
Monitoring and Enforcement of
Safety Hyperproperties

by

Shreya Agrawal

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Shreya Agrawal 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Certain important security policies such as information flow characterize system-wide be-
haviors and are not properties of individual executions. It is known that such security
policies cannot be expressed in trace-based specification languages such as linear-time tem-
poral logic (Ltl). However, formalisms such as hyperproperties and the associated logic
HyperLTL allow us to specify such policies. In this thesis, we concentrate on the static
enforcement and runtime verification of safety hyperproperties expressed in HyperLTL.

For static enforcement of safety hyperproperties, we incorporate program repair tech-
niques, where an input program is modified to satisfy certain properties while preserving
its existing specifications. Assuming finite state space for the input program, we show
that the complexity of program repair for safety hyperproperties is in general NP-hard.
However, there are certain cases in which the problem can be solved in polynomial time.
We identify such cases and give polynomial-time algorithms for them.

In the context of runtime verification, we make two contributions: we (1) analyze
the complexity of decision procedures for verifying safety hyperproperties, (2) provide
a syntactic fragment in HyperLTL to express certain k-safety hyperproperties, and (3)
develop a general runtime verification technique for HyperLTL k-safety formulas, for cases
where verification at run time can be done in polynomial time. Our technique is based
on runtime formula progression as well as on-the-fly monitor synthesis across multiple
executions.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Borzoo Bonakdarpour, for his guidance and
support throughout my Master’s. His insights and discussions about the problems were of
immense help. I would like to especially thank my readers Prof. Ian Goldberg and Prof.
Eric Blais for their invaluable insights and comments.

My life at Waterloo has been an amazing journey because of the people I met here
and the friends I made. Everyone has been extremely caring and supportive. My love and
regards to them all for always bringing a smile to my face. I would like to thank my climbing
friends Kevin and Georg who got me introduced to climbing and made my Wednesday
evenings great at Trivia Nights. My office mates Hella, Stephen and Marianna made me
look forward to come to work every morning. They introduced me to their amazing friends
Valerie, Dean, Oliver, Nika and Jack who were always so kind to me. Sharon, you have
been a very caring roommate, thank you so much. Cecylia always manages to bring so
much energy in me with her fun-loving nature.

I can never thank my dearest friends David, Hemant, Neeraj and Vijay enough. Always
making me laugh, being there for me in my good and bad times, listening to my craziness
and even being a part of it. Thank you for making my dream trip happen, it would not
have been so fantastic without you guys there. I would like to thank my friends from
DA-IICT who are a constant support. Nikhil, it would take up another thesis altogether
if I start to write down everything I would like to thank you for. Aakash, Anurag, Jigar,
Lalit, Naman, Namrata, Neel, Sagar, Sid, Sumeet, Tanu—you know I will love you guys
always.

In all my endeavours and accomplishments, the love and support I received from my
parents and brother can never be thanked enough. I am most grateful to them for being
there for me always. Abhinav (Bhaiya) you are the sweetest brother anyone can ask for.
You are truly the best man in my life.

iv

Dedication

This is dedicated to my mother without whom this would have not been possible. I
would have never been the person I am today without her love and brilliance. All my
hard work, achievements and endeavors are only because of her constant motivation and
encouragement. She is my biggest inspiration and I am always aspiring to be as loving,
caring and amazing as she is.

v

Table of Contents

List of Tables ix

List of Figures x

Nomenclature xi

1 Introduction 1

1.1 Difficulties in Formal Treatment of Security Policies 2

1.2 Thesis Statement . 4

1.3 Runtime Verification of Hyperproperties 5

1.3.1 Challenges . 5

1.3.2 Contributions . 5

1.4 Automated Program Repair for Hyperproperties 6

1.4.1 Challenges . 7

1.4.2 Contributions . 7

1.5 Organization . 9

2 Preliminaries 10

2.1 Programs . 10

2.2 Trace Properties . 12

2.3 Hyperproperties . 13

vi

2.3.1 Safety Hyperproperties . 14

2.3.2 Co-safety Hyperproperties . 16

2.3.3 Liveness Hyperproperty . 16

2.4 HyperLTL . 17

2.4.1 Syntax . 17

2.4.2 Semantics . 17

2.4.3 Specifying Trace Relations . 18

3 Runtime Verification of k-Safety Hyperproperties in HyperLTL 20

3.1 k-Safety/Co-k-Safety Hyperproperties in HyperLTL 20

3.1.1 Relation between Hypersafety and Co-hypersafety Properties 21

3.1.2 Representing k-safety and Co-k-safety Hyperproperties in HyperLTL 22

3.2 Monitorability in HyperLTL . 24

3.3 Complexity of Verification of Safety Hyperproperties at Run Time 28

3.3.1 Undecidability . 29

3.3.2 NP-hardness for a Subclass of k-safety Hyperproperties 30

3.3.3 A Sufficient Condition for Polynomial-Time Runtime Verification . 31

3.4 Monitoring Algorithm . 32

3.4.1 Progression for Trace Relations . 34

3.4.2 Algorithm . 35

3.4.3 Monitoring beyond k-hypersafety 39

3.5 Implementation and Results . 42

3.5.1 Experimental Settings . 42

3.5.2 Results and Analysis . 43

4 The Complexity of Program Repair for Safety Hyperproperties 47

4.1 Problem Statement . 48

4.2 Repair for k-Safety . 49

vii

4.3 Repair for 1-Safety . 52

4.4 Polynomial-time Repair for Safety Hyperproperties 57

4.4.1 Polynomial-time Repair for a Class of k1-Safety Hyperproperty . . 58

4.4.2 Polynomial-time Repair for a Class of 1` Safety Hyperproperty . . 60

5 Related Work 63

5.1 Runtime Verification . 63

5.1.1 Runtime Verification for Linear Temporal Logics 63

5.1.2 Verification of Security Policies . 64

5.2 Program Repair . 65

5.2.1 Repair for Temporal Logics . 65

5.2.2 Repair for Various Systems . 66

5.2.3 Checking of Safety Hyperproperties 66

5.2.4 Synthesis and Repair for Security Policies 67

5.3 Runtime Enforcement of Security Policies 68

6 Conclusion 69

6.1 Summary . 69

6.1.1 Runtime Verification . 69

6.1.2 Program Repair . 70

6.2 Future Work . 70

6.2.1 Runtime Verification . 71

6.2.2 Program Repair . 71

References 72

viii

List of Tables

3.1 Monitorability of universally quantified HyperLTL1 formulas. 26

3.2 Monitorability of existentially quantified HyperLTL1 formulas. 27

3.3 Monitorability of HyperLTL formulas with conjunction or disjunction of
formulas from Tables 3.1 and 3.2 . 28

3.4 Trace length of monitored formulas before first violation 45

ix

List of Figures

1.1 EDAS conference management website’s security violation 3

2.1 Secret sharing program p . 11

3.1 Monitor of secret sharing policy. 33

3.2 LTL3 monitor for formula aU b. 35

3.3 Petri net for property termination-sensitive 38

3.4 Number of Petri net components generated before detection of first violation 44

3.5 Total components vs. violations . 45

3.6 Length of formulas vs. trace length . 46

4.1 Instance 2SS . 51

4.2 Instance 1S2PP . 53

4.3 The partial structure of the revised program for instance 1S2PP. 55

4.4 Secret sharing repaired program . 62

x

Nomenclature

> evaluates to true

⊥ evaluates to false

? evaluates to unknown

∧ logical and

∨ logical or

∀ ‘for all paths’

∃ ‘there exists a path’

X Next operator in Ltl

U Until operator in Ltl

F Finally operator in Ltl

G Globally operator in Ltl

Ltl Linear-time Temporal Logic

LTL set of all Linear-time Temporal Logic formulas

Ctl set of all Computation Tree Logic formulas

LTLS set of all LTL safety formulas

LTLC set of all LTL co-safety formulas

HyperLTL1 set of HyperLTL formulas with no quantifier alternation

xi

HyperLTL-3 3-valued semantics for HyperLTL

AP set of atomic propositions

Σ set of all letters

Σ∗ set of all finite traces

Σω set of all infinite traces

Σ≤` set of all traces of length at most `

t[i] element of t at index i

t[0, i] trace prefix upto and including ith element

t[i,∞] infinite suffix beginning with ith element

P powerset operator

P(Σω) set of all trace properties

P∗(X) set of all finite-size subsets of X

P(P(Σω)) set of all hyperproperties

|= trace property (and hyperproperty) satisfaction

p program

Ip set of initial states

δp set of transitions

≤ trace (or trace set) prefix

ψ set of all traces of a program

E existing specifications of a program

H A hyperproperty

S A safety hyperproperty

OD Observational Determinism

xii

GMNI Goguen and Meseguer’s non-interference

SSk k-safety hyperproperty for secret sharing scheme for k shares

SecS safety hyperproperty for secret sharing scheme

Mh a set of finite sets of finite traces

≈L low-indistinguishibility relation on traces

=L low-indistinguishibility relation on states

=L,in low-indistinguishibility relation on states for input variables only

=L,out low-indistinguishibility relation on states for output variables only

=H high-indistinguishibility relation on states

Γ set of all trace variables

Π mapping of trace variables to traces

π trace variable

∼f,P trace relation over function f and atomic propositions P

Pg progression function

↑ m set of all infinite continuations of trace m

M a monitor for runtime verification

Q set of states of the DFA

q0 initial state of the DFA

∆ set of transitions for the DFA or the Petri net

λ function to evaluate a state of a DFA to a value in {>,⊥, ?}

B3 {>,⊥, ?}

S = (L,Σ,∆) a petri net

L set of places of the petri net

xiii

•τ input place of transition τ

τ • output place of transition τ

q⊥ state that evaluates to ⊥

supS supremum of set S

inf S infimum of set S

xiv

Chapter 1

Introduction

Due to the interdependence of scripts and data, security threats to the authorized access of
data, and to its confidentiality and integrity, are becoming a major concern. For example
in web browsers, web pages holding secure information may include untrusted third-party
javascript code in the form of libraries or advertisements. This potential security loophole
can be exploited to either compromise security/policies in the form of having access to
unauthorized information or planting malware. With the wide adoption of Internet of
Things, cyber attacks are likely to result in physical threats in addition to the virtual ones.

Given that even a short transient violation of security policies may result in leaking
private or highly sensitive information, software security assurance is one of the crucial
requirements in today’s computer systems. In particular, according to the U.S. National
Strategy to Secure Cyberspace:

“A...critical area of national exposure is due to the many flaws that exist in crit-
ical infrastructures due to software vulnerabilities. New vulnerabilities emerge
daily as use of software reveals flaws that malicious actors can exploit. Cur-
rently, approximately 3,500 vulnerabilities are reported annually.” [50]

As a result, it is critical to ensure enforcement of the required policies and timely detection
of security loopholes. While enforcement could be done either to fix existing flaws or to
additionally enforce new properties, both without requiring the system to be rebuilt from
the bottom up, detection involves checking for the satisfaction of the desired properties.

One way to deal with this problem is to utilize formal methods. We model a system
along with its behaviors, and the environment and the intention is to mathematically an-
alyze the system correctness in an automated fashion. In the context of system security,

1

numerous formal methods have been developed, most notably, different inference frame-
works [24], model checking [11,39,43], and theorem proving techniques [49].

1.1 Difficulties in Formal Treatment of Security Poli-

cies

There are three major difficulties in designing automated formal methods to reason about
the correctness of secure systems: (1) their scalability (2) human-in-the-loop when bugs
are identified, and (3) expressiveness of specification languages. The first problem is due
to the fact that the entire state space of the system may need to be explored. The second
issue arises when a bug identified by a verification technique needs to be fixed. This process
is now conducted manually. The third problem stems from the fact that many interesting
security policies cannot be expressed by trace-based specification languages such as the
propositional linear-time temporal logic (Ltl) [76]. Examples of policies that cannot be
expressed using trace-based specification languages include information flow requirements
such as:

• Goguen and Meseguer’s non-interference (GMNI) where the removal of private
information in a system should not affect the information observed by public ob-
servers [45].

• Observational determinism, where any event observed by public observers must hap-
pen deterministically based on only the inputs of the public observers [71].

• Information leakage, where over every series of experiments in a system, the quantity
of information leak is less than x bits [33], or users of channel a cannot send messages
to the users of channel b [30].1

To demonstrate the subtlety of reasoning about these policies, consider the screenshot
from the author’s supervisor’s EDAS Conference Management2 web interface in Fig. 1.1,
taken in early 2015. The table shows the status of submitted papers (accepted, rejected,
withdrawn, and pending). This web interface exhibits the following blunt violation of non-
interference. The first two rows show the status of two papers to a conference after its

1A channel can be, for example, some communication line in a physical or virtual network, a set of
memory addresses, etc.

2http://www.edas.info

2

http://www.edas.info

Figure 1.1: In the figure, the first paper is accepted while the second is rejected. The
third and fourth papers are reviewed but the decision is not yet public. However, since the
Session attributes of first and fourth are the same, one can infer that the fourth paper is
also accepted.

notification: The first paper is accepted while the second is rejected. The last two rows
show two papers submitted to a different conference with ‘pending’ status at the time
the screenshot was taken. Although the authors should not be able to infer the internal
decision making activities, this table does exactly that. By comparing the first and the
fourth row, one can observe that their ‘Session’ column have the same value (i.e., ‘not yet
assigned’). Similarly, both the second and the last rows have an empty ‘Session’ column.
This simply means that the paper on the fourth row is internally marked as accepted while
the last paper is internally marked as rejected. This is clearly a security violation when
two independent executions result in leaking sensitive information.

To formalize such security policies, Clarkson and Schneider introduced the notion of
hyperproperties [34]. A hyperproperty is a set of sets of execution traces (i.e., a set of
properties). Reasoning about systems using hyperproperties is especially challenging for

3

the following reasons. For trace-based languages, satisfaction of a property by a program
is defined based on the principle of language inclusion, i.e., whether the set of traces
(language) of the program is a subset of the set of traces (language) allowed by the property.
On the contrary, in the case of hyperproperties, verification is equivalent to determining
language equality, i.e., a program satisfies a hyperproperty if the set of traces of the program
is identical to one of the set of traces in the hyperproperty.

Similar to the traditional concepts of safety and liveness for regular properties [2], hy-
perproperties are also classified as safety hyperproperties and liveness hyperproperties [34].
Violation of a safety hyperproperty is finitely observable and irremediable. Thus, if a set
of traces T violates a given safety hyperproperty, then this can be observed by looking
for undesirable patterns in T . More specifically, a set M ⊆ T of finite traces (known as
“bad traces”) will depict an undesirable behavior. Moreover, this is irremediable in that
any extension of M also violates that safety hyperproperty. If the size of every such fi-
nite set M is at most k, it is called a k-safety hyperproperty. For example, Goguen and
Meseguer’s non-interference policy (GMNI) is a 2-safety hyperproperty as information
could be leaked by observing 2 bad traces. Also note that the security violation in EDAS
(Figure 1.1) is, in fact, a violation of non-interference.

Next, we describe our contributions to address the aforementioned problems in the con-
text of hyperproperties. Specifically, we make contributions in static enforcement through
program repair and verification through monitoring at run time. It is mostly believed that
monitoring of security policies that cannot be expressed in a trace-based specification lan-
guage cannot be done without using a static analyzer. In the context of program repair,
it is currently unknown whether repair for such policies is computationally more complex.

1.2 Thesis Statement

In this thesis, we will validate the following statements:

• Monitoring certain security policies that cannot be expressed in a trace-based speci-
fication language at run time is possible without the assistance of a static analyzer.

• Automated program repair of safety security policies that cannot be expressed in
a trace-based specification language has the same computational complexity as for
safety security policies that can be expressed in such languages.

4

1.3 Runtime Verification of Hyperproperties

While exhaustive verification methods are extremely valuable, they often require devel-
oping an abstract model of the system and may suffer from the infamous state-explosion
problem [31] (i.e., the first problem mentioned in Section 1.1). Runtime verification (RV)
refers to a technique where a monitor checks at run time whether or not the execution of
a system under inspection satisfies a given correctness property. RV complements exhaus-
tive verification techniques as well as under-approximating techniques such as testing and
tracing. In the context of cybersecurity, RV is expected to be even more effective as new
threats that were not considered during design time may exploit existing vulnerabilities,
can now be easily detected at run time.

1.3.1 Challenges

RV of hyperproperties such as information flow policies is especially challenging because
the monitor has to reason about the policy across different executions. For example, in
Fig. 1.1 (and in fact in any HTML generation of this sort) the rows of the table are gen-
erated by independent executions of a function. Now, the monitor has to do two things.
Firstly, the monitor has to deal with the fact that it only observes a finite execution at
run time. Secondly, it needs to implement a mechanism to memorize and reason about its
observations across multiple executions that occurred in the past and will happen in the
future. Some existing methods such as the ones by Chudnov et al. [28] and Magazinius
et al. [59] (for monitoring information flow) attempt to solve this problem using a hybrid
of an online monitor with static analysis to annotate the conditional branches that were
not taken in the current run. Chudnov et al. use hybrid monitoring techniques for speci-
fications in relational logic [27]. Le Guernic et al. [46] provide a judgement on observing a
single execution alone through dynamic analysis that uses the results of a previously run
static analysis. This technique enforces security requirements by either concluding that
the execution is harmless or by altering the violating execution.

1.3.2 Contributions

In this thesis, we introduce an RV technique without the assistance of a static analyzer
for monitoring safety hyperproperties—which represent a rich class of security policies.
The RV monitor produces verdicts on whether or not the currently observed executions is
equal to one of the trace sets of the hyperproperty. In particular, we make the following
contributions:

5

• First, we present a mapping from a subset of k-safety hyperproperties to HyperLTL—
a temporal logic that allows quantification over execution traces [32]. We show that
a subset of k-safety (respectively, co-k-safety) hyperproperties can be syntactically
expressed as a disjunctive (respectively, conjunctive) HyperLTL formula with at
most k universal quantifiers.

• We generalize the 3-valued semantics of Ltl (LTL3) [14] to k-safety HyperLTL
formulas. Through this generalization, we define the notion of monitorability and
identify k-safety and co-k-safety hyperproperties that are monitorable based on their
syntactic representation. We also identify other classes of HyperLTL formulas that
are monitorable.

• We propose a monitoring algorithm for k-safety and co-k-safety HyperLTL formu-
las. Our algorithm employs three techniques: (1) a progression logic (which enables
us to reason about trace inter-dependencies), (2) on-the-fly LTL3 monitor genera-
tion, and (3) a procedure that aggregates the progressed formulas and computes run
time verdicts using the generated LTL3 monitors. We emphasize that the algorithm
only evaluates formulas and it does not react to violations detected at run time.

• We show that runtime verification of certain k-safety hyperproperties is NP-hard.
Further, we show that for any safety hyperproperty of unbounded length the problem
is in general undecidable. In addition, we give a sufficiency condition for the problem
to be solved in polynomial time.

• We present rigorous experimental results on monitoring three different security poli-
cies on a dataset from Microsoft Research [53] as well as sets of synthetically generated
traces. We analyze different metrics such as the length of progressed formulas, the
number of generated LTL3 monitors, and the overhead of runtime monitoring.

1.4 Automated Program Repair for Hyperproperties

Our first contribution is in static enforcement of security policies through program repair
techniques. Program repair is an automated technique that revises a program with respect
to a logical property that the program currently does not satisfy, while preserving its
existing semantics. That is, it intends to automated the procedure of fixing a bug (i.e., the
second problem mentioned in Section 1.1). Formally, let p be a program, E be the program’s
existing specification, and S be a property, where p satisfies E and does not satisfy S. In
this context, S is the newly identified requirement for which p will be repaired and E is

6

the existing specification of p that should be preserved during repair. A repair algorithm
takes as input p, S and E, and generates as output a program p′, such that p′ satisfies E
and S simultaneously.

A model repair algorithm enhances the robustness and security requirements of the
resulting code, while minimizing penalties to code performance and overhead [17]. Ideally,
a repair algorithm fixes errors with minimal intervention in the behavior of the input
program. It is also crucial to ensure that in the repaired program new errors are not
introduced such as deadlocks or those that do not allow programs to terminate safely.

1.4.1 Challenges

Program repair is a challenging task as it requires removing transitions from an existing
program while preserving existing specifications. Moreover, all the possible sets of execu-
tions of a program need to be analyzed to enforce a policy, which increases exponentially
with the size of the program.

1.4.2 Contributions

This thesis addresses the complexity of program repair with respect to safety hyperprop-
erties as complexity analysis is often the first step to developing sound and complete au-
tomated formal techniques. We focus on a simple but arguably effective type of program
repair, where repair is performed only to identify and exclude program traces that violate
a given safety hyperproperty. This formulation of program repair has been shown to be
quite effective in synthesizing highly complex distributed fault-tolerant protocols [20] and
UNITY programs [17].

To analyze the complexity of repair, we classify safety hyperproperties based on two
parameters: (1) the (maximum) cardinality of the sets M involved (recall from the previous
section that if the maximum cardinality of the set of sequences is at most k, it constitutes a
k-safety hyperproperty [34]), and (2) the (maximum) length of sequences that are used to
describe the undesirable patterns. Thus, we consider k`-safety hyperproperties—a subclass
of k-safety hyperproperties—where the length of undesirable sequences is at most `. The
significance of analyzing the complexity of repair based on k and ` is due to expressiveness
of k`-safety hyperproperties. For instance, an example of Goguen and Meseguer’s non-
interference for one public and one private channel is a 21-safety hyperproperty, where

7

k = 2 is the number of channels and ` = 1 stipulates the fact that violation of non-
interference can be detected at each state (i.e., the length of the undesirable finite trace is
1). We make the following contributions:

• We show that repairing a program for k-safety hyperproperties is in general NP-hard
assuming finite state space of the input program and it is NP-complete if the k-safety
hyperproperty can be expressed in a HyperLTL1 formula.

• We show that the problem remains NP-hard even if we consider 21-safety hyperprop-
erties.

• We show that the problem remains NP-hard even if we consider 13-safety hyperprop-
erties.

• We note that the above NP-hardness results are tight in that the problem can be
solved in polynomial time in the state space of the input program if we consider 12-
safety hyperproperties. The polynomial-time algorithm for 12-safety hyperproperties
is also tight in that the problem becomes NP-hard if we consider another version,
namely, elongated safety hyperproperties. It also becomes NP-hard if we desire to
preserve the maximum number of traces during the repair.

• We identify a class of k-generated safety hyperproperties that are a subclass of k1-
safety hyperproperties for which the problem can be solved in polynomial time in
the state space of the input program. This class includes 1-safety hyperproperties,
where undesirable prefixes encode unreachability of one pair of predicates. This class
includes several important problems such as secret sharing [77].

The significance of these results is that it allows us to understand the complexity of an
algorithm when repairing with respect to a certain class of safety hyperproperties. From
the given results we can determine whether it is possible to design sound and complete
polynomial-time algorithms. If not, one may consider focusing on developing efficient
heuristics for repairing for any k`-safety hyperproperty when k > 1 or k = 1 and ` ≥ 3,
among other techniques such as using SMT solvers or program repair for particular classes
of programs.

8

1.5 Organization

The organization of this thesis is as follows: Chapter 2 introduces the necessary prelimi-
naries and definitions required for the understanding of hyperproperties. It formally gives
the syntax and semantics of HyperLTL along with the formal definition of a program
and trace properties. In Chapter 3, we establish a connection between k-hypersafety and
HyperLTL. Following this we present a runtime verification technique of these properties
and also discuss the complexity of verification of safety hyperproperties. In Chapter 4,
we analyze the complexity of program repair with respect to safety hyperproperties. In
Chapter 5, we present the related work on the problem of runtime verification and program
repair with respect to safety hyperproperties. Finally, we make concluding remarks and
discuss future work in Chapter 6.

9

Chapter 2

Preliminaries

Let AP be a finite set of atomic propositions and Σ = 2AP be the finite alphabet. We call
each element of Σ a letter (or an event). Throughout the paper, Σω denotes the set of all
infinite sequences (called traces) over Σ, and Σ∗ denotes the set of all finite traces over Σ.
Σ≤l denotes the set of all traces over Σ of length at most l. A state predicate is any subset
of Σ. For a trace t ∈ Σω, t[i] denotes the ith element of t, where i ∈ N. Also, t[0, i] denotes
the prefix of t up to and including i, and t[i,∞] is written to denote the infinite suffix of t
beginning with element i.

Now, let u be a finite trace and v be a finite or infinite trace. We denote the concate-
nation of u and v by σ = uv. Also, u ≤ σ denotes the fact that u is a prefix of σ. Finally,
if U is a set of finite traces and V is a finite or infinite set of traces, then the prefix relation
≤ on sets of traces is defined as:

U ≤ V ≡ (∀u ∈ U. (∃v ∈ V. u ≤ v))

Note that V may contain new traces that have no prefix in U .

2.1 Programs

Definition 1. A program is a tuple p = 〈Ip, δp〉, where Ip ⊆ Σ is the set of initial states
of p and δp ⊆ Σ× Σ is the set of transitions of p. �

Definition 2. A sequence of states σ = 〈s0s1 . . . 〉 in Σω is a trace of p = 〈Ip, δp〉 iff the
following two conditions are satisfied:

10

• s0 ∈ Ip

• ∀i ≥ 0 : (si, si+1)∈δp �

The set of all traces of a program p is denoted by ψ(p).

From the above definition, a program should not contain deadlocked traces. That is, if
there exists a state sd from which there is no outgoing transition (including a self-loop),
then sd is a deadlocked state and a trace of p that reaches sd is a deadlocked trace. A trace
σ is called a terminating trace when it terminates in state st. In such a case, we include
the transition (st, st) in the set of transitions of the program δp; i.e., σ can be extended to
an infinite trace by stuttering at st.

int main(){
x1 = 1, x2 = 2, . . . , xn = n;

while(1) {
current = (rand()%n) + 1;

switch(current) {
case x1 : output = Input(P1);

break;

case x2 : output = Input(P2);

break;

...

case xn : output = Input(Pn);

}
print (output, current);

}
}

Figure 2.1: Secret sharing program p

Running example. A secret Γ has been divided into n shares using a secret sharing
scheme [77] and given to n agents, P1, P2, . . . , Pn. All n of these shares are required to
reconstruct the original secret Γ. The program in Figure 2.1 constantly queries randomly

11

one out of the n agents for an input; that agent replies with a value for the variable ‘output’
that is printed. Let us say the observer reading the print statements is an adversary
colluding with the malicious agents. The adversary repeatedly tries to construct the secret
from the values read. If all the shares are revealed by all of the agents then the secret can
be reconstructed by the adversary. It is straightforward to transform this program into its
set of states and transitions.

2.2 Trace Properties

A trace property is a set of infinite traces (i.e., a subset of Σω). The set of all trace
properties is P(Σω), where P denotes the powerset. By P∗(X), we mean the set of all
finite-size subsets of X. We assume that for a program p, ψ(p) is a set of infinite traces;
i.e., ψ(p) ⊆ Σω. We say that a program p satisfies a property S (denoted p |= S) iff
ψ(p) ⊆ S.

Following Alpern and Schneider, a trace property is an intersection of a safety and a
liveness property [2]. A safety property is characterized by a set of “bad things”. A bad
thing must be finitely observable and its occurrence can never be remediated by future
events. Precisely, a trace property S is a safety property [2] iff

∀t ∈ Σω.(t 6∈ S) =⇒ ∃m ∈ Σ∗.(m ≤ t) ∧ (∀t′ ∈ Σω.(m ≤ t′) =⇒ (t′ 6∈ S))

Examples.

• The following policy can be expressed as a safety property; “No two processes have
permission to write to the same file simultaneously.” Once this policy is violated,
i.e., two processes acquire permission to write to the same file simultaneously, it can
never be remediated in the future.

• Access control security policy requires every action of a particular user to be consistent
with the rights or privileges granted to that user. This policy is a safety property,
where the bad thing is a finite trace with an action taken by an unauthorized user
for that action.

A co-safety property is defined as follows [14]:

∀t ∈ Σω.(t ∈ S) =⇒ ∃m ∈ Σ∗.(m ≤ t) ∧ (∀t′ ∈ Σω.(m ≤ t′) =⇒ (t′ ∈ S))

12

For every trace in a co-safety property there exists a good prefix such that any continuation
of it is in the property.

Example. “Every trace must eventually reach an accepting state” is a co-safety property.

A liveness property is characterized by a “good thing” always possible no matter what
has occurred so far, and possibly infinite, so it need not be a discrete event. Precisely, a
trace property L is a liveness property [2] iff

∀t ∈ Σ∗.∃t′ ∈ L.(t ≤ t′)

Example. An example of a liveness property is guaranteed service, which requires that
a request for a service is eventually satisfied. The good thing is the eventual satisfaction
of the request.

2.3 Hyperproperties

It is well known that a large number of interesting security policies, such as non-interference
and observational determinism, cannot be expressed by trace properties [76]. To overcome
this shortcoming, Clarkson and Schneider introduced the notion of hyperproperties to in-
corporate an additional level of sets to the notion of trace properties [34].

Definition 3 (hyperproperty [34]). A hyperproperty is a set of sets of infinite traces, or
equivalently a set of trace properties. �

The set of all hyperproperties is P(P(Σω)). The interpretation of a hyperproperty as
a security policy is that the hyperproperty is the set of programs allowed by that policy.
That is, each trace property in a hyperproperty is an allowed system, specifying exactly
which executions must be possible for that system. Thus, unlike trace properties, where
the notion of satisfaction is based on language inclusion, the definition of satisfaction for
hyperproperties is based on language equality. More formally,

Definition 4. A program p satisfies a hyperproperty H (denoted, p |= H) iff ψ(p) ∈H.

That is, a program satisfies a security policy if and only if its set of traces adheres with
one of the entire sets (and not just a subset) of traces of the prescribed policy.

13

2.3.1 Safety Hyperproperties

Safety hyperproperty (or hypersafety) is a generalization of safety [2], where the bad thing
occurs in a finite set of finite traces. The definition of hypersafety is essentially the same
as the definition of safety, except for an additional level of sets.

Definition 5. A hyperproperty S is a safety hyperproperty (or hypersafety) iff

∀T ∈ P(Σω).(T 6∈ S) =⇒ ∃M ∈ P∗(Σ∗).(M ≤ T) ∧
(∀T ′ ∈ P(Σω).(M ≤ T ′) =⇒ (T ′ 6∈ S))

Example. An example of a safety hyperproperty is Observational Determinism as
described previously in Chapter 1 [34]. Its formal definition is as follows:

OD = {T ∈ P(Σω) | ∀t, t′ ∈ T.t[0] =L t
′[0] =⇒ t ≈L t′}

where t ≈L t′ is a trace equivalence relation that holds whenever traces t and t′ are
indistinguishable to a low user. State t[0] is the first state in trace t and s =L s

′ is a state
equivalence relation that holds whenever states s and s′ are indistinguishable to a low user.

In Definition 5, set M represents the bad thing that should never happen. If we put a
bound on the cardinality of M , it becomes a k-safety hyperproperty defined as follows:

Definition 6 (k-safety hyperproperty [34]). A hyperproperty S is a k-safety hyperproperty
(is k-hypersafety) iff

∀T ∈ P(Σω).(T 6∈ S) ⇒ ∃M ∈ P∗(Σ∗).(M ≤ T) ∧
(|M | ≤ k) ∧ ((∀T ′ ∈ P(Σω).(M ≤ T ′) ⇒ (T ′ 6∈ S)) �

Notice that a traditional safety property [2] is synonymous to a 1-safety hyperprop-
erty [34].

Examples

• A policy that requires ‘whenever there is a fail event, then there must not be a login
event for at least four time units’ is a 1-safety hyperproperty. If one models the
passage of every time unit by the event tick, then the bad thing here is a finite trace
that contains a fail followed by three or fewer tick events before a login event.

14

• Goguen and Meseguer’s non-interference (GMNI) [45] and OD security policy is
a 2-safety hyperproperty.

• The information leakage policy is an example of a safety hyperproperty. The bad
thing is some series of experiments, where the information leaked is more than x bits.
Notice that in this example there is no bound on k.

Observe that if a hypersafety is violated, we can identify a finite set of finite traces, such
that any extension of that set violates the hypersafety. Hence, all the bad things for a safety
hyperproperty are specified by a set of finite sets of finite traces, say Mh ∈ P(P∗(Σ∗)).
And, a hypersafety is violated iff the given set of traces extends some element in Mh.
Thus, a hypersafety S can be characterized by a set Mh such that:

∀T ∈ P(Σω).(∃M ∈Mh.(M ≤ T) ⇐⇒ (T 6∈ S)) (2.1)

Now, an Mh
′ that characterizes a k-safety hyperproperty Sk, where ∀M,M ′ ∈Mh

′ it
is not the case that M ′ ≤ M and |M ′| < |M |, is called a minimal Mh that characterizes
this Sk.

Lemma 1. For every k-safety hyperproperty Sk with a bounded cardinality of Mh, there
exists an Mh that is a minimal Mh that satisfies Equation 2.1 such that |M | ≤ k for all
sets M in the set Mh.

Proof. Given an Mh
′ and M,M ′ ∈Mh

′ such that M ′ ≤ M , removing M from Mh
′, i.e.,

Mh
′\{M} still characterizes Sk using Equation 2.1. This is because any extension of M is

also an extension of M ′. Further, ∀M ∈Mh and ∀m,m′ ∈M such that m′ ≤ m, removing
m′ from M still characterizes Sk since m includes the trace m′. Therefore, ∀M,M ′ ∈Mh

′

if M ′ ≤ M , then remove M from Mh
′, and ∀m,m′ ∈ M ′ if m′ ≤ m, remove m′ from

M ′. Through this process, we can obtain a minimal Mh satisfying Equation 2.1 such that
∀M ∈Mh, |M | ≤ k. �

Example. If we take the example of observational determinism, Mh is a set of sets of
finite traces such that each element of this set contains pairs of finite traces with their initial
states containing the same input from a public observer but, some other corresponding
states containing differing outputs observable by the public observer. More formally,

MOD = {M ∈ P∗(Σ∗) |M = {t, t′}, t[0] =L t
′[0] ∧ t 6≈L t′}

15

2.3.2 Co-safety Hyperproperties

Intuitively, a co-safety hyperproperty (or co-hypersafety) stipulates a policy which describes
the occurrence of a good thing and is a generalization of traditional co-safety [54]. Note
that, co-safety hyperproperty is an observable hyperproperty as given below [34]:

Definition 7. Hyperproperty C is a co-safety hyperproperty (or co-hypersafety) iff

∀T ∈ P(Σω).(T ∈ C) =⇒ ∃M ∈ P∗(Σ∗).(M ≤ T) ∧
(∀T ′ ∈ P(Σω).(M ≤ T ′) =⇒ (T ′ ∈ C))

In Definition 7, set M represents the good thing that can happen.

Definition 8 (co-k-safety hyperproperty). Hyperproperty C is a co-k-safety hyperproperty
(or co-k-hypersafety) iff

∀T ∈ P(Σω).(T ∈ C) =⇒ ∃M ∈ P∗(Σ∗).(M ≤ T) ∧
(|M | ≤ k) ∧ ((∀T ′ ∈ P(Σω).(M ≤ T ′) =⇒ (T ′ ∈ C)) �

Notice that a co-safety property is synonymous to a co-1-safety hyperproperty [34].

Example The hyperproperty ‘for every initial state, there is some terminating trace, but
not all traces must terminate’ is a co-safety hyperproperty. The good thing here is a set of
traces such that for all initial states, a trace in this set terminates. If the number of initial
states is restricted to k, then this is a co-k-safety hyperproperty.

2.3.3 Liveness Hyperproperty

Clarkson et al. extended the notion of liveness to sets of traces and defined liveness hyper-
properties as follows [34]:

Definition 9. Hyperproperty L is a liveness hyperproperty (equivalently, is hyperliveness)
iff

(∀T ∈ P∗(Σ∗). (∃T ′ ∈ P(Σω). T ≤ T ′ ∧ T ′ ∈ L))

16

Example A policy that places a low threshold on the mean response time on a set of
traces is a hyperliveness property. A set of traces can always be extended to a set with a
lower mean response time.

Policies which bound a resource to a certain value over all traces of a program is
hyperliveness. ‘The channel capacity is k bits’ is an example of this.

2.4 HyperLTL

HyperLTL extends Ltl, and allows explicit quantification over multiple execution traces
simultaneously [32]. It eases the expression of hyperproperties syntactically.

2.4.1 Syntax

The set of HyperLTL formulas is inductively defined by the grammar as follows:

ϕ ::= ∃π.ϕ | ∀π.ϕ | φ
φ ::= a(π) | ¬φ | φ ∨ φ | φUφ | Xφ | φ(π)

where a ∈ AP and π is a trace variable from an infinite supply of variables Γ.

We note that we have extended the syntax of HyperLTL by allowing annotation of
a formula φ with trace variable π. This way, HyperLTL allows us to clearly specify to
which trace φ refers in a formula which includes multiple traces.

Temporal connectives hold on every quantified trace. The intuitive description for
ψUφ is that eventually φ holds and ‘until’ then ψ holds, and for Xφ is in the ‘next’ state φ
holds. The other standard temporal connectives are defined as syntactic sugar as follows;
Fφ (eventually φ) ≡ trueUφ, and Gφ (globally φ) ≡ ¬F¬φ. Quantified formulas ∃π and
∀π are read as ‘along some trace π’ and ‘along all traces π’, respectively.

2.4.2 Semantics

A formula ϕ in HyperLTL satisfied by a set of traces T is written as Π |=T ϕ, where trace
assignment Π : Γ → Σω is a partial function mapping trace variables to traces. Π[π → t]

17

denotes the same function as Π, except that π is mapped to trace t. The validity judgement
is defined as follows:

Π |=T ∃π.ϕ iff ∃t ∈ T.Π[π → t] |=T ϕ
Π |=T ∀π.ϕ iff ∀t ∈ T.Π[π → t] |=T ϕ
Π |=T a iff a ∈ Π[0]
Π |=T ¬φ iff Π 6|=T φ
Π |=T φ1 ∨ φ2 iff (Π |=T φ1) ∨ (Π |=T φ2)
Π |=T Xφ iff Π[1,∞] |=T φ
Π |=T φ1 Uφ2 iff ∃i ≥ 0. (Π[i,∞] |=T φ2 ∧

∀j. 0 ≤ j < i.Π[j,∞] |=T φ1)
Π |=T φ(π) iff Π(π) |= φ

Here, the trace assignment suffix Π[i,∞] denotes the trace assignment Π′ = Π(π)[i,∞]
for all π. If Π |=T φ holds for the empty assignment Π, then T satisfies φ. Observe that
when there is exactly one universal trace quantifier, then Ltl and HyperLTL coincide.

Notation By φ(π1, . . . , πk), we mean the formula φ(π1) ∨ · · · ∨ φ(πk). Also, let LTL,
LTLS, and LTLC be the set of all, safety, and co-safety Ltl formulas, respectively.

2.4.3 Specifying Trace Relations

Clarkson et al. [32] introduce the trace relation =P to ease the representation of equivalence
between traces. Let π and π′ be two trace variables. For a set P ⊆ AP of atomic
propositions, π[0] =P π′[0] denotes that the first letter in both π and π′ agree on all
propositions in P . Further

π =P π
′ ≡ G(π[0] =P π

′[0])

compares the two traces letter by letter for all letters.

Example

• GMNI can be specified as a HyperLTL formula as follows:

∀π.∀π′. (Gλπ′ ∧ π 6=H π′) ⇒ π =L π′

where Gλπ′ denotes that all high variables in π′ hold the value λ for all letters, and
H and L are the ‘high’ and ‘low’ atomic propositions, respectively.

18

• Observational Determinism (OD) requires a system to appear deterministic to a low
user (users who only have access to low variables). It is specified as follows:

∀π.∀π′. (π[0] =L,in π
′[0]) ⇒ (π =L,out π

′)

where =L,in checks for agreement on propositions in L with input values issued by
the low user.

Addressing Limitations While the operator =P for trace relations allows one to specify
properties over a pair of traces that check for equivalence letter by letter, it does not
capture comparison of some letter in one trace with one or more letters in another trace,
or comparison of letters over temporal formulas specified over P .

To address this limitation, we define a function f : 2AP → LTL and extend the trace
relation to π ∼f,P π′, for two trace variables π and π′, and a set P of atomic propositions.
We require that

∀i. π′[i..∞] |= f(π[i] ∩ P)

Obviously, when function f is the identity function π =P π′ ≡ π ∼f,P π′. In case of
GMNI, if we look at the policy which requires an event occurring in one trace to occur
somewhere in the other trace, then function f is a mapping of x ∈ 2P to Fx.

19

Chapter 3

Runtime Verification of k-Safety
Hyperproperties in HyperLTL

In this chapter, we present the complexity results along with a polynomial-time algorithm
for the runtime verification of safety hyperproperties. We start by syntactically repre-
senting safety hyperproperties in HyperLTL and showing the monitorability of formulas
in HyperLTL. The complete set of safety hyperproperties falls in two categories based
on the Mh that characterizes a safety hyperproperty (see Equation 2.1). For the first
category—when Mh is bounded—we present a polynomial-time algorithm for a class of
k-safety hyperproperties and show that the problem is NP-hard for another class. For the
second category—when Mh is unbounded—we show that the runtime verification problem
is in general undecidable. We also present a sufficiency condition for the problem to be
decided in polynomial time.

3.1 k-Safety/Co-k-Safety Hyperproperties in Hyper-

LTL

In this section, we establish the connection between the set representation of k-safety and
co-k-safety hyperproperties with HyperLTL.

As mentioned earlier, our goal in this paper is to monitor k-safety hyperproperties at
run time. To monitor a k-safety hyperproperty, we essentially need to detect the bad
things (i.e., Mh in Equation 2.1) in the program under inspection across different execu-
tions. Since the bad things are characteristic of the sets of traces that are present in the

20

complement of a safety hyperproperty, in effect, we need to monitor the satisfaction of
these complement sets.

To clarify the above statement, consider the secret sharing scheme example given earlier
in Section 2.1:

Example. Suppose, program P introduced in Figure 2.1 is malicious and wants to
know the secret. Assuming that all the agents can show malicious behavior and eventually
reveal their share when queried for an input. The security policy that ‘the system cannot,
across all of its executions, output all n shares ’ (SSk) can be formulated as a k-safety
where k = n. This example shows that this k-safety is violated when in each of the M
finite trace prefixes, a state is reached which reveals the real share such that each of these
states is different, i.e. |M | different processes reveal the real share, and |M | = k.

Let ai (1 ≤ i ≤ k) be the proposition that share i is revealed. Then the following
formula in HyperLTL captures the above policy:

ϕSSk
= ∀π1 · · · ∀πk. (G ¬a1(π1, . . . , πk) ∨ . . . ∨ G ¬ak(π1, . . . , πk)) (3.1)

where π1, . . . , πk are trace variables.

As said above, one way to monitor the violation of ϕSSk
is to check for the satisfaction

of the bad things, that is, propositions a1 · · · ak at run time. If some ai becomes true, then
the monitor needs to track the satisfaction of aj propositions, where i 6= j. Notice that
here the satisfaction of some ai resembles the partial occurrence of the bad thing in ϕSSk

.
Thus, monitoring, ϕSSk

boils down to evaluation of its negation HyperLTL formula:

ϕCSSk
= ∃π1 · · · ∃πk. (F a1(π1, . . . , πk) ∧ . . . ∧ F ak(π1, . . . , πk))

at run time. The rest of this section explores the relation between hypersafety and co-
hypersafety properties along with their syntactic representations in HyperLTL.

3.1.1 Relation between Hypersafety and Co-hypersafety Prop-
erties

We now present a lemma that shows that the complement of a safety (respectively, co-
safety) hyperproperty S, denoted as S̄, is a co-safety (respectively, safety) hyperproperty.

Lemma 2. The complement of a safety hyperproperty is a co-safety hyperproperty and vice
versa. Also, the complement of a k-safety hyperproperty is a co-k-safety hyperproperty and
vice versa.

21

Proof. Let S be a safety hyperproperty and S̄ be its complement set. Let Mh be the bad
set of finite sets of finite traces, such that for each M ∈Mh and any T ∈ P(Σω), where
M ≤ T , we have T 6∈ S. This means that T ∈ S̄ and, hence, every infinite extension of M
is in S̄. Since any T ∈ S̄ can be associated with such an M , hyperproperty S̄ is indeed a
co-safety hyperproperty. In fact, the bad thing in S (i.e., set M) becomes the good thing
in S̄. Finally, if S is a k-safety hyperproperty, since |M | ≤ k, then S̄ trivially becomes a
co-k-safety hyperproperty. The other direction from co-hypersafety to hypersafety trivially
follows similar proof structure. �

The above lemma entails that the set Mh that characterizes a k-safety hyperproperty
(see Formula 2.1), also characterizes a co-k-safety hyperproperty C as follows:

∀T ∈ P(Σω).∀M ∈Mh. (M ≤ T) ⇒ (T ∈ C) (3.2)

The next lemma shows a characteristic that allows us to utilize Mh in terms of co-safety
properties.

Lemma 3. Let Mh be a set of finite sets of finite traces. Let M ∈Mh and m ∈M . It is
the case that the set:

↑ m = {mv | v ∈ Σω}
is a co-safety property.

Proof. First, ↑ m is a trace property, as it only includes infinite traces. Observe that any
trace in ↑ m is an infinite extension of m. This means that for any infinite trace t ∈↑ m,
there exists a finite trace m, such that any infinite continuation of m is an element of ↑ m.
Hence, ↑ m is a co-safety property. �

3.1.2 Representing k-safety and Co-k-safety Hyperproperties in
HyperLTL

Clarkson et al. [32] identified HyperLTLn as the class of HyperLTL formulas in which the
sequence of quantifiers at the beginning of the formula involves at most n− 1 alternations.
We now show that a subset of k-safety and co-k-safety hyperproperties can be expressed
as a HyperLTL1 formula.

Lemma 4. Consider a HyperLTL1 formula of the following form:

ϕCk
= ∃π1 · · · ∃πk. (φ1(π1, . . . , πk) ∧ · · · ∧ φk(π1, . . . , πk))

22

where π1 · · · πk are trace variables and φ1, . . . , φk ∈ LTLC. Such a formula represents a
co-k-safety hyperproperty Ck.

Proof. Let Ck be the hyperproperty (i.e., the set of sets of traces) that represents ϕCk
.

We will show that Ck is a co-k-safety hyperproperty. We need to show that for any
T ∈ Ck, there is a finite set of finite traces M , such that any infinite continuation of M
is in Ck. From the semantics of HyperLTL, we know that ∀T ∈ Ck, there is a Π such
that Π |=T ϕCk

. Therefore, there exist infinite traces t1, . . . , tk ∈ T that satisfy φ1, . . . , φk.
Since, φ1, . . . , φk are co-safety properties, there exists an mi (1 ≤ i ≤ k) for each ti |= φi,
such that

∀t ∈ Σω. (mi ≤ t ⇒ t |= φi)

Now observe that for the set M of all such mi, any infinite continuation T ′ of M will
satisfy ϕCk

and hence T ′ ∈ Ck. Hence, Ck is a co-safety hyperproperty. Finally, since ϕCk

involves only k trace variables, Ck is a co-k-safety hyperproperty. �

An immediate corollary of Lemma 4 is that some k-safety hyperproperties can also be
represented by a HyperLTL1 formula.

Corollary 1. Consider a HyperLTL1 formula of the following form:

ϕSk
= ∀π1 · · · ∀πk. (φ1(π1, . . . , πk) ∨ · · · ∨ φk(π1, . . . , πk))

where π1 · · · πk are trace variables and φ1, . . . , φk ∈ LTLS. Such a formula represents a
k-safety hyperproperty Sk.

Proof. First, notice that ¬ϕCk
in Lemma 4 will exactly have the syntax of ϕSk

, where
each ¬φi is a safety property. Now, observe that in Lemma 4, ϕCk

gives the syntactic
representation of the co-k-safety hyperproperty Ck. It follows that ¬ϕCk

will be the
syntactic representation of a k-safety hyperproperty Sk (from Lemma 2). �

Theorem 1. Conjunction (respectively, disjunction) of HyperLTL1 formulas, with at
most k quantifiers, given by ϕSk

in Corollary 1 (respectively, ϕCk
in Lemma 4), is a k-

hypersafety property (respectively, co-k-hypersafety property).

Proof. Let’s consider a disjunction of HyperLTL1 formulas

ϕC = ϕ1 ∨ . . . ∨ ϕn

where ϕi (1 ≤ i ≤ n) is a closed HyperLTL1 formula representing a co-k-hypersafety
property Ci as given by Lemma 4. The union of a set of co-safety hyperproperties remains

23

a co-safety hyperproperty, which translates to taking disjunction of the HyperLTL1 rep-
resentations of these properties. Hence, ϕC is a co-k-hypersafety.

Similarly, for k-hypersafety consider a conjunction of HyperLTL1 formulas

ϕS = ϕ1 ∧ . . . ∧ ϕn

where ϕi (1 ≤ i ≤ n) is a closed HyperLTL1 formula representing a k-hypersafety prop-
erty Si as given by Corollary 1. The intersection of a set of safety hyperproperties remains
a safety hyperproperty, which translates to taking conjunction of the HyperLTL1 repre-
sentations of these properties. Hence, ϕS is a k-hypersafety. �

3.2 Monitorability in HyperLTL

In this section, we define the notion of monitorability for HyperLTL formulas. Moreover,
we identify classes of HyperLTL1 formulas that are monitorable.

Intuitively, a formula is monitorable, if there exist cases where the valuation of the
formula can be computed at run time. For example, Ltl formula GFp is not monitorable,
since there is no way to tell at run time, whether or not in the future, p will be visited
infinitely often. Likewise, a HyperLTL2 formula of the form ϕ = ∀∃ψ is not monitorable
since one has to have all traces of the system to declare either a negative or positive verdict
about ϕ.

On the contrary, formulas in LTLS (e.g., Gp) may be evaluated to false at run time
and formulas in LTLC (e.g., Fp) may be evaluated to true at run time. Also, consider the
secret sharing scheme example given earlier in the chapter:

ϕSSk
= ∀π1 · · · ∀πk. (G¬a1(π1, . . . , πk) ∨ . . . ∨ G¬ak(π1, . . . , πk)) (3.3)

This formula is monitorable because, if a1 · · · ak propositions become true in at most any
k traces, then ϕSSk

can be declared as violated permanently for all future executions.

Inspired by the 3-valued linear temporal logic [14] (LTL3), we now define runtime
verification semantics for HyperLTL (denoted HyperLTL-3). The semantics utilize
three truth values B3 = {>,⊥, ?}, where ‘?’ means that given the current execution(s) at
run time, it is not possible to tell whether the formula is satisfied or violated; i.e., both
cases are possible in this or future executions.

24

Definition 10 (LTL3 semantics). Let u ∈ Σ∗ denote a finite word. The truth value
of an Ltl formula ϕ with respect to u, denoted by [u |= ϕ], is an element of the set
B3 = {>,⊥, ?}, and is defined as follows:

[u |= ϕ] =

> if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 2 ϕ
? otherwise

�

Definition 11 (HyperLTL-3 semantics). Let M ∈ P∗(Σ∗) be a finite set of finite traces.
The truth value of a HyperLTL closed formula ϕ with respect to M , denoted by [M |= ϕ],
is an element of the set B3 = {>,⊥, ?}, and is defined as follows:

[M |= ϕ] =

> if ∀T ∈ P(Σω). (M ≤ T).Π |=T ϕ

⊥ if ∀T ∈ P(Σω). (M ≤ T).Π 6|=T ϕ

? otherwise

�

Hence, a HyperLTL formula ϕ is monitorable, if and only if, there exists a finite set
of finite prefixes M , for which a future infinite extension may result in valuation > or ⊥.
Otherwise, the formula is not monitorable; i.e., evaluation of any M results in ?.

Definition 12 (monitorability). A HyperLTL formula ϕ is monitorable iff

∃M ∈ P∗(Σ∗). [M |= ϕ] ∈ {⊥,>} �

In Definition 12, if ϕ is of the form ∀π.φ(π) or ∃π.φ(π), then obviously, the necessary
condition for ϕ to be monitorable is that the inner Ltl formula φ must be monitorable.
Table 3.1 (respectively, Table 3.2) refers to universally (respectively, existentially) quan-
tified HyperLTL1 formulas and summarizes their monitorability. We present the for-
mula along with the type of Ltl property the trace variables are quantified over. The
formulas considered here, are formed by Boolean and temporal operators applied to for-
mulas in LTLS (respectively, LTLC). By exploring the monitorability of various formulas
in HyperLTL1, we see that the set of monitorable formulas in HyperLTL1 includes

25

Formula Property of φ > ⊥ Runtime evidence (proof)

∀π. φ φ ∈ LTLS 5 3 ∃M.∃u ∈M. [u |= φ] = ⊥
∀π. φ φ ∈ LTLC − LTLS 5 5 @M.∃u ∈M. [u |= φ] = ⊥
∀π1 . . . ∀πk. (φ1(π1) ∨ · · · ∨
φk(πk))

φ1, . . . , φk ∈ LTLS 5 3 ∃M.∃u1 . . . uk ∈ M. [u1 |=
φ1] = ⊥ ∧ · · · ∧ [uk |= φk] = ⊥

∀π1 . . . ∀πk. (φ1(π1) ∧ · · · ∧
φk(πk))

∃i(1 ≤ i ≤ k). φi ∈
LTLS

5 3 ∃M.∃ui ∈M. [ui |= φi] = ⊥

∀π1 . . . ∀πk. (φ1(π1) ∨ · · · ∨
φk(πk))

∃i(1 ≤ i ≤ k). φi 6∈
LTLS

5 5 @M.∃ui ∈M. [ui |= φi] = ⊥

∀π1.∀π2.(φ1(π1) Uφ2(π2)) φ1, φ2 ∈ LTLS 5 3 ∃M.∃u1, u2 ∈ M. [u1, u2 |=
φ1(u1) Uφ2(u2)] = >

Table 3.1: Monitorability of universally quantified HyperLTL1 formulas.

properties outside of k-safety and co-k-safety hyperproperties. For example, the formula
∀π1. ∀π2. (Gp(π1)∧Fq(π2)) is neither a safety hyperproperty nor a co-safety hyperproperty.
However, it is monitorable and can be declared violated at run time.

Along with this, we provide the evidence that can show whether a formula can be
satisfied or falsified at run time, based on Definition 12. Observe that this evidence is, in
fact, the proof of monitorability of the formula as well. For example:

• For the formula ϕ = ∀π. φ (first row of Table 3.1), if φ = Gp (i.e., an Ltl safety prop-
erty), then a finite trace u = p . . .¬p violates φ. The existence of such a monitorable
finite trace in a set of finite traces, i.e., M = {p . . .¬p}, violates ϕ as well. Hence, ϕ
is monitorable as well. Such a formula, however, cannot be declared satisfied at run
time since that would require monitoring every trace in the infinite domain of π.

• In Table 3.1, for the formula in the third row, the runtime evidence that violates the
formula is a set of finite traces such that every property φ1, . . . , φk is violated by a
finite trace in this set. The secret sharing example (see Section 3.1) corresponds to
this property which is violated if a set of finite traces reveal each of the k shares.
Also, GMNI and OD fall in this category of formulas.

• In Table 3.2, formulas such as ϕ = ∃. φ, if φ = Fp, then a finite trace . . . p satisfies φ
and hence, ϕ. Even though ϕ is monitorable, it cannot be falsified at run time.

26

Formula Property of φ > Runtime evidence (proof) ⊥
∃π. φ φ ∈ LTLC 3 ∃M. ∃u ∈M. [u |= φ] = > 5

∃π. φ φ ∈ LTLS − LTLC 5 @M. ∃u ∈M. [u |= φ] = > 5

∃π1 . . . ∃πk. (φ1(π1) ∧ · · · ∧
φk(πk))

φ1, . . . , φk ∈ LTLC 3 ∃M. ∃u1 . . . uk ∈ M. [u1 |=
φ1] = > ∧ · · · ∧ [uk |= φk] = >

5

∃π1 . . . ∃πk. (φ1(π1) ∨ · · · ∨
φk(πk))

∃i(1 ≤ i ≤ k). φi ∈
LTLC

3 ∃M. ∃ui ∈M. [ui |= φi] = > 5

∃π1 . . . ∃πk. (φ1(π1) ∧ · · · ∧
φk(πk))

∃i(1 ≤ i ≤ k). φi 6∈
LTLC

5 @M. ∃ui ∈M. [ui |= φi] = > 5

∃π1.∃π2.(φ1(π1) Uφ2(π2)) φ1, φ2 ∈ LTLC 3 ∃M. ∃u1, u2 ∈ M. [u1, u2 |=
φ1(u1) Uφ2(u2)] = >

5

Table 3.2: Monitorability of existentially quantified HyperLTL1 formulas.

Note that, the satisfaction (respectively, violation) of a HyperLTL formula with a
∀ (respectively, ∃) quantifier cannot be declared for any program if the domain of the
bounded trace variable is infinite.

Observe that the formulas on highlighted rows in both tables are not monitorable.
The third row formulas, in Tables 3.1 and 3.2, correspond to monitorable k-safety and
co-k-safety hyperproperties, respectively. The fourth formula, in Table 3.1 (respectively,
Table 3.2) is an example of a formula that is neither a k-hypersafety nor a co-k-hypersafety
property if ∃i, j. φi ∈ LTLS and φj 6∈ LTLS (respectively, ∃i, j. φi ∈ LTLC and φj 6∈ LTLC).

Note that, these tables do not capture all formulas in HyperLTL1, and only shows
some relevant ones pertaining to monitorability of k-safety hyperproperties. However, the
monitorability of all other formulas can be derived from Definition 12 and the given tables.

In Table 3.3, we take disjunctions and conjunctions of formulas from Tables 3.1 and 3.2.
The runtime evidence for whether a formula of the given syntactic form can be declared
satisfied or violated at run time follows trivially.

Theorem 2. Every k-safety hyperproperty and every co-k-safety hyperproperty that satis-
fies Theorem 1 is monitorable.

Proof. The proof follows from whether ∃M ∈ P∗(Σ∗) satisfies Definition 12 for a k-safety
or co-k-safety hyperproperty, that is syntactically represented in HyperLTL1 by formulas

27

Formula Property of φ > ⊥
∀π1. φ1 ∨ ∃π2. φ2 φ1 ∈ LTLS, φ2 ∈ LTLC 3 5

∀π1. φ1 ∧ ∃π2. φ2 φ1 ∈ LTLS, φ2 ∈ LTLC 5 3

∀π1. φ1 ∨ ∃π2. φ2 φ1 ∈ LTLS, φ2 6∈ LTLC 5 5

∀π1. φ1 ∧ ∃π2. φ2 φ1 6∈ LTLS, φ2 ∈ LTLC 5 5

Table 3.3: Monitorability of HyperLTL formulas with conjunction or disjunction of for-
mulas from Tables 3.1 and 3.2

given in Theorem 1. The runtime evidence for these hyperproperties in Tables 3.1 and 3.2
shows that such an M indeed exists for every k-safety and co-k-safety hyperproperty. �

We note that the above classification also includes HyperLTL1 formulas that are
monitorable, but are neither k-hypersafety nor co-k-hypersafety.

Theorem 3. The set of all monitorable HyperLTL1 formulas is strictly larger than the
set of monitorable k-hypersafety and co-k-hypersafety properties. �

3.3 Complexity of Verification of Safety Hyperprop-

erties at Run Time

In this section, we consider safety hyperproperties in general, not just k-safety hyperprop-
erties. An example from security is as follows, “for any k, a system cannot output all k
shares of a secret from a k-secret sharing.”

SecS =
⋃
k

SSk

An important characteristic of this class of hyperproperties is that they are refinement
closed or subset closed, i.e., any subset of an element of the set characterizing safety
hyperproperties is also in the set. This class of hyperproperties includes the whole class of
k-safety hyperproperties as well as some liveness hyperproperties.

Until now we discussed and showed polynomial-time algorithms for safety hyperprop-
erties with bounded ‘k’ and Mh with bounded cardinality. Here, we discuss complexity
class for when k becomes unbounded or when Mh has unbounded cardinality.

28

3.3.1 Undecidability

Here, we show that a sound and complete runtime monitoring algorithm to check for the
satisfaction or violation of a safety hyperproperty with unbounded number of sets of bad
traces is unachievable. Let us call the runtime verification of such a hyperproperty RV .

Given a system that generates a finite set of finite traces T and a safety hyperproperty,
S, characterized by Mh, decide whether the property is violated.

Our reduction is from a fixed arbitrary undecidable language.

Theorem 4. Runtime monitoring of co-safety hyperproperties and safety hyperproperties
is in general undecidable.

Proof. Towards this end, we present a mapping from an arbitrary instance of an unde-
cidable language LU to an instance of RV in which the Mh characterizing a safety hy-
perproperty has unbounded cardinality. Let LU = {w0, w1, . . . } be a known undecidable
language.

First, we use a function f : w → T , such that w ∈ Σ∗ and T ∈ P∗(Σ∗) to associate
with every word w a finite set of finite traces over the same alphabet. The function f is
such that it maps a word w to the set {w}. Note that f is a computable function. We will
now construct the safety hyperproperty S, characterized by an infinite set of sets of finite
traces Mh. Let us say that Mh =

⋃∞
i=0{f(wi) | wi ∈ LU}, contains the bad set of finite

traces corresponding to the word wi, i ≥ 0. Hence, the RV problem reduces to showing
the undecidability of the following language: LS = {T | f(w) ≤ T,∀w ∈ LU}

We will show that if LS is decidable then the language LU is decidable.

Assume that there exists a decider RV for the language LS.

• Given input word w.

• Now, construct a new TM D as follows:

• Run RV on f(w), i.e., a finite set of finite traces.
- If RV accepts, then accept
- If RV rejects, then reject

Clearly, D is a decider for the language LU, which is a contradiction. Hence, RV is also
undecidable. �

29

3.3.2 NP-hardness for a Subclass of k-safety Hyperproperties

For a subclass of k-safety hyperproperties, we now show that the complexity class of solving
the runtime verification decision problem RV is NP-hard. Our reduction is from the
SUBSET SUM problem:

Given a set of n natural numbers X = {x1, x2, . . . , xn} and a number Y , is there a
subset of X that adds up exactly to Y ?

Theorem 5. The runtime verification problem for certain safety hyperproperties is NP-
hard.

Proof. Consider a k-hypersafety Sk, which says that ‘Security is violated if the outputs
from multiple executions of the program exactly add up to number Y ′ ∈ N’. The set Mh

that characterizes this hyperproperty contains sets with elements that add up to Y . Let
us call the decision problem for this instance RVk.

Toward this end, we present a mapping from an arbitrary instance of the SUBSET
SUM problem to RVk:

Assume that so far we have seen a finite set of finite traces M . Corresponding to each
xi ∈ X, let there exist a finite trace ti ∈M that outputs value v(ti) = xi, and let Y = Y ′.

We now show that the instance of SUBSET SUM has a solution iff there exists an
answer to the runtime verification problem for the given instance, i.e.,

∃A ⊆ X .
∑
i∈A

xi = Y ⇐⇒ [M |= Sk] = {>,⊥} (3.4)

Now, we distinguish two cases:

(⇒) Assume that A ⊆ X is chosen such that
∑

i∈A xi = Y . Clearly, we can see that
∃M ′ ⊆ M such that ∀t ∈ M ′, v(t) ∈ A then [M |= Sk] = ⊥. Note that we can never
report [M |= Sk] = > as some T ∈ P(Σω) .M ≤ T might still violate Sk.

(⇐) Let us say a decision [M |= Sk] = ⊥ is given as ∃M ′ ⊆M such that
∑

t∈M ′ v(t) =
Y . We can report a ‘yes’ to the SUBSET SUM problem since a set A must exist that
exactly contains every v(t), ∀t ∈ M ′. Since every v(t) is an element of X, we have a set
A ⊆ X such that

∑
i∈A xi = Y .

Hence, the runtime verification problem for a subclass safety hyperproperties is NP-
hard. �

30

3.3.3 A Sufficient Condition for Polynomial-Time Runtime Ver-
ification

Here, we present a sufficiency condition for runtime verification of a safety hyperproperty
in polynomial time.

First, we use a function to describe the ‘badness’ of a finite trace. Essentially, this
badness allows us to measure the contribution of a single finite trace in making a finite set
of finite traces violate the given safety hyperproperty. Since, in security policies a single
trace itself might not be bad at all, but in a set of finite traces it may be bad, this function
also takes into account a context T , that is a finite set of finite traces, when giving a value
to a single trace.

Definition 13. A function fT : Σ∗ → Z∗ maps a finite trace in Σ∗ to a value in Z∗ for a
context T ∈ P∗(Σ∗). The function f is such that for a given trace t ∈ Σ∗, fT (t) ≤ fT (t′)
for every t′ ∈ Σ∗. t ≤ t′ and fU(t) ≤ fV (t) for any U, V ∈ P∗(Σ∗) where U ≤ V .

Here, Z∗ represents the set of all non-negative integers and the mapping is to Z∗ since
the domain of all finite traces is countably infinite. Next, we can evaluate the ‘badness’ of
the given finite set of finite traces by summing the values given to each individual trace in
the set. Here too, the range is the set of non-negative integers.

Definition 14. Let F : P∗(Σ∗)→ Z∗ be a monotone function, where F (T) =
∑

t∈T fT (t).
Note that for all U, V ∈ P∗(Σ∗) if U ≤ V , then F (U) ≤ F (V).

Using the functions defined above, a safety hyperproperty can be mapped to set of
values on the non-negative integer number line.

Running Example Consider the following example of a safety hyperproperty: ‘Over
every series of executions of system, the quantity of information leak should not exceed x
bits’. A system in which the sum of bits of information leak exceeds x violates the policy.
For every trace t that leaks some q number of bits, fT (t) = q. For a given set of traces,
F (T) evaluates to the total number of bits leaked by this set.

Definition 15. Let H : P(P∗(Σ∗))→ P(Z∗) be a function mapping a set of finite sets of
finite traces to a set of non-negative integers. Hence, any safety hyperproperty characterized
by Mh defines a set of bad points on the non-negative integer number line given as follows:

H(Mh) = {F (M) : M ∈Mh}

31

The following lemmas show that for a given safety hyperproperty and a given finite
set of finite traces, the runtime verification problem can be solved in polynomial time, in
the size of the given set of traces and the HyperLTL formula for the hyperproperty, if
the mapping of the safety hyperproperty to a range in the set of non-negative integers is a
single interval going up to infinity.

Lemma 5. For any given hypersafety S, characterized by Mh of bounded cardinality,
and a given finite set of finite traces T ⊆ Σ∗, if there exists a function fT computable
in polynomial time that satisfies Definition 13 such that ∃x ∈ Z∗ : inf H(Mh) = x, and
∀y > x, y ∈ H(Mh), then [T |= S] can be evaluated in polynomial time in the size of the
input traces T .

Proof. From Definition 14, F (·) is also a computable function in polynomial time since
it is simply a summation of f·(t) of each trace t in the given finite set of traces. Let
H(Mh) = [x,+∞), for some x ∈ Z∗ and the given Mh. Now, to verify if T violates S, i.e.,
[T |= S] = ⊥, we need to check if ∃T ′ ∈ P∗(Σ∗) where T ′ ≤ T , such that F (T ′) ∈ H(Mh).
From Definition 14, if T ′ ≤ T , then F (T ′) ≤ F (T). Hence, if there does exist a T ′ such that
F (T ′) ∈ H(Mh), then F (T) ∈ H(Mh) because every number > F (T ′) is also in H(Mh).
Therefore, checking F (T) ≥ x is sufficient to verify violation. This algorithm clearly runs
in polynomial time. �

In the running example, H(Mh) of such a policy is [x,∞) which can be evaluated in
polynomial time.

3.4 Monitoring Algorithm

In this section, we present our algorithm for monitoring k-safety and co-k-safety hyper-
properties given by Theorem 1. We start with the sketch of the algorithm.

Algorithm sketch Our algorithm has three key elements. Consider the formula given
by Corollary 1.

• In order to monitor such a formula, due to the existence of trace quantifiers, each
sub-formula φi, where 1 ≤ i ≤ k, needs to be monitored independently, possibly
across different executions. For example, in OD, if the initial state of any two pairs
of executions correspond to a low input, then the monitor must be able to identify the

32

initial state of an execution so that it can watch the rest of both executions to ensure
that only low outputs are produced. Thus, we assume that our monitoring algorithm
is notified when an execution terminates and when a new execution commences.

• In order for the monitor to memorize and combine the independent evaluation of
each sub-formula across different executions at run time, we utilize a Petri net (see
Fig. 3.1 for secret sharing monitor). That is, in the formula given by Corollary 1,
on-the-fly evaluation of each φi (achieved by a component that monitors φi) becomes
the input to a transition of the Petri net. When all inputs are enabled, the transition
executes, indicating that the security policy is violated.

• If there exists a trace relation ∼f,p in the formula, then monitoring an execution may
depend on evaluation of past and future executions. Hence, it cannot be monitored
in isolation. To tackle this problem, we propose a formula progression technique,
which constructs a formula to be monitored or progressed in the future executions.
In such cases, the monitor structure evolves over time (see Fig. 3.3).

In the remainder of this section, we first describe our progression technique in Section 3.4.1.
Then, Section 3.4.2 introduces our monitoring algorithm. For properties given in Tables
3.1-3.3, that are not k-safety or co-k-safety hyperproperties, we present the monitoring
algorithm in Section 3.4.3 by expanding on the presented technique.

q0
‘?’

q1
‘⊥’

a1

¬a1
q0
‘?’

q1
‘⊥’

a2

¬a2 q0
‘?’

q1
‘⊥’

ak

¬ak

q⊥

Figure 3.1: Monitor of secret sharing policy.

33

3.4.1 Progression for Trace Relations

Recall that in Section 2.4.3, we introduced the syntactic operator ∼f,P to address the
limitations presented by the operator =P . An example of the use of this operator in a
HyperLTL formula is the sixth formula in Table 3.2 which is a co-k-safety hyperproperty.
It can be expressed in the syntactic form given by Lemma 4 as ∃π1.∃π2.(π1 ∼f,P π2), where
f maps the last observed φ1 in trace π1 to Xφ2.

Unlike existing techniques for formula rewriting [48] and progression [6], which split a
formula into goals for the current state and future goals, our formula progression method
constructs a formula for execution traces based on the goals satisfied by the currently seen
executions. Formally, let {u1, u2, . . . } be a set of finite traces (representing a set of program
executions at run time) and

π1 ∼f,P π2 ∼f,P · · · ∼f,P πn

be a trace relation in some HyperLTL1 formula ϕ to be monitored. We define the pro-
gression function Pg : 2P → LTL inductively as follows:

Pg(u1[0]) = f(u1[0] ∩ P)

Pg(uj[i+ 1]) = Pg(uj[i]) ∧ Xi+1f(uj[i+ 1] ∩ P) if (1 ≤ i) ∧ (1 ≤ j ≤ n− 1)

Pg(uj+1[i]) = Pg(uj[length(uj)]) ∧ f(uj+1[i] ∩ P) if (i = 0) ∧ (1 < j < n− 1)

On observing an event of any trace, the progression function is applied according to
one of the three cases:

• The first case handles the very first event in the very first trace at run time.

• The second case handles progression within a trace, adding i + 1 number of next
operators applied on f .

• The third case shows how progression is transferred from one execution to the next
(up to n times for each trace). Thus, the progression of every new trace depends
upon the progression of all the previously observed traces.

Essentially, since the trace relation involves a set of n trace variables in ϕ, the progression
function is applied to every subset of size n of the set of program executions. For instance,
for monitoring a 2-safety hyperproperty over m execution traces, Pg needs to be applied(
m
2

)
times.

34

3.4.2 Algorithm

Let ϕ = ∀π1 · · · ∀πk. φ1 ∨ · · · ∨ φk be the HyperLTL1 formula to be monitored. We first
categorize formulas that require the progression logic and those that do not, as they will
be handled differently. A sub-formula φi, 1 ≤ i ≤ k, is called observation independent if it
does not contain the ∼f,P relation. For example, all the sub-formulas in the secret sharing
scheme example are observation independent. Otherwise, the sub-formula is observation
dependent. For example, in OD the formula π ∼f,L π′ is observation dependent. An
observation-independent formula is monitored by an LTL3 monitor.

Definition 16 (LTL3 Monitor [14]). Let φ be an Ltl formula over alphabet Σ. The
monitorMφ of φ is the unique deterministic finite-state automaton (DFA) (Σ, Q, q0,∆, λ),
where Q is a set of states, q0 is the initial state, ∆ ⊆ Q×Σ×Q is the transition relation,
and λ is the function λ : Q→ B3, such that for any u ∈ Σ∗:

[u |= φ] = λ(∆(q0, u))

�

Bauer et al. [14] propose an automated technique to construct such a monitor for a
given Ltl formula. For example, Fig. 3.2 shows the LTL3 monitor for formula aU b.

q⊥

q0

q>

a ∧ ¬b

¬a ∧ ¬b b

true true

Figure 3.2: LTL3 monitor for formula aU b.

For an observation-dependent sub-formula, first, a finite trace progresses the formula
using the progression function Pg and then an Ltl monitor is constructed for the pro-
gressed formula. As mentioned in the algorithm sketch, we use Petri nets to combine
the result of evaluation of inner Ltl formulas in a HyperLTL1 formula across multiple
executions.

35

Definition 17. A (1-Safe) Petri net is defined by a triple S = (L,Σ,∆) where L is a set
of places, Σ is the alphabet, and ∆ ⊆ 2L ×Σ× 2L is a set of transitions. A transition τ is
a triple (•τ, σ, τ •), where •τ is the set of input places of τ and τ • is the set of output places
of τ . �

Algorithm 1 provides an online monitoring procedure for an input k-safety HyperLTL1

formula ϕ with the syntax in Corollary 1. It outputs a value in {?,⊥}. Recall that a k-
safety formula can never be evaluated to > at run time1.

We utilize the ‘termination-sensitive’ policy as a running example to demonstrate the
steps of our algorithm:

“If any execution of a machine reaches a terminating state, then no two other
executions starting from the same initial state should reach differing accepting
state”

This policy is the following 3-safety hyperproperty:

ϕ = ∀π1∀π2∀π3 . Gt(π1) ∨ π2 ∼f,P π3

where t is a proposition for ‘not in terminating state’ and function f captures the latter part
of our policy. In this formula, the set of observation-independent sub-formulas is α = {Gt}
and the set of observation-dependent sub-formulas is β = {π2 ∼f,P π3}. Fig. 3.3 shows
the Petri net that would be created on observing n independent executions. Also, Fig. 3.1
shows the monitor for secret sharing scheme, for which the corresponding HyperLTL1

formula does not include any observation-dependent sub-formulas.

We now describe the algorithm in detail:

1. (Algorithm 1: Line 1) Initially, the set of places in the Petri net (which will be
constructed on the fly) contains a final place q⊥ denoting the violation of ϕ and the
output λ is unknown (‘?’).

2. (Algorithm 1: Lines 2-6) For every observation-independent sub-formula, an LTL3

monitor (a component of the Petri net) is constructed using construct component

(Algorithm 2). The leftmost net in Fig. 3.3 (for Gt) and all the nets in Fig. 3.1
(for each G¬ai) are constructed in this step. Then, for every observation-dependent

1Unless all program traces are examined, which would essentially be exhaustive model checking and
not runtime verification.

36

sub-formula µ, a new state qµ is added to the Petri net, which is also an input place
for a transition to the output place q⊥. For example, this results in place qµ for
sub-formula µ = π2 ∼f,P π3 in Fig. 3.3.

3. (Algorithm 2: Lines 1-13) The procedure construct component creates components
of the Petri net. It creates an LTL3 monitor for the first argument, the states and
transitions of which are also the places and transitions of the Petri net, respectively
(Lines 3-4). If the second argument µ is true, then the state q of this component
that evaluates to ⊥ becomes an input place for a transition to the output place q⊥
(e.g., in the net that corresponds to Gt in Fig. 3.3) (Lines 9-11). Otherwise, q is
merged with an existing state qµ using procedure merge. This procedure makes any
incoming or outgoing transitions to q now point to or from qµ, respectively. The state
q is then removed (Lines 6-8). Every component is added to a list of components
comps. Hence, in our example, after this step comps contains only MGt (Line 12).

4. (Algorithm 1: Lines 8-11) The monitor continuously gets an event e for evaluation
(using get input) from the system under inspection. If the current event marks the
beginning of a new trace, then function reset re-initializes every component in the
list comps by moving the token to their initial state. We note that in Lines 16 and
18, components whose current state evaluates to ‘?’ or ‘>’ are removed from comps.
Next, a new set β′ is initialized to β to perform progression on formulas in β′ without
modifying the original formulas.

5. (Algorithm 1: Lines 12-18) On getting our first event (and thereafter on every event),
the function evaluate performs transitions on every component in comps from the
current state and obtains a new state q. If q evaluates to ⊥, then we check for
whether q is actually one of the qµ states. This is done to remove from our list any
component whose ‘⊥’ state is reached. In our example, since we currently have only
monitor MGt in comps, if indeed our event was ¬t, then we remove this component
from comps.

6. (Algorithm 1: Lines 19-20) Next, we iterate over all observation-dependent sub-
formulas in β′ and β, such that µ′ ∈ β′ is the corresponding formula for µ ∈ β.
Formula µ′ is progressed over e (and stored within β′ itself) by applying the pro-
gression function Pg on µ′. By doing this, we are able to capture according to our
running example, the initial state (ij) and subsequently the accepting state (oj) for
an execution.

7. (Algorithm 1: Lines 21-22) Then, progression complete() function returns whether
or not the trace relation involving µ′ has progressed for all the trace variables it was

37

defined over. If so, an LTL3 monitor is constructed for the progressed formula and
added to the Petri net. In the example, when progression completes for the second
trace (similarly for subsequent traces), then a new component is created for the
formula i2 ∧ XX . . . o2, whose state q, where λ(q) = ⊥, is merged with qµ, where
µ = π2 ∼f,P π3 (recall that this state was introduced initially, for every µ ∈ β).

8. (Algorithm 1: Lines 23-24) If all the input places of the transition to the output
place q⊥ contain a token, the transition executes and the monitor returns with the
final evaluation ⊥, meaning that the formula has been falsified.

q0
‘?’

q1
‘⊥’

¬t

t
q0
‘?’

q1
‘?’

qµ

‘⊥’

i2

XX . . . o2

o2

q0
‘?’

q1
‘?’

i1

XX . . . o1

o1

q0
‘?’

q1
‘?’

in

XX . . . on

on

q⊥

Figure 3.3: Petri net for property termination-sensitive

Observe that, monitoring a co-k-hypersafety follows an identical algorithm except that
(1) the state q⊥ is replaced by q>, denoting satisfaction, (2) all ⊥’s become >’s, and (2)
the token is placed in the final state of a component if it evaluates to >.

38

Theorem 6. Let ϕ be a k-safety HyperLTL1 formula. Algorithm 1 returns ⊥ for an
input set M ∈ P∗(Σ∗) iff [M |= ϕ] = ⊥.

Proof. Let ϕ = ∀π1 . . . ∀πk. φ1(π1) ∨ · · · ∨ φk(πk).

• (⇒) For an input set M ∈ P∗(Σ∗), where [M |= ϕ] = ⊥, by contradiction, let us
assume that Algorithm 1 returns ‘?’. The antecedent implies that for all φi where
(1 ≤ i ≤ k), there exists m ∈ M such that any extension of m violates φi. If
the algorithm has not yet returned ⊥, then there exists at least one component
Mφ of the Petri net that has not yet reached state q such that λφ(q) = ⊥. From
Definition 16, we know that the component Mφ in the Petri net reports violation if
[m |= φi] = ⊥ contradicting that even though m is observed, component Mφ does
not report violation. Therefore, if [M |= ϕ] = ⊥, then Algorithm 1 returns ⊥.

• (⇐) If Algorithm 1 returns ⊥, by contradiction, let us assume that [M |= ϕ] 6= ⊥.
The antecedent implies that all input places qφ that have a transition to q⊥, i.e.,
(q, true, q⊥), contain a token. By construction of component Mφ (Definition 16), on
running m over Mφ state qφ, such that (qφ, true, q⊥), is reached iff [m |= φ] = ⊥.
Therefore, for each φi, where (1 ≤ i ≤ k), there exists mi ∈M , such that [m |= φi] =
⊥. Therefore, for a trace assignment Π and ∀T ∈ P(Σω) such that πi → mit for some
t ∈ Σω, we have mit ∈ T , and for all 1 ≤ i ≤ k, we have Π 6|=T ϕ. This contradicts
the assumption that [M |= ϕ] 6= ⊥ from Definition 11. Hence, if Algorithm 1 returns
⊥ then [M |= ϕ] = ⊥.

�

Observation 1. The complexity of Algorithm 1 to monitor a k-safety HyperLTL1 for-
mula ϕ is

O

((
n

k

)
+
∑
φ∈ϕ

xφ

)
where n is the number of finite executions and xφ is the complexity of synthesizing a monitor
for Ltl sub-formula φ in ϕ. �

3.4.3 Monitoring beyond k-hypersafety

In the previous section, we showed the monitoring procedure for a k-safety (respectively, co-
k-safety) hyperproperty such as the one given in the third row of Table 3.1 (respectively,

39

Table 3.2). Monitoring of other monitorable HyperLTL1 formulas, such as the ones
described in Table 3.3, is straightforward using Algorithm 1:

• Formulas that are conjunctions or disjunctions of a safety hyperproperty with a co-
safety hyperproperty, should be first reduced to monitoring of the monitorable part
of the formula. For example, the formula ∀π1. φ1 ∨ ∃π2. φ2, where φ2 is a co-safety
property, can be reduced to monitoring of only ∃π2. φ2. This is because a formula
with a ∀ quantifier can never be declared satisfied and due to conjunction it reduces
to checking for satisfaction of φ2 by some trace. Hence, Algorithm 1 will monitor
the reduced part only. Similarly, for the second row of Table 3.3, since φ1 is a safety
property, its violation by a trace can be detected, which is sufficient to falsify the
complete formula.

• Notice that, conjunctions or disjunctions of monitorable k-safety HyperLTL1 for-
mulas can be monitored by enabling the transition to the final state of the Petri net
either when all of the input places contain a token or at least one input place contains
a token, respectively. Examples of such formulas are in row 4 of Tables 3.1 and 3.2.

40

Algorithm 1: k-safety hyperproperty monitoring algorithm

Input: ϕ = ∀π1 · · · ∀πk. φ1 ∨ · · · ∨ φk, α, β
Output: λ ∈ {?,⊥}
L := {q⊥}; T := {}; λ :=?; comps := {};1

forall φ ∈ α do2

construct component(φ, true);3

forall µ ∈ β do4

L := L ∪ {qµ} ;5

T := T ∪ {(qµ, true, q⊥)} ;6

while true do7

get input(eij, new trace);8

if new trace = true then9

reset (comps);10

β′ := β;11

forall Mφ ∈ comps do12

q := evaluate(Mφ, eij) ;13

if λφ(q) = ⊥ then14

if ∃µ ∈ β . q = qµ then15

comps := comps− {Mµ};16

else17

comps := comps− {Mφ};18

forall µ′ ∈ β′ and µ ∈ β do19

µ′ := Pg(eij);20

if progression complete(µ′, µ) then21

construct component(µ′, µ);22

if (•τ, true, {q⊥}•) is enabled then23

λ := ⊥; return λ ;24

41

Algorithm 2: Constructs components of the Petri net

construct component(Formula φ, Formula µ) {1

Mφ := (Σ, Qφ, qφ0 ,∆
φ, λφ) (see Definition 16);2

L := L ∪ Qφ;3

T := T ∪ ∆φ;4

Let q ∈ Qφ, where λφ(q) = ⊥ (only one such state is in Q [14]);5

if µ 6= true then6

merge(q, qµ);7

T := T − {(qµ, qµ)};8

else9

T := T ∪ (q, true, q⊥) ;10

T := T − {(q, q)};11

comps := comps ∪ {Mφ};12

}13

3.5 Implementation and Results

In this section, we evaluate Algorithm 1.

3.5.1 Experimental Settings

Parameters and data sets We use a dataset collected for a study at Microsoft Re-
search [53] as well as sets of synthetically generated traces. The dataset involves GPS
location data of 21 users taken over a period of eight weeks in the region of Seattle, USA.
Besides the Microsoft Research dataset, we also use some synthetically generated datasets
using Poisson, normal, and uniform distributions to ensure the robustness of our experi-
ments. Each trace, in all of these datasets, corresponds to the continuous movement of a
single user on a single day. The rationale behind using such traces is that a server might
log locations of a user from the time a user opens an application until the time the user
closes it. The traces are anonymized, that is, the trace itself does not reveal the identity
of the user it belongs to. Each dataset consists of up to 200 finite traces with different
lengths.

42

Security policies Another parameter we experiment with is three k-safety hyperprop-
erties that specify the security, privacy, and anonymity of a user’s GPS location data:

• Anonymity (GMNI) - If the initial location for a set of anonymized traces remains
the same, all traces must eventually reach the final location reported by any trace:

∀π1.∀π2. ((GλH(π1) ∧ GλH(π2) ∧ π1[0] =L π2[0]) ⇒ π1 ∼f,L π2)

where f maps x, the final location in a trace, to Ltl formula F(x).

• Privacy (OD) - Assuming the traces are deanonymized, the locations visited by a
user must be the same in all the traces of the same user.

∀π1. ∀π2. (π1 ∼f,L π2)

where function f maps every location x to F(x).

• Security - Suppose that visiting a set of k locations, uniquely identifies some secure
information about a user. Then, over all traces the user must not report having
visited all of these k locations.

∀π1 · · · ∀πk. (¬Fl1 ∧ · · · ∧ ¬Flk)

where {li | 1 ≤ i ≤ k} is the set of locations that reveals the secure information.

Metrics The metrics used for evaluation are (1) the total number of generated Petri
net components, (2) the length of the progressed formulas, and (3) running time of the
monitor. We note that there is a direct correlation between the number of components in
the Petri net and the length of the progressed formula with the memory and time overhead
to report a violation or satisfaction. With increasing number of components, the memory
consumption increased and vice versa. Similarly as the length of progressed formulas grew
bigger it increased the time to generate the components on-the-fly.

3.5.2 Results and Analysis

For each of the distributions, we generate 100 synthetic datasets for evaluation. The plotted
values are the means of the results obtained from all the datasets, for each distribution.
We plot the standard error within the figures itself.

43

Figure 3.4: Number of Petri net components generated before detection of first violation

Number of Petri net components Fig. 3.4 shows that the number of components
generated for the GMNI property before the first violation is detected is greater than that
for property OD. This is because GMNI is less strict than OD since the dependency is
only on the first and last observed locations, whereas OD requires every location visited
by a user in one trace to be visited in every other trace. This results in the property OD
being violated in fewer observed traces. For the security property which consists of only
observation-independent sub-formulas, the number of components remains a fixed number
k for any number of traces and violations. The difference between the result reported for
the normal distribution and the other datasets, for the GMNI property, is high possibly
due to the reduced probability of seeing the last location of a trace in another trace. For
the OD property, the probability of seeing all the locations of one trace in another trace is
reduced further for both normal and Poisson distributions. Hence, we see that a detection
is detected sooner resulting in fewer number of components being created.

To analyze the number of components that would be created if all the traces were eval-
uated by the monitor, we let the algorithm report all the violations instead of terminating
at the first violation. We evaluated the violation of property GMNI. It was seen that
the number of violations reported were close to twice the number of components created—

44

Figure 3.5: Total components vs. violations

which was less than 50% of the traces evaluated (see Fig. 3.5). Here we see that for the
normal distribution the number of components created is much greater as compared to the
uniform distribution as the probability of the same locations being visited among traces is
higher for the uniform distribution due to which the number of unique progressed formu-
las are fewer. The total number of violations and components for evaluation of OD was
significantly greater due to the property being more strict as explained earlier.

Table 3.4: Trace length of monitored formulas before first violation
GMNI OD security

8 238 12

Length of progressed formulas On comparing the length of formulas for each of the
properties, OD formula is much longer as compared to both GMNI and security (see
Table 3.4) since it captures every event observed by a trace. GMNI has a fixed, much
smaller length since the formula is dependent only on the first and last observation. Thus,
the length of the formula remains the same for all trace lengths. Observation-independent

45

 0

 200

 400

 600

 800

 1000

 1200

20-25

25-30

30-35

35-40

40-45

45-50

Le
n
g

th
 o

f
Fo

rm
u
la

Trace Length

GMNI
OD
Security

Figure 3.6: Length of formulas vs. trace length

sub-formulas result in a fixed length for security. We analyze the dependency of the length
of the formula to be monitored on the length of traces for property OD. As the length of
each trace increases the length of the formula increases (see Fig. 3.6); i.e., a longer trace
implies tracking of user location more frequently which results in an increasing length of
the formula.

46

Chapter 4

The Complexity of Program Repair
for Safety Hyperproperties

In this chapter, we show the complexity results for static enforcement of safety hyperprop-
erties through program repair. First, we formally describe the program repair problem
in Section 4.1. We present our general result on the complexity of program repair for
k`-safety hyperproperties in Section 4.2. In Section 4.3, we analyze the complexity of the
repair problem for 1-safety hyperproperties. Finally, we show results on polynomial-time
solutions of a subset of safety hyperproperties in Section 4.4.

Our complexity analysis is based on the structure of Mh used to describe safety hy-
perproperties. Let Mh = {M0,M1, . . .}, where each Mi, i ≥ 0, is a set of finite traces.
Our first classification is based on the maximum size of each Mi whereas our second clas-
sification is based on the maximum length of sequences in set Mi. The first classification
essentially describes k-safety hyperproperties.

For the second classification, we cannot directly limit the length of finite traces in each
Mi, as it would only allow one to describe hypersafety violations in the few initial steps.
Hence, when we limit the length of sequences, we consider the case where the corresponding
sequence of states appears somewhere in the trace rather than necessarily at the beginning.

Specifically, we introduce the notion of ≤I between traces and sets of traces. In par-
ticular, given traces t and t′, t ≤I t′ means that t is a sub-trace of t′; i.e., t ≤I t′ iff there
exist traces u and v such that t′ = utv. Likewise, for sets of traces T and T ′, T ≤I T ′ iff
∀t ∈ T. ∃t′ ∈ T ′. t ≤I t′. Now, we can define k`-safety hyperproperty as follows:

47

Definition 18. A hyperproperty S is a k`-safety hyperproperty (is k`-safety) iff

∀T ∈ P(Σω).(T 6∈ S) =⇒ ∃M ∈ P∗(Σ≤`).(M ≤I T) ∧ (|M | ≤ k) ∧
(∀T ′ ∈ P(Σω).(M ≤I T ′) =⇒ (T ′ 6∈ S)) �

As an illustration, if the bad thing given by a hypersafety is described by the set
{{〈a0b0c0〉, 〈a1b1〉}, {〈a2〉}}, then any program that exhibits finite traces 〈a0b0c0〉 and 〈a1b1〉
or finite trace 〈a2〉 violates the hypersafety. This requirement can be specified as a 23-safety.
Finally, note that if ` = ∞, then k`-safety is the same as k-safety. And, if k is ∞, then
k-safety is the same as (generic) hypersafety.

4.1 Problem Statement

Given is a program p = 〈Ip, δp〉 and a safety hyperproperty S. We assume that the input
program p has no deadlocked states (i.e., a state from where no outgoing transition is
present). In case the input program is terminating and it terminates at a state, say s, then
we add a self-loop (s, s) to s, so that a terminating state is not treated as a deadlocked
state during repair.

In this thesis, the goal is to repair p so that the repaired program (denoted p′) satisfies
S while preserving its existing specification E, where E is unknown; i.e., during the repair,
we only want to reuse the correctness of p with respect to E, so that p |= E automatically
implies p′ |= E. We assume that E is a conjunction of a set of safety hyperproperties and
trace properties.1

The formal statement of the program repair decision problem is as follows:

Repair decision problem: Given a program p = 〈Ip, δp〉 and a k-safety hyper-
property S, does there exist a program p′ = 〈Ip′ , δp′〉 such that:

1. Ip′ = Ip

2. δp′ ⊆ δp

3. ∀s1.((∃s0.(s0, s1) ∈ δp′) ∨ (s1 ∈ Ip′)) =⇒ ∃s2.(s1, s2) ∈ δp′

4. p′ |= S

1The existing results for instances where S and E are both trace properties are discussed in Section 5.2

48

The first constraint requires that no initial state is removed during repair and the last
constraint obviously requires that the repaired program p′ satisfies the input hypersafety
S. Constraints 2 and 3 ensure that satisfaction of the existing specification remains intact,
as shown in Theorem 7.

Theorem 7. Let E consist of a set of trace properties and safety hyperproperties. If for a
program p, such that p |= E, a repaired program p′ exists that satisfies the repair decision
problem, then p′ |= E.

Proof. Observe that Constraint 3 ensures that the repaired program p′ has no deadlocked
states. This is due to the fact that from every initial state and every reachable state of
p′, there exists an outgoing transition. Moreover, due to Constraint 2, every transition of
p′ is a transition of p. Hence, any infinite trace of p′ is an infinite trace of p. That is,
ψ(p′) ⊆ ψ(p). This in turn guarantees that if p |= E, then p′ |= E, since properties and
safety hyperproperties are both closed under refinement [34]. �

Finally, we argue that although our formulation of the repair problem is simple, where
during repair traces that violate S are removed without adding new traces, it has been
shown to be quite effective. For instance, Bonakdarpour et al. [20] show that a similar
formulation can successfully syntheszie highly complex distributed fault-tolerant protocols
such as Lamport’s Byzantine agreement [55] and Dijkstra’s distributed self-stabilizing token
ring [37].

4.2 Repair for k-Safety

In this section, we show that, in general, the repair decision problem for k-safety is NP-
hard in the size of the state space of the input program. This is achieved by showing
that the repair decision problem for 21-safety hyperproperty is NP-hard. Since every k`-
safety hyperproperty, for k ≥ 2 and ` ≥ 1, can be reduced to a 21-safety hyperproperty
using techniques like self-composition [8], NP-hardness result of the repair decision problem
for k`-safety hyperproperties, follows from this result. We define the instance of adding
21-safety hyperproperty, 2SS, (based on Definition 18) as follows:

Instance 1 (2SS). 21-Safety Hyperproperty S2SS, where

∀T ∈ P(Σω).(∃M ∈M2SS.(M ≤I T) ⇐⇒ (T 6∈ S2SS))

such that:

M2SS = {{〈a1〉, 〈b1〉}, {〈a2〉, 〈b2〉}, . . . , {〈an〉, 〈bn〉} | ∀i, 1 ≤ i ≤ n, ai, bi ∈ Σ}

49

Theorem 8. The program repair decision problem for instance 2SS is NP-hard in the state
space of the input program.

Proof. We focus on proving its NP-hardness by a reduction from the Boolean satisfiability
(SAT) problem [44]:

Given is a set of propositional variables, x1, x2, . . . , xn, and a Boolean formula
y = y1 ∧ y2 ∧ · · · ∧ yM , where each yj (1 ≤ j ≤M) is a disjunction of one or
more literals. Does there exist an assignment of truth values to x1, x2, . . . , xn
such that y is evaluated to true?

Toward this end, we present a mapping from an arbitrary instance of the SAT problem
to an instance of 2SS. Then, we show that the instance of SAT is satisfiable iff the answer
to the decision problem for 2SS is affirmative. Given a SAT formula, we identify each
entity, namely, program p and the set M2SS, of the instance 2SS of the repair decision
problem.

Input program p. For each clause yj in the instance of SAT, we introduce a state dj
(1 ≤ j ≤M). These are initial states of p. For each propositional variable xi, we introduce
two states ai and bi (1 ≤ i ≤ n). We also introduce a special state s. Transitions of our
instance of p are constructed as follows. First, we include the transition (s, s). Then, for
each variable xi, we include transitions (ai, s) and (bi, s). In addition, corresponding to
each clause yj, we include the following transitions:

• If xi is a literal in yj, then we include the transition (dj, ai).

• If ¬xi is a literal in yj, then we include the transition (dj, bi).

As an example, if yj = x1 ∨x2 ∨¬x3, the mapping would have the following transitions
starting from dj: (dj, a1), (dj, a2), and (dj, b3). It would also include the following transi-
tions ending at s: (a1, s), (b1, s), (a2, s), (b2, s), (a3, s), (b3, s), and (s, s) (see Figure 4.1).

21-Safety Hyperproperty specification S2SS for program p. Hypersafety will
be violated if for some i, the program contains two traces that reach ai and bi. Thus,
M2SS = {{〈a1〉, 〈b1〉}, {〈a2〉, 〈b2〉}, . . . , {〈an〉, 〈bn〉}}.

We now show that the given SAT formula is satisfiable iff there exists a program p′,
a solution to the program repair decision problem defined in Section 4.1, for the instance
2SS. To this end, we distinguish two cases:

50

d i

b2a1 a3a2 b3b1

s

Figure 4.1: Instance 2SS

• (⇒) Since the SAT formula is satisfiable, there exists an assignment of truth values
to the propositional variables xi (1 ≤ i ≤ n), such that each yj (1 ≤ j ≤M) is true.
Now, we obtain a program, p′, that satisfies the constraints of the repair decision
problem. The state space and initial states of p′ are the same as that of p. The
transitions of program p′ are the following:

– For each clause yj that includes xi, we include the transition (dj, ai) iff xi is true
in the truth assignment used for the satisfaction of the SAT formula.

– For each clause yj that includes ¬xi, we include the transition (dj, bi) iff xi is
false.

– For each propositional variable xi or ¬xi (1 ≤ i ≤ n), we include both transitions
(ai, s) and (bi, s).

– The transition (s, s) is also included.

Now, we show that p′ is the repaired program for the instance 2SS. Based on the
construction of p′, ai is reachable only if xi is true and bi is reachable only if xi is false.
Hence, if p′ has a trace that reaches ai, then it does not have a trace that reaches bi.
Furthermore, from every state reached by p′, there is a successor state in p′, since p′

contains both transitions (ai, s) and (bi, s) for each literal xi in yj and every state dj

51

reaches some ai or bi because of satisfiability. Thus, p′ does not deadlock. Hence, p′

satisfies the constraints of the repair decision problem.

• (⇐) Based on the constraints of the repair decision problem, each state dj (1 ≤ j ≤
M) in p′ must have at least one successor state. If p′ includes a transition of the form
(dj, ai), we set xi to true. If it includes a transition of the form (dj, bi), we set xi to
false. Since p′ cannot simultaneously have two traces that reach both ai and bi, this
truth assignment is consistent; i.e., each variable is assigned only one value. Note
that, in the case when both ai and bi are unreachable any of the two truth values
can be assigned to xi. Furthermore, based on the construction of the input problem,
the transition included from dj ensures that clause yj is satisfied; i.e., the given SAT
formula is satisfiable.

�

Lemma 6. The program repair decision problem for k`-safety hyperproperties, for k ≥ 2
and ` ≥ 1, that can be expressed in HyperLTL1 is in general NP-complete.

Proof. Finkbeiner et al. [43] show a polynomial-time algorithm for model checking HyperLTL1

(alternation-free) formulas. This shows membership in NP of the program repair decision
for k`-safety hyperproperties that can be expressed in an alternation-free HyperLTL for-
mula (Corollary 1). Since every k`-safety hyperproperty, for k ≥ 2 and ` ≥ 1, can be
reduced to a 21-safety hyperproperty using techniques like self-composition [8], the NP-
hardness result of the repair decision problem for k`-safety hyperproperties follows from
Theorem 8. Thus, the program repair decision problem for k`-safety hyperproperties, for
k ≥ 2 and ` ≥ 1, that can be expressed in HyperLTL1 is in general NP-complete. �

4.3 Repair for 1-Safety

This section presents our results on repair for 1`-safety hyperproperty.

Instance 2 (1S2PP). 1`-Safety Hyperproperty S1S2PP (i.e., Definition 18), where

∀T ∈ P(Σω).(∃M ∈M1S2PP .(M ≤I T) ⇐⇒ (T 6∈ S1S2PP))

where M1S2PP ∈ P(Σ≤`).

52

Here, we show that for the program repair decision problem is NP-hard for instance
1S2PP. Our reduction is again from the SAT problem to an instance of 1S2PP. We start
with the mapping.

Input program p. For each clause yj in the instance of SAT, we introduce a state dj
(1 ≤ j ≤ M). These are initial states of p. Corresponding to each propositional variable
xi, we introduce eight states Pi, Q

1
i , Q

2
i , Ri, S

1
i , S

2
i , ai, and bi (1 ≤ i ≤ n). Transitions of our

instance of p are constructed as follows (see Figure 4.2). For each variable xi, we include
transitions (Pi, ai), (Ri, bi), (ai, S

1
i), (S

1
i , bi), (bi, Q

1
i), (Q

1
i , ai), (ai, Q

2
i), (bi, S

2
i), (Q

2
i , Q

2
i), and

(S2
i , S

2
i) in the set of program transitions δp. Moreover, for each clause yj, we include the

following transitions:

• If xi is a literal in yj, then we include the transition (dj, Pi).

• If ¬xi is a literal in yj, then we include the transition (dj, Ri).

P i

S i
1

biai

Ri

Q i
2

S i
2

Q i
1

Figure 4.2: Instance 1S2PP

1-Safety Hyperproperty specification S1S2PP for program p. Hypersafety will
be violated if any trace passes through the sequence of three states specified in M1S2PP ,
where

M1S2PP = {{PiaiQ2
i }, {RibiS

2
i }, {S1

i biQ
1
i }, {Q1

i aiS
1
i } | 1 ≤ i ≤ n}

We now show that the given instance of SAT is satisfiable iff the program repair decision
problem from Section 4.1 can be solved for instance 1S2PP.

53

Lemma 7. If the given SAT formula is satisfiable, then there exists a program p′ that
satisfies the repair decision problem from Section 4.1 for the instance 1S2PP.

Proof. Since the SAT formula is satisfiable, there exists an assignment of truth values to
the propositional variables xi (1 ≤ i ≤ n) such that each yj (1 ≤ j ≤ M) is true. Now,
we obtain a repaired program, p′, for the repair decision problem for instance 1S2PP. The
state space and initial states of p′ are identical to those of p. We derive the transitions of
the repaired program p′ as follows:

• For each variable xi, if xi is true, then we include the transitions (Pi, ai), (ai, S
1
i),

(S1
i , bi), (bi, S

2
i), and (S2

i , S
2
i).

• For each variable xi, if xi is false, then we include the transitions (Ri, bi), (bi, Q
1
i),

(Q1
i , ai), (ai, Q

2
i), and (Q2

i , Q
2
i).

• For each clause yj that contains xi, we include the transition (dj, Pi) if xi is true.

• For each clause yj that contains ¬xi, we include the transition (dj, Ri) if xi is false.

Next, we show that p satisfies the constraints of the repair decision problem de-
fined in Section 4.1. The first two constraints are satisfied by construction. The third
condition, deadlock freedom, is satisfied since a trace that reaches Pi has transitions
(Pi, ai), (ai, S

1
i), (S

1
i , bi), (bi, S

2
i), and (S2

i , S
2
i). Likewise, if the trace reaches Ri, it includes

transitions (Ri, bi), (bi, Q
1
i), (Q

1
i , ai), (ai, Q

2
i) and (Q2

i , Q
2
i). Finally, the fourth constraint is

also satisfied by construction. �

As an illustration, we show the partial structure of p′, for the formula [(x1∨¬x2∨x3)∧
(x1 ∨ x2 ∨ ¬x4)], where x1 = true, x2 = false, x3 = false, and x4 = false in Figure 4.3.
Now, we show that p′ meets the requirements of the decision problem.

• The first two constraints of the program are trivially satisfied.

• To see that no computation reaches a deadlock state, we look at a computation for
disjunction yj. Now, let yj = xi ∨ ¬xk ∨ xr be a disjunction in the SAT formula.
Since yj evaluates to true, p′ includes a transition from {(dj, Pi), (dj, Rk), (dj, Pr)}.
A computation reaching a state in P (respectively, R) eventually reaches a state in
T (respectively, Q) which has a self loop. Hence, any trace in p′, starting from one
of the initial states, does not deadlock.

54

P1

S11

b1a1

R1

Q21 S21

Q11

P 2

S12

b2a2

R2

Q22 S22

Q12

P3

S13

b3a3

R3

Q23 S23

Q13

P 4

S14

b4a4

R4

Q24 S24

Q14

d1 d 2

Figure 4.3: The partial structure of the revised program for instance 1S2PP.

• As we can see from the example, no computation reaching a state in P (respectively,
R) reaches a state in Q (respectively, S).

Lemma 8. If there exists a repaired program p′ that satisfies the repair decision problem
defined in Section 4.1, then the given SAT formula is satisfiable.

Proof. To ensure deadlock freedom, for each dj (1 ≤ j ≤ M), an initial state, there exists
an i (1 ≤ i ≤ n) such that either Pi or Ri must be reachable. Hence, we have:

Observation 2. For each j (1 ≤ j ≤ m) there exists i (1 ≤ i ≤ n), such that either
(dj, Pi) ∈ δp′ or (dj, Ri) ∈ δp′.

Next, we observe that if Pi is reachable starting from some initial state, then Ri is not
reachable from any initial state and vice versa. That is,

Observation 3. If (dj, Pi) ∈ δp′ then ∀j′.(dj′ , Ri) 6∈ δp′ and vice versa.

Let us assume by contradiction that, in the repaired program p′, both Pi and Ri are
reachable from any initial states. To ensure deadlock freedom, both the transitions (Pi, ai)
and (Ri, bi) must exist in p′. Since p′ satisfies the safety hyperproperty S1S2PP neither
(ai, Q

2
i) nor (bi, S

2
i) can be transitions in p′. Further, since (ai, S

1
i) and (bi, Q

1
i) are the only

outgoing transitions from ai and bi, respectively, they have to be included in p′. Similarly,
(S1

i , bi) and (Q1
i , ai) must be included as transitions in p′. This allows the bad finite traces

55

{S1
i biQ

1
i } and {Q1

i aiS
1
i } to exist in the program, which contradicts the assumption that p′

is a repaired program for the given instance. Hence, only one of the states Pi and Ri is
reachable.

Now, from dj, if p′ contains a transition to Pi (respectively, Ri), then yj contains xi
(respectively, ¬xi) and xi is assigned the truth value true (respectively, false). Hence, ∀j.yj
evaluates to true. Thus, the SAT formula evaluates to true. Note that, if neither Pi nor
Ri is reachable by any dj, then either of the two truth values can be assigned to xi.

�

Theorem 9. The program repair decision problem for 1`-safety hyperproperty for instance
1S2PP is NP-hard in the state space of the input program if ` ≥ 3.

Proof. The NP-hardness of the program repair decision problem for instance 1S2PP follows
from Lemmas 7 and 8. �

Lemma 9. The program repair decision problem for 1`-safety hyperproperties, for ` ≥ 3,
that can be expressed in HyperLTL1 is in general NP-complete.

Proof. Similar to the proof of Lemma 6, we can see membership of the problem in NP.
From Theorem 9. it follows that the program repair decision problem for 1`-safety hyper-
properties, for ` ≥ 3, that can be expressed in HyperLTL1 is in general NP-complete.
�

Finally, we note that the repair decision problem can be solved in polynomial time
for 12-safety as shown by Bonakdarpour et al. [17]. This is due to the fact that for a 12-
safety, the bad things are specified in terms of transitions that program p′ should not have.
Therefore, there exists an appropriate p′ if and only if there exists an appropriate p′ with
none of the forbidden transitions reachable from any of the initial states. Hence, p′ can
be designed by first removing those transitions from p and then removing any deadlocks
that may result from it. A deadlock state s that is not an initial state can be removed by
removing all transitions of the form (s0, s), where s0 ∈ Σ. While this may create additional
deadlocks, they can be removed recursively. We return a ‘no’ to the decision problem if
and only if there is a deadlocked initial state otherwise we return ‘yes’. This algorithm
is sound and complete in that it returns a ‘no’ if and only if there does not exist any
repaired program p′ for the given program p and safety hyperproperty. This is because we
only remove two kinds of transitions—(1) those that are forbidden or (2) recursively those
that reach a deadlocked state. Thus, after the removal of the forbidden transitions, the
algorithm does not remove a transition that was part of any terminating trace since such

56

a trace does not have any deadlocked states. Hence, if the algorithm returns a ‘no’ then
there cannot exist a repaired program. It is trivially sound because if there does not exist
a repaired program then a deadlocked initial state will be reached and the algorithm will
return ‘no’. Thus, we have:

Theorem 10. The program repair decision problem for 12-safety hyperproperties can be
solved in polynomial time.

Observe that for 12-safety hyperproperty, the set of bad things is of the form {{〈a1b1〉},
{〈a2b2〉}, · · · }. From the proof of Theorem 9, we can observe that the problem remains
NP-hard even if M1S2PP is of the form {{〈a1u1b1〉}, {〈a2u2b2〉}, · · · | ∀i.ui ∈ Σ∗}. Thus,
we have:

Instance 3 (1SnBP). Elongated 12-safety hyperproperty S1SnBP (i.e., Definition 6), where

∀T ∈ P(Σω).(∃M ∈MEP .(M ≤I T) ⇐⇒ (T 6∈ S1SnBP))

where MEP = {{〈a1u1b1〉}, {〈a2u2b2〉}, · · · | ai, bi ∈ Σ, ui ∈ Σ∗}.

Theorem 11. The program repair decision problem for instance 1SnBP is NP-hard in the
size of the input program.

While Theorem 11 states that the repair decision problem for 1-safety hyperproperties
is NP-hard, we will show in Section 4.4 that if the bad things are specified by one pair
of predicates, then the repair decision problem can be solved in polynomial time (Theo-
rem 13). This result is also tight in that if elongated pairs are generated from two pairs of
predicates (i.e., the 1-hypersafety is of the form (P ⇒ �¬Q) ∧ (R⇒ �¬S) in Figure 4.2),
then the problem is NP-hard. This proof is similar to that of Theorem 9.

4.4 Polynomial-time Repair for Safety Hyperproper-

ties

In this section, we identify classes of hypersafety properties for which repair can be per-
formed in polynomial time. Our first class of problems is motivated by Theorem 8, where we
showed that the repair decision problem is NP-hard for k`-safety hyperproperties. Specifi-
cally, in Section 4.4.1, we identify a subset of k1-safety hyperproperties for which the repair
decision problem can be solved in P .

57

Our second class of problems is motivated by Theorem 11, where we showed that the
repair decision problem is NP-hard for the case where bad things are a set of elongated
pairs. Specifically, in section 4.4.2, we show that this problem can be solved in P if the
set of bad pairs is generated from a pair of predicates. However, if the elongated pairs are
created from two pairs of predicates then the problem is NP-hard.

4.4.1 Polynomial-time Repair for a Class of k1-Safety Hyperprop-
erty

To illustrate this subset of safety hyperproperties, we begin with the secret sharing scheme
discussed in Figure 2.1. Consider a simple instance of this scheme where the secret is
split into two parts and both parts are needed for revealing it. In this case, the security
requirement is that there cannot be two traces of the program such that one reveals the
first part of the secret and another reveals the second part. In other words, there exist
two subsets of sets S1 and S2, such that if there exists a trace that reaches S1 (first part of
the secret is revealed) and a trace that reaches S2 (second part of the secret is revealed),
then the security requirement is violated. If the program reaches S1 alone (respectively, S2

alone), then it does not violate the security requirement.

With this intuition, we define a subset of k1-safety hyperproperties for which program
repair can be achieved in polynomial time in the state space of the input program. Recall
that in a k1-safety hyperproperty, the set of bad things is described by the set M =
{M1,M2,M3, . . .}, where each Mi, i ≥ 1, is a set of sequences of length 1 and |Mi| ≤ k. In
other words, for k = 2, M is of the form {{〈a1〉, 〈b1〉}, {〈a2〉, 〈b2〉}, . . .}. A given program
violates this hyperproperty iff for some i, it exhibits a trace that reaches ai and a trace
that reaches bi.

The sub-class of k1-safety hyperproperties considered in this section, called k-generated
safety hyperproperty, corresponds to the case where M can be characterized by k different
state predicates, S1, S2, . . . , Sk; i.e.,

M = {{〈a1〉, 〈a2〉, · · · , 〈ak〉} | (ai ∈ Si) ∧ (1 ≤ i ≤ k)}.

Notice that a 21-safety hyperproperty does not correspond to some 2-generated safety
hyperproperty. For example, consider a 2-safety hyperproperty where M is {{〈a1〉, 〈b1〉},
{〈a2〉, 〈b2〉}}. In this case, we cannot use two sets to generate all pairs in M without
generating extra pairs that do not belong. Observe that, a generalized secret sharing
scheme where the number of shares is k and all must be revealed to identify the secret

58

Algorithm 3: Algorithm for Program Repair Decision Problem for k-generated
Safety Hyperproperties

Input: A program p = 〈Ip, δp〉 and a hypersafety characterized by Mkgen.
Output: Result of the program repair decision problem.
R← ReachableStates(Ip);1

T ← Transitions(p);2

foreach Si in Mkgen do3

Ri ← R− Si;4

Ti ← T5

foreach s in Si do6

Ti ← Ti − In(s)−Out(s);7

if detectCycle(Ip, Ri, Ti) then8

print “Exists!”9

return 1 ;10

11

print “Does Not Exist!”12

return 0 ;13

can be expressed as a k-generated safety hyperproperty as well. Now, we show that repair
for k-generated safety hyperproperty can be achieved in polynomial time. Algorithm 3
shows that since a k-generated safety hyperproperty is characterized by state predicates
Mkgen = {S1, S2, . . . , Sk}, we can repair the input program by considering k instances.
Each instance corresponds to the case where we try to ensure that states in Si are not
reached although states in (

⋃k
j=1,j 6=i Sj) − Si may be reached. Solution obtained in any

step gives the repaired program. If no solution is found, then the input program cannot
be repaired.

Theorem 12. Algorithm 3 for program repair decision problem for k-generated safety
hyperproperties is sound and complete.

Proof. An infinite trace is detected only for programs, where at least one of the state
predicates in Mkgen is not reachable. Thus, soundness is trivially proved. The search for
an infinite trace is performed for each case; Si (1 ≤ i ≤ k) is not reachable. In each case,
only the transitions reaching or leaving the unreachable states in the state predicate are
removed. Therefore, the algorithm is complete and if the algorithm returns 0, then there

59

does not exist a repaired program that satisfies the condition of the problem statement.
�

The running time of the algorithm for the program repair decision problem for k-
generated safety hyperproperties is O(k · n2) since the running time of the algorithm for
detecting an infinite trace is O(n2) which is run for each of the k predicates.

Algorithm 4: Detecting infinite trace

Input: A set of initial states Ip, a set of reachable states R′ and set of transitions,
T ′, between these states.

Output: Detects the existence of an infinite computation.
detectCycle(Ip, R

′, T ′)1

forall elements si of Ip do2

forall elements v of R′ do3

mark(v) = 0;4

visited(v) = 0;5

DFS(si)6

DFS(v)7

mark(v) = 1;8

visited(v) = 1;9

forall w such that (v, w) ∈ T ′ do10

if visited(w) == 0 then11

DFS(w);12

else if mark(w) == 1 then13

print “Exists!” return true;14

15

mark(v) = 0;16

print “Does Not Exist!” return false;17

4.4.2 Polynomial-time Repair for a Class of 1` Safety Hyperprop-
erty

In Section 4.3, we showed that if the set of bad things are specified as elongated pairs, the
repair decision problem is NP-hard. In this section, we show that if the elongated pairs
are generated from two state predicates, say S1 and S2, then the problem can be solved in

60

polynomial time in the state space of the input program. We introduce the corresponding
instance as follows:

Instance 4 (1S1BP). 1-Safety hyperproperty S1S1BP (i.e., Definition 6), where

∀T ∈ P(Σω) : ∀M ∈Mh : (M ≤I T) =⇒ (T 6∈ S1S1BP)

such that Mh = {{aΣ∗b}, {bΣ∗a} | S1, S2 ∈ P(Σ) ∧ (a ∈ S1) ∧ (b ∈ S2)}.

Theorem 13. The program repair decision problem for instance 1S1BP can be solved in
polynomial time with O(n2) time complexity in the state space of the input program.

Proof. By observation, we can see that instance 1S1BP has conditions similar to 2-generated
hypersafety except that now the state predicates S1 and S2 are defined for one trace. Hence,
by making use of Algorithm 3 we see that the repair decision problem for instance 1S1BP
can be solved in O(n2).

�

Running Example In the example described in Fig. 2.1, a repaired program does exist
and can be obtained by making at least 1 of the n states that reveal a share of the secret
unreachable. One of the solutions obtained is the program in Fig. 4.4.

61

int main(){
x1 = 1, x2 = 2, . . . , xn = n;

while(1) {
current = (rand()%n) + 1;

current = (rand()%(n− 1)) + 1;

switch(current) {
case x1 : output = Input(P1);

break;

case x2 : output = Input(P2);

break;

...

case xn : output = Input(Pn); }
print output; }

}

Figure 4.4: Secret sharing repaired program

62

Chapter 5

Related Work

In this chapter, we will discuss the current state-of-the-art work and techniques used in the
past for runtime verification and program repair, and more specifically for security policies.
We illustrate how our contributions in this thesis improve upon or are different from any
other related work.

5.1 Runtime Verification

Runtime verification is being pursued as a lightweight mechanism to complement techniques
such as model checking, theorem proving and testing. Unlike enforcement, it only deals
with the detection of violations (or satisfactions) of the given property by the program
under scrutiny. Here, we report on work for runtime verification for temporal logics and
security policies.

5.1.1 Runtime Verification for Linear Temporal Logics

To improve upon the limitations of the two-valued semantics for Ltl on finite trace, Bauer
et al. [12] proposed the three-valued semantics and used it for runtime verification. Here,
they described how to construct a deterministic finite-state machine with three output
symbols. Bauer et al. further extended this work to four-valued semantics which resolves
the inconclusive verdict of ‘unknown’ by answering either presumably true or presumably
false. Pnueli et al. [69] gave the definition of monitorable properties and Bauer et al. [14]

63

showed that the class of monitorable properties is richer than the union of safety and
liveness properties.

Formula rewriting based approach was used by Havelund et al. [48], where the future
time Ltl formula is transformed into a formula expressing what needs to be satisfied by the
current observation and a formula that needs to be checked for the remaining execution.
The work of Bauer et al. [15] considers the problem of monitoring an Ltl formula in a
synchronous distributed setting lacking in any centralised decision making authority. The
approach used here is again one of formula rewriting (progression).

5.1.2 Verification of Security Policies

Offline verification

Basin et al. [11] develop a model checker for security protocols. Since traditional tools
and verification methodologies are not equipped to deal with sets of traces, several results
introduce new logics or operators to express hyperproperties. SecLTL extends Ltl by
using an additional hide modality [39]. It allows expression of non-interference as well
as the instance until a high level data should remain independent of interference from
low level data. The modal µ-calculus does not suffice to express some information flow
properties. Epistemic logic has been used to implicitly quantify over traces [41]. However,
HyperLTL and HyperCTL∗ [32] subsume epistemic logic and quantified propositional
temporal logic [79].

Static analysis

Sabelfeld et al. [73] survey the literature focusing on static program analysis for enforce-
ment of security policies. In some cases, with compilers using Just-in-time compilation
techniques and dynamic inclusion of code at run time in web browsers, static analysis does
not guarantee secure execution at run time. Type systems, frameworks for JavaScript [29]
and ML [70] are some approaches to monitor information flow. Several tools [40,63,64] add
extensions like statically checked information flow annotations to Java language. Clark et
al. [30] present verification of information flow for deterministic interactive programs. Our
approach, on the other hand, is capable of monitoring a rich subset of k-safety hyperprop-
erties and not just information flow without assistance from static analyzers.

64

Dynamic analysis

Russo et al. [72] concentrate on permissive techniques for the enforcement of information
flow under flow-sensitivity. It has been shown that in the flow-insensitive case, a sound
purely dynamic monitor is more permissive than static analysis. However, they show
the impossibility of such a monitor in the flow-sensitive case. A framework for inlining
dynamic information flow monitors has been presented by Magazinius et al. [59]. The
approach by Chudnov et al. [28] uses hybrid analysis instead and argue that due to JIT
compilation processes, it is no longer possible to mediate every data and control flow event
of the native code. They leverage the results of Russo et al. [72] by inlining the security
monitors. Chudnov et al. [27] again use hybrid analysis of 2-safety hyperproperties in
relational logic. They check for violation on observing a single run that they call a ‘major’
trace, which is monitored with alternate ‘minor’ traces. Hybrid analysis uses the goodness
of static analysis and combines it with dynamic analysis. However, dynamic languages like
JavaScript make such approaches impractical. Austin et al. [5] implement a purely dynamic
monitor, however, restrictions such as “no-sensitive upgrade” were placed. Some techniques
deploy taint tracking and labelling of data variables dynamically [65,83]. Zdancewic et al.
[82] verify information flow for concurrent programs. Decker et al. [36] provide verification
techniques for first-order theories for reasoning about data that can be applied to check for
secure execution of multi-threaded, object oriented systems. Most of the techniques cited
above, aim to monitor security policies that are 2-safety hyperproperties, on observing a
single run, whereas, our work is for any k-safety hyperproperty, when multiple runs are
observed.

5.2 Program Repair

Automated model repair is a relatively new area of research. To the best of our knowledge,
this paper is the first work on applying model repair in the context of security policies
specified by hyperproperties. Since automated program repair is a nontrivial extension of
the model checking problem, we report work on the same as well.

5.2.1 Repair for Temporal Logics

Model repair with respect to Ctl properties was first considered by Buccafurri et al. [22] for
concurrent programs and protocols. The authors integrate model checking with program
repair to develop an algorithm with high computational cost that uses AI techniques of

65

abductive reasoning and theory revision. Chatzieleftheriou et al. [26] studied model repair
for Ctl using abstraction techniques to deal with the state explosion problem, . The
theory of model repair for memoryless Ltl properties was considered by Jobstmann et
al. [51] in a game-theoretic fashion. The repair problem is modelled as a Buchi game
that is the product of a modified version of the program and an automaton for the Ltl
specification. Repair is achieved by finding the winning strategy. Memoryless strategy
is used to avoid adding new variables to the program. The authors show that deciding
whether such a memoryless strategy exists is NP-complete, and present a heuristic to find
an efficient repair for a given memoryless strategy.

Bonakdarpour et al. [17] use a graph-theoretic perspective. They show that repair
with respect to multiple safety properties and one liveness property can be performed in
polynomial time. However, the repair problem for two liveness properties becomes NP-
complete. In terms of our work, they show that repair for 12-safety lies in complexity
class P and reported that repairing with respect to 1`-safety, for ` > 2, remained an open
problem.

5.2.2 Repair for Various Systems

Bonakdarpour et al. [18] show that repairing programs, where distributed processes can
only partially observe the global state of the program, is NP-complete for even one safety
or one liveness property. For probabilistic systems such as discrete-time Markov chains,
and probabilistic temporal logics, Bartocci et al. [9] use modified parametric probabilistic
model checking to reduce the model repair problem to a non-linear optimization problem
with a minimal-cost objective function. Samanta et al. [75] consider program repair for
Boolean programs that could be used to model some Boolean circuits.

5.2.3 Checking of Safety Hyperproperties

Yasouka et al. [81] give results on the hardness of checking policies that can be specified
as safety hyperproperties, in loop-free Boolean programs. They show that the problem for
2-safety hyperproperties such as non-interference is coNP-complete. For a safety hyper-
property that is not a k-safety hyperproperty, on quantifying the security of the program,
determining whether this quantity is less than a constant is PP-hard. Since model repair
is generally a harder problem than verification, our results on model repair for k-safety
hyperproperties give us insight into complexity results of algorithms that try to revise the
programs to satisfy the hyperproperty. Barthe et al. [8] show that k-safety can be reduced

66

to a safety property through self-composition. Even though the repair problem is in poly-
nomial time if self-composition is used, it is at the cost of replicating the state space. The
result of this thesis shows the complexity of repair, if expansion of the state space is not
allowed.

5.2.4 Synthesis and Repair for Security Policies

Synthesizing security protocols from BAN logic [23] specifications has been studied by Saidi
et al. [74]. The authors describe a synthesis tool with protocol goals specified in this logic,
and when combined with a proof system it can be used to generate protocols satisfying
those goals. Unlike our work that repairs an existing protocol, the technique given here
synthesizes a protocol from scratch and, hence, cannot reuse the previous efforts made in
designing an existing protocol. The work of Shmatikov et al. [78] uses the finite state tool
Murφ to model the participants in a protocol together with an intruder model, to check a
set of safety properties by state space exploration. Chatterjee et al. [25] study the auto-
matic synthesis of fair non-repudiation protocols. The objectives of the participants, the
trusted third party and the protocol is formalized as path formulas in Ltl and satisfac-
tion of the objectives guarantees satisfaction of the protocol. The paper demonstrates the
effectiveness of assume-guarantee synthesis in synthesizing fair exchange protocols. The
approach proposed by Martinelli et al. [60] gives an automated framework for synthesis of
controller programs for enforcing security policies.

In the context of repairing security protocols, Pimentel et al. have proposed applying
formulation of protocol patch methods to repair security protocols automatically [66, 67].
In order to guide the location of the fault in a protocol, they use Abadi and Needham’s
principles [1] for the prudent engineering practice for cryptographic protocols. However,
by its nature, the work by Pimentel et al. applies to protocols where principles given by
the authors are not followed. Armando et al. [4] propose a general model for security
protocols based on a set-rewriting formalism that coupled with the use of Ltl allows for
the specification of assumptions on principals and communication channels along with
complex security properties. Corin et al. [35] propose a linear-time temporal logic with
past operators for the specification of security protocols and their properties. The model
checking procedure that they provide determines whether the given property holds on any
given symbolic execution trace.

67

5.3 Runtime Enforcement of Security Policies

Schneider [76] started work on understanding which security policies are enforceable. The
author considers the Execution Monitoring enforcement mechanism that monitors each
execution step and terminates the execution if the next action would result in a violation.
One of the important findings of the paper is that only those security policies that are
safety properties are enforceable using this mechanism. Other mechanisms could include
raising exceptions or inserting and deleting actions into the system to enforce a policy as
was done by Ligatti et al. [56,57] using the edit automata. Ligatti et al. [58] introduced the
mandatory-edit automata that interacts with the system and receives requests from the
system. Basin et al. [10] distinguish between actions that are only observable and those
that are controllable by an enforcement mechanism. They give necessary and sufficiency
conditions for policy enforcement based on execution monitoring. This further allows
them to reason about security policies involving timing constraints. Falcone et al. [42]
study the problem of enforcement for Safety-progress hierarchy of regular properties. They
introduce an enforcement monitor based on finite sets of control states, a memory device
and enforcement operations on the input events. However, all these works on enforcement
are for trace-based properties and not hyperproperties.

68

Chapter 6

Conclusion

Several complex systems allow easy inference about secure and private data on observing
multiple executions of a system. To detect such violations and enforce additional policies
on existing systems, in this thesis, we focused on two aspects of ensuring a system satisfies
a rich class of security policies, namely 1) runtime verification and 2) static enforcement
through program repair. Our specification language is a subset of hyperproperties —
safety hyperproperties—which allows expressing policies that are not trace-based (e.g.,
information flow).

6.1 Summary

6.1.1 Runtime Verification

For the runtime verification of safety hyperproperties, first, we showed that the runtime
verification of any safety hyperproperty with unbounded number of bad traces is in gen-
eral undecidable. Following this, we showed that if we restricted the specifications to
only k-(co)-safety hyperproperties, the problem is NP-hard. We also showed a sufficiency
condition for a safety hyperproperty to be monitorable in polynomial time.

Moreover, we concentrated on obtaining a monitoring algorithm for a class of hyper-
properties —k-(co)-safety hyperproperties with a bounded number of bad traces. This
class allows specification of important security policies such as information flow.

In order to have syntactic means, we characterized k-(co)-safety hyperproperties in
HyperLTL, a temporal logic that allows explicit quantification over execution traces.

69

Next, we introduced HyperLTL-3, a generalization of LTL3 [14] (a logic designed for
runtime verification of Ltl) to the context of HyperLTL. Different classes of monitorable
HyperLTL formulas, by syntactic means, were identified and in particular it was observed
that every k-(co)-safety hyperproperty is monitorable. Finally, we introduced a runtime
verification algorithm for monitoring k-safety/co-k-safety hyperproperties and studied its
performance with respect to different metrics.

6.1.2 Program Repair

Focusing on the problem of repairing a given program with respect to security policies, we
characterized safety hyperproperties in terms of a set Mh of ‘bad’ sets of finite sequences.
Two factors were considered in identifying the expressiveness of M : (1) the size of sets in
Mh (k-safety hyperproperties), and (2) the maximum length of finite sequences in the sets
in M , hence, k`-safety hyperproperties. We made the following contributions for program
repair with respect to safety hyperproperties;

• We showed that in general the repair decision problem for k`-safety hyperproperties
is NP-hard, although it can be solved in polynomial time when k = 1 and ` = 2.

• Additionally, we showed that this bound is tight in that the problem is NP-hard
if (k = 2) or if (k = 1 and ` = 3). This result implies that repair for invariance
properties (e.g., p ⇒ �q) can be achieved in polynomial time. However, repair for
most interesting security policies such as information flow is still NP-hard.

• We also proved that the repair decision problem can be solved in polynomial time for
the class of k-generated safety hyperproperties, where the set M can be generated
from k state predicates (e.g., in secret sharing). The significance of this result is that
one can identify a stronger safety hyperproperty that is k-generated and repair with
respect to that hyperproperty. The resulting program, thus, is guaranteed to satisfy
the desired safety hyperproperty.

6.2 Future Work

Since the current work only concerns safety hyperproperties, it can be extended further
to include runtime verification and static enforcement through program repair for hyper-
liveness and probabilistic hyperproperties. Furthermore, for program repair and runtime
verification, our work can be extended as given in the following sections.

70

6.2.1 Runtime Verification

There are numerous interesting research avenues to extend this work. Among these, we
are currently generalizing our work on distributed monitoring of Ltl properties [61] to
monitor hyperproperties in a distributed setting. Another interesting research direction
would be to look at how one can monitor hyperproperties by analyzing execution as well
as an abstract model of the system at run time. This idea is especially beneficial for
monitoring hyperliveness properties.

6.2.2 Program Repair

An interesting line of work would be to devise repair algorithms for security policies in
multi-agent distributed systems. Designing a technique for runtime enforcement of hyper-
properties also constitutes another open problem.

71

References

[1] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering, 1996.

[2] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985.

[3] R. J. Anderson. A security policy model for clinical information systems. In IEEE
Symposium on Security and Privacy, pages 30–43, 1996.

[4] A. Armando, R. Carbone, and L. Compagna. LTL model checking for security proto-
cols. Journal of Applied Non-Classical Logics, 19(4):403–429, 2009.

[5] T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis. In
ACM Transactions on Programming Languages and Systems, pages 113–124, 2009.

[6] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Ann. Math.
Artif. Intell., 22(1-2):5–27, 1998.

[7] M. Balliu, M. Dam, and G. Le Guernic. Epistemic temporal logic for information flow
security. CoRR, abs/1208.6106, 2012.

[8] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-composition.
Mathematical Structures in Computer Science, 21(6):1207–1252, 2011.

[9] E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A. Smolka. Model
repair for probabilistic systems. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 326–340, 2011.

[10] D. A. Basin, V. Jugé, F. Klaedtke, and E. Zalinescu. Enforceable security policies
revisited. ACM Transactions on Information Systems and Security, 16(1):3, 2013.

72

[11] D. A. Basin, S. Mödersheim, and L. Viganò. Ofmc: A symbolic model checker for
security protocols. International Journal of Information Security, 4(3):181–208, 2005.

[12] A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In
FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Sci-
ence, 26th International Conference, Kolkata, India, December 13-15, 2006, Proceed-
ings, pages 260–272, 2006.

[13] A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but
how ugly is ugly? In Runtime Verification, 7th International Workshop, RV 2007,
Vancouver, Canada, March 13, 2007, Revised Selected Papers, pages 126–138, 2007.

[14] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 20(4):14, 2011.

[15] A. K. Bauer and Y. Falcone. Decentralised LTL monitoring. In FM 2012: Formal
Methods - 18th International Symposium, Paris, France, August 27-31, 2012. Proceed-
ings, pages 85–100, 2012.

[16] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. A framework
for automated distributed implementation of component-based models. Distributed
Computing, 25(5):383–409, 2012.

[17] B. Bonakdarpour, A. Ebnenasir, and S. S. Kulkarni. Complexity results in revising
UNITY programs. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
4(1):1–28, January 2009.

[18] B. Bonakdarpour and S. S. Kulkarni. Revising distributed UNITY programs is NP-
complete. In Principles of Distributed Systems (OPODIS), pages 408–427, 2008.

[19] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad. Distributed synthesis of fault-
tolerance. In International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS), 2006. Full version available as a Technical Report MSU-CSE-
06-27 at Computer Science and Engineering Department, Michigan State University,
East Lansing, Michigan.

[20] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad. Symbolic synthesis of masking
fault-tolerant programs. Springer Journal on Distributed Computing (DC), 25(1):83–
108, March 2012.

73

[21] G. Boudol. Secure information flow as a safety property. In Formal Aspects in Security
and Trust, pages 20–34, 2008.

[22] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing model checking in
verification by ai techniques. Artificial Intelligence, 112:57–104, 1999.

[23] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. Proceedings
of the Royal Society of London, pages 233–71, 1989.

[24] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8(1):18–36, 1990.

[25] K. Chatterjee and V. Raman. Synthesizing protocols for digital contract signing.
In Proceedings of 13th International Conference Verification, Model Checking, and
Abstract Interpretation (VMCAI), pages 152–168, 2012.

[26] G. Chatzieleftheriou, B. Bonakdarpour, S. A. Smolka, and P. Katsaros. Abstract
model repair. In NASA Formal Methods Symposium (NFM), pages 341–355, 2012.

[27] A. Chudnov, G. Kuan, and D. A. Naumann. Information flow monitoring as abstract
interpretation for relational logic. In IEEE 27th Computer Security Foundations Sym-
posium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages 48–62, 2014.

[28] A. Chudnov and D. A. Naumann. Information flow monitor inlining. In Proceedings
of CSF, pages 200–214, 2010.

[29] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for
javascript. In Proceedings of PLDI, pages 50–62, 2009.

[30] D. Clark and S. Hunt. Non-interference for deterministic interactive programs. In
Proceedings of Formal Aspects in Security and Trust, pages 50–66, 2008.

[31] E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal logic
model checking. In Proceedings of the Sixth Annual ACM Symposium on Principles
of Distributed Computing, 1987.

[32] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and
C. Sánchez. Temporal logics for hyperproperties. In Principles of Security and Trust
- Third International Conference, POST 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014, Proceedings, pages 265–284, 2014.

74

[33] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information flow. In
Computer Security Foundations Workshop, pages 31–45, 2005.

[34] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

[35] R. Corin, S. Etalle, and A. Saptawijaya. A logic for constraint-based security protocol
analysis. In 2006 IEEE Symposium on Security and Privacy (S&P 2006), 21-24 May
2006, Berkeley, California, USA, pages 155–168, 2006.

[36] N. Decker, M. Leucker, and D. Thoma. Monitoring modulo theories. In Proceedings
of the 20th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 341–356, 2014.

[37] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communica-
tions of the ACM, 17(11):643–644, 1974.

[38] E. W. Dijkstra. A belated proof of self-stabilization. Distributed Computing, 1(1):5–6,
1986.

[39] R. Dimitrova, B. Finkbeiner, M. Kovács, M. N. Rabe, and H. Seidl. Model checking
information flow in reactive systems. In Proceedings of Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 169–185, 2012.

[40] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, P. L. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Trans. Comput. Syst.

[41] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge: A
response by the authors. Minds and Machines, 7(1):113, 1997.

[42] Y. Falcone, L. Mounier, J. Fernandez, and J. Richier. Runtime enforcement monitors:
composition, synthesis, and enforcement abilities. Formal Methods in System Design,
38(3):223–262, 2011.

[43] B. Finkbeiner, M. N. Rabe, and C. Sanchez. Algorithms for model checking HyperLTL
and HyperCTL*. In Proceedings of the 27th International Conference on Computer-
Aided Verification (CAV), 2015. To appear.

[44] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York, 1979.

75

[45] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

[46] G. Le Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt. Automata-based confi-
dentiality monitoring. In Advances in Computer Science - ASIAN 2006. Secure Soft-
ware and Related Issues, 11th Asian Computing Science Conference, Tokyo, Japan,
December 6-8, 2006, Revised Selected Papers, pages 75–89, 2006.

[47] K. Havelund, M. R. Lowry, and J. Penix. Formal analysis of a space-craft controller
using SPIN. IEEE Transactions on Software Engineering, 27(8):749–765, 2001.

[48] K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Automated
Software Engineering (ASE), pages 135–143, 2001.

[49] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean. Applying formal methods
to a certifiably secure software system. IEEE Transactions on Software Engineering,
34(1):82–98, 2008.

[50] Information Assurance Technology Analysis Center (IATAC). Soar on software secu-
rity assurance, July 2007. https://buildsecurityin.us-cert.gov/bsi/dhs/902-BSI.html.

[51] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Computer
Aided Verification (CAV), pages 226–238, 2005.

[52] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows: Can’t live with ’em, can’t
live without ’em. In ICISS, pages 56–70, 2008.

[53] J. Krumm and A.J. Brush. MSR GPS privacy dataset. http://research.microsoft.
com/~jckrumm/GPSData2009, 2009.

[54] O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001.

[55] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[56] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Sec., 4(1-2):2–16, 2005.

[57] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM
Trans. Inf. Syst. Secur., 12(3), 2009.

76

http://research.microsoft.com/~jckrumm/GPSData2009
http://research.microsoft.com/~jckrumm/GPSData2009

[58] J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In Com-
puter Security - ESORICS 2010, 15th European Symposium on Research in Computer
Security, Athens, Greece, September 20-22, 2010. Proceedings, pages 87–100, 2010.

[59] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic security
monitors. Computers & Security, 31(7):827–843, 2012.

[60] F. Martinelli and I. Matteucci. A framework for automatic generation of security
controller. Software Testing, Verification and Reliability, 22(8):563–582, 2012.

[61] M. Mostafa and B. Bonakdarpour. Decentralized runtime verification of LTL specifica-
tions in distributed systems. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2015. To appear.

[62] T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the
IEEE, volume 77, pages 541–580”, 1989”.

[63] A. C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings
of Conference Record of the Annual ACM Symposium on Principles of Programming
Languages, pages 228–241, 1999.

[64] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with decen-
tralized labels, 1998.

[65] S. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum. A virtual machine based
information flow control system for policy enforcement. 197(1):3–16, 2008.

[66] J. C. L. Pimentel, R. Monroy, and D. Hutter. A method for patching interleaving-
replay attacks in faulty security protocols. In Electronic Notes in Theoretical Computer
Science (ENTCS), pages 117–130, 2007.

[67] J. C. L. Pimentel, R. Monroy, and D. Hutter. On the automated correction of security
protocols susceptible to a replay attack. In European Symposium Research Computer
Security (ESORICS), pages 594–609, 2007.

[68] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[69] A. Pnueli and A. Zaks. PSL model checking and run-time verification via testers.
In FM 2006: Formal Methods, 14th International Symposium on Formal Methods,
Hamilton, Canada, August 21-27, 2006, Proceedings, pages 573–586, 2006.

77

[70] F. Pottier and V. Simonet. Information flow inference for ml. In Proceedings of
Conference Record of the Annual ACM Symposium on Principles of Programming
Languages, pages 319–330, 2002.

[71] A. W. Roscoe. CSP and determinism in security modelling. In IEEE Symposium on
Security and Privacy, pages 114–127, 1995.

[72] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In
Proceedings of the XXrd IEEE Computer Security Foundations Symposium (CSF),
pages 186–199, 2010.

[73] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications, 21(1):5–19, 2003.

[74] H. Saidi. Toward automatic synthesis of security protocols. AAAI archives, 2002.

[75] R. Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic generation of local re-
pairs for boolean programs. In Formal Methods in Computer-Aided Design (FMCAD),
pages 1–10, 2008.

[76] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3:30–50, February 2000.

[77] A. Shamir. How to share a secret. Communication of ACM, 22(11):612–613, 1979.

[78] V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing proto-
cols. Theoretical Computer Science, 283(2):419–450, 2002.

[79] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation prob-
lem for büchi automata with appplications to temporal logic. Theoretical Computer
Science, 49:217–237, 1987.

[80] T. Terauchi and A. Aiken. Secure information flow as a safety problem. In SAS, pages
352–367, 2005.

[81] H. Yasuoka and T. Terauchi. On bounding problems of quantitative information flow.
Journal of Computer Security, 19(6):1029–1082, 2011.

[82] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program
security. In Computer Security Foundations Workshop, pages 29–, 2003.

78

[83] Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. Privacy scope: A precise
information flow tracking system for finding application leaks. Technical report, EECS
Department, University of California, Berkeley, Oct 2009.

79

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Difficulties in Formal Treatment of Security Policies
	Thesis Statement
	Runtime Verification of Hyperproperties
	Challenges
	Contributions

	Automated Program Repair for Hyperproperties
	Challenges
	Contributions

	Organization

	Preliminaries
	Programs
	Trace Properties
	Hyperproperties
	Safety Hyperproperties
	Co-safety Hyperproperties
	Liveness Hyperproperty

	HyperLTL
	Syntax
	Semantics
	Specifying Trace Relations

	Runtime Verification of k-Safety Hyperproperties in HyperLTL
	k-Safety/Co-k-Safety Hyperproperties in HyperLTL
	Relation between Hypersafety and Co-hypersafety Properties
	Representing k-safety and Co-k-safety Hyperproperties in HyperLTL

	Monitorability in HyperLTL
	Complexity of Verification of Safety Hyperproperties at Run Time
	Undecidability
	NP-hardness for a Subclass of k-safety Hyperproperties
	A Sufficient Condition for Polynomial-Time Runtime Verification

	Monitoring Algorithm
	Progression for Trace Relations
	Algorithm
	Monitoring beyond k-hypersafety

	Implementation and Results
	Experimental Settings
	Results and Analysis

	The Complexity of Program Repair for Safety Hyperproperties
	Problem Statement
	Repair for k-Safety
	Repair for 1-Safety
	Polynomial-time Repair for Safety Hyperproperties
	Polynomial-time Repair for a Class of k1-Safety Hyperproperty
	Polynomial-time Repair for a Class of 1 Safety Hyperproperty

	Related Work
	Runtime Verification
	Runtime Verification for Linear Temporal Logics
	Verification of Security Policies

	Program Repair
	Repair for Temporal Logics
	Repair for Various Systems
	Checking of Safety Hyperproperties
	Synthesis and Repair for Security Policies

	Runtime Enforcement of Security Policies

	Conclusion
	Summary
	Runtime Verification
	Program Repair

	Future Work
	Runtime Verification
	Program Repair

	References

