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Abstract

Current communication networks are based on classical physics and classical information-
processing. However, for nearly a century, we have known that at its most fundamental
level, the universe is governed by the laws of quantum mechanics. With quantum com-
munication, new possibilities arise in our capabilities to transmit and process information
which, in many cases, lead to advantages compared to what is classically possible. The
entire scope of tasks for which quantum communication can offer improvements has not
yet been fully explored, but several quantum protocols are known that can either perform
tasks which are impossible with classical resources or can outperform classical protocols.
These quantum protocols are well understood from a theoretical point of view, but many of
them have never been demonstrated in practice. Thus, in the context of quantum commu-
nication, there is a significant gap between theory and experiment that must be removed
in order to harness the advantages provided by quantum mechanics in a practical setting.

In this thesis, we develop a series of tools for developing and testing practical quantum
communication protocols. Our main technique is a theoretical reformulation of existing
quantum communication protocols that converts them into a form in which they can be
demonstrated with existing experimental techniques. More precisely, they can be imple-
mented using only coherent states of light and linear optics circuits while still retaining
the crucial properties of the original abstract protocols. We use this result to construct
practical protocols for the Hidden Matching problem and quantum fingerprinting.

In the case of quantum fingerprinting, we make a thorough analysis of the role played
by experimental errors and show that our practical protocol can still be implemented in
the presence of these imperfections. In fact, we report a proof of concept experimental
demonstration of a quantum fingerprinting system that is capable of transmitting less
information than the best known classical protocol for this problem. Our implementation
is based on a modified version of a commercial quantum key distribution system using
off-the-shelf optical components over telecom wavelengths, and is practical for messages as
large as 100 Mbits, even in the presence of experimental imperfections.

Similarly, in the context of cryptography, we propose a multiparty quantum signa-
ture protocol that can be implemented from any point-to-point quantum key distribution
network, proving its security against forging, repudiation and non-transferability. Cru-
cially, since quantum key distribution is already a practical technology, so is this protocol.
However, unlike other tasks in quantum communication, there has not been significant
theoretical work on establishing a security model for quantum signature schemes. Con-
sequently, we also constructed a security framework for these schemes and proved several
properties that these protocols must satisfy in order to achieve their security goals.
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Finally, in addition to proposing new practical protocols, we provide a reliable data
analysis technique to verify an important property of many quantum communication pro-
tocols: the presence of entanglement. Our technique is based on entanglement witnesses
and it does not require the specification of a prior distribution nor the assumption of inde-
pendent measurements. The technique is suitable to be used with nonlinear entanglement
witnesses, which we show can be constructed from any linear witness and evaluated from
the same experimental data. We also develop numerical tools necessary to employ this ap-
proach in practice, rendering the procedure ready to be applied to current experiments. We
demonstrate this by analyzing the data of a photonic experiment generating two-photon
states whose entanglement is verified with the use of an accessible nonlinear witness.
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Chapter 1

Introduction

Despite appearances, our universe is entirely governed by the laws of quantum mechanics.
Everything is quantum — a simple premise, with profound consequences. When we take this
statement seriously, we realize that a mastery of quantum theory is necessary not only to
truly understand nature, but also to develop technologies for the betterment of humanity.
So far, the role that quantum mechanics has played in new technologies has largely been to
explain the classical behaviour of physical systems. For example, the computer that was
used to create this thesis contains billions of transistors based on semiconductor devices, the
properties of which can only be properly understood with quantum mechanics. However,
the operation of the computer is completely classical: it processes classical data and runs
classical algorithms.

Nevertheless, we have known for decades that there are tasks that are possible to
perform in a world governed by quantum mechanics but are either impossible or believed
to be impossible to perform in a classical world [97]. Therefore, there are problems for
which quantum mechanics provides an advantage compared to what is classically possible.
This raises a series of questions:

1. What is the complete scope of information-processing tasks for which quantum me-
chanics provides an advantage over the classical case?

2. How can we realize these tasks in practice?

3. Which of these tasks are actually useful?

Answering these questions is important from a fundamental perspective but, most sig-
nificantly, it can lead to genuine technological breakthroughs. Indeed, if we are able to



Quantum
advantage

Figure 1.1: An illustration of three different sets of quantum protocols: those that provide
a quantum advantage compared to the classical case, those that are useful in practice,
and finally, protocols that can be experimentally realized. A significant goal of research in
quantum information is to understand and expand the intersection of these three sets.

realize a quantum advantage for useful tasks in practice, we will have entered a new regime
of technological capabilities.

Currently, we only have partial answers to these fundamental questions. We know a
few examples of tasks for which quantum mechanics provides an advantage, but by no
means have we understood all such problems. Similarly, remarkable progress has been
made in our ability to control quantum systems, leading to many advances in the exper-
imental demonstration of quantum protocols. However, many challenges remain to scale
up many of these protocols and, for other cases, experimental demonstrations have never
been achieved. Consequently, significant research efforts are being carried out across the
world to theoretically understand all of the advantages which are made possible by quan-
tum mechanics and to experimentally develop the techniques that are necessary to realize
them in practice. The ultimate goal is to continue to enlarge the set of protocols that: (i)
are useful, (ii) have a quantum advantage and (iii) can be realized in practice, as depicted
in Fig. 1.1.

In an experimental setting, when attempting to implement quantum protocols, it is also
important to certify that the devices are operating in a regime which cannot be reproduced
with purely classical resources. Although there are many different ways of making such



a certification, in many cases it is necessary to demonstrate the presence of entanglement
in the physical systems employed. Thus, a crucial component of developing practical
quantum protocols is to provide reliable methods to verify that experimental devices are
indeed operating in the quantum domain, thus being able to achieve the advantages that
are only possible using quantum mechanics.

In this thesis, we present progress towards the goal of developing quantum commu-
nication protocols with a quantum advantage that can be experimentally realized. In
particular, we focus on quantum protocols in the field of communication complexity and
cryptography, and discuss how they can be implemented using available techniques from
quantum optics. In chapter 2, we give an overview of the field of quantum communication,
focusing on protocols with an advantage over the classical case. In chapter 3 we overview
basic concepts in entanglement theory and discuss the role of entanglement in quantum
information processing and communication. Additionally, since light is the physical system
of choice for realizing communication protocols, in chapter 4 we discuss basic concepts of
quantum optics that are necessary to understand the results presented in this thesis.

In chapter 5, we give a reliable data analysis technique for entanglement verification
experiments and demonstrate the practicality and properties of this technique by applying
it to data generated from an experiment generating entangled states of photonic qubits.
Going back specifically to quantum communication, in chapter 6 we introduce a general
framework for implementing protocols in quantum communication using standard optical
techniques an we apply these techniques to construct new practical protocols in quantum
communication. In particular, in chapter 7 we use this framework to build a practical
protocol for quantum fingerprinting and we report an experimental demonstration of this
protocol which is capable of outperforming the best known classical protocol for this prob-
lem. Finally, in chapter 8 we focus on quantum cryptography, outlining a full security
framework for quantum signature schemes and introducing a multiparty protocol that can
be realized with available experimental techniques.



Chapter 2

Quantum Communication

2.1 Quantum versus classical communication

For centuries, humanity has been concerned with developing methods of transmitting in-
formation across large distances. Communication technologies have increased in efficiency
and sophistication, to the point that the planet is now intricately connected through the
Internet, allowing fast and reliable communication between people located virtually any-
where in the world.

We focus on the simplest communication scenario in which two parties — Alice and Bob
— wish to exchange a message. A series of questions arise, for instance:

1. What physical systems should they use in order to transmit these messages?
2. How can they minimize the resources required to communicate?

3. How should they deal with errors affecting their transmission?

In classical communication, answers to such questions are provided within the frame-
work of classical information and classical physics. From an abstract point of view, we
model the situation by considering the set X of possible messages {1,2,3,..., M} that
Alice may transmit to Bob. Equivalently, it is customary to view this as the set of n-bit
strings, namely X = {0, 1}", where n = [log, M| is the smallest integer larger than log, M.
Thus, we quantify the size of the set of messages in units of bits.

In order to actually transmit a message z € X, Alice and Bob must encode the message
in a physical system with M different distinguishable configurations. For example, they
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could choose M different characters written on a piece of paper and transport the paper
across the distance separating them. A more modern alternative is to choose two easily
distinguishable states of an optical field and use them to encode one bit of information.
Larger messages can be constructed by concatenating these single bits to form a larger
string. In general, Alice and Bob will choose a physical realization of a classical bit and
use that to transmit arbitrary messages across the underlying physical channel. For a
particular task at hand, Alice and Bob should then choose the best protocol and physical
encodings suitable for their needs.

The crucial point of this scenario is that its mathematical model is based on classical
probability and information theory. Similarly, the physical systems used to encode the
information are assumed to be describable by classical physics. Consequently, the capabil-
ities of Alice and Bob will be restricted to that which is possible within such a framework.
But for nearly a hundred years, we have known that at its most fundamental level, the
universe is governed by the laws of quantum mechanics, so it is only natural to ask: Can
Alice and Bob use quantum mechanics to their advantage?

Let us re-visit the previous scenario but from a quantum perspective. As before, Alice
and Bob wish to transmit a classical message z € X, but now they are allowed to send
quantum signals to each other. From an abstract point of view, what this means is that
Alice and Bob are in general allowed to send superpositions of all M distinguishable states,
namely quantum states of the form

0y =Y Al 2.)

where the coefficients \; are complex numbers satisfying Y"1, |\;|> = 1 and (i|j) = &, ;. We
can equivalently think of such states as arising from a collection of n = [log, M| qubits,
i.e. two-level quantum systems, in which case we would write

Wy =Y Ala), (2.2)

where |z) := |z1)|z2) - - - |z,,) and z; is the i-th bit of the string x. To encode these states
in physical systems, Alice and Bob can once again choose a system with M distinguishable
states, but this time, they must also be able to prepare superpositions of these states.

In a more general setting, Alice can prepare mixed states of the form

p= Zpi’¢i><¢i|7 (2.3)
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where p; > 0, Y. p; = 1 and the states |¢/;) are quantum states as in Eq. (2.2). On Bob’s
side, he is allowed to make general measurements, which we describe by a set of positive
semi-definite operators {E;} satisfying >, E; = 1.

So how can quantum communication help Alice and Bob? The first thing to notice
is that it certainly cannot hurt them! Indeed, they can always go back to the classical
case by preparing and transmitting states of the form [¢) = |z), with Bob measuring in
the canonical basis given by all such states |z). By glimpsing at Eq. (2.2), it is natural
to wonder whether it is possible to transmit an n-bit classical message using less than
n-qubits of quantum communication.

To put this formally, suppose that Alice wishes to transmit a classical message = €
{0,1}™ which we denote as a classical random variable X whose possible values occur
with corresponding probability p(z). To transmit a message = to Bob, Alice prepares a
generally mixed state p, and sends it to Bob. Thus, Alice’s strategy is uniquely defined
by the ensemble

&= {p(:ﬂ),px}, (24)

Upon receiving the state from Alice, Bob performs a POVM measurement given by the
operators {E,}. Thus, Bob associates with his measurement a random variable Y. The
joint probability distribution of Alice and Bob’s variables is then given by

p(z,y) = p(x)Tr (p ) - (2.5)

We can use this joint distribution to calculate the mutual information between X and Y,
which is given by
I(X:Y)=H(X)+H(Y)-H(X,Y), (2.6)

where H(X) = — )" _p(x)log, p(x) is the Shannon entropy of the variable X. Informally,
the mutual information quantifies the information that Bob learns about X — on average
and in the limit of many repetitions — after learning the value of Y. For a formal treatment
of the mutual information and its role in quantum communication, see Ref. [130].

Since the correlations of Eq. (2.5) depend on Bob’s measurement, in general we should
focus on the maximum mutual information that can be achieved when considering all of
Bob’s measurements on Alice’s ensemble. In that case, we refer to the accessible informa-
tion, which is defined as

Toee(€) = EIE%)}?](X L Y). (2.7)

If Alice and Bob were to use a quantum strategy in order to transmit n classical bits with
less than n qubits, they would require that I,..(€) be larger or equal than n bits and that
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the quantum states p, are states of less than n qubits. Although it is difficult in general
to compute I,..(€) exactly, the following upper bound was proven by Holevo in Ref. [69]:

Theorem 1. For a given ensemble € = {p(z), p..} it holds that
Lice(€) < S(p) = Y p()S(p2) = X(E), (2.8)

where p =Y p(x)p, and S(p) = —Tr(plog, p) is the Von Neumann entropy.

The function x(€) is known as the Holevo quantity.

From this bound, we can straightforwardly show that in order to transmit n bits of
information, Alice and Bob must necessarily use states of n qubits. To see this, note that
in order to maximize the accessible information, Alice should choose an ensemble that
maximizes the Holevo quantity x(&). If Alice chooses an ensemble of pure states, it holds
that x(€) = S(p). Similarly, for a system of n qubits, it holds that S(p) < n which implies
that I,..(€) < n. Therefore, n qubits cannot be used to transmit more than n bits of
information.

Although this result may seem disheartening, there are still several tasks for which
quantum communication can provide an advantage compared to the classical case. For the
time being, we can extract a valuable lesson from Holevo’s theorem: it is fair to compare
bits and qubits when quantifying communication. For example, in section 2.3, we take
a look at certain tasks for which it is possible to use less qubits than classical bits. In
that case, we can really talk about less information being transmitted, since, in view of
Holevo’s theorem, this smaller number of qubits is insufficient to transmit the larger number
of classical bits required.

Before we take a closer look at tasks for which quantum communication can provide
an advantage over the classical case, let us evaluate some of the features of quantum com-
munication that differ from what is classically possible.

1. Non-orthogonality. In classical communication, all possible messages of n-bit
strings © € {0,1}" are perfectly distinguishable, meaning that we can tell them apart
perfectly. In the language of quantum mechanics, what this means is that any two different
classical states |x) and |y) are orthogonal, i.e. (x|y) =0 for any =,y € {0,1}" and x # y.
In quantum mechanics, it is possible to prepare non-orthogonal pure states, i.e. states [i)

and |¢) such that [(¢|¢)] # 0.

For instance, consider the case of a single bit. Classically, Alice’s only two choices are
to prepare the states |0) and |1), perhaps with some prior probability. However, quantum
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mechanically, any superposition of these two states is also possible. For instance, Alice
could prepare the states

1
[£) = E“O) + (1)), (2.9)

which are not orthogonal to the states |0) and |1). Fundamentally, it is impossible
for Bob to distinguish non-orthogonal states perfectly with a single measurement. For
example, suppose that Alice were to send either |0) or |[+) to Bob, choosing between both
options with equal probability. Then there is no measurement that Bob can make that
will allow him to distinguish between these options with unit probability [65].

Additionally, it is important to understand that when Alice sends the state |+), the
situation is fundamentally different from the case in which she prepares a classical random
bit, i.e. |0) and |1) with probability . If Bob measures in the {|0),|1)} basis, the statistics
are indeed equal for the state |+) and the classical random bit. But if he measures in the
{|4),]—)} basis, the classical random bit will lead to equal probabilities of observing both
outcomes while the state |+) leads to a deterministic outcome.

Non-orthogonality leads directly to properties unique to the quantum regime, such as
uncertainty relations [128] and no-cloning of unknown quantum states [131], which can
be very useful particularly in the context of cryptography. We revisit the role of non-
orthogonality in quantum communication in chapter 6.

2. Entanglement. Suppose that Alice holds a four-dimensional system, whose general
state can be written as [¢) = Y07, Mili). As before, if we think of this state as being
composed of two qubits, we can equivalently write the state as [¢)) = > 132 Au|21)[22).
For example, Alice could prepare the state

1
V2

where we have explicitly labelled each of Alice’s qubits as A and A’. So far, we have
restricted our attention to the case in which Alice sends Bob all of her quantum systems.
But suppose that instead she sent Bob only qubit A’. In that case, they would both share
the state

[@7) = —=(10)4l0)ar + [1) A1) ), (2.10)

1
V2

where we have made it explicit that the second qubit is in Bob’s possession. As we discuss
in chapter 3, this is an example of an entangled state.

27) = —=(10)4l0)5 + [1) 1) B), (2.11)



Entanglement allows for stronger correlations between Alice and Bob than what can
be achieved with classical random variables. For instance, if Alice and Bob measure the
state |®T) in the {|0),|1)} basis, both of them will always obtain the same outcome. Of
course, this would also happen if they instead had prepared |0)|0) or |1)|1) with probability
%. However, for such a classically correlated state, if Alice and Bob measured in the
{|4),]—)} basis, they would obtain uncorrelated outcomes. Instead, for the entangled
state |®), which can be written as |®) = “5(|+)a[+) +|—)al—) ), they will again obtain
perfectly correlated outcomes.

Entanglement plays an important role in many quantum communication problems as
well as in other areas of quantum information and computation. We discuss such applica-
tions more extensively in chapter 3.

3. Quantum Computation. In our simplified model of communication between Alice
and Bob, we have only focused on the transmission of signals between them. However, Alice
and Bob can also manipulate and process the data they receive. In general, upon receiving
a classical message x, they can run an arbitrary classical computation whose input is the
message . Once quantum communication is allowed, the type of computations that Alice
and Bob can perform also get upgraded to the quantum domain. As before, this can only
help them, since a quantum computer can always simulate a classical one. However, there
exist situations where the additional possibilities brought forward by quantum computation
will be beneficial for them. We study such scenarios closely in section 2.3.

In summary, despite some limitations, quantum mechanics provides new and exciting
possibilities for communication. Our goal in the next sections is to study concrete examples
of tasks for which quantum communication provides an advantage compared to the classical
case.

2.2 Quantum cryptography

Let us re-examine the previous situation where Alice and Bob want to exchange a message,
but this time let us ask a different type of question: How can Alice and Bob communicate
in such a way that no other party can learn the content of their messages? In asking this
question we are now demanding security in the communication. This is precisely the scope
of cryptography: the study of secure communication. In the simple example above, Alice
and Bob are concerned with preventing a third party from learning the content of their
messages, but security can take on different forms. For instance, Alice could be interested
in ensuring that no malicious party can modify the message she sends to Bob.



So how can quantum communication help cryptography? Arguably the first person
to realize that quantum communication was useful for cryptography was Wiesner, with
pioneering work in the 1970’s [129]. Although quantum cryptography was initially met with
skepticism, several breakthroughs soon followed [18, 52]. In particular, Shor’s factoring
algorithm [113] — which represented a threat to classical encryption methods — catapulted
quantum cryptography into a flourishing and active research field. In the following, we
provide a brief overview of some important protocols in quantum cryptography.

2.2.1 Quantum key distribution

Suppose that Alice wants to send Bob an n-bit message z € {0,1}" in such a way that
Bob recovers x perfectly, but no other person can learn anything about x. There is a
simple classical protocol — the one-time pad — that allows them to achieve this goal. In the
protocol, Alice and Bob must share a secret key k of n-bits drawn uniformly at random
from the set {0,1}". In order to secretly transmit any given message x, Alice performs bit-
wise modulo 2 addition of the message and key to produce the cryptogram ¢ = x @k, which
she sends to Bob. To decode the encrypted message, Bob similarly performs addition of the
cryptogram and his shared copy of the key to retrieve the message ¢ @ k = z. Intuitively,
since the secret key is completely random, an eavesdropper learns nothing about x from
the cryptogram c, allowing Alice and Bob to communicate securely. In this case, we refer
to the protocol as being information-theoretically secure.

The one-time pad protocol reduces the problem of secrecy in communication to that
of distributing secret keys. But how can Alice and Bob manage to share a key that is
completely unknown to an adversary? It can be shown that it is impossible to establish a
secret key with information-theoretic security when only classical communication is allowed
[111, 90]. However, once quantum communication is permitted, secret keys can in fact
be distributed with information-theoretic security through the use of insecure quantum
channels and authenticated classical channels. Quantum key distribution (QKD) is the
study of how two remote parties can use quantum communication to establish a shared
secret key.

To see how this is possible, we express the ideal scenario of a shared secret key directly
in a quantum formalism. If Alice and Bob share a state of the form

1
pan =5 O[B4 K) (k] (2.12)
ke{0,1}n

then a measurement by each of them in the {|k)} basis will result in a shared key drawn
uniformly at random from the set of all n-bit strings. This takes care of the requirement
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that the keys are identical and random. Additionally, we require that an adversary, Eve,
holds no information about the key. This corresponds to the joint state [37]

. 1
PisE = on > k) kA @ k) Kls | © pe. (2.13)
ke{0,1}n

Therefore, if Alice and Bob can show that they hold a state of the form of Eq. (2.13), they
have a guarantee that they can extract a shared secret key from their systems.

Now consider the case where Alice prepares a two-qubit state and sends one of the two
qubits to Bob. We assume that she prepares a large number of identical copies of these
states. For each of the copies, she independently chooses whether to make a measurement
in the {|0),]1)} or {|+),|—)} bases. Remarkably, if every time that they measure in the
same basis their measurements are perfectly correlated and every time they measure in
a different basis their measurements are completely uncorrelated, it can be proven that
the only state that Alice and Bob could share that is compatible with these statistics is
the state |@) = \%(|O>A]0>B +11)a|1)) of Eq. 2.11 [87]. Since this state is pure, it must
be uncorrelated with the system of an adversary. Overall, if these perfect statistics are
observed, the state shared by Alice and Bob state must be given by the ideal state

pase = (|P)(P|*") ,, ® pe = P'{5E- (2.14)

Of course, this certification is only possible because Alice and Bob are assumed to have
perfect statistics. In any practical scenario, there will be errors and finite size effects. It is
the goal of security proofs of quantum key distribution to demonstrate that even in these
imperfect scenarios it is possible for Alice and Bob to safely extract a secret key. Although
in this example we have assumed that there is a source of entangled states, it can be shown
that for many protocols, this situation is equivalent to one in which Alice selects between a
set of non-orthogonal pure states that she sends to Bob, who chooses randomly to measure
the signals in different non-orthogonal bases [37].

By now, quantum key distribution is an established technology, with several experi-
mental demonstrations performed over increasingly larger distances and higher rates [103].
Additionally, there has been remarkable progress on the theoretical side by providing in-
creasingly rigorous and general security proofs [121]. Overall, thanks to the unique prop-
erties of quantum communication such as entanglement and non-orthogonality, quantum
key distribution performs a task that is impossible for separated parties using classical
communication only. This constitutes a first example of the advantages that are possible
with quantum communication.
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2.2.2 Other protocols in quantum cryptography

As discussed before, there is a vast range of security requirements that are important in
cryptography. We have already briefly mentioned secrecy: messages cannot be known
by an adversary, and integrity: adversaries cannot tamper the content of these messages.
Other commonly studied requirements are authentication: an adversary cannot imperson-
ate another person, and non-repudiation: a person sending a message cannot later deny
having done so. Digital signatures are cryptographic primitives that provide authentica-
tion, non-repudiation and transferability of messages and as such, they are widely used
to secure electronic communications. In chapter 8, we take a detailed look at how quan-
tum communication can be employed to provide information-theoretic security to signature
schemes.

Additionally, it is also important to consider tasks whose end goal is not to transmit
messages, but that nevertheless require communication in order to be carried out. A simple
example of is Yao’s Millionaire’s Problem [13(]. Here, two rich people want to know who
has the largest fortune between them, but without revealing the actual value of their total
wealth. More precisely, let Alice’s fortune be  and Bob’s fortune be y. Their goal is to
compute the function
1 ifx>y

0 otherwise (2.15)

flz.y) = {
without revealing any information about = and y other than the value of f(z,y). This prob-
lem constitutes an example of a more general cryptographic task known as secure function
evaluation, where the goal is to compute the value of any function f(z,y) without revealing
additional information about the inputs z and y. Protocols for secure function evaluation
can be built from universal primitives, most notably bit commitment and oblivious trans-
fer. Even using quantum communication, it is not possible to perform bit commitment or
oblivious transfer with information-theoretic security. However, security can be obtained
in a quantum setting by imposing additional constraints on adversaries, such as limiting
the amount of quantum memory at their disposal (bounded storage) or the levels of noise
in their quantum memories (noisy storage) [127].

Other problems for which quantum communication can provide a cryptographic advan-
tage are blind quantum computing [25], coin tossing [98] and secret sharing [39]. However,
it is important to emphasize that quantum cryptography is still a relatively young field:
we have most likely only begun to unravel the entire scope of advantages that quantum
communication can provide to cryptography.
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2.3 Quantum communication complexity

In a cryptographic setting, the difference between quantum and classical communication
is qualitative: quantum communication permits us to do things which are impossible in
a classical world. In this section, we take a look at a different class of problems for
which quantum communication can provide a quantitative advantage. As mentioned before,
Holevo’s theorem places a fundamental limit on the savings that quantum communication
can provide for the task of direct transmission of a classical message. However, there are
situations where Alice and Bob must communicate even though their end goal is not to
transmit messages to each other. We already saw an example of such a scenario with
the Millionaire’s Problem, where Alice and Bob are only interested in learning about the
relationship between their private inputs. Can quantum communication help for such
problems?

Formally, we consider the case where Alice and Bob respectively receive inputs = €
{0,1}™ and y € {0, 1}"™ and their goal is to collaboratively compute the value of a Boolean
function f(z,y). Since in general f depends on both inputs, Alice and Bob must commu-
nicate in order to compute the function. Communication complexity is the study of the
minimum amount of communication — as a function of the input size n — that Alice and
Bob must exchange in order to evaluate f [77]. In the usual model, we allow Alice and Bob
to have unlimited computational power and focus only on the total amount of communi-
cation required to compute f for the worst-case inputs x and y. In the deterministic case,
Alice and Bob must be able to compute f with probability one, whereas in the randomized
case, they have randomness at their disposal and are allowed to compute f with an error
probability smaller than e.! Usually, the probability of error is taken over randomness
in the protocol for the worst-case inputs, but this can be extended to an average error
probability over a probability distribution of the inputs.

The communication complexity of a function f, whether classical or quantum, in gen-
eral depends on the resources that are available to Alice and Bob besides the ability to
communicate. In particular, we distinguish between the following cases:

1. Local randomness: Alice and Bob are allowed to toss coins locally. The random bits
of Alice are independent of those of Bob.

2. Shared randomness: Alice and Bob are allowed to toss coins and the random bits
generated are shared between them, i.e. they hold the same string of random bits.

In the literature, it is customary to demand an error probability smaller than %, which can be reduced
to an arbitrary e by repeating the protocol and taking the majority vote of the outcomes.
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3. Entanglement: Alice and Bob share entangled states, usually many copies of the
maximally entangled state |®) of Eq. (2.11). These states are available prior to the
run of the protocol and are not taken into account when quantifying communication.

In quantifying communication, we count the total number of distinct messages Alice
and Bob must be able to transmit in order to carry out the protocol. As usual, we can
encode these messages into strings of bits, so we can equivalently refer to the total number
of bits exchanged. For a particular protocol P that computes f deterministically, let
Sp(x,y) be the total number of bits exchanged on inputs z,y € {0, 1}". The deterministic
communication complexity of the protocol P is defined as

D(P) := max Sp(z,y). (2.16)

z,y€{0,1}"
Similarly, the deterministic communication complexity of f is defined as

D(f) := min D(P). (2.17)

In the randomized case, let Sp.(x,y) be the total number of bits exchanged on inputs z,y
for a protocol P that computes f with probability of error smaller than e. We define the
randomized communication complexity of P as

R.(P):= max Sp(z,y). (2.18)

z,ye{0,1}m
Finally, the randomized communication complexity of f is defined as
R.(f) := m;n R.(P). (2.19)
The randomized case is usually also referred to as the bounded-error model of communica-

tion complexity.

Note that Alice and Bob can always compute any function f by simply exchanging their
entire inputs. However, in many cases, they can do much better than that. For example,
consider the equality function,

1 =y
EQ(z.y) = { 0 otherwise (2.20)
For this function, it can be proven that D(f) > n [77], so the trivial protocol in which Alice

sends her entire input to Bob is in fact optimal. However, once randomness is allowed, it
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can be proven that R, = O(log,n). Thus, they need only to communicate messages much
smaller than their entire inputs. Note that Alice and Bob are only interested in learning
one bit of information: the value of the function f. Thus, even though f depends on both
inputs z,y, it is sometimes possible to send only partial information about the inputs in
order to learn the single bit corresponding to the value of f.

In the quantum case, we now allow Alice and Bob to send quantum states to each other.
In quantifying communication, we again consider the total number of distinct quantum
states that they must be able to transmit in order to carry out the protocol. Formally,
we consider the dimension of the Hilbert space spanned by all the possible states in the
protocol. For example, if Alice and Bob exchange states of the form

[9) = > A, (2.21)

these state span a Hilbert space of dimension d. Notice that this reduces to the classical
case when they are only allowed to send states from the orthogonal basis {|i)}. As before,
we can encode these states into a system of [log, d] qubits, so we can equivalently talk
about the number of qubits exchanged. In the quantum setting, it is customary to consider
only the randomized case. As before, for a particular protocol P that computes f with
error probability smaller than ¢, let gp.(z,y) be the total number of qubits exchanged on
inputs x,y. The quantum communication complexity of P is defined as

Qe(P) :== max qp(z,y). (2.22)
z,ye{0,1}"

Finally, the quantum communication complexity of f is defined as
Qc(f) := min Qc(P). (2.23)

We know that quantum communication can never do worse than classical, but can it
really help for communication complexity? At first glance, it would appear that Holevo’s
theorem once again ruins the party. As it turns out, for specific problems, quantum com-
munication can provide dramatic reductions in communication. The crucial difference
compared to the case of direct communication is that Alice and Bob only need to learn a
single bit of information, so quantum communication can prove advantageous in allowing
them to process and manipulate information in ways that permit an overall reduction in
communication. In the following, we take a look at examples of problems for which quan-
tum mechanics can provide exponential reductions in communication complexity compared
to the classical case. For a complete review of all such problems, we refer the reader to
Ref. [27]. The practical demonstration of these schemes is the main topic of chapters 6
and 7.
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2.3.1 Raz’s problem

The first example of an exponential separation between classical and quantum communi-
cation complexity is due to Raz [102]. In this problem, Alice receives a unit vector v € R™
and a decomposition of R™ into two orthogonal subspaces Hy and H;. Bob receives as
input an m X m unitary matrix U. They are given the promise that either || Py, Uv||* > 2
or || Py, Uv||* > %, where Py is the projector on the corresponding subspace. Their job is
to determine which of the two cases holds with probability of error smaller than €. Even
though the problem in its above formulation has continuous input, we can re-formulate it
for discrete inputs by approximating real numbers with klog, m bits, for some constant
integer k. In that case, Alice’s and Bob’s input have size n = O(m?log, m) bits.

It was proven in Ref. [102] that any classical protocol for this problem must transmit
at least Q(n% /log, n) bits. However, there exists a simple quantum protocol that requires
only O(log, n) qubits. In the protocol, Alice encodes the vector v = (v1,vs,- -, vy,) into a

quantum state
m

(o) =D wil) (2.24)
i=1

and sends it to Bob, who applies his unitary transformation U on the state. He then returns
the state to Alice, who makes a measurement defined by the two projectors {Pg,, Pg, }.
Because of the promise of the problem, she will obtain the correct answer with probability
greater or equal than % In order to decrease the error probability to an arbitrary € > 0,
they can simply repeat the protocol a constant number of times and take the majority
vote of the outcomes. Again, since the states {|¢,)} sent by Alice span an m-dimensional
Hilbert space, we can equivalently think of them as states of log, m = O(log,n) qubits.
This is an exponential separation compared to the classical case.

2.3.2 The Hidden Matching problem

In this problem, Alice receives an n-bit string = € {0,1}" as input, with n an even num-
ber. Bob receives a matching M = {(i1,71), (42, 72): - - - » (%ns2, Jns2) } on the set of numbers
{1,2,...,n}, i.e. a partition into n/2 pairs. For example, a matching for the case n = 6
could be {(1,6),(2,5),(3,4)}. Only one-way communication from Alice to Bob is permit-
ted and the goal is for Bob to output at least one element of the matching (7, ) and a
corresponding bit value b such that b = z; @ x;, where x; is the i-th bit of the string x. Note
that the problem can be easily solved if Bob can communicate with Alice: he only needs
to send her an element of the matching, which requires O(log, n) bits of communication.
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It has been shown that in the bounded-error model, any classical protocol with shared
randomness requires Q(y/n) bits of communication [13]. It was also shown in Ref. [13] that
there exists an efficient quantum protocol that uses only O(log, n) qubits of communication
and outputs a correct answer with certainty. In this protocol, Alice prepares the state

1 n
z) = —= ) _(=1)"]i) (2.25)
and sends it to Bob, who measures it in the basis

{5 £15)} (2.26)

with (¢, 7) € M. Since these states form a complete basis, one of these outcomes will always

occur, and it will always correspond the correct value because \%(M + |4)) only occurs if

z; ® x; = 0 and similarly, \%(\z) — |7)) only occurs if x; @ x; = 1. This allows Bob to give
a correct output after performing his measurement.

In chapter 6 we study how this problem can be implemented in a practical setting.

2.3.3 Quantum fingerprinting

Quantum fingerprinting is arguably the most appealing protocol in quantum communica-
tion complexity, as it constitutes a natural problem for which quantum mechanics permits
an exponential reduction in communication complexity [25]. In the simultaneous message
passing model (SMP) [135], Alice and Bob are each given an n-bit string, which we label
and y respectively and they must each send a message to a third party, the referee, whose
task is evaluate a given function f(z,y). Alice and Bob do not have access to shared
randomness and there is only one-way communication to the referee. For quantum fin-
gerprinting, we focus on the equality function EQ(x,y) as in Eq. (2.20) and the goal is
for Alice and Bob to send messages to the referee so that he can determine whether their
inputs are equal or not with an error probability of at most e.

In this case, it has been proven that any classical protocol must transmit at least Q(y/n)
bits of information to the referee [12, 95]. On the other hand, a quantum protocol was
specified in Ref. [28] that transmits only O(log, n) qubits of information — an exponential
improvement over the classical case.

This quantum fingerprinting protocol relies on the concept of error-correcting codes. A
code can be expressed as a function E : {0,1}" — {0,1}™, where E(x) is the codeword
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n

associated with the input z, where R = ™ < 1 is the rate of the code. The protocol
makes use of codes that have the additional property that the minimum Hamming distance
between any two codewords is at least dm, for some § > 0. More precisely, for the error-
correcting code it holds that

r%nl} h(E(z), E(y)) > ém for all x # y and for all n, (2.27)
z,ye10,1™

where h(-,-) is the Hamming distance. The parameter 6 is called the minimum distance of
the code.

In the protocol, Alice and Bob respectively prepare the fingerprint states

o) = s Y1

where E(z); is the ith bit of the codeword E(x). This state has dimension m, so it can
be associated to a system of log, m = O(log, n) qubits. Upon receiving the states from
Alice and Bob, the referee performs a SWAP test on them. In this test, the referee adds
an ancilla qubit initialized to the state |0) and applies the transformation

(1 ® H) c-SWAP (1 ® H) [0)|ha)|hy), (2.29)

i), (2.28)

where H is the Hadamard transform, SWAP is the transformation that exchanges Alice’s
and Bob’s systems, i.e. it performs the transformation |h,)|h,) — |hy)|h,), and c-SWAP is
a controlled SWAP operation. After applying this transformation, the referee performs a
measurement in the computational basis of the ancilla qubit, with corresponding outcomes
“077 and ((177'

It can be shown that if © =y, then Pr(1) = 0, whereas if z # y, Pr(1) > ﬁ [28].
Therefore, the referee can decide whether the states are equal or not by simply checking
whether outcome “1” occurs. If the inputs are equal, this will never happen but if the
inputs are different, there is a fixed probability for this outcome to occur. The probability
of error can then be made arbitrarily small by simply repeating the protocol enough times
and checking whether outcome “1” occurs.

In chapter 7, we study a practical protocol for quantum fingerprinting as well as its
experimental demonstration.

2.3.4 Conclusion

In this chapter, we have given an overview of quantum communication with a focus on
how it can provide advantages compared to classical communication. However, the ex-
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amples discussed are by no means exhaustive. Quantum communication is an active field
both in theory and experiment, covering additional subtopics such as quantum Shannon
theory [130], quantum non-locality [26], quantum repeaters [106], and quantum networks
[76]. Globally, there is an interest in building a quantum Internet, to be used to perform
tasks beyond what is classically possible. It is a grand challenge not only to develop the
technologies required to achieve this goal, but also to acquire a profound theoretical un-
derstanding of quantum communication, in particular by identifying how it can improve
upon what can be done classically.
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Chapter 3

Entanglement Theory

In chapter 2, we made our first encounter with entanglement when we reviewed how en-
tangled states could be used in a cryptographic context. Entanglement, however, plays a
much larger role in quantum mechanics and quantum communication. In this chapter, we
cover the basic concepts of entanglement theory, with a particular attention on how the
entanglement of physical systems can be verified in practice.

3.1 Bipartite entanglement

Previously, we claimed that the state

1

V2

was an entangled state of two-qubits, but we did so without even defining what entangle-
ment is! So let us begin with some definitions.

) (10)410)5 + 1) al1) 5)

Definition 2. A pure bipartite state |ap) € H, with H = Ha @ Hp, is called a product
state if it can be written in the form |Yap) = |a) ® |Wp) for some |4) € Ha and
|g) € Hp. Otherwise, the pure state is called entangled.

Notice that the decomposition of the underlying Hilbert space H is a crucial part of
the definition. In particular, a state may be entangled with respect to some bipartition
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but not with respect to another. A family of maximally entangled two-qubit states that
will recur in this thesis are the Bell states

o L

%) = —=(00) +11) (3.1)
B 1

#7) = —5(100) 1) (3.2)
by L

%) = —=(01) +[10)) (3.3)

W) = (o) — [10)). (3.4)

2

Ql

We can extend the above definition to mixed states to provide the most general defini-
tion of entanglement.

Definition 3. A bipartite state pap € D(H), with H = Ha ® Hp, is called separable if
there exists {p;}, with > ;p; = 1, p; > 0 and local states {p%}, {p's} such that pap can be
written in the form

pas =p;i Y P ® plg. (3.5)
Otherwise, the state is called entangled.

The set of separable states is convex, meaning that for any two separable states p; and
p2 and any 0 < p < 1, the state p = pp; + (1 — p)ps is also separable. The set of entangled
states, however, is not convex.

In general, it is a computationally hard task to determine whether a given state p is
entangled or not. In section 3.2, we consider different criteria that can be employed in
order to determine whether a state is separable or entangled. In this thesis, we focus only
on bipartite entanglement, but, naturally, the theory of entanglement extends also to the
multipartite case.

3.1.1 Why are we interested in entanglement?
Based on its definition alone, it is not easy to see why entanglement is an important
property of physical systems. However, in recent decades and particularly with the advent

of quantum information, entanglement has been well established as a useful resource for
performing tasks that are not possible using only classical resources.
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In the context of quantum computing, it is known that quantum algorithms on pure
states that produce only small amounts of entanglement can be simulated efficiently by a
classical computer [125]. This implies that in the context of pure-state quantum compu-
tation, entanglement is a necessary condition for achieving an exponential speed-up over
the classical case. In the case of mixed-state quantum computing, the role of entangle-
ment is not so well understood [79]. Entanglement also plays an important role in one-way
quantum computing, where a the quantum computation is performed by appropriate mea-
surements of highly entangled states [101]. In fact, the presence of entanglement is often
used as a benchmark for current small-scale quantum computers [2].

In the context of communication, entanglement shared between parties is required to
perform quantum teleportation, superdense coding and entanglement swapping [19, ].
These can in turn be used as building blocks for other tasks such as quantum repeaters and
error correction [106, 81]. Entanglement can also be a powerful resource for communication
complexity [10]. If Alice and Bob share an unlimited number of maximally entangled
two-qubit states — such as the Bell state |®7) — and they are allowed to communicate
classically, this entanglement can be used to realize effective quantum channels via quantum
teleportation. Thus, adding shared entanglement to classical communication can lead
to exponential savings in communication complexity for the same problems discussed in
chapter 2. Additionally, as discussed before, in the context of cryptography, entanglement
can be used to perform quantum key distribution as well as other tasks such as oblivious
transfer. In particular, it has been shown that entanglement is a necessary condition for
the security of quantum key distribution [13]. Finally, entanglement plays a fundamental
role in device-independent quantum cryptography, certified randomness generation, and
nonlocality [20].

Entanglement also plays an important role in quantum metrology, particularly in schemes
that allow quadratic improvements in the precision of estimating an optical phase [61]. Ad-
ditionally, it is an important aspect of many-body physics, giving new insights to areas
such as superconductivity, phase transitions and Bose-Einstein condensates [3]. Overall,
entanglement plays a crucial role in quantum physics, quantum information, and quantum
technologies [73].

However, despite its usefulness and significance, generating entanglement, controlling
it and preserving it in an experimental setting is a daunting task. As such, it is a challenge
for experiments claiming to generate entanglement to certify that the physical systems in
consideration are indeed entangled. In the following section, we review theoretical methods
for certifying the entanglement of quantum states and how these methods can be applied
to entanglement verification in experiments.
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3.2 Separability criteria

Suppose that you are given a full description of a bipartite quantum state p. How can
you determine whether the state is entangled or not? Naively, all we have to do is show
that the state cannot be expressed in the form of Eq. (3.5). But for large systems, this
turns out to be a computationally challenging task. In fact, determining whether a state is
separable or not — known as the separability problem — is an NP-hard problem in terms of
the number of qubits in the system [(5]. Therefore, we do not expect there to be efficient
algorithms for certifying the entanglement of general states. The situation is even more
dire in an experimental setting, where we never have access to the full density matrix of
the system, but can only perform a finite number of measurements and make statistical
inferences from the data.

Instead, we are often interested in separability criteria: conditions that hold for all
separable states but are not met by some entangled states. Thus, if we can show that a
state does not meet a particular criterion, we are certain it must be entangled. Separability
criteria usually lead to methods for entanglement verification that are less computationally
demanding than more general solutions, and they are also more accessible to experiments.
We now take a look at some important separability criteria.

1. Positive but not completely positive maps [72]. Let B(#H) be the set of all
bounded linear operators on a Hilbert space H. A map A : B(H) — B(H') is called a
positive map if it maps Hermitian operators to Hermitian operators, satisfies A(XT) =
A(X)T, and it maps positive operators to positive operators, i.e. A(X) > 0 for all X > 0.
A map is called completely positive if for any Hilbert space H,4 it holds that the map
14 ®A(X) is also positive. Intuitively, a completely positive map preserves positivity even
when it acts only on a subsystem of a larger physical system. Thus, all physical maps
are completely positive. We refer to maps that are positive but not completely positive as
PnCP maps.

Theorem 4. For any PnCP map A and any bipartite separable state p € Ha® Hp it holds
that
(14 ® A)(p) > 0. (3.6)

Therefore, if for any PnCP map A it holds that (14 ® A)(p) # 0, we can conclude that
the state p must be entangled. In fact, it has been shown that a state p is separable if and
only if (14®A)(p) > 0 for all PnuCP maps [72]. However, characterizing the set of all PuCP
maps is as hard as characterizing the set of all entangled states. Therefore, it is usually
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desirable to focus on simple PnCP maps that are capable of detecting the entanglement of
a wide class of quantum states.

2. PPT criterion [100, 72]. The most celebrated example of a simple PnCP map is
the transposition map 7. The map (1 ® T') is referred to as the partial transposition. Its
action on a bipartite state

p =323 puuli)il @ K (37)

.3

is given by

(LRT)(p) = p" =D pusli) (il @ k). (3.8)

1,5 ki

States satisfying the condition p!' > 0 are referred to as PPT states. From the PnCP
criterion, we know that all separable states are PPT and any state satisfying p' # 0 must
be entangled. Famously, the PPT criterion provides a necessary and sufficient condition
for entanglement in dimensions 2 x 2 and 2 x 3 [72]. Additionally, partial transposition
has the highly appreciated property of being efficiently computable.

3. Entanglement witnesses. An important drawback of the two previous criteria is
that they require complete knowledge of the quantum state p. In experiments, the state
is unknown, and all the information that is available is the result of repeated measure-
ments on sequential preparations of a given system. Using techniques from quantum state
tomography [99], it is possible to statistically reconstruct the quantum state of a system
and then use separability criteria to verify entanglement. However, for systems of large
dimension, the number of different measurements that have to be made in order to recon-
struct a state quickly increase beyond experimental capabilities. For example, for systems
of n-qubits, the required measurement settings to reconstruct a general state will in general
increase exponentially with the number of qubits [63]. Consequently, it is desirable to use
methods that allow the verification of entanglement without the requirement to perform
full tomography.

A widely used approach relies on entanglement witnesses. A linear entanglement wit-
ness on a bipartite Hilbert space H = H4 ® Hp is a Hermitian operator W, such that

Tr (Wp®) > 0 Vp® separable
dp entangled such that Tr (Wp) < 0. (3.9)
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Therefore, if the expectation value of a witness is negative for a given state, this state
must be entangled. We refer to this situation as the state being detected by the witness.
Geometrically, a linear entanglement witness can be viewed as a hyperplane defined by the
set of states such that Tr (WWp) = 0. The existence of entanglement witnesses is guaranteed
by the fact that the set of separable states is convex: The hyperplane separation theorem
then states that for any entangled state, there must exist a hyperplane separating this state
from set of separable states [72]. Thus, for any entangled state, there exists an entanglement
witness for which the state has a negative expectation value. However, finding a witness
for a particular state is in general a hard problem, since this would imply a solution to the
separability problem.

Notice that the expectation value of an entanglement witness corresponds to a single
parameter of a quantum state p. In principle, directly measuring the expectation value
of the witness W is sufficient to verify the entanglement of this state; much easier than
doing full tomography of p. However, a direct measurement of W is difficult to perform
experimentally as it generally requires global measurements. Instead, a linear witnesses
can be decomposed in terms of a linear combination of local observables {A; ® B;} as

N

i=1

These local observables are then easier to measure experimentally. Then, it suffices
to measure the expectation values {Tr (pA; ® B;)} in order to determine the expectation
value of the witness. In most cases, linear witnesses can be decomposed in terms of a
number of local operators that scales favourably with the dimension of the system, thus
making the task much easier to perform experimentally than full tomography.

The problem of entanglement detection with a fixed restricted set of measurements
corresponding to the eigenvalues of the operators {A; ® B;} has been addressed in Ref.
[12]. Investigation of this problem naturally leads to the definition of wverifiable states.
For the given set of restricted measurements a state is called verifiable if the outcomes
of the measurements are not compatible with the outcomes of the same measurements on
any separable state. The set of all linear witnesses which can be constructed from this
restricted set of measurements is called the verification set. Characterizing the verification
set or finding a witness for a given verifiable state is a challenging problem [12], which is
in fact as hard as finding an entanglement witness for an arbitrary entangled state [73].
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3.2.1 Choi-Jamiotkowski isomorphism

A beautiful connection between entanglement witnesses and PnCP maps can be established
through the Choi-Jamiotkowski isomorphism. This relation states that any linear map
Aw : B(Ha) — B(Hp) is connected to an operator W acting on a bipartite Hilbert space
H =H4s® Hp via the relation

where, as before, X7 is the transpose of X. The inverse relation, connecting the operator
W to the map, is given by

W = (L © Aw)(|2)(2]) := Aw (|2)(2]), (3.12)

where 14 is the identity operator on Ha, Ha ~ Ha and [®) = > [i)]i) is a non-
normalized maximally entangled state on H 4 ®H 4. Note that the map Ay maps operators
in B(Ha ® Ha) to operators in B(Ha @ Hp).

It can be shown that Ay is a PnCP map if and only if W is an entanglement witness.
This profound connection has several important applications in the context of entanglement
theory [63]. For our purposes, it suffices to see that the Choi-Jamiotkowski isomorphism
provides a method of constructing interesting PnCP maps from entanglement witnesses.

3.3 Nonlinear entanglement witnesses

The entanglement witnesses that we have studied so far are linear, in the sense that their
expectation value is a linear function of the quantum state p. Linear entanglement wit-
nesses are useful for detecting the entanglement of some states, but for any witness, there
are always entangled states that have a positive expectation value and whose entanglement
cannot be detected with that witness. However, it is possible to construct nonlinear exten-
sions of any entanglement witness, which detect more states than their linear counterparts.

In order to derive a nonlinear witness on a Hilbert space H = H4 ® Hp, we first note
that the quantity Tr (POOT) is positive semi-definite for any positive operator P and any
operator O. As a consequence, for any decomposition O = 3 | ¢; B; with free parameters
¢; and any set of operators B;, this condition can be shown to be equivalent [93] to the
positive semi-definiteness of the matrix

[M(P));; = Tt (PBZBJT) . (3.13)
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If we choose B as the projector Pg+ onto the maximally entangled state |®*) on
HaRHa and By as some unitary U, for a given entanglement witness W we can construct
a 2 x 2 matrix defined as

_ Tr ([X;EV (] ]l) Tr </~\¥,V [p|P o+ U)

M(p) := M(A;F/V[P]) = Tr <M/v[P]UP<I>+>* Tr (/NXLV[p]qu) g (3.14)

where p is a bipartite quantum state in D(H4 ® Hp) and /NXI,V is the adjoint map of the
witness map Ay, which as before is given by

Aw =14 ® Aw. (3.15)
The adjoint map is defined as the unique map satisfying
Tr [ALV(X)Y] ~ Ty [X]\W(Y)} (3.16)

for all X € B(Ha® Hp)and all Y € B(Ha @ Har).

Since Ay is a PnCP map, /~X~W will transform separable states into positive operators,
and so will its adjoint AT, i.e. Af[p,] > 0 for any separable state p, € B(H). Therefore,
for all separable bipartite states the matrix M (ps) must be positive semi-definite [93].
Moreover, for general bipartite states p, failure of the matrix in Eq. (3.14) to be positive
is a conclusive proof that the particular p must be entangled.

By using the definition of the adjoint map, noting that Ay [Pg+] = W and assuming
that Tr (pAW[1]> # 0, we construct from the determinant of Eq. (3.14) a nonlinear

function which improves the entanglement detection of the linear witness [93]:

| Tr (p/NXW[PqﬁU]) >
w(ohnlt])

wi(p) = Tr (pW) — (3.17)

That is, if for some U we have that wx(p) < 0, then the state p must be entangled. The
new criterion (3.17) detects more entangled states because we subtract a strictly positive
number from the expectation value of W.

This procedure can be iterated to build consequent improvements to the preceding
witness. In Ref. [7], it was shown that, whenever U? = 1, in the asymptotic limit of
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an infinite number of iterations, the expectation value of the nonlinear witness can be
expressed in terms of an analytic formula as

Woo(p) 1= Tr (pW) — 5¢(p)|c(p)]* —

where k(p) = Tr (pZ\W[U]) , (3.19)
#(p) = Tr (phw[1]) (3.20)
c(p) = Tr (p/N\W[Pq>+ U]> , (3.21)
d(p) = Tr (pW) — sc(p)k(p). (3:22)

In general, for a witness W that is decomposed in terms of local observables {A; ® B;},
it will not be possible to evaluate the expectation value (3.18) of its nonlinear extension
only from the expectation values (A; ® B;) := Tr (pA; ® B;) of the local observables. This
of course presents a severe problem, since one of the appealing properties of entanglement
witnesses is that they can be evaluated from this small set of expectation values. However,
for the right choice of the unitary U, it is indeed possible to construct nonlinear witnesses
that can be evaluated from exactly the same measurement data as the original linear ones.
They are called accessible nonlinear witnesses [7]. In general, any expression is deemed
accessible if it can be evaluated from the expectation values (A; @ B;).

We now give necessary and sufficient conditions for the expectation value wy(p) of Eq.
(3.18) to be accessible.

Observation 5. Let W = Y. ¢;A;®B; be a decomposition of a linear entanglement witness
and let the unitary U used in the construction of the nonlinear witness satisfy U?> = 1. Then
Weo(p) s accessible if and only if k(p), »(p) and c(p) are accessible.

Proof: First assume that k(p), s»(p) and d(p) are accessible. Then w..(p) must be
accessible as it is a function of k(p), #(p) and d(p) only. This finishes the first part of the
proof.

Now assume every wa(p) is accessible. Define v; := Tr (pA; ® B;) and z; := Tr (pZ;)
where the set of hermitian operators {Z;} form a basis of the orthogonal complement V=
of V = span{4; ® B;}Y,. Then a quantity ¢({v;}, {z}) is accessible if it can be expressed
as a function of the variables v; only. Equivalently, one can say that all derivatives of ¢
with respect to every z; must vanish for all values of the variables {v;} and {z;}.
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First note that for ¢(p) = 0, we find that w.(p) = we(p) = Tr (pW) for all n. In this
case, the nonlinear improvements coincide with the expectation value of the linear witness
and therefore can be evaluated from the same measurement data. So from now on we can
assume that ¢(p) # 0 whenever necessary.

In general, we can write ¢ = Y, a; + ;22 and x> = 37, biv; + > y;2; for some
fixed numbers {a;}, {z;},{b:}, {y;}. We want to show that z; = y; = 0 for all values of j.
It is a lengthy but straightforward calculation to show that the condition a%l%|c|2 =0, for

any [ = 1,...,dim(V?1) is equivalent to the system of linear equations
Ylz* =0 (3.23)
yila* =0 (3.24)
Bim = auy, (3.25)
where
ap = Z Z a;a;vv; + Z Z(aix; + a;x;)v;z; (3.26)
i g i gl
B = Z(aix;‘ +afm)v; + Z(xjmf + 521) 25 (3.27)
i £
v = Z bjv; + Z YjZj. (3.28)
i j#

Recall from (3.17) that we always have »~! = 3, + 4,2, # 0 and therefore Eqns. (3.23) and
(3.24) imply |z;| = 0 (otherwise both 7, and y; must be equal to zero, which would imply

~1 = 0). Since this holds for any arbitrary [, it proves that ¢ = ), a;v; and therefore it
proves that ¢ is accessible. Further, because of |z;| = 0, Eq. (3.27) becomes /5, = 0 and
Eq. (3.26) becomes ay = 37, >~ a;ajvv; = |c|*. Moreover, Eq. (3.25) gives ayy; = 0. Since
a; = |c|? # 0 it must be that 3, = 0 for all values of . This proves that s~ = > biv; and
therefore s is also accessible. Finally, from Eqs. (3.18) and (3.22), it is straightforward to
show that s|k| is accessible and this implies that k is accessible as well. |

These results tells us that, as long as we choose a unitary U satisfying U? = 1 as well
as the conditions of observation 5, it is always possible to construct a nonlinear extension
of a witness W whose expectation value can be easily computed as a function of the same
measurement data required for the linear witness W. Moreover, the nonlinear witness is
a strict improvement as it always detects the entanglement of more states. In chapter
5, we provide a reliable data analysis technique to evaluate the results of entanglement
verification experiments and employ it in an experiment to verify the entanglement of
two-qubit states using accessible nonlinear witnesses.
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Chapter 4

Quantum Optics

So far, we have studied quantum communication and entanglement theory without a speci-
fication of the physical systems that are used to communicate or to generate entanglement.
In the context of communication, light is essentially the only carrier of information that is
suitable for fast, long distance communication. Similarly, although entanglement has been
demonstrated in a large variety of physical systems such as ion traps and superconducting
circuits, optical systems also provide a versatile platform for the generation and manipula-
tion of entanglement, leading to many pioneering experiments. In this thesis, we focus on
light as the physical system of choice and in this chapter, we give a brief introduction to the
canonical quantization of the electromagnetic field, which provides the working framework
of quantum optics. From this starting point, we continue by studying important quantum
states of the quantized electromagnetic field, as well as basic notions of linear optics and
single-photon detection.

4.1 Quantized electromagnetic field

In classical physics, the theory of electromagnetism is elegantly summarized in Maxwell’s
equations. In the vacuum, i.e. without the presence of charged particles, the electric field
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E(r,t) and the magnetic field B(r,¢) obey the equations

V-E=0 (4.1)
V-B=0

0B

1 0B

where c is the speed of light and, for simplicity, we have dropped the explicit dependence on
the position vector r and on time ¢. All physically allowed configurations of the electric and
magnetic fields must obey Maxwell’s equations, so the study of electromagnetism is strongly
linked to the study of the solutions to these equations. A convenient method of expressing
these solutions is to look at the vector and scalar potentials, ¢ and A respectively, which
satisfy

B=VxA (4.5)
OA

E=-Vo— . (4.6)

The potentials have gauge freedom, meaning that there are transformations that can
be applied to them which leave the electric and magnetic fields unaltered. In general, for
any function f(r,t), the transformations

A—A+Vf (4.7)
of
¢_>¢_E (4.8)

are gauge transformations that leave the electric and magnetic fields unchanged. For
convenience, we can therefore set ¢ = 0 and demand that the vector potential satisfy
V-A = 0. This is known as the Coulomb gauge. In this case, plugging equations (4.5) and
(4.6) into equation (4.4), and making use of vector calculus identities, gives the following
re-formulation of Maxwell’s equations for the vector potential:

1 0%A

VA = = —. 4.9

2 Ot? (4.9)
This is known as the wave equation, a famous equation in physics whose solutions have
been extensively studied. Any particular solution A(r,t) is referred to as an optical mode.
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For simplicity, we focus on solutions defined on a finite cubic volume of space of length

L and volume V = L3. In this case, any solution to the wave equation can be expressed in

terms of a Fourier decomposition, i.e. a linear combination of plane wave solutions of the
form

A(r,t) = Z (Akvpe_i(“’“t_k'r) + Aiypei(“”“t_k'r)) €p, (4.10)

k,p

where Ay, is the complex amplitude of the field, wy, = c|k|, and the wave vector is given
by k = (ky, ky, k), whose components must satisfy

2mn

k, = a 4.11
2mn

ky: Ly (4.12)
2mn

k., = z 4.1

= (4.13)

for integer values of ng,n, and n.. Additionally, &, is a unit polarization vector satisfying
ép-k=0. (4.14)

Thus, in three-dimensional space, there are only two linearly independent polarization
degrees of freedom, which are perpendicular to the direction of propagation of the given
plane wave mode. The sum in Eq. (4.10) is thus taken over all wave vectors k = (ky, ky, k)
and polarizations €1, ;.

In order to construct a quantum theory of the electromagnetic field, we begin by writing
down its Hamiltonian, which can be expressed as [59)]

H =26V > wiAi,Ap,, (4.15)
k,p

where € is the permittivity of the vacuum. This Hamiltonian can be re-written in more
familiar form by expressing the mode amplitudes as

1 .

Akap = \/W (Wka,p + ZPk,p) (416)
1 :

As —_— ((,ukap - ZPk7p) (417)

kp \/4&),%60‘/

in which case the Hamiltonian takes the form

1
H =5 (B + wiXi,) (4.18)
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This Hamiltonian is mathematically equivalent to the Hamiltonian of a simple harmonic
oscillator of unit mass.

In the canonical quantization approach, we construct a quantum theory of the electro-
magnetic field by promoting the variables Py, and Xy , to operators py , and Zy , satisfying
the canonical commutation relations

[ﬁk,pvﬁk’vp’] = [fk,paj:k’,p’] =0 (4-19)
[i‘k,ihﬁk',p'] = ,lh (5k7k’(5p’p/. (420)

Finally, by introducing the operators

1 . .
ak,p = on (kakvp + 1pk,p) (4.21)
1
T A - A
a, = ———(WrTrp — 1 4.22
k,p \/m( kLk,p pkﬂp) ( )

we can re-write the Hamiltonian of the single-mode quantized electromagnetic field as

1 . 1
H = h,wk (aLpakyp + 5) = hwk (nk’p -+ 5) y (423)

where we have introduced the photon number operator n. The operators CLL , and ax, are

called the creation and annihilation operators respectively. They satisfy the commutation
relations

[akp, akzyp/] = [(le, CLTk/7p,] =0 (424)

[akm, (l;r{/m/] = 6k,k’5p,p’- (425)

Finally, we express the quantum vector potential of a plane-wave mode in terms if these
operators as

_h

T 2¢Vwg
Therefore, in quantum theory, the vector potential is mathematically described as a vector
potential operator that assigns an operator to every space-time coordinate (r,¢). Moreover,
from the commutation relations (4.24) and (4.25), we see that distinct optical modes are
independent systems, since all operators corresponding to distinct modes commute.

Aw,(r,1) (ak’pe—i(wkt—k.r) n aLpei(wkt—k-r)) ‘ (4.26)
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4.2 Quantum states of light

In the previous section, we have studied operators associated to the quantized electro-
magnetic field such as its Hamiltonian, the vector potential operator and the creation and
annihilation operators. In this section, we study instead important states of the quantized
electromagnetic field. Henceforth, we drop the subscripts labelling the modes and focus
on the single-mode case unless otherwise stated.

4.2.1 Fock states

For all physical systems, the eigenstates of the Hamiltonian form a natural and convenient
basis. In our case, the eigenstates of the Hamiltonian satisfy the eigenvalue equation

1
hw (aTa + 5) In) = E,|n). (4.27)
It can be shown [59] that this Hamiltonian has a ground state |0) satisfying
al0) =0, (4.28)

where a is the annihilation operator of the mode. The ground state |0) is referred to as
the vacuum state of the field. Therefore, from Eq. (4.27), the eigenvalue of the ground
state is %hw Additionally, it can be shown that the action of the creation and annihilation
operators on the eigenstates of the Hamiltonian are given by

aln) = /n|n — 1) (4.29)
a'ln) = Vn+1jn +1). (4.30)

Therefore, we can construct the eigenstates and eigenvalues of the Hamiltonian by repeated
action of the creation operator on the ground state |0). The result is that there are a
countably infinite number of eigenstates {|n)} with corresponding eigenvalues

1
En:hw<n+§) n=012,... (4.31)
The eigenstates of the Hamiltonian are called Fock states and they form a complete basis

— the Fock basis — for the Hilbert space associated with an optical mode. In particular,
they satisfy the completeness relation

> |n)(n| = 1. (4.32)

34



The physical interpretation of a Fock state |n) is that it corresponds to n fundamental
particles called photons. For example, the state |1) corresponds to the state of a single
photon with energy hw and the vacuum |0) corresponds to a state with no photons (hence
its name).

Fock states can be expressed in terms of the action of the creation operator on the
vacuum as

.I.

a

n) = ——=|0). 4.33
) = =10 (1.33)
Therefore, we can interpret the action of this operator as creating a photon in the mode
(hence its name). Similarly, from Eq. (4.29), we can interpret the action of the annihilation
operator as removing one photon from the field.

Finally, Fock states can be used to define different kinds of photonic qubits. For ex-
ample, a simple qubit can be defined by two basis states corresponding to the vacuum
|0) and single-photon |1) of a single mode. Alternatively, we can define a qubit in terms
of single-photon states across two modes. For instance, let a}l and a;r/ be the creation
operators corresponding respectively to horizontal and vertical polarizations of a a given

optical mode. Then we can define a qubit in terms of the basis states

|H) = al,|0) (4.34)
V) :=al,|0). (4.35)

4.2.2 Coherent states

Fock states are eigenstates of the Hamiltonian and, from Eq. (4.23), also eigenstates of
the photon number operator n. We now consider a different class of states which are
eigenstates of the annihilation operator a, namely states |«a) satisfying

ala) = ala). (4.36)
The states |«) are known as coherent states. Notice that since a is not a Hermitian operator,

the eigenvalues « are in general complex numbers. It can be shown that, in terms of the
Fock basis, coherent states can be expressed as

o) = 4P 5 2, (4.37)
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Alternatively, coherent states can be written in terms of the action of the displacement
operator on the vacuum

@) = D(a)]0), (4.38)

where the displacement operator is given by [59]
D(a) = exp(aa’ — o*a). (4.39)
The expectation value of the photon number operator for a coherent state |«) satisfies
(aln]a) =7 = |a|? (4.40)

and the probability of observing n photons after measuring a coherent state |«) is given
by

‘&‘Qn

Pr(n) = el (4.41)

n!

which is a Poissonian probability distribution with mean u = |a|?. Finally, the overlap of
two coherent states |a) and |3) satisfies

a18)] = exp(~ 5l — B). (142)

Therefore, all coherent states are non-orthogonal.

For a coherent state [a), where o = |a|e?, the expectation value of the electric field
operator F(r,t) — which can be derived from the vector potential operator of Eq. (4.26) —
is given by

1
. Boow \ 2
(aE(r,t)|a) = 2]a| [ — | sin(wit —k-r —6). (4.43)
2€0V
Thus, for coherent states, the expectation value for the electric field is a sinusoidal wave,

with amplitude proportional to || and with phase 6. Thus, the parameter 6 is usually
referred to as the phase of the coherent state.

Coherent states are a good approximation of the quantum states of light produced by
a laser and therefore, from a practical point of view, they are relatively easy to prepare
and manipulate. This makes them versatile and important states that arise in several
applications of quantum optics and quantum communication. In fact, in chapter 6, we
show that several protocols in quantum communication can be implemented using only
coherent states.
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4.3 Linear optics

Besides studying important quantum states of light, we are also interested in studying
transformations on these states. A simple class corresponds to linear optics transforma-
tions, which preserve the total photon number of an optical field. A simple example corre-
sponds to the transformation performed by a phase-shifter, which transforms the creation

operator as .
a’ — eal. (4.44)

Since any state can be expressed in terms of the Fock basis and any Fock state can be
expressed in terms of creation operator, we can use Eq. (4.44) to calculate the action of a
phase-shifter on an arbitrary state. For example, a coherent state can be written as

e @
o) = e 4 S0 a0 (4.45)
n=0

which, by the action of a phase-shifter is transformed to

—12 S a” 1 n
el Zm(e%ﬁ) 0)
n=0
o i0\n
=2l Y M(cﬁ)ﬂm = |e?a). (4.46)

n!
n=0

Thus, the phase-shifter changes the phase of the coherent state by 6. Physically, a phase-
shifter is implemented by introducing a slab of material with a different index of refraction.

General linear optics transformations couple many modes. For example, the action of
T

a beam splitter is to transform the creation operators of two different input modes, a;,, and
bln, into the output operators aiut and blut as
al,, = cosfal +ie” sinOb] (4.47)
bl = i€ sinf +al cosbb! . (4.48)

Notice that this relation can equivalently be written in matrix notation as

. o T
Qout \ _ cosf  ie " sinf al
( bl ) a ( ie?sinf)  cosf ) ( b ) : (4.49)

out
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Thus, we can view the action of the beam-splitter as a unitary transformation of the
creation operators of the two modes. For example, suppose that we set cosf = sinf = \/Lﬁ

and €? = 7, then the unitary corresponding to the action of the beam-splitter is given by

% ( _11 1 ) . (4.50)

Suppose we have as an input to this beam-splitter a single-photon state ajn|0>. We can
calculate the action of the beam-splitter on this state by inverting Eq. (4.49) to express
al in terms of the output modes, giving

n

a;rn’0> = (alut - blut)|0>

Sl

1
V2

Notice that the beam splitter creates entanglement across the modes, as the output state
is mathematically equivalent to a Bell state | ~). Moreover, the single photon is ‘split’
equally, in the sense that the probability of observing a photon in either of the two output
modes is equal to % In general, the parameters t = cos? and r = sin® § are respectively
referred to as the transmittance and reflectance of the beam-splitter. A 50:50 beam-splitter

is one for which r =t = %

(|1,0) —|0,1)). (4.51)

A general linear optics transformation acts on /N input modes and transforms them into
N output modes. A device performing such a transformation is usually referred to as an
N-port interferometer. Mathematically, the action of an interferometer can be described
by an N x N unitary transformation U relating the annihilation operators of the input

modes {ay,as,...,ax} to the annihilation operators of the output modes {a},a}, ..., d)y}
as
N
a; = Z Uj,ia;. (452)
j=1

Notably, it has been shown that for any N x N unitary, there exists an interferometer per-
forming that transformation. Moreover, the interferometer can be implemented using only
beam-splitters and phase-shifters [103]. Therefore, although still challenging to implement,
general linear optics transformations can be performed in practice, specially if the number
of modes is not too large, c.f. [29].
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4.3.1 Single-photon detection

Having discussed important quantum states and transformations of optical fields, we now
briefly describe a class of measurements on optical fields. A basis for the Hilbert space
corresponding to a system of N optical modes can be built from the tensor product of the
Fock bases of the individual modes:

N1, M9, ..., nN) = [n1) ®[ng) @ -+ @ [ny), (4.53)

where n; is the occupation number of the i-th mde, i.e. the number of photons in the
mode. We have already made use of this basis when describing the output of a single-
photon entering a 50:50 beam-splitter in Eq. (4.51).

In order to make a measurement in this basis, it suffices to make a measurement in
the Fock basis of each mode. Devices that can perform such a measurement are called
single-photon number-resolving detectors. Currently, state-of-the-art detectors can resolve
between a few different photon numbers. For instance, transition edge sensors can distin-
guish up to 8 photons clearly [32]. However, for many applications, it is sufficient to use
simpler detectors without number-resolving properties. These detectors are called single-
photon threshold detectors and they are able to distinguish only between the vacuum and
all other Fock states, effectively coarse-graining all non-zero photon numbers into one sin-
gle outcome. Mathematically, the POVM performed by these detectors is a two-outcome
measurement given by the operators {|0)(0|, 1 —|0)(0]|}.

4.4 Conclusion

Optical systems provide a rich and versatile platform for the implementation of protocols in
quantum communication. The theory of the quantized electromagnetic field has been well
understood for decades, but only recently are we unravelling the methods of manipulating
optical systems in order to perform quantum communication tasks. In chapter 5, we study
a reliable method of analyzing the data from entanglement verification experiments and
apply the technique to real experimental data produced from measurements on a system of
entangled photonic qubits. In chapters 6 and 7, we explore how new quantum communica-
tion protocols with a quantum advantage can be implemented using only coherent states
and linear optics transformations.
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Chapter 5

Reliable Entanglement Verification

In chapter 3, we have explored how entanglement witnesses can be used to verify the entan-
glement of physical systems. The expectation value of these witnesses — whether linear or
nonlinear — is evaluated from experimental data corresponding to the expectation values of
local observables, which are estimated from repeated measurements of a physical system.
The data obtained from these measurements is necessarily finite and therefore the claim
that entanglement was present can never be issued with certainty. More precisely, there
will always be a non-zero probability that the data was produced from a separable state,
regardless of what the data may be. Therefore, in any entanglement verification exper-
iment, we are forced to provide statistical statements that quantify our confidence that
entanglement was indeed present. Naturally, the procedure that leads to these statements
should have a clear interpretation, should not rely on unwarranted assumptions about state
preparation and be readily implementable in practice [123].

The most widely used approach consists of computing the standard deviation of mea-
sured quantities and using these as error bars to specify the uncertainty of the reported
values [03]. However, there are several conceptual issues with this approach [22, 21] and
is known to be inadequate to deal with nonlinear expressions [51]. This strongly asks for
better alternatives and consequently other approaches have been recently suggested (see
e.g. [23]).

In this chapter, we apply the work of Christandl and Renner on quantum state to-
mography [37] to formulate a reliable method for analyzing the data of entanglement
verification experiments. As shown in Ref. [37], the method in principle does not rely on
the specification of a prior distribution of prepared states nor on the assumption that they
are independent and identically distributed. Additionally, it is suitable for experiments
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performing arbitrary quantum measurements and the final statements have a clear and
well-defined operational interpretation. The approach relies on the concept of confidence
regions: regions of state space that contain the true state with high probability [37].

Applying this method requires the specification of a region of state space for all pos-
sible measurement outcomes, an issue that is not dealt with directly in Ref. [37]. In the
work presented in this chapter, we provide a recipe to assign confidence regions to data
obtained from entanglement verification experiments that rely on entanglement witnesses.
This assignment requires the evaluation of a non-trivial inequality for which we specifically
develop numerical techniques to efficiently calculate it, rendering the entire method ready
to be applied to current experiments. We demonstrate this fact by experimentally produc-

ing a family of photonic two-qubit states whose entanglement is verified by an accessible
nonlinear witness (ANLW) [7].

The remainder of this chapter is organized as follows. For the sake of completeness,
we first briefly outline the framework introduced in Ref. [37] and summarize some of its
main results. We then proceed to illustrate the data analysis procedure that we build
and elucidate the numerical tools that we develop to perform the necessary calculations.
Finally, we describe the experimental setup and analyze the results with our technique.

The results presented in this chapter have been published in Ref. [0].

5.1 Confidence regions

We provide an overview of the main results of Ref. [37] and direct the reader to this
work for further details. We begin by considering a collection of n + k quantum systems
described by a state p"**  each system associated with a Hilbert space H of dimension
d. The measurement is performed only on a randomly selected subset of n systems and
is described by a general POVM consisting of a set {B;} of positive operators satisfying
Y. Bi = ]l%”. In the case of independent measurements of each of the systems, each
element B; will be a tensor product of n positive operators acting on a single copy of the
state. However, it must be clear that the formalism does not require this assumption:
one should always think of this POVM as an arbitrary, generally collective measurement
on H®". The role of the remaining k systems is to make it operationally clear what we
mean by verifying entanglement: the goal of the entanglement verification procedure is to
make predictions about the state of these remaining systems. More precisely, we want to
know if these systems belong to regions of state space that contain only entangled states.
We refer to n as the number of runs of the experiment, producing n systems which are

41



then measured and the outcomes analyzed to build the predictions. Finally, note that
instead of selecting the n systems at random, we can alternatively imagine an equivalent
situation where the n + k systems are permuted at random and the first n are selected for
measurements.

Consider an experiment in which the predictions are made only for a subset of &k’
subsystems, with ¥ < k. It was noted in Ref. [37] that in the limit of k& — oo, the
reduced state of the n + k' subsystems p"** = Try_p (p"**) can always be described by
a permutationally-invariant state of the form [ P(c)o®"+*)dg [35]. This corresponds to
the usual independent and identically distributed (i.i.d) case in which many copies of a
true state o are prepared according to some initial probability distribution P(c). Thus,
in the scenario of an experiment that can in principle be repeated an arbitrary number
of times (kK — oo) and predictions are made on a sample of k' states, the above result in
fact provides a justification of the i.i.d. assumption that is common in the literature. For
convenience, we adopt this point of view but remind the reader that the i.i.d. assumption
is not necessary for the validity of the upcoming results [37].

The data analysis procedure we employ is a mapping that assigns a particular region
of state space to every possible measurement outcome. Crucially, this mapping must be
specified before the experiment is carried out. The regions are deemed confidence regions
if they contain the true state ¢ with high, user-specified probability. More precisely, for
all 7, denote by R(DB;) the region assigned to outcome B;. This region will be a subset of
the space of density matrices D(H) associated to H. The assignment of regions is deemed
one that produces confidence regions with confidence level 1 — € if it holds that

Probg, [0 € R(B;)] > 1—¢, Vo, (5.1)

where Probp, [0 € R(B;)] is the expected probability of success with respect to the distri-
bution Tr (6®" B;) of the measurement outcomes B;. In this picture, statistical statements
take the following form: “We have applied a procedure that, with probability at least 1 —e,
assigns a region containing the prepared state ¢”. It is important to emphasize that this
probability refers to the success of the procedure before any measurements are carried out:
in the end, the original input state ¢ is either definitely contained in the assigned region or
not. The quantity 1 — e should thus be interpreted as the confidence level of the statement
that the state is contained in the assigned region. This statement is valid for all possible
states and outcomes and does not depend on extra assumptions about state preparation
nor on the prior distribution P(c). This fact makes the procedure reliable and robust even
in the cryptographic scenario in which ¢ might have been chosen maliciously [37].

A main result of Ref. [37] was to provide a criteria to determine whether a given
mapping from outcomes to regions succeeds in constructing confidence regions. This result
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is summarized as follows. Firstly, for each measurement outcome define the function

i) = j%/.Tr (0°"B,) = /%/,Ei(a), (5.2)

N = / L;(o)do
D(H)

is a normalization constant. The function Tr (c®"B;) is usually referred to as the likeli-
hood function, so that p;(o) is simply its normalized version. Furthermore, let {I';} be a
collection of subsets of D(H), where the number of these regions is equal to the number of
POVM elements {B;}. For each set I'; define the enlarged set

I = {0 : 30’ € T, such that F(o,0’) > V1 — 62}, (5.3)

where

where F(o,0') = Tr < Voo \/5> is the fidelity and

6 = 2 [ln2 +(d*—-1)Inn|. (5.4)

n €

If for all possible outcomes B; it holds that

/ pi(o)do >1— - (5.5)
T; Cn,d
with
2

Cnag =204 D/2, (5.6)
then the assigned regions I'} are confidence regions with confidence level 1 — e (Corollary 1,
[37]). In equation (5.5), do is the Hilbert-Schmidt measure: the flat measure on the set of
density matrices of dimension d induced from the Haar measure on the set of pure states
of dimension d x d [110]. It must be noted that the polynomial factor 2n(¥°~1/2 [3¢] is an
improvement on the term appearing in Ref. [37].

The above condition (5.5) can be more conveniently cast by referring directly to the
quantity 1— fFi pi(0)do and making a direct comparison with the term €/c, 4. This can be

achieved by instead integrating over the complement regions I'; = {o : o ¢ I';}. Therefore
we define

e(BiT;) = / 13(0)do

ry;

fr—iﬁi(a)da
— W. (5.7)
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For convenience, we drop the explicit dependence on B; and I'; from ey(B;,I';) whenever
it is not necessary, while keeping in mind that its value will depend on the measurement
outcome and the region assigned to it. Condition (5.5) can then be more conveniently cast
as

€9 Cpa < €. (5.8)

In summary, the assigned regions {I';} determine whether criteria (5.8) is satisfied for some
fixed value of € and whenever it is, the enlarged regions I') constitute confidence regions.
It is these latter regions that we assign to each individual outcome in our data analysis
procedure.

It is very important to note the role played by the polynomial factor c,, and the
enlarging parameter 9. Because the dimension of the Hilbert space d is fixed for a given
experiment and typically large, the factor ¢, 4 of Eq. (5.6) will be a high-order polynomial
in the number of runs n. Satisfying condition (5.8) will require €; to be much smaller
than the value of the parameter € that quantifies the confidence of the procedure. This
can be problematic for small n but will play only a minor role for larger values because €,
decreases exponentially in n whenever the maximum of the function yu;(o) is contained in
the region I'; [37].

On the other hand, as will be seen later in this chapter, the size of the complement
region I'; increases as § grows larger, implying that large values of § result in larger values
of €5. In particular, whenever 6 > 1 (which can occur for sufficiently low n) it will hold
that the region I'; will be equal to the entire state space D(#) and consequently e; = 1.
Thus, for a fixed confidence level, the value of n for which § = 1 sets a lower limit on the
number of runs of the experiment that are required to verify the presence of entanglement.
This is illustrated in Fig. 5.1. These features indicate that in this framework, it is usually
necessary to accumulate large amounts of data in order to reliably report the presence of
entanglement.

We have in hand a method to verify whether a set of prescribed regions are in fact con-
fidence regions. The question then remains of how to choose these regions in the first place,
an issue that is not addressed in Ref. [37]. Although the results of Christandl and Renner
were originally targeted at quantum state tomography, we instead apply these results in
the context of entanglement verification. We now describe a procedure for entanglement
verification that fully specifies how to assign confidence regions in terms of entanglement
witnesses.
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Figure 5.1: Contour plot of § as a function of the confidence and number of runs n. The
red region to the left represents the case when § > 1, illustrating a lower bound on the
number of runs that must be performed to achieve a certain value of ¢, quantified by the
quantity —log;,e. In practice, even larger values of n will be required to meet a desired
confidence.

5.2 Entanglement verification procedure

The goal of an entanglement verification experiment is to determine whether a prepared
state is entangled or not with the highest possible certainty. In the language of confidence
regions this translates to the task of deciding with the highest level of confidence possible
whether the prepared state lies in a region consisting only of entangled states.

The starting point of our procedure is the specification of an entanglement witness W
and a POVM {B,} whose possible outcomes are sufficient to determine the expectation
value of W. In our description, w(o) refers to the expectation value of a linear or nonlinear
witness, such as those described in chapter 3. Recall that in order to verify entanglement
whenever it is present, we need to assign confidence regions that contain only entangled
states. For this purpose, we define

I, = {o:w(o) <0} (5.9)

as the set of detected states. From the definition of an entanglement witness, 'y, contains
only entangled states. Our goal will be to report '), as the confidence region whenever
possible. Going back to definition (5.3), notice that the set T'¢ is defined for a fixed I';. But
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in our picture, we are interested in always reporting regions that contain only entangled
states. Therefore, we alternatively choose to fix the reported region '), and construct
the smaller regions implicitly. From (5.3), it can be directly seen that if T'Y, is fixed, its
corresponding subregion I'y is defined by

Iy :={o: max F(o,0") < V1 —§}. (5.10)

4
o'elyy,

We are now ready to specify the mapping from outcomes to regions that constitutes the
data analysis procedure for reliable entanglement verification.

Data analysis procedure. To construct confidence regions with confidence level 1 —¢
in an entanglement verification experiment, apply the following rule to assign a region to
each outcome B;:

1. Fix e.

2. For each possible measurement outcome B;, compute es(B;, I'y) = fm pi(o)do.

3. If condition (5.8) holds, i.e. if €3 - ¢,q < €, assign the set of detected states I'Y,.
Otherwise, assign the entire state space D(H).

Therefore, we assign only two possible regions: the set of detected states Iy or the entire
state space D(H). Note that the entire state space is trivially a confidence region for
any given confidence level, so that our assignment indeed produces confidence regions.
However, assigning the entire state space must be interpreted as the statement that for the
given confidence level, it is not possible to certify that the set of detected states contains
the true state.

Even though the procedure is now completely specified, we are still faced with the
difficulty of calculating e,. As a first step, we note that it is preferable to find a simpler
way to characterize the set I'yy. One way to do this is to find a subset of ['y, that can be
more easily described. We now show that such a subregion can always be found in terms
of a bound on the expectation value of a linear entanglement witness.

Observation 6. Let W be an entanglement witness and let the number o > 0 satisfy
a > 2||W||s0. Then the set Ty, = {o: Tr(cW) < —a} is a subregion of T'y .
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Proof: In order to prove the claim we only need to show that F?(g,0’) < 1 — §?
whenever Tr (cW) < —a and Tr (6'WW) > 0. We begin by considering the following general
inequality:

Tr[(o" = a)W]| = [(W, 0" — o)
< [[Wllsello” = ol
< 2|[W|ee/1 — F2(0,0") (5.11)
where we have used Holder’s inequality
(o, W) < lo ][ [[W]le (5.12)
and the Fuchs-van de Graaf inequality [50]
|0’ — ol <2v/1— F?(o,0"). (5.13)

Now let Tr (cW) = —a and Tr (o'W) = S for some a, > 0. Inserting into (5.11) and
rearranging we get
B+ )2

2|[W oo

We want to find a condition on « such that F?(o,0’) < 1 — §2 for any 3. This will occur

whenever
b+« )2 )
1— <1-9
(2HWH00

= a > 2||W||wd — 8.

F*(0,0') <1— (

Since this inequality must hold for all 3, we can restrict ourselves to the worst case scenario
of 8 =0 to obtain
a > 2||W||s6 (5.14)

as desired. [

This result is illustrated in Fig. 5.2. Unfortunately, obtaining a similar and useful result
for nonlinear witnesses is difficult: the value of the nonlinear witness may differ greatly for
two states even if their fidelity is high.

Note that because I', C I'yy, it holds that

| Li(o)do > |  Li(o)do Vi, (5.15)

Ta Tw
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Figure 5.2: The region '), is fixed as the set of states detected by a linear entanglement
witness W. This region can be seen as the set of states above the black line. Fixing 'Y,
implicitly defines a region I'yy that determines if criteria (5.8) is satisfied. This region
is located above the dashed green line labelled I'y,. The required numerical efforts are
greatly simplified by realizing that the set of states I', above the dashed red line constitute
a subregion of ['y, as in Observation 6.

since £;(0) > 0. Therefore if condition (5.8) is satisfied when integrating over Ty, it will
always be satisfied for the integral over I'yy.

Typically, it is possible to assign the set of detected states as a confidence region for
very high confidence levels i.e. with ¢ < 1. Therefore, from now on we quantify the
confidence level of the procedure by the more appropriate quantity

C = —logyy €, (5.16)

which we refer to as the confidence of the entanglement verification procedure. We further
define this quantity to be zero whenever the assigned region is the entire state space D(H).
Thus, higher values of the confidence result in higher certainty that the state is contained
in the set of detected states.

From the description of the data analysis procedure, it should be clear that the crucial
step is the computation of €5: a highly non-trivial task that requires the normalization of
the likelihood function as well as its integral over the implicitly defined set I'y,. In the
following section, we construct and illustrate a series of tools developed to numerically
evaluate an upper bound on €,, ensuring a method to verify condition (5.8). We note that
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other numerical techniques for evaluating integrals of likelihood functions have recently
been developed in Refs. [110, 109].

5.3 Numerical tools

There are several difficulties in calculating e5. An analytical approach is essentially in-
tractable owing primarily to the high dimensionality of parameter space and the non-trivial
geometry of the space of positive semi-definite operators [17]. Moreover, the region of in-
tegration Iy is not known in closed form but can only be cast as a black-box i.e. we can
only ask whether a state lies in this region or not. Finally, we require any approximation of
€2 to provide an upper bound on its value in order to ensure that the inequality e; < ¢, q4¢
is always satisfied.

Fortunately, high-dimensional integration over black-box constraints can be handled
with the use of Monte Carlo techniques. Most of these techniques are well summarized
in [47]. In the Monte Carlo approach, the mean value of the integrand is approximated
by the average value of samples randomly drawn from the region of integration, which
in conjunction with knowledge of the hyper-volume of the integration region can be used
to calculate the value of the integral. Importantly, the number of samples can be chosen
independently of the underlying dimension and any constraint can be straightforwardly
incorporated by checking whether a sample point lies within the constraint region.

More specifically, the simplest version of a Monte Carlo technique to approximate a
general integral of the form [ » f(0)do involves a random sequence of N density operators
{01,09,...,0n} uniformly sampled inside the region R according to the measure do. By
definition, the average (f)r of a function over a region R satisfies

| #e)do = (1)a- Vi, (5.17)
R
where Vg = [  do is the hyper-volume of the integration region. The goal in Monte Carlo

integration is to approximate the average of the function from the random sample. Namely,
we approximate the value of the integral as

| 5oy~ [% > slo

while keeping in mind that all sampled states lie in the integration region. Convergence
to the true value of the integral is guaranteed as N — oo due to the law of large numbers

- Vr, (5.18)
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[17]. A main drawback of this approach is that convergence can be extremely slow for
highly-peaked functions such as £;(¢), since only very rarely will a state be drawn from
the region surrounding the maximum of the function. This is particularly troublesome for
our purposes because an error in the calculation of €5 can lead to wrong conclusions about
the confidence of the procedure. For this reason, we now introduce an approach that can
be easily and efficiently implemented and provides an upper bound on e,.

We first note that such a bound can be achieved by introducing a lower bound on the
normalization constant A/. Since the likelihood function is strictly positive, this can always
be achieved by integrating over a subregion R of D(H), i.e.

fm Li(o)do

€ < W. (5.19)

We can use this fact to our advantage by restricting R to be a region around the maximum
of £;(0). Note that this maximum is unique and is in general achieved for a convex set
of states [23]. Ideally, this region should be chosen to satisfy [, L;(0)do ~ fD(H) Li(o)do
in order to provide a tight bound, but this is not necessary as the bound is guaranteed
to hold for any R. Additionally, because the likelihood function is more flat around the
maximum and R is much smaller than D(H), drawing random states within R will greatly
improve the convergence of a Monte Carlo integration.

We now illustrate how this region R can be constructed from a hyper-rectangle in

parameter space. Following the convention of [139], we begin by parametrizing any state
o € D(H) in terms of the real-valued Bloch vector 7 = (71, 7o, ..., Tg2_1) as
1 d?—1
o(r) = -1+ ; i\, (5.20)

where the operators {);} are an orthogonal set of traceless Hermitian generators of SU(d)

~

satisfying Tr ()\j ) = 1. Any operator written in such a form is immediately Hermi-

tian and of unit trace but may be non-positive for some vectors 7. Thus, it will be
important to keep in mind that not all possible vectors yield valid density matrices.
With this parametrization, the likelihood function will be a function of the Bloch vec-
tor L;(0) = Li(T1,72,...,Tg2_1). Our goal will be to define a region around the maximum
that contains only valid states for which the value of the likelihood function is sufficiently
large.
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Construction of integration regions. To construct a region R to be used in an
approximation of the normalization of the likelihood function, perform the following:

1. Calculate the maximum value of the likelihood function £;"** and find a vector 7 =
(11,75,...,Tp_,) for which this maximum is attained.

2. Find, for all j, the lowest possible quantities x;t > 0 such that L;(r,75,..., 7/ &
:)3;-'[, s T ) = L2/ for some fixed number 1 > 0. If no such values can be found

for some 7, let xj[ = 00.

3. Find, for all j, the highest possible quantities yjjE > 0 such that o(7y,75,...,7; £
yj-E, ..., Ty ) is still a valid density matrix.

4. Define r]j-t = min{xf,yj.:}. Then the integration region R is equal to all the valid

density matrices within the hyper-rectangle r defined by r = {r : 77 —r; < 7; <
7—; + /rj_? v.]} :

This construction is illustrated in Fig. 5.3. Note that the task of maximizing the likeli-
hood function can be performed efficiently and is routine in the context of quantum state
tomography. A good choice of 1 will in general depend on each individual problem, but it
should be chosen to be large enough to include only regions that contribute significantly
to the integral.

Once the hyper-rectangle has been constructed, it is straightforward to perform the
Monte Carlo integration by sampling uniformly within the rectangle, while keeping only
operators in that sample that are valid density matrices. Let these sampled states form
the set {o1,09,...,0n5}. The target integral is then given by

/Rﬁi(a)da ~ [%Zlci(aj)
— (LR Ve (5.21)

'VR

Because typical values of the likelihood function are extremely small, it is preferable to
work with the logarithm of the function and use the identity

log (a + b) = log[exp(log a — logb) + 1] + log b (5.22)

to add the values of £;(c;) at each step of the algorithm and determine (£;) g as in equation
(5.21).
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Figure 5.3: Construction of integration regions. We imagine a two-dimensional section of
parameter space characterized by the variables 7 and 7. Only the region inside the triangle
contains valid density matrices and contours of £;(¢) are shown in the background. To
construct the integration region we do the following: 1. Find the maximum of the function
and a state for which it occurs, in this case (77, 75). 2. From this maximum, find the
displacements zi and 23 such that the value of the function is decreased by a specified
amount, in this case corresponding to the 6th contour line. 3. Find the displacements yljE
and 75 that define the points where the boundary of valid states is met. 4. By choosing
the minimum of these quantities in each direction, we construct a rectangle (dashed) and
the integration region is the intersection of this rectangle with the space of valid density
matrices.
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In order to calculate Vg, we use the fact that the Hilbert-Schmidt metric on the space
of quantum states generates the Hilbert-Schmidt measure [139]. The Hilbert-Schmidt
distance between two density matrices is given by

Dys(o1,09) = ||o1 — o3l|2 = \/Tr (o1 — 02)?]. (5.23)

This correspondence between metric and measure implies that the volume of the hyper-
rectangle r can be found in the usual sense as the product of the length of its sides
with respect to the Hilbert-Schmidt metric. More specifically, let aj-c = o(rf,..., 7 &

rE 73 _,). Then the length Ar; of the jth side of r is given simply by

G

A DHS( j’ J)
= ||T;_)\j +ry j||2 = TJTL + 77, (5.24)

where we have used the fact that the operators ):j are normalized with respect to the
Hilbert-Schmidt inner product. The hyper-volume V, of r is then given by

V, = H Ar;. (5.25)

This correspondence is also useful in generating a random sample, as one needs only to
obtain a random number within the intervals [77 — 77,77 4+ r;]. Because not all operators
in r are valid density matrices, V, is in general larger than the hyper-volume Vi of the
integration region R. However, one can estimate R from knowledge of the fraction f of
the randomly drawn operators that are valid density matrices. The relationship between

these quantities is
d?-1

~ f- H Ar;, (5.26)
j=1

which can finally be inserted in (5.21) to provide the numerical calculation of the target

integral
/ Li(0)do ~ [ Zz (0;)
R

To calculate f, it is sufficient to verify how many of the drawn operators are valid density
operators and divide this number by the total number of randomly drawn operators.

d?—1
- T A (5.27)
k=1
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One could imagine that a similar technique could be used to calculate the integral
fm L;(0)do appearing in the definition of €;. Unfortunately, this would greatly increase
the computational efforts in the construction of R since one must additionally ensure that
each of the drawn samples lie in T'yy. Additionally, in this case, restricting the integration
region results in an incorrect lower bound on €;. Instead, we can construct an upper bound
on this integral via the maximum of the likelihood function as

oclw

where Vpy) is the Hilbert-Schmidt hyper-volume of the entire state space. This volume
was calculated explicitly in [139] for Hilbert spaces of arbitrary dimension. We can then
combine this result with our previous bound on the normalization constant to provide an
overall upper bound on €;. Since this value will be typically very small and in order to
make a direct comparison with the confidence, we henceforth refer to the logarithm of e,
for which we now have the inequality

(5.29)

oely Li(o) Vb )

max
1Oglo €2 S 1OglO <£>R VR

Of course, the average of the likelihood function over I'y, will generally be much smaller
than the maximum over this region, making the bound very loose. However, in practice
this is not a problem because the above bound on €y is dominated by the much larger
differences between the global maximum of the function and its maximum over I'y,. More
specifically, for experiments with a large number of runs (large n), it will typically hold

that () ()
max .+ L;(o L)=—
lo oclw = ) > |lo < AN ) , 5.30
| glo( <C¢>R | | g10 ot Z( ) | ( )

oin (i) -
log 1, (maxaer Li(o)  (Liry )

(LR max, . L£i(0)

so that

_ MaxX,cp; L;i(o0)

Ty (5.31)
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and the value for log,, €, is not altered significantly by the loose bound.

The final quantity we must be able to calculate is the maximum of the likelihood
function over I'yy. This again is a non-trivial global optimization problem involving a
black-box constraint. As in the case of integration, the particular features of this problem
impede the usual techniques and strongly ask for a Monte Carlo approach. To handle the
optimization in the general case, we employ an adaptation to the quantum scenario of a
simulated annealing algorithm (SA) based on the Metropolis-Hastings algorithm outlined
in [21].

The SA algorithm is based on a biased random walk that preferentially moves to states
with higher values of the objective function while still accepting moves to lower values with
a probability governed by a global “temperature” parameter. This last feature prevents the
algorithm from being confined in local maxima. Unfortunately, this same feature makes the
convergence slow, usually requiring many steps to reach close proximity to the maximum.
For each step, one must additionally make the costly verification that the states lie in the
region of integration 'y, so it must be understood that run times are usually long. A
detailed description of the algorithm is included in Appendix A.

One drawback of the SA algorithm is that due to its stochastic nature, independent
runs of the algorithm will generally yield different values. Moreover, by construction, these
values cannot be larger than the global maximum. In order to address this issue, one should
estimate the numerical error by performing many independent runs of the algorithm and
collecting statistics of the sample values. The usual choice is to calculate the standard
deviation of the values [17] and take this as the error. It is then important to ensure that
condition (5.8) is satisfied well within this error.

Nevertheless, we are still interested in obtaining a more efficient method to solve the
maximization problem. We can achieve this for the case of linear witnesses by noting that
for the subregion I', of 'y, it holds that

max L;(0) > max L;(0) (5.32)

O’GFa G'GFW
since in that case 'y is a subregion of I',. Therefore, we can provide a final expression for

the bound on ¢, as
sers Li(0) Vo )
(Li)r Vr

where T, is defined as in observation 6. This expression has the enormous advantage that
because the constraint over I',, is convex and £;(¢) is log-convex, the maximization of £;(o)

(5.33)

max
logyo €2 < logy
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over this region can be calculated with vastly greater efficiency using standard methods in
convex optimization.

We are additionally interested in reporting the highest possible confidence level, which
corresponds to the case in which the equality €; - ¢, 4 = € holds. The value of € depends on
the region Iy which in turn implicitly depends on € through the definition of the enlarging
parameter ¢, so that the above equality is in principle an equation to be solved for e.
Unfortunately, there is no clear method of how to solve the equation directly, primarily
because of the difficulty of calculating e, itself. Instead, to achieve the highest possible
confidence level, one must iteratively adapt the chosen value of € until € - ¢, 4 ~ € while
still satisfying the inequality (5.8).

With these tools in hand it is now possible to apply the reliable entanglement verifica-
tion procedure for both linear and nonlinear witnesses. We now proceed to demonstrate
the features of the method by applying the technique to data obtained from an experiment
generating a family of entangled two-photon states. The entanglement of these states is
verified with the use of an accessible nonlinear witness.

5.4 Experiment

To apply our entanglement verification procedure to real experimental data, we aimed to
produce photon pairs in the maximally entangled states |®%) = \/Li (|HH) + €?|VV)),
where |H) and |V) are defined respectively as single-photon states of polarization paral-
lel and perpendicular to the optical table. A frequency doubled titanium-sapphire laser
(80 MHz, 790 nm) was used to pump a pair of orthogonally oriented 1 mm [-Barium
borate (BBO) crystals, as seen in Fig. 5.4. By pumping with diagonal polarization |D) =
\/LE (|H) +|V)), the pump may produce photon pairs via type-I noncollinear spontaneous
parametric down-conversion (SPDC) in either the first or second crystal [78]. Bismuth
borate, a-BBO, and quartz crystals were used to ensure that each path was spatially and
temporally indistinguishable, and the photon pairs were filtered using bandpass filters with
a centre wavelength of 790 nm and a bandwidth FWHM of 3 nm. The single photon signal
was measured with avalanche photodiodes (APDs) and coincidences were recorded within
a 3 ns window.

Single photons were detected at a rate of approximately 200 kHz in each arm, with a
coincidence rate of approximately 35 kHz. A quarter-wave plate was tilted to introduce an
arbitrary phase shift between horizontally and vertically polarized components, allowing
control over the phase ¢. This setup constitutes part of the setup used for the experiment
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Figure 5.4: Experimental setup for producing |0%) = — (|[HH) + ¢"[VV)) polarization
states. Photon pairs are generated via type-I noncollinear SPDC in a pair of orthogonally
oriented BBO crystals and analyzed with wave plates and polarizing beamsplitters. The
phase ¢ is adjusted by tilting a quarter-wave plate.

reported in [30]. The two-photon state was prepared for six values of ¢, corresponding to
a waveplate tilt range of twelve degrees and transforming the state from |®~) to |®T).

Projective measurements were taken in three bases, corresponding to the eigenbases
of the operators {0, ® 0,,0, ® 0,0, ® 0,}. We refer to the elements of these bases as
|zi) (i, |yi){yi| and |2;)(z;| respectively. For example, the eigenbasis of o, ® o, is given
by |z1) = |HH), |z2) = |HV),|2z3) = |V H),|z) = |VV), and similarly for the other bases.
To verify the entanglement of these states, an accessible nonlinear witness was constructed
from the linear witness

W=1/4)140,®0, —0y, R0y + 0, R0,). (5.34)
Following the results presented in chapter 3, the expectation value w., (o) of the nonlinear
witness for a state o can be expressed as
|d|?
1 —[k[*’

Woo(0) = Tr (pW) — |¢|* — (5.35)

where
c="Tr[o(lv7) (¥~ |U)"]
k="Tr (O’UF)
d="Tr(cW) — ck,
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|~y = \%(\H V) —|V H)) and the superscript I' denotes partial transposition. By choosing
U = 0. ® 0., this expectation value can be computed from the expectation value of the
aforementioned operators and the nonlinear witness is accessible [7]. An accessible non-
linear witness was chosen because, unlike its linear counterpart, it detects these entangled
states for most values of ¢.

In this experiment, all measurements are independent so that each element of the
POVM {B;} is a tensor product of the operators corresponding to possible individual
outcomes. The likelihood function takes the form

Li(o) =T T (ol o)™ - Tr (ol )™ - Tr ol 2)™ . (5:36)

where n/ is the number of times outcome |z;)(x;| is obtained and similar definitions hold for
the other operators, so that the total number of measurement outcomes is n = Z?Zl nd +
ny+n’. Note that in this case the measurement outcome B; is fully specified by the numbers
{n;,ng/,ng} In the experiment, six states were prepared corresponding to six different
values of the parameter ¢. The measurement outcomes for each case are summarized in
Fig. 5.5.

We have calculated the confidence as in equation (5.16) for the six preparations of the
entire experiment. These results are illustrated in Table 5.1. We can report very high
confidences for almost all states, with the exception of state 4 for which condition (5.8)
cannot be satisfied for any value of €. This is not entirely surprising as this state presents
the weakest correlations in the {|z;)(z;|} and {|y;)(y;|} bases leading to a value of the
nonlinear witness that is closest to zero, as seen in Table 5.1. Thus, the outcomes for this
case most closely resemble the ones that could be obtained from a separable state. This
again is evidence that only large data which are clearly inconsistent with separable states
can lead to the reliable statements obtained from our procedure.

Additionally, we are interested in understanding how the maximum achievable confi-
dence depends on the total number of runs of an experiment. It is also important to gain
insight on the cost of using the bound of observation 6 for linear witnesses. For this pur-
pose, samples of different size were randomly selected from the outcomes of experiment (6)
in Fig. 5.5. That is, from the entire set of observations in this experiment (shown in Fig.
5.5), we randomly selected a subset of all the data and interpreted it as arising from an
experiment with a fewer number of runs (counts). The confidence was calculated for each
of them using both regions I'y, and T, this latter being possible because this state is also
detected by the linear witness. The obtained values using these two different methods is
portrayed in Fig. 5.7 and Table 5.2.
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State | Approximate phase | Confidence | wqo
1 1.107 5150 -23.0
2 1177 2050 -15.2
3 1.367 410 -3.4
4 1.547 0 -0.3
5 1.727 1819 -5.8
6 1.897 4980 -13.6

Table 5.1: Calculation of the confidence and value of the nonlinear witness for all prepared
states in the experiment. The total number of counts obtained in each case was roughly
35,000.

—10k / \\
-15

’/
..4_20j -

_o5L

Figure 5.6: Value of the nonlinear witness wy,(¢) for the six states prepared in the ex-
periment (dots). The value of the nonlinear witness for the family of states o(¢) =
(1 — p)|@?)(®?| + B1 with p = 1/42 is shown in the background (dashed). This curve
is included only to illustrate the values of ¢ for which it is difficult to verify entanglement
and should not be interpreted as a fit to the data. The value of p was chosen to adjust the
scaling to the recorded values.
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Total counts | Confidence (I',) | Confidence (I'y)
1500 0 0
3000 18 24
6000 165 200
15000 300 315
30000 660 700
60000 1378 1500

Table 5.2: Calculation of the confidence for samples of different size from the outcomes of
experiment 6 based on I'yy and I',.

The results indicate that, as a percentage of the total confidence, the loss introduced
by considering I', is small. It is also clear that a large number of runs are necessary in
order to report a non-zero confidence, in accordance to our understanding of the role of
the enlarging parameter . To estimate the numerical error present in the SA algorithm,
we performed 20 independent runs of the algorithm for the data of state 1 and found the
error to be 1.85%. In all calculations it was ensured that condition (5.8) was satisfied by
at least ten times this numerical error. In the construction of the integration regions a
value of n = 10° was chosen for all cases. Finally, the CVX package for specifying and
solving convex programs [11] was used to numerically calculate the global maximum of the
likelihood function, as well as its maximum over IT',.

5.5 Conclusion

In this chapter, we have applied the work of Christandl and Renner in Ref. [37] to the
case of entanglement verification. Through the concept of confidence regions, we have
provided a procedure to make reliable and efficient statistical statements quantifying the
confidence level of having entanglement present in a physical system. These statements
have a clear operational interpretation and in principle do not require the specification of
a prior distribution nor the assumption of independent measurements or i.i.d. sources. We
have shown that this method can be applied in practice by developing specific numerical
tools designed to calculate all necessary quantities. For the particular case of experiments
relying on linear entanglement witnesses, we have shown that the procedure can be im-
plemented efficiently using only plain Monte Carlo integration and convex optimization
methods. The procedure is ready to be applied to current experiments as we demonstrated
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Figure 5.7: Confidence for random samples of different size, quantified by the total number
of counts. The confidences were calculated for T'y, (triangles) and T',, (dots). These results
illustrate that the bound introduced by considering the subregion I', is small and is not
an impediment to reach a very large confidence. In the case of 1500 total counts, the
confidence is zero, consistent with our understanding that a large number of outcomes are
needed in order to reliably report entanglement with our technique. Moreover, the data
shows that the confidence is roughly linear in the number of outcomes.

by applying the technique to data obtained from an experiment generating entangled two-
photon states. However, the procedure has a significant drawback, which is that large
amounts of data are necessary in order for the size of the confidence regions to be small
enough to be able to verify entanglement. However, this is very likely to an issue arising
from the proof techniques of Ref. [37], which in principle can be improved to construct
confidence regions that converge faster to the actual state.

It is important to note that this work assumes that there are no systematic errors in the
measurements performed. In any real experiment, there will always be discrepancy between
the intended measurement and the one actually performed, no matter how small this
discrepancy is. These systematic errors can in principle lead to incorrect statements and a
method to incorporate it in the framework should be pursued. Numerical techniques also
invariably involve errors and these should also be clearly incorporated in the framework.
Future research may lead to improved algorithms, such as has been done in Refs. [110, .
Finally, let us note that it is often desirable to quantify the amount of entanglement present
as opposed to just verifying it. Our technique can in principle be applied to such cases by
reporting regions that contain states with at least a certain amount of entanglement.
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Chapter 6

Quantum Communication with
Coherent States and Linear Optics

In the previous chapter, we studied techniques to verify the entanglement of physical
systems. As we saw before, these investigations are motivated by the fact that entanglement
plays a crucial role in several tasks in quantum computation and quantum communication.
However, there are great experimental challenges associated with controlling large quantum
systems and generating states of such systems that exhibit large amounts of entanglement.
Consequently, the difficulty of generating highly entangled states of large systems places
severe barriers to our current capabilities of experimentally realizing several interesting
protocols. The situation is even more dire in quantum communication, where we are
effectively restricted to using light as the carrier of information, without an option of
employing the advantages of other physical systems. Therefore, if we are serious about
our goal of demonstrating protocols with a quantum advantage — such as those discussed
in chapter 2 — we must understand the extent to which we can deploy quantum protocols
with available techniques.

In terms of experimental implementations, only quantum key distribution (QKD) has
been routinely demonstrated and deployed over increasingly complex networks and large
distances [117, |. This is possible largely due to the fact that, fundamentally, QKD can
be carried out with sequences of independent signals and measurements [103]. Important
progress has been made in implementing other quantum communication protocols |16, ,

, 38, 86, 83, 41, 20, 98], but there remain several examples of quantum improvements
that have never been realized experimentally. This is largely due to the fact that, in
their abstract formulation, these protocols require the preparation and transmission of
complex quantum states as well as performing sophisticated operation on them, making
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them difficult to implement. Notably, in the case of quantum communication complexity,
only a few proof-of-principle implementations have been reported [137, , T1].

Confronted with this challenges we face two alternatives: We can either strive to im-
prove current technology or we can flip the issue around and ask: Can protocols in quantum
communication be adapted to a form that makes them ready to be deployed with available
techniques? To adopt the latter strategy is to push for a theoretical reformulation that
converts previously intractable protocols into a form that, while conserving their relevant
features, eliminates the obstacles affecting their implementation. This is precisely the road
that has already been successfully followed for QKD.

In this chapter, we describe an abstract mapping that converts quantum communica-
tion protocols that use pure states of multiple qubits, unitary operations, and projective
measurements into another class of protocols that use only a sequence of coherent states,
linear optics operations, and measurements with single-photon threshold detectors. The
new class of protocols requires a number of optical modes equal to the dimension of the
original states, but the total number of photons can be chosen independently from the
dimension and is typically very small. The protocols obtained from the mapping share
important properties with the original ones, meaning that they can also fulfil the goal that
the original protocols where intended to achieve. Overall, the mapping is suitable for its
application to protocols that originally require a moderate number of qubits, but are still
hard to implement with usual methods.

In the remainder of this chapter, we describe the mapping in detail and discuss the
various properties of the coherent-state protocols. We proceed by examining how the
mapping can be applied to construct protocols in quantum communication complexity and
describe a protocol for the hidden matching problem which can be realized with technology

that is within current reach. The results presented in this chapter have been published in
Refs. [9] and [3].

6.1 Coherent-state protocols

We consider a wide class of quantum communication protocols that require only three basic
operations: the preparation of pure states of a fixed dimension, unitary transformations
on these states, and projective measurements on a canonical basis. The simplest form of a
protocol in this class is one in which Alice prepares a state |1)) and sends it to Bob, who then
applies a unitary transformation Ug to that state, followed by a projective measurement on
the canonical basis. More complex protocols can be constructed by increasing the number
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of these basic operations as well as the number of parties. Even though these protocols
generally involve states of some arbitrary dimension d, it is common to think of them as
corresponding to a system of O(log, d) qubits. Hence, we refer to them as qubit protocols.

An ezact implementation of such protocols can be achieved without the use of actual
physical qubits by instead considering a single photon in a linear combination of optical
modes. Any pure state [¢0) = S0, Ae|k), with S0, |M\x|?> = 1, can be equally thought of
as the state of a single photon in a linear combination of d modes

d
al |0y =) " A\ebf|0), (6.1)
k=1
where aL = 22:1 )\kb}; for a collection of creation operators {bi, bg, e ,bL} corresponding

to d optical modes.

In this picture, unitary operations correspond exactly to linear optics transformations
[103], and measurements in the canonical basis are equivalent to a photon counting mea-
surement in each of the modes. Note that the quantum information is encoded by photons
residing in linear combinations of modes.

From a practical perspective, the issue with implementing qubit protocols in terms of
a single photon in a linear combination of modes is that the experimental preparation
of these states presents daunting challenges. Instead, we are interested in an adaptation
of this formulation of qubit protocols into another that is more readily implementable in
practice. As discussed in Ref. [39], as an alternative to a single photon we can consider a
single coherent state in a linear combination of modes. In that case, instead of the state
of Eq. (6.1), we have

d
Da,,()[0) = @) e M), (6.2)
k=1
where D, (o) = exp(ozaL — a*ay) is the displacement operator. Once again, the quantum
information is encoded in the mode structure, but we have a coherent state instead of
the single-photon of Eq. (6.1) as the quantum state of light. Remarkably, this state is
equivalent to a tensor product of coherent states over d optical modes.

With this idea in mind, we now outline a method for converting qubit protocols into
another class of protocols that, although seemingly disparate, actually retain the essential
properties of the original ones. We call these coherent-state protocols since they can be
implemented by using only coherent states of light and linear optics operations. The recipe
for constructing coherent-state protocols is specified by the following rules:
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Coherent-state mapping

1. The original Hilbert space H of dimension d with canonical basis {|1),]2),...,|d)}
is mapped to a set of d orthogonal optical modes with corresponding annihilation
operators {by, bs,...,bs}:

2. A state |1p) = S2¢_, \i|k) is mapped to a coherent state with parameter « in the
mode a, = 22:1 by

d
) — |, ¥) = ® o A
k=1

where |« A ) is a coherent state with parameter o Ay, in the k-th mode. The value of
the amplitude « can be chosen freely as a parameter of the mapping, independently
of the dimension d, but remains fixed.

3. A unitary operation U acting on a state in H is mapped into linear optics transforma-

tion corresponding to the same unitary operator U acting on the modes {by, bs, ..., bs}.
Thus, the transformation of a state is linked to a transformation of the modes as:
) =Ulp) — by = Z Uiy (6.4)

This linear optics network has the effect of transforming the coherent state |a, ) =

®‘,§:1 |ae A\ )k to the state
d

o, ) = R la X, (6.5)

k=1
where A, = >, Uy, This is the same state obtained from applying the mapping
directly to the output state |¢)') of the original protocol.

4. A projective measurement in the canonical basis {|1),|2),...,|d)} is mapped into a
two-outcome measurement in each of the modes with single-photon threshold detec-
tors:

(DAL 2@l ld)ydy — {(X)Fk} (6.6)

where ¢ = “click”, “no-click”, F¥ ... =10)(0| is a projection onto the vacuum state

of the modes, Fk , =>> \n) (n|k, and |n)y is a state with n photons in the k—th
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Qubit Protocol

Coherent-State Protocol

o)1 A1)
lvac)o v A2)2
lvac) 4 @ Ad)a

Figure 6.1: In a simple qubit protocol, Alice prepares a state |¢) = ZZZI Ak |k) of log, d
qubits by applying a unitary transformation U, on an inital state [0) := |0)®!°#2¢. She
sends the state to Bob, who applies a unitary transformation Ug and measures the resulting
state in the computational basis. In the equivalent coherent-state protocol, the initial state
corresponds to a coherent state in a single mode and the vacuum on the others. The state
la, ) = ®Z:1 | Ai) i, is prepared by applying the transformation U, to the optical modes.
This state is sent to Bob, who applies the transformation Up and consequently measures
each mode for the presence of photons with threshold single-photon detectors.
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mode. As such, an outcome in a coherent-state protocol corresponds to a pattern of
clicks across the modes.

Since any qubit protocol can be constructed from the basic operations of state prepa-
ration, unitary transformations, and projective measurements, the above instructions are
sufficient to construct the coherent-state version of any qubit protocol. However, as there
are 2¢ possible outcomes compared to the d possible outcomes of the qubit protocol, the
interpretation of the outcomes in the coherent-state protocol is not immediately provided
by the mapping. Nevertheless, as will be discussed later, the statistics closely resemble
those of the original protocol and they can be thought of as arising from several indepen-
dent runs of the original qubit protocol. As an illustration, a simple qubit protocol and its
coherent-state counterpart are depicted in Fig. 6.1.

An immediate appealing property of coherent-state protocols is that their implemen-
tation faces much lesser obstacles than their qubit counterparts. Indeed, the fundamental
challenge of a quantum-optical implementation of qubit protocols lies in the difficulty of
generating entangled states of many qubits and performing global unitary transformations
on them. On the other hand, coherent-state protocols face significantly less daunting ob-
stacles. The experimental generation of coherent states is a commonplace task and the
construction of linear-optical circuits can, in principle, be realized with simple devices
such as beam splitters and phase-shifters [103], though experimental challenges may re-
main depending on the required unitary operation. Moreover, the platforms for linear
optics experiments continue to improve at a fast rate, most notably with the development
of integrated optics [120, 29].

As we have mentioned already, an advantage of coherent-state protocols is that they
employ a coherent state in a linear combination of modes, which is equivalent to a tensor
product of individual coherent states across the various modes. However, qubit protocols
usually require high amounts of entanglement. This seems to indicate that the ‘quantum-
ness’ of the original qubit protocol has been lost through the mapping. Nevertheless, it
is important to realize that this is not the case, as coherent-state protocols showcase a
truly quantum property: non-orthogonality. Given two states |a,¢) = ®Z:1 |ae \g)r and
la, ) = ®F_, |avg)k, with d > |af?, the amplitude of the individual coherent states will
typically satisfy [ Ax| ~ |75 < 1. Therefore, the inner product of the individual states
obeys

{ovug|a A)|? = e loGew)l® (6.7)

and so the individual states are typically highly non-orthogonal.
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In fact, it can be useful to intuitively think of the coherent-state mapping as an exchange
between entanglement and non-orthogonality, since an implementation of qubit protocols
with actual physical qubits usually requires entanglement amongst the qubits.

In coherent-state protocols, the average photon number—|«a|?>—is a parameter that can
be chosen independently of the dimension of the states of the original qubit protocol. This
is to be put in contrast with any quantum protocol that encodes a qubit in the degrees
of freedom of a photon, which inevitably requires a number of photons that scales with
the dimension of the states. Hence, coherent-state protocols offer an intrinsic saving in
the number of photons required for their implementation. The drawback, of course, is
that the required number of optical modes is equal to the dimension of the states in the
original protocol. This implies that the mapping will lead to practical protocols only if
the dimension of the original states is comparable to the number of modes that can be
efficiently manipulated with existing technologies.

Fortunately, current laser sources can operate with clock rates above 1GHz [18], per-
mitting the generation of a very large number of modes per second. This makes it possible
in practice to apply the mapping to quantum communication protocols involving states of
a moderate number of qubits. As we discuss in section 6.2, there are many qubit protocols
to which we can apply the mapping that require only a modest number of qubits but still
currently escape the grasp of direct implementations. From a theoretical perspective, the
relationship between these two types of protocols may provide an insight into the trade-
offs between different resources in quantum communication, as well as into the interplay
between entanglement and non-orthogonality in quantum mechanics.

Now that we have specified how to construct coherent-state protocols, our goal is to
understand their properties. We pay special attention to their resemblance to qubit pro-
tocols, but also concentrate on understanding the features that may provide an advantage
over their qubit counterparts or find applications in quantum communication.

6.1.1 Transmitted information

We are often interested in quantifying the amount of transmitted information that takes
place in a quantum protocol. Informally, this is done by counting the number of qubits that
are employed. But what happens if a protocol uses physical systems that are manifestly not
qubits? As discussed in chapter 2, we quantify the transmitted information in terms of the
smallest number of qubits that would be required, in principle, to replicate the performance
of the protocol. More precisely, if a quantum protocol uses states in a Hilbert space of
dimension d, this space can be associated with a system of O(log, d) qubits. Therefore,
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the amount of communication C' in a quantum protocol is generally given by
Q = log,[dim(H)], (6.8)

where H is the smallest Hilbert space containing all states of the protocol, which can be
a significantly smaller than the entire Hilbert space associated with the physical systems.
Moreover, Holevo’s theorem [09] guarantees that no more than O(log, d) classical bits of
information could be transmitted, on average, by a quantum protocol that uses states in a
Hilbert space of dimension d.

By quantifying the amount of communication carefully, we gain a better understanding
of the different physical resources that are required to transmit a certain amount of infor-
mation. For example, the fact that the same amount of information can be transmitted
by a single photon in n optical modes, at most n photons in a single mode or log, n po-
larization qubits, is understood because the smallest Hilbert space containing all possible
states in each of the three cases has the same dimension.

Quantifying the amount of transmitted information in qubit protocols is straightfor-
ward. For coherent-state protocols obtained from the mapping, even though the actual
Hilbert space associated with all possible signal states is large (distinct coherent states are
linearly independent), they effectively occupy a small Hilbert space, as is expressed in the
following theorem:

Theorem 7. [10] Let |, 9) be a state with parameter « obtained using the coherent-state
mapping from a state 1) of dimension d. Then for any € > 0, there exists a Hilbert space

H. such that

<a7¢|P'Ha|a7¢> > 11— €,
logo|dim(Ha)] = O(|af* log,(|af* + d)),

and where Py, 1s the projector onto H,.

Proof: For a given A > 0, we choose H,, to be the subspace spanned by the set of Fock
states {|n1,m2...n4)} over d modes whose total photon number n = S27_, ny satisfies
In — |a|?| < A. In other words, this is the space of states whose total photon number is
close to |al*.

The dimension of the Hilbert space spanned by states of n photons is equal to the
the number of distinct ways in which n photons can be distributed into the d different
modes. Since the photons are indistinguishable, this quantity is given by the binomial
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factor (";f;l) [112]. In the case of H,, there are 2A different possible values of n, the

largest being n = |a|? + A. Thus, the dimension dim(H,,) of this subspace satisfies

dim(H,) < 2A<|O“2+dA_J;d_ 1), (6.9)
which gives
log,[dim(H,)] < log, {QA ('O‘|2 +dA_+1 d- 1)]
<(lef* + A)log, [(Ja]* + A+ d — 1)] + log,(24), (6.10)

which is O(|a|?log,(d + |a]?)) for any fixed e.

Now notice that the number (o, ¥ | Py, |a, 1) is equal to the probability of performing a
photon number measurement on |a, 1) and obtaining a value n satisfying |n — |a]?| < A.
Since any coherent state |a, ) has a Poissonian photon number distribution with mean
||?, independently of |1), we can use the properties of this distribution to calculate the
probability that the measured number of photons lies within the desired range. This
probability satisfies [54]

9 2 [ elal? fal+a
P(n— [af?] > A) < 27 (m) (6.11)

which can be made equal to any € > 0 by choosing A accordingly while keeping « fixed. B

Therefore, the fact that the mean photon number |a|? is fixed in coherent-state pro-
tocols leads to the states involved effectively occupying a Hilbert space of dimension that
is comparable to that of the original one. This implies that the asymptotic behaviour of
the amount of transmitted information is the same for both classes of protocols. In fact,
Eq. (6.9) provides a precise bound on the transmitted information. Moreover, the effec-
tively unused sections of the entire Hilbert space can still be used, in principle, for other
purposes such as the transmission of additional classical or quantum information through
multiplexing schemes. A method for achieving this in practice is a line for future research.

It is important to note that this correspondence in the transmitted information is
not exactly mirrored in terms of the expenditure of physical resources. A coherent-state
protocol obtained from the mapping employs d modes but a number of photons that is
tunable and independent of this dimension. This is to be put in contrast with any quantum
protocol that encodes a qubit in the degrees of freedom of a single photon, which employs
O(log, d) optical modes and O(log, d) photons.
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6.1.2 Outcome probabilities

In qubit protocols, the probability of obtaining an outcome k upon a measurement of a
state 1) = 32¢_ A\i|k) is given by

pe = [(k|)[* = Xl (6.12)

with ZZ:1 pr = 1. For coherent-state protocols, the situation is different since we are
performing independent measurements on each of the modes. In this case, the individual
detector clicks are not mutually exclusive: We can have many clicks across the various
modes, or even no clicks at all.

Nevertheless, for the state |, 1), the probability distribution of the number of photons
in each mode is equivalent to the one obtained from many repetitions of a measurement
on the single-photon state |¢)) = aL|O> of Eq. (6.1), where the number of repetitions is
drawn from a Poisson distribution with mean p = |a|?.

To see this, first note that the state |«, 1) can be written as
|, ) = Da, ()|0)

—1igp? a”
— e 2 E —1n)g.. 6.13
e /—n'| >1/) ( )

The state of n photons in mode ay, is itself given by

ey = —=(a1)10) = —= (Z Akbz) 0) (6.14)

For this state, the probability of obtaining n,ns,...,ng photons in each of the modes
b1, b, ..., bg, with Y, n,, = n, is given by

_ TL' 2n1 2ng
Pr(nl,...,nd) = m‘)\l‘ |)\d| s (615)
which, from the multinomial theorem, is exactly equal to that obtained from n measure-
ments of the single-photon state |¢) = osz|0>. Since the number of photons n in the state
|, 1) are Poissonian distributed with mean p = |a|?, this proves the claim.

Whenever possible, we will not use photon-number resolving detectors in protocols
obtained from coherent-state mapping, but threshold detectors that give clicks or no clicks.
Note that while the statistics of photon counts is directly derived from the Poissonian
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distribution of repetitions of the single-photon protocol, this does not hold for the statistics
of clicks of the threshold detectors.

However, for most states, the coefficients A\, will typically be very small, so that the
mean number of photons |a \x|? will also be small provided « is not too large. Then it is
unlikely that more than one photon will be present in each mode, and the number-resolving
properties of the detectors are not necessary.

For example, with threshold detectors, the probability of obtaining a click on the k-th
mode after a measurement of a state |, 1)) = @7_, |a M)y is given by

Pak = 1 —exp(—[aA[?), (6.16)

which for | \g| < 1 gives
Pak & Ja Al (6.17)

If we choose |a|?> = 1, we recover a behaviour very similar to that of the qubit protocol:
Only one click is expected to occur and it does so with a probability that is essentially
identical to that of the original protocol.

In any case, the multiple-photon property of a coherent-state protocol constitutes a
potential advantage over its qubit counterpart. The expected number of clicks can be
controlled by modifying « appropriately, and a larger number of clicks will give rise to
more information gained per measurement.

6.1.3 State overlap

All of the physically-relevant information of a set of quantum states {|¢1), [¢2), ..., |[¥N)}
is contained in its Gram matrix, which is defined as
Gij = (Wil)). (6.18)

Thus, for quantum communication protocols defined over a set of possible signal states, it
is natural to ask how the overlap between states behaves under a coherent-state mapping.
The answer is provided by the following observation.

Observation 8. Let |¢) = >, M\ilk) and |@) = >, vilk) be two arbitrary states with
overlap (V|p) = 0. Then the overlap of their coherent-state versions satisfies

b0 = (¢, alp, a) = exp [[a*(6 — 1)] . (6.19)
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Figure 6.2: Overlaps of states in coherent-state protocols for different values of the mean
photon number |a|* and choosing real values of ¢ (implying real values of 4,). For |a|* < 1,
the overlap 4, is larger than the original overlap . For |a|*> =~ 1, both the original and
coherent-state overlaps are close to each other when 4 is close to 1 and when |a|? is large,
0 can be made smaller than almost any value of the original overlap. In fact, in the limit
a — 00, any two states become orthogonal, while in the limit « — 0 any two states are
mapped to the vacuum and thus have unit overlap. Finally, for any § # 0 there exists a
value of o such that § = 4,.
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Proof: The overlap of the coherent-state versions is given by

<77Z}’ a|90’ a> = H<a /\k|a Vk>

k
—Hexp LML + Dol = 230

= exp [—QT Z |/\]€|2 + |l/]€|2 — 2)\ka)]
k
I

= exp [Ja*({]¢) — 1)]
= €Xp [|Oé| ( - 1)] )
where we have used the relations >, [M\]* =Y, [k = 1 and (Yle) = >, Nivi. |

Once again, there is an added richness in coherent-state protocols, since the overlaps
may be adapted by varying the value of the parameter a. For example, in many quantum
communication protocols, all overlaps between pairs of states are real numbers, and conse-
quently so are those of their coherent-state versions. In that case, the parameter a can be
chosen to increase or decrease the overlap, or to match the exact overlap for a given pair
of states. This is illustrated in Fig. 6.2.

Now that we have outlined the properties of coherent-state protocols, we continue by
describing how these techniques can be applied in the construction of protocols in quantum
communication complexity.

6.2 Quantum communication complexity

As mentioned in chapter 2, communication complexity is the study of the amount of com-
munication that is required to perform distributed information-processing tasks. This
corresponds to the scenario in which two parties, Alice and Bob, respectively receive in-
puts x € {0,1}" and y € {0,1}" and their goal is to collaboratively compute the value
of a Boolean function f(z,y) with as little communication as possible [135]. As discussed
in chapter 2, it has been proven that there exist various problems for which the use of
quantum resources offer exponential savings in communication compared to their classi-
cal counterparts. However, the field of experimental quantum communication complexity
remains largely unexplored, largely due to the difficulty of implementing these protocols
using standard approaches. In this section, our goal is to employ the mapping to construct
protocols that can be implemented using only coherent states and linear optics.
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We focus on the bounded-error model in which Alice and Bob have randomness at
their disposal and only need to determine the value of the function f(z,y) with probability
greater or equal to 1 — ¢ (with € < 3) even for the worst-case values of z and y. They
can send quantum states to each other, apply unitary transformations on these states, and
make measurements in the same way as the quantum communication protocols discussed
before. Since they are only interested in learning the value of the function, their final
measurement, can always be thought of as a projective measurement onto two orthogonal

subspaces Hy and Hy, corresponding to f(x,y) =0 and f(x,y) = 1 respectively.

In a coherent-state version of this model, the crucial difference lies in the measurement
stage, where the subspaces Hy and H; are mapped onto sets of modes Sy and Sy, where
many clicks can occur. In this case, in order to decide between both values of f(x,y), the
strategy is to count the number of clicks that occur in each set of modes. If there are more
clicks in the set Sy than in the set Sy, the output of the protocol is f(x,y) = 0, and vice
versa. In this way we map the large number of possible click patterns in the coherent-state
protocol to the two outcomes of interest.

We now provide conditions such that, if the original protocol had success probability
larger than 1—e, its coherent-state version, using threshold detectors, will also have success
probability larger than 1 — €. Let C}, be the random variable corresponding to the number
of clicks observed in the set of modes S, with b = 0, 1. The distribution of C} is known as
a Poisson-binomial distribution and its expectation value is given by

E(Cy) = > Pak = . (6.20)

keSy

This distribution can be difficult to work with in its exact form, so it is usual to approximate
it by a Poisson distribution with the same mean. This approximation can be made precise
through the following result:

Theorem 9. [1/] Let C, be a Poisson-binomial random variable with mean p,. Similarly,
let Ly be a Poisson random variable with the same mean . Then, for any set A, it holds
that

| Pr(Cy € A) — Pr(Ly € A)| < min(1, ;)7 (6.21)

where T, 1= Zkesb (Pak)? and pay is the probability of obtaining a click on the k-th mode.

We can use this fact to show that, under certain conditions, a coherent-state version of
a bounded-error qubit protocol also gives the correct value of the function with bounded
error.
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Theorem 10. Let a qubit protocol for communication complexity have a probability of
success Ps > 1 — €. Then the corresponding coherent-state protocol has a probability of
success P, > 1 — € if there exists a mean photon number u = |a|* such that

2e P (2e Pyp)"/? + max{min(1, uy ') }r < ¢ (6.22)
10,411
where i, is the expected number of clicks in the set of modes S, and 7 =", (Pax)*-

Proof. Without loss of generality, we take f(x,y) = 0 to correspond to the correct value
of the function. We can bound the success probability as

P, = PI"(CQ > Cl)
> Pr(Cy > §)Pr(Cy < §)
— (1- Pr(Cy < 2))(1 — Pr(Cy > 1)).

From Theorem 9 we can also write

Pr(Cy < §) < Pr(Lo < &)+ min(1, ug )70

2 w/2
<eho ( ifo) + min(1, py )70,

where we have bounded the Poisson distribution as in Eq. (6.11). Similarly we have

2 w/2
Pr(Cy > §) <e™™ (%) +min(1, ;Y7

Putting these together we get

2 n/2
P, > (1 —e ko ( eu(]) — min(1, u61)70> X
W
2 n/2
(1 —e M ( €/L1> — min(1, ul_l)ﬁ>
W

=] — e M0 (QQIUO)M2 e (26/11)#/2
M H

—min(1, pg )10 — min(1, p7 )7
>1— e*PS“(ZePsu)“/2 — e*(I*PS)“(Ze(l — PS)M)“/2

— max{min(L s, ")},
HOsH1
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where 7 =79+ 71 = >, (Pax)? and we have used the fact that

Pa= Y ol > Y (1 ) = gy 623

k€So keSo

and similarly (1—P,)p > p;. Whenever P, > 1/2, it holds that e *# P, > e~ (0=P)r(1 - Pp)
so we can finally write

P, >1— 2 P"(2ePpu)*? — max{min(1, sz; ")} 7. (6.24)

HO,H1

From this expression it is clear that whenever condition (6.22) holds, P, > 1 — ¢ as desired.
|

Notice that the quantity 2e~"#(2eP,u)*/? can be made arbitrarily small for any P, >
1 — € by choosing a large enough value of u = |a]?. However, large values of yu result in
higher values of the individual click probabilities {pax}, and consequently larger values
of 7 =3, (Pax)? making it harder for the quantity max,, ,, {min(1, x; ')} to be small.
Therefore, condition (6.22) will only be satisfied when the original probabilities {p;} are
very small, as this results in a small 7 even when p is large. Of course, whenever the
communicated states lie in a Hilbert space of large dimension, we expect the outcome
probabilities to be small and the coherent-state protocol to function adequately.

We are interested in applying the coherent-state mapping to known protocols in quan-
tum communication complexity. We now discuss how the mapping can be used to construct
a protocol for the Hidden Matching problem.

6.2.1 The Hidden Matching problem

Recall from chapter 2 that in this communication complexity problem, Alice receives an
n-bit string x € {0,1}" as input, with n an even number. Bob receives a matching
M = {(i1, j1), (i2, J2), - - -, (inj2, Jus2)} on the set of numbers {1,2,...,n}, i.e. a partition
into n/2 pairs. Only one-way communication from Alice to Bob is permitted and the goal
is for Bob to output at least one element of the matching (4,j) and a corresponding bit
value v such that v = x; © z;, where x; is the i-th bit of the string x.

It has been shown that in the bounded-error model, any classical protocol requires
Q(y/n) bits of communication [13]. It was also shown in Ref. [I13] that there exists an
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Figure 6.3: An example of an implementation of a coherent-state protocol for the Hid-
den Matching problem. Alice receives a string of six bits and Bob receives the matching
(1,6),(2,5),(3,4). Alice encodes her input values in the phases of six coherent states in
different modes and sends them to Bob. His measurement consists of a circuit in which
the modes are permuted in accordance with the matching and then interefere pairwise in
three balanced beamsplitters. Bob can output a correct solution to the problem based on
the detectors that click.

efficient quantum protocol that uses only O(log, n) qubits of communication and outputs
a correct answer with certainty. In this protocol, Alice prepares the state

1 n
o) = == (=1)"]3) (6.25)
vn i=1
and sends it to Bob, who measures it in the basis
{70 £} (6.26)

with (i,7) € M. Since these states form a complete basis, one of these outcomes will
always occur, and it will always correspond the correct value since \%(\z) +17)) only occurs
if ; ® x; = 0 and similarly, %(m — |7)) only occurs if x; @ x; = 1. This allows Bob to
give a correct output after performing his measurement. Note that Bob’s measurement

basis is constructed from the canonical basis by applying a Hadamard transformation to
the subspaces {|7), |7)}, with (¢, 7) € M.

To construct a coherent-state protocol for the Hidden Matching problem, we just have
to apply the rules of the mapping.
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Hidden Matching Protocol

1. Alice prepares the state
ja, z) = Q) 1(~1)" %) (6.27)
i=1
according to her input = and sends it to Bob.

2. Bob permutes the modes according to the matching M and interferes all pairs of
modes {b;,b;}, with (i,7) € M, in a balanced beam-splitter. The detectors in the
output ports of the beam-splitters are labelled ‘0" and ‘1’.

3. If detector v = 0,1 clicks, corresponding to the modes (b;,b;), Bob outputs v and

(4,7).

The protocol is illustrated in Fig. 6.3. Note that the linear-optical equivalent of a
Hadamard gate is a balanced beam-splitter, which explains the form of Bob’s measurement
in step 2. Additionally, if the incoming states to the input ports of the beam splitter are

[(=D)" %) @ (=1 %), (6.28)
the output states will be
[(1+(=1)") ) @] (1 - (=1)"%) %), (6.29)

For each possible value of x; @© x;, one of the output states will be a vacuum while the
other is a coherent state with non-zero amplitude. Therefore, we can associate a value
v = 0,1 to each of the output detectors so that whenever a click occurs, the correct value
of x; ® x; can be inferred with certainty. Even if there are many clicks, they will always
correspond to a correct value. The only issue that can arise is that no-clicks occur and the
probability that this happens is given by

Pno-click = 67‘0427 (630)

which can be made arbitrarily small by choosing o appropriately. Moreover, Theorem 7
guarantees that the amount of information that is transmitted in the coherent-state proto-
col is O(log, n) and an exponential separation in communication complexity is maintained.
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6.3 Conclusions

In this chapter, we have outlined a general framework for encoding quantum communica-
tion protocols involving pure states, unitary transformations, and projective measurements,
into another set of protocols that employs a coherent state of light in a linear combination
of modes, linear optics transformations, and measurements with single-photon threshold
detectors. This provides a general method for mapping protocols in quantum communica-
tion into a form in which they can be implemented with current technology.

From a theoretical perspective, the coherent-state mapping can be thought of as a tool
for understanding fundamental aspects about quantum communication and information.
For example, the mapping provides us with a connection between two intrinsically quantum
properties: entanglement and non-orthogonality. Additionally, the mapping can be also
applied in reverse: obtaining qubit protocols from coherent-state protocols. This provides
a connection between the interferometry of coherent states with single photon detectors,
and abstract quantum communication protocols using qubits. Besides being of fundamen-
tal interest, this may serve as a theoretical test bed for proving results regarding qubit
protocols, in the same way as many other dualities have been useful in both physics and
mathematics.

The remarkable advantages of the coherent-state protocols obtained from the mapping
come at the price of a number of optical modes that is equal to the dimension of the
original states in the qubit protocol. For practical purposes, this implies that they are
suited for protocols that originally do not require a very large number of qubits. But
as we have seen, there exists a regime in which the mapping leads to practical protocols
whose implementation was previously inaccessible. As such, we expect that our results will
pave the way for the experimental demonstration of a wide range of protocols in quantum
communication.

In the following chapter, we apply the results of this chapter to construct a practi-
cal protocol for an important problem in quantum communication complexity: quantum
fingerprinting. We also report a proof of concept experimental demonstration of this pro-
tocol.
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Chapter 7

Quantum Fingerprinting with
Coherent States

In this chapter, we take a close look at a quantum fingerprinting protocol that can be
built form the results of chapter 6. As opposed to the protocols previously discussed,
in this case we make an in-depth analysis of the role of experimental imperfections and
report a proof of concept experimental demonstration of quantum fingerprinting capable
of transmitting less information than the best known classical protocol for this problem.
The results presented in this chapter have been published in Refs. [10] and [133].

For the sake of clarity, we briefly summarize the discussion on quantum fingerprinting
problem of chapter 2. In this problem, Alice and Bob are each given an n-bit string,
which we label x and y respectively. They must each send a message to a third party, the
referee, whose task is to decide whether the inputs x and y are equal or not with an error
probability of at most e. Alice and Bob do not have access to shared randomness and
there is only one-way communication to the referee. In this case, it has been proven that
any classical protocol for this problem must transmit at least €2(y/n) bits of information
to the referee [12, 95]. On the other hand, a quantum protocol was specified in Ref. [28]
that transmits only O(log,n) qubits of information.

In this protocol, for each possible input z, Alice prepares the fingerprint states

m

o) = 7= 3"

where E(z); is the ith bit of a codeword E(x). Bob does the same his input y and they
send the states to the referee, who performs a SWAP test of the signals. The referee can

i, (7.1)
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decide whether the states are equal or not by simply checking whether outcome “1” occurs.
If the inputs are equal, this will never happen but if the inputs are different, there is a
fixed probability with which it will. The probability of error can be made arbitrarily small
by simply repeating the protocol enough times.

7.1 Coherent-state quantum fingerprinting protocol

How can we implement this abstract quantum fingerprinting protocol in practice? An ap-
proach to implementing the fingerprint states of Eq. (7.1) is to decompose the underlying
Hilbert space as a tensor product of Hilbert spaces of smaller dimension as done in Refs.
[71, 19, 46]. For example, we could have a collection of O(log,n) two-level systems, such
as photons in the polarization degree of freedom. As noted already in Ref. [71], a serious
drawback of this strategy is that most fingerprint states must be highly entangled [92, 91].
As a result, even for low input sizes, the experimental requirements greatly exceed that
which is possible to achieve with current technology. For this reason, the implementations
of [71, 19] are restricted to one single qubit transmission and within a few meters, with-
out a practical possibility of scaling them to demonstrate a reduction in the transmitted
information.

Alternatively, we can consider the underlying Hilbert space as arising directly from a
single m—dimensional physical system, such as a single photon distributed over m orthog-
onal optical modes, as has been considered in Refs. [39, 57]. However, as discussed already
in chapter 6, these states are also very challenging to create and transmit. Instead, we will
apply the mapping of chapter 6 to create a practical protocol that is robust to experimental
imperfections. This protocol was first introduced in Ref. [10]. Following the rules of the
mapping, the states of Eq. (7.1) are mapped to a sequence of coherent states given by

v, ) = ® |(~1)FE )., (7.2)

Here E(x); is the i-th bit of the codeword and « is a complex amplitude. Notice that all
the coherent states have the same amplitude, but their individual phases depend on the
particular codeword, which in turn is determined by the input x. The total mean photon
number in the entire sequence is u := |al?.

Since the fingerprinting states are coherent states instead of single-photon states, a
perfect two-photon interference is not required [70]. All we need is a measurement by the
referee that allows her to verify whether the relative phases of the incoming pulses are
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Figure 7.1: A schematic illustration of the quantum fingerprinting protocol. Alice and Bob
receive inputs x and y, respectively, which they feed to an error-correcting code to produce
the codewords E(x) and E(y). Using these codewords, they modulate the phases of a
sequence of coherent pulses that they send to the referee. The incoming signals interfere at
a beam-splitter (BS) and photons are detected in the output using single-photon detectors
Dy and D;. In an ideal implementation, detector D; fires only when the inputs to Alice
and Bob are different.

equal or different. A way of achieving this consists of a phase interferometer in which the
individual pulses enter a balanced beam splitter, and whenever there is a click in the output
detectors, it is unambiguously revealed whether their phases are the same or not [5].

Indeed, in our scheme, Bob does the same as Alice for his input y, and they both send
their sequence of states to the referee, who interferes the individual states in a balanced
beam-splitter. The referee checks for clicks at the outputs of the phase interferometer
using single-photon detectors, which we label “Dy” and “D,”. In the ideal case, a click
in detector D; will never happen if the phases of the incoming states are equal, i.e. if
E(z); ® E(y); = 0. However, it is possible for a click in detector D; to occur if the phases
are different, i.e. if E(x); ® E(y); = 1. Thus, if x # y, we expect a number of clicks in
D, that is proportional to the total mean number of photons and the Hamming distance
between the codewords. This allows the referee to distinguish between equal and different
inputs by simply checking for clicks in detector D;.

Let Dy g and D p be random variables corresponding to the number of clicks in detector
D for the case of equal and worst-case different inputs, respectively. The probability
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distributions for these variables can be well approximated by binomial distributions D g ~
Bin(m, pg) and Dy p ~ Bin(m, pp) given by

Pe(D1e = 1) = () )1 - pey (73)

Pe(Do = 1) = () Jobta = o) 7.4

where m is the number of modes and pg, pp are the probabilities of observing a click in
each mode for the case of equal and worst-case inputs respectively. These probabilities are
given by [10]:

2(1—v)p

PE :<1 —e m ) + Ddark (75)
o _20-vp
pp=0(l—e " m )4+ (1 =081 —-e""™ )+ Daark- (7.6)

Here v is the interference visibility — which quantifies the contrast of the interferometer —
and pgqrr, the dark count probability, is the probability that a detector will fire even when
no incident photons from the signals are present. As before, u is the total mean photon
number in the signals and 0 is the minimum distance of the error-correcting code.

The referee sets a threshold value D4, such that, if the number of clicks is smaller or
equal than D 4, she will conclude that the inputs are equal. Otherwise, she concludes
that they are different. Note that — unlike the ideal case — in the presence of imperfections,
an error can occur even when the inputs are equal. In our protocol, the value of Dy, is
chosen in such a way that an error is equally likely to occur in both cases, so that the
probability of error is given by

Pr(error) = Pr(Dy g > Diy4) = Pr(Dip < Di), (7.7)

which can be calculated directly from the distributions of D; g and D; p. This is illustrated
in Fig. 7.2.

In the regime in which dark counts are negligible and ;1 < m, we can approximate Eqgs.

(7.5) and (7.6) as

Dp 21— v)u (7.8)

m

pp A0 (%“) +(1=4) (M) | (7.9)

m

85



Probability

Number of clicks in detector D4

Figure 7.2: An illustration of the probability distributions for the number of clicks in detec-
tor D for equal inputs (x = y) and worst-case different inputs (z # y). The distributions
are shown for three different total mean photons numbers: p; (solid), ps (dashed) and pus
(dotted), with py < pe < pg. The distributions for equal inputs (green) are dominated by
dark counts, so they are largely unaffected by changes in . On the other hand, for the
worst-case different inputs (blue), the mean value of the distributions depends strongly on
1. Therefore, the error in distinguishing both distributions can be controlled by choosing

[t appropriately.
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In this case, the average number of clicks in detector D for equal and worst-case different
inputs satisfy

(D1 g) =mpp~2(1—v)u (7.10)
(Dy.p) =mpp =~ [20v +2(1 —§)(1 — v)]p. (7.11)

Thus, the difference between these two averages (Dy p) — (D1.g) = 20p(2v — 1) can be
made as large as desired by choosing i accordingly, independently of m and consequently
of the input size n. A larger difference in these averages is leads to a smaller probability of
error. Therefore, any error probability can be achieved by fixing u appropriately. In the
regime where dark counts are negligible, 1 depends only on the error probability, whereas
when dark counts are significant, we must increase p as a function of the input size. In
general, the protocol determines an appropriate vale of the total mean photon number p
for each input size n by finding the smallest value of i such that the probability of error —
as given in Eq. (7.7) — is smaller than the desired error probability of the protocol.

In summary, the coherent-state quantum fingerprinting protocol is given by the follow-
ing set of rules:

Coherent-state protocol

1. For the given input size n, all parties calculate the threshold value Dy, such that
Pr(Dy g > D) = Pr(D1p < Dyyp).

2. For the given input size n and Dy, obtained in the previous step, Alice and Bob
calculate the smallest value of u = |«|? such that Pr(error) < ¢, where Pr(error) is
given by Eq. (7.7) and € is the target error probability of the protocol.

3. Alice applies an error-correcting code to her input x to produce the codeword E(z).
She then prepares the state |a, z) = &) |(—1)E(w)i%>i.

i=1 m
4. Bob does the same as Alice for his input y and they each send their states to the

referee.

5. The referee interferes the signals in a balanced beam splitter and counts the number
of clicks observed in detector D;. If this number is smaller than Dy,, he concludes
that the inputs are equal. Otherwise, he concludes that the inputs are different.
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Figure 7.3: Logarithmic plot of the transmitted information in the quantum fingerprinting
protocol compared to the best-known classical protocol and the classical lower bound of
Ref. [12]. For illustration, we have chosen parameters n = 0.85, pge, = 1072 — which can
be achieved using the detectors of Ref. [38] — and a visibility of ¥ = 99%. The target error
probability is 1%. As can be seen in the plot, dark counts become significant for input
sizes greater than 10° and the logarithmic scaling of the transmitted information is lost.
Nevertheless, the quantum protocol can outperform the classical one by more than two
orders of magnitude.
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As noted before, in the regime in which dark counts are negligible, the total mean pho-
ton number is fixed and independent of the input size n. From Eq. (6.10), the transmitted
information () in the protocol satisfies

Q < (n+ A)logy [(n+ A+ m —1)] +logy(24) (7.12)
= O(ulogyn). (7.13)

For fixed p, this gives an exponential separation in communication complexity compared
to the classical case. It is in this sense that the protocol provides an advantage compared
to the classical case. In the regime where dark counts become significant — namely when
PD = Paark — it DO longer becomes possible to attain the desired error probability with fixed
. Therefore, dark counts pose a limit to the maximum input size for which the logarithmic
scaling of the transmitted information can be maintained. For fixed total mean photon
number g and codeword size m, we can always use Eq. (7.12) to bound the transmitted
information in the protocol.

Finally, we note that in any implementation of the protocol there will be some loss
captured by the combined effect of limited detector efficiency and channel loss. We quantify
this with the single parameter n < 1. As shown in Ref. [10], the effect of loss can be
compensated by adjusting the total mean photon number accordingly: p — u/n. Thus,
the protocol is robust to loss. An illustration of the transmitted information of the protocol
as a function of input size is shown in Fig. 7.3, where we compare our quantum protocol
with the best-known classical protocol for this problem [12].

7.2 Error-correcting code

In quantum fingerprinting, an error-correcting code (ECC) is used to amplify the Hamming
distance between the inputs of Alice and Bob. Even if these inputs are originally very close
to each other — for example if they differ in a single position — after applying the ECC,
the resulting codewords will have a much larger Hamming distance. In the worst-case
scenario, this distance is given by the minimum distance of the code. Note, however, that
no error-correction actually takes place in the quantum fingerprinting protocol — we just
use the properties of error-correcting codes to increase the distance between the inputs.

The quantum fingerprinting protocol of Ref. [28] used Justesen codes as an example to
illustrate the properties of the protocol. However, these codes are not optimal for quantum
fingerprinting. In this section, we construct more efficient codes based on random Toeplitz
matrices that significantly relax the requirements on the experimental devices and lead
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Figure 7.4: The Gilbert-Varshamov bound compared to the distance-rate relationship
achieved by Justesen codes suggested in Refs. [10, 28]. For various rates, a code satis-
fying the GV bound — like the one we use in our protocol — achieves a minimum distance
that is more than three times the value for Justesen codes.

to a faster implementation of the protocol. Due to their probabilistic construction, these
codes are not guaranteed to have the desired minimum-distance, but do achieve it with
exponentially high probability (See Appendix B for details). Therefore, by using these
codes, we can only claim that with exponentially high probability, we are using codes with
the required properties to attain the desired error probability.

An ECC with a high rate and a large minimum distance is desired, since a higher
rates leads to lower transmitted information and larger tolerance for dark counts, while a
larger minimum distance leads to smaller error probability for fixed mean photon number.
Fundamentally, there is an inherent trade-off between the rate and distance of ECCs.

In particular, the Gilbert-Varshamov (GV) bound [60, 121] states that there exists some
binary linear code whose rate R and minimum distance ¢ satisfy the relation
R >1— Hy(0), (7.14)

where Hj(-) is the binary entropy function. Using a binary linear code that approaches
this bound would constitute a significant improvement over the codes suggested in previous
protocols [10, 28]. This is clearly illustrated in Fig. 7.4.

It is well known in coding theory that random linear codes (RLCs) can asymptotically
approach the GV bound with encoding complexity O(n?) [15]. However, in quantum
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fingerprinting, the input size n is typically very large (e.g. n = 108), thus making the
encoding time prohibitively high. In order to reduce this encoding complexity, we make
use of a subclass of RLCs whose generator matrices are Toeplitz matrices. A Toeplitz
matrix is a matrix in which each descending diagonal from left to right is constant. An
n x m Toeplitz matrix is completely determined by the n +m — 1 elements on its first row
and column. This structure implies that only O(nlogn) time for encoding is required for
this subclass of RLCs [53]. Additionally, these codes also asymptotically approach the GV
bound (see Appendix B for a proof). By using this family of codes, we are able to reduce
the encoding times by several orders of magnitude, making them suitable for practical
applications.

The exponential separation between quantum and classical communication complexity
for the equality function only holds if Alice and Bob do not have access to shared random-
ness that is generated in each run of the protocol [12]. However, even though the generator
matrices of our RLCs are randomly constructed, once they have been created they remain
fixed for all future instances of the protocol. This ensures that no new randomness is gen-
erated in each run of the protocol, as required to satisfy the conditions of the exponential
separation. In particular, Alice and Bob can store the generator matrices in memory and
use them to encode their inputs in exactly the same way as if they had been generated
deterministically.

For the experiment reported in the next section, an encoder program written in C+-+
was built and tested, demonstrating the feasibility of this subclass of RLCs. The free Fast-
Fourier Transform library FFTW was used to accelerate multiplications with Toeplitz
matrices [55] and the random numbers to construct the matrices were generated from a
quantum random number generator [134]. The results from an optimized encoder are
shown in Table 7.1. As we can see, our encoder is practical, can be run on any common
lab PC, and finishes the encoding in an acceptable time frame for input sizes as large as
n = 3 x 10%. Faster encoding times could be obtained by using dedicated hardware.

7.3 Experiment

One of the main goals of the results outlined in chapter 6 was to establish a technique to
construct practical quantum communication protocols. In this section, we will make the
practicality of quantum fingerprinting explicit by reporting on a proof of concept exper-
imental demonstration of the coherent-state protocol introduced in this chapter. Unlike
the previous quantum fingerprinting experiments of Refs. [71, 19], which demonstrated an
increase in the success probability for a small and fixed amount of transmitted information,
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n (bit) | m (bit) | Time (s) | Memory (Mbit)
10° 5 x 10° 6 52
107 5 x 107 106 733

3x 107 | 1.5 x 10® 181 1654

3x 108 | 1.5 x 10° 4831 10000

Table 7.1: The performance of the encoder for different input sizes, using a computer with
a quad-core i7-4770 @3.4GHz CPU and 16GB RAM. Running times are acceptable for
experimental applications for input sizes as large as n = 3 x 108,

our experiment was capable of running for input sizes as large as 100 Megabits, achieving
a reduction in the transmitted information compared to the best-known classical protocol.
This experiment has been reported in Ref. [133].

This proof of concept quantum fingerprinting protocol was demonstrated using a plug&play
scheme [110], initially designed for quantum key distribution (QKD). The advantage of the
plug&play system with respect to other viable systems is that it offers a particularly robust
and stable implementation. This allows us to perform reliable experiments with highly at-
tenuated coherent states for long time durations. A disadvantage is that, in this setup,
Bob must be located very close to the referee. The protocol was implemented on top of
two commercial systems, namely ID-500 and Clavis2, manufactured by ID Quantique [1].
The experimental setup is shown in Fig. 7.5.

Since the operating conditions of the protocol are significantly different from those
of standard QKD, using a commercial QKD equipment for the implementation requires
several important modifications to the system. First, two single-photon detectors with low
dark count rates were installed. Indeed, as can be deduced from Eqs. (7.5) and (7.6), lower
dark count rates permit the operation of the system at lower mean photon numbers, which
lead to a reduction in the transmitted information. Fortunately, our error correction codes
improve the tolerance of the protocol to dark counts, which permits us to use commercial
detectors. Two commercial free-running InGaAs avalanche photodiodes — ID220 [1] were
employed. The dark count rate per 1 ns detection gate for this detectors is about (3.5 +
0.2) x 107% and the corresponding quantum efficiency is about 20%. The detections are
recorded by a high-precision time interval analyzer (TTA, PicoQuant HydraHarp 400). The
system was run at a repetition rate of 5 MHz with the detector dead time set at 10us. This
means that after a click occurred, the following 50 pulses are blocked before the detector
is active again. This is not a problem in our experiment because the mean photon number
in each pulse is extremely low, therefore the expected number of undetected photons as a
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Figure 7.5: Experimental setup for quantum fingerprinting. The laser source at the referee’s
setup emits photon pulses which are separated at a 50:50 beam-splitter (BS) into two pulses,
the signal pulse and the reference pulse. The signal pulse passes through Bob’s phase
modulator (PM) and then through a polarization rotator (PR) which rotates the pulses’
polarization by 90°. The pulses are then recombined at a polarization beam splitter (PBS)
where they exit through the same port and travel to Alice through the 5 kms fiber. After
passing through Alice’s BS, the reference (forward) pulse is split into two pulses, where one
is used as a synchronization (Sync) and the other one continuous travelling. Similarly, the
signal (backward) pulse is split into two. Then, Alice uses her phase modulator (PM) to set
the phase of the signal pulse only, according to her codeword E(x). Once the reference and
the signal pulses are reflected back by the Faraday mirror (FM), she attenuates them to the
desired photon level by using the variable optical attenuator (VOA). When the two pulses
return in the direction of the referee, because of Alice’s FM, the reference pulse will travel
through Bob, who uses his PM to modulate the pulse according to his codeword E(y). Both
Alice and Bob use two external function generators (FG) to control the PMs. Finally, the
two pulses arrive simultaneously at the BS, where they interfere and are detected by two
detectors Dy and D;. The detection events are recorded by a time interval analyzer (TIA).

result of this effect is negligible compared to other sources of error (see Appendix B for
details).

Additionally, new functionalities and control signals were added to the system. On one
hand, the VOA inside Alice was used to reduce the mean photon number per pulse down
to suitable numbers. These values — in the order of 107° per pulse — were in fact four
orders of magnitude lower than those typically used for QKD. Hence, several calibration
processes of the system are required, which imposes particular care in the synchronization
of the phase modulation and attenuation signals. On the other hand, commercial QKD
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AR T'BR Ndet DPdark v
3 dB (2.36 dB) 1.5 dB (1 dB) 20.0% (3.5 + 0.2) x 1076 (99i0.5)%

Table 7.2: Parameters measured in the implementations. The overall loss between the
output of Alice’s VOA and the input to the referee’s detectors is given by the parameter
nagr. Similarly, ngr defines the overall loss between the output of Bob’s PM and the
referee’s detectors. Both nag and ngg are carefully characterized in ID-500 (Clavis2). The
other parameters are the detector’s quantum efficiency 74, dark count rate per pulse pgq,«
for each detector, and system visibility v, which are nearly the same for ID-500 and Clavis2.

systems like Clavis2 have an internal random number generator to set the phase modu-
lations, which does not allow us to modulate the phases according to the pre-generated
codewords. This difficulty was solved by using two external function generators (FG, Ag-
ilent 88250A) loaded with the codewords to control Alice’s and Bob’s phase modulator.
This requires precise synchronization and calibration procedures to guarantee correct phase
modulations. Finally, high interference visibility of about (99 + 0.5)% was observed after
careful calibration.

In the implementation on ID-500, the random numbers controlling the phase modu-
lations are accessible to the users. The codewords were used to replace those random
numbers directly. However, after testing for an input data size of n = 1.42 x 10® on ID-
500, an unexpected hardware problem made ID-500 unavailable for further experiments.
To further test the feasibility of the protocol for different input sizes, we switched to Clavis2
for measurements. In the implementation on Clavis2, since each function generator has a
small memory, for simplicity we load a frame of about 430 random numbers to each func-
tion generator and reuse these random numbers. This allows us to create binary sequences
with the desired distance § that can be used to test the performance of the system. All
the above modifications led to the development of a practical system that is capable of
performing quantum fingerprinting.

7.3.1 Experimental results

The quantum fingerprinting experiment over a standard telecom fiber of 5 km between
Alice and the referee. The overall loss between the output of Alice’s VOA and the input of
the referee’s detector D; — which includes the losses of quantum channel, PBS, BS and the
circulator — is about 3 dB (2.36 dB) for ID-500 (Clavis2). The channel between Bob and
the referee is about a few meters, and its overall loss including Bob’s channel, the BS and
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the circulator, is about 1.5 dB (1 dB). We summarize all system parameters in Table 7.2.
Based on these parameters, for a given input size n, we use our model of the protocol to
optimize the photon number p in order to achieve a desired error probability e.

Because there is loss in the channels and the detectors are not perfectly efficient, Alice
and Bob must use higher mean photon numbers compared to the case with no channel
loss and perfect detectors. As implied by Eq. (7.13), this also leads to an increase in the
transmitted information, which we take into account in our calculations of the transmitted
information. In particular, if Alice and Bob experience different amounts of loss, they must
choose a different mean photon number when preparing their signals, ensuring that the
amplitude of their pulses is equal when they interfere in the referee’s beam splitter.

In the experiment, the detection events registered on Dy and D; in conjunction with
the known experimental conditions in the system can be used to characterize the photon
numbers sent out by Alice and Bob, the dark count probability, and the visibility of the
interferometer. From the characterization of these parameters, we find that there is a good
agreement with our model of the system. The main source of uncertainty is due to an
imperfect matching between the observed mean photon numbers and those pre-calibrated
from the VOA. This uncertainty is determined by the fluctuations of several devices, such
as laser power, VOA, and detector efficiency. The detailed values of this uncertainty are
shown in Appendix B.

The quantum fingerprinting protocol was tested over several values of the input size
n. For each n, we record the detection counts on D; for two types of input data: equal
inputs F(z) = E(y), and the worst-case different inputs, i.e. those for which the codewords
E(z) # E(y) have a distance equal to the minimum distance . For our experiment, we
minimize the transmitted information by choosing an optimal value of 6 = 0.22 for the
minimum distance. From the threshold value D, g, that is pre-calculated from our model,
the referee can distinguish between equal and different inputs. The upper bound () on
the quantum information Alice and Bob is calculated from their respective mean photon
numbers p4 and ppg, as well as the codeword length m.

In Fig. 7.6, we show the transmitted information as a function of the input size n for a
target error probability of € = 5 x 107°. The error probability was calculated from our the-
oretical model of the experiment. Within experimental uncertainty, the worst-case values
of the mean photon number, visibility, and dark count probability were used to reconstruct
the probability distributions of clicks in detector D;. These distributions, in turn, were
used to calculate the error probability from Eq. (7.7). Since our theoretical model is only
an approximation, the error probability should also be understood as approximate. Future
implementations should improve on this by treating the system as a black-box, using the
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Figure 7.6: Log-inear plot of the transmitted information in the protocol. The blue area
indicates the region where the classical protocol transmits less information than the pro-
tocol, while the red point shows our experimental results. The error bars correspond to
one standard deviation. For large n, our results are strictly better than the best known
classical protocol for a range of practical values of the input size.

data directly to make statistical inferences about the error probability, without relying on
an approximate model of the system. The blue area in Fig. 7.6 indicates the region where
the best known classical protocol of Ref. [12] transmits less information than our quantum
protocol. For this target error probability, the classical protocol requires the transmission
of 164/n bits. The red points show our experimental results, where the data point for
the largest n is obtained from ID-500 and the other three data points are obtained from
Clavis2. Note that Clavis2 and ID-500 have almost the same optics and functionality [1].
We use the same measurement and processing method for the data obtained from these
two systems, and show the experimental results together in one figure instead of two. The
error bars come from the uncertainty in the estimation of the mean photon number . For
large n, our experimental results are strictly better than those of the classical protocol for
a wide range of practical values of the input size.

To obtain further insight into the results, we define the quantum advantage v as the
ratio between the transmitted classical information C of the best-known classical protocol
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Figure 7.7: The quantum advantage v between the transmitted classical information and
the upper bound on the transmitted quantum information. For the three large input
sizes, the ratio is well above 1. The quantum advantage was as large as v = 1.66, which
implies that the transmitted information in the classical protocol was 66% larger than in
the quantum case.

[12] and the upper bound @ on the transmitted quantum information:

v = 0 (7.15)

A value v > 1 for a given error probability € implies that less information is transmitted
in the quantum case than in the classical one. This allows us to use the quantum advantage
as a figure of merit to assess the performance of our quantum fingerprinting implementation.
In Fig. 7.7, we show the experimental results for v as a function of different input sizes. For
the three largest input sizes, the ratio is well above 1, and the classical protocol transmitted
as much as 66% more information than the quantum protocol. For the smallest input size,
no quantum improvement was obtained.

7.4 Discussion

Based on the protocol of Ref. [10], we have experimentally demonstrated a proof of concept
quantum fingerprinting system that is capable of transmitting less information than the
best known classical protocol for this problem. Our experimental test of this system
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indicates that its operation is consistent with our model of the devices and hence also
with achieving the desired error probability. Moreover, we have operated our system in a
parameter regime in which the information transmitted in the protocol is up to 66% lower
than the best known classical protocol. This constitutes the first time that a quantum
fingerprinting protocol has been carried out that is capable of achieving this reduction in
the transmitted information.

In communication complexity, it is assumed that the parties have unlimited compu-
tational power. However, from a practical perspective, it may not always be possible to
ignore these computational requirements. In fact, even though the running time during
communication of our experiment scales linearly with the input size, the total running
time of the protocol is dominated by the time required to run the error-correcting code —
which is a crucial component of the protocol. For instance, at a repetition rate of 5MHz,
it takes 5 minutes to run the communication for an output size of m = 1.5 x 10°. On the
other hand, even with the use of RLCs with quasi-linear encoding complexity, more than
one hour is needed to run the encoding algorithm, as seen in Table 7.1. Even if dedicated
hardware is used to improve the encoding speeds, the encoding complexity is quasi-linear
in the input size, while the transmission times scales linearly. Therefore, the practical
advantages of quantum fingerprinting, in terms of reductions in resource expenditures, will
likely be found in a reduction of the number of photons used. This is a major property that
the protocol possesses. Indeed, for the largest input size that was tested in the experiment,
n = 1.42 x 108, a total mean photon number of only p ~ 7 x 10% was used (see Appendix
B). Even further reductions would occur with better detectors. Overall, it is remarkable
that quantum fingerprinting with coherent states can be realized while revealing only a
very small amount of information to the referee — a feature of the protocol that may have
important applications to fields such as cryptography [58] and information complexity [31],
where this extremely small leakage of information plays a fundamental role.

In the implementation, a reference pulse is transmitted between the two participants
for a share of synchronization and phase reference. In practice, one can overcome this
by using a system where each of Alice and Bob holds a frequency-locked laser source
separately. A common phase reference can be established before the start of the protocol
or the referee can employ phase-locking techniques to interfere the two pulses from Alice
and Bob. Indeed, a potential method for such an implementation is to use the techniques
that have been recently developed in the field of QKD [104, &1, |. This configuration,
unlike the plug&play scheme, can also permit Bob to be situated at a large distance from
the referee.

In this quantum fingerprinting protocol, the maximum reduction in the transmitted
information depends crucially on the dark count probability and the overall loss in the
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system. Thus, the results of the experiment can be directly improved by using detectors
with higher efficiency and lower dark counts. This can lead to a quantum fingerprinting
protocol that, with the use of available technology [3%], transmits several orders of magni-
tudes less information than the best known classical protocol for large input sizes, as was
shown in Fig. 7.3. Even though there is no proof that the best known classical protocol is
optimal, a lower bound for the classical transmitted information was proven in Ref. [12].
This lower bound states that, for any classical protocol with error probability smaller than
0.01, Alice and Bob must send at least ‘2/—(7? bits of information. This is roughly two orders
of magnitude smaller than the transmitted information of the best known classical proto-
col. By using state-of-the-art detectors, it should be possible to demonstrate a quantum
fingerprinting protocol capable of beating this classical lower bound. Achieving this would
constitute a significant milestone for experimental quantum communication complexity.

It is an appealing and useful property of this quantum fingerprinting protocol that we
can achieve a quantum advantage without the need for entanglement, single-photon sources
or squeezing. So where does the improvement come from? As mentioned in chapter 6, one
way of understanding this is to view the quantum advantage as arising from the non-
orthogonality of weak coherent states and the quantum mechanical properties of single-
photon detectors. In the protocol, the weak coherent states have a very low mean photon
number, on the order of 107°. This means that the two possible states that are sent in
each mode, |+ \/LE) and | — \/LE), are highly non-orthogonal and difficult to distinguish.
Therefore, very little information can be learnt by looking at each pulse. This is essentially
the reason why the transmitted information is very low — exponentially less than in the
classical case. On the other hand, after the coherent states interfere in the beam-splitter,
a click in the single-photon detector unambiguously provides valuable information to the
referee: she now knows whether the phases of the coherent states are equal or not. The
referee uses this information to determine whether the inputs to Alice and Bob are equal,
even if very little information was sent to her. This unambiguous information is only
possible because the detectors respond quantum mechanically to the incoming light field.

Finally, we emphasize a unique property of this protocol: no time-resolution is required
from the detectors. In order to make her decision, the referee only needs to count the
number of clicks that occur in detector D;. It does not matter when the clicks happen, all
that matters is how may of them occur. This property implies that alternative detector
technologies and modulation techniques could be employed in the protocol. For example,
slow detectors with low dark count rates and high efficiency, such as those employed in
CCD cameras, can potentially provide significant improvements on the performance of the
protocol compared to the use of traditional detectors. Moreover, this implies that the
repetition rate of the protocol is limited only by the modulation of the signals, which can
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be performed at rates well above 1 GHz.
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Chapter 8

Multiparty Quantum Signature
Schemes

The results presented in the previous two chapters provide new examples of practical
quantum communication protocols, which were made possible by new methods of encod-
ing abstract protocols into physical systems. The focus was made on using coherent states
and linear optics, which was motivated from a desire to design protocols that could be
implemented in practice with available techniques. In this chapter, our goal is to build
practical protocols for quantum signature schemes. However, in this case, we take a differ-
ent approach than in previous chapters: instead of providing a specific physical implemen-
tation of these protocols, we reduce the experimental difficulty of implementing quantum
signature schemes (QSSs) to that of carrying out quantum key distribution (QKD) in a
point-to-point network.

However, unlike the case of other tasks in quantum communication, there has not
been significant theoretical work on establishing a security model for quantum signature
schemes. In the absence of such a model, it is unclear what are the precise security goals
of these schemes nor what are the requirements for achieving those goals. Consequently,
before being able to construct practical quantum signature schemes, it is crucial to first
outline a security framework for these schemes and to provide an understanding of their
required properties. More specifically, in this chapter, we provide a security framework
suitable for quantum signature schemes involving an arbitrary number of participants.

The rest of this chapter is organized as follows. In section 8.1, we generalize the security
definitions of Swanson and Stinson [115] so that they can apply also to the quantum case
and introduce a formal definition of transferability based on different verification levels. We
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also present a characterization of the general structure of QSS protocols and in section 8.2
we introduce rigorous definitions of security. Additionally, in section 8.3 we prove several
properties that QSS protocols must satisfy in order to achieve their security goals. Thus,
as opposed to what occurred in other chapters, in this case we spend considerable efforts
on purely mathematical aspects of quantum signature schemes before developing practical
protocols. Finally, in section 8.4 we make use of our results to generalize a quantum
protocol of Wallden et. al [126] to the multiparty case and prove its security against
forging, repudiation and non-transferability. As mentioned before, this protocol can be
implemented from any point-to-point quantum key distribution network and therefore is
ready to be experimentally demonstrated. The results presented in this chapter appear in

Ref. [11].

8.1 Classical and quantum signature schemes

Digital signatures are important cryptographic building-blocks that are widely used to
provide security in electronic communications. They achieve three main cryptographic
goals: authentication, non-repudiation, and transferability. These properties make them
suitable for securing important tasks such as financial transactions, software updates, and
legal contracts, forming a fundamental building block for network security. The digital
signatures schemes that are in use today, which are based on public-key cryptography, de-
rive their security from unproven computational assumptions, and most of them — notably
those based on the RSA algorithm or on elliptic curves — can be broken in the presence of
a quantum computer [34].

Consequently, from both a practical and fundamental perspective, there has been in-
terest in studying digital signature protocols that do not rely on computational assump-
tions, but instead offer information-theoretic security. These schemes were first introduced

by Chaum and Roijakkers [32] and are known as unconditionally secure signature (USS)
schemes. Besides the proposal of Chaum and Roijakkers, several other USS protocols have
been suggested [24, 66, 67, 74, 75, , , , |, most of them based on remov-

ing standard trust assumptions from message authentication codes (MACs). However, all
known classical USS protocols proposed so far rely on the assumption of either a trusted
arbiter or authenticated broadcast channels. Crucially, they also require the use of secure
channels, which are impossible to realize with information-theoretic security using classical
communication only [111, 90].
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However, once quantum communication is allowed, it becomes possible to construct
digital signature schemes whose information-theoretic security is based on fundamental
principles of quantum mechanics. These are known as quantum signatures schemes (QSS).
The first QSS protocol was proposed by Gottesman and Chuang [62], who introduced the
main ideas for bringing digital signatures into the quantum world. As discussed before,
although influential from a fundamental point of view, their scheme requires the preparation
of complex quantum states, performing quantum computations on these states and storing
them in quantum memories, making the protocol highly impractical. This is also an issue
of other protocols that appeared shortly after [94, 85].

In recent years, new QSS protocols have been proposed that do not require a quantum
memory and which can be realized with standard quantum-optical techniques [126, 50,
]. Some of these protocols have also been demonstrated experimentally [38, 1], thus
establishing their viability as a practical technology. Nevertheless, these schemes have
not been generalized to more than three participants, and their security goals have not
been formally defined. Overall, a security framework for quantum signatures schemes that
includes rigorous definitions of security suitable for multiparty protocols has not yet been
proposed. In the absence of such a framework, it is not clear how to design secure and
practical multiparty protocols, nor what are the concrete advantages of quantum signatures
schemes compared to their classical counterparts. In order to build such a framework, we
start with some definitions.

8.2 Definitions for QSS protocols

A QSS protocol is carried out by a set of participants and is divided into two stages:
the distribution stage and the messaging stage. The distribution stage is a communication
stage, where the parties may exchange quantum and classical signals according to the rules
of the protocol. Although in principle they could store the received quantum states in a
quantum memory, we focus on more practical protocols in which the participants perform
measurements on the states and store the outcomes in a classical memory. The participants
may also process their data and communicate classically with each other. Overall, each
participant is left with a set of rules to sign a message and to verify signatures. These rules
generally depend on their measurement outcomes and the classical communication. At
the end of the distribution stage, the parties decide whether to continue to the messaging
stage or to abort the protocol. In the messaging stage, one of the participants—the signer—
signs a message by attaching a classical string—the signature—to the message. When a
participant receives a signed message, they verify its validity according to the rules of the
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protocol.

A QSS protocol must achieve authenticity, non-repudiation, and transferability as its
main security goals. Informally, these goals can be defined as follows:

1. Authentication: Except with negligible probability, an adversary cannot create a
message and signature pair that is accepted by another participant, i.e. a signature
cannot be forged.

2. Non-repudiation: Except with negligible probability, a signer cannot later deny having
signed a message that has been accepted by an honest recipient.

3. Transferability: A recipient that accepts a signed message can be confident that,
except with negligible probability, the signature will also be accepted by other par-
ticipants.

In order to satisfy non-repudiation and transferability, each recipient must have a
method of determining whether other participants will also agree on the validity of a signa-
ture. This is straightforward in classical public-key schemes, since every recipient applies
the same rule to verify a signature. However, as we discuss later, in an information-theoretic
scenario, every recipient must have a different rule for verifying a signed message. Thus,
a security model for QSS schemes must deal carefully with the notion of non-repudiation
and the transferability of signatures.

We now generalize the work of Swanson and Stinson [1 18] in the context of USS schemes
to construct formal definitions that are also suitable for quantum signature schemes and
allow different levels of verification. This will permit us to formalize the structure of
general (QSS protocols, provide rigorous security definitions, and illustrate properties they
must possess in order to be secure.

Definition 11. A QSS protocol Q is an ordered set {P, X, %, L, Gen, Sign, Ver} where:

- The set P = {Py, P1,...,Pn_1}, is the set of N different participants involved in
the protocol. We fix Py to be the signer, and P; are the possible recipients, with
i€ {l,---,N —1}. X is the set of possible messages and 3 is the set of possible
signatures.

- Gen s the generation algorithm that gives rise to the functions Sign and Ver that are
used to generate a signature and verify its validity. More precisely, the generation
algorithm specifies the instructions for the quantum and classical communication that
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takes place in the distribution stage of the protocol. Additionally, the generation
algorithm instructs how to construct the functions Sign and Ver based on the data
obtained during the distribution stage. The generation algorithm includes the option
of outputting an instruction to abort the protocol.

- The signature function Sign is a deterministic function X — 3 that takes a message
x and outputs a signature o € 3.

- L={-1,0,1,...lnax} is the set of possible verification levels of a signed message. A
verification level | corresponds to the minimum number of times that a signed message
can be transferred sequentially to other recipients. The role of the verification level
[ = —1 is to prevent repudiation. For a given protocol, the mazximum number of
sequential transfers that can be guaranteed is denoted by . < N — 1.

- The verification function Ver is a deterministic function X xS xPx L — {True, False}
that takes a message x, a signature o, a participant P; and a level |, and gives a truth
value depending on whether participant P; accepts the signature as valid at the verifi-
cation level [. We denote a verification function with a fized participant P; and level
[ as Ver;(z,0) := Ver(z, 0,i,1).

In general, the generation algorithm will involve randomness in the construction of
the signing and verification functions. The randomness may be generated locally by each
participant or it can also arise from the intrinsic randomness of quantum measurements.
Therefore, even though the signing and verification functions are deterministic functions,
they are randomly generated. An illustration of the distribution stage for a generic QSS
protocol can be seen in Fig. 8.1.

The verification levels are a method of determining whether a signature can be trans-
ferred sequentially among participants. As an illustration, consider a protocol involving
a signer Alice, a recipient Bob, and a bank. Other participants may be involved as well.
Bob receives a payment from Alice which is signed using a QSS protocol, and Bob wants
to transfer this signed message to the bank. For Bob, it does not suffice to verify that
the signature comes from Alice — he also needs a guarantee that when he transfers the
signed message to the bank, they will be able to validate it. Now suppose that the bank
also requires the ability to transfer the message to another participant, otherwise they
don’t accept the message. Then Bob needs a guarantee that it can be transferred twice in
sequence, from himself to the bank and from the bank to another participant. In general,
Bob may require that a signed message can be transferred many times in sequence. This
guarantee is provided by the verification levels: With high probability, a signature that is
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verified at level [ can be transferred [ times in sequence. A signature that is verified at
level [ = 0 is certified to have come from the signer, but does not have a guarantee that
it can be transferred to other participants. The role of the verification level [ = —1 is to
prevent repudiation, as will be explained in section 8.2.

We now introduce additional useful definitions, which are inspired from Ref. [115]
and generalized to allow different levels of verification. Since QSS protocols have different
verification functions for each participant as well as different levels of verification, it is
important to carefully specify what it means for a particular signature to be valid.

Definition 12. A signature o on a message x is authentic if o = Sign(z).

Definition 13. A signature o on a message x is valid if Verg)(z,0) = True for all
ie{l,--- ,N—1}.

Thus, a valid signature is simply one for which all participants can verify that it origi-
nates from the intended signer. Crucially, a valid signature does not need to be authentic,
a possibility not originally considered in Ref. [118].

It is important that a QSS protocol works properly when all parties are honest, which
leads to the following definition.

Definition 14. A @SS protocol Q is correct if authentic signatures pass the verification
function of all participants at all verification levels, i.e. if Verg(x,Sign(x)) = True for
all z,1,1.

Definition 15. A signature o on a message x is i-acceptable if Ver(; o) (z,0) = True.

Note that, as opposed to a valid signature, an i-acceptable signature may not pass the
verification functions of participants other than P;. Therefore, an i-acceptable signature
may not be a valid signature. As discussed before, the participants may additionally be
interested in the transferability of the signature. This motivates the following definitions.

Definition 16. A signature o on a message x is I-transferable if Ver(;;(x, o) = True for
alli € {1,--- N — 1} and there exists j such that Ver(,1)(x,0) = False. For | = lyax,
the function Ver;,. . +1)(x,0) is not defined and we assume by convention that it is always
False.

The above definition means that a signature is [-transferable if [ is the largest level for
which this signature will pass the verification test of all participants.

Definition 17. A signature o on a message x is (i,l)-transferable if Ver(;;(x, o) = True
and Ver(11y(x, o) = False.
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Figure 8.1: (A) Schematic portrayal of a possible generation algorithm in the distribution
stage of a QSS protocol with three participants. The three parties exchange messages
over classical and quantum channels. At the end of their communication, the signer has
a specification of the signing algorithm, and the recipients have a specification of their
respective verification functions. (B) An example of a generation algorithm for one of the
recipients. From their perspective, they receive a quantum state p and a classical message
Y] from the other participants. A measurement My that depends on a random variable
R is carried out on the quantum state, and the outcome Y3, together with the classical
data Y7, is fed to an algorithm Gy, y,. This program outputs data Y3 that, together with
another possibly random variable S, is fed to a second algorithm C' that determines the
quantum and classical messages sent to the other participants. After several iterations of
these steps, the program Gy, y, outputs the verification function.
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Thus, an (7, !)-transferable signature will pass the verification test of participant i at
level [, but not at any other higher level. As opposed to an [-transferable signature, it may
not pass the verification functions of other participants.

8.2.1 Dispute resolution

In traditional digital signature schemes based on public-key cryptography, there is a public
verification function to test the validity of a signature. If a person denies having signed
a message, the recipient who initially verified the signature can show it to other honest
parties — a judge for example — who will use the same public verification function to certify
its validity and therefore reject the signer’s claims.

However, as we show in section 8.3, in a QSS scheme each participant has a different
verification function, which makes it possible in principle that two or more participants
will disagree on the validity of a signature. This presents a problem particularly for non-
repudiation. Suppose that Alice signs a contract and sends it to Bob. The signature passes
Bob’s verification function at level [ = 0 and he is convinced that the message comes from
Alice. Later, Alice attempts to repudiate by denying that she signed the contract. Bob
knows that the other participants have different verification functions than his own, so
what can he do to prevent Alice from repudiating? The solution is to incorporate a dispute
resolution method: a mechanism to handle the event of a disagreement on the validity of
a signature. Based on Ref. [115], we formally define such a method as follows:

Definition 18. A dispute resolution method DR for a QSS scheme Q is a procedure invoked
whenever there is a disagreement on whether a signature o on a message x 1s a valid
signature originating from the signer Py. The participant invoking the dispute resolution
can be anyone, including the signer Py. The procedure consists of an algorithm DR that
takes as input a message-signature pair (x,o) and outputs a value {Valid, Invalid} together
with the rules:

1. If DR(x,0) outputs Valid, then all users must accept (x,0) as a valid signature for
x.

2. If DR(z,0) outputs Invalid, then all users must reject (x,0) as a valid signature for
x.

Defining a particular dispute resolution method constitutes a crucial part of specifying
a QSS protocol. Whether a protocol is secure against repudiation will in general depend on
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the choice of dispute resolution. But what are the concrete possibilities that we can choose
from? A simple strategy is to designate a trusted participant to be in charge of deciding the
validity of a signature whenever the dispute resolution method is invoked. This participant,
who may have access to more information about the protocol than others, serves as an
arbiter who has the final word whenever there is a dispute. An obvious drawback of this
choice is the necessity of trust: If the arbiter behaves dishonestly, perhaps due to being
blackmailed to do so, the entire security of the protocol is compromised. Instead, we focus
on a majority vote dispute resolution method.

Definition 19. When the validity of a message-signature pair (x, o) is invoked, a magjority
vote dispute resolution method MV (x, ) is defined by the following rule:

1. MV(z,0) = Valid if Ver; _1y(x,0) = True for more than half of the users.

2. MV(z,0) = Invalid otherwise,

where Ver(; _1) is the verification function at level | = —1.

The need for a verification level [ = —1 can be understood as a mechanism to prevent
repudiation from Alice, and it is only relevant when DR is invoked. Intuitively, Very )
should be chosen such that it is infeasible to produce a signature that passes the verification
function of one participant at level [ = 0, but does not pass the verification function of the
majority of participants at level [ = —1. This will be formalized in section 8.3.

The majority vote dispute resolution method was implicitly used in the protocols of
[126, 50] when discussing security against repudiation. The obvious advantage of the
majority vote method is that we do not need to trust any fixed participant, but instead
assume only that at least most of them are honest. However, we emphasize that the
security definitions of the following section do not depend on a particular choice of DR.

Note that a dispute resolution method can be used by any participant to convince
others of the validity of a signature, even when the signature is only verified at level [ = 0.
If the protocol is secure against repudiation — as will be formally defined in the next section
— no person other than the signer will be able to create a signature that is deemed valid by
the dispute resolution method. Therefore, if DR is invoked and outputs“Valid”, everyone
is already convinced that the signature must have come from the signer. This means
that the verification levels serve the specific purpose of providing the participants with an
assurance that other people will sequentially verify a transferred signature without the need
to invoke dispute resolution. This is desirable because carrying out dispute resolution may
be expensive and should only be invoked under special circumstances.
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Finally, we also consider the case in which a participant is dishonest about the level at
which he verifies a signature. For instance, suppose that Bob wants to transfer a payment
signed by Alice to a store. The store only accepts signatures that they can transfer to
a bank, so Bob needs an assurance that Alice’s signature can be transferred twice in
sequence. Bob verifies the signature at level [ = 2 and sends it to the store. The store,
however, is dishonest, and lies to Bob by claiming that they verified the signature only at
level [ = 0, even though Bob knows that they should have verified it at least at level [ = 1.
If the protocol is secure against repudiation, Bob can invoke dispute resolution to make
everyone, including the bank, agree on the validity of the signature. But he has no method
of penalizing the bank for its dishonesty. For this reason, we define an additional dispute
resolution method for the verification level of a signature.

Definition 20. A transferability dispute resolution method at level I, TDR, for a QSS
scheme Q consists of an algorithm DR, that takes as input a message-signature pair (z, o)
and verification level I and outputs {{—transferable, not [—transferable} together with the
rules:

1. If DRy(x,0,1) outputs |—transferable, then all users must accept (z,0) as an l-
transferable signature for x.

2. If DRy(z, 0,1) outputs not Il-transferable, then all users must reject (z,0) as an I-
transferable signature for x.

For this form of dispute resolution method, we can also use a majority vote method
defined as before.

Definition 21. A majority vote transferability dispute resolution method at level |, MV (z, 0,1),
15 defined by the following rule:

1. MV(z,0,l) = |—transferable if Ver(; ;_1)(z, o) = True for more than half of the users.

2. MV (z,0,l) = not [—transferable otherwise.

If the protocol offers transferability — as will be formally defined in section 8.2.2 — any
participant that verifies a signature at level [ has a guarantee that, with high probability,
any other participant will verify the signature at level at least [ — 1. Therefore, if the
majority of participants are honest, a majority vote will indeed deem the signature that
was verified at level [ by an honest participant as an (I — 1)-transferable signature. This
form of dispute resolution can serve as a deterrent for dishonest behaviour. In our previous
example, the store is discouraged from lying to Bob as they know that a transferability
dispute resolution can be used to detect their dishonesty, for which they can be penalized.
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8.2.2 Security definitions

Previously, we informally introduced the security goals of QSS schemes. We are now in a
position to define them rigorously. The first thing to consider is that more than one of the
participants can be malevolent, so in general we must look at coalitions of participants that
attack the scheme. In an attempt at repudiation, the coalition must include the signer,
whereas a coalition aiming to forge a signature does not include the signer. Formally, we
define successful cases of repudiation and forging as follows:

Definition 22. Given a QSS protocol Q and a coalition C' C P of malevolent participants —
including the signer Py — that output a message-signature pair (x, o), we define repudiation
to be the function:

1 if (o,x) is i-acceptable for some i ¢ C
Repc(Q, DR, 0,x) = and DR(o, z) = Invalid (8.1)
0 otherwise

Thus, a coalition succeeds at repudiation if they can produce a signature that passes the
verification test of one of the honest participants at level [ = 0, but when a DR is invoked,
it will be decided that the signature is invalid. According to this definition, a malevolent
signer may be able to repudiate with respect to some dispute resolution method, but not
other methods.

Definition 23. Given a @SS protocol Q and a coalition of malevolent parties C C P —
not including the signer Py — that output a message-signature pair (z, o), we define forging
to be the function:

1 if (o,2) is i-acceptable for some i & C

FO?’QC(Q,U, l’) = { 0 otherwise (8.2)

A successful forgery therefore only requires the coalition to create a signature that
passes the verification test of one honest participant at level [ = 0. Note that we could
have additionally asked that the signature be deemed valid by the DR method, but that
would constitute a more difficult task for the attackers.

Definition 24. Given a @SS protocol Q, a coalition of malevolent parties C' C P — in-
cluding the signer Py — that output a message-signature pair (x,o0), and a verification level
[, we define non-transferability to be the function:
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1 if Very (o, x) = True for some i & C' and
Ver(; (o, ) = False for some
0<U'<landsomej#1i, jZC
0 otherwise

NonTransc(Q,0,z,1) = (8.3)

Therefore, a message-signature pair will be non-transferable at level [ if the coalition
can produce a signature that at least one honest participant verifies at level [, but some
other honest participant does not verify at a lower level. Thus, if the signature is non-
transferable, there exists a sequence of participants such that, as the signature is transferred
in the order of the sequence, at least one of them will not agree that he can transfer the
signature to the remaining participants.

We can now state the main security definitions for QSS protocols:
Definition 25. Given a coalition C C P, a QSS protocol Q is called e-secure against

forging if, using their optimal strateqy, the probability that the coalition outputs a message-
signature pair (x,o0) constituting a successful forgery satisfies

Pr[Forgc(Q,o,x) = 1] <, (8.4)

where the probability is taken over any randomness in the generation algorithm and the
optimal forging strategy.

Definition 26. Given a coalition C' C P and a dispute resolution method DR, a QSS pro-
tocol Q is called e-secure against repudiation if, using their optimal strateqy, the probability
that the coalition outputs a message-signature pair (x, o) constituting successful repudiation
satisfies

Pr[Repc(Q,0,x) = 1] <, (8.5)

where the probability is taken over any randomness in the generation algorithm and the
optimal repudiation strategy.

Definition 27. Given a coalition C' C P, a QSS protocol Q is called e-transferable at level
[ if, using their optimal strategy, the probability that the coalition outputs a non-transferable
message-signature pair (z,o0) at level | satisfies
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Pr[NonTransc(Q, o, z,1) = 1] <€, (8.6)

where the probability is taken over any randomness in the generation algorithm and the
optimal cheating strategy.

Note that the notion of transferability only makes sense between honest participants.
As discussed before, even if the protocol is e-transferable, if a participant transfers a signed
message to a dishonest participant, the dishonest person can always deny that they have
an assurance of being able to transfer it further. In that case, a transferability dispute
resolution method can be invoked at level [. Finally, we must clarify that the security
definitions we have provided here can in principle be adapted or relaxed, depending on the
particular scope of the protocol.

8.3 Properties of QSS protocols.

In this section, we examine several required properties of QSS protocols. Understanding
these properties is important for several reasons. First, they serve as guiding principles
for the construction of new protocols. Additionally, from a fundamental point of view,
it provides insight on the precise characteristics of QSS protocols that give rise to their
security. Finally, delineating these properties allows us to construct a coherent picture
of the practical challenges to building these protocols as well as their advantages and
limitations compared to classical schemes. In the remainder of this section, we list several
of these properties and whenever relevant, prove that they are required for the security of
QSS protocols.

Observation 28. In any secure Q)SS protocol, all classical communication must be au-
thenticated.

First, authentication is necessary as a guarantee that the participants of the protocol are
who they are supposed to be. Otherwise, it would be possible for unauthorized outsiders
to participate and compromise the security of the protocol, for example during dispute
resolution. Moreover, just as with quantum key distribution, without authentication any
QSS protocol is subject to a man-in-the-middle-attack, where an attacker impersonates
the participants to each other, thus rendering the entire scheme insecure. Information-
theoretic authentication requires shared secret keys, so the above observation implies that
any secure QSS protocol requires small shared secret keys between the participants [30].
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Since the verification level of a signature corresponds to the maximum number of times
a signature can be transferred, a signature that is verified at a given level should also be
verified at all lower levels.

Observation 29. Ver()(z,0) = True = Verqy)(z,0) = True for all I <.

We have mentioned before that in an information-theoretic scenario, it is necessary that
each participant has a different verification function. We are now in a position to show
this explicitly, following a result of Ref. [115].

Observation 30. [/18] For any QSS protocol that is e-secure against forging, it most hold
that
Pr (Ver(u) 7é Verm)) Z 1—e¢ (87)

for all | and for all i # j.

Proof. Since we are concerned with information-theoretic security, participant P; can
always conduct an exhaustive search for a message-signature pair such that Ver((z,0) =
True. However, if Ver(;; = Ver(;;, participant P; will also have produced a message-
signature pair that passes the verification function of participant P;. From observation
29, if participant P; can produce such a signature, he can also produce a signature such
that Ver(;)(z,0) = True, which constitutes successful forging. Therefore, the verification
functions must be different at all levels to guarantee security against forging. If the protocol
is e-secure against forging, the verification functions must be different with probability
greater than 1 — e. [ |

Corollary 1. A secure QQSS protocol with a finite number of possible signatures can only
ezist for a finite number of participants.

Proof. For a given verification level [ and message x, a verification function for par-
ticipant P; is equivalent to the specification of a subset S C X of signatures such that
Ver(;;y(x,0) = True. Since the possible number of signatures is a finite set, so is the
number of verification functions. From Observation 30, in any secure protocol, every par-
ticipant must have a different verification function with high probability, and since there is

only a finite number of these functions, there can only be a finite number of participants.
[ |

In principle, one could add new participants to a protocol by performing further com-
munications between the new participant and the original ones. Essentially, in order to
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construct a protocol with N + 1 participants from a protocol with N participants, the new
participant could interact with all others in exactly the same way as if he had participated
directly in a protocol with N + 1 participants. This interaction could happen at a later
time than the original distribution stage.

Observation 31. The generation algorithm of a secure ()SS protocol must randomly gen-
erate the verification and signing functions.

Proof. If all functions are generated deterministically, the specification of the protocol
is sufficient for every participant to know the signing function and all the verification
functions. However, if a participant knows the signing algorithm, forging is trivial since he
can produce authentic signatures. Similarly, if a participant knows the verification function
of another person, he can conduct an exhaustive search to find a message-signature pair
that is validated by the other participant, which constitutes a successful forgery. Finally,
if a signer knows the verification function of the other participants, she can conduct an
exhaustive search to find a signature that is accepted by one of them at level [, but rejected
by everyone else at level [ — 1, which allows her to repudiate or break transferability. Thus,
a secure protocol requires a randomized generation algorithm. [ |

The randomness in the protocol may be produced locally by each participant or it
may arise from the intrinsic randomness of performing measurements on quantum sys-
tems. Overall, from the point of view of each participant, the generation algorithm must
induce a probability distribution over the possible signing functions as well as the possible
verification functions. Therefore, the security of a QSS protocol depends crucially on the
difficulty of guessing the functions of other participants. We can formalize this requirement
with the following observations.

Observation 32. For a given message x, let Sc be the set of signatures that pass the
verification functions at level | = 0 of all members of a coalition C. Similarly, let S; be the
set of signatures that pass the verification function at level | = 0 of a participant P; outside
of the coalition. Then, for any QSS protocol that is e-secure against forging, it must hold
that

o < eforalli g C, (8.8)
where |S| is the size of the set S and |S; N S| is the intersection between S; and Sc.
Proof. Let (z,0.) be a message-signature pair drawn uniformly at random from S¢. If

this signature passes the verification function at level [ = 0 of a participant outside of the
coalition, it will constitute a successful forgery. The probability that this happens is given
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Figure 8.2: S¢ is the set of signatures that pass the verification functions at level [ = 0 of
all members of a coalition C. S; is the set of signatures that pass the verification function
at level [ = 0 of a participant P; outside of a coalition. If the protocol is secure against
repudiation, the intersection ScN.S; must be small compared to Sc. Moreover, the coalition
should ignore what the verification functions of the other participants are. For example,
even though S is the same in both cases, if the protocol is secure against forging, the
coalition cannot be able to distinguish whether they are in situation (A) or (B).

b %, which must be smaller than € in order for the protocol to be e-secure against
forging. |

An illustration of the above property can be seen in Figure 8.2. Notice that if a
protocol is correct, authentic signatures are verified by all participants. Therefore, for
correct protocols it holds that Sc NS; # (). Similarly to the above, we can provide a
condition for security against repudiation.

Observation 33. For a given message x, let S; be the set of signatures that pass the
verification function at level | = 0 of a participant P; outside of a coalition C, and let
> be the set of all possible signatures for this message. Then, for any QSS protocol that
is e-secure against forging and € -secure against repudiation with a majority vote dispute
resolution, it must hold that
|5il ¢
< .
X T 1—¢

(8.9)

Proof. Let o, be a signature drawn uniformly at random from the set 3 of possible
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signatures. The probability that the signer can repudiate with this signature is given by

Pr(Rep) = Pr[Ver(; g)(z,0,) = True AND MV(z, 0,) = Invalid]
= Pr[MV(z, 0,) = Invalid|Ver( o\ (x, 0,) = True| Pr[Ver(; oy(x, 0,) = True]. (8.10)

If 0, is drawn uniformly at random from X, conditioning on o, passing the verification
function of participant P; induces a uniform distribution over the set S;. From observa-
tion 32, if the protocol is e-secure against forging, the probability that a signature drawn
uniformly at random from S; passes the verification function of another honest participant
must be smaller or equal to e. Consequently, the probability that a signature drawn ran-
domly from S; passes the verification function of the majority of participants must also be
smaller than €, so we have that

Pr[MV(z, 0,) = Valid|Ver(; g)(x,0,) = True] < e
and therefore
Pr[MV(z,0,) = Invalid|Ver( ¢y(z, 0,) = True] = 1 — Pr]MV(z, 0,.) = Valid|Ver(; o)(z, o) = True]
>1—e (8.11)

If the protocol is €-secure against repudiation it must hold that Pr(rep) < ¢, which, using
Egs. (8.10) and (8.11) gives us

€ > Pr(rep) > (1 — €) Pr[Ver(; o)(z, 0,) = True]
5]
X
|V€I’(i70)| < € ’
] T 1-—ce€

> (1-¢)

/

where we have used the fact that Pr[Ver( o)(z, 0,) = True] = ‘l‘;"”. [ |

The size of the sets that pass the verification functions at different levels also plays an
important role in permitting transferability. In fact, for a special class of QSS protocols,
such as the QSS of Refs. [126, 50, 9], it is possible to provide conditions for these sets in
order to achieve transferability and security against repudiation. These protocols, which
we call bit-mismatch protocols, have the following properties. The set of possible signatures
¥ is the set of all binary strings of n bits, i.e. ¥ = {0,1}¥. For each possible message =,
recipient P; is given a random subset of positions p? of size K of the integers {1,2,...,n}.
The recipient also receives verification bits v¥. Upon receiving a signature o, a recipient
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| Ver(3,l_1) ,’:

Figure 8.3: For a given verification level [, a signer may produce a signature that, with
non-negligible probability, passses the verification function at level [ of participant P;, but
not of the other two participants at this same level. Such a signature is illustrated by
a cross in the figure. Since more signatures are accepted at lower levels, when the other
participants verify that same signature at level [ — 1, it now passes the verification function
of all participants. This feature prevents repudiation and permits transferability.

collects the bits of o at the positions corresponding to pf to form a shorter string which
we call o;. The verification functions are then given by:

True if h(o;,vF) < K

)

Ver(, (2,0) = { False otherwise (8.12)

for some s; € [0, 5) which depends on the verification level I and where h(vf, ;) is the
Hamming distance between vy and o;.

Observation 34. For any correct bit-mismatch protocol that is transferable and is secure
against repudiation with a majority vote dispute resolution method, it must hold that s; >
si—1 for all l.

Proof. Consider a cheating strategy from the signer in which she randomly flips each
bit of the authentic signature Sign(x) with probability p, leading to an altered signature
o'. For each participant, the choice of p induces a corresponding probability ¢;;(p) that
the altered signature will pass their verification function at level [. Since the protocol is
correct, authentic signatures pass the verification functions of all participants at all levels,

which implies that ¢;;(0) = 1 and ¢;;(1) = 0 for all I. The induced probability ¢;,;(p) is
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a continuous function of p', which implies that there must exist a value p} such that, for
some non-negligible ¢ > 0, it holds that

1
— =0 <qup) < (8.13)

2

N | —

for all participants P;.

Now consider the case | = 0 and assume that sy < s_;. By choosing pj for her
cheating strategy, the signer can create a signature that a given participant accepts with a
non-negligible probability greater than ; — é§ and smaller than 3, according to Eq. (8.13).
Moreover, since sgp < s_1, Eq. (8.13) implies that the probability that any other participant
accepts the signature at level [ = —1 must be smaller than % In that case, with non-
negligible probability, the majority of participants will reject the signature during dispute
resolution, where they check the signature at level [ = —1. Therefore, such a protocol

cannot be secure against repudiation.

Similarly, for the case [ > 0, a dishonest signer can choose p; for her cheating strategy
and have any given participant accept a signature at this level with probability at least
% — 0. If s; < s;_1, when the participant that accepts the signature at level [ transfers it
to another person, the new participant will reject the signature at level [ — 1 with non-

negligible probability greater than i. Thus, such a protocol cannot offer transferability.

2
|
Intuitively, the above proof states that the size of the set of signatures that pass the

verification functions at a given level must increase for lower verification levels. This is
illustrated in Fig. 8.3.

In the next section, we use the security framework and properties developed so far to
generalize the protocol P2-WDKA introduced in Ref. [120] to the case of many participants.
We provide a full security proof against forging, repudiation and non-transferability.

8.4 Generalized P2-WDKA protocol

This protocol, which is a generalization of the protocol P2 of Ref. [120], is a classical
protocol where the role of quantum communication is exclusively to realize secure channels

IThis probability distribution can be shown to be equal to the sum of two cumulative binomial distri-
butions, which are continuous functions.
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using quantum key distribution (QKD). Since QKD is a practical technology, this makes
our protocol practical. Moreover, this allows us to use existing security proofs for QKD to
deal with attacks on the quantum communication, which is generally a very challenging
task.

In the protocol, we have N + 1 participants given by the set P = {Fy,- -+, Py }. The set
of possible messages is X = {x1,...,zy}, where there are M different possible messages.
Additionally, > = {0, 1}¥ is the set of possible signatures, where K = nN is the length of
the total signature and n is an integer that depends on the required security parameters
and is divisible by V.

As in any cryptographic protocol, we make some trust assumptions. In particular, we
assume that the number of honest participants is at least h, with A > % We can then
define the fraction of dishonest participants as dy = 1 — h/N. The maximum verification
level [,ax is determined by the allowed fraction of dishonest participants:

1
(Imax + 1)df < 7 (8.14)
The reason for this restriction will become clear later. The distribution stage of the pro-

tocol, which gives rise to the generation algorithm, proceeds as follows:

1. All the participants use QKD links in order to establish pairwise secret keys. Each
recipient needs to share a secret key of nM bits with the signer F, and a secret key
of 22 (1 + [log, n]) bits with each of the other recipients.

2. For each possible message x € X, the signer selects a string ¢” of K = nN bits
uniformly at random and divides it into N sections {o{,05,...,0%}. The signer
sends o7 to participant P; over a secure channel using their shared secret keys.

3. For every possible message, each recipient randomly divides the set {1,2,...,n} into
N disjoint subsets {p{,pis,...,pfy} and uses the bit values of of at the randomly
chosen positions py; to form the string v;;.

4. For all i # j, each participant P; transmits the string v7; and the positions pj; to
participant P; over a secure channel using their shared secret keys. Participant F;
keeps vf; and p;; to herself.

5. Each participant P; defines a test for a section o7 as follows. First, they form a
shorter string o7, from o by keeping only the bits corresponding to the positions
pi;- The test is then defined as
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s (o7) = { L if h(of;,vf;) < sify (8.15)

L (o ’
VN 0 otherwise

where h(of;, vf;
defined by the protocol. These fractions satisfy

) is the Hamming distance between o, and vf; and s, is a fraction

1
—>8_1>8 >8> >8

. 8.16
2 max ( )

6. The verification function is defined as

True if Y%  T% ,(0%) > Nf,
. — J=1"34I\"]
Veriy(z,0) { False otherwise (8.17)

where f; is a threshold fraction given by
1
fi= 5 + (I 4 1)dy. (8.18)

7. The signature function is given by Sign(x) = o,.

8. Majority vote is the dispute resolution method.

For clarity, the main steps of the distribution stage are illustrated in Fig. 8.4

The verification function, in words, accepts at level [ if there are more than a fraction
fi of the sections {o{, 03, ..., 0%} that pass the test of the ith participant. This choice of
the fraction f; is made in order to satisfy a few constraints. First, we need the protocol
for [ = —1 to still require more than half of the tests to succeed i.e. f_; > % Second, we
want the difference of the thresholds between two levels to exceed the fraction of dishonest
participants i.e. f; — fi_1 > d;. Finally, by noting that f; <1 for all [, we determine the
maximum value that [ can take and this results in Eq. (8.14).

In the protocol, there are two different types of thresholds, s; and f;, both depending
on the verification level [. The first threshold, s;, determines whether a given part of the
signature passes the test or not, by checking the number of mismatches at this part. The
second threshold, f;, determines how many parts of the signature need to pass the test in
order for the signature to be accepted at that level.

An example of why different fractions for each verification level are needed is as follows.
Assume that one recipient, P; for example, is a “spy” of an adversarial sender Fp, i.e.
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Figure 8.4: Illustration of the protocol with four participants. In part (A), the sender
divides a randomly generated string o® into three sections o, 05, 05 and sends one of them
to the other participants over a secure channel, using a secret key previously generated
using quantum key distribution. Secure channels are portrayed with solid coloured arrows.
The other participants divide the sections they receive to produce the strings v;; alongside
the corresponding positions p7 ;. In (B), the participants exchange the sectlons v;; of the
signature and the positions p;; over secure channels. In the end, every partlclpant keeps
their original sections plus one additional section from each of the other participants, which
they use for their verification functions. The sections in dashed boxes are known by the
corresponding participant but are not used in the verification functions.
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colludes with her in order to make two honest recipients P, and P; disagree on the validity
of a signature. The spy can tell the sender the elements (v{,,p12) and (vf3,p13). The
sender can then use this information to send a signature ¢’ that differs from the ideal
signature o only by flipping all the bit values at the positions determined by p; 3. Recipient
P, would accept the message, since he finds no errors. However, P; will find that all the
bits of v 3 wrong, which will make his test fail. In general, if dyn dishonest participants
exist, and if all of them are spies, two honest participants can differ by at most d;n tests.
From Eq. (8.18), choosing f; — fi_1 = d; allows the protocol to remain secure against this
type of attack.

We now proceed to prove the security of this protocol. In the following, for simplicity,
we drop the superscript labelling the message « from v7;, py; and T("’;T i) and we refer to
participants by their index only, i.e. as ¢ instead of P;.

8.4.1 Security proofs:

We separately address the security of this protocol against forging, repudiation and non-
transferability. Our main concern will be to prove that all cheating probabilities decrease
exponentially fast in the protocol parameters, without worrying significantly about the
tightness of the bounds we introduce in the security proofs.

We begin by noticing that the value of n must be chosen depending on other parameters
and on the level of security. In particular, we want the probabilities for forging, non-
transferability, and repudiation to decrease exponentially fast with n. However, the number
of participants N also enters the security expressions. To make sure that all the cheating
probabilities go to zero even when the number of participants is very large, in general we
require that

n>aN't? (8.19)

where a > 1 is a large positive constant and ¢ a small positive constant.

Forging. Intuitively, security against forging can be understood as follows. In order to
forge, a coalition C' needs to output a message-signature pair (z, o) that is i-acceptable
for some ¢ ¢ C. Recall that a signature o is i-acceptable if Ver(; oy(x,0) = True and the
verification function will be passed if more than N f, tests are passed. The coalition can
always pass the Ndy tests arising form its members, but they must also pass additional tests
corresponding to honest participants. However, since the positions p;; and the sections
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v; ; of these tests were exchanged through secure channels, they are completely unknown
to the coalition. This prevents them from passing these tests and therefore from forging a
message. Below is a formal proof of this fact.

In general, according to our definitions, we consider forging successful if the coalition
can deceive any honest participant, and not a fixed one. Here, for simplicity, we restrict
attention to trying to deceive a fixed participant, and we prove that this probability decays
exponentially fast with the parameter n. At the end, we extend this to the general case
where the target is not a fixed participant. Therefore, for now, we fix the recipient that
the coalition wants to deceive to be 1.

The coalition knows the pairs (v;;, p;,) for all j € C, so they can use this knowledge to
trivially pass Nd tests. It follows that in order to forge, the coalition must pass at least
N(fo—dy) = & tests out of the N(1 — dy) tests that they do not have access to. The
first step to compute the probability that they can do this is to calculate the probability
of passing a single test T}, for j ¢ C'.

1. We denote by p; the probability to pass a test at level [ = 0 for a coalition with
no access to the pair (v; ;,p; ;). Because the strings (v; ;,p; ;) were transferred over
secure channels by honest recipients, they are completely unknown to the coalition
and hence the probability of guessing correctly a single bit of v;; is exactly % In
order to pass the test, the coalition needs to guess at least a fraction sg of bits out of
a total of £ bits. The probability that they can achieve this can be bounded using
Hoeftding’s inequality as

1 2
pr < exp [—2 (5 — 30) %] : (8.20)

which decays exponentially with the number & provided that sy < % Note that,

from Eq. (8.19), this term decays exponentially even for N — oo.

2. We now give a bound for the probability of forging against a fized participant. This
can be obtained by computing the probability of passing at least one of the unknown
N(1 —dy) tests, which is given by

Pr(FixedForge) < 1 — (1 — p,)N0=4) ~ N(1 — d;)p,

< (1 — ds)N exp [—2 (% - 30)2 %] , (8.21)
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where we have used the fact that p; < 1 in the approximation. Again, this probability
goes to zero exponentially fast in the parameter n. Note also that, by Eq. (8.19),
this expression goes to zero even for the case N — oo, as the term with p, goes
exponentially fast to zero while the other term grows only linearly in N.

3. We have now computed the probability to deceive a fixed participant ¢. The total
number of honest participants is N(1 —dy) and for successful forging we require that
any one of them is deceived. We therefore obtain

Pr(Forge) = 1 — (1 — Pr(FixedForge))N(=%)

1 2 n
< N2 (1 —dy)? —2(=- —1. 8.22
<N dy) exp[ (5-) N] (5.22)
Once again, this probability decreases exponentially fast with n.

Transferability. In order to break the transferability of the protocol, a coalition C' must
generate a message-signature pair (z,0) that is accepted by an honest recipient i at level
[ but rejected by another honest recipient j at a level I’ < [. As usual, the coalition
can make recipients disagree on those tests that arise from its members, but in order
to break transferability, they will also have to make them disagree for at least some tests
corresponding to other honest participants. Intuitively, this is hard for the coalition because
the positions and verifications bits of these tests were transmitted over secure channels, so
they are completely unknown to the coalition. Moreover, as explained in observation 34,
the difference between the thresholds s; and s; makes it difficult for a test to be passed
at level [ but not at level I'. In the following, we give a formal proof of security against
non-transferability.

To provide an upper bound, we consider the maximum number of dishonest partici-
pants, i.e. Nd;. For simplicity, we fix the participants whom the coalition is trying to
deceive to be ¢ and j, while all the other honest participants are labelled with the index k.
In general, according to our definitions, transferability fails if the coalition forms a signa-
ture that is not transferable for at least one pair of honest participants i, 7. Therefore, we
should take into account all possible pairs of honest participants. Here, we first focus on
the case of a fixed pair of participants, and we give at the end the more general expressions.
The members of the coalition C' are labelled with the index c.
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1. First, we compute py,, ,, which is the probability that the kth test T}, of an honest
recipient ¢ at level [ is accepted and the test T} ; of another honest recipient j at a
level I” < [ is rejected. Since the sender is in the coalition, they know the values of
all the sections v; ;, but they are completely ignorant of the positions py; and py ;,
since participants k,7 and j are all honest. As in observation 34, the coalition can
decide to send signatures in such a way that they introduce an average fraction of
mistakes p. compared to the ideal signature that was used to generate the verification
algorithms. Thus, the average fraction of mistakes is under their control. Since the
protocol is symmetric for all participants, this average fraction of mistakes will be
the same for all honest participants and in particular for both ¢ and j.

To compute a bound on the joint probability of ¢ accepting at level [ and j rejecting
at level I we consider

P, = Pr (i accepts at level [ AND j rejects at level 1)
< min{Pr (i accepts at level [), Pr (j rejects at level I')}. (8.23)

The probability of passing the test at level [ with an average error p. can be bounded
using Hoeffding’s inequalities to be below exp [—Z(pe - 81)2%} . This is the case since
the expected number of mistakes are $p. while the mistakes that are tolerated for
acceptance are §s;. Similarly, the probability of failing the test at level I’ with
average errors p, can be bounded to be smaller than exp [—2(311 — pe)Q%].

In order to maximize their chances of successful cheating, the coalition must choose
a value of p, satisfying
Sp < Pe < Sp. (824)

Since in the bound of Eq. (8.23) we are taking the minimum over both cases, the
best choice for the coalition is to have both probabilities coincide. This is achieved
by using a fraction of errors p. = (s; 4+ s)/2 and in that case we obtain the bound

sp—8)%n
Py < €Xp (——( — ) N) (8.25)

which decays exponentially with § and it also depends on the difference (s — s;).

2. In order for the coalition to successfully cheat, the number of tests that pass for the
ith recipient must be at least N f; + 1. Out of those tests we can assume that Ndy
were due to the coalition, but there are still N(f; — df) + 1 tests that the coalition
does not have access to. In order for the non-transferability to be successful, at
least one of these N(f; — ds) + 1 tests should fail for participant j at level I'. We
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can bound the probability that the participants disagree on at least one of these
tests by considering the probability that they agree on all of them, which is given by
(1 = pumy )Y (fizdp)+1 - Therefore, the probability for non-transferability of two fixed
participants can be bounded as

Pr(FixedNonTrans) <1 — (1 — pmlﬁl,)f\f(fz—df)Jrl
~ [N<fl - df) + 1] DPmy
(sy —s1)%n

< (- dp+ e (<51 ) 02, ). 20
This goes to zero exponentially with £. Note that the first term scales linearly in NV,
but pr, , decays exponentially with £, therefore with the choice of Eq. (8.19) this
probability also vanishes at all limits of interest.

3. Finally, we should consider the general case, where the participants ¢, j are not fixed.
Again, we can see that, because the probability for fixed parties decays exponentially
in the parameter n, the protocol remains secure. The number of honest pairs of
participants is [N(1 — d¢)][N(1 — df) — 1]/2 := N, so we obtain

Pr(NonTrans) = 1 — (1 — Pr(FixedNonTrans))™

~ O(N?) exp (—@%) . (8.27)

(8.28)

Repudiation. In order to repudiate, a coalition that includes the signer F, must generate
an i-acceptable signature for some honest participant, where invoking the dispute resolution
DR results in “Invalid”. This means that the coalition wants to make any participant
accept a signature at level [ = 0, but then have the majority of participants reject the
same signature at level [ = —1. Intuitively, this must be difficult for the coalition for the
same reason that breaking transferability was hard: it is not possible to have a participant
accpet a message at level [ while having another participant reject the message at a lower
level ['.

Formally, we can reduce the problem of proving security against repudiation to the
special case of non-transferability from level [ = 0 to level [ = —1 in the following three
steps.

1. We first find the probability of non-transferability for a fixed pair of participants, i.e.
from a fixed honest participant i at level [ = 0 to another fixed honest participant
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j at level [ = —1. We denote this probability by p; and, as found before, it can be
bounded by

N L= 2
p1 S IN(fo— le) + 1] Pmo_1 < | o +1)exp —Mﬁ ) (8.29)
2 2 N
where we have used the fact that (fo — df) = % from Eq. (8.18). As before, this
decreases exponentially fast in n.

. The second step is to note the following. For a fixed recipient i to accept at [ = 0, it
means that at least N fo+1 = N(3+d;)+1 of the N tests must pass. Out of these, 5 +
1 must have come from honest participants. Now, each of those honest participants
that sent ¢ a part that passed his tests also sent the other honest participants sections
which, with probability 1 — p;, pass their tests at level [ = —1. For a message to be
declared invalid in the dispute resolution DR, half of the participants have to reject.
However, at least % + 1 are unlikely to reject, since the probability that they do
reject is p;, which can be made arbitrarily small. In other words, for the DR to give
Invalid, at least one of the honest participants needs to fail the transferability for a
fixed pair of participants.

. It is now clear that if no fixed pair of honest participants 7, j fails the transferability
for levels [ = 0 to [ = —1, then the coalition cannot repudiate. This leads to the
following bound for the probability of repudiation,

Pr(Rep) < 1— (1 —p1)™ =~ N,p1 + O(p3)

< O(N®)exp (—w%) , (8.30)

where N, as before is the number of honest pairs [N(1 — d;)|][N(1 — dy) — 1]/2 and
p1 decays exponentially with +.

We have seen that all security parameters, from Eqgs. (8.21), (8.26) and (8.30), go to

zero exponentially fast with &, provided correct choices of s; and f; are made. As stressed
before, by Eq. (8.19), we also know that these parameters go to zero even if the number
of participants N goes to infinity.

Secure channels from QKD. Security proofs for QKD rely on the assumption that
the parties wishing to exchange a secret key behave honestly during the execution of
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the protocol. In the context of our multiparty protocol for quantum signature schemes,
this assumption does not hold, since some of the participants performing QKD may be
dishonest. However, we can show that this does not present a problem for the security of
our protocol in three steps. Similar arguments are made in [1].

Step 1: Only honest-dishonest QKD links may be affected. The first observation is that
dishonest behaviour during QKD may only be an issue when the QKD link connects an
honest participant with a dishonest one. For two honest participants, standard QKD secu-
rity proofs apply, so we are not concerned with this scenario. For the case of two dishonest
participants, since all members of the coalition have access to the same information — as is
assumed in our security definitions — it is irrelevant whether they behave honestly during
QKD. Similarly, honest participants do not eavesdrop on dishonest participants, so there
are no consequences to the security of the protocol.

In the following two steps we show that for the case of an honest and a dishonest
participant using QKD to establish a shared secret key, any adversarial behaviour during
the QKD stage of the protocol is equivalent to a dishonest behaviour in subsequent parts of
the protocol. Therefore, we can assume that the participants were honest during the QKD
stage but dishonest at later stages of the protocol, a situation we have already included in
our security proofs.

Step 2: No gain from leaking information. At the end of a QKD protocol, an honest
participant P; holds a key register X which, in the ideal case, is identical to the string Y
of a dishonest participant P. and is completely unknown to any other party. This means
that any dishonest behaviour by participant P. can only lead to two possible outcomes: (i)
The registers X and Y are not identical, or (ii) X is correlated with the register of another
party. Since we assume that all dishonest participants are in coalition, all of them have
perfect knowledge of the register Y, so there is no need to eavesdrop information about this
string. They of course benefit from knowledge of X, but they can have perfect knowledge
of X simply if P. behaves honestly during QKD. Therefore, leakage of information does
not help the adversarial coalition.

Step 3: No gain from imperfect keys. Similarly, if there are mismatches between the
registers X and Y, any message which is transmitted secretly by using a one-time pad
with either register X or Y will be received with errors in all positions in which X and
Y differ. However, if Y is used by P, to transmit a message to the honest participant
P;, the situation is exactly equivalent to one in which they have identical secret keys,
but P, decided to introduce errors in the message sent to P;. Similarly, if P; is the one
sending the message, the situation is equivalent to the keys being identical but participant
P. introducing errors after receiving the message. In fact, since in order to cheat, the
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coalition needs to know the verification function of the honest participants, their optimal
strategy is to be honest during the QKD stage and have a perfect copy of the other
participants’ secret keys. Therefore, in a quantum signature scheme, the security of QKD
is only relevant in order to protect honest participants who want to establish a secret key.
It is precisely in this regime that standard QKD proofs apply.

8.5 Discussion

In this chapter, we have provided a full security framework for quantum signature schemes,
generalizing the security definitions of Swanson and Stinson [l 18] to allow for quantum
schemes and different levels of verification. Additionally, we have proved several properties
that QSS protocols must satisfy in order to achieve their security goals. Together, these
results form a powerful set of tools to be employed in the understanding and development
of improved QSS protocols in a general setting.

In fact, we have done just that by using our security framework to generalize the
P2-WDKA protocol of Wallden et. al [120] to the multiparty case. This protocol is
secure against forging, repudiation and non-transferability, relying on minimal security
assumptions. Crucially, the quantum-mechanical features responsible for the security of the
protocol can be completely outsourced to quantum key distribution (QKD), where a vast
literature of sophisticated security proofs already exists. This is not only extremely helpful
in dealing with the security proofs of the protocol, it also takes care of its practicality: since
this protocol can be implemented from any point-to-point QKD network, our protocol is
already a practical. This makes experimental demonstrations in the short-term future a real
and exciting possibility. Moreover, this feature also addresses the issue of authentication
in quantum signature schemes: we can simply use QKD to generate new secret keys to be
used in the authentication of future instances of a signature protocol.

As a consequence of our results and those of Ref. [120], the status of unconditionally
secure signature schemes should be considered analogous to that of secure communica-
tion, where a classical protocol — the one time-pad — already exists and can guarantee
information-theoretic security at the expense of shared secret keys. Quantum communi-
cation can then be used to establish these secret keys via unsecured quantum channels.
Similarly, for signature schemes, there exist classical protocols — like our generalized P2-
WDKA protocol — that provide information-theoretic security at the expense of shared
secret keys. Remarkably, even in this setting where parties can be dishonest, quantum
key distribution can be used to establish the secret keys. Overall, we can now understand
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unconditionally secure signature schemes as a possible practical application of quantum
key distribution.

Future work should focus on optimizing these classical protocols, most importantly in
reducing the length of the secret keys that need to be exchanged as a function of the
message size. Additionally, it is important to continue to study protocols where quantum
communication can be used to construct quantum signature schemes without the need
to distil a secret key, as those schemes could potentially possess additional advantages.
Finally, the results presented in this chapter lead to an interesting question: are there other
yet undiscovered applications of quantum key distribution besides secret communication
using a one-time pad?
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Chapter 9

Conclusion

What will the communication networks of the future look like? What role will quantum
mechanics play in these networks? These are intriguing questions, the answers to which
we currently ignore. However, as it has been discussed extensively in this thesis, quan-
tum communication allows new possibilities that are simply not accessible with classical
resources. Moreover, as we continue to improve the devices used to perform classical com-
munication, it is very likely that in reaching their ultimate levels of performance, it will be
necessary to harness quantum effects. Even though nobody can predict the future, it would
indeed be very surprising if, several decades from today, quantum mechanics does not play
a significant role in the way that we transmit and process information. Nevertheless, it
remains a challenge to actually build practical quantum communication networks and to
fully understand their advantages compared to the classical case.

In this thesis, we have reported various advances towards this goal, most notably by
specifying a series of practical quantum communication protocols that can be realized
with current technology. In the context of quantum communication complexity, these
results pave the way for experimental demonstrations of the exponential advantages that
are possible using quantum communication. The strategy that we used was to provide a
theoretical reformulation of existing protocols that allowed them to be realized with current
experimental techniques. Although this strategy proved to be successful, it is important to
understand that, in order to harness all of the potential of quantum communication, it will
ultimately be necessary to improve our ability to manipulate quantum systems, effectively
giving rise to new technological capabilities.

The results presented in this thesis can be interpreted as a relocation of protocols with
a quantum advantage which were previously believed to be experimentally intractable into
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the set of protocols that can be experimentally realized. The usefulness of these protocols
is currently unclear, but the insights developed are likely to be helpful to develop new
practical protocols. Overall, we can view the results of this thesis as part of the many

advances that will be required in order to reshape the way that humanity transmits and
processes information.

Quantum
advantage
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Appendix A

Simulated Annealing Algorithm

Here we fully describe the simulated annealing (SA) algorithm. The algorithm is based on
a biased random walk in state space that preferentially selects states with a higher value of
the likelihood function at each new step of the iteration. However, it also accepts jumps to
states with lower values with a probability that depends on a global parameter 7', usually
referred to as the temperature because of its similarity with the physical temperature in
the annealing process of metallurgy.

Below is a full enumeration of all the steps of the algorithm to calculate the maximum
value of the likelihood function £(o) over the set I'yy. A graphical illustration of how the
maximum value of the function is reached as the algorithm progresses is found in Fig. A.1.
The random walk here described is based upon the quantum adaptation of the Metropolis-
Hastings algorithm depicted in [21].

Simulated annealing algorithm:

1. Select an initial value Ty for the temperature T as well as for the “step size” A.

2. Generate a d X d—dimensional random state [¢) according to the Haar measure,
where d is the dimension of the underlying Hilbert space H. Trace out one of the
subsystems to obtain the state oy. If oy € 'y continue to the next step, repeat
otherwise.

3. Randomly choose a 2 x 2 Hermitian matrix Hy; in the following way. Pick two integers
k,l randomly from the set {1,2,...,d}. If k <1 — Hy = |k)(l| + |1)(k|, similarly if
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Figure A.1: Three independent runs of the same simulated annealing algorithm for the
data of experiment 1. Although all parameters are identical in each case, the output is
slightly different in each case due to the stochastic nature of the algorithm.
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k> 1 — Hy = —ilk){| + |l (k| and finally if k = 1 — Hy = |k) (k| — |k + 1)(k + 1]
(set k+1=11if k =d).

4. Pick a distance 0 by sampling from a Gaussian distribution with mean 0 and standard
deviation A.

5. Compute the state [1)') = exp(iHyd)[1). Trace out one of the subsystems of [¢)') to
obtain the state o).

6. If o}y ¢ Ty, repeat steps 2 to 5, continue otherwise.

7. Evaluate the ratio R = log (L(a()/L(00)). If R > 0 (L(0}) > L(0y)), let o1 = o).
Otherwise, flip a coin with bias p = exp{—|log(L(00)) — log(L(c())|/T}. If “17 is
obtained (which happens with probability p), again let oy = of,, otherwise o; = 0y.

8. Repeat steps 2-6 N times to generate a set {oy,09,...,05} corresponding to N
steps of the random walk. For each step, adapt the temperature via the cooling rule
T(s) = To/s where s is the step of the walk. The maximum value of £(o) over this
set is the output of the algorithm.

The performance of the algorithm depends strongly on the value of A and this value
must be adapted throughout each step of the walk in order to maintain a fixed average
acceptance ratio, i.e. the fraction of times we jump to a new state. Various values for these
ratios are suggested [33]. Similarly, the choice of initial temperature is crucial. Its role is
to prevent the algorithm from being stuck in local maxima by allowing it to escape such
cases in the initial stages of the algorithm. The temperature is then reduced to ensure that
convergence to the maximum is attained. Therefore, the choice of initial temperature and
cooling rule is essential and varies for different cases. In practice, they must be chosen for
each particular problem based mostly on experience.

Finally, in order to check whether a new state belongs in 'y, it is necessary to determine
the maximum fidelity of this state with any state in this set. For this purpose, we exploit
the fact that the fidelity function is concave in both its arguments and that the restriction
p € Ty, is convex for both linear and nonlinear witnesses. These properties allow us to
employ the highly efficient tools of convex optimization to solve the maximization problem.
Concretely, for a given state o, we verify membership in I'yy by solving the problem

maximize F(o,0’)

: T
subject to o' € Ty,
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where ¢’ must be forced to be a density operator. The state o is a member of 'y if
the solution to this problem is larger than /1 — §2. In our case, the CVX package for
specifying and solving convex programs [11] was used to numerically solve the problem.
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Appendix B

Quantum Fingerprinting —
Additional Information

B.1 Error probability of the error-correcting code

Let G be a random n x m Toeplitz matrix over F5. There are two failure events associated
with G: the minimum distance § being not as large as promised (which results in less-than-
expected worst case performance) and the matrix G' being not full rank (which can cause
two different inputs to be mapped to the same output, leading to a minimum distance of
0 = 0). We will show that, for any fixed rate R less than 1 — Hy(), the probabilities of both
failure events decreases exponentially with the output size m and can thus be neglected
for sufficiently large m.

Theorem 35. [0/] Let G € F3*™ be a Toeplitz matriz chosen uniformly at random. Let
Omin(G) be the minimum distance of the linear code with G as generator matriz. Then, for
any 6 € (0,1/2),

Pr(0pmin(G) < §) < 27U H20=F),

In particular, if R =1 — Hy(0) — €, for some € > 0, then

Pr(Sin(G) < 6) < 277,

The above theorem guarantees that, if we sacrifice an arbitrarily small quantity e of
the rate with respect to the Gilbert-Varshamov bound (i.e., we set R = 1 — Hy(d) — ),
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the probability of obtaining an incorrect minimum distance decreases exponentially with
the output size. For example, for a value of m = 107 and € = 1073, this probability is less
than 10710°,

Theorem 36. Let G € F3*™ be a Toeplitz matriz chosen uniformly at random. Then,

Pr(G is not full rank) = 2712-m1~R),

Theorem 36 is an immediate consequence of Theorem 1 in [15]. Once again, this prob-
ability decreases exponentially with the output size m.

B.2 Detailed experimental results

In Table B.1, we report the complete results of our experiment. The dominating source
of uncertainty is the uncertainty in the total mean photon number of the signals. This
uncertainty is due to the summation of the fluctuations of several devices, such as laser
power, VOA, and varying loss in the channel. For each input size n, we perform a calibra-
tion process to determine p. In this process, with a proper value of VOA selected from our
numerical optimization, the referee sends out around 107 ~ 10® pulses to Alice and Bob.
From the total detection counts on Dy and D; and the pre-calibrated losses (Table 7.2),
we estimate the u. We repeat this calibration process a few rounds and obtain the mean
value and the standard deviation for p. These results are shown in the second column of
Table B.1. For all tested cases, the uncertainty in mean photon number was below 4%.

From our model of the protocol, we use the uncertainty in the mean photon number to
directly calculate an uncertainty for the quantum transmitted information as well as for the
error probability of the protocol. As it can be seen from Table B.1, all error probabilities are
compatible with the system operating below the target value of € = 5 x 107°. Additionally,
we have included the average values observed for the number of clicks in detector D for
equal and different inputs, as well as the threshold values used by the referee.

Finally, we estimate the effect of detector dead times in our experiment as follows. For
each input size, we can calculate the probability p that an individual pulse leads to a click
in detector D;. In our setup, after a click occurs, the following 50 pulses are blocked by
the detector and cannot be registered. The probability p’ that a click occurs for these 50
pulses is given by p’ = 1 — (1 — p)°® = 50p. This number is very small whenever p is
small, as is the case in our experiment. For instance, for an input size of n = 1.42 x 108,
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the expected number of blocked clicks is approximately 0.1% of the total expected clicks.
Therefore, this effect is negligible compared to fluctuations in the mean photon number,
which is of the order of 4%.

n 1.53 x 10° 1.20 x 107 2.27 x 107 1.42 x 10%
1A 1914468 3295118 3670£131 7120+£254
Dy g 22 277 830 1939
D1 p 131 318 954 2224
D1 4, 49 302 902 2110
Q 47689+1703 93152+3326 108129£3860 229713+8201
0 0.83£0.02 1.1940.05 1.414+0.05 1.66+0.06

e  (16£09)x10° (23£14)x107 (66+37)x10° (29+1.3)x10 "

Table B.1: Detailed experimental results. The parameter 4 is the mean photon number
used by Alice. For the clicks in detector D; we report the observed averages for the case
of equal inputs D g, different inputs D; p and the threshold value used by the referee
Dy 41, As before, @) is the upper bound on the quantum transmitted information, v is the
quantum advantage and € the error probability of the protocol.
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