
Personal Data Management
in the

Internet of Things

by

Ray Manpreet Singh Matharu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2015

c⃝ Ray Manpreet Singh Matharu 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Due to a sharp decrease in hardware costs and shrinking form factors, networked sensors
have become ubiquitous. Today, a variety of sensors are embedded into smartphones,
tablets, and personal wearable devices, and are commonly installed in homes and buildings.
Sensors are used to collect data about people in their proximity, referred to as users. The
collection of such networked sensors is commonly referred to as the Internet of Things.
Although sensor data enables a wide range of applications from security, to efficiency, to
healthcare, this data can be used to reveal unwarranted private information about users.
Thus it is imperative to preserve data privacy while providing users with a wide variety of
applications to process their personal data.

Unfortunately, most existing systems do not meet these goals. Users are either forced
to release their data to third parties, such as application developers, thus giving up data
privacy in exchange for using data-driven applications, or are limited to using a fixed set
of applications, such as those provided by the sensor manufacturer. To avoid this trade-
off, users may chose to host their data and applications on their personal devices, but
this requires them to maintain data backups and ensure application performance. What
is needed, therefore, is a system that gives users flexibility in their choice of data-driven
applications while preserving their data privacy, without burdening users with the need to
backup their data and providing computational resources for their applications.

We propose a software architecture that leverages a user’s personal virtual execution
environment (VEE) to host data-driven applications. This dissertation describes key soft-
ware techniques and mechanisms that are necessary to enable this architecture. First,
we provide a proof-of-concept implementation of our proposed architecture and demon-
strate a privacy-preserving ecosystem of applications that process users’ energy data as
a case study. Second, we present a data management system (called Bolt) that provides
applications with efficient storage and retrieval of time-series data, and guarantees the
confidentiality and integrity of stored data. We then present a methodology to provision
large numbers of personal VEEs on a single physical machine, and demonstrate its use with
LinuX Containers (LXC). We conclude by outlining the design of an abstract framework
to allow users to balance data privacy and application utility.

iii

Thesis Statement

If application hosting and data storage services hosted in the cloud were to be provided to
users, it would be possible to build an ecosystem of data-driven applications that preserves
users’ data privacy, provides data consolidation, data durability, data integrity, application
flexibility, acceptable application performance, and scales with increasing volume of sensor
data, growing number of devices, and rising number of applications.

iv

Acknowledgements

I thank my advisors Prof. S. Keshav and Prof. Tim Brecht for their advice, guidance,
and support, which have shaped my research interests and career path. This dissertation
could not have been completed without their mentorship and the invaluable lessons and
skills that I have learned from them over the course of my Ph.D. I thank them for their
constant help and encouragement with regards to understanding, formulating, validating,
and critiquing my research projects.

I thank Aman Kansal, Amar Phanishayee, and Ratul Mahajan, my mentors at Mi-
crosoft Research, for helping me understand the key elements of system design. The nine
months that I spent at Microsoft Research as an intern gave me the opportunity to work
on exciting research problems and to design and develop systems that were deployed in
the real world.

I also thank my committee members Jon Crowcroft, Urs Hengartner, Catherine Rosen-
berg, and Bernard Wong. They helped me improve this dissertation by developing a deeper
understanding of distributed computer systems. I thank my collaborators, colleagues, and
present and past members of the Networks and Distributed Systems (NDS) research group
and the Information Systems and Science for Energy (ISS4E) research group for many
beneficial discussions that we have had throughout the last few years. I am grateful for the
feedback and help that I have received from Omid Ardakanian, Tyler Szepesi, Ben Cassell,
Peter Gao, Tommy Carpenter, Andy Curtis, Earl Oliver, Ankit Pat, and Yashar Ghiassi. I
am fortunate to have received invaluable help and encouragement from my friends, Birjodh
Tiwana, Chanpreet Dhanjal, Anubir Marwaha, and Nitin Goyal. Their continuous help
and motivation has played a key role in the completion of this work.

Finally, I would like to thank the Natural Sciences and Engineering Research Council
of Canada (NSERC) for funding this research through Doctoral scholarships.

v

Table of Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Introduction . 1

1.2 Goals . 3

1.3 Our Vision . 5

1.3.1 Technical Challenges . 7

1.4 Contributions . 7

1.5 Chapter Summary . 8

2 Related Work 10

2.1 Providing Data-Driven Applications . 11

2.1.1 Service-provider Approach . 11

2.1.2 Home PC-based Approach . 12

2.1.3 Personal Data Storage . 14

2.1.4 Personal Data Storage With Limited Computation 16

2.1.5 Personal VEE . 17

2.2 Providing Data Storage and Integrity . 19

2.2.1 Leveraging Untrusted Remote Storage 19

vi

2.2.2 Storing Data Across Devices . 20

2.2.3 Other Systems . 21

2.3 Hosting Large Numbers of Personal VEEs 22

2.3.1 Virtualization Approaches . 22

2.3.2 High Density Hosting . 24

2.3.3 Just-in-time Provisioning of VEEs 25

2.4 Chapter Summary . 27

3 Leveraging Personal VEEs for Energy Data Analytics 29

3.1 Introduction . 29

3.2 System Architecture . 31

3.2.1 Gateway . 32

3.2.2 VHome . 32

3.2.3 Applications . 33

3.2.4 User Interfaces . 35

3.3 Implementation Details . 35

3.3.1 Gateway . 35

3.3.2 VHome . 37

3.3.3 Sample Applications . 42

3.4 Evaluation . 44

3.5 Discussion . 47

3.6 Chapter Summary . 49

4 A Storage System for Sensor Data 51

4.1 Introduction . 51

4.2 Design Requirements . 53

4.2.1 Example Applications . 53

4.2.2 Data Management Requirements 55

vii

4.3 Design Overview . 57

4.3.1 Security Assumptions and Guarantees 58

4.3.2 Key Techniques . 58

4.4 Bolt Design . 61

4.4.1 APIs . 61

4.4.2 Writing Stream Data . 61

4.4.3 Uploading Stream Data . 64

4.4.4 Granting and Revoking Read Access 65

4.4.5 Reading Stream Data . 66

4.5 Implementation . 67

4.6 Evaluation . 67

4.6.1 Microbenchmarks . 68

4.6.2 Applications . 75

4.7 Discussion . 81

4.8 Chapter Summary . 82

5 Provisioning Large Numbers of Personal VEEs 84

5.1 Introduction . 84

5.2 Problem and Model Formulation . 87

5.2.1 Reactive Policies . 89

5.2.2 Proactive Policies . 93

5.3 Obtaining Model Parameters . 94

5.3.1 LXC as a Case Study . 94

5.3.2 Experimental Setup . 95

5.3.3 Quantifying Density . 95

5.3.4 Impact of Density on Transition Time 98

5.3.5 Deriving the Model Parameters . 100

5.4 Policy Comparison Setup . 101

viii

5.4.1 Simulator Design and Implementation 101

5.4.2 Policy Implementations . 102

5.4.3 Workload Analysis . 104

5.4.4 Metric . 105

5.5 Simulation Results . 106

5.5.1 Fixed Inter-arrival Time, Fixed Duration Workload 106

5.5.2 Stochastic Inter-arrival Time, Fixed Duration Workload 109

5.5.3 Stochastic Inter-arrival Time, Stochastic Duration Workload 110

5.5.4 Summary of Simulation Results . 111

5.6 Characterizing the Policy Space . 112

5.7 Discussion . 114

5.8 Chapter Summary . 115

6 Towards Tussle Based Operating Systems 117

6.1 Introduction . 117

6.2 Design Goals . 119

6.3 Architecture Outline . 120

6.4 Design Challenges . 121

6.4.1 Applications’ Sensor Data Requirements 121

6.4.2 Users’ Data Privacy Requirements 124

6.4.3 Tussle Resolution . 125

6.4.4 Resolution Enforcement . 127

6.5 Discussion . 128

6.5.1 Prior Work . 128

6.5.2 Open Problems . 128

6.6 Chapter Summary . 131

ix

7 Conclusion and Future Work 133

7.1 Summary and Contributions . 133

7.2 Future Work . 136

7.2.1 Tussle Framework for IoT . 136

7.2.2 Virtualization for High Density Hosting 136

7.2.3 Storage Cost Optimization for Time-Series Data 137

7.2.4 Control Architecture for IoT . 137

7.2.5 Semantic Isolation of Applications 138

7.3 Concluding Remarks . 138

References 140

x

List of Tables

2.1 Comparison of existing solutions for providing data-driven applications based
on the design goals. 18

2.2 Examples of existing virtualization solutions. 23

2.3 Proposed and natively supported (denoted “stock”) inactive states for a few
virtualization solutions. 26

3.1 VHome API used by applications to access data. 41

3.2 Comparison of existing solutions for home energy data applications, * de-
notes a partial solution. 45

4.1 Bolt stream APIs: Bolt offers two types of streams: (i) ValueStreams for
small data values (e.g., temperature readings) and (ii) FileStreams for large
values (e.g., images and videos). 62

4.2 Properties specified by applications when performing a stream create or
open operation. 62

4.3 Glossary. 65

4.4 Summary of Bolt’s evaluation. 68

4.5 Percentage of total experiment time spent in various tasks in a sample ex-
periment of 10,000 append operations (of 10 byte values) to a ValueStream. 70

4.6 Storage overhead of local ValueStreams as compared to DiskRaw. 71

4.7 Storage space required for a 1000-day deployment of PreHeat. 78

4.8 Storage space used for 10 homes in DNW for 1000 minutes, and 100 homes
in EDA for 545 days. 80

xi

5.1 Transition matrix (T3×3) and state capacity (Bi) values for LXC. 101

5.2 Variation of request inter-arrival times and durations across the three test
cases. 106

6.1 Glossary. 127

6.2 System resources. 129

xii

List of Figures

1.1 Overview of the personal VEE ecosystem. 5

2.1 Taxonomy of existing systems for providing data-driven applications. . . . 12

2.2 Overview of the HomeOS [76,77] platform. 13

2.3 Overview of the Personal Container approach [139]. 15

3.1 Overview of the proposed system architecture. 31

3.2 Gateway and Envi device. 37

3.3 API access for a cloud-based application. 40

3.4 Screenshots of our Android smartphone application. 43

4.1 Data layout of a ValueStream. A FileStream’s layout differs only in that
the values in the DataLog are pointers to files that contain the data records. 63

4.2 Data layout of a sealed segment in Bolt. 64

4.3 Steps followed during a read operation in Bolt. 67

4.4 Write throughput for ValueStreams shown using a linear scale in (a) and a
logarithmic scale in (b). 70

4.5 Write throughput for FileStreams shown using a linear scale in (a) and a
logarithmic scale in (b). 72

4.6 Read throughput with randomly selected tags for ValueStreams shown using
a linear scale in (a) and a logarithmic scale in (b). 73

4.7 Read throughput for remote ValueStreams with varying chunk size for two
sample Get(tag,tstart,tend) queries with locality of reference. 74

xiii

4.8 Open, index look-up, and DataLog record retrieval latencies (on the loga-
rithmic scale) with increasing number of segments of a local ValueStream,
measured by issuing 10, 000 Get(tag) requests for randomly selected keys. 74

4.9 Read throughput with randomly selected tags for FileStreams shown using
a linear scale in (a) and a logarithmic scale in (b). 75

4.10 Time to retrieve past occupancy data with increasing duration of a PreHeat
deployment. 77

4.11 Retrieving object summaries in DNW from 10 homes for time windows
of 1 hour and 10 hours using Bolt and OpenTSDB. Retrieval times for
OpenTSDB are independent of chunk size. 79

4.12 Time taken to retrieve smart meter data for multiple homes for time windows
of 1 month and 1 year. 81

5.1 Hierarchy of booted, shutdown, and n inactive states. 88

5.2 Proactive idle VEE management using the SlidingWindow policy. 94

5.3 CPU utilization versus the number of booted VMs. 97

5.4 Transition times with increasing number of booted VMs. 99

5.5 Transition times with increasing number of frozen VMs. 100

5.6 Average miss penalty with increasing VM density for fixed inter-arrival time
and duration. 107

5.7 Average miss penalty with increasing VM density for stochastic inter-arrival
time and fixed duration. 109

5.8 Normalized root mean square error (NMRSE) for the ARMA predictor used
by SlidingWindow+ARMA. 111

5.9 Average miss penalty with increasing VM density for stochastic inter-arrival
time and stochastic duration. 112

6.1 Design overview of a tussle-resolving framework. 121

6.2 Data sampling parameters. 124

6.3 Example resolver request. 126

xiv

Chapter 1

Introduction

1.1 Introduction

In recent years, networked sensors have shown unprecedented growth in adoption, primar-
ily driven by their decreasing cost and form factor. For instance, homes and buildings
are increasingly outfitted with sensors that measure and report temperature, water and
energy consumption, or detect motion, water leaks, open doors and windows [3,122]. It is
estimated that 90 million homes in the US will be equipped with sensors by 2017 [1, 40].
Similarly, smart meters (which can be regarded as sensors that measure energy consump-
tion) have also been widely deployed. Approximately 36 million homes in the US [42] (and
4 million homes in Ontario, Canada [41]) have smart meters installed. Wearable sensors
such as Fitbit [14], that monitor users’ health are also being increasingly adopted [101].
Smartphones and tablets have evolved into multi-sensor devices and have various embed-
ded sensors, such as, GPS, accelerometers, gyroscopes, and heart-rate monitors. Analysts
predict that by 2020, 50 billion networked sensors will be deployed across our living envi-
ronments [34], collectively dubbed as the Internet of Things (IoT).

The rapid growth of networked sensors has enabled a wide variety of applications. For
instance, energy data analytics applications use data from smart meters and other in-
home energy sensors to provide users with meaningful insight into their consumption [7,
21, 66, 115, 117, 161, 171, 182, 188, 194]. Other applications process data from smartphones
and wearable sensors to provide healthcare analytics [13, 67, 124]. Data from smartphone-
embedded sensors is also used for many different applications that span a wide variety of
user functionality [49,73,123]. Moreover, many applications use data from in-home sensors
to perform intelligent control of actuators and appliances such as home heating, ventilating,

1

and air conditioning (HVAC) control [78,81,118,163], and others [56,57,147,171]. We refer
to all such applications that make use of sensor data as data-driven applications.

Although applications use sensor data to provide useful functionality, they can also
misuse the data to reveal private information about the users to application developers.
For instance, data from motion sensors can be used to infer users’ home occupancy [98].
Smart meter data can be processed to infer users’ appliance usage [138] and TV viewing
habits [93], socio-economic status [52], and many other types of private information [131].
Similarly, data from sensors embedded in smartphones can be used to infer a user’s physical
activity [103, 104], driving habits [106, 113, 149], and sleep patterns [67, 100]. Therefore, it
is imperative that, while enabling such applications, data privacy be preserved. We define
data privacy as the ability of the user to control the extent of any sharing of her sensor
data with any third party [179].

Most data-driven applications today adopt a service provider-centric approach. In this
approach the user is required to provide her data to the service provider in exchange
for using data-driven applications. Typically, data from sensors is uploaded to the ser-
vice providers’ servers that host applications including their data processing, inference
algorithms, and other application-specific components. Users are provided with interfaces,
such as web portals, to interact with the different applications. Examples include Nest [25],
Dropcam [10], and If This Then That (IFTTT) [20]. However, this approach leads to the
service providers obtaining a copy of the user’s sensor data, often along with the rights to
share the data, and hence can share it with unauthorized third parties, such as advertisers.
This threat has already come to pass in the form of unauthorized sharing of users’ smart
meter data [15,24].

An alternative approach is to provide users with application executables that they host
in their own compute environments such as PCs, smartphones, and tablets, which also
house their sensor data. This gives the users the ability to prevent applications from re-
laying data to unauthorized third parties, for example, by preventing applications’ access
to the Internet. This approach provides better data privacy as compared to the approach
discussed above because data is not transferred out of the user-controlled compute envi-
ronment. However, the task of data warehousing, provisioning computational resources
for applications, and enabling remote access to applications from Internet-enabled user de-
vices, are delegated to users. These tasks put an overwhelming burden on them. Examples
of such application frameworks are HomeOS [76], Beam [172], and Energy Lens [7].

In this dissertation, we propose a new software architecture that does not suffer from
the drawbacks of the existing approaches. We posit that users should be provided with
personal compute environments hosted in the cloud that provide (i) persistent storage to

2

warehouse their personal sensor data, and (ii) computational resources to run applications
such as those discussed above. Applications can be downloaded from an “application
store”, and run within the controlled confines of the user’s personal virtual execution
environment (VEE). Hosting applications on users’ personal VEEs ensures that, given
suitable mechanisms, no data leaves the confines of the user without her explicit permission.
We describe our vision in greater detail in Section 1.3.

The remainder of this chapter is structured as follows. In Section 1.2, we identify the
goals that an ideal system for personal sensor data management should achieve. In Sec-
tion 1.3, we lay out the vision of our personal-VEE based architecture and outline the
technical challenges in realizing this architecture. In Section 1.4, we describe the contribu-
tions of this dissertation, and conclude with a summary of the chapter in Section 1.5.

1.2 Goals

An ideal system for personal sensor data management should meet two conflicting primary
goals. First, it should enable data use, that is, it should allow applications to access sensor
data since applications provide users with valuable data-driven functionalities. Second,
it should preserve data privacy, that is, it should afford users with complete control over
the data that they share with each application. These two primary goals translate to the
following sub-goals.

Data Consolidation

The system should provide users and applications with a single view into multiple data
streams collected using different sensors. For instance, in the case of sensor data concerning
users’ energy consumption, the system should allow consolidation of data collected using
in-home sensors and data available from utility-owned web-portals (collected by smart
meters [16]). Data consolidation not only broadens the scope of possible applications by
enabling cross-correlation of data, such as, correlating smart meter data with in-home
sensor data, but also eliminates the need for the user to access and manage a separate
data corpus for each sensor. In contrast, most commodity sensors today, for example,
Fitbit [14], Dropcam [10], and smart meters, provide data access through their separate
proprietary interfaces, preventing consolidation.

3

Data Durability

To allow applications to process historical sensor data, the system should guarantee the
durability of sensor data, regardless of its time of origin. For instance, HVAC control
applications [78,81,163] process sensor data from previous days/weeks/months.

Data Integrity

The system should ensure that sensor data is not tampered by an application or a third
party such as a storage provider.1 This requires mechanisms to detect data tampering and
provide tamper evidence.

Data Privacy

The system should allow users to control who gets to access their sensor data. Therefore,
the system must ensure that only the user (the data owner) has access to all data (con-
fidentiality), and only the user can determine the scope and granularity of any entity’s
access to data (access control).

Application Flexibility

The system should allow a user to freely choose data-driven applications. For instance, the
system should allow application developers to distribute their applications to users.

Application Performance

The system should ensure acceptable application performance, for example, ensure tolera-
ble data retrieval times, data processing times, and application access latencies.

Scalability

The system should maintain application performance, that is, low data retrieval and pro-
cessing times, and low access latencies, despite an increasing volume of sensor data, growing
number of sensors, and rising number of applications.

We now present our proposed approach for achieving these design goals.

1If the user employs cloud storage providers such as Windows Azure [37] or Amazon S3 [4].

4

1.3 Our Vision

Today, a wide range of computing and storage services hosted in the cloud are available as
commodity rent-based services. Examples include Virtual Machine (VM) providers (e.g.,
Amazon EC2 [4] and Windows Azure [37]), computing platform providers (e.g., Google
AppEngine), and Blob storage providers (e.g., Amazon S3 [4] and Azure Blob Store [37]).
Application developers rent these services to host their applications and users’ sensor data.
Users’ sensor data is required to be relayed and stored with these services in order for users
to use the provided applications. In doing so, the user hands over a copy of her sensor
data to application developers, and in many cases the right to process and/or share the
data with third parties. Thus data privacy is lost.

Our work is motivated by the following insight: if certain application hosting and stor-
age services were available to users, it is possible to build an ecosystem of data-driven
applications where data privacy is preserved. Figure 1.1 shows an overview of the applica-
tion ecosystem enabled by our approach.

API App

Personal
VEE

Host

Cloud
Storage

Application
Store

Sensors Gateway

Figure 1.1: Overview of the personal VEE ecosystem.

In this approach, each user owns and controls a virtual execution environment (VEE)
hosted in the cloud, for example, a VM. Users’ data is stored reliably and durably using

5

commercial cloud storage services. Data-driven applications run within the personal VEE,
and the user retains complete control over the applications, that is, controls the data reads,
writes, and transfers. The personal VEE has mechanisms that (a) preserve data privacy
by providing users with fine-grained access control, (b) prevent applications from leaking
user data, and (c) prevent or detect violation of data integrity by the storage provider or
by an application.

Data from different sensors is collected and stored in the VEE’s datastore, either di-
rectly, or using a gateway such as an in-home PC. Many in-home sensors, such as passive
infrared (PIR) sensors, currently possess limited communication capabilities or use pro-
prietary communication protocols such as Z-Wave [39]. Thus an intermediate gateway to
collect and coordinate data uploads, for example, by buffering during intermittent con-
nectivity, is required. Nevertheless, by providing a unified consolidated view to all sensor
data, our approach streamlines application development because applications can access
any type of sensor data through a uniform API. We believe that, enabling correlation of
different types of sensor data can lead to novel applications.

Application developers publish their applications to an application store from which
users can download and run them on their personal VEEs. This maximizes flexibility and
application choice.

Users can leverage the elasticity of existing clouds to inflate or deflate their VEEs,
depending on the resource requirements of the applications, thus ensuring application per-
formance and scalability, without handling the burden of manual resource provisioning.
Users may use their personal VEEs to also host private instances of web, mail, messag-
ing, or other application servers, and exercise greater control over them than employing
commercial providers of such services, such as, Gmail, Dropbox, or GoogleDocs. Similarly
personal VEEs can be used to offload computation of privacy-sensitive applications from
resource-constrained mobile devices [92, 111,137,184].

Note that, in our approach the personal VEE provider is entrusted with providing
a secure and private execution environment. However, unlike existing approaches, our
approach does not require the user to explicitly hand over the rights to their data in
exchange for using data-driven applications. Recently proposed fiduciary relationships
between cloud providers and users, if legislated, will also prevent personal VEE providers
from eavesdropping on user data and applications [108].

6

1.3.1 Technical Challenges

Many technical challenges need to be addressed to realize our proposed vision. For instance,
several mechanisms need to be designed and implemented to instantiate the framework.
This includes mechanisms to (i) coordinate sensor data uploads with the gateway(s), (ii)
expose data to third party applications via APIs, (iii) prevent applications from leaking
user data, and (iv) provide fine-grained access control to users. Other mechanisms may be
needed to certify and validate applications’ behaviour, and to provide users with easy to
understand data access controls.

Sensor data is required to be stored durably. Existing commodity cloud storage providers
such as Amazon S3 [4] or Windows Azure [37], may be leveraged to do so. Although our
approach requires users to trust their personal VEE provider (Section 1.3), users may not
trust cloud storage providers with the confidentiality and integrity of the data. Moreover,
users and applications may want to store data across multiple cloud storage providers, and
some applications may also require sharing of data across homes. At the same time, time
taken to retrieve stored historical sensor data should be minimized. Therefore, suitable
sub-systems for storage and retrieval of data need to be built to cater to these requirements.

Our approach requires provisioning one VEE for each user.2 Using existing virtual-
ization solutions to provision large numbers of VEEs will require un-affordably extensive
hardware resources due to relatively small VEE hosting densities of these solutions.3 There-
fore, alternative systems and methodologies to provision large numbers of personal VEEs
in the cloud need to be developed.

Other challenges include simplifying the development of data-driven applications. For
instance, a programming framework can be built such that it provides applications with
programming abstractions and primitives for commonly used inferences such as occupancy.
Applications can directly request their required inferences, while the framework can bear
the onus of running the required data processing; thus greatly simplifying application
development.

1.4 Contributions

This dissertation makes the following key contributions:

2For example, supporting each active Facebook user will require provisioning 1.4 billion VEEs [11].
3Citrix XenServer claims 100-200 VEEs/machine, subject to the VEEs’ workload.

7

• We propose a new architecture to enable data-driven applications while preserving
data privacy. With home energy data as the use case, we prototype the different
design components and implement three sample applications. We conduct a quali-
tative comparison with existing approaches that provide applications for processing
home energy data, and demonstrate that unlike existing approaches our prototype
achieves the design goals described in Section 1.2.

This work is described in detail in Chapter 3, and has been published in the proceed-
ings of ACM e-Energy 2013 [171].

• We design a storage system (named Bolt) for the efficient storage and retrieval of
time-series data. Bolt builds on top of untrusted cloud storage services such as
Windows Azure [37] and Amazon S3 [4] to provide durability, confidentiality and
integrity guarantees for sensor data. We show that, in our test scenarios, Bolt has up
to 40 times lower retrieval time than OpenTSDB [27] (a popular time-series database
system), and requires 3-5 times less storage space.

This work is described in detail in Chapter 4, and has been published in the proceed-
ings of USENIX NSDI 2014 [95].

• We propose a new methodology to multiplex large numbers of personal VEEs on a
single machine at the cost of a small increase in client request latency (called miss
penalty). We present a formal model for the problem and establish a theoretical lower
bound on the miss penalty. We demonstrate the application of our methodology using
LXC [22] and explore the trade-off between VEE density and miss penalty in this
context.

This work is described in detail in Chapter 5, and has been published in the proceed-
ings of ACM VEE 2015 [170].

As we describe in the remainder of this dissertation, these contributions address different
facets of our proposed personal VEE vision (Figure 1.1), and combine to form a solution
that achieves the conflicting goals of providing data privacy and data use.

1.5 Chapter Summary

Sensors have become ubiquitous. Data collected from sensors is of immense practical
value. At the same time, sensor data can be processed to reveal unwarranted private
information about the user. Therefore, a system architecture that enables applications of

8

sensor data while preserving user data privacy is required. We propose an architecture that
provides users with a personal virtual execution environment (VEE) hosted in the cloud,
and enables an ecosystem of third party applications of sensor data while preserving data
privacy (shown in Figure 1.1). However, there are a number of challenges faced in realizing
this proposed approach. Examples include building mechanisms for data collection and
consolidation from sensors, preventing violation of data privacy by applications, ensuring
data integrity and confidentiality when using untrusted storage services, providing efficient
storage and retrieval of time-series sensor data, and feasibly provisioning personal VEEs for
a large number of users. Designing systems and methodologies to address these technical
challenges is the focus of this dissertation.

9

Chapter 2

Related Work

In this chapter we first describe an overview of existing systems that provide users with
applications to process their privacy-sensitive data (in Section 2.1). We briefly describe
their architecture and design, and classify them based on their architectural approach. This
classification enables us to evaluate them based on the design goals described in Chapter 1.
We also survey existing work that has adopted the personal VEE approach for particular
applications such as online social networks, and find that this approach, when augmented
with suitable mechanisms and subsystems, can achieve our desired design goals. This is
the basis for the system architecture outlined in Chapter 1 and presented in greater detail
in Chapter 3. In Chapter 3, we choose home energy data as an example use case, and
design and implement different components of the personal VEE architecture such as an
in-home gateway, a personal VEE framework, and a few sample applications.

In Section 2.2, we survey prior work on designing storage systems for user data. We
find that existing systems either do not address storage and retrieval of time-series sensor
data, or do not ensure data privacy and integrity when storing data using untrusted storage
services. In Chapter 4 we design a storage system to meet these requirements.

In Section 2.3, we categorize different virtualization approaches and survey existing
work on increasing VEE hosting density. We identify shortcomings of existing approaches
which prevent them from maximizing personal VEE hosting density. In Chapter 5, we
design a new methodology to alleviate these shortcomings.

10

2.1 Providing Data-Driven Applications

Figure 2.1 shows a taxonomy of existing systems for providing data-driven applications
and Table 2.1 compares them on the basis of the design goals described in Section 1.2.

2.1.1 Service-provider Approach

In this approach, each user’s data is stored on a logically centralized server, owned and
controlled by a service provider, where it is processed for analytics or for controlling ac-
tuators, or is shared with third-party applications. Most commercial data application
providers today adopt this approach.

For instance, energy companies such as Waterloo North Hydro [36] and San Diego Gas
and Electric [32] allow users to download their energy consumption data that is collected by
utility-owned smart meters, and provide some web-based data analytics services. However,
most energy companies chose to delete the data after a few months of the billing cycle.

In other systems, users have the option of uploading and optionally linking their
data to other web applications. Examples include the Google Powermeter [15], Microsoft
Hohm [24], and GreenButton1 [16] applications such as Home Energy Yardstick [19], Snugg
Pro Energy Audit [33], and Home Energy Saver [18]. Similarly, health-tracking services
such as Fitbit [14] and Withthings [38] warehouse data from the wearable sensors on
their cloud-hosted servers. Users can enable other web-hosted applications to access this
data [13].

These systems do not provide any mechanisms for consolidating data from different data
sources. Secondly, the user is responsible for downloading ephemeral data from the central
provider and permanently storing it if they want data durability. Since data is processed
on the service providers’ servers, it is vulnerable to intentional or unintentional sharing
with unauthorized third parties; thus endangering data privacy. This was evident from the
Google Powermeter [15] and Microsoft Hohm [24] projects, where energy companies shared
users’ smart meter data with third parties (Google and Microsoft respectively), without
explicit user consent. Lastly, no mechanisms for ensuring data integrity are provided to
the user. However, the user can chose whether to link their data to other web-applications,
thus providing a limited degree of application flexibility. Service-providers are responsible
for provisioning their systems to ensure application performance and scalability.

1An initiative to standardize smart meter data formats.

11

Powermeter [15],

Service-provider

Hohm [24],
Utility web-portals [32,36],
GreenButton Apps [16,18,19,33],
FitBit Apps [13,14],
& Withthings [38]

& Hue [30]
Nest [25]

Home PC-based

HomeOS [76]

Cloud-based

Personal Data
Storage

Personal
Data Storage
with Limited
Computation

Personal
Virtual
Execution

Environment

Personal Container [79,139]
& Personal Data Vault [140]

Data Capsule [109],
Data Preserver [110],

& Energy Lens [7]

& Transmute [94]

Virtual Individual Server
[59, 165,166]

Figure 2.1: Taxonomy of existing systems for providing data-driven applications.

Sensor-oriented Services

Off-the-shelf devices such as Nest [25] upload sensor data to the service provider’s server.
The server stores the data and processes it to predict home occupancy, which is used to
dynamically adjusts the thermostat’s set point. Similarly, the Philips Hue [30] lighting
system uploads data about user preferences and usage to its server, which is processed to
generate user feedback and product advertisements.

These solutions cater only to their respective sensors, and do not guarantee long-term
data storage, thus providing little data consolidation and durability. Since data remains
under direct control of the service provider and not the user, data privacy is lost. Lastly, a
user is limited to using the applications provided by the hardware provider; users cannot
freely choose applications and thus have little flexibility.

2.1.2 Home PC-based Approach

In this approach, a user-owned computer, such as a home PC, is used to store sensor data,
run data analytics, and monitoring and actuation applications. This approach is adopted
by HomeOS [76], a platform for applications that use in-home sensors, and Energy Lens [7],
a desktop application that analyzes users’ energy consumption data. We now provide an
overview of these solutions and evaluate them based on the design goals described in
Section 1.2.

12

HomeOS

HomeOS [76,77] is a .NET based platform designed to provide centralized monitoring and
control of sensors and actuators in a home such as switches, thermostats, and cameras.
It provides application developers with homogeneous abstractions to communicate and
control such devices. Figure 2.2 shows an overview of HomeOS. It is comprised of software
modules called “drivers” that communicate with the sensors and actuators. A set of higher
level modules called “application modules” use the driver modules to collect data from the
sensors, and encapsulate algorithms to perform monitoring, actuation, or data analytics.
The platform is responsible for providing (i) resource isolation between modules, (ii) sensor
access control, and (iii) communication between modules.

HomeOS Platform

Driver 1

Application 1

Sensors

Driver 2

Application 2

Figure 2.2: Overview of the HomeOS [76,77] platform.

HomeOS provides data consolidation by enabling applications’ to access various sensors
(and other data sources such as web-portals). Since the data is processed on a user-owned
PC, the user can chose which applications to install and control applications’ access to
sensors. Thus this solution provides data privacy and integrity, and application flexibility
and extensibility. However the user is required to maintain the durability of the data, for
example, using RAID arrays and off-site backups. Applications’ performance in HomeOS
is limited by the computational resources of the host computer, and the user must provide
additional computational and storage resources as application demands and data volumes
increase. In contrast, renting cloud hosting and storage services would allow the user to
delegate these tasks to cloud providers.

13

Energy Lens

Energy Lens [7] is a desktop application for homeowners and energy auditors that processes
energy data and generates feedback in the form of interactive visualizations. It helps users
in keeping track of when, where, and how much energy is wasted, and progress made in
reducing energy consumption. Similar to HomeOS, it allows users to consolidate and pro-
cess energy data from different sources (in-home sensors and smart meters), preserve data
integrity, privacy, and allows extensibility and flexibility. However, this approach provides
no mechanisms for maintaining data durability, application performance, or scalability.

2.1.3 Personal Data Storage

In this approach, each user is provided with a personal cloud-hosted storage system in-
stance controlled by the user herself. Users can use their individual storage environment to
consolidate and archive their data, and can chose to share it with third party applications
(hosted elsewhere in the cloud). We now describe existing work that has proposed this
approach.

Personal Container

The Personal Container [139] is a user’s personal data storage system instance in the
cloud, a logical single intermediating entity, where data is consolidated from disparate
sources such as various user-owned sensors, and re-exposed to data-consumers such as
applications, subject to the user’s consent. Figure 2.3 outlines the Personal Container
ecosystem of users, data sources, and applications.

Elsmore et al. [79] demonstrate the use of Personal Containers for collecting a user’s
smartphone GPS data. They system is deployed in an organization that wishes to measure
its employees’ travel-to-work carbon footprint, for planning future infrastructure. The
Locker project [35] is an open-source platform that allows users to store information and
create applications that can run inside lockers. Each Personal Container is initialized as a
locker instance running on a Linux Container (LXC) [22], where each user’s GPS data is
stored. The organization is then able to access some parts of users’ data with their explicit
permission, and offers data-driven applications. Example applications include one that
calculates how much money a user spends using a car, train, or bus during their commute
and computes the payback time of using the bike-to-work scheme to buy a bicycle.

14

Personal Container

User-owned devices

Third-party data sources

Third party
Applications

Data Request

Response

Permission

Figure 2.3: Overview of the Personal Container approach [139].

Personal Containers allow users to consolidate data from different sources and durably
store it. Users have a free choice over applications, and application providers are respon-
sible for maintaining application performance and scalability. Users are required to trust
the Personal Container with maintaining the integrity of the data. However, data is always
transferred out of the Personal Container to application servers, albeit with explicit user
permission, thus giving up data privacy even in cases where an application requires to only
access a single user’s data. Moreover, existing work [79,139] does not address efficient stor-
age and retrieval of sensor data and provisioning of Personal Containers for large numbers
of users.

Personal Data Vault

Similar to Personal Containers [79, 139], Mun et al. [140] propose Personal Data Vault, a
system to allow users to retain ownership of their data. The proposed solution is to use
secure user-owned data containers to enable user-controlled sharing of data with applica-
tions. This approach uses three mechanisms to facilitate this selective sharing of data with
applications. First, granular access control lists, allow users to define data sharing poli-
cies that include the type and granularity of data a given application can access. Second,
trace-audit logs record transactions and transformations of users’ data performed by appli-
cations. Lastly, a rule recommender pre-calculates constraint values for a set of pre-defined
data sharing policies, and facilitates policy re-configuration. The system is instrumented to

15

collect data from users’ smartphones for two health monitoring applications: Ambulation
(which logs a user’s physical activities) and Walking-survey (which records a user’s sleep
cycle information).

Similar to the Personal Container system, this solution achieves all of our design goals
except providing data privacy, since data is shared with the service provider, albeit in a
controlled fashion. Moreover, this work does not address provisioning of Personal Data
Vaults for large numbers of users.

2.1.4 Personal Data Storage With Limited Computation

This approach enhances the personal data storage approach by supporting some trans-
formations of data before sharing with third parties; thus requiring a limited amount of
computation to perform such transformations.

Transmute

Griffis et al. [94] propose Transmute, a novel scripting language for writing data parsing
scripts that can be run inside a Personal Data Vault [140]. Transmute scripts or filters
receive raw sensor data streams as input, and output privacy-preserving data streams,
which can be shared with untrusted applications. This reduces the amount of private user
information revealed to the application. For instance, a filter can convert smartphone
GPS data to a more coarse grained data stream such as a ZIP code stream. The authors
also provide tools that can be used to analyze the filters, and provide guarantees about
the transformations they perform on a given input stream. Users are also provided with
access control lists which can be used to grant stream read/write privileges to filters and
applications. Filters are sandboxed to prevent malicious filters from leaking data.

This solution retains the data consolidation, integrity, and durability benefits of the Per-
sonal Data Vault approach. In addition, it addresses data privacy using its filter-based data
transformations. However, it precludes applications from using raw data streams without
sacrificing users’ data privacy. This presents serious limitations for application developers
because they need to design and implement appropriate methods for using transformed
data streams, thus limiting application extensibility and flexibility. Moreover, filters need
to be developed and maintained for every sensor type, for example by a trusted filter
provider. Filters need to be continually updated (by a trusted entity) as new algorithms
that reveal unsanctioned private information from transformed data evolve.

16

Data Capsule

Kannan et al. [109] propose Data Capsule, an encapsulation of a specific kind of user data
such as credit card numbers or web-browsing patterns, along with code that implements
a well-defined and open interface for accessing the data, for example, an interface that
debits money from a given credit card. Applications hosted on service providers’ servers
can use these interfaces to perform operations using the data, without transferring data
out of the user-owned capsule. The framework includes a policy layer that allows a user to
exercise fine-grained and flexible control over how the interface to her data is used. It also
allows users to transform data before it is shared to limit loss of data privacy. The solution
demonstrates a shopping application in which the capsule provides an interface to charge
a credit card without revealing the credit card number to the application. Similarly, in a
second application the capsule stores a user’s web-browsing data, and applications query
the capsule interfaces to generate user-targeted advertisements, and the application does
not access the raw data.

Similar to the previous solution, this solution provides data consolidation, integrity,
and durability, and preserves data privacy by regulating applications’ access to data using
capsule interfaces. However, it requires development and maintenance of capsule interfaces
for different data types, and for different data processing operations that applications may
require. This presents a serious limitation to application flexibility and extensibility. Lastly,
existing work [109] has not addressed the design of capsule interfaces for sensor data and
its processing.

Data Preserver

Extending the Data Capsule framework [109], Kannan et al. [110] propose Data Preserver,
an entity that encapsulates the user’s data with code and policies chosen by the user.
The framework proposes a combination of different mechanisms such as administrative
isolation, software-based isolation using virtual machines, and hardware based trusted
platform modules to guarantee that applications interact with the preserver only via the
user-configured interfaces. The solution is similar in nature to the Data Capsule framework,
achieves the same design goals, and suffers from similar drawbacks.

2.1.5 Personal VEE

We now describe an approach where each user owns and controls a personal execution
environment hosted in the cloud, such as a virtual machine. As shown in Table 2.1, this

17

Service-provider Sensor-oriented Home PC-based Personal data storage Personal data storage Personal VEE

services with limited

computation

Powermeter [15], Nest [25], HomeOS [76,77], Personal Container [79,139], Data Capsule [109], VIS [59,165,166],

Hohm [24], Hue [30] Energy Lens [7] Personal Data Vault [140] Data Preserver [110], πbox [126]

Utility web-portals [32, 36], Transmute [94]

GreenButton apps [16,18,19,33],

FitBit Apps [13,14],

Withthings [38]

Consolidation ✓ ✓ ✓ ✓
Durability ✓ ✓ ✓
Integrity ✓ ✓ ✓ ✓
Data privacy ✓ ✓ ✓
Flexibility ✓ ✓ ✓ ✓
Scalability ✓ ✓ ✓ ✓ ✓
Application
Performance

✓ ✓ ✓ ✓ ✓

Table 2.1: Comparison of existing solutions for providing data-driven applications based
on the design goals.

approach meets all our design goals. We now describe existing work that has adopted this
approach and its shortcomings.

Virtual Individual Server

Cáceres et al. [59,165,166] identify various problems in using a centralized service provider
approach for applications that process data collected from sensors on users’ smartphones
such as GPS data. First, concentrating data from multiple users under one administra-
tive domain leads to the possibility of large-scale data privacy breaches. Second, users are
required to grant service providers with the rights to display and freely distribute their per-
sonal data. The authors posit that a user’s interests are best served if her data is uploaded
to a Virtual Individual Server (VIS) for two reasons: (i) VISs are resistant to large-scale
privacy breaches because each VIS runs in its own administrative domain, and (ii) VISs
provide users with control over software and policies that direct all data sharing. They use
this approach to design a location-based online social network application that uses virtual
machines hosted on Amazon EC2 [3] as VISs. Further, they show that the application’s
latencies are comparable to that when using a centralized service provider approach. Note
that, users are required to trust the virtual machine providers with maintaining the privacy
of their data.

Unlike previous approaches, VISs do not require any additional interfaces or filters to
be developed and maintained, promoting application extensibility. Users can completely
control applications’ data access. By leveraging an elastic utility computing infrastructure,

18

VISs ensure that applications have sufficient compute resources, thus providing application
performance and scalability. This approach is the foundation that we build upon in our
work.

Note that existing work [59, 165, 166] uses the VIS approach for a single application,
and does not address extending this approach to other possible data-driven applications.
Moreover, it instantiates VISs as virtual machines, uses virtual machines’ local disk to
store data, and does not address durable storage of data and ensuring data integrity. Our
work in Chapters 3 and 4 addresses these shortcomings.

πbox

πBox [126] extends the VIS approach by proposing a runtime for smartphone applications
that spans a cloud-hosted execution environment and user devices. However, this work
does not address data consolidation from other user-owned sensors, durable storage of
data, and ensuring data integrity. Nevertheless, it provides mathematical bounds on the
amount of information an application that reports usage statistics to developers’ servers
can reveal. This work is complementary to our vision (outlined in Section 1.3), because it
enables data-driven applications running on users’ personal VEEs to report usage statistics
to developers.

2.2 Providing Data Storage and Integrity

We first discuss systems that leverage untrusted remote storage services to provide data
storage with data integrity guarantees (in Section 2.2.1). In Section 2.2.2, we describe
existing systems aimed at personal data storage across user devices. Lastly, in Section 2.2.3
we discuss other storage systems such as OpenTSDB [27] (which we use in Chapter 4 as a
point of comparison).

2.2.1 Leveraging Untrusted Remote Storage

Li et al. [128] build SUNDR, a network file system that uses untrusted remote storage
services to store files and provides integrity and consistency guarantees for stored files.
It employs cryptographic mechanisms such as digital signatures and fork consistency to
protect file system contents and enables clients to detect any unauthorized modifications.
The authors show that a malicious user with complete administrative control of a SUNDR

19

server cannot cause the clients to read altered contents of stored files. Using example
workloads such as the Concurrent Versions System (CVS), they demonstrate that the
latency overhead of SUNDR is minimal as compared to NFS [157].

Extending the approach in SUNDR [128], SPORC [82] provides a “generic collaboration
service” using a cloud-hosted server running on a VM. The service is used to instantiate
different applications such as a key-value store and a collaborative text editor. The design
of the service ensures that the cloud-hosted server only receives encrypted data. It uses
“fork* consistency” and “operational transformation” mechanisms to enable clients to de-
tect unauthorized operations such as additions, modifications, deletions, or re-orderings.
The authors use the example workloads to demonstrate that client latency overheads are
negligible.

Venus [168] provides key-value storage using commodity cloud storage services such as
Amazon S3 [4]. It does not require users to rent cloud based virtual machines for server
hosting (as in SPORC [82]). More importantly, it does not require users to trust storage
service providers, provides data integrity and consistency guarantees, and detects any data
tampering by a service provider. Similar to Venus, Depot [134] provides a key-value store
which although using untrusted storage services, provides consistency, staleness, durability,
and recovery properties.

Farsite [45] proposes using a collection of insecure and unreliable desktop computers to
instantiate a reliable virtual file server with limited data integrity guarantees. Chefs [87]
demonstrates content distribution by replication of an entire file system on untrusted stor-
age servers.

Although this body of work demonstrates the use of different techniques to leverage
untrusted storage services (including commodity cloud storage services), it does not address
efficient storage and low-latency retrieval of time-series data.

2.2.2 Storing Data Across Devices

Salmon et al. [156] propose Perspective, a semantic file system to help users in manag-
ing their data spread across their personal devices, such as laptops and smartphones. It
provides a uniform abstraction called a view, which is a semantic description of a set of
files. It is specified as a query on file attributes and the IDs of devices on which the files
are stored. Multiple devices interface with each other in a peer-to-peer (P2P) fashion, to
provide the unified view abstraction.

Similar to Perspective [156], HomeViews [89] provides users with a view abstraction,
and also allows secure sharing of views across user devices. It works in a P2P fashion and

20

does not require users to manage a centralized account or data protection mechanisms.
Both Perspective [156] and HomeViews [89] target user data such as photos, music, and
documents, stored across user devices.

Goh et al. [91] propose SiRiUS, a system that supplements local device file system stor-
age with untrusted remote storage. It forms an overlay over local file systems and other
network and P2P file systems such as NFS [157] and OceanStore. It provides some data in-
tegrity and confidentiality guarantees, however, it does not guarantee the freshness of data
a reader receives. Similarly, VStore++ [111, 112] provides a “virtual store” abstraction,
which is dynamically mapped to suitable user devices or cloud storage.

This body of work addresses many challenges associated with managing data produced
and consumed by applications across user devices. However, it does not specifically address
storage and retrieval of time-series data. Moreover, it does not focus on data confidentiality
and integrity guarantees for such data.

2.2.3 Other Systems

sMAP [74] explores the design of a RESTful service that mediates data transfers be-
tween sensors (the data sources), and data consumers such as applications. It provides
interpretability of data streams, manages the consolidation and propagation of data from
sensors to a given consumer, and focuses on supporting a wide variety of sensors. However
it does not focus on efficient storage and low-latency retrieval of sensor data.

Stream processing systems also present alternative solutions for housing sensor data.
They enable data to be pushed through a data-processing subsystem, offer straight-through
processing, that is, no modification to incoming data messages, which are then stored.
Examples of such systems include Aurora [62] and Borealis [43]. However, these system
assume that entities such as the data writer, data reader, and storage servers, are in a single
administrative domain. Scenarios where users want to leverage commodity storage services
such as Amazon S3 [4] or Windows Azure [37] are therefore not supported. Specialized time-
series databases such as OpenTSDB [27] (described next) also suffer from this drawback.

OpenTSDB [27] is a popular time-series data storage system. It builds on top of
HBase [6] (a column oriented database management system), and exposes a data stream
abstraction for reading and writing sensor data. Applications using OpenTSDB can store
and retrieve data streams by using its HTTP-based web APIs. However, OpenTSDB does
not provide any data integrity guarantees. This leaves data vulnerable to modifications by
malicious third parties such as a service provider hosting OpenTSDB instances.

21

Ming et al. [129] propose a framework for storage and retrieval of patient health records
(PHR). The framework divides users into subsets, and provides each subset with a separate
set of cryptographic keys for encrypting data before uploading to a cloud server. Using
attribute based encryption techniques, the authors demonstrate reduction in key distribu-
tion complexity with support for revocation of user access rights. However, this work relies
on cooperation from the cloud hosted server (while assuming it to be non-malicious), and
does not focus on time-series data.

Popa et al. [146] design a cloud storage system which provides users with data integrity
and freshness guarantees. However, they do not address storage of time-series data, and
do not focus on leveraging existing commodity cloud storage services.

2.3 Hosting Large Numbers of Personal VEEs

We first provide an overview of different approaches used to create virtual execution en-
vironments (VEEs) in Section 2.3.1. In Section 2.3.2, we discuss existing work that has
focussed on increasing VEE hosting density, and examine its applicability for creating large
numbers of personal VEEs. Lastly in Section 2.3.3, we identify just-in-time provisioning
of VEEs as a potential approach to increase hosting density, and discuss existing work and
open problems pertaining to this approach.

2.3.1 Virtualization Approaches

Virtualization refers to the combination of indirection and multiplexing to present appli-
cations with the illusion of running on a dedicated physical machine despite sharing the
physical machine’s resources with other applications. Many virtualization approaches have
been studied since the mid-1960s and can be broadly classified into three categories: Full,
Para-, and OS-level virtualization. Table 2.2 shows example virtualization solutions for
these categories.

Full Virtualization

In this approach, a single physical machine simultaneously hosts multiple unmodified op-
erating systems by trapping and redirecting requests to the underlying hardware resources,
including the CPU, interrupts, and the memory subsystem. Well known examples include

22

IBM’s zServer, and VMWare Server. This approach places the most demands on the phys-
ical machine, and therefore has the least potential VEE hosting density, but provides the
best fault and performance isolation.

Para-Virtualization

This approach presents the same interface to applications as full virtualization, but makes
small modifications to the hosted operating systems to reduce their resource demands.
This technique was first introduced in the Xen [51] virtualization solution. This approach
provides the same fault and performance isolation as full virtualization and achieves a
greater potential density, but at the cost of requiring OS modifications.

OS-level Virtualization

This approach virtualizes the API between an application and the OS, and makes a single
instance of an OS appear like multiple OS instances. The key idea is to tag a set of
processes with an identifier and to mutually hide processes with differing tags from each
other at every level of the operating system. By running a single instance of the OS,
this approach greatly reduces resource demands and increases hosting density. However,
this density improvement is at the cost of requiring OS modifications, and reduced fault
isolation, in that a kernel failure may simultaneously crash all virtual OS instances. A
widely used solution that has adopted this approach is Linux Containers (LXC) [22].

Type Solutions

Full Virtualization VirtualBox, VMWare Player, VMWare ESX, LPAR, QEMU, MoL

Para-Virtualization Xen, KVM, Lguest, rhype, UML, L4Linux, z/VM, PHYP, lv1, BEAT

OS-level Virtualization OpenVZ, Linux-VServer, LXC

Table 2.2: Examples of existing virtualization solutions.

The VEE hosting density of a given virtualization solution directly depends on its
resource overhead. Therefore, to maximize VEE hosting density, it is imperative to under-
stand and compare the resource overheads of the different virtualization approaches.

23

Resource Overhead Comparison of Virtualization Approaches

Para-virtualized approaches have been shown to incur lower resource overhead than fully
virtualized approaches [51], thus they can be hosted with greater density. OS-level virtual-
ization incurs even lower overhead than para-virtualization and therefore allows even higher
VEE density. Soltesz et al. [173, 174] use benchmarks such as lmbench, Operf, DBench,
Postmark, OSDB, IPerf, and SPECWeb99, to demonstrate that the OS-level virtualized
VServer approach incurs lower resource overhead than the Xen paravirtualized approach.
Other researchers comparing OS-level virtualization solutions with para-virtualized ap-
proaches report similar findings [64,65,145,177]. Therefore, for a given workload, OS-level
virtualization solutions can potentially yield higher VEE density.

Moreover, the resource overheads of competing OS-level virtualization solutions is simi-
lar. For example, VServer and OpenVZ show similar resource overheads, and hence similar
VEE hosting densities [61].

2.3.2 High Density Hosting

An ideal virtualization solution for provisioning personal VEEs should meet the following
goals.

• It should allow users to freely run multiple applications on their personal VEEs.

• It should minimize any impact on the performance of applications hosted on personal
VEEs, for example, minimize any increase in latency of clients accessing application
servers hosted on a VEE.

• It should maximize VEE density, that is, the number of personal VEEs co-hosted on
a single machine.

In light of these goals, we now discuss existing work on increasing VEE hosting density.

The Denali isolation kernel [183] was one of the first attempts to create a high density
VEE hosting solution. It achieved an astonishing 10,000 VEEs per machine. However,
each VEE may only host a single application run on behalf of a single user. Moreover, it
requires both the guest OS and applications to be modified, thus requiring modifications
with the release of each application update. Therefore, this approach is not suitable for
mass hosting of personal VEEs.

24

The Honeyfarm approach [180] modifies Xen so that a VEE is dynamically spawned
whenever a client request (for a server hosted on the VEE) arrives, and is terminated
when the request is fulfilled. This work proposes two key improvements to Xen: (i) flash
cloning, which is a mechanism to quickly instantiate new VMs by copying and modifying a
reference VM image, and (ii) delta virtualization, which is a copy-on-write scheme for VM
main memory. This approach demonstrates VEE density of 10,000 VEEs per machine.
However, it does not allow data persistence across client invocations: all VEE state is
lost on the termination of the client request, making it unsuitable for hosting personal
applications, such as data analytics. Consequently, this approach is unsuitable for hosting
personal VEEs. Nevertheless, as we see next in Section 2.3.3, the idea of just-in-time
provisioning of VEEs (used in this approach) greatly helps in improving VEE hosting
density.

2.3.3 Just-in-time Provisioning of VEEs

Traditionally, VEEs provisioned on a machine are thought of as always being in a booted
state, and thus utilizing the host’s CPU, memory, and disks [72, 105, 125, 192]. How-
ever, many VM workloads exhibit frequent, often long, and uncorrelated idle periods.
Examples include personal VEE workloads, some web-hosting [120] and cyber-foraging
workloads [160]. When multiple VEEs with such workloads are co-hosted on a machine,
decreasing the resource footprint of idle VEEs allows for a much denser VM packing, thus
reducing hosting costs for both VEE renters and VEE providers.

It is possible to reclaim resources from an idle VEE by transitioning it to an inactive
state(s), where its resource footprint is reduced, and activating it at the end of its idle
period, for example, on the arrival of a client request for a server hosted on the VEE. The
increase in VEE density comes at the cost of an increase in client request latency, called
the miss penalty.

Inactive States

Table 2.3 shows inactive states proposed or supported in a few virtualization solutions.
Recent work has introduced inactive states for VEEs to reduce their resource footprint,
albeit for different reasons, such as, for reducing VEE activation time. Wang et al. [181]
propose stateful in-memory substrates which are less resource-intensive than a running
VEE, and have small activation times. Knauth et al. [119] propose a fast-resume state
which leverages lazy disk reads to lower VEE activation time. Likewise, Twinkle [193]

25

demonstrates the use of different optimizations to lower VEE resume (from suspended)
times, such as, working set estimation, demand prediction, and free page avoidance .

Virtualization solution Inactive states

LXC [22] Frozen(stock) [135], Shutdown (stock)

Xen Suspended, Shutdown (stock), Substrates [181]

VMWare ESXi Suspended, Shutdown (stock), Fast-resume [189,190]

KVM Suspended, Shutdown (stock)

Table 2.3: Proposed and natively supported (denoted “stock”) inactive states for a few
virtualization solutions.

Increasing VEE Density

Existing work has explored the use of a single inactive state for hosting idle VEEs, and
increasing VEE hosting density. DreamServer [120] demonstrates the use of a suspended
state [119, 189, 190] for just-in-time provisioning of VEEs for web-hosting workloads ex-
hibiting idle periods. The authors demonstrate that hosting density can be increased by
up to 50% by transitioning idle VEEs to the suspended state, and activating them on the
arrival of client requests. Similarly, Ha et al. [96] explore just-in-time provisioning for VEEs
that run computations offloaded from resource-constrained mobile devices. This body of
work suffers from two main drawbacks.

First, existing work uses an on-demand policy for managing idle VEEs. That is, a
VEE is transitioned to the booted state only when a client request for it is received, thus
incurring the maximummiss penalty. However, miss penalties can potentially be minimized
by leveraging better policies for managing idle VEEs, for example, by proactively activating
a VEE in anticipation of client requests. Unfortunately, existing work has overlooked the
design of such policies, and their impact on miss penalties.

Second, existing work leverages only a single inactive state. This limits VM density to
the maximum number of inactive VEEs that can co-exist in that particular state. However,
since inactive states differ in their resource requirements, VEE density can be further im-
proved by multiplexing idle VEEs across multiple inactive states. Unfortunately, existing
work has overlooked this potential avenue for increasing VEE density, which presents sig-
nificant density improvements for workloads with high idle periods such as personal VEEs.
We address these two drawbacks of existing work in Chapter 5.

26

In using such a just-in-time provisioning approach, two key mechanisms are required:

• Determining when a VEE has become idle, so that it may be transitioned to an
inactive state.

• Detecting when a VEE needs to become active, so that it can be transitioned into
the booted state, for example, on the arrival of a client request.

We now describe prior work in these two areas.

Determining VEE Idleness and Activeness

The amount of time a VEE is idle depends entirely on its workload. For instance, if a
VEE hosts application servers, it may be classified as idle once it has no outstanding client
requests. Existing work has shown how such rules to determine VEE idle time can be
created. For instance, in case of client-server workloads such rules can use the number of
connected TCP clients [169], or the VEE’s CPU and memory utilization [186]. Example
mechanisms to implement such rules include VEE introspection [102,186] or a reverse-proxy
server running on the host machine [120].

Some of these mechanisms can also be used to trap client requests and activate re-
spective VEEs on request arrival. Existing work has demonstrated that this can be ac-
complished using a reverse-proxy server [120]. Other possible mechanisms (overlooked in
existing work) include deploying a kernel module on the host machine which uses the
destination IP address in a request to identify and activate the target VEE.

An alternative solution is to use a customized DNS server. Most client requests are
likely to use TCP, along with using the target VEE’s domain name to address it. Therefore,
a DNS server running on the host machine can be used to trap client requests and activate
the target VEE. VEE introspection can then be used to monitor a VEE’s active client
connections and detect when a VEE becomes idle, that is, it has no established client
connections. Moreover, this mechanism can also be used to multiplex a small pool of IP
address among a comparatively larger number of VEEs [169].

2.4 Chapter Summary

Upon comparing different approaches for enabling data-driven applications, we find that
existing approaches do not meet our desired design goals. However, a careful analysis of

27

prior work suggests that an approach that provides each users with her own personal VEE
in the cloud can potentially meet all the desired design goals. To realize this approach
for a large number of users, it needs to be supplemented with several subsystems. This
includes an in-home gateway for collecting sensor data, building a framework for hosting
data-driven applications on personal VEEs, and providing data access control. Our work
in Chapter 3 addresses the design and implementation of such mechanisms.

A suitable data storage system for efficient storage and retrieval of time-series data also
needs to be designed. Commodity storage services may be leveraged to do so. However,
they may not be trusted with maintaining the confidentiality and integrity of the data.
Existing approaches to build storage systems for user data either do not focus on time-
series data, or do not provide the required data confidentiality and integrity guarantees.
Nevertheless, many techniques used for interfacing with untrusted storage services can
potentially be leveraged to build a storage system for time-series sensor data. We address
this problem in Chapter 4.

Similarly, provisioning personal VEEs for a large number of users requires suitable
virtualization solutions and methodologies to be developed. Existing work has proposed
a just-in-time VEE provisioning approach for increasing VEE density. In this approach
the resource footprint of idle VEEs is reduced by transitioning them to an inactive state.
VEEs are activated on-demand, for example, upon the arrival of a client request. The
VEE density improvement thus is at the cost of an increase in client latency. However,
existing work has overlooked venues for further improving VEE density by multiplexing
VEEs across multiple inactive states. Also, the increase in client latency can potentially
be lowered by using different policies for managing idle VEEs across inactive states. Our
work in Chapter 5 addresses these drawbacks.

28

Chapter 3

Leveraging Personal VEEs for
Energy Data Analytics

3.1 Introduction

As discussed in Chapter 2, existing approaches for enabling data-driven applications do
not meet the design goals described in Chapter 1. We also observe that the personal
VEE approach, when supplemented with appropriate mechanisms, can potentially meet
the design goals. In this chapter, we design and implement the required mechanisms
to instantiate the personal VEE architecture, determine if our proposed system meets
the design goals, and thus examine the feasibility of our approach for enabling privacy-
preserving data-driven applications.

The variety of areas in which data-driven applications are employed today is extremely
wide, ranging from healthcare, safety, convenience, to energy efficiency. To avoid being
overwhelmed by domain-specific details, we choose home energy as an example use case,
and build a prototype implementation of the personal VEE architecture that hosts users’
home energy consumption data. We choose home energy data as our example use case
because of the following observations.

• Smart meters are being increasingly deployed in homes across the world [41,42], thus
providing users with whole-house energy consumption data.

• The availability and adoption of commodity home energy sensors and actuators have
grown tremendously in recent years [3], thus enabling easy instrumentation of home
appliances for monitoring and control.

29

• Home energy data can be used to provide users with meaningful and actionable
insight into their consumption habits [7, 21, 66,115,117,161,171,182,188,194].

• Suitable processing of home energy data can reveal private information about the
users, such as their appliance usage habits [138], TV channel being viewed [93],
socio-economic status [52], and other private details [131].

We believe that these recent trends speak to the applicability, value, and potential impact
of our work.

We note that a large body of recent work has focused on designing theoretical schemes
for analyzing smart meter data in a privacy-preserving fashion. Example approaches in-
clude obfuscation [44, 116], aggregation [154, 155, 167], homomorphic encryption [88, 127],
and other schemes [138, 150]. Other work has quantified the utility and privacy of smart
meter data, and has modelled the trade-off between them [148]. This body of work further
motivates us to focus on the domain of home energy data.

In this chapter we present the design and implementation of the different components
of the personal VEE architecture outlined in Chapter 1 (illustrated in Figure 1.1). These
include (a) an in-home gateway for relaying sensor data and control commands, (b) a
personal VEE framework, called VHome, which warehouses home energy data, exposes it
to third-party applications via APIs, and provides data access control, and (c) sample home
energy applications that run within an instance of VHome. Our VHome implementation
also enables applications to securely and privately control home appliances, when permitted
by the user.

Our key contributions in this chapter are:

• The architecture of a system that allows users to own and control access to their home
energy consumption data, and freely use data-driven applications of their choice.

• A prototype implementation of the proposed architecture on modern commodity
cloud computing platforms, along with four sample home energy applications.

• A qualitative evaluation of the prototype implementation with respect to data privacy
and data use.

This work has been published in the proceedings of ACM e-Energy 2013 [171].

The remainder of the chapter is structured as follows. We describe the system architec-
ture, prototype implementation details, and a qualitative evaluation in Sections 3.2, 3.3,
and 3.4 respectively. We present a discussion of this work in Section 3.5 and conclude with
a summary of the chapter in Section 3.6.

30

3.2 System Architecture

Figure 3.1 shows an overview of our system architecture. It has four main components
(a) in-home gateway (labelled Gateway), (b) the VHome framework running on a per-
sonal VEE in the cloud, (c) native applications running within a VHome instance, and
cloud-based applications (CBAs) hosted in the cloud by respective providers, and (d) User
interfaces (labelled Remote UIs) that enable accessing VHome services from a connected
device.

We now describe each component in greater detail.

App
Runtime

APIs
Datastore

PPMs

ACMs

Native
App

Cloud-Based
App

Remote
UIs

Smart Meter
Data

Energy Company
Server

Sensors Gateway

WS

VHome

Personal VEE

WS : Web Services
ACM : Access Control Mechanism
PPM : Privacy Protection Mechanism
 Secure communication

Figure 3.1: Overview of the proposed system architecture.

31

3.2.1 Gateway

The gateway is an in-home and user-controlled service that serves two main purposes.
First, it collects data from in-home sensors and relays it over a secure connection to the
cloud-based VHome instance. Second, it provides an interface that applications (and hence
users) can use to control devices in the home.

The gateway interacts with appliances, either directly (in case of smart appliances), or
using add-on sensors such as network-enabled power strips. This communication typically
uses one or more types of channels such as USB, Zigbee, Ethernet, WiFi, or Z-Wave [39].
Usage data is uploaded from the gateway to the VHome over a secure communication
channel, where it is warehoused to be accessed and processed by applications. The gateway
also authenticates remote users and accepts control commands. These control commands
either configure the gateway, request data uploads, or request actions to be taken by
appliances and devices such as turning an appliance off. A gateway may be a dedicated,
networked hardware device, or integrated into other in-home hardware such as a cable
modem or set-top box, or may be software deployed on a household computer.

3.2.2 VHome

VHome is a software framework that is hosted on a personal VEE and is comprised of a set
of services, described next. A VHome instance (a) receives data relayed from the gateway
and stores it (either using a local datastore, or using commodity cloud storage services),
(b) implements a set of APIs to access the data, (c) hosts a runtime for executing third-
party applications that process sensor data, (d) implements a set of trusted web services
for interaction with the gateway, and user devices, and (e) implements access control and
data transformation mechanisms (explained below). A VHome instance is controlled and
configured by the user who is the owner of the personal VEE.1 A personal VEE could be
a virtual machine [51] or a virtual container [173, 174], provisioned by cloud providers. In
Figure 3.1, the VHome is shown as a dashed outline of a home.

We classify data-driven applications into two categories: Native applications, and
Cloud-based applications (CBA). Native applications run on the VHome-provided run-
time, and are certified to be “safe” using an approach described in more detail in Section
3.2.3. In contrast, cloud-based applications transfer sensor data out of the VHome. Since
this may violate user data privacy, data accesses by a CBA are mediated by privacy protec-

1We discuss the participation incentives for the user and the personal VEE providers in Section 3.5.

32

tion mechanisms (PPMs) that pre-process data before it is transferred out of the personal
VEE.

PPMs can implement privacy models such as obfuscation [44, 116], noise addition, ag-
gregation [154, 155, 167], and homomorphic encryption [88, 127]. An example PPM is one
that adds random noise values to smart meter readings, with the amplitude of the noise
decreasing with reading granularity, so that monthly readings may have little or no added
noise, but per-second readings have relatively larger amounts of added noise. In addition,
access control mechanisms (ACMs) allow users to restrict and revoke CBA access to the
APIs by scope and duration. For example, an ACM may allow a CBA to access only hourly
smart meter readings for a specified day of the year. Moreover, this access may expire after
one day.

In addition to native applications, a VHome also hosts special-purpose trusted Web
Services (WS). Being a trusted component, these services have free access to the APIs
and hence to the sensor data. They periodically accept data batches uploaded from the
gateway and store it in the VHome datastore. They also fetch real-time data from the
gateway when requested by the user. This allows data to be uploaded in a single batch
(e.g., once a day), while providing real-time data access when required. Moreover, they
provide a control interface to the user for various administrative tasks, such as downloading
and running native VHome applications, configuring ACMs and PPMs, requesting VHome
software updates, migrating or deleting data, and configuring gateway actions.

3.2.3 Applications

We now discuss native and cloud-based applications in greater detail. Note that, the
main difference between native and cloud-based applications is that native applications
execute on a tightly-controlled runtime. Moreover, if applications are written in a managed
language such as Java or C#, their bytecode is available for analysis. This allows the
system to limit the privacy leakage that is possible due to these applications. In contrast,
cloud-based applications cannot be tightly controlled. Therefore, the only way to preserve
privacy when transferring data to these applications is to modify the data itself, which is
accomplished using the PPMs.

We envision that both classes of applications would be developed by third-party de-
velopers, much like those who participate in the Apple App Store or Google Play Store.
Developers would use the VHome APIs (described in the next section), to access sensor
data. Users can either download native applications to the VHome which run on the
VHome runtime, or can use ACMs to give cloud-based applications access to their data

33

(after processing by PPMs). Applications can provide user interfaces (UIs) to enable their
invocation from PCs, smart phones, or other connected devices.

Native Applications (NAs)

In our prototype implementation, native applications must be written in Java and are
not allowed to invoke native APIs. The leakage of sensor data from native applications
can be restricted using one of the following approaches. In the first approach, a native
application’s bytecode is scanned to ensure that the application is incapable of network
communication. Therefore an application cannot leak data out of the personal VEE, thus
guaranteeing data privacy. Our thinking is that, an application can be certified as safe
if its bytecode does not use the Java.Net API (and does not use any native APIs). This
can be easily checked either at application installation time or when it is submitted for
publication to the application store.

The second approach is used for native applications that need to use network APIs to
access remote hosts, such as to scrape user’s smart meter data from an energy company’s
website. To handle such applications, network communications from a native application
are restricted to a specific IP address (or host name). For instance, a native application
could be restricted to communicate only with the host name corresponding to the energy
company’s server. Moreover, read or write access from a native application to the database
can also be restricted. In the case of the energy data scraping application, it can be
restricted to only write the scraped data, with no privileges to read other types of sensor
data. As we show in Section 3.3, these restrictions on data access are easy to accomplish
in our prototype implementation. Similarly, we can also restrict the set of web services
that a native application can access.

Certified native applications are suitable for data mining, analytics, visualization, ap-
pliance control and home automation. Native applications can also obtain users’ smart
meter data from energy companies and store it in the datastore, making them ideal for
data consolidation.

Cloud-Based Applications (CBAs)

Unlike native applications, cloud-based applications are hosted using third parties’ hosting
services. The main purpose of a cloud-based application is to allow sharing and compari-
son of sensor data between different VHome instances. ACMs provide fine-grained access
control over time-series sensor data, thus allowing users to choose which part(s) of her

34

data are shared with a CBA, and the time instant(s) at which it is shared, for example,
periodically. The challenge lies in preserving privacy while allowing meaningful computa-
tions and comparisons. While certified native applications can be given access to raw data,
data given to a CBA must be pre-processed using techniques that ensure that privacy is
preserved. These actions are implemented by and configured using the PPMs (as explained
above). Similar to native applications, CBAs can be published on the application store,
and VHome owners can provide CBAs with their VHome URL and explicit authorization
to read required parts of their data.

3.2.4 User Interfaces

The gateway, the VHome’s web services (WS), and cloud-based applications all allow user
interaction. These interactions are mediated using user interfaces implemented on a user
device, such as a web browser, a smartphone application, or other mediums like e-mail or
SMS. User interfaces serve to simplify the management and control of a VHome instance.
Examples include user interfaces that are used to install native applications, to configure
the permissions granted to a CBA, and to control appliances in the home.

3.3 Implementation Details

This section presents details of different components of our prototype of the proposed
architecture.

3.3.1 Gateway

We implement a software-based gateway using the Microsoft HomeOS [76, 77] platform.
As described in Section 2.1.2, HomeOS is a .NET based platform designed to provide
centralized control of devices in the home such as light switches, thermostats, cameras, and
televisions. HomeOS provides developers with homogeneous programming abstractions to
orchestrate such devices. We use these features for monitoring and controlling appliances
and to enable the uploading of data to the VHome. Figure 2.2 shows an overview of
HomeOS. HomeOS is comprised of software modules called drivers that communicate with
devices to allow higher level application modules to actuate the devices. In addition, a
platform module manages and coordinates all other modules. To instantiate our gateway,
we extend HomeOS by enriching it with a few additional modules, described next.

35

Driver Modules

Each driver module monitors and controls an individual appliance using a sensor. We
implement driver modules for the Aeon appliance sensor [2] and the CC Envi [8] power
and temperature sensor. The Aeon sensor is installed in-series with an appliance and com-
municates the power consumption of the appliance to the gateway over Z-Wave [39]. The
module is invoked by the coordinator module (described next) for polling data or control-
ling the sensor, and transmits the respective Z-Wave frames to the desired sensor. The
Envi sensor measures the active power from a home every 6 seconds using a Hall-effect
transducer. The transducer can be clipped around the split-phase wires of an appliance,
or to those at a home’s main electricity supply. Measurements are transmitted wirelessly
to the Envi console which is connected via a USB cable to the gateway machine (an inex-
pensive netbook in our prototype). The netbook caches data on local disk and transmits it
periodically (e.g., daily) to a VHome. Figure 3.2 shows the netbook running the gateway
software, and the Envi device.

Communication Module

This module provides communication between the VHome and the gateway. We use
XMPP [176], the protocol underlying the Jabber chat client, as our transport protocol
because it uses a simple RPC mechanism that is secure, extensible, and provides real-
time communication. Most importantly, XMPP ensures seamless communication from the
VHome to the gateway despite the presence of NAT devices, firewalls, and intermittent
disconnections at the home gateway.

Coordinator Module

This module records and processes energy data generated by the sensors’ driver modules
and caches it temporarily on the gateway. Periodic data uploads are received by the
VHome’s web services and are robust to intermittent losses of connectivity. To facilitate
coordination of sensor data and control between the gateway and the VHome, each sensor
is assigned a class ID and an object ID. Sensors of the same type are assigned the same
class ID, but distinct object IDs. This allows a VHome instance to identify each sensor
using the {class ID, object ID} tuple. The coordinator module uses the communication
module to listen for commands from the VHome (to control sensors). For example, if Aeon
sensors have the class ID 1, and the one interfaced with the electric heater has an object

36

Figure 3.2: Gateway and Envi device.

ID 2, then the VHome issues the following command in XML to order the gateway to turn
it off.

<setStatus classID=1 objectID=2>

<power>0.0</power>

</setStatus>

The gateway performs the required action and responds with the sensor’s new status as an
acknowledgement. Other actions, for example, dimming lights and managing AC temper-
ature setpoints, are performed in a similar fashion.

3.3.2 VHome

In our prototype, all VHome sub-components – the APIs, Web Services (WS), Access
Control Mechanisms (ACMs), Privacy Protection Mechanisms (PPMs), and Native Ap-
plications, are implemented as separate Java Web Applications (or webapps) using the
Java API for Representational State Transfer (REST) [151] Web Services (JAX-RS frame-
work) [58]. As a result, they can be deployed in a Java Web Container. We use Apache
Tomcat as the web container, which is deployed on a virtual machine using the Amazon
EC2 cloud [4]. For data storage, we use MySQL as the relational datastore running on

37

the virtual machine’s local disk. Our choice of Java was motivated by our desire to ensure
VHome portability across virtual machine OSes.

Similar to the data format used for sensors (described in Section 3.3.1), sensor data is
organized into classes where each class describes a type of data stream and has a unique
class ID, a class name (e.g., heating), a descriptor (e.g., space heaters in the home), and
a rating (e.g., 500 W). Data streams can either originate from the sensors at home or can
be external (e.g., smart meter readings from an energy company’s website). Particular
streams of a class are identified as objects using a unique object ID within their class,
and have an object name (e.g., master bedroom heater), a descriptor (e.g., installed on
01/01/2011) and a granularity (e.g., 60, indicating data is produced every 60 seconds).

Privacy Protection Mechanisms (PPMs) are also implemented as webapps and access a
data stream or streams via APIs. They can create new privacy-preserving streams, which
can then be shared with cloud-based applications (CBAs). For instance, we implement
aggregation as an example PPM where energy consumption time-series data, such as that
produced every few seconds, is aggregated to compute daily or weekly consumption values
which are less revealing in nature.

The webapp backend for the VHome APIs implements them as a set of TLS-Secure
REST [151] URIs, which are used by native and cloud-based applications to access data,
control sensors and actuators. Table 3.1 provides a brief overview of the API that native
and cloud-based applications invoke using HTTP GET or POST requests. Results are
returned using JavaScript Object Notation (JSON). Applications can add or modify data
streams subject to the Access Control Mechanisms (ACMs). Applications can potentially
compute a hash of a data stream (e.g., MD5) and sign it (e.g., using user’s private key) to
ensure data integrity.

The ACM webapp regulates applications’ access to all or a subset of APIs, configured
using the VHome Web Services (WS). By default all APIs are regulated and therefore,
require a valid access token to return results. The ACMwebapp implements OAuth 2.0 [99],
a token based authentication and authorization standard for securing API access. It uses
the VHome datastore to store data concerning access controls (e.g., tokens, access lists,
and more), and this data is only accessible to the ACM webapp.

Figure 3.3 illustrates this access process for a cloud-based application (CBA) hosted as a
web portal. To access any API, the CBA is first required to obtain a one time authorization
grant from the ACM webapp by providing its identity (identifier, name, or host-URL) and
a list of APIs that it requires access to and the parameters to the APIs. For instance, a
CBA requiring access to the bedroom space heater consumption data (e.g., with class ID
1 and object ID 2) from January to March 2012 would request access to the data stream

38

API as:

https://<VHome URL>/GetStream/classID/1/objectID/2/TS/1325394000/1333252799

where TS indicates time-series data, and 1325394000 and 1333252799 are the epoch times-
tamps at 01-01-2012 00:00:00 and 31-03-2012 23:59:59, respectively.

This allows restricting the scope of data access to certain data streams and/or certain
segments of a stream’s time-series defined using timestamp and/or data values. The ACM
webapp then redirects the user to the Web Services (WS) webapp so as to authenticate
the user as the VHome owner. After authentication, the scope and nature of the requested
access is described to the user, and her authorization for the access is requested. The WS
implements this as a simple notification in a web-browser, which can be relayed to other
remote UIs such as email, SMS, or mobile application notification. An example of such a
notification from an application named “EXAMPLE” is:

The application named EXAMPLE is requesting
access to bedroom space heater data

for Jan 1 to Mar 31, 2012.
Allow or Deny ?

The CBA is then required to exchange the one time authorization grant (before it
expires) to obtain an access token and an (optional) refresh token. The access token
permits a CBA to use the corresponding APIs until the token expires, after which a new
access token must be obtained using the refresh token. All tokens are valid for periods
configured by the user. By matching the CBA’s credentials (e.g., URL) to those registered
while issuing the authorization grant, the ACM validates each API access and prevents
use of stolen access tokens. Further, if at any point the user decides to revoke (or pause)
a CBA’s access to data, she can simply revoke the access token and the refresh token for
that CBA.

Our prototype implements the authorization grant, access token and refresh tokens
in the form of randomized 128-bit MD5 codes, where the webapp maintains a lookup
table that stores their scope and expiry times. Avoiding the encapsulation of scope and
duration within the token circumvents token processing overhead for each API access. The
authorization grant and access token issuing endpoints are published as GET/POST URIs
by the VHome, and use JSON for token and error-message exchanges with CBAs. Our
prototype implementation assumes one user per VHome. We defer the management of
multiple users per VHome instance to future work.

39

CBA ACM WS

Authorization Request Prompt
AllowOne Time Authorization Grant

One Time Authorization Grant
Access Token + Refresh Token

APIs

Access Token

Access Token
Invalid Token Error

Refresh Token
Access Token + Optional Refresh Token

API Return Values..

Pr
og

re
ss

Figure 3.3: API access for a cloud-based application.

The Web Services (WS) webapp implements a number of backend components and
allows users to configure them. First, it coordinates periodic data uploads from the gateway
over XMPP and symmetrically transmits control commands to the gateway’s coordinator
module. Second, it provides the user with a control portal to install native applications
on the VHome. Native Applications, being JAVA web applications, are then profiled by
the WS webapp for use of the JAVA.net interface and for the VHome APIs they require.
The user can restrict the applications’ ability to read from and write to the database by
disallowing or restricting the scope of the APIs. Likewise, users can configure ACM settings
such as token formats and expiry periods, and chose which APIs it permits. In a fashion
similar to native applications, certified PPMs can be added to the VHome through this
portal which can be run to create additional data streams. Lastly, the WS webapp allows
users to purge native applications or data, and revoke access tokens of any CBA.

Our prototype VHome implementation is open source and can be found at https:

//vhome.codeplex.com while the gateway implementation using HomeOS is hosted at
http://homeos.codeplex.com.

40

https://vhome.codeplex.com
https://vhome.codeplex.com
http://homeos.codeplex.com

Function (regulated by default) Description

ListAllClasses Returns all attributes of all classes of data in the VHome DB

ListClass/param/value Returns all attributes of classes that match the specified pa-
rameter values

param: class ID, class name or rating

ListObject/param1/value1/param2/value2 Returns all attributes of objects that match the specified pa-
rameter values

param1 : class ID, class name or rating

param2 : object ID, object name or granularity

AddClass/className/x/descriptor/y/rating/z Adds class with name x, descriptor y, and rating z

AddObject/classID/w/objectName/x/descriptor/y/granularity/z Adds object with given class ID w, object name x, descriptor
y, and granularity z

AddStream/classID/x/objectID/y/ Adds time-series data to the given data stream with class ID
x and object ID y

GetStream/classID/x/objectID/y/ Returns the complete time-series data stream with class ID x
and object ID y

GetStream/classID/x/objectID/y/TS/t1/t2 Returns the time-series with class ID x and object ID y be-
tween timestamps t1 and t2

GetStream/classID/x/objectID/y/Val/v1/v2 Returns the time-series with class ID x and object ID y be-
tween data values (or Val) v1 and v2

GetStatus/classID/x/objectID/y Returns the current power consumption of device with class
ID x and object ID y

SetStatus/classID/x/objectID/y/status/p Sets the power consumption of device with class ID x and
object ID y to p

Table 3.1: VHome API used by applications to access data.

41

3.3.3 Sample Applications

We have created a sample application store as a web portal where users can browse for
native applications. It transfers the selected applications’ executables to the VHome’s web
services (WS) which installs them on the VHome, and can then be accessed using remote
UIs. We now describe four applications that we have built using our system which, without
our architecture, cannot be implemented in a privacy-preserving form without burdening
the user with maintaining computation and data storage resources for applications.

Data Scraper

This application obtains users’ smart meter data from the energy company. It is imple-
mented using the JAVA DOM interface as a VHome native application. Our prototype
application runs on the VHome, scrapes data from an energy company’s web portal and
stores it in the datastore. At installation time, the application requests users to provide
it with their access credentials to access the energy company’s portal (Waterloo North
Hydro [36] in our prototype). The application also allows users to set automated periodic
data scraping actions to ensure that data is obtained before it is discarded by the utility
company’s portal (e.g, after three months) and the user is relieved of manually retrieving
the data. The application allows the data to be retained by the user even after it is no
longer available on the energy company’s portal. The data is stored as a data stream in
the Smart Meter class which can then be accessed by other applications through APIs.
Access to historical smart meter data provides opportunities for data analytics. For in-
stance, it allows applications to account for seasonal climate changes when examining the
consumption history.

Interactive Monitoring and Control

This native application interfaces with the VHome web services to monitor and control
home appliances in real-time from an Internet-enabled device. Note that native applica-
tions have no network access and can only be viewed by invoking the trusted VHome we-
bapp container. We implement an Android smartphone application that invokes a VHome
native application and provides a smartphone application GUI. This means users can use
VHome native applications via web-browsers or with applications installed on their mobile
devices such as smartphones and tablets.

Figure 3.4 shows snapshots of different panels in our Android smartphone application.
Screenshot-1 (on the left) shows the home monitor, which allows users to view current

42

conditions of the home as reported by the Envi sensor. In addition, the consumption data
stored at the VHome is used to compute and display the day’s and week’s consumption.
Screenshot-2 (in the center) shows the control panel which allows users to turn on or
turn off different appliances connected to Aeon Z-Wave sensors and displays their current
consumption. Further, it allows users to share the amount of energy they conserve by
turning off appliances, on social networks such as Facebook and Twitter and to compete
with their friends. Screenshot-3 (on the right) shows a past trend of aggregate energy
consumption measured using the Envi sensor. This trend data can be used by users to
better understand abnormal consumption notifications (described below). Our prototype
implements SMS, E-Mail and mobile application notifications. Since the VHome runs on
a cloud virtual machine, energy data can be processed and accessed using any connected
device with relatively low latency.

Figure 3.4: Screenshots of our Android smartphone application.

Abnormal Energy Consumption Detection

This VHome native application informs users about abnormalities in their energy consump-
tion. For instance, consider a scenario where users forget to turn off a high-risk appliance
such as an oven. Using the VHome APIs, this application periodically obtains the energy
consumption values from the gateway, measured by the Envi sensor. It then compares the
values to a predicted value computed using an Auto-Regressive Moving Average model.

43

If the measured value is higher than the predicted value by a threshold (e.g., 1 kW), the
application sends the user a notification message via e-mail, SMS, or the Android smart-
phone application. The user can then either use the Android application (described above)
or reply to the email or SMS to take appropriate action.

Energy Data Analytics

In many parts of the world the price of electricity depends on the time of the consumption.
In Ontario, a day is divided into peak, mid-peak, and off-peak hours, each with different
rates [26]. We implement a VHome native application that processes a home’s electricity
consumption measured using the Envi sensor to determine how much energy is consumed
during different hours of the day, its corresponding cost under the pricing scheme, and the
total cost. It uses smart meter data obtained and stored by the data scraper application
to verify a user’s monthly energy bill. Such simple analytics also provides the user with
meaningful insight into her hourly and daily consumption patterns, warns her of potential
errors in their energy bills, and can help her to time shift non-critical consumption.

3.4 Evaluation

We compared our architectural approach to other approaches in Section 2.1 (Chapter 2).
In this section, we compare our prototype to different existing widely deployed (i.e., non-
research) systems for home energy applications. Table 3.2 compares the different systems
based on our design goals (Section 1.2).

Commercial software solutions such as Google Powermeter [15] and Microsoft Hohm [24],
being centralized web services are scalable but provide a fixed set of analytics with no data
consolidation and little data privacy. Both services are now defunct, thus leaving users de-
prived of their energy data. Energy companies’ web portals act similarly and share/discard
the smart meter data at their discretion but ensure integrity of that data. The GreenBut-
ton [17] initiative has standardized energy data formats, so that users can access their
data and analyze it themselves (denoted “GreenButton (Self)”) by using desktop tools
such as Energy Lens [7]. This allows users to choose analytics tools, ensure data integrity,
and provides data privacy, but it burdens them with data hosting. Alternatively, users
can delegate the data retrieval and maintenance to third parties (denoted “GreenButton
(Third Party)”). Third parties can manage, analyze and host users’ energy data, but such
unconditional access to raw data provides little data privacy.

44

Our prototype implementation of the proposed architecture meets the design goals for
a user-centric, privacy preserving system for energy data analysis as explained below.

Hohm [24], Energy companies GreenButton [17] (self) GreenButton [17] VHome

Powermeter [15] web portals [32,36] Energy Lens [7] (third party) prototype

Data Consolidation ✓ ✓ ✓

Data Durability *

Data Integrity * ✓ *

Data Privacy ✓ ✓

Application Extensibility ✓ ✓ ✓

Application Performance ✓ ✓ ✓ ✓

Scalability ✓ ✓ ✓ ✓

Table 3.2: Comparison of existing solutions for home energy data applications, * denotes
a partial solution.

• Data Consolidation: VHome native applications, such as the data scraper appli-
cation (Section 3.3.3), can read data from any data source and store it in the VHome
database. This allows users to easily consolidate data from multiple sources by using
one native application per data source. User-owned sensors can be directly interfaced
with the gateway, in a fashion similar to that described in Section 3.3.1.

• Data Durability: Instead of relying on a single computer in the user’s home to store
data, and relying on the user to back up that data, for example, by making off-site
backups, data is stored in the VHome datastore. The VHome prototype is hosted on
a user-owned virtual machine (VM), and uses its local disk to warehouse the data.
However, different cloud providers provide varied guarantees on the durability of data
stored on VMs’ local disks [4, 37]. For instance, VMs on Amazon Elastic Compute
Cloud (EC2) may lose local disk data in case of hard drive failures. Therefore, our
current prototype provides only a partial solution to data durability. In Chapter 4,
we address this problem by leveraging commodity cloud storage services for storing
sensor data, since they provide stronger data durability guarantees with lower storage
cost than VM local disks.

• Data Integrity: Native applications can implement mechanisms to ensure the in-
tegrity of data stored directly into the VHome datastore, such as sensor data up-
loaded from the gateway. Example mechanisms include storing signed hashes of data

45

streams. However, our current prototype does not include such native applications.
We address this problem in detail in Chapter 4.

Moreover, in cases of data procured from external sources, such as smart meter
data from energy companies’ servers, applications have to rely on the respective
sources such as energy companies, for preserving integrity of the data. Similarly, our
prototype assumes that the VEE and VHome-software providers do not tamper with
data in the VHome datastore.

• Data Privacy: The current prototype uses several mechanisms to ensure data pri-
vacy. First, data within a VHome instance is not accessible by entities outside the
VHome, eliminating many types of privacy violations. Privacy leakage from native
applications is prevented by certifying native applications, by checking Java byte code
submitted to the application store to ensure that they are either not using network
APIs, or when they need to, are only communicating with the specified hosts. The
details of this process are described in Section 3.2.3. Privacy leakage from cloud-
based applications is mitigated, to some extent, by aggregation or obfuscation and
other privacy preserving mechanisms (PPMs). Note that, these protections of data
privacy assume that the VEE and VHome-software providers are trusted.

• Application Extensibility: Users can freely choose to extend their set of VHome
native applications by installing them from the application store. Users can also
chose to transfer their data to other cloud-based applications for analytics and other
services.

• Application Performance: Personal VEEs in the cloud provide VHome appli-
cations with more computational resources such as memory, CPU time, than are
available on a typical user’s home machine. Moreover, hosting data and applications
in the cloud minimizes remote access latencies as compared to typical home access
links which have lower bandwidths.

• Scalability: In contrast with home-based computers, cloud-based personal VEEs
allow for easy scaling of both data set sizes and computation, by suitable provisioning
and re-sizing of the VEEs.

Thus, our prototype addresses all of our design goals, and demonstrates the feasibility
of our proposed personal VEE architecture using existing hardware, software, and cloud
infrastructure.

46

3.5 Discussion

Smart Meter Data

In some sense, ensuring that smart meter data remains private is moot, because energy
companies today collect this data and share it arbitrarily with third parties of their choice
(e.g., Google PowerMeter and Microsoft Hohm), without seeking users’ explicit permission.
However, this situation is likely to change in the future due to two reasons. First, we
anticipate that many jurisdictions, following the lead set by the province of Ontario (in
Canada), will place severe restrictions on the sharing of smart meter data with third
parties, thereby freezing innovation in data analytics and customized recommendation
applications. Although this is being countered by proposals such as the GreenButton
initiative [17], which release smart meter data back to users, users are not capable of
performing their own data analytics, and are loathe to share this data with third parties
due to privacy concerns. Second, besides smart meter data, users are likely to generate
many other equally private data streams including health-monitoring data, especially with
the widespread adoption of health-tracking devices such as Fitbit [14]. Our prototype
implementation can be extended to applications that analyze and process other such data
streams, thus balancing data privacy and application innovation in those domains.

An alternative approach for handling smart meter data is one where a home’s data
is transferred directly from the smart meter to a homeowner’s personal VEE. A VHome
native application can then use the data to compute the monthly or yearly bill which is
relayed to the energy company. Existing work on zero-knowledge proofs [138] and trusted
computing platforms [132], may be leveraged to guarantee the authenticity and validity of
the bill to the energy company, which has no access to the raw privacy-sensitive data.

Incentives

Our current prototype caters to home energy data, and involves five stakeholders– energy
companies (that collect smart meter data), users, personal VEE providers, VHome software
providers, and application developers. We now describe the incentives each stakeholder has
for participating in the system.

• Energy Companies: Energy companies are under great pressure from legislatures
to release smart meter data to the users, as evidenced by the GreenButton initia-
tive [17]. They also benefit from users’ adoption of energy conservation applications,
in that it reduces their need for costly generation capacity upgrades. For instance,

47

energy companies often have to provision additional power plants to serve their peak
electricity demands, even though such demand levels occur rarely.

• Users: Users are increasingly becoming aware of the costs of the world’s rampant
energy consumption. In some cases users are motivated to better understand and
reduce their consumption to limit their carbon emissions, and its disastrous con-
sequences such as global warming and climate change. In other cases, users are
motivated to reduce their energy bills. Users currently lack the infrastructure and
tools to understand how they can achieve these reductions without giving up their
data privacy.

• Personal VEE providers: VEE providers are paid by users for hosting and main-
taining their services, and thus have a monetary incentive for participation.

• VHome software providers: We believe that VHome software providers can be
compensated for their development and maintenance efforts in two ways. First, some
user may wish to pay for purchasing VHome software, so that they can receive in-
telligent recommendations for their electricity use. This is akin to those users who
pay a monthly fee for services such as DropBox. Second, vendors of energy-efficient
appliances could subsidize the cost of VHome software, because applications’ recom-
mendations for the use of their products, such as energy-efficient air conditioners,
washing machines and LED lights, will lead to increased product sales.

• Application developers: Application developers receive a mass audience for their
applications, and can choose to either sell them directly, or use built-in advertise-
ments; similar to applications on application stores such as the Apple App Store and
Google Play. Some applications may also be commissioned by equipment vendors,
as discussed above.

Key Aspects

Our proposed architectural approach may appear to be obvious, merging cloud-hosted data
and execution environments with sensor data streams, an approach already implemented
by data management systems such as Pachube [29]. However, there are three aspects of our
work that are not obvious. First, we show how to use virtualized execution environments,
in conjunction with an object-level framework, to provide a practical solution for the
seemingly conflicting requirements of ensuring data privacy while fostering application
development. Second, our approach enables the development of an ecosystem of energy
management applications in much the same way as Google Play and the Apple App Store

48

provide an ecosystem for the development of smartphone, tablet, and desktop applications.
Third, our approach is diametrically opposed to the service-provider centric view that is
widely prevalent in the Smart Grid community, and commonly used by energy companies.
Instead of designing an architecture that caters to the needs of energy companies, our
approach places control firmly in the hands of the users.

Limitations

Our prototype is limited to dealing with sensor generated time-series data and does not
support other potential forms of user data, such as photos, videos, or document files.

Secondly, since our approach provides users with greater control over their data than
existing approaches, hence the user is faced with an increased number of decisions. How-
ever, such cognitive overload may be eased by learning users’ preferences from user studies
to help make decision-making simple and intuitive for the user.

Our prototype does not include mechanisms for ensuring integrity of data streams.
Although, as explained in Section 3.4, these mechanisms are fully realizable in our ar-
chitecture. Moreover, such mechanisms are particularly important if commodity cloud
storage services are used for long-term data storage. Similarly, our prototype uses an ex-
isting relational database system (MySQL) to store the sensor data. This means that some
applications’ latencies may be impacted by the database’s retrieval latencies. However, it
may be possible to improve retrieval latencies by leveraging the nature of data queries that
are typically issued by applications. We explore these possibilities in Chapter 4.

Lastly, our approach also requires a trusted certification mechanism to certify applica-
tions and requires VHome software and personal VEE providers to be non malicious.

3.6 Chapter Summary

The work in this chapter investigates the feasibility of the personal VEE approach for
enabling an ecosystem of privacy-preserving data-driven applications. To do so, we choose
home energy data as an example use case because of its widespread potential impact. We
build a prototype implementation of our proposed architecture that helps users manage
home energy data and its applications. We identify, design, and implement the different
components of the architecture. We also demonstrate how existing work, both in energy
data privacy and home device management can be leveraged to enrich some architectural

49

components, such as an in-home gateway and privacy protection mechanisms that trans-
form sensor data to be less revealing. Our prototype consolidates and stores users’ home
energy data, and exposes it to third party applications while ensuring that users have
complete control over their data. It addresses all of our design goals, and demonstrates the
feasibility of our personal VEE architecture using existing hardware, software, and cloud
infrastructure. We conclude the chapter by presenting a discussion of smart meter data
with regards to our architecture. We also outline the incentives for different stakeholders in
our prototype, and discuss the key insights that underlie our work, its current limitations
and possible improvements.

50

Chapter 4

A Storage System for Sensor Data

4.1 Introduction

In our prototype implementation of the personal VEE architecture (described in Chapter 3)
we provided native and cloud-based VHome applications with RESTful APIs to read and
write sensor data. We implemented a few example applications to demonstrate the use of
these APIs. However, our prototype suffers from two main drawbacks.

First, many applications require richer data manipulation capabilities than those sup-
ported by our prototype data storage system. For instance, PreHeat [163] is an application
that infers home occupancy by processing in-home motion sensor readings, and uses his-
torical inferred occupancy values from specific time windows to predict future occupancy
which is used to control home heating to reduce home energy consumption. Similarly, Dig-
ital Neighbourhood Watch (DNW) [57,69] is an application that stores information about
physical objects seen by in-home cameras, and shares this information with neighbouring
homes when requested, allowing users to gather image and video evidence of criminal ac-
tivities in the neighbourhood. We describe these applications in detail in Section 4.2.1.
Building these applications as native or cloud-based VHome applications will require de-
velopers to design and implement suitable data retrieval and sharing mechanisms, thus
increasing development effort.

The second drawback of our prototype storage system is that it only uses a VEE’s local
storage. However, users and applications may also want to use commodity cloud storage
services such as Windows Azure [37] or Amazon S3 [4] to lower storage costs or obtain
better reliability. This requires application developers to not only design mechanisms

51

to store sensor data using these services but also to provision additional mechanisms to
prevent storage providers from accessing users’ private data.

We aim to simplify the management of data from in-home sensors by designing a
suitable data management system that replaces our prototype storage system. To do so,
we survey existing and proposed home applications and determine the key requirements
for such a system. We now briefly summarize these requirements and describe how they
are derived in detail in Section 4.2.

• The system should support time-series sensor data and should allow arbitrary tags
to be assigned to values. This is because tags provide applications with a flexible
way to assign application-specific semantics to time-series values. For instance, the
DNW application may use “car” as a tag for a given data record.

• The system should enable user-controlled sharing of data across VHome instances
because many applications need to access data from multiple homes. For instance,
an application that correlates energy data across homes to provide users with a com-
parison of their energy consumption with other similar homes in the neighbourhood.

• The system should support cloud storage providers and should allow applications to
freely specify storage providers. This is because applications are in the best position
to prioritize storage metrics such as cost, reliability, location, and latency.

• When using cloud storage, the system should protect data against eavesdroppers in
the cloud or in the network because of the privacy-sensitive nature of sensor data.

Unfortunately, existing systems (described in detail in Section 2.2) do not meet all of
these requirements.

Therefore, we design and implement Bolt, a data management system that meets these
requirements to provide storage, retrieval, and sharing of sensor data with low resource
overheads. Bolt abstracts data as a stream of (timestamp, tag, value) tuples, and builds
indices on these tuples to enable applications to issue data queries based on timestamp and
tag values. It uses cloud storage as a seamless extension of local VEE storage, presenting
applications with a uniform programming abstraction, and allows applications to prioritize
storage across providers. Cloud storage is also used to facilitate the sharing of data across
VHome instances. Bolt encrypts sensor data before uploading it to cloud storage services,
and maintains metadata on a trusted server (a native VHome application) to manage data
sharing and provide data integrity guarantees.

Our key contributions in this chapter are:

52

• A formulation of data management requirements of in-home data-driven applications.

• The design and implementation of Bolt, a system for the storage, retrieval, and
sharing of in-home sensor data that meets the design requirements.

• A performance evaluation of Bolt using three sample applications showing that Bolt
has up to 40 times lower data retrieval time and incurs 3–5 times less storage space
than OpenTSDB [27].1

This work has been published in the proceedings of USENIX NSDI 2014 [95].

The remainder of the chapter is structured as follows. We survey existing applica-
tions and formulate the design requirements in Section 4.2. Section 4.3 describes the data
guarantees Bolt provides and gives an overview of the key elements of Bolt’s design. We
describe the design in detail in Section 4.4 and our current Bolt implementation in Sec-
tion 4.5. We evaluate Bolt in Section 4.6 and present a discussion of potential extensions
of Bolt in Section 4.7. We conclude with a summary of the chapter in Section 4.8.

4.2 Design Requirements

To determine the design requirements for our storage system, we surveyed several ap-
plications that process in-home sensor data, including example applications described in
Chapter 3. We first briefly describe three such applications chosen because of their diver-
sity in the type of data they manipulate, their data access patterns, and their potential
implementations as native and cloud-based VHome applications. We then formulate the
design requirements in Section 4.2.2.

4.2.1 Example Applications

PreHeat

PreHeat [163] correlates readings from motion sensors in a home to infer users’ home
occupancy. It records the occupancy values, and uses past occupancy patterns to predict
future occupancy, which it uses to turn a home’s heating system on or off to reduce the
amount of energy consumed for heating the home. PreHeat divides a day into 15-minute

1A popular time-series data management system, discussed in Section 2.2.3.

53

time slots (i.e., 96 slots/day), and records the occupancy value at the end of a slot: 1 if the
home was occupied during the preceding slot, and 0 otherwise. At the start of each slot,
PreHeat predicts the slot’s occupancy value, using the slot occupancy values for past slots
on the same day and corresponding slots on previous days. For instance, for predicting the
occupancy of the nth slot on the dth day, PreHeat first retrieves occupancy values for slots
1 · · · (n−1) on the dth day. This is called the partial occupancy vector (denoted as POV n

d).
In addition, PreHeat also uses POV n

d−1, POV n
d−2, . . . , POV n

1 . From this set of past POVs,
PreHeat selects K POVs which have the least Hamming distance to POV n

d . An average of
these top K POVs is computed, then it is compared with a threshold value to obtain the
predicted occupancy value and the heating system is turned on or off accordingly. Since
PreHeat only requires sensor data from a single home, it can be implemented as a native
VHome application in our personal VEE architecture.

Energy Data Analytics (EDA)

Recall that the sample EDA application we considered in Chapter 3 processed energy
sensor data values to determine how much energy is consumed during different hours of a
day and the energy costs under a time-of-day based pricing scheme. However, recent work
has proposed improved data analysis techniques for energy data. For instance, techniques
that identify the energy consumption of different appliances, user activities, and energy
wastage [55,85,121,142].

A specific EDA application that we consider is a cloud-based application, for example,
hosted by an energy company, that presents an analysis of the monthly energy consumption
to users [55]. It disaggregates hourly home energy consumption values, such as smart meter
readings, into different categories which include: baseline consumption, user activity driven
consumption, consumption of heating or cooling systems, and others. For each home,
the variation in consumption level is analyzed as a function of ambient temperature by
computing the median, 10th, and 90th-percentile home energy consumption levels for each
temperature value. These values are then compared with other homes in a neighbourhood
or city, and are reported to the user with appropriate graphics.

Digital Neighbourhood Watch (DNW)

DNW helps neighbors jointly detect suspicious activities, for example, an unknown car
cruising the neighbourhood, by sharing security camera images [57, 69]. It can be im-
plemented as a combination of a native and cloud-based VHome applications. A DNW
instance in each VHome monitors the footage from security cameras in the home. When

54

it detects a moving object, it stores the object’s video clip and generates its summary
information, such as:

Time: 15:00 PDT, 23rd September, 2014

ID: 001

Type: human

Entry Area: 2

Exit Area: 1

Feature Vector :{114, 117, ... , 22}.

This summary includes the inferred object type, its location, and its feature vector, which
is a compact representation of its visual information. The example above shows the feature
vector for a sample human subject.

When a user deems a current or past object suspicious, the DNW instance in her
VHome queries neighbouring homes’ instances to query if they have also seen the object
around the same time. A DNW “coordinating endpoint”, implemented as a cloud-based
application, could be used to perform such queries. In response to such a query, each
neighbour home instance extracts all objects that it saw in a time window (e.g., an hour)
around the time specified in the query. If the feature vector of an object is similar to the
one in the query, it responds positively and optionally shares the video clip of the matching
object. Responses from all the neighbours allow the original instance to determine how
the object moved around in the neighbourhood and if its activity is suspicious.

Other Applications

Other applications we surveyed include Digiswitch [60], which allows elders and their dis-
tant caregivers to share real time home activity information. We also surveyed commercial
systems such as Kevo (which interface with in-home connected door locks) and other home
energy applications that we implemented in Chapter 3 including: abnormal consumption
detection, interactive monitoring and control, and smart meter data scraper. The require-
ments, which we describe next, also cover those placed by these applications.

4.2.2 Data Management Requirements

We formulate the requirements of the applications (described above) into four categories.

55

1. Support Time-series, Tagged Data

Most in-home sensor applications generate time-series data and retrieve it based on time
windows. For instance, as described above in Section 4.2.1, PreHeat stores continuous
home occupancy values, and retrieves them based on multiple time windows (called POVs).
Similarly, EDA accesses hourly energy consumption values, and object summaries in DNW
are also time-series data. Moreover, applications also sometimes tag the data, so that it
can be queried at a later time using application-specific tags. For instance, object type
“car” is a possible tag in DNW and “home heating consumption” is a possible tag in EDA.
Applications can specify such tags to retrieve the required values.

We also observe other commonalities in the data manipulation patterns of applica-
tions. First, time-series data in these scenarios has a single writer. Second, writers always
generate new data and do not perform random-access updates or random record dele-
tions. Third, readers typically fetch multiple proximate records by issuing temporal range
queries for sliding or growing time windows. Note, however, that traditional databases
incorporate transactions, concurrency control, and recovery protocols that incur unwanted
resource and latency overheads [164]. Unfortunately, filesystem storage offers inadequate
query interfaces for such applications.

2. Support Policy-Driven Storage

Different types of time-series data have different storage requirements for location, access
latency, cost, and reliability. A DNW application may record in-home images locally (e.g.,
on a personal VEE’s local disk) and can delete them once it has extracted and stored
the summaries of objects in them. The application may want to store these on a remote
server to enable correlation with images captured by neighbouring homes, for example, to
detect a suspicious car moving in the neighbourhood. Alternatively, the raw images may
be stored on cheaper archival cloud storage. We believe that applications are in the best
position to prioritize storage metrics and should be able to specify the policies that govern
the storage of data (that they generate) across providers.

3. Ensure Data Confidentiality and Integrity

Applications may also use remote storage infrastructure to simplify data management and
sharing, improve reliability or lower cost, but may not trust the storage services with main-
taining the confidentiality or integrity of data. Data processed by applications may reveal

56

immensely private information about the user: occupancy and energy data in PreHeat and
EDA respectively, can reveal when residents are away, which can be exploited by attackers.
Therefore, a data management system for in-home sensor data should guarantee the con-
fidentiality and integrity of stored data. The system should also support efficient changes
in access policies, without requiring, for instance, re-encryption of large amounts of data.

4. Efficiently Share Data Across Homes

Many applications require access to data from multiple homes. In our personal VEE
architecture, these are either VHome native applications that need to share data with
other VHome instances or are cloud-based applications which correlate data from multiple
VHome instances. Both DNW and EDA are examples of such applications, which share
object summaries and energy consumption values across homes respectively. Existing data
storage and sharing services, such as Dropbox or OneDrive, can simplify cross-home sharing
but they will unnecessarily synchronize large quantities of data. Applications may want
to access only part of the data produced by a sensor. For instance, in DNW, it would be
wasteful to access an entire day’s video data if the search for suspicious objects needs to
be conducted only over a time window of few minutes.

Designing a storage system such that it meets all the requirements described above,
presents many design choices. For instance, storing all data locally facilitates confidentiality
but inhibits efficient sharing and reliable storage in the cloud. Similarly, storing data in the
cloud provides reliable storage and sharing but untrusted storage servers can compromise
confidentiality. Sharing data by synchronizing large amounts of data is inefficient, whereas
näıvely storing encrypted data on untrusted cloud storage servers inhibits efficient sharing.

As described in detail in Section 2.2, existing systems either provide inefficient shar-
ing and query abstractions for time-series data [82, 87, 128], assume partial or complete
trust on the storage servers [129], or store data locally while ignoring application storage
policies [89]. In the following sections we describe the design of Bolt, which meets the
requirements discussed above.

4.3 Design Overview

Bolt provides applications with a stream abstraction, where each stream is a collection
of records, and each record has a timestamp and one or more tag-value pairs, that is,
<timestamp, <tag1,value1>, [<tag2, value2>, ...]>. Streams are uniquely identified by the

57

three-tuple: <VHomeID, AppID, StreamID>. Bolt allows retrieval and filtering of streams’
records using time ranges and tags. We first explain our design assumptions and Bolt’s data
guarantees followed by a description of key design elements in Section 4.3.2. Highlighting
the key design elements enables us to describe the design in detail in Section 4.4.

4.3.1 Security Assumptions and Guarantees

Bolt does not trust the cloud storage servers to maintain data confidentiality or integrity.
It assumes that the storage infrastructure is capable of performing unauthorized reads or
modifications to stream records and can return old data when queried. By building on
top of this untrusted storage infrastructure Bolt provides the following three data security
guarantees:

1. Confidentiality: Data in a stream can be read only by an application to which the
owner, that is, the writer, grants access. Once the owner revokes access, the reader
cannot access data stored after revocation.

2. Tamper Evidence: Readers can detect if data has been tampered with by anyone
other than the owner. However, Bolt does not defend against denial-of-service at-
tacks, for example, where a storage server deletes all data or rejects all read requests.

3. Freshness: Readers can detect if the storage server returns stale data, that is, data
is older than a given owner-configurable time window.

4.3.2 Key Techniques

We describe the four main techniques that allow Bolt to meet these design requirements.

Chunking

Bolt stores data records in a log per stream called the DataLog, which enables low-latency
append-only writes. Streams have an index into the DataLog to support efficient lookups,
filtering on tags, and temporal range and sampling queries. A contiguous sequence of
records within a log constitutes a chunk. A chunk is the basic unit of transfer for storage
and retrieval. Data writers upload chunks instead of individual records. Bolt compresses
chunks before uploading them, which lowers transfer time and storage space required.

58

Readers also fetch data at the granularity of chunks. Although, this may obtain more
records than are needed for answering a given query, the resulting inefficiency is partially
mitigated by the fact that applications, such as the ones surveyed in Section 4.2.1, are
often interested in multiple successive queries rather than a single query. Delay incurred for
common queries with temporal locality is improved by fetching chunks instead of individual
records because it avoids additional round trip delays.

Note that typical sensor data, when packed into chunks, has high compression ratios
that lowers the fraction of bytes transferred when fetching chunks for serving data reads.
Chunks can be compressed using existing compression techniques such as GZip and delta
encoding of timestamps and values of records within a chunk, which will further improve
storage and transfer efficiency. These techniques do not have a significant impact on re-
trieval time because chunks can be uncompressed and decoded, in parallel, using a pipeline.

Separation of Index and Data

Bolt maintains an index for each stream. The index stores information about the location
of different records stored in the stream’s log. When answering queries for data stored
remotely, Bolt first fetches and stores the stream index on a local disk. This separation of
the index and DataLog, enables two key properties.

First, when answering read queries for data stored remotely, the index (fetched and
stored locally) can be used to determine the chunks that should be fetched from remote
servers. A dedicated computation endpoint, such as a query processing engine hosted in
the cloud, is therefore not required, thus reducing storage and retrieval costs. This allows
Bolt to use existing storage servers that only provide get and put APIs.

Second, this separation allows Bolt to relax its trust assumptions for storage servers,
supporting untrusted cloud providers without compromising data confidentiality by en-
crypting data. The data can be encrypted before storing and decrypted after retrievals,
while the storage provider does not need to support any data semantics. Using untrusted
cloud providers is challenging if the provider is expected to perform index lookups on the
data.

Segmentation

Since applications only append new data and do not perform random writes, stream Dat-
aLogs can grow very large over time. Bolt allows archiving of contiguous portions of a
stream, that we call segments, while still allowing efficient querying. The storage location

59

of each segment can be configured independently, enabling streams to be stored across mul-
tiple storage providers. Hence, streams may be stored either locally, remotely on untrusted
servers, replicated for reliability, or striped across multiple storage providers for cost effec-
tiveness. This configurability allows applications to prioritize their storage requirements
of space, latency, cost, and reliability. Bolt currently supports local disk, Windows Azure
storage, and Amazon S3 as storage providers.

Decentralized Access Control and Signed Hashes

To maintain confidentiality when using untrusted storage servers, Bolt encrypts the stream
with a secret key generated by the owner, that is, the writer. Our design supports encryp-
tion of both the index and data, but by default we do not encrypt indices for efficiency,2

though in this configuration some information may be leaked through data stored in indices.

We use lazy revocation [107] for reducing computation overhead of cryptographic op-
erations. Lazy revocation prevents evicted readers from accessing content stored after
revocation, because any content stored before revocation may have already been accessed
and cached by such readers. From the different well-known key management schemes that
support lazy revocation, we use hash-based key regression [86] for its simplicity and effi-
ciency. It enables the owner to share only the most recent key with authorized readers,
based on which the readers can derive all previous keys to decrypt any content encrypted
using those keys.

We use a trusted metadata server to store and distribute keys. It runs on a user’s
personal VEE. Once an application has opened a stream, all its subsequent reads and
writes occur directly between the storage server and the application. This prevents the
metadata server from bottlenecking read or write operations. In addition to keys for
encrypted data streams, the metadata server also stores additional per-stream metadata,
which we describe in detail in Section 4.4.4.

Encryption provides confidentiality of data. However, a remote untrusted server storing
part of a stream may modify data records or could return old copies of the data. Therefore,
we incorporate data integrity and freshness checks into each stream. To facilitate integrity
checks on data, the writer generates a hash of stream contents, which is verified by the
readers. To enable freshness checks, similar to SFSRO [87] and SiRiUS [91], we include a
freshness time window as a part of a stream’s integrity metadata (denoted MDint). This
time window denotes the time up to which a stream’s data can be deemed fresh; it is

2Index decryption and encryption is a one time cost paid at the start and end of a session of queries
respectively (called stream open and close), and is proportional to the size of the index.

60

based on the periodicity with which writers expect to generate new data, since typical
writers periodically append new values to streams. Writers update and sign this time
window periodically, which is used by readers to verify records when they open a stream
for reading.

4.4 Bolt Design

This section describes the design of Bolt in greater detail.

4.4.1 APIs

Table 4.1 shows the different stream APIs offered by Bolt. Applications, identified by the
tuple (VHomeID, AppID), are the principals that read and write data. Table 4.2 shows the
stream properties that applications specify when performing a stream create or a stream
open operation. These properties define the stream’s type, storage location, encryption,
and sharing requirements. The stream type can be a ValueStream, which can be used to
store relatively small data values such as temperature readings, or a FileStream, which is
used for relatively large data values such as images or videos. As we detail below, the two
types of streams organize data in different ways on disk.

Each stream has one writer (owner) and one or more readers. Writers add time-tag-
value records to the stream using the append operation. A single record in a stream can
have multiple tag-value pairs. Similarly, a record can also have multiple corresponding to a
single value. Tags and values are application-defined types that are required to implement
specific contracts, which allows Bolt to hash, compare, and serialize them. Lastly, writers
can grant and revoke the read access of other applications. Readers can filter and query
data using tags and time, using the different get operations. Our prototype implementation
supports querying for the latest record, the latest record for a tag, temporal range and
sampling queries, and range queries on tags. Range queries return an iterator, which
fetches data on demand.

4.4.2 Writing Stream Data

To write data to a stream, an owner first creates a new Bolt stream and appends data
records to it. Figure 4.1 shows the data layout for a stream. A stream consists of two

61

Function Description

createStream(name, R/W, policy) Create a data stream with specified policy properties (see Table 4.2)

openStream(name, R/W) Open an existing data stream

deleteStream(name) Delete an existing data stream

append([tag, value]) Append the list of values with corresponding tags. All values get the same timestamp

append([tag], value) Append data labelled with potentially multiple tags

getLatest() Retrieve latest tuple < time, tag, value > inserted across all tags

get(tag) Retrieve latest tuple < time, tag, value > for the specified tag

getAll(tag) Retrieve all time-sorted tuples < time, tag, value > for the specified tag

getAll(tag, tstart, tend) Range query: get all tuples for tag in the specified time range

getAll(tag, tstart, tend, tskip) Sampling range query

getKeys(tagstart, tagend) Retrieve all tags in the specified tag range

sealStream() Seal the current stream segment and create a new one for future appends

getAllSegmentIDs() Retrieve the list of all segments in the stream

deleteSegment(segmentID) Delete the specified segment in the current stream

grant(appId) Grant appId read access

revoke(appId) Revoke appId’s read access

Table 4.1: Bolt stream APIs: Bolt offers two types of streams: (i) ValueStreams for small
data values (e.g., temperature readings) and (ii) FileStreams for large values (e.g., images
and videos).

Property Description

Type ValueStream or FileStream

Location Local, remote, or remote replicated

Protection Plain or encrypted

Sharing Unlisted (private) or listed (shared)

Table 4.2: Properties specified by applications when performing a stream create or open
operation.

62

parts: a log of data records (called DataLog) and an index that maps a tag to a list of data
item identifiers. Item identifiers are fixed-size entries and each list of item identifiers in the
index is sorted by time, enabling efficient binary searches for range and sampling queries.
The index resides in memory and is backed by a file; records in the DataLog are on disk
and retrieved when referenced by the application. The DataLog is divided into fixed-size
chunks of contiguous data records.

DataLog

(on disk)

occupancy

Tags

car

energy

Chunk #1,

Hash(Chunk #1)

ts1,

offset1

ts6,

offset6

ts2,

offset2

Val

1

Val

2

Val

3

Val

4

Val

5

Val

6

Val

7

Val

8

Index
(in memory,

disk backed)

Item identifiers
ts5,

offset6

ts7,

offset7

ts8,

offset8

ts8,

offset8

ts3,

offset3

ts4,

offset4

ts6,

offset6

Chunk #2,

Hash(Chunk #2)

Chunk #3,

Hash(Chunk #3)
ChunkList

Figure 4.1: Data layout of a ValueStream. A FileStream’s layout differs only in that the
values in the DataLog are pointers to files that contain the data records.

As large numbers of values are appended to a stream, the index can consume consid-
erable amounts of memory. To reduce the memory footprint of the index, streams in Bolt
can be archived. As described in Section 4.3, each stream is divided into segments, where
each segment has its own DataLog and corresponding index. Hence, each stream is a time
ordered list of segments. If the size of the stream’s index in memory exceeds a configurable
threshold (indexthresh), the latest segment is sealed, its index is flushed to disk, and a new
segment with a memory resident index is created. Writes to the stream always go to the
latest segment and all other segments of the stream are read-only entities. The index for
the latest segment is memory-resident and is backed by a file (Figure 4.1). As shown in
Figure 4.2, all other segments are sealed and store their indices on disk with a compact
in-memory index header. The index header consists of the tags, the timestamp for the first
and last identifier in their corresponding item identifier list, and the location of this list in
the index file.

63

Chunk #1,

Hash(Chunk #1)

ts1,

offset1

ts6,

offset6

ts2,

offset2

Val

1

Val

2

Val

3

Val

4

Val

5

Val

6

Val

7

Val

8

Index

(on disk)

Item identifiers
ts5,

offset6

ts7,

offset7

ts8,

offset8

ts8,

offset8

ts3,

offset3

ts4,

offset4

ts6,

offset6

Chunk #2,

Hash(Chunk #2)

Chunk #3,

Hash(Chunk

#3)

occupancy,

ts1, ts8

car,

ts6, ts8

energy,

ts2, ts6
Compact Index

(in memory,

disk backed)

DataLog

(on disk)

ChunkList

(on disk)

Figure 4.2: Data layout of a sealed segment in Bolt.

4.4.3 Uploading Stream Data

In Bolt, each reader or writer (identified by the <VHomeID, AppID> pair) is associated
with a private-public key pair. Each stream in Bolt is encrypted with a secret key (denoted
Kcon) generated by the owner. When a stream is closed, Bolt flushes its index to disk,
partitions the segment DataLog into chunks, compresses and encrypts these chunks, and
generates the ChunkList (CL). The per-segment ChunkList is an ordered list of all chunks
in the segment’s DataLog and their corresponding hashes. This operation is repeated for
all mutated segments, that is, new segments generated since the last close, and the latest
segment, since it may have been modified due to data appends. All other segments in a
stream are sealed and are immutable.

Bolt then generates the stream’s integrity metadata (MDint). For a stream with n
segments, its MDint is computed as follows:

MDint =SigKowner
priv

[H[TTL||H[Ii]||...||H[In]||H[CLi]||...||H[CLn]].

The TTL is a writer-specified consistency period which is used by readers to ensure that
any data fetched from a storage server is no older the specified period, thus guaranteeing

64

freshness of the data. For instance, when closing a given stream at 2013-09-23 10:10:00,
a writer may specify TTL=(2013-09-23 10:10:00, 2013-09-23 10:20:00), implying that any
stream data retrieved from the storage server is considered fresh until 2013-09-23 10:20:00,
that is, the writer expects to write at least one value every 10 minutes. Other writers
may similarly choose suitable TTL values while incorporating their expected write rate
and maximum durations of any disconnections they expect.

As described in Table 4.3, MDint is a signed hash of the TTL and the per-segment
index and ChunkList hashes. For all mutated segments, Bolt uploads the chunks, the
updated ChunkList, and the modified index to the storage server. Chunks are uploaded
in parallel and applications can configure the maximum number of parallel uploads. The
integrity metadata MDint is also uploaded to (and resides on) a remote storage server.

TTL: tstartfresh, t
end
fresh

H[x]: Cryptographic hash of x

SigK [x]: Digital signature of x with the key K

Kpub
owner, K

priv
owner: A public-private key pair of the stream owner

CLi: ChunkList of the ith segment

Ii: Index of the ith segment

||: Concatenation

Table 4.3: Glossary.

Bolt uploads the stream metadata (described in the next section) to the metadata
server. In our prototype implementation, the trusted metadata server (running on a per-
sonal VEE) stores the stream metadata so as to prevent unauthorized updates. We discuss
potential solutions to relax this assumption in Section 4.7 .

4.4.4 Granting and Revoking Read Access

In addition to maintaining the mapping of readers and writers to their public-keys, the
metadata server also maintains the following metadata for each stream: (i) a symmetric
content key to encrypt and decrypt data (Kcon), (ii) readers that have access to the data
(including the owner) represented using their public keys, (iii) the storage location of the
stream’s integrity metadata MDint, for example, Windows Azure, and (iv) per-segment
location and key version. Kcon values are stored in an encrypted form, one entry for each
reader that has access to the stream, encrypted using the respective readers’ public keys.

65

To grant read access to applications, the owner updates stream metadata with Kcon

encrypted with the reader’s public key. To revoke read access the owner removes the appro-
priate reader from the accessor list, removes the encrypted content keys, and rolls forward
the content key and key version for all valid principals by following the key regression pro-
tocol [86]. The key regression protocol allows readers with version V of the key to generate
keys for all older versions 0 to V –1. As described in detail by Fu et al. [86], the protocol
uses a chain of hash function computations to generate keys for older key versions from a
given key. Therefore, each additional version only incurs the latency penalty of performing
one fixed-size hash computation on the readers.

Upon a read revocation, Bolt seals the current segment of the stream and creates a new
segment. All chunks in a segment are encrypted using the same version of the content key.

4.4.5 Reading Stream Data

Figure 4.3 illustrates the steps3 for reading a stream with StreamID S1, by an application
with AppID A1, running in VHome with VHomeID V 1. Each stream is identified by the
tuple <V1,A1,S1>. In step 1, Bolt opens a stream and fetches the stream metadata. It
then uses the MDint’s location information in the stream metadata to fetch MDint from
the remote untrusted storage server. After verifying MDint’s integrity using the owner’s
public key, and data freshness using the TTL in MDint, the reader fetches the index and
ChunkList for every segment of the stream (step 2), and verifies their integrity using the
respective hash values in MDint (step 3).

Owners can append data records to a stream after they have verified the integrity
of index data. In case of reads by non-owners, once the index and ChunkList integrity
verifications for all segments are complete (step 3), Bolt uses the index to identify chunks
that need to be fetched from one or more remote storage locations to satisfy an application’s
get requests.

Chunk level integrity is checked “lazily”, that is, when the respective chunk gets down-
loaded for handling a query. Their integrity is verified by using the segment’s ChunkList.
Bolt decrypts and decompresses the verified chunk and caches these chunks in a local
disk-based cache for subsequent reads.

3Stream owners also follow these steps when they re-open their streams.

66

Remote Storage

Server

Step 4:

Read: Fetch chunks, decrypt locally

App: A1

VHome: V1

Bolt Storage

Library

Step 1: Request content key for

Data Stream

V1/A1/S1

Index Datalog
Step 3 (local):

Verify integrity

& freshness

Stream: V1/A1/S1

Metadata Server

Enc-V1/A1(Kcon),

Enc-V2/B1(Kcon),

Segment Info List,

Location of MDint

Metadata for V1/A1/S1Step 2: Fetch index

Write: Encrypt chunks locally, store

index and data

Windows Azure, Amazon S3

Personal VEE

Figure 4.3: Steps followed during a read operation in Bolt.

4.5 Implementation

We have implemented Bolt using C# over the .NET Framework v4.5. Our implementation
is integrated into the HomeOS [76] platform and can also be used as an independent library.
In addition to the applications we evaluate in the next section, several other HomeOS
applications have been ported by others to use Bolt. The client-side code is 6077 lines
of code, and the metadata server is 473 lines. The current implementation is publicly
available at http://labofthings.codeplex.com.

Our client library uses Protocol Buffers [12] for data serialization and can currently
use Windows Azure and Amazon S3 for remote storage. It uses their respective libraries
for reading and writing data remotely. On Windows Azure [37], each segment maps to
an Azure container, the index and DataLog each map to an Azure blob, and individual
chunks map to parts of the DataLog blob (called blocks). On Amazon S3 [4], each segment
maps to an S3 bucket, the index maps to an S3 object, and chunks of the DataLog map to
individual objects. The communication between the clients and the metadata server uses
the Windows Communication Foundation (WCF) framework.

4.6 Evaluation

We evaluate Bolt in two ways: (i) using microbenchmarks, which compare the performance
of different Bolt stream configurations to the underlying operating system’s performance

67

http://labofthings.codeplex.com

(Section 4.6.1), and (ii) using applications, which demonstrate the feasibility and perfor-
mance of Bolt in real-world use cases (Section 4.6.2). Table 4.4 summarizes the main
results of the evaluation.

All Bolt microbenchmark experiments (in Section 4.6.1) are conducted on a virtual
machine on Windows Azure, with a 4-core AMD Opteron Processor, 7 GB of RAM, one
SATA hard disk, and uses the NTFS filesystem. The system runs the Windows Server 2008
R2 operating system. Similarly, all application workload experiments (in Section 4.6.2) are
conducted on a physical machine with an AMD-FX-6100 6-core processor, 16 GB of RAM,
one SATA hard disk with the NTFS filesystem, which is running the Windows 7 operating
system. The metadata server also runs on the respective machines in the two cases.

Finding Section

Bolt’s encryption overhead is negligible, making its secure streams
a viable default option.

Section 4.6.1

By using chunking, Bolt improves read throughput by up to 3 times
for temporal range queries.

Section 4.6.1

Bolt segments are scalable: querying across 16 segments incurs only
a 3.6% overhead over a single segment stream.

Section 4.6.1

Three applications (PreHeat, DNW, EDA) implemented using Bolt
abstractions.

Bolt performs 40 times faster than OpenTSDB for PreHeat while
analysing 100 days of data.

Section 4.6.2

Bolt is 3 times more space efficient than OpenTSDB in storing 1000
days of PreHeat data.

Table 4.4: Summary of Bolt’s evaluation.

4.6.1 Microbenchmarks

Setup

In each microbenchmark experiment a dummy application issues 1,000 or 10,000 write
or read requests for each of the three Bolt stream configurations: (i) using local disk
as the storage location (denoted “Local”), (ii) using a remote storage provider (denoted
“Remote”) but with no data encryption, and (iii) using a remote storage provider with

68

data encryption enabled (denoted “RemoteEnc”). We use Windows Azure as our example
remote storage provider for all experiments.

The dummy application writes or reads data values of size 10 B, 1 KB, 10 KB or 100
KB. The chunk size for these experiments is fixed at 4 MB (unless otherwise specified).
We also study the impact of varying chunk size later in this section. We measure Bolt’s
throughput in operations per second for different value sizes. For write operations, we also
measure Bolt’s storage overhead for different value sizes.

As a point of comparison for Bolt’s local write performance, we conduct a separate set
of experiments where data is written directly to the disk. We refer to this experiment as
DiskRaw. For comparisons with Bolt’s ValueStream, the DiskRaw write operations are to a
single local file, and for comparisons with Bolt’s FileStream, the DiskRaw write operations
are to multiple files, one for each data value.

For data read operations, that is, Get(tag) and GetAll(tag, timestart, timeend)

queries, we compare Bolt’s read performance to data read directly from a single local file (in
the case of ValueStream), data-values read from separate files (in the case of FileStream),
and data read by downloading an Azure blob (in the case of remote ValueStream). All
throughput values are reported as the mean of 20 repetitions with 95% confidence intervals.

Write Performance

We first present the microbenchmark results for ValueStreams (local and remote) followed
by those for FileStreams (local and remote).

I. ValueStreams: Figure 4.4 compares the throughput of append operations (measured
by the dummy application) for three different data-value sizes: 10 B, 1 KB, and 10 KB.
We observe that the throughput of Bolt ValueStreams (marked Local, Remote, and Re-
moteEnc) is lower than that of DiskRaw because the overhead of additional sub-tasks that
Bolt has to perform: (i) index update/lookup, (ii) data serialization, (iii) writing index and
DataLog to disk, (iv) uploading chunks and index (in the case of Remote and RemoteEnc),
and (v) encrypting chunks (in the case of RemoteEnc).

Table 4.5 shows the percentage of time taken to perform these sub-tasks in a sample
experiment of 10,000 append operations of 10 byte values. We find that the time taken to
perform the additional sub-tasks (i), (ii), and (iii) described above, in the case of Remote
and RemoteEnc is similar to that in case of local ValueStreams. However, in the case
of Remote and RemoteEnc, a high percentage of the total time is spent uploading the
DataLog and index to the cloud. For instance, approximately 72% of the total time is taken

69

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

10 B 1 KB 10 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10 B 1 KB 10 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.4: Write throughput for ValueStreams shown using a linear scale in (a) and a
logarithmic scale in (b).

to perform uploading of the DataLog while uploading the index consumes approximately
3% of the total time. Uploading data chunks involves six main components: (i) reading
chunks from the DataLog and computing the hash of their contents, (ii) checking the
chunk’s existence on the remote storage server (as an Azure Blob) and creating one if not
present, (iii) compressing and encrypting chunks (if enabled), (iv) uploading individual
chunks to blocks in an Azure Blob, (v) committing the new block list reflecting the new
changes to Azure’s storage servers, and (vi) uploading the new chunk list containing chunk
IDs and their hashes. Also note that, in the case of RemoteEnc, the time taken to encrypt
the data chunks is less than 1% of the total time.

Component Local Remote RemoteEnc

Lookup, update Index 6.8 % 2.7% 0.9%
Data serialization 15.2 % 2.6% 1.9%
Flush index 42.5 % 11.3% 11.5%
Flush DataLog 35.4 % 8.3% 11.8%
Uploading chunks - 72.0% 70.2%
Encrypting chunks - - 0.7%
Uploading index - 3.1% 3.0%

Table 4.5: Percentage of total experiment time spent in various tasks in a sample experi-
ment of 10,000 append operations (of 10 byte values) to a ValueStream.

In Figure 4.4, we also observe that the measured throughput for both Bolt and DiskRaw
decreases with increasing data value sizes. This is because the increasing data value size

70

increases the amount of data written to the local disk per second which saturates the local
disk write throughput and decreases the throughput of append operations.

Table 4.6 shows the storage overhead of ValueStreams as compared to DiskRaw for
data value sizes of 10 B, 1 KB, and 10 KB. We define storage overhead as the amount
of additional disk space used by a ValueStream as compared to DiskRaw, expressed as
a percentage. Note that, in the case of DiskRaw, tag-value pairs and timestamps are
appended to a file on local disk. Bolt incurs storage overhead due to its storage of offsets
in the index, and additional data for serializing and de-serializing the index. As described in
Section 4.4.2 (Figure 4.1), Bolt stores each unique tag only once in the index, thus benefiting
streams with relatively large tags. Bolt’s storage overhead decreases with increasing value
sizes but remains constant with increasing number of data records for a given value size.

Value size Percentage overhead

10 B 30.6 ± 0.0
1 KB 0.86 ± 0.0
10 KB 0.09 ± 0.0

Table 4.6: Storage overhead of local ValueStreams as compared to DiskRaw.

II. FileStreams: Figure 4.5 compares the write throughput for 1000 appends for three
different data-value sizes (1 KB, 10 KB, and 100 KB). The time taken for an append
operation in a FileStream is dominated by two main sub-tasks: (i) writing each data value
to a separate file on disk, and (ii) uploading each file to a separate Azure blob (in the case
of remote FileStreams).

We observe that in the case of a local FileStream the write throughput is comparable
to that of DiskRaw. In the case of remote streams, time taken to create a new Azure blob
for every data value dominates the time taken for a write operation and in our experiments
accounts for 80% of the total time for an append operation.

We also observe that, similar to ValueStreams, encryption overhead in the case of
remote-encrypted FileStreams is approximately 1% of total time. Lastly, the storage over-
head in the case of FileStreams is approximately the same as that of ValueStreams with
a value size of 10 bytes. This is because FileStreams store pointers (each 8 bytes) to data
files instead of offsets into the DataLog (as in ValueStreams).

71

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 KB 10 KB 100 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

1 KB 10 KB 100 KB

#
 A

p
p
en

d
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.5: Write throughput for FileStreams shown using a linear scale in (a) and a
logarithmic scale in (b).

Read Performance

We first present the microbenchmark results for ValueStreams (local and remote) followed
by those for FileStreams (local and remote).

I. ValueStream: Figure 4.6 compares the read throughput for three different data-value
sizes (10 B, 1 KB, and 10 KB) for the different ValueStream configurations. The dummy
application issues 10, 000 Get(tag) requests with a uniform randomly selected tag for each
request. In the case of DiskRaw, the values are read from random parts of the DataLog.
Despite random disk read operations issued both in DiskRaw and ValueStreams, we believe
that the file system cache affects throughput measurements in both cases.

We observe that local ValueStreams have a lower read throughput than DiskRaw. This
is because each read operation in a ValueStream incurs a latency overhead due to index
lookup and data deserialization. For instance, for 1 KB sized data values, we find that
local ValueStreams use 5% of the total time for index lookup, 60% of the total time
for reading records from the DataLog (which matches DiskRaw), and 30% of the total
time for deserializing data. In case of remote ValueStreams, remote reads’ latency (and
hence throughput) are dominated by the time taken for downloading DataLog chunks from
Azure and storing them in the local chunk cache (approximately 90% of the total time for
Get(tag)).

Effect of Chunk Size on Temporal Range Queries: To demonstrate the effect of
chunking on query latency and throughput of remote ValueStreams we present two example
range queries. The first query retrieves a window of 10 records whereas the second query
has a window of 100 records. The start and end times of the windows are picked randomly

72

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

10 B 1 KB 10 KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10 B 1 KB 10 KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.6: Read throughput with randomly selected tags for ValueStreams shown using
a linear scale in (a) and a logarithmic scale in (b).

from the time range of data stored. We choose an example stream with 10,000 data values
of 10 KB each.

Figure 4.7 shows the read throughput with increasing chunk size. We observe that
chunking reduces latency of reads and hence improves read throughput because it batches
transfers and prefetches data for range queries with locality of reference. We observe higher
read throughput at relatively large chunk sizes because of the reduction in the number of
chunk downloads because chunks are cached locally. For a given chunk size the 100-record
query has slightly higher throughput than the 10-record query. This is because the queries’
start times are uniform randomly selected and hence wider queries benefit more from the
local chunk cache when answering queries, thus causing relatively few chunk downloads.
On the other hand, narrow queries are comparatively dispersed across the DataLog, hence
causing relatively more chunk downloads, which increases query latency and decreases
throughput.

Effect of increasing number of ValueStream Segments: Figure 4.8 shows the effect
of increasing the number of segments for a local ValueStream on the time taken to open
the stream (one time cost), index lookup, and reading data records. Each segment has
10, 000 keys, and 10, 000 Get(tag) requests are issued for uniform randomly selected keys.
The time taken for opening a stream is dominated by the time to build the segment index
in memory and it increases significantly with the increasing number of segments. The
time taken for index lookup and reading the data records also increases with the number
of segments because all segments except the last have a compact memory-resident index
header, and as explained in Section 4.4.2, require additional disk reads for index lookups.

II. FileStreams: Figure 4.9 compares the read throughput for three different data-value

73

 100

 200

 300

 400

 500

 600

128 KB 256 KB 512 KB 1 MB 2 MB 4 MB

#
 G

et
 O

p
s

/
s

Chunk Size

10-record window
100-record window

Figure 4.7: Read throughput for remote ValueStreams with varying chunk size for two
sample Get(tag,tstart,tend) queries with locality of reference.

10
0

10
1

10
2

10
3

10
4

10
5

1 2 4 8 16 32 64 128

T
im

e
(m

s)

Number of Segments

Open stream
Lookup offset

Read records from disk

Figure 4.8: Open, index look-up, and DataLog record retrieval latencies (on the logarithmic
scale) with increasing number of segments of a local ValueStream, measured by issuing
10, 000 Get(tag) requests for randomly selected keys.

74

sizes (10 B, 1 KB, and 10 KB) for the different FileStream configurations. Recall that, in
the case of FileStreams, individual data values are stored in separate files on disk and are
uploaded to separate blobs on remote storage.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 KB 10 KB 100 KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 KB 10 KB 100 KB

#
 G

et
 O

p
s

/
s

Data Value Size

DiskRaw
Local

Remote
RemoteEnc

(b)

Figure 4.9: Read throughput with randomly selected tags for FileStreams shown using a
linear scale in (a) and a logarithmic scale in (b).

As compared to DiskRaw, FileStreams incur the additional latency overhead of index
lookup, downloading individual blobs from remote storage, and reading each data record
from its individual blob. These additional operations significantly impact the read through-
put of FileStreams. In the case of remote FileStreams, a large fraction of the read time
(approximately 99%), is spent downloading the individual blobs from remote storage. It
may be possible to improve the read throughput of FileStreams by storing multiple data
values (which are stored in separate files on local disk) using a single blob on the remote
storage server (as in the case of ValueStreams). Lastly, we also find that, similar to Val-
ueStreams, in the case of remote-encrypted FileStreams, the time taken to decrypt data is
less than 1% of the total get-operation time.

4.6.2 Applications

We instrument the three real-world applications described in Section 4.2.1 using Bolt,
and measure their query latencies. For comparison we also evaluate the query latencies
of these applications using OpenTSDB [27], which is a popular time-series data storage
and analytics system. It is written in Java and uses HBase to store data. Unlike Bolt’s
library that is loaded into the client application program, OpenTSDB only allows querying
only over HTTP endpoints. Moreover, unlike Bolt, OpenTSDB provides neither the data
security guarantees nor the flexibility of policy-driven storage across providers.

75

We now present detailed results for each application. All latency values are reported
as the mean of 20 repetitions with 95% confidence intervals, using Windows Azure as the
remote storage provider.

PreHeat

Recall that PreHeat [163] is a system that enables efficient home heating by recording
and predicting occupancy information. We describe PreHeat’s algorithm in Section 4.2.1.
To implement PreHeat’s data storage and retrieval using Bolt we identify each slot by its
starting timestamp. A single local unencrypted ValueStream thus stores the (timestamp,
tag, value) tuples where the tag is a string (e.g., “occupancy”). We built two different
PreHeat implementations that either seek to minimize the amount of data stored on disk
or data-retrieval time and hence store different data values:

Näıve + ValueStream: In this implementation, the value stored for each 15-minute
slot is simply the slot’s measured occupancy (0 or 1). Therefore, for computing predicted
occupancy for the nth slot on day d, POVs are obtained by issuing d temporal range queries
(using getAll(k, ts, te)).

Smart + ValueStream: In this implementation, the value stored for each 15-minute
slot is its POV concatenated with the measured occupancy value in that slot. As described
in Section 4.2.1, computing the predicted occupancy for the nth slot on day d requires
obtaining POV n

d , POV n
d−1, . . . , POV n

1 . Thus, under this scheme, these required POVs can
be obtained by issuing: (i) one get(tag) query for the (n − 1)th slot on day d to obtain
POV n

d , and (ii) (d − 1) temporal range queries that obtain the values stored for the nth
slot on days (d − 1), (d − 2), . . . , 1, thus obtaining the values of POV n

d−1, POV n
d−2, . . . ,

POV n
1 respectively. Therefore, in this implementation, the range queries present in the

näıve implementation are replaced with simple get queries that obtain values stored for
particular slots. However, the storage overhead incurred with this approach is larger than
the näıve approach but the retrieval latency is reduced due to the reduced number of disk
reads.

Näıve + OpenTSDB: We implement the näıve PreHeat approach to store and re-
trieve data locally from OpenTSDB. It groups occupancy values spanning an hour into
one row of HBase (OpenTSDB’s underlying datastore). That is, four PreHeat slots are
grouped into a single HBase row. OpenTSDB’s usability is limited by values being re-
stricted to real numbers. Bolt allows byte arrays of arbitrary length to be stored as values.
Consequently, an analogous implementation of the smart PreHeat approach is not feasible
using OpenTSDB.

76

Of all the 96 slots in a day, the 96th (last slot) has the maximum retrieval, compu-
tation, and append time since POV d

96 is longest POV d
i ,∀i ∈ [1, 96]. Therefore, to com-

pare the Näıve+ValueStream, Smart+ValueStream, and Näıve+OpenTSDB approaches,
we use the retrieval times for the 96th slot of each day. Figure 4.10 shows the time
taken to retrieve data for the 96th slot for Näıve+ValueStream, Smart+ValueStream, and
Näıve+OpenTSDB.

We observe that as the number of days increases the retrieval latency for both the
näıve and smart approaches grows due to the increasing number of range and get queries.
However, the smart implementation incurs lower latency than the näıve implementation
because it issues fewer random disk reads.

When comparing the Näıve+ValueStream and Näıve+OpenTSDB implementations for
retrieving 100 days of data, we observe that Bolt performs approximately 40 times faster.
As expected, the time taken to perform the occupancy prediction computation after re-
trieving the required data is unchanged across the three implementations. Table 4.7 shows

10
0

10
1

10
2

10
3

10
4

 1 2 4 8 16 32 64 128T
im

e
ta

k
en

 t
o

 r
et

ri
ev

e
d

at
a

(m
s)

Number of days

Naive+OpenTSDB
Naive+ValueStream
Smart+ValueStream

Figure 4.10: Time to retrieve past occupancy data with increasing duration of a PreHeat
deployment.

the storage space required by the different implementations for 1000 days of operation. We
observe that the smart approach uses approximately 8 times the space compared to näıve
because it also stores the slots’ POVs in addition to their occupancy values. Using Bolt’s
compressed streams, we observe that the näıve scheme reduces the storage overhead by a
factor of 1.6 and the smart scheme reduces the storage overhead by a factor of 8, when
compared to their uncompressed stream counterparts. OpenTSDB requires a 3 times larger
disk footprint than its corresponding implementation using Bolt with compression turned

77

off. We believe that row key duplication in HBase is the potential source of this storage
inefficiency.

Configuration Naive Smart

ValueStream 2.38 MB 19.10 MB
ValueStream using GZip 1.51 MB 3.72 MB
ValueStream using BZip2 1.48 MB 2.37 MB
OpenTSDB 8.22 MB Not feasible

Table 4.7: Storage space required for a 1000-day deployment of PreHeat.

Digital Neighbourhood Watch (DNW)

As described in Section 4.2.1, DNW helps neighbours detect suspicious activities (e.g.,
an unknown car cruising the neighbourhood) by sharing security camera images [57].
We implement DNW’s data storage, retrieval and sharing mechanisms using Bolt and
OpenTSDB. Due to Bolt’s (timestamp, tag, value) abstraction, objects can be stored
(and retrieved) in a single remote ValueStream (per home), with each object attribute
in a separate tag, such as, type, ID, and feature-vector, all bearing the same timestamp.
Queries proceed by first performing a getAll(feature-vector, ts, te) where the time
window (w)=[ts,te], and then finding a match among the retrieved objects. In contrast,
with OpenTSDB, each home’s objects need to be recorded using specialized OpenTSDB
tags (called “OpenTSDB metrics”), which also store the object attributes. As described
in Section 4.2.1, we simulate DNW as a cloud-based VHome application. Therefore, in our
DNW experiments, we run OpenTSDB remotely on a virtual machine on Windows Azure
and the DNW client applications run on a physical machine (described above). Similarly,
in the case of Bolt, the DNW client applications run on the physical machine and use
remote ValueStreams (with Windows Azure as the storage provider).

To evaluate DNW, we instrument a scenario where each home (i.e., a client applica-
tion) records an object every minute. After 1000 minutes, one randomly selected client
application queries all other homes for a matching object within a recent time window w.
We measure the total time for retrieving all object summaries from ten homes for window
sizes of 1 hour and 10 hours.

Figure 4.11(left) shows the retrieval time for DNW with increasing chunk sizes (for
Bolt) for time windows of 1 hour and 10 hours. We observe that, in the case of Bolt,

78

larger chunk sizes reduce retrieval time by batching transfers for the windows size of 10
hours. For queries that span multiple chunks, Bolt downloads data chunks on demand
since range queries return an iterator to the application (Section 4.4.1). When applications
use this iterator to access a data record, Bolt checks if the corresponding chunk for the
data record is present in the cache and if not it is downloaded. Hence, queries that span
multiple chunks require multiple round trips as chunks are downloaded on-demand, thus
increasing the overall retrieval time. Example queries include one where DNW runs for
10 hours with a 100 KB chunk size. This can be improved by pre-fetching chunks in
parallel, in the background, without blocking the application’s range query. In the case
of large chunk sizes, fewer chunks need to be downloaded (shown in Figure 4.11(center))
resulting in fewer round trips which reduces the overall retrieval time for the 10-hour query.
Note that OpenTSDB does not implement chunking. Hence OpenTSDB retrieval times in
Figure 4.11(left) are independent of chunk size.

 0

 2

 4

 6

 8

 10

 12

 14

100 KB 1 MB 4 MB

R
et

ri
ev

al
 T

im
e

(s
)

Chunk Size (in KB)

OpenTSDB: 1 hour

Bolt: 1 hour

OpenTSDB: 10 hours

Bolt: 10 hours

 0

 10

 20

 30

 40

 50

 60

 70

 80

100 KB 1 MB 4 MB#
C

h
u
n
k

s
D

o
w

n
lo

a
d
e
d

Chunk Size (in KB)

Time Window
1 hour

10 hours

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

100 KB 1 MB 4 MB
%

R
e
tr

ie
v
e
d
 C

h
u
n
k
 D

a
ta

 U
n
u
se

d
		
		

Chunk Size (in KB)

Time Window
1 hour

10 hours

Figure 4.11: Retrieving object summaries in DNW from 10 homes for time windows of 1
hour and 10 hours using Bolt and OpenTSDB. Retrieval times for OpenTSDB are inde-
pendent of chunk size.

In the case of Bolt, we also observe that when chunk size becomes large enough, a large
amount of additional data fetched in the chunk does not match the query. Consequently,
the decrease in retrieval time that is obtained by batched transfers becomes relatively low
at large chunk sizes. Moreover, since chunk boundaries do not necessarily line up with
the time window specified in queries, data records that do not match the query may be
fetched even for small chunk sizes. Figure 4.11(right) shows that as chunk size increases,
the percentage of data records in chunks downloaded that do not match the query’s time
window w also increases. Bolt allows applications to choose chunk sizes to match their
workloads by trading this overhead for retrieval time. Lastly, Table 4.8 compares the
storage footprint of DNW using Bolt with OpenTSDB. As is the case with PreHeat, we
observe that Bolt incurs a 3 times smaller disk footprint than OpenTSDB.

79

Storage system DNW EDA

Bolt 4.64 MB 37.89 MB
OpenTSDB 14.42 MB 212.41 MB

Table 4.8: Storage space used for 10 homes in DNW for 1000 minutes, and 100 homes in
EDA for 545 days.

Energy Data Analytics (EDA)

As explained in Section 4.2.1, we study a scenario where a cloud-based application presents
consumers with an analysis of their energy consumption by comparing their consumption
with other homes in the neighbourhood, or city, within a given time window such as one
month.

In the implementation using Bolt, we use a single remote ValueStream per home which
stores the smart meter data. For each hour, the energy consumption value is appended
to the ValueStream with the mean ambient temperature value of the hour (rounded to
the nearest whole number) as the tag. This allows us to easily retrieve all energy con-
sumption values for a given temperature using a single get(tag,tstart,tend) query. In the
OpenTSDB-based implementation, we need to create one tag (called “OpenTSDB met-
ric”) for each temperature value, for each home; that is, a record home-n-T stores values
recorded at temperature T for home n. For each home we retrieve data in the time interval
[ts, te] for each temperature T between -30◦ C and 40◦ C (the range of observed ambient
temperatures in the dataset). The retrieved data is used by the application to compute
the median, 10th, and 90th percentile energy consumption values for a home which is then
compared with all the other homes being considered. Data for multiple homes is retrieved
sequentially.

Figure 4.12 shows the time taken to retrieve data as we increase the number of homes,
for two time windows of 1 month, and 1 year. We use an actual home energy consumption
dataset from a utility company in Ontario, Canada. Retrieval time for Bolt and OpenTSDB
increases proportionally at approximately 1.4 seconds per home and 11.4 seconds per home
respectively, for a one month window. In the case of a one year window the retrieval time
for Bolt and OpenTSDB increases at approximately 2.5 seconds per home and 12 seconds
per home respectively. This is because of more data being fetched in case of a 1 year
window query than that in a 1 month window query. Bolt’s retrieval time outperforms
OpenTSDB by an order of magnitude, primarily due to prefetching data in chunks, which
is explained as follows.

80

 0

 200

 400

 600

 800

 1000

 1200

1 10 100

T
im

e
ta

k
en

 t
o

 r
et

ri
ev

e
d

at
a

(s
)

Number of homes

OpenTSDB: 1 Year
OpenTSDB: 1 Month
Bolt: 1 Year
Bolt: 1 Month

Figure 4.12: Time taken to retrieve smart meter data for multiple homes for time windows
of 1 month and 1 year.

As described in Section 4.4, Bolt stores data records in a time-sorted DataLog and the
index maps each tag (in this case, each temperature value) to offsets into the DataLog.
The DataLog is then partitioned into chunks and all data transfers to and from remote
storage servers happen on a chunk basis. Therefore, the set of data chunks downloaded
for answering a range query for a given tag such as 10◦C in the case of EDA, will often
overlap with that required for handling a range query for an adjacent temperature value
tag such as 11◦C. This is because hourly ambient temperature values typically do not vary
significantly over time, for example, never more than ±2◦C in our dataset. Therefore, Bolt
is able to effectively leverage its local chunk cache when answering successive range queries
for a set of tags such as {-30◦C, -31◦C, . . . , 40◦C}, and thus incurs a lower retrieval time
than OpenTSDB. However, it may be possible to improve the retrieval time for OpenTSDB
by extending it with a caching mechanism on the client-side.

Finally, as shown in Table 4.8, we observe that OpenTSDB incurs a 5 times larger disk
footprint than its corresponding implementation using Bolt.

4.7 Discussion

We discuss two ways to extend Bolt to reduce its reliance on the trusted metadata server
assumptions and improving Bolt’s sharing flexibility, and discuss our deployment experi-
ence.

81

Relaxing the Assumption of the Trusted Key Server

Bolt’s current design includes a trusted metadata server to: (i) prevent unauthorized
changes to the mapping of readers and writers to their public-keys, and (ii) prevent unau-
thorized updates (rollback) of the key version for each segment of a stream. Unauthorized
changes to the public-key mappings may trick the owner of a stream to grant access to a
malicious reader. Similarly, unauthorized updates of the key versions may cause the owner
to use an invalid content key to encrypt data, potentially exposing the newly written
content to readers whose access has been already revoked.

Bolt also relies on the metadata server to distribute the keys and the stream metadata.
However, a few extensions can be built to minimize this trust dependency. One approach
is to replicate the information stored at the metadata server at 2f + 1 servers and use a
majority to tolerate up to f malicious servers. An alternate solution would be to employ
a Byzantine quorum system, to tolerate up to a third of the servers being compromised at
any given time.

Supporting Fine-Grained Sharing

In our current prototype, readers are granted access to the entire stream. Once their
read access has been revoked they cannot access any new segments of the stream created
since the revocation, although they could still access all the previous segments. Bolt can
potentially support finer-grained read access by creating a different key for each segment.
This approach trades off metadata storage space for segment-level sharing.

Deployment Experience

As a part of the HomeOS platform [76], Bolt is used by researchers for data collection and
management in various field trials. These include a testbed of networked furniture [75] and
an Electric Vehicle testbed [48]. The feedback we received from the researchers helped us
in extending Bolt’s APIs (e.g., the sampling range query shown in Table 4.1) and fixing
software bugs in our implementation.

4.8 Chapter Summary

Our prototype storage system in Chapter 3 suffers from two main shortcomings. First,
many applications require richer data manipulation capabilities than those supported by

82

our prototype data storage system. Second, our prototype storage system only uses local
VEE storage, while users and applications may also want to use commodity cloud storage
services, for example, to lower storage costs or obtain better reliability. Therefore, our
goal is to simplify the management of data from in-home sensors and build a suitable
data management system that replaces our prototype storage system. To do so, we survey
a range of home applications and formulate the requirements they place on the storage
system. We find that existing systems (such as OpenTSDB [27]) do not meet all of these
requirements. Therefore, we design Bolt, a data management system for such applications.
It provides applications with a timestamp-tag-value stream abstraction for storing and
retrieving data, allows application instances to easily share data, allows applications to
control storage of data across commodity storage providers such as Windows Azure and
Amazon S3. At the same time, Bolt provides data confidentiality guarantees and data
integrity by providing evidence of data tampering and freshness guarantees. We evaluate
our current Bolt implementation using microbenchmarks and three example applications.
We observe that in our sample applications Bolt has up to 40 times lower data retrieval
latency and incurs up to 3-5 times lower storage space when compared to OpenTSDB [27].

83

Chapter 5

Provisioning Large Numbers of
Personal VEEs

5.1 Introduction

Our personal VEE architecture (introduced in Chapter 1) requires provisioning one VEE
for each user, thus requiring large numbers of VEEs to be provisioned. For instance, if every
home with a smart meter was to be provided with an instantiation of this architecture,
36 million VEEs in the US [42] (4 million in Ontario, Canada [41]) would have to be
provisioned. Similarly, providing every active Facebook user with data-driven applications
using this architecture will require 1.4 billion [11] VEEs.

In our prototype instantiations in Chapters 3 and 4, we used virtual machines (VMs)
from cloud providers, such as Windows Azure to realize personal VEEs. Most cloud
providers use commodity virtualization solutions (described in Section 2.3.1; Table 2.2) to
provision such VMs. Moreover, they employ VM consolidation methods [72, 105, 125, 192]
that allow them to pack multiple VM instances running on underutilized physical machines
into fewer machines, enabling some machines to be turned off to obtain energy savings.

Typical VM consolidation methods use VM migration and simply re-pack VMs into
fewer physical machines based on the pre-configured resource capacities of the VMs. There-
fore, the VM density (average number of VMs/machine) such methods yield is bounded
by the maximum number of VMs that can be co-hosted on a single machine. For instance,
Citrix XenServer claims to provision 100-200 VMs/machine.1 Provisioning large numbers

1 Using a particular hardware configuration, and subject to VM sizes and workloads.

84

of VMs (e.g., 1 billion) using this approach will require un-affordably large amounts of
hardware resources (e.g., 5 million machines for 1 billion VMs).

However, many VM workloads exhibit frequent, often long, and uncorrelated idle pe-
riods. Personal VEE workloads are an example of this type of workload. This is because
applications hosted on personal VEEs typically cater to a small set of users, VEE-hosted
jobs are either user-initiated, such as data analytics and sharing applications [79, 139], or
are periodic with relatively large idle periods (on the order of seconds), such as periodic
data batch uploads and data pre-processing. Other such example workloads include some
web-hosting [120] and cyber-foraging workloads [160].

When multiple VMs with such workloads are co-hosted on a machine, decreasing the
resource footprint of idle VMs allows for a much denser VM packing, thus reducing the
required hardware resources and hosting costs for both users and cloud-providers. For
such workloads, it is possible to reclaim resources from idle VMs by transitioning them
to inactive state(s) and activating them on the arrival of client requests. This leads to
increased VM density at the cost of an increase in client request latency (which we define
as the miss penalty). Such a consolidation effort is compatible with existing migration-
based consolidation methods since it incurs little network overhead. Moreover, this type
of consolidation is able to leverage transient idle periods to reclaim resources (to increase
VM density) whereas conventional VM migration-based consolidation methods rely solely
on long idle periods.

As described in Section 2.3.3, many inactive states have been proposed or are supported
in existing virtualization solutions (shown in Table 2.3). Recent work [96,120] has explored
the use of one inactive state for managing idle VMs. In doing so, VM density is limited
by the maximum number of VMs (per machine) that can be simultaneously hosted in
that inactive state (e.g., substrate [181], fast-resume [189, 190]) on a machine. If more
than one such inactive state, which are heterogenous in their resource requirements, were
used to host the idle VMs, VM density can be further increased. Unfortunately, due to
differences in their design and resource requirements, different inactive states have varying
VM activation and deactivation times and vary in the number of VMs that can be placed
in each state (we refer to these as VM capacities). Consequently, miss penalties for idle
VMs in different inactive states vary significantly. This leads to the following questions.

1. Given a single physical machine, how should idle VMs be transitioned across different
inactive states? In other words, when a VM becomes idle which inactive state should
it be transitioned to?

2. Subsequently, when should an idle VM be transitioned to other state(s) in anticipa-
tion of client requests?

85

It is clear that a policy that governs the transitions of idle VMs across inactive states
is needed. Ideally, such a policy should minimize the miss penalties and maximize VM
density. We refer to these policies as idle VM management policies. Existing mechanisms
(such as those discussed in Section 2.3.3) can then be used to implement such policies, by
determining VM idleness and activeness and dynamically transitioning VMs between the
active and various inactive states.

In this chapter we study the effect of different idle VM management policies on VM
density and miss penalties. To do so, we formally model the problem of multiplexing idle
VMs across multiple heterogenous inactive states. We divide the policy space into two
parts, (i) demand-based (or reactive) policies, and (ii) proactive policies. Using our model
formulation, we provide a lower-bound on the miss penalty incurred by demand-based
policies. Then, by finding similarities between this problem and the problems of page
replacement and multi-level cache management, we propose SlidingWindow, a proactive
policy which leverages inter-arrival time prediction to reduce miss penalties. We measure
the model parameters for Linux Containers (LXC) [22], a widely used OS-level virtualiza-
tion solution. We then use the measured parameters for LXC to evaluate different reactive
and proactive policies using some example personal VEE workloads.

Our key contributions in this chapter are:

• A formal model for analyzing idle VM management policies and a lower bound on
the miss penalty of reactive policies.

• A measurement of model parameters using microbenchmarks with LXC [22] as our
example virtualization solution.

• A study of a few representative VM management policies quantifying their miss
penalties using a simulation-based evaluation and providing insight into their be-
haviour.

This work has been published in the proceedings of ACM VEE 2015 [170].

The remainder of the chapter is structured as follows. We formally model the problem
in Section 5.2 and derive a lower bound on miss penalties of reactive policies. We present
the measurement of model parameters for LXC [22] using microbenchmarks in Section 5.3.
We describe our setup for comparing different policies and our example workloads in Sec-
tion 5.4. We evaluate different policies using simulations in Section 5.5 and present a
discussion of our work in Section 5.7. We conclude with a summary of the chapter in
Section 5.7.

86

5.2 Problem and Model Formulation

Typical cloud environments today exhibit a great deal of VM heterogeneity. That is,
VMs have varying resource requirements, serve disparate workloads, and have varying
service level agreements (SLAs) with their cloud providers. As a starting point in this
work, we study scenarios where VMs have relatively homogeneous resource requirements
and workloads, such as VMs used as personal VEEs. Moreover, we focus on providing a
“best effort” allocation of a machine’s computational resources (e.g., CPU and memory)
to VMs instead of a pre-defined per-VM SLA. We defer the study of scenarios in which
VMs have heterogeneous resource requirements and pre-defined SLAs (potentially varying
across applications hosted on a given VM) to future work.

Consider a VM that is provisioned on a given physical machine and is initially in the
booted state. Once such a VM becomes idle it can either be left in the booted state, or it
can be transitioned (either immediately or at a suitable later time) to one of the inactive
states, depending on the VM management policy in place. Since different inactive states,
due to differences in their design and resource intensity, have different transition-to-booted
times, the policy’s actions can significantly affect miss penalties for subsequent requests
for this VM. Similarly, because the maximum number of VMs possible in each state is
limited (typically by a specific system resource), the policy’s actions may also affect miss
penalties for other VMs depending on which state it chooses to place them in. Due to such
implications on miss penalties, it is important to choose a VM management policy that
minimizes miss penalties across all VMs while maximizing VM density.

To better understand and reason about different possible policies, we formulate a simple
mathematical model of the problem. Such a formulation provides a sound theoretical
foundation for the problem, and as we show, can be used to provide a lower bound on the
miss penalty incurred by any demand-based policy. In Section 5.4, we study the behaviour
of different demand-based policies which have been used for other applications such as page
replacement, and therefore we adopt the notation for page-replacement models, proposed
by Aho et al. [47].

Let S1, S2 . . . Sn (as shown in Figure 5.1) be the n inactive states. In addition let S0

be the booted state, and Sn+1 be the shutdown state. Similarly, let V1, V2 . . . Vv be v VMs
provisioned on a machine. Let the maximum number of VMs feasible in state Si be Bi.
Let matrix T(n+2)×(n+2) be the time to transition VMs between two states, that is, ti,j is
the time to transition from state Si to state Sj where i, j ∈ {0, 1, . . . n, n+ 1}. We realize
that in practice, the transition times may be stochastic variables (associated with some
distribution), for example, depending on the number of VMs in different states at any

87

point. Our model can be viewed as a mean value analysis and can be extended to conduct
a stochastic value analysis. We view Bi as a soft bound, that is, if the number of VMs in
Si exceeds Bi, transition times (∀j, ti,j and tj,i) may degrade. To simplify the notation in
a later proof, let t′i be the time to transition from Si to S0 (booted), that is, t′i = ti,0 for
i ∈ {0, 1, . . . n, n+ 1}.

Let VM requests received over any fixed period of time T be denoted as a string ω
comprised of tuples:

ω = r1, r2 . . . r|ω|

where ri = (Vj, ti, di), ti denotes the time at which the request ri arrives for the target
VM Vj, and di denotes the duration for which VM Vj remains active to service ri. We
refer to ω as the request string. For a given ω, let Pπ(ω) denote the total miss penalty
incurred by VM management policy π. Thus for an optimal VM management policy θ,
∀ω∀π, Pθ(ω) ≤ Pπ(ω).

Policies can be divided into two classes: (i) reactive (or demand-based) policies,
and (ii) proactive policies. We now address each class separately and describe how VM
management policies relate to other types of resource management policies.

t0 = 0

t1

t2

tn

tn+1

Booted

B0

Bn+1

S0 S0 S0 S0

Inactive 1

B1
S1 S1 S1 S1 S1 S1

Inactive 2
B2

S2 S2 S2 S2 S2 S2 S2

Inactive n
Bn

Sn Sn Sn Sn Sn Sn Sn Sn

Shutdown Sn+1 Sn+1 Sn+1 Sn+1 Sn+1

Figure 5.1: Hierarchy of booted, shutdown, and n inactive states.

88

5.2.1 Reactive Policies

Reactive policies configure, transition, or provision a system resource, such as a memory
page, only when a demand for that resource is received, and are also referred to as demand-
based policies. Examples include the widely used demand-based page replacement policies
such as LRU, FIFO, Clock, and others [71]. Another prominent example is multi-level
cache management policies such as DEMOTE [185]. Belady’s OPT algorithm [53], which
simply evicts the page referenced furthest in the future, is provably the optimal demand-
based policy for single-level caches [47, 90] (e.g., page replacement). However the optimal
demand-based policy for multi-level caches remains unknown [90]. We believe that finding
the optimal demand-based policy for exclusive multi-level caches [90] can help uncover the
optimal demand-based policy for idle VM management.2

Note however that idle VM management differs from page replacement and cache man-
agement in a few ways. For example, page replacement policies are able to leverage locality-
of-reference; in contrast, each VM has a separate tenant with little locality-of-reference
across VMs. Each VM request must guarantee that the target VM remains in the booted
state at least for the duration of the request; page references require no such guarantees.

Nevertheless, we build upon existing results from page replacement and caching policies
and formulate a lower bound on the miss penalty Pπ(ω) incurred by any demand-based
VM management policy π. Policies can be either online, which only use information about
the past, or offline, which also use information about the future. Our lower bound assumes
knowledge of future arrivals and cannot be implemented in an online fashion. It serves as a
theoretical lower bound to benchmark the miss penalties of other demand-based policies. In
the same way that Belady’s OPT algorithm [53] is of interest for studying page replacement
policies.

For any given ω, a VM management policy π is a demand-based policy if π transitions
a VM Vk to the booted state at time t (if not already booted) only when

∃rj ∈ ω,

where rj = (Vk, tj, dj), for a given VM Vj, some time instant tj, and some duration dj.
For any given ω and π, we define hi, i ∈ {0, 1, . . . n, n + 1}, to be the number of requests
rj ∈ ω, such that the target VM (i.e., Vk) was in state Si on arrival of the requests. Note
that,

∑n+1
i=0 hi = |ω|.

2Section 5.6 presents an alternate mathematical formulation of the problem, and quantifies the space
of possible idle VM management policies.

89

As an example, consider a scenario where three VMs – V1, V2, and V3 – are provisioned
on a machine with three VM states S0, S1, and S2. Let all three VMs be initially in state
S2 (shutdown), and let ω = r1, r2, r3, where r1 = (V1, 0, 100), r2 = (V2, 100, 100), and
r3 = (V3, 200, 100). In this case, h2 = 3 and h0 = h1 = 0, since the target VMs for requests
r1, r2, and r3 are in the state S2 upon arrival of the requests, and

∑i=2
i=0 hi = |ω| = 3.

Upon the arrival of the request rj = (Vk, tj, dj), its target VM Vk is transitioned to the
booted state from its current state. Since the maximum number of VMs in each state is
limited (by Bi), this step may require additional transitions for: (a) transitioning other
VMs that are currently idle and are in the booted state to inactive states, and (b) for
transitioning other idle VMs from one inactive state to another. Even if all transitions are
conducted in parallel, these additional transitions, depending upon their duration, may
contribute towards increasing the miss penalty. For instance, an additional transition may
take more time than the time to transition the target VM to the booted state. Thus, for
any demand-based VM management policy π,

Pπ(ω) ≥ Minπ(ω),

where Minπ(ω) =
∑n+1

i=0 hi.t
′
i.

Lower bound on demand-based policies

Gill et al. [90] propose a demand-based multi-level cache management policy which provides
the lowest average response time and lowest inter-cache bandwidth. Along the same lines,
we define a VM management policy ϕ such that

∀π, ∀ω,Minϕ(ω) ≤ Minπ(ω),

and hence, ∀π,Minϕ(ω) ≤ Pπ(ω). That is Minϕ(ω) forms a lower bound on the total
miss penalty for any demand-based VM management policy π, for any request string ω of
length |ω|.

We now compute the lower bound Minϕ(ω). First, consider a state hierarchy which
consists only of the booted and shutdown states (S0 and S1 with n = 0). Consider the
application of Belady’s OPT algorithm on this hierarchy for managing VMs, that is, when
a VM needs to be transitioned to the booted state and the number of booted VMs equals
B0, the booted idle VM which will receive a request farthest in the future is transitioned
to the shutdown state. Using this algorithm on a two-state hierarchy, for any given ω, let
the optimal number of hits hOPT (ω,B0) be the number of requests in ω such that the

90

target VM is in the booted state (S0) on arrival of the request, where B0 is the maximum
number of VMs possible in the booted state.

Let ϕ be a demand-based VM management policy which, for a reference string ω, for
each state Si (i ∈ 0, 1, . . . n), exhibits hi (number of hits to state Si), such that,

hi = hOPT (ω,
i∑

j=0

Bj)− hOPT (ω,
i−1∑
j=0

Bj). (5.1)

We show that for all demand-based policies, ϕ minimizes Minπ(ω), and hence Minϕ(ω)
forms the lower bound on the total miss penalty of any demand-based policy.

Lemma I

Among all demand-based policies, policy ϕ maximizes
∑k

i=0 hi,∀k ∈ {0, 1 . . . n}.
Proof : Summing (5.1) over the range i = 0, 1 . . . k we get,

k∑
i=0

hi = hOPT (ω,
k∑

j=0

Bj).

This is the same as operating Belady’s OPT algorithm on a hierarchy with just two
states – booted and shutdown, with the maximum possible number of VMs in booted equal
to

∑k
j=0Bj. Since Belady’s algorithm is known to be the optimal demand-based policy on

a two-state hierarchy,
∑k

i=0 hi is maximized.

Lemma II

For any ω, no other demand-based policy π has Minπ(ω) < Minϕ(ω).

Proof : We prove by contradiction. Let π̂ be a demand-based policy (with respective ĥi),
such that Minπ̂(ω) < Minϕ(ω). Therefore,

n+1∑
i=0

ĥi.t
′
i <

n+1∑
i=0

hi.t
′
i

91

Or,
n∑

i=0

ĥi.(t
′
i − t′n+1) + (

n+1∑
i=0

ĥi).t
′
n+1 <

n∑
i=0

hi.(t
′
i − t′n+1) + (

n+1∑
i=0

hi).t
′
n+1.

Since
∑n+1

i=0 ĥi =
∑n+1

i=0 hi = |ω|,
n∑

i=0

ĥi.(t
′
n+1 − t′i) >

n∑
i=0

hi.(t
′
n+1 − t′i). (5.2)

Or,
n∑

i=0

ĥi.(t
′
n − t′i + t′n+1 − t′n) >

n∑
i=0

hi.(t
′
n − t′i + t′n+1 − t′n).

Or,
n∑

i=0

ĥi.(t
′
n − t′i) >

n∑
i=0

hi.(t
′
n − t′i) + (

n∑
i=0

hi −
n∑

i=0

ĥi).(t
′
n+1 − t′n).

The second term on right hand side is non-negative because t′n+1 ≥ t′n, and by Lemma I,∑n
i=0 hi ≥

∑n
i=0 ĥi. This means,

n∑
i=0

ĥi.(t
′
n − t′i) >

n∑
i=0

hi.(t
′
n − t′i).

Since the nth term in the summation on either side is zero, we get,

n−1∑
i=0

ĥi.(t
′
n − t′i) >

n−1∑
i=0

hi.(t
′
n − t′i). (5.3)

In reducing (5.2) to (5.3), the summation reduces from n to (n− 1). Since,

∀j ∈ {1, . . . n}, t′j−1 ≤ t′j.

Therefore, these steps can be repeated until the summation reduces to n = 1. That is,

ĥ0.(t
′
1 − t′0) > h0.(t

′
1 − t′0),

which implies ĥ0 > h0, which contradicts Lemma I (which states that ϕ maximizes∑k
i=0 hi, ∀k ∈ {0, 1, . . . n}).
Note that the lower bound Minϕ(ω) assumes future knowledge and cannot be imple-

mented in an online fashion. Nevertheless, it serves as theoretical lower bound for com-
paring with other demand-based policies. In Section 5.5, we compare a few widely used
demand-based policies with the lower bound and compare them with proactive policies.

92

5.2.2 Proactive Policies

Proactive policies configure, transition, or provision a system resource prior to a demand for
it being received. They have previously been explored in the context of page replacement,
with the goal of producing lower page faults than demand-based page replacement. Existing
work [178] has shown that Belady’s OPT algorithm is the optimal demand-based policy
that minimizes the number of page fetches but does not minimize the number of page
faults, because it does not prefetch pages. Trivedi et al. [178] explored the use of proactive
policies to lower the number of page faults, and proved that DPMIN [178] is the optimal
pre-paging algorithm. DPMIN proceeds as follows: at the time of a page fault, DPMIN
scans the future page reference string and fetches the first m pages that will be referenced
in the future (including the page that caused the page fault), where m is the number of
memory page frames. For the purposes of this work, we define proactive policy as any
policy that is not a demand-based policy (as defined in Section 5.2.1).

SlidingWindow

We extend the technique used in the DPMIN algorithm to define the SlidingWindow pol-
icy for managing VMs across different states. Our rationale is that, since VMs can be
transitioned in parallel, provisioning VMs in anticipation of requests (e.g., when servicing
another VM’s request) should reduce average miss penalties.

SlidingWindow proceeds as follows: whenever a request rt ∈ ω is received such that
the target VM is not in the booted state, it computes a new state configuration for all
VMs. To compute this new configuration, SlidingWindow scans the future reference string
(illustrated in Figure 5.2). All VMs that are currently active are retained in their booted
state in the new configuration. If A is the number of currently active VMs, the first
(B0 −A) VMs that will be requested in the future (and are currently idle) are placed into
the booted state (S0) in the new configuration (illustrated as a time windowW0). Similarly,
the B1 VMs that will be requested next are placed into S1 (illustrated as time window W1).
This process continues up to state Sn (time window Wn) and the remaining (v−

∑n
i=0Bi)

VMs are placed in the shutdown state. After the new configuration is computed, VMs are
transitioned from their existing to this new configuration.

When VM Vi becomes idle, SlidingWindow re-scans the future reference string to com-
pute tnext, that is, the time at which Vi will be requested next. If tnext falls in the time
windowWj it transitions Vi into Sj, and one VM from Sk to Sk−1 (the one that is referenced
the soonest) ∀k ∈ {j, j − 1, . . . 1}. In effect, it slides the windows W0,W1 . . .Wj−1 to the
right. If tnext falls in the window W0, Vi remains in the booted state.

93

Similar to DPMIN, our SlidingWindow policy assumes knowledge of the future refer-
ence string, and cannot be implemented in an online fashion. Therefore, in addition to the
offline implementation of the policy, we provide an online implementation (called Sliding-
Window+ARMA) which uses a predictor to estimate tnext, and uses the predicted value to
perform its proactive VM provisioning. We describe SlidingWindow+ARMA in detail in
Section 5.4.2 and compare it with demand-based policies in Section 5.5.

W0 W1

VM Idle

tnext

t
WN WS

VM Request

Figure 5.2: Proactive idle VEE management using the SlidingWindow policy.

5.3 Obtaining Model Parameters

Our formal model (described in Section 5.2) relies on a few input parameters, namely
the matrix of transition times (T(n+2)×(n+2)) and the maximum number of VMs that can
be simultaneously hosted in each state (Bi). We use LXC [22], a widely used OS-level
virtualization solution, as an example virtualization solution, and conduct an experimental
analysis to obtain these model parameters. Note that we continue to refer to execution
environments created using LXC as VMs, since our formal model (Section 5.2) is applicable
to any virtualization solution. We now describe our methodology in detail and justify our
choices.

5.3.1 LXC as a Case Study

OS-level virtualization approaches have been shown to incur 40-50% lower virtualization
overhead than other approaches such as Xen paravirtualization [145, 174], thus promising
potentially higher density. Example OS-level virtualization solutions include LXC [22],
OpenVZ [28], and VServer [23]. We choose LXC as our example virtualization solution for
several reasons:

94

(i) it is open source, allowing easy analysis of its implementation,

(ii) it is in production use and is part of the mainstream Linux kernel,

(iii) it offers a low-latency inactive VM state called “frozen”,

(iv) it is being used in other projects which can benefit from increased VM density, such
as Docker [9] (to provide “frozen in state apps”), and Confidential Commuting [79]
(to provide per-user private VEEs).

As noted, in addition to the booted (S0) and shutdown state (S2), LXC implements a frozen
state (S1) which forms a middle ground between booted and shutdown states. When an
idle VM in the booted state is transitioned to the frozen state, it retains its memory and
disk footprint, while relinquishing CPU cycles. In addition, frozen-to-booted transition
times are significantly smaller than shutdown-to-booted transitions. Thus, LXC provides
us with a three-state hierarchy with the booted, frozen, and shutdown states. Menage [135]
provides a detailed description of the implementation of the frozen state.

5.3.2 Experimental Setup

We use LXC [22] (v.0.8.0) to create VMs. VMs are hosted on a machine that has four Intel
Xeon processors with six 3.46 GHz cores each and 128 GB of RAM. It contains a 7200
RPM 1 TB SATA hard disk that we use to store VMs’ OS images. All experiments are
repeated 50 times and all results are reported using averages with 95% confidence intervals.

VMs in an OS-level virtualization solution, such as LXC, share the host kernel’s process
pool, data structures, and devices. Therefore, when increasing VM density, some host
kernel parameters need to be increased. For instance, since all processes of all LXC VMs
share the host kernel’s pool of open file descriptors (FD) the total number of open FDs
allowed by the host kernel limits the number of VMs. Similarly, the kernel’s maximum
allowed process identifier (PID) (set to a default of 32,767), and the number of Unix98
pseudoterminals (set to a default of 4,096), also limit the number of VMs. For conducting
our experiments we increased these values to 14,000,000, 65,535, and 8,000 respectively.

5.3.3 Quantifying Density

We first determine the maximum number of booted, frozen, and shutdown VMs that can
be supported in our testbed.

95

Shutdown VMs

The only system resource consumed by shutdown VMs is disk space. It is required for
storing their OS image, applications, and libraries. In our testbed, each VM consumes
476 MB of disk space. Thus, 2,000 VMs can be created on a 1 TB disk, using the EXT4
filesystem.

Booted VMs

To determine the maximum number of booted VMs (B0) we conduct a simple experiment
where the number of booted but idle VMs on the machine is gradually increased, while
all other VMs are shutdown. VMs are transitioned from shutdown to booted sequentially,
with a delay of 30 seconds between successive VMs to ensure that the system reaches a
steady state; essential for recording system measurements. Measurements are recorded
using vmstat.

We observe that the system memory consumption increases steadily with increasing
number of VMs. This is because each additional VM consumes approximately 42 MB of
memory for initializing its processes (such as its SSH server, and other daemons). Figure 5.3
shows the CPU system time (time spent running kernel code), and CPU idle time averaged
over all 24 cores on the server machine, as the number of booted idle VMs is increased.
We observe that up to 250 VMs the CPU is largely idle. This is because idle VMs do
not perform any significant computation and only a few VM processes (such as udevd,
and other daemons) are running, this slightly decreases the CPU idle time, while other
processes remain blocked. Note that, all VM processes are in user space. However, beyond
250 VMs, we observe an increase in CPU system time, eventually reaching 100% at 450
VMs. At this stage, no additional VMs can be booted as all 24 cores are completely busy.
We believe that this is because of the inability of LXC’s cgroup handler [135] to scale with
the increasing number of processes. LXC uses the cgroup handler for the bookkeeping of
resources used by processes of different VMs and to enforce isolation. As a result, this
limits the number of booted idle VMs to approximately 250.

Frozen VMs

We determine the maximum number of frozen VMs (B1) by conducting a simple experiment
where the number of frozen VMs on the machine is gradually increased. Each VM is booted,
allowed to initialize, and then transitioned to frozen. To determine when a VM has finished

96

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

%
 C

P
U

 t
im

e

Number of Booted VMs

Idle
System

Figure 5.3: CPU utilization versus the number of booted VMs.

97

booting, we use netcat to detect if the VM’s SSH server has started. We measure the time
taken to boot-up the VM and start its SSH server. All other VMs remain in the shutdown
state.

We observe a steady increase in the system memory consumption (at approximately 42
MB per VM). This is because processes in a frozen VM retain their memory footprint (due
to the absence of memory pressure). Moreover, we observe that the time to transition a
VM from shutdown to booted (before transitioning to frozen) increases considerably as the
number of frozen VMs on the machine increases. This is because many system calls used
by LXC for booting a VM, such as fork, wait, and open, take more time to complete,
as the number of frozen VMs increases. As described in Section 5.3.4, this increase in
transition time eventually limits the number of frozen VMs (to approximately 300 frozen
VMs).

5.3.4 Impact of Density on Transition Time

We study the effect of VM density in each state on the transition times. We vary the
number of booted VMs and measure the different state transition times (while keeping the
number of frozen VMs at zero). Similarly we vary the number of frozen VMs and measure
the transition times (while keeping the number of booted VMs at zero).

Varying the Number of Booted VMs

The number of booted VMs is increased in steps of 50. At each step the different transition
times are measured (for a given VM). All other VMs are in the shutdown state.

Figure 5.4a shows the shutdown-to-booted (denoted t′2) and frozen-to-booted (denoted
t′1) transition times. We observe that up to 250 VMs, the shutdown-to-booted transition
time remains largely constant. However, beyond 250 booted VMs we see a considerable
increase in boot time. This is due to a surge in CPU system time at 300 VMs and beyond
(as explained in Section 5.3.3, Figure 5.3), which reduces available CPU time to zero.
Figure 5.4b shows the frozen-to-booted transition time (denoted t′1 in Figure 5.4a), with
a magnified time axis. We observe that frozen-to-booted transition times increase only
slightly with increasing number of booted VMs and is considerably smaller than shutdown-
to-booted transition time. This is because frozen-to-booted is a comparatively faster and
less resource-intensive transition. The abrupt rise beyond 300 booted VMs, is attributed
to the surge in CPU system time, as explained in Section 5.3.3. Along the same lines
we also measure the booted-to-shutdown (t0,2) and booted-to-frozen (t0,1) transition times

98

 0

 500

 1000

 1500

 2000

 2500

 3000

t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1 t’2t’1

T
im

e
 (

m
s)

Number of Booted VMs

Transition to Booted

400350300250200150100500

(a) Transition times for Shutdown-to-Booted (t′2) and
Frozen-to-Booted (t′1).

 0

 10

 20

 30

 40

 50

 60

0 50 100 150 200 250 300 350 400

T
im

e
 (

m
s)

Number of Booted VMs

Frozen-to-booted (t’1)

(b) Transition times for Frozen-to-Booted (t′1).

Figure 5.4: Transition times with increasing number of booted VMs.

while increasing the number of booted VMs. However, we do not observe any significant
variation in these transition times, remaining constant at averages of 640 ms and 0.15 ms
respectively.

Varying the Number of Frozen VMs

In a similar fashion to the previous experiment, the number of frozen VMs is gradually
increased and the different transition times are measured.

Figure 5.5a shows the shutdown-to-booted (denoted t′2) and frozen-to-booted (denoted
t′1) transition times. We observe that the time for a shutdown-to-booted transition increases
only slightly up to 300 frozen VMs and is considerably larger beyond that point. This is
because, as discussed in Section 5.3.3, system calls used by LXC for booting, require
more time to complete when the number of frozen VMs increases, leading to increased
transition times. Figure 5.5b shows the frozen-to-booted transition times (denoted as t′1 in
Figure 5.5a) with a magnified time axis. We observe that below 300 VMs, the transition
time is largely constant. However, beyond 300 frozen VMs, the transition time increases
considerably. This is because LXC’s cgroup freezer mechanism [135] begins consuming
more time for unfreezing a VM, and hence does not scale. Therefore, the number of
frozen VMs is limited by this increased transition time, to approximately 300. As in
the previous experiment, we find that the booted-to-shutdown (t0,2) and booted-to-frozen
(t0,1) transition times do not change significantly with the number of frozen VMs. These

99

transitions times are measured at averages 642 ms and 0.17 ms respectively, which is nearly
identical to their values in case of varying number of booted VMs.

 0

 1000

 2000

 3000

 4000

 5000

t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1 t’2 t’1

T
im

e
 (

m
s)

Number of Frozen VMs

Transition to Booted

6005004003002001000

(a) Transition times for Shutdown-to-Booted (t′2) and
Frozen-to-Booted (t′1).

 0

 500

 1000

 1500

 2000

 2500

0 100 200 300 400 500 600

T
im

e
 (

m
s)

Number of Frozen VMs

Frozen-to-Booted (t’1)

(b) Transition times for Frozen-to-Booted (t′1).

Figure 5.5: Transition times with increasing number of frozen VMs.

5.3.5 Deriving the Model Parameters

We now describe how we derive the parameters for our model (in Section 5.2) using the
experimental analysis (described above).

Due to the increase in the transition times as the number of booted VMs is increased
(as explained above using Figures 5.3 and 5.4), we define the maximum number of VMs
possible in the booted state (B0) to be 250. Similarly, given the variation in transition
times as the number of frozen VMs is increased (Figure 5.5), the maximum number of
VMs possible in the frozen state (B1) is 300. Note that both B0 and B1 values are derived
from limitations in LXC’s design and implementation (described above). While it may be
interesting to explore these limitations in greater detail (and alleviate them), such work
lies outside the scope of our current work.

We compare the shutdown-to-booted (t′2) and frozen-to-booted (t′1) transition times in
the two sensitivity analysis experiments (i.e., Figure 5.4a and Figure 5.5a). Interestingly, we
find that within the operating range of up to 250 booted VMs, and up to 300 frozen VMs,
the respective transition times in either experiments differ insignificantly. For instance,
shutdown-to-booted transition time when varying only the number of booted VMs (up
to 250 booted VMs, Figure 5.4a), is comparable to shutdown-to-booted transition time

100

when varying only the number of frozen VMs (up to 300 frozen VMs, Figure 5.5a). Other
transitions times (frozen-to-booted t1,0, booted-to-frozen t0,1, and booted-to-shutdown t0,2)
exhibit similar behaviour. Thus, we believe that within this operating range (up to 250
booted and 300 frozen VMs) all transition times remain largely constant, regardless of the
number of booted and frozen VMs. We therefore represent the average transition times
(within the operating range) using the transition matrix T3×3 shown in Table 5.1, where
ti,j=time to transition from state Si to Sj. Note that to transition a frozen LXC VM to
shutdown (and vice versa), it must first be transitioned to booted.

PPPPPPPPPFrom
To

Booted (S0) Frozen (S1) Shutdown (S2) Bi

Booted (S0) 0.00 ms 0.17 ms 641.64 ms 250
Frozen (S1) 4.43 ms 0.00 ms - 300

Shutdown (S2) 802.16 ms - 0.00 ms 2000 (Disk limited)

Table 5.1: Transition matrix (T3×3) and state capacity (Bi) values for LXC.

5.4 Policy Comparison Setup

Using the parameters obtained above we study the effect of different policies using a
simulation-based analysis, which makes exploring a large design space feasible.

In this section, we first discuss the design and implementation of our simulator, fol-
lowed by the description of the policy implementations in Section 5.4.2, the personal VEE
workloads we use for comparing policies in Section 5.4.3, and our evaluation metric in
Section 5.4.4.

5.4.1 Simulator Design and Implementation

Our simulator consists of a policy module, a cost-model module, and a workload module.
The cost-model module encapsulates the VM hierarchy parameters (Bi and T3×3). The
policy module encapsulates all logic pertaining to a particular policy and maintains any in-
memory state required for implementing that policy such as any per-VM bookkeeping. The
workload module encapsulates all logic required for simulating the VMs’ workloads, such as
distributions for request inter-arrival times and request durations. Such modularity allows

101

us to easily extend the simulator to study different workloads, different VM management
policies, as well as different VM hierarchies, by simply implementing the respective module.
The simulator maintains the current state assignment for each VM. In addition, it contains
a single time-sorted event queue and a single thread which processes events in this queue.
Events are either of type VMrequest or VMidle.

At initialization time, the workload module generates the simulated VMrequest events
for the required number of VMs and populates the event queue. When processing a VMre-
quest event, the simulator passes the current state assignment, the request event, and event
queue to the policy module, and receives the updated state assignment. It then compares
the updated state assignment with the current one and computes a list of required VM
transitions. It then computes the time required to perform the transitions, updates the
state assignment, and enqueues a VMidle event with a later timestamp (derived using the
request duration in the VMrequest event) into the event queue. Note that all invocations of
the policy module are serialized. For instance, if a VMrequest event occurs while the policy
module is computing the updated VM state assignment, it is processed after the policy
module finishes its computation. Lastly, when computing the time taken to perform a set
of transitions, the simulator assumes that different VMs’ transitions take place in parallel.
This assumption is justified because in doing so we are able to measure the best case behav-
ior of any policy. Any additional overhead in the system in performing parallel transitions
would only serve to increase the transition times, and the miss penalty so obtained would
still be bounded by that in the best case scenario. VMidle events are processed in the
same fashion as VMrequest events. However, some policies (e.g, demand-based policies)
may choose to not take any action when a VM becomes idle.

Implementation

We have implemented the simulator using C# over the .NET v4.5 framework. We have
implemented policy modules for different reactive and proactive policies, the workloads
described in the next section, and a cost-model module for LXC. We validate the simulator
using sample deterministic workloads and state hierarchies. The implementation is publicly
available at http://github.com/rayman7718/VMSim.

5.4.2 Policy Implementations

We implement the following idle VEE management policies.

102

http://github.com/rayman7718/VMSim

LRU

Least Recently Used (or LRU) [71] is a policy that is widely studied for page replacement.
We apply it to idle VM management in a cascaded fashion. For each VM, it maintains
the timestamp of the last request (tr). All VMs are initially in the shutdown state. As
requests for different VMs arrive, they are transitioned to the booted state. Eventually,
as the number of VMs in the booted state (i.e., including active and idle VMs) reaches
the limit B0, for each VM transitioning into booted thereafter, LRU chooses to transition
the booted VM with the minimum tr into the frozen state. In effect, for each VM it uses
the time since the last request to estimate the likelihood that it will be requested again.
Similarly, as the number of VMs in the frozen state reaches B1, for each VM transitioning
into frozen thereafter, the frozen VM with the minimum tr is shut down. Note that,
unlike traditional implementations of LRU (e.g., in page replacement) where all timing
information of the resource is deleted after its eviction, we maintain tr for each VM after
eviction in order to apply it across multiple states.

Cascaded Belady’s OPT

This policy is simply an extension of Belady’s OPT algorithm to multiple states applied
to idle VM management. That is, when number of VMs in any state Si exceeds Bi, the
VM that is referenced the furthest in the future is transitioned to Si+1. This version of
Belady’s OPT algorithm is known to be suboptimal [90]. However, we implement it in
order to compare it with demand-based policies that have no future knowledge (e.g., LRU)
and the lower bound Minϕ(ω). To the best of our knowledge such a comparison has not
been conducted in previous work.

Lower Bound on demand-based policies

As explained in Section 5.2.1, Minϕ(ω) forms the lower bound on demand-based policies.
We first obtain the h0, h1, h2 values for LXC as per Eq. 5.1 for the different workloads
we study (i.e., different ω values). For each ω, we obtain h0 = hOPT (ω,B0), h1 =
hOPT (ω,B0 +B1)− hOPT (ω,B0), and h2 = |ω| − h0 − h1. We then determine the lower
bound Minϕ(ω) = (h0.t

′
0 + h1.t

′
1 + h2.t

′
2).

103

SlidingWindow+GroundTruth

As explained in Section 5.2.2, our SlidingWindow policy requires knowledge of the future.
Therefore, we implement the offline version of SlidingWindow which uses knowledge of the
future (called SlidingWindow+GroundTruth).

SlidingWindow+ARMA

We also provide an online implementation of the SlidingWindow policy (called SlidingWin-
dow+ARMA) which attempts to predict the inter-arrival time for each VM and updates
the prediction model at the time of each request for that VM. We employ the widely-
used auto regressive moving average (ARMA) time-series model [136] for predicting the
inter-arrival times. To find the order of the ARMA model we employ Bayesian information
criterion [162] and at each model update we perform a maximum likelihood fit on the inter-
arrival times. The policy then uses the predicted inter-arrival time for each VM to perform
its proactive actions. Therefore, its miss penalty depends directly on the prediction error
of the ARMA model.

5.4.3 Workload Analysis

We analyze personal VEE workloads by categorizing them into three categories based on
the requests’ inter-arrival and duration times. We believe that such categorization (as
opposed to a mixed workload) allows us to better understand the behavior of different
policies.

Fixed Inter-arrival Time, Fixed Duration

A common use of personal VEEs is to periodically upload a fixed amount of data from
in-home sensors (e.g., from energy sensors, as described in Chapter 3) or a user’s smart-
phone [79, 139]. In these scenarios, requests have relatively fixed inter-arrival times and
durations. For such requests both the arrival and departure of requests are highly pre-
dictable and form an interesting point of comparison between proactive and reactive poli-
cies. Similarly tasks involving periodic pre-processing of data [160,171] also fall under this
category.

104

Stochastic Inter-arrival Time, Fixed Duration

Users can also use their personal VEEs to host private instances of common application
servers such as web, mail, the Bolt metadata server (described in Chapter 4), and other
servers [59, 165, 166]. Due to the user-facing nature of these application servers, the re-
quests they receive have stochastic inter-arrival times, and typically involve downloading or
uploading fixed amounts of data, thus leading to requests with a relatively fixed duration.

Stochastic Inter-arrival Time, Stochastic Duration

In many personal VEE applications the requests are user-generated, and thus have stochas-
tic inter-arrival times. In addition, there are a wide variety of such requests. As a result,
these requests vary in the amount of data processed and the type of computation performed
which results in stochastic duration times. Examples include private data analytics appli-
cations (described in Chapter 3), VM-backed mobile applications [160], and other similar
applications [109] (discussed in detail in Sections 2.1.4 and 2.1.5).

5.4.4 Metric

In order to compare different policies for a request string ω, we use the average miss penalty
incurred by any policy π, defined as:

Average miss penalty =
Pπ(ω)

|ω|
.

We choose this metric because:

(i) it captures the miss penalty across all VMs in the system,

(ii) it allows us to observe the behavior of any policy while increasing the number of total
VMs, and

(iii) it allows us to easily observe the differences between reactive and proactive policies.

Note that the lower bound on average miss penalty of reactive policies is expressed as
Minϕ(ω)

|ω| .

105

5.5 Simulation Results

We now study the effect of increasing VM density on the average miss penalty for different
policies. The request string ω in all simulations contains 100 arrivals per VM, that is,
|ω|=Total #VMs × 100.

In order to simulate stochastic inter-arrival times, we use the request inter-arrival times
from publicly available web trace data [50], since it has been used in evaluating on-demand
VM provisioning in existing work [120]. Similarly in order to simulate stochastic request
durations, we use the web connection duration characterization provided by Newton et
al. [143]. We believe this to be a representative request duration characterization for
personal servers. Lastly, we use the respective mean values from the two datasets for
generating the fixed inter-arrival time (of 50 s) and fixed duration (of 10 s) workload.
Table 5.2 shows the variability of inter-arrival times and durations for the three cases we
study. Note however that the policies we consider do not utilize request duration and we
defer the design of policies that consider request durations to future work.

In each workload experiment (below), we start the x-axis at 250 VMs since it is the
maximum number of VMs possible in the booted state (and there are no miss penalties
below 250 VMs). We increase VM density to the point that the total number of simul-
taneously active VMs increases above 250 (equal to B0) and cannot be hosted using this
hierarchy. Note that this limit is a result of the current workload (longer idle times would
increase this limit).

Case Inter-arrival times Durations
Mean Standard Min Max Mean Standard Min Max

Inter-arrivals Durations deviation deviation

Fixed Fixed 50.0 s 0.0 s 50.0 s 50.0 s 10.0 s 0.0 s 10.0 s 10.0 s
Stochastic Fixed 50.0 s 160.5 s 10.0 s 941.2 s 10.0 s 0.0 s 10.0 s 10.0 s
Stochastic Stochastic 50.0 s 163.0 s 0.9 s 941.2 s 10.0 s 22.4 s 5.0 ms 120.0 s

Table 5.2: Variation of request inter-arrival times and durations across the three test cases.

5.5.1 Fixed Inter-arrival Time, Fixed Duration Workload

Figure 5.6 shows the average miss penalty versus VM density for different policies, for a
request string ω with a fixed inter-arrival time of 50 seconds and a fixed request duration of
10 seconds. Figure 5.6 also shows the shutdown-to-booted and frozen-to-booted transition

106

times for comparison. For each VM, the time at which its first request is received is chosen
uniformly at random from [0,50 s]. Later in this section, we analyze the behavior of the
policies under other inter-arrival time and duration values.

 0.1

 1

 10

 100

 1000

 250 350 450 550 650 750 850 950 1050

A
v
g
 M

is
s

P
en

al
ty

 (
in

 m
s)

VM density

Shutdown-to-booted

Frozen-to-booted Min
Φ

(ω) / |ω|
Cascaded Belady

LRU
SlidingWindow+Ground Truth

SlidingWindow+ARMA

Figure 5.6: Average miss penalty with increasing VM density for fixed inter-arrival time
and duration.

We first explain the behaviour of the reactive policies. We observe that at a VM density
of 250, both reactive policies, LRU and Cascaded Belady’s OPT, incur the same average
miss penalty which matches the lower bound. This is because, in this case, all reactive
policies transition each VM into the booted state once its first request is received and no idle
VMs need to be transitioned out of the booted state thereafter (since VM density equals
B0). As VM density increases further, not all VMs can remain booted. Depending on the
policy, some VMs are transitioned to frozen (when idle) and are transitioned to booted
when their request arrives, which increases the average miss penalty. Similarly, as VM
density increases beyond 550, not all VMs can be in either booted or frozen states. That
is, all other VMs are transitioned to the shutdown state (when idle) and are brought into
the booted state when their request arrives. This contributes to increase the average miss
penalty. Since shutdown-to-booted transition times are significantly higher than frozen-
to-booted (approximately 800 ms vs. 4 ms), we see a much larger increase in the average
miss penalty at VM density ≥ 550 (than at 250 VMs). Note that LRU has a significantly

107

higher average miss penalty than the cascaded Belady’s algorithm because LRU has no
knowledge of the future reference string. In the case of LRU, when VM density is greater
than 550, upon the arrival of each request, the target VM is always in the shutdown state
thus incurring the maximum miss penalty. This is because, for this workload, between two
consecutive requests to any VM Vi, there are (v-1) requests for other VMs (i.e., one per
VM). Since LRU evicts the least recently used VM from booted to frozen and frozen to
shutdown, when v > 550, Vi will get transitioned to shutdown after the intermediate (v-1)
requests are serviced.

We now explain the behavior of proactive policies. Due to easily predictable fixed re-
quest inter-arrival times and durations, the average miss penalty of SlidingWindow+ARMA
equals that of SlidingWindow+Ground Truth. We observe that both policies incur a sig-
nificantly lower average miss penalty than the reactive policies. This is because whenever a
request whose target VM is not in the booted state is received, in addition to transitioning
that VM to booted, SlidingWindow also transitions other VMs (as many as possible) to
booted and frozen states (as explained in Section 5.2.2). Note that the proactive transi-
tions in the SlidingWindow policies are triggered by a request whose target VM is not in
the booted state. Therefore, as VM density increases up to 550, VMs span the booted
and frozen states and beyond 550, VMs span all the three states. This increases the aver-
age miss penalty (since the shutdown-to-booted transition time is significantly larger than
the frozen-to-booted time). Moreover, the number of idle VMs that the SlidingWindow
policies can proactively transition to booted, depends on the number of active VMs at
that instant (since the number of active booted + the number of idle booted = 250). As
VM density increases, the number of simultaneously active VMs increases and hence the
number of VMs that can be proactively transitioned to booted decreases. This reduction in
the number of possible proactive transitions also contributes to an increase in the average
miss penalty.

For this workload, comparing the two online (implementable) policies (LRU and Slid-
ingWindow+ARMA), we conclude that SlidingWindow+ARMA incurs the lower average
miss penalty. It increases VM density from 250 to 550 (a factor of more than 2.2), while
keeping average miss penalty under 1 ms, for a fixed inter-arrival time of 50 seconds and
fixed duration of 10 seconds. Note that each VM is active for 10 seconds, then becomes
idle for 40 seconds before being activated again, that is, a mean duty-cycle of 20%. If the
maximum number of frozen VMs was not limited to 300 by LXC’s implementation, for
up to 250 simultaneously active VMs, a maximum of 250

0.2
or 1250 VMs could be hosted

using this state hierarchy while keeping the average miss penalty under 1 ms. Similarly,
for an idle time of 10 seconds and active time of 40 seconds (i.e., a duty cycle of 0.8), the
maximum VM density with an average miss penalty under 1 ms, would be 250

0.8
or 312 VMs.

108

To generalize, maximum VM density, for an average miss penalty ≤ 1 ms with maximum

number of simultaneously active VMs ≤ 250, equals Min
(
B0 +B1,

B0

mean duty-cycle

)
.

5.5.2 Stochastic Inter-arrival Time, Fixed Duration Workload

Figure 5.7 shows the average miss penalty versus VM density for different policies, for a
request string ω with stochastic inter-arrival time (as described above) and a fixed request
duration of 10 seconds. Figure 5.7 also shows the shutdown-to-booted and frozen-to-booted
transition times for comparison.

 0.1

 1

 10

 100

 1000

 250 350 450 550 650 750

A
v
g
 M

is
s

P
en

al
ty

 (
in

 m
s)

VM density

Shutdown-to-booted

Frozen-to-booted Min
Φ

(ω) / |ω|
Cascaded Belady

LRU
SlidingWindow+Ground Truth

SlidingWindow+ARMA

Figure 5.7: Average miss penalty with increasing VM density for stochastic inter-arrival
time and fixed duration.

We observe that the behaviour of reactive policies in this case is similar to that in the
case of fixed inter-arrival fixed duration workloads (as described above in Section 5.5.1).
That is, their average miss penalty is equal and lowest at VM density of 250 VMs and
thereafter it increases with VM density (and remains higher than the lower bound). Miss
penalty is significantly higher at 550 VMs (and higher) than that at 250-550 VMs. This is
because with more than 550 VMs, they span the booted, frozen, and shutdown states and
shutdown-to-booted transition times are significantly larger than frozen-to-booted times.

109

We now explain the behaviour of the proactive policies. Due to reasons explained
above in Section 5.5.1, the average miss penalty of SlidingWindow+Ground Truth in-
creases as VM density increases. The increase is large at VM density of more than 550
VMs due to the shutdown-to-booted transition time being significantly larger than the
frozen-to-booted transition time. SlidingWindow+ARMA incurs a higher average miss
penalty than SlidingWindow+GroundTruth. This is because SlidingWindow+ARMA uses
the predicted inter-arrival time for each VM to make proactive transition decisions. Thus
errors in prediction cause some VMs to transition to sub-optimal states, which increases
the average miss penalty. We observe significantly larger average miss penalties as VM
density exceeds 550 VMs. This is observed despite the normalized root mean square er-
ror of the prediction (shown in Figure 5.8) remaining largely constant (at approximately
0.04) with increasing VM density. This is because beyond 550 VMs, they span all three
booted, frozen, shutdown states (as compared to only booted and frozen below 550) and
the shutdown-to-booted, booted-to-shutdown transition times are significantly higher than
the frozen-to-booted, frozen-to-shutdown transition times respectively. Hence, as the num-
ber of VMs is increased, for a relatively constant degree of mis-predictions, the number
of VMs that get transitioned sub-optimally to the shutdown state due to a mis-predicted
inter-arrival time increases. It is the large transition times to and from the shutdown
state that cause the significant increase in the average miss penalty. Due to this increase,
the average miss penalty of SlidingWindow+ARMA exceeds that of reactive approaches
(beyond 560 VMs).

For this workload, when comparing the two online policies, LRU and SlidingWin-
dow+ARMA, we conclude that for a desired VM density of up to 550 VMs (2.2 × the
density of current solutions), SlidingWindow+ARMA incurs a much lower average miss
penalty (less than 4 ms). However, for all VM density levels larger than 560, LRU out-
performs SlidingWindow+ARMA. At these density levels, some idle VMs need to be in
the shutdown state (which has large transition times) and any error in inter-arrival time
prediction causes a significant increase in the average miss penalty.

5.5.3 Stochastic Inter-arrival Time, Stochastic Duration Work-
load

Figure 5.9 shows the average miss penalty for a request string ω with stochastic inter-arrival
time and stochastic duration, for different policies with increasing VM density. Figure 5.9
also shows the shutdown-to-booted and frozen-to-booted transition times for comparison.

We observe that the stochastic request duration has little effect on the average miss

110

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 250 350 450 550 650 750

N
o
rm

a
li

z
e
d
 R

M
S

E

Total #VMs

Stocastic Interarrival, Fixed Duration
Stocastic Interarrival, Stocastic Duration

Figure 5.8: Normalized root mean square error (NMRSE) for the ARMA predictor used
by SlidingWindow+ARMA.

penalty, which is similar to the case of stochastic inter-arrival time and fixed duration
(described above in Section 5.5.2). We believe that this is because both the reactive and
proactive policies we study (LRU, Cascaded Belady’s algorithm, and SlidingWindow), only
use request inter-arrival time in making their reactive or proactive transition decisions. An
interesting avenue for future work would be to formulate policies which also take into
account the expected request durations. The behaviour of our current policies can be
explained using reasoning similar to that in Section 5.5.2.

5.5.4 Summary of Simulation Results

The key findings of the simulation-based policy comparison can be summarized as follows:

• Online proactive policies such as SlidingWindow+ARMA are highly sensitive to pre-
diction error. Thus for any given hierarchy, to ensure low miss penalties, such policies
should be used only when the desired VM density is such that all VMs can be accom-
modated within inactive states with low transition times. That is, when the penalties

111

 0.1

 1

 10

 100

 1000

 250 350 450 550 650 750

A
v
g
 M

is
s

P
en

al
ty

 (
in

 m
s)

VM density

Shutdown-to-booted

Frozen-to-booted Min
Φ

(ω) / |ω|
Cascaded Belady

LRU
SlidingWindow+Ground Truth

SlidingWindow+ARMA

Figure 5.9: Average miss penalty with increasing VM density for stochastic inter-arrival
time and stochastic duration.

for mis-predictions are relatively small. Under all other conditions (e.g., larger VM
density levels), reactive and stateless policies such as LRU should be used.

• Miss penalties of proactive and reactive (online or offline) policies, which only make
use of request inter-arrival times, are largely unaffected by request durations being
fixed or stochastic.

• For the given workload, using an online per-VM predictor based proactive policy
results in an increase in VM density by up to a factor of 2.2, with an average miss
penalty of less than 1 ms.

5.6 Characterizing the Policy Space

In Section 5.2, we formulated the idle VEE management problem. Although that problem
formulation allowed us to establish a lower bound on the miss penalties of demand-based
policies, it does not provide insight into finding the optimal policy. We believe that it
is due to the large extent of possible policies that finding the optimal policy is relatively

112

difficult. Therefore, in this section, we present an alternate mathematical formulation
of the problem, which provides a mathematical definition for policies, and allows us to
characterize the policy space.

Let V = {V1, V2, . . . Vv} denote the set of v VMs that are multiplexed on a given
physical machine. Each VM is active for certain periods of time, for example, when actively
serving client requests and is idle for other periods of time. We model the active and idle
periods over a given time period T by a reference string of tuples. A reference string
of tuples ω = r1, r2, . . . rT is a string of tuples ri. Each ri is a tuple (Type, ID), where
Type ∈ {Activate, Inactivate} and ID ∈ V , which denotes the activation (i.e., start of an
active period) or in-activation (i.e., start of an idle period) of the target VM VID.

For any tupled reference string ω, for each VM Vx ∈ V , if ∃ rj = (Inactivate, x),
then ∃ ri = (Activate, Vx), where j ≥ i. Moreover, ∀ ri, rk ∈ ω such that ri = rk =
(Activate, Vx), i < k, there must exist rj = (Inactivate, Vx) where i < j < k.

In addition to the booted and shutdown states (denoted S0 and Sn+1 respectively),
we assume there are n additional inactive states (denoted S1, S2, . . . , Sn) which can be
used to hold idle VMs. Let V S0 , V S1 , . . . V Sn , V Sn+1 ⊆ V denote the sets of VMs in states
S0, S1, . . . Sn+1 respectively at a given time instant. We also define V A ⊆ V S0 , as the
set of VMs that are actively serving clients at that instant. Moreover, the soft bounds
on the maximum number of VMs in states S0, S1, . . . Sn+1 are denoted as B0, B1, . . . Bn+1

respectively. Therefore, ∀i ∈ {0, 1, . . . , n+ 1}, |V Si| ≤ Bi, and
∑n+1

i=0 |V Si| = v.

Given this notation, we define the VM configuration of the system at any instant, as
the tuple C, where

C = (V A, V S0 , V S1 , . . . , V Sn , V Sn+1).

C defines the state in which each VM is at the particular time instant. Let SC be the set

{C|∀i ∈ {0, 1, . . . n+ 1}, |V Si| ≤ Bi,

n+1∑
i=0

|V Si| = v}.

That is, SC denotes the space of all possible VM configurations for the given state hierarchy.
Any idle VM management policy π is comprised of the tuple (Q, q0, g) where,

(i) Q is the set of control-states of the policy,

(ii) q0 ∈ Q is its initial control state,

(iii) g : SC ×Q× (V × Type) → SC ×Q is the allocation function.

113

The allocation function has the property that the target VM of any request ri (i.e, Vri.ID)
is in C ′.V A whenever g(C, q, ri) = (C ′, q′) and ri.T ype = Activate. Similarly, Vri.ID is not
in C ′.CA whenever g(C, q, ri) = (C ′, q′) and ri.Type = Inactivate.

Therefore, any VM management policy π can be considered a finite state machine with
SC×Q control-states, inputs V ×Type (i.e., outgoing transitions), and a transition function
g.

The total number of control-states for any policy π are O(
{

v
n+2

}
× |Q|), where

{
X
Y

}
denotes the second stirling number which defines the total number of ways of partitioning
a set of X elements into Y subsets. Simplifying further, the total number of control-states
are

O(

{
v

n+ 2

}
× |Q|) = O((n+ 2)v × |Q|) = O(nv.|Q|).

Given α control-states and β inputs, the total number of finite state machines that
can be defined is α.(αβ)α or O(αα.β). This is because each input for each control-state
can cause a transition to one of the α states, and each state can be chosen as the initial
control-state.

Therefore, the total number of possible policies given a control-state space of O(nv.|Q|),
and 2× v inputs are O((nv)n

v
). That is, the size of the policy space is exponential in both

the number of states and the number of VMs multiplexed on a machine (with the exponent
itself comprising of n and v terms). We believe that it is due to this large policy space
that finding the optimal policy is relatively difficult.

5.7 Discussion

Other Virtualization Solutions

Using LXC as our example virtualization solution, we demonstrate that idle VMs can be
multiplexed across inactive states. However, our model formulation and lower bound on
demand-based policies (in Section 5.2) is applicable to any virtualization solution. Sim-
ilarly, our experimental analysis to determine the model parameters (in Section 5.3) can
also be adapted to any virtualization solution. Our simulator can then be re-used (after
encoding the new cost-model), to observe the effect of policies on any VM hierarchy. We
defer such extension of this work to other virtualization solutions (e.g. Xen and KVM) to
future work. Nevertheless, we believe our evaluation of VM density and miss penalties can
benefit existing projects [9, 79] which use LXC.

114

Extending Policies

We have implemented only a few sample, reactive and proactive policies (i.e., LRU, Cas-
caded Belady’s, SlidingWindow, and SlidingWindow+ARMA), using only the personal
VEE workload. The goal of this work was to uncover a new methodology to increase VEE
density by multiplexing VEEs across states, understand and compare the behaviour of
reactive and proactive policies for idle VM management, and to compare reactive policies
with our theoretical lower bound. With our example personal VEE workloads, we provide
valuable insights into the behaviour of a few policies. However, we defer the extension of
this work to a broader range of policies and workloads to future work. Our modular sim-
ulator design, which isolates policies, workloads, cost-models (described in Section 5.4.1),
ensures that a broader analysis can be easily conducted.

We have provided only one online implementation of the SlidingWindow policy (us-
ing the ARMA model). We chose the ARMA predictor since it delivered relatively small
prediction error for the current workload. To use the SlidingWindow policy on other work-
loads other prediction methods may need to be considered, while demand-based policies
such as LRU can be applied directly.

Stochastic Value Analysis of Transition Times

We model the problem by using a mean value analysis of transition times. Hence we de-
rive the model parameters by defining an operating range of state capacities within which
transition times are largely constant. We also assume that different VM state transitions
can take place in parallel and that transition times remain unchanged. Stochastic analysis
can be leveraged to model any variations in transition times. However, additional experi-
mental analysis of density and transition times will be required to obtain parameters for
a stochastic value model, which we defer to future work. Additionally, our current experi-
mental analysis of LXC (Section 5.3) identifies a number of barriers to state capacities in
LXC, which serve as venues for improving future LXC implementations.

5.8 Chapter Summary

Our proposed personal VEE architecture for data-driven applications requires provisioning
one VEE per user. VM density of traditional consolidation methods is bounded by the
maximum number of VMs that can be co-hosted on a single machine by the underlying
virtualization solution. Provisioning a large number of VMs using existing solutions will

115

require un-affordably large amounts of hardware resources. Therefore, we propose a new
methodology that increases VM density for workloads that have relatively large uncorre-
lated active times, such as personal VEE workloads.

In this methodology, idle VMs are multiplexed across a range of inactive states, where
their resource footprint is reduced, at the cost of a small increase in client latency called the
miss penalty. However, due to differences in their design and resource requirements, differ-
ent inactive states have varying VM activation and deactivation times, and VM capacities.
Consequently, miss penalties for idle VMs in different inactive states vary significantly.
Thus choosing the appropriate policy for multiplexing idle VMs across inactive states is
essential for maximizing the VM density while minimizing the miss penalties. We divide
the policy space into reactive and proactive policies. To understand and guide our policy
selection, we formulate a mathematical model for the problem. This model is used to
derive a lower bound on the miss penalties of reactive policies. We observe some simi-
larities between this problem and the problems of page replacement and multi-level cache
management. We use these similarities to formulate a proactive policy (called SlidingWin-
dow+ARMA) which leverages inter-arrival time prediction to reduce miss penalties.

Our model uses the inactive state capacities and transition times as input parameters.
Therefore, we use microbenchmarks to measure these values to obtain the model parameters
for LXC [22], a widely used OS-level virtualization solution. We then categorize typical
personal VEE workloads and use the measured parameters to evaluate different reactive
and proactive policies. Our policy comparison and simulations provide a quantification of
the miss penalties of different policies and allow us to draw insights into their behaviour.

116

Chapter 6

Towards Tussle Based Operating
Systems

6.1 Introduction

The goal of the personal VEE architecture (described in Chapter 3) was to enable an
ecosystem of data-driven applications that preserves users’ data privacy. The basis of our
approach was to prevent application developers from accessing users’ data, for example,
by sandboxing native VHome applications or transforming data before it is accessed by
cloud-based applications.

However, both users and application developers benefit from providing application de-
velopers with access to users’ data. For instance, application developers can use the data
to serve users with advertisements in-exchange for lower application costs. Access to data
would allow application developers to improve their data processing algorithms, leading to
improved utility to users. As a specific example, data can be used to improve occupancy
prediction for home thermostat control applications. On the other hand, as discussed in
Chapter 1, data from smart meters, smartphones, and other sensors, can also be misused
to reveal private information about the user, for example, socio-economic status [52], TV
viewing [93], driving [106, 113, 149], sleep [67, 100], physical activity habits [103, 104] and
other details [131,138].

Application developers and users are thus in a tussle [70] over access to sensor data.
Application developers desire to have unlimited sensor data access, while users wish to
preserve their data privacy. The VHome framework (Chapter 3) always resolves such

117

tussles in favour of the user and prevents personal VEE-resident applications from relaying
any data back to application developers. In sharp contrast, smartphone operating systems
(OSes) such as Android, iOS, or Windows Phone, typically resolve data tussles in favour
of application developers and require users to grant all of an application’s data requests
at installation time. As a result, many users avoid using smartphone applications that
require access to privacy-sensitive sensor data [68].

In their seminal work, Clark et al. [70] introduced the notion of tussles in cyberspace.
By analogy, we posit that operating systems need to formally recognize tussles and need to
implement mechanisms and policies to resolve them. Providing stakeholders – users and
application developers – with a principled way to express their requirements and ensuring
that the framework resolves tussles according to prescribed policies enables easier under-
standing of system behaviour for both users and applications. Moreover, a tussle-based
abstraction benefits users by allowing them to gracefully balance application utility against
data privacy and it benefits application developers by allowing for a broader distribution
of applications.

In this chapter, we ask: how can we best extend an operating system1 with a tussle-
based abstraction? We take the first steps in answering this question by designing a
framework to formalize, detect, and resolve data tussles.

Our work makes the following contributions:

• A tussle abstraction for operating systems.

• An identification of mechanisms and policies that underlie a tussle-based framework.

• An outline of various open problems for instantiating a tussle-based framework and
directions for future work.

The remainder of this chapter is organized as follows. We formulate the design goals that a
tussle-based framework should achieve in Section 6.2 and present an outline of the proposed
architecture and its components in Section 6.3. We then derive the abstractions that
allow application developers and users to express their data requirements in Sections 6.4.1

1 We use operating system (OS) to loosely refer to any software that intermediates applications’ access to
sensor data and other system resources (Table 6.2). This includes smartphone platforms such as Android,
Windows Phone, iOS, home sensing platforms such as HomeOS [76], our personal VEE framework –
VHome (Chapter 3, [171]), and other OSes running on embedded devices such as the Raspberry-Pi [31],
increasingly deployed in cyber-physical systems.

118

and 6.4.2 respectively. We discuss the notion of tussle resolution and the enforcement of
such resolutions in Section 6.4.3 and 6.4.4 respectively. We conclude the chapter with a
discussion of future directions and an overview of related approaches in Section 6.5.

6.2 Design Goals

Our primary design goal is to extend existing OSes with a tussle framework that:

• Provides the stakeholders, that is, users and application developers, with a high-level
abstraction for expressing their resource requirements and constraints.

• Provides a set of mechanisms to detect and resolve tussles and ensures the enforce-
ment of the resolutions.

We believe that an ideal tussle framework should demonstrate the following properties:

Expressiveness

Numerous sensor applications exist today and others are rapidly emerging [34]. Therefore,
the framework should allow applications to freely express their sensing requirements. These
include, the type of sensors the application requires, the frequency at which access is
required, and the level of access. At the same time, the framework should allow the user
to define acceptable sensor access by applications. This should be provided through a
control interface that is understandable to the users, for example, by allowing them to list
inferences that can or can not be drawn by an application.

Resolution

After the stakeholders have expressed their sensor access constraints, the framework should:
(i) detect conflicting requirements (i.e. tussles), and (ii) resolve tussles by balancing the
requirements (with user input, if necessary). The amount of utility the application provides
is likely to be limited by the user’s data privacy requirements. This implies that application
utility should degrade gracefully with increasingly strict privacy requirements. Note that
this is a significant departure from most existing approaches which typically require a user
to accept all of an application’s sensor access requests at installation time.

119

Robustness

The framework should guarantee that any sensor data access made by an application
respects the tussle resolution. In addition, since many applications rely on the integrity of
sensor readings, the framework should guarantee this integrity. A sample application that
requires trusted readings to be effective is an energy billing application [171].

Extensibility

The framework should be able to support new sensor types, new algorithms that can
draw more sophisticated inferences using existing sensor data, and new ways in which
stakeholders may want to express their requirements.

6.3 Architecture Outline

In light of these design goals, we first identify the key elements of a tussle-based framework,
and present an outline of its architecture. In the subsequent sections, we describe existing
work and determine the extent to which it can be leveraged to design and implement the
different components.

Figure 6.1 provides an overview of the proposed framework aimed at sensor data tus-
sles. Application developers and users are provided with interfaces which they use to
express their sensing requirements and data privacy requirements respectively. Applica-
tion developers express their sensing requirements through timing parameters (labeled
(ts, tw, tp)). Users express their requirements using inferences (labeled I1, I2, I3). Sec-
tions 6.4.1 and 6.4.2 explain these parameters and interfaces in greater detail and their
relation to prior work.

The resolver receives the requirements from the user and application and resolves tussles
by generating an accord. The accord defines the time, level, and scope of sensor access
for the application. To formulate an accord, the resolver leverages the InferenceDB, a
continually-updated cloud-hosted database of existing inference algorithms. Section 6.4.3
describes the resolver, accord, and InferenceDB in detail.

The enforcer, a component of the OS, implements the accord by ensuring that all
applications’ sensor accesses respect the accord’s restrictions. We discuss the enforcer and
its components in Section 6.4.4.

120

Update
Manager

AdjudicatorRequirements
Interpreter

User Application

InferenceDB Resolver

Enforcer

Accord + MDint

I1, I2, I3 (ts,tw,tp)

Sensor
Interrupt
Handler

MDint Verfier

Sensor Data

Bookkeeper

Cloud

OS

Figure 6.1: Design overview of a tussle-resolving framework.

6.4 Design Challenges

6.4.1 Applications’ Sensor Data Requirements

We observe that applications typically collect sensor data, use it to draw inferences about
users or the environment, and perform actions based on these inferences. For example, the
PreHeat [163] application (described in Section 4.2.1), uses motion sensor data, infers and
predicts home occupancy, and adjusts the thermostat accordingly.

Recent work [144] (including ours [172]) has examined methods for allowing applica-
tions to request their required inferences, through inference-based abstractions, rather than
directly receiving actual sensor values (as in the VHome framework; Chapter 3). This en-
ables applications to accurately describe their requirements, while the framework performs
the required data processing and delivers the requested inferences. However, this method-
ology exhibits several deficiencies. Application developers are limited to using inferences
supported by the framework. Using a different inference algorithm requires developers to
integrate it into the framework (e.g., building an inference-module in Beam [172]). This
places additional development and maintenance burdens on the developer. Moreover, many
application developers want their techniques to remain proprietary and may be reluctant to

121

leverage such frameworks. Lastly, the framework may not incorporate certain application-
specific design optimizations which the developer wants to employ. Given these drawbacks,
we ask: Is it possible to allow developers to directly express their sensing requirements?

We survey a range of applications that use sensors across different domains [67, 98,
100, 103, 113, 149, 163]. On analyzing these applications’ sensor access, we observe a few
similarities, which we explain in the context of a few example applications. We choose
these example applications because of the diverse categories they represent (healthcare,
safety, and efficiency) and because they process private information about their users. The
example applications are:

• SleepMon [100, 103]: This application monitors users’ sleep quality using their
smartphones. It uses the microphone to detect “sleep events”, which are used to
create a fine-grained sleep profile, compute sleep efficiency, and relate irregular sleep
patterns to possible causes.

• DriverMode [113, 149]: This application detects when the user is in a moving ve-
hicle, for example, a car, and activates a driver-mode user experience on the user’s
smartphone. It suppresses non-critical notifications and informs other users. It uses
the accelerometer to infer the user’s transportation mode and records driving periods
for visualization.

• PreHeat [163]: Recall that, as described in Chapter 4, this application infers the
occupancy of a room or a home. The inferred occupancy is then used to adjust the
thermostat to save energy [25,98,163].

By analyzing these applications we observe that their sensing requirements, and those
of many other applications, can be expressed using the following parameters (illustrated
in Figure 6.2).

Sampling rate (ts)

This parameter defines the minimum time granularity for any batch of sensing values read
by the application. For instance, 0.125 ms (or 8 kHz) for the microphone readings used by
SleepMon [100, 103], 500 ms (or 2 Hz) for PreHeat’s passive infrared (PIR) readings [98],
and 100 ms (or 10 Hz) in the case of DriverMode [149]. Application developers can tune
the sampling rate to accommodate their inference algorithms and deployment scenarios.
For instance, SleepMon’s inference algorithm performs a spectral analysis of the sensor

122

readings using power spectral density. A sampling rate which is too infrequent will prevent
the algorithm from being able to differentiate between events (such as snoring, coughing,
and moving), thereby impacting its detection of sleep-related events. A sampling rate
which is too high results in resource waste, including CPU and battery energy, because the
application will need to process a larger volume of readings.

Batch size (tw)

Most sensing applications require a batch of continuous sensor readings, which they process
using inference algorithms. The batch size parameter defines the minimum size of any batch
of sensor readings delivered to the application, expressed as a time range. For instance,
SleepMon [100] requires sensor readings with ts=0.125 ms, with a batch size (tw) of 100
ms, that is, 800 readings sampled at 8 kHz. Similarly, PreHeat [98] has a tw of 120 seconds.
Developers tune the batch size to meet the needs of their inference algorithm. An overly
small batch size reduces inference accuracy, for example, lower precision for occupancy,
driving, and sleep detection. Moreover, many algorithms require a given minimum batch
size in order to detect cyclic patterns or other peculiarities in the data. For instance,
inferring if the user is walking using accelerometer readings requires a batch size of at
least 3 seconds [114]. In contrast, an overly large batch size decreases algorithm accuracy
because multiple events may co-exist within a single batch [149]. It may also lower an
algorithm’s sensitivity because it increases the number of missed events [149].

Periodicity (tp)

Most sensing applications perform their batch inference computations periodically (with
a period tp), rather than continuously. For instance, because PreHeat [98] is exclusively
interested in inferring occupancy events that last longer than 10 minutes, the occupancy
inference computation (processing a 120 second batch of PIR readings sampled at 2 Hz)
needs to be carried out only once every 10 minutes, meaning tp = 600 seconds. DriverMode
and SleepMon use a tp value of 5 minutes [100, 113]. Unlike the previous parameters, tp
affects the minimum length of events that are to be detected but it does not impact the
underlying inference algorithms’ accuracy.

These three parameters allow applications to succinctly express their sensing require-
ments. Note, however, that applications can still provide reduced functionality as long
as the parameter values lie within a range of useful values. As explained above, different
values within these ranges will impact applications’ functioning and utility in different

123

: sensor value

tp

Time

tw

ts

tp
tw

ts

Figure 6.2: Data sampling parameters.

ways. Along the same lines, as we explain below, users’ requirements also map to a spec-
trum. The challenge then lies in determining parameter values that lie within both the
stakeholders’ operating ranges.

6.4.2 Users’ Data Privacy Requirements

Many application frameworks provide users with accept-or-deny sensor controls to express
their data privacy requirements. Mobile application platforms such as Android, Windows
Phone, and iOS allow the user to grant or deny an application’s access to a sensor either
at application installation time (in Android and Windows Phone) or when the sensor is
first accessed at runtime (in Android M and iOS). Existing work has shown that per-
sensor permission models provide very limited insight to the user [84, 152, 153]. Users
have little understanding of which sensors an application should access and why. User-
prompts are disruptive, cause “prompt fatigue”, and condition users to simply grant all of
an application’s requests [153].

Other work has focused on alleviating this problem by enabling users to express their
data privacy requirements as a set of rules [63, 191]. Users specify a set of privacy rules
which the OS enforces. Rules can be of the form “block sensor S for a given applica-
tion” [191], or can be tuples, (C, S, A), where C specifies the context under which a given
sensor S is accessed, and A specifies an action (such as perturbation) which needs to be
performed on the sensor data before providing it to an application [63]. Although this
approach provides greater access control, it burdens the user with the task of updating
the rules as the number of sensors and applications increases and with the evolution of
inference algorithms that can be misused to reveal private information.

Chakraborty et al. [63] propose an approach where users are provided with high-level

124

inference abstractions to express their requirements. Users specify two prioritized lists of
inferences, comprised of inferences that are acceptable and unacceptable to them respec-
tively. The priority value indicates the importance the user assigns to an inference. An
a priori mapping of sensors (and their combinations) to inferences (and inference accura-
cies) that incorporates all known inference algorithms is assumed. Given the two inference
lists, the framework generates a list of sensors an application can access. It computes
an optimal sensor assignment for applications, maximizing the accuracy of the acceptable
inferences, and minimizing the accuracy of the unacceptable inferences. This approach
provides users with an understandable, low-overhead, high-level interface, but it suffers
from some shortcomings that we discuss in detail in Section 6.5.2.

Inference-based interfaces are intuitive, however, they lack interpretability : for instance,
an application that infers user occupancy at a time granularity of one minute gains more
information about the user than an application with a granularity of one hour, even though
both applications use the same inference. Therefore, we envision a user interface where
users not only list their acceptable and unacceptable inferences, but, for each acceptable
inference, are provided with high-level interpretable controls. One example would allow
the user to specify the acceptable time granularity at which applications are able to infer
his or her occupancy (such as one hour) and to also control the granularity of occupancy
events the application can capture (such as occupancy events longer than 10 minutes).

6.4.3 Tussle Resolution

As described above, users express their requirements using an inference-based control in-
terface, whereas applications express their requirements using a formal description, such as
(ts, tw, tp) tuples, for sensing requirements. The resolver (shown in Figure 6.1) is a service
that processes a given set of applications’ sensing requirements and a set of user’s data
privacy requirements to produce the tussle resolution, referred to as the accord.

Since users express their requirements through inferences, the resolver contains a re-
quirements interpreter which interfaces with the InferenceDB. The requirements interpreter
maps the user’s requirements to resource-specific parameters such as sensor-specific bounds
on parameters tw and tp. The InferenceDB is a service which provides the requirements
interpreter with a mapping of inference types and accuracies to sensor types and sensing
rates. For instance, it would map “Occupancy inferences with 100% accuracy” to the re-
quired motion sensor sampling rates. We envision that the InferenceDB would be hosted
by trusted third-party providers, for example, as public-facing web services in exchange for
user payments (or perhaps, freely from trusted open-source providers). These third parties

125

would be responsible for updating their respective InferenceDBs with existing and newly
discovered inference algorithms.

After the user’s requirements are converted by the requirements interpreter, they are
provided to the adjudicator. The adjudicator balances the user’s and application’s re-
quirements and resolves any conflicting requirements using a policy. The policy specifies
parameters that map different levels of sensing to different levels of application utility and
functionalities. This allows the user to interpret the impact of privacy requirements on
application experience.

For some users, the process of fine-tuning privacy requirements may be too complicated
or time consuming. A possible solution is to provide users with access to an open-source
catalog of trusted, common privacy profiles, from which a user may select a desired set
of policies. This is akin to “battery profiles” commonly found on smartphone and tablet
OSes. Alternatively, another method could rely on asking users a small number of high-
level, privacy-related questions, in order to automatically build a customized privacy profile
tailored to the user’s needs.

As sensors and inference algorithms evolve, both the requirements interpreter and ad-
judicator may need to perform significant amounts of computation, as they are essentially
solving an optimization problem. Therefore, we envision hosting the resolver in the cloud,
either with a trusted third party provider, or on a user’s personal VEE (Chapter 3).

Applications present their requirements to the OS at the time of instantiation, that is,
at the time of initialization. Similarly, the user presents his or her preferences to the OS
via a suitable user interface periodically, or at the time of application installation. Both
sets of requirements are then forwarded to the resolver. Figure 6.3 illustrates a sample
request sent from the OS to the resolver.

User: Occupancy - 10 min, Activity - 30 min, Sleep - 1 hr

App-1: Mic: (8 kHz, 0.125 ms, 1800 s)

App-2: Accelerometer : (10 Hz, 120 s, 300 s)

App-3: PIR: (2 Hz, 60 s, 600 s)

Figure 6.3: Example resolver request.

We assume a two-way encrypted channel of communication between the resolver and
the OS. The resolver responds with the corresponding accord along with integrity metadata
MDint. MDint is computed as follows:

MDint = SigKResolver
priv

(H[Request]||H[Accord]).

126

As described in Table 6.1, MDint is a signed hash of the request and the corresponding
accord. MDint ensures integrity of the accord, prevents replay attacks, and allows the
device OS to determine if an accord matches the last issued resolver request. This design
allows the resolver to be stateless, ensuring easy scalability for a large number of devices
and users, which is neccessary if the resolver is to be hosted as a trusted third party service.

H[x]: Cryptographic hash of x
SigK [x]: Digital signature of x with the key K
Kowner

pub , Kowner
priv : a public-private key pair of owner

||: Concatenation

Table 6.1: Glossary.

6.4.4 Resolution Enforcement

After an accord has been formulated, the OS needs to ensure that it is obeyed. The enforcer
(shown in Figure 6.1) is an OS component that ensures that any resource access by any
application conforms to the accord generated by the resolver.

Upon receiving an accord from the resolver, the enforcer first verifies if the accord
matches the current resolution request issued by the OS (Figure 6.3). It then decodes and
stores the accord in memory. To ensure that application resource accesses respect the ac-
cord, the enforcer maintains bookkeeping information. For instance, for sensor data tussles,
the enforcer records the types, levels, and extents of sensor data accesses by applications.

If the OS runs on a user-device such as a smartphone or PC, the enforcer also handles
sensor interrupts. Upon receipt of an interrupt, the enforcer consults its bookkeeping
information and any accords, and determines the set of applications to which the data
can be permissibly delivered, for example, through an asynchronous callback. If the OS
runs on a VEE in the cloud, the enforcer is comprised of only the bookkeeper and verifier
modules.

127

6.5 Discussion

6.5.1 Prior Work

Clark et al. [70] recognize tussles between stakeholders in the networking space and outline
solutions to resolve them. Likewise, we propose recognizing tussles among stakeholders
on operating systems on commodity devices and outline mechanisms to detect and resolve
them.

Existing work has proposed several additions to existing OSes to handle sensors and
actuators. Many systems have focused on either detecting overprivileged applications on
smartphones [83, 187], or tracking the flow of data to applications to detect malicious ap-
plications [80]. Spahn et al. [175] design an OS service that discovers application-level data
objects, for example, emails and documents, and provides users with unified object man-
agement. Santos et al. [158] propose a lease-based allocation of resources on smartphone
OSes to enable verifiable application behaviour. These approaches are complementary
to ours. They focus on providing mechanisms to address various relevant sub-problems,
however, they do not recognize tussles between stakeholders, which are the main cause of
these problems. We propose a framework to recognize, detect, and resolve these tussles,
which can be further enriched by incorporating these existing mechanisms. Haddadi et
al. [97] propose a trusted arbitrator for allowing users to control applications’ access to
historical data. We provide a framework for stakeholders to express their resource access
requirements, that can be used to view historical data as a resource.

Prior work has made several attempts to manage data tussles [46,54,63,126,141,191] but
when compared to a tussle-based framework, they suffer from several shortcomings: their
allocation of sensing capabilities to applications is unverifiable, they overlook balancing
application utility and data privacy, do not guarantee authenticity of sensor data, and
require constant device software updates to handle new sensors and inference algorithms.

6.5.2 Open Problems

Resource Tussles

We provide a way for application developers and users to express their sensor data re-
quirements, but these stakeholders often also enter into tussles over access to other system
resources. For instance, concurrent applications compete to access computational resources
such as CPU time, memory, and network bandwidth. Users often want to exercise some

128

control over resource allocation, to understand the system behaviour, and prioritize dif-
ferent applications [130]. Table 6.2 lists some of the key system resources present today
on user devices, including computational resources, sensors, actuators, and even software
resources, such as user-generated content (e.g., photos and videos), network ports, and file
descriptors. Therefore, we require a way to enable applications to express their resource
requirements.

Resource Examples

Traditional CPU, RAM, disk space, disk and network bandwidth

Sensors Microphone, camera, GPS, accelerometer

Actuators Electrical switch, thermostat, lock, display

Data Sensor data streams, user-generated content (contacts, images, etc.)

Table 6.2: System resources.

Applications must also express the durations for which they require access to a resource,
and the size of their requirements, such as, the required slice of CPU time or the amount
of memory. This implies that the interface between the application and the OS (usually
the process abstraction) may need to be altered to give the OS a non-black box view into
the application’s consumption of resources. Many modern smartphone OSes, including
Android and Windows Phone, have adopted this approach, with applications divided into
UI-intensive components (e.g., Android activities [5]) and computation-intensive compo-
nents (e.g., Android services [5]). Unfortunately, these abstractions only help to implement
specific static policies defined by the OS-provider, such as maximizing battery life. For de-
signing a tussle-based framework, existing unified resource abstractions such as Fence [130]
may be leveraged. However, they need to be supplemented with: (i) a language to allow
applications to freely express their resource requirements, and (ii) policies that resolve any
and all resource tussles. This will allow users to control and reason about resource tus-
sles in the same manner as data tussles. We envision that for resolving resource tussles,
the enforcer would need to be suitably enriched to encompass a CPU scheduler, memory
manager, a disk manager, and a network manager.

User-Controlled Data Privacy

As discussed in Section 6.4.2, we require a mechanism that allows users to express their
data privacy requirements in an interpretable way and then maps those requirements to

129

appropriate constraints on sensor access levels. However, the amount of information re-
vealed by sampling a sensor at two different sampling granularities can vary significantly.
For instance, an application that accesses the accelerometer to infer if the user is in motion
requires a much smaller time granularity than another application that infers the user’s
physical activity. Similarly, an application accessing GPS at a time granularity of one
minute and a space granularity of ten meters can infer significantly different user informa-
tion than an application with respective time and space granularities of one hour and ten
kilometers. As discussed in Section 6.4.2, the ipShield [63] approach provides users with an
understandable, low-overhead, high-level interface for managing data privacy but it does
not take sensor sampling granularity into consideration. Moreover, ipShield’s [63] opti-
mization objective function minimizes the inference accuracy of unacceptable inferences
but it does not provide the user with any interpretable metric that conveys the amount of
private information revealed. Nevertheless, it serves as a good starting point for building
other user-understandable and quantifiable approaches to handle sensor data privacy.

Trusted Readings

Our current work assumes that the OS is trusted and does not tamper with sensor read-
ings. Trusted readings are required in many applications such as billing [171] and geo-
fencing [132]. However, in practice, it may be difficult to guarantee that a particular OS is
trusted. Moreover, the user may want to provide readings that are perturbed or otherwise
modified, for example to spoof readings during development or replay previous GPS traces
to shield their current location [63]. Therefore, perturbations to sensor readings by the
user and the requirement of unperturbed readings by applications can also be viewed as a
tussle. A possible solution is to include a noise coefficient with sensor requests, 0 ≤ tn ≤ 1.
A coefficient of zero corresponds to unperturbed readings, whereas a coefficient of one
could correspond to entirely fabricated readings. The resolver can then balance an ap-
plication’s requested noise coefficient against the user’s privacy requirements, while the
enforcer ensures that readings delivered to applications are perturbed to the agreed upon
level.

Existing work has shown that trusted readings can be provided despite an untrusted OS
by securing appropriate components, such as by using a secure execution mode in modern
CPUs [132]. However, this approach [132] requires sensor drivers to be a part of the Trusted
Computing Base (TCB), and thus increases its size and hence its vulnerabilities [159]. A
potential solution is to partition sensor drivers’ functionality so that only their security-
critical components contribute to the TCB.

130

Tussles on a Cloud-Hosted OS

Applications such as Nest [25] use sensors deployed in users’ homes and backhaul data to
Nest servers in the cloud which host the application logic. This is problematic in two ways.
First, users’ sensor data needs to be transferred to the application developer’s server, even
though data processing can be hosted on users’ personal VEE. Second, the cloud server
hosting the application logic has no means to allow users to express their data privacy
requirements.

What is needed, therefore, is an instantiation of a tussle-based framework on the device
such as Nest [25]. This framework may coordinate with instantiations on other user devices
and the application developers’ cloud servers. The challenge, therefore, lies in designing a
tussle-based framework for such IoT devices.

Verifiable OS Implementation

A potential direction for building tussle-oriented operating system frameworks is to use
a Unikernel [133]. In this approach, the OS kernel is specialized to support only a pre-
specified set of applications. Moreover, the entire kernel is written in a strongly-typed
language (OCaml) that allows the OS’s correctness to be formally proved, in the sense of
always obeying certain high-level assertions. We believe that tussle accords can be formally
expressed in terms of these assertions, thus a Unikernel that implements a tussle accord
can be trusted to enforce the accord.

6.6 Chapter Summary

We observe that application developers and users often have mutually conflicting objec-
tives with regards to accessing sensor data. Application developers desire free access to
sensor data to advance their data processing algorithms and techniques. On the other
hand, users are often weary of unwarranted private information being leaked through their
sensor data and hence wish to preserve their data privacy. This situation results in a tussle
over sensor data access between the two stakeholders – users and application developers.
Moreover, such tussles also occur when stakeholders access many other system resources.
We advocate that operating systems need to recognize these conflicts and provide suitable
mechanisms and policies to detect and resolve them. We outline the design of a framework
which: provides applications and users with high-level interfaces to express their sensor

131

data requirements, detects conflicting requirements, resolves them, and ensures the imple-
mentation of the resolution. We identity various open problems that need to be solved to
extend existing operating systems with a tussle-based framework.

132

Chapter 7

Conclusion and Future Work

This chapter concludes the dissertation. In Section 7.1, we summarize the main contri-
butions of our work. We outline directions for future work in Section 7.2 and present
concluding remarks in Section 7.3.

7.1 Summary and Contributions

Due to a sharp decrease in hardware costs and form factor in recent years, sensors have
become ubiquitous. A variety of sensors are being embedded into user devices such as
smartphones, tablets, and wearable devices. Our homes, buildings, and automobiles are
also being increasingly outfitted with sensors. On one hand, data collected from sensors
is used to fuel a variety of applications including those for energy efficiency, safety, and
healthcare. On the other hand, sensor data can be processed to reveal unwarranted private
information about the user. As a result, many users avoid using such applications that
require access to private sensor data to protect their privacy. It is therefore imperative to
preserve data privacy while enabling a rich ecosystem of applications that process users’
private sensor data.

The focus of this dissertation has been on building a system that enables data-driven
applications while preserving data privacy, without burdening users with the tasks of pro-
visioning durable data storage and computational resources for the applications. Our pro-
posed approach leverages users’ personal virtual execution environments (VEEs) hosted in
the cloud to create an ecosystem of privacy-preserving applications that process personal
data. We examine the feasibility of the proposed architecture by providing a proof-of-
concept instantiation targeting home energy as an example use case. We observe that

133

applications have specific data storage and retrieval requirements for sensor data. Con-
sequently, we build a data management system for time-series sensor data to meet these
requirements while leveraging commodity storage service providers. We also observe that
our approach provides each user with a personal VEE and will require provisioning a large
numbers of personal VEEs for supporting large numbers of users. Therefore, we develop
a new methodology to provision a large number of VEEs with low-duty cycle workloads
on a single machine. We formulate the theoretical foundations of the methodology and
demonstrate its application to an example virtualization solution.

The key insight underlying our proposed architecture is that allocating appropriate
levels of commodity services offered by modern clouds directly to users (rather than ap-
plication developers) enables users to host both their data and their desired data-driven
applications within their confines; thus enabling a large ecosystem of data-driven applica-
tions and preserving users’ data privacy. Our work has to been on designing and imple-
menting the mechanisms, techniques, and methodologies to realize this vision. The key
contributions of each chapter are now summarized.

As justified in Chapter 3, the initial focus of our proposed architecture is home energy
data. Our main contributions in that chapter are as follows.

• We present the architecture of a system that allows users to own and control access
to their home energy consumption data and freely use data-driven applications of
their choice.

• We demonstrate the feasibility of the architecture by building a prototype implemen-
tation using commodity cloud computing platforms.

• We present a qualitative evaluation of the prototype implementation with respect to
data privacy and data use and describe how it meets our design goals.

The main architectural components that we design and implement include, (i) an in-home
gateway for relaying sensor data and control commands to the personal VEE, (ii) a personal
VEE framework which warehouses home energy data, exposes it to third-party applications
via APIs, and provides data access control, and (iii) sample home energy applications that
run within an instance of VHome. Our personal VEE framework also enables applications
to securely and privately control some home appliances.

As described in Chapter 4, existing sensor data storage systems (including our proto-
type implementation in Chapter 3) do not meet all the data management requirements of
applications. Our work in Chapter 4 addresses this problem by designing a storage system
for sensor data and makes the following contributions.

134

• We survey a wide range of data-driven applications and present a formulation of their
data management requirements.

• We describe the design and implementation of Bolt, a system for storage, retrieval,
and sharing of in-home sensor data that meets the applications’ requirements.

• We present a performance evaluation of Bolt using three sample applications. We
demonstrate that, when compared with OpenTSB [27], Bolt’s use of chunking, seg-
mentation, and index-DataLog separation techniques leads to a decrease in data
retrieval time of up to a factor of 40, and a 3-5 times reduction in storage space.

Moreover, Bolt provides applications with programming abstractions for storage, range-
query based retrieval, and sharing of sensor data, thus simplifying application development.

As described in Chapter 5, we argue that there is, or will soon be, a need for hosting
large numbers of personal VEEs on a single machine. We hypothesize that this may be
accomplished in an efficient way by multiplexing VEEs across multiple inactive states.
Our insight is that many workloads executed on personal VEEs would exhibit frequent,
often long, and uncorrelated idle periods. Therefore, existing work on inactive states for
reducing the resource footprint of idle VMs can be leveraged to maximize the number of
VMs hosted on a machine at the cost of a small latency penalty for client requests (called
the miss penalty). Our work in Chapter 5 explores this design alternative and makes the
following key contributions:

• We present a formal model for policies for managing idle VMs across inactive states
and derive a lower bound on the miss penalty of reactive policies.

• We present a measurement of model parameters using microbenchmarks with LXC [22]
as our example virtualization solution.

• We present a study of a few representative idle VM management policies, quantify
their miss penalties, and draw insights into their behaviour.

We design and implement a simulator for studying the behaviour of the idle VM manage-
ment policies. Our simulator is extensible to other policies, to other types of workloads,
and to inactive state hierarchies of other virtualization solutions.

As described in Chapter 6, we argue that application developers and users are in a
constant tussle over access to sensor data. Therefore, we posit that device operating
systems need to formally recognize tussles and need to implement mechanisms and policies

135

to resolve them. Our work in Chapter 6 outlines the design of tussle-based framework, the
abstractions, mechanisms, and policies it requires, and identifies various open problems in
instantiating it.

In summary, the architecture, techniques, mechanisms, and methodologies proposed in
this dissertation present a viable solution to achieve the seemingly conflicting requirements
of enabling data privacy and data use.

7.2 Future Work

In addition to the topic-specific future work directions presented in Sections 3.5, 4.7,
and 5.7, we present the following avenues for future work.

7.2.1 Tussle Framework for IoT

In Chapter 6, we outline a tussle framework for a single device. However, in many pervasive
sensing environments, sensor data from different devices can not only be correlated to draw
inferences about a given user but also about a larger number of users, for example, co-
workers in an office. Moreover, the data privacy requirements and the acceptable loss of
data privacy across different users may vary significantly. What is needed, therefore, is a
tussle framework that allows the stakeholders to express their data privacy requirements
and their acceptable application utility in this broader context. The framework then bears
the onus for interfacing with sensors embedded across multiple devices and physical spaces,
as well as detecting and resolving the tussles in keeping with the stakeholders’ specified
requirements.

7.2.2 Virtualization for High Density Hosting

In Chapter 5, we formulate the theoretical foundations for state-based multiplexing of low
duty-cycle VMs and study the behaviour of different policies. An open design challenge
lies in building a practical low-overhead virtualization solution that not only implements
multiple inactive states but also supports easy extension for incorporating idle VM man-
agement policies. The behaviour of different policies can then be observed in practice and
compared with the expected behaviour (derived in Chapter 5) to identify any discrepan-
cies and performance bottlenecks. Similarly, suitable mechanisms need to be designed to

136

handle cases where the assumed low duty-cycles of personal VEEs co-hosted on a single
machine are violated. We believe that in such scenarios, where personal VEEs hosted on
a given machine become active together, load balancing can be used to migrate VEEs to
other under-utilized machines, for example, those that host personal VEEs for users from
a different time zone. Alternatively, personal VEEs can be co-hosted on a single machine
while ensuring adequate diversity in their active and idle times. Therefore, suitable analysis
methodologies and supplementary mechanisms will need to be designed.

7.2.3 Storage Cost Optimization for Time-Series Data

Our storage system in Chapter 4 provides policy-driven storage across providers, that is,
allowing applications to define which parts of a given stream of data should be stored with
a given provider such as local disk, Windows Azure [37], or Amazon S3 [4]. However,
different storage providers have varying pricing schemes depending on the location of the
datacenter used and the type of underlying storage medium used (e.g., disk versus solid
state drives). Moreover, some applications may require the retrieval of certain parts of
data more frequently than other parts. For example, Preheat [163] prioritizes using a
recent window of occupancy data over older data, while DNW [57] may issue repeated
retrievals of a given time segment where the majority of suspicious activity was recorded.
In such cases, it is cumbersome for the application developer to optimize storage costs given
the variation in prices and retrievals. However, it may be possible to enrich the different
retrieval queries (such as those provided by Bolt in Chapter 4) with cost optimization
models. Applications can then specify if they prioritize retrieval time over storage cost (or
vice versa). The system would bear the onus for computing the optimal storage strategy
and updating the cost models accordingly.

7.2.4 Control Architecture for IoT

Many data-driven applications make use of actuators such as in-home switches, locks, and
thermostats, while many (or all) components of the applications may be hosted in the
cloud. In such scenarios, it is imperative to ensure that appliance control remains within
certain user-defined safety limits even in the presence of faults. Example faults include
home network outages, misconfiguration or malfunction of the sensing or actuating devices,
and user overrides. What is needed, therefore, is a cascading control architecture, where
an application’s control logic is partitioned into a lightweight fail-safe component and a
core data-based component. We believe that, similar to our data framework (described

137

in Chapters 3 and 6), it is possible to design a control framework that interfaces with
data-driven applications to facilitate and regulate device actuations.

7.2.5 Semantic Isolation of Applications

Pervasive sensing in homes can give rise to many complexities leading to unintended conse-
quences. This problem is exacerbated by data-driven applications that use sensor data to
trigger actuations and alerts. For instance, consider an application that uses home energy
consumption to deduce occupancy [117], which is then used to control other appliances or
trigger user alerts. In such scenarios, a malfunctioning energy sensor can cause erroneous
occupancy inferences, cascading into erroneous appliance actuations of false user alerts.
Similarly, in another scenario, consider two applications, one which uses an IR sensor to
trigger room lighting and another which infers occupancy from lighting to control home
heating (in turn affecting IR levels), thus affecting each other’s operations. The two ap-
plications thus do not operate in complete semantic isolation. What is needed, therefore,
is a mechanism that can detect such conflicts among applications (possibly at installation
time) and can alert the user and hence prevent such consequences.

7.3 Concluding Remarks

Today most data-driven applications are being built in a service provider-centric way where
users are required to transfer their data to the application service providers in order to use
the provided applications. We seek to ease this situation by proposing our personal VEE
approach where application executables are transferred to user controlled environments
and run within the users’ confines. This enables an ecosystem of privacy-preserving data-
driven applications, and unlike the service provider based approaches, does not lead to
private data of thousands of users being stored under one administrative domain where it
may susceptible to large scale breaches. This work addresses the design of mechanisms,
techniques, and methodologies to overcome the barriers to the feasibility and adoption of
the personal VEE approach by large numbers of users.

The ongoing evolution of new sensors, sensing capabilities, and data-processing algo-
rithms requires extending software systems to provide users with data privacy and control.
As a starting point, our work has focused on in-home sensors. However, we believe all
systems that collect, archive, and process data concerning users need to recognize users as
stakeholders and need to allow them to freely choose their data control policies. This in-
cludes sensor systems in office and commercial buildings, public spaces, automobiles, public

138

transportation, and in other environments likely to be outfitted with sensors in the future.
The insights we draw through our work are equally applicable to such other domains.

139

References

[1] 90 Million Homes Worldwide will Employ Home Automation Systems.
https://www.abiresearch.com/press/90-million-homes-worldwide-will-

employ-home-automa.

[2] Aeon Labs Smart Energy Switch. http://www.aeon-labs.com.

[3] Amazon Home Automation Store. http://www.amazon.com/home-automation-

smarthome/b?ie=UTF8&node=6563140011.

[4] Amazon Web Services (AWS). http://aws.amazon.com.

[5] Android SDK. http://developer.android.com.

[6] Apache HBase. http://hbase.apache.org.

[7] BizEE Energy Lens. http://www.energylens.com.

[8] Current Cost Envi CC-128. http://www.currentcost.com.

[9] Docker: An Open Platform for Distributed Applications for Developers and Sysad-
mins. http://www.docker.com.

[10] Dropcam - Super Simple Video Monitoring and Security. https://www.dropcam.

com.

[11] Facebook Surpasses One Billion Users. http://www.bbc.com/news/technology-

19816709.

[12] Fast, Portable, Binary Serialization for .NET. http://code.google.com/p/

protobuf-net.

[13] FitBit Third-party Apps. http://www.fitbit.com/apps.

140

https://www.abiresearch.com/press/90-million-homes-worldwide-will-employ-home-automa
https://www.abiresearch.com/press/90-million-homes-worldwide-will-employ-home-automa
http://www.aeon-labs.com
http://www.amazon.com/home-automation-smarthome/b?ie=UTF8&node=6563140011
http://www.amazon.com/home-automation-smarthome/b?ie=UTF8&node=6563140011
http://aws.amazon.com
http://developer.android.com
http://hbase.apache.org
http://www.energylens.com
http://www.currentcost.com
http://www.docker.com
https://www.dropcam.com
https://www.dropcam.com
http://www.bbc.com/news/technology-19816709
http://www.bbc.com/news/technology-19816709
http://code.google.com/p/protobuf-net
http://code.google.com/p/protobuf-net
http://www.fitbit.com/apps

[14] FitBit Ultra. http://www.fitbit.com/product.

[15] Google Powermeter. http://www.google.com/powermeter.

[16] Green Button Connect. http://www.greenbuttonconnect.com.

[17] Green Button Initiative. http://www.greenbuttondata.org.

[18] Home Energy Saver. http://hes.lbl.gov/consumer.

[19] Home Energy Yardstick. http://www.energystart.gov.

[20] IFTTT: Put the Internet To Work for You. https://ifttt.com.

[21] JouleBug. http://www.joulebug.com.

[22] Linux Containers. http://lxc.sourceforge.net.

[23] Linux VServer. http://linux-vserver.org.

[24] Microsoft Hohm. http://www.microsoft-hohm.com.

[25] Nest. http://www.nest.com.

[26] Ontario Time-Of-Use Pricing. http://www.ontario-hydro.com.

[27] OpenTSDB. http://www.opentsdb.net/.

[28] OpenVZ. http://openvz.org.

[29] Pachube-Cosm Ltd. http://www.cosm.com.

[30] Philips Hue. http://www.meethue.com.

[31] Raspberry Pi. https://www.raspberrypi.org.

[32] San Diego Gas and Electric. http://www.sdge.com.

[33] Sungg Pro Energy Audit Tool. http://www.snuggpro.com.

[34] The Internet of Things. http://share.cisco.com/internet-of-things.html.

[35] The Locker Project. http://lockerproject.org.

[36] Waterloo North Hydro Corp. http://www.wnhwebpresentment.com/app.

141

http://www.fitbit.com/product
http://www.google.com/powermeter
http://www.greenbuttonconnect.com
http://www.greenbuttondata.org
http://hes.lbl.gov/consumer
http://www.energystart.gov
https://ifttt.com
http://www.joulebug.com
http://lxc.sourceforge.net
http://linux-vserver.org
http://www.microsoft-hohm.com
http://www.nest.com
http://www.ontario-hydro.com
http://www.opentsdb.net/
http://openvz.org
http://www.cosm.com
http://www.meethue.com
https://www.raspberrypi.org
http://www.sdge.com
http://www.snuggpro.com
http://share.cisco.com/internet-of-things.html
http://lockerproject.org
http://www.wnhwebpresentment.com/app

[37] Windows Azure. http://azure.microsoft.com.

[38] Withthings Smart Devices. http://www.withings.com.

[39] Z-Wave Alliance. http://www.z-wavealliance.org.

[40] The US Market for Home Automation and Security Technologies. Technical report,
BCC Research, 2011.

[41] Monitoring Report: Smart Meter Deployment and TOU Pricing. Technical report,
Ontario Energy Board, 2012.

[42] Utility-Scale Smart Meter Deployments, Plans & Proposals. Technical report, Insti-
tute for Electric Efficiency (IEE), Edison Foundation, 2012.

[43] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong hyon
Hwang, Wolfgang Lindner, Anurag S. Maskey, Alexander Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the Borealis Stream
Processing Engine. In Proc. of CIDR, 2005.

[44] Gergely Ács and Claude Castelluccia. I Have a DREAM!: Differentially Private
Smart Metering. In Proc. of International Conference on Information Hiding, 2011.

[45] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,
John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wat-
tenhofer. FARSITE: Federated, Available, and Reliable Storage for an Incompletely
Trusted Environment. ACM SIGOPS Operating Systems Review, 2002.

[46] Yuvraj Agarwal and Malcolm Hall. ProtectMyPrivacy: Detecting and Mitigating
Privacy Leaks on iOS Devices Using Crowdsourcing. In Proc. of ACM MobiSys,
2013.

[47] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. Principles of Optimal Page
Replacement. Journal of the ACM (JACM), 1971.

[48] A.J. Bernheim Brush and John Krumm and Sidhant Gupta and Shwetak Patel.
EVHomeShifter: Evaluating Intelligent Techniques for Using Electrical Vehicle Bat-
teries to Shift When Homes Draw Energy from the Grid. In Proc. of ACM UbiComp,
2015.

142

http://azure.microsoft.com
http://www.withings.com
http://www.z-wavealliance.org

[49] Rui Araújo, A. Igreja, Ricardo de Castro, and Rui Esteves Araujo. Driving Coach:
A Smartphone Application To Evaluate Driving Efficient Patterns. In Proc. of IEEE
Intelligent Vehicles Symposium (IV), 2012.

[50] Martin F. Arlitt and Carey L. Williamson. Web Server Workload Characterization:
The Search for Invariants. ACM SIGMETRICS Performance Evaluation Review,
1996.

[51] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In
Proc. of SOSP, 2003.

[52] Christian Beckel, Leyna Sadamori, and Silvia Santini. Automatic Socio-economic
Classification of Households Using Electricity Consumption Data. In Proc. of ACM
e-Energy, 2013.

[53] Laszlo A. Belady. A Study of Replacement Algorithms for a Virtual-Storage Com-
puter. IBM Systems Journal.

[54] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mock-
Droid: Trading Privacy for Application Functionality on Smartphones. In Proc. of
ACM HotMobile, 2011.

[55] Benjamin J. Birt, Guy R. Newsham, Ian Beausoleil-Morrison, Marianne M. Arm-
strong, Neil Saldanha, and Ian H. Rowlands. Disaggregating Categories of Electrical
Energy End-use from Whole-house Hourly Data. Energy and Buildings, 2012.

[56] Maged N. K. Boulos, Steve Wheeler, Carlos Tavares, and Ray Jones. How Smart-
phones are Changing the Face of Mobile and Participatory Healthcare: An Overview.
Biomedical Engineering Online, 2011.

[57] A. J. Brush, Jaeyeon Jung, Ratul Mahajan, and Frank Martinez. Digital Neigh-
borhood Watch: Investigating the Sharing of Camera Data Amongst Neighbors. In
Proc. of ACM CSCW, 2013.

[58] B. Burke. RESTful Java with Jax-RS. O’Reilly Media, 2009.

[59] Ramón Cáceres, L. P. Cox, Harold Lim, Amre Shakimov, and Alexander Varshavsky.
Virtual Individual Servers As Privacy-preserving Proxies for Mobile Devices. In Proc.
of ACM MobiHeld, 2009.

143

[60] Kelly E. Caine et al. DigiSwitch: A Device To Allow Older Adults To Monitor and
Direct the Collection and Transmission of Health Information Collected at Home.
Journal of Medical Systems, 2011.

[61] Fernando L. Camargos, Gabriel Girard, and Benoit D. Ligneris. Virtualization of
Linux Servers: A Comparative Study. In Proc. of Linux Symsposium, 2008.

[62] Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring
Streams: A New Class of Data Management Applications. In Proc. of VLDB, 2002.

[63] Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser Shoukry,
Matt Millar, and Mani Srivastava. ipShield: A Framework for Enforcing Context-
aware Privacy. In Proc. of USENIX NSDI, 2014.

[64] V. Chaudhary, Minsuk Cha, J.P. Walters, S. Guercio, and S. Gallo. A Comparison
of Virtualization Technologies for HPC. In Proc. of IEEE AINA, 2008.

[65] Jianhua Che, Congcong Shi, Yong Yu, and Weimin Lin. A Synthetical Performance
Evaluation of OpenVZ. In Proc. of IEEE APSCC 2010.

[66] Dong Chen, Sean Barker, Adarsh Subbaswamy, David Irwin, and Prashant Shenoy.
Non-Intrusive Occupancy Monitoring Using Smart Meters. In Proc. of ACM
BuildSys, 2013.

[67] Zhenyu Chen, Mu Lin, Fanglin Chen, Nicholas D Lane, Giuseppe Cardone, Rui
Wang, Tianxing Li, Yiqiang Chen, Tanzeem Choudhury, and Andrew T Campbell.
Unobtrusive Sleep Monitoring Using Smartphones. In Proc. of IEEE PervasiveHealth,
2013.

[68] Erika Chin, Adrienne Porter Felt, Vyas Sekar, and David Wagner. Measuring User
Confidence in Smartphone Security and Privacy. In Proc. ACM SOUPS ’12.

[69] Chun-Te Chu, Jaeyeon Jung, Zicheng Liu, and Ratul Mahajan. sTrack: Secure
Tracking in Community Surveillance. Technical report, Microsoft Research, 2014.

[70] David D. Clark, John Wroclawski, Karen R Sollins, and Robert Braden. Tussle in
Cyberspace: Defining Tomorrow’s Internet. ACM SIGCOMM CCR, 2002.

[71] Edward G. Coffman, Jr. and Peter J. Denning. Operating Systems Theory. Prentice
Hall Professional Technical Reference, 1973.

144

[72] Antonio Corradi, Mario Fanelli, and Luca Foschini. VM Consolidation: A Real Case
Based on OpenStack Cloud. Future Generation Computer Systems, 2014.

[73] M. Davis, M. Alexander, and M. Duvall. Total Cost of Ownership Model for Current
Plug-in Electric Vehicles. Technical report, Electric Power Research Institue (EPRI),
2013.

[74] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David
Culler. sMAP: A Simple Measurement and Actuation Profile for Physical Informa-
tion. In Proc. of ACM SenSys, 2010.

[75] Dimitris Papanikolaou and A.J. Brush and Asta Roseway. BodyPods: Designing
Posture Sensing Chairs for Capturing and Sharing Implicit Interactions. In Proc. of
TEI, 2015.

[76] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J. Brush, Bongshin Lee, Stefan
Saroiu, and Paramvir Bahl. An Operating System for the Home. In Proc. of USENIX
NSDI, 2012.

[77] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J. Brush, Bongshin Lee, Stefan
Saroiu, and Victor Bahl. The Home Needs an Operating System (and an App Store).
In Proc. of ACM HotNets, 2010.

[78] Carl Ellis, James Scott, Mike Hazas, and John Krumm. Earlyoff: Using House
Cooling Rates To Save Energy. In Proc. of ACM BuildSys, 2012.

[79] Chris Elsmore, Anil Madhavapeddy, Ian Leslie, and Amir Chaudhry. Confidential
Carbon Commuting. In Proc. of the First Workshop on Measurement, Privacy, and
Mobility, 2012.

[80] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. TaintDroid: an
Information-flow Tracking System for Realtime Privacy Monitoring on Smartphones.
ACM TOCS, 2014.

[81] V.L. Erickson, M.A. Carreira-Perpinan, and A.E. Cerpa. OBSERVE: Occupancy-
based System for Efficient Reduction of HVAC Energy. 2011.

[82] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W Fel-
ten. SPORC: Group Collaboration Using Untrusted Cloud Resources. In Proc.
of USENIX OSDI, 2010.

145

[83] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android Permissions Demystified. In Proc. of ACM CCS, 2011.

[84] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. Android Permissions: User Attention. In Proc. of ACM SOUPS,
2012.

[85] S. Firth, K. Lomas, A. Wright, and R. Wall. Identifying Trends in the Use of Domestic
Appliances from Household Electricity Consumption Measurements. Energy and
Buildings, 2008.

[86] Kevin Fu, Seny Kamara, and Tadayoshi Kohno. Key Regression: Enabling Efficient
Key Distribution for Secure Distributed Storage. In Proc. of Networks and Distributed
Systems Symposium, 2006.

[87] Kevin E. Fu. Integrity and Access Control in Untrusted Content Distribution Net-
works. PhD thesis, Massachusetts Institute of Technology, 2005.

[88] Flavio D. Garcia and Bart Jacobs. Privacy-friendly Energy-metering Via Homo-
morphic Encryption. In Proc. of International Conference on Security and Trust
Management, 2010.

[89] Roxana Geambasu, Magdalena Balazinska, Steven D. Gribble, and Henry M. Levy.
HomeViews: Peer-to-Peer Middleware for Personal Data Sharing Applications. In
Proc. of ACM SIGMOD, 2007.

[90] Binny S. Gill. On Multi-level Exclusive Caching: Offline Optimality and Why Pro-
motions are Better Than Demotions. In Proc. of USENIX FAST, 2008.

[91] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS: Se-
curing Remote Untrusted Storage. In Proc. of Networks and Distributed Systems
Symposium, 2003.

[92] S. Goyal and J. Carter. A Lightweight Secure Cyber Foraging Infrastructure for
Resource-Constrained Devices. In Proc. of IEEE WMCSA, 2004.

[93] Ulrich Greveler, Benjamin Justus, and Dennis Loehr. Multimedia Content Identifi-
cation Through Smart Meter Power Usage Profiles. In Proc. of CPDP, 2012.

[94] Eric Griffis, Jeffrey A. Vaughn, and Todd Millstein. A Platform for Expressive and
Secure Data Sharing with Untrusted Third Parties. Technical report, UCLA, 2011.

146

[95] Trinabh Gupta, Rayman Preet Singh, Amar Phanishayee, Jaeyeon Jung, and Ratul
Mahajan. Bolt: A Storage System for Connected Homes. In Proc. of USENIX NSDI,
2014.

[96] Kiryong Ha, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe, and Mahadev
Satyanarayanan. Just-in-time Provisioning for Cyber Foraging. In Proc. of ACM
MobiSys 2013.

[97] Hamed Haddadi, Heidi Howard, Amir Chaudhry, Jon Crowcroft, Anil Mad-
havapeddy, and Richard Mortier. Personal Data: Thinking Inside the Box.
arXiv:1501.04737, 2015.

[98] Ebenezer Hailemariam, Rhys Goldstein, Ramtin Attar, and Azam Khan. Real-time
Occupancy Detection Using Decision Trees with Multiple Sensor Types. In Proc. of
Symposium on Simulation for Architecture and Urban Design, 2011.

[99] E. Hammer-Lahav, D. Recordon, and D. Hardt. The OAuth 2.0 Authorization Pro-
tocol. IETF Draft, 2011.

[100] Tian Hao, Guoliang Xing, and Gang Zhou. iSleep: Unobtrusive Sleep Quality Mon-
itoring Using Smartphones. In Proc. of ACM SenSys, 2013.

[101] Mareca Hatler, Darryl Gurganious, and Charlie Chi. Mobile Sensing Health & Well-
ness. Technical report, ON World, 2013.

[102] Jennia Hizver and Tzi-cker Chiueh. Real-time Deep Virtual Machine Introspection
and Its Applications. In Proc. of ACM VEE, 2014.

[103] Tâm Huynh and Bernt Schiele. Analyzing Features for Activity Recognition. In Pro-
ceedings of Joint Conference on Smart Objects and Ambient Intelligence: Innovative
Context-Aware Services: Usages and Technologies, 2005.

[104] OzlemDurmaz Incel, Mustafa Kose, and Cem Ersoy. A Review and Taxonomy of
Activity Recognition on Mobile Phones. BioNanoScience, 2013.

[105] Brendan Jennings and Rolf Stadler. Resource Management in Clouds: Survey and
Research Challenges. Journal of Network and Systems Management, 2014.

[106] Derick A. Johnson and Mohan M. Trivedi. Driving Style Recognition Using a Smart-
phone As a Sensor Platform. In IEEE Conference on Intelligent Transportation
Systems (ITSC), 2011.

147

[107] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu.
Plutus: Scalable Secure File Sharing on Untrusted Storage. In Proc. of USENIX
FAST, 2003.

[108] Jerry Kang, Katie Shilton, Deborah Estrin, and Jeff Burke. Self-surveillance Privacy.
Iowa L. Rev., 97:809, 2011.

[109] Jayanthkumar Kannan, Petros Maniatis, and Byung-Gon Chun. A Data Capsule
Framework For Web Services: Providing Flexible Data Access Control To Users.
Computing Research Repository, 2010.

[110] Jayanthkumar Kannan, Petros Maniatis, and Byung-Gon Chun. Secure Data Pre-
servers for Web Services. In Proc. of USENIX WebApps, 2011.

[111] S. Kannan, A. Gavrilovska, and K. Schwan. Cloud4Home – Enhancing Data Services
with @Home Clouds. In Proc. of ICDCS, 2011.

[112] Sudarsun Kannan, Karishma Babu, Ada Gavrilovska, and Karsten Schwan. Vs-
tore++: Virtual Storage Services for Mobile Devices. In Mobile Computing, Appli-
cations, and Services. 2012.

[113] Aman Kansal, Scott Saponas, A.J. Brush, Kathryn S. McKinley, Todd Mytkowicz,
and Ryder Ziola. The Latency, Accuracy, and Battery (LAB) Abstraction: Program-
mer Productivity and Energy Efficiency for Continuous Mobile Context Sensing. In
Proc. of ACM OOPSLA, 2013.

[114] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler.
Implementation of a Real-Time Human Movement Classifier Using a Triaxial Ac-
celerometer for Ambulatory Monitoring. IEEE Transactions on Information Tech-
nology in Biomedicine, 2006.

[115] Jack Kelly and William Knottenbelt. Disaggregating Multi-State Appliances From
Smart Meter Data. In Proc. of ACM SIGMETRICS, 2012.

[116] Younghun Kim, E.C.-H. Ngai, and M. B. Srivastava. Cooperative State Estimation
for Preserving Privacy of User Behaviors in Smart Grid. In Proc. of IEEE Smart-
GridComm, 2011.

[117] Wilhelm Kleiminger, Christian Beckel, Thorsten Staake, and Silvia Santini. Occu-
pancy Detection From Electricity Consumption Data. In Proc. of ACM BuildSys,
2013.

148

[118] Wilhelm Kleimingera, Friedemann Matterna, and Silvia Santinib. Predicting House-
hold Occupancy for Smart Heating Control: A Comparative Performance Analysis
of State-of-the-Art Approaches. 2013.

[119] Thomas Knauth and Christof Fetzer. Fast Virtual Machine Resume for Agile Cloud
Services. In Proc. of IEEE ICCGC, 2013.

[120] Thomas Knauth and Christof Fetzer. DreamServer: Truly On-Demand Cloud Ser-
vices. In Proc. of SYSTOR, 2014.

[121] J. Zico Kolter, Siddharth Batra, and Andrew Ng. Energy Disaggregation Via Dis-
criminative Sparse Coding. In Proc. of NIPS, 2010.

[122] Janelle LaMarche, Katherine Cheney, Sheila Christian, and Kurt Roth. Home Energy
Management: Products & Trends. ACEEE Summer Study on Energy Efficiency in
Buildings, 2012.

[123] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury,
and Andrew T Campbell. A Survey of Mobile Phone Sensing. IEEE Communications
Magazine, 2010.

[124] Nicholas D. Lane, Mashfiqui Mohammod, Mu Lin, Xiaochao Yang, Hong Lu, Shahid
Ali, Afsaneh Doryab, Ethan Berke, Tanzeem Choudhury, and Andrew Campbell.
BeWell: A Smartphone Application To Monitor. In Proc. of International ICST
Conference on Pervasive Computing Technologies for Healthcare, 2011.

[125] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Ramasubrama-
nian, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Validating Heuristics for Vir-
tual Machines Consolidation. Technical report, 2011.

[126] Sangmin Lee, Edmund L. Wong, Deepak Goel, Mike Dahlin, and Vitaly Shmatikov.
πBox: A Platform for Privacy-preserving Apps. In Proc. of USENIX NSDI, 2013.

[127] Fengjun Li, Bo Luo, and Peng Liu. Secure Information Aggregation for Smart Grids
Using Homomorphic Encryption. In Proc. of SmartGridComm, 2010.

[128] Jinyuan Li, Maxwell N Krohn, David Mazières, and Dennis Shasha. Secure Untrusted
Data Repository (SUNDR). In Proc. of USENIX OSDI, 2004.

[129] Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing Personal Health Records
in Cloud Computing: Patient-centric and Fine-grained Data Access Control in Multi-
owner Settings. In Security and Privacy in Communication Networks. 2010.

149

[130] Tao Li, Albert Rafetseder, Rodrigo Fonseca, and Justin Cappos. Fence: Protecting
Device Availability with Uniform Resource Control. In Proc. of USENIX ATC, 2015.

[131] M. A. Lisovich, D.K. Mulligan, and S.B. Wicker. Inferring Personal Information from
Demand-Response Systems. IEEE Security Privacy, 2010.

[132] He Liu, Stefan Saroiu, Alec Wolman, and Himanshu Raj. Software Abstractions for
Trusted Sensors. In Proc. ACM MobiSys, 2012.

[133] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library Operating Systems for the Cloud. In ACM SIGPLAN Notices, 2013.

[134] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike
Dahlin, and Michael Walfish. Depot: Cloud Storage with Minimal Trust. TOCS,
2011.

[135] Paul B. Menage. Adding Generic Process Containers To the Linux Kernel. In Proc.
of Linux Symposium, 2007.

[136] Terence C. Mills. Time Series Techniques for Economists. Cambridge University
Press, 1991.

[137] Emiliano Miluzzo, Ramon Caceres, and Yih-Farn Chen. Vision: mClouds Computing
on Clouds of Mobile Devices. Proc. of International Workshop on Mobile Computing
and Services, 2012.

[138] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and
David Irwin. Private Memoirs of a Smart Meter. In Proc. of ACM BuildSys, 2010.

[139] Richard Mortier, Chris Greenhalgh, Derek McAuley, Alexa Spence, Anil Mad-
havapeddy, Jon Crowcroft, and Steve Hand. The Personal Container. Digital Futures,
2010.

[140] Min Mun, Shuai Hao, Nilesh Mishra, Katie Shilton, Jeff Burke, Deborah Estrin,
Mark Hansen, and Ramesh Govindan. Personal Data Vaults: A Locus of Control for
Personal Data Streams. In Proc. of ACM CoNext, 2010.

[141] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android
Permission Model and Enforcement with User-Defined Runtime Constraints. In Proc.
of ACM ASIA CCS, 2010.

150

[142] Dennis J. Nelson. Residential Baseload Energy Use: Concept and Potential for AMI
Customers. In ACEEE Summer Study on Energy Efficiency in Buildings, 2008.

[143] Ben Newton, Kevin Jeffay, and Jay Aikat. The Continued Evolution of Web Traffic.
In Proc. of IEEE MASCOTS, 2013.

[144] Shahriar Nirjon, Robert F. Dickerson, Philip Asare, Qiang Li, Dezhi Hong, John A.
Stankovic, Pan Hu, Guobin Shen, and Xiaofan Jiang. Auditeur: A Mobile-cloud
Service Platform for Acoustic Event Detection on Smartphones. In Proc. of ACM
MobiSys, 2013.

[145] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, and Kang G. Shin. Per-
formance Evaluation of Virtualization Technologies for Server Consolidation. Tech-
nical report, HP, 2007.

[146] Raluca Ada Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and Li Zhuang.
Enabling Security in Cloud Storage SLAs with CloudProof. In Proc. of USENIX
ATC, 2011.

[147] Md Anindya Prodhan and Kamin Whitehouse. Hot Water DJ: Saving Energy by
Pre-mixing Hot Water. In Proc. of ACM BuildSys, 2012.

[148] S. Raj Rajagopalan, Lalitha Sankar, Soheil Mohajer, and H. Vincent Poor. Smart
Meter Privacy: A Utility-Privacy Framework. CoRR, 2011.

[149] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivas-
tava. Using Mobile Phones To Determine Transportation Modes. ACM Transactions
on Sensor Networks (TOSN), 2010.

[150] Alfredo Rial and George Danezis. Privacy-preserving Smart Metering. In Proc. of
ACM WPES, 2011.

[151] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Incorporated,
2007.

[152] Franziska Roesner, Tohru Kohno, Alexander Moshchuk, Bryan Parno, Harry Jian-
nan Wang, and Crispin Cowan. User-driven Access Control: Rethinking Permission
Granting in Modern Operating Systems. In Proc. of IEEE Symposium on Security
and privacy, 2012.

151

[153] Franziska Roesner, David Molnar, Alexander Moshchuk, Tadayoshi Kohno, and He-
len J. Wang. World-driven Access Control for Continuous Sensing. In Proc. of ACM
CCS, 2014.

[154] Cristina Rottondi, Giacomo Vertical, and Antonio Capone. A Security Framework
for Smart Metering with Multiple Data Consumers. In Proc. of IEEE INFOCOMM
Workshop on Green Networking and Smart Grid, 2012.

[155] Sushmita Ruj, Amiya Nayak, and Ivan Stojmenovic. A Security Architecture for
Data Aggregation and Access Control in Smart Grids. CoRR, 2011.

[156] Brandon Salmon, Steven W. Schlosser, Lorrie F. Cranor, and Gregory R. Ganger.
Perspective: Semantic Data Management for the Home. In Proc. of USENIX FAST,
2009.

[157] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design
and Implementation of the Sun Network Filesystem. In Proc. of Summer USENIX
Conference, 1985.

[158] Nuno Santos, Nuno O. Duarte, Miguel B. Costa, and Paulo Ferreira. A Case for
Enforcing App-Specific Constraints To Mobile Devices by Using Trust Leases. In
Proc. of USENIX HotOS, 2015.

[159] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using ARM Trust-
Zone To Build a Trusted Language Runtime for Mobile Applications. In Proc. of
ACM ASPLOS, 2014.

[160] Mahadev Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-
Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 2009.

[161] Eve M. Schooler, Zhang Jianqing, Adedamola Omotosho, Jessica McCarthy, Zhao
Meiyuan, and Li Qinghua. The Trusted Personal Energy Cloud for the Smart Home.
Intel Technology Journal, 2012.

[162] Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics,
1978.

[163] J. Scott, A.J. Brush, J. Krumm, B. Meyers, M. Hazas, S. Hodges, and N. Villar.
PreHeat:Controlling Home Heating Using Occupancy Prediction. In Proc. of ACM
UbiComp, 2011.

152

[164] Ilari Shafer, Raja R. Sambasivan, Anthony Rowe, and Gregory R. Ganger. Special-
ized Storage for Big Time Series. In Proc. of USENIX HotStorage, 2013.

[165] A. Shakimov, H. Lim, R. Caceres, L. P. Cox, K. Li, Dongtao Liu, and A. Var-
shavsky. Vis-a-Vis: Privacy-preserving Online Social Networking via Virtual Indi-
vidual Servers. In Proc. of COMSNETS, 2011.

[166] Amre Shakimov, Alexander Varshavsky, Landon P. Cox, and Ramón Cáceres. Pri-
vacy, Cost, and Availability Tradeoffs in Decentralized OSNs. In Proc. of ACM
WOSN, 2009.

[167] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.
Privacy-Preserving Aggregation of Time-Series Data. In Proc. of Networks and Dis-
tributed Systems Symposium, 2011.

[168] Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Keidar, Yan Michalevsky, and
Dani Shaket. Venus: Verification for Untrusted Cloud Storage. In Proc. of ACM
CCSW, 2010.

[169] Rayman Preet Singh, Tim Brecht, and S. Keshav. IP Address Multiplexing for VEEs.
ACM SIGCOMM CCR, 2014.

[170] Rayman Preet Singh, Tim Brecht, and S. Keshav. Towards VM Consolidation Using
a Hierarchy of Idle States. In Proc. of ACM VEE, 2015.

[171] Rayman Preet Singh, S. Keshav, and Tim Brecht. A Cloud-based Consumer-centric
Architecture for Energy Data Analytics. In Proc. of ACM e-Energy, 2013.

[172] Rayman Preet Singh, Chenguang Shen, Amar Phanishayee, Aman Kansal, and Ratul
Mahajan. A Case for Ending Monolithic Apps for Connected Devices. In Proc. of
USENIX HotOS, 2015.

[173] S. Soltesz, M. E. Fiuczynski, L. Peterson, M. McCabe, and J. Matthews. Virtual
Doppelgänger: On the Performance, Isolation, and Scalability of Para-and Paene-
Virtualized Systems, 2006.

[174] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Pe-
terson. Container-based Operating System Virtualization: A Scalable. In Proc. of
ACM EuroSys 2007.

153

[175] Riley Spahn, Jonathan Bell, Michael Z. Lee, Sravan Bhamidipati, Roxana Geambasu,
and Gail Kaiser. Pebbles: Fine-grained Data Management Abstractions for Modern
Operating Systems. In Proc. of USENIX OSDI, 2014.

[176] P. St-Andre. Extensible Messaging and Presence Protocol (XMPP). IETF Network
Working Group, RFC3920, 2004.

[177] S. Sukaridhoto, N. Funabiki, T. Nakanishi, and D. Pramadihanto. A Comparative
Study of Open Source Softwares for Virtualization With Streaming Server Applica-
tions. In Proc. of IEEE ISCE, 2009.

[178] Kishor S. Trivedi. Prepaging and Applications to Array Algorithms. IEEE Transac-
tions on Computers, 1976.

[179] Jaideep Vaidya, Christopher W. Clifton, and Yu Michael Zhu. Privacy Preserving
Data Mining. Springer Science & Business Media, 2006.

[180] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Sno-
eren, Geoffrey M. Voelker, and Stefan Savage. Scalability, Fidelity, and Containment
in the Potemkin Virtual Honeyfarm. In Proc. of SOSP, 2005.

[181] Kun Wang, Jia Rao, and Cheng-Zhong Xu. Rethink the Virtual Machine Template.
In Proc. of ACM VEE 2011.

[182] Markus Weiss, Adrian Helfenstein, Friedemann Mattern, and Thorsten Staake.
Leveraging Smart Meter Data To Recognize Home Appliances. In Proc. of PerCom,
2012.

[183] A. Whitaker, M. Shaw, and S.D. Gribble. Scale and Performance in the Denali
Isolation Kernel. ACM SIGOPS Operating Systems Review, 2002.

[184] A. Wolbach, J. Harkes, S. Chellappa, and M. Satyanarayan. Transient Customization
of Mobile Computing Infrastructure. In Proc. of MobiVirt, 2008.

[185] Theodore M. Wong and John Wilkes. My Cache Or Yours?: Making Storage More
Exclusive. In Proc. of USENIX ATC, 2002.

[186] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Black-
box and Gray-box Strategies for Virtual Machine Migration. In Proc. of NSDI 2007.

[187] Wei Xu, Fangfang Zhang, and Sencun Zhu. Permlyzer: Analyzing Permission Usage
in Android Applications. In Proc. IEEE ISSRE, 2013.

154

[188] M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review and
outlook. Consumer Electronics, IEEE Transactions on, 2011.

[189] Irene Zhang, Tyler Denniston, Yury Baskakov, and Alex Garthwaite. Optimizing
VM Checkpointing for Restore Performance in VMware ESXi. In Proc. of USENIX
ATC, 2013.

[190] Irene Zhang, Alex Garthwaite, Yury Baskakov, and Kenneth C. Barr. Fast Restore
of Checkpointed Memory Using Working Set Estimation. In Proc. of ACM VEE,
2011.

[191] Pu Han Zhang, Jing Zhe Li, Shuai Shao, and Peng Wang. PDroid: Detecting Privacy
Leakage on Android. In Applied Mechanics and Materials, 2014.

[192] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State-of-the-Art and
Research Challenges. Journal of Internet Services and Applications, 2010.

[193] Jun Zhu, Zhefu Jiang, and Zhen Xiao. Twinkle: A Fast Resource Provisioning
Mechanism for Internet Services. In Proc. of IEEE INFOCOMM, 2011.

[194] Ahmed Zoha, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan Ra-
jasegarar. Non-Intrusive Load Monitoring Approaches for Disaggregated Energy
Sensing: A Survey. Multidisciplinary Digital Publishing Institute Journal of Sensors,
2012.

155

	List of Tables
	List of Figures
	Introduction
	Introduction
	Goals
	Our Vision
	Technical Challenges

	Contributions
	Chapter Summary

	Related Work
	Providing Data-Driven Applications
	Service-provider Approach
	Home PC-based Approach
	Personal Data Storage
	Personal Data Storage With Limited Computation
	Personal VEE

	Providing Data Storage and Integrity
	Leveraging Untrusted Remote Storage
	Storing Data Across Devices
	Other Systems

	Hosting Large Numbers of Personal VEEs
	Virtualization Approaches
	High Density Hosting
	Just-in-time Provisioning of VEEs

	Chapter Summary

	Leveraging Personal VEEs for Energy Data Analytics
	Introduction
	System Architecture
	Gateway
	VHome
	Applications
	User Interfaces

	Implementation Details
	Gateway
	VHome
	Sample Applications

	Evaluation
	Discussion
	Chapter Summary

	A Storage System for Sensor Data
	Introduction
	Design Requirements
	Example Applications
	Data Management Requirements

	Design Overview
	Security Assumptions and Guarantees
	Key Techniques

	Bolt Design
	APIs
	Writing Stream Data
	Uploading Stream Data
	Granting and Revoking Read Access
	Reading Stream Data

	Implementation
	Evaluation
	Microbenchmarks
	Applications

	Discussion
	Chapter Summary

	Provisioning Large Numbers of Personal VEEs
	Introduction
	Problem and Model Formulation
	Reactive Policies
	Proactive Policies

	Obtaining Model Parameters
	LXC as a Case Study
	Experimental Setup
	Quantifying Density
	Impact of Density on Transition Time
	Deriving the Model Parameters

	Policy Comparison Setup
	Simulator Design and Implementation
	Policy Implementations
	Workload Analysis
	Metric

	Simulation Results
	Fixed Inter-arrival Time, Fixed Duration Workload
	Stochastic Inter-arrival Time, Fixed Duration Workload
	Stochastic Inter-arrival Time, Stochastic Duration Workload
	Summary of Simulation Results

	Characterizing the Policy Space
	Discussion
	Chapter Summary

	Towards Tussle Based Operating Systems
	Introduction
	Design Goals
	Architecture Outline
	Design Challenges
	Applications' Sensor Data Requirements
	Users' Data Privacy Requirements
	Tussle Resolution
	Resolution Enforcement

	Discussion
	Prior Work
	Open Problems

	Chapter Summary

	Conclusion and Future Work
	Summary and Contributions
	Future Work
	Tussle Framework for IoT
	Virtualization for High Density Hosting
	Storage Cost Optimization for Time-Series Data
	Control Architecture for IoT
	Semantic Isolation of Applications

	Concluding Remarks

	References

