is that, for each possible error Ea, Eb and any |ψ〉 ∈ HS,

〈ψ|E†aEb|ψ〉 = Cab,

such that the constants Cab are independent of |ψ〉. This condition can be equivalently shown

to hold if one of the following holds for each possible pair of errors Ea and Eb:

(1) E†aEb ∈ S,

(2) There exists an M ∈ S that anti-commutes with E†aEb.

In this way, error recovery may fail if both conditions are violated. That is, if there exists

some E†aEb that commutes with every element of S, but yet E†aEb 6∈ S. In this circumstance,

the operator E†aEb that preserves the code space HS but still modifies it in a non trivial way,

implying that encoded information may still be transformed. In addition, both Ea and Eb will

have the same syndrome leaving an inherent ambiguity on how either error should be corrected,

and any mistake in diagnosis can apply a nontrivial transformation to the encoded space.

152

References

[1] M. Atiyah. Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math.,

68:175–186, 1989.

[2] B. Bakalov and A. Kirillov. Lectures on tensor categories and modular functors. University

Lecture Series. American Mathematical Society, 2001.

[3] S. Beigi, P. W. Shor, and D. Whalen. The quantum double model with boundary: Con-

densations and symmetries. Communications in Mathematical Physics, 306(3):663–694,

2011.

[4] H. Bombin. Topological order with a twist: Ising anyons from an abelian model. Phys.

Rev. Lett., 105:030403, 2010.

[5] H. Bombin and M. A. Martin-Delgado. Topological quantum distillation. Phys. Rev. Lett.,

97, 2006.

[6] H. Bombin and M. A. Martin-Delgado. Family of non-abelian Kitaev models on a lattice:

Topological condensation and confinement. Phys. Rev. B, 78:115421, Sep 2008.

[7] H. Bombin and M.A. Martin-Delgado. Topological computation without braiding.

Phys.Rev.Lett., 98:160502, 2007.

[8] S. Bravyi, M. Hastings, and F. Verstraete. Lieb-Robinson Bounds and the Generation of

Correlations and Topological Quantum Order. Physical Review Letters, 97(5):050401, July

2006.

[9] S. Bravyi and A. Y. Kitaev. Quantum codes on a lattice with boundary. 1998. arXiv:quant-

ph/9811052.

[10] S. Bravyi and A. Y. Kitaev. Universal quantum computation with ideal Clifford gates and

noisy ancillas. Phys. Rev. A, 71:022316, Feb 2005.

[11] S. Bravyi and R. König. Classification of topologically protected gates for local stabilizer

codes. Phys. Rev. Lett., 110:170503, Apr 2013.

[12] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. Local unitary transformation, long-

range quantum entanglement, wave function renormalization, and topological order. Phys-

ical Review B, 82(15):155138, October 2010.

153

[13] B. Coecke et. al. New Structures for Physics. Lecture Notes for physics. Springer, 2011.

[14] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. J. Math.

Phys., 43(9):4452, 2002.

[15] B. Eastin and E. Knill. Restrictions on transversal encoded quantum gate sets. Phys. Rev.

Lett., 102:110502, Mar 2009.

[16] D. V. Else, I. Schwarz, S. D. Bartlett, and A. C. Doherty. Symmetry-protected phases for

measurement-based quantum computation. Phys. Rev. Lett., 108:240505, Jun 2012.

[17] B. Farb and D. Margalit. A Primer on Mapping Class Groups. Princeton University Press,

2011.

[18] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes: Towards

practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012.

[19] A. G. Fowler, A. M. Stephens, and P. Groszkowski. High threshold universal quantum

computation on the surface code. Phys. Rev. A, 80:052312, 2009.

[20] M. Freedman, C. Nayak, K. Walker, and Z. Wang. On Picture (2+1)-TQFTs, chapter 2,

pages 19–106. August 2008.

[21] M. H. Freedman, A. Y. Kitaev, and Z. Wang. Simulation of topological field theories by

quantum computers. Commun. Math. Phys., 227:587–603, 2002.

[22] D. Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California

Institute of Technology, 1997.

[23] J. Haah. Local stabilizer codes in three dimensions without string logical operators. Phys.

Rev. A, 83:042330, 2011.

[24] J. Haah. An invariant of topologically ordered states under local unitary transformations,

July 2014. arXiv:1407.2926.

[25] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[26] Walker. K. On Witten’s 3-manifold invariants, 1991. Lecture notes,

http://canyon23.net/math/1991TQFTNotes.pdf.

[27] A. Kitaev and J. Preskill. Topological entanglement entropy. Phys. Rev. Lett., 96:110404,

Mar 2006.

[28] A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2,

2003.

[29] A. Y. Kitaev. Anyons in an exactly solved model and beyond. Ann. Phys., 321(1):2, 2006.

[30] A. Y. Kitaev and L. Kong. Models for gapped boundaries and domain walls. Communi-

cations in Mathematical Physics, 313(2):351–373, 2012.

154

[31] A. Y. Kitaev and L. Kong. Models for Gapped Boundaries and Domain Walls. Commu-

nications in Mathematical Physics, 313(2):351–373, June 2012.

[32] L. Kong and X.-G. Wen. Braided fusion categories, gravitational anomalies, and the math-

ematical framework for topological orders in any dimensions, May 2014. arXiv:1405.5858.

[33] S. M. Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.

Springer New York, 1998.

[34] M. A. Levin and X.-G. Wen. String-net condensation: A physical mechanism for topolog-

ical phases. Phys. Rev. B, 71:045110, Jan 2005.

[35] M. A. Levin and X.-G. Wen. Detecting topological order in a ground state wave function.

Phys. Rev. Lett., 96:110405, Mar 2006.

[36] Elliott H. Lieb and Derek W. Robinson. The finite group velocity of quantum spin systems.

Communications in Mathematical Physics, 28(3):251–257, 1972.

[37] K. Michnicki. 3-d quantum stabilizer codes with a power law energy barrier. 2012.

arXiv:1208.3496.

[38] G. Moore and N. Seiberg. Polynomial equations for rational conformal field theories.

Physics Letters B, 212(4):451–460, October 1998.

[39] F. Pastawski and B. Yoshida. Fault-tolerant logical gates in quantum error-correcting

codes, August 2014. arXiv:1408.1720.

[40] J. Preskill. Lecture notes on quantum computation, 2004. available at

http://www.theory.caltech.edu/people/preskill/ph229/ lecture.

[41] G. Segal. The definition of conformal field theory, volume 308. London Math. Soc. Lecture

Note Ser., Cambridge University Press, 2004. preprint.

[42] V. G. Turaev. Quantum invariants of knots and 3-manifolds. Studies in Mathematics. De

Gruyter, 2010.

[43] E. Verlinde. Fusion rules and modular transformations in 2d conformal field theory. Nucl.

Phys. B, 300:360–376, 1988.

[44] E. Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys.,

121(3):351–399, 1989.

155

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgments
	Introduction
	Outline

	The Toric code
	The Toric Code
	The Hamiltonian
	The stabilizer group
	The code space
	Errors and anyons
	An error correction protocol
	The spectral gap
	The anyon model: Z2Z2
	Logical operations
	Physical observables and the flux basis of Hg

	Topological Quantum Field Theory
	Category Theory
	Categories and diagrams
	Functors and natural transformations

	Modular Tensor Categories
	Tensor categories
	Semisimple categories
	Rigid categories
	Braided categories
	Ribbon categories
	Traces and quantum dimensions
	Modular categories
	Unitary modular tensor categories (UMTC)

	The Verlinde algebra
	TQFTs as monoidal functors
	Cobordism categories
	(2+1)-TQFTs

	Topology
	Topology of surfaces
	Classification of surfaces
	DAP-decompositions
	The Mapping Class Group

	Topological quantum computation
	The topological Hilbert space H:=TC()
	The flux basis of H
	The Gluing Axiom
	Elementary surfaces
	The 4-punctured sphere
	The torus

	Protected gates
	Protected gates: definition and problem statement
	Characterizing protected gates
	String operators
	Constraints from fusion consistency
	Constraints from basis changes
	Additional constraints

	Main Results

	``Protected gates for topological quantum field theories"
	Introduction
	TQFTs: background
	String-like operators and relations
	The Verlinde algebra
	Bases of the Hilbert space H
	Open surfaces: labeled boundaries
	The gluing axiom
	The mapping class group

	Constraints on locality-preserving automorphisms
	A local constraint from a simple closed loop
	Global constraints from DAP-decompositions, fusion rules and the gluing axiom
	Global constraints from basis changes

	Global constraints from the mapping class group
	Basis changes defined by the mapping class group
	Density of the mapping class group representation and absence of protected gates
	Characterizing diagonal protected gates
	Finiteness of the set of protected gates
	Necessity of restricting to equivalence classes

	Global constraints from F-moves on the n-punctured sphere
	Determining phases for the four-punctured sphere: fixed boundary labels
	Determining phases for the four-punctured sphere in general
	Localization of phases for higher-genus surfaces
	Characterizing protected gates on the M-punctured sphere using F-moves

	The Fibonacci and Ising models
	The Fibonacci model
	The Ising model

	Abelian anyon models
	The generalized Pauli and Clifford groups

	Appendix: Density on a subspace and protected gates

	Conclusion
	APPENDIX
	References

