
Integrity and Privacy of Large Data

by

Jalaj Upadhyay

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctorate of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Jalaj Upadhyay 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The content presented in Chapter 4 and Chapter 6 was co-authored with Maura Pa-
terson. All the chapters of this thesis were authored under the supervision of Douglas
Stinson.

iii

Abstract

There has been considerable recent interest in “cloud storage” wherein a user asks a
server to store a large file. One issue is whether the user can verify that the server is actually
storing the file, and typically a challenge-response protocol is employed to convince the user
that the file is indeed being stored correctly. The security of these schemes is phrased in
terms of an extractor which will recover the file given any “proving algorithm” that has
a sufficiently high success probability. This forms the basis of proof-of-retrievability (PoR)
and proof-of-data-possession (PDP) systems. The contributions of this thesis in secure
cloud storage are as below.

1. We provide a general analytical framework for various known PoR schemes that
yields exact reductions that precisely quantify conditions for extraction to succeed as
a function of the success probability of a proving algorithm. We apply this analysis
to several archetypal schemes. In addition, we provide a new methodology for the
analysis of keyed PoR schemes in an unconditionally secure setting, and use it to
prove the security of a modified version of a scheme due to Shacham and Waters
[72] under a slightly restricted attack model, thus providing the first example of a
keyed PoR scheme with unconditional security. We also show how classical statistical
techniques can be used to evaluate whether the responses of the prover on the storage
are accurate enough to permit successful extraction. Finally, we prove a new lower
bound on the storage and communication complexity of PoR schemes.

2. We propose a new type of scheme that we term a proof-of-data-observability scheme.
Our definition tries to capture the stronger requirement that the server must have
an actual copy of M in its memory space while it executes the challenge-response
protocol. We give some examples of schemes that satisfy this new security definition.
As well, we analyze the efficiency and security of the protocols we present, and we
prove some necessary conditions for the existence of these kinds of protocols.

3. We study secure storage on multiple servers. Our contribution in multiple-server PoR
systems is twofold. We formalize security definitions for two possible scenarios: (i)
when a threshold of servers succeed with high enough probability (worst-case) and
(ii) when the average of the success probability of all the servers is above a threshold
(average-case). Using coding theory, we show instances of protocols that are secure
both in the average-case and the worst-case scenarios.

iv

Acknowledgements

I have been fortunate in having the benefit of interactions with numerous people to
whom I feel grateful and would like to thank on this occasion. I would particularly like
to thank my PhD supervisor, Prof. Douglas Stinson, for giving me support and guidance.
Doug let me work freely on various topics. This thesis would not have existed without
his guidance. His knowledge and way of looking at a new problem greatly influenced the
way I developed as a researcher. I would also like to thank Ian Goldberg, Guang Gong,
Alfred Menezes, and Daniel Panario for agreeing to be in my committee and for their useful
feedbacks to improve this thesis.

I would like to thank my coauthors: Simon Blackburn, Nishanth Chandran, Vipul
Goyal, Aniket Kate, Pratyay Mukherjee, Omkanth Pandey, and Maura Paterson. Each of
them taught me different aspects of research. I would also like to thank Moritz Hardt for
showing great confidence in me, Eric Blais for all the insightful discussions and suggestions
during one of my research projects, and Shai-Ben David for teaching me machine learning
and being patient with all my questions. I never had the opportunity of working on a
project with them, but they worked as a great mentor to me during my last year of PhD.

I would like to thank students of the CrySP lab through all these years: Atif, Chuan,
Cecylia, Colleen, Erinn, Femi, Greg, Hasan, Hooman, Jeremy, Mehrdad, Nik, Rob, Ryan,
Sukhbir, Tao, and Vladimir. I will always cherish their talks in the CrySP meeting and
the random discussion in the cubicles. I would like to especially thank Ryan for all the
discussions on cryptography, Jeremy for his quick-witted sense of humour, and Aniket for
our coffee time discussions and hosting me during my visit to Saarbucken. Aniket and
Jeremy guided me a lot during the starting three years of my graduate life. I would like
to thank the theory group of 2011-2013: Abel, Jamie, Raju, Ruth, Sev, and Stacey.

I would always relish the brotherly treatment rendered to me by friends of my brother.
Aashish and his wife Nikita often treated me with great food, especially my favourite dish
“malai-kofta.” Srinath has been there for me at any hour of the day and, in retrospect,
with great advices. Sachin and his sense of humour would lift my mood at any time. Niraj
was always there with a funny anecdote to mark the situation.

My special list of roommates made my life during graduate studies highly entertaining.
Akhilesh was always there for me with his great advice even after he moved out. He is
one of guys I can call even in the middle of the night to discuss my problems. Shubham
carried his friendship from the undergraduate times during his year long stay with me. I
would always miss his mathematical curiosity and his way of finding new jokes to light
up my mood. Rajat is one of the best roommates one could imagine. His poha was the

v

highlight of weekends, even on camping and hiking trips. He was my first squash teacher
and I would like to appreciate his patience with me during the learning phase. Shitikanth
has been a special friend during the last years of my stay at Waterloo. We had amazing
discussions on mathematics, politics, philosophy, sociology, etc. How he could come up
with simple and logically consistent arguments would always baffle me!

I made wonderful friends during my stay at Waterloo. I would always relish the time
spent with Hrushikesh, Robin, and Prashant in the DC food court after our classes. We
never managed to open up a company, but we did had some decent start-up ideas. I would
always relish the quick witted jokes of Vinayak, the time spent with Xili and Shubham in
the Williams coffee shop, the late night snacks in Prachi’s office, and great conversation
on literature and arts with Rose. In the later half of my graduate life, I met Anirudh,
Anup, Deepak, Nikki, Meenu, Rupinder, Sandeep, Shivam, Shrinu, and Zoey. Anirudh
exposed my taste-bud to a wide variety of cuisines, ranging from Iranian to African. I will
always remember the time spent with Sandeep for his amazing sense of humour, Anup and
Deepak for their political discussions, Meenu for her great cooking, Nikky for her sense of
humour (often at my expense), Shrinu for countless hours practicing in the squash courts
and discussions on differential privacy, and Zoey for waking me up in the middle of night
to do karaoke. This thesis and my graduate life would have been very different without
the contributions and love of Darya. Over the six years that I have known her, and even
after she left Canada, Darya never let me become complacent about my research and was
always there with her smile and support.

I made many friends in the squash court, who would remain my friend in and out of the
court: Adam Jaffe, Adam Rauf, Andrew, Anton, Blake, Cameron, Jared, Jeff Muirhead,
Jeff Porter, Luke, Michael Szestopalow, Michael Yetisir, Mohit, Nick, Pranav, Shobhit,
Steven, and Tyrone. All the hours spent in the squash court always rejuvenated me and
that would have been impossible without all of them. Andrew, Pranav, and Rajat helped
me a lot to improve my game. I would also like to thank the varsity coaches, Clive and
Vinit, for showing immense patience in improving my squash skills and giving me useful
tips to recover from various injuries.

Finally, I cannot describe in words, my love towards my family. My mother has been
a pillar of strength and it is her untiring support and encouragement that gave me the
determination and will to pursue my endeavors. My father has been my role model and
constant source of inspiration. My brother has always been with me and has supported
me through all ups and downs in my life. My sister-in-law has always made me feel good
with her cheerful and enthusiastic support.

vi

To my family.

vii

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Problems Studied in this Thesis . 3

1.1.1 Unconditionally Secure Proof-of-Retrievability 4

1.1.2 Retrievability vs Possession . 4

1.1.3 Multiple-server Proof-of-Retrievability 5

1.2 Organization of this Thesis . 6

2 Preliminaries 8

2.1 Basic Algebra . 8

2.2 Error-correcting Codes . 10

2.2.1 Linear Codes . 11

2.2.2 Low-density Parity-check Codes . 13

2.2.3 Linear Codes with Low-density Generator Matrices 14

2.3 Information Theory . 16

2.4 Secret Sharing Schemes and their Variants 17

2.4.1 Linear Secret Sharing Scheme . 21

viii

3 Key Concepts in Proof-of-Storage 23

3.1 Proof-of-storage System . 25

3.1.1 Proof-of-retrievability . 27

3.1.2 Security Definition . 27

3.1.3 Proof-of-data-possession . 29

3.2 A Brief Look at the Security Definitions 30

3.2.1 PoR and the PoK Systems of Fiat, Fiege, and Shamir 31

3.2.2 PDP and the PoK Systems of Fiege and Shamir 31

3.3 Previous Related Work . 32

4 Unconditionally Secure Proof-of-retrievability Systems 36

4.1 Our Contribution . 36

4.1.1 Comparison with Dodis, Vadhan, and Wichs 38

4.2 Unkeyed PoR Schemes: the General Result 39

4.3 Analysis of Several Keyless Schemes . 42

4.3.1 PoR Code Construction of Dodis, Vadhan, and Wichs 42

4.3.2 Keyless Analogue of Shacham-Waters’ Scheme 44

4.4 The Shacham-Waters Scheme . 47

4.5 Estimating the Success Probability of a Prover 53

4.5.1 Numerical Computations and Estimates 54

4.5.2 Statistical Techniques for Estimating Success Probabilities in PoR
Systems . 58

4.6 A Lower Bound on Storage and Communication Requirements 64

4.7 Conclusion . 65

5 Extraction or Possession? 67

5.1 Defining Possession of Data . 68

5.1.1 PDO is a Stronger Notion than PoR and PDP 70

ix

5.1.2 Our Contributions . 70

5.2 A Basic PDO Scheme . 71

5.2.1 Discussion . 78

5.3 A General Bound . 78

5.4 Multiple Runs of the Challenge-Response Protocol 81

5.5 Summary and Conclusion . 83

6 Multi-server PoR Systems 84

6.1 Security Model of Multi-server PoR Systems 85

6.1.1 Our Contributions . 88

6.1.2 Comparison with Bowers, Juels, and Oprea 89

6.2 Worst-case MPoR Based on a Ramp Scheme 89

6.3 Average-case Secure MPoR System . 93

6.3.1 Hypothesis Testing for Rep-MPoR 95

6.4 Maintaining an MPoR scheme: Dynamic Updates 100

6.4.1 Constructing a Dynamic-MPoR . 101

6.4.2 Choosing a Dynamic-PoR System 106

6.4.3 Choosing an Appropriate Linear Secret Sharing Scheme 108

6.4.4 Putting Everything Together . 111

6.5 Optimization Using the Shacham-Waters Scheme 111

6.5.1 Extension of the Keyed Shacham-Waters Scheme to MPoR 112

6.5.2 Optimized Version of the Multi-server Shacham-Waters Scheme . . 113

6.6 Conclusion . 118

7 Conclusion and Future Work 119

7.1 Contributions of this Thesis . 119

7.2 Open Problems . 120

7.2.1 Kolmogorov Complexity and Secure Cloud Storage 120

x

7.2.2 Game-theoretic View of Secure Cloud Storage 121

7.2.3 Hourglass Scheme . 122

7.2.4 Random Projection and Differential Privacy 123

7.2.5 Delegation of Property Testing . 123

References 125

xi

List of Tables

4.1 Values of n for which the Extractor will always succeed 56

4.2 Outcomes of Hypothesis Testing for a Range of Responses 62

6.1 Effect of Approximation by Poisson Distribution 96

xii

List of Figures

3.1 The Security Game of PDP System (GamePDP). 30

3.2 Shacham-Waters Scheme for a Single-prover PoR System 35

4.1 Generalized Scheme . 41

4.2 Multiblock Challenge Scheme . 43

4.3 Linear Combination Scheme . 45

4.4 Modified Shacham-Waters Scheme . 48

5.1 Basic Random Oracle PDO scheme . 72

5.2 Success Probability as a Function of s when n = 4096, ` = 50 and h = 64 . 77

6.1 Schematic View of a Ramp-MPoR System 90

6.2 Worst-case Secure MPoR Using a Ramp-scheme (Ramp-MPoR). 91

6.3 Schematic View of Rep-MPoR . 93

6.4 Average-case Secure MPoR (Rep-MPoR). 94

6.5 Schematic View of Dynamic-MPoR System 102

6.6 Dynamic MPoR Using Linear Secret Sharing Scheme (Dynamic-MPoR) . . . 103

6.7 MPoR Using Optimized Shacham-Waters scheme (SW-MPoR). 116

xiii

Chapter 1

Introduction

Many agencies generate and many collect enormous amounts of data and store it in the
form of a database either locally or remotely. Depending on how the data is handled and
for what purpose the data is generated, one would like to achieve various goals. At a very
high level, we can have three possible scenarios:

• The data is outsourced by an agency on a remote server just for storage purposes.
In this case, the agency would like to have a certain level of guarantee that the data
is stored properly.

• The data is outsourced to a remote server and then the agency wishes to perform
some computations on it. In this case, the agency would like to make sure that the
computation of the data is performed correctly (and that the confidentiality of the
data is maintained).

• The agency just collects data of its users so that another entity called an analyst can
perform some analysis on the stored data. In this case, the agency should itself be
accountable for making sure that the users’ confidential data is not leaked even if the
analyst behaves maliciously. In other words, the agency is responsible to sanitized
the data in such a manner so that the confidential data is not leaked under any
adversarially chosen analysis.

In each of the three cases mentioned above, we have a well-defined adversary. In the
first two cases, it is the remote server that perhaps acts arbitrarily, and we would like to
secure our data against it. In the third setting, we consider that the analyst who performs

1

the analysis on the data provided by the agencies acts adversarially, and our goal is to
preserve privacy against any such malicious analyst. The adversary in this case has no
direct access to the data, but has access to the sanitized data provided by the agency. The
adversary in the first two cases has access to the whole data all the time. In other words,
there is a difference in how an adversary can access the data in the various cases under
consideration.

Once we have identified the type of adversary, and how and what it can access, the
next important task for an agency is to construct a defence mechanism. There are trivial
ways to resist attacks in the three scenarios mentioned above. For instance, to ensure
that a server stores the agency’s data, the agency can compute a small cryptographically
secure fingerprint of its file before storing the file on the server. Then, whenever the agency
wishes to access its data, it downloads the whole data and checks that the precomputed
fingerprint matches the fingerprint of the downloaded data. Similarly, to ensure that the
correct computation is done and the privacy of the data is maintained, the agency can
encrypt the data and store it on the server. Now when it wishes to compute the function,
it can request the data, decrypt it, and perform the computation locally. Likewise, one
method that ensures that an individual’s confidential data is not leaked when performing
the aggregate analysis is to add a lot of noise to the database while performing the tasks.1

Unfortunately, none of these solutions is satisfactory and scalable from the application
point of view. For example, in the first two cases, it might be very inefficient to download
the whole data every time, especially if the data is very large.

The failure of these trivial solutions results in the following pertinent questions while
handling large data: (i) how can one verify “efficiently” that files stored on possibly ma-
licious cloud servers are stored properly, (ii) how can one verify “efficiently” that the
computation performed by the remote server is done correctly on its data, and (iii) how
can one answer queries made by a malicious analyst on a private database with substantial
“accuracy” without leaking information about any individual in the database. The first
question forms the basis of most of the recent studies in proof-of-storage [4, 51], the second
question forms the basis of delegation of computation [39, 42], and the third question forms
the basis of the algorithmic developments in differential privacy [34].

The content of this thesis covers the first question in more detail. We study various
aspects of proof-of-storage. The primary aim of proof-of-storage is to assure a user that a
possibly malicious server has stored its file properly.

1This may not be trivial as noted by Mironov [61].

2

1.1 Problems Studied in this Thesis

With the advent of cloud computing, more and more data is being stored by users on
backup servers. Often, the user might not even have a local copy of the data. This makes
verifying the integrity of the data extremely important and brings the accountability of
the remote storage server into the picture. The problem is more pressing if the data is
accessed only rarely. In such a scenario, the natural question is how can a client be assured
that the entire outsourced data is stored properly all the time? For example, if the data
is rarely accessed and the storage server loses some data inadvertently, the server might
reason that there is no need to notify its clients! Alternatively, a malicious server might
even choose to delete rarely accessed files for economic reasons. To assuage such concerns,
a user would like to have an auditing procedure to verify that its data is stored correctly.
This was addressed formally in two concurrent works resulting in the two most widely used
security definitions.

1. Juels and Kaliski [51] formalized the notion of proof-of-retrievability (PoR) systems,
in which the security guarantee captures the requirement of a file being able to be
retrieved from the server through audits.

2. Atieniese et al. [3] formalized the notion of proof-of-data-possession (PDP) systems
which guarantee that a server has the file during the audits.

For a scalable solution, one would like to minimize the amount of computation and the
number of locations of the data a server has to access in order to respond correctly to the
client. In other words, one would like to reduce the following two cost factors.

1. Communication cost. The number of bits exchanged between the server and the user
during any audit protocol should be “small”.

2. Storage overhead cost. The amount of extra storage overhead on both the server and
the user should be small, and yet, a successful audit protocol proves beyond doubt
to the user that the server has stored the file properly.

Typically, a user divides the file in the form of blocks before storing it on the server.
In order for the user to be assured that the file is being stored correctly on the server, a
challenge-response protocol is periodically invoked by the user, wherein the server must
give a correct response to a random challenge chosen by the user. The response is typically
a function of one or more file blocks. We do not assume that the user is storing the

3

file. Therefore, in a basic version of a storage scheme that provides accountability of the
server, the user must precompute and store a sufficient number of challenge-response pairs
before transmitting the file to the server. The user may then erase the file and only retain
the precomputed challenge-response pairs. One other possibility is that the user stores a
private key and uses it to verify the correctness of the response of the server.

1.1.1 Unconditionally Secure Proof-of-Retrievability

In the recent past, many constructions of PoR-systems have been proposed. All these
constructions rely heavily on standard (though unproven) underlying hardness assump-
tions and cryptographic primitives. For example, the original construction of Juels and
Kaliski [51] uses pseudo-random functions. Likewise, the Shacham and Waters [72] scheme
uses cryptographic primitives like secure pseudo-random functions and secure signature
schemes. On top of that, their scheme uses hardness assumptions like RSA and the bi-
linear decisional Diffie-Hellman assumption. Therefore, it is natural to ask the following
question:

Question 1. Is it possible to reduce the dependence of the security of PoR systems on
underlying hardness assumptions or the existence of secure cryptographic primitives?

The above question motivates us to study PoR systems in the setting of unconditional
security. There are several advantages of studying unconditionally secure PoR schemes.
First, the schemes are easier to understand and analyze because we do not use any addi-
tional cryptographic primitives or unproven assumptions (e.g., pseudo-random functions,
signatures, bilinear pairings, message-authentication codes, hitting samplers, random or-
acle model, etc.). This allows us to give very simple exact analyses of various schemes.
Secondly, the essential role of error-correcting codes in the design and analysis of PoR
schemes becomes clear: codes are not just a method of constructing PoR schemes; rather,
every PoR scheme gives rise to a code in a natural way.

1.1.2 Retrievability vs Possession

The two security definitions mentioned above use the “extractor” paradigm. In this
paradigm, the security guarantee requires a proof of the existence of an entity called an
extractor that retrieves the original file from any server that passes the audits with some
reasonable probability. The definitions of PoR and PDP systems both use the extractor
paradigm in the same manner: if the server succeeds in the challenge-response protocol

4

with high enough probability, then there exists an extractor that can output the file. This
seems to suggest that there is little or no fundamental difference between PoR and PDP
systems in the present literature. Therefore, we raise the following question.

Question 2. What is a natural definition that captures the notion that the server has the
file when it responds to the audits, and are there protocols that satisfy this definition?

One might argue that “possessing” data should mean that the server has an exact copy
of the file M in its storage at a given time. However, it would be difficult to force the
server to do this, because the server can store M in some altered form, e.g., involving
encryption or compression. Then the server could reconstruct M whenever it responds to
a challenge by the client. However, it is conceivable that the challenge-response protocol
might necessitate the reconstruction of M , in the sense that a response cannot be generated
without first restoring M to its initial form. In this case, an exact copy of M would exist
in the server’s memory space at the time the response to the challenge is computed, and
we could say that the server “possesses” the data at this point in time.

1.1.3 Multiple-server Proof-of-Retrievability

Integrity guarantees of an outsourced file on multiple servers has been studied previously.
Curtmola, Khan, Burns, and Ateniese [27] studied the PDP system when multiple copies of
the same file are stored at different servers and proposed a scheme secure against a restricted
adversarial model. Subsequently, Bowers, Juels, and Oprea [19] studied a system where a
single file is distributed and stored on different servers and modeled the security against
adaptive adversaries. In some sense, these two studies can be seen as specific instances of
wide variety of PoR systems that are possible when there is more than one server.

For example, Bowers, Juels, and Oprea [19] do not specify explicitly in their security
definition when the extractor is supposed to succeed. To make this more precise, consider
the following model: the extractor succeeds if all (or the majority of) the servers succeed
with high enough probability. This model is too restrictive. This is because it may be
possible that some of the servers (even a small fraction) succeed with high enough proba-
bility to compensate for the failure of the rest of the servers. Moreover, it is never clearly
stated what level of interaction is allowed between the servers — are the servers allowed
to interact only before, or also during the audit protocol? These basic questions make it
imperative to investigate and study the formal security definition in the multi-server PoR
system (MPoR). We raise and answer the following two fundamental questions that arise
when a user stores its data on multiple servers.

5

Question 3. What is a reasonable definition of multi-server proof-of-storage systems that
reflects the natural integrity requirement of the data? Moreover, can we construct a proof-
of-storage system that is secure under this definition?

1.2 Organization of this Thesis

This thesis consists of the following chapters.

1. In Chapter 2, we give basic background of the mathematical concepts to the level
required to understand this thesis.

2. In Chapter 3, we introduce various concepts relating to the proof-of-storage and some
of the related works that are important in the context of this thesis.

3. In Chapter 4, we answer question 1. We provide a general analytical framework
for schemes that yield exact reductions that precisely quantify the conditions for
extraction to succeed as a function of the success probability of a proving algorithm.
We apply this analysis to several archetypal schemes. In addition, we provide a
new methodology for the analysis of keyed PoR schemes in an unconditionally secure
setting, and use it to prove the security of a modified version of a scheme due to
Shacham and Waters [72] under a slightly restricted attack model, thus providing
the first example of a keyed PoR scheme with unconditional security. We also show
how classical statistical techniques can be used to evaluate whether the responses of
the server are accurate enough to permit successful extraction. Finally, we prove a
new lower bound on storage and communication complexity of unconditionally secure
PoR schemes.

4. In Chapter 5, we answer question 2. We propose a new type of system that we term
a proof-of-data-observability system. Our definition tries to capture the stronger
requirement that the server must have an actual copy of M in its memory space
while it executes the challenge-response protocol. We give some examples of schemes
that satisfy this new security definition. We also analyze the efficiency and security
of the protocols we present, and prove some necessary conditions for the existence of
these kinds of protocols.

5. In Chapter 6, we answer question 3. We study secure storage on multiple servers.
Our contribution in MPoR systems is twofold. We formalize security definitions
for two possible scenarios: (i) when a threshold of servers succeed with high enough

6

probability (worst-case security), and (ii) when the average of the success probabilities
of all the servers is above a threshold (average-case security). Using coding theory,
we show instances of protocols that are secure both in the average-case and the
worst-case scenarios. We also extend the statistical techniques to help users evaluate
whether the responses of the servers are good enough to allow successful extraction in
the average case. We also give a generic transformation that creates a dynamic-MPoR
system from any single-server PoR system.

6. In Chapter 7, we conclude this thesis by giving some open problems that we believe
are important to better understand issues relating to the integrity and privacy of
large data.

7

Chapter 2

Preliminaries

In this chapter, we give the mathematical preliminaries and notations that we use in this
thesis. For the convenience of the reader, we enumerate the notations used in this thesis
as an appendix at the end of this thesis.

We start with various asymptotic notations that we use in this thesis. Let n be a
natural number. We use the following asymptotic notations:

• Big O(·) notation: f(n) = O(g(n)) if ∃k > 0 ,∃n0 ,∀n > n0 , f(n) ≤ k · g(n).

• Big Ω(·) notation: f(n) = Ω(g(n)) if ∃k > 0 ,∀n0 , ∃n > n0 , f(n) ≥ k · g(n).

• Big Θ(·) notation: f(n) = Θ(g(n)) if ∃k1 > 0 ,∃k2 > 0 ,∃n0 ,∀n > n0, k1 · g(n) ≤
f(n) ≤ k2 · g(n).

2.1 Basic Algebra

We give a brief exposition of basic algebra to the level required to understand this thesis.
We refer the readers to standard textbook on this topic for more details [14]. For a real
number x, we denote by |x| the absolute value of x. We use boldface lowercase letters to
denote vectors, for example, x, and x1, . . . ,xn to denote the entries of x. For two vectors
x and y, we denote by 〈x,y〉 =

∑
i xiyi the inner product of x and y. We let e1, . . . , en

denote the standard basis vectors in Rn, i.e., ei has entries 0 everywhere except for the
position i where the entry is 1. We denote by A‖b the vector formed by appending the
matrix A with the vector b. We overload this notation to denote concatenation of two

8

strings x and y as x ‖ y. We use the notation In to denote the identity matrix of order n.
Where it is clear from the context, we drop the subscript.

For a p×N matrix A, we denote by Aij the (i, j)-th entry of A. We denote by vec(A)
the vector of length pN formed by the entries of the matrix A, i.e., for an p×N matrix A,
the ((i − 1)N + j)-th entry of vec(A) is Aij, where 1 ≤ i ≤ p, 1 ≤ j ≤ N . The transpose
of a matrix A is a matrix B such that Bij = Aji. We use the notation AT to denote the
transpose of a matrix A. A matrix is a cyclic matrix if the i-th row of the matrix is formed
by cyclically shifting the entries of (i− 1)-th row one position to the right. In other words,
let x = (x1, . . . ,xn) be the entry of first row, then a cyclic matrix formed by x has the
following form:

x1 x2 . . . xn
xn x1 . . . xn−1
...

.
...

x2 x3 . . . x1

 .

We use the symbol Fq to denote a finite field of order q and Fq[x] to denote the ring of
polynomials over Fq. We call a polynomial random if all its coefficients are uniformly and
randomly picked from the underlying field. We refer the readers to standard textbooks on
this material, like Shoup [76]. For an integer n, we use the notation [n] to denote the set
{1, 2, . . . , n}. We use the notation bxc to denote the largest integer smaller than or equal
to x. We use ln(·) to denote the natural logarithm and lg(·) to denote logarithm to the
base 2.

We can represent a cyclic matrix by a polynomial. An n× n cyclic matrix over Fq can
be represented by a degree at most n− 1 polynomial a(x) ∈ Fq[x] such that the first row
is formed by the coefficients of a(x). For example, if a(x) = 1, then the corresponding
circular matrix is the identity matrix and if a(x) = 1 + x, the corresponding cyclic matrix
is

1 1 0 . . . 0
0 1 1 . . . 0
...

.
...

0 0 0 . . . 1
1 0 0 . . . 1

 .

9

2.2 Error-correcting Codes

Error-correcting codes provide a systematic way of adding redundancy to a message so that,
even if the receiver receives a corrupted message, the redundancy allows the receiver to
retrieve the original message. In this section, we give a brief exposition of error-correcting
codes to the level required to understand the material in this thesis. We refer the interested
reader to the excellent book on this topic by MacWilliams and Sloane [59]. We start with
some basic notions concerning error-correcting codes.

1. (Encoding). Let k < n. An encoding function defined over an alphabet Λ is a
function Enc : Λk → Λn that maps a message of k symbols to a string of n symbols
over the alphabet Λ. The encoded string is called a codeword.

2. (Error-correcting Code). An error-correcting code is the image of the encoding
function. We use the symbol C to denote the set of valid codewords (image of Enc
function).

3. (Decoding). The decoding function is a function that maps a string of length n over
the alphabet set Λ to a string of length k or a special symbol ⊥ to denote the failure
of decoding process.

The ratio k/n is the rate of the code. The length of the codeword is the block length of
the code and the length of the message is the message length. In this terminology, the rate
of a code is the ratio of the message length to the block length. The number of indices
where two codewords c1 and c2 differ is the Hamming distance, or more simply, distance
between c1 and c2, and is denoted by dist(c1, c2). The minimum distance of a code is the
minimum distance between any two distinct codewords. We reserve the symbol d to denote
the minimum distance of a code. The dimension of an error-correcting code is defined by
the quantity log|Λ| |C|, which is k in our case.

One of the important goals in an error-correcting code is to decode a possibly corrupted
message to the original message. Various decoding methods have been devised to correctly
decode corrupted messages. One of the most popular methods of decoding is nearest
neighbour decoding. Given a received codeword, nearest neighbour decoding finds the
codeword which has minimum distance from the received codeword. This method can
correct up to b(d− 1)/2c errors, where d is the distance of the code. It is also referred to
as minimum distance decoding in the literature.

10

2.2.1 Linear Codes

An important class of error-correcting codes is called linear codes. We define them next.

Definition 2.1. Let q be a prime power and let Fq denote the finite field with q elements.
A linear code C, defined over the alphabet Λ = Fq, of block length n and dimension k is a
k-dimensional linear subspace of Fnq .

We use the symbol [n, k]q to denote a linear code defined over Fq with block length n
and message length k. A linear code has lot of nice combinatorial and structural properties.
We list two of them below.

1. A linear code over Fq has qk elements, where k is the dimension of the code.

2. A linear code always contains the all zero string. Hence the distance of a linear code
is the minimum Hamming weight of a non-zero codeword.

We next present a well-known code family known as Reed-Solomon codes.

Reed-Solomon Codes [68]. An [n, k]q Reed-Solomon code, with k < n ≤ q, is defined
as follows: Let a1, . . . , an be n distinct elements from Fq. Let m = (m0, . . . ,mk−1) ∈ Fkq
be the message. Then define a degree-k polynomial pm(x) = m0 +m1x+ . . .+mk−1x

k−1.
The encoding of m is the evaluation of pm(·) on a1, . . . , an, i.e., (pm(a1), . . . , pm(an)).

Conventionally, a message is represented in form of a row vector. We will use the same
convention. A succinct way to represent a linear code is the matrix that generates the
codewords of the code.

Definition 2.2. An [n, k]q linear code C, defined over the alphabet Λ = Fq, can be repre-
sented by the set

{
xG : x ∈ Fkq

}
for a k × n matrix G of rank k; such a matrix is called

a generator matrix of C. Any generator matrix whose first k columns forms an identity
matrix is a generator matrix of the standard form. Equivalently, the code can be also rep-
resented by a subspace {y : y ∈ Fnq such that PyT = 0} for an (n−k)×n matrix P having
rank n− k; such a matrix is a parity check matrix of C.

Any generator matrix of a code can be converted to a standard form.

11

Example 1. The following is the generator matrix and parity check matrix of a code C that
has distance 3 and can correct a single-bit error:

G :=

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 , P :=

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

Since this code is defined over F2, we perform all the arithmetic modulo 2. Therefore, to en-
code a message x =

(
1, 0, 1, 1

)
, we compute xG mod 2 =

(
0, 1, 1, 0, 0, 1, 1

)
,

where xG mod 2 denotes coordinate-wise modulo arithmetic. Now suppose we receive
a message z and if no error has occurred, then PzT = 0T. For example, if we receive

z =
(
0, 1, 1, 0, 0, 1, 1

)
then PzT mod 2 =

(
0, 0, 0

)T
. Now suppose an error

has occurred at some position, say the fifth position, and z =
(
0, 1, 1, 0, 1, 1, 1

)
is

received, then PzT =
(
1, 0, 1

)T
. This corresponds to the fifth column of P. From this,

we conclude that the error has occurred at the fifth position. Mathematically, we have
PzT = PeT

5 in this case.

A parity check matrix gives a nice characterization of the distance of the corresponding
code.

Fact 2.1. The distance of a code is the minimal number of linearly dependent columns of
its parity check matrix.

An important concept in linear codes is the concept of dual code. For a linear code C,
its dual code, denoted by C⊥, is defined as the set of codewords

C⊥ = {x : 〈x, c〉 = 0 for all c ∈ C} .

The distance of a dual code is the dual distance of C. We reserve the symbol d⊥ to denote
the dual distance. The parity check matrix for a code C is the generator matrix for its
dual code C⊥. A self-dual code is a code for which C = C⊥. An [n, k]q code is a maximal
distance separable code if it satisfies the property d = n−k+1. The dual code of a maximal
distance separable linear code has a distance d⊥ = k + 1.

In general, the decoding algorithm requires the whole codeword to output the message.
However, when we only need some specific entry of the message, one can do better. There
are some known constructions of error-correcting codes in which the decoding algorithm
does not need to read the whole codeword. In fact, it can decode a particular entry of the
message by reading a very small number of the entries of the codeword. Such codes are
locally decodable codes [89].

12

Definition 2.3. Let loc be a fixed constant. An [n, k]2 code defined over the alphabet
Λ = {0, 1} is an [n, k, loc]-locally decodable code if there exists a decoding algorithm that,
on input an index 1 ≤ i ≤ k, needs at most loc positions of a codeword to output the bit at
the i-th position of the encoded message with high probability.

2.2.2 Low-density Parity-check Codes

Low-density parity-check (LDPC) codes were introduced by Gallager [38] in his doctoral
thesis. They are defined by (N − k) × N parity-check matrices. Let ϕ and ζ be small
constants. An LDPC code is defined as the null space of a parity check matrix P with
the following structural properties: (1) each column of P consists of at most ϕ non-zero
entries; (2) each row of P consists of at most ζ non-zero entries; and (3) both ϕ and ζ are
“small” compared to N and N − k, respectively. The constant ϕ is the row sparsity and
the constant ζ is the column sparsity of the LDPC code corresponding to P. For example,
in Example 1, the column sparsity for C is ζ = 3.

There are many constructions of LDPC codes, including algebraic constructions [29, 38],
probabilistic constructions [13], and constructions based on finite geometry [55]. In what
follows, we explore one probabilistic construction and one based on finite geometry.

Bennatan and Burshtein [13] analyzed three constructions of LDPC codes. The first
and the second constructions are based on the original construction of Gallager [38], while
the third construction is defined over Fq for a prime number q. In this thesis, we will be
mainly interested in the construction over Fq, for which they proved the following theorem.

Theorem 2.2. [13] Let ζ > 3 and ϕ be arbitrary constant natural numbers. Let R =
1−ζ/ϕ and let q be a prime. Then there exists a probabilistic construction of an (N−k)×N
LDPC matrix with row sparsity ζ and column sparsity ϕ such that there exists c1 > 0 and
a universal constant c2 such that

Pr[d ≤ c1N] = c2N
1−ζ/2.

In the above theorem, the explicit bound on c1 is as follows:

inf
c≥3

{
e−12+6 ln(ζ(q−1)/(1−R))/c

}
.

For an explicit combinatorial construction, we have to resort to the finite geometry
based codes. We need some notation before we give these results. Let EG(u, 2w) denote

13

the u-dimensional vector space of all 2uw u-tuples over F2w . A line in EG(u, 2w) is a
one-dimensional subspace that consists of 2w points. EG(u, 2w) is called an u-dimensional
Euclidean geometry over F2w . The following is a well-known result regarding codes based
on Euclidean geometry.

Theorem 2.3. Let u and w be positive integers, where w ≥ 2. Then there is an explicit con-
struction of a parity-check matrix for an LDPC code with 2uw columns and (2(u−1)w)(2uw−
1)/(2w − 1) rows and

d =
2uw − 1

2w − 1
+ 1, d⊥ = (2w + 2)2w(u−2), ϕ =

2uw − 1

2w − 1
, and ζ = 2w.

Proof. Let the parity check matrix be the incidence matrix whose columns are points in
EG(u, 2w) and rows are the lines in EG(u, 2w). Then the number of columns is 2uw and the
number of lines that intersects at any point in EG(u, 2w) are 2us−1

2w−1
. Therefore, the number

of rows are
2(u−1)w(2uw − 1)

2w − 1
.

Finally, any line passes through 2w points, which is the row sparsity of the incidence
matrix. The dual distance of this code follows from Calkin et al. [21]. Since the distance of
a code is the smallest number of linear dependent columns of the parity-check matrix and
two columns have only one 1 in common, it follows that the minimum number of linearly
dependent columns is ϕ+ 1. The result follows.

We remark that this construction can be extended to any finite field Fqw for any prime
q ≥ 2.

2.2.3 Linear Codes with Low-density Generator Matrices

The construction of Kou, Lin, and Fossorier [55] based on Euclidean geometry yields a
parity-check matrix which has bounded row and column sparsity. However, the correspond-
ing generator matrix in the standard form may not be sparse. In this thesis, we would need
a code whose generator matrix has bounded row and column sparsity when represented in
the standard form.1 Such a construction was given by Johnson and Weller [50] based on
difference families. We first define a difference family and then state their result.

1The condition that the columns and rows of the standard generator matrix are sparse may not always
be possible by considering the dual code from any low density parity-check matrices formed in Section 2.2.2.

14

Definition 2.4. Let G be an additive group of order v. Then L r-subsets of G, Bi =
{bi,1, . . . , bi,r} for 1 ≤ i ≤ L form a (v, r, λ)-difference family if every nonzero element of
G occurs exactly λ times among bi,x − bi,y for 1 ≤ i ≤ L and 1 ≤ x, y ≤ r.

Example 2. The sets {{0, 1, 7, 11}, {0, 2, 3, 14}, {0, 4, 6, 9}} form a (19, 4, 2)-difference fam-
ily over Z19.

Johnson and Weller [50] showed the following theorem.

Theorem 2.4. Let D1, . . . , DL be a (v, r, λ)-difference family. Then there is a parity-check
matrix with row sparsity (L− 1)r + 1 and column sparsity r.

Construction 1. The construction of Johnson and Weller [50] has the following form

P :=
(
C1 C2 . . . CL

)
,

where C1, . . . ,CL are v × v cyclic matrices. If one of these matrices is invertible, say C1,
then the corresponding generator matrix is

G :=

(C−1

1 C2)T

(C−1
1 C3)T

Iv(L−1)
...

(C−1
1 CL−1)T

(C−1
1 CL)T

Recall that a cyclic matrix can be completely characterized by the polynomial

a(x) = a0 + a1x+ . . .+ av−1x
v−1,

where the coefficients are the entries in the first row.

Let a1(x), . . . , aL(x) be the L polynomials corresponding to C1, . . . ,CL. For C1 to be
an invertible cyclic matrix, we need to ensure that the greatest common divisor of a1(x)
and xv − 1 is 1. This can be easily achieved by many choices of polynomials. An example
is a1(x) = 1, which corresponds to the identity matrix.

Example 3. Consider the construction of a code with v = 5, L = 2. This code is a rate 1/2
code. Let a1(x) = 1 + x and a2(x) = 1 + x2 + x4. Note that a2(x)−1 ≡ (x2 + x3 + x4)
mod (x5 − 1). The generator matrix consists of a 5× 5 identity matrix and a 5× 5 cyclic

15

matrix defined by the polynomial 1 + x3 ≡ (a−1
2 (x)a1(x)) mod (x5 − 1). In other words,

we have the following generator and parity check matrices:

G :=

1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1
0 0 1 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 0
0 0 0 0 1 0 0 1 0 1

 P :=

1 1 0 0 0 1 0 1 0 1
0 1 1 0 0 1 1 0 1 0
0 0 1 1 0 0 1 1 0 1
0 0 0 1 1 1 0 1 1 0
1 0 0 0 1 0 1 0 1 1

 .

The generator matrix has a row sparsity 3 and the parity check matrix has a row sparsity
5. The column sparsity of the generator matrix is 2 while that of the parity check matrix
is 3.

If we use a1(x) = 1, which corresponds to C1 being an identity matrix, we get the result
stated in Theorem 2.4. More details follow.

Let D2, . . . , DL be L− 1 sets of a (v, r, 1)-difference family such that

Di := {di,1, . . . , di,r} , for 2 ≤ i ≤ L.

The polynomial ai(x) for the cyclic matrix Ci for 2 ≤ i ≤ L is defined as follows:

ai(x) := xdi,1 + xdi,2 + . . .+ xdi,r .

To ensure that C1 is invertible, we use a1(x) = 1.

Using the observation that the distance of a code is the minimal number of linearly
dependent columns of its parity check matrix and that GPT is an all-zero matrix, we get
the following result.

Lemma 2.5. Let G be a generator matrix corresponding to the parity-check matrix defined
in Theorem 2.4. Then G is a generator matrix for a code with message length v(L − 1)
and block length vL, such that d = Lr and d⊥ = r + 2 with L ≥ 2.

It is well known that a (v, r, 1)-difference family exists for all v ≡ 1 mod 6 and r =
3 [25].

2.3 Information Theory

Information theory is a branch of mathematics that allows one to quantify information [26].
In this section, we give a brief overview of the central concepts in information theory.

16

1. (Shannon Entropy). A key measure of information is the Shannon entropy, which
measures the amount of information in a message over a specified alphabet. The
Shannon entropy H of a discrete random variable X taking values in Λ is defined as
follows:

H(X) := −
∑
x∈Λ

p(x) log2(p(x)),

where p(x) is the probability of symbol x. A fundamental property of entropy is that
0 ≤ H(X) ≤ log2 |Λ|, where the second equality holds if and only if all the symbols
are equally likely.

2. (Joint Entropy). The joint entropy of two discrete random variables X and Y is
defined as follows:

H(X;Y) := −
∑
x,y

p(x, y) log2(p(x, y)).

A fundamental property of joint entropy is that H(X;Y) ≤ H(X) + H(Y) with
equality if and only if the two random variables X and Y are independent.

3. (Conditional Entropy). The conditional entropy measures the uncertainty of ran-
dom variable X given the occurrence of random variable Y .

H(X|Y) := −
∑
y

p(y)
∑
x

p(x|y) log2(p(x|y)) = H(X;Y)−H(Y).

From the definition it is easy to see that H(X|Y) ≤ H(X).

4. (Mutual Information). Mutual information between two random variables mea-
sures the amount of information one can obtain about one variable by observing the
other variable. By definition it is symmetric. Given two random variables X and Y ,
the mutual information of X relative to Y is

I(X;Y) = H(X)−H(X|Y)

= H(X) + H(Y)−H(X;Y)

= H(Y)−H(Y |X)

= I(Y ;X).

2.4 Secret Sharing Schemes and their Variants

In this thesis, we use various primitives related to secret sharing schemes. A secret sharing
scheme allows a trusted dealer to share a secret between n players so that certain subsets

17

of players can reconstruct the secret from the shares they hold [15, 73]. We start the
discussion of secret sharing schemes by first defining the most basic form of secret sharing
scheme, the threshold secret sharing scheme [31].

Definition 2.5. Let τ and n be positive integers such that τ ≤ n. A (τ, n)-threshold
secret sharing scheme is a pair of algorithms: (ShareGen,Reconstruct) such that, on input
a secret S, ShareGen(S) generates n shares, one for each of the n players, such that the
following two properties hold: (i) Reconstruction: any subset of τ or more players can pool
together their shares and use Reconstruct to compute the secret s from the shares that they
collectively hold, and (ii) Secrecy: no subset of fewer than τ players can determine any
information about the secret S.

One can also define a threshold secret sharing scheme in the terms of entropy. Let us
denote the secret by the random variable S and let SA be the probability distribution on
the vectors of shares of a subset A ⊆ {P1, . . . ,Pn}.

Definition 2.6. Let Υ consist of all subsets of {1, . . . , n} of size at least τ . A (τ, n)-
threshold secret sharing scheme satisfies the following properties: (i) for every set A ∈ Υ,
H(S|SA) = 0, and (ii) for every B /∈ Υ, H(S|SB) = H(S).

A classic example of a threshold secret sharing scheme is Shamir’s secret sharing
scheme [73]. We first recall the Lagrange interpolation method. Let q be a prime or a
prime power. Let x1, . . . , xτ be τ distinct elements in the finite field Fq. Let a1, . . . , aτ be
arbitrary elements in Fq. Then there is a unique polynomial f(x) ∈ Fq[x] of degree at most
τ − 1 such that f(xi) = ai for all 1 ≤ i ≤ τ , namely:

f(x) :=
τ∑
i=1

(∏
1≤j≤τ,j 6=i

x− xj
xi − xj

ai

)
.

This formula for the unique polynomial f(x) is called Lagrange’s interpolation formula.

We can now describe Shamir’s secret sharing scheme. The dealer picks a finite field Fq
such that q > n. In the first stage, the dealer picks a random polynomial f(x) ∈ Fq[x] of
degree at most τ − 1 such that its constant term is the secret s that needs to be shared.
It then sends the share f(i) to player i. During the reconstruction phase, a subset of τ
players S come together and they compute

f(0) =
∑
i∈S

(∏
j∈S,j 6=i

j

j − i
f(i)

)
,

using the Lagrange’s interpolation formula by setting x = 0.

18

Example 4. Let q = 31, τ = 3, n = 8. Let the secret be s = 7. Then the dealer picks a
random polynomial f(x) = 7 + 19x+ 21x2 ∈ Z31[x]. The dealer then computes the shares
set (16, 5, 5, 16, 7, 9, 22, 15) and gives the i-th share to Pi. Now suppose P1,P5, and P7

come together, then they can compute the secret as follows:

f(0) ≡
(

16 · 5 · 7
(1− 5)(1− 7)

+
7 · 1 · 7

(5− 1)(5− 7)
+

22 · 1 · 5
(7− 1)(7− 5)

)
mod 31 = 7.

A threshold secret sharing scheme is a special case of a general secret sharing scheme.
In order to give the general definition of secret sharing scheme, we need to first define
access structures.

Definition 2.7. Let P1, . . . ,Pn be a set of n players. An access structure Υ is a set of
subsets of players that satisfies the following two conditions: (i) if A ∈ Υ and A ⊆ B ⊆
{P1, . . . ,Pn}, then B ∈ Υ, and (ii) if A ∈ Υ, then |A| > 0. The first property is called the
monotone property.

Example 5. Let us consider four parties with indices {1, 2, 3, 4}. The set of subsets Υ :=
{{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {1, 2, 3, 4}} is a monotone access structure. On the other
hand, the set of subsets Υ′ := {{1, 2} , {3, 4}} is non-monotonic, because {1, 3, 4} is not
included.

We can now give a more formal definition of secret sharing scheme using the concept
of access structures [12]. Let P1, . . . ,Pn be a set of n players. We assume that there is a
probability distribution whose support is the set of possible secrets.

Definition 2.8. Let n be a positive integer and let Υ be an access structure on the
set {P1, · · · ,Pn}. A (Υ, n)-secret sharing scheme is a pair of algorithms denoted by
(ShareGen,Reconstruct), such that, on input a secret S, ShareGen(S) generates n shares,
one for each of the n players, such that the following two properties hold: (i) Reconstruc-
tion: if the set of players specified by any set in Υ pool together their shares, they can
use Reconstruct to compute the secret s from the shares that they collectively hold, and (ii)
Secrecy: no subset not in Υ can determine any information about the secret S.

Just as in the case of threshold secret sharing, we can also give an entropy-based
definition of a secret sharing scheme. Let us denote the secret by the random variable S and
let SA be the probability distribution on the vectors of shares of a subset A ⊆ {P1, . . . ,Pn}.

Definition 2.9. Let Υ be an access structure as above. We say a secret scheme realizes an
access structure Υ, if the following properties hold: (i) for every set A ∈ Υ, H(S|SA) = 0,
and (ii) for every B /∈ Υ, H(S|SB) = H(S).

19

It is well known that the size of each players’ share in a secret sharing scheme must be
at least the size of the secret. If the secret that is to be shared is large, then this constraint
can be very restrictive. Schemes for which we can get a certain form of trade-off between
share size and security are known as ramp schemes [16].

Definition 2.10. (Ramp Scheme). Let τ1, τ2, and n be positive integers such that τ1 <
τ2 ≤ n. A (τ1, τ2, n)-ramp scheme is a pair of algorithms: (ShareGen,Reconstruct) such
that, on input a secret S, ShareGen(S) generates n shares, one for each of the n players,
such that the following two properties hold: (i) Reconstruction: any subset of τ2 or more
players can pool together their shares and use Reconstruct to compute the secret s from the
shares that they collectively hold, and (ii) Secrecy: no subset of τ1 or fewer players can
determine any information about the secret S.

Example 6. Suppose the dealer wishes to set up a (2, 4, n)-ramp scheme with the secret
(a0, a1). The dealer picks a finite field F with size greater than n such that a0, a1 ∈ F.
The dealer picks random elements a2, a3 independently from the field F and construct the
following polynomial of degree 3 over the finite field F: f(x) = a0 +a1x+a2x

2 +a3x
3. The

share for any player Pi is generated by computing si = f(i). It is easy to see that if two or
fewer players come together, they do not learn any information about the secret, and if at
least four players come together, they can use Lagrange’s interpolation formula to compute
the function f as well as the secret. However, if three players pool together their shares,
then they can learn some partial information about one of the other player’s share. For
concreteness, let F = F17. Then 5a1 ≡ 7s3 + 9s6 + s15 mod 17; therefore, players P3,P6,
and P15 can compute the value of a1.

We can also give an entropy-based definition of a ramp scheme.

Definition 2.11. Let P := {P1, . . . ,Pn} be a set of participating players. We say a scheme
is a (τ1, τ2, n)-ramp scheme, denoted by S, if the following properties hold: (i) if A ⊆ P
and |A| ≥ τ2, then H(S|SA) = 0, and (ii) if A ⊆ P and |A| ≤ τ1, then H(S|SA) = H(S).

The traditional definition of a threshold scheme is a ramp scheme with τ1 = τ2 − 1.
Linear codes have been used to construct secret sharing and ramp schemes for over thirty
years since the work of McEliece and Sarwate [60]. We will consider a construction from
an arbitrary code in this thesis. The following relation between an arbitrary code (linear
or non-linear) and a ramp scheme was shown by Paterson and Stinson [65].

Theorem 2.6. Let C be a code of length N , distance d and dual distance d⊥. Let 1 ≤ s <
d⊥−2. Then there is a (τ1, τ2, N−s) ramp scheme, where τ1 = d⊥−s−1 and τ2 = N−d+1.

20

Here s is the rate of the ramp scheme. If G is a generator matrix of a code C of
dimension k, then |C| = qk ≥ qd⊥−1. In other words, k ≥ d⊥ − 1.

Construction 2. The construction of a ramp scheme from a code is as follows. Let s and ρ
be positive integers and let (m1, . . . ,ms) ∈ Fs be the message. Let C be a code of length
n = ρ+s defined over a finite field F. We also require that the first s entries of a codewords
is the message to be encoded, i.e., the corresponding generator matrix is in the standard
form. Select a random codeword (c1 = m1, . . . , cs = ms, cs+1, . . . , cρ+s) ∈ C, and define
the shares as (cs+1, . . . , cρ+s).

Example 7. One can use Reed-Solomon code to construct a ramp scheme. Let q be a
prime and 1 ≤ s < t ≤ n < q. We know for a prime q, that there is an [N, k,N − τ + 1]q
Reed-Solomon code with d⊥ = τ + 1. This implies a (τ − s, τ, N)-ramp scheme over Fq.

2.4.1 Linear Secret Sharing Scheme

A ramp scheme constructed using a linear code as in Example 7 has a linearity property, i.e.,
for any two secrets S and S′ and respective share vectors (S1, S2, . . . , Sn) and (S′1, S

′
2, . . . , S

′
n),

the vectors (S1 + S′1, S2 + S′2, . . . , Sn + S′n) and (λS1, λS2, . . . , λSn) are valid share vectors
for the secrets S + S′ and λS respectively. A ramp scheme with this linearity property
is called a (τ1, τ2, n)-linear secret sharing scheme. In other words, linear secret-sharing
schemes allow one to share a secret among n people so that if the secret is changed using
some linear function, then one can compute the share corresponding to the new secret by
applying the same function on all the shares.

If a ramp scheme is constructed from a linear code as above, then for every two secrets,
the corresponding vectors of shares differ, in the Hamming sense, by at least d, the distance
of the underlying code.

When j = 1, we have the following instantiation.

Example 8. Let C be a linear code of length N+1 defined over a finite field F. Let S ∈ F be
the secret. Select a codeword (c0 = s, c1, . . . , cn) ∈ C, and define the shares as (c1, . . . , cn).
The result is a (d⊥ − 2, N − d + 2, N)-linear secret sharing scheme, where d⊥ is the dual
distance of C.

We use the notation LSSS(C) to denote a linear secret sharing scheme based on a code
C. When all the codewords in C are given, the encoding function, Enc(·) is very simple
and is as defined in Construction 2.

However, in most cases we have access only to the generator matrix of the underlying
code. The encoding function, Enc, in this case is defined as follows. Let the message to

21

shared be m = (m1, . . . ,ms) ∈ Fs
q using a ramp scheme based on a [k, ρ+ s] linear code C

with generator matrix G. We can assume that the generator matrix is in standard form
without any loss of generality because a generator matrix can be easily converted to its
standard form as per Definition 2.2. The encoding function now picks random entries
xj ∈ Fq for j ≥ s + 1 and constructs x = (m1, . . . ,ms,xs+1, . . . ,xk). We then compute
c = xG. The shares are (cs+1, . . . , cρ+s).

The following example illustrates the encoding function when k = s.

Example 9. Let

G :=

1 0 0 9 2 11 7
0 1 0 4 11 12 11
0 0 1 8 9 4 11

be a generator matrix of a [3, 7]13-linear code defined over F13. Let x =

(
10, 3, 5

)
∈

(F13)3 be the secret. In other words, j = k. Then xG =
(
10, 3, 5, 12, 7, 10, 2

)
and

12 is the share of P1, 7 is the share of P2, 10 is the share of P3, and 2 is the share of P4.

22

Chapter 3

Key Concepts in Proof-of-Storage

This chapter introduces two types of proof-of-storage systems: proof-of-retrievability (PoR)
systems and proof-of-data-possession (PDP) systems. Both of these concepts try to capture
two natural requirements of secure cloud storage: PoR captures the requirement that the
file can be “retrieved” from a server provided the server responds correctly to a large
fraction of challenge-response pairs, while PDP captures the notion that the storage server
has the file if it responds correctly to a large fraction of challenge-response pairs. Both
of these concepts are related to a well-established notion in cryptography called proof-
of-knowledge [9]. We start the discussion of secure cloud storage by first presenting the
essence of the definition of a proof-of-knowledge system.

Proof-of-knowledge. Proof-of-knowledge (PoK) systems are defined for binary rela-
tions. A binary relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗. We say that R is polynomially
bounded if there exists a polynomial function poly(·) such that |y|b ≤ poly(|x|b), where | · |b
denotes the bit-length of its argument, for all (x, y) ∈ R. We say that R is an NP relation if
it is polynomially bounded and there exists a polynomial time algorithm for deciding mem-
bership of a given pair (x, y) in R. If R is a binary relation, we let R(x) := {y : (x, y) ∈ R}
and LR := {x : ∃y such that (x, y) ∈ R}. LR is called the language corresponding to the
binary relation. The first coordinate in R is called the instance and any y ∈ R(x) is called
a witness for the instance x. For a given instance, there can be more than one witness.

A proof-of-knowledge for a relation R is a two-party interactive protocol between a
Prover and a Verifier with the following components. The two parties share a common
instance x of the relation R and the Prover claims to know a witness corresponding to
the instance x. A protocol is a proof-of-knowledge when the following is satisfied: if the

23

Verifier accepts the proof provided by the Prover that the instance belongs to R, then the
Prover indeed knows a witness y ∈ R(x). This has been defined formally by a paradigm
known as the extractor paradigm. To understand the need of this paradigm, we recall the
motivating discussion by Goldreich [40, Section 4.7.1.1]:

“What does it mean to say that a MACHINE knows something? Any standard
dictionary suggests several meanings for the verb to know, and most meanings
are phrased with reference to awareness, a notion that is certainly inapplicable
in our context. We must look for a behavioristic interpretation of the verb to
know. Indeed, it is reasonable to link knowledge with ability to do something,
be it (at the least) the ability to write down whatever one knows. Hence, we
shall say that a machine knows a string a if it can output the string a. But
this seems total nonsense: A machine has a well-defined output – either the
output equals a or it does not. So what can be meant by saying that a machine
can do something? Loosely speaking, it means that the machine can be easily
modified so that it will do whatever is claimed. More precisely, it means that
there exists a machine that, using the original machine as a black box, outputs
whatever is claimed.”

The above discussion leads to the definition of a knowledge extractor. A knowledge
extractor is a machine that is given access to a program, which specifies the behaviour of
the Prover in response to a particular challenge it receives. This program is also called
a proving algorithm. In the end, the extractor should output what the prover asserts as
its knowledge at the start of the two-party protocol. Formally, Bellare and Goldreich [9]
formulated the security definition of proof-of-knowledge systems as follows:

“Let η be the probability with which the Verifier accepts, on instance x, when
interacting with a Prover. A system is a proof-of-knowledge system if there exists
a probabilistic polynomial time machine Extractor and a polynomial poly(·) such
that Extractor runs in expected polynomial time1 and outputs a y ∈ R(x) with

1The definition of expected polynomial time [11, 18, 48] is not as straightforward as defining a polyno-
mial time algorithm. This can be seen through the following example. Suppose, we consider an algorithm
that runs in polynomial time on average as expected polynomial time, then this definition is not closed
under reductions. For example, let y be a fixed string and a function f(x) = 2|x| if x = y and f(x) = |x|2
otherwise. If n is the bit length of x, then E[f(x)] < n2 + 1, but E[f(x)2] > 2n. To remedy this, we use
a linear on average function `. An algorithm runs in an expected polynomial time if its running time is
bounded by a function f(·) with the following property: there exists a linear-on-the-average function ` and
a polynomial p(·) such that f(n) ≤ p(`(n)) for all sufficiently large n. The reason why we have an average
linear function `(·) is to express expected polynomial time as a function that has running time bounded
by a polynomial which has an average linear growth rate.

24

probability at least η/ poly(|x|b).”

The above definition was developed through a series of works [20, 36, 37, 81]. We discuss
the definition provided by Fiat and Shamir [37] and Fiat, Fiege, and Shamir [36] and its
relation to the proof-of-retrievability and proof-of-data-possession.

We give a simple protocol for proof of knowledge of graph isomorphism. In the example
below, we we use the symbol G := (V,E) to denote a graph defined over a vertex set V
with edge set E. The prover claims that two graphs G1 := (V1, E1) and G2 := (V2, E2)
are isomorphic, i.e., one can be transformed to another by relabelling the vertices. The
instance in this case consists of the two graphs (G1,G2) and a witness is a bijective function
φ : V1 → V2 such that (u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2.

Example 10. Let G1 := (V1, E1) and G2 := (V2, E2) be two graphs on N vertices and
suppose Prover claims that the two graphs are isomorphic. The proof-of-knowledge of
graph isomorphism is as follows. Prover selects a random isomorphic copy of G2 and sends
it to the Verifier, i.e., it picks a random permutation π on V2 and constructs a graph with
vertex set V2 and edge set E3 := {(π(u), π(v)) : (u, v) ∈ E2}. Let this graph be G. The
Verifier selects σ ∈ {1, 2} and ask the Prover to show an isomorphism between Gσ and G.
If σ = 1, the Prover sends the composition of the two functions π ◦φ, else it sends π to the
Verifier. The Verifier can now check the isomorphism between Gσ and G using the function
it receives from the Prover. The knowledge extractor of this protocol is described in detail
in [40, Section 4.7.6.2].

3.1 Proof-of-storage System

A proof-of-storage system has two entities: a server and a client. Proof-of-storage systems
are intended to guarantee that a server honestly stores the file of a client. In order for
the client to be assured that the file is being stored correctly by the server, it periodically
invokes a challenge-response protocol, wherein the server must give a correct response to
a random challenge chosen by the client. This response will typically be a function of one
or more file blocks. We do not assume that the client is storing the file. Therefore, in
the basic version of any scheme that provides a proof-of-storage, the client must precom-
pute and store a sufficient number of challenge-response pairs, before transmitting the file
to the server. After this is done, the client erases the file but retains the precomputed
challenge-response pairs. In a more sophisticated system, the client need not precompute
the challenge-response pairs, but can generate challenges during the time of audits. For
such schemes to work, typically, the client has a small secret key which is used to verify

25

the correctness of the responses made by the server. It is also possible that the client could
retain a copy of the file, in which case the responses do not need to be precomputed. This
might be done if the server is just being used to store a backup copy of the file.

Depending on who can initiate an audit and verify the correctness of the audits, one
can have two types of proof-of-storage systems: publicly verifiable proof-of-storage systems
and privately verifiable proof-of-storage systems. In a privately verifiable proof-of-storage
system, a client either stores a secret key or has some number of precomputed challenge-
response pairs. In a publicly verifiable proof-of-storage system, the client has a public key
corresponding to the private key of the server. The server generates a response that uses
the private key in a non-trivial manner and the client (or any other entity who wishes to
verify the integrity of the file) can use the public key to verify whether the responses are
generated correctly.

In a typical scheme, the file is “encoded” using an error-correcting code such as a Reed-
Solomon code before it is sent to the prover. The code provides redundancy, enabling
correction of erasures or corrupted file blocks.

Remark 1. We use the term Prover to identify any server that stores the file of a client.
We use the term Verifier for any entity that verifies whether the file of a client is stored
properly or not by the server. We also assume that a file is composed of message blocks of
an appropriate fixed length. If the file consists of a single block, we simply call that block
the file. �

The security definition of proof-of-storage systems follows closely the definition of proof-
of-knowledge systems; however, there are some key differences, on which we elaborate next
in more detail.

Difference Between Proof-of-knowledge and Proof-of-storage Systems

The definition of Bellare and Goldreich [9] for proof-of-knowledge is very broad, yet
there are subtle differences between the setting of proof-of-storage systems and proof-
of-knowledge systems, which means we cannot use the knowledge extractor of Bellare and
Goldreich [9] to define a proof-of-storage system. We list some of these differences below.

1. No natural binary relation: A proof-of-knowledge system is defined with respect to
a binary relation. The knowledge extractor is required to output a y ∈ R(x). In the
setting of proof-of-storage, there is no such instance-witness pair. In other words, it
is unclear if there is the natural pair whose first coordinate is the common knowledge

26

of the Prover and Verifier and the second coordinate is known only to the Prover. One
can consider the file that the Verifier stores on the Prover as the second coordinate in
the binary relation, but there is nothing specific which can act as the first coordinate.

2. Absence of common strings: Since there is no natural binary relation in the case of
proof-of-storage systems, there is no set of defined instance-witness pairs. Moreover,
it is not typical that the Prover and the Verifier share any randomness. More specif-
ically, the Prover has the encoded file, while the Verifier may store some fingerprints,
a secret key, or a set of of challenge-response pairs for the verification of audits. On
the other hand, in the setting of proof-of-knowledge schemes, the Prover and Verifier
share a common string that represents the instance to be verified and some additional
randomness.

In the rest of this chapter, we discuss how to handle these two issues so that we can
use the extractor paradigm to define proof-of-storage systems.

3.1.1 Proof-of-retrievability

A proof-of-retrievability (PoR) system incorporates a challenge-response protocol in which
a Verifier can check that a file is being stored correctly, along with an extractor that
will actually reconstruct the file, given a proving algorithm that responds correctly to a
sufficiently high percentage of challenges.

PoR systems can be classified based on whether or not the verifier has a secret key
which it uses to verify the response of the prover during a challenge-response protocol. A
PoR scheme is a keyless scheme if the verifier does not have a secret key; otherwise, it is
called a keyed scheme.

3.1.2 Security Definition

As we mentioned earlier, our first goal is to quantify the security afforded by the Verifier
by engaging in the challenge-response protocol. Here, “security” means that the file can
be correctly retrieved. The goal is that a Prover who can respond correctly to a large
proportion of challenges somehow “knows” (or can compute) the contents of the file (i.e.,
all the message blocks). This is formalised through the notion of an extractor, which takes
as input a description of a “proving algorithm” P for a certain unspecified file, and then
outputs the file.

27

In order to generate the proving algorithm, we provide the Prover with access to the
verification algorithm. We want to capture the case that a proving algorithm, which is
correct with a probability sufficiently close to 1, will allow the extractor to determine the
correct file. The probability that the proving algorithm P gives a correct response for a
randomly chosen challenge is denoted by succ(P). We assume that P always gives some
response, so it follows that P will give an incorrect response with probability 1− succ(P).

To summarise, we list the components in a PoR scheme we use. Note that we are
employing standard models developed in the literature by various works [19, 51, 72].

• The Verifier has a message m ∈ (Fq)k which he redundantly encodes (typically using
an error-correcting code) as M ∈ (Fq)n.

• M is given to the Prover. In the case of a keyed scheme, the Prover may also be
supplied with an additional tag, S.

• The Verifier retains appropriate information to allow him to verify responses. This
may or may not include a key K.

• Some number of challenges and responses are carried out by the Prover and Verifier.
In each round, the Verifier chooses a challenge and gives it to the Prover, and the
Prover computes a response which is returned to the Verifier. The Verifier then verifies
if the response is correct.

• The computations of the Prover are described by a proving algorithm P .

• The success probability of P is the probability that it gives a correct response when
the challenge is chosen uniformly at random.

The Extractor is given P and (in the case of a keyed scheme) K, and outputs an
unencoded message m̂. Extraction succeeds if m̂ = m.

Definition 3.1. A PoR system is an (η, ν)-PoR if there exists an Extractor such that the
Extractor succeeds with probability at least ν whenever the success probability of P is at
least η.

In this thesis, we only consider schemes where ν = 1, that is, the case when the
extraction is always successful when the success probability of P is at least η.

There are many ways in which we can classify PoR systems. We list some of them
below.

28

1. Based on the run time of Extractor: Dodis, Vadhan, and Wichs [33] classified PoR
systems into two categories based on the run time of the extractor.

Knowledge Soundness: We say a PoR system has knowledge soundness if the
Extractor runs in expected polynomial time in the size of the message and secu-
rity parameter.

Information Soundness: We say a PoR system has information soundness if there
is no restriction on the run-time of the Extractor.

2. Access to the proving algorithm: There are two ways an extractor can access the
proving algorithm: either in a black-box manner or in a non-black-box manner. In a
black-box setting, we allow the Extractor to access the proving algorithm by providing
it with input and allowing it to observe the output — it cannot see how the proving
algorithm operates. In the non-black box setting, the Extractor can see the internal
working of the proving algorithm. In this thesis, we only consider extractors that
access the proving algorithm in a black-box manner.

3. Number of challenges: If a PoR system has an a priori defined polynomial bound
on the number of audits that can be made, then it is called a bounded PoR system;
otherwise it is called an unbounded PoR system. Note that the term unbounded does
not mean that there is no restriction on the number of audits, it only means that
this bound is not specified a priori.

3.1.3 Proof-of-data-possession

Another type of proof-of-storage systems studied widely in the literature are proof-of-data-
possession (PDP) systems. This notion was formalized concurrently to PoR systems by
Ateniese et al. [3]. A PDP system permits the possibility that not all of the message blocks
can be reconstructed. A proof of data possession (PDP) system has the same setup as that
of proof-of-retrievability defined in the last section. In what follows, we use the definition
given by Ateniese et al. [3].

Security Definition

The security definition of a PDP system is defined in terms of the knowledge extractor of
Bellare and Goldreich [9]. To give a formal security definition, Ateniese et al. [3] used a
game-based definition. It is a game (denoted by GamePDP) between an adaptive Adversary

29

• Setup phase: If we are in the keyed setting, the Challenger runs the key
generation algorithm to output (sk, pk) and sends pk to the Adversary and keeps
sk secret.

• Learning phase: If we are in the keyed setting, then the Adversary makes
queries to generate tags on the messages of its choice. It uses these responses
to generate a proving algorithm P which it uses to reply to challenges in the
challenge-response phase. It also stores all the tags and the message blocks in
an arbitrary manner.

• Challenge-response phase: The Challenger generates a challenge and sends
it to the Adversary. The Adversary responds to the challenge using P .

An Adversary is said to win GamePDP if the Challenger outputs 1 after the verification
of the response of the adversary.

Figure 3.1: The Security Game of PDP System (GamePDP).

and a Challenger. We enumerate the key steps of the game in Figure 3.1. The guarantee
that the prover actually possesses the data is captured through the following formalization
given by Atienese et al. [3].

Definition 3.2. A PDP system guarantees data possession if Adversary wins GamePDP with
probability negligibly close to the probability that Challenger can extract those file blocks by
using a knowledge extractor of Bellare and Goldreich [9].

Our main criticism of Definition 3.2 is the use of the knowledge extractor in the security
definition.

3.2 A Brief Look at the Security Definitions

The two definitions of proof-of-storage systems have a lot of similarities with two earlier
proposed definitions of proof-of-knowledge systems by Fiege and Shamir [37] and Fiat,
Fiege, and Shamir [36]. Bellare and Goldreich [9] compared in detail the two definitions
for proof-of-knowledge systems. Their discussion raises the question whether the definitions
for PoR and PDP are the same or different from any practical point of view. We explore

30

this matter in more detail in Chapter 5. Here, we just mention the similarities of the
security definitions of PoR and PDP systems with two older definitions of PoK systems.

In what follows, let κ be a security parameter, let R be a binary relation, let x be
an instance of the relation R, let z be the auxiliary input to the Prover, and let r be the
randomness shared by Prover and Verifier. Let (Prover(z) ↔ Verifier)(x, r, κ) denote the
random variable which is 1 if and only if the Verifier accepts after its interaction with the
Prover with an instance x, and 0, otherwise. We use the notation AB to denote that an
entity (or algorithm) A has access to an algorithm B in a black-box manner.

3.2.1 PoR and the PoK Systems of Fiat, Fiege, and Shamir

We next show how the definition of PoR as stated in the literature closely resembles the
definition of PoK as given by Fiat, Fiege, and Shamir [36] We first state the definition of
PoK for a relation R as given by Fiat, Fiege, and Shamir [36].

For every constant a > 0, there exists a probabilistic polynomial time extractor
Extractor so that for all constant b > 0, all Prover, and all sufficiently large
x, r, κ, if

Pr[(Prover(z)↔ Verifier)(x, r, κ) = 1] > κ−a,

then
Pr[ExtractorP(x, r, k) ∈ R(x)] > 1− κ−b,

where P is the algorithm used by the Prover to respond to the challenges.

The constants a and b signify that the probabilities are non-negligible. If we compare
this definition with Definition 3.1 by considering η = κ−a and ν = 1− κ−b, then it is easy
to observe that Definition 3.1 is a modified form of Fiat, Fiege, and Shamir’s definition of
PoK system, taking into account the differences between proof-of-storage systems and PoK
systems mentioned earlier in Section 3.1.

3.2.2 PDP and the PoK Systems of Fiege and Shamir

Now we consider the similarity between the formal definition of PDP and the definition of
PoK given by Fiege and Shamir [37]. Fiege and Shamir defined a PoK for a relation R in
the following manner.

31

There exists a probabilistic expected polynomial time extractor, Extractor such
that for all Prover and all sufficiently large n, r, κ,

| Pr[(Prover(z)↔ Verifier)(x, r, κ) = 1]−Pr[ExtractorP(x, r, z) ∈ R(x)] |≤ negl(κ),

where negl(κ) is any function that grows more slowly than any inverse polyno-
mial function in κ and P is the algorithm used by the Prover to respond to the
challenges.

If we compare this with Definition 3.2, it is quite clear that the definition of PDP is
closely related to the definition of PoK given by Fiege and Shamir [37]. The only difference
is that the Verifier in Definition 3.2 does not have access to an instance x and there is no
shared randomness. These two points are exactly what we mentioned earlier in Section 3.1.
In other words, the present security definition of PDP systems can be seen as a modified
version of an earlier definition of PoK systems.

The differences that we mentioned in Section 3.1 raise a foundational issue in the
definition of PDP systems, which in turn leads to many unresolved questions. Definition 3.2
refers to a knowledge extractor of Bellare and Goldreich [9] to give the security definition.
Basically, they require that the knowledge extractor extracts the file from the proving
algorithm. However, the knowledge extractor of Bellare and Goldreich [9] is defined for a
relation and it is required to output a witness corresponding to the instance. To output
the witness, the knowledge extractor can rewind the proving algorithm to a certain point,
but it is allowed only to use the transcript of the messages exchanged between the Prover
and Verifier. In the context of PDP systems, this can be troublesome for many reasons. We
cite the two most important reasons here. The first issue of contention is that there is no
binary relation, so the input of the knowledge extractor is not clear. The second issue is
that in most practical scenarios, the Verifier would first encrypt and then outsource its data
to the server’s memory. In this case, no extractor can extract the file with access only to
the transcript of the communication between the Prover and the Verifier unless it can break
the underlying encryption scheme. For these reasons, we prefer to base our discussion on
the notion of PoR.

3.3 Previous Related Work

There have been two concurrent lines of work on proof-of-storage — one aiming to construct
PoR systems and one to construct PDP systems. The first construction of a PoR system
was proposed by Juels and Kaliski [51]. They encrypt the file and randomly embed a set

32

of random-valued check blocks called sentinels. The aim of encryption is to render the
sentinels indistinguishable from other file blocks. In order to protect deletion of a small
fraction of the data by a server, they also encode their encrypted data embedded with
sentinels using an error-correcting code. The Verifier challenges the Prover by specifying
the positions of a collection of sentinels and the Prover is required to return the associated
sentinel values. The idea behind the security of their system is that if the Prover has
modified or deleted a substantial portion of the file, then with high probability it will also
have suppressed a number of sentinels.

Ateniese et al. [3] introduced the idea of using homomorphic authenticators to give a
PDP system that has significantly less communication cost. Intuitively, a homomorphic
authenticator allows tags corresponding to a message to be generated in such a manner so
that the Prover can compute a valid authentication tag on the (correct) result of a certain
class of functions over the message blocks. Their schemes sample the server’s storage,
accessing a random subset of blocks. In doing so, the scheme provides a probabilistic
guarantee of possession. This scheme was improved in a follow-up work by Ateniese et
al. [6]. Shacham and Waters [72] later showed that the scheme of Ateniese et al. [3] can be
transformed into a PoR scheme by constructing an extractor that extracts the file from the
responses of the Prover on the audits. We use their scheme extensively; therefore, we give a
formal description of their scheme in Figure 3.2. Shacham and Waters [72] also instantiated
their scheme to give both publicly verifiable and privately verifiable PoR systems.

Bowers, Juels, and Oprea [19] extended the idea of Juels and Kaliski [51] and used
error-correcting codes. The main difference in their construction is that they use the idea
of an “outer” and an “inner” code (in the same vein as concatenated codes), to get a good
balance between the extra storage overhead and computational overhead in responding to
the audits. Dodis, Vadhan, and Wichs [33] provided the first example of an uncondition-
ally secure PoR scheme, also constructed from an error-correcting code, with extraction
performed through list decoding in conjunction with the use of an almost-universal hash
function. They also give different constructions depending on the computational capabili-
ties of the server.

There have been some other works that provide proof-of-storage. Ateniese et al. [7]
used homomorphic identification schemes to give efficient proof-of-storage systems. Wang
et al. [87] gave the first privacy preserving public auditable proof-of-storage systems. We
refer readers to the survey by Kamara and Lauter [52] regarding the architecture of proof-
of-storage systems.

33

Dynamic PoR. One of the desirable features of cloud-based storage is to allow updating
of the outsourced file at any given time. A PDP system that allows efficient updates is
called a dynamic PDP system. Likewise, a PoR system that allows efficient updates is
called a dynamic PoR system.

Erway et al. [35] gave the first dynamic-PDP systems. Wang et al. [88] further improved
the communication cost of this scheme. However, despite these efforts, construction of a
PoR scheme that allows dynamic update to the stored file eluded researchers until recently.
Cash et al. [23] resolved this question using oblivious RAM [23]. This was further improved
by Shi et al. [75] who used Merkle trees to give a more efficient dynamic-PoR. Subsequently,
Chandran et al. [24] defined and constructed a locally decodable and locally updatable code,
and showed how to construct a dynamic-PoR system using such codes.

Distributed Proof-of-storage. Proof-of-storage systems have been also studied in the
setting where there is more than one server or more than one client. The first such setting
was studied by Curtmola et al. [27]. They studied a multiple-replica PDP system, which is
the natural generalization of a single-server PDP system to t servers. Their scheme works
as follows. Let {fk}k∈K be a family of pseudo-random functions. The Verifier picks two
pseudo-random functions, say fK1(·) and fK2(·), and an encryption scheme. The Verifier
first generates an encryption of the file and divides it into n blocks m := (m1, . . . ,mn).
It then processes m to generate t replicas as follows: bi,j := mi + fK1(i ‖ j). The Verifier
then generates tags for all the t replicas in the same manner as Shacham and Waters using
fK2(·). The audit is done exactly in the same manner as described in the description of
Shacham-Waters’ scheme.

Bowers et al. [19] introduced a distributed system, which they called HAIL. Their system
allows a set of provers to prove the integrity of a file stored by a client. The idea in HAIL
is to exploit the cross-prover redundancy. They considered an active and mobile adversary
that can corrupt the whole set of provers.

Recently, Ateniese et al. [5] considered the problem from the client side, where n clients
store their respective files on a single prover in a manner such that the verification of the
integrity of a single client’s file simultaneously gives the integrity guarantee of the files of
all the participating clients. They called such a system an entangled cloud storage.

34

Input: The Verifier gets the message m. Let M be the message space and M∗ be
the space of encoded messages.

Initialization Stage: The Verifier performs the following steps for storing the mes-
sage:

1. Let {fk}k∈K be a family of pseudo-random functions. a Pick a random key
K ∈ K and a secret a ∈ Fq.

2. Pick a function e :M→M∗. Compute e(m) = M and break it into the
form of n blocks, so M = (M [1], . . . ,M [n]). Compute S[i] = fK(i)+aM [i]
for 1 ≤ i ≤ n and give the set of n-tuples {M [i], S[i]}1≤i≤n to the Prover.

Audit Phase: During the audit phase, the Verifier interacts with the Prover as de-
scribed in the following protocol:

1. The Verifier picks a challenge V ∈ Fnq having Hamming weight `. It sends
the challenge V to the prover.

2. The Prover treats M and S as vectors in Fnq and computes R1 = 〈M,V 〉
and R2 = 〈S, V 〉. The response of the Prover is the pair (R1,R2).

3. The Verifier checks whether R2 = aR1 + 〈V,B〉, where B is the vector
(fK(1), . . . , fK(n)).

aA pseudo-random function family is a family of functions with the following property: no efficient
algorithm can distinguish (with significant advantage) between a function chosen randomly from the
pseudo-random function family and a function whose outputs are fixed completely at random.

Figure 3.2: Shacham-Waters Scheme for a Single-prover PoR System [72].

35

Chapter 4

Unconditionally Secure
Proof-of-retrievability Systems

The focus of this chapter is the general construction of extractors for PoR schemes in the
setting of unconditional security. This is a departure from most previous schemes that
were secure only in setting of the computational security. This raises the natural question:
why should one consider the setting of unconditional security when there are many known
efficient constructions of computationally secure PoR schemes? There are several reasons
why we believe it is important to analyze unconditionally secure PoR schemes. For exam-
ple, our main results (Theorem 4.1) show close connections between error-correcting codes
and unconditionally secure PoR systems. In addition to this, it is easier to understand
and analyze unconditionally secure PoR schemes because we do not rely on an underlying
hardness assumptions or cryptographic and complexity-theoretic primitives (for example,
pseudo-random functions, signatures, bilinear pairings, message authentication codes, hit-
ting samplers, random oracle model, etc.).

4.1 Our Contribution

In this chapter, we compute the precise conditions under which extraction is possible when
the servers have unbounded computational power. We show that extraction in this setting
can be interpreted naturally as nearest-neighbour decoding in a certain code (which we
call a “response code”). This gives us a new methodology to analyze the exact security of
PoR schemes. In the past, error-correcting codes have been used in specific constructions of

36

PoR schemes. Concisely, our result shows that error-correcting codes are not just a method
of constructing PoR schemes, but that any PoR scheme secure against a computationally
unbounded adversary can be seen as a code in a natural way.

We quantify the security of a PoR scheme by specifying a value η and proving that
the extraction process will always be able to extract the file, given a proving algorithm P
with success probability succ(P) > η. This is in contrast with the earlier works where the
extractor is allowed to fail with some specified probability close to 0. We use this main
result to analyze various PoR schemes in both the keyed as well as keyless setting.

The content of this chapter is based on the following paper [66]:

Maura B. Paterson, Douglas R. Stinson, and Jalaj Upadhyay. A coding theory
foundation for the analysis of general unconditionally secure proof-of-retrievability
schemes for cloud storage. Journal of Mathematical Cryptology, 7(3):183–216,
2013.

Organization of the Chapter. This chapter is organized as follows.

• In Section 4.2, we derive bounds on the success probability of a prover in an arbitrary
keyless challenge-response protocol that allows successful extraction. We use this as
the basis to analyze various instantiations of keyless PoR schemes in Section 4.3. The
bounds that we compute for these schemes are exact, but somewhat complicated to
state. In Section 4.5.1, we give an estimate that is far easier to compute.

• The situation for keyed schemes is somewhat more complicated. For instance, con-
sider the scheme of Shacham and Waters [72] modified appropriately to the setting
of unconditional security. For this scheme, we note in Section 4.4 that if the ad-
versary is given the verification oracle, then we cannot have unconditional security.
We also show that, even in the absence of a verification oracle, one cannot prove
anything non-trivial for any proving algorithm. On the other hand, we can prove
non-trivial results if we analyze the success probability of a proving algorithm in the
average case, over the set of keys that are consistent with the information given to
the prover. This allows us to construct (and analyze) the first unconditionally secure
unbounded-use keyed PoR scheme.

• The bounds in Section 4.2 and 4.4 state that successful extraction can be accom-
plished whenever succ(P) exceeds some pre-specified threshold. But this raises the
practical question as to how the user is able to estimate succ(P). This is because in

37

practice, a user interacts with the server only through the challenge-response proto-
col. In Section 4.5, we use classical statistical techniques that can help us determine
whether or not the responses of the prover are accurate enough to permit successful
extraction.

• Our construction for an unbounded-use unconditionally secure PoR scheme requires a
Verifier to store a lot of secret information. We show in Section 4.6 that a significant
additional storage requirement cannot be avoided in the setting of unconditional
security by proving a new lower bound on storage and communication requirements
of PoR schemes. This improves the information-theoretic lower bound for memory
checkers and authenticators proven in Naor and Rothblum [62].

4.1.1 Comparison with Dodis, Vadhan, and Wichs

There are many previous works that use concepts in error-correcting codes to provide
efficient PoR schemes. In the context of the construction of efficient PoR schemes, Dodis,
Vadhan, and Wichs [33] remarked,

“there is a clear relation between our problem and the erasure/error decoding
of error-correcting codes.”

This chapter is in some sense a general exploration of these relations, extending the
work of Dodis, Vadhan, and Wichs [33]. However, there are several key differences between
our approach and that of Dodis, Vadhan, and Wichs [33]:

• In the setting of unconditional security, Dodis, Vadhan, and Wichs [33] only provide
bounded-use schemes. Our scheme is the first unbounded-use scheme in this setting.

• Dodis, Vadhan, and Wichs [33] mainly use a (Reed-Solomon) code to construct a
specific PoR scheme. In contrast, we study the connections between an arbitrary
PoR scheme and the distance of the (related) code that describes the behaviour of
the scheme on the possible queries that can be made to the scheme. Stated another
way, our approach is to derive a code from a PoR scheme, and then to prove security
properties of the PoR scheme as a consequence of properties of this code.

• Dodis, Vadhan, and Wichs [33] use various tools and algorithms to construct their
PoR schemes, including Reed-Solomon codes, list decoding, almost-universal hash
families, and hitting samplers based on expander graphs. We just use an error-
correcting code in our analyses.

38

• We base our analyses on nearest-neighbour decoding (rather than list decoding, which
was used in Dodis, Vadhan, and Wichs [33]).

• We work under a stronger requirement than Dodis, Vadhan, and Wichs [33]. More
concretely, we require extraction to succeed with probability equal to 1, whereas in
[33], extraction succeeds with probability close to 1, depending in part on properties
of a certain class of hash functions used in the protocol.

• The “PoR codes” in Dodis, Vadhan, and Wichs [33] are actually protocols that consist
of challenges and responses involving a prespecified number of file blocks; we allow
challenges in which the responses depend on an arbitrary number of file blocks.

• We work in the non-asymptotic setting, giving exact and concrete bounds, whereas
the analyses in [33] are asymptotic.

4.2 Unkeyed PoR Schemes: the General Result

The simplest form of a PoR scheme is the one proposed by Juels and Kaliski [51]. In this
scheme, the Verifier stores a random position of the encoded file and challenges the server
on it during the audits. This scheme is very simple, but it only allows a bounded number of
audits and requires storage on the client proportional to the number of audits it would like
to make during the entire duration when the file is stored on the server. In order to make
PoR schemes more efficient, we need a more general form of challenge-response protocol.
For example, we might consider a response that is computed as a function of one or more
file blocks.

To study the PoR system in the general case, we need to consider arbitrary challenges
and their corresponding responses. We aim to be as general as possible in the setup. Let
Γ denote the challenge space from which a challenge is picked. Let M∗ denote the space
of all encoded messages. Let % :M∗ × Γ → ∆ be the response function, which computes
the response Resp = %(M,Chal) given the encoded file M and the challenge Chal. We
call the codomain of % the response space.

We assume that the Adversary outputs a deterministic proving algorithm P . The re-
quirement of a deterministic proving algorithm is without any loss of generality. This
follows from the observation that any probabilistic proving algorithm can be replaced by a
deterministic algorithm relative to which the success of the extractor defined in our main
result would not decrease (this would be done by hardwiring the random bits used in the

39

probabilistic proving algorithm). This would increase the computation time by a factor
exponential in the number of random bits used by the probabilistic algorithm.

The success probability of P is defined to be

succ(P) = PrChal∈Γ[P(c) = %(M, c)],

where M = e(m).

For an encoded file M ∈M∗, we define the response vector

~rM = (%(M,Chal) : Chal ∈ Γ) (4.1)

as the set of all possible responses for a given encoded file.

We define the response code (or more simply, the code) of the scheme to be the set

R∗ = {~rM : M ∈M∗}

of all the response vectors corresponding to all possible files.

The Generalized Scheme is presented in Figure 4.1. Observe that R∗ ⊆ ∆γ, where
γ = |Γ|. We will assume that the mapping M 7→ ~rM is an injection, and therefore the
Hamming distance of R∗ is greater than 0 (in fact, we make this assumption for all the
schemes we consider in this chapter).

The following theorem relates the success probability of the extractor to the Hamming
distance of the response code and the size of the challenge.

Theorem 4.1. Let d∗ be the Hamming distance of the response code R∗ and γ be the size
of the challenge space of the Generalized Scheme. Suppose that P is a proving algorithm for
the Generalized Scheme such that succ(P) > 1 − d∗/(2γ). Then there is an Extractor that
will always output m̂ = m.

Proof. In order to prove the above theorem, we construct an Extractor that will take as
input a proving algorithm P for some unknown file m and output the same file m ∈ M.
We next describe the Extractor.

1. On input P , compute the vector R′ = (r′Chal : Chal ∈ Γ), where r′Chal = P(Chal)
for all Chal ∈ Γ (i.e., for every Chal, r′Chal is the response computed by P when it
is given the challenge Chal).

2. Find M̂ ∈M∗ so that dist(R′, ~rM̂) is minimised.

40

Initialization
Given a file m ∈ M, encodea m as e(m) = M ∈ M∗. The Verifier gives M
to the Prover. The Verifier also generates a random challenge Chal ∈ Γ and
stores Chal and %(M, c).

Challenge and Response: During an audit, the verifier and the prover interacts
as follows.

• The Verifier gives the challenge Chal to the Prover.

• The Prover responds with Resp = %(M,Chal).

• The Verifier checks that the value Resp returned by the Prover matches
the stored value %(M,Chal).

aWe assume that the encoding function e(·) is deterministic and invertible (its purpose is solely
to add redundancy).

Figure 4.1: Generalized Scheme

3. Output m̂ = e−1(M̂).

We now prove that the output of the Extractor is actually m. Let R′ be the γ-tuple
of responses computed by P and denote δ = dist(~rM , R

′), where M = e(m). Denote

η = succ(P). Then it is easy to see that η = 1 − δ/γ. We want to prove that M̂ = M .
We have that ~rM̂ is a codeword in R∗ closest to R′. Since M is a codeword such that
dist(~rM , R

′) = δ, it must be the case that dist(~rM̂ , R
′) ≤ δ. By the triangle inequality, we

get
dist(~rM , ~rM̂) ≤ dist(~rM , R

′) + dist(~rM̂ , R
′) ≤ δ + δ = 2δ.

However,

2δ = 2γ(1− η) < 2γ

(
d∗

2γ

)
= d∗.

Since ~rM and ~rM̂ are codewords within distance d∗, it follows that M = M̂ and the Extractor
outputs m = e−1(M), as desired.

We take a moment to take a closer look at the above theorem. First note that The-
orem 4.1 gives us information soundness and not knowledge soundness, i.e., we do not
aim to construct an Extractor that runs in expected-polynomial time. Secondly, the above

41

theorem relates the success of the extraction process with the relative distance of the re-
sponse code R∗, which equals d∗/γ. The relative distance of a code is one of the important
properties of a code, and is an important parameter when the efficiency of a coding scheme
is considered.

To better understand the statement of the theorem, we resort to the example protocol
mentioned at the start of this section. Let M = Fkq be the space from which a file is
picked and the encoding function e : M → M∗, where M∗ ⊆ Fnq . Let M = e(m) be
the encoding of a file m. We define the challenge space to be {1, . . . , n} and the response
function %(M,Chal) = MChal for a challenge Chal ∈ {1, . . . , n}. We call this scheme the
Basic Scheme.

Since the distance of the response code is d and the number of possible challenges is n,
Theorem 4.1 gives us the following.

Corollary 4.2. Suppose that P is a proving algorithm for the Basic Scheme for which
succ(P) > 1 − d/(2n), where the minimum Hamming distance of the set of encoded files
M∗ is d and M is an n-block encoded message. Then there is an Extractor that always
outputs the file m.

The basic scheme is very simple, but is not efficient in the sense that the verifier has to
store as many encoded file blocks as the number of challenges it is going to make throughout
the time when the file is stored on the server. Over the last few years, there have been
considerable improvements made to the Basic Scheme. We cover some of them in more
detail in Section 4.3.

4.3 Analysis of Several Keyless Schemes

In Section 4.2, we gave a general bound on the success probability of a proving algorithm
that allows successful extraction of the file. In this section, we will use this as the basic
recipe to analyze various PoR schemes.

4.3.1 PoR Code Construction of Dodis, Vadhan, and Wichs

We first analyze the “Basic PoR Code Construction” from Dodis, Vadhan, and Wichs [33]
using the result in Theorem 4.1. This is a simple generalization of the basic scheme that
we presented in the last section. We present the scheme in Figure 4.2. In this scheme, we
have ∆ = (Fq)`.

42

Initialization
Given a file m ∈ M, encode m as e(m) = M ∈ M∗. The Verifier gives
M = (m1, . . . ,mn) to the Prover.

Challenge
A challenge is a subset of ` indices J ⊆ {1, . . . , n}. Therefore, Γ = {J ⊆
{1, . . . , n}, |J | = `} and γ =

(
n
`

)
.

Response
Given the challenge J = {i1, . . . , i`} where 1 ≤ i1 < . . . < i` ≤ n, the correct
response is the `-tuple

%(M,J) = (mi1 , . . . ,mi`).

Suppose the Verifier receives a response (r1, . . . , r`). He then checks that
rj = mij for 1 ≤ j ≤ `.

Figure 4.2: Multiblock Challenge Scheme

Lemma 4.3. Let n be the block length of M and let every challenge in the Multiblock
Challenge Scheme be an `-tuple. Let the Hamming distance ofM∗ be d. Then the Hamming
distance of the response code of the Multiblock Challenge Scheme, described in Figure 4.2,
is d∗ =

(
n
`

)
−
(
n−d
`

)
.

Proof. Suppose that M,M ′ ∈ M∗ and M 6= M ′ such that M = (m1, . . . ,mn) and M ′ =
(m′1, . . . ,m

′
n). Denote dist(M,M ′) = δ. It is easy to see that ~rM = ~rM ′ if and only if

J ⊆ {i : mi = m′i}, where ~rM is as defined by Equation 4.1. From this, it is immediate
that dist(~rM , ~rM ′) =

(
n
`

)
−
(
n−δ
`

)
. The desired result follows because δ ≥ d.

Now note that

1− d∗

2γ
= 1−

(
n
`

)
−
(
n−d
`

)
2
(
n
`

) =
1

2
+

(
n−d
`

)
2
(
n
`

) . (4.2)

Combining Equation (4.2) with Lemma 4.3 and Theorem 4.1 gives us the following
result.

43

Theorem 4.4. Let n and ` be as defined in Lemma 4.3. Suppose that P is a proving
algorithm for the Multiblock Challenge Scheme for which

succ(P) >
1

2
+

(
n−d
`

)
2
(
n
`

) ,
where the Hamming distance of M∗ is d. Then there is an Extractor that always outputs
the file m.

Remark 2. When we set ` = 1 in Theorem 4.4, we obtain Corollary 4.2. �

4.3.2 Keyless Analogue of Shacham-Waters’ Scheme

In this subsection, we consider the keyless analogue of the construction of Shacham and
Waters [72]. We call the scheme the Linear Combination Scheme because a response consists
of a specified linear combination of file blocks.

We illustrate the Linear Combination Scheme using the following example.

Example 11. Let q = 11. Let the message that the client wishes to store be M =(
4, 6, 3, 2

)
. The Verifier picks a random challenge V =

(
1, 0, 0, 1

)
and computes

〈M,V 〉 = 6. At later time, the Verifier sends the challenge V to which the Prover responds
by computing 〈M,V 〉 = 6.

To apply Theorem 4.1, we need to compute the number of all possible challenges that
can be made and the distance of the response code corresponding to the Linear Combination
Scheme. The number of challenges can be computed easily: γ =

(
n
`

)
(q − 1)`. We need the

following lemma to compute the distance of the response code.

Lemma 4.5. Suppose that ` ≥ 1 and X ∈ (Fq)` has Hamming weight equal to `. Then the
number of solutions V ∈ (Fq)` to the equation 〈V,X〉 = 0 in which V has Hamming weight
equal to `, which we denote by a`, is given by the formula

a` =
q − 1

q
((q − 1)`−1 − (−1)`−1). (4.3)

Proof. We prove the result by induction on `.

Base Case: When ` = 1, there are no solutions, so a1 = 0, agreeing with Equation (4.3).

Induction: Now assume that Equation (4.3) gives the number of solutions for ` = s− 1,
and consider ` = s. Let X = (x1, . . . , xs) and define X ′ = (x1, . . . , xs−1). By induction,

44

Initialization
Given a file m ∈ M, encode m as e(m) = M ∈ M∗. The Verifier gives
M = (M1, . . . ,Mn) to the Prover.

Challenge
A challenge is an n-tuple V = (v1, . . . , vn) ∈ (Fq)n having Hamming weight `.

Response
Given the challenge V = (v1, . . . , vn) of Hamming weight `, the correct re-
sponse is

%(M,V) = 〈V,M〉,

where M = (m1, . . . ,mn) and the computation is performed in Fq. Suppose
the Verifier receives a response r ∈ Fq. He then checks that r = 〈V,M〉.

In this scheme, ∆ = Fq.

Figure 4.3: Linear Combination Scheme

the number of solutions to the equation 〈V ′, X ′〉 = 0 in which V ′ has Hamming weight
s − 1 is as−1. Each of these solutions V ′ can be extended to a solution of the equation
〈V,X〉 = 0 by setting vs = 0; in each case, the resulting V has Hamming weight equal to
s − 1. However, any other vector V ′ of weight s − 1 can be extended to a solution of the
equation 〈V,X〉 = 0 which has Hamming weight equal to s. Therefore, we have

as = (q − 1)s−1 − as−1

= (q − 1)s−1 −
(
q − 1

q
((q − 1)s−2 − (−1)s−2)

)
= (q − 1)s−1

(
1− 1

q

)
+
q − 1

q
(−1)s−2

=
q − 1

q
((q − 1)s−1 − (−1)s−1).

We will now compute the distance d∗ of the response code M∗. Here is a lemma that
will be of use in computing d∗.

45

Lemma 4.6. Suppose that M,M ′ ∈M∗ and M 6= M ′. Let n be the size of the message M
and M ′. Let ` be the Hamming weight of any challenge in the Linear Combination Scheme.
Denote δ = dist(M,M ′). Let ~rM and ~rM ′ be the corresponding vectors in the response code
of the Linear Combination Scheme. Then

dist(~rM , ~rM ′) = (q − 1)`
((

n

`

)
−
(
n− δ
`

))
−
∑
w≥1

(
δ

w

)(
n− δ
`− w

)
(q − 1)`−waw, (4.4)

where the aw’s are given by Equation (4.3).

Proof. Suppose that M,M ′ ∈M∗ and M 6= M ′. Denote

M = (m1, . . . ,mn) and M ′ = (m′1, . . . ,m
′
n),

and let δ = dist(M,M ′). Let

J = {i : mi = m′i} and J ′ = {1, . . . , n} \ J.

Observe that |J | = n− δ and |J ′| = δ. For any V = (v1, . . . , vn) having Hamming weight
equal to `, define

JV = {j ∈ J : vj 6= 0} and J ′V = {j ∈ J ′ : vj 6= 0}.

Denote w = |J ′V |; then |JV | = `− w.

Suppose w ≥ 1. Then, given JV and J ′V , the number of solutions to the equation
〈V,M〉 = 〈V,M ′〉 is precisely (q − 1)`−waw. When w = 0, the number of solutions is
(q−1)`. Summing over w, and considering all possible choices for JV and J ′V , we have that
the total number of solutions to the equation 〈V,M〉 = 〈V,M ′〉 is(

n− δ
`

)
(q − 1)` +

∑
w≥1

(
δ

w

)(
n− δ
`− w

)
(q − 1)`−waw. (4.5)

The desired result follows.

We can obtain a very accurate estimate for d∗ by observing that

aw ≈
(q − 1)w

q

46

is a very accurate approximation. After making this substitution, it is easy to see that
Equation (4.5) is minimised when δ = d. This minimises Equation (4.4), so we obtain

d∗ ≈
(
n

`

)
(q − 1)` −

(
n− d

`

)
(q − 1)` −

∑
w≥1

(
d

w

)(
n− d

`− w

)
(q − 1)`

q
. (4.6)

We have ∑
w≥1

(
d

w

)(
n− d

`− w

)
(q − 1)`

q
=

(q − 1)`

q

∑
w≥1

(
d

w

)(
n− d

`− w

)
=

(q − 1)`

q

((
n

`

)
−
(
n− d

`

))
,

where the last equality follows from Graham, Knuth, and Patashnik [44]. Therefore, from
Equation (4.6), we get

d∗ ≈ (q − 1)`
((

n

`

)
−
(
n− d

`

))
− (q − 1)`

q

((
n

`

)
−
(
n− d

`

))
=

(q − 1)`+1

q

((
n

`

)
−
(
n− d

`

))
. (4.7)

The following theorem uses the estimated value for d∗ derived in Equation (4.7).

Theorem 4.7. Let n and ` be as defined in Lemma 4.6. Suppose that P is a proving
algorithm of the Linear Combination Scheme for which

succ(P) &
1

2
+

1

2

(
1

q
+

(q − 1)
(
n−d
`

)
q
(
n
`

))
,

where the Hamming distance of M∗ is d. Then there exists an Extractor which will always
output the file m.

4.4 The Shacham-Waters Scheme

We now turn our attention to the Shacham-Waters prototype [72] which is a keyed proof-
of-retrievability scheme. The term “keyed” means that the Verifier has a secret key that is
not provided to the Prover. This key is used to verify responses in the challenge-response

47

• The key K consists of a ∈ Fq and B = (b1, . . . , bn) ∈ (Fq)n. K is retained by
the Verifier.

• The encoded file is M = (m1, . . . ,mn) ∈ (Fq)n.

• The tag is S = (σ1, . . . , σn) ∈ (Fq)n, where S is computed using the following
(vector) equation in Fq:

S = B + aM. (4.8)

The file M and the tag S are given to the Prover.

• A challenge is a vector V = (v1, . . . , vn) ∈ (Fq)n.

• The response consists of (Resp1,Resp2) ∈ (Fq)2, where the following compu-
tations are performed in Fq:

Resp1 = 〈V,M〉 (4.9)

and
Resp2 = 〈V, S〉. (4.10)

• The response (Resp1,Resp2) is verified by checking that the following condi-
tion holds in Fq:

Resp2
?
= aResp1 + 〈V,B〉. (4.11)

Figure 4.4: Modified Shacham-Waters Scheme

protocol, and it is also provided to an extraction algorithm as an input. The use of a key
permits an arbitrary number of challenges to be verified, without the Verifier having to
precompute the responses.

The construction of Shacham and Waters [72] is insecure in the unconditional security
framework. This is because a computationally unbounded adversary can simply break the
underlying hardness assumption, which in this case leads to to the scheme being broken.
Therefore, for any non-trivial result, we have to modify their scheme. One of the modifi-
cations is presented in Figure 4.4. The main change is that the vector B := (b1, . . . , bn) is
completely random instead of being generated by a pseudorandom function. We call this
scheme the Modified Shacham-Waters Scheme.

We give an example to illustrate the Modified Shacham-Waters Scheme.

48

Example 12. Let q = 11, a = 2, B =
(
2, 4, 6, 7

)
. Let the message that the client

wishes to store be M =
(
4, 6, 3, 2

)
. Then the corresponding tag is S = B + aM =(

10, 5, 1, 0
)
. The file

(
4, 6, 3, 2

)
and the tag

(
10, 5, 1, 0

)
is stored on the

Prover. During an audit phase, the Verifier picks a random challenge
(
1, 0, 0, 1

)
. The

Prover computes Resp1 = 〈M,V 〉 = 6 and Resp2 = 〈S, V 〉 = 10. The Verifier verifies by
computing aResp1 + 〈V,B〉 = 12 + 9 ≡ 10 mod 11 = Resp2.

There is an asymmetry in the terms of information held by various entities in the
scheme: the Verifier and Extractor have the secret key, while the Extractor also has access
to the proving algorithm P generated by the Prover. The Prover has access to the file-
tag pair (M,S). We tabulate the information held by different entities in the modified
Shacham-Waters prototype below for the ease of reference.

Entities Verifier Prover Extractor
Information held K = (a,B) M,S K,P

From the point of view of the Prover, there are q possible keys. Suppose the first tuple
of the key is a = a0. Then Equation (4.8) implies that B = S − a0M . In other words, we
have the following.

Lemma 4.8. Given M and S, the Prover can restrict the set of possible keys (a,B) in the
Modified Shacham-Waters Scheme, described in Figure 4.4, to

Possible(M,S) = {(a0, S − a0M) : a0 ∈ Fq}.

We say a response (Resp1,Resp2) is acceptable if Equation (4.11) is satisfied and
authentic if it was created properly using Equations (4.9) and (4.10). Note that it is
possible for a response to be acceptable but not authentic because the set of acceptable
responses contains the set of authentic responses as a subspace. On the other hand, an
authentic response will be acceptable for every key K ∈ Possible(M,S). In the case of an
acceptable (but perhaps not authentic) response, we have the following useful lemma.

Lemma 4.9. Suppose that a response (Resp1,Resp2) to a challenge V for a file M is
acceptable for more than one key in Possible(M,S) in the Modified-Shacham-Waters Scheme.
Then (Resp1,Resp2) is authentic.

Proof. Suppose K1, K2 ∈ Possible(M,S), where K1 = (a1, B1), K2 = (a2, B2) and a1 6= a2.
We have B1 = S − a1M and B2 = S − a2M . Now consider a response (Resp1,Resp2) to
a challenge V that is acceptable for both of the keys K1 and K2. Then

Resp2 = a1Resp1 + 〈V,B1〉 = a2Resp1 + 〈V,B2〉.

49

Therefore,

(a1 − a2)Resp1 + 〈V, (B1 −B2)〉 = 0.

However, we have B1 −B2 = (a2 − a1)M , so

(a1 − a2)(Resp1 − 〈V,M〉) = 0.

We have a1 6= a2, so it follows that Resp1 = 〈V,M〉. Then we obtain

Resp2 = a1Resp1 + 〈V,B1〉
= a1〈V,M〉+ 〈V, (S − a1M)〉
= 〈V, S〉.

Therefore the response (Resp1,Resp2) is authentic.

We first state the reasons why the keyed PoR scheme presented in Figure 4.4 is not
secure in the standard security definition of PoR systems.

Towards Defining the Average-case Security. We start our argument with a simple
attack on the Shacham-Waters’ construction using a computationally unbounded adver-
sary. The crucial observation which facilitates our attack is that the verification condition
(4.11) depends on the key, but not on the file M . As a result, the Prover can create ac-
ceptable non-authentic responses if he knows the value of a. It suffices to know the value
of a to break the construction of Shacham and Waters [72] due to Lemma 4.8. Our attack
is based on the following theorem.

Theorem 4.10. If the Prover has access to a verification oracle, then the Modified Shacham-
Waters Scheme is not unconditionally secure.

Proof. For every key K ∈ Possible(M,S), the Prover can create a response (Resp1,Resp2)
to a challenge V that will be acceptable if and only if K is the actual key (this follows
from Lemma 4.9). The Prover can check the validity of these responses by accessing the
verification oracle. As soon as one of these responses is accepted by the verification oracle,
the Prover knows the correct value of the key. Hence the Prover can now create a proving
algorithm P that will output acceptable but non-authentic responses. This algorithm P
will not allow the correct file to be extracted.

In more detail, after the Prover has determined the key K = (a,B), he chooses an
arbitrary (encoded) file M ′ 6= M and constructs P as follows:

50

1. Given a challenge V , define Resp1 = 〈V,M ′〉.

2. Define Resp2 = aResp1 + 〈V,B〉.

Suppose the Extractor is run on P . It is easy to see that dist(R′, ~rM ′) = 0, so the Extractor

will compute M̂ = M ′, which is incorrect.

Now suppose we modify the definition of PoR systems by removing the access to ver-
ification oracle by the Prover. It is straightforward to see that even in the absence of a
verification oracle, the Prover can guess the correct value of a with probability 1/q. If
the adversary correctly guess the value of a, then it can create a non-extractable proving
algorithm. This implies that it is not possible to prove a theorem stating that any proving
algorithm yields an extractor.

The above discussion seems to present a pessimistic picture of what can and what cannot
be achieved by a keyed PoR system in the setting of unconditional security. However, we
can prove meaningful reductions if we define the success probability of a proving algorithm
to be the average success probability over the q possible keys that are consistent with the
information given to the Prover. We next define this idea more formally.

Average-case Success Probability of a Prover. Suppose P is a (deterministic) proving
algorithm for a file M = (m1, . . . ,mn) ∈ (Fq)n. For each challenge V and for every key
K = (a,B) ∈ Possible(M,S), define

χ(V,K) :=

{
1 if P returns an acceptable response for the key K given the challenge V ,

0 otherwise.

Since there are γq = qn+1 choices for the pair (V,K), we define the average success
probability succavg(P) to be

succavg(P) =

∑
V ∈Γ,K∈Possible(M,S)

χ(V,K)

γq
. (4.12)

Lemma 4.11. Let q and γ be as defined above. Suppose there are d challenges V for which
P returns an authentic response, and hence there are C = γ − d challenges for which P
returns a response that is not authentic. Then

succavg(P) ≤ 1− C(q − 1)

γq
. (4.13)

51

Proof. If V is a challenge for which P returns an authentic response, then χ(V,K) = 1
for every K. If V is a challenge for which P does not return an authentic response, then
Lemma 4.9 implies that χ(V,K) = 1 for at most one K. Therefore,∑

V ∈Γ,K∈Possible(M,S)

χ(V,K) ≤ C + qD = γq − C(q − 1).

The desired result now follows from (4.12).

Let us now turn our attention to the response code. Using Equation (4.11), we know
that Resp1, K and V uniquely determine Resp2; therefore, it suffices to consider only the
values of Resp1 in the extraction process. We define the response vector for a file M to
be ~rM = (〈M,V 〉 : V ∈ Γ). Observe that this response vector is identical to the response
vector in the Linear Combination Scheme.

Lemma 4.12. Suppose that P is a proving algorithm for the file M in the Modified
Shacham-Waters Scheme. Let ~rM = (〈M,V 〉 : V ∈ Γ) and let R′ be the γ-tuple of re-
sponses computed by P. Then

dist(~rM , R
′) ≤ (1− succavg(P))γq

q − 1
=

(1− succavg(P))qn+1

q − 1
.

Proof. Define C as in Lemma 4.11. Since a co-ordinate of ~rM differs from the corresponding
co-ordinate of R′ only when the response is non-authentic, it follows that dist(~rM , R

′) ≤ C.
Equation (4.13) implies that

C ≤ (1− succavg(P))γq

q − 1
,

from which the stated result follows.

We now present our security result for the Modified Shacham-Waters Scheme.

Theorem 4.13. Let q be the size of the underlying field used in the Modified Shacham-
Waters Scheme. Suppose that

succavg(P) > 1− d∗(q − 1)

2γq
, (4.14)

where d∗ is given by Equation (4.4) and γ = qn. Then there exists an Extractor that always
outputs m̂ = m.

52

Proof. Denote η = succavg(P), let R′ be the γ-tuple of responses computed by P , and
denote δ = dist(~rM , R

′), where M = e(m).

We first present the extractor.

1. On input P , compute the vectorR′ = (Resp1,V : V ∈ Γ), where (Resp1,V ,Resp2,V) =
P(V) for all V ∈ Γ.

2. Find M̂ ∈M∗ so that dist(R′, ~rM̂) is minimised.

3. Output m̂ = e−1(M̂).

We showed in Lemma 4.12 that

δ ≤ (1− η)γq

q − 1
.

We want to prove that M̂ = M . We have that ~rM̂ is a codeword in R∗ closest to R′.
Since M is a codeword such that dist(~rM , R

′) = δ, it must be the case that dist(~rM̂ , R
′) ≤ δ.

By the triangle inequality, we get

dist(~rM , ~rM̂) ≤ dist(~rM , R
′) + dist(~rM̂ , R

′) ≤ δ + δ = 2δ.

However,

2δ ≤ 2(1− η)γq

q − 1
< d∗,

where the last inequality follows from (4.14). Since ~rM and ~rM̂ are codewords within

distance d∗ (which is the distance of the response code), it follows that M = M̂ and the
Extractor outputs m = e−1(M), as desired.

4.5 Estimating the Success Probability of a Prover

The essential purpose of a PoR scheme is to assure the user that their file is indeed being
stored correctly; i.e., in such a manner that the user can recover the entire file if desired.
We considered several schemes for testing whether this is the case or not and gave a bound
that allows successful recovery of the entire file. However, in order to interpret these results
in practice, there are two important issues with these results. The first is that the presence

53

of binomial coefficients makes the expressions of the minimum success probability required
for successful extraction in all three schemes somewhat complicated. The second issue is
that, in practice, one is more likely to do only a small number of audits, and, therefore, it
is not obvious how can one be assured that the success probability of the proving algorithm
is high enough to allow successful extraction. We address these two issues in the remainder
of this section.

4.5.1 Numerical Computations and Estimates

We have provided sufficient conditions for extraction to succeed for several PoR schemes,
based on the success probability of the proving algorithm. Here, we look a bit more closely
at these numerical conditions and provide some useful comparisons and estimates for the
different schemes we have studied. The following expressions are straightforward.

1. For the Multiblock Challenge Scheme, Theorem 4.4 guarantees that extraction will
succeed if

succ(P) > Succ0 =
1

2
+

(
n−d
`

)
2
(
n
`

) .
2. For the Linear Combination Scheme, Theorem 4.7 guarantees that extraction will

succeed if

succ(P) > Succ1 =

(
q − 1

q

)
Succ0 +

1

q
.

3. For the Modified Shacham-Waters Scheme, Theorem 4.13, using the estimate for d∗

given in Equation (4.7), guarantees that extraction will succeed if

succavg(P) > Succ2 =

(
q − 1

q

)2

Succ0 +
2

q
− 1

q2
.

It is clear that Succ0, Succ1 and Succ2 are extremely close for any reasonable value of q
(such as q ≥ 232, for example). Therefore we will confine our subsequent analysis to S0 and
state our results in terms of the Multiblock Challenge Scheme. The following theorem gives
a approximate estimate of Succ0, which is far easier to verify rather than the expression
Succ0.

54

Theorem 4.14. Denote η′ = 1 − succ(P). Suppose that the following inequality holds in
the Multiblock Challenge Scheme:

`d

n
> ln

(
1

1− 2η′

)
. (4.15)

Then the Extractor will always succeed.

Proof. From Equation (4.15), we obtain

ln (1− 2η′) > −`d
n
.

Now −x > ln(1− x) for 0 < x < 1, we obtain

ln (1− 2η′) > ` ln

(
1− d

n

)
.

Exponentiating both sides of this inequality, we have

1− 2η′ >

(
1− d

n

)`
.

A simple calculation shows that (
1− d

n

)`
≥
(
n−d
`

)(
n
`

) ,

so it follows that

1− 2η′ >

(
n−d
`

)(
n
`

) .

From this, we obtain

succ(P) >
1

2
+

(
n−d
`

)
2
(
n
`

) ,
and hence the Extractor will always succeed.

Table 4.1 lists values of n (the length of an encoded file), for different values of ` (the
Hamming weight of the challenge), d (the distance of the code) and the success probability
of the proving algorithm, such that the Extractor is guaranteed to succeed. We list the
value of n as specified by Theorems 4.4 and 4.14. We see, for a wide range of parameters,
that the estimate obtained in Theorem 4.14 is very close to the earlier value computed in
Theorem 4.4.

55

Table 4.1: Values of n for which the Extractor will always
succeed

` d succ(P) n (Thm. 4.4) n (Thm. 4.14)
10000 10000 0.6 62143493 62133493

0.7 109145666 109135666
0.8 195771518 195761518
0.9 448152011 448142011
0.99 4949841645 4949831645

10000 1000 0.6 6218850 6213349
0.7 10919066 10913566
0.8 19581651 19576151
0.9 44819701 44814201
0.99 494988664 494983164

10000 100 0.6 626398 621334
0.7 1096413 1091356
0.8 1962668 1957615
0.9 4486471 4481420
0.99 4950336 49498316

10000 10 0.6 67272 62133
0.7 114216 109136
0.8 200808 195761
0.9 453165 448142
0.99 4954838 4949832

1000 10000 0.6 6218850 6213349
0.7 10919066 10913567
0.8 19581651 19576152
0.9 44819700 44814201
0.99 494988664 494983164

1000 1000 0.6 622334 6213349
0.7 1092356 10913567
0.8 1958614 19576152
0.9 4482419 4481420
0.99 49499315 49498316

1000 100 0.6 62684 62133
0.7 109685 109135

Continued on next page . . .

56

Table 4.1 — continued from previous page
` d succ(P) n (Thm. 4.4) n (Thm. 4.14)

0.8 196311 195761
0.9 448692 448142
0.99 4950381 4949831

1000 10 0.6 6731 6213
0.7 11425 10914
0.8 20084 19576
0.9 45320 44814
0.99 495488 494983

100 10000 0.6 626398 621334
0.7 1096413 1091357
0.8 1962669 1957615
0.9 4486471 4481420
0.99 49503366 49498316

100 1000 0.6 62684 62133
0.7 109685 109135
0.8 196311 195761
0.9 448691 448142
0.99 4950381 4949831

100 100 0.6 6313 6213
0.7 11013 10913
0.8 19675 19576
0.9 44913 44814
0.99 495082 494983

100 10 0.6 677 621
0.7 1146 1091
0.8 2012 1958
0.9 4536 4481
0.99 49552 49498

50 10000 0.6 315719 310667
0.7 550718 5456783
0.8 983840 9788076
0.9 2245736 2240710
0.99 24754183 24749158

Continued on next page . . .

57

Table 4.1 — continued from previous page
` d succ(P) n (Thm. 4.4) n (Thm. 4.14)

50 1000 0.6 31594 31068
0.7 55093 545678
0.8 98406 978807
0.9 224599 224071
0.99 2475440 2474916

50 100 0.6 3181 3106
0.7 5531 5456
0.8 9862 9788
0.9 22481 22407
0.99 247565 247492

50 10 0.6 341 311
0.7 576 546
0.8 1009 979
0.0 2270 2240
0.99 24779 24749

4.5.2 Statistical Techniques for Estimating Success Probabilities
in PoR Systems

Our main result can be interpreted as saying that extraction is possible for any keyless
scheme whenever succ(P) is at least 1−d̃/n. Hence, the information we would like to obtain
from using the Multiblock Challenge Scheme or the Linear Combination Scheme is whether
we can compute a value ω such that extraction is possible whenever succ(P) > ω−1

γ
. We

can calculate succ(P) for a given proving algorithm P if we know the values of the proving
algorithm’s response P(c) for every possible challenge c ∈ Γ.

On the other hand, from the practical point of view, the whole purpose of a PoR scheme
is to provide reassurance that succ(P) is sufficiently large without having to request P(c)
for all c ∈ Γ. Given the prover’s responses to some subset of possible challenges, the verifier
wishes to make a judgement as to whether succ(P) is acceptably high.

Hypothesis Testing

One of the standard statistical techniques which is used in the scenario as described above
is hypothesis testing [22, 28]. The general method of hypothesis testing can be summarized

58

in four steps:

1. We identify a hypothesis that we feel should be tested.

2. We select a criteria for deciding whether the hypothesis is true or not.

3. We select a random sample from the whole sample space and measure the outcome
of the test on the sample.

4. We compare the observed values to what we expect if the hypothesis is true.

Returning to our scenario of testing whether succ(P) is high enough, we set up the
system of hypothesis testing as follows. Let c1, . . . , cτ be the random challenges made by
Verifier. Let %1, . . . , %τ be the responses of P , and suppose that Verifier accepts g of these
challenges. Since we assume that the Prover is an adversary, we are concerned that succ(P)
is not high enough to allow successful extraction. Therefore, our goal is to provide evidence
that convinces the verifier that succ(P) is sufficiently high to allow successful extraction.
In the terminology of hypothesis testing, this means that we wish to distinguish the null
hypothesis

Hyp0 : succ(P) ≤ ω−1
γ

;

from the alternative hypothesis

Hyp1 : succ(P) ≥ ω
γ
.

In hypothesis testing, we assume that the null hypothesis is true and try to find evidence
that rebuts the null hypothesis. In this setting, we state the level of significance for a test,
often called the p-value. Usually, the level of significance is based on certain empirical
rules. In statistical hypothesis testing, it is generally accepted that 5% is a good level
of significance. In other words, if p ≤ 0.05, we reject the null hypothesis; otherwise, we
continue to retain the null hypothesis.

In our case, we first suppose that Hyp0 is true. Since the challenges are picked without
replacement, the probability that the number of correct responses is at least g is at most

t∑
i=g

(
ω−1
i

)(
γ−ω+1
t−i

)(
γ
t

) . (4.16)

59

If the expression (4.16) representing the probability is less than 0.05, then we reject
Hyp0 and instead accept the alternative hypothesis (namely that succ(P) is sufficiently
high to permit extraction). In this case we conclude that the server is storing the file
appropriately. If the probability in Equation (4.16) is greater than 0.05, then there is
insufficient evidence to reject Hyp0 at the 5% significance level. Therefore, we continue to
suspect that the server’s proving algorithm would not permit successful extraction.

Now consider the case when the challenges are picked uniformly at random with re-
placement. Under this condition for rejecting the null hypothesis becomes

t∑
i=g

(
t

i

)(
ω − 1

γ

)i(
γ − ω + 1

γ

)t−i
< 0.05.

We illustrate the above discussion with a help of following example.

Example 13. Consider the Basic Scheme instantiated with n = 1000 blocks. Let the distance
of the response code be 400. Then Corollary 4.2 gives that extraction is possible whenever
succ(P) is greater than 0.8. Suppose the verifier invokes a total of 100 challenge-response
protocols with the challenges chosen uniformly at random with replacement. For the sake of
illustration, let us assume that the Verifier accepts a total of 87 audits. A simple calculation
shows that

100∑
i=87

(
100

i

)
(0.8)i(0.2)100−i ≈ 0.047 < 0.05.

The above illustration shows that, in the above case, there is sufficient evidence to
reject the null hypothesis at the 5% significance level, and so we believe that the file is in
fact being stored correctly.

Now suppose, on the contrary, that if only 86 of the responses were correct, then

100∑
i=86

(
100

i

)
(0.8)i(0.2)100−i ≈ 0.08 > 0.05.

In this case there is not enough evidence to reject the null hypothesis at the 5% signifi-
cance level, and so we believe that the server?s proving algorithm would permit successful
extraction.

The benefit of this statistical approach is that, given the observed responses to the
challenges, for any desired value of a we can construct a hypothesis test for which the

60

probability of inappropriately rejecting the null hypothesis (and hence failing to catch
a prover that does not permit extraction) is necessarily less than a.1 This is the case
regardless of the true value of succ(P), and we do not need to make any a priori assumptions
about this value.

In Table 4.2 we give examples of a range of possible results of the challenge process and
the corresponding outcomes in terms of whether the null hypothesis is rejected at either
the 5% or 1% significance level. The columns headed by values of a contain a ick if Hyp0

is rejected at the corresponding significance level, and a cross otherwise.

Confidence Intervals

Another closely related way to portray the information provided by the sample of responses
to challenges is through the use of confidence intervals. We define a 95% lower confidence
bound θL by

θL = sup

{
θ

∣∣∣∣ t∑
i=g

(
t

i

)
θi(1− θ)t−i < 0.05

}

The above expression gives the largest possible value for succ(P) for which the prob-
ability of obtaining g or more correct responses in a sample of size t is less than 0.05. In
other words, θL signifies that whenever ω−1

γ
< θL, the probability of a prover with success

rate at most ω−1
γ

providing g or more correct responses is less than 0.05. Therefore, the
decision process for the hypothesis test described in Section 4.5.2 consists of rejecting the
null hypothesis whenever ω−1

γ
< θL.

The interval (θL, 1] is a 95% confidence interval for succ(P): if a large number of samples
of size t were made and the corresponding intervals were calculated using this approach,
then one would expect the resulting intervals to contain the true value of succ(P) at least
95% of the time. The hypothesis test can be expressed in terms of the confidence interval
(θL, 1] by stating that we reject Hyp0 whenever ω−1

γ
does not lie in this interval.

Example 14. Suppose we have n = 1000 and d = 400 as in Example 13, and suppose that
90 of the responses are correct. Then

θL = sup

{
θ

∣∣∣∣ t∑
i=90

(
t

i

)
θi(1− θ)t−i < 0.05

}
≈ 0.836.

1Here we refer to the probability over the set of all possible choices of t challenges.

61

Table 4.2: Outcomes of Hypothesis Testing for a Range of Responses.

ω−1
γ t g a = 0.05 a = 0.01 ω−1

γ t g a = 0.05 a = 0.01

0.8 100 100 X X 0.9 100 100 X X
0.8 100 95 X X 0.9 100 95 X X
0.8 100 90 X X 0.9 100 90 X X
0.8 100 85 X X 0.9 100 85 X X
0.8 100 80 X X 0.9 100 80 X X

0.8 200 180 X X 0.9 200 200 X X
0.8 200 175 X X 0.9 200 195 X X
0.8 200 170 X X 0.9 200 190 X X
0.8 200 165 X X 0.9 200 185 X X
0.8 200 160 X X 0.9 200 180 X X

0.8 500 435 X X 0.9 500 480 X X
0.8 500 430 X X 0.9 500 475 X X
0.8 500 425 X X 0.9 500 470 X X
0.8 500 420 X X 0.9 500 465 X X
0.8 500 415 X X 0.9 500 460 X X

Then a 95% confidence interval for succ(P) is (0.836, 1], and hence we reject the null
hypothesis, as ω−1

n
= 0.8 does not lie in this interval.

One question that has not usually been considered is what action to take when a prover
is suspected of cheating. In the framework of Section 4.5.2, this becomes the problem of
what to do in the case where there is insufficient evidence to reject the null hypothesis.
There are various possible options at this point, and the choice of option will depend on
factors such as the reason for storing the file, and any costs and inconvenience that might
be associated with ceasing to use that server, or with switching to another storage provider.
For example, if a server is simply being used as a backup service for non-critical data and
there is a high overhead associated with switching storage providers, then a user will not
want to be overhasty in taking action against a possibly innocent server. In this case, an
appropriate action in the first instance might be to seek more responses to challenges in
order to avoid the possibility that the earlier set of responses were unrepresentative of the
reliability of the prover in general.

62

Comparison with Approaches Followed in the Literature. The use of hypothesis
testing and confidence intervals has not been used explicitly in the literature pertaining to
PoR schemes. In this section, we cast some of the earlier analyses in terms of hypothesis
testing. Shacham and Waters [72] showed how the main construction of Ateniese et al. [3]
could be turned into a PoR scheme by demonstrating an extractor which extracts the file,
given a good enough proving algorithm. The following analysis was done by Ateniese et
al. [3]. The authors observed that if succ(P) ≤ g

γ
(with g ∈ Z) then, when P is queried on

t possible challenges chosen uniformly at random without replacement, the probability p
that at least one incorrect response is observed is given by

p = 1−
(
g
t

)(
γ
t

) ,
and they note that

1−
(
g

γ

)t
≤ p ≤ 1−

(
g + 1− t
γ − t+ 1

)t
.

Ateniese et al. [3] also pointed out as an example that if succ(P) = 0.99 then to achieve
p = 0.95 requires t = 300, and to achieve p = 0.99 requires t = 460. They further comment
that the required number of samples, t, is in fact independent of γ, since it is based instead
on the required threshold for succ(P). This observation applies equally to our analysis.

Dodis, Vadhan, and Wichs [33] used an approach similar to Ateniese et al. [3]. They
also proposed the use of a hitting sampler that amounts to choosing which t elements to
sample from a specified distribution that contains fewer than

(
n
t

)
possible sample sets but

still guarantees that Prbad is higher than some specified value for a given value of succ(P)
that is less than 1.

These two analyses can be interpreted in the context of a hypothesis test. More pre-
cisely, we wish to distinguish the null hypothesis

Hyp0 : succ(P) ≤ 0.99;

from the alternative hypothesis

Hyp1 : succ(P) > 0.99.

63

If 300 challenges are made and all the responses are correct, then a 95% confidence
interval for succ(P) is (0.99006, 1], so there is enough evidence to reject the null hypothesis
at the 5% significance level. However, a 99% confidence interval for succ(P) is (0.977, 1],
so there is insufficient evidence to reject the null hypothesis at the 1% significance level.
If, on the other hand, 460 challenges were made and all the responses were correct then
a 99% confidence interval for succ(P) is (0.99003, 1] and so in this case there is enough
evidence to reject the null hypothesis at the 1% significance level.

We note that this is a special case of our analysis. Specifically, Ateniese et al. [3] focused
on determining the smallest number of challenges for which an entirely correct response
constitutes sufficient evidence to reject the null hypothesis at the desired significance level.
On the positive side, this is the smallest number of challenges for which it is possible for a
prover to assure the user that it has the file. On the negative side, even a single incorrect
response results in failure to reject the null hypothesis, regardless of whether it is true. This
is where the oversampling of the random challenges is helpful. Taking a larger sample size
has the benefit of increasing the probability that a false null hypothesis is rejected, without
adversely affecting the probability that a true Hyp0 fails to be rejected. For example, from
Table 4.2 we see that if 90 correct responses out of 100 are observed then there is insufficient
evidence to reject the hypothesis succ(P) ≤ 0.8 at the 5% significance level. However, if
180 correct responses out of 200 are observed then there is sufficient evidence to reject this
null hypothesis at the 5% significance level (in fact we even have enough evidence to reject
Hyp0 at the 1% significance level).

4.6 A Lower Bound on Storage and Communication

Requirements

In this section, we prove a bound that applies to keyed PoR schemes. Suppose that M is a
random variable corresponding to an unencoded file m chosen uniformly at random. Let
V be a random variable denoting the information stored by the Verifier (i.e., the key), and
let R be a random variable corresponding to the computations performed by an extractor.
The uncertainty in computing the correct file is H(M|V; R). Now, from basic entropy
inequalities (see Chapter 2), we have

H(M|V; R) = H(M; V; R)−H(V; R)

≥ H(M; V; R)−H(V)−H(R)

≥ H(M)−H(V)−H(R).

64

Suppose that the file can be reconstructed by the extractor with probability 1. Then we
have H(M|V; R) = 0. The inequality proven above imples that

H(M) ≤ H(V) + H(R). (4.17)

Now suppose that the extractor is a black-box extractor. In this situation, we have that

H(R) ≤ γ log2 |∆|, (4.18)

since there are γ possible challenges and each response is from the set ∆. The file m is a
random vector in (Fq)k, so

H(M) = k log2 q. (4.19)

Therefore, combining (4.17), (4.18) and (4.19), we have the following result.

Theorem 4.15. Suppose we have a keyed PoR scheme where the file is a uniformly random
vector in (Fq)k, there are γ possible challenges and each response is from the set ∆. Suppose
that a black-box extractor succeeds with probability equal to 1. Then the entropy of the
verifier’s storage, denoted H(V), satisfies the inequality

H(V) ≥ k log2 q − γ log2 |∆|.

Naor and Rothblum [62] proved a lower bound for a weaker form of PoR-type protocol,
called an “authenticator”. As noted in Dodis, Vadhan, and Wichs [33], the Naor and
Rothblum bound also applies to PoR schemes. Phrased in terms of entropy, their bound
states that

H(M) ≤ H(V)×H(R),

which is a weaker bound than (4.17).

In the case of an unkeyed scheme, the extractor is only given access to the proving
algorithm. Therefore, H(M|R) = 0 if a black-box extractor succeeds with probability equal
to 1. From this, it follows that H(M) ≤ H(R) in this situation.

4.7 Conclusion

There have been great advances in secure cloud storage over the last decade. Most of these
constructions are secure in the computational setting. In all the efficient constructions of
PoR systems in the computational setting, the success of extraction depends on the distance

65

of the code used by the client to encode the file before storing it on the server. In these
schemes, the distance of the underlying code plays a very pivotal role; the distance of this
code is (roughly) inversely proportional to the success probability of the server required to
guarantee successful extraction.

We have performed a comprehensive analysis of the extraction properties of uncon-
ditionally secure PoR schemes, and established a methodology that is applicable to the
analysis of further new schemes. What constitutes “good” parameters for such a scheme
depends on the precise application, but our framework allows a flexible trade-off between
parameters.

66

Chapter 5

Extraction or Possession?

The two widely accepted definitions that capture the integrity of cloud storage are both
modelled in the terms of the “extractor” paradigm. In the case of PoR systems, extraction
is treated as an algorithm that uses the proving algorithm to output the file. On the other
hand, in the case of PDP systems, the definition uses the knowledge extractor of Bellare
and Goldreich [9]. This similarity results in Question 2 raised in Chapter 1.

In this chapter, we answer Question 2. Recall that in a PoR scheme [51], a theorem
stating the security of the system has the following form: there exists an Extractor with
the property that it can recover M whenever succ(P) is sufficiently high for the given
proving algorithm P . A PoR scheme is quantified by the efficiency of the extractor and
two parameters: 0 < ν ≤ 1 and 0 < η ≤ 1. We say that a PoR system is an (η, ν)-
PoR system provided that there exists an Extractor whose success probability is at least
ν whenever succ(P) ≥ η. Recall that succ(P) is the probability that P gives the correct
response to a random challenge; the success probability of an Extractor is the probability
that it is able to extract the entire file M correctly. The success probability of an Extractor
takes into account any random choices it makes during its execution.

On the other hand, the definition of a PDP system as appeared in Ateniese et al. [4]
and mentioned in Chapter 3 also uses an Extractor but in a slightly different manner. More
concretely, a PDP system is said to be secure if the success probability of an adversary and
the knowledge extractor of Bellare and Goldreich [9] are negligibly close. However, there
are few issues with the direct use of the extractor of Bellare and Goldreich [9] which we
enumerated in Chapter 3.

In the rest of this chapter, we study this issue in more detail. The content of this
chapter is based on Stinson and Upadhyay [80]:

67

Douglas R. Stinson, Jalaj Upadhyay. Is extracting data the same as possessing
data? J. Mathematical Cryptology 8(2): 189-207 (2014).

5.1 Defining Possession of Data

It is often stated in the literature that PoR is a stronger requirement than PDP systems
(see, for example, the related work section of [33, 72]). Our main goal is to separate the
notions of “retrievability” and “possession”. To make a distinction between retrievability
and possession, it is helpful to ask what it means to actually “possess” data. We use
the approach of Goldreich [40] to define PoK systems, and concentrate on the behavioural
meaning of the term “possession”. We might argue that possessing data means that the
server has an exact copy of the file M in its storage at a given time. But it is not clear
how can one force the server to store the exact copy of the file. In fact, it might be even
impossible to achieve this against a malicious server because the server can store M in some
altered form, for example, by using some kind of compression. Even with an honest server,
it might be possible that the server stores the file in an encrypted form to protect against
unwanted security loss. However, it is conceivable that the challenge-response protocol
might force the reconstruction of M from whatever form the server has the file, in the
sense that a response cannot be generated without first restoring M to its initial form. In
this case, an exact copy of M would exist in the server’s memory space at the time the
response to the challenge is computed, and we could say that the server “possesses” the
data at this point in time.

Based on the above discussion, we now define a proof-of-data-observability scheme (PDO
scheme). This new definition captures the idea that the server has the whole file M during
the execution of P . To formalize this stronger security notion, we consider an observer O
that has considerably less power than an extractor.

Definition 5.1. An observer O is an entity that is given read access to the code describing
the proving algorithm P. It is permitted to do the following:

• O is allowed to observe a single run of the proving algorithm P with a random
challenge supplied by the client,

• O can perform whatever additional computations it likes, and

• O should copy the correct file M from the contents of P’s memory space to an output
tape, at some time during the execution of P.

68

Let us look closely at the above definition. Intuitively, this definition captures the idea
that O is able to take a “snapshot” of the memory of P at some precise time when it
contains the file M . This is in alignment with the discussion above that the file might
be stored in some other form, but the challenge-response protocol cannot be carried out
without restoring the file to its proper form.

The term “copy” is very crucial here. For example, we restrict the observer from
performing any post-processing once it copies the file. Moreover, we do not place any
restriction on the proving algorithm. For example, we allow the situation where the proving
algorithm has access to the file in some other form, like a compressed form, and reconstructs
the whole file online before it responds to the query.

We are now ready to define a PDO system.

Definition 5.2. Let 0 < ν ≤ 1 and let 0 < η ≤ 1. We say that an observer O is an (η, ν)-
observer provided that the expected fraction of M that O copies is at least ν whenever
succ(P) ≥ η. A system for which there exists an (η, ν)-observer is called a proof-of-data-
observablity system.

Compared to a PoR scheme, for a PDO scheme, we have a somewhat different objective.
The above definition captures this difference. More precisely, it captures the notion that,
on average, O is able to copy at least ν|M | bits of M , where |M | is the bit-length of the
file. This average is computed over the random challenges chosen by the client, as well as
any random choices the observer makes during its execution.

The above definition has several subtle aspects that distinguishes it from PoR and PDP
systems. In a PDO system, an observer is allowed to see only a single run of the challenge-
response protocol that is being executed with a random challenge chosen by the user. This
is in contrast with the PoR system where the extractor has access to the proving algorithm
and can make queries on behalf of the user. If the observer is not allowed to know the code
of the proving algorithm, there is no way such a scheme can be realized. To an extent, it
is the observer’s knowledge of how the proving algorithm works that allows it to recognize
the presence of the file M in the memory space of P as it is executed, and copy it to its
output tape.

Remark 3. We also mention that there is an intrinsic limitation of PDO systems. To see
this, consider an n-block file M . Further assume that a response in a challenge-response
protocol depends on a random subset of n′ message blocks chosen by the client. For η > 0,
the best observer one could hope for would be a (η, n′/n)-observer, because a single run of
P only requires performing a computation on n′|M |/n bits of the file M , where |M | is the
bit length of the file M . On the other hand, a trivial example of a PDO scheme that has

69

a (1, 1)-observer would be one in which the server must give the entire file M to the client
all at once. �

5.1.1 PDO is a Stronger Notion than PoR and PDP

The definition of PDO is more stringent in comparison with PoR or PDP systems in the
sense that the observer is allowed only a single run of the challenge-response protocol. In
this section, we give a simple example that is a PoR (and PDP scheme) but not a PDO
scheme.

Let us consider the Linear Combination Scheme. Let M = (M1, . . . ,Mn) ∈ (Fq)n be the
file stored on the remote server and c = (c1, . . . , cn) be a challenge consisting of random
entries picked from Fq. The response function is defined as % = 〈M, c〉. It is a PoR system
due to Theorem 4.7 and PDP scheme due to the result of Ateniese et al. [3].

On the other hand, we explicitly show an adversary that can generate correct responses
to the challenges without explicitly storing or performing computations on the original file
M . The adversary works as follows: (i) when the Adversary is originally given the file M ,
it chooses a random γ ∈ Fq such that γ 6= 1, (ii) the Adversary computes M ′ = γM , and
(iii) the Adversary stores (M ′, γ) and discards M . Later, when the adversary receives a
challenge c, it computes the (correct) response r = γ−1(c ·M ′). This computation does not
use M , so no observer can obtain M simply by monitoring the online computations of the
adversary. Therefore, this is not a PDO scheme.

5.1.2 Our Contributions

In this chapter, we investigate PDO schemes in the random oracle model. We follow the
usual random oracle model as defined in Bellare and Rogaway [10], where hash is regarded as
a function that takes as input a binary string of arbitrary length and produces a completely
random h-bit output. In our scheme, the client precomputes a set of challenge-response
pairs for a file M . The challenge is picked randomly from (F2)` and the response is of the
form % = hash(M ‖ c) for a challenge c. During an audit, it challenges the server with
one of its precomputed challenges. Our proof relies on an important property of random
oracles, namely that any hash value hash(x) is completely independent of all the other hash
values hash(x′) for x′ 6= x. This fact is used either implicitly or explicitly in our analyses
of the protocols we discuss.

As in Chapter 4, we do not restrict the computational abilities of the server; i.e., we
analyze our schemes in the setting of unconditional security. However, we need some

70

restrictions on the server. For example, a server with unbounded storage can store all the
possible responses to `-bit challenges and discard the file. Therefore, we must either bound
the amount of storage available to the adversarial servers and/or the number of random
oracle calls that a server can make.

As a warm-up, we analyze our hash-based challenge-reponse scheme against an ad-
versary that stores part of the file along with some number of precomputed responses in
Section 5.2. In Section 5.3, we consider a more general adversary that is only restricted in
the number of accesses to the random oracle that it can make. Both these schemes require
the server to go through the whole file. As mentioned in Remark 3, we cannot improve
on the guarantee of a PDO scheme if the server does not need to see the whole file in
order to respond to a challenge. In practice, this may be little problematic. To remedy
these concerns, in Section 5.4, we consider observers who watch s > 1 executions of the
challenge-response protocol, obtaining part of the file each time the protocol is run.

5.2 A Basic PDO Scheme

We begin by presenting a simple PDO scheme in Figure 5.1 which we prove secure under
the random oracle model. The scheme is based on hashing the file along with a random
challenge provided by the client. We first give a brief overview of the basic idea behind
our proof.

The key idea behind proving that it is a PDO scheme is as follows. As hash(·) is a
random oracle, the only way to compute hash(M ‖ c) is to supply hash with all the bits
in M and c. However, a possible complication is that a response hash(M ‖ c) could be
precomputed ahead of time by P , instead of being computed online during the execution of
the challenge-response protocol P . Now if we upper-bound the number of oracle accesses
that are permitted in the pre-computation stage, then we can upper-bound the number
of precomputed responses that P can utilize. If P is required to have a sufficiently high
success probability and c is chosen from a large enough challenge space, then it must be the
case that, with high probability, hash(M ‖ c) will be computed online during P ’s execution.
In this case, the file M is necessarily stored in P ’s memory space immediately prior to the
call hash(M ‖ c) that is made to the random oracle hash1. Therefore we will have a PDO
scheme, according to our definition given above. We now continue with a formal analysis.

1When we call the function hash(x), we are assuming that the entire input is being specified at that
time, e.g., by passing a memory address that contains the input x (e.g., a standard call-by-reference).

71

Precomputation: The client and the server are given access to a random oracle
hash that maps an arbitrary length input to a h-bit output. The client gives a
file M to the server, where the length of M is n bits. The server is permitted to
access hash some fixed number of times, and then the server creates a proving
algorithm P .

Challenge: The client chooses an `-bit random challenge, c, and sends it to the
server.

Response: The server computes the response r = P(c) and sends it to the clienta.

Verification: The client accepts the response r as valid if r = hash(M ‖ c).
aWe can assume, without any loss of generality, that the random oracle is accessed at most once

in the computation of the response.

Figure 5.1: Basic Random Oracle PDO scheme

As defined earlier, the server constructs the proving algorithm P after it has been given
a copy of the file M . The server is also permitted to access the random oracle and use the
results to help construct P . For example, various responses of the form hash(M ‖ c) could
be precomputed and stored by P .

We consider a file that is n bits long and every challenge c is ` bits long. In other words,
a file is picked from a message space Fn2 and the challenge space is F`2. In this scheme, h
and ` will typically be much smaller than n. As an illustrative example, we could take
` = 100, h = 256, and n = 225.

We will be analyzing the scheme in Figure 5.1 in the random oracle model. Nevertheless,
it might be of interest to consider how this scheme might be instantiated in practice, where
one would replace the random oracle with a “real” hash function. We note that this would
have to be done carefully in order to prevent certain types of attacks. For example, if
hash(·) is an iterated hash function, then hash(M) can be precomputed and stored, and
then hash(M ‖ c) can be computed from hash(M) and c. These types of issues are studied
in detail in Ristenpart, Shacham, and Shrimpton [69]. One good practical solution might
be to use a zipper hash construction [58].

In this section, we give an exact combinatorial analysis of a specific type of adversary
(i.e., a proving algorithm). Our adversary is a storage-bounded server with t bits of storage
and it uses s bits to store (a fraction of) M . We use the notation Adv(t, s) to denote such an

72

adversary. This storage will be used to store part or all of the file M and/or some number
of precomputed responses. Although not completely general, this type of adversary is a
very natural and plausible one to consider.

It may be useful to distinguish adversaries according to their intent. Perhaps the
adversary is just being selfish in that it wants to achieve a “reasonable” success probability
without actually storing the whole file. The adversary Adv(t, s) would be selfish only if
t < n. Alternatively, the adversary could be malicious, which means that he might be
willing to devote a large amount of storage to precomputed responses in an attempt to
deceive the client who is expecting the server to store the file. The adversary Adv(t, s)
would be malicious only if t ≥ n.

The adversary Adv(t, s) stores s bits of M , along with s∗ precomputed responses ob-
tained from s∗ accesses to the random oracle. Clearly, s ≤ min{n, t}. Since each response
has h bits, it must be the case that

s∗ ≤
⌊
t− s
h

⌋
.

Additionally, there are 2` possible responses, so s∗ ≤ 2`. Therefore, for the adversary
Adv(t, s), we have

s∗ ≤ min

{
2`,

⌊
t− s
h

⌋}
.

The data precomputed by Adv(t, s) can be thought of as a list of ordered pairs of the
form (c, hash(M ‖ c)). In our analysis, we are only counting the storage needed for the
responses hash(M ‖ c), as various methods could be used to reduce or even eliminate the
storage required for the challenges (i.e., the c values). For example, the stored responses
might correspond to s∗ consecutive values of c.

Given a challenge c, Adv(t, s) operates as follows:

1. If the (correct) response for a challenge c has been precomputed, say % = hash(M ‖ c),
then P outputs %.

2. If the Adv(t, s) receives a challenge c for which it has not been precomputed and stored
the response, then P randomly guesses the n− s non-stored bits of M , creating a file
M∗. The adversary then computes % = hash(M∗ ‖ c) and outputs r.

Note that the adversary Adv(t, s) makes at most one (on-line) call to the random oracle
each time the challenge-response protocol is run.

73

We do a case-by-case analysis. The case where t ≥ 2`h is not very interesting because
the adversary can precompute all 2` possible responses when s = 0. Therefore, the resulting
proving algorithm has success probability equal to 1 and no bits of the file M are stored.
Therefore, in what follows, we assume that t < 2`h, which implies that

s∗ =

⌊
t− s
h

⌋
. (5.1)

Theorem 5.1. Let t, `, s, and h be as defined above. Assume that t < 2`h. Then the
success probability of Adv(t, s) is

p(t, s) = 1−
(

1− 2s

2n

)(
1− 1

2h

)(
1− t− s

2`h

)
. (5.2)

Proof. For the specific space-bounded adversary defined above, we have three different
events to consider: (i) when the adversary has precomputed the response, (ii) when the
adversary correctly guess the remaining n − s bits of the file, and (iii) when the random
oracle outputs the correct response even if the input is incorrect. Note that in each of these
three events, the adversary manages to convince the user that it has the file even though
it does not have the file. For the more formal proof, we bound the probability of each of
these events.

Let E1 denote the event that Adv(t, s) has precomputed the response to a given random
challenge. Let E2 denote the event that Adv(t, s) correctly guesses the n − s non-stored
bits of n. Finally, let E3 denote the event that the on-line output of the random oracle
on an incorrect input yields the correct response (i.e., hash(x) = hash(M ‖ c) for a given
x 6= M ‖ c). For 1 ≤ i ≤ 3, let pi = Pr[Ei]. From equation (5.1), we have

p1 =
s∗

2`
=
t− s
2`h

.

Here, we are assuming for convenience that (t− s)/h is an integer, so we can omit the
“floor” computation. It is also clear that

p2 =
2s

2n
and p3 =

1

2h
.

Now the success probability of Adv(t, s) is

p(t, s) = p1 + (1− p1)(p2 + (1− p2)p3)

= 1− (1− p1)(1− p2)(1− p3), (5.3)

which simplifies to give the desired result.

74

Suppose we fix a value of t < 2`h and, for brevity, we denote p(s) = p(t, s). We will
analyze the behaviour of p(s) as a function of s. In order to do this, it is helpful to define

q(s) = (2`h− t+ s)(2s − 2n).

It is easy to see that

q(s) = C(p(s)− 1), (5.4)

where C is a constant (independent of s). Using elementary calculus, we have

q′(s) = 2s(1 + (2`h− t+ s) ln 2)− 2n. (5.5)

Taking the second derivative of q(s), from Equation (5.5) it is easy to see that q′′(s) > 0
for all s > 0. This in combination with Equation (5.4) implies that p′′(s) > 0 for all s > 0,
so the function p(s) is “concave up”.

First, let us consider the situation where s = 0. We have

q′(0) = (1 + (2`h− t) ln 2)− 2n.

Under the reasonable assumption that 2`h� 2n, we will have q′(0) < 0 and p′(0) < 0.

At this point, we have shown that p′(0) < 0 and p′(s) is an increasing function of s.
The maximum value of p(s) must occur at one of the two endpoints (i.e., when s = 0 or
when s = min{n, t}). Therefore, there are two possibilities to consider:

case (1) The maximum value of p(s) is attained when s = 0.

case (2) The maximum value of p(s) is attained when s = min{n, t}. Note that this case
can happen only when p′(min{n, t}) > 0.

In order to determine which case would apply to a given parameter situation, it is helpful
to estimate the value s̃ > 0 such that p(0) = p(s̃). From (5.2), we see that p(0) = p(s̃) if
and only if (

1− 1

2n

)(
1− t

2`h

)
=

(
1− 2s̃

2n

)(
1− t− s̃

2`h

)
.

For large n and `, we can ignore terms that are products of two “small” numbers.
Ignoring these terms, the equation to be solved for s̃ can be approximated as

t

2`h
+

1

2n
≈ t− s̃

2`h
+

2s̃

2n
.

75

For s̃ reasonably large, we can ignore the term 1/2n. In this case, we can further
simplify the above equation as

2s̃

2n
≈ s̃

2`h
,

which is equivalent to

s̃+ `+ log2 h ≈ log2 s̃+ n.

For s̃ reasonably large, we can ignore the term log2 s̃. Thus we finally obtain the
estimate s̃ ≈ s′, where

s′ = n− `− log2 h. (5.6)

We see that s′ > 0 because we assumed that 2`h < 2n. Now, in order for case (2) to
occur, we need s′ ≤ min{n, t}. It is clear that s′ < n. However, it may or may not be the
case that s′ ≤ t.

The two possible cases mentioned above will be distinguished by whether s′ ≤ t or
s′ > t. Roughly speaking, we have the following possibilities:

1. If t < s′, then p(s) ≤ p(0) for 0 < s < min{n, t}.

2. If t ≥ s′, then p(s) > p(0) for s′ < s < min{n, t}.

The second case is of course the more interesting one. This is because, in the first case,
the adversary is better off storing nothing.

The above discussion can be rephrased by saying that, if the adversary’s success prob-
ability exceeds p(0), then s′ ≤ s ≤ t. In this situation, the adversary must be storing all
of the file M , except for `+ log2 h (or fewer) bits.

We present some numerical examples.

Example 15. Suppose n = 212 = 4096, ` = 50 and h = 64. Then s′ = 4040. The exact
value for s̃ is s̃ = 4041, so the estimated value s′ from (5.6) is very accurate. Suppose
the adversary’s storage is t = s′ bits (this would be a selfish adversary). Then p(0) =
5.6 × 10−14. Therefore, if the adversary’s success probability exceeds 5.6 × 10−14, it must
be the case that the adversary is storing at least 4041 of the 4096 bits of M (i.e., all but 55
bits). Figure 5.2 presents a graph of p(s) as a function of s. Note that p(s) is very close to
0 until s is almost n, and then p(s) increases very quickly to 1. This behaviour is typical
of most “reasonable” parameter situations.

76

Figure 5.2: Success Probability as a Function of s when n = 4096, ` = 50 and h = 64

Example 16. Suppose n = 225 = 33554432, ` = 100 and h = 256. Then s′ = 33554324.
The exact value for s̃ is s̃ = 33554329, so the estimated value s′ from (5.6) is very accurate.
Suppose the (selfish) adversary’s storage is t = s′ bits. Then p(0) = 1.03×10−25. Therefore,
if the adversary’s success probability exceeds 1.03 × 10−25, it must be the case that the
adversary is storing at least 33554329 of the 33554432 bits of M (i.e., all but 103 bits).

Now we consider how to construct an observer O(t, s) for the adversary Adv(t, s) and
we analyze the success probability of the observer we construct. O(t, s) will simply copy
any value M where the output of P is obtained by an online evaluation of hash(M ‖ c),
where c is the challenge. Suppose we define events Ei and probabilities pi (1 ≤ i ≤ 3) as
in the proof of Theorem 5.1. It is clear that O(s, t) outputs the correct file M whenever
E2 holds and E1 does not hold. Therefore the success probability of O(s, t) is

(1− p1)p2 =

(
1− t− s

2`h

)
2s−n.

If the success probability of O(s, t) is denoted by ν, then, from (5.3), we can compute

ν = p(t, s)− p1 − (1− p1)(1− p2)p3.

It is clear that
ν > p(t, s)− p1 − p3. (5.7)

For most “reasonable” parameter values, p1 and p3 are very small, and hence ν is very
close to p(s, t).

77

A Variation of the Adversarial Strategy. One possible variation/generalization of
the adversary Adv(t, s) would be to consider storing partial precomputed information about
responses rather than “all or nothing”. However, it is not hard to see that this will not
increase the adversary’s success probability. Suppose that an adversary Adv(t, s) stores
h1 bits of the response hash(M ‖ c1) and h2 bits of the response hash(M ‖ c2), where
0 < h1 ≤ h2 < h. Consider the modified adversary Adv′(t, s) who stores h1 − 1 bits of the
response hash(M ‖ c1) and h2 + 1 bits of the response hash(M ‖ c2). These two adversaries
have the same storage requirement. However, we show below that the success probability
of Adv′(t, s) is at least as large as the success probability of Adv(t, s). Iterating this process
enough times, we can transform the adversary Adv(t, s) into one that does not store any
“partial” responses.

Here is the proof of the claim: The probability of Adv guessing the response is 2−h+h1

when the challenge is c1, and 2−h+h2 when the challenge is c2. For the adversary Adv′, the
probabilities are 2−h+h1−1 when the challenge is c1, and 2−h+h2+1 when the challenge is c2.
The claim is proven by observing that

2−h+h1 + 2−h+h2 ≤ 2−h+h1−1 + 2−h+h2+1

when h1 ≤ h2.

5.2.1 Discussion

We conclude this section by discussing how the results presented in this section should be
interpreted. Theorem 5.1 gives an exact success probability of a particular type of bounded
storage adversary in terms of different parameters. If parameters of the scheme are chosen
in a suitable way, this probability is close to 1 only when s̃, the number of bits of the file
stored properly by the adversary, is very close to the actual size of the file. Therefore,
if the adversary succeeds in the challenge-response protocol with a probability close to 1,
then this implies that it has stored almost all of the file. The construction of the observer
and Equation (5.7) then guarantee that the observer outputs almost all of the file with
probability very close to the success probability of the adversary.

5.3 A General Bound

In the last section, we considered a specific class of adversary that has bounded storage.
In this section, we consider a much more general adversary. However, we still need some

78

restriction on the adversary; otherwise, the adversary can simply compute all possible
responses. Instead of bounding the storage of an arbitrary proving algorithm like we did
in the last section, we bound the number of calls the adversary can make to the random
oracle during the pre-computation phase and before defining the proving algorithm. We
denote the bound on the number of random oracle calls permitted by s∗. By the end of
the pre-computation phase, the adversary constructs a proving algorithm P . We assume
the following about the proving algorithm P :

1. The proving algorithm P is an arbitrary algorithm for which succ(P) ≥ η.

2. We allow P to store all the responses to the random oracle made during the pre-
computation phase.

We refer to the resulting proving algorithm P as a (η, s∗)-adversary. P can be either a
deterministic or a randomized algorithm.

Since there are at most 2` possible challenges, we can assume without loss of generality
that s∗ ≤ 2`.

First, we define

SP := {c : hash(c ‖M) has been precomputed by P}.

Observe that |SP | ≤ s∗.

Second, for c 6∈ SP , let pc denote the probability that P computes hash(c ‖ M) online,
in response to the challenge c.

Theorem 5.2. Let the challenge space be {0, 1}` and let h be the size of the output of hash.
Suppose that P is a (η, s∗)-adversary for a challenge-response protocol. Then

2`η ≤
(

1− 1

2h

)(
s∗ +

∑
c 6∈SP

pc

)
+ 2`−h. (5.8)

Proof. There are |SP | values of c for which hash(c ‖ M) has been precomputed. For a
challenge c 6∈ SP , hash(c ‖M) is computed online with probability pc. If c 6∈ SP , then with
probability 1− pc, the response hash(c ‖M) is not computed online. In this situation the
probability that the response given by P is correct is 2−h. It follows that

succ(P) ≤ |SP |
2`

+
1

2`

∑
c 6∈SP

(
pc + (1− pc)2

−h) .
79

After some simplification, the right-hand side of the above inequality can be rewritten as

succ(P) ≤ 1

2`

(
1− 1

2h

)(
|SP |+

∑
c 6∈SP

pc

)
+ 2−h.

Using the fact that |SP | ≤ s∗, we obtain

succ(P) ≤ 1

2`

(
1− 1

2h

)(
s∗ +

∑
c 6∈SP

pc

)
+ 2−h.

Since succ(P) ≥ η, the inequality (5.8) follows.

Next, we consider how to construct an observer O for P . The basic idea is to copy any
value M such that the output of P is obtained by an online evaluation of hash(M ‖ c),
where c is the challenge. However, a possible complication would arise if hash(M ‖ c) =
hash(M ′ ‖ c) for some M ′ 6= M and for some c. For example, perhaps P computes
hash(M ‖ c), and then it manages to find M ′ 6= M such that hash(M ‖ c) = hash(M ′ ‖ c).
It might not be obvious to the observer whether to copy M or M ′.

One possible way to address this issue would be to assume that the random oracle is
collision resistant. In this case, even though collisions for hash exist, the algorithm P is
not able to find any of these collisions. Such an assumption would be plausible if h > 160,
say, since the complexity of a collision-finding algorithm for a random oracle with an h-bit
hash output is roughly Θ(2h/2) (e.g., as a consequence of the birthday paradox [79]).

Theorem 5.3. Let ` and h be as defined in Theorem 5.2. Suppose that P is an (η, s∗)-
adversary for a challenge-response protocol, and suppose that the random oracle hash is
collision-resistant. Then there exists an (η, ν)-observer for P, where

ν ≥ 2hη − 1

2h − 1
− s∗

2`
.

Proof. As described above, the observer O for P copies any value M such that the output
of P is obtained by an online evaluation of hash(M ‖ c), where c is the challenge. Denote

p∗ =
∑
c 6∈SP

pc.

80

Since the random oracle is collision-resistant, it follows that O is an (η, ν)-observer,
where ν = p∗/2`. Appyling (5.8) from Theorem 5.2 and simplifying, it follows that

ν =
p∗

2`
≥ 2hη − 1

2h − 1
− s∗

2`
.

Let us look a bit more closely at the lower bound for ν proven in Theorem 5.3, namely,

2hη − 1

2h − 1
− s∗

2`
.

For reasonable values of the parameters, the first term is essentially equal to η and the
second term can be ignored. As an example, suppose we take ` = 100 and h = 256. Even
if the adversary precomputes s∗ = 260 responses, the second term is at most 2−40. When
η is somewhat larger than 2−40, we see that the lower bound on ν is very close to η.

5.4 Multiple Runs of the Challenge-Response Proto-

col

In the last two sections, we considered a hash-based scheme secure under the security
definition of a PDO system. Our definition of an observer given in Section 5.1 requires
that a ν fraction of the file M can be obtained from a single run of the challenge-response
protocol. On the positive side, security under this definition gives us a stronger guarantee
about the file stored on the remote server. On the negative side, any protocol that satisfies
this definition must necessarily require a response to a challenge to depend on at least an
ν fraction of the file. This can be problematic from the efficiency point of view, especially
when ν is close to 1. This is also against one of the motivations of a PoR system — a
single response should depend on a fraction of the file and yet should give some integrity
guarantee about the entire file through a series of challenges.

In this section, we give a relaxation of our definition of an observer which allows a
prover to respond to the challenges more efficiently while preserving the same type of
security guarantees considered in Section 5.2 and Section 5.3. Specifically, we allow the
observer to watch some number s of executions of the challenge-response protocol, copying
part of M from each run. After s runs of the protocol, the observer should have copied a
ν fraction of file M , on average.

81

Definition 5.3. Let 0 < ν ≤ 1, let 0 < η ≤ 1 and let s ≥ 1 be an integer. We say that
an observer O is an (η, ν, s)-observer provided that the expected fraction of the file M that
O copies is at least ν whenever succ(P) ≥ η, where the observer watches s runs of the
challenge-response protocol with random challenges chosen by the client.

In general, ν will increase as s is increased.

We give an analysis of the Multiblock Challenge Scheme in this setting. Recall that
the file consists of n blocks. Suppose that a challenge c consists of a randomly-chosen
k-subset of {1, . . . , n}, say c = {i1, . . . , ik}, where i1 < . . . < ik. The correct response is
r = (Mi1 , . . . ,Mik).

Theorem 5.4. Let n and k be as defined above. For any integer s ≥ 1, there is a (η, νs, s)-
observer for the Multiblock Challenge Scheme, where

νs = η

(
1−

(
1− k

n

)s)
.

Proof. Denote s random challenges by c1, . . . , cs. The observer O will simply copy every
message block supplied by P . It is possible that O observes a message block Mi and
later observes a possibly different version of the same message block Mi, because some of
the adversary’s responses might be erroneous. In this case, only the “last” copy of Mi is
retained. However, any specific copy of Mi obtained by O is correct with probability at
least η.

For 1 ≤ j ≤ n, define a random variable Xj, where

Xj =

{
1 if j ∈

⋃s
i=1 c

i

0 otherwise.

Then define X =
∑m

j=1 Xj. It is easy to see that

E[Xj] = Pr[Xj = 1] = 1−
(

1− k

n

)s
for 1 ≤ j ≤ n. By linearity of expectation, we have

E[X] = n

(
1−

(
1− k

m

)s)
.

This says that the expected fraction of message blocks that are queried is 1−
(
1− k

n

)s
.

The probability that a specific response to a query is correct is at least η. Therefore,
our observer is a (η, νs, s)-observer, where νs = η

(
1−

(
1− k

n

)s)
.

82

For fixed k and m, we have that
(
1− k

n

)s ≈ e−ks/n, so νs approaches η exponentially
quickly as a function of s.

5.5 Summary and Conclusion

We have introduced the notion of proof-of-data-observability as a strengthening of the now-
standard techniques of proof-of-recovery and proof-of-data-possession schemes for cloud
storage. This new concept provides stronger guarantees relating to the server’s behaviour
than the traditional notions do. We described and analyzed some simple schemes for proof-
of-data-observability in the random oracle model. We also proved some general necessary
conditions for the existence of these schemes, and we studied an extension where the
observer is allowed to accumulate the file over time, by observing a sequence of runs of the
challenge-response protocol.

83

Chapter 6

Multi-server PoR Systems

In the last two chapters, we discussed proof-of-storage systems when only one storage server
was involved. However, in the real world, it is highly likely that a client would store its
data on more than one storage server. This is due to a variety of reasons. For example, a
client might wish to have a certain degree of redundancy if one or more servers fails. In this
case, the client is more likely to store multiple copies of the same data. Another possible
scenario could be that the client does not trust a single server with all of its data. In this
case, the client might distribute the data across multiple servers. Both of these settings
have been studied previously in the literature.

Curtmola et al. [27] considered the first of the above two cases. They addressed the
problem of storing copies of a single file on multiple servers. This is an attractive solution
considering the fact that replication is a fundamental principle in ensuring the availability
and durability of data. Their system allows the Verifier to audit a subset of servers even if
some of them collude.

On the other hand, Bowers, Juels, and Oprea [19] considered the second of the above
two cases. They studied a system where the client’s data is distributed and stored on
different servers. This ensures that none of the servers has the whole data.

Both of these systems covered one specific instance of the wide spectrum of possibilities
when more than one server is involved. For example, none of the works mentioned above
address the question of the privacy of data. Both of them argue that, for privacy, the
client can encrypt its file before storing it on the servers. These systems are secure only
in the computational setting and the privacy guarantee is dependent on the underlying
encryption scheme. On the other hand, there are known primitives in the setting of dis-
tributed systems, like secret sharing schemes, that are known to be unconditionally secure.

84

Moreover, we can also utilize cross-server redundancy to get more practical systems. In
this chapter, we investigate proof-of-retrievability when there is more than one server.

We define and construct multi-server PoR systems. We motivate and define security
of PoR systems in the worst-case and the average-case setting. These two notions capture
the scenarios when at least a threshold of servers succeeds with high enough probability
(worst-case security) and when the average success probability over all the servers is high
enough (average-case security). We also motivate confidentiality of the message as an
important requirement in secure cloud storage systems and achieve this without using any
encryption scheme.

We start this chapter by giving a formal model of multi-server PoR systems.

6.1 Security Model of Multi-server PoR Systems

The essential components of multi-server PoR (MPoR) systems are natural generalizations
of the single-server PoR systems presented in Chapter 3. The first difference is that there
are ρ provers and the Verifier might store different messages on each of them. Also, during
an audit phase, the Verifier can pick a subset of provers on which it runs the audits. The
last crucial difference is that the Extractor has (black-box or non-black-box) access to a
subset of proving algorithms corresponding to the provers that the Verifier picked to audit.
We detail them below for the sake of completeness.

Let Prover1, . . . ,Proverρ be a set of ρ provers and let Verifier be the verifier. The Verifier
has a message m ∈ M from the message space M which he redundantly encodes to
M1, . . . ,Mρ.

1. In the keyed setting, the Verifier picks ρ different keys (K1, . . . , Kρ) one for each of
the corresponding provers.

2. The Verifier stores Mi on Proveri. In the case of a keyed scheme, Proveri may be also
given an additional tag Si generated using the key Ki and Mi.

3. The Verifier stores some sort of information (say a fingerprint of the encoded message)
that allows him to verify the responses made by the provers.

4. On receiving the encoded message Mi, Proveri generates a proving algorithm Pi,
which it uses to generate its responses during the auditing phase.

85

5. At any time, the Verifier picks an index 1 ≤ i ≤ ρ and engages in a challenge-response
protocol with Proveri. In one execution of challenge-response protocol, the Verifier
picks a challenge c and gives it to Proveri, and the prover responds with %. The
Verifier then verifies the correctness of the response (based on its fingerprint).

6. The success probability succ(Pi) is the probability, computed over all the challenges,
with which the Verifier accepts the response sent by Proveri.

7. The Extractor is given a subset S of the proving algorithms P1, . . . ,Pρ (and in the
case of a keyed scheme, the corresponding subset of keys {Ki : i ∈ S}), and outputs
a message m̂. The Extractor succeeds if m̂ = m.

The above framework does not restrict any provers from interacting with other provers
when they receive the encoded message. However, we assume that they do not interact
after they have generated a proving algorithm. If we do not include this restriction, then
it is not hard to see that one cannot have any meaningful security. For example, if provers
can interact after they receive the encoded message, then it is possible that one prover
stores the entire message and the other provers just relay the challenges to this specific
prover and relay back its response to the verifier.

In contrast to a single-prover PoR scheme, there are two possible ways in which one
can define the security of a multi-prover PoR system. We define them next.

The first security definition corresponds to the “worst case” scenario and is the natural
generalization of a single-server PoR system.

Definition 6.1. A ρ-prover MPoR scheme is (η, ν, τ, ρ)-threshold secure if there is an
Extractor which, when given any τ proving algorithms, say Pi1 , . . .Piτ , succeeds with prob-
ability at least ν whenever

succ(Pj) ≥ η for all j ∈ I,

where I = {i1, . . . , iτ}.

We note that when ρ = τ = 1, we get a standard (η, ν)-PoR system. Moreover, the
definition captures the worst-case scenario in the sense that it only guarantees extraction if
there exists a set of τ proving algorithms, all of which succeed with high enough probability.

The above definition requires that all the τ servers succeed with high enough probability.
On the other hand, it might not be the case that all the proving algorithms of the servers
picked by the Verifier succeed with the required probability. In fact, even verifying whether

86

or not all the τ proving algorithms have high enough success probability to allow successful
extraction might be difficult (see Section 4.5.2 for more details about this). However, it
is possible that some of the proving algorithms succeed with high enough probability to
compensate for the failure of the rest of the proving algorithms. For instance, since the
provers are allowed to interact before they specify their proving algorithms, it might be
the case that the colluding provers decide to store most of the message on a single prover.
In this case, even a weaker guarantee that the average success probability is high enough
should be enough to guarantee a successful extraction. In other words, it is possible to
state (and as we show in this chapter, achieve) a security guarantee with respect to the
average case success probability over all the proving algorithms.

Definition 6.2. A ρ-prover MPoR scheme is (η, ν, ρ)-average secure if the Extractor suc-
ceeds with probability at least ν whenever

1

ρ

ρ∑
i=1

succ(Pi) ≥ η.

Note that the average-case secure system reduces to the standard PoR scheme (with
τ = ρ) when ρ = 1. The following example illustrates that average-case security is possible
even when an MPoR system is not possible as per Definition 6.1.

Example 17. Suppose η = 0.7, 0 ≤ ν ≤ 1 and ρ = 3. Further, suppose that succ(P1) =
0.9, succ(P2) = 0.6 and succ(P3) = 0.6. Then the hypotheses of Definition 6.1 are not
satisfied for τ = 2. So even if the MPoR scheme is (η, ν, τ, ρ)-threshold secure, we cannot
conclude that the Extractor will succeed. On the other hand, for the assumed success
probabilities, the hypotheses of Definition 6.2 are satisfied. Therefore, if the MPoR scheme
is (0.7, ν, τ)-average secure, the Extractor will succeed.

In this chapter, we are mainly interested in the case when ν = 0 for both the worst-case
and the average-case security.

Privacy Guarantee. We mentioned in Chapter 4 that PoR systems were introduced and
studied to give assurance of the integrity of the data stored on remote storage. However,
the confidentially aspects of data have not been studied formally in the area of cloud-based
PoR systems. There have been couple of ad hoc solutions that have been proposed in which
the messages are encrypted and then stored on the cloud [27]. We believe that, in addition
to the standard integrity requirement, privacy of the stored data when multiple provers are
involved is also an important requirement. We model the privacy requirement as follows.

87

Definition 6.3. An MPoR system is called τ̃ -private if no set A of adversarial provers of
size at most τ̃ learns anything about the message stored by the Verifier.

Note that τ̃ = 0 corresponds to the case when the MPoR system does not provide
any confidentiality to the message. The above definition captures the idea that, even if τ̃
provers collude, they do not learn anything about the message. We remark that we can
achieve confidentiality without encrypting the message by using secret sharing techniques.

6.1.1 Our Contributions

In Section 6.2, we give a construction of an MPoR scheme that achieves worst-case security
when the malicious servers are computationally unbounded. Our construction is based on
ramp schemes and a single-server PoR scheme. Our construction achieves confidentiality
of the message. To exemplify our scheme, we instantiate this scheme with a specific form
of ramp scheme.

In Section 6.3, we give a construction of an MPoR scheme that achieves average-case
security against computationally unbounded adversaries. For an MPoR system that affords
average-case security, we also show that an extension of classical statistical techniques used
in Chapter 4 can be used to provide a basis for estimating whether the responses of the
servers are accurate enough to allow successful extraction.

One of the main issues in an MPoR system is the maintenance of the stored data,
which involves updating. In Section 6.4, we consider this issue. Using our construction
in Section 6.2, we extend the construction of single-server dynamic PoR schemes [24] to give
an MPoR system that guarantees that an update made by a client is properly registered by
the servers. This construction assumes computationally bounded adversaries, due to the
limitations of the underlying single-server PoR scheme.

One of the benefits of an MPoR system is that it provides cross-server redundancy. In
the past, this feature has been used by Bowers et al. [19] to propose a multi-server system
called HAIL. We first note that the constructions in Section 6.2 and Section 6.3 do not
provide any improvement on the storage overhead of the server or the client. In Section 6.5,
we give a construction based on the Shacham-Waters protocol [72] that allows significant
reduction of the storage overhead of the client in the multi-server setting.

88

6.1.2 Comparison with Bowers, Juels, and Oprea

The scheme of Bowers, Juels, and Oprea [19] is closest to this work; however, there are
some key differences. We enumerate some of them below:

1. The construction of Bowers, Juels, and Oprea [19] is secure only in the computational
setting, while we provide security in the setting of unconditional security.

2. Bowers, Juels, and Oprea [19] use various tools and algorithms to construct their sys-
tems, including error-correcting codes, pseudo-random functions, message authenti-
cation codes, and universal hash function families. On the other hand, we only
use ramp schemes in our constructions, making our schemes far easier to state and
analyze.

3. We consider two types of security guarantees — the worst-case scenario and the
average-case scenario. Bowers, Juels, and Oprea [19], on the other hand, only consider
the worst-case scenario.

4. The construction of Bowers, Juels, and Oprea [19] only aims to protect the integrity
of the message, while we consider both the privacy and integrity of the message.

5. We work under a stronger requirement than Bowers, Juels, and Oprea [19] — we
require extraction to succeed with probability equal to 1, whereas the extractor of
Bowers, Juels, and Oprea [19] succeeds with probability close to 1, depending in part
on properties of a certain class of hash functions used in the protocol.

6. Our scheme in the worst case can be easily transformed to a scheme that allows
dynamic updates to all the servers. In contrast, the system of Bowers, Juels, and
Oprea [19] does not allow efficient updates.

6.2 Worst-case MPoR Based on a Ramp Scheme

In this section, we give our first construction that achieves a worst-case security guaran-
tee. The idea is to use a (τ1, τ2, ρ)-ramp scheme in conjunction with a single-server-PoR
system. The intuition behind the construction is that the underlying PoR system along
with the ramp scheme provides the retrievability guarantee and the ramp scheme provides
the confidentiality guarantee.

89

Message in the form of s bits

Share 1 of
Ramp scheme

Share i of
Ramp scheme

Share ρ of
Ramp scheme

Block stored
on Prover1

Block stored
on Proveri

Block stored
on Proverρ

Π Π Π

.

.

Figure 6.1: Schematic View of a Ramp-MPoR System

We first present a schematic diagram of the working of Ramp-MPoR in Figure 6.1 and
illustrate the scheme with the help of following example. We provide the details of the
construction in Figure 6.2.

Example 18. Let ρ = 6. Suppose the Verifier and the provers use the Linear Combination
Scheme as the underlying PoR system Π. The Verifier also picks an encoding function e(·).
Let the message to be stored be (15, 3). The Verifier picks q = 17 and chooses two random
elements 1, 2 ∈ F17 to construct a polynomial f(x) = 15+3x+x2 +2x3. The Verifier stores
e(4) on Prover1, e(7) on Prover2, e(2) on Prover3, e(1) on Prover4, e(16) on Prover5, and
e(8) on Prover6.

Let us suppose that the PoR scheme is such that, for a random challenge vector, say(
5, 2, 9, 13, 5, 6

)
, where the i-th entry would be a challenge to Proveri, the cor-

responding responses of the provers form a vector
(
3, 14, 1, 13, 12, 14

)
, where the

Respi is the correct response of the Proveri. In other words, on challenge 5 to Prover1, the
correct response is 3, and so on.

During the audit phase, the Verifier picks any 4 provers. Suppose the Verifier picks
Prover1, Prover3, Prover4, and Prover6. The Verifier then sends the corresponding challenges
to the provers; i.e., it sends the challenge 5 to Prover1, 9 to Prover3, 13 to Prover4, and 6
to Prover6. If it gets the response 3, 1, 13, and 14 back, it accepts; otherwise, it rejects.

We note one of the possible ways in which the Ramp-MPoR stated in Figure 6.2 can be
used in practice. Let m be a message that consists of sk elements from Fq. The Verifier
breaks the message into k blocks of length s each. It then invokes a (τ1, τ2, ρ)-Ramp scheme

90

Input: The Verifier gets the message m as input. Let Prover1, . . . ,Proverρ be
the set of ρ provers.

Initialization Stage. The Verifier performs the following steps for storing
the message

1. The Verifier chooses a single-server PoR system Π and a (τ1, τ2, ρ)-
ramp scheme Ramp = (ShareGen,Reconstruct).

2. The Verifier computes ρ shares of the message using the ramp
scheme (m1, . . . ,mρ)← ShareGen(m).

3. The Verifier runs ρ independent copies of Π and generates the en-
coded share Mi = e(mi) ∈M corresponding to each 1 ≤ i ≤ ρ.

4. The Verifier stores Mi on Proveri.

Challenge Phase: During the audit phase, Verifier picks a prover, Proveri,
and runs the challenge-response protocol of Π with Proveri.

Figure 6.2: Worst-case Secure MPoR Using a Ramp-scheme (Ramp-MPoR).

on each of these blocks to generate n shares of each of the k blocks. The Verifier then runs
a PoR scheme Π to compute the encoded message to be stored on each of the servers by
encoding its k shares, one corresponding to each of the k blocks.

We prove the following security result for the MPoR scheme presented in Figure 6.2.

Theorem 6.1. Let Π be an (η, 0, 1, 1)-threshold secure MPoR with a response code of Ham-

ming distance d̃ and the size of challenge space γ and let Ramp = (ShareGen,Reconstruct)
be a (τ1, τ2, ρ)-ramp scheme. Then Ramp-MPoR, defined in Figure 6.2, is an MPoR system
with the following properties:

1. Privacy: Ramp-MPoR is τ1-private.

2. Security: Ramp-MPoR is (η, 0, τ2, ρ)-threshold secure, where η = 1− d̃/2γ.

Proof. The privacy guarantee of Ramp-MPoR is straightforward from the privacy property
of the underlying ramp scheme.

91

For the security guarantee, we need to demonstrate an Extractor that outputs a message
m̂ = m if there exists a set of τ2 servers that succeed with probability at least η = 1− d̃/2γ.
The description of our Extractor is as follows:

1. The Extractor chooses τ2 provers and runs the extraction algorithm of the underlying
single-server PoR system on each of these provers. In the end, it outputs M̂ij for the

corresponding provers Proverij . It defines S ← {M̂i1 , . . . , M̂iτ2
}.

2. The Extractor invokes the Reconstruct algorithm of the underlying ramp scheme with
the elements of S. It outputs whatever Reconstruct outputs.

Now note that the Verifier interacts with every Proveri independently. We know from
the security of the underlying single-server-PoR scheme (Theorem 4.1) that there is an
extractor that always outputs the encoded message whenever succ(Pi) ≥ η. Therefore, if
all the τ2 chosen proving algorithms succeed with probability at least η, then the set S will
have τ2 correct shares. From the correctness of the Reconstruct algorithm, we know that
the message output in the end by the Extractor will be the message m.

As a special case of the above, we get a simple MPoR system which uses a replication
code. This is the setting considered by Curtmola et al. [27]. A replication code has an
encoding function Enc : Λ→ Λρ such that Enc(x) = (x, x, . . . , x︸ ︷︷ ︸

ρ times

) for any x ∈ Λ. It should

be noted that a ρ-replication code is a (0, 1, ρ)-ramp scheme. We call a Ramp-MPoR
scheme based on a replication code a Rep-MPoR. The schematic description of the scheme
is presented in Figure 6.3 and the scheme is presented in Figure 6.4. A simple corollary
to Theorem 6.1 is the following.

Corollary 6.2. Let Π be a (η, 0, 1, 1)-MPoR system with a response code of Hamming

distance d̃ and the size of challenge space γ. Then Ramp-MPoR, formed by instantiating
Ramp-MPoR with the replication code ramp scheme, is an MPoR system with the following
properties:

1. Privacy: It is 0-private.

2. Security: It is (η, 0, 1, ρ)-threshold secure.

92

Message m

M=e(m)

e

M=e(m)

e

M=e(m)

e

M stored
on Prover1

M stored
on Proveri

M stored
on Proverρ

.

.

Figure 6.3: Schematic View of Rep-MPoR

6.3 Average-case Secure MPoR System

In general, it is not possible to verify with certainty whether the success probability of
a proving algorithm is above a certain threshold; therefore, in that case, it is unclear
how the Extractor would know which proving algorithms to use for the extraction purpose
in Section 6.2. In this section, we analyze the average-case security properties of the
replication code based scheme, Rep-MPoR, described in the last section. This allows us an
alternative guarantee that allows successful extraction where the extractor need not worry
whether a certain proving algorithm succeeds with high enough probability or not.

Recall the scenario introduced in Example 17. Here we assumed succ(P1) = 0.9,
succ(P2) = 0.6, and succ(P3) = 0.6 for three provers. Suppose that successful extrac-
tion for a particular prover Pi requires succ(P2) ≥ 0.7. Then extraction would work on
only one of these three provers. On the other hand, suppose we have an average-case se-
cure MPoR in which extraction is successful if the average success probability of the three
provers is at least 0.7. Then the success probabilities assumed above would be sufficient
to guarantee successful extraction.

Theorem 6.3. Let Π be a single-server PoR system with a response code of Hamming
distance d̃ and the size of challenge space γ. Then Rep-MPoR, defined in Figure 6.4, is an
MPoR system with the following properties:

1. Privacy: Rep-MPoR is 0-private.

2. Security: Rep-MPoR is (1− d̃/2γ, 0, ρ)-average secure.

93

Input: The verifier Verifier gets the message m as input. Let
Prover1, . . . ,Proverρ be the set of ρ-provers.

Initialization Stage. The Verifier performs the following steps for storing
the message

1. The Verifier chooses a single-server PoR system Π.

2. Using the encoding scheme of Π, the Verifier generates the encoded
message M = e(m) ∈M for 1 ≤ i ≤ n.

3. The Verifier stores the message M on all Proveri for 1 ≤ i ≤ n.

Challenge Phase: During the audit phase, Verifier runs the challenge-
response protocol of Π independently on each server.

Figure 6.4: Average-case Secure MPoR (Rep-MPoR).

Proof. Since the message is stored in its entirety on each of the servers, there is no confi-
dentiality.

For the security guarantee, we need to demonstrate an Extractor that outputs a message
m̂ = m if the average success probability of all the provers is at least η = 1 − d̃/2γ. The
description of our Extractor is as follows:

1. For all 1 ≤ i ≤ n, use Pi to compute the vector Ri = (r
(i)
c : c ∈ Γ), where r

(i)
c = Pi(c)

for all c ∈ Γ (i.e., for every c, r
(i)
c is the response computed by Pi when it is given

the challenge c),

2. Compute R as a concatenation of R1, . . . , Rρ and find M̂ :=
(
M̂1, . . . , M̂ρ

)
so that

dist(R, rM̂) is minimized, and

3. Compute m = e−1(M̂).

Now note that Verifier interacts with each Proveri independently and Extractor uses the
challenge-response step with independent challenges. Let η1, . . . , ηρ be the success proba-
bilities of the ρ proving algorithms. Let η̄ be the average success probability over all the
servers and challenges. Therefore, η̄ = ρ−1

∑ρ
i=1 ηi.

94

First note that, in the case of Figure 6.4, the response code is of the form(r, r, . . . , r︸ ︷︷ ︸
ρ times

) : r ∈ R

 .

It is easy to see that the distance of the response code is ρd̃ and the length of a challenge
is ργ. From the definition of the extractor and Theorem 4.1, it follows that the extraction
succeeds if

η1 + . . .+ ηρ
ρ

= η̄ ≥ 1− d̃

2γ
.

6.3.1 Hypothesis Testing for Rep-MPoR

For the purposes of auditing whether a file is being stored appropriately, it is necessary to
have a mechanism for determining whether the success probability of a prover is sufficiently
high. In the case of replication code based MPoR with worst-case security, we are interested
in the success probabilities of individual provers, and the analysis can be carried out as
detailed in Chapter 4. In the case of Rep-MPoR, however, we wish to determine whether
the average success probability of the set of provers {P1,P2, . . . ,Pρ} is at least η. This
amounts to distinguishing the null hypothesis

H0 : avg-succ(Pi) < η;

from the alternative hypothesis

H1 : avg-succ(Pi) ≥ η.

Suppose we send c challenges to each server. If a given server Pi has success probability
succ(Pi), then the number of correct responses received follows the binomial distribution
B(c, succ(Pi)). If the success probabilities succ(Pi) were the same for each server, then the
sum of the number of successes over all the servers would also follow a binomial distribution.
However, we are also interested in the case in which these success probabilities differ, in
which case the total number of successes follows a poisson-binomal distribution, which
is more complicated to work with. In order to establish a test that is conceptually and
computationally easier to apply, we will instead rely on the observation that, in cases where

95

the average success probability is high enough to permit extraction, the failure rates of the
servers are relatively low.

For a given server Pi, let fi = 1 − succ(Pi) denote the probability of failure. For
r challenges, the number of failures follows the binomial distribution B(c, fi). Provided
that r is sufficiently large and fi is sufficiently low, then B(c, fi) can be approximated by
the poisson distribution Pois(cfi). The poisson distribution Pois(λ) is used to model the
scenario where discrete events are occurring independently within a given time period with
an expected rate of λ events during that period. The probability of observing k events
within that period is given by

P (k) =
e−λλk

k!
.

The mean and the variance of Pois(λ) is equal to λ. For our purposes, the advantage of
using this approximation is the fact that the sum of ρ independent variables following the
poisson distributions Pois(λ1),Pois(λ2), . . . ,Pois(λρ) is itself distributed according to the
poisson distribution Pois(λ1 + λ2 + · · ·+ λρ), even when the λi all differ. This can be seen
because of the following reason. The moment generating function of a Poisson distribution
is e−λ(1−k). Therefore, the sum of two independent random variables following the Poisson
distributions Pois(λ1) and Pois(λ2) has the moment generating function e−λ1(1−k)e−λ2(1−k).
This is same as the moment generating function of Pois(λ1 + λ2).

In the case where the average failure probability is low, the distribution Pois(c(f1 +
f2 + · · ·+ fρ)) should provide a reasonable approximation to the actual distribution of the
total number of failed challenges.

Example 19. To demonstrate the appropriateness of the Poisson approximation for this
application, suppose we have five servers, whose failure probabilities are expressed as f =
(f1, f2, . . . , f5). Let t be the number of trials per server and b the total number of observed
failures out of the 5t trials. Table 6.1 gives both the exact cumulative probability Pr[B ≤ b]
of observing up to b failures, and the Poisson approximation PrPois[B ≤ b] of this cumulative
probability, for a range of values for f .

Table 6.1: Comparison Between Exact Cumulative Prob-
ability and Approximation by Poisson Distribution

f = (0.1, 0.1, 0.1, 0.1, 0.1)
t b Pr[B ≤ b] PrPois[B ≤ b]

200 5 2.556545692× 10−38 3.261456422× 10−36

200 10 1.450898832× 10−32 1.137687971× 10−30

Continued on next page . . .

96

Table 6.1 — continued from previous page
200 50 5.995167631× 10−9 2.401592276× 10−8

200 100 0.5265990813 0.5265622074
100 0 1.322070819× 10−23 1.928749864× 10−22

100 5 6.272915577× 10−17 5.567756307× 10−16

100 10 1.135691814× 10−12 6.450152972× 10−12

100 15 1.662665039× 10−9 6.357982164× 10−9

100 20 4.557480806× 10−7 0.000001235187232
200 0 1.747871252× 10−46 3.720076039× 10−44

200 5 2.556545692× 10−38 3.261456422× 10−36

200 10 1.450898832× 10−32 1.137687971× 10−30

200 15 6.757345217× 10−28 3.340076418× 10−26

200 20 5.962487876× 10−24 1.905558774× 10−22

500 20 1.240463044× 10−84 1.084188102× 10−79

500 25 3.140367419× 10−79 1.697380630× 10−74

500 30 2.935666094× 10−74 9.912214279× 10−70

500 35 1.193158517× 10−69 2.542280876× 10−65

500 40 2.369596756× 10−65 3.218593843× 10−61

f = (0.01, 0.01, 0.01, 0.01, 0.01)
t b Pr[B ≤ b] PrPois[B ≤ b]

200 5 0.06613951161 0.06708596299
200 10 0.5830408032 0.5830397512
200 20 0.9985035184 0.9984117410
200 50 ≈ 1 ≈ 1

f = (0.2, 0.01, 0.02, 0.03, 0.04)
t b Pr[B ≤ b] PrPois[B ≤ b]

200 5 9.651421837× 10−22 6.180223643× 10−20

200 10 5.539867010× 10−17 1.744235672× 10−15

200 20 0.09020056729 0.1076778797
200 50 0.9999999198 0.9999991415

f = (0.01, 0.01, 0.03, 0.04, 0.05)
t b Pr[B ≤ b] PrPois[B ≤ b]

200 5 8.312224722× 10−8 1.196952269× 10−7

200 10 0.00006809921297 0.00008550688580
200 20 0.06901537242 0.07274102693
200 50 0.9999582547 0.9999397284

Continued on next page . . .

97

Table 6.1 — continued from previous page
f = (0.1, 0.1, 0.1, 0.1, 0.1)

t b Pr[B ≤ b] PrPois[B ≤ b]
20 0 0.00002656139888 0.00004539992984
20 5 0.05757688648 0.06708596299
20 10 0.5831555123 0.5830397512
20 15 0.9601094730 0.9512595983
20 20 0.9991924263 0.9984117410
40 0 7.055079108× 10−10 2.061153629× 10−9

40 5 0.00003871193246 0.00007190884076
40 10 0.008071249954 0.01081171886
40 15 0.1430754340 0.1565131351
40 20 0.5591747822 0.5590925860
100 20 4.557480806× 10−7 0.000001235187232
100 25 0.00003540113222 0.00007160717427
100 30 0.001002549708 0.001594027332
100 35 0.01231948910 0.01621388016
100 40 0.07508928967 0.08607000083
20 0 0.3660323413 0.3678794412
20 5 0.9994654657 0.9994058153
20 10 0.9999999939 0.9999999900
20 15 1.000000000 1.000000000
20 20 1.000000000 1.000000000
40 0 0.1339796748 0.1353352833
40 5 0.9839770930 0.9834363920
40 10 0.9999931182 0.9999916922
40 15 0.9999999996 1.000000000
40 20 0.9999999999 1.000000000
100 20 0.9999999367 0.9999999198
100 25 0.9999999999 1.000000001
100 30 0.9999999999 1.000000001
100 35 0.9999999999 1.000000001
100 40 0.9999999999 1.000000001

f = (0.02, 0.0075, 0.0075, 0.0075, 0.0075)
t b Pr[B ≤ b] PrPois[B ≤ b]

20 0 0.08936904038 0.09536916225
Continued on next page . . .

98

Table 6.1 — continued from previous page
20 5 0.9712600336 0.9672561739
20 10 0.9999843669 0.9999642885
20 15 0.9999999995 0.9999999958
20 20 1.000000000 1.000000000
40 0 0.007986825382 0.009095277109
40 5 0.6699740391 0.6684384858
40 10 0.9927425867 0.9909776597
40 15 0.9999835852 0.9999661876
40 20 0.9999999935 0.9999999715
100 20 0.9999999935 0.9999999715
100 25 0.9999999998 1.000000001
100 30 0.9999999998 1.000000001
100 35 0.9999999998 1.000000001
100 40 0.9999999998 1.000000001

As an example of using the given formula to calculate a confidence interval, suppose
we do 200 trials on each of five servers (so there are 1000 trials in total) and we observe 50
failures in total. Then the resulting confidence interval is [0, 63.29). Suppose we wish to
know whether the success probability is at least η = 0.9. We have (1− 0.9)× 1000 = 100.
This is outside of that interval, and hence we conclude there is enough evidence to reject
H0 at the 95% significance level. However, to test whether the success probability was
greater than 0.95 we see that (1− 0.95)× 1000 = 50. Since 50 lies within the interval, we
conclude there is insufficient evidence to reject H0 at the 95% significance level.

Let b denote the number of incorrect responses we have received from the cρ challenges
given to the provers. Suppose that H0 is true, so that the expected number of failures is
at least ηρc. Based on our approximation, the probability that the number of failures is
at most b is at most

b∑
i=0

e−ηρc(ηρc)i

i!
.

If this probability is less than 0.05, we reject H0 and accept the alternative hypothesis.
However, if the probability is greater than 0.05, then there is not enough evidence to reject
H0 at the 5% significance level, and so we continue to suspect that the file is not being
stored appropriately.

99

We can express this test neatly using a confidence interval. We define a 95% upper
confidence bound by

λU = inf

{
λ

∣∣∣∣∣
b∑
i=0

e−λλi

i!
< 0.05

}
.

This represents the smallest parameter choice for the Poisson distribution for which the
probability of obtaining b or fewer incorrect responses is less than 0.05. Then [0, λU) is a
95% confidence interval for the mean number of failures, so we reject H0 whenever ηnr lies
outside this interval. The value of λU can be determined easily by exploiting a connection
with the chi-squared distribution [82]: we have that

b∑
i=0

e−λλi

i!
= Pr(χ2

2b+2 > 2λ),

and so the appropriate value of λU can readily be obtained from a table for the chi-squared
distribution.

6.4 Maintaining an MPoR scheme: Dynamic Updates

One of the desirable features of cloud-based storage is to allow efficient updates to messages
stored on the cloud at any given time. In this section, whenever we update the message,
we mean that the original message m is changed to some m′ without changing its size.
Note that we do not assume that the Verifier has a copy of its message that it stored on
the servers.

We start by discussing the problems in making efficient updates to the encoded message
in a PoR scheme. This will also help us in arguing the case in the multi-server setting.
At a very high level, all PoR constructions share essentially the same common structure.
The Verifier stores some redundant encoding of its message under a code on the Prover,
ensuring that the Prover must delete a significant fraction of the encoding before losing
any fraction of the actual message. During an audit, the Verifier then checks a few random
locations of the encoding, so that a Prover who deleted a significant fraction will get caught
with overwhelming probability. This construction makes it very difficult to accommodate
efficient updates. For example, if we need to change a single location in m, then we may
have to change a constant fraction of the encoded message. In the rest of this subsection,
we use the letter m to denote the original message and M to denote the encoded message.

100

In practice, the message m is usually broken down into n blocks, then each block is
encoded using an encoding function e(·), and the encoded message is stored on the prover.1

This is to improve the communication cost during an audit phase. We denote the encoded
M as an n-block message (M [1], . . . ,M [n]). In this setting, an update means a single block
of the message is changed. In the multi-server setting, a message is shared among ρ provers.
When an encoded message M is shared between the provers as M1, . . . ,Mρ, we write the
blocks of the encoded message stored on Proveri as Mi[1], . . . ,Mi[n].

6.4.1 Constructing a Dynamic-MPoR

In this section, we give a construction of an MPoR scheme that allows dynamic updates.
We use a dynamic-PoR scheme that is secure in the single-server setting and use it to
construct a dynamic-MPoR. There are a few things to take into account when we try to
extend a dynamic-PoR scheme in a single server setting to a multi-server system. It is clear
that we have to divide the encoded message into blocks and share it among the provers,
but we need to make sure that any update to a single message block does not require
updates on too many provers and that the number of required updates on every prover
is also small. The first restriction is to keep the communication complexity small during
an audit and the second one is to justify the use of a dynamic-PoR system. For example,
if a single update to a message results in an update to many encoded message blocks, a
Verifier might as well wait for a number of updates. The Verifier could then download the
whole encoded message, perform all the updates at the same time, and restore the changed
encoded message.

The main idea that we use to extend the single-server dynamic-PoR systems to the
multi-server setting is as follows. Suppose the message and the encoded message are n
blocks long, where each message block is an element of (Fq)s. We use the Ramp-MPoR
scheme from Figure 6.2. In the notation of the Figure 6.2, we instantiate Π and the
Ramp scheme appropriately. We use a dynamic PoR system for Π and a linear secret
sharing scheme for the Ramp scheme. Note that any linear code gives a Ramp scheme
(Theorem 2.6) and also an LSSS (Construction 2). We can therefore pick an appropriate
[N, k, d]q-linear code. As we shall see later, we need some more properties, in addition to
the linearity property of a code, to make our scheme efficient. The choice of Π is more
straightforward. Note that, since all the known constructions of dynamic-PoR schemes

1The encoding function e(·) is in practice some form of redundant encoding which maps from a smaller
bit-length space to a larger bit-length space. For example, one possible encoding function could be e :
Fp → Fq, where q > p.

101

Unencoded message in the form of
ns bits broken in n blocks of s bits

Set of first share
of all the blocks

generated using LSSS

Set of i-th share
of all the blocks

generated using LSSS

Set of ρ-th share
of all the blocks

generated using LSSS

Block-j
on Prover1

Block-j
on Proveri

Block-j
on Proverρ

Π Π Π

.

.

Figure 6.5: Schematic View of Dynamic-MPoR System where Π is a single-server dynamic-
PoR system

are secure only against computationally bounded adversaries, our final construction is also
secure (i.e., satisfies Definition 3.1) only against computational adversaries. However, we
do not make any additional computational assumptions and the privacy guarantee is still
information-theoretic. For example, the construction of Chandran et al. [24] assumes a
secure message authentication code (MAC); therefore, our construction for Dynamic-MPoR
is also only secure under the assumption that there is a secure MAC.

At a high level, the Dynamic-MPoR given in Figure 6.6 works as follows (see the
schematic diagram in Figure 6.5). The Verifier receives an n-block message m. We as-
sume that each block consists of s elements each of which are in the finite field Fq. When
this is the case, we say that each block is an element of (Fq)s. It first picks a linear code
that is also a (τ1, τ2, ρ)-LSSS. It computes the shares for the provers for each of the n blocks
of m using the share generation algorithm of a (τ1, τ2, ρ)-LSSS scheme. It then stores these
blocks on the ρ servers. Therefore, every prover has n blocks, each of which is an element
of Fq. During an update, if the i-th block of m has to be updated from mi to m̃i = mi + ξ
for some 1 ≤ i ≤ k, the Verifier computes the share corresponding to a message which
has zero entries everywhere except for ξ at the i-th position. Let the shares generated be
Ξ ∈ (Fq)ρ. The Verifier now updates only those provers Proverj for which the j-th entry of
the codeword, Ξj is non-zero, for 1 ≤ j ≤ n, using the update algorithm of the underlying
single-server dynamic-PoR scheme.

We prove the following result for the scheme presented in Figure 6.6. It should be noted
that all existing dynamic-PoR schemes are secure only in the computational setting. This

102

Input: The Verifier has the message m = (m[1], . . . ,m[n]) where each m[i] ∈ (Fq)s.
Let Prover1, . . . ,Proverρ be the set of ρ provers.

Initialization Stage. Let Π denote a single-prover dynamic PoR scheme and let
(τ1, τ2, ρ)-LSSS denote a linear secret sharing scheme based on a [ρ+ s, k]q linear
code with s ≤ d⊥ − 2. Let Enc(·) be the encoding function as defined in Sec-
tion 2.4.1. The Verifier now performs the following steps to encode and store
the message m.

1. For 1 ≤ i ≤ n, use Enc to compute ρ shares of m[i] as follows:
(M1[i], . . . ,Mρ[i]) = Enc(m[i]), where m[i] = (m1[i], . . . ,ms[i]) ∈ (Fq)s.

2. For 1 ≤ j ≤ ρ, use Π to encode (Mj[1], . . . ,Mj[n]) and store the result on
Proverj.

Challenge Phase: The Verifier uses the challenge-response algorithm of Π to audit
the provers of its choice.

Update Phase: Suppose the Verifier wishes to update the j-th position of the i-th
block of the message to m̃[i] = m[i] + ξ for some 1 ≤ j ≤ s, 1 ≤ i ≤ n, where
ξ ∈ (Fq)s has hamming weight 1 and ξj 6= 0. The Verifier does the following:

1. Compute the shares corresponding to ξ as follows: Ξ = Enc(ξ).

2. The Verifier uses the update procedure of Π to update the message encoding
by adding Ξh to Mh[i] for all h ∈ {d : Ξd 6= 0}.

Figure 6.6: Dynamic MPoR Using Linear Secret Sharing Scheme (Dynamic-MPoR)

is the reason why we have a security parameter in our scheme.

Theorem 6.4. Let ζ be the maximum number of non-zero entries in the rows of the
generator matrix used to generate the code used to define the (τ1, τ2, ρ)-LSSS. Let κ be the
security parameter of a single-server dynamic PoR system, Π, with the following properties:
the storage requirement on the Prover is SProver, on the verifier is SVerifier, a write update
takes w time, accessing any entry on the prover takes r time, and an audit protocol takes a
time. Then, Dynamic-MPoR, as presented in Figure 6.6, provides the following guarantees:

1. Storage Requirements: The total storage required on every Proveri is SProver for 1 ≤
i ≤ ρ, and Verifier needs ρSVerifier storage.

103

2. Efficiency: The write update takes O(ζw) time, accessing an entry at any Prover’s
storage takes O(ζr) time, and an audit protocol takes O(ζa).

3. Security: If Π is (η, ν/τ2, 0, 1)-secure, then Dynamic-MPoR is (η, ν, τ2, ρ)-threshold
secure.

4. Privacy: Dynamic-MPoR is τ1-private.

Before proving the theorem, we make an important remark. In Enc, as defined in Sec-
tion 2.4.1, the encoding function picks k−s random chosen values and then forms a k-block
message by concatenating ξ with these uniformly and randomly chosen values. However,
in the proof of the theorem, we fix these random values to be all-zeroes vector. This
would allow the provers, which are updated, to learn which position of the original file has
changed, but they do not learn the final value of the message. Therefore, the privacy of
the system is still maintained, in accordance with Definition 6.3.

Proof. The storage requirement is fairly straightforward from the description given in Fig-
ure 6.6. For the efficiency guarantee, we first determine the time required by a single
update. Note that in a Dynamic-MPoR, Proveri has to be updated if Ξi 6= 0. One natural
and practical requirement would be to minimize the number of provers that need to be up-
dated. In the next part of this section, we analyze the number of changes in the codewords
required.

Efficiency Guarantee. Let m be the original message of the Verifier and let m̃ be the
modified message. Without loss of generality, we assume that dist(m, m̃) = 1, and m and
m̃ differ in the i-th position. Let mi− m̃i = ξ ∈ Fq. First note that an alternate way to see
any linear secret sharing scheme is in the form of an error correcting code. Let G be the
generator matrix in the standard form corresponding to the error correcting code on which
the LSSS scheme is based. We pick x = ξ ‖ 0k−s and compute c = xG. We then set Ξ to
the last ρ entries of c = xG. That is, the hamming weight of Ξ is the same as the number
of non-zero entries in the i-th row of the matrix G. For a general linear code, there is no
bound on this value. On the other hand, if we use a linear code whose generator matrix
has small row sparsity [43], we can improve the update efficiency significantly. For this, we
can use various constructions, depending on the structure of the finite field Fq, mentioned
in Section 2.2.2. For example, we can use a code whose parity check matrix is the one
defined by Bennatan and Burshtein [13]. On the other hand, if we have Fqs for an integer
s, then we can use a code whose parity check matrix is the one defined by Kou, Lin, and
Fossorier [55] (Theorem 2.3). Let ζ be the row sparsity of the generator matrix used in
the construction of LSSS. From the above discussion, it is clear that we need to update at

104

most ζ provers. From the hypothesis of the theorem, a single update on any prover takes
O(w) time; therefore, it takes O(ζw) total time to update all the servers. This restricts
our access time while auditing a particular entry of the encoded message and increases the
total storage on provers to O(ζSProver).

Privacy and Security Proof. For the privacy guarantee, recall from Section 2.4 that
any [N, k]-linear code with distance d and dual distance d⊥ is an (τ1, τ2, ρ)-ramp scheme
scheme, where N = ρ+ s, τ1 = N − d + 1 and τ2 = d⊥ + 2. Therefore, part 4 follows from
the secrecy guarantee of the underlying LSSS scheme.2

The security guarantee is analogous to that of Theorem 6.1, except that we need to be
careful because ν 6= 0 for the dynamic-PoR schemes we are going to use. Let P1, . . . ,Pρ be
the proving algorithms for Prover1, . . . ,Proverρ, respectively. For the security guarantee, we
have to show an Extractor that outputs m if succ(Pi) > η for at least τ2 proving algorithms.
The description of the Extractor is just as in the case of Theorem 6.1:

1. Extractor, on input a set of τ2 proving algorithms Pi1 , . . . ,Piτ2 , runs the extractor of
the underlying single-server PoR system Π with each of Pij for 1 ≤ j ≤ τ2 to output

M̂i1 , . . . , M̂iτ2
. Define S ← {M̂i1 , . . . , M̂iτ2

}.

2. Extractor invokes Reconstruct algorithm of the underlying LSSS with the the elements
of the set S. It outputs whatever Reconstruct outputs.

First note that the Verifier interacts with Proveri independently for all i ∈ {i1, . . . , iτ2}.
Since the Verifier uses independent instances of (η, ν/τ2, 0, 1)-secure PoR systems Π, we
know from the security of Π that there is an extractor that outputs the encoded message
with probability at least 1−ν/τ2 whenever succ(Pi) ≥ η. Therefore, if τ2 proving algorithms
succeeds with probability at least η, then using the union bound, the set S will have at
least τ2 correct shares with probability 1 − ν. From the correctness of the Reconstruct
algorithm, we know that the message output in Step 3 of Extractor will be the message m.
This completes the proof of the theorem.

The scheme presented in Figure 6.6 is in its most general form. In order to instantiate
the scheme and get concrete bounds on the security, privacy, and efficiency guarantees, we
need to do the following:

1. Pick a dynamic-PoR system which is secure in the single server setting.

2The distance is easier to calculate from the column sparsity of the parity check matrix; however, the
dual distance needs more work. We perform the computations for two schemes later in this subsection.

105

2. Pick a linear code which provides the required privacy and efficiency guarantee.

One could pick different constructions of linear codes which satisfies the required prop-
erties to instantiate the LSSS used in Figure 6.6. Also, we can pick any of the three existing
dynamic-PoR constructions [23, 24, 75] to instantiate Π. Each of these choices would give
different security, privacy, and efficiency guarantees for the scheme presented in Figure 6.6.
In the next two subsections, we discuss these possible choices in more detail.

6.4.2 Choosing a Dynamic-PoR System

We mentioned earlier that we can plug any known construction of a dynamic-PoR system
into the construction of Figure 6.6. To our knowledge, there are three known constructions
of single-server dynamic PoR systems [23, 24, 75]. In this thesis, we instantiate Π with the
construction given by Chandran et al. [24]. The reason why we picked the construction
of Chandran et al. [24] in our instantiation is that it is based on codes of a specific form
described below and its guarantees are explicitly stated using worst-case analysis. In
contrast, the construction of Shi et al. [75] and that of Cash et al. [23] achieve only an
amortized update guarantee. In the next paragraph, we discuss this issue with respect to
the construction of Cash et al. [23].

The construction of Cash et al. [23] uses a cryptographic primitive known as the obliv-
ious RAM [41] in a black-box manner. An oblivious RAM is a data structure that allows
efficient read and write on the server without the server knowing which position has been
read or written to or even whether it was a read or a write operation. The efficiency
guarantees of the scheme of Cash et al. [23] depend on the efficiency guarantees of the
underlying oblivious RAM. As a result, we get efficiency guarantees comparable to that of
Chandran et al. [24] only when the efficiency is measured in an amortized sense, even with
the most efficient known construction of oblivious RAM [56, 67, 78]. This is because the
read and write efficiency of these known constructions of oblivious RAM are studied in the
amortized sense. In the worst case, the update time of the construction of Cash et al. [23]
has extra poly log factors when instantiated with the state-of-the-art oblivious RAM of Shi
et al. [74] that provides worst-case update guarantees. We note that the construction of
Shi et al. [75] achieves a slightly better amortized update efficiency than Cash et al. [23]
because it does not use an oblivious RAM in a black-box manner. However, they use a
data structure to store the file which is structurally similar to that of an oblivious RAM,
which results in an amortized update efficiency guarantee.

We now explore the construction of Chandran et al. [24] in more detail. Chandran et
al. [24] first defined and constructed a new type of error-correcting code called a locally

106

updatable code, and used it to construct their dynamic-PoR system. Intuitively, in a locally
updatable code, one can update the codeword corresponding to a message m to a codeword
corresponding to a message m′ = m+ ξ by changing a small number of entries of the code-
word, assuming ξ has Hamming weight one. They showed that, using an appropriate data
structure, one can construct a locally updatable code using a locally decodable code (see
Definition 2.3). We give a brief overview of their construction.

Recall the definition of a locally decodable code in Definition 2.3. Let loc be a constant.
Let DecLDC denote the decoding algorithm and EncLDC denote the encoding algorithm of
an [N, k, loc]q-LDC. In this section, we will always assume that q = 2. Therefore, we drop
the subscript q and denote a locally decodable code by [N, k, loc]-LDC.

We now describe the locally updatable and locally decodable codes of Chandran et
al. [24]. We denote it by LULDC := (EncLULDC,DecLULDC,Update) and its parameters by
(N, k, locr, locu). The function EncLULDC : (Fq)k → (Fq)N is the encoding function that
encodes a k-block message to an N -block message such that computing any i-th block of
the message requires reading at most locr blocks of the codeword and updating any i-th
block of message requires at most locu blocks of the codeword to be updated.

We first describe the algorithm that implements the encoding function. Let the message
to be encoded using LULDC be k blocks long. Let a be an integer such that 2a ≤ k ≤ 2a+1.
The encoding algorithm picks an [Ñ , k, loc]-LDC and a family of [Ni, ki, loci]-LDC such that
ki = 2i(log k) and loci is constant for all 0 ≤ i ≤ a. The block-length of the codeword is

N = Ñ +
∑

iNi.

The encoding algorithm uses a certain data structure. At a high level, the data structure
has a+ 1 buffers, denoted by buff0, . . . , buffa, such that buffi can store Ni blocks. Initially,
all blocks in buff1, . . . , buffa are set to a special symbol >. We call any buffer that consists
of only > an empty buffer. Additionally there is a special buffer, say buff, that can store up
to Ñ message blocks. The algorithm for EncLULDC takes as input a message of block length
k. To encode a message m of length k, we use the encoding function of [Ñ , k, loc]-LDC and
store the encoded message in buff. The contents of the buffers buff0, . . . , buffa, buff at any
point of time forms the codeword corresponding to the message m at that time.

Whenever we wish to update a block of the message, say the j-th block, we find the
first empty buffer. Let the first empty buffer be buffi. We decode buff0, . . . , buffi−1 to
get a vector of message blocks. We then include the new message block in this set of
message blocks and encode the updated message using [Ni, ki, loci]-LDC and store it in
buffi. If no buffer is empty, then Enc decodes buff0, . . . , buffa and i is set to be a + 1,
place the new message block at appropriate block position and encode the new message
with [Ñ , k, loc]-LDC. The buffers buff0, . . . , buffi−1 are then set to be empty. Chandran et

107

al. [24] showed that this is a locally updatable code.

Turning LULDC into a dynamic-PoR scheme. Using their construction of locally
updatable and locally decodable codes, Chandran et al. [24] gave a construction of dynamic-
PoR in the computational setting. They assume that it is computationally infeasible for
adversarial provers to break a message authentication code (MAC) of constant output
size. In their scheme, the Verifier computes the encoded message using EncLULDC on the
message and a corresponding authentication tag of the message. They used the code of
Spielman [77] to construct the LULDC code. This is an error-correcting code that requires
linear time to encode and decode a message. They also use a message authentication
code, MAC, whose output is of constant size. To store a message m on a prover, they
compute M = EncLULDC(m) using the encoding function defined above. They also compute
σ[i] = MAC(M [i]). The Verifier stores ({M [1], σ[1]}, . . . , {M [n], σ[n]}) in buff and the rest

of the buffers are set to > (here, n = Ñ , where Ñ is as defined in the construction of
LULDC). The resulting scheme is secure when the adversary is computationally bounded
(this results in the use of security parameter in κ in the result stated below). To perform
any update, the Verifier uses the update algorithm as presented above in the case of LULDC.
Chandran et al. [24] used the extractor of Dodis, Vadhan, and Wichs [33, Section 4]3 to
show the following.

Theorem 6.5. (Chandran et al. [24]) Let M = e(m) = M [1], . . . ,M [n] be an encoding
of an n-bit message m defined above such that each M [i] ∈ F2. Let κ be the security
parameter. Then there exists a construction of a dynamic-PoR whose extractor runs in
expected polynomial time. The dynamic-PoR requires a prover to store O(n) field elements
and the Verifier to store O(κ) field elements. Also, a single audit can be done by accessing at
most O(κ log n) blocks of the encoded message and an update can be performed in O(log n)
time.

6.4.3 Choosing an Appropriate Linear Secret Sharing Scheme

The scheme in Figure 6.6 uses a linear code and implicitly assumes that all the codewords
in the linear code are available. This leads to subtle problems, which we illustrate through
the means of the following example.

3Dodis, Vadhan, and Wichs [33] showed that if the underlying code used to store the message is a
locally decodable code such that decoding any bits fails with at most negligible probability, then there
exists an extractor that outputs the message with all but negligible probability.

108

Recall the generator matrix in Example 9,

G :=

1 0 0 9 2 11 7
0 1 0 4 11 12 11
0 0 1 8 9 4 11

 .

G is a generator matrix of a [3, 7]13-linear code. Let m =
(
10, 3, 5

)
∈ (F13)3 be

the message to be stored on the server. Therefore, n = 1 and ρ = 4. Then mG =(
10, 3, 5, 12, 7, 10, 2

)
. The Verifier stores 12 on Prover1, 7 on Prover2, 10 on Prover3,

and 2 on Prover4. During an update, say to m2 from 3 to 4, the Verifier computes eT
2 G to get(

0, 1, 0, 4, 11, 12, 11
)

and updates each prover using a single-server dynamic-PoR
scheme to store the shares of the new message, which are

(
3, 5, 9, 0

)
.

Note that all the servers need to be updated for a single update in the above example.
This is not an artifact of our example; in fact, most updates would require many servers
to be updated. On the other hand, for efficiency reasons, it is desirable that, for a single
update to the message, both the number of provers we need to update and the number of
blocks on every prover that need to be updated should be small. Recall that the efficiency
and storage guarantees stated in Theorem 6.4 depend on the row sparsity of the generator
matrix of the linear code used to construct the LSSS. To achieve this, we use a linear code
arising from a low-density generator matrix (LDGM). This gives a linear secret sharing
scheme with a good privacy guarantee and efficient update time. Therefore, at the first
glance, it seems that any low-density generator matrix suffices for our purpose. However,
we have to be careful which low-density generator matrix we use to construct the LSSS.

To understand the complications, we first recall the construction of a ramp scheme from
a linear code described in Section 2.4. Let C be a linear code of length N = ρ+ s defined
over a finite field Fq. Let (m1, . . . ,ms) ∈ (Fq)s be the message to be stored. The shares
of a ramp scheme, described in Section 2.4, are computed as follows: select a random
codeword of the form (c1 = m1, . . . , cs = ms, cs+1, . . . , cρ+s) ∈ C, and define the shares as
(cs+1, . . . , cρ+s). The result is a (d⊥ − s − 1, N − d + 1, N)-linear secret sharing scheme,
where d⊥ is the dual distance of C. In other words, we need to know (a bound on) the
distance and dual distance of the underlying code. We revisit the known constructions of
low-density generator matrices and low-density parity check matrices.

We start with the probabilistic construction of Bennatan and Burshtein [13] of low-
density parity-check matrices. Recall from Theorem 2.2 that, if we use the codes whose
parity check matrix is the one defined by Bennatan and Burshtein [13], with high proba-
bility, one can afford security against a constant fraction of the malicious servers. This is
because the relative distance of their code is a constant and the security of the constructed

109

MPoR depends on the distance of the code. However, it is not clear what the dual distance
is of this code. Moreover, the distance guarantee is true only with high probability (and
not with probability 1). For these reasons, we look at alternate explicit constructions.

For example, we can use the explicit combinatorial constructions based on the Euclidean
geometry or the one based on difference families by Johnson and Weller [50], described
in Section 2.2.2 and Section 2.2.3, respectively.

We now look at the instantiation of dynamic- MPoR using the two explicit construc-
tions mentioned above. We start with the construction based on the Euclidean geometry.
If we instantiate the Dynamic-MPoR with a low-density parity check code based on the
Euclidean geometry, then we need to determine u and w so that ρ = 2uw− s. In that case,
using Theorem 2.3 and Theorem 2.6, we have

τ1 = d⊥ − s− 1 = (2w + 2)2w(u−2) − (s + 1), (6.1)

and

τ2 = ρ+ s− d + 1 = 2uw − 2uw − 1

2w − 1
. (6.2)

If we use a 2-dimensional Euclidean geometry (so u = 2), then we have the following
instantiation.

Example 20. Recall from Theorem 2.6 that if the dual distance of a code is d⊥, then
we can take 1 ≤ s < d⊥ − 2 in Theorem 2.6. We set s = 1 and w = (log2(ρ + 1))/2.
Using Equation (6.1) and Equation (6.2), we have τ1 =

√
ρ+ 1 and τ2 = ρ −

√
ρ+ 1.

Suppose the underlying single server dynamic-PoR scheme is an (η, ν/τ2, 1, 1)-threshold
secure MPoR, then substituting the values of τ1 and τ2 in Theorem 6.4, we get an (η, ν, ρ−√
ρ+ 1, ρ)-threshold secure and

√
ρ+ 1-private Dynamic-MPoR.

Note that we did not say anything about the update time efficiency of the MPoR in
Example 20. This is because the above construction might not yield an efficient dynamic-
MPoR and an update might require updating many servers. This is due to the fact that
updating the provers requires computing the encoding of a basis element. This requires the
use of a generator matrix of the code. Unfortunately, the generator matrix corresponding
to the parity-check code matrix based on Euclidean geometry might be very dense, and,
therefore, the number of servers that needs to be updated might be very large. This results
in the same issue mentioned at the start of Section 6.4.

Fortunately, an easy remedy to the above problem exists if we have a linear code with
a low-density generator matrix in standard form. Johnson and Weller [50] gave one such
construction, which we described in detail in Section 2.2.3.

110

6.4.4 Putting Everything Together

We give an example by instantiating the scheme presented in Figure 6.6 with the LSSS of
Johnson and Weller [50] and the single-server dynamic-PoR scheme of Chandran et al. [24].
We have all the required efficiency parameters of a single-server dynamic-PoR scheme; i.e.,
audit time, update time, and storage requirement of the scheme of Chandran et al. [24]
through Theorem 6.5. Therefore, to instantiate Theorem 6.4 with a specific system, all
that we need are the various parameters of the LSSS.

Let us first recount all the parameters of the LSSS that we need. We require the values
of τ1 and τ2, which depend on the linear code on which the LSSS is based, and a bound on
row sparsity of the underlying linear code. If we use a (v, 3, 1)-difference family whose size
is L, then Theorem 2.4 gives the bound on the row sparsity of the linear code constructed
by Johnson and Weller [50], i.e., ζ = 3(L−1)+1. Moreover, if we set k = v(L−1), N = vL,
and s = v, then Lemma 2.5 gives the guarantee on the distance d = 3L and dual distance
d⊥ = 5, which in turn defines τ1 and τ2 using Theorem 2.6.

Therefore, plugging Theorem 2.4, Lemma 2.5, and Theorem 6.5 into Theorem 6.4 gives
us the following corollary.

Corollary 6.6. Let v ≡ 1 mod 6 be a prime number and L be as defined above. Let
the message to be stored on the servers be of length sn bits long, such that s = v ≤
v(L − 1). Set ρ = vL − s = v(L − 1). Then there is an explicit construction of an
(η, ν, v(L − 1) − 2L + 2, v(L − 1))-threshold secure and 3-private Dynamic-MPoR, where
every prover has to store O(n) bits. Any audit takes O(κL log n) time and an update takes
O(L log n) time.

In the above corollary, we assumed that the message to be stored is sn bits in length.
This is without any loss of generality because we can always pad the message appropriately
to make it a multiple of s bits in length.

6.5 Optimization Using the Shacham-Waters Scheme

In the last three sections, we gave constructions of MPoR schemes using ramp schemes,
linear secret-sharing schemes, replication codes, and a single-prover-PoR system. In this
section, we show a specific instantiation of our scheme using the keyed scheme of Shacham
and Waters [66, 72] for a single server PoR system. Note that this does not provide a
dynamic-MPoR scheme.

111

Recall from Section 4.4 that, in the setting of unconditional security, any keyed PoR
scheme is considered to be secure when the success probability of the prover P , denoted
by succ(P), is the the average success probability of the prover over all possible keys
(Theorem 4.13). The same reasoning extends to MPoR systems. Therefore, in what follows,
when we say a scheme is an (η, ν, τ, ρ)-threshold secure scheme, the term η is the average
success probability where the average is over all possible keys. We use succavg(P) to denote
the average success probability of a prover P over all possible keys.

We recall the parameters in Equation 4.6 (see Theorem 4.13). Let ` be the hamming
weight of the challenges made by the Verifier and d be the Hamming distance of the message

space. We denote η = 1− d̃(q−1)
2γq

, where q is the size of the underlying field, γ = qn, and

d̃ ≈
(
n

`

)
(q − 1)` −

(
n− d

`

)
(q − 1)` −

∑
w≥1

(
d

w

)(
n− d

`− w

)
(q − 1)`

q
(6.3)

is the approximate value of the Hamming distance of the response code for Modified
Shacham-Waters scheme.

6.5.1 Extension of the Keyed Shacham-Waters Scheme to MPoR

If we instantiate the Rep-MPoR scheme (described in Section 6.2) with the Shacham-Waters
scheme (described in Figure 4.4), then we need one key that consists of n+ 1 values in Fq.
However, in this case, we do not have any privacy. In particular, we have the following
extension of Corollary 6.2.

Corollary 6.7. Let Π be an (η, 0, 0, 1)-PoR system, described in Figure 4.4, with a re-

sponse code of Hamming distance d̃ and the size of challenge space γ (where d̃ is approxi-
mated by Equation (6.3)). Then Rep-MPoR, instantiated with the Shacham-Waters scheme
of Figure 4.4, is an MPoR system with the following properties:

1. Privacy: It is 0-private.

2. Security: It is (η, 0, 1, ρ)-threshold secure, where η = 1− d̃(q−1)
2γq

.

3. Storage Overhead: Verifier needs to store n+ 1 field elements and every Proveri needs
to store 2n field elements.

Proof. The results follow by combining Theorem 4.13 with Corollary 6.2.

112

The issue with the Rep-MPoR scheme is that there is no confidentiality of the file. In
what follows, we improve the privacy guarantee of the MPoR scheme described above. Our
starting point would be an instantiation of the Ramp-MPoR scheme, defined in Figure 6.2,
with the Shacham-Waters scheme. We then reduce the storage on the Verifier through a
series of steps.

6.5.2 Optimized Version of the Multi-server Shacham-Waters
Scheme

We follow two steps to get a MPoR scheme based on the Shacham-Waters scheme with a
reduced storage requirement for the Verifier, while improving the confidentiality guarantee.

1. In the first step, stated in Theorem 6.8, we improve the privacy guarantee of the
MPoR scheme to get a τ1-private MPoR scheme (where τ1 < ρ is an integer). The
Verifier in this scheme has to store ρ(n+ 1) field elements. When the underlying field
is Fq, the verifier has to store ρ(n+ 1) log q bits.

2. In the second step, stated in Theorem 6.9, we reduce the storage requirement of the
Verifier from ρ(n + 1) to τ1(n + 1) field elements for some integer τ1 < ρ without
affecting the privacy guarantee. When the underlying field is Fq, the verifier has to
store τ1(n+ 1) log q bits.

Step 1. To improve the privacy guarantee of Corollary 6.7 to say, τ1-private (as per
Definition 6.3), we use a Ramp-MPoR scheme and ρ different keys, where each key consists
of n+ 1 values in Fq. The Verifier generates ρ shares of every message block using a ramp
scheme, then encodes the shares, and finally computes the tag for each of these encoded
shares (see Figure 4.4).

We follow with more details. Let m = (m[1], . . . ,m[k]) be the message. The Verifier
computes the shares of every message block (m[1], . . . ,m[k]) using a (τ1, τ2, ρ)-Ramp scheme.
It then encodes all the shares using the encoding scheme of the PoR scheme. Let the re-
sulting encoded shares be Mi[1], . . . ,Mi[n] for 1 ≤ i ≤ ρ. In other words, the result of the
above two steps are ρ encoded shares, each of which is an n-tuple in (Fq)n. The Verifier

now picks random values a(i), b
(i)
1 , . . . , b

(i)
n ∈ Fq for 1 ≤ i ≤ ρ and computes the tags as in

Figure 4.4, i.e.,

Si[j] = b
(i)
j + a(i)Mi[j] for 1 ≤ i ≤ ρ, 1 ≤ j ≤ n.

113

The verifier gives Proveri the tuple of encoded message (Mi[1], . . . ,Mi[n]) and the cor-
responding tags (Si[1], . . . , Si[n]). We call this scheme Basic-MPoR scheme. The following
is straightforward from Theorem 6.1.

Theorem 6.8. Let Π be an (η, 0, 0, 1)-PoR scheme, described in Figure 4.4, with a response

code of Hamming distance d̃ and the size of challenge space γ = qn (where d̃ is given
by Equation (6.3)). Let Ramp be a (τ1, τ2, ρ)-ramp scheme. Then Basic-MPoR defined as
above is an MPoR scheme with the following properties:

1. Privacy: Basic-MPoR is τ1-private.

2. Security: Basic-MPoR is (η, 0, τ2, ρ)-threshold secure, where η = 1− d̃(q−1)
2γq

.

3. Storage Overhead: The Verifier needs to store ρ(n+1) field elements and every Proveri
needs to store 2n field elements.

In the construction mentioned above, the Verifier needs to store ρ(n + 1) elements of
Fq, which is almost the same as the total storage requirements of all the provers. We
encountered the same issue in the single-server setting as well (see Section 4.4), where the
Verifier has to store as much secret information as the size of the message. This seems to be
the general drawback in the unconditional secure setting. However, in the case of MPoR,
we can improve the storage requirement of the Verifier as shown in the next two steps.

Step 2. In this step, we improve the above-described MPoR scheme to achieve consider-
able reduction on the storage requirement of the Verifier. The resulting scheme also provides
unbounded audit capability against computationally unbounded adversarial provers, and
it also ensures τ1-privacy.

The main observation that results in the reduction in the storage requirements of the
Verifier is the fact that we can partially derandomize the keys generated by the Verifier. We
use one of the most common techniques in derandomization. The keys in this scheme are
generated by τ1-wise independent functions.4 Our construction works as follows: we pick
n + 1 random polynomials, f1(x), . . . , fn(x), g(x) ∈ Fq[x], each of degree at most τ1 − 1.
Then the Verifier computes the secret key by evaluating the polynomials fj(x) and g(x) on
ρ different values, say

b
(i)
j = fj(i) and ai = g(i)

4A function is a τ1-wise independent function if every subset of τ1 outputs is independent and equally
likely. It should be noted that this does not imply that all the outputs of the function are mutually
independent.

114

for 1 ≤ j ≤ n, and 1 ≤ i ≤ ρ. The Verifier then computes the encoded shares and their
corresponding tags as in Basic-MPoR, i.e.,

Si[j] = b
(i)
j + a(i)Mi[j] for 1 ≤ i ≤ ρ, 1 ≤ j ≤ n.

Figure 6.7 is the formal description of this scheme. For the scheme described in Fig-
ure 6.7, we prove the following result.

Theorem 6.9. Let Ramp = (ShareGen, Reconstruct) be a (τ1, τ2, ρ)-ramp scheme. Let Π
be a single-prover Shacham-Water scheme, described in Figure 4.4, with a response code
of Hamming distance d̃ and the size of challenge space γ. Then SW-MPoR, defined in Fig-
ure 6.7, is an MPoR system with the following properties:

1. Privacy: SW-MPoR is τ1-private.

2. Security: SW-MPoR is (η, 0, τ2, ρ)-threshold secure, where η = 1− d̃(q−1)
2γq

.

3. Storage Overhead: Verifier needs to store τ1(n + 1) field elements and every Proveri
(for 1 ≤ i ≤ ρ) needs to store 2n field elements.

Proof. The privacy guarantee of SW-MPoR is straightforward from the secrecy property of
the underlying ramp scheme.

For the security guarantee, we have to show an explicit construction of Extractor, that
on input proving algorithms P1, . . . ,Pρ, outputs m if succ(Pi) > η for at least τ2 proving
algorithms. However, there is a subtle issue that we have to deal with before using the
proof of Theorem 6.1, because of the relation between every message and tag pair. Recall
from Section 4.4 that, if the adversarial prover learns the secret key, then it can break
the PoR scheme. We first argue that a set of τ1 colluding provers cannot have an undue
advantage from exploiting the linear structure of the message-tag pairs.

We now prove that any set of τ1 provers do not learn anything about the keys generated
using n+1 polynomials of degree at most τ1−1. The idea is very similar to the single-prover
case. Recall from Section 4.4 that in the single prover case, for an n-tuple encoded message,
the key is a tuple of n + 1 uniformly random elements (a, b1, . . . , bn) in Fq. Further, from
the point of view of a prover, there are q possible keys — the value of a determines the
n-tuple (b1, . . . , bn) uniquely, but a is completely undetermined (see Figure 3.2 for details).
In the MPoR case, we have ρ keys. Each prover in a given set of τ1 provers has q possible
keys, as discussed above. However, it is conceivable that they can use their collective

115

Input: The Verifier gets a message m = (m[1], . . . ,m[n]) as input. Let
Prover1, . . . ,Proverρ be the set of ρ provers. Let q be a prime number greater than ρ.

Initialization Stage: The Verifier performs the following steps

1. The Verifier choses n + 1 random polynomials of degree at most τ1 − 1,
f1(x), . . . , fn(x), g(x) ∈ Fq[x] and a (τ1, τ2, ρ)-ramp scheme Ramp =
(ShareGen,Reconstruct).

2. For every server i, the Verifier does the following:

(a) Compute ρ shares of every message block using the share generation
algorithm of Ramp as follows: (m1[j], . . . ,mρ[j])← ShareGen(m[j]) for
1 ≤ j ≤ n.

(b) The Verifier encodes the message as e(mi[j]) = Mi[j] for 1 ≤ j ≤
n, 1 ≤ i ≤ ρ.

(c) Compute b
(i)
1 = f1(i), . . . , b

(i)
n = fn(i), a(i) = g(i).

(d) Compute the tag Si[j] = b
(i)
j + a(i)Mi[j] for 1 ≤ j ≤ n.

3. The Verifier gives {(Mi[j], Si[j])}1≤j≤n to Proveri.

Challenge Phase: During the audit phase, Verifier picks a prover, Proveri, and runs
the challenge-response algorithm of a single-server Shacham-Waters scheme. It
computes the corresponding keys by computing the random polynomials chosen
during the set up phase.

Figure 6.7: MPoR Using Optimized Shacham-Waters scheme (SW-MPoR).

knowledge to learn something about the keys. In what follows, we show that they cannot
determine any additional information about their keys by combining the information they
hold collectively.

Let I = {i1, . . . , iτ1} be the indices of any arbitrary set of τ1 provers. Let Si denote the
set of possible keys for Proveri, for i ∈ I. Consider any list of τ1 keys (Ki1 , Ki2 , . . . , Kiτ1

).

Recall that Ki (for i ∈ I) has the form
(
a(i), b

(i)
1 , . . . , b

(i)
n

)
, where a(i) and b

(i)
j (for 1 ≤ j ≤ n)

are generated by random polynomials of degree at most τ1 − 1. We first consider a(i) (for

i ∈ I). Note that the vector
(
b

(i)
1 , . . . , b

(i)
n

)
is defined uniquely by a(i) and the set of all

encoded message-tag pairs. We have already shown that any set of τ1 provers cannot learn

116

anything about the random polynomial g(x) used to generate the a(i) for all i ∈ I. We use
the following well known fact to show the any set of τ1 provers do not learn any additional
information about the keys.

Fact 6.10. Let t be a positive integer, let q be a prime number, and let Fq be a finite
field. Let h0, h1, . . . , ht−1 ∈ Fq be random elements picked uniformly at random. Define
h(x) =

∑t−1
i=0 hix

i for all α ∈ Fq. Then,

Pr [h (x1) = y1 ∧ . . . ∧ h (xτ) = yt] =
t∏
i=1

Pr [h(xαi) = yi] . (6.4)

Since h(x) is uniformly distributed in Fq, the probability computed in Equation (6.4) is
actually equal to q−t.

By construction, g(x) is a random polynomial of degree at most τ1 − 1. Fact 6.10 then
implies that any combination of

{
a(i)
}
i∈I is equally likely. A similar argument, with the

a(i)’s replaced by the b
(i)
j ’s (for all i ∈ I and 1 ≤ j ≤ n) and the polynomial g(x) replaced

by fj(x) (for 1 ≤ j ≤ n), gives that all set of τ1 keys are equally likely. In other words, the
set of provers in the set I cannot determine any additional information about their keys
by combining the information they hold collectively.

We now complete the security proof by describing an Extractor that outputs the file if
τ2 provers succeeds with high enough probability. The description of the Extractor and its
analysis is same as that of Theorem 6.1. We give it for the sake of completeness.

1. Extractor chooses τ2 provers and runs the extraction algorithm of the underlying
single-server PoR system on each of these provers. In the end, it outputs M̂ij for
the corresponding provers Proverij . It defines S ← {m̂i1 , . . . , m̂iτ2

}. Note that
the Extractor of the underlying PoR scheme has already computed e−1 on the set{
M̂i1 , . . . , M̂iτ2

}
as outputted in Step 2 of the extractor in the proof of Theorem 4.13.

2. Extractor invokes the Reconstruct algorithm of the underlying ramp scheme with the
elements of S̃ to compute m′.

Now note that the Verifier interacts with every Proveri independently. We know from the
security of the underlying PoR scheme of Shacham-Waters (Theorem 4.13) that there is an
extractor that always outputs the encoded message whenever succavg(Pi) ≥ η. Therefore,
if all the τ2 chosen proving algorithms succeed with probability at least η over all possible
keys, then the set S will have τ2 correct shares. From the correctness of the Reconstruct

117

algorithm and e−1(·), we know that the message output in the end by the Extractor will be
the message m.

For the storage requirement, the Verifier has to store the coefficients of all the random
polynomials f1(x), . . . , fn(x), g(x), which amounts to a total of τ1(n + 1) = τ1n + n field
elements.

6.6 Conclusion

In this chapter, we studied PoR systems when multiple provers are involved (MPoR). We
motivated and defined the security of MPoR in the worst-case (Definition 6.1) and the
average-case (Definition 6.2) setting, and extended the hypothesis testing techniques stated
in Chapter 4 to the multi-server setting. We also motivated the study of confidentiality of
the outsourced message. We gave MPoR schemes which are secure under both these security
definitions and provide reasonable confidentiality guarantees even when there is no restric-
tion on the computational power of the servers. We also gave an efficient dynamic-MPoR
system in the computational setting. Our construction performs a generic transformation
of a single-server dynamic-PoR system to a dynamic-MPoR system. We also looked at one
specific instantiation of our construction which provides efficient updates and audits while
giving reasonable security and privacy guarantee. In the end of this chapter, we looked
at an optimized version of MPoR system when instantiated with the unconditionally se-
cure version of the Shacham-Waters scheme studied in Chapter 4. We exhibited that, in
the multi-server setting with computationally unbounded provers, one can overcome the
limitation that the verifier needs to store as much secret information as the provers.

118

Chapter 7

Conclusion and Future Work

The major focus of this thesis has been the integrity of data stored on a cloud. We
studied various problems in a well-known security model without making any assumptions
on the computational power or the resources of a server. In Section 7.1, we first reiterate
our contributions with respect to the questions we raised in Chapter 1. We then state
in Section 7.2 some of the open problems that we believe are important to understand
various privacy and integrity issues of large data.

7.1 Contributions of this Thesis

In this thesis, we studied the well-established notion of proof-of-retrievability systems in an
unconditional security framework in single and multiple server settings. We also revisited
the definition that captures the notion of data-possession and showed that a stronger
guarantee can be fulfilled that better instantiates this notion.

In summary, this thesis provides answers to the questions mentioned in Chapter 1. For
the benefit of the reader, we review both the questions and the answers below.

Question 1: Is it possible to reduce the dependence of the security of PoR on some under-
lying hardness assumption or existence of secure cryptographic primitives? In Chap-
ter 4, we showed the exact criterion under which we can always extract a file if
a computationally unbounded server acts maliciously. In addition to this, we also
showed how classical statistical techniques can be used to evaluate whether the re-
sponses of the prover are accurate enough to permit successful extraction.

119

Question 2: What is a natural definition that captures the notion that the server pos-
sesses the file when it responds to the audits, and are there protocols that satisfy this
definition? To answer this question, in Chapter 5, we gave a new definition that tries
to capture the requirement that the server must have an actual copy of the data in
its memory space while it executes the challenge-response protocol. To answer the
second question, we gave some example protocols achieving this goal in the random
oracle model.

Question 3: What is a reasonable definition of multi-server secure cloud storage systems
that reflects the natural integrity requirement of the data? Can we construct a
cloud storage system that is secure under this definition? We answered this ques-
tion in Chapter 6. We gave two definitions of security in the multiple server setting
by modelling successful extraction of the file when a threshold of servers have high
enough success probability and as well as when the average of the success probabili-
ties of all the servers is high enough. We presented some protocols that satisfy these
definitions. We also studied efficient dynamic updates when a file is stored on mul-
tiple servers and we gave an efficient protocol when the servers are computationally
bounded. We also described an optimized version of a multi-server Shacham-Waters
scheme [72] when the servers are computationally unbounded.

7.2 Open Problems

This thesis leaves open problems pertaining to large data, which might be of independent
interest. We do not claim the list to be in any way exhaustive, but we believe these are
important questions that need to be answered to improve our understanding of security in
cloud storage. We also point out some of the related works that might be useful in solving
these questions.

7.2.1 Kolmogorov Complexity and Secure Cloud Storage

The general bound proven in Section 5.3 depends on the assumption that the adversary
is only permitted a fixed number of calls to the random oracle before it constructs the
proving algorithm P . An alternative approach would be to analyze the situation if the
memory used by P is upper-bounded. However, it is possible that P could be constructed
to compute certain responses hash(M ‖ c) without explicitly storing them. In order to ac-

120

commodate this possibility, the analysis could be perhaps done in the setting of Kolmogorov
complexity [57].

The theory of Kolmogorov complexity asserts that “almost all” strings of a given length
cannot be generated more efficiently (i.e, using less space) than they can be stored. Because
the outputs of a random oracle are completely random, it should be possible to obtain the-
orems about the success probability of proving algorithms having a specified Kolmogorov
complexity [57].

Husain et al. [47] used Kolmogorov complexity in conjunction with list decoding to deal
with the question of storage enforcement. They prove that the server must store the file in
an invertible format M ′ such that the size of M ′ is at most an additive factor away from the
Kolmogorov complexity of M . Their security reduction uses an extractor paradigm, and
the security reduction is a non-uniform reduction; i.e., the reduction needs an advice string
(see the book by Arora and Barak [2] for a detailed definition of non-uniform reduction).
On the other hand, it is preferable to have a uniform reduction. Therefore, an important
question is to give a uniform reduction to prove security for cloud storage while considering
Kolmogorov complexity.

7.2.2 Game-theoretic View of Secure Cloud Storage

A rigorous study of security requirements of real-world cloud computing is extremely im-
portant. On the other hand, if we look at real-world scenarios, there seems to be a gap
between the real-world scenario and the existing security definitions. For instance, the
well-known security definitions of secure cloud storage assume that servers are malicious.
In the real world, servers are more likely to be rational and directed towards incentives
and reputation. Therefore, it might be more reasonable to view secure cloud storage from
a game-theoretic point of view. One of the pressing issues here is that it is not understood
how we can model the extractor paradigm in a game-theoretic setting. If not, is there
another natural way to model security?

There have been some recent works that define and construct cryptographic primitives
in the game-theoretic model [32, 53, 54]. These works culminated in the notion of rational
cryptography. In traditional cryptography, the adversary is modelled as malicious entity
whose goal is to disrupt the execution of a protocol. In the model of rational cryptography,
we assume that the adversaries are “rational” and not malicious; i.e., we assign a utility
function corresponding to every possible outcome of the protocol and the primarily goal of
an adversary is to maximize its utility.

121

Many cryptographic primitives, such as secret sharing [46] and secure multiparty com-
putation [1], have been studied in this model. There has been considerable work that
revisits interactive proofs in the game-theoretic setting by assuming that the prover is
motivated by the utility it gets from the execution of the protocol [8, 45]. It would be
interesting to see if the techniques used in the literature of rational secret sharing and
complexity theory could be used in providing secure cloud storage when the servers are
rational.

7.2.3 Hourglass Scheme

In a recent work, van Dijk et al. [86] considered the scenario in which a client wants to store
an encryption of its file, but does not have enough resources to perform the encryption
on its own. The client trusts the server with the confidentiality of the file, but does not
trust the server would actually perform the encryption (one possible reason could be the
resource-intensive encryption algorithm). Therefore, the client provides the server with
both the file and the key under which the file should be encrypted. The problem is to
somehow force the server to store the encrypted file and not the plaintext file.

van Dijk et al. [86] formalized this problem and gave a scheme which they call an
hourglass scheme. They rely on certain limitations of the server to prove the security
of their system. However, they do not exactly solve the problem they described. More
precisely, van Dijk et al. [86] motivate the problem that the server should store the file in
an encrypted format; however, their solution forces the server to store the file in a new file
format using an application of a specially designed function called an hourglass function
such that it is easier to move from the new file format to the encrypted file format, but it
is not easier to compute the new file format from the unencrypted file.

We believe that a more natural way to look at the problem motivated by van Dijk
et al. [86] is to view it in a game-theoretic model [64]. In this model, we give a utility
function to the server that depends on how many resources it needs to invest in order to
encrypt the file and the incentive it gets from the client. The resources that the server
employs might be time, power, and software, while the benefits it gets from the client for
storing the correct format can be monetary. We believe this is a more practical setup and
the question now is whether we can construct a system that forces the server to store the
file in encrypted form. In other words, can we construct a system in which storing the
encrypted version of the file is a dominant strategy; i.e., a strategy that gives the strictly
highest utility.

122

7.2.4 Random Projection and Differential Privacy

The third potential application of cloud storage mentioned in Chapter 1 is to provide
accurate answers on queries made by an analyst on the outsourced file held by a curator.
The database could store many different types of information about an individual, some
of which may be confidential. Differential privacy [34] guarantees that the privacy of every
confidential entry in the database is maintained while answering the queries made by a
malicious analyst on the whole database, even if the malicious analyst performs arbitrary
post-processing on the answers it receives from the curator.

Until recently, algorithmic developments in differential privacy were focussed on com-
puting various forms of statistical queries efficiently. However, with the recent deanonymiza-
tion of the Netflix public data sets [63], there have been significant efforts to design al-
gorithms for privacy-preserving algebraic tasks such as low-rank approximation. In the
non-private setting, low-dimension embeddings, which project a set of points from a high-
dimensional space to a lower-dimensional space, have been used to perform many tasks
related to numerical linear algebra, including low-rank approximation, efficiently.

Extending the methods of Blocki et al. [17] and Upadhyay [83], we provide in a separate
work [84] mechanisms that give positive results for private analogues of these algorithms
using space-efficient data structures. This was further improved in our subsequent work [85]
to get an update-time-efficient algorithm. These works open up a wide avenue of research.

One of the open problems is to perform efficient low-dimension embeddings while using
linear random samples and preserving differential privacy. The result in Upadhyay [85] has
a slackness in the terms of random samples. The main source of slackness is in proving
one of the intermediate lemmata. If we can somehow improve this bound by some other
technique that does not require a lot of random bits, it would lead to an improvement
of the overall bound. One technique that is often useful in such a scenario is decoupling
where, under limited dependence, we prove results equivalent to that of identically and in-
dependently distributed random variables. The excellent book by De la Pena and Gine [30]
shows many such examples. It would be interesting if any such methods can be applied in
our context.

7.2.5 Delegation of Property Testing

One of the potential applications of secure storage mentioned in Chapter 1 is to perform
resource-heavy computations enabling a weak client to delegate such computations to the
servers [39, 42]. One of the research problems is motivated from a potential application of

123

delegation of computation in differential privacy. Succinctly, it can be described as follows.
Is there an efficient method to delegate the testing of the property whether a function is
1-Lipschitz under a specified norm1 over a local domain? Property testing is a decision
problem in which we are given a function and its domain. The task is to find out whether
the function has a particular property over the specified domain or whether it fails to
have the property over an arbitrary large fraction of the domain. The restriction on the
algorithm which solves this task is that it can only receive the output of the function on a
small subset of the domain space.

Property testing has received wide attention over the last few years and efficient al-
gorithms to test many properties of an n-bit input function with domain {0, 1}n have
been proposed [71]. In fact, testing whether a function is 1-Lipschitz is efficient on hy-
pergrids [49]. However, the delegation version of this problem has not been studied that
much, with the only exception being the work of Rothblum, Vadhan, and Widgerson [70].

This question is important because many results in differential privacy assume that
the query function is 1-Lipschitz and privacy is guaranteed only if the query function is
1-Lipschitz. Therefore, it is important in practice to test this condition before answering
the query. However, in differential privacy, the input to a query function is a database,
and it is much more logical to assume that a database has entries from a local subset of
all possible inputs. For instance, a database containing the height of adults is more likely
to contain values in the range of 1.4 to 1.9 meters. It is an important question to perform
property testing over a local domain in a more general class of functions.

1A function f(·) over domain D is c-Lipschitz if for all x, y ∈ D, we have ‖f(x)− f(y)‖N ≤ c‖x− y‖N
for a specified norm N .

124

References

[1] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty
computation. In Proceedings of the twenty-fifth Annual ACM Symposium on Principles
of Distributed Computing, pages 53–62. ACM, 2006.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[3] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Osama Khan,
Lea Kissner, Zachary N. J. Peterson, and Dawn Song. Remote data checking using
provable data possession. ACM Transactions on Information System and Security,
14(1):12, 2011.

[4] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary N. J. Peterson, and Dawn X. Song. Provable data possession at untrusted
stores. In ACM Conference on Computer and Communications Security, pages 598–
609, 2007.

[5] Giuseppe Ateniese, Özgür Dagdelen, Ivan Damg̊ard, and Daniele Venturi. Entangled
cloud storage. IACR Cryptology ePrint Archive, 2012:511, 2012.

[6] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scalable
and efficient provable data possession. In Proceedings of the 4th International Con-
ference on Security and Privacy in Communication Networks, page 9. ACM, 2008.

[7] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from ho-
momorphic identification protocols. In Advances in Cryptology–ASIACRYPT 2009,
pages 319–333. Springer, 2009.

125

[8] Pablo Daniel Azar and Silvio Micali. Rational proofs. In Proceedings of the forty-
fourth Annual ACM Symposium on Theory of Computing, pages 1017–1028. ACM,
2012.

[9] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Advances in
Cryptology—CRYPTO’92, pages 390–420. Springer, 1993.

[10] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM conference on Computer
and Communications Security, pages 62–73. ACM, 1993.

[11] Shai Ben-David, Benny Chor, and Oded Goldreich. On the theory of average case
complexity. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of
Computing, pages 204–216. ACM, 1989.

[12] Josh Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In Proceedings on Advances in Cryptology – CRYPTO 1990, pages 27–35. Springer-
Verlag New York, Inc., 1990.

[13] Amir Bennatan and David Burshtein. On the application of LDPC codes to arbitrary
discrete-memoryless channels. IEEE Transactions on Information Theory, 50(3):417–
438, 2004.

[14] Rajendra Bhatia. Matrix Analysis, volume 169. Springer Science & Business Media,
2013.

[15] George Robert Blakley. Safeguarding cryptographic keys. In Proceedings of the Na-
tional Computer Conference, volume 48, pages 313–317, 1979.

[16] George Robert Blakley and Catherine Meadows. Security of ramp schemes. In Ad-
vances in Cryptology – CRYPTO 1985, pages 242–268. Springer, 1985.

[17] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-
lindenstrauss transform itself preserves differential privacy. In Foundations of Com-
puter Science, pages 410–419, 2012.

[18] Andrej Bogdanov and Luca Trevisan. Average-case complexity. arXiv preprint
cs/0606037, 2006.

[19] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and
implementation. In Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, pages 43–54. ACM, 2009.

126

[20] Gilles Brassard, Sophie Laplante, Claude Crépeau, and Christian Léger. Compu-
tationally convincing proofs of knowledge. In Symposium on Theoretical Aspects of
Computer Science, pages 251–262. Springer, 1991.

[21] Neil J Calkin, Jennifer D Key, and Marialuisa J De Resmini. Minimum weight and
dimension formulas for some geometric codes. Designs, Codes and Cryptography, 17(1-
3):105–120, 1999.

[22] George Casella and Roger L. Berger. Statistical Inference. Duxbury Pacific Grove,
CA, 2002.

[23] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability
via oblivious RAM. In Advances in Cryptology–EUROCRYPT 2013, pages 279–295.
Springer, 2013.

[24] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updatable
and locally decodable codes. In Theory of Cryptography, pages 489–514, 2014.

[25] Charles J Colbourn. CRC Handbook of Combinatorial Designs. CRC press, 2010.

[26] Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley
& Sons, 2012.

[27] Reza Curtmola, Osama Khan, Randal C. Burns, and Giuseppe Ateniese. MR-PDP:
Multiple-replica provable data possession. In International Conference on Distributed
Computing Systems, pages 411–420, 2008.

[28] Fergus Daly, David J. Hand, M. C. Jones, A. D. Lunn, and K. J. McConway. Elements
of Statistics. Addison-Wesley Publishing Company, 1995.

[29] Matthew C Davey and David JC MacKay. Low density parity check codes over GF(q).
In Information Theory Workshop, 1998, pages 70–71. IEEE, 1998.

[30] Victor De la Pena and Evarist Giné. Decoupling: From Dependence to Independence.
Springer Science & Business Media, 1999.

[31] Yvo G Desmedt. Threshold cryptography. European Transactions on Telecommuni-
cations, 5(4):449–458, 1994.

[32] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game
theoretic problem. In Advances in Cryptology—Crypto 2000, pages 112–130. Springer,
2000.

127

[33] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hard-
ness amplification. In Theory of Cryptography, pages 109–127, 2009.

[34] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography, pages 265–284,
2006.

[35] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia.
Dynamic provable data possession. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, pages 213–222. Acm, 2009.

[36] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal
of Cryptology, 1(2):77–94, 1988.

[37] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
Proceedings of the twenty-second Annual ACM Symposium on Theory of Computing,
pages 416–426, 1990.

[38] Robert G Gallager. Low-density parity-check codes. IRE Transactions on Information
Theory, 8(1):21–28, 1962.

[39] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Advances in Cryptology–
CRYPTO 2010, pages 465–482. Springer, 2010.

[40] Oded Goldreich. Foundations of Cryptography (in two volumes: Basic Tools and Basic
Applications), 2001.

[41] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[42] Shafi Goldwasser, Yael T. Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Proceedings of the fortieth Annual ACM Symposium
on Theory of Computing, pages 113–122. ACM, 2008.

[43] M. Gonzalez Lopez, F. J. Vazquez Araujo, L. Castedo, and J. Garcia Frias. Design
of serially-concatenated low-density generator matrix codes using exit charts. In 6th
International ITG-Conference on Source and Channel Coding (TURBOCODING),
pages 1–6, April 2006.

128

[44] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics:
A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 1994.

[45] Siyao Guo, Pavel Hubáček, Alon Rosen, and Margarita Vald. Rational arguments: sin-
gle round delegation with sublinear verification. In Proceedings of the 5th Conference
on Innovations in Theoretical Computer Science, pages 523–540. ACM, 2014.

[46] Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty com-
putation. In Proceedings of the thirty-sixth Annual ACM symposium on Theory of
computing, pages 623–632. ACM, 2004.

[47] Mohammad I. Husain, Steve Ko, Atri Rudra, and Steve Uurtamo. Almost universal
hash families are also storage enforcing. arXiv preprint arXiv:1205.1462, 2012.

[48] Russell Impagliazzo. A personal view of average-case complexity. In Structure in
Complexity Theory Conference, 1995., Proceedings of Tenth Annual IEEE, pages 134–
147. IEEE, 1995.

[49] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz func-
tions with applications to data privacy. SIAM Journal on Computing, 42(2):700–731,
2013.

[50] Sarah J. Johnson and Steven R. Weller. A family of irregular LDPC codes with low
encoding complexity. IEEE Communications Letters, 7(2):79–81, 2003.

[51] Ari Juels and Burton S Kaliski Jr. PORs: Proofs of retrievability for large files. In
Proceedings of the 14th ACM Conference on Computer and Communications Security,
pages 584–597. ACM, 2007.

[52] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In Financial Cryp-
tography and Data Security, pages 136–149. Springer, 2010.

[53] Jonathan Katz. Bridging game theory and cryptography: Recent results and future
directions. In Theory of Cryptography, pages 251–272. Springer, 2008.

[54] Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for
exchanging information. In Theory of Cryptography, pages 320–339. Springer, 2008.

[55] Yu Kou, Shu Lin, and Marc P. C. Fossorier. Low-density parity-check codes based on
finite geometries: a rediscovery and new results. IEEE Transactions on Information
Theory, 47(7):2711–2736, 2001.

129

[56] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In Proceedings of the twenty-third Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 143–156. SIAM, 2012.

[57] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and its Appli-
cations. Springer, 2009.

[58] Moses Liskov. Constructing an ideal hash function from weak ideal compression func-
tions. In Selected Areas in Cryptography, pages 358–375. Springer, 2007.

[59] Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of Error-
correcting Codes. Elsevier, 1977.

[60] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon codes.
Communications of the ACM, 24(9):583–584, 1981.

[61] Ilya Mironov. On significance of the least significant bits for differential privacy. In
Proceedings of the 2012 ACM Conference on Computer and Communications Security,
pages 650–661. ACM, 2012.

[62] Moni Naor and Guy N Rothblum. The complexity of online memory checking. Journal
of the ACM (JACM), 56(1):2, 2009.

[63] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In IEEE Symposium on Security and Privacy, 2008. SP 2008., pages 111–
125. IEEE, 2008.

[64] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT press, 1994.

[65] Maura B. Paterson and Douglas R. Stinson. A simple combinatorial treatment of con-
structions and threshold gaps of ramp schemes. Cryptography and Communications,
5(4):229–240, 2013.

[66] Maura B. Paterson, Douglas R. Stinson, and Jalaj Upadhyay. A coding theory founda-
tion for the analysis of general unconditionally secure proof-of-retrievability schemes
for cloud storage. Journal of Mathematical Cryptology, 7(3):183–216, 2013.

[67] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In Advances in
Cryptology–CRYPTO 2010, pages 502–519. Springer, 2010.

[68] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

130

[69] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with compo-
sition: Limitations of the indifferentiability framework. In Advances in Cryptology–
EUROCRYPT 2011, pages 487–506. Springer, 2011.

[70] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proxim-
ity: delegating computation in sublinear time. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 793–802, 2013.

[71] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. SIAM Journal on
Discrete Mathematics, 25(4):1562–1588, 2011.

[72] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Advances in
Cryptology – ASIACRYPT, pages 90–107, 2008.

[73] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[74] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((log n)3) worst-case cost. In Advances in Cryptology–ASIACRYPT 2011, pages
197–214. Springer, 2011.

[75] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs
of retrievability. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security, pages 325–336. ACM, 2013.

[76] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge university press, 2009.

[77] Daniel A Spielman. Linear-time encodable and decodable error-correcting codes. In
Proceedings of the twenty-seventh Annual ACM symposium on Theory of Computing,
pages 388–397. ACM, 1995.

[78] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM. arXiv
preprint arXiv:1106.3652, 2011.

[79] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC Press Inc.,
2006.

[80] Douglas R. Stinson and Jalaj Upadhyay. Is extracting data the same as possessing
data? Journal Mathematical Cryptology, 8(2):189–207, 2014.

131

[81] Martin Tompa and Heather Woll. Random self-reducibility and zero knowledge inter-
active proofs of possession of information. In 28th Annual Symposium on Foundations
of Computer Science, 1987, pages 472–482. IEEE, 1987.

[82] K Ulm. Simple method to calculate the confidence interval of a standardized mortality
ratio (smr). American Journal of Epidemiology, 131(2):373–375, 1990.

[83] Jalaj Upadhyay. Random projections, graph sparsification, and differential privacy.
In Advances in Cryptology–ASIACRYPT (1), pages 276–295, 2013.

[84] Jalaj Upadhyay. Differentially private linear algebra in the streaming model. arXiv
preprint arXiv:1409.5414, 2014.

[85] Jalaj Upadhyay. Randomness efficient fast-johnson-lindenstrauss transform with
applications in differential privacy and compressed sensing. arXiv preprint
arXiv:1410.2470, 2014.

[86] Marten Van Dijk, Ari Juels, Alina Oprea, Ronald L Rivest, Emil Stefanov, and Nikos
Triandopoulos. Hourglass schemes: how to prove that cloud files are encrypted. In
Proceedings of the 2012 ACM Conference on Computer and Communications Security,
pages 265–280. ACM, 2012.

[87] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public au-
diting for data storage security in cloud computing. In IEEE Proceedings INFOCOM,
2010, pages 1–9, 2010.

[88] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling public auditabil-
ity and data dynamics for storage security in cloud computing. IEEE Transactions
on Parallel and Distributed Systems, 22(5):847–859, 2011.

[89] Sergey Yekhanin. Locally decodable codes. In Computer Science–Theory and Appli-
cations, pages 289–290. Springer, 2011.

132

Notation Used in This Thesis

Notation meaning

Chal challenge in an audit protocol
d distance of the encoded message space
d∗ distance of the response code
dist hamming distance between two vectors
F a finite field
h size of a message digest (hash value)
k length of a message
K key (in a keyed scheme)
` size of a challenge
m message
mi message block
m̂ message outputted by the Extractor
M encoded message
M message space
M∗ encoded message space
n length of an encoded message
N dimension of vectors
P proving algorithm
q order of underlying finite field
~rM response vector for encoded message M
R field of real numbers
R∗ response code
Resp response
s number of bits of M stored by the adversary
s∗ number of precomputed responses stored by the adversary

133

s size of the secret in a ramp scheme
S secret used in the ramp scheme
succ(P) success probability of proving algorithm
S tag (in a keyed scheme)
t adversary’s storage (Chapter Chapter 5)
x,y vectors
Γ challenge space
γ number of possible challenges
∆ response space
κ security parameter
ε threshold probability for proof-of-storage systems
ρ number of servers in MPoR
% response function
ϕ column sparsity of a matrix
ν confidence probability of a proof-of-storage system
τ1, τ2 parameters of ramp scheme
ζ row sparsity of a matrix
〈x,y〉 Inner-product of vectors x and y

Notation Used in This Thesis

134

Index

Challenge space 39
Conditional Entropy 17
Confidence Interval 61
Decoding function 10
Error Correcting Codes 10
Encoding function 10
Entropy 17
Extractor 24
Linear Code 11
Linear Secret Sharing Scheme 21
Generator Matrix 11
Hypothesis Testing 58
Joint Entropy 17
Linear Code 11
Low-density Parity Check Matrix 13
Mutual Entropy 17
Multi-server Proof-of-Retrievability (worst case) 86
Multi-server Proof-of-Retrievability (average case) 87
Observer 69
Parity Matrix 11
Proof-of-Data Observability 69
Proof-of-Data Possession 29
Proof-of-knowledge 23
Proof-of-Retrievability 27
Proving Algorithm 27
Ramp Scheme 20
Reed-Solomon Code 11

135

Response Function 39
Response Space 39
Secret Sharing Scheme 19
Transpose of a Matrix 9

136

	List of Tables
	List of Figures
	Introduction
	Problems Studied in this Thesis
	Unconditionally Secure Proof-of-Retrievability
	Retrievability vs Possession
	Multiple-server Proof-of-Retrievability

	Organization of this Thesis

	Preliminaries
	Basic Algebra
	Error-correcting Codes
	Linear Codes
	Low-density Parity-check Codes
	Linear Codes with Low-density Generator Matrices

	Information Theory
	Secret Sharing Schemes and their Variants
	Linear Secret Sharing Scheme

	Key Concepts in Proof-of-Storage
	Proof-of-storage System
	Proof-of-retrievability
	Security Definition
	Proof-of-data-possession

	A Brief Look at the Security Definitions
	PoR and the PoK Systems of Fiat, Fiege, and Shamir
	PDP and the PoK Systems of Fiege and Shamir

	Previous Related Work

	Unconditionally Secure Proof-of-retrievability Systems
	Our Contribution
	Comparison with Dodis, Vadhan, and Wichs

	Unkeyed PoR Schemes: the General Result
	Analysis of Several Keyless Schemes
	PoR Code Construction of Dodis, Vadhan, and Wichs
	Keyless Analogue of Shacham-Waters' Scheme

	The Shacham-Waters Scheme
	Estimating the Success Probability of a Prover
	Numerical Computations and Estimates
	Statistical Techniques for Estimating Success Probabilities in PoR Systems

	A Lower Bound on Storage and Communication Requirements
	Conclusion

	Extraction or Possession?
	Defining Possession of Data
	PDO is a Stronger Notion than PoR and PDP
	Our Contributions

	A Basic PDO Scheme
	Discussion

	A General Bound
	Multiple Runs of the Challenge-Response Protocol
	Summary and Conclusion

	Multi-server PoR Systems
	Security Model of Multi-server PoR Systems
	Our Contributions
	Comparison with Bowers, Juels, and Oprea

	Worst-case MPoR Based on a Ramp Scheme
	Average-case Secure MPoR System
	Hypothesis Testing for Rep-MPoR

	Maintaining an MPoR scheme: Dynamic Updates
	Constructing a Dynamic-MPoR
	Choosing a Dynamic-PoR System
	Choosing an Appropriate Linear Secret Sharing Scheme
	Putting Everything Together

	Optimization Using the Shacham-Waters Scheme
	Extension of the Keyed Shacham-Waters Scheme to MPoR
	Optimized Version of the Multi-server Shacham-Waters Scheme

	Conclusion

	Conclusion and Future Work
	Contributions of this Thesis
	Open Problems
	Kolmogorov Complexity and Secure Cloud Storage
	Game-theoretic View of Secure Cloud Storage
	Hourglass Scheme
	Random Projection and Differential Privacy
	Delegation of Property Testing

	References

