
Bit-vector Support in Z3-str2 Solver

and Automated Exploit Synthesis

by

Sanu Edayath Subramanian

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Sanu Edayath Subramanian 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Improper string manipulations are an important cause of software defects, which make

them a target for program analysis by hackers and developers alike. Symbolic execu-

tion based program analysis techniques that systematically explore paths through string-

intensive programs require reasoning about string and bit-vector constraints cohesively.

The current state of the art symbolic execution engines for programs written in C/C++

languages track constraints on a bit-level and use bit-vector solver to reason about the col-

lected path constraints. However, string functions incur high-performance penalties and

lead to path explosion in the symbolic execution engine. The current state of the art string

solvers are written primarily for the analysis of web applications with underlying support

for the theory of strings and integers, which limits their use in the analysis of low-level pro-

grams. Therefore, we designed a decision procedure for the theory of strings and bit-vectors

in Z3-str2, a decision procedure for strings and integers, to efficiently solve word equations

and length functions over bit-vectors. The new theory combination has a significant role

in the detection of integer overflows and memory corruption vulnerabilities associated with

string operations. In addition, we introduced a new search space pruning technique for

string lengths based on a binary search approach, which enabled our decision procedure

to solve constraints involving large strings. We evaluated our decision procedure on a

set of real security vulnerabilities collected from Common Vulnerabilities and Exposures

(CVE) database and compared the result against the Z3-str2 string-integer solver. The

experiments show that our decision procedure is orders of magnitude faster than Z3-str2

string-integer. The techniques we developed have the potential to dramatically improve

the efficiency of symbolic execution of string-intensive programs.

In addition to designing and implementing a string bit-vector solver, we also addressed

the problem of automated remote exploit construction. In this context, we introduce a

practical approach for automating remote exploitation using information leakage vulner-

ability and show that current protection schemes against control-flow hijack attacks are

not always very effective. To demonstrate the efficacy of our technique, we performed an

over-the-network format string exploitation followed by a return-to-libc attack against a

pre-forking concurrent server to gain remote access to a shell. Our attack managed to

defeat various protections including ASLR, DEP, PIE, stack canary and RELRO.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Vijay Ganesh

for his continuous guidance and support, without which this thesis would not have been

possible. Also, I am very thankful to Yunhui Zheng, research staff member at IBM T.J

Watson Research Center, for helping me to understand the internals of the Z3-str2 solver,

troubleshooting and debugging the code base whenever I was stuck. Many thanks to

Professor Derek Rayside and Professor Lin Tan for reading my thesis and part of my thesis

committee. Many thanks to Omer Tripp, research staff member and technical lead at IBM

T.J Watson Research Center, for his valuable feedback and suggestions on my thesis. I

thank my fellow colleagues Riyad Parvez, Murphy Berzish for their valuable suggestions

and feedback with my thesis. I would like to thank Abiesh Jose for his advice, guidance

and motivation in my career and study. Finally and most importantly I thank my family

- my parents E.R Subramanian and Omana Subramanian for supporting and making me

what I am today, my wife Mily M. Raju and my brother Sabin Subramanian.

iv

Dedication

This thesis is dedicated to my parents and my wife.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Bit-vector Support in Z3-str2 Solver 6

2.1 Background . 7

2.1.1 SMT Solvers . 7

2.1.2 First Order Theories . 7

2.1.3 Solving String Equations . 9

2.1.4 Solvers in Software Security . 9

2.1.5 Symbolic Execution . 9

2.1.6 Integer Overflow Vulnerabilities . 10

2.2 Problem Statement . 11

2.3 Motivation . 11

2.4 Constraint Syntax and Semantics . 14

2.5 Design and Implementation . 16

vi

2.5.1 Design Overview . 16

2.5.2 Solving Word Equations . 17

2.5.3 Algorithm . 19

2.5.4 String and Bit-vector Theory Integration 21

2.5.5 Pruning the Search Space via Binary Search 24

2.6 Discussion of Motivating Example . 25

2.7 Experimental Results and Evaluation . 27

2.7.1 Evaluating the Solver for Strings and Bit-vectors 28

2.7.2 Evaluation of Search Space Pruning Technique 37

2.8 Related Work . 41

2.9 Future Work . 45

3 Automated Exploit Synthesis 46

3.1 Background . 47

3.1.1 Buffer Overflows . 47

3.1.2 Format String Vulnerabilities . 47

3.1.3 Attack defense Techniques . 48

3.2 Problem Statement . 50

3.3 Motivation . 50

3.4 Design and Implementation . 52

3.4.1 Vulnerability Detection . 52

3.4.2 Exploitation Techniques . 56

3.4.3 Control Flow Hijack Attack . 58

3.5 Experimental Methodology and Evaluation 59

vii

3.5.1 Experimental Setup . 59

3.5.2 Experimental Results . 60

3.6 Related Work . 62

3.7 Future Work . 64

4 Conclusion 65

References 66

viii

List of Tables

2.1 Performance of Z3-str2 over string lengths 39

2.2 Performance on benchmark suite . 41

ix

List of Figures

2.1 Overflow vulnerabilities in login module . 14

2.2 The input language of Z3-str2 . 15

2.3 Architecture of Z3-str2 solver [69] . 17

2.4 Path constraints for string - integer solver of Z3-str2 27

2.5 Path constraints for the solver of strings and bit-vectors 28

2.6 Stagefright tx3g MP4 atom integer overflow 30

2.7 Stagefright 3GPP metadata buffer overread 32

2.8 libsoup integer overflow . 33

2.9 FreeBSD wpa supplicant(8) Base64 Integer Overflow 34

2.10 Mozilla Firefox/Thunderbird Base64 integer overflow 36

2.11 Integer and heap overflows in OpenSSH 3.3 37

2.12 Linux kernel SCSI IOCTL integer overflow 38

2.13 Cactus plots for the length test . 40

2.14 Cactus plots for the benchmarks: SAT instances 42

2.15 Cactus plots for the benchmarks: UNSAT instances 43

3.1 Design overview of automated exploit generator 53

3.2 Leaking canary value . 57

x

3.3 Stack layout of a return-to-libc attack . 58

3.4 Format string and buffer overflow vulnerability 61

3.5 Reverse shell payload . 62

xi

Chapter 1

Introduction

Decision procedures or constraint solvers have recently gained considerable importance

both in research and industry as essential tools in addressing hardware and software ver-

ification problems [24, 27, 69, 42, 65]. Our ability to solve logical assertions efficiently

is crucial to the success of program analysis, verification, and automated testing tools

[18, 19, 59, 60, 30]. The reason is that these tools are typically designed to generate math-

ematical logic formulas that characterize behaviors of the program-under-test, and then use

off-the-shelf constraint solvers to solve them. In order to be effective, these solvers must be

efficient and expressive enough to capture program behavior. For example, typical theories

supported by solvers include the quantifier-free first-order theory of bit-vectors that can

effectively model machine arithmetic, the quantifier-free theory of arrays that can model

memory, and the theory of uninterpreted functions and integers to model abstractions of

program state.

In recent years, there is significant interest in reasoning about string-manipulating pro-

grams written in C/C++/Java/JavaScript due to security issues associated with improper

handling of untrusted string values. Researchers have come up with various powerful string

solvers such as Z3-str2 [69], CVC4 [42], S3 [65] etc. to tackle these problems. These tools

solve the satisfiability problem over the quantifier-free theory of string equations, regular

expression (RE) membership predicates, and linear arithmetic over the length function.

These tools gained much popularity in analyzing security vulnerabilities in web applica-

1

tions because they handle strings as a primitive data type and provide a tight integration

of string length with the integer theory. However, a fundamental problem associated with

these string solvers is that it is not clear at present, whether the satisfiability problem

for the quantifier-free theory of word equations, regular-expression membership predicate

and length function is decidable. Therefore, all current practical string solvers suffer from

incompleteness and non-termination. Even so these solvers have proven to be very useful

in the analysis of string-manipulating programs.

Lack of bit-vector [27] support is the major deficiency in current string solvers that limit

their application in the analysis of low-level system codes. We are motivated by the above

problem to build a solver for the combination of bit-vectors and strings. The reason for

this particular combination is two-fold (1) bit-vectors can efficiently model the behavior

of C/C++ programs (2) string solver can efficiently reason about the string operations

by interpreting the string as a primitive data type. An array of bit-vectors is the best

choice to represent the memory of a program. Also, it is well known that the quantifier-

free fragment of bit-vectors abbreviated as QF BV is very useful for reasoning low-level

system descriptions in languages such as C and Verilog which uses finite precision integer

arithmetic and bit-wise operations on bit-vectors. Moreover, the arithmetic used by digital

computers is bounded, and consequently it is often more efficient or appropriate for a

variety of applications to capture program behavior in bounded or bit-vector arithmetic.

Symbolic execution engines for C/C++ programs, such as KLEE [19] and S2E [21] rely on

the above criteria to model the state and memory of programs. These applications often

symbolically analyze code, generate constraints for the decision procedure to solve and use

the results of the decision procedure to guide further analysis to generate new test cases.

The above-mentioned problems motivated us to design a decision procedure for the

theory of strings and bit vectors atop of Z3-str2 with an efficient integration of the under-

lying theories. To the best of our knowledge, there is no other native string solver that

reason about strings and bit-vectors at the same time. We designed a binary search based

heuristic for efficiently pruning the search space of string lengths while solving constraints

on large string operations. Also, we integrated this heuristic into our base solver Z3-str2, a

decision procedure for strings and integers, and our experiments reported that the binary

search based approach is about 229 times faster than naive approach implemented in the

2

prior version of the Z3-str2 solver.

In addition to the above-mentioned contributions, we also developed an automatic

exploit generation technique. The motivation for developing this technique is to showcase

the power of modern program analysis in automating many aspects of the hacking process,

and effectively evading widely deployed protection mechanisms. The major protection

schemes deployed in modern machines are Data Execution Prevention (DEP) and Address

Space Layout Randomization (ASLR). DEP allows the processor to mark writable memory

locations such as stack and heap not to contain executable code. Thus, it prevents the

code injection attack by making all writable memory segments as non-executable. ASLR

limits the capabilities of a resource-bounded attacker by randomizing the base address of

the stack, heap, code, and the memory mapped segments of an executable. A compile-

time randomization technique called Position Independent Executable(PIE) strengthen

ASLR by enabling the binary to be loaded and executed at any memory address without

modifying it. Aside from these techniques, many compile-time attack defenses protect

programs from control-flow hijack attacks, one of which include, placing canary values

between a function’s local variables and its return address. These canaries cannot prevent

buffer overflows, but they can detect them retroactively and terminate the program before

an attacker can influence control flow.

Even though there are many attack defenses and these safeguards have raised the bar

significantly, attackers propose innovative attack models and enumerate different tech-

niques to bypass these defenses. Among them, information leakage vulnerabilities play a

significant role in revealing the internals of secured systems, where an attacker can lever-

age subtle information from program memory to augment the state of the art exploita-

tion techniques. Therefore, we also addressed the problem of automated remote exploit

construction. In this context, we introduced a practical approach for automating remote

exploitation using information leakage and memory related vulnerabilities and showed that

current protection schemes against control-flow hijack attacks are not always very effective.

Contributions

To summarize, this thesis makes the following principal contributions:

3

• Decision procedure for a theory of strings and bit-vectors: We designed a

decision procedure for the theory of strings and bit vectors atop of Z3-str2 with an

efficient integration of the underlying theories. To the best of our knowledge, there

is no other native string solver that reason about strings and bit-vectors at the same

time.

• Binary search based heuristics: We designed a binary search based heuristic for

efficiently pruning the search space of string lengths while solving constraints on large

string operations. Also, we integrated this heuristic into our base solver Z3-str2, a

decision procedure for strings and integers. The binary search based approach is

about 229 times faster than naive approach implemented in the prior version of the

Z3-str2 solver.

• Experimental study: We evaluated the decision procedure on a set of real vul-

nerabilities collected from Common Vulnerabilities and Exposures (CVE) database.

Also, we evaluated the binary search based heuristics on a set of benchmarks and

compared to other state of the art string solvers.

• Automated Exploit Synthesis: We performed an automated remote exploitation

breaking major attack defenses such as ASLR, DEP, PIE, RELRO, and Stack Ca-

naries in a modern Linux machine by making use of information leakage and buffer

overflow vulnerabilities.

Thesis overview

We organize the thesis into two parts. In the first part, we discuss the decision procedure

for the logic of strings and bit-vectors and how the state of the art logic combination could

be used in the vulnerability detection when the traditional solvers fail. In Chapter 1, we

discuss the new decision procedure for the theory of strings and bit-vectors, its constraint

language, and basic solving technique. Chapter 2 gives a detailed evaluation of the solver

in real vulnerabilities and other benchmarks. In the second part, we discuss our work on

automated exploit synthesis. Chapter 3 describes the techniques and automated system

for vulnerability detection, information leakage, and control flow hijack attacks. Also, we

4

explain an automated remote exploitation attack that bypasses all known attack defenses

in the latest Linux machine.

5

Chapter 2

Bit-vector Support in Z3-str2 Solver

In this chapter, we present a decision procedure for the combined theory of string and

bit-vectors. This decision procedure takes an input formula over the quantifier-free theory

of string equations, bit-vector arithmetic, and length function that takes input as a string

and outputs a bit-vector. If the input formula is satisfiable, the decision procedure outputs

a satisfying assignment, else declares that the input is unsatisfiable. Symbolic execution

based program analysis techniques are extensively used in the detection of security vul-

nerabilities in low-level programs written in C/C++. However, these techniques are not

efficiently employing the power of string solvers due to the limitation of its underlying the-

ories. We were motivated to design and implement this decision procedure for the program

analysis of low-level string manipulating C/C++ programs.

Chapter Overview

This chapter is divided into nine sections. In section 1, we provide a brief background of

SMT solvers, various theories of interest, solving of string equations and its application in

software engineering. In section 2, we introduce the problem we are solving. In section

3, we motivate the importance of string plus bit-vector combinations comparing to other,

state of the art theory combination for hunting security vulnerabilities. In section 4, we

describe the constraint syntax and semantics of our logic of bit-vectors and strings. Then

6

we introduce various APIs for integrating this logic to the powerful Z3-str2 solver. Section 5

explains the design, the core solving algorithm and implementation of the solver. Section 6

gives a detailed discussion of the motivating example. Section 7 presents our experimental

method followed by our various results and comparison. We present the previous attempts

and other related work for solving string equations in section 8. Finally, our future work

plans are depicted in section 9.

2.1 Background

This section gives a brief background about SMT solvers, various supporting theories,

solving string equations and its application in program analysis and automated testing.

2.1.1 SMT Solvers

Decision procedures gained much interest both in research and industry for hardware and

software verification problems. The ability to solve logical assertions is essential in several

tools that perform program analysis, verification, and automated testing. In computer

science and mathematical logic, the satisfiability modulo theories (SMT) problem [8] is a

decision problem for logical formulas with respect to combinations of background theories

expressed in classical first-order logic with equality.

2.1.2 First Order Theories

Full first-order logic is not decidable, and many applications only require satisfiability over

a syntactically restricted subset of full FOL, thus the SMT solvers consider the satisfiability

of formulas with respect to some of these background theories. A couple of relevant theories

of interest are discussed as below.

• Bit-vectors: Bit-vectors are extremely useful data structures used in symbolically

representing hardware and software constructs. The world of bit-vectors is finite,

7

and it is not possible to represent arbitrarily large numbers by bit-vectors. Each

term of bit-vector sort is associated with a fixed width that indicates the number of

bits used to represent the value of the term. The function and predicate symbols in

these theories may include extraction, concatenation, bit-wise Boolean operations,

and arithmetic operations.

• Linear Arithmetic: Linear arithmetic is a restricted theory of arithmetic where

only addition and subtraction can be used; multiplication of arbitrary terms is not

allowed.. These functions can be applied to either numerical constants or variables.

The relations between equality and inequalities (=, <) are used for forming atomic

predicates. Presburger [6] showed that the general satisfiability problem for the

theory of linear integer arithmetic TLIA is decidable, but its complexity is triply-

exponential where the quantifier-free satisfiability problem is NP-complete. How-

ever, non-linear arithmetic is undecidable even for the quantifier-free case. In the

case of linear real arithmetic the satisfiability problem for TLRA is decidable, but its

complexity is doubly exponential.

• Uninterpreted functions: In pure first-order logic, function and constant symbols

are uninterpreted or free, in other words, there is no a priori interpretation attached

functions and constant symbols. However, this is in contrast to functions belonging

to the signature of theories, such as arithmetic where the function + has a fixed

standard interpretation. They allow any interpretation that is consistent with the

constraints on the function or constant. Given a conjunction of equalities between

terms using free functions, a congruence closure [46] can be used for representing the

smallest set of implied equalities.

• Arrays: Theories of arrays are commonly used to model actual array data structures

in programs. They are also often used as an abstraction for memory. The advantage

of modeling memory with arrays is that the size of the model depends on the number

of accesses to memory rather than the size of the memory being modeled.

8

2.1.3 Solving String Equations

Makanin [44] was the first to show that quantifier-free theory of word equations is decid-

able in 1977, considered a theoretical breakthrough. Since then many mathematicians have

improved Makanin’s result [58, 35, 52, 53, 34]. Plandowski [53] showed the complexity of

this problem was in PSPACE [53] in 2006. Despite decades of effort the status of the satis-

fiability problem for the theory of word equations, length functions and regular expression

membership predicates(Twlr) is still open, i.e., it is not known whether it is decidable [45].

The resolution of this question would be a breakthrough, given its connections to Hilbert’s

Tenth problem [45]. Hence, all currently available solvers for the theory Twlr are in fact

semi-decision procedures.

2.1.4 Solvers in Software Security

Constraint solvers are of tremendous value in automated testing and software security.

The last decade has seen some success in deploying program verification tools to industrial

software. The main techniques for program verification include theorem proving, model

checking, and symbolic execution. These techniques use powerful constraint solvers due

to the following reasons. Machine arithmetic is bounded and efficiently modeled by the

theory of bit-vectors, a theory of arrays can represent memory locations such as stack and

heap, and a theory of uninterpreted functions and integers can be used to abstract program

state. Thus, solver-based techniques and tools for precise security analysis helps to reason

about various corner cases that could violate the desired security policy. Furthermore,

solver-based analysis tools are often more robust and easier to build than others.

2.1.5 Symbolic Execution

Symbolic execution [38] is a program analysis technique that gathered great recognition

in the last few years and are widely implemented in several tools in research and industry

for automated test case generation and vulnerability detection in complex software appli-

cations. The key idea behind this approach is to run the program on a symbolic input

9

to explore paths systematically through a program by reasoning about the feasibility of

explored paths using a constraint solver. When the program execution encounters a branch

that is directly or indirectly controlled by the symbolic input, appropriate constraints are

added on each side of the branch, and the execution is conceptually forked to follow both

sides if feasible. Finally, whenever a path terminates or hits an error, the constraints

gathered on that path are solved to produce a concrete input that exercises the path.

Modern symbolic execution techniques have the power of mixing concrete and symbolic

execution. In one of the approaches named Directed Automated Random Testing (DART)

[30], or Concolic testing [60] symbolic execution is performed dynamically while the pro-

gram is executed on some concrete input values. Another class of approach is based on

execution generated testing, where both symbolic and concrete executions are mixed by

dynamically checking before every operation if the values involved are all concrete. A re-

cent technique called selective symbolic execution [21] uses a bidirectional symbolicconcrete

state conversion that help the execution to seamlessly and correctly weave back and forth

between symbolic and concrete mode.

Significant advances of constraint solving techniques in the past few years are the pri-

mary reason for the success of symbolic execution techniques. Bit-vector solvers are used

in the analysis of low-level programs written in C/C++ whereas, string solvers are widely

used for detecting security vulnerabilities in web application domains. KLEE [19] and S2E

are two widely used symbolic execution engines for programs written in unsafe languages

like C/C++, and Kudzu [57], Jalangi [59] and SymJS [39] [40] are well known symbolic

execution engines using string solvers for JavaScript programs.

2.1.6 Integer Overflow Vulnerabilities

Integer overflow vulnerabilities are the result of an operation on an integer value that

causes it to exceed the maximum possible value or decrease below its minimum possible

value. Because of this, the number wraps and resulting a very large number to become very

small or vice versa. These vulnerabilities could only be revealed using bit-vector solvers as

bounded arithmetic is the primary reason for these overflows. When these overflow bugs

10

occur on calculating some buffer size, it results in severe security vulnerabilities leading to

stack or heap overflows. There are three types of integer overflow vulnerabilities

• widthness overflows [1]: occur when the code tries to store a value in a variable

that is too small (in the number of bits) to handle it: a typical situation is when

a variable of a given type is cast into another one whose type is smaller than the

original one.

• arithmetic overflows: occur when a calculation produces a result that is greater

in magnitude than that which a given target type can accommodate.

• signedness bugs [1]: occur when an application fails to differentiate between both

signed and unsigned integers when measuring the lengths of buffers, and confuses

the signed type with unsigned one at some point. Therefore, the signed value is

interpreted as its unsigned equivalent, meaning that a negative number becomes a

large positive number.

2.2 Problem Statement

Symbolic execution based program analysis techniques are extensively used in the detection

of security vulnerabilities in low-level programs written in C/C++. However, these tech-

niques are not efficiently employing the power of string solvers due to the limitation of its

underlying theories. Design a decision procedure for the theory of strings and bit-vectors

to improve the efficiency of symbolic execution engines and to expose vulnerabilities that

remain hidden when using traditional string solvers.

2.3 Motivation

Our primary motivation behind the decision procedure for the logic of strings and bit-

vectors is to provide significant performance improvement in the symbolic execution of

programs written in C/C++. Improper string manipulations are an important cause of

11

software defects, which make them a target for program analysis. A study [54] on the con-

colic testing tools and their limitations shows that there are significant portions of string

operations in system level codes and which add additional overhead to current symbolic ex-

ecution engines. In current symbolic execution techniques, there is a semantic gap between

the high-level notion of strings and low-level representation of program states and memory.

Bit-vector solver is an unavoidable part of low-level program analysis as it need to capture

constraints with bit-level precision to efficiently reason about arithmetic overflows, bitwise

operations, and pointer casting. Also, symbolic memory is also modeled as an array of

bit-vectors and binary instructions as operations in bit-vector theory. Symbolic execution

engines like KLEE and S2E collect constraints as bit-vectors by symbolically executing each

branch in program statements and solve it using powerful constraint solvers like STP[27]

and Z3[24]. However, these engines perform poorly on programs containing string func-

tions as it fails to capture the high-level semantics of string data type in accordance with

the low-level bit-vector representation of all program data.

Current symbolic execution engines that track constraints on a bit-level cause the path

explosion problem when string functions are iterated character by character through their

inputs. Typically string functions, such as strlen or strcmp, mainly consist of loops that

iterates character by character through one or multiple input strings until a particular

condition is met, for instance until the current character is the null terminator, marking

the end of the string. Given that each character in the string is checked for the terminating

condition, the symbolic execution engine will fork one new state for each symbolic character,

leading to path explosion. For example, an invocation of the string library function strlen

on a symbolic string s of size N will generate a total of N + 1 paths, one for each possible

value of the length, between 0 and N , regardless of the usage of this return value throughout

the rest of the program. In essence, uninteresting part of code regions are explored by

enumerating each branch without efficiently pruning the search space. Prior works from the

S2E [21] group explained these performance bottlenecks with the strings in their symbolic

analysis. These limitations forced us to apply string solvers that reason string as a primitive

data type similar to integers and bit-vectors, in the context of symbolic execution. However,

to the best of our knowledge there are no other native string solver that reason about strings

and bit-vectors at the same time.

12

Moreover, it is tough to detect certain classes of security vulnerabilities arising from

certain overflow and underflow errors with the state of the art string solvers. As the theory

of integer is unbounded, the existing string solvers are not very efficient to reason about

arithmetic overflow and underflow errors. Therefore, heap memory corruption vulnerabil-

ities originated from integer overflows mostly remain undetected by the state of the art

program analysis techniques that use traditional string solvers. This kind of security vul-

nerabilities inspired us to propose a new theory combination for the underlying solver to

efficiently reason about different corner cases leading to overflows and memory corruptions

when used with existing program analysis techniques. For instance, if we analyze the his-

tory of integer related overflows in CVE database, we can see that operations on the large

value of strings are one of the primary sources of integer overflow vulnerabilities. These

bugs remain undetected by most of the analysis engines if we use traditional string solvers,

that focus the analysis of string functions in scripting languages and web applications.

Existing string solvers primarily support the theory of strings and integers and they do

not need to reason about the low-level memory when identifying vulnerabilities in web ap-

plications. However, integer related vulnerabilities typically arise in low-level applications

written in C/C++, when the developer fails to take account of the upper bound defined

for the data type.

We will explain the limitations of existing string solvers in the context of low-level

program analysis and the importance of a latest theory combination using a motivating

example. Consider the check login() function shown in Figure 2.1. Here, the program

calculates the length of the user controlled input value username, adds 1 to accommodate

the trailing null character. A new buffer is allocated for the resulting size and copies

the username into it using the strcpy function. This code behaves as intended for the

normal-sized input. However, an integer overflow occurs if the user submits a username

consisting 65,535 characters. The variable len is declared as unsigned short in which the

size of the variable is 16 bit long and can hold any value between 0 and 65,535. When a

string of length 65,535 is submitted as username, the result of strlen(username)+1 wraps

to become 0 causing integer overflow. Also, the integer overflow causes a zero size buffer

to be allocated in the heap due to malloc(), and the long username is copied into it,

causing a heap overflow. We encode the assertions in SMT-LIB format by hand for the

13

bool check_login(char* username, char* password){

unsigned short len = strlen(username)+1;

if(len > 32){

invalid_login_attempt();

exit(-1);

}

char* _username= (char*) malloc(len);

strcpy(_username, username);

...

}

Figure 2.1: Overflow vulnerabilities in login module

vulnerable path of the program. Using the same set of constraints solvers like Z3-str2

which has native support for the theory of strings and integer is very inefficient to solve

the constraints. However, the decision procedure for the theory of strings and bit-vectors

finds the vulnerability and generates a satisfying model.

2.4 Constraint Syntax and Semantics

The syntax of word equations and the lengths are defined using the following notions.

We fix a disjoint two-sorted set of variables var = varstr ∪ varbv; varstr containing string

variables, denoted X, Y, S, . . . and varbv consists of bit-vector variables, denoted m,n,

We also define a two-sorted set of constants Con = Constr∪Conbv. Moreover, Constr ⊂ Σ∗

for some finite alphabet, Σ, whose elements are denoted f, g, Elements of Constr will be

referred to as string constants or strings. Elements of Conbv are constant sized bit-vectors.

Terms may be string terms or bit-vector terms. A string term is either an element of varstr,

an element of Constr, or a concatenation of string terms (represented by the function concat

or interchangeably by · operation). The strlen bv() is used to represent the length function

of string terms. The empty string is represented by ε, and its length is a bit-vector value of

zero. A bit-vector term is an element of varbv, an element of Conbv, the strlen bv() function

14

Term:bool ::= Var:bool

| true

| false

| (Contains Term:string Term:string)

| (StartsWith Term:string Term:string)

| (EndsWith Term:string Term:string)

| (RegexIn Term:string Term:regex)

Term:int ::= Var:int

| Number

| ({+,−,×,÷} Term:int Term:int)

| (Length Term:string)

| (IndexOf Term:string Term:string)

| (IndexOf2 Term:string Term:string Term:int)

| (LastIndexOf Term:string Term:string)

Term:BitV ecn ::= Var:BitV ecn

| (BitV ecConstn)

| ({+,−,×,÷} Term:BitV ecn Term:BitV ecn) →BitVecn

| (strlen bv Term:string) →BitVecn

| (CharAt BV Term:string Term:BitV ecn) →BitVec8

Term:string ::= Var:string

| ConstStr

| (Concat Term:string Term:string)

| (Substring Term:string Term:int Term:int)

| (Substring BV Term:string Term:BitV ecn Term:BitV ecn)

| (Bv2Str Term:BitV ec8)

| (BvArray2String Term:ArrayBitV ecn Term: BitV ecn)

| (Replace Term:string Term:string Term:string)

| (CharAt Term:string Term:int)

Term:regex ::= (Str2Regex ConstStr:string)

| (RegexStar Term:regex)

| (Term:regex)+

| (Term:regex)?

| (RegexConcat Term:regex Term:regex)

| (RegexUnion Term:regex Term:regex)

Expr:bool ::= Term:bool

| (= Term:bool Term:bool)

| (not Expr:bool)

| (and Expr:bool Expr:bool)

| (or Expr:bool Expr:bool)

| (ite Expr:bool Expr:bool Expr:bool)

| (implies Expr:bool Expr:bool)

| ({<,≤,=,≥, >} Term:int Term:int)

| (= Term:string Term:string)

Assertion ::= (assert Expr:bool)

Figure 2.2: The input language of Z3-str2

15

applied to a string term, a constant bit-vector multiplied by a bit-vector term, or a sum

of bv terms. The theory contains two types of atomic formulas, namely, word equations

and length constraints. This decision procedure supports a list of common string-related

operators such as CharAt, Contains, Endswith, Indexof, Lastindexof, Replace, Substring and

etc,. which are original to the base solver along with strlen bv, CharAt BV, Substrting BV,

Bv2str, BvArray2String etc,. Formulas are defined inductively over atomic formulas and

are quantifier-free. The constraint syntax for the decision procedure is presented Figure 2.2.

2.5 Design and Implementation

In this section, we explain the design overview of the constraint solver Z3-str2. Further,

we explain how word equations are solved in Z3-str2 followed by the solving algorithm.

Later we explain the new search space pruning technique based on the binary search in

the context of underlying solver modes.

2.5.1 Design Overview

The decision procedure for the theory of bit-vectors and string is built atop of Z3-str2 [69].

The base solver Z3-str2 is essentially a string plug-in built into the Z3 SMT Solver [24], with

an efficient integration between the string plug-in and Z3’s integer solver. The architectural

schematic of the Z3-str2 string solver is given in Figure. 2.3 in which the word equations

are solved with respect to the underlying integer solver.

The solver in the string plus bit-vector mode purifies input into bit-vector and string

constraints. The string constraints are solved using string plug-in and bit-vector constraints

through Z3’s bit-vector solver. The plug-in may consult the Z3 core to detect equivalent

terms. The word equations are solved using an algorithm described in detail in the sec-

tion 2.5.3 below. The length constraints are converted into a system of pure integer linear

arithmetic inequations and solved using Z3’s bit-vector solver. The interaction between

the bit-vector and string theory is explained in the section 2.5.4

16

Figure 2.3: Architecture of Z3-str2 solver [69]

2.5.2 Solving Word Equations

The word equation solving component of our decision procedure for the theory of strings

and integers is inherited from the base solver Z3-str2 [69]. Starting with the work of

Makanin [44], many decision procedures [53, 58, 34] have been proposed. While most

procedures are not accompanied by practical implementations, they are a rich source of

ideas for all the solvers that have recently been implemented. For example, the Z3-str2

solver follows ideas, namely, boundary labels, generalized word equations, and arrangements

that have their roots in the very first decision procedure for word equations by Makanin.

The key technique used by Z3-str2 [69] to solve a word equation W is to recursively

convert W equisatisfiably into the disjunction of conjunctions of simpler equations we call

arrangements. These arrangements are computed by aligning the concatenation function

on the LHS and RHS of a given equation such that an occurrence of concatenation function

in the LHS (resp. RHS) may “split” or “cut” variables on the RHS (resp. LHS). There are

many different alignments of variable boundaries in the LHS (resp. RHS) that can split

variables in the RHS (resp. LHS). We call every such alignment an arrangement. The

crucial fact about word equations is that every equation can be equisatisfiably rewritten

into a finite set of arrangements, where each arrangement is a finite set of word equations

obtained from the splitting procedure. The Z3-str2 solver exploits this fact and solves

word equations by converting them into finite sets of arrangements and inspecting each

17

one individually to see if they are satisfiable. The input word equation is SAT if and only

if at least one arrangement is SAT. This, in a nutshell, is how the Z3-str2 solver solves the

word equations, i.e., by recursively converting equations into a disjunction of arrangements

(where each arrangement is a simpler set of equations) until a set of arrangements is derived

where the satisfiability is determined purely via inspection. While simple, elegant and

efficient for typical equations obtained from program analysis, the word equation solver

described here may fall into infinite loops when the word equation contains overlapping

variables. However, Z3-str2 solver has support for detecting overlapping variables and the

technique for the detection of overlapping variables is well presented in [69].

Label Arrangements: We leverage boundary labels to reason about the relative

positions of the subparts in words, such that we can reduce the original equations to a

set of smaller equations for the corresponding subparts until the equations become so fine-

grained that the solution can be directly inferred. The set of input equations is UNSAT

if none of the possible breakdowns leads to valid solutions. In this subsection, we explain

how to split equations into smaller ones based on the arrangements and how to determine

if equations are in solvable form. A formula (i.e. a conjunction of equations) is in solvable

form if each equation is either an equivalence between a variable and a character, or

equivalence between two variables.

Formula Transformation: Now we discuss how to generate arrangements from equa-

tions and generate arrangements for variables from equation arrangements. Once a variable

arrangement is selected, the constraints for its sub-parts (i.e. their alignments with other

variables and characters) are determined. Therefore, we discuss how to split equations to

represent the constraints on sub-parts.

The process consists of two steps.

• In the first step, a variable is split to a set of new variables according to the variable

arrangement. Each equation is rewritten by replacing each variable with the split

variables.

• In the second step, each equation is divided into a set of new equations, each con-

straining a sub-part of the original equation. This process is guided by determining

18

the common labels between the label sets of the LHS and RHS words of the equations

generated in the first step.

A formula defined as the conjunction of equations is said to be in solvable form if

each equation is either an equivalence between a variable and a character, or equivalence

between two variables. For variables that are directly or indirectly (i.e. through other

variables) equivalent to a character, their solution is the character. The solving process,

namely the consistency condition in arrangement production ensures that the same variable

is not equivalent to different characters. Variables that are not equivalent to any character,

directly or indirectly, are free variables such that we can assign any characters to them.

Overlapping arrangement detection brings the following significant benefits. If the input

formula is UNSAT, and it may have overlapping arrangements, a decision procedure with-

out detecting overlaps will inevitably lead to an infinite loop in formula reduction. Overlap

detection also allows the procedure to avoid exploring the overlapping arrangements and

quickly find the non-overlapping solutions. If the input formula is SAT and the solution

does not contain any overlapping arrangement, our procedure will be able to reach the

solvable form.

2.5.3 Algorithm

The decision procedure for the theory of bit-vector and strings inherits all the major fea-

tures of its predecessor Z3-str2 for solving word equations such as boundary labels, word

equation splits, label arrangements and detection of overlapping variables. However, it

differs from the Z3-str2 in reasoning about the length constraints derived from the word

equations and in search space pruning strategy for reaching consistent lengths. The pro-

cedure is summarized in Algorithm 1. It takes a formula F , produces SAT, UNSAT or

UNKNOWN results. UNKNOWN means that the algorithm has encountered overlap-

ping arrangements and pruned those arrangements, even though it did not find any SAT

solution.

The algorithm consists of three steps. In step one, it generates the set of possible ar-

rangements for each equation and selects one from the set to proceed. In the next step,

19

Algorithm 1 High-level description of the word equation solving

Input: Qw: word equations, Ql: bit-vector constraints over length function

Output: SAT / UNSAT / UNKNOWN

1: procedure solveStringConstraint(Qw, Ql)

2: if all equations in Qw are in solved form then

3: if Qw is UNSAT or Ql is UNSAT then

4: return UNSAT

5: end if

6: if Qw and Ql are consistently SAT then

7: return SAT

8: end if

9: end if

10: H=StringBvIntegration(Qw)

11: convert Qw equisatifiably into DNF formula Qa

12: for each disjunct D in Qa do

13: A= all possible arrangements of equation in D

14: for each arrangement A in A do

15: lA=extract the length constraint implied by A from H
16: if lA is inconsistent with bit-vector theory then

17: Remove arrangement A from A
18: end if

19: end for

20: for each arrangement combinations do

21: split each variable to sub-variables based on the selected arrangement

22: convert Qw equisatifiably to Q′

w of simpler equations

23: Q′

l be the new set of length constraints

24: r=solveStringConstraint(Q′

w,Q′

l)

25: if r=SAT then

26: return SAT

27: end if

28: end for

29: end for

30: if overlapping variables have ever been detected then

31: return UNKNOWN

32: else

33: return UNSAT

34: end if

35: end procedure

20

variable arrangements for each variable are computed based on the previously selected

equation arrangements where each variable may have multiple arrangements. In the third

step, the formula is split based on the selected variable arrangements. The algorithm

checks an overlapping arrangement has ever detected and pruned. If so, the procedure

returns UNKNOWN; otherwise, it returns UNSAT. The essence of the algorithm is to

discover all the boundaries that are correlated and search for a total order of them. This

decision procedure also detects infinite loops in formula reduction by identifying overlap-

ping arrangements. Also, the procedure can always find the solution arrangement if it is

non-overlapping.

2.5.4 String and Bit-vector Theory Integration

During the solving process, the string plug-in may generate length constraints that are

incrementally added on demand to Z3’s bit-vector solver, that are regularly checked for

consistency with both the input length constraints and previously added ones. On any

well-formed input as described in section 2.4, the decision procedure may return SAT, UN-

SAT or UNKNOWN. On inputs containing bit-vector and string constraints, if either Z3’s

bit-vector solver or the string plug-in determines that their respective purified inputs be

UNSAT, decision procedure reports UNSAT. When both the bit-vector and string solver

returns SAT and establishes a consistency between their results, the decision procedure re-

turns SAT. If the string plug-in detects that the input equations have complicated overlaps

that its heuristics cannot handle, it reports UNKNOWN. This is a source of incompleteness

in the implementation of the base solver Z3-str2. Note that Z3-str2, like other competing

solvers such as CVC4, is sound but not complete.

Basic Length Rules

The basic length assertion on strings X, Y and Z can be expressed as follows. In the

constraint language lX , lY and lZ are represented by strlen bv(X,n), strlen bv(Y, n) and

strlen bv(Z, n) respectively where n is the bit-vector sort. Null string is represented by ε.

1. lX ≥ 0

21

2. lX = 0 ⇐⇒ X = ε

3. X = Y =⇒ lX = lY

4. X · Y · Z · ·· =⇒ lX + lY + lZ + · · ·

Theory Interaction

When solving the word equations, the solver for the strings and bit-vectors generates new

assertions in the domain of the other theory and vice versa. Inside the string theory, the set

of arrangements that is explored is constrained by the assertions on string lengths, which

are provided by the bit-vector theory. On the other hand, the string theory will derive new

length assertions when it makes progress in exploring new arrangements. These assertions

are provided to the bit-vector theory so that the search space is pruned. The procedure

for string and bit-vector theory integration is summarized in Algorithm 2.

Consider the word equation X ·Y = M ·N where X, Y,M and N are non empty string

variables. It has three possible arrangements [69] as shown below where T1 and T2 are

temporary string variables.

1. (X = M · T1) ∧ (N = T1 · Y)

2. (X = M) ∧ (N = Y)

3. (M = X · T2) ∧ (Y = T2 ·N)

The corresponding length assertions derived from the above three arrangements are as

follows

1. (lX = lM + lT1) ∧ (lN = lT1 + lY)

2. (lX = lM) ∧ (lN = lY)

3. (lM = lX + lT2) ∧ (lY = lT2 + lN)

22

These length assertions are added to the Z3 core and then processed using the bit-vector

theory. We use a binary search based heuristics to search the value of each length variable

in the bit-vector theory. The search space pruning technique is explained in the section

2.5.5. For instance, if the bit-vector theory infers that lX > lM and lN > lY the string

theory only needs to explore the first arrangement, and the procedure can converge faster.

Algorithm 2 Integration between theory of strings and bit-vectors

Input: Word equations(Qw)

Output: Hash table of length assignments

1: procedure StringBvIntegration(Qw)

2: H= Hash table of length(Lstr) and bit-vector value

3: for each equation E in Qw do

4: A= all possible arrangements of E

5: for each arrangement A in A do

6: L= all implied length constraints

7: for each length L in L do

8: Lbv be the length implied by bit-vector theory

9: low=LOWER BOUND

10: high=UPPER BOUND

11: while low ≤ high do

12: mid=low+(high-low)/2

13: if Lbv=mid then

14: Add (L,mid) into H
15: break

16: else if Lbv > mid then

17: low=mid+1

18: else

19: high=mid-1

20: end if

21: end while

22: end for

23: end for

24: end for

25: return H

26: end procedure

23

2.5.5 Pruning the Search Space via Binary Search

Even though the tight interaction between these theories improved the solving time to

a great extent; the decision procedure performs poorly on inputs containing large values

of length constraints. In Z3-str2, the string theory and integer theory works in parallel

pruning search space to find consistent string lengths using naive linear search based tech-

niques. Once the consistency is fixed between string variables and their lengths, value

arrangements are performed for further solving. However, the linear search consumes a

significant amount of solving time for choosing consistent length value when dealing with

large length constraints that further impose additional performance overhead for the de-

cision procedure. Therefore, we designed a new search space pruning technique based on

the binary search with heuristics support for Z3 core’s backtracking functionality. We im-

plemented this technique in the base solver along with the new decision procedures and

found that the solving time decreased dramatically as presented in the section 2.7.2.

String - bit-vector solver: In the theory of bit-vectors, we can always restrict vari-

ables within a lower and upper bound. If we select a bit-vector variable of sort n, the value

of the variable will always be between 0 and 2n−1. We implemented a binary search based

heuristic for guiding the search, relying on its fixed upper and lower bounds. Therefore,

the heuristic for adding length assertions to the bit-vector theory follows a binary search

pattern and can solve constraints involving large strings very efficiently.

The string plug-in continuously queries the underlying theory to get a suitable length

for each variable through Z3 core. For instance, consider the constraint lX ≥ 52000 where

X is a string variable and lX represents the length operation. The prior version of the

Z3-str2 solver, linearly samples the search space and adds assertions for each value of the

sample space. The Z3 core pick one assertion from the given set and verifies it with the

underlying theory, and backtracks to try another assertion if it is not consistent. The

assertions added in the first iterations are (lX = 0) ∨ (lX = 1) ∨ (lX = 2) ∨ (lX ≥ 2),

and in the second iteration (lX = 3) ∨ (lX = 4) ∨ (lX = 5) ∨ (lX ≥ 5) is added and so

on. Say initially Z3’s core picks the assertion lX = 2 but it is not consistent with our

length constraint. Therefore, the core backtracks and try another assertion, for instance,

lX ≥ 2 to further continue the search procedure. In essence, the string plug-in needs to

24

add the assertion in a linear order till it finds a valid one. The same process has to be done

for all string variables to find the consistent length that significantly reduces the solver

performance.

In binary search based procedure, for instance with a bit-vector sort of 16, we have the

lower bound as 0 and the upper limit as 65535. In the first iteration, string solver adds

assertion (lX < 32767) ∨ (lX = 32767) ∨ (lX > 32767) to the Z3’s core and in the second

iteration the assertion becomes (lX < 49151) ∨ (lX = 49151) ∨ (lX > 49151), and so on.

Following the binary search pattern, the solver quickly finds a valid length assignment for

lX in few iterations.

String - integer solver: Z3-str2 in the string plus integer mode also suffer the same

performance issue when solving large string lengths; as a remedy to this, we ported our

technique into the base solver as well. However, the major challenge was that we could not

fix an upper bound for integer theory, and the traditional binary search based technique

option ruled out in the first place. This motivated us to design new heuristics, driven by

binary search and backtracking, to guide the search. In this approach, we chose a window

with concrete lower and upper bound in which the size of the window varies dynamically

in each iteration depending on the search criteria. We perform the binary search within

the window while sliding the window from lower to higher values to find an upper bound.

In other words, the lower and upper end of the window is modified when the window slides

and the window size expands or shrinks by the order of two. The backtracking ability

of the heuristics helps to guide the search and choose previous windows when the Z3’s

core backtracks. The heuristics for the theory of strings and integers is summarized in

Algorithm 3.

2.6 Discussion of Motivating Example

In section 2.3 we discussed a motivating example shown in Figure 2.1. In this section,

we give a detailed analysis of our example, using the latest decision procedure for strings

and bit-vectors against the original version of Z3-str2. Here, the program calculates the

length of the user controlled input value username, adds 1 to accommodate the trailing null

25

Algorithm 3 Binary search based heuristics for string-integer solver

Input: lX

Output: Integer value

1: procedure GetConsistentLength(lX)

2: Lint be the length implied by integer theory

3: low=0

4: high=2

5: upper bound fixed=false

6: while low ≤ high do

7: mid=low+(high-low)/2

8: if Lint= mid then

9: return mid

10: else if Lint > mid then

11: low=mid+1

12: if not upper bound fixed then

13: high=2*high

14: end if

15: else if Lint < mid then

16: upper bound fixed=true

17: high=mid-1

18: end if

19: end while

20: end procedure

character. A new buffer is allocated for the resulting size and copies the username into it

using the strcpy function. Even though the program tries to exit when len > 32, the attack

can be triggered using specially crafted input. The variable len is declared as unsigned

short in which the size of the variable is 16 bit long and can hold any value between 0 and

65,535. When a string of length 65,535 is submitted as username, the result of username+1

wraps to become 0 causing integer overflow. Also, the integer overflow causes a zero size

buffer to be allocated in the heap due to malloc(), and the long username is copied into

it, causing a heap overflow.

Figure 2.4 represents the constraints encoded in the SMT-LIB format for the Z3-str2

solver. In the above set of constraints username, username are modelled as string vari-

26

(declare-variable username String)

(declare-variable _username String)

(declare-variable len Int)

; len=strlen(username)+1

(assert (= len (mod (+ (Length username) 1) 65535)))

; len<32

(assert (< len 32))

(assert (= (Length _username) len))

(assert (> (Length username) (Length _username))); overflow condition

Figure 2.4: Path constraints for string - integer solver of Z3-str2

ables, and len as an integer variable. The path constraints to trigger the vulnerability is also

encoded in the form of assertions. The solver in the string plus integer theory took more

than twenty hours and timed out because of expensive modular arithmetic constraints.

It is shown in the same set of constraints in the language of strings and bit-vectors as

presented in Figure 2.5. In the program, len is of type unsigned short and is encoded as a

bit-vector variable of width 16. The vulnerable path conditions are exactly same as that of

the one presented for the theory of strings and integers but are expressed in the language

of strings and bit-vectors. The new decision procedure solved the constraints as SAT and

produced a model in 0.27 seconds. The solver returned an empty string for username, 0

for len and a 65535 character string for username.

2.7 Experimental Results and Evaluation

This section presents the experiments and evaluation of the results to compare our tech-

niques against the state of the art solvers.

27

(declare-variable username String)

(declare-variable _username String)

(declare-variable len (_ BitVec 16))

;len=strlen(username)+1

(assert (= len (bvadd (strlen_bv username 16) (_ bv1 16))))

;len<32

(assert (bvult len (_ bv32 16)))

(assert (= (strlen_bv _username 16) len))

;strlen(username)>strlen(_username)

(assert (bvugt (strlen_bv username 16) (strlen_bv _username 16)))

Figure 2.5: Path constraints for the solver of strings and bit-vectors

2.7.1 Evaluating the Solver for Strings and Bit-vectors

We did an analysis of heap overflow vulnerabilities identified in string-manipulating pro-

grams in the common vulnerabilities and exposure (CVE)[2] database. We found that the

overflow or underflow in arithmetic computations on buffer size was the primary reason

for these bugs, leading to severe heap overflows and memory corruptions. Therefore, we

are interested in capturing such vulnerabilities using the decision procedure for strings

and bit-vectors. To demonstrate the efficacy of the theory combination of bit-vectors and

strings, we selected seven real vulnerabilities from the CVE database. For the benchmarks

discussed below, we analyzed the vulnerable part of the code regions manually and ex-

pressed path constraints in the SMT-LIB [12] format. The handcrafted constraints are

solved using the decision procedure for the theory of strings and bit-vectors and compared

the result against Z3-str2 solver with native string and integer theory support.

28

Google Stagefright Vulnerabilities

Stagefright is the name given to a potential exploit that lives fairly deep inside the Android

operating system. Mobile security firm Zimperium [9] announced the exploit as part of the

BlackHat conference, and believed to be the worst Android vulnerability ever discovered.

StageFright is a system service for Android implemented in native C++ to handle multiple

media formats. Many integer overflows and underflows leading to code injection attacks,

present in the libstagefright media library is the main reason for stagefright vulnerability.

All devices running the Android versions Froyo 2.2 to Lollipop 5.1.1 are affected which

estimates approximately 95% of all Android devices and cover around 1 billion peoples.

Applications using the stagefright library run under the media permission. However, if the

attack succeeds, then the attacker can view corresponding files in the media library and

control the device through privilege escalation attack.

We briefly explain the exploitation nature of the vulnerability and proceed with the

analysis in the below sections. To trigger the vulnerability, an attacker sends a multi-

media message (MMS) containing malware to any messenger apps that can process the

specific media. Stagefright library is not only used for playing media files but also for

generating thumbnails automatically by extracting metadata like length, height, width,

frame frequency, channels and other information from video and audio files. Consequently,

when users view the thumbnails included in the malicious MMS, this vulnerability would

be triggered. The most alarming about it is that the user does not even have to open the

message or watch the video to activate the attack. The built-in applications like Hangouts

automatically process videos and pictures from MMS messages to have them ready in the

phone’s gallery app. We chose two vulnerabilities from this package to see if the decision

procedure for the theory of bit-vectors and strings can solve path constraints leading to

the overflow bug.

CVE-2015-3824: Google Stagefright ’tx3g’ MP4 Atom Integer Overflow Re-

mote Code Execution

This vulnerability is associated with the ’tx3g’ atom that refers to the text metadata con-

stitutes the first benchmark. An MPEG-4 is composed of several units called atoms or

29

status_t MPEG4Source::parseChunk(off64_t *offset) {

...

uint64_t chunk_size = ntohl(hdr[0]);

uint32_t chunk_type = ntohl(hdr[1]);

off64_t data_offset = *offset + 8;

if (chunk_size == 1) {

if (mDataSource->readAt(*offset + 8, &chunk_size, 8) < 8) {

return ERROR_IO;

}

chunk_size = ntoh64(chunk_size);

...

case FOURCC(’t’, ’x’, ’3’, ’g’):

{

uint32_t type;

const void *data;

size_t size = 0;

if (!mLastTrack->meta->findData(

kKeyTextFormatData, &type, &data, &size)) {

size = 0;

}

uint8_t *buffer = new (std::nothrow) uint8_t[size + chunk_size];

if (buffer == NULL) {

return ERROR_MALFORMED;

}

if (size > 0) {

memcpy(buffer, data, size);

}

...

}

Figure 2.6: Stagefright tx3g MP4 atom integer overflow

30

boxes. These atoms begin with a header, size, and a box type. The box types contain a

four character code such as ’covr’, ’esds’, ’tx3g’ etc,. The Android’s media server encoun-

ters vulnerabilities while reading those boxes. The buggy part of the code is presented in

Figure 2.6. Here, a buffer is created dynamically in which the size computed by adding

variables, and the values of the user controlled variables can be selected to cause an integer

overflow that further leads to a heap overflow. Analyzing the erroneous code fragment we

can see that the size is guaranteed to be greater than 0 when mLastTrack→ meta→ find-

Data returns true. The new operator creates a buffer using the sum of size and chunk size

as its parameter. The chunk size is read from a file, and it is a uint64 t variable. However,

the parameter of the new operator is defined as size t and the size of which varies accord-

ing to the underlying architecture leading two different scenarios. In a 32 bit architecture,

size t is 32 bit long, and the result get truncated causing an integer overflow whereas in

64-bit architecture, the size t is 64 bit, and an enormous value of chunk size can lead to

an arithmetic overflow. Thus, the integer overflow leads to the creation of a small sized

buffer on the heap which further results in a heap overflow with the memcpy() function

call. We abstracted the program state, manually encoded the path constraints into a set of

constraints in string plus bit-vector and string plus integer each in their SMT-LIB format

and solved it using Z3-str2 in different modes. The string plus bit-vector solver success-

fully produced a satisfying model while native solver with integer theory failed to solve the

constraints.

CVE-2015-3826: Google Stagefright 3GPP metadata buffer overread

The second vulnerability is the ”Google Stagefright 3GPP metadata buffer overread” as-

sociated ’covr’ box type that deals with the album cover artworks. The vulnerable part of

the code is presented in Figure 2.7. If the ’chunk data size’ value is SIZE MAX, an integer

overflow will occur and cause a small buffer to be allocated, and the following call to rea-

dAt will overwrite memory locations. We expressed the constraints for the path triggering

the vulnerability in SMT-LIB format and solved using Z3-str2. The string plus bit-vector

solver produced a model for the input constraints while string-integer solver failed.

31

status_t MPEG4Source::parseChunk(off64_t *offset) {

...

off64_t chunk_data_size = *offset + chunk_size - data_offset;

...

switch(chunk_type) {

...

case FOURCC(’c’, ’o’, ’v’, ’r’):

{

*offset += chunk_size;

if (mFileMetaData != NULL) {

ALOGV("chunk_data_size = %lld and data_offset = %lld",

chunk_data_size, data_offset);

sp<ABuffer> buffer = new ABuffer(chunk_data_size + 1);

if (mDataSource->readAt(data_offset, buffer->data(),

chunk_data_size) != (ssize_t)chunk_data_size) {

return ERROR_IO;

}

...

...

}

Figure 2.7: Stagefright 3GPP metadata buffer overread

CVE-2009-0585: libsoup Integer Overflow

libsoup is a library that provides HTTP client/server routines for GNOME. Integer overflow

in the soup base64 encode function in soup-misc.c in libsoup 2.x.x before 2.2.98 and 2.x

before 2.24, allows context-dependent attackers to perform code injection attack via a long

string that is converted to a base64 representation. The vulnerable part of the source code

is presented in Figure 2.8, where the function soup base64 encode encodes a sequence of

binary data into its Base-64 stringified representation and returns the Base-64 encoded

string representing text. Heap memory is allocated through g malloc() using a length

32

calculated by a user supplied, platform specific value. In the above code integer len at the

place where the allocation occurs can wrap around if it contains an enormous value. Thus,

if a large untrusted input is passed to the function, an insufficient amount of memory is

allocated, followed by a heap-based buffer overflow with the Base64 encoded data. We

verified the vulnerable part of the code using the decision procedure for the theory of

bit-vectors and strings by generating a satisfying model that can trigger the vulnerability

while string plus integer solver failed to solve constraints.

char *

soup_base64_encode (const char *text, int len)

{

unsigned char *out;

int state = 0, outlen, save = 0;

out = g_malloc (len * 4 / 3 + 5);

outlen = soup_base64_encode_close ((const guchar *)text,

len,

FALSE,

out,

&state,

&save);

out[outlen] = ’’;

return (char *) out;

}

Figure 2.8: libsoup integer overflow

FreeBSD wpa supplicant(8) Base64 Integer Overflow

This bug [4] was reported to the FreeBSD, and it affects 7.2 stable releases of the FreeBSD.

The wpa supplicant utility is an implementation of the WPA Supplicant component. It

33

unsigned char * base64_encode(const unsigned char *src,

size_t len,

size_t *out_len){

unsigned char *out, *pos;

const unsigned char *end, *in;

size_t olen;

int line_len;

olen = len * 4 / 3 + 4; /* 3-byte blocks to 4-byte */

olen += olen / 72; /* line feeds */

olen++; /* nul termination */

out = os_malloc(olen);

if (out == NULL)

return NULL;

...

}

Figure 2.9: FreeBSD wpa supplicant(8) Base64 Integer Overflow

implements WPA key negotiation with a WPA authenticator with an authentication server.

Figure 2.9 shows is the buggy code as seen in src/contrib/wpa supplicant/base64.c from

FreeBSDs CVS. During the first arithmetic operation, len is multiplied with constant

values. However, the type of len and olen is size t therefore the size varies according

to the underlying architecture. The len taints the olen variable, which is used as the

argument of os malloc() for allocating memory in heap. If len is a large value, it leads to

an integer overflow and a heap memory corruption in the subsequent call to os malloc(). We

abstracted the program behavior, encoded constraints for the vulnerable path into SMT-

LIB and compared the results of Z3-str2 with different modes of theory combination. The

decision procedure for the theory of string and bit-vectors solved the constraints generating

a satisfying model when the string plus integer solver failed.

34

CVE-2009-2463: Mozilla Firefox/Thunderbird Base64 integer overflow

This bug [7] was disclosed by Mozilla in 2009. The issue affects the Base64 routines in

Mozilla Firefox before the 3.0.12 release. The vulnerability consists of an integer overflow

followed by a heap overflow in the PL Base64Encode function in some 32-bit architectures

that help remote attackers to cause a denial of service or code injection attacks. The

vulnerable part of the source code is explained in the Figure 2.10. In the PL Base64Encode

function, the variable destLen is of type PRUint32 where the value is calculated from an

arithmetic expression containing srclen. As per the Mozilla documentation, the PRUint32

data type is defined as an unsigned int or an unsigned long depending on the platform.

The srclen is the length of src, a user controlled string. Therefore the value of dataLen

is tainted by user input and can cause integer arithmetic overflow by providing a large

src. Also, destLen is used as the parameter of PR MALLOC() for allocating memory in

heap space leading to a heap memory corruption. We abstracted the program state and

expressed the path constraints in the SMT-LIB format for triggering the heap overflow

vulnerabilities and solved it using Z3-str2. The Z3-str2 solver failed to solve in the native

mode supporting strings and integers. However, the solver returned a returned a satisfying

model in the bit-vector plus string mode.

CVE-2002-0639: Integer and heap overflows in OpenSSH 3.3

Integer overflow in sshd [3] in OpenSSH 2.9.9 through 3.3 allows remote attackers to execute

arbitrary code during challenge response authentication when OpenSSH is using SKEY or

BSD AUTH authentication. Figure 2.11 shows the code excerpt from OpenSSH 3.3 leading

to a classic integer overflow. In the vulnerable code, the variable nresp stores an integer

value read from the client using packet get int() function, and packet get string() method

returns a pointer to a buffer that resides on heap containing a string read from the client.

The value of nresp can be set to an extremely long value to cause integer arithmetic overflow

in the argument of xmalloc() function and thereby to allocate zero sized buffer. In such a

case, the subsequent loop iterations cause heap buffer to overflow. We encoded the path

constraints for triggering heap overflow into the SMT-LIB format and solved it using two

different combinations of theories in Z3-str2. The string plus bit-vector solver generated

35

PR_IMPLEMENT(char *)

PL_Base64Encode

(

const char *src,

PRUint32 srclen,

char *dest

)

{

if(0 == srclen)

{

srclen = PL_strlen(src);

}

if((char *)0 == dest)

{

PRUint32 destlen = ((srclen + 2)/3) * 4;

dest = (char *)PR_MALLOC(destlen + 1);

if((char *)0 == dest)

{

return (char *)0;

}

dest[destlen] = (char)0; /* null terminate */

}

encode((const unsigned char *)src, srclen, (unsigned char *)dest);

return dest;

}

Figure 2.10: Mozilla Firefox/Thunderbird Base64 integer overflow

a satisfying model in this benchmark as well while the string plus integer solver failed to

solve the constraints.

36

...

nresp = packet_get_int();

if (nresp > 0) {

response = xmalloc(nresp*sizeof(char*));

for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);

}

...

Figure 2.11: Integer and heap overflows in OpenSSH 3.3

CVE-2005-0180: Linux Kernel SCSI IOCTL Integer Overflow

The primary reason for the vulnerability is the lack of sufficient sanitization performed on

user-controlled integer values before employed as the size argument of a user space to kernel

memory copy operation. The vulnerable part of the code is presented in the Figure 2.12.

The sg scsi ioctl() function contains two signed integers textitin len and textitout len, read

from user space. In the definition of copy from user() function, the third parameter is

of type unsigned long. However, the function takes in len as its third parameter when

calling from sg scsi ioctl(). Therefore when a negative value in the in len variable is type

cast into unsigned long and result in very large value and cause memory overflow. The

decision procedure for the theory of strings and bit-vectors solved the manually generated

path constraints expressed in SMT-LIB format and produced a model for triggering the

vulnerability. However, the solver with native support for the theory of strings and integers

failed to solve the constraints.

2.7.2 Evaluation of Search Space Pruning Technique

The binary search based approach with backtracking functionality helps to prune the search

space efficiently when the input contains operations on large values of strings. The tech-

nique was initially designed for the decision procedure of bit-vectors and strings and later

ported into the base solver for strings and integers because of its superior performance in

37

static int sg_scsi_ioctl(struct file *file, request_queue_t *q, ...){

char *buffer = NULL;

int bytes;

int in_len, out_len; /* two integers */

...

if (get_user(in_len, &sic->inlen)) /* read from user space */

return -EFAULT;

if (get_user(out_len, &sic->outlen))

return -EFAULT;

if (in_len > PAGE_SIZE || out_len > PAGE_SIZE)

return -EINVAL;

...

bytes = max(in_len, out_len);

if (bytes) {

buffer = kmalloc(bytes, q->bounce_gfp | GFP_USER);

if (!buffer)

return -ENOMEM;

memset(buffer, 0, bytes);

}

...

if (copy_from_user(buffer, sic->data + cmdlen, in_len))

goto error;

...

}

Figure 2.12: Linux kernel SCSI IOCTL integer overflow

solving equations containing large values of strings. We used the string-integer solver for

the comparison and performance evaluation of the binary search approach. We performed

two set of experiments for this evaluation and discussed in the below subsections.

38

Table 2.1: Performance of Z3-str2 over string lengths

Benchmark Length (l) Result
Binary Search

(seconds)

Naive Search

(seconds)

test1 10 SAT 0.042 0.040

test2 50 SAT 0.045 0.041

test3 100 SAT 0.039 0.051

test4 500 SAT 0.041 0.254

test5 1000 SAT 0.055 0.928

test6 5000 SAT 0.056 46.699

test7 10000 SAT 0.088 Timeout

test8 50000 SAT 0.323 Timeout

test9 100000 SAT 0.842 Timeout

test10 500000 SAT 21.084 Timeout

test11 1000000 SAT 105.636 Timeout

Performance Evaluation of String Lengths in Z3-str2

The first set of experiments is to demonstrate the inefficiency of the naive search in the

prior version of Z3-str2. For this purpose, we chose a tiny constraint set containing only

the length function. The constraints we chose are of the form lengthstr = l, where l varies

in the order presented in the Table 2.1. There is a total of 11 test inputs. We used 200

seconds as the timeout per test case. The stable release of the Z3-str2 solver in the naive

search mode solved constraints of length up to 5000 and timed out afterward. The solver

took more than 12 hours to terminate when the length is the order of 105. However, the

solver in the binary search mode performed very efficiently and solved the constraints of

length up to 1 million. The comparison of the solving time for the two modes in Z3-str2 is

shown in Table 2.1 and the cactus plots in Figure 2.13.

39

Figure 2.13: Cactus plots for the length test

Evaluation on benchmark suite

To measure the efficacy of our approach we designed a benchmark suite containing 205

test cases, containing handcrafted constraints involving operations on large strings. The

benchmark consists of constraints on various string operators supported by Z3-str2 such

as Length, Concat, Indexof, Substring, EndsWith, StartsWith, Replace etc,. Furthermore,

we translated the constraints into the language of CVC4 and compared the performance

of the benchmarks against CVC4 of version 1.5. We performed all the experiments on a

workstation running Ubuntu 12.04 with an i7-3770 CPU and 8GB of RAM memory. We

used 200 seconds as the timeout per benchmark.

The results of the comparison are presented in the Table 2.2, where Tool reports error

counts the number of inputs on which the solver reports an error. Crash instead, refers to

run-time errors such as segfaults. The SAT and UNSAT denotes the number of sat and

unsat results respectively. According to the Table 2.2, Z3-str2 with binary search solves

40

Table 2.2: Performance on benchmark suite

Z3-str2

(Binary Search)

Z3-str2

(Naive Search)
CVC4

SAT 169 138 126

UNSAT 34 34 19

UNKNOWN 2 2 0

Timeout 0 31 60

Tool reports error 0 0 0

Crash 0 0 0

Total no. of benchmarks 205 205 205

Total time (sec) 41.697 (1x) 9569.639(229x) 12014.893(264x)

† ’unknown’ indicates Z3-str2 detected and avoided overlapping arrangements.

all test instances very quickly comparing to the others. Z3-str2 with the naive search

timed out with 200 seconds on 31 test cases where CVC4 timed out in 60 test cases. The

Z3-str2 solver detects the overlapping arrangements in both search modes and produces

”UNKNOWN” result. Neither of these solvers crashed or reported errors in any of the test

instances. The cactus plots for the sat and unsat results are presented in the Figure 2.14

and Figure 2.15 respectively. Comparing the overall time taken by the solvers Z3-str2

with the binary search approach beats the others on the run. The overall time of the

binary search based approach is 41.697 seconds for these 205 test cases, where that of

naive approach is 9569.639 seconds and that of CVC4 is 12014.893 seconds. The binary

search based approach is about 229 times faster than naive approach of Z3-str2 and 288

times faster than CVC4.

2.8 Related Work

Practical methods for solving string equations can be roughly categorized into bounded

and unbounded methods. HAMPI [37] is a well-known solver for string constraints over

fixed-size string variables. The constraints in HAMPI express the membership in regular

41

Figure 2.14: Cactus plots for the benchmarks: SAT instances

and fixed-size context-free languages. The main limitation with HAMPI is that, it requires

the user to provide an upper bound on string lengths. The solver was initially designed

for detection of SQL injection vulnerabilities where input problems are reduced first to

bit-vector problems and then solved using STP [27]. Also, HAMPI does not support direct

string comparison and other string operations such as indexof, substring, etc,.

Kaluza, the core of a JavaScript symbolic execution framework named of Kudzu [57],

is another popular solver that supports both string and non-string operations. This solver

extends HAMPI’s input language to multiple string variables of bounded length. Kaluza

constraints contain word equations over string variables, membership in regular languages,

and inequality formulas over string length. However, one major drawback of Kaluza is that

it requires the lengths of string variables to be known before being able to encode them

and query the underlying SMT solvers. In particular, before solving for string constraints,

42

Figure 2.15: Cactus plots for the benchmarks: UNSAT instances

Kaluza finds a set of satisfying solutions for each string length. Then for each possible

length, it encodes string variables as an array of bits and then queries the underlying

bit-vector solver.

CVC4 [42] is an open-source automatic theorem prover for Satisfiability Modulo Theory

(SMT) problems. The string solver in CVC4 uses a set of algebraic techniques for solving

constraints over the theory of unbounded strings, natively supporting the length and reg-

ular language membership, without reduction to other problems. It uses an off-the-shelf

solver for integer linear arithmetic and a string solver for string and regular expression con-

straints. The string solver contains theory specific derivation rules that assert additional

string and RL constraints to the congruence closure module. The combination between the

string solver and the arithmetic solver is achieved using Nelson-Oppen rule, by exchanging

equalities over shared terms. The Kleene star operator for regular language constraints is

43

processed by unrolling the operator and makes the solver non-terminating in general over

such constraints. Even though the solver is incomplete and non-terminating in general, it

is sound and supports a large set of operators that can be used to solve string constraints

arising from verification and security applications efficiently. Also, CVC4 has extensive

supports SMT-LIB format.

S3 [65] is another word based state of the art solver for unbounded strings based on older

version of Z3-str. This solver is incremental and expressive. S3 performs the incremental

reduction on string variables using the try-and-backtrack procedure of Z3 core until the

variables are bounded by constant strings. S3 reasons the Kleene star and other recursively

defined functions by lazily unfolding its semantics in the process of incremental solving. In

general, S3 can be viewed as an extension of Z3-str with regular expressions, membership

predicates, and some high-level string operations that often work on regular expressions

such as search, replaceAll, match, etc,.

Norn [10] is another a decision procedure for word equations over string variables of

arbitrary lengths with support for length constraints and regular expressions. Norn first

converts the given formula to DNF and recursively splits the equalities and membership

constraints. It then extracts the length constraints from the formula and solves it us-

ing PRINCESS [15] solver. This decision procedure specifically targets model checking

applications and is implemented in a prototype model checker to verify common string

manipulating functions such as the Hamming and Levenshtein distances.

PISA [64] is the first solver that provides a path and index sensitive string analysis

targeting static analysis of web applications. The verification is conducted by encoding

relationships among strings and regular expressions of a program in Monadic Second-Order

Logic(M2L). PISA then uses a theorem prover such as MONA to check the satisfiability of

the generated constraints. However, in PISA expressiveness of the arithmetic operations

are restricted due to the limitations of M2L, so it does not support numeric multiplications

and divisions.

Regular languages (or automata), as well as context-free grammars (CFGs), can be used

to represent strings and handling regex-related operations. A different approach for solving

string constraints with regular expressions is to encode them into automata problems. One

44

of the major works in this category is Java String Analyzer (JSA) [22], in which static

analysis is used to model flow graphs of Java programs to capture dependencies of string

variables. Finite automata can be computed from the graph to reflect possible string

values. Shannon et al. [62] used finite state machines (FSMs) to model strings. They do

not support integer constraints in general even they have ad-hoc rules for integer relations.

A primary challenge faced by automata-based approaches is to capture the connections

between strings and other domains, e.g., integers. In short, using automata (regular)

language representations potentially enables the reasoning of infinite strings and regular

expressions. However, most of the existing approaches have difficulties in handling string

operations related to integers such as length, substring, indexOf, etc,. JST [29] extends

JSA. It asserts length constraints in each automaton and handles numeric constraints

after conversion. PISA [64] encodes Java programs into M2L formulas that it discharges

to the MONA solver to obtain path- and index-sensitive string approximations. PASS

[41, 39] combines automata and parameterized arrays for efficient treatment of unsat cases.

Stranger is a powerful extension of string automata with arithmetic automata [66, 68].

2.9 Future Work

The ongoing interaction with bit-vector and string theory is achieved using the binary

search based approach as discussed before. Even though such technique gives superior

performance in reasoning about string lengths, we still face inefficiency in the value ar-

rangements of strings after we fix the string lengths. So one of our next primary goals is

to optimize the performance of the solver by providing more robust techniques to value

arrangements, replacing the naive approach implemented in the base solver. Also, we

would like to add various APIs to extend our constraint language. We are also planning

to integrate the decision procedure in symbolic execution engines like S2E and Triton.

45

Chapter 3

Automated Exploit Synthesis

In this chapter, we describe our technique for automated exploit generation. There are

many protection schemes against control flow hijack attacks on both application and op-

erating system level. However, attackers propose innovative attack models and enumerate

different techniques to bypass these defenses. Among them, information leakage vulner-

abilities play a significant role in revealing the internals of secured systems, where an

attacker can leverage subtle information from program memory to augment the state of

the art exploitation techniques. This motivated us to develop a technique is to showcase

the power of modern program analysis in automating many aspects of the hacking process,

and effectively evading widely deployed protection mechanisms.

Chapter Overview

This chapter is divided into seven sections. In section 1, we provide a brief background

of major security vulnerabilities such as buffer overflows and format string vulnerabilities,

then discusses the various attack defense methods deployed in modern operating systems

against these threats. In section 2, we state the problem we are solving. Section 3 mo-

tivates the importance of local and remote exploit synthesis. The detailed design and

implementation of our tool is presented in section 4. Section 5 presents our experimental

methods and results. Prior attempts and other related work on exploit synthesis are shown

46

in section 6. Finally, our future work plans are listed in section 7.

3.1 Background

This section gives a brief background about various security threats such as buffer over-

flows, format string vulnerabilities and number of attack resistance techniques against these

vulnerabilities.

3.1.1 Buffer Overflows

A buffer overflow condition exists when an application tries to put more data into a buffer

than it can hold. In such cases, the data overflows into the nearby memory regions inside

memory. This is a serious security vulnerability as an attacker can use malicious data to

overflow the buffer and thereby hijack the control flow of the program. Buffer overflow

vulnerabilities have been exploited for over 20 years and are the primary reason for most

of the internet worms. These vulnerabilities only exist when developing applications using

languages that do not enforce run-time bound checking such as C/C++. In other words,

these vulnerabilities occur by the memory write operations on a buffer without sufficiently

checking bound of a user-supplied input.

3.1.2 Format String Vulnerabilities

In format string attack, an attacker uses string formatting features of certain library func-

tions to access the memory space of applications. Thus, format string attacks facilitates

information retrieval from the process memory and helps to bypass attack defenses when

used with other attacks based overflow related vulnerabilities. The format string attack

occurred when the user submitted data be used as a command in library functions. An

attacker can use this vulnerability, to execute arbitrary code on the machine, read values

from the stack or cause the application to crash.

47

3.1.3 Attack defense Techniques

In this subsection, we discuss the common attack defenses employed in both operating

system and application level.

Address Space Layout Randomisation (ASLR)

ASLR[51][13] aims to introduce a certain degree of randomness into the addresses used by a

program at run-time. All modern operating systems adopt this countermeasure to prevent

an attacker from predicting the address space of an application. This solution causes

certain parts of a process’s virtual address space to become different for each invocation of

the process, with the effect that the associated memory addresses are not known a priori

from the attackers. To successfully launch the attack, the attacker needs to retrieve certain

addresses precisely from the process memory. Thus, ASLR relies on the low probability that

an attacker has in order to guess where each area is located. The idea of address space

randomization become stronger if some mechanism of entropy is present in the random

offsets. If we model the address that has to be guessed as a random variable, we can define

its entropy as a measure of the uncertainty associated with the address, and it increases

by either advancing the amount of virtual memory area space or reducing the period in

which the randomization occurs.

Data Execution Prevention (DEP)

In this approach, which is typically referred as NoExec, Data Execution Prevention (DEP)

or W ⊕X, helps to prevent the exploits from succeeding by marking certain pages of the

applications address space as non-executable. The general concept is to make the data

segment of the applications address space as non-executable, making it inaccessible for

attackers to execute the injected code.

48

Hardening the Binary

Compilers for a number of operating systems now include techniques that aim to pre-

vent stack overflows being used to create exploits. Stack canaries are the most common

technique to harden the stack along with other run-time and compile-time checks. A

stack canary is a random value kept in the stack frame below the stored instruction and

base pointers. These canaries cannot prevent buffer overflows, but they can detect them

retroactively and terminate the program before an attacker influence the control flow. The

Canaries are inserted into the stack just after the function prologue and are verified just

before the function epilogue to see if the value has been modified by any user’s input. If

there is any modification in the canary value is detected, the application is aborted.

RELRO is a generic mitigation technique used to harden the data sections of an exe-

cutable linkage format(ELF) binary. It supports two different modes of operations named

”Full RELRO” and ”Partial RELRO. When RELRO is enabled the ELF sections are re-

ordered, and the internal data sections (.got, .dtors) precede the data sections (.data and

.bss) of the program. The full mode supports all features of the partial mode and also makes

the entire global offset table (GOT) as read-only, where the GOT is used for dynamically

linking the executable.

Position-independent Executable (PIE)

Position-independent executable(PIE) is a specially compiled and linked executable that

get loaded into random locations in memory on its execution. In other words, the machine

codes are placed anywhere in the primary memory and get executed properly regardless

of the absolute address. PIE is not very efficient unless ASLR is enabled. Randomizing

memory allocation locations makes memory addresses harder to predict for an attacker who

is attempting a memory corruption exploit. This PIE along with ASLR provides better

protection against code reuse attacks.

49

3.2 Problem Statement

Given an application binary containing buffer overflow and information leakage vulnera-

bility design an automated tool for control flow hijack attacks that bypass various attack

defenses in place.

3.3 Motivation

Software bugs remain as an unavoidable factor in almost all software products. Bugs that

result in memory corruption are very common security flaws in systems developed using

unsafe programming languages like C/C++. However, these bugs become serious security

vulnerabilities when an attacker leverage it to trigger the execution of malicious code. In

any software systems, memory related bugs are very critical, and the one that can be

exploited by attackers are typically the most serious among them. However, to decide

whether the bug is useful for an attacker for malicious purposes or not quite easy. For

instance currently Ubuntu bug repository contains more than hundred thousands of open

bugs, finding critical security bugs among them is a tedious task and remains as an open

challenge.

Programming languages like C/C++ rely on data integrity with the program and en-

hances the programmer’s control and the effectiveness of the resulting programs. Software

bugs that result in memory corruption are very common security flaws, in systems de-

veloped using unsafe programming languages such as C and C++. For instance, once a

variable is allocated in memory, there are no built-in safeguards to ensure the contents

of the variable always fit into the allocated memory space and lead to serious application

errors or crashes if the memory overflows. The buffer is a continuous memory location

that holds data, and it will cause to overflow into next memory locations when the size of

the supplied data is more than the allocated size. An attacker can exploit bugs in mem-

ory operations memory allocation, de-allocation, pointer assignment, format strings, and

call to library routines so that he can hijack the control flow. The major buffer overflow

vulnerabilities consist of stack overflow, heap overflow, and integer overflow.

50

Buffer overflow vulnerabilities are common when developing software using unsafe lan-

guages such as C/C++, which do not enforce run-time bounds checking. These two lan-

guages account for more software than any other programming languages that exacerbate

the security of related software systems. In the early days of stack buffer overflows, it

was common for an attacker to include malicious code as part of the payload to overflow

the buffer. As a result of code injection, an attacker could simply set the return address

to a known location on the stack and execute the instructions that were provided in the

buffer to cause control flow hijack. Since the first reported buffer overflow attack, the Mor-

ris worm in 1988 [50], system designers have been developing protection mechanisms to

eradicate them. Most of these protections mechanisms involve modifying operating system

parameters and adding additional compile time checks.

Even though there are many attack defenses and these safeguards have raised the bar

significantly, the attackers still continue finding creative ways to defeat them. Reactive

protection mechanisms cannot prevent human error. Thus, the solution may be better de-

sign and testing of software or the use of languages that enforce run-time bounds checking.

This philosophy is credible but also expensive and is unlikely to be done at the cost of

performance. Another unfortunate fact is that current state of the art formal verification

and automated testing techniques can not fully guarantee a bug proof software system.

However, various researches are going on to make dynamic and symbolic program analy-

sis techniques scalable to a wide category of software and ensure security by automated

testing.

Previous researches in this area revealed that thinking in the way of an attacker to gen-

erate an exploit for a bug would be an efficient way to provide a defense mechanism against

such vulnerabilities. However, this is not always feasible, as it can be a time-consuming

activity and requires low-level knowledge of file formats, assembly code, operating system

internals, and CPU architecture. However, various researchers proposed automated exploit

generation systems relying on standard code injection attacks. The unfortunate fact is that

current research in automated exploit generation does not fully address these attack de-

fenses because of the complexity and significant manual effort associated with systematic

program analysis to mitigate the defense systems. Motivated by this, we proposed an au-

tomated remote exploit generation system that leverages the information leakage present

51

in a software system to generate working exploits that bypass the various attack defenses

deployed in the application and operating system. Comparing to the previous works in

this area our exploit generation approach is quite practical and easily extended to various

other architectures and platforms. Our binary instrumentation approach for vulnerabil-

ity detection is lightweight and significantly reduces the performance overhead within the

automated exploitation framework.

3.4 Design and Implementation

Randomization-based defenses provide reasonable entropy against control flow hijack at-

tacks that measure the randomness in the number of bits of the underlying architecture.

However with the presence of information leakage this entropy can be reduced significantly

by leaking addresses from process memory to bypass the attack defenses. Figure 3.1 repre-

sents the design overview for our technique that consist of dynamic binary instrumentation,

taint analysis, vulnerability detection (information leakage and buffer overflow), retrieval

of target memory addresses and finally the exploit synthesis.

Our significant contribution is the design and implementation of an end to end auto-

mated system considering all attack defenses in place. We wrote code for dynamic binary

analysis using the Pin instrumentation framework that helped us to write a taint analysis

routine from the scratch. We used return-to-libc attack model for control flow hijack at-

tacks and generated the payload by automatically retrieving subtle memory details using

information leakage attacks. Simply, given an application binary and the remote server

running the application, our tool automatically generates payload using binary instrumen-

tation and information leakage if a potential vulnerability exists.

3.4.1 Vulnerability Detection

As a first step, we detect various conditions leading information leakage vulnerability. For-

mat string vulnerabilities play a significant role in the process of leaking address space

of target process that can be used to mitigate the existing defenses. Further, we detect

52

Figure 3.1: Design overview of automated exploit generator

buffer overflow vulnerabilities and synthesize attack vector to execute reverse shell payload.

These vulnerabilities are detected using dynamic binary analysis featuring binary instru-

mentation. A dynamic taint analysis on target application helped to track the vulnerable

input to generate attack vector. Format string vulnerability is detected followed by binary

instrumentation stage by analyzing the presence of tainted source and format string in the

stack frame created by variadic functions such as fprint, sprintf, snprintf, and vsnprintf

Similarly, buffer overflow vulnerabilities are detected by fuzzing techniques followed by

dynamic taint analysis.

Dynamic Binary Analysis

The two principal analysis for the vulnerability detection are the static and dynamic anal-

ysis. However, both these approaches have their advantages and disadvantages. If we

use dynamic analysis, we can not cover all the code but we will be more reliable. If we

53

use static analysis, we can cover the code, but we can not get the context information at

runtime. We avoided static analysis technique and chose more promising dynamic analysis

for vulnerability detection for a variety of reasons. We found that the dynamic analysis is

more attractive and promising in the precise analysis and retrieval of run-time information

of program state. Furthermore, it reduced the false positives and allowed us to reason

about actual executions leading to more accurate security analysis. Thus, the outcome

of dynamic binary analysis was two-fold, it helped us to gather sufficient information on

data flow and subtle details of memory content, which later we used in the detection of

the format string and buffer overflow vulnerabilities and finally in the exploit synthesis.

For these, we wrote dynamic binary analysis routines called pintools, using the Pin binary

instrumentation framework.

Dynamic Binary Instrumentation

Security researchers in both academy and industry use numerous techniques for gather-

ing the subtle run-time information from an application binary, but each one adds some

complexity and performance issues. The very common techniques involve (1) execution

trace listing, where traces are logged into a database at run-time for the execution of a list

of the instructions, modification of register values and memory locations. (2) emulation

where the application executes inside a special environment that provide programmatic

control over the execution of the emulated system to analyze the required data-flow. (3)

binary instrumentation a technique whereby extra code is injected into the normal execu-

tion flow of a binary to collect run-time information. This method widely used in areas

for performance profiling, error detection, capture, and replay. The injected code handles

the arbitrary analysis of the target program. This method of gathering run-time informa-

tion is provided by a number of different frameworks including Pin [43], Valgrind[48] and

DynamoRIO[16].

Dynamic binary instrumentation relies on instrumenting code just before it run. We

chose Pin[43] instrumentation framework for the binary analysis using its JIT(Just In Time)

mode of instrumentation. In this mode Pin creates a modified copy of the application on the

fly to inject the code for run-time analysis and the original code never executes. Also, Pin

54

binary instrumentation engine support programmable instrumentation by providing a rich

set of APIs in C/C++ to write instrumentation tools called PinTools. Pin is more efficient

and robust in performance, and it applies compiler optimizations on instrumentation code.

The Pin framework also supports a probe mode in which instrumentation code is added

directly to the original program along with inserting jumps to instrumentation code.

Dynamic Taint Analysis

Taint analysis is an iterative process whereby an initial set of memory locations and reg-

isters are marked as tainted, and then at each subsequent instruction element is added

or removed from the set, depending on the semantics of the instruction being processed.

The concept is defined iteratively as marking a location as tainted if it is directly derived

from user input or another tainted location. This is a well-known technique adopted by

various researchers in both industry and academia to reason about the control flow of user

inputs in the context of precise security analysis. However, we avoided using any existing

framework considering the inherent complexity associated with such frameworks, instead

wrote our analysis routine together with binary instrumentation. We used taint analysis

to reason about a set of memory locations and registers that are controlled by user inputs

by monitoring the user input by controlling the read() system call when the application

executes.

Taint analysis mainly consists of taint tracking and taint propagation according to our

predefined taint policies. The purpose of dynamic taint analysis is to track information flow

between sources and sinks. Any program value whose computation depends on data derived

from a tainted source is treated as tainted, and all other value is considered untainted.

We used shadow memory to store all the memory locations and registers tainted by user

input. Taint introduction rules are implemented such that all variables, memory cells, and

registers are initialized as untainted. Then all the memory locations corresponding to the

input source are added to shadow memory, and all the destination registers affected by

the source of entry are also marked tainted. Taint propagation rules specify the status of

data derived from tainted or untainted operands. For each data movement and arithmetic

instructions in the application execution path, shadow memory is modified by the addition

55

of new memory locations or the removal of existing memory locations depending whether

data is tainted or untainted respectively.

3.4.2 Exploitation Techniques

The introduction and deployment of defense mechanisms against control flow hijacks mo-

tivated attackers to propose more sophisticated exploitation techniques. Analyzing the

history of such techniques we can see that code reuse attacks are first introduced as re-

sponse to protection against Data Execution Prevention (DEP) that resist code injection

by enabling the memory region either writable or executable. These defenses give birth to

code reuse exploitation techniques, unlike code injection attacks that redirect the control

flow of the program to code written by the attacker, code reuse attacks redirect the control

flow executable section of code chosen by the attacker. The most commonly discussed

types of code reuse attacks are return-into-libc [47] attacks and return-oriented program-

ming (ROP) [55] attacks. These code reuse attacks are categorized based on the granularity

of the reused code fragments called gadgets. In return-into-libc attacks, the gadgets are

entire functions whereas in ROP attacks a gadget is a series of machine instructions ter-

minating in a ret instructions. ASLR substantially provided reasonable defenses against

code reuse attacks, but it was defeated using gadgets from non-randomized segments and

surgically returning into libc by overwriting the global offset table (GOT) [56]. However

with the deployment of position-independent executable(PIE) and RELRO, a generic miti-

gation technique to harden the data sections of an ELF binary, it became difficult to break

ASLR.

Exploitation technique consists of two stages (1) information leakage attack and (2)

buffer overflow attack. In the first phase, we took advantage of the format string vulnera-

bility present in the application to leak address space of the target process. In the context

of format string vulnerability, we read the contents of stack memory from target process

and use the precise information to synthesize buffer overflow exploit. In the second stage,

we leverage the information gathered from target process’s memory to generate a buffer

overflow exploit that bypasses all the defenses in the target machine and spawn a reverse

shell back to attacker machine.

56

Information Leakage Attack

One of the significant parts of the technique is the process of leaking memory addresses

from the process memory of a remote server for defense mitigation. Attackers used to

pop a sequence of data from the stack by passing a sequence of the format string, in

this way they reason about the process memory for further levels of attacks. However,

these approaches introduce some amount of inaccuracy in later stages of exploitation if not

properly executed. Also, the size constraints commonly associated with the format string

source also limit the capabilities of an attacker. So we avoid such blind data retrieval

from the stack and use direct parameter access technique, a way to directly access a stack

parameter from within the format string to point to the specific addresses in the stack.

Thus, we calculate the relative offsets to the specific memory location containing stack

canary, libc function and buffer address using the dynamic binary analysis. During the

binary instrumentation stage, we extracted precise information regarding the stack frames

and buffer at run-time from the binary. Once we detected format string vulnerability in our

analysis stage, we calculated the relative offset to stack canary address, buffer controlled

by user input and the memory pointing to the libc function in the stack. These details

along with stack frames are used to mitigate the existing defenses and synthesize exploits

in the later stages.

Figure 3.2: Leaking canary value

57

For instance, the Figure 3.2 depicts the stack canary in memory relative to the format

string parameter. The value of offset is calculated using the information obtained from the

binary run-time analysis. The corresponding format string attack vector to leak canary

value for remote server’s process memory is ”%offset$x”. Our next step is to calculate

the address of the libc function and a tainted buffer using direct parameter format string

attack. When the system executes the main function the return address of libc start main

is pushed to the stack. To leak libc function address, we measured the offset to the stack

address containing this value. Using these addresses retrieved from the memory, and

the information read from glibc binary, we calculated the base address of libc functions.

Similarly, we leaked addresses to bypass all possible defenses we introduced earlier in this

paper. We also found that without the presence of format string vulnerability, we can

use some specific system calls (e.g., write()) present in application to leak libc function

addresses from process memory. We developed automated exploits using this technique

without the presence of format string vulnerability too and bypassed ASLR, DEP, and

RELRO.

3.4.3 Control Flow Hijack Attack

Figure 3.3: Stack layout of a return-to-libc attack

Once gathered subtle information regarding stack frame, buffer and leaked addresses

to bypass defense schemes, we chose a minimal but efficient attack model to spawn a

reverse shell from the target machine. We chose return-to-libc attack model for control

flow hijack and leaked all the required parameters from the target memory space using

58

format string attack. Return-to-libc is a code reuse attack that mitigates W ⊕ X (aka

DEP) by overwriting the return address of buffer with the system() address in libc function

and passing the reverse shell payload as the argument. In this way, we mitigated defenses

such as ASLR, DEP, Stack Canary, PIE, and RELRO. Figure 3.3 represent the typical

stack layout of a return-to-libc attack. In the next step, we designed a more complex

attack model to handle the exploit scenario when the format string vulnerability is not

present. This attack model is based on return-oriented programming (ROP) using the

gadgets collected from binary and libc functions, and thus we mitigated few defenses such

as ASLR, DEP, and RELRO.

3.5 Experimental Methodology and Evaluation

In this section, we describe the experimental setup and the remote exploitation attack we

performed.

3.5.1 Experimental Setup

We set up a virtual test environment using VirtualBox on a host running Mac OSX with a

2GHz Intel Core i7 CPU and 8GB RAM. The virtual network consists of a target machine

running Ubuntu 13.10 with kernel 3.11.0 and an attacker machine running Ubuntu 12.04

with kernel 3.5.0. We allocated 2GB memory per each virtual machines, and VirtualBox

networking adaptors are configured to create a software-based network that is visible to

the selected virtual machines, but not to applications running on the host or to the outside

world. For our experiment, we used a vulnerable echo server that forks a child process

for each incoming connection, compiled by GCC 4.6.3. The pre-forking concurrent server

operates by pooling some listening processes at startup that offers superior performance

to other concurrent server designs e.g. handling requests iteratively, or spawning a child

process for each new client request. The benefits make it a very popular method of handling

requests for HTTP, IMAP, and SMTP servers.

59

3.5.2 Experimental Results

We used an echo server application for evaluating the exploit synthesis. Fig 3.4 repre-

sents the vulnerable part of source code that contain format string and buffer overflow

vulnerability. The function vulnerable() is prone to both format string and buffer over-

flow vulnerabilities, where the format string vulnerability is associated with snprintf() and

buffer overflow vulnerability with memcpy(). However, our vulnerability detection tech-

nique does not perform analysis on the source code level. The vulnerability detection and

the exploit construction is on purely based on the analysis of application binary compiled

with GCC 4.6.3 with defenses such as position independent executable (PIE), stack canary,

full RELRO and non-executable stack. ie. The source code is compiled with the following

command gcc -pie -fpie -z relro -z now -o server server.c. The server is setuid enabled

and runs with has the privilege of super user, runs on port 4444 and executes with root

privilege in Ubuntu 13.10. In this machine, ASLR is enabled and the application runs with

all available protections and client machine can interact with this server using telnet or

netcat.

The attacker machine is a linux machine running Ubuntu 12.04, where we perform vul-

nerability detection, binary analysis and launch attack to the target server. We performed

dynamic binary instrumentation and tainted analysis on the target application on the at-

tacker machine. Also, we extracted the width of all stack frames setup during the binary

analysis stage. This first stage is followed by fuzzing techniques to detect buffer overflow

vulnerability. Once the vulnerabilities are detected using the binary analysis guided by

fuzzing, the offset to the various addresses of interest is calculated. These offsets form

initial format string attack vector, for leaking sufficient memory information from the tar-

get process. In short, we detected vulnerabilities using fuzzing guided by dynamic binary

instrumentation and extracted subtle information regarding the binary for later stages of

exploitation.

The next stages of exploitation were to leak addresses from the memory of remote server

process. The attacker connects to the remote server using netcat and sends format string

attack vectors to collect sufficient memory information, required for breaking the defenses

against control flow hijack attacks. Thus, using the format string attack, we collect the

60

address of buffer, libc start main, and stack canary value. With this retrieved information,

we perform a return-to-libc attack that opens a reverse connection from remote machine

binding a root shell back to port number 7777 in attacker machine. The whole process

starting from the binary instrumentation, vulnerability detection, format string attack

and final reverse shell exploitation took in 3.6 seconds. Figure 3.5 represents the payload

synthesized for spawning a reverse root shell.

...

void vulnerable(char *buffer,int sock){

char local_buffer[50];

char msg[1024];

snprintf(msg, sizeof msg,buffer);

write(sock,msg,strlen(msg));

memcpy(local_buffer,buffer,strlen(buffer)+30);

return;

}

void PerformOperations(int sock){

int n;

char buffer[256];

bzero(buffer,256);

n=read(sock,buffer,255);

if(n<0){

error("ERROR reading from socket");

}

buffer[256]=’\0’;

vulnerable(buffer,sock);

}

...

Figure 3.4: Format string and buffer overflow vulnerability

61

Figure 3.5: Reverse shell payload

The absence of format string vulnerability limits an attacker capabilities, and so we

designed a more subtle and complex attack model that leverages the presence of certain

system calls such as read() in the application to leak the libc function address from remote

server’s process memory by using buffer overflow vulnerability. We managed to retrieve

some libc function address through buffer overflow attack by overwriting the return address

with the procedure linkage table (PLT) address of write(), which is common function

present in many low-level system programs. When gathered one libc function, we could

calculate the run-time libc base address and there by any other libc function addresses

in the target process. The second stage of exploitation was to make a page containing

data section writable by using mprotect() function calculated using the libc base address

and calling write() system call to write payload into the memory. In the third stage, we

sent system() to the previously chained call followed by payload string. In this way, we

synthesized ROP exploit by making use of libc functions and a minimal number of gadgets

collected from application binary. This remote exploitation without relying on format

string took 5 seconds to get a reverse shell by breaking ASLR, DEP, and Full RELRO

defenses.

3.6 Related Work

Shacham et al. [61] studied the effectiveness of address-space randomization and found that

its efficacy on a 32-bit architectures is restricted by the number of bits available for address

randomization. Also, they demonstrated a brute-force attack to convert any common buffer

overflow vulnerabilities into an exploit that works against systems protected by address

62

space randomization. Their analysis suggested that run-time address space randomization

is far less efficient on 32-bit architectures than commonly believed. Also, compile time

randomization is more powerful than run-time randomization because the address space

can be randomized at a much finer granularity at compile time than run time.

Brumley et al. in their paper Automatic Exploit Generation (AEG) [11] introduced

the first fully automatic end-to-end approach for exploit generation. Also, they showed

that how exploit generation for control-flow hijack attacks can be represented as a formal

verification problem. In AEG, the analysis was solely based solely on source code using

a technique called preconditioned symbolic execution to narrow the search space. Their

significant contributions include the introduction of preconditioned symbolic execution, a

path prioritization algorithm for vulnerability detection and the generation of a working

exploit for the discovered vulnerable bug. However, the exploitation technique did not

consider the protection mechanisms deployed in the application and operating system.

Schacham et al. [55] introduced the technique of return-oriented programming, in which

an attacker induce arbitrary behavior in a program by diverting the control-flow without

injecting any executable code. In return-oriented programming attacker chains together

gadgets, short instruction sequences end with return instruction already present in a pro-

gram’s address space. This technique could be seen as a generalization of traditional return-

into-libc attacks, but more generic and powerful. They constructed a Turing-complete set

of building blocks using gadgets collected from standard C library to demonstrate the

wide applicability of the technique. Giampaolo et al[56] presented a new attack against

programs vulnerable to stack-based buffer overflows that bypassed two of the most widely

adopted protection techniques, namely write xor execute only (W ⊕X) and Address Space

Layout Randomization (ASLR). In their attack, they extracted the base address of library

functions from the address space of the vulnerable process and used this information to

mount a return-to-libc attack. However, these attacks are ineffective in the presence of

position-independent executable (PIE) and stack canary.

Brumley et al. presented MAYHEM [20], a new system for automatically finding ex-

ploitable bugs in binary programs, which was a logical extension of author’s previous work

Automatic Exploit Generation to binary code. MAYHEM worked on binary code without

debugging information and accompanied by a working shell exploit. This work introduced

63

hybrid symbolic execution for combining on-line and offline execution thus maximizing

the benefits of both techniques along with index-based memory modeling that allows to

efficiently reason about symbolic memory at the binary level. However, this work did

not address the various defense scheme present in the application and operating system.

Zeldovich et al. [63] in their work performed a systematic analysis of defenses against

Return-Oriented Programming and code reuse attacks by building a formal model of at-

tacks, their requirements, defenses and their assumptions. They also used SAT solver to

perform scenario analysis on their model by analyzing the defense configurations of a real

world system by reasoning the hypothetical defense bypasses.

3.7 Future Work

As future works, we would like to evaluate the automated exploit generation technique

on significant real world application. Also, we are interested in exploring other ways of

leaking information from process memory in the absence of format string vulnerabilities.

Even though, we developed a prototype to achieve this in the presence of certain system

calls and successfully bypassed ASLR, DEP, and RELRO, bypassing stack canary, and PIE

remains as future work. Currently, we are using fuzzing techniques along with dynamic

binary analysis to reveal the vulnerabilities. Also, we intend to integrate our string solver

to symbolic execution engines by reasoning about various paths in execution tree for bug

detection. We would like to augment the efficiency and reduce the complexity in exploit

synthesis using SMT-based ROP compiler. We would like to reason about the application

of string based solvers in the context of exploit synthesis and integrate it into an end-to-end

testing system. Finally, we would like to suggest more sophisticated attack resistance that

incorporates techniques from cryptography and information flow analysis against control

flow hijack attacks.

64

Chapter 4

Conclusion

This thesis presents a decision procedure for the theory of bit-vectors and strings, as an

efficient solver for the detection of security vulnerabilities in symbolic execution based

analysis tools for programs written in C/C++. We designed a new search space pruning

technique based on the binary search to solve constraints involving large string values.

Also, we replaced existing linear search based length consistency check between the integer

and string theory of Z3-str2 with binary search based heuristics, which enabled it to solve

constraints containing large string values in the integer mode as well.

We built the bit-vector theory support atop of Z3-str2 string solver and evaluated

the decision procedure on a set of real security vulnerabilities collected from Common

Vulnerabilities and Exposures repository. Also, we evaluated the binary search based

heuristic on a benchmark suite containing 205 test instances, that contains string operations

on the large value of strings. We compared the performance of the technique with the prior

version of the solver and CVC4. The evaluation revealed that the binary search based

approach is about 229 times faster than naive approach implemented in the prior version

of the Z3-str2 solver, and 288 times faster than CVC4.

The final part of the thesis include the design and implementation of an automated

exploit synthesis system, for the detection of buffer overflow and information leakage vul-

nerabilities in low-level system codes, and thereby performing control flow hijack attacks

that bypass all known attack defenses in Linux based machines.

65

References

[1] Basic integer overflows. http://phrack.org/issues/60/10.html. Accessed: 2015-

09-10.

[2] Common vulnerabilities and exposure. https://cve.mitre.org/. Accessed: 2015-

09-10.

[3] Integer overflow in openssh. http://www.cvedetails.com/cve/CVE-2002-0639. Ac-

cessed: 2015-09-10.

[4] Integer overflow in wpa supplicant(8) base64 encoder. https://bugs.freebsd.org/

bugzilla/show_bug.cgi?id=137484. Accessed: 2015-09-10.

[5] Linux kernel scsi ioctl integer overflow vulnerability. https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2005-0180. Accessed: 2015-09-10.

[6] Mojesz presburger. https://en.wikipedia.org/wiki/Moj%C5%BCesz_Presburger.

Accessed: 2015-09-10.

[7] Mozilla firefox/thunderbird base64 integer overflows. https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2009-2463. Accessed: 2015-09-10.

[8] Satisfiability modulo theory. https://en.wikipedia.org/wiki/Satisfiability_

modulo_theories. Accessed: 2015-09-10.

[9] Zimperium: Enterprise mobile security. https://www.zimperium.com/. Accessed:

2015-09-10.

66

http://phrack.org/issues/60/10.html
https://cve.mitre.org/
http://www.cvedetails.com/cve/CVE-2002-0639
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=137484
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=137484
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0180
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0180
https://en.wikipedia.org/wiki/Moj%C5%BCesz_Presburger
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2463
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2463
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://www.zimperium.com/

[10] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Hoĺık, Ahmed

Rezine, Philipp Rümmer, and Jari Stenman. String constraints for verification. In

Proceedings of the 26th International Conference on Computer Aided Verification,

CAV’14, pages 150–166, 2014.

[11] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. Aeg:

Automatic exploit generation. In Network and Distributed System Security Sympo-

sium, February 2011.

[12] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version

2.5. Technical report, Department of Computer Science, The University of Iowa, 2015.

Available at www.SMT-LIB.org.

[13] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: An effi-

cient approach to combat a board range of memory error exploits. In Proceedings of

the 12th Conference on USENIX Security Symposium - Volume 12, SSYM’03, pages

8–8, Berkeley, CA, USA, 2003. USENIX Association.

[14] Nikolaj Bjørner, Vijay Ganesh, Raphaël Michel, and Margus Veanes. An smt-lib

format for sequences and regular expressions. In SMT workshop 2012, 2012.

[15] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. An interpo-

lating sequent calculus for quantifier-free presburger arithmetic. J. Autom. Reason.,

47(4):341–367, December 2011.

[16] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for

adaptive dynamic optimization. In Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed and Runtime Optimization,

CGO ’03, pages 265–275, Washington, DC, USA, 2003. IEEE Computer Society.

[17] J.Richard Büchi and Steven Senger. Definability in the existential theory of concate-

nation and undecidable extensions of this theory. In The Collected Works of J. Richard

Büchi, pages 671–683. Springer New York, 1990.

67

[18] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R. Engler. EXE: automatically

generating inputs of death. In ACM Conference on Computer and Communications

Security, pages 322–335, 2006.

[19] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In Proceedings of the

8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08,

pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

[20] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Unleash-

ing mayhem on binary code. In IEEE Symposium on Security and Privacy, pages

380–394. IEEE Computer Society, 2012.

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A platform

for in-vivo multi-path analysis of software systems. In Proceedings of the Sixteenth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XVI, pages 265–278, New York, NY, USA, 2011. ACM.

[22] Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach. Precise analysis

of string expressions. In In Proc. 10th International Static Analysis Symposium, SAS

03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, 2003.

[23] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint

analysis framework. In Proceedings of the 2007 International Symposium on Software

Testing and Analysis, ISSTA ’07, pages 196–206, New York, NY, USA, 2007. ACM.

[24] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceedings

of the Theory and practice of software, 14th international conference on Tools and

algorithms for the construction and analysis of systems, TACAS’08, pages 337–340,

2008.

[25] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database

applications. In ISSTA, pages 151–162, 2007.

68

[26] Hiroaki Etoh and Kunikazu Yoda. Protecting from stack-

smashing attacks. Published on World-Wide Web at URL

http://www.trl.ibm.com/projects/security/ssp/main.html, 2000.

[27] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays.

In Proceedings of the 19th International Conference on Computer Aided Verification,

CAV’07, pages 519–531, 2007.

[28] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard. Word equa-

tions with length constraints: what’s decidable? In HVC’12, 2012.

[29] Indradeep Ghosh, Nastaran Shafiei, Guodong Li, and Wei-Fan Chiang. JST: An

Automatic Test Generation Tool for Industrial Java Applications with Strings. In

Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13,

pages 992–1001, 2013.

[30] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random

testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’05, pages 213–223, New York, NY, USA,

2005. ACM.

[31] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints

over regular languages. In Proceedings of the 2009 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’09, pages 188–198, 2009.

[32] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata theory, lan-

guages, and computation. Pearson/Addison Wesley, 2007.

[33] Lucian Ilie and Wojciech Plandowski. Two-variable word equations. ITA, 34(6):467–

501, 2000.

[34] Artur Jeż. Recompression: Word equations and beyond. In Developments in Language

Theory, Lecture Notes in Computer Science, pages 12–26. 2013.

[35] Juhani Karhumäki, Filippo Mignosi, and Wojciech Plandowski. The expressibility of

languages and relations by word equations. J. ACM, 47(3):483–505, May 2000.

69

[36] Chi keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa, and Reddi Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In In Program-

ming Language Design and Implementation, pages 190–200. ACM Press, 2005.

[37] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst.

Hampi: A solver for string constraints. In Proceedings of the Eighteenth International

Symposium on Software Testing and Analysis, ISSTA ’09, pages 105–116, 2009.

[38] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–

394, July 1976.

[39] Guodong Li, Esben Andreasen, and Indradeep Ghosh. SymJS: Automatic symbolic

testing of javascript web applications. In Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE 2014, pages

449–459, 2014.

[40] Guodong Li, Esben Andreasen, and Indradeep Ghosh. Symjs: Automatic symbolic

testing of javascript web applications. In Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE 2014, pages

449–459, New York, NY, USA, 2014. ACM.

[41] Guodong Li and Indradeep Ghosh. PASS: String solving with parameterized array

and interval automaton. In 9th International Haifa Verification Conference, HVC ’13,

pages 15–31. 2013.

[42] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.

A dpll(t) theory solver for a theory of strings and regular expressions. In Proceedings

of the 26th International Conference on Computer Aided Verification, CAV’14, pages

646–662. 2014.

[43] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In Proceedings of

70

the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[44] G.S. Makanin. The problem of solvability of equations in a free semigroup. Math.

Sbornik, 103:147–236, 1977. English transl. in Math USSR Sbornik 32 (1977).

[45] Yu. Matiyasevich. Word equations, fibonacci numbers, and hilbert’s tenth problem.

In Workshop on Fibonacci Words, 2007.

[46] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence

closure. J. ACM, 27(2):356–364, April 1980.

[47] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack, 11(58),

Dec 2001.

[48] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’07, pages 89–100, New

York, NY, USA, 2007. ACM.

[49] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), November 1996.

[50] Hilarie Orman. The morris worm: A fifteen-year perspective. IEEE Security and

Privacy, 1(5):35–43, September 2003.

[51] PaX Team. Pax address space layout randomization (ASLR). http://pax.

grsecurity.net/docs/aslr.txt. Accessed: 2015-09-10.

[52] Wojciech Plandowski. Satisfiability of word equations with constants is in pspace. J.

ACM, 51(3):483–496, May 2004.

[53] Wojciech Plandowski. An efficient algorithm for solving word equations. In Proceedings

of the 38th Annual ACM Symposium on Theory of Computing, STOC ’06, pages 467–

476, 2006.

[54] Xiao Qu and Brian Robinson. A case study of concolic testing tools and their limita-

tions. In ESEM, pages 117–126. IEEE Computer Society, 2011.

71

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

[55] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented

programming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur.,

15(1):2, 2012.

[56] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi.

Surgically returning to randomized lib(c). In ACSAC, pages 60–69. IEEE Computer

Society, 2009.

[57] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,

and Dawn Song. A symbolic execution framework for javascript. In Proceedings of the

2010 IEEE Symposium on Security and Privacy, SP ’10, pages 513–528, 2010.

[58] K. Schulz. Makanin’s algorithm for word equations-two improvements and a gener-

alization. In K. Schulz, editor, Word Equations and Related Topics, volume 572 of

Lecture Notes in Computer Science, pages 85–150. Springer Berlin / Heidelberg, 1992.

[59] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A

selective record-replay and dynamic analysis framework for javascript. In Proceedings

of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE

2013, pages 488–498, New York, NY, USA, 2013. ACM.

[60] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for

c. In Proceedings of the 10th European Software Engineering Conference Held Jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software En-

gineering, ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005. ACM.

[61] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. On the effectiveness of address-space randomization. In CCS04, 2004.

[62] D. Shannon, I. Ghosh, S. Rajan, and S. Khurshid. Efficient symbolic execution

of strings for validating web applications. In Proceedings of the 2Nd International

Workshop on Defects in Large Software Systems: Held in Conjunction with the ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2009),

DEFECTS ’09, pages 22–26, New York, NY, USA, 2009. ACM.

72

[63] Richard Skowyra, Kelly Casteel, Hamed Okhravi, Nickolai Zeldovich, and William W.

Streilein. Systematic analysis of defenses against return-oriented programming. In

RAID, pages 82–102, 2013.

[64] Takaaki Tateishi, Marco Pistoia, and Omer Tripp. Path- and index-sensitive string

analysis based on monadic second-order logic. ACM Trans. Softw. Eng. Methodol.,

22(4):33:1–33:33, October 2013.

[65] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A symbolic string solver for

vulnerability detection in web applications. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’14, pages 1232–1243,

2014.

[66] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: an automata-based string

analysis tool for php. In Proceedings of the 16th international conference on Tools and

Algorithms for the Construction and Analysis of Systems, TACAS’10, pages 154–157,

2010.

[67] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic string verification: Combining

string analysis and size analysis. In in Proceedings of the 15th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS, pages

322–336.

[68] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic string verification: Combining

string analysis and size analysis. In Proceedings of the 15th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, TACAS ’09,

pages 322–336, 2009.

[69] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Julian Dolby, and

Xiangyu Zhang. Effective search-space pruning for solvers of string equations, regular

expressions and length constraints. In Daniel Kroening and Corina S. Pasareanu,

editors, Computer Aided Verification - 27th International Conference, CAV 2015, San

Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture

Notes in Computer Science, pages 235–254. Springer, 2015.

73

[70] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A z3-based string solver for

web application analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, ESEC/FSE 2013, pages 114–124, 2013.

74

	List of Tables
	List of Figures
	Introduction
	Bit-vector Support in Z3-str2 Solver
	Background
	SMT Solvers
	First Order Theories
	Solving String Equations
	Solvers in Software Security
	Symbolic Execution
	Integer Overflow Vulnerabilities

	Problem Statement
	Motivation
	Constraint Syntax and Semantics
	Design and Implementation
	Design Overview
	Solving Word Equations
	Algorithm
	String and Bit-vector Theory Integration
	 Pruning the Search Space via Binary Search

	Discussion of Motivating Example
	Experimental Results and Evaluation
	Evaluating the Solver for Strings and Bit-vectors
	Evaluation of Search Space Pruning Technique

	Related Work
	Future Work

	Automated Exploit Synthesis
	Background
	Buffer Overflows
	Format String Vulnerabilities
	Attack defense Techniques

	Problem Statement
	Motivation
	Design and Implementation
	Vulnerability Detection
	Exploitation Techniques
	Control Flow Hijack Attack

	Experimental Methodology and Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Future Work

	Conclusion
	References

