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Abstract

Cancer is a ubiquitous disease that afflicts millions of people worldwide and we will un-

doubtedly encounter it at some point in our lives, whether it be random strangers on the news, or

someone much closer. As such, research into cancer (and cures for cancer) has been an intense

area of focus. Malignant tumours show three main characteristics: 1) aggressive and uncon-

trolled growth, 2) invasion into surrounding tissue, and 3) the ability to leave the primary tumour

site and invade another organ (metastasis). Mathematical models of these three aspects began

in earnest about half a century ago, for example with Laird[70] in 1964 proposing that tumour

growth was gompertzian. With the advent of the modern computer, complex partial differential

equation (PDE) models of tumour growth which incorporate the other two features of malignant

tumours have become accessible to the average researcher. Utilizing a mixture of both analytical

and numerical methods, this thesis aims to add to the schema of cancer research by examining

the effects of noise on a well established model of tumour growth, and a promising model for

mitosis that we hope to eventually adapt to describe metastasis.

The tumour model that we will examine is a single species reaction-diffusion model that

captures the first two aspects of tumour growth. The reaction part determines how fast the tumour

grows and the diffusion part describes how quickly the cancer cells spread within the domain.

Adding noise to the model is a method of describing the disorder that is in a typical tumour,

and allows us to determine error bounds on the tumour size and survival time, which gives us a

sense of how accurate the estimates of those two quantities are. This method of estimating the

uncertainty in survival time also allows us to further determine how modifications to the model

(such as changing the diffusivity or adding chemotherapy) affects the error in the system.

Our model of mitosis is an excitable system that admits a traveling wave as a possible solu-

tion. Mitosis is a process that occurs in a very spatially specific manner within the embryo and

this model describes how a signal propagates from the centre of the embryo outwards. When

we allow noise to perturb the system we will see that the model allows noise induced traveling
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waves in what would normally be a stable system in a deterministic setting. This means that

the parameter range under which signalling can occur is relaxed and traveling waves occur more

readily than expected. In terms of metastasis, where the tumour microenvironment is especially

noisy and chaotic, that might explain why metastasis is so prevalent in malignant tumours.

Adding noise to well established PDE models gives it an extra layer of fidelity that allows

us to extract additional information from the model not available in the traditional deterministic

setting. Using both a numerical and an analytical approach, this thesis develops and demon-

strates general methods for estimating the uncertainty in the model outputs and also a method

for calculating when a system might admit a noise induced instability in an otherwise stable

system. More specifically, the error bounds in the estimates of tumour size and survival time

in the tumour growth model may be of future use to doctors treating patients, and the noise in-

duced effects of the mitosis model helps us to understand further how metastasis arises out of a

developing tumour.
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Chapter1
Introduction and Background Material

1.1 What is Cancer?

Cancer is a group of diseases where mutated cells (cancer cells) form an abnormal mass of tissue

(a tumour) that grows aggressively, eventually forms its own vascular networks (angiogenesis)

and resists the normal cell kill (apoptosis) and repair mechanisms of the human body. In general,

we say a tumour is malignant when it displays the potential to grow out of control, ability to

invade into its surrounding tissue, and the capability to spread to a different organ in the body

(metastasize)[1]. This last property, metastasis, is theorized to occur in several distinct stages

that are a result of the first two features activating certain contextual signals within the tumour

microenvironment, and has certain parallels to mitosis in a growing embryo[14]

Hanahan and Weinberg[2][3] have proposed several “hallmarks” that explain how cancer

cells are able to sustain their aggressive growth and avoid the normal defence mechanisms of

the human body. Of interest to us is the fact that such aggressive tendencies means that tumours

growth in a haphazard and irregular manner. In particular, the vascular network inside a tumour

is extremely chaotic and the blood vessels can vary greatly in size. This means that different parts

of the tumour receive varying amounts of oxygen and nutrients leading to hypoxic regions where
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the oxygen supply is low, or even necrotic regions where the tumour cells are already dead. This

heterogeneity in the tumour microenvironment is the key new aspect that chapters 2 and 3 aims

to model mathematically.

Metastasis, the ability for cancer cells to invade a different organ in the body, is a property that

is theorized to arise as a result of certain signals expressed inside a growing tumour[14]. Once

cancer cells receive this signal, it then undergoes what is sometimes referred to as the “invasion-

metastasis” cascade where it gains the ability to leave the primary tumour site, invade into the

blood stream, travel to a different organ, and then somehow entrench themselves in this new

organ and develop a new separate tumour. The signal that activates this cascade is hypothesized

by Weinberg[14] to be the same signal that is activated in certain parts of an embryo during

embryogenesis because the same transcription factors that carry this signal have been found in

both tumour cells and embryos. The mitosis model of chapter 4 describes how a signal propagates

within an embryo, and lends itself perfectly for a possible adaptation into a model for this very

first step in metastasis.

1.2 Outline

This thesis explores the three important aspects of a malignant tumour in 2 separate models.

Chapters 2 and 3 explore a tumour growth model that describes local invasiveness and replicative

potential. The mitosis model of chapter 4 is a starting point for what we hope is eventually model

for metastasis.

This introductory chapter and the appendices will develop the theory needed to understand

and develop the methods used in this thesis. In particular we will carefully define and explain

what stochastic processes and stochastic differential equations are, what we mean by finding a

solution, and how we would go about doing so. Then, we will explore how to incorporate diffu-

sion (or more general spatial effects) into the model. One important distinction is the difference

between extrinsic and intrinsic noise, and the different mathematical methods needed to describe
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them.

In chapters 2 and 3 we will explore the effects of extrinsic and intrinsic noise on a tumour

growth model. The original model is a reaction-diffusion type PDE model and variations on its

basic premise have been explored extensively in the current literature (such as Murray[6] and

Swanson: 2002[5], 2003[63][64], 2008[65]). The goal of this model is to estimate the visible

tumour diameter, which is a way of determining when a tumour would be visible on a CT scan,

and the survival time, which is defined as when the tumour becomes visible until patient death[5].

Adding noise to the model is one way to represent the inherent chaos and heterogeneity in the

tumour microenvironment, and allows us to estimate the error bounds on these estimates of

tumour size and survival time. These error bounds provide information on the uncertainty of the

estimates and gives us a sense of how accurate they are. Moreover, the error bounds on tumour

size could potentially be used to help surgeons determine how much extra area around a tumour

should be removed during surgery for example, and the error bounds on survival time gives us

another way to consider how different situations and therapies affect how long the patient would

live.

The mitosis model describes an embryo sending out a mitosis signal from its centre outwards

towards the edges, and it is a multi species reaction-diffusion type model that supports a traveling

wave solution (the mitotic signal) under certain conditions[31]. In the context of mitosis, noise in

this model could also represent heterogeneity within the embryo but it is more useful to think of

noise in this context as the natural randomness of chemical reactions that need to happen in order

for the traveling wave to occur. Chemical reaction noise is more substantial when the population

number is small[18][40] (such as in the initial formation of a tumour) and we will see in that an

appropriate amount of noise can induce a traveling wave in this model even when its determin-

istic counterpart would be stuck in its stable steady state (known as “Stochastic Coherence” or

“Stochastic Resonance”[29]). Such noise induced instabilities means that the parameter range

under which the system can support a signal is broadened, and thus possibly more likely to occur
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than expected.

1.3 Stochastic Processes

A stochastic process is a system that evolves in time (or space) according to some underlying

probability distribution. A stochastic differential equation is a differential equation with random

coefficients and whose solutions must necessarily be a stochastic process. This section will

explain and give the necessary and analogous definitions for limits, continuity, differentiability

etc needed in order to understand what it means to solve a stochastic differential equation.

Einstein’s study of Brownian motion, the random movement of pollen grains suspend in wa-

ter, is probably the key historical example from a physics point of view. He took a probabilistic

approach that is analogous to a random walk, and the resultant equation for the probability den-

sity laid the foundation for what we now call a master equation. (Smoluchowski also took this

same approach independently of Einstein.) Langevin, on the other hand, took a more direct ap-

proach by adding a random forcing term to the deterministic ODEs (i.e. using Newton’s 2nd

Law of Motion), and differential equations of this type are now commonly referred to as the

Langevin equation, or more generally a stochastic differential equation (SDE, SODE (ordinary),

or SPDE (partial)). We will find that Brownian motion is in fact not differentiable, which means

the Langevin equation is not actually a valid equation until we define what we mean by its solu-

tion.
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1.3.1 What is noise?

Number of 

Time

Population number
jumps discretely when
there is birth.

Similarly, the 
decrease
is discrete 

when there
is a death.

On average the
growth is 
logistic, but
there are deviations
from the curve. 

Relative size
of jump decreases
as total population
increases.

Events occur
at random
intervals.

Figure 1.1: A schematic of intrinsic noise in logistic growth.

Following earlier works by van

Kampen[18], we will very broadly

classify noise as either intrinsic

or extrinsic. The two types of

noise ostensibly require slightly

different mathematical treatment,

the first requires a master equation

while the second is usually mod-

eled using a Langevin equation,

but there is often overlap both the-

oretically and mathematically be-

tween the two types of noise. In

general, for this thesis, when we say intrinsic or extrinsic we are referring to how the noise will

be treated mathematically.

Consider population growth, when a birth occurs, the population must increase by an inte-

ger increment (1, 2 (twins), 3 (triplets), etc), and similarly with death. That means population

growth is fundamentally a discrete process. Moreover, births and deaths do not occur at regular

intervals, they occur at random times and we cannot predict when they will occur with absolute

certainty. In contrast, the solution to the logistic growth equation is smooth; it assumes that pop-

ulation changes are infinitesimally small and occur infinitely often. Thus, the ODE formulation

of logistic growth is at best an approximation (albeit a good one when the population is large).

In fact, the ODE describes the average behaviour over a large number of realizations; by that we

mean if we had many identical experiments that satisfied the conditions of logistic growth (e.g.

bacteria in a petri dish) then, although each experiment will give results that have discrete jumps

at different times, taking the average of all the experiments at each time would give us back
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the logistic growth curve. These ideas are illustrated in figure 1.1. We will call these deviations

away from the deterministic or macroscopic equation due to discrete number effects and inherent

randomness intrinsic or internal noise.

Extrinsic or external noise is noise that can (in principle) be switched off and can be mean-

ingfully separated from the system dynamics. For example, in logistic growth of say rabbits,

the food supply and environmental conditions could be affected by random factors such as in-

clement weather, then the carrying capacity of the system would no longer be constant, but a

random function of time. Or, in the case of an electric circuit, one might have a fluctuating volt-

age source which affects the output of the system. For Brownian motion, one might consider the

random collisions from the smaller water molecules to be external noise (because they are all

contained in the random forcing term of the equation for Langevin’s approach) but physically it

doesn’t make sense since you can’t really turn off the water molecules. However, if the pollen

particle is large enough then the collisions from the smaller water molecules would be negligible,

and in that sense we can turn off the noise in our equations.

One must keep in mind that this stochastic approach is only an approximation. If we had

a super computer that could compute a system of simultaneous equations for each and every

molecule in the experiment (on the order of Avogadro’s number) then we would be able to treat

Brownian motion (or any similar system) as deterministic. Thus, what we call noise is actually

just a reflection of our own ignorance of the system - it is a way for us to make the problem

manageable and actually gleam useful results.

1.4 Definitions

What follows are some standard definitions for stochastic processes. These definitions will

mostly follow a mix of Yaglom[73], Gardiner[54], and van Kampen[18][22], but similar defi-

nitions can be found in Gillespie’s book[41], and Lemons[55]. The goal of this chapter is to

define and understand what we mean by a stochastic differential equation. In this section the
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stochastic process will be a function of one variable only (time), some standard knowledge of

random variables and rules of probability will be assumed.

Let ω̃ be a random variable with a given set of possible outcomes (the phase space). A

stochastic process

ξt = ξt(ω̃) (1.1)

is a random function that depends on both ω̃ and t. In particular, there are two ways to interpret

such a function:

• If we fix ω̃ then ξt is a function of time, and each ξt corresponding to a particular (given) ω̃

is called a realization or sample path of the stochastic process. This is essentially what hap-

pens when we perform numerical simulations of a stochastic differential equation (more

on this later).

• If we fix t = t0 then ξt0 is a random variable with parameter t0 and ξt0 can be interpreted

as a family of random variables over all possible ω̃. In our case t is time, so we usually

have t ∈ [0, T ] where T is some fixed number, or t ∈ <.

Since ξt is a random function, it must follow some probability distribution. We denote the prob-

ability distribution function as

F (x; t) = P {ξt ≤ x} , (1.2)

and the corresponding probability density by

f(x; t) =
∂F (x; t)

∂x
. (1.3)

The usual definitions for joint probabilities follows, for example

F (x1, x2; t1, t2) = P {ξt1 ≤ x1, ξt2 ≤ x2} (1.4)
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is the probability distribution function for ξt1,t2 = (ξt1 , ξt2). In order to completely specify a

stochastic process this distribution function must satisfy the usual rules of ordinary statistics

(f(x; t) ≥ 0 and
∫
f(x; t)dx = 1) and also a symmetry condition and a compatibility condition

(see Yaglom[73] equations 1.4 and 1.5).

There are two special kinds of stochastic processes that we are interested in:

• An n-dimensional stochastic process ξt is called stationary if it remains the same when

each ti in is shifted along the time axis by the same amount:

F (x1, x2, ..., xn; t1 + τ, t2 + τ, ..., tn + τ) = F (x1, x2, ..., xn; t1, t2, ..., tn). (1.5)

• Assuming t1 < t2 < ... < tn, a Markov Process is one where the conditional probability

only depends on the most recent condition:

f(xn; tn|x1, ..., xn−1; t1, ..., tn−1) = f(xn; tn|xn−1; tn−1). (1.6)

Such processes are called “without memory” and it is easy to build up joint probabilities

using conditional probabilities and the product rule (or Bayes’ Theorem).

For this thesis, we will always assume the Markov property, but in general, solutions to a stochas-

tic differential equation are not necessarily stationary.

The mean (or 1st moment, or expected value) of a stochastic process is

µ(t) = 〈ξt〉 =

∫ ∞
−∞

xf(x; t)dx. (1.7)

If ξt is stationary then µ(t) = m a constant (i.e. does not depend on t). Next, the correlation
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function (or 2nd moment) is given by

B(t1, t2) = 〈ξt1ξt2〉 =

∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, x2; t1, t2)dx1dx2. (1.8)

In this case, if ξt is stationary then B(t1, t2) = B(t2− t1), a function of the time difference only.

Moreover, if there is a τc such that B(τ) ≈ 0 for τ > τc, then we call τc the correlation time

of the stochastic process. If µ(t) = m and B(t1, t2) = B(t2 − t1) we say the stochastic process

is wide-sense stationary. In general this is a relaxed definition of stationarity, but Yaglom[73]

claims that in practice one rarely encounters a situation where a stochastic process is wide-sense

stationary but not stationary. Related to the correlation is the variance (or 2nd cumulant)

〈〈ξt1ξt2〉〉 = 〈{ξt1 − µ(t1)}{ξt2 − µ(t2)}〉 = B(t1, t2)− µ(t1)µ(t2). (1.9)

Higher order moments and cumulants can be defined analogously. We are usually only interested

in the mean and variance of the solution to a stochastic differential equation since those are

quantities we can physically measure in an experiment.

We say a stochastic process is mean-square continuous if the limit

lim
h→0

〈
(ξt+h − ξt)2〉 = 0 (1.10)

exists for all t. Alternatively, this is equivalent to saying that the correlation function B(t1, t2)

is continuous at the point t1 = t2 = t for all t. One can show that, for a wide-sense stationary

process, this is the same as requiring that B(τ) is continuous at τ = 0 (i.e. if it is continuous at

τ = 0 then it is continuous everywhere)[73].

Similarly, we say a stochastic process is mean-square differentiable if there exists a random
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variable ξ′t such that the limit

lim
h→0

〈(
ξt+h − ξt

h
− ξ′t

)2
〉

= 0 (1.11)

exists for all t. Again, in terms of the correlation function, this is equivalent to saying B(t1, t2)

is differentiable (in the ordinary vector calculus sense) at the point t1 = t2 = t for all t.

In general a stochastic differential equation (SDE) is given by

du

dt
= A(u, t; ω̃) (1.12)

where u and A may possibly be vectors with multiple components. In a deterministic setting, a

unique solution is determined by specifying an initial condition u(t0) = u0 at some initial time

t0, and varying u0 over the phase space will give you all possible solutions regardless of the

choice of t0, in other words, a different initial condition at a different time t1 must give a solution

that falls under the previous possibilities, but for a SDE the situation is different as you get a

different solution space for each t0[22]. This is because the initial condition u(t0, ω̃) = u0 must

be a sure variable (i.e. the probability of observing u = u0 is exactly equal to 1 at t = t0), and

hence the variance at t = t0 must be exactly zero, thus the variance changes as a function of t0.

A Langevin equation is a special case of a SDE and has the form

du

dt
= A(u) + C(u)η(t), (1.13)

where η(t) is a random function, butA and C are ordinary deterministic functions. This equation

is named after Paul Langevin who first studied Brownian motion using an equation of this form in

1908[45]. In practice, one normally arrives at a Langevin equation by simply taking the original

deterministic dynamics and adding a random function as a forcing term with C(u) set equal to

a constant (hence the name additive noise). Since the noise is simply attached to the end of the
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deterministic dynamics, this is also what we referred to earlier as extrinsic noise.

1.4.1 Example: White Noise and Weiner Processes

White noise, denoted η(t), is defined by giving its mean and correlation:

〈η(t)〉 = 0, 〈η(t1)η(t2)〉 = δ(t1 − t2). (1.14)

It is a wide-sense stationary process with zero correlation time. It is called white noise because

its Fourier spectrum is a flat line[54]. The Weiner process is integrated white noise, and is defined

by the stochastic differential equation

dW

dt
= η(t), (1.15)

with initial condition W (t0) = w0. The Weiner process is also called Brownian motion because

it is possible to show that Einstein’s considerations lead to the same equation[54]. We can show,

using ordinary calculus, that the mean of a Weiner process is constant by multiplying each side

by the probability density f(x; t) and integrating so that we have

d〈W 〉
dt

=
d

dt

(∫ ∞
−∞

W (t)f(x; t)dx

)
=

∫ ∞
−∞

η(t)f(x; t)dx = 〈η(t)〉 = 0. (1.16)

Applying the initial condition, this means that 〈W 〉 = w0 for all time. With a bit of work, one

can also show in a similar manner[54] that the correlation function is given by

〈W (t1)W (t2)〉 = min(t1 − t0, t2 − t0) + w2
0. (1.17)

Thus the Weiner process is not differentiable (see Doob[46] for further discussion). However,

we can solve this conundrum in two ways. The first way is to require that the correlation time

be small but non-zero (i.e. not a delta function), then it can be shown that the process is differ-
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entiable and ordinary calculus applies (Stratonovich[51] and van Kampen[52] has more detailed

explanations). Since any real noise source would not actually be white, this is an acceptable

resolution, and one must keep in mind that white noise should only be treated as an idealization

of the physical situation. If we insist on using white noise, then we need to look at the integral

form of the equation.

A stochastic process is mean-square integrable on [0, t] if and only if there exists a random

variable, denoted by ξ(−1)(t) or
∫ t

0
ξ(u)du such that the limit

lim
ε→0

〈ε t/ε∑
i=1

ξ(iε)−
∫ t

0

ξ(u)du

2〉
= 0, (1.18)

exists, where ε is a sequence of values chosen so that t/ε are integers.

Suppose η(t) is white noise, if we integrate the Langevin equation

∫
du

dt
dt =

∫
A(u)dt+

∫
C(u)η(t)dt, (1.19)

the first two integrals are well defined under ordinary calculus but the last one is not. One often

uses the differential form of the Wiener process to write dW (t) = η(t)dt so that the last integral

can be written as
∫
C(u(t))dW (t). The question here is: since u(t) is a random function, which

value of u(t) should we use in the Riemann sum? Suppose we partition the interval [0, t] into

n subintervals 0 < t1 < ... < tn. The Itô stochastic integral (developed by Kiyoshi Itô in the

1940s[49][50]) is given by the limit of the Riemann sum

∫ t

0

C(u(t′))dW (t′) = lim
n→∞

{∑
i

C(u(ti−1))[W (ti)−W (ti−1)]

}
, (1.20)

where the limit is taken in the mean-square sense as defined earlier, with u taken at the left end

point of the intervals. As an alternative to the Itô integral, the Stratonovich integral (named
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after Ruslan Stratonovich, who published his version in 1966[51]), takes the midpoint

∫ t

0

C(u(t′))dW (t′) = lim
n→∞

{∑
i

C

(
u(ti)− u(ti−1)

2

)
[W (ti)−W (ti−1)]

}
, (1.21)

where again the limit is taken in the mean-square sense. Without going any further into the

details, the Itô integral is well defined when the noise is strictly white, whereas the Stratonovich

integral works when the correlation time is non-zero. More details can be found in Gardiner[54]

and van Kampen[18]. Thus the integrated form of the Langevin equation

u(t)− u(0) =

∫ t

0

A(u)dt+

∫ t

0

C(u)η(t)dt, (1.22)

is well defined even when the noise is white, and a solution to the SDE exists in this integrated

sense, provided an interpretation rule is supplied for how the stochastic integral is treated[52].

For a stochastic PDE one can imagine analogous vector calculus definitions to the defini-

tions for stochastic differentiation and integration mentioned in this chapter. However, most re-

searchers usually appeal to much more complicated set and measure theory methods[75][76][77]

that are difficult to understand. Fortunately, chapter 2 of this thesis deals with a variation of the

stochastic heat equation and the existence and uniqueness of solutions to that problem have been

studied extensively[35][58]. We will be interested in finding the mean and the variance of the

solution to the stochastic PDE of interest.

Appendix A explains how to numerically integrate a stochastic PDE using a standard Euler

method[35]. Most simulation methods for stochastic PDEs adopt Itô’s interpretation, and we

do the same when considering extrinsic noise. Moreover, recall each realization we generate is

equivalent to fixing ω̃ at each time t. Thus, by generating many sample paths, we are in fact

generating a sample distribution for ω̃ at each t, and taking the mean and variance at each time

point will give us an estimate of the mean and variance of the stochastic process as a function of

time.
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1.5 Master Equation

Instead of a SDE, an alternate way of studying stochastic processes is to use what is called the

master equation. This involves assuming that the stochastic process is Markov, then manipu-

lating the rules of probability to arrive at a differential equation that governs the time evolution

of the probability density[18]. The master equation itself is usually not solvable directly, so

numerical and approximation methods are often needed. Appendix B explains how to numeri-

cally simulate exact realizations of processes governed by a particular master equation (known

as Gillespie’s Algorithm[40]), and the next section explains an approximation method developed

by van Kampen[19].

From the product rule of probability we have that

f(x1, x2; t1, t2) = f(x2; t2|x1; t1)f(x1; t1), (1.23)

and integration over x1 of this equation gives

f(x2; t2) =

∫ ∞
−∞

f(x2; t2|x1; t1)f(x1; t1)dx1. (1.24)

If we further assume the process is Markov, for t1 < t2 < t3, we can show that

f(x1, x2, x3; t1, t2, t3) = f(x3; t3|x2; t2) · f(x2; t2|x1; t1) · f(x1; t1). (1.25)

If we integrate the above over x2 then

f(x1, x3; t1, t3) = f(x1; t1)

∫ ∞
−∞

f(x3; t3|x2; t2)f(x2; t2|x1; t1)dx2, (1.26)
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and using the product rule again f(x1, x3; t1, t3) = f(x3; t3|x1; t1)f(x1; t1), we have

f(x3; t3|x1; t1) =

∫ ∞
−∞

f(x3; t3|x2; t2)f(x2; t2|x1; t1)dx2. (1.27)

This is the Chapman-Kolmogorov equation and it relates all the transition probabilities

f(xi; ti|xj; tj) as one integral equation. For a stationary Markov process, we can write

f(x2; t2|x1; t1) = p(x2|x1; τ), (1.28)

where τ = t2 − t1. Then the Chapman-Kolmogorov equation can be written as

p(x3|x1; τ ′ + τ) =

∫ ∞
−∞

p(x3|x2; τ ′)p(x2|x1; τ)dx2, (1.29)

where τ ′ = t3 − t2.

For a large class of systems known as jump processes (examples of which are Brownian mo-

tion and chemical reactions), one can show that, over a very short time, the transition probability

is given by[53]

p(x|z, τ ′) = (1− a0τ
′)δ(x− z) + τ ′w(x|z) + o(τ ′) (1.30)

where w(x|z) is the transition probability per unit time, and a0 is the zeroth jump moment

a0(z) =

∫ ∞
−∞

w(x|z)dx. (1.31)

In words, the above equation for p(x|z) means that the transition probability from state z to state

x is given by the probability that no jump occurs (i.e. you are already in state x) + the probability

that a jump occurs over a time interval τ ′. Substituting this result into the Chapman-Kolmogorov

equation yields (after some work)

∂

∂τ
p(x3|x1; τ) =

∫ ∞
−∞

[w(x3|x2)p(x2|x1; τ)− w(x2|x3)p(x3|x1; τ)] dx2. (1.32)
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This is called the Master Equation and it has the form of a gain-loss type differential equation

with the probability of entering into state x3 (given you were at x1) minus the probability of

leaving state x3 (given you were in state x3 already). If the system is discrete, this equation takes

on the form
dPn(t)

dt
=
∑
m

[WnmPm(t)−WmnPn(t)] . (1.33)

1.5.1 Example: Logistic Growth

Consider logistic growth, a one species model of tumour cells given by

dc

dt
= f(c) = rc

(
1− c

K

)
, (1.34)

where c is the tumour cell density, r is the growth rate, and K is the carrying capacity. Rewrit-

ten in terms of the number of tumour cells C, we must introduce a new parameter Ω, that has

dimensions of volume, so that we have:

dC

dt
= rC

(
1− C

ΩK

)
. (1.35)

In order to consider the effects of intrinsic noise, we will explicitly include the discreteness of

births and deaths by recasting logistic growth in terms of the following reaction scheme

C
ν1−→ C + 1, ν1 = r · C

Ω
, (1.36)

C
ν2−→ C − 1, ν2 =

r

K

(C)(C − 1)

Ω2
, (1.37)

where νi can be identified with the reaction rates in equation 1.34 but are now to be interpreted

as the transition rates W in the master equation (known as the principle of mass action, see

Appendix E), and we have assumed that only unit births and deaths can occur at any time.

A convenient way to rewrite this reaction scheme is in terms of the stoichiometry matrix S,
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which tells us how each reaction changes the population, and the propensity vector ν which is a

list of the transition rates. For our example, we have

S =

(
1 −1

)
, and ν =

(
r · C

Ω
,
r

K

(
C

Ω

)(
(C)(C − 1)

Ω2

))T
, (1.38)

specifically written in this way so that in the thermodynamic limit where C → ∞ and Ω → ∞

in such a way that C/Ω→ c a constant, we can approximate ν2 = r
K

(C)(C−1)
Ω2 by ν2 = r

K
C2

Ω2 and

recover the deterministic equations

dc

dt
= S · ν = f(c). (1.39)

The convenience of this notion will become apparent when we consider the Linear Noise Ap-

proximation in the next section.

Using the discrete form of the master equation (equation 1.33), and the transition rates as

identified above, we can now write down the master equation for logistic growth as a stochastic

process:

dP

dt
= r(C − 1)P (C − 1) +

1

Ω

r(C + 1)2

K
P (C + 1)− rCP (C)− rC2

ΩK
P (C),

= r
(
E−1 − 1

)
CP +

1

Ω

r

K
(E− 1)C2P. (1.40)

where Ek
i is the step operator given by

Ek
i f(..., ni, ...) = f(..., ni + k, ...), (1.41)

and is another convenient piece of notation that will reappear shortly. Notice that this is a

discrete-differential equation with non-linear transition rates and there is no known solution

method. So we will need to appeal to numerical simulations using the Gillespie algorithm (shown

in figure 1.2) and approximation methods.
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Figure 1.2: Some simulations of logistic growth as a stochastic process using Gillespie’s algo-
rithm (coloured solid lines; explained in Appendix B), with r = 1, K = 25, Ω = 1, 10, 100,
and started at three different initial conditions. Dashed grey lines are numerical simulations of
deterministic logistic growth with the same initial conditions. Top row shows t=[0,5] as the sys-
tem relaxes to equilibrium and bottom row shows t=[30,40] as the system fluctuates about the
equilibrium. As discussed in the text, the ODE model represents the average of the stochastic
model over a large number of realizations. Plots shown have concentration c = C/Ω as the y
axis and time as the x axis. Thus, in terms of cell number, we have approximately, from left to
right, 25, 250, and 2500 total cells in the system. Note how as we increase the number of cells,
the relative magnitude of the fluctuations decreases as 1/

√
N and we approach the deterministic

model. This scaling will reappear in the next section.

One might also try solving for the moments instead by multiplying the master equation by

the appropriate power of C and taking the sum over all values, but the equations for the first two

moments yield

d〈C〉
dt

= r〈C〉 − 1

Ω

r

K
〈C2〉, (1.42)

d〈C2〉
dt

= r〈C〉+ 2r〈C2〉+
1

Ω

r

K
〈C2〉 − 1

Ω

r

K
〈C3〉, (1.43)

which are not closed (i.e., involve higher-moments) and cannot be solved explicitly. Thus, even

for the moment equations we will require an approximation method to close the system.
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1.5.2 System Size Expansion of the Master Equation

The master equation in general is a discrete-differential equation that we cannot solve exactly.

Hence we will need to develop methods to find approximate solutions to the master equation.

The method we will discuss was developed by van Kampen and is known as the Linear Noise

Approximation, or perhaps more suggestively, the system size expansion[19]. For clarity, we

will apply the approximation to the reaction part first, then discuss the effect of transport on the

fluctuations in the next section.

x(t)
Figure 1.3: Idea: There is an envelope
of fluctuations about the deterministic tra-
jectory of the concentration and the vari-
ance of these fluctuations scales as 1

Ω
.

For this general overview of the expansion

method, we will specialize our discussion to chem-

ical reaction networks. Chemical reactions are an

example of intrinsic noise - reactions occur be-

cause of random collisions between the reactant

molecules and deviations away from the determin-

istic model arise because the events are discrete and

occur randomly[62].

Suppose that there are N species of reactant

molecules, and let n denote the number of molecules

of each species. Let Ω be a measure of the system

size or volume. We will assume that we can separate the fluctuations α from a deterministic

evolution of the reactant concentrations x in the following manner:

ni = Ωxi +
√

Ωαi. (1.44)

This square-root scaling of the fluctuations is motivated by Poisson processes, where the relative

size of the fluctuations is inversely proportional to the square-root of the number of molecules

(which we saw heuristically in figure 1.2), and leads to a consistent perturbation expansion when
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there is only one globally stable steady state in the corresponding deterministic equations. Writ-

ten more suggestively in terms of concentrations,

ni
Ω

= xi +
1√
Ω
αi.

We will assume that the second term on the right hand side, which governs the fluctuations, will

be small as Ω → ∞ compared to the first term, in such a way so that the term on the left hand

side stays constant even though it appears to depend on a higher power of Ω. This is known as

the thermodynamic limit.

For discrete chemical reaction networks, we can write the master equation in this form[34]

dP (n, t)

dt
= Ω

R∑
j=i

[(
N∏
i=1

E
−Sij

i

)
− 1

]
νj

(n
Ω

)
P (n, t). (1.45)

where S, ν and Ek
i are the stoichiometry, propensity, and step operator as defined in chapter 1.

The next step is to then expand the step operator and transition probabilities as a series in

powers of 1√
Ω

. Substituting these series into the master equation and equating terms of the same

order, we get that, at the zeroth order, the concentration must obey the deterministic dynamics

dxi
dt

= [S · ν(x)]i = fi(x). (1.46)

At the next order, we get a linear Fokker-Planck equation for the probability distribution of α:

∂Π

∂t
= −

∑
i,j

Jij
∂ (αjΠ)

∂αi
+

1

2

∑
i,j

Dij
∂2Π

∂αi∂αj
, (1.47)

where J is the Jacobian matrix of the linearized dynamics

Jij(t) =
∂f

∂xj

∣∣∣∣
x(t)

, (1.48)
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and D is the diffusion matrix given by

D = S · diag[ν] · ST . (1.49)

This Fokker-Planck equation can then be used to calculate the moments of α, and hence N .

One can show that the solution to the linear Fokker-Planck equation, equation (1.47), is a (time-

dependent) multi-variate Gaussian, so to this level of approximation, all we need to know are

the first and second moments to completely specify the distribution, which can be found by

multiplying equation (1.47) with αi or αiαj and integrating by parts to give:

d

dt
〈αi〉 =

∑
j

Jij〈αj〉, (1.50)

d

dt
〈αiαj〉 =

∑
k

Jik〈αkαj〉+
∑
k

Jkj〈αiαk〉+Dij. (1.51)

In particular, using our ansatz n = Ωx +
√

Ωα and the initial condition P (n, 0) = δn,n0 , which

implies 〈α(0)〉 = 0, we have that

d

dt
〈n(t)〉 = f(〈n(t)〉). (1.52)

As a consequence, to the lowest order approximation, the average of the stochastic model obeys

the deterministic rate equations, and this equation can be interpreted as the macroscopic equation

that governs the system in the limit of no fluctuations.

1.5.3 Back to Logistic growth

Recall, when we considered the stochastic version of logistic growth we were unable to solve

for the first and second moments because the system of equations were not closed (see equations

1.42 and 1.43). We now apply the linear noise approximation to close the system of equations

and get approximate solutions for the mean and variance.
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Recall for logistic growth we have that

dx

dt
= f(x) = rx

(
1− x

K

)
, (1.53)

where we have replaced the density of tumour cells c = C/Ω with the concentration x as required

by equation 1.46 above. Hence the Jacobian is given by

J =
df(x)

dx
= r − 2rx

K
. (1.54)

The stoichiometry and propensity are given by

S =

(
1 −1

)
, and ν =

(
rx,

rx2

K

)T
, (1.55)

where again we have replaced c with x. Note that, as before, the second term in the propensity

should be ν2 = r
K

(C)(C−1)
Ω2 , but in the thermodynamic limit as Ω → ∞ and C → ∞, we can

make the approximation ν2 = r
K

(C)(C−1)
Ω2 ≈ r

K
C2

Ω2 = rx2

K
. Using equation 1.49, this means that

the diffusion matrix D is

D =

(
1 −1

)rx 0

0 rx2

K


 1

−1

 = rx+
rx2

K
. (1.56)

Then, using equations 1.50 and 1.51, and a bit of algebra, we get for the first moment

d〈C〉
dt

= r〈C〉
(

1− 〈C〉
ΩK

)
. (1.57)

For the variance, which is defined as 〈〈C2〉〉 = 〈C2〉 − 〈C〉2, note that in the simple one species

22



case, we have

〈〈C2〉〉 = 〈C2〉 − 〈C〉2,

= 〈Ω2x2 + 2Ω
3
2xα + Ωα2〉 − Ω2x2,

= Ω2x2 + 2Ω
3
2x�

��>
0

〈α〉+ Ω〈α2〉 − Ω2x2,

= Ω〈α2〉. (1.58)

This yields

d〈〈C2〉〉
dt

= Ω
d〈α2〉
dt

= 2

(
r − 2r〈C〉

ΩK

)
〈〈C2〉〉+ r〈C〉+

r〈C〉2

ΩK
. (1.59)

These estimates of the mean and variance, can now be solved explicitly by first solving for

the mean and then substituting the result into the variance. They are plotted, along with some

stochastic simulations using the Gillespie algorithm, in figure 1.4.

1.5.4 Limitations of the Linear Noise Approximation

Although van Kampen’s Linear Noise Approximation works well for chemical reactions and

provides a general recipe for approximating the probability distribution of the fluctuations in a

stochastic system with internal noise, it is important to understand the assumptions that limit the

usefulness of this expansion method.

1. The Linear Noise Approximation gives us a leading-order correction to the macroscopic

behaviour, but the ansatz, equation 1.44 and the perturbation expansion requires that the

magnitude of the fluctuations is small compared to the deterministic solution.

2. The Gaussian nature of the noise is a consequence of truncating the expansion after the

first two terms and is no longer true once higher order terms are included[61].
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Figure 1.4: Same plots as figure 1.2 but now with the estimate of the variance added using the
linear noise approximation. Specifically, the mean was plotted by using equation 1.57, and the
fluctuation envelope was calculated by evolving equation 1.59 and then plotting 〈c〉 ±

√
〈〈c2〉〉.

Note how the variance envelope initially grows with time then settles into equilibrium along with
the deterministic system.

3. The Linear Noise Approximation is a local expansion about a deterministically stable tra-

jectory. The criterion that the trajectory is stable ensures ensures that the fluctuations

remain sub-dominant to the deterministic behaviour. To see this, consider for simplicity

the one species versions of equations 1.57 and 1.59:

d〈α〉
dt

= J〈α〉, (1.60)

d〈α2〉
dt

= 2J〈α2〉+D. (1.61)

The first equation tells us that α obeys the linearization of the deterministic dynamics

and hence its applicability is strictly local. The second equation gives us the magnitude

of the fluctuations, and demonstrates that there is an interplay between the Jacobian and

the diffusion. If the system is stable, then the Jacobian is negative (more generally it has

eigenvalues with negative real parts) and that ensures that the fluctuations do not grow
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(a) If there is only one globally
stable steady state, then all so-
lutions tend towards this steady
state, and the effect of fluctuations
is to make the stochastic trajec-
tory jump from one solution to an-
other, which nonetheless have to
converge.

(b) Suppose we have a bistable
system with two stable steady
states and one unstable one.

(c) Then, solutions must converge
towards φA or φC and there is a
non-zero probability of switching
between the two.

Figure 1.5: The linear noise approximation is a local approximation method. Figures from van
Kampen[18]

unbounded, specifically, it ensures that they do not grow to the same order of magnitude

as the macroscopic part in finite time[18].

If there are multiple stable steady states, then the approximation is valid only for trajecto-

ries close to a particular steady state as there will be a non-zero probability that one may

jump from the basin of attraction of one steady state to another. This jump probability can-

not be calculated by the Linear Noise Approximation and other methods are needed[18].

This last point emphasizes the fact that the Linear Noise Approximation is a local expan-

sion about the stable steady state and does not tell us any global properties of the system.

A heuristic picture of this need for a single stable fixed point is given in figure 1.5.

1.6 Spatially Extended Stochastic Systems

Here we will be interested in converting a reaction-diffusion equation into a stochastic process

through the master equation. The previous section demonstrated how to deal with the reaction
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(a) Idea: We discretize space and consider diffusion as a
reaction that moves the reactant molecule from one bin
into another.

(b) This means that we can consider each
species in each bin to be different species, and
extend all our previous work appropriately.

Figure 1.6: Extending reaction stoichiometry to include transport.

part. In order to turn diffusion into a stochastic process we will adapt Smoluchowski’s analysis

of Brownian motion, where he considered Brownian motion as a random walk[47] (since Smolu-

chowski’s original 1906 paper[48] is in German, reference is an English explanation by Kac in

1947).

If we discretize our coordinate space into bins, diffusion (or any kind of transport in general)

is simply a process that moves one member of the population from one bin to another. In other

words, we can consider it as a reaction that decreases by one the number of a particular reactant

species in one bin and increases by one the number of the same reactant species in another.

With this simple bit of insight, it is straightforward to modify the Gillespie algorithm to

include diffusion. We simply consider each species in each bin to be different species, and

then extend the stoichiometry and propensity appropriately to include diffusion as a reaction (a

picture of this situation is provided in figure 1.6). Details on how to extend Gillespie’s Algorithm

is explained in Appendix B.

From an analytic standpoint, let us label each bin with the Greek index λ. We will denote

each reactant species in each cell by Nλ. A pictorial representation is presented in figure 1.7. To

consider the contribution due to diffusion, we will first let our grid spacing→ 0 so that we can
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(a) We will discretize coordinate space into bins of equal volume and
denote them by the set λ. Since reaction is just another kind of reac-
tion, the spatial orientation doesn’t matter as long as we take it into
account appropriately in our stoichiometry.

(b) The reactant species in each bin
are labeled Nλ,

Figure 1.7

switch to a continuous description in the following way:

lim
Ω→0

Nλ(t)

Ω
= n(r,t). (1.62)

where r is the position of the center of the bin λ, and n is the number density.

Next, van Kampen[18] has shown that the contribution of diffusion to the first moment is

simply
∂ 〈n(r,t)〉

∂t
= D∇2 〈n(r, t)〉 . (1.63)

So the combined effect of both reaction and diffusion is

∂ 〈n(r,t)〉
∂t

= f(〈n(r, t)〉) + D∇2 〈n(r, t)〉 , (1.64)

which we once again identify as the deterministic or macroscopic equation.

For the second moment, we have this complicated equation which involves the Dirac delta
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function[20]

∂

∂t
〈〈ni(r1, t)nj(r2, t)〉〉 = D

(
∇2

1 +∇2
2

)
〈〈ni(r1, t)nj(r2, t)〉〉

+ 2D∇1 · ∇2 {δ(r1 − r2) 〈ni(r, t)〉} , (1.65)

which is not amenable to analysis or numerical simulation. However, if we define the factorial

cumulant as

[ni(r1, t)nj(r2, t)] = 〈〈ni(r1, t)nj(r2, t)〉〉 − δ(r1 − r2) 〈ni(r1, t)〉 , (1.66)

then the evolution for this quantity is given by

∂

∂t
[ni(r1, t)nj(r2, t)] = D

(
∇2

1 +∇2
2

)
[ni(r1, t)nj(r2, t)], (1.67)

which is much simpler. To recover the variance, we simply add back the correct term when

necessary using the solution for the first moment.

1.6.1 Example: Fisher’s equation

We will discuss Fisher’s equation in more detail in the next section on excitable media. For the

purposes of this section it is simply logistic growth with diffusion added:

∂c

∂t
= rc

(
1− c

K

)
︸ ︷︷ ︸

Logistic Growth

+D∇2c︸ ︷︷ ︸
Diffusion

. (1.68)

With the preceding results, one can show that the stochastic version of Fisher’s equation with

intrinsic noise has mean which obeys

∂〈c(r, t)〉
∂t

= r〈c(r, t)〉
(

1− 〈c(r, t)〉
K

)
+D∇2 〈c(r, t)〉 , (1.69)
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Figure 1.8: A plot of some numerical simulations of Fisher’s equation as a stochastic process
with the same parameters and boundary conditions as figure 1.12 in chapter 2. The solid lines
are two independent numerical simulations using Gillespie’s algorithm. The dashed lines are the
approximate mean and variance as given by equations 1.69 and 3.1 respectively.

and factorial cumulant,

∂ [c(r1, t)c(r2, t)]

∂t
=

{(
r − 2r〈c(r1, t)〉

K

)
+

(
r − 2r〈c(r2, t)〉

K

)}
[c(r1, t)c(r2, t)]

+ δ(r1 − r2)

{
r〈c(r1, t)〉+

r〈c(r1, t)〉2

K
− r〈c(r1, t)〉

(
1− 〈c(r1, t)〉

K

)}
+ 2δ(r1 − r2)

(
r − 2r〈c(r1, t)〉

K

)
〈c(r1, t)〉

+D
{
∇2

1 +∇2
2

}
[c(r1, t)c(r2, t)]. (1.70)

Numerical simulations of these results and some corresponding stochastic simulations are shown

in figure 1.8. The plots show how Fisher’s equation evolves with time, and demonstrate how

the Linear Noise Approximation accurately captures the variance of the system when internal

noise is added to the system. In particular, the variance envelope predicted by the Linear Noise

Approximation varies in both space and time and only settles into a steady state as the system

itself settles into a steady state.
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A R

Positive
feedback 
loop

Negative
feedback
loop

Figure 1.9: The activator A activates itself and activates its repressor R at the same time. This
leads to both a positive and a negative feedback loop on A. Most excitable systems have feedback
behaviour hierarchy similar to this, and in figure 1.10 the positive feedback acts on a faster
timescale than the negative feedback.

1.7 Excitable Media

In very general terms, excitable systems usually involve feedback loops that act on different time

scales, such as in the schematic in figure 1.9, that lead to limit cycle behaviour as depicted in

figure 1.10 which involves a very quick rise to the excited state, and then a slow relaxation back

to the lower equilibrium state. The most famous example of a spatially homogeneous excitable

system is perhaps the Hodgkin-Huxley model (1952)[8] and the simplified version developed by

Fitzhugh (1961)[9] and Nagumo (1962)[10] to describe the action potential in neurons.

The “all or nothing” principle of excitable media makes it a very useful model for cell sig-

nalling (such as for cell cycles[30]) as there is clear differentiation between an “on” or “off”

state. Moreover, when diffusion is added to the system, excitable systems differ from simple

oscillatory ones by exhibiting spatial inhomogeneities such as patterning or traveling waves[7].

We will examine Fisher’s equation[26] and the Vilar model[13] as relevant examples that will

display this kind of behaviour. Then, we will see how adding noise to the model can cause an

otherwise stable system to exhibit (continued) oscillatory behaviour. In chapter 4 we will look at

how noise affects an excitable mitosis model that we hope can be adapted to model metastasis in

the future.
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(b) Limit Cycle

Figure 1.10: In general, excitable systems exhibit either asymptotic stability or limit cycle be-
haviour in the absence of noise. Notice in b) that excitable systems have a very particular kind
of limit cycle behaviour, and that is usually created by different time scales in the positive and
negative feedback.
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1.8 Example: Fisher’s equation

If we add diffusion to logistic growth, we get what is known as Fisher’s equation (or the Fisher-

Kolmogorov equation):
∂c

∂t
= rc

(
1− c

K

)
︸ ︷︷ ︸

Logistic Growth

+D∇2c︸ ︷︷ ︸
Diffusion

. (1.71)

Fisher[26] proposed this equation in his 1937 paper to describe the spread of a local mutation,

that is somehow beneficial or advantageous to the population, from its initial mutation cite to its

neighbours in the form of a wave. Quoting Fisher in his original paper[26]:

“If at any point of the habitat a mutation occurs, which happens to be in some

degree, however slight, advantageous to survival, in the totality of its effects, we may

expect the mutant gene to increase at the expense of the allelomorph or allelomorphs

previously occupying the same locus. This process will be first completed in the

neighbourhood of occurrence of the mutation, and later, as the advantageous gene is

diffused in the surrounding population, in the adjacent portions of its range.”

Variations of this equation have been used to model tumour growth, which is just a different kind

of mutation, and will be explored in detail in chapters 2 and 3 (see figure (1.11)).

Depending on the system size, parameters and boundary conditions, we will see qualitatively

different behaviour. Following Powathil[23] and Murray[6], we will assume no flux boundary

conditions throughout the rest of this report to model the effects of a solid boundary, such as

the skull in brain tumours. In general, with no flux boundary conditions, we will simply see

the system reach a spatially homogeneous steady state at the stable equilibrium of the logistic

growth term (see figure 1.12). However, under certain situations, it is possible to observe a

traveling wave, which is a wave that propagates without change of shape, until the wavefront hits

the boundary (see figure 1.13). Traveling wave instabilities are an important aspect of this model
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Figure 1.11: Application of Fisher’s equation to brain tumours in two dimensions using a sample
CT scan to simulate the situation in a real brain. Colours represent tumour cell density. Figures
from Powathil[23]

as the higher concentration of the wave front can be used to represent a signal passing through

the cell[30][32].

1.8.1 Role of Noise in Excitable Media

Fisher’s equation is an example of a wider class of systems known as excitable systems. Green-

berg and Hastings (1978)[7] provide the following description for excitable media:

“In a spatially homogeneous environment an excitable media is characterized

by a globally stable equilibrium state, and also by a threshold mechanism which

produces a large amplitude response to a sufficiently large stimulus. This response

is temporary, however, and the system soon returns to its equilibrium configuration.”

Excitable systems exhibit either limit cycle behaviour or asymptotic stability depending on the

parameter values. Near the bifurcation value, noise can induce limit cycle-like behaviour in an

otherwise stable system by causing the system to undergo large trajectories in the phase space

near where the limit cycle would be if we were past the bifurcation value. A heuristic argument

is shown in figure 1.14. We will explore an example of a biological system that can be modeled

by such a system in detail.
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Plots indicate snapshots forwards in time.
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Figure 1.12: Simulation of Fisher’s equation in one dimension with r = 4, K = 15, D = 1,
and no flux boundaries at x = 0 and x = 1. The system simply diffuses then grows towards the
stable steady state at c = 15. Notice that the equilibrium solution is uniform in space.

Plots indicate snapshots forwards in time.
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Figure 1.13: With r = 1, K = 1, D = 1/5000 it is now possible to observe a traveling wave.
Notice how once the peak reaches the stable steady at c = 1, the shape of the slope no longer
changes and simply travels outwards.
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(a) Top panel: In the stable regime of the
state space, all solutions eventually settle at
the stable fixed point (the black dot). Noise
in the system will perturb the system out of
the steady state. These systems are called
excitable because if the perturbation is large
enough (outside the white circle) then the
system is forced to undergo a large loop in
the phase space. Bottom panel: the corre-
sponding trajectory in the limit cycle regime,
the idea being that the large excursion is sim-
ilar to the limit cycle. Figure from Rué[33]

Noise can
take you 
over the
threshold

(b) Same idea, but specifically from the circadian clock exam-
ple below. The dotted line represents the threshold which deter-
mines whether large excursions occur or not. This can be found
numerically[12].

Figure 1.14: Heuristic idea behind excitability.
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Example: Circadian Clock

The following is a model for circadian clocks or circadian rhythms first proposed by Vilar et

al[13] based on “common positive and negative control elements found experimentally”. Scott

et al[12] studied the reduced model below, which is more amenable to analysis:

∂A

∂t
= γAg

(
A

KA

, fA

)
− δAA− κCAR, (1.72)

∂R

∂t
= γRg

(
A

KR

, fR

)
− δRR− κCAR + δAC, (1.73)

∂C

∂t
= κCAR− δAC, (1.74)

where

g

(
A

KA

, f

)
=

1
f

+
(

A
KA

)n
1 +

(
A
KA

)n . (1.75)

Put in very simple terms, this model has an activator-repressor (A andR respectively in the mode

equations) hierarchy that is similar to the schematic shown in figure 1.9. The only difference is

that there is an intermediate complex C that mediates the negative feedback. For a nominal

parameter set, the key control parameter is the ratio of the decay rates ε = δR/δA, and in fact, the

plots in figure 1.10 are plots of the repressor R when ε is low enough for the stable steady state

to appear, and when ε is suitably high to exhibit a limit cycle.

When we consider the effect of intrinsic noise on this model, we once again need to introduce

the parameter Ω that is a measure of the system size or volume. For small values of Ω, the

relative effects of noise (i.e. fluctuations on the order of 1 or 2 molecules) are large because

the number of reactants in the system is small, so the system is more easily perturbed into an

excited state and can undergo a large oscillation. For large Ω, the relative effects of noise are

small, so the system behaves tends to stay in its stable steady state, and the wait time between

oscillations increases. Finally, for a medium amount of noise, we see regular, well behaved

oscillations that are close in ampltiude and period to the system in its limit cycle regime. This
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Figure 1.15: All three figures are plots of the repressor R. The solid line represents a stochastic
simulation, and the dashed line represents the corresponding deterministic behaviour for a param-
eter set that exhibits stability. In (a) one can see that, when there are a low number of molecules,
noise leads to frequent oscillations and large variations in the amplitude of the oscillation. As we
increase the number of molecules, we see in (b) that the amplitude and frequency of oscillation
is more regular. As Ω→∞ the system reaches the deterministic limit (i.e. a stable steady state),
and the time between oscillations increases, as shown in (c). It has been shown that a medium
amount of noise leads to, in some sense, the most regular amplitude and period and reproduces
the limit cycle behaviour most closely - sometimes known as stochastic coherence[27][28].

particular tuning of noise to create sustained oscillations is sometimes called stochastic coherence

or stochastic resonance[27][28], and there is speculation that some biological systems (such as

neural signalling in human brains) have evolved to make use of such phenomena[29]. These

effects are illustrated in figure 1.15.

If we now add back diffusion, and for the sake of simplicity assume that R and C diffuse at
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the same rate, then we have

∂A

∂t
= γAg

(
A

KA

, fA

)
− δAA− κCAR +D1

∂2A

∂x2
, (1.76)

∂R

∂t
= γRg

(
A

KR

, fR

)
− δRR− κCAR + δAC +D2

∂2R

∂x2
, (1.77)

∂C

∂t
= κCAR− δAC +D2

∂2C

∂x2
. (1.78)

A straightforward but lengthy linear stability analysis, assuming all parameters are fixed as

before, except for ε = δR/δA which was the bifurcation parameter in the previous case, and

d = D1/D2, which is the ratio of diffusion coefficients allows us to determine when we might

expect each of the different types of behaviour to occur (see figure 1.16). In particular, we can

now observe traveling waves (see figure 1.17), which we will use to represent cell signalling in

chapter 4.

In analogy to the situation without noise, one would expect that noise added to this system

in the stable parameter regime would be able to cause noise induced oscillations. An analysis of

that situation will not be performed here. We will however, conduct a lengthy analysis of noise

induced oscillations in an excitable mitosis model in chapter 4.
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Figure 1.16: Bifurcation diagram obtained using linear stability analysis where d = D1/D2 and
ε = δR/δA. Turing instabilities are when the system is stable in the absence of diffusion, but
unstable once diffusion is added. This leads to spatial patterns occurring (panel (c) in figure
1.17).
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Figure 1.17: Different possibilities in the Vilar model when diffusion is is added.
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Chapter2
External Noise in a Tumour Model

Tracqui (1995)[4], Swanson (2002[5], 2003[63][64], 2008[65]) , Murray (2007)[6], Powathil

(2007[68], 2009[23]), and Kohandel (2007)[69] (among others) have proposed deterministic

reaction-diffusion type models to simulate the growth of brain tumours in humans. Although

tumour cells do not actually diffuse, it has been suggested that diffusion reasonably approx-

imates cell motility, and results using this model qualitatively agree with CT scans of brain

tumours[4][6][23]. Once a model for tumour growth is chosen, it can then be used to estimate

the survival time of a patient, which we will define as the growth of the tumour from a diameter

of 3cm (when it is visible on a CT Scan) to 6cm (patient death).

This chapter will consider the effects of external noise on this system by adding a Langevin

forcing term to the deterministic PDEs. The Langevin forcing term is one way to represent the

chaotic structure and heterogeneity within the tumour microenvironment without having to know

all the exact details of the structure for each and every patient by making the growth rate random

in space and time. Analytic solutions to the stochastic PDE will not be attempted, instead, we

will use extensive numerical simulations to generate sample paths of the system, and the resulting

ensemble will be averaged at each time point to estimate the error bounds for the system. We

will find that the error bounds are relatively small for the tumour model in this chapter, but it
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does establish the method for possible future modifications.

2.1 Mathematical Details

In words, a single species tumour growth model would satisfy

rate of change of tumour cell population = motility of tumour cells+net proliferation of tumour cells,

with cell motility being represented by diffusion. For brain tumours, there are solid boundaries

(e.g. the skull) which limits growth, so one might choose logistic growth for the proliferation

term, which gives us Fisher’s equation[26] as a starting point:

∂n

∂t
= D∇2n+ ρn

(
1− n

K

)
.

Here, K is the carrying capacity or saturation limit for tumour cells within the brain. In practice,

K is very large (Powathil estimates K to be about 105 cells/cm2), so we are unlikely to reach

the carrying capacity before patient death and the growth is essentially exponential. Thus our

prototype for tumour growth is given by

∂n

∂t
= D∇2n+ ρn, (2.1)

where n is the concentration of tumour (cancer) cells, D is the diffusion coefficient, and ρ is the

growth rate. This simple model in fact two thirds of what we think of as a malignant tumour, as it

contains the potential to grow in an uncontrolled manner (the exponential growth term), and the

ability to invade into its surrounding tissue (diffusion term). Metastasis will need to be modeled

separately, and a proposed solution is in chapter 4. Although most tumours are a large collection

of a number of different cells[2] (including possibly recruited normal cells[3]) one might think

of the single species model as a simplification (cancer or normal) or as the growth of cancer

stemcells[24][25] which would reproduce all the necessary differentiated cells.
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There are many other possible choices for the growth term, and they have been used in the

literature to model different situations. For example, it has been speculated as early as 1964 by

Laird[70] that tumour growth is actually Gompertzian, Kohandel[69] uses a quadratic growth

term to model vasculature, Anderson and Chaplain[71] add a chemotaxis term to mimic angio-

genesis, Norris[72] use Michaelis-Menten Kinetics to model drug kintetics, and Powathil[68][23]

adds a term to reprsent radiotherapy. Later on in this chapter we will modify the growth term

slightly to reproduce the effects of chemotherapy.

It would be more realistic for the diffusion term to be space dependent, with ∇ · (D(x)∇n)

instead of simply D∇2n, and indeed papers by Powathil[68] and Swanson’s research group (e.g.

Swanson (2003)[5], Rockne (2010)[66], Neal (2013)[67]) have different (constant) values for

grey and white matter within the brain. A model of how the grey and white matter is distributed

within the brain would be needed to take the different diffusibility into account, and most re-

cently Neal et al (2013)[67] have taken comprehensive scans of each patient and tailored their

mathematical models specifically for that patient. For this thesis we will simply we will keep the

entire domain homogeneous and vary the diffusion constant D to determine its effects.

The aim of this chapter is to allow the growth rate to be random throughout the domain in the

following way:
∂n

∂t
= D∇2n+ ρ [1 + σ(x, t)]n, (2.2)

where σ(x, t) is a random function of time and space, with no flux boundary conditions, and a

gaussian or delta initial condition in the middle of the domain. This random growth rate repre-

sents the inherent heterogeneity within the chaotic tumour microenvironment without having to

determine the exact details.

For simplicity, we will set σ(x, t) = ση(x, t), where σ is a constant in space and time. η(x, t)

is commonly referred to as “space-time white noise”; it is Gaussian distributed, and can be
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specified by giving the first two moments:

〈η(x, t)〉 = 0, (2.3)

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). (2.4)

The noise amplitude σ must be provided external to our current mathematical considerations

(e.g. data fitting, physical considerations). This stochastic PDE was integrated numerically using

a straightforward Euler scheme on a square 10cm by 10cm domain to very roughly represent the

size of a human skull (see Appendices A and C for more details).

2.1.1 Visible Tumour Diameter and Survival Time

When a tumour is found in a patient, doctors rely on medical imaging devices to determine

where the tumour is and what kind of treatment to apply. Any type of medical imaging technique

will have a detection threshold under which tumour cells cannot be detected. According to

Swanson[5] the CT Scan detection threshold is 8000 cells per mm3. Illustrations of how this

works can be found in figure 2.1.

To estimate the visible diameter of the tumour, we will count the number of grid boxes with

density above the threshold value in our numerical simulations, multiply by the area of each grid

box to get the total area, and use A = πr2 to calculate the radius r, and hence visible tumour

diameter (call it V (t)). This will only be an estimate since the stochastic simulation will not be

a perfect circle (see figures 2.2 and 2.4). Following Swanson[5] we define survival time as the

time it takes the tumour to grow from a (visible) diameter of 3 cm (the minimum size a tumour

can be diagnosed) to a diameter of 6 cm.

For external noise, the most straight forward way of estimating the mean and variance of

either measure of tumour diameter is to run a large number of numerical simulations and calculate

the mean and variance of the ensemble. We will do this for different values of both σ (varying the
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Figure 2.1: A one dimensional cross-section of the previous 2D model showing how the visible
tumour diameter is calculated. Our goal is to calculate the dotted lines, which indicate mean +/-
one standard deviation of the stochastic model. This will then give us the error bound on possible
outcomes, and could be used to help estimate how large of an area treatment should be applied
(e.g. radiation or surgery).

noise intensity) and D (varying the diffusivity of the tumour). Figures (2.1) and (2.3) illustrate

how these calculated bounds can be put to use to estimate tumour diameter and survival time.

Figures (2.5), (2.6), and (2.7) show actual numerical simulations of the model for σ = 5, and the

error bounds estimated through repeated simulations.

2.2 Comparison between different values of σ

First, we will vary the noise strength σ. Although it makes sense for parts of the tumour microen-

vironment to have a negative growth rate, it shouldn’t be excessively negative, so we will limit

or choice of σ from 0.1 to 5. Figure (2.8) shows how changing σ affects the mean and standard

deviation of the survival time. As one would expect, there is a more marked deviation from the

deterministic model and a larger error when you increase the strength of the noise.

To quantify the effects of σ on the error, figure () is a plot of the standard deviation versus σ.

This plot clearly demonstrates how the standard deviation increases as a function of σ, and that is

verified by Pearson correlation coefficient[42][43] of 0.9995, indicating extermely strong posi-
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Figure 2.4: Comparison of the model with and without noise. Both sets of plots had D =
5×0.0013 cm2/day, ρ = 0.012/day (Swanson’s parameter values for brain tumours) and σ = 5 in
the bottom plots. The right most plot in each set shows a level set of the simulation and represents
what a CT scan might see. Note the more realistic asymmetrical growth of the stochastic model
compared to the always perfectly circular deterministic simulation.
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Figure 2.5: Plots that show the total number of cells in the system as a function of time (calculated
by integrating the system over the whole domain). The two plots compare the model with and
without noise for σ = 5. Left plot: Solid blue line is the deterministic trajectory, while the other
coloured lines are sample realizations of the stochastic model. Right plot: mean and standard
deviation over 50 realizations. Notice the average of the stochastic simulations is roughly the
same as the deterministic trajectory, this is true because our simple model is linear.

Figure 2.6: Visible tumour radius plots for σ = 5. Left plot: Solid blue line is the determin-
istic trajectory, while the other coloured lines are sample realizations of the stochastic model.
Right plot: mean and standard deviation over 100 realizations. The effects of external forcing is
relatively small.
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Figure 2.7: Histogram of survival times for σ = 5 over 50 simulations. The mean was 77.1 days,
with a standard deviation of 4.7 days. The deterministic model gives a survival time of 78 days.

tive correlation. A standard least squares line[42][44] computed using Matlab’s built-in function

“lsline” was also added to the plot to visualize the strong positive relationship. However, even

when σ is at our imposed maximum strength of 5 the standard deviation in survival time is only

4.7 days compared to an average of 77.1 days, so the effect of noise on the system is less than

10%.

2.3 Comparison between different values of D

From Swanson[5] the diffusion constant D can vary from about 2 to 100 times the nominal

value of 0.0013cm2/day between white and grey matter in the brain, with a factor of 5 being

a good approximation for the average across the whole brain. Figures (2.10), (3.5), and (2.12)

show some results of our model when the multiplication factor for D is varied from 1 to 25

(with σ = 5). As we can see from figure (3.5) the survival time decreases as we increase the

diffusivity, and figure (2.12) shows how the standard deviation decreases as well. The Pearson

correlation coefficient for standard deviation versus diffusivity was -0.9653 indicating a strong

negative correlation and this shrinking standard deviation tells us that we are more confident in

our estimate of survival time for more invasive tumours.
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Figure 2.8: Plot of mean survival time and one standard deviation for different values of σ over
50 realizations each. The survival time for the deterministic model is 78 days (indicated by the
red crosses on the plot).

Figure 2.9: Plot of standard deviation versus noise strength σ. Least squares straight line plotted
using Matlab. The Pearson correlation coefficient was 0.9995 indicating strong positive correla-
tion.
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Figure 2.10: These are plots for the total number of cells and visible tumour diameter for D =
15 × 0.0013cm2/day with σ = 5. The survival time was 15.3 days with a standard deviation of
2.4 days, which is a much shorter survival time as expected.

Figure 2.11: Plot of mean survival time and one standard deviation for different values of D
(bottom axis is the multiplication factor for D) over 50 realizations each. Red crosses indicate
the corresponding result for the deterministic model. the mean and standard deviation decrease
for more invasive tumours.
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Figure 2.12: Plot of standard deviation versus diffusivity, with a leat squares straight line fitted
using Matlab. The Pearson correlation coefficient was -0.9653, indicating a strong negative
correlation.

2.4 Discussion

The estimate of the variance in tumour radius is a potentially useful tool for surgery or radiother-

apy because it tells us how much around the visible tumour we should target in order to eliminate

most of the tumour. Surgeons and radio oncologists always target a larger area than what can

be seen on medical imaging techniques, but there is always the trade off of being too aggressive

with treatment and causing major side effects, or being too conservative and leaving too much of

the tumour behind, allowing it to regrow. Although the effects of noise is small in this chapter,

perhaps with an accurate estimate of σ and a better model we can find a middle ground where

we remove most of the tumour while minimizing side effects to the patient.

We saw that increasing σ increased the error bounds on survival time, indicating that more

chaotic and heterogeneous tumour microenvironments are hard to predict and require a larger

area to be treated. On the other hand, increasing the diffusivity means we have increased the

invasiveness of the tumour cells, and in this we saw that the survival time decreases, and that we

are more confident in that estimate. In other words, more invasive tumours lead to a swifter and

surer death which agrees with our intuition.
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2.5 Adding Chemotherapy

2.5.1 Deterministic Equations

Tracqui[4] and Powathil[23] have both explored adding the effects of chemotherapy to the deter-

ministic PDE model in the following manner

∂n

∂t
= D∇2n+ ρn− k(t)n, (2.5)

where

k(t) =


k, if t ∈ [ti, ti+1],

0, otherwise,
(2.6)

with the constant k chosen so that the total dose (area under the integral) is the same regardless

of the number of treatments. The question we would like to answer here is whether changing

the number of doses makes any difference to the survival time of the patient. As before, external

forcing will appear as multiplicative noise in the exponential growth term.

∂n

∂t
= D∇2n+ ρ [1 + Aη(x, t)]n− k(t)n, (2.7)

Figure (2.13) shows graphically how the total number of cells changes when we change the

number of doses of chemotherapy. The mean and standard deviation was estimated with σ = 5

and the results are relatively small once again. Figure (2.14) shows how the survival time curve

changes with the number of doses. The one thing of note here is that the growth spike at the end

occurs later in terms of absolute simulation time for fewer doses, possibly indicating a longer

survival time.

Figure (2.15) refutes that idea however, as it clearly shows that more doses means a longer

survival time (as we have currently defined it). Moreover, figure (2.16) shows that there is strong
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Figure 2.13: Plots of total number of cells for 1, 3, and 6 doses of chemotherapy, with mean and
error bounds calculated over 50 realizations each and with σ = 5. As we saw before, noise is
fairly small.

Figure 2.14: Plots of survival time for 1, 3, and 6 doses of chemotherapy, with mean and error
bounds calculated over 50 realizations each and with σ = 5. Notice how the sudden growth at
the end occurs earlier as we increase the number of doses, indicating an earlier death in terms of
absolute simulation time.

positive correlation between the standard deviation and number of doses, so that too suggests

more doses is better. So the question is whether one large dose is better or many smaller doses

is better. One larger dose means a quicker, surer death once the tumour recurs, while many

smaller doses means a longer potential survival time after relapse. As currently constructed, this

model does not have a clear definition of remittance time (and we do not know whether it even

accurately models such a situation) so we would have to chose more doses as the better option

predicted by our model.
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Figure 2.15: Plot of survival time versus number of doses. Red crosses indicate the corresponding
result for the deterministic model. Notice how the mean survival time increases with the number
of doses of chemotherapy.

Figure 2.16: Plot of standard deviation versus number of doses, with least squares best fit line
plotted using Matlab. The Pearson correlation coefficient was 0.9595, indicating a strong positive
correlation. In other words, more doses meant a possibly longer survival time since both the mean
and the standard deviation is larger.
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2.6 What is the effect of External Noise?

In analogy to Brownian motion, external noise in our tumour model is one way to model the

inherent heterogeneity within the chaotic tumour microenvironment with having to determine

the exact details for each and every patient. This means we end up with a stochastic PDE that is

difficult to solve analytically and we have to resort to numerical methods to estimate the mean

and variance of the resultant stochastic process. We used external noise in this chapter to give

error bounds on the visible tumour diameter and survival time, but found generally that the results

were relatively small.

The correlation between noise and the three parameters we varied, σ, D, and number of

doses, showed some relationships that agree with our intuition. The more noise in the system,

the larger the error. The more invasive the tumour, the more confident we are in the estimated

survival time. Finally, the more doses, the larger the error, indicating a longer possible survival

time. These correlations give us a sense of how accurate our model is in predicting the survival

time of a patient.
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Chapter3
Internal Noise in a Tumour Model

In this chapter we will examine how intrinsic noise affects the same tumour model as in the pre-

vious chapter. Internal noise differs from external noise in that it measures the fluctuations of

the system due to inherent discrete number effects and randomness in chemical reactions. Fur-

thermore, the system size parameter Ω introduced here is a physically well defined quantity that

measures the total number of reactants in the system, unlike the noise amplitude σ for extrinsic

noise which is ill defined and could potentially take on any number of meanings.

To analyze the situation with intrinsic noise, it is certainly possible to run a large ensemble of

simulations using Gillespie’s algorithm (Appendix B) as we did before, but we will not. Instead,

we will use the extended version of the linear noise approximation as explained in chapter 1 to

develop analytic expressions for the mean and variance of the system. We will see in this chapter

that intrinsic noise has approximately the same effect on visible tumour diameter and survival

time as a noise strength of σ = 5 for external noise, but the variance instead decreases with

increased diffusivity and increased number of doses. We will find in this chapter that the large

number of cells needed for a tumour to become visible means that the internal noise is fairly

small.
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3.1 Mathematical Details

Again we will consider diffusion with exponential growth in two dimensions,

∂n

∂t
= D∇2n+ ρn,

but this time with internal noise added to the model. In other words, we will treat the expo-

nential growth term as a chemical reaction using the principle of mass action[74] and diffusion

as another type of reaction as explained previously. Our goal is to calculate the visible tumour

diameter and survival time curves as in for internal noise analogous to the previous chapter. For

internal noise, as discussed in the background material, we can use Van Kampen’s Linear Noise

Approximation to estimate the mean and variance for the system, which can then be used to

calculate the mean and variance for the tumour diameter and survival time curves analytically.

These analytic expressions allow us to not have to run a large number of stochastic simulations

to estimate the mean and the variance, but we will still use a modified version of Gillespie’s

algorithm (explained in Appendix B) to generate some sample paths for the system (which can

also be used to double check whether our analytic expressions are correct).

Van Kampen’s Linear Noise Approximation tells us that (to first order) the mean of the system

simply follows the original deterministic equation

∂n

∂t
= D∇2n+ ρn,

so usual numerical methods for two dimensional reaction-diffusion equations can be used. There

is only one species of reactant and only one chemical reaction in Fisher’s equation, so the sto-

ichiometry and propensity are given by S = 1 and ν = ρn respectively. Using the general

expression for the time evolution of the cumulant as found in equation 2.19 of Scott[11], one can
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then show that the factorial cumulant for our tumour model must satisfy

∂ [n(r1, t)n(r2, t)]

∂t
= 2ρ [n(r1, t)n(r2, t)] + 2ρδ(r1 − r2)〈n(r1, t)〉

+D
{
∇2

1 +∇2
2

}
[n(r1, t)n(r2, t)], (3.1)

where ri is the position of the centre of grid box i in the discretization of our domain, along

with Dirichlet conditions at the boundaries. For the initial condition, recall that the variance and

factorial cumulant are related via the following equation:

〈〈n(r1, t)n(r2, t)〉〉 = [n(r1, t)n(r2, t)] + δ(r1 − r2)〈n(r1, t)〉. (3.2)

We assume the variance is zero at t = 0, so the initial conditional for the factorial cumulant is

simply [n(r1, 0)n(r2, 0)] = −δ(r1 − r2)〈n(r1, 0)〉.

For our 2D simulations, the evolution equation for the factorial cumulant is in fact a four

dimensional equation. Also, we replace the Dirac delta function with a Kronecker delta function

(divided by Ω) for the numerical simulation. Paraphrasing van Kampen[20], if we consider the

dirac delta function to be a function of r2, we can make this identification between the two delta

functions because δ(r1 − r2) vanishes except in the grid box that contains r1 in our discretized

domain. So the integral over all space of the dirac delta is the volume of the box that contains r1,

which is Ω. Hence we can say that in a discrete setting the dirac delta δ(r1 − r2) is equivalent to

the Kroenecker delta δ1,2/Ω.

For stochastic simulations, we will utilize a modified version of Gillespie’s algorithm which

makes use of the idea that we encountered in the background material where we treat diffusion

as just a different kind of chemical reaction. Details on how this modification can be made is

explained in Appendix B. Figure (3.1) illustrates the differences between the stochastic and de-

terministic models in two dimensions using a sample path generated by the Gillespie Algorithm.
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Figure 3.1: Plots showing the qualitative difference between the deterministic and stochastic
models with parameters N0 = 1000, D = 5× 0.0013cm2/day, and ρ = 0.012/day in both sets of
simulations.
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Figure 3.2: These plots show the estimated error bounds for the total number of cells and vis-
ible tumour diameter in the presence of internal noise. The mean for the survival time was 78
days (same as the deterministic case) with a standard deviation of 4.2 days. This very roughly
corresponds to a noise strength of σ = 5 for external noise.

Figure (3.2) demonstrates the estimated error bounds on for internal noise with Ω set equal

to the grid size of the simulations ∆x2. This choice of Ω ensures that there is exactly the same

number of cancer cells in these simulations as the previous chapter. From the results in (3.2) one

can see that the effect of internal noise is very small, and roughly corresponds to a noise strength

of σ = 5 for external noise.

3.2 Comparison between different values of D

As with the previous chapter, we will once again vary the diffusivity D. Figure (3.3) shows

a sample plot with D = 15 × 0.0013cm2/day, as compared to figure (3.2) which had D =

5 × 0.0013cm2/day. Figures (3.4) and (3.5) show how the survival time changes as we increase

the diffusivity from 1 to 25 times the nominal value of 0.0013cm2/day. As one would expect, the

survival time is shorter and the error bound is smaller as the tumour becomes more diffusive.
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Figure 3.3: These are plots for the total number of cells and visible tumour diameter for D =
15× 0.0013cm2/day. The survival time was 15 days with a standard deviation of 3.5 days, which
is a much shorter survival time as expected.

Figure 3.4: Plot of survival time vs D, where the bottom axis is the multiplication factor times
0.0013cm2/day. Both the mean and error bounds decrease as the diffusivity increases meaning
the death of the patient is faster and surer.
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Figure 3.5: Plot of the standard deviation versus diffusivity with a least squares straight line fitted
using Matlab. The Pearson correlation coefficient was -0.9930 which indicated a strong negative
correlation between diffusivity and internal noise.

3.3 Adding Chemotherapy

As before, we again add chemotherapy by adding a time dependent decay term as follows:

∂n

∂t
= D∇2n+ ρn− k(t)n, (3.3)

where

k(t) =


k, if t ∈ [ti, ti+1],

0, otherwise,
(3.4)

with the constant k chosen so that the total dose (area under the curve) is the same regardless of

the number of treatments. Figures (3.6) to (3.8) show what happens when we vary the number of

doses, and we see in those pots the estimated error bounds for internal noise is quite small.

Figures (3.8) and (3.9) show how the mean and standard deviation change as we change the

number of doses of chemotherapy. As we saw for external noise, the mean survival time increases

with the number of doses, but for internal noise the error bounds actually decrease slightly as we

increase the number of doses. Although the bounds do decrease, the actual change is very small
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Figure 3.6: Plots for total number of cells and 1, 3, and 6 doses of chemotherapy with error
bounds given by the Linear Noise Expansion. Noise is fairly small for such a large number of
cells.

Figure 3.7: Visible tumour diameter for 1, 3, and 6 doses of chemotherapy with error bounds
given by the Linear Noise Expansion. Noise is fairly small for such a large number of cells

(only 0.2 days between 1 and 6 doses) so we might say the error is essentially constant.
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Figure 3.8: Plot of survival time versus number of doses. Survival time increases as we increase
the number of doses but the error bound is very nearly the same across the number of doses.

Figure 3.9: Plot of standard deviation versus number of doses with least squares line fitted using
Matlab. Here the Pearson correlation coefficient was -0.9165 indicating strong negative corre-
lation but the actual change in the error bound is very insignificant (only 0.2 days from 1 to 6
doses) so we could say that the error bound is essentially constant for internal noise.
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3.4 Comparison between Internal and External Noise

Internal and external noise are two different ways of adding noise to the tumour model. Inter-

nal noise in this chapter replicates the randomness of cell division and cell movements, while

external noise models the heterogeneity within the tumour microenvironment. In terms of di-

rect comparison, an external noise strength of σ = 5 gave very nearly the same error bounds as

Ω = ∆x2 for internal noise.

As we can saw in the two chapters, both kinds of noise gave similar and intuitive results

when we changed the diffusivity and number of doses for chemotherapy. Figures (3.10) shows

how the standard deviation of the system changed as a result of both kinds of noise and they

both agree that more diffusive tumours meant a quicker (lower surival time) and surer (smaller

error bound) death. However, for the number of doses of chemotherapy, figure (3.11) shows that

external and internal noise disagreed slightly on the error bounds as a function of the number of

doses. Although the slope of the standard deviation versus number of doses plots is reversed for

the two kinds of noise, the end result is that the error bound is roughly 3-4 days regardless of the

number of doses, so the difference isn’t significant.

The two kinds of noise introduced in the present and preceding chapter serve to demonstrate

methods for calculating error bounds on visible tumour diameter and survival time. The former

could eventually be of use to surgeons or radiologists in determining how much of an area they

should operate on or irradiate during therapy, and the latter helps define how accurate our estimate

of survival time is. A more accurate brain domain with a distribution of grey and white matter

would be the next step in improving this model.
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Figure 3.10: Plots of standard deviation versus diffusivity, external noise is on the left, internal
is on the right. Both kinds of noise agree that more diffusive tumours are worse: they have lower
survival times, and the error bounds decrease as you increase the diffusivity.

Figure 3.11: Plots of standard deviation versus number of doses of chemotherapy, external noise
is on the left, internal is on the right. In this case although both kinds of noise predict that
more doses leads to longer survival, external noise predicts larger error bounds for more doses,
whereas internal noise predicts nearly identical error bounds regardless of the dose. In either
case the error bound is roughly 3-4 days for any number of doses, and the slight change isn’t
significant.
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Chapter4
Noise in a Mitosis Model

Chang and Ferrel’s model for mitotic trigger waves of the Xenopus cell cycle[31] consists of

two PDEs that describe the concentration of B1-Cdk1 complexes in their active and inactive

phosphorylation states (we will call them A and I respectively in the subsequent equations). It is

a fairly straightforward activator-inhibitor type excitable model with both positive and negative

feedback loops[30][32] (figure (4.1)), and as we have seen with the Vilar model, can generate a

traveling waves under certain conditions (figure (4.2)). This traveling wave is called a “trigger

wave” because it represents a signal traveling rapidly through the cell telling it to switch from a

normal state to a mitotic state.

We will show in this chapter how just the right amount of noise can induce a traveling wave

instability in an otherwise deterministically stable system, known as stochastic coherence or

stochastic resonance[27][28]. Such a result would broaden the conditions under which the trigger

wave can occur and imply that mitosis is more likely to occur than expected under the determin-

istic setting. As mentioned previously, it has been speculated that some biological systems (such

as neural signalling in human brains) have evolved to make use of such phenomena[29], and it

would stand to reason that noisy and chaotic growth of cancer cells would take full advantage of

such situations as well.
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Figure 4.1: A schematic of system described by the mitotic trigger wave model. The three
feedback loops correspond to the three hill functions in equations (4.1) and (4.2). Figure from
Chang and Ferrel[31].

Figure 4.2: Traveling wave generated by Chang and Ferrel’s model in 1 dimension. Y axis
represents the cell stretched out in a straight line and the x axis represents time. Physically, the
wave represents the signal to begin mitosis propagating from the middle out to the edges.
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4.0.1 Possible future reinterpretation for Metastasis

There is a growing sense that metastasis - particularly the way cancer cells suddenly switch from

non-metastatic to metastatic - can be modeled as an excitable system. Metastasis is described as

a sequence of very distinct steps by Weinberg[14] (sometimes known as the Metastasis Cascade)

and the very first step in the sequence is the switch from a normal to a metastatic tumour cell.

Michor et al[16] have also considered this first step in metastasis, and they use a stochastic model

based on Moran processes that examine random mutations in a group of tumour cells. However,

in Michor’s model, spatial aspects are essentially ignored, it does not consider how neighbouring

tumour cells might affect each other, whereas we saw in both Fisher’s equation and the Vilar

model that excitable systems transmit signals in the form of a traveling wave. We know for

example that a cell undergoing mitosis does so in a very specific spatially orientated way (which

have been modeled in the past as Turing instabilites[6]) and it stands to reason that a normal

tumour undergoing the change to a metastatic one would do so in a spatially correlated manner

as well.

Very current and ongoing research suggests that there may be a link between excitable sys-

tems and metastasis. Of direct relevance is the paper by Iglesias and Devreotes (Curr Opin

Cell Biol. 2012)[36] that discusses the importance of how random fluctuations in excitable sys-

tems can be used to explain the “spontaneous migration of cells”, a key first step in metastasis.

Djamgoz (2014)[37] and Brackenbury (2012)[38] discuss the role of ion channels (particularly

sodium) as an excitable system that could possibly lead to metastasis. On the other hand, Pre-

varskaya et al (2011)[39] describe a non-excitable mechanism for metastasis based on calcium

channels.

Chang and Ferrel’s model is a very good starting point for a model of metastasis because the

situation it models has obvious parallels with a cancer cell undergoing a switch from a normal

state to a metastatic state. A reinterpretation of this model to metastasis would require finding an

analogous set of signalling molecules to the B1-Cdk1 complexes in mitosis for metastasis. Once
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those molecules are found, the trigger wave would then represent the mitosis signal spreading

through the tumour. In an overview of current research of Brain metastases Eichler et al[15] say

that the “propensity of cancer cells to spread to specific sites [is] dependent upon two factors:

the cancer cell (the seed) and the receiving organ environment (the soil).” Internal and external

noise would certainly be one way to model such aspects of the tumour microenvironment.

Other aspects of the Metastasis Cascade would have to be considered separately, and have

been modeled by other researchers. For example, Anderson et al[17] have modified a model of

angiogenesis (which itself is a modification of the tumour model in chapters 2 and 3) to describe

how tumour cells that are already metastatic leave the primary tumour site and invade into a

different part of the body.

4.1 Mathematical Details

The deterministic equations for the mitotic trigger wave model are as follows:

dA

dt
= D∇2A+ ksynth +

(
a1 + b1

An1

En1
1 + An1

)
I −

(
a2 + b2

En2
2

En2
2 + An2

)
A

−
(
a3 + b3

An3

En3
3 + An3

)
A, (4.1)

dI

dt
= D∇2I −

(
a1 + b1

An1

En1
1 + An1

)
I +

(
a2 + b2

En2
2

En2
2 + An2

)
A

−
(
a3 + b3

An3

En3
3 + An3

)
I. (4.2)

with Neumann boundary conditions at the ends of the domain. Here we have intentionally re-

placed the descriptive subscripts in the parameters with numbers to simplify the notation. Since

it is made up of a series of Hill Functions, there are standard ways of estimating the various

parameters and Hill coefficients. Moreover, it is a model that can actually be verified experimen-

tally in a lab under controlled conditions[31]. Exact details on the what the parameters mean and

their values can be found in Appendix C.
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Two important features of the model to note is that 1) both species diffuse at the same rate

D (so there are no spatial (Turing) instabilities), and 2) all the parameters and initial conditions

are spatially homogeneous (i.e not a function of position), except for the parameters a1 and b1

which have a higher concentration in a narrow region around the middle of the domain. This

higher concentration of a1 and b1 is what makes the wave start initially in the middle and then

spread outwards. Assuming ksynth, which measures the production of A, is variable (while all

other parameters are constant), one can show using standard linear stability analysis[57] that this

system is unstable (i.e. produces traveling waves) for ksynth > 0.76 nM/min.

A useful next step is to non-dimensionalize the equations to identify any characteristic length

or time scales, and any non-dimensional parameters of interest. SinceA and I have units of 1/V ,

an appropriate choice for non-dimensionalization would be Â = A/E2 and Î = I/E2. Similarly,

all the ai’s and bi’s have dimension 1/T , with a range of 0.01 min−1 to 4 min−1 so an appropriate

non-dimensional time would be t̂ = a2t (since a2 measures the degradation of A).

Ignoring the diffusion term for the moment, the non-dimensionalized equations are then given

by

dÂ

dt̂
= k̂ +

(
α1 + β1

Ân1

εn1
1 + Ân1

)
Î −

(
1 + β2

1

1 + Ân2

)
Â−

(
α3 + β3

Ân3

εn3
3 + Ân3

)
Â, (4.3)

dÎ

dt̂
= −

(
α1 + β1

Ân1

εn1
1 + Ân1

)
Î +

(
1 + β2

1

1 + Ân2

)
Â−

(
α3 + β3

Ân3

εn3
3 + Ân3

)
Î , (4.4)

where αi = ai/a2, βi = bi/a2, and εi = Ei/E2. The non-dimensional parameter that governs

whether oscillations occur is now given by k̂ =
ksynth

a2E2
. Thus, in the deterministic case, non-

dimensionalization simply re-scales the variables and in particular tells us that the characteristic

concentration is E2.
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4.1.1 Stochastic Parameter for Intrinsic Noise

Using the non-dimensionalized deterministic equations above, we can add intrinsic noise to the

model by writing it out as a system of chemical reactions. The stoichiometry and propensity are

as follows:

S =

 1 1 −1 −1 0

0 −1 1 0 −1

 , (4.5)

ν =



k̂(
a1 + b1 An1

E1n1+An1

)
I(

1 + b2
1+An2

)
A(

a3 + b3 An3
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)
A(

a3 + b3 An3
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)
I


. (4.6)

From equation 1.51 of chapter 1, one can see that the size of the fluctuations (the second

moment) are determined by the external forcing term given by the diffusion matrix D = S ·

diag[ν] · ST . Plugging in the expressions above we get

D =
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I +
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I

 (4.7)

If we rewrite the deterministic equations as

dÂ

dt̂
= k̂ + f1(Â)Î − f2(Â)Â− f3(Â)Â,

dÎ

dt̂
= −f1(Â)Î + f2(Â)Â− f3(Â)Î ,
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and drop the hats to simplify the notation, we get

D =

 k + f1I + f2A+ f3A −f1I − f2A

−f1I − f2A f1I + f2A+ f3I

 (4.8)

and at steady state

I∗ =
f2

f1 + f3

A∗, and, k̂ = −f1I
∗ + f2A

∗ + f3A
∗. (4.9)

so one possible way to rewrite D in steady state is

D∗ =

 2(f2 + f3)A∗ −f2

(
1

f1+f3
+ 1
)
A∗

−f2

(
1

f1+f3
+ 1
)
A∗ 2f2A

∗

 . (4.10)

Notice that the diagonal terms now only depend on A∗. Following Scott et al[11], we compare

the diagonal terms (ignoring the factor of 2 and all deterministic parameters) to the characteristic

number of reactants E2Ω (characteristic concentration E2 multiplied by system size Ω). This

means the non-dimensional size or volume parameter of interest is ∆ = 1/E2Ω, which represents

the average change in the system with a birth or death ((1+1)/2) divided by the characteristic local

density of A.

With these two non-dimensionalizations, one can then use a combination of linear stability

analysis and a modification of the Linear Noise Approximation as described by Scott et al[12]

(see Appendix D.) to produce a stability diagram that depends on ∆ and ksynth (see figure (4.3)).

This phase diagram tells us under which conditions temporal instabilities (and hence traveling

waves) occur. Again, there are no spatial (Turing) instabilities, unlike the Vilar model mentioned

in the background material, because both species diffuse at the same rate.
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Figure 4.3: A schematic diagram of the (temporal) stability of the mitotic trigger wave model
when internal noise is added. The x axis corresponds to the fully deterministic case (Ω→∞).
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4.2 Analysis of the system without spatial effects

It is useful to verify the results of our linear stability analysis without considering spatial effects

first. It also gives us a sense of what to expect when we add space back into the system. Only

intrinsic noise will be considered for the spatially homogeneous model.

Using the phase diagram we just computed in figure (4.3), figures (4.4) to (4.7) show plots

from different regions of stability. In particular, figure (4.4) shows the difference between the

stable and unstable modes of the purely deterministic system, figures (4.5) and (4.6) show the

effects of noise induced oscillations when the deterministic system is stable, and figure (4.7)

shows how noise affects an already unstable system. The key conclusion to draw from these

graphs is that noise can cause the system to enter into an excited state even when the deterministic

system is stable, but it cannot knock the system out of the oscillatory state if the system is already

unstable.

One might then try to estimate the variance of the system with internal noise using Van Kam-

pen’s Linear Noise Approximation as we did with the tumour model. However figure (4.8) shows

graphically how the Linear Noise Approximation does not work in either the stable or unstable

modes of the trigger wave model. This means that we cannot develop an analytic expression for

the second moment using the methods explained in this thesis.
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Figure 4.4: First two rows show the difference between the stable and unstable modes of the
system without noise, with the left column as plots for A and right column as corresponding
plots of I . The last row demonstrates how the stable and unstable modes retain their overall
behaviour in the presence of low amounts of noise.
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Figure 4.5: These plots show the system with a small value of ksynth so that it is far away from the
temporal instability. The second and third rows show how adding more noise makes the system
begin to oscillate.
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Figure 4.6: These plots show the system with ksynth close to the critical value for instability.
Noise is now able to induce oscillations with a clear peak and period, causing the system to enter
the excited state. When more noise is added we see the period of the osculations start to decrease
in the third row.
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Figure 4.7: In these plots the system is already in its unstable mode. We can see here that the
oscillations are qualitatively fairly robust to noise, as the period and value of the peaks don’t seem
to change much even when the noise parameter is increased by 10 times between the second and
third rows.
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Figure 4.8: On the left is the system in its stable mode, and on the right is the system in its
unstable mode. The linear noise approximation fails differently in each case. In the stable mode
we can see that the variance envelope does not correctly capture the height of the noise induced
oscillations. For the unstable mode, the variance envelope does not capture the oscillations hap-
pening at a different location to the deterministic model, and grows rapidly to infinity at the
deterministic peaks. It’s clear that this growth to infinity is not a numerical instability since the
variance envelope reduces back to a reasonable width after each peak.

4.3 Analysis of the system in 1 dimension

We now add diffusion to the previous model and allow the reactants to move in one dimension.

As with the tumour model, we will first consider external noise, then internal noise. It is more

difficult to interpret what exactly the variance means in the case of the traveling wave (and

the Linear Noise Approximation doesn’t apply for internal noise) so only a mostly qualitative

assessment of the results will follow.
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4.3.1 External Noise

For external noise we once again consider a Langevin forcing term

dA

dt
= D∇2A+ ksynth +
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)
A

+ σA(x, t)η(x, t), (4.11)
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+ σI(x, t)η(x, t). (4.12)

where η(x, t) is space-time gaussian white noise, and for simplicity we once again set σA(x, t) =

σI(x, t) = σ, a constant.

Figures (4.9) to (4.14) show various plots of the system when external noise is added, both

in situations where we would and wouldn’t expect oscillations in the deterministic model. In

all the plots, the original deterministic model is shown for comparison, and 50 simulations of

each parameter set were run to compute the average and standard deviation of the stochastic

simulations.

Figures (4.9) and (4.11) show what happens when a low amount of noise is added to the

unstable and stable systems respectively. Both systems demonstrate only a little deviation from

the deterministic model. As we increase the noise, figures (4.10) and (4.12) are perhaps the most

interesting as they show new behaviour not present in the deterministic model. Figure (4.10)

shows how noise has changed the ’V’ shape of the wave into a bump, making the entire system

jump at the same time instead of a gradual signal propagation, and figure (4.12) shows how noise

can cause certain parts of the otherwise stable system to jump into the excited state (the red

dots) which may then propagate for a while and then dissipate. Figures (4.13) and (4.14) show

the system can still undergo intermittent noise induced oscillations even for values of ksynth far

away from the critical value.
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Figure 4.9: Plots for ksynth = 1.5 and σ = 5 in the original (unscaled) variables. 50 simulations
of the system we run and the average and standard deviation were computed. Plots on the left
column show the deterministic system, the average over 50 simulations, and the average plus
one standard deviation. Plots on the right show one sample simulation. For the bottom two
plots on the right, the solid blue line is the sample simulation and the dotted purple line is the
corresponding deterministic system at the same point in time. The plots here show how the
system is fairly robust to low levels of noise, retaining the ’V’ shape of the wave, and not showing
much variance between simulations.
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Figure 4.10: Plots for ksynth = 1.5 and σ = 50 in the original (unscaled) variables. In this case,
the noise is 10 times stronger than before, and we see that ’V’ shape is gone, but there is still
clearly a traveling wave. On average, large parts of the system seems to jump all at once into
its excited state, analogous to the spatially homogenous temporal instability in the Vilar model.
Looking at the bottom left corner plot with shows the average + 1 standard deviation, we can
also see that there is a probability that the system will enter its excited state earlier (i.e. lower
refractory time).
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Figure 4.11: Plots for ksynth = 0.7 and σ = 5 in the original (unscaled) variables. In the stable
state of the system, low levels of noise does not have much of an effect.

Figure 4.12: Plots for ksynth = 0.7 and σ = 50 in the original (unscaled) variables. When there
is sufficient noise then we see that parts of the system can suddenly jump into the excited state
and the signal can propagate outwards a little before settling back into the stable steady state.
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Figure 4.13: Plots for ksynth = 0.4 and σ = 50 in the original (unscaled) variables. Here the
system is further away from the critical value of ksynth = 0.76 and the same level of noise that
caused the previous plot to enter into the excited state is not enough this time.

4.3.2 Internal Noise

For internal noise, we will look at some Gillespie simulations of the system in different parts of

the phase space based on the stability diagram we derived before in figure (4.3) and look at how

adding a spatial dimension produces different results from the spatially homogenous model we

studied earlier. As mentioned previously, the Linear Noise Approximation fails for this system,

so we are unable to generate an analytic expression for the variance. Figure (4.15) demonstrates

graphically how the variance envelope predicted by the Linear Noise Approximation increases

rapidly to infinity after one oscillation.

Figures (4.16) and 4.17) show how intrinsic noise affects the system in its unstable state.

The first set of plots shows results analogous to the situation with external noise where the noise

disrupts the ’V’ shape of the wave but there are still clearly temporal oscillations. Notice also

that the wave starts in the stochastic simulation at an earlier time than the deterministic model.
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Figure 4.14: Plots for ksynth = 0.4 and σ = 100 in the original (unscaled) variables. Increasing
the value of noise even more, we see that it is now possible for the system to enter into its excited
state.

The second set of plots show how lowering the particle number to very low levels completely

causes the wave to disappear. Although the system still oscillates, there does not seem to be any

kind of spatially coordinated behaviour.

Figures (4.18) and (4.19) show how intrinsic noise affects the system in its stable state. Noise

induced oscillations appear as expected (the two time slices on the right of the figures clearly

show part of the system in it’s excited state) but perhaps more interestingly figure (4.19) shows

how we are able to form a nice traveling wave when there is a medium amount of noise, which is

a case of stochastic resonance where medium amounts of noise produce the most regular results.

Finally, figure (4.20) is by far the most important result of this chapter. For this figure we

have removed the higher concentrations of a1 and b1 in the middle of the domain so that there is

nothing to spark the traveling wave to initiate from the middle. In the stable regime, the entire

system simply converges to its spatially homogeneous stable steady state, but in the presence of
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Figure 4.15: These are plots for ksynth = 1.5 and Ω = 1 in the original (unscaled) variables with
the variance envelope calculated using the extended version of the Linear Noise Approximation.
As before, we see that the predicted variance at the peaks of the oscillations grow rapidly to
infinity and the approximation fails.

noise, we see that oscillations occur in spatially heterogeneous manner. Again, only when the

strength of the noise is just right is there a nice coherent traveling wave, when the noise is too

strong we only get occasional isolated oscillations.
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Figure 4.16: Sample internal noise simulation using the modified Gillespie algorithm as ex-
plained in Appendix B with ksynth = 1.4 and Ω = 5 in original variables. Left most plot is the
deterministic system. Middle plot shows a sample realization, and the right most plot shows a
cross-section of this realization at fixed time point. For the right most plot the solid blue line rep-
resents the stochastic simulation, and the dotted purple line represents the deterministic system
at the same time point.

Figure 4.17: Sample internal noise simulation using the modified Gillespie algorithm as ex-
plained in Appendix B with ksynth = 1.4 and Ω = 1 in original variables. Here we see how
the traveling wave seems to have disappeared when the number of molecules is very small (and
hence noise is very large).
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Figure 4.18: Sample internal noise simulation using the modified Gillespie algorithm as ex-
plained in Appendix B with ksynth = 0.74 and Ω = 2 in original variables. Based on our earlier
analysis of the spatially homogeneous model we expected there to be noise induced oscillations
but not necessarily traveling waves. We see here that for this choice of ksynth and Ω there are
some small localized traveling waves but they dissipate quickly.

Figure 4.19: Sample internal noise simulation using the modified Gillespie algorithm as ex-
plained in Appendix B with ksynth = 0.75 and Ω = 5 in original variables. If we increase Ω, we
increase the number of molecules and this reduces the amount of noise. However, in this case it
is possible to generate a nice looking traveling wave in the deterministically stable system. This
could be a case of stochastic resonance as mentioned briefly in our earlier analysis of the Vilar
model where medium amounts of noise produce well behaved results.
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Figure 4.20: The plots show the system with the higher concentrations of a1 and b1 in the middle
removed. Using the same ksynth = 0.75 as in figure (4.19) but with, from left to right, Ω = ∞
(deterministic limit), Ω = 5, and Ω = 2. These plots show how definitively how the determin-
istically stable system can be induced into its excited state in the presence of noise. Moreover,
it demonstrates the effects of stochastic coherence as the middle plot with a medium amount of
noise produces a nice clear traveling wave signal, where as the right plot with more noise can
only generate occasional and brief blips.

4.4 Analysis and Conclusion

For both extrinsic and intrinsic noise we saw how noise disrupts the ’V’ shape of the traveling

wave in the unstable mode of the system, and can generate noise induced traveling waves in

the stable mode of the system. Just on a purely qualitative level, figure (4.21) demonstrates

graphically how these noisy systems more closely match the experimental results. Figure (4.22)

shows an alternate way of analyzing the traveling wave by looking at the Fourier spectra of the

system. It doesn’t offer any particular new insight but does demonstrate mathematically that

there are spatio-temporal correlations in the noise induced system.

For the system in its unstable mode, we saw for both kinds of noise that noise can reduce the

refractory time of the system and cause large parts of the system to oscillate at the same time,

instead of sequentially like in the deterministic system. Physically, this means that noise can

cause the system to enter into its excited state earlier and that signal propagation is faster in some

regions than in others. Internal noise also allows for the wave to be completely disrupted under

extreme conditions, which represents no signal propagation within the system.

In the stable mode, both kinds of noise were able to produce (intermittent) noise induced
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oscillations, which means that the system is able to enter its excited state and propagate that

excited state even in situations when the deterministic system is unable to do so. Moreover, the

internal noise simulations produced a coherent looking traveling wave only when there was a

medium amount of noise present which means that systems that are too small or too large would

not be able to produce traveling waves.

In terms of interpreting these results as applicable to metastasis, this model only represents

the first step in which a normal tumour cell becomes a metastatic tumour cell. The normal state

is represented by the lower stable steady state of the system, and the metastatic state is repre-

sented when the system enters into the high state temporarily when it under goes oscillations.

The refractory time of the excitable system can be used to explain why tumours normally do not

become metastatic immediately, and noise induced oscillations broaden the possible situations

under which the tumour can make such a change. External noise can be used to explain why

tumours in different parts of the body have different rates of metastasis, by modeling environ-

mental factors as extrinsic noise parameters. Internal noise could explain why only tumours of

a certain size can undergo metastasis as we saw that too much noise (i.e. very small tumours)

can disrupt the signalling process and only a moderate amount of noise (i.e. a moderately sized

tumour) can produce noise induced oscillations.

Future work would need to identify analogous activator-inhibitor pairs appropriate to the type

of metastasis being studied to apply the model. For external influences on the system, one would

need to fit the system to some data to determine the noise amplitude σ and possibly consider a

more complicated σ that may depend on space and time. For internal noise one would need to

consider the typical size of the tumour to see what value of Ω would be appropriate.
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Figure 4.21: The top plot is from Chang and Ferrel[31] and shows some experimental results of
the Xenopus egg in a lab. The red dots in the top plots indicate places where mitosis occurred
and the blue dots indicate where the cell reformed into a normal rest state. These two states
are represented mathematically by the peaks and troughs of the oscillations in the model. The
bottom plots are sample numerical simulation results from this section. Just qualitatively, one
can see that the two plots with noise more closely match those of the experiment and represents
the random nature of actual cell signalling more accurately. Both plots with noise also recreate
the phenomena of the top half of the system moving at a different speed from the bottom half.
However, the sharpening of the ’V’ shape in the deterministic model is lost in the stochastic
models and that possibly needs to be represented somehow.
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Figure 4.22: A more quantitative way of identifying traveling waves is to look at the fourier
spectra and identify space-time correlations (i.e. peaks in the spectra away from the zero). Left
most column are plots in normal space-time. Middle column is the (log-scaled) fourier spectra
of the data, and the right most column uses the fftshift command in matlab which re-orientates
the plot so that the low frequencies are in the middle, giving us a more intuitive representation
of the fourier spectra. The top row is the deterministic case, the middle row is noise in the
unstable mode, and the bottom row is noise in the stable mode. The diagonal lines in the top
right plot tells us that spatio-temporal oscillations at certain space and time frequencies in the
deterministic model (which is exactly what we would expect) and as we move down we see that
there is definitely a peak away from the origin for the unstable mode with noise, and possibly
even in the case for noise induced osculations in the stable mode even though the plot doesn’t
quite look like a traveling wave.
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Chapter5
Summary, Conclusion, and Future

Direction

In this thesis we examined the effects of both extrinsic and intrinsic noise on a model for tumour

growth and a model for mitosis. We saw that the difference between the two kinds of noise was

in its mathematical treatment: extrinsic noise required solving a stochastic PDE, while intrinsic

noise required solving a master equation. External noise is simple to implement and understand

but the noise amplitude parameter σ is ill defined physically as it could represent any number

(or any combination) of external influences. Internal noise is more difficult to understand but it

represents the inherent randomness of a real physical system. The Linear Noise Approximation

allows us to approximate internal noise as external, but we saw how it failed for noise induced

oscillations and limit cycle behaviour.

For the reaction-diffusion tumour growth model, we found that both kinds of noise produced

fairly intuitive results that agreed with each other. We saw in the case of extrinsic noise that in-

creasing the strength of the noise increased the variance in visible tumour diameter and survival

time in an almost linear fashion. Both kinds of noise agreed that increasing diffusivity led to a

quicker and surer (smaller variance) survival time, and both also agreed that, when chemotherapy
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is added to the model, the variance is roughly 3-4 days regardless of the number of doses. Al-

though the uncertainty in this model is relatively small, we nonetheless have provided a method

for calculating the error-bar for tumour diameter and survival time, which could eventually lead

to more meaningful results with an improved model.

For the mitotic trigger wave model we used an excitable system that produced a traveling

wave under certain conditions. This traveling wave represents a signal propagating from the

centre of the embryo out towards the edges that tells the cells to undergo mitosis. Although the

Linear Noise Approximation fails to predict the variance envelope in this case for intrinsic noise,

we were still able to use it to determine the threshold for noise induced oscillations. Numerical

simulations of both kinds of noise then allowed us to verify these noise induced oscillations and

demonstrated possible stochastic coherence effects with a medium amount of noise. These noise

induced oscillations in what would normally be a stable deterministic system demonstrates that

travelling waves can occur under a broader range of conditions, and means that mitosis might

occur more readily than one might expect. In terms of a possible interpretation for a metastasis

model, noise induced oscillations might represent the ability for a tumour to suddenly become

metastatic due to inherent random fluctuations or external influences.

5.1 Future Direction

The analytical methods developed in chapters 2 and 3 are general methods that are applicable to

any reaction-diffusion type model. However, the numerical simulations for the tumour growth

model were performed on a simple square 2D grid, so the most natural extension would be to

extend the simulations to 3D and to incorporate a more accurate domain with a distribution of

white and grey matter and properly shaped boundaries. This domain need not be specific to any

one patient as we can tune the strength of the noise to account for the uncertainty in the domain

(and possibly make the diffusion coefficient a random function as well). We can also examine

different therapeutic strategies easily using the same general principles described in these two
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chapters.

For the mitotic trigger wave model we were able to show how a specific level of noise was

able to induce a sustained traveling wave within the embryo. Noise induced oscillations might

possibly be used to explain how embryos survive in non-ideal situations for example (such as

some kind of disease or malnutrition etc). Future work for a possible interpretation as a metasta-

sis model would need to identify the activator-inhibitor pair appropriate for the particular tumour

of interest. Once they have been identified we can then determine whether Chang and Ferrel’s

model is appropriate or whether a different excitable model needs to be used. The qualitative

results pertaining to noise induced oscillations and traveling waves would still stand, but the de-

tails would differ. In particular, the fact that traveling waves do not occur when there is too much

noise (i.e. when the population number is low, such as in the initial stages of tumour formation)

could be a possible explanation for why metastasis only occurs after a tumour has reached a

certain size.
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AppendixA
Finite Difference Scheme for Numerical

Simulation of the Stochastic Heat

Equation

Here are some details on how the stochastic partial differential equation was simulated numer-

ically. The Euler method in this section applies directly to the mitotic trigger wave model in 1

dimension for chapter 4 and the tumour model in 2 dimensions for chapter 2. The deterministic

counterparts were simulated by simply removing the random forcing in the preceding numerical

schemes (i.e. setting the noise amplitude to zero) which makes it a standard Euler scheme[56].

A fast fourier transform based spectral scheme[56] modified to 4 dimensions was used to numer-

ically integrate the equation for the cumulant in chapter 3.

A.1 One Dimension

We will consider the stochastic heat equation first in one dimension. The most general form is

given by
∂u

∂t
= D∇2u+ f(x, t, u) + σ(x, t, u)Ẇ (x, t), (A.1)

98



• u(x, t) is some quantity if interest at position x and time t.

• D is the diffusion coefficient (not random),

• f(x, t, u) is the external forcing term (deterministic),

• σ(x, t, u) is the amplitude function for the noise (deterministic),

• Ẇ (x, t) is space-time white noise (defined below),

with appropriate boundary and initial conditions.

We will define the space-time white noise function Ẇ (x, t) by specifying its first two mo-

ments

〈Ẇ (x, t)〉 = 0, (A.2)

〈Ẇ (x, t)Ẇ (x′, t′)〉 = δ(x− x′)δ(t− t′). (A.3)

The simplest numerical discretization of this equation would be the forward Euler scheme[35][58]

um+1
i = umi + ∆t

[
D
umi+1 − 2umi + umi−1

(∆x)2 + fmi + σmi
Wm
i

∆x∆t

]
, (A.4)

where

• umi = u(i∆x,m∆t),

• fmi = f(i∆x,m∆t, umi ),

• σmi = σ(i∆x,m∆t, umi ),

• andWm
i are i.i.d.N(0,∆x∆t) random variables evaluated at each grid point i∆x and each

time index m∆t.
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According to Davie and Gaines[35], if the initial condition u0(x) is Holder continuous with

exponent 1/2 (i.e. |u0(x) − u0(y)| ≤ C|x − y|1/2 for some C > 0), then the above numerical

scheme converges for ∆t/(∆x)2 < 1/2 (see theorem 1.1 on page 122 of their paper). Higher

order methods, such as those analogous to implicit and Crank-Nicholson schemes for PDEs, exist

for stochastic PDEs, but both Davie and Gaines[35], and Chong and Walsh[58] demonstrate that

this simple Euler scheme is in a sense already one of the most accurate. Alternate methods

for numerically integrating stochastic PDEs, that are not akin to the deterministic counterparts

exist, for example, as described by Brissaud and Frisch[59] and van Kampen[22] where they give

methods for approximating the first and second moments of the underlying stochastic process.

A.2 Two Dimensions

For the two dimensional tumour model in chapter 2 we were considering the specific equation

∂n

∂t
= D∇2n+ ρ [1 + A(x, t)]n, (A.5)

where

• n(x, t) is the number density of cells at position x and time t.

• D is the diffusion coefficient (not random),

• ρ is the growth rate,

• A(x, t) is a random function of time and space,

with no flux boundary conditions, and a gaussian or delta initial condition in the middle of the

domain.
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We also set A(x, t) = Aη(x, t), where A is a constant, and η(x, t) is once again given by

〈η(x, t)〉 = 0, (A.6)

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). (A.7)

A straight forward extension of the 1 dimensional numerical scheme to 2 dimensions, applied

to the specific problem above gives

um+1
i,j = umi,j+∆t

[
D
umi+1,j − 2umi,j + umi−1,j

(∆x)2 +D
umi,j+1 − 2umi,j + umi,j−1

(∆y)2 + ρ

(
1 + A ·

Wm
i,j

∆x∆y∆t

)
umi,j

]
(A.8)

where

• umi,j = u(i∆x, j∆y,m∆t),

• and Wm
i,j are i.i.d. N(0,∆x∆y∆t) random variables evaluated at each grid point (i, j) and

each time index m.
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AppendixB
Gillespie’s Algorithm

This section of the Appendix explains how Gillespie’s Algorithm works for simulating trajecto-

ries of a stochastic process, and describes how diffusion can be added to the algorithm.

B.1 Basic Algorithm

Following Gillespie’s paper from 1977[40], this section is a short explanation of the exact simu-

lation algorithm for stochastic processes governed by a master equation named after him. For a

system of chemical reactions, in order to simulate trajectories of the master equation, we need to

know two things:

• the time for the completion of the next reaction τ

• and the reaction that occurred, index these µ

Estimate

P (n + ∆n, t+ τ |n, t)dτ, (B.1)

the probability that, given the system is in the state n at time t, the next jump occurs between

t+ τ and t+ τ + dτ , carrying the state from n to n + ∆n (caused by reaction of type µ). Since
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the stoichiometry encodes how the state will change with each reaction, just knowing the type of

reaction is enough.

• The stochastic process of interest is Markov.

• Non-reactive (elastic) collisions occur much more frequently than reactive (inelastic) col-

lisions. This ensures spatial homogeneity by “randomizing and uniformizing the position

of the particles” (Gillespie, 1976), which is another way of saying that the system returns

quickly to thermal equilibrium (constant temperature) between each reactive collision.

• Only one reaction occurs in the time interval dτ .

Let q(n, t; τ) be the probability that any reaction will occur in the interval t to t + τ . Then,

over an infinitesimal interval dt we have that

q(n, t; dt) = ν1(n)dt+ ν2(n)dt+ ... =

[
N∑
j=1

νj(n)

]
dt ≡ a(n)dt. (B.2)

One can then show that, for a non-infinitesimal interval, we have

q(n, t; τ) = 1− e−a(n)τ (B.3)

this means that the probability of no reaction occurring in the time interval τ is

1− q(n, t; τ) = e−a(n)τ . (B.4)

103



Thus,

P (n + ∆n, t+ τ |n, t)dτ (B.5)

= Probability that no reaction occurs in the interval [t, t+ τ ] (B.6)

× Probability that any reaction occurs in the interval [t+ τ, t+ τ + dτ ] (B.7)

× Probability that it was reaction µ that occurred, (B.8)

= e−a(n)τ × a(n)dτ × aµ(n). (B.9)

Note that

aµ(n) =
νµ(n)

a(n)
, (B.10)

which, upon substitution (and a bit of change in notation) into the preceding equation gives us

Gillespie’s original result

P (τ, µ) = νµe
−aτ . (B.11)

This first form of the equation is more useful since

P (n + ∆n, t+ τ |n, t) = a(n)e−a(n)τ︸ ︷︷ ︸
Exponential distribution

×
[
νµ(n)

a(n)

]
(B.12)

This allows us to pick τ and µ using a random number generator, which we can then use to

update the time and state of the system before the next reaction occurs. A schematic diagram of

how this works is shown in figure (B.1), which is from Gillespie’s paper[40].
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Figure B.1: Figure from Gillespie’s 1977 paper showing the main loop of the algorithm.[40].
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B.2 Algorithm for Spatially Extended Processes

The strategy here is to treat diffusion as just another kind of chemical reaction. In order to

turn diffusion into a reaction we will adapt Smoluchowski’s analysis of Brownian motion (as

explained by Kac[47], since Smoluchowski’s original 1906 paper is in German[48]) to develop

a relationship between the diffusion constant and transition rate. A consequence of treating

diffusion as a reaction is that it will greatly increase the size of the stoichiometry matrix and

propensity vector, and hence increase the computing time of the numerical simulation, especially

if the spatial domain is discretized over a fine grid.

0 1

D_L D_R

X

i i+1i-1

Figure B.2: In one dimension the reactant can
either move to the left (with transition rate DL)
or to the right (with transition rate DR) .

Let us consider the simplest case where

there is only one reactant species and one di-

mension (say a straight line with reflecting

boundary conditions at the two ends). The

trick is now to discretize the space into sepa-

rate bins, and to consider the reactants in each

bin to be different species of reactants, that

means the state of the system is now expressed

as a vector N = (N1, N2, ...), where Ni is the

number of reactants in bin i. We then consider

movement between bins to be a reaction that decreases the number of reactants in the original

bin, and increases the number of reactants in the destination bin. Again for simplicity, in one

dimension we will only allow one reactant to move at each time, and only into an adjacent bin

(either left or right, with reaction rates DL and DR), illustrated in figure (B.2).
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As a reaction scheme, we can write diffusion in the following way

Ni
DL−−→ Ni−1, (B.13)

Ni
DR−−→ Ni+1. (B.14)

This formulation of diffusion is analogous to a random walk for each reactant species. For

simplicity, we will assume that diffusion is equal in all directions so that DL = DR. Then the

situation is that of an unbiased random walk, and the master equation is

P (x, t+ ∆t) =
1

2
P (x−∆x, t) +

1

2
P (x+ ∆x, t), (B.15)

where ∆t is the time step, and ∆x is the bin size. This is exactly Smoluchowski’s formulation

of Brownian motion. To find a relationship between the diffusion constant D and the transition

rates DL and DR, we subtract P (x, t) from both sides and divide by ∆t to get

P (x, t+ ∆t)− P (x, t)

∆t
=

(
∆x2

2∆t

)
P (x−∆x, t)− 2P (x, t) + 1

2
P (x+ ∆x, t)

∆x2
, (B.16)

which we recognize as the discrete version of the diffusion equation. Thus we must equate

D =
∆x2

2∆t
, (B.17)

and hence the discrete diffusion rate is 2D
∆x2

(since it needs to have dimensions of 1/time). This

quantity is the total diffusion rate, it is the sum of both the left and right rates DL + DR; since

we assumed that they are equal, we have that

DL = DR =
D

∆x2
. (B.18)

With these transition rates, it is then straightforward to modify the Gillespie algorithm by ex-

tending the propensity vector in a similar manner to the state vector (see figure (B.3)), and by
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Figure B.3: Illustration of how the state vector changes. This illustration depicts two species of
reactants in each bin (a red and blue dinosaur) and our extended algorithm then considers the
species in each bin to be different species (different coloured dinosaurs).

extending the transition matrix as illustrated in figure (B.4).
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Figure B.4: Schematic diagram of the transition matrix in 1D. A generic middle section is shown
where we encode the reaction part as in the original Gillespie algorithm, but then we also append
two new reactions (movement left and right) which reduces the number of reacts in the original
bin by 1 and increases the number of reacts in the adjacent bin by 1.
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AppendixC
More Details On Numerical Simulations

This part of the Appendix provides more details on the grid size and time steps of the numerical

simulations, and also lists the values of the parameters for the mitotic trigger wave model in

chapter 4.

C.1 Tumour Model

Recall for the tumour model in chapter 2 we have

∂n

∂t
= D∇2n+ ρ [1 + σ(x, t)]n, (C.1)

where D and σ were varied. The numerical simulations were performed using the method in

Appendix A on a 10cm by 10cm sized domain, with Neumann boundary conditions on all sides.

Figure (C.1) demonstrates how a grid size of 25 × 25 gave virtually the same results as a grid

size of 28× 28 for the total number of cells and visible tumour diameter. The lower grid size was

then chosen for the simulations to save time and computational cost as we needed to run a large

ensemble of simulations.

For the time step, ∆t, was chosen to be 1 day and the total simulation time was chosen so
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that the tumour had ample time to reach a visible diameter of 6cm (approximately 400 days

without chemotherapy and 900 days with chemothrapy). This ∆t was chosen after some testing

that showed a ∆t of 1 day gave stable simulations and produced similar results to a ∆t of 0.1

days. As explained by Chong and Walsh[58], large time steps are not recommended as they may

smooth over the effects of the stochastic process, however, since we are only interested in the

mean and variance over a large ensemble of simulations, some smoothing is not a big concern.
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Figure C.1: Here are plots that compare the results from a grid size of 25 × 25 (first row) to
28× 28 (second row). From the third and fourth rows, we can see that both grid sizes gave nearly
identical results for the total number of cells and visible tumour diameter
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C.2 Mitotic Trigger Wave Model

From Chang and Ferrel[31] the equations for the mitotic trigger wave model describe the synthe-

sis and degradation of cyclin B1-Cdk1 complexes and a switch between its active and inactive

phosphorylation states. In particular it is regulated by the proteins Cdc25, Wee1, and APC/C

(denoted as deg in the preceding equations as it governs the degradation). A schematic of how

each protein affects B1-Cdk1 is shown in figure (C.2).

As written in chapter 4, the deterministic equations for the mitotic trigger wave model are as

follows:

dA

dt
= D∇2A+ ksynth +

(
a1 + b1

An1

En1
1 + An1

)
I −

(
a2 + b2

En2
2

En2
2 + An2

)
A

−
(
a3 + b3

An3

En3
3 + An3

)
A, (C.2)

dI

dt
= D∇2I −

(
a1 + b1

An1

En1
1 + An1

)
I +

(
a2 + b2

En2
2

En2
2 + An2

)
A

−
(
a3 + b3

An3

En3
3 + An3

)
I. (C.3)

where

• A = Cdk1act, the active phosphorylation state of B1-Cdk1,

• I = Cdk1inact, the inactive phosphorylation state of B1-Cdk1,

• D = 600 µm2/min,

• ksynth = 1.5nM/min (this parameter was varied in chapter 4),

• a1 = acdc25 = 0.8min−1,

• b1 = bcdc25 =4min−1,

• n1 = ncdc25 = 11,
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Figure C.2: A schematic of system described by the mitotic trigger wave model. Figure from
Chang and Ferrel[31].

• E1 = EC50cdc25 =35nM,

• a2 = awee1 = 0.4min−1,

• b2 = bwee1 =2min−1,

• n2 = nwee1 = 3.5,

• E2 = EC50wee1 =30nM,

• a3 = adeg = 0.01min−1,

• b3 = bdeg =0.06min−1,

• n3 = ndeg = 17,

• E3 = EC50deg =32nM,

and EC50a is the “half maximal effective concentration” of the protein a, which is the concen-

tration that produces a response halfway between the baseline and maximum. Also, a1 and b1

had concentrations that were 50% higher in the middle of the domain.
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Figure C.3: Traveling wave generated by Chang and Ferrel’s model in 1 dimension. Y axis
represents the cell stretched out in a straight line and the x axis represents time.

As illustrated in figure (C.3), the numerical simulations were performed over a 1 dimensional

domain that was 4mm long over a time of 300 minutes. Some testing showed that a minimum

grid resolution of 28 was needed to resolve the traveling wave, and a time step of ∆t = 0.01

minutes was used for all the simulations.
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AppendixD
Effective Stability Analysis

This section provides some details on how to analyze the stability of a stochastic system in the

presence of intrinsic noise, as explained by Scott et al[12].

D.1 Effective Eigenvalues

Suppose we have a deterministic system

dx

dt
= f(x), (D.1)

and let {λi} be the eigenvalues of the linearized system about its fixed points (obtained using

standard linear stability analysis[57]). If xs is a stable fixed point, then its corresponding eigen-

value λi has negative real part. For a small perturbation about the stable fixed point, x = xs + xp,

the linearized system is given by

d

dt
xp =

∂f

∂x

∣∣∣∣
x=xs

· xp = J(0) · xp. (D.2)

Now in the presence of intrinsic noise, following the discussion in chapter 1 about the linear
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noise approximation, we will let

x = xs + xp + ωα(t) (D.3)

where ω =
√

Ω and, denote the new eigenvalues by

λ′i = λi + λcorrect, (D.4)

where λcorrect is the correction due to noise. If the real part of λ′i is positive (when the real part

of λi is negative) then we have found a noise induced instability.

The new Jacobian is given by

J ≡ ∂f

∂x

∣∣∣∣
x=xs+ωα(t)

. (D.5)

As before, we take a system size expansion in the limit ω → 0:

J ≈ J|ω→0 +
∂f

∂ω

∣∣∣∣
ω→0

≡ J(0) + ωJ(1)(t), (D.6)

so the linearized system is now

d

dt
xp =

[
J(0) + ωJ(1)(t)

]
· xp. (D.7)

The equation above implicitly contains α(t) so it is a stochastic differential equation. Since α(t)

has non-zero correlation time, J(1)(t) also has non-zero correlation time, so the derivative of xp

exists in the ordinary sense as discussed in chapter 1). The mean stability of the system is hence

governed by
d

dt
〈xp〉 = J(0) · 〈xp〉+ ω

〈
J(1)(t)xp

〉
. (D.8)

One way to solve this equation is to use Bourret’s integral formulation (Bourret’s original paper
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can be found in [60] and is explained by Brissaud and Frisch[59] and van Kampen[22]). If

J(0) � ωJ(1)(t), one can show that

d

dt
〈xp〉 = J(0) · 〈xp〉+ ω2

∫ t

0

Jc(t− τ)〈xp(τ)〉dτ (D.9)

where Jc(t− τ) =
〈
J(1)(t)eJ

(0)(t−τ)J(1)(τ)
〉

is the time autocorrelation of the fluctuations (and

eJ
(0)(t−τ) is the matrix exponential of J(0)).

Using Laplace transforms, the solution is given by

〈x̂p(s) =
[
sI− J(0) − ω2Ĵc(s)

]−1

〈xp(0)〉, (D.10)

So the new eigenvalues can be found by solving

det
[
λ′I− J0 − ω2Ĵc(λ

′)
]

= 0. (D.11)

Equation (D.11) is what was used to calculate the phase plot (figure (4.3)) in chapter 4. The

original equations were input into a symbolic manipulation language such as maple, and the

J matrices were then derived symbolically. Once we have the J matrices, maple can produce

the appropriate laplace transforms, and different values of ω2 were substituted into equation

(D.11). The roots can then be found numerically until at least one of the λ′ have positive real

part (indicating a noise induced temporal instability).
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AppendixE
Law of Mass Action for Chemical

Reactions

The general rule that we employ to turn reaction coefficients in the differential equation into

reaction rates for the master equation is known as the Law of Mass Action, first proposed by

Guldberg and Waage in 1864[74] (reference is a review of their work by Lund, published in

1965). In short, they postulated that the reaction rate of a chemical reaction was proportional to

the masses of the reactants, and inversely proportional to the volume. This rule was theorized

so that they could find a way of mathematically writing down how the forward and backward

reactions would balance in equilibrium.

Consider a chemical reaction A + B → A′ + B′, and denote P and Q as the number of

molecules of A and B respectively, and let V be the volume of the system. Then the reaction rate

of the forward reaction would be given by

ν =
kPQ

V
, (E.1)

where k is some unknown reaction constant that needs to be determined experimentally. In more

modern notation, we might write the rate instead as ν = k[A][B] where the square brackets
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denotes the concentration of the reactants (while remembering that this hides an extra factor of

V in the denominator). This rule then allowed chemists to write ODEs to describe the change in

mass of the system.

For our purposes, we wish to do the reverse: we will start with an ODE and extract the

reaction rate from the equation to use as the transition probability in the master equation. For

example, if we had exponential growth, where n is the concentration of the species

dn

dt
= rn, (E.2)

then the reaction rate ν would be rN/Ω where recall Ω is the volume parameter in the system

size expansion of the master equation (and N is the number of reactants). On the other hand, if

we had say a quadratic term,
dn

dt
= rn2, (E.3)

then the reaction rate would be given by

ν = r

(
N

Ω

)
·
(
N − 1

Ω

)
(E.4)

where the N −1 in the second term arises from the fact that the reactant is colliding with another

member of the same species so there is one less possibility for it to collide with.
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