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Abstract 

The water contained within a snowpack, or the snow water equivalent (SWE), is very 

important to the hydrological cycle and to populations who depend on it for drinking, agriculture 

and industry.  Measuring SWE over large areas is therefore important, but difficult given the 

scale of such an endeavor.  Radar remote sensing of snow offers the promise of measuring SWE 

remotely but before we can do so, we must better understand how microwaves and snow interact.   

 This thesis investigates the interaction of Ku- and X-band radar with moderate to deep 

seasonal snow in agricultural fields over two winters in Ontario.  The University of Waterloo 

Scatterometer (UW-Scat) was used to make measurements of both snow-covered and snow-free 

fields in Maryhill and Englehart Ontario spanning a range of SWE up to 186 mm.  In the 2013-

14 season, 4 observations were made in Maryhill.  In the 2014-15 season 3 sites were revisited 

over 6 dates in Maryhill and 3 sites were visited in Englehart.  Accompanying the radar 

observations, in situ observations of snowpack properties including depth, density, stratigraphy, 

and grain size estimation were made at each site.  Sensitivity to SWE was observed at Ku-band 

but not at X-band.  An upper limit of sensitivity was observed around 140 mm after which point, 

Ku-band backscatter no longer responded to increasing SWE.  However an investigation of 

seasonal depth hoar evolution suggested that the presence of depth hoar layers within the 

snowpack was the primary influence on backscatter response.   Polarimetric data indicated the 

signal from early season, low-accumulation snowpacks was driven by vegetation where present 

and this influence decreased with further accumulation of snow. 

The major contribution of this study is the identification of depth hoar layers as a driver 

of backscatter response.  This outcome points the way to further research on the influence of 

depth hoar, especially the mechanisms by which it exerts influence on the signal.  Another 

contribution of this study is the identification of early-season influence of agricultural vegetation 

on backscatter through the use of polarimetric information.  
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Chapter 1 Introduction 

1.1 Context and motivation 

Snow is an important source of freshwater that supports ecosystems, agriculture, industry, 

and the municipal water supply (Pomeroy et al., 2009). Characterizing and quantifying the snow 

state, especially the snow water equivalence (SWE), is important for water resource management 

and energy balance modelling because it is an indication of the volume of water available for 

runoff (Rott et al., 2010; Shi & Dozier, 2000). According to Barnett et al. (2005) snow plays a 

large role in the cryospheric energy balance by moderating atmospheric and surface heat 

exchange and the study of snow can help us to understand multi-scale climate systems and 

regional hydrology. Climate change is having an impact on snow extent and duration globally 

but some regions, such as the Northern high latitudes, are experiencing these changes at rates 

nearly twice that of the rest of the world and this realization is emphasizing the need for a 

practical means of monitoring these changes with a high temporal and spatial resolution 

(Derksen & Brown, 2012). This has prompted organizations such as the World Meteorological 

Organization to articulate the need for high-resolution SWE observations (IGOS, 2007). 

Traditionally, these observations often relied on a network of in situ snow observations by way 

of snow pits, but the frequently rough, irregular, and inaccessible terrain makes it difficult and 

impractical to gather enough measurements (Shi & Dozier, 2000). Active microwave, or radar, 

remote sensing has gained attention as a way of measuring snow properties at high spatial and 

temporal scales because of its observed response to snow depth, liquid content, stratigraphy, 

surface features, grain size, and grain shape (Colbeck, 1982b; Du et al., 2010, & King et al., 

2013). Another benefit to radar remote sensing is its non-destructive nature. Koh et al. (1996) 

identified situations where the destructive nature of snow pits masked transitions in a snow cover 
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that were only detected using radar. In general terms the usefulness of a radar system on snow 

observations stems from its frequency-dependent response to grain characteristics, liquid water 

content, and stratigraphy (Dierking et al., 2012; Strozzi & Mätzler, 1998). 

Previous studies have investigated the radar response of snow using both ground-based and 

airborne platforms at various frequencies to extract information about snowpack properties and 

quantities (Kendra et al., 1998; King et al., 2013; King et al., 2015; Lemmetyinen et al., 2011; 

Marshall et al., 2004; Marshall et al., 2005; Strozzi & Mätzler, 1998; Yueh et al., 2009, among 

others), many with a particular interest in SWE.  These studies indicate that such observations 

can yield important information on snowpack characteristics and volume, with potential for 

retrieval over large areas and over those areas otherwise unreachable.  Studies such as the 

CoReH2O Snow and Ice Experiment (Can SCI) in 2009-10 and the Canadian Snow and Ice 

Experiment (CASIX) in 2010-11, employed ground based radar at Ku- and X-band frequencies 

to observe snow properties in the Canadian subarctic (King et al., 2013).  In 2002-03 and 2006-

08, the NASA Cold Lands Processes mission (CLPX) and CLPX-II used ground-based Ku-, X-, 

and C-band and airborne Ku-band measurements to observe snow in the Colorado Rocky 

Mountains (Yueh et al., 2009).  These studies reported a relationship between Ku-band 

backscatter and SWE in which backscatter increased with SWE.  Results of CASIX  showed that 

co-polarized vertical backscatter increased by 0.82 dB per 1 cm increase in SWE while during 

CLPX-II a rate between 0.15 – 0.5 dB per 1 cm increase in SWE was observed (King et al., 

2015; Yueh et al., 2009). Furthermore, the authors of these studies made similar inferences that 

the presence of depth hoar in the snowpack might contribute to an elevated backscatter response 

although their conclusions differed in terms of the polarization of the resulting preferentially 

scattered wave.    
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Another characteristic these studies had in common is that they observed snow in either 

high-latitude or high-altitude environments.  Collectively these sites have cold snowpacks and 

experience long, cold, winter seasons with minimal mid-season warming episodes and rain 

events (Sturm et al., 1995).   However, there have been no studies found that make active 

microwave observations of continental, mid-latitude snowpacks in agricultural fields such as 

those found in much of Ontario.  According to the snow cover classification by Sturm et al. 

(2010) shown in Figure 1.1, the snow cover class in southwestern Ontario is maritime, 

characterized by a warm, deep, snow cover with commonly occurring melt features, and high 

wind exposure.  Therefore this environment is very different from those observed thus far in 

active microwave studies and it follows that the interaction between snow and microwaves in a 

maritime snowpack could be driven by very different processes such as the development of ice 

features within the pack and snowmelt conditions.  Vegetation beneath the snowpack will 

influence the radar response as Yueh et al. (2009) observed, however the influence of 

agricultural crops, often characterized by regular spatial distribution and homogenous size and 

shape could lead to unique subnivean scattering signatures.  Furthermore, considering the areal 

extent of the maritime class in Figure 1.1, this class covers a heavily populated area of North 

America, spanning much of the mid- to northeastern portion of the continent, with much of that 

being agricultural land.  Therefore understanding snow property retrieval with active microwave 

remote sensing is of great interest. With this in mind this thesis focuses on radar observations of 

moderate to deep seasonal snow in agricultural fields with a scatterometer at Ku- and X-band 

frequencies. 
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Figure 1.1 Snow cover classification system by Sturm et al. (2010).  Snow cover in southwestern Ontario is 

classified as maritime. 

1.2 Aims and objectives 

 The overall aim of this thesis is to explain the backscatter response of Ku- and X-band 

scatterometer signals from deep seasonal snow in agricultural fields in Ontario.  To achieve this, 

three specific objectives were defined as: 

1) To quantify and characterize the active microwave backscatter response to a range of 

seasonal snow at 9.6 and 17.2 GHz; 

2) To explain the polarimetric response in this environment; 

3) To develop a field data set to test microwave scattering models for snow accumulation in 

an agricultural field. 
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1.3 Thesis structure 

This thesis has been written following the manuscript structure in which a standalone 

paper is included as a separate chapter.  Chapter 2 provides background information on active 

microwave remote sensing, snow and the interaction between the two.  Chapter 3 is comprised of 

a paper entitled Ku- and X-band radar observations of deep seasonal snow in agricultural fields 

in Ontario.  It is the intention of the author to submit this paper to the IEEE Geoscience and 

Remote Sensing Letters.  The final chapter summarizes and concludes the thesis and provides 

direction for future work. 
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Chapter 2 Background 

2.1 Radar equation 

The most basic function of a radar system is to measure a target distance through the time 

delay of an echo.  In order to determine whether or not a radar echo can be detected the radar 

equation is used to describe the power returned to the sensor for a known incident power 

transmission (Woodhouse, 2006).  The development of this equation traces the radar signal from 

its propagation at the transmitter, to the target, and back to the receiver. This represents a 

monostatic radar system, in which the transmitter and receiver are co-located.  

Energy is initially transmitted in all directions from the antenna. To determine power 

density at the target power transmitted (Pt) is reduced by a spreading loss which describes the 

loss of power as the energy propagates in a spherical pattern, of radius R, from the antenna 

surface (Ulaby et al., 1982).  The power is focused in a specific direction by applying a gain 

factor (G). The power intercepted and scattered by the target becomes: 

power density at  target = 
𝑃𝑡𝐺

4𝜋𝑅2
    (2.1) 

An amount of incident energy proportional to the target surface area (As) is intercepted by the 

target and a portion is absorbed (α) while the rest (1-α) is reflected.  G is applied towards the 

receiver and the following describes the radar cross section of the target (σ): 

𝜎 = 𝐴𝑠(1 − 𝛼)𝐺     (2.2) 

The value of σ is the expected surface area of the target under the assumption that the area σ 

intercepted the incident wave and scattered it isotropically; however it is not necessarily related 

to the actual size of the target.  The target may appear smaller than it is when value of σ 

approaches 0 in the case that energy is scattered away from the antenna or the target is absorbent, 
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while it may appear much larger if the target scatters more energy back to the antenna than is 

expected from an isotropic scatter (Woodhouse, 2006).  The scattered power returns to the 

antenna whose aperture (Ar) is described in terms of the transmitted wavelength (λ) and G: 

𝐴𝑟 =
λ2𝐺

4𝜋
      (2.3) 

The power received at the antenna (Pr) is then found by combining 2.1 through 2.3 and reducing 

it once more by a spreading loss from the target to provide the monostatic radar equation: 

𝑃𝑟 =
𝑃𝑡𝐺2𝜆2𝜎

(4𝜋)3𝑅4
      (2.4) 

Rearranging 2.3 allows us to solve for σ which is typically normalized by the illuminated area 

(A) to provide the normalized radar cross-section (σ
o
): 

𝜎𝑜 =
𝜎

𝐴
= 𝑃𝑟

(4𝜋)3𝑅4

𝐴𝑃𝑡𝐺2𝜆2𝜎
     (2.5) 

Normalization is applied since the target in Earth observations is usually distributed over an area 

and increasing the measured area would increase σ by the same factor since σ corresponds to the 

size of the instrument footprint (Woodhouse, 2006); such is the case for snow in an agricultural 

field.  Normalizing σ by the illuminated area allows us to compare measurements from different 

instruments (Woodhouse, 2006).  Since the value of σ
o
 can vary by several orders of magnitude, 

it is converted from a linear scale to a logarithmic scale, expressed in decibels (dB).  
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2.2 System parameters 

 Revisiting (2.4) we note that of all the variables on the right-hand side, only σ is 

controlled by the target properties while the remaining variables are known system parameters 

(Woodhouse, 2006).  It follows that by keeping those system parameters constant and solving for 

Pr we can isolate the influence of the target properties.  Therefore knowing and understanding 

system parameters such as frequency, polarization and incident geometry is critically important. 

2.2.1 Frequency 

The microwave portion of the electromagnetic spectrum ranges in frequency from about 

0.3 to 300 GHz although radar systems typically use frequencies from 1 to 90 GHz (Ulaby et al., 

1981, Woodhouse, 2006).  Within this range, Earth observations usually occur at frequencies 

below 20 GHz to avoid interaction with the atmosphere (Ulaby & Long, 2014).  Frequency (f) is 

related to λ by the speed of light (v) through the following relationship: 

𝜆 =
𝑣

𝑓
       (2.6) 

Changing λ influences the interaction of the incident wave with the target medium especially as λ 

approaches physical dimensions of a scale similar to the target as a discussion on scattering 

theory and surface roughness in subsequent sections will show.  The penetration depth (δp) of a 

wave in a medium is dependent on λ and is determined for snow as: 

𝛿𝑝 =
𝜆√𝜀′

2𝜋𝜀"
      (2.7) 

Where ε’ and ε” are the real and imaginary portions of the relative permittivity.  Figure 2.1 

demonstrates the frequency dependence of the relationship between δp and liquid water content.  
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Lower frequencies are associated with greater δp however in reality δp may be less due to 

scattering losses (Ulaby et al., 1984). 

 

Figure 2.1 Relationship between penetration depth in snow and liquid water content for different frequencies (from 

Ulaby et al., 1984). 

2.2.2 Polarization 

Electromagnetic waves consist of time-varying electric and magnetic fields but by 

convention we only consider the electric field when characterizing a wave (Woodhouse, 2006).  

Such waves are transverse which means they oscillate in a plane perpendicular to their direction 

of travel (Elachi et al., 1990; Ulaby & Long, 2014).  The nature of the oscillation of these waves, 

or their polarization, is described in terms of an orthogonal basis in the plane of oscillation which 

allows us to characterize all possible polarization states (Woodhouse, 2006).  The axes of this 

basis are referred to as vertical (V) and horizontal (H) in reference to the surface of the Earth.  

The polarization ellipse shown in Figure 2.2 is used to visualize the polarization state of a wave 
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in terms of its ellipticity (χ), orientation angle (ψ), and the X and Y components of the electric 

field (Ex and Ey).        

 

Figure 2.2 Polarization ellipse adapted from Evans et al. (1988). 

The shape of the ellipse is governed by χ which is determined by: 

𝜒 = 𝑡𝑎𝑛−1 (
𝑏

𝑎
)     (2.8) 

where a and b are the major and minor axes of the polarization ellipse.  According to Ulaby & 

Long (2014), the polarization is linear when the phase difference between Ex and Ey is 0 (in 

phase) or π (out of phase) radians, corresponding with χ of 0°.  The polarization is circular when 

phase difference between Ex and Ey is +/- π/2 which occurs when components of the electric field 

are equal (Ulaby & Long, 2014).  This corresponds to a χ of +/- 45°.  The orientation of the 

ellipse is governed by ψ and ranges from 0° to 180°; its calculation follows: 

𝜓 = 𝑡𝑎𝑛−1 (
|𝐸𝑥|

|𝐸𝑦|
)     (2.9) 

Minor Axis (b)

Major Axis (a)

ψ
χ

V

H
Ex

Ey
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  The case of horizontal polarization occurs when ψ is 0° or 180° while vertical polarization 

occurs when ψ is 90°. 

Comparing the polarization state of the incident and scattered wave can provide useful 

insight into the nature of the target through its interaction with the wave.  A co-polarized 

response occurs when the polarization state of the scattered wave is the same as the incident 

wave and is indicative of a first-order scattering mechanism.  A cross-polarized response occurs 

when the polarization state of the scattered wave has been changed through interaction with the 

target. This is known as depolarization and through such interaction the wave is depolarized.  

This can occur with higher-order scattering mechanisms such as multiple-bounce or volume 

scattering.  Preferential scattering may occur when target features are aligned with the incident 

polarization such as the increase in vertical scattering which occurs for vertically oriented crops 

(Woodhouse, 2006).  As an example, King (2015) suggested that vertical orientation of depth-

hoar crystals in a snowpack contributed to an elevated vertical response. 

2.2.3 Incidence geometry 

There are two primary ways in which the incidence geometry can influence wave 

propagation one of which occurs at the air-target interface and the other within the volume of the 

target medium.  Assuming a smooth surface, a portion of the incident wave will be reflected at 

the air-target interface and a portion will be transmitted into the target medium for a given 

incidence angle (θi).  Fresnel’s reflection coefficients (RVV and RHH) are used in determining this 

proportion for both vertical and horizontal polarizations.  Finding the square of RVV and RHH 

provides the reflectivity, or the proportion of reflected energy: 
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(𝑅𝑉𝑉)2 = (
𝜀 𝑐𝑜𝑠 𝜃𝑖−√𝜀−𝑠𝑖𝑛2𝜃𝑖

𝜀 𝑐𝑜𝑠 𝜃𝑖+√𝜀−𝑠𝑖𝑛2𝜃𝑖
)

2

    (2.10) 

(𝑅𝐻𝐻)2 = (
𝑐𝑜𝑠 𝜃𝑖−√𝜀−𝑠𝑖𝑛2𝜃𝑖

𝑐𝑜𝑠 𝜃𝑖+√𝜀−𝑠𝑖𝑛2𝜃𝑖
)

2

    (2.11) 

Reflectivity ranges from 0, or total transmission, to1, which indicates total reflection.  Vertically 

and horizontally polarized waves behave differently in terms of reflectivity, except for at nadir 

when they are equal (Woodhouse, 2006).  Horizontal reflectivity increases monotonically with θi 

toward total reflection at the grazing angle, where θi is 90°.  The reflectivity for vertical 

polarization decreases to a minimum, before reaching total reflection at the grazing angle.  This 

minimum is known as the Brewster angle at which point total transmission of the vertically 

polarized wave occurs (Ulaby et al., 1981).  Figure 2.3, calculated from 2.10 and 2.11 where 

εsnow is approximated to be 2, illustrates this concept. 

 

Figure 2.3 Reflectivity for VV and HH polarizations calculated from Fresnel coefficients where ε of snow was 

approximated to be 2. 
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The shortest path through a medium results when θi =0°, at Nadir.  With an increase in θi, 

the path length of the incident wave through the target media is extended.  As the path length 

grows, so does the potential for scattering within the volume as the wave will have more chance 

to interact with scatters in the media, such as snow grains (King et al, 2015). 

2.3 Target parameters 

 Once all of the system parameters have been accounted for, changes in Pr may then only 

occur from temporal or spatial changes in target properties.  These properties include the 

dielectric properties of the snowpack, roughness, and the state of development of the snowpack 

which includes variables such as grain size, liquid water content, density, stratigraphy and the 

underlying soil roughness and dielectric state.   

2.3.1 Dielectric properties 

Most materials encountered in remote sensing are considered dielectric, which means 

they are non-conducting (Woodhouse, 2006).  A snowpack can be thought of as a dielectric 

mixture composed of air, ice particles, and liquid water and so its dielectric behavior is relative 

to the proportion of its constituents (Hallikainen et al., 1986).  The dielectric behavior of a 

medium is described by its relative permittivity (εr). This is a complex number wherein the real 

portion (ε’) describes the ability of the medium to store energy, while the imaginary portion or 

loss factor (ε”) describes the dissipation of energy, and 𝑖 = √−1: 

𝜀𝑟 = 𝜀′ − 𝑖𝜀"       (2.12) 

For dry snow, the real component of relative permittivity (εds’) is governed primarily by density 

(ρds) and can be estimated using a linear model (Tiuri at al., 1984): 

𝜀𝑑𝑠
′ = 1 + 2𝜌𝑑𝑠     (2.13) 
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Using this model we find that εds’ ranges from about 1.2 – 2 for snow densities between 100-500 

kg m
-3

.  Tiuri et al. (1984) provide the imaginary component of the relative permittivity of dry 

snow (εds”) as a ratio with εice”: 

𝜀𝑑𝑠
"

𝜀𝑖𝑐𝑒
" = 0.52𝜌𝑖𝑐𝑒 + 0.62𝜌𝑖𝑐𝑒     (2.14) 

It is common in remote sensing applications to refer only to ε’ in discussion of relative 

permittivity.  Commonly referenced values of ε’ include that for air, ice, soil and water (1, 3.17, 

2.2-4 and 80) (Du et al., 2010; Marshall & Koh, 2008; Woodhouse, 2006; Yueh et al., 2009).  

When liquid water is present in the snowpack, such as during melting or rain events, the relative 

permittivity increases.  Through an increase in ε’’ with liquid water, this may lead to increased 

attenuation and less scattering from the snow volume (Ulaby & Stiles, 1981).  Discontinuities in 

ε’ across boundaries can contribute to a strong radar response through enhanced surface 

scattering (Marshall et al., 2007).  Revisiting Fresnel’s reflection coefficients discussed in 

Section 2.3.3 (equations 2.10 and 2.11), note that an increase in ε’, which occurs as the liquid 

water content of the snowpack increases, causes an increase in reflectivity at the snowpack 

surface.  For this reason, Kendra et al. (1988) observed an increase in backscatter from the 

surface of a wet snowpack. 

 The velocity (v) of a wave travelling in a vacuum (c) is roughly 3x10
8
 m s

-1
 but when 

travelling through a dielectric medium it is reduced (Woodhouse, 2006).  Thus relative 

permittivity plays a role in the speed of wave propagation: 

𝑣 =
𝑐

√𝜀′
       (2.15) 



 

15 

 

Relative permittivity is related to the index of refraction (n) through the following 

relationship: 

𝑛 = √𝜀′      (2.16) 

When a wave is transmitted across a surface boundary from one medium into another, the speed 

of propagation will change if the two mediums have a different index of refraction and this will 

result in a redirection of the incident wave towards or away from the normal (Woodhouse, 2006).  

This is referred to as refraction and is governed by Snell’s law:  

𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑟
=

𝑣1

𝑣2
=

𝑛2

𝑛1
     (2.17) 

Here θr is the angle of refraction, n1 is the index of refraction for the first medium, n2 is that of 

the second and v1 and v2 are the initial-wave and refracted-wave velocities.  This relationship 

must be accounted for at each surface through which a wave passes, given a difference in n.   In a 

medium with multiple stacked layers such as most snowpacks, refraction may occur multiple 

times in a wave’s path.  Combining (2.13), (2.15), and (2.16) in Snell’s law it becomes apparent 

that an increase in snowpack density will increase ε’, thereby increasing n and reducing v.  This 

reduction in speed will then reduce the angle of refraction as the wave enters the medium 

provided that it is entering from a medium with a lower index of refraction, such as air. 

2.3.2 Roughness 

A smooth surface is defined as one in which surface features are of a size much smaller 

than the incident wavelength (Woodhouse, 2006).  From such a surface, a portion of the wave, as 

governed by the Fresnel coefficients, is coherently reflected in the specular direction, meaning 

no change in phase has occurred with the reflection. As the surface becomes rougher, scattering 

will become increasingly diffuse.  The Fraunhoffer criterion defines roughness for microwave 
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applications by comparing the root mean square (rms) height deviation of surface features 

(hsmooth) to the wavelength for a given θi:  

ℎ𝑠𝑚𝑜𝑜𝑡ℎ =
𝜆

32𝑐𝑜𝑠𝜃𝑖
     (2.18) 

Any surface features smaller than the criteria are considered smooth, while any features larger 

are considered rough.  The relationship described in (2.18) demonstrates that this threshold is 

larger for larger λ but decreases as θi increases.  In the case of a dry snowpack, roughness at the 

air-snow interface is inconsequential because the dielectric mismatch is negligible and so 

scattering at the snow surface usually neglected (Ulaby et al., 1986).  However the roughness of 

the air-snow interface may become important in a wet snowpack where there is sufficient 

dielectric discontinuity introduced by water in the pack (Kendra et al., 1998, Ulaby et al., 1984).  

In a dry snowpack the roughness of the soil beneath can contribute to the scattering of an 

incident wave because of the dielectric mismatch between the snow and the soil.  Furthermore 

the impact of soil beneath a snowpack can vary in time due to changes in its freeze-thaw state 

(Shi, 2004) 

2.3.3 Snowpack development  

The snowpack characteristics that are most influential in terms of radar remote sensing 

are snow grain size and shape, liquid water content of the snowpack, and snowpack stratigraphy.  

While snow grain size and shape are examples of grain-scale influences, liquid water content is 

considered at small and large scales, and stratigraphy can influence snowpack characteristics at 

scales up to hundreds of metres (Sturm & Benson, 2004). 
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 Grain characteristics 

Colbeck (1982a) divided snow into four categories: dry snow in equilibrium form, dry 

snow in kinetic growth form, wet snow in the pendular regime, and wet snow in the funicular 

regime.  Dry snow in the equilibrium state is rounded and grows slowly in the absence of 

temperature and pressure gradients where vapour diffusion is the rate-limiting process (Colbeck, 

1980).  Larger crystals grow at the expense of smaller ones which sublimate, driven by diffusion 

of water vapour among grains with different radii of curvature whereby those grains with smaller 

radius of curvature become vapour sources and those with a larger radius of curvature become 

vapour sinks (Colbeck, 1980).  This form of snow most commonly controls grain shape in the 

absence of large temperature gradients (Colbeck, 1982a).  While radius of curvature initially 

controls metamorphism of fresh snow, once the smaller dendrites disappear, metamorphism 

becomes controlled by temperature and vapour (Colbeck, 1980).  When dry snow is exposed to 

vapour fluxes and large temperature gradients, especially those greater than 10 °C/m, kinetic 

growth occurs, the grains crystallize, and becomes faceted (Colbeck, 1982a; Sturm & Benson, 

1997); the most highly developed configuration of such form is a hollow sheath or cup known as 

depth hoar (Colbeck, 1982a).  Metamorphism into depth hoar is also accompanied by a reduction 

in the number of grains (Sturm & Benson, 1997).  Similar to depth hoar, large, faceted crystals 

known as surface hoar can develop at the snow surface, typically in shaded areas, and in the 

presence of a downward vapour gradient and radiative snow surface cooling (Helbig & van 

Herwijnen, 2012). These faceted crystals are unstable without a large temperature gradient and 

so they revert back to the rounded equilibrium form once the gradient has been removed 

(Colbeck, 1982a). 
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Grain size and shape have a substantial impact on the radar return and backscattering 

since ice particles within snow are considered to be densely distributed scatterers whose inter-

granular spacing is much less than the incident wavelength at microwave frequencies (Shi & 

Dozier, 2000).  Scattering from snow is close to the limit between Rayleigh and Mie scattering 

and therefore the appropriate scattering theory is frequency dependent (Shi & Dozier, 2000); this 

will be discussed further in Section 2.4.  Small, fine snow grains, such as those fractured by wind 

and packed into dense wind slab can reduce backscatter, leading to a weaker radar return; 

however the electromagnetic energy at relatively lower frequencies will penetrate through such a 

layer (Dierking et al., 2012).  As the size of spherical grains increase within the snowpack, so 

does volume scattering which drives depolarization, and therefore an increase in cross-polarized 

backscatter may be realized (Yueh et al., 2009).  Larger, aggregate particles which form when 

individual grains freeze together, such as during melt-refreeze events, similarly lead to an 

increase in backscatter (Kendra et al., 1998).   Grain size also has a frequency-dependent impact 

on the ability of electromagnetic energy to penetrate a snow pack.  Koh et al. (1996) observed a 

reduction in penetration in the presence of large-grained depth hoar at 40 GHz, and speculated 

that a reduction in penetration at X-band could occur if the grains continued to grow.  Faceted 

crystals impact the radar return at microwave frequencies due primarily to their larger surface 

area and alignment which is caused by the vertical vapour fluxes associated with their growth 

(Colbeck, 1982a).  Koh et al. (1996) observed a stronger HH response in the presence of 

horizontally aligned crystals while King et al. (2013) found a stronger VV response in the 

presence of vertically aligned crystals. 
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Liquid water content 

 When liquid water is introduced into a snowpack, the snow grains grow rapidly, 

becoming rounded and larger grains grow at the expense of the smaller ones (Marsh, 1987).  

Figure 2.4 illustrates how grain growth in saturated snow increases with time; note the increase 

in variation of grain size in time. 

 

Figure 2.4 Change in size and distribution of grains in water-saturated snow from time of initial wetting 

(Wakahama, 1965). 

A difference in radii creates a heat flux from larger grains to smaller grains and since this heat 

flux moves predominantly through the liquid-solid interface, the growth rate increases with water 

saturation (Marsh, 2005).  Colbeck (1980) emphasized the fact that for grain growth in water-

saturated snow, the rate-limiting process is heat flux instead of vapour flux as it is for dry snow.   

Wakahama (1965) determined that grains with a smaller radius have a much lower melting point 

than larger grains in saturated snow.  Grain growth and rounding in saturated snow, which can 

occur in only hours and a few days respectively, is typically much faster than in dry snow where 

the same amount of growth would theoretically take years (Colbeck, 1980).  In the pendular 
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regime, tightly packed grain clusters dominate, whereas well-rounded, singular, cohesionless 

particles appear in the funicular regime (Colbeck, 1982a).  At water contents greater than 30% 

the ice matrix dissolves into separated ice grains (Marsh, 2005).  As with dry snow, growth in 

unsaturated wet snow is driven by vapour diffusion whereby vapour pressure is higher over small 

grains and therefore growth is much slower than in saturated wet snow (Colbeck, 1980).  If such 

snow experiences melt-refreeze conditions, the grains can freeze together to form larger 

polycrystalline grains (Marsh 1987). 

Liquid water in the snowpack causes ε’ to rise substantially and thus increases signal 

attenuation and any scattering will result from interaction with the air-snow interface (Koh et al., 

1996; Shi & Dozier, 2000; Marshall & Koh, 2008). Figure 2.5 illustrates this.  Most of the 

variability in radar backscatter within a snowpack is attributable to the presence and absence of 

liquid water therefore it is one of the most influential characteristics (Strozzi & Mätzler, 1998). 

The large dielectric contrast between water, ice and air is responsible for this and allows radar to 

be used effectively to monitor melt-freeze processes in a snowpack (Marshall & Koh, 2008). 

This effect is so strong that radar can be used to detect even small regions of wet snow which 

allows the detection of features such as flow fingers within a snowpack (Albert et al., 1999).   
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Figure 2.5 Permittivity versus liquid water content (θ) (from Colbeck, 1982b).  Permittivity rises rapidly with liquid 

water content for different values of snowpack porosity (φ). 

 While liquid water in a snowpack can reduce backscatter, there are situations where an 

increase in backscatter may be observed instead. Kendra et al. (1998) observed such a result 

from a wet snowpack that contained an ice lens near the surface during a period of warm air 

temperatures, resulting in an increase in backscatter due to surface scattering from the air-snow 

interface which outweighed a reduction in volume scattering due to signal attenuation caused by 

the water content. In melt-refreeze conditions where grain growth has occurred before refreezing, 

backscatter can be enhanced by the presence of larger and especially polycrystalline grains.  

Diurnal melt-freeze cycles have also been characterized with radar. In some cases, colder 

temperatures at night freeze any liquid water resulting in higher backscatter but during the day, 

warm temperatures lead to melting which increases the water content concomitantly decreasing 

backscatter, except where enhanced surface scattering occurs (Kendra et al., 1998; Strozzi & 

Mätzler, 1998). 
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Density 

Density of snow is defined by Fierz et al. (2009) as the mass per unit volume of snow.   

Snow density, which varies spatially (both horizontally and vertically) and temporally, can 

influence the electrical, thermal, and mechanical properties of snow (Bormann et al., 2013).  

Field estimates of snow density are completed by extracting a known volume of snow using a 

cutter and weighing it: Density is then calculated by dividing the sample mass by the sample 

volume.  Tiuri et al. (1984) found that the permittivity of dry snow increased linearly with snow 

density, while that of wet snow increased with liquid water content.  Figure 2.6 illustrates the 

relationship and provides two models used to approximate ε’ of dry snow.  The authors suggest 

the polynomial model may over-fit in some cases and that the linear model is generally preferred. 

 

Figure 2.6  A linear and second-order polynomial model used to estimate the permittivity of dry snow using density.  

Density of dry snow (g cm
-3

) is shown on the x axis and the real permittivity of dry snow is shown on the y axis 

(from Tiuri et al., 1984). 

The density of snow ranges from around 100 kg/m
3
 for freshly fallen, dry snow, to 500 kg/m

3
 for 

wet snow (Fierz et al., 2009).  Factors that can impact density can be divided into mechanical 

and thermal processes.   
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The mechanical processes influencing density include compaction and wind 

redistribution.  Compaction involves mechanically compressing the snow which leads to a higher 

density.  On a small scale, compaction can occur from trampling the snow, however on the large 

scale of concern to remote sensing compaction is associated with snow accumulation through the 

addition of newly fallen snow (Sturm et al., 2010).  As snow accumulates, more weight is placed 

on snow at the bottom of the snowpack which leads to its densification (Bormann et al., 2013; 

Langlois et al., 2007).  Wind can play a crucial role in densification through redistribution and 

alteration of snow deposition patterns (Lopez-Moreno et al., 2013).  As wind blows the snow, the 

structure of the crystal becomes rounded, allowing the flakes to become more tightly packed 

(Bormann et al., 2013), with potential to increase the snowpack density beyond 400 kg/m
3
 in 

cases of so-called wind slab (Marshall, 2012).  Wind can move snow from flat surfaces, 

windward slopes, and sparsely vegetated areas and deposit it on leeward slopes, in depressions, 

and in more heavily vegetated areas (DeBeer et al., 2009; MacDonald et al., 2010).  The snow 

collects or drifts where there are turbulent eddies or convergence of wind flux (Marshall, 2012).  

This can lead to a localized densification due to the compaction of underlying layers, and 

through creation of wind slab in cases of persistent wind. 

The thermal factors that influence density include temperature changes and solar 

radiation.  Temperature changes can increase and decrease snowpack density.  In periods of 

warm weather, the snow grains begin to melt, simultaneously becoming rounder in shape 

allowing for closer spacing within the snowpack, and increasing the liquid water content of the 

snow (Lopez-Moreno et al., 2013).  This has a combined effect that increases the density of the 

snowpack, and explains why a density increase in the snowpack can be seen in the transition 

from winter to spring.  Temperature can also contribute to a decrease in density within a dry 
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snowpack where a temperature gradient exists between the base of the snowpack and the air-

snow interface.  Such conditions promote water-vapour transport within the snowpack and lead 

to the development of depth hoar in the snowpack where water vapour sublimate from the top of 

an ice grain and condense on the bottom of an another above (Sturm & Benson, 1997).  The size 

and shape of these grains prevent them from packing tightly, decreasing the snowpack density 

(Bormann et al., 2013).   

Solar radiation is a major driver of many snow processes (Schweizer & Kronholm, 2007).  

Among other things, exposure to shortwave solar radiation can eliminate surface hoar, although 

an accurate threshold at which enough shortwave radiation is present to do so is unknown 

(Helbig & van Herwijnen, 2012).  Intuitively this process can be linked with increasing the snow 

density through the replacement of the large, faceted, surface hoar crystals with smaller, more 

tightly packed varieties however Bormann et al. (2013) indicated that the link between snow 

density and solar radiation has not yet been well established. 

Stratigraphy 

 Sturm and Benson (2004) described a snow layer as a tabular body that has unique 

characteristics which distinguish it along well-defined boundaries from newer snow above, and 

older snow beneath.  Layers are formed and influenced by snowfall, wind, compaction, snow 

melt and snow metamorphism; unique combinations of these processes contribute to identifiable 

layer characteristics with sufficient speed such that snow deposited for even just one day can 

experience remarkable change (Marsh, 2005).  Because the nature of a layer is dependent on its 

microstructure, Sturm and Benson (2004) assert that layering and grain characteristics are 

inextricably linked.  Layers are often indicative of climatic conditions and meteorological 

episodes and thus tell a story about the magnitude and timing of events that occurred during the 
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lifespan of the snowpack such as temperatures fluctuations and gradients, melt-freeze conditions 

and ice rain.  Forster et al. (1991) used pairings of depth hoar and wind crust layers to identify 

the autumn and winter for a given year in Antarctica.  Thermal conditions within a snowpack can 

be identified by stratigraphy as well.  Marsh and Woo (1984) explained that a basal ice layer will 

form in liquid saturated snow when a negative heat flux exists at the ground-snow interface such 

that heat moves into the soil from the snow, causing the saturated snow to freeze. 

 According to Sturm and Benson (2004), due to a lack of comprehensive data there are 

two different views on layering:  In one, layers are assumed to be laterally homogenous and a 

good foundation for extrapolating snowpack characteristics.  In the other view, layers are 

assumed to be so heterogeneous that cross-correlation is difficult or impossible especially at 

larger scales.  Marsh (1987) found that strata in the Arctic were undulating but generally parallel 

and were continuous up to about 3 m.  Sturm and Benson (2004) examined layer heterogeneity 

over distances up to 100 km and determined that perennial snow layers were more uniform and 

laterally continuous than seasonal layers, but that the heterogeneity of the two classes converged 

at scales of about 100 m at which point the layer heterogeneity was maximized; this distance 

corresponds with the scale of wind drift features.  As such they indicated that local forcing by 

weather, especially wind and temperature was the primary driver of heterogeneity at this scale 

but that synoptic scale variations also contributed.  The microtopography underlying the 

snowpack had a stronger effect on seasonal snow than on perennial snow whose layers tended to 

vary less since the impact of wind-snow interaction triggered by microtopography was 

minimized (Sturm and Benson, 2004).  

Discontinuities in permittivity that are introduced with varying layer characteristics such 

as density, grain size, presence of ice layers or pillars, and liquid water content can influence 
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backscatter (Marshall et al., 2007). Ice layers present within the snowpack can reduce the 

penetration of frequencies with relatively shorter wavelengths as Marshall & Koh (2008) found, 

which necessitated the use of longer wavelengths. Marshall et al. (2007) echoed this realization, 

noting that higher frequencies are more sensitive to changes in snowpack stratigraphy at the 

expense of reduced penetration capabilities; they found that Ku- band was well-suited to 

extracting stratigraphic information. Layers having undergone melt- refreeze conditions tend to 

produce higher backscatter than dry layers because the grains have experienced growth in the 

presence of melt water (Strozzi & Mätzler, 1998). Yueh et al. (2009) found the presence of ice 

lenses within the snowpack to increase backscatter but noted that ice layers much thinner than 

the incident wavelength may not be visible to the radar. Radar is limited in its capability to 

distinguish snowpack stratigraphy where subtle transitions in dielectric properties exist across 

layers.  

Substrate 

 Substrate, in this study, refers to the soil existing beneath the snowpack.  Vegetation will 

also be discussed under this heading although it exists not only beneath the snowpack but also 

throughout it in many cases. 

 Vegetation can affect the radar response through the size of its constituent parts, its 

orientation and its density.  In the microwave region the size of components such as stems, 

leaves and fruit are large relative to incident λ  and so it is considered an inhomogeneous, 

anistotropic medium (Ulaby & Long, 2014).  Vegetation with a predominant structural 

orientation, such as vertical wheat stalks, can lead to stronger returns for similarly polarized 

waves whereas vegetation lacking a predominant structure can result in less contrast between 
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vertically and horizontally polarized radar returns indicating depolarization (Woodhouse, 2006).  

Depolarization often increases with increasing vegetation density.   

There is little agreement on whether the predominant scattering mechanism of vegetation 

is a surface or volume scattering effect and it has been modelled in numerous ways: as a 

collection of cylinders (Peake, 1959), as a homogeneous dielectric slab (Bush & Ulaby, 1976), 

and as clouds of water droplets (Attema & Ulaby, 1978). However there is agreement that 

vegetation attenuation increases with frequency, especially at off-nadir angles (Ulaby et al., 

1976).  In dense crop canopies such as alfalfa, the scattering contribution from the underlying 

soil was found to be minimal in the 8-18 GHz range (Ulaby et al., 1975).  When electromagnetic 

waves can penetrate through the canopy, the periodic undulation of the soil common to row 

crops can lead to coherent effects similar to Bragg scattering (Woodhouse, 2006). 

Soil is a dielectric mixture of air, soil particles, and bound and free water (Ulaby & Long, 

2014).  The scattering properties of soil are driven largely by its water content which impacts its 

dielectric properties (Ulaby et al., 1986).  In dry soil, ε’ ≈ 4 and the radar response is driven by 

volume scattering.  Waves are able to penetrate the soil to a frequency-dependent depth; 

backscatter is typically lower for dry soils (Wegmüller, 1990).  Increasing the amount of water in 

the soil causes an increase in ε’.  This reduces penetration and changes the dominant scattering 

mechanism to surface scattering, controlled by surface roughness.  Freezing the soil has the 

opposite effect, causing ε’ to fall to values similar to that of dry soils (Wegmüller, 1990); thus 

there exists a high contrast between the radar response of frozen and thawed soil whereby frozen 

soils exhibit a weaker response. 
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2.4 Scattering mechanisms 

Radar interaction with a snowpack can be described in terms of two general types of 

scattering: surface and volume.  As discussed in section 2.3.3, surface scattering is heavily 

dependent on the scale of surface features relative to the incident wavelength and can range from 

specular to diffuse as roughness increases.  Within a snowpack, it can occur at the air-snow 

interface, the snow-ground interface and at the interfaces between layers of snow with 

contrasting  ε’. In a dry snowpack, surface scattering from the air-snow interface and internal 

layers is negligible due to a small difference in ε’ across the boundaries and can therefore be 

ignored (Ulaby et al., 1982).  Volume scattering is generally considered to be isotropic, 

scattering equally in all directions (Woodhouse, 2006).  It occurs through an interaction with ice 

crystals in an air background within the snow volume (Ulaby et al., 1984).  Rott et al. (2010) 

explains that the total backscatter from a snowpack (σt) is a summation of scattering mechanisms 

as shown: 

𝜎𝑡 = 𝜎𝑎𝑠 + 𝜎𝑣 + 𝜎𝑔𝑣 + 𝜎𝑔        (2.19) 

where (σas) is scattering at the air-snow interface, (σv) is scattering from the snow volume, (σgv) is 

scattering from the ground surface and snow volume, and (σg) is scattering from the ground 

surface.  These interactions are controlled by both wave and target parameters (Ulaby et al., 

1984).  Figure 2.7 illustrates this concept for a simple two-layer snowpack. 
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Figure 2.7 Scattering mechanisms of radar interaction with a two-layer snowpack over ground (Adapted from Rott 

et al., 2010).  Pt and Pr represent power transmitted and signal received.  A bistatic radar configuration is shown for 

clarity. 

In a dry snowpack, volume scattering dominates the radar response especially at off-nadir 

incidence angles (Ulaby et al., 1986).  The magnitude of this response is driven by the ratio of 

particle size to incident λ, under the assumption of spherical grain shape (Woodhouse, 2006).  

Based on this assumption one of two models may be used to approximate the scattering of 

microwaves from a snowpack volume, depending on λ of the incident wave and size of the snow 

grains under observation.  The Rayleigh scattering model can be used when ice particles are 

much smaller than the incident wavelength (Ulaby et al., 1981).  Under this model, the scattering 

cross section is strongly dependent on the size of the scatterer and the wavelength, increasing 

rapidly with both (Mätzler, 1987).  The Mie scattering model is used as grain size approaches λ.  

Scattering under this model varies periodically due to patterns of constructive and destructive 

interference and is sensitive to small changes in grain size (Woodhouse, 2006).  The occurrence 
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of constructive interference can therefore lead to a scattering cross section much larger than the 

particle size. 

2.5 Modelling with MEMLS-Active 

The use of electromagnetic models coupled with observational data provides a means by 

which we can address and understand the interaction between microwaves and the snow volume.  

The Microwave Emission Model of Layered Snowpacks (MEMLS) of Wiesmann and Mätzler 

(1999) is one such model.  In this thesis, the third edition of the model, adapted for active 

microwave applications (MEMLS3-A), will be used to simulate simplified snowpack conditions 

in order to demonstrate and strengthen our understanding of snowpack interactions with 

microwaves in support of the results. 

MEMLS is based on radiative transfer theory and uses six-flux theory to describe 

scattering and absorption where two fluxes provide vertical movement in the ± Z direction and 

four fluxes provide movement in the ± X and Y direction as shown in Figure 2.8. MEMLS was 

initially developed for passive microwave observations in the 5 – 100 GHz range but has been 

recently adapted for active microwave in its third edition (MEMLS3-A) (Proksch et al., 2015b).  

Kirchoff’s law provides the link between active and passive microwave, through reflectivity (r) 

and emissivity (e), which allows MEMLS3-A to model backscatter whereby: 

𝑟 = 1 − 𝑒     (2.20) 

Earlier electromagnetic snow models tended to simplify the snowpack to one layer for the 

sake of efficient computing and a reduction in complexity (Proksch et al., 2015b).  Later, more 

realistic models were based on dense media radiative transfer theory (DMRT) but these models 

require more complex microstructural input parameters that can only be measured using 
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microcomputed tomography (μCT) and are therefore less feasible to use (Proksch et al.,  2015b).  

MEMLS requires exponential correlation length (pex) as a microstructural input which can be 

obtained from objective and efficient field measurements.  Ongoing studies are investigating the 

use of the SnowMicroPen (SMP) instead of μCT to measure pex (Proksch et al, 2015a).   

The snowcover in MEMLS3-A is represented as a stack of horizontal layers with planar 

boundaries between each layer and also at the air-snow interface; the snow-ground interface is 

specified by its reflectivity (so). A sandwich model combines the interactions at the layer 

interfaces (Weismann & Mätzler, 1999).  Layers are characterized by thickness, correlation 

length, density, salinity, liquid water content, and temperature.  Figure 2.8 conceptualizes the 

model. 

 

Figure 2.8 Conceptualization of MEMLS3-A. Six-flux schematic showing flux directions T01 to T06 (a).  Layered 

structure and inputs for an n-layer snowpack (b).  Adapted from Wiesmann & Mätzler (1999). 

  

a) b)

θ n - incidence angle

d n  - layer thickness

T n - layer temperature

t n - transmissivity

r n - volume reflectivity

e n  - emissivity

s n - interface reflectivity

s 0 - snow-ground reflectivity

T 0 - ground temperature
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Reflectivity (r) describes the radiation scattered in a hemisphere above the surface and can be 

estimated in terms of specular (rs) and diffuse (rd) components where r = rd + rs (Proksch et al., 

2015b).  Likewise, diffuse (σ
o
d) and specular backscatter (σ

o
s) are calculated separately and 

summed to yield total backscatter.  Where μn is defined as the cosine of the incidence angle, the 

diffuse backscatter is determined by: 

𝜎𝑑
𝑜 = 4𝑟𝑑𝜇𝑛

2      (2.21) 

Diffuse backscatter must be further specified for its co- and cross-polarized state, determined by 

the splitting parameter (q) which defines the cross-polarized proportion (Proksch et al., 2015b).  

Given that p and p’ provide the incident and scattered polarization σdv and σdh are calculated as 

follows: 

𝜎𝑑,𝑝𝑝′
𝑜 = {

(1 − 𝑞)𝜎𝑑,𝑣
𝑜 ,                                                    𝑝 = 𝑝′ = 𝑣

(1 − 𝑞)𝜎𝑑,ℎ
𝑜 ,                                                    𝑝 = 𝑝′ = ℎ 

𝑞(𝜎𝑑,𝑣
𝑜 +𝜎𝑑,ℎ

𝑜 )

2
,                𝑝 = 𝑣, 𝑝′ = ℎ; 𝑜𝑟 𝑝 = ℎ, 𝑝′ = 𝑣

  (2.22) 

This simplifies to: 

𝜎𝑑,𝑣
𝑜 = 𝜎𝑑,𝑣𝑣

𝑜 + 𝜎𝑑,ℎ𝑣
𝑜 = 4𝑟𝑑,𝑣𝜇𝑛

2    (2.23) 

𝜎𝑑,ℎ
𝑜 = 𝜎𝑑,ℎℎ

𝑜 + 𝜎𝑑,𝑣ℎ
𝑜 = 4𝑟𝑑ℎ𝜇𝑛

2    (2.24) 

Incorporating the mean-square of surface slope (m
2
), specular reflectivity at normal incidence 

(rs,0), and the zenith angle (θn),  σ
o

s is calculated as follows: 

𝜎𝑠
𝑜 = 𝑟𝑠,0

𝑒𝑥𝑝[−𝑡𝑎𝑛2𝜃𝑛/(2𝑚2)]

2𝑚2𝑢𝑛
4      (2.25) 

The total backscatter is then calculated as the sum of σ
o

d and σ
o

s. 
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MEMLS3-A was validated with observations from Sodankyla, Finland at 10.2, 13.3 and 

16.7 GHz using a 50° incidence angle.  Observed SWE for this validation ranged from 135 – 160 

mm, with an average density of 190 kg m
-3

 and an SMP-derived pex ranging from 0.163 to 0.194 

mm (Lemmetyinen et al., 2013).  Vegetation over 10 cm in height had been removed from the 

site leaving only surface vegetation consisting of lichen, moss and heather (Proksch et al., 

2015b).  

 Limitations of MEMLS3-A arise due to its balance between efficiency and complexity: 

The model works under the assumption of spherical snow grains and therefore does not consider 

shape, aggregation of grains or other microstructural characteristics.  The value of q is 

empirically derived and does not account for the scattering efficiency of snow. Also, soil 

scattering is parameterized only with so and T0, ignoring other soil characteristics (Proksch et al., 

2015b).  Furthermore there is currently no mechanism for parameterizing ice layers within the 

model.  Montpetit et al. (2013) used very dense snow layers (917 kg m
-2

) in place of ice although 

they acknowledge that a dense snow layer will scatter microwaves whereas pure ice will absorb 

and reflect microwaves without scattering.  Finally, there is no way to account for presence of 

vegetation within and beneath the snowpack. 
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Chapter 3 Ku- and X-band radar observations of deep seasonal snow in 

agricultural fields in Ontario 

3.1 Overview 

Recent studies of active microwave response to shallow to moderate snow depth have 

been conducted in sub-Arctic and mountain environments but less so over seasonal mid-latitude 

snow.  Twenty-six radar observations of snow at Ku- and X-band were made in hay fields near 

Maryhill, Ontario during the 2013-14 winter season and extended for the 2014-15 season to 

include sites in Englehart, Ontario.  The bare ground was scanned during early season snow-free 

conditions where possible or through complete snow excavation within the radar’s field of view.  

The natural snowpack was scanned throughout the season as snow accumulated; a range of snow 

water equivalent (SWE) from 0-186 mm was observed.  In situ measurements of the snowpack 

properties accompanied the radar observations.  Ku-band showed sensitivity to snow 

accumulation whereby backscatter increased with SWE up to 140 mm beyond which reduced 

sensitivity was observed.  X-band did not show sensitivity to SWE.  An investigation of the 

seasonal depth hoar evolution revealed sensitivity to grain growth at both frequencies.  The 

Microwave Emission Model of Layered Snowpacks (MEMLS3-A) in active microwave 

configuration confirmed this behaviour.  Early season backscatter signatures from low-

accumulation snowpack conditions were influenced predominately by vegetation present in the 

fields as indicated by the polarimetric response. As the snow accumulation increased, the 

vegetation influence decreased and the snowpack controlled the radar response.  

 



 

35 

 

3.2 Introduction 

Snow is an important component of the annual terrestrial water cycle. Characterizing and 

quantifying snow state is important given its role in water resource management and energy 

budget modeling (Brown & Mote, 2009; Callaghan et al., 2011). Run-off from snow melt 

provides fresh water for aquatic ecosystems, agriculture, industry, and municipal water supply 

(Pomeroy et al., 2009). Furthermore, long-term snow mapping studies provide insights into the 

nature of snow as an indicator of climate change (Brown & Mote, 2009). Given its importance, 

changes in snow extent, duration, and distribution due to climate change have emphasized the 

need for a practical system of monitoring (WMO, 1997). This has prompted organizations such 

as the World Meteorological Organization and the Integrated Global Observing Strategy to 

articulate the need for high-resolution snow water equivalent observations (IGOS, 2007).  

Remote sensing of snow using radar observations can be a practical means of obtaining 

information on seasonal snowpack accumulation at high spatial and temporal resolution (Rott et 

al., 2010). Recent studies have identified microwave frequencies in the range of 8-18 GHz as 

being sensitive to volumetric snow properties (King et al., 2013; Yueh et al., 2009).  At these 

frequencies, penetration depth of radar waves into dry snow is estimated to be greater than 1 m 

(Mätzler, 1987). Research in the European Alps, American Rocky mountains, sub-Arctic 

Scandinavia and Canada have demonstrated a strong relationship between Ku-band scatterometer 

observations and SWE.  Specifically co-polarized vertical Ku-band backscatter was observed to 

increase by 0.15-0.5 dB for every 1 cm of SWE accumulation in the Colorado Rocky mountains, 

and by 0.82 dB per cm in the Canadian subarctic (King et al., 2015; Yueh et al., 2009).   

However there are limited empirical studies exploring the usefulness of Ku- and X-band 

frequencies for observing seasonal snow in a typical mid-latitude continental climate agricultural 
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region. In addition, it is not clear what the role of snowpack stratigraphy, especially large grain 

size layers such as depth hoar, might be on the backscatter response from snow in this region;  

the role of agricultural vegetation on the radar signal is also unclear.  Air temperature fluctuation 

and variation in the state of precipitation inputs throughout the winter combined with greater 

accumulation can result in a highly complex snowpack with multiple crust, melt-refreeze, and 

freezing rain layers.  The Ontario snow accumulation environment is therefore well-suited to 

probe the operational range of these frequencies and to understand their limitations.  

The aim of this research is to explore the radar response from seasonal snow that 

accumulated during the winter seasons of 2013-14 and 2014-15 in Maryhill, Ontario and 

Englehart, Ontario.  It was designed as a case study primarily to investigate the electromagnetic 

response of Ku- and X-band radar to a range of snow depths and snow properties not considered 

in other studies, over two winters in Ontario.  A comprehensive dataset of polarimetric ground-

based active microwave measurements were collected. Co-located, in situ measurements of the 

snow and underlying soil were also made to interpret the scatterometer measurements.  The 

objective of the project was to explain the backscatter response of Ku- and X-band scatterometer 

signals from snow in agricultural fields through completion of three specific goals: 1) to quantify 

and characterize the active microwave response over an expanded range of depths of seasonal 

snow at 9.6 and 17.2 GHz frequencies, 2) explain the polarimetric response in this environment, 

and 3) develop a field data set to test microwave scattering models for snow accumulation in an 

agricultural field. 
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3.3 Study sites 

The study sites for this experiment were located in Maryhill and Englehart, Ontario and 

(Figure 3.1).  Maryhill (80°22’47.62”W, 43°32’55.27”N) is situated at about 317 m above sea 

level (ASL) and on average receives nearly 160 cm of snowfall annually (Environment Canada, 

2015). 

 

Figure 3.1 Study site locations in Maryhill and Englehart, Ontario (DMTI, 2014; ESRI 2014; Regional Municipality 

of Waterloo, 2014). 

The soil in this region is a well-drained gravelly to sandy loam (Presant & Wicklund, 1971).  

Englehart (79°50’49.02”W, 47°46’6.38”N) is situated at about 243 m ASL and receives over 222 

cm of snowfall annually (Environment Canada, 2015).  The soil in this region is classified as a 

well-drained silty loam (Hoffman et al., 1972).  Thirty-year winter climate normals (1981-2010) 

for both regions are provided in Table 3.1. 
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Table 3.1 Study region climate normal for Maryhill and Englehart (Environment Canada, 2015). 

 

During the 2013-14 season, the study site was located in a cut hay field near Maryhill, 

Ontario.  The ground was level with furrows of approximately 5 cm depth and 55 cm spacing 

arranged in an east-west orientation.  Between January and March, 2014, the study area was 

visited on four occasions and each time, a new location within the field was chosen based on 

variation in snow depth.  

Three separate fields in Maryhill were revisited during the 2014-15 season.  The first 

field, named the Zinger site (80°23’20.87”W 43°33’4.96”N), was a bare field with sparse 

vegetation; surface features appeared randomly distributed and rows were not visible.  The 

second site, named the Hergot site (80°22’47.62”W 43°32’55.24”N) was a densely vegetated hay 

field with a crop height of approximately 50 cm; rows were not visible and the vegetation was 

sufficiently dense that the underlying ground could not be seen with the eye.  The third site, 

named John’s farm site (80°22’30.48”W 43°32’25.38”N) was similar to the Hergot site in terms 

of the vegetation, however bare ground was visible beneath the vegetation.  Photographs of the 

sites pre-snow accumulation are shown in Figure 3.2.   

In order to observe deeper snow, the study area was expanded to include the Englehart 

sites, in February 2015.   Three sites were chosen within the same hay field based on variation in 

snow depth; the hay had been cut and the remaining crop stubble was less than 15 cm in height.   

Dec Jan Feb Mar Dec Jan Feb Mar

Daily Average (°C) -3.3 -6.5 -5.5 -1 -10.9 -16.2 -13.3 -6.7

Daily Minimum (°C) -6.8 -10.3 -9.7 -5.6 -16 -22.4 -20.1 -12.9

Daily Maximum (°C) 0.2 -2.6 -1.2 3.6 -5.8 -10 -6.5 -0.5

Maryhill Englehart
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Figure 3.2 Maryhill field sites on Dec 2, 2014:  Zinger site (left), Hergot site (centre), and John's farm site (right). 

 

3.4 Data and methods 

3.4.1 Background 

The interaction between radar and snow can be subdivided into four unique scattering 

mechanisms.  The total backscatter (σt) from a snowpack on the ground can be found through 

summation of surface scattering at the air-snow interface (σas), volume scattering within the 

snowpack (σv), ground surface scattering (σg), and ground-volume scattering (σgv) (Rott et al 

2010).  Figure 3.3 illustrates this concept with a simple single-layer snowpack. The contribution 

of each mechanism to σt depends on the combination of snowpack parameters, substrate 

parameters, and sensor parameters (Shi & Dozier, 2000). 
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Figure 3.3 Radar scattering mechanisms within a snowpack (Modified from Rott et al. 2010). 

3.4.2 Snowpack parameters 

 Critical snowpack parameters are those which have a strong influence on radar 

backscatter, and include complex relative permittivity, density, and stratigraphy.  The real 

portion (ε’) of the complex relative permittivity describes the ability of a material to store energy 

and conduct electricity (King et al., 2015).  A strong radar return may be created at 

discontinuities in ε’, as the electromagnetic energy passes from one material to another, 

characterized by a marked difference in ε’ such as through wet and dry layers in a snowpack 

(Marshall et al., 2007). The variation of ε’ along a given path will determine the depth of 

penetration of the radar, and how much information can be extracted from the signal (Ulaby et 

al., 1984). Snow is considered a dielectric mixture of its constituents, ice, air, and at times, liquid 

water (ε’= 3.17, 1, and 80, respectively) and therefore ε’ of snow is a function of this 

combination (Colbeck, 1982b; Hallikainen et al., 1986, Ulaby et al., 1984).  Density, which is a 
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measure of the amount of mass within a given volume, is also therefore controlled by the 

proportion of these constituents. In dry snow, primarily observed in this study, density controls ε’ 

and for densities of 200-500 kg m
-3

, ε’ will range from about 1.4-2 (Tiuri et al., 1984; Ulaby et 

al., 1984).  The following relationship relates the density of dry snow (ρd) to ε’ (Tiuri et al., 

1984): 

𝜀′ = 1 + 2𝜌𝑑                (3.1) 

Snow grain metamorphosis can impact density as grains and grain structure change in 

time.  Snowpack densification can be caused by wind slab development which occurs when wind 

exposure causes snow grains to fracture and become rounded and therefore able to pack tightly 

(Fierz et al., 2009).   Densities of wind slab can range from 350 kg m
-3

 to beyond 500 kg m
-3

 

(Benson & Sturm, 1993).  King et al. (2015) reported depth hoar layers within a subarctic 

snowpack to have a density of 170 kg m
-3

 while Fierz et al. (2009) described fresh snow with a 

density of 100 kg m
-3

.  Densities within a snowpack can also be affected by compaction as 

weight from added accumulation can compresses basal snow layers (Bormann et al., 2013; 

Langlois et al., 2007).  Changes in snow grain structure may change density and therefore impact 

the radar return by modifying the ε’ of the snowpack through the relationship expressed in (3.1). 

 Throughout the season, complex stratigraphy can develop within a snowpack caused by 

successive snowfall events, freezing rain, and metamorphosis; this is especially true for mid-

latitude continental snowpacks.  Unlike the single-layer snowpack in Figure 3.3, natural 

snowpacks in this environment typically feature multiple layers each with their own 

characteristics (Sturm et al., 1995); the scattering mechanisms listed above act in concert within 

each layer. Discontinuity of ε’ between ice and snow layers present within the snowpack can 

increase backscatter and reduce the penetration of waves with frequencies of relatively shorter 
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wavelengths (Marshall & Koh, 2008; Yueh et al., 2009).   Similarly, Marshall et al. (2007) noted 

that higher frequencies were more sensitive to changes in snowpack stratigraphy at the expense 

of reduced penetration capabilities and overall they indicated Ku-band was well-suited to 

extracting stratigraphic information.  However the study by Marshall et al. (2007) was performed 

at nadir which means the microwaves were subject to less reflection than that which was 

expected in this study and therefore had greater penetration capabilities and was influenced more 

strongly by the stratigraphy.   From this it becomes evident however, that in the absence of a 

substantial difference in geometric and dielectric properties between layers, radar cannot 

distinguish the stratigraphy of the pack. However, within a complex snowpack, layers with 

substantially different ε’ can cause an increase in the σs component of σt between layers within 

the snowpack where internal reflections may occur (Du et al., 2010).  Grain size and shape 

characteristics within a given layer can influence σv and σgv.  Specifically, larger grains are 

thought to enhance higher-order scattering (Du et al., 2010; King et al., 2013).  Strozzi & 

Mätzler (1998) found this occurred in melt-refreeze layers which experienced grain growth in the 

presence of melt water at 35 GHz.  Similarily, King et al. (2013 & 2015) suggested that vertical 

orientation combined with the larger size of depth hoar grains contributed to an elevated 

vertically-polarized response at Ku-band frequencies.  Although wet snow was generally not 

encountered in this study, the presence of water in the snowpack even at low concentrations 

(0.5% by volume) affects the magnitude of the relative permittivity such that penetration depth 

of a radar wave within the snowpack is severely limited (Ulaby et al., 1982).  
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3.4.3 Substrate parameters 

Soil beneath the snowpack can contribute to σt through σg and σgv interaction at the snow-

soil interface where the incident wave can penetrate the snowpack.  The magnitude of this 

interaction is controlled primarily by dielectric properties of the soil related to the volume of free 

water present (Ulaby et al., 1986).  Since soil is considered a dielectric mixture of soil particles, 

air, free water, and bound water, ε’ of soil is heavily influenced by ε’ of water when present.  In 

dry soil conditions, incident waves can penetrate the soil volume and the predominant scattering 

mechanism is volume scattering, leading to a lower power return (Richards, 2009).  When soils 

are wet, penetration of the waves is severely limited due to the increase in ε’, and the radar 

response originates at the soil surface, driven by surface roughness.  For soils in which the 

surface is smooth, as governed by the Fraunhoffer criteria, specular reflection dominates whereas 

scattering becomes increasingly diffuse with increasing roughness.  Freezing the soil decreases ε’ 

to levels similar to dry soil, decreasing backscatter and causing a sharp contrast between the 

radar response of frozen and thawed soil frozen soils (Wegmüller, 1990).  

 Vegetation within and beneath the snowpack can also impact scattering of the incident 

wave through the size of its constituent parts relative to the incident wavelength, its orientation 

and the density.  This includes crop residue which can strongly affect radar backscatter (McNairn 

et al., 2002).  Scattering from vegetation is typically dominated by volume scattering since there 

are no distinct air-vegetation boundaries (Ulaby et al., 1982).  However within vegetation 

canopies, including senesced crop canopies, multiple scattering mechanisms exist: leaves and 

inclined stems can yield multiple bounce and volume scattering while vertical stalks typically 

yield double-bounce scattering (McNairn et al., 2002).   The orientation of predominant 

vegetation features can lead to preferential scattering from similarly polarized waves whereas the 
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lack of a preferential structure can decrease the contrast between vertical and horizontal returns 

and increase depolarization especially when coupled with an increase in density (Woodhouse, 

2006).  Evans et al. (1988) also linked depolarization with vegetation density.   Ulaby et al. 

(1975) determined that the scattering contribution, in the 8 – 18 GHz range, from the soil beneath 

a high-density, mature alfalfa crop was minimal.  Vegetation attenuation also tends to increase 

with incident-wave frequency especially at off-nadir angles (Ulaby et al., 1976). 

3.4.4 System parameters 

Radar measurements were made using the University of Waterloo scatterometer (UW-

Scat) which is a fully polarimetric, frequency-modulated continuous-wave system that operates 

at centre frequencies of 17.2 and 9.6 GHz (King et al, 2013).  It is a portable ground-based 

system that allows for rapid deployment in the field.  A two-axis positioner allows the system to 

rotate 360° in azimuth and from 15° to 105° in elevation.  The scan geometry employed in this 

study included 40° azimuth sweeps through 28° of elevation in 3° increments from 34° to 59°.  

Azimuth sweeps were averaged to produce a normalized radar cross section (NRCS) value for 

each scan elevation.  Radar calibration efforts were made on-site with an in-scene trihedral 

corner reflector combined with a sky measurement that was coherently subtracted from range 

profiles to account for system noise.  Errors inherent in UW-Scat measurements were estimated 

at ±2.0 dB for both frequencies, and include a 0.5 dB allowance for random error (King et al., 

2015).  Table 3.2 summarizes the operating parameters of UW-Scat. A detailed description of 

the equipment, including its calibration procedures, can be found in King et al. (2013).   
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Table 3.2 UW-Scat operating parameters. 

 

UW-Scat sends linearly polarized waves of vertical and horizontal orientation, and 

receives any combination of vertically and horizontally polarized waves.  The polarization state 

of an electromagnetic wave, and the theoretical polarization ellipse, can be completely described 

in terms of its ellipticity (χ) and orientation angles (ψ).  The range of χ and ψ, from -45° to 45° 

and 0° to 180° respectively, describe all possible polarization states (Evans et al., 1988; Zebker 

et al., 1987).  Note that in some cases the range of ψ may be alternatively expressed as -90° to 

90° with the same meaning.   The shape of the polarization ellipse is governed by χ and is 0° for 

linear polarization, when only one component (vertical or horizontal) of the electrical field 

exists, and ± 45° for circular polarization, when the magnitudes of the vertical and horizontal 

components are equal (Ulaby et al., 1981).  For any other value of χ, the polarization is said to be 

elliptical (Ulaby & Long, 2014).  The orientation of the ellipse and the direction of its major axis 

is governed by ψ which indicates, for the linear case, vertical polarization when ψ= 90° and 

horizontal polarization when ψ= 0° and 180° (Evans et al., 1988; Zebker et al., 1987).  If the 

orientation of an incident wave is parallel to the dominant plane of a target, along with an 

expectation of first-order scattering such as σs or σg, this can enhance the co-polarized 

backscatter.  Conversely depolarization, which occurs when the polarization state of an incident 

Parameter Ku X

RF output frequency (GHz) 16.95-17.45 9.35-9.85

Centre frequency (GHz) 17.2 9.6

Transmit power, narrow beam (dBm) -8 -11.8

Transmit bandwidth (MHz) 500 500

Range Resolution (m) 0.3 0.3

Antenna beamwidth, narrow beam (°) 5.6 4.3

Cross-polarization isolation (dB) >30 >30

Transmit/receive polarizations (linear) VV, HH, VH, HV VV, HH, VH, HV

Sensitivity (dB m
2
m

-2
) -50 -50
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wave is changed through an interaction with a target, can result from multiple-scattering often 

occurring from σv and σgv interactions.  According to Du et al. (2010) snow grain size and shape 

play a strong role in multiple-scattering and therefore depolarization.  Dense vegetation can also 

play a role as a strong depolarizing target (McNairn et al., 2002).   

In order to visualize the polarimetric response of a target, two tools may be utilized:  The 

polarization signature and instantaneous polarization-state histogram are 3-dimensional plots 

which graphically represent the polarization state of the received wave in terms of ψ and χ.  The 

polarization signature displays χ, ψ, and the relative NRCS as the x, y and z axes respectively, 

and allows us to visualize the power returned to the antenna as a function of send and receive 

polarizations (Evans et al., 1988).  A co-polarized signature illustrates the case where transmit 

and receive polarizations are equal while the cross-polarized signature illustrates the case where 

transmit and receive polarizations are orthogonal.  The relative NRCS is normalized to 1.  Peaks 

in the graph indicate polarizations that yield maximum received power and troughs occur for 

polarizations associated with a minimal return power; the overall shape suggests the scattering 

mechanism.  The minimum NRCS value is known as the pedestal height and can be caused by 

multiple scattering from a depolarizing scatterer in-scene, averaging of multiple samples with 

dissimilar scatterers, and system noise (Evans et al, 1988).  Examples of co-polarized signatures 

for three types of scattering are shown in Figure 3.4: isotropic scattering from a sphere (left), 

Bragg scattering (centre), and double-bounce scattering (right).  
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Figure 3.4 Co-polarized signatures for an isotropically scattering sphere (left), Bragg scattering (centre), and a 

dihedral corner reflector showing double bounce scattering (right).  Pedestal indicated on right-most plot for clarity.  

Figure modified from Zebker et al. (1987). 

The instantaneous polarization-state histogram shows the aggregated polarization state of 

scattered waves across all azimuth angles and range bins, for a known incident vertical or 

horizontal polarization.  The histogram has the same X-Y basis as the polarization signature but 

it has a count of the state of the returned waves on the z-axis.  The z-axis of the histogram is not 

fixed and is allowed to float thereby ensuring that the shape and spread of the histogram can be 

seen; the magnitude of the peaks is less important than the shape and spread.  The pattern and 

degree to which the histogram is peaked or spread over the range of χ or ψ, indicates the 

dominant received polarization state and thus the degree of depolarization.  Examples of three 

different cases are provided in Figure 3.5.  On the left is a histogram of the received state from 

vertical-transmit energy indicating that the scattered wave polarization has relatively little 

depolarization; the well-defined peak is centred in the region of the graph corresponding to 

vertical, linear polarization (χ= 0°, ψ= 0°).  The middle figure is a histogram of the received 

horizontal-transmit energy; two well-defined peaks are located in the region of the graph 

correspond to horizontal, linearly polarized radiation (χ= 0°, ψ= ±90°).  The plot on the right is 

once again the vertical-transmit energy which shows a response spread over the entire range of χ 

and ψ, indicating strong target depolarization. 
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Figure 3.5 Examples of instantaneous polarization-state histograms for vertical incident polarization (left), 

horizontal incident polarization (centre), and vertical incident polarization showing evidence of depolarization in the 

scattered wave (right).  The incident wave in all cases was linearly polarized. 

 

3.4.5 Field observations 

Backscatter measurements were made using a combination of vertical (V) and horizontal 

(H) send-receive polarization states (VV, HH, and VH).    The radar was tripod-mounted, placing 

the antenna at 2.2 m above the snow surface.  Each scan was repeated 3 times and averaged in 

order to minimize the effects of system noise.   

In situ measurements from snow pits included snow depth, density, and temperature 

measurements along with grain size estimation and stratigraphy observations.  A snowpit was 

dug and snow depth was measured with a ruler along the pit face from the air-snow interface to 

the exposed ground beneath the snow.  To measure snow density, samples were taken from the 

pit face, starting at the air-snow interface working downward, using a 100 cm
3
 cutter.  Each 

sample was weighed on an electric scale and density was then calculated by multiplying the 

sample mass by the sample volume.  Snowpack temperature was measured at 10 cm intervals 

along the pit face from the air-snow interface to the base of the snowpack using an analog probe 

thermometer.  Readings on the thermometer were allowed to stabilize for two minutes before 

recording.  Snowpack stratigraphy was observed from the pit face by brushing away loose snow 
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to help expose and distinguish softer layers from harder layers.  Layer thickness and position 

within the snowpack were measured with a ruler and recorded.  Photos were taken of the pit face 

with the ruler in-scene.    A gridded comparator card and hand lens were used to make estimates 

of grain size from snow samples which were gathered from each layer of the snowpack  by 

dislodging snow samples from the pit face with the edge of the comparator card.  The samples 

were viewed under the hand lens and the minimum and maximum extent of the average or most 

common grain in the sample, were recorded.  The sample grain type was recorded as one of the 

following: rounded, faceted, mixed snow, new snow, or depth hoar.  The hardness of the layer 

was estimated and recorded as finger, pencil, or knife referring to the ability to penetrate the 

snow layer where finger indicates the softest snow and knife indicates the hardest snow.  The 

grain size estimation procedure was completed three times per snow layer.  Note that the 

maximum extent of the prevailing snow grain measured in this method may be referred to as 

Dmax in modelling endeavours.  A meteorological station, located 500 m west of the Hergot site 

in 2013-14 and at John’s farm in 2014-15, recorded air temperature, wind speed, relative 

humidity, and solar radiation at the site; meteorological data for Englehart was sourced from the 

Earlton-Timiskaming Regional Airport (YXR), located about 7 km southeast of the study site.  

During the 2014-15 season, two Stevens Hydra Probes (50 MHz) were installed horizontally at 

depths of 5 cm in the soil at the Hergot site and John’s farm which measured soil temperature, 

moisture content, conductivity, and relative permittivity (real and imaginary components).  A 

Delta-T WET sensor (20 MHz) was used at the Maryhill and Englehart sites to measure soil 

temperature, permittivity and soil conductivity at several roving locations around each site.  

During 2013-14 soil temperature data was collected from a Stevens Hydra Probe, installed 

horizontally at a depth of 5 cm, 500 m west of the Hergot site in an adjacent field; these readings 
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were assumed to be representative of conditions at the Hergot site.  The primary purpose for the 

use of the Hydra Probes and WET sensor was to determine the timing of soil freeze-up. Weather 

data for the sites is provided in Figure 3.6.  In 2013-14, air temperatures exceeded 0°C on 

January 10, 12 and 13, February 19, 20, and 22, and March 14, 18, 19 and 21.  Soil temperatures 

remained below 0° for the entire observation period in 2013-14.  In Maryhill during the 2014-15 

season air temperatures were above 0° for much of December and then again on January 3 and 4, 

January 17 and 18, and briefly (from 15:30 to 17:45) on the afternoon of March 8.  Soil 

temperatures at the Hergot site and John’s farm were above 0° for much of December and then 

remained below 0° from January throughout the remainder of the season.  Soil temperature at the 

Zinger site was not recorded continuously but was measured at 0.2°C on December 2, 2014.  It 

was below 0°C on all subsequent measurements.  At the Englehart sites, both air and soil 

temperatures remained below 0° for the entire observation period. 
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Figure 3.6 Weather data for Maryhill 2013-14 (top), Maryhill 2014-15 (middle), and Englehart 2015 (bottom).  

Diamond symbols represent roving WET sensor readings.  Discontinuous lines indicate periods of equipment 

failure.  Englehart data provided by Environment Canada (2015). 
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During the 2013-14 season, field observations were collected on January 31, February 2, 

February 28 and March 21. On each site visit two sets of scans were performed.  In the first set 

of scans, the naturally occurring snowpack was observed at both frequencies.  For the second set 

of scans, all the snow within a 5 m by 5 m area in front of the scatterometer was excavated to 

bare soil.  The excavated area was oriented such that the scatterometer was located at the 

midpoint of one side facing towards the snow-free area.  The scans were repeated for both 

frequencies using the same parameters and positioning as before.  Because the soil temperatures 

remained below freezing during the study period, the condition of the underlying soil was 

assumed to have remained constant.  For this reason, backscatter measurements for the excavated 

sites (excluding March 21, 2014) were averaged to represent the snow-free condition. 

Observations from March 21, 2014 were excluded from this average since snow melt on the 

surface of the exposed ground resulted in water ponding, a condition that was very different from 

other excavated sites. 

In between the two sets of scans, before the snow was excavated, snow depths were 

recorded over a 10 m by 10 m area in front of the scatterometer.  The measurements were made 

in a grid with 50 cm spacing, using a Magnaprobe.  An exception to this grid spacing was made 

2 m directly in front of the scatterometer where a 1 m
2
 area was left undisturbed for the snow pit.   

In the 2014-15 season, each Maryhill site was scanned prior to snow accumulation on 

December 2 and then revisited on January 24, January 31, February 5, February 26, and March 8 

to observe a range of snow depths.  The full suite of in situ snowpack observations were made on 

these dates as well.  The Englehart scans were performed in a manner similar to those conducted 
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in the 2013-14 season whereby the natural snowpack was observed first and then excavated in 

order to scan the bare ground.  The first Englehart site (e1) was observed on February 16, and the 

second (e2) was observed on February 17; e2 was excavated and the site was re-scanned on 

February 18.  On February 19, the snowpack at e1 was re-scanned, excavated, and then scanned 

again.  A third site (e3) adjacent to e1 was also scanned on February 19; the scan of excavated 

site e1 served as a proxy to site e3 due to their adjacency and as such e3 was not excavated.  In 

situ snowpack observations accompanied the scans at each site. 

Soil roughness measurements were made at each Maryhill site in April of 2014 and 2015.  

Measurements were made in two directions in each case, relative to the range and azimuth 

direction of the scatterometer position.  The range and azimuth directions were generally parallel 

and perpendicular, respectively, to crop rows where present.  Soil roughness measurements were 

not made in Englehart however from a visual inspection they appeared similar to those observed 

in Maryhill in 2014-15 and so the study proceeded under the assumption that roughness 

conditions were similar.  In April 2014, soil roughness measurements were made using a piece of 

sheet steel marked with a 5 cm by 5 cm grid.  The steel was inserted orthogonally into the 

surface of the ground on its long edge just so there were no gaps between the bottom edge of the 

steel and the soil.  Photographs were taken and the relative height of the soil surface against the 

steel surface was observed and recorded at 5 cm intervals along the length of the steel.  This 

process was completed once in the azimuth direction and once in the range direction.  In April 

2015, a Leica MS50 Multistation was used to conduct a 3D laser scan (5 mm resolution) at each 

of the 2014-15 Maryhill sites.  Since the scan did not account for multiple returns, the point 

cloud was manually classified into ground points and non-ground points along three 8 m 
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transects each in the azimuth and range directions spanning the field of view.  RMS roughness 

values were calculated for each transect and those values in each direction were then averaged. 

3.5 Results 

3.5.1 Snowpack physical properties 

Summary conditions for snow during the observation periods are presented in Figure 3.7 

for the 2014-15 Maryhill time series observations and Table 3.3 for the 2013-14 and Englehart 

observations.  The maximum snow depth observed in Maryhill was 41 cm, on January 31 and 

February 28, 2014.  The maximum value of SWE observed in Maryhill was 165 mm on February 

28, 2014.  The maximum thickness of depth hoar within a snowpack in Maryhill was 26 cm, 

observed at John’s farm on March 8, 2015. 

 

 

Figure 3.7 Summary of 2014-15 Maryhill time series snowpack conditions.  Density error bars represent 1 standard 

deviation.  Depth hoar is abbreviated to dh. 
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Results for Englehart are presented in tabular format since a time series of observations 

was not collected. The maximum value of snow depth and SWE observed in Englehart was 67 

cm and 186 mm respectively on February 17 at e2.  This coincided with the maximum depth 

hoar thickness within a snowpack of 46 cm.  These results were the maximum observed for the 

entire study.  

Table 3.3 Summary of snowpack conditions for the 2013-14 and Englehart sites. 

 

 Soil roughness measurements are provided in Table 3.4.  The Hergot site was the 

roughest with an average RMS roughness of 4.2 cm.  This was caused primarily by the elevated 

roughness in the Azimuth direction of 6.3 cm which corresponded with the direction of the crop 

rows.  The Zinger site was the next roughest with an overall RMS value of 3.3 cm although there 

was little evidence of row orientation since RMS roughness was very similar in the range and 

azimuth direction.  John’s farm site had a range roughness of 2.2 cm which was similar to that of 

the Hergot site, but the Azimuth roughness was much less at only 3.2 cm; overall John’s farm 

site exhibited the least roughness with an RMS value of 2.7 cm.  These values indicate the soil 

was electromagnetically rough for all incidence angles according to Fraunhoffer’s criteria. 

Date Site
Snow depth         

(cm)

Depth hoar layer 

thickness (cm)

Density                

(kg m
-3

)

SWE             

(mm)

2013-2014

31-Jan-2014 NA 41 13 350 144

2-Feb-2014 NA 28 5.5 269 75

28-Feb-2014 NA 41 0 413 165

21-Mar-2014 NA 23 0 456 105

Englehart 2015

16-Feb-2015 e1 54 37 259 140

17-Feb-2015 e2 67 46 277 186

19-Feb-2015 e1, e3 55 44 263 145
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Table 3.4 RMS soil roughness measurements for Maryhill sites in the range and azimuth directions. Average RMS 

roughness is an average of range and azimuth RMS roughness. 

 

3.5.2 Backscatter response 

Comparison between Ku- and X-band backscatter and SWE for all Maryhill observations 

is shown in Figure 3.8.  These backscatter observations represent an average of the first three 

scan lines with incident angles of 35°, 38°, and 41°; whiskers represent minimum and maximum 

values.  The Ku-band observations for the 2013-14 season indicated a sensitivity to SWE for VV 

and HH polarizations, whereby backscatter increased with SWE.  No relationship was apparent 

for VH polarization.  Likewise at X-band there was no apparent relationship as the curve was 

comparatively flat.   

Maryhill observations from the 2014-15 season did not show a clear pattern.  The Ku-

band observations at the Zinger site revealed little influence of SWE on backscatter.  As SWE 

increased there was negligible change in backscatter response, which remained around -5 dB.  

The Hergot site observations showed backscatter around 0 dB for levels of SWE around 30 mm 

while uncharacteristically low levels of backscatter around -12 dB were observed near 60 mm of 

SWE.  Overall there was no discernable relationship between SWE and backscatter at this site.  

Likewise, at John’s farm, the backscatter showed no clear relationship to SWE.  The greatest 

values of backscatter, above -5 dB, were observed at 60 mm of SWE.  The lowest backscatter, 

near -10 dB, was observed near 140 mm of SWE.  At X-band, sensitivity to these levels of SWE 

appeared minimal at all sites.  As observed at Ku-band, abnormally low backscatter around -10 

dB was observed at the Hergot site for 60 mm of SWE.   

Site Range (cm) Azimuth (cm) Average (cm)

2013/2014 0.8 1.5 1.1

Zinger 3.4 3.2 3.3

Hergot 2.1 6.3 4.2

John's farm 2.2 3.2 2.7
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Figure 3.8 Comparison of backscatter and SWE for Maryhill sites.  Left-hand column (a-d) shows Ku-band 

response and right-hand column (e-h) shows X-band response. Observations for 2013-14 are given in a) and e).  

Observations from 2014-15 are given in b) and f) for the Zinger site, c) and g) for the Hergot site and d) and h) for 

John’s farm site. Dark red indicates overlap between VV and HH backscatter range. 
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Backscatter and SWE observations for Englehart are provided in Table 3.5.  No clear 

relationship with SWE could be observed from these results.  The relatively narrow range in 

backscatter indicated minimal change in response at either frequency for the range of SWE 

observed in Englehart. 

Table 3.5 Backscatter response to SWE in Englehart in 2015. 

 

In order to explore the role of depth hoar thickness in the response, it was plotted against 

SWE and backscatter in three-dimensional plots which are shown in Figure 3.9.  Observations 

which were suspected to have been influenced by vegetation or freezing rain have been identified 

and removed as outliers; these include January 24 and 31 observations at the Hergot site and 

John’s farm, and all observations from March 8, 2015.  Backscatter appeared to be a function of 

both SWE and depth hoar layer thickness, particularly at Ku-band, as backscatter increased along 

both X- and Y- axes; the largest values of backscatter occur for the largest values of both SWE 

and depth hoar thickness.  For VV and VH polarizations at Ku-band, a cluster of points can be 

seen with a depth hoar layer thickness of around 45 cm, but with SWE values ranging from the 

maximum of 186 mm to 145 mm.  Despite different SWE values, they demonstrate similar levels 

of Ku-band VV backscatter of -1.5 dB.  In this case it suggests that even as SWE increased to a 

maximum of 186 mm, the backscatter did not vary for a given depth hoar layer thickness.  The 

three-dimensional plots at X-band showed a weaker influence of SWE and depth hoar layer 

thickness on backscatter except for the cross-polarized response. 

Date Site
SWE              

(mm)

σ°  Ku-band                                               

(VV, HH, VH)

σ°  X-band                                    

(VV, HH, VH)

16-Feb-2015 e1 140 -1.60 / -2.28 / -13.77 -2.71 / -5.09 / -14.53

17-Feb-2015 e2 186 -1.79 / -4.31 / -14.39 -4.91 / -6.69 / -15.03

19-Feb-2015 e1 145 -1.44 / -1.23 / -14.37 -3.66 / -5.98 / -13.97

19-Feb-2015 e3 145 -0.79 / -1.28 / -15.01 -3.65 / -5.33 / -13.27
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Figure 3.9 Three-dimensional plots of SWE, depth hoar thickness, and backscatter for all sites except suspected 

outliers.  Left-hand column shows Ku-band response and right-hand column shows X-band response.  

3.5.3 Polarimetric response 

A time series of instantaneous polarization state histograms and polarization signatures 

for Ku- and X-band at 40° incidence for the Hergot sites are presented in Figure 3.10 and Figure 

3.11.  This incidence angle was selected for consistency with observations provided in Figure 

3.8 and since it minimizes VV reflectivity within the 34° to 40° incidence range.  On December 

2, the Ku-band histograms displayed multiple scattered-wave polarization states spanning the 

range of ellipticity and orientation angles which indicates depolarization.  By January 24, and on 

subsequent dates, the histograms showed a scattered-wave polarization state approximately 

matching that of the incident wave whereby distinct peaks in the graph were located in the 

regions associated with vertical and horizontal scattered-wave polarization for vertical and 

VV

HH

VH

dB

dB

dB
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horizontal incident-wave polarizations respectively; this indicated a reduction in the level of 

depolarization.  Pedestal heights on December 2 were around 0.4 and decreased to around 0.2 or 

less on Jan 24 and subsequent dates.  There was less observable difference between X-band 

histograms throughout the time series, however the pedestal height decreased from around 0.4 to 

around 0.2 from December 2 to January 24.  Histograms from John’s farm site were similar to 

those of the Hergot site although with a smaller range of scattered-wave polarization states on 

December 2.  Differences in Ku-band pedestal heights between dates at John’s farm were less 

than at the Hergot site, while at X-band they were similar. 

At both frequencies, histograms for the Zinger site, all 2013-14 sites, and the Englehart 

sites indicated consistent like-polarized scattered waves for both vertical and horizontal incident 

polarizations while pedestal heights of the polarization signatures ranged from 0.1 to 0.3.  Thus 

they appeared similar in shape and distribution to the histograms and polarization signatures 

shown in Figure 3.10 and Figure 3.11 for January 24, 2015 onwards.  These figures are 

provided in Appendix A. 
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Figure 3.10 Ku-band instantaneous polarization-state histograms and polarization signatures for the Hergot site.    
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Figure 3.11 X-band instantaneous polarization-state histograms and polarization signatures for the Hergot site. 
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3.6 Discussion 

3.6.1 Combining 2013-14 and 2014-15 observations 

A relationship between SWE and Ku-band backscatter was shown in Figure 3.8 for the 

2013-14 Maryhill data in which backscatter increased with SWE.  This pattern was consistent 

across the range of SWE except for an abnormally high level of backscatter for 105 mm of SWE 

observed at Ku-band on March 21, 2014.  Air temperatures above 0°C (Figure 3.6) during the 

day caused surface melt which increased ε’ of the snowpack.  This enhanced the surface 

scattering effect, similar to that which was observed by Kendra et al. (1998) in Cadillac, 

Michigan.  A snow density of around 455 kg m
-3

 measured on that day is indicative of melting 

snow and supports this interpretation (Pomeroy et al., 1998).  There was no apparent relationship 

between X-band backscatter and SWE.  The magnitude of soil scattering was unclear for this 

data however we expect minimal directional influence since the RMS values were similar in both 

directions.  

  There were no clear patterns in the 2014-15 Maryhill data.  The initial snow-free 

measurements at the 2014-15 Maryhill sites occurred on December 2.  At that time the soil was 

fluctuating around 0°C at the Zinger site, and was non-frozen at the Hergot site so it contained 

liquid water which caused an elevated backscatter response.  The low stand vegetation, 

especially at the Hergot site, likely also contributed to the increase in Ku backscatter for both the 

co- and cross-polarized response; VH backscatter was around -14 dB at the Hergot site compared 

to about -16 dB for the Zinger site and John’s farm site on December 2. 

The spread of the histograms and the elevated pedestal in Figure 3.10 indicated that 

substantial Ku-band wave depolarization was occurring at the Hergot site and John’s farm, but 

not at the Zinger site, on December 2. Figure 3.11 shows less evidence of depolarization at X-



 

64 

 

band in comparison to K-band since the histograms displayed a smaller relative spread of 

polarizations and the pedestal, while greater than subsequent dates, was less than the Ku-band 

pedestal by about 0.2 units.  On this date, there was no snow and the vegetation in the field at the 

Hergot site and John’s farm consisted of new growth and coarse stalks from an earlier harvest.  

The new growth was dense and randomly oriented, masking the row orientation in the field and 

acting as a depolarizing scatterer, marked by an elevated pedestal height and a range of ellipticity 

and orientation angles in the instantaneous polarization-state histograms.  McNairn et al. (2002) 

reported similar indication of depolarization for crop residue and senesced crops at C- and L-

band frequencies.  By January 24, nearly 15 cm of snow had fallen and the amount of 

depolarization was less than on December 2.  The plots in Figure 3.10 reflect this change with a 

decrease in the spread of the polarizations in the histograms and a reduced pedestal height in the 

polarization signature (McNairn et al., 2002).  We think the snow had compressed the new 

growth into a homogenous layer beneath the snow effectively removing the depolarizing 

scatterer from the scene.  The remaining vertical stalks did not depolarize the incident waves.  

Another possible explanation is that as the season progressed, the live vegetation senesced, and 

began to dry and freeze as the snow accumulated and air temperatures decreased.  Such an 

occurrence would theoretically mean that the vegetation would become more transparent to the 

microwaves (McNairn et al. 2001).  A similar explanation was suggested by Yueh et al. (2009) 

who observed a decrease in the radar response, at Ku-band, of coniferous trees throughout a 

winter observation period.  However, McNairn et al. (2001) found that senesced corn and barley 

residue still contained water in the fall and influenced radar backscatter, but freezing would 

likely reduce this influence through a reduction in ε’ as liquid water within the vegetation froze.  

Because no measurements of the vegetation condition such as water content, or ε’, were made, 
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we cannot say with certainty what caused this effect.  Similar levels of depolarization were not 

observed at the Zinger site, Engelhart sites, or in the 2013-14 data because these sites were not 

vegetated.  From these observations it is suggested that vegetation can play a strong role as a 

depolarizing scatterer within the early season snowpack at these frequencies.  Further 

investigation of this feature is needed to fully understand this issue. 

Although the scattered-wave depolarization had decreased after December 2 at the 

Hergot site and John’s farm, the backscatter still remained notably high on January 24 and 

January 31.  While the snowfall prior to the January 24 observation may have compressed the 

new growth, the coarse older stalks remained standing.  Furthermore, micro-wells had developed 

around each stalk which left much of the stalks exposed despite the 15 cm of accumulated snow.  

These exposed stalks caused the elevated backscatter response seen on January 24.  By January 

31 additional snow had accumulated, burying more of the stalks and filling in the micro-wells 

which corresponded with a decrease in backscatter.  By February 5, the vegetation was 

completely covered by snow and the backscatter decreased again.  However the vegetation was 

just barely covered and so likely influenced backscatter from within the snowpack.  Figure 3.12 

shows the progression of accumulation and the associated Ku-band backscatter over this time 

period. 
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Figure 3.12 Progression of snow accumulation at the Hergot site on January 24 (top left), January 31 (top centre), 

and February 5 (top right), compared with Ku-band backscatter. 

Observations on March 8, 2015 produced low backscatter at all Maryhill sites.  Preceding 

the March 8, 2015 observation a freezing rain event occurred which deposited a 5 mm ice layer 

on top of the snowpack.  The dielectric contrast between air and ice created a surface scattering 

effect at the air-ice interface. However, we suspect the smooth ice surface combined with the off-

nadir incidence angles enhanced forward scattering of the waves leading to a reduction in 

backscatter observed at both frequencies as shown in Figure 3.8 at 125, 59, and 141 mm SWE 

for the Zinger site, Hergot site, and John’s farm, respectively. 

SWE (mm)
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The elevated RMS soil roughness at the Hergot site was caused by a regular series of 

directional troughs and furrows.  Surface roughness was thereby enhanced in the direction 

perpendicular to the crop rows which can impact co-polarized radar backscatter (McNairn et al., 

2001). The scatterometer was positioned such that the look direction was parallel to these rows 

so that scanning would be done across the rows and the impacts of this roughness would be 

averaged in each scan line and common to each incidence angle. Therefore the effect on the data 

of the directional nature of the crop rows was minimized.  A strong directional nature in the soil 

features was not present at other sites, which is common in such crops since they are generally 

not cultivated annually and allowed to grow for several years, resulting in relatively smooth 

surface characteristics (Ulaby et al., 1975). 

When all of the data points, excluding those influenced by vegetation, freezing rain, or 

non-frozen soil as discussed above, were plotted on the same backscatter-SWE curve as 

illustrated in Figure 3.13, a relationship between backscatter and SWE at Ku-band was evident; 

such relationship was not apparent at X-band.  Furthermore results from the 2014-15 season 

replicated and confirmed results from the 2013-14 season. 
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Figure 3.13 Multiple observations plotted together.  Maryhill data are represented by transparent boxes while 

Englehart data are coloured blue.  Only VV polarization is shown for clarity. 

Figure 3.13 also highlights sensitivity of Ku-band signals to SWE from 0 to 140 mm.  

Beyond this level of SWE, backscatter no longer increased, but stayed relatively constant around   

-3 dB indicating a loss of sensitivity.  This suggested that Ku-band observations can only detect 

snow accumulation up to about 140 mm of SWE.  Figure 3.9 replicates this result in terms of the 

backscatter response to SWE, but while SWE increases beyond 140 mm, depth hoar thickness 

stays relatively constant.  This suggests that the backscatter was responding more strongly to 

depth hoar in the snowpack than to SWE.  Had the depth hoar layer continued to grow in terms 

of both grain size and layer thickness, backscatter likely would have continued to increase.  Such 

an outcome is largely theoretical however since an overall increase in snow depth would 

decrease the thermal gradient required for depth hoar formation and growth.  Conditions for 

Ku

X
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depth hoar development are typically more favorable in low-accumulation snowpacks which are 

exposed to a stronger temperature gradient than a thicker snowpack in the presence of the same 

air and basal temperatures, and therefore can lead to more depth hoar development than in a 

thicker snowpack which will be exposed to a weaker temperature gradient under the same 

conditions (Sturm & Benson, 1997).  Revisiting Figure 3.7 we see that the depth hoar layer 

thickness grew throughout the season at the Hergot site and John’s farm, but stayed relatively 

constant at the Zinger site.  Accounting for the effects of vegetation and freezing rain at the 

Hergot site and John’s farm, the backscatter may have been responding to the developing depth 

hoar layer.  Similarly the relatively flat relationship in Figure 3.8 for the Zinger site may have 

corresponded with a depth hoar layer that remained at a relatively constant thickness. 

Under the suggestion that depth hoar was driving the radar response, the observations 

from all sites were reordered by density-weighted grain size (DWGS) instead of by SWE, as 

shown in Figure 3.14.  DWGS was used because it allows us to account for the mass of 

scatterers per known volume in the layer and not just the layer thickness thus conserving mass 

and providing a truer indication of each layer’s scattering properties.  In order to calculate the 

DWGS, a weighting for each individual layer was determined from the ratio of layer density to 

the sum of densities for all layers and was then applied to the grain size of each corresponding 

layer.  The density-weighted grain size for each layer was then summed to provide a DWGS 

representative of the entire snowpack.  See Appendix B for a sample calculation of DWGS. 
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Figure 3.14 Observations ordered by DWGS.  Blue rectangles represent VV polarization and white rectangles 

represent VH polarization.  HH polarization was omitted for clarity but was similar to VV polarization.  Outliers 

remain in the dataset and are coloured red in the Ku-band plot. 

The relationship between DWGS and backscatter at Ku-band appears ambiguous.  The 

influence of vegetation, non-frozen soil, and ice rain is still present in the co- and cross-polarized 

response.  At X-band however, the influence of vegetation, non-frozen soil, and ice rain appears 

much less prevalent and there is an apparent relationship between grain size and backscatter in 

both the co- and cross-polarized response.  Backscatter appeared to consistently increase with 

grain size and did not level off at any point as it did in the SWE plots.  This indicates sensitivity 

across the entire range of grain size.  Taken together with the surface plots in Figure 3.9, this 

strengthens the argument that grain size has a stronger influence on backscatter than SWE. 

Ku

X

DWGS (mm)
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3.6.2 Using MEMLS3-A to investigate the influence of grain size 

To investigate the influence of grain size on backscatter, the Microwave Emission Model 

of Layered Snowpacks model, version 3, adapted for active microwave backscatter (MEMLS3-

A), was used.  MEMLS-3A is an electromagnetic model that uses a six-flux theory to describe 

radiative transfer through an n-layer snowpack in the frequency range of 5 – 100 GHz 

(Wiesmann & Mätzler, 1999).  The model, originally developed for passive microwave 

applications, uses Kirchoff’s law to derive reflectivity (r) from emissivity (e) where r = 1 – e 

(Proksch et al., 2015b).  Input parameters explicitly characterize each layer in terms of layer 

thickness, temperature, volume fraction of liquid water, density, salinity, and exponential 

correlation length (pex).  However field observations in this study used Dmax to estimate grain size 

so a conversion was required.  Durand et al. (2008) found a linear relationship between pex and 

the natural logarithm of Dmax for volume fractions (v) > 0.2, where v is defined as the ratio of the 

densities of snow and ice.  For v ≤ 0.2, pex is 0.05 mm and was determined by averaging pex 

values in a test dataset for observations where v ≤ 0.2.  The relationship follows, where a0 and a1 

are best-fit parameters valued at 0.18 and 0.09: 

𝑝𝑒𝑥 {
𝑎0 + 𝑎1 𝑙𝑛 𝐷𝑚𝑎𝑥  ± 0.03 𝑚𝑚,      𝑣 > 0.2 𝑎𝑛𝑑 𝐷𝑚𝑎𝑥 > 0.125 𝑚𝑚
0.05 ± 0.015 𝑚𝑚,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

  (3.2) 

Three special cases were investigated using MEMLS3-A with a simplified snowpack: the 

first two cases (case 1 and case 2) used a two-layer snowpack consisting of a large-grained layer, 

representing depth hoar, and a small-grained layer while the third case used a single layer 

snowpack.  Operational parameters were matched to those of the study.  Snowpack 

parameterization for these tests is provided in Table 3.6.  Layer temperature, density and grain 

size (Dmax) were matched to common values observed in Englehart.  The large-grain size 
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represented by Dmax of 3.5 mm in cases 1 and 2 was a commonly observed value of Dmax for 

depth hoar.  The small-grain size represented by Dmax of 0.5 mm was chosen to represent a clear 

distinction from the large-grained layer, and was also commonly observed in non-depth hoar 

layers in Englehart.  The conversion from Dmax to pex was completed using the method of Durand 

et al. (2008).  In case 1, the snowpack depth was held constant along with all other parameters 

except for the thickness of the large-grained layer, which was allowed to increase iteratively at 

the expense of the small-grained layer.  This test mimicked the development of depth hoar within 

a snowpack of a fixed depth and was designed to test the radar response to a growing depth hoar 

layer.  In case 2, the thickness of the large-grained layer was held constant along with all other 

parameters except for the thickness of the small-grained layer which was allowed to grow 

iteratively, effectively increasing the overall depth of the snowpack.  This test mimicked an 

increase in depth of the snowpack while the depth hoar layer remained at a constant thickness 

and was designed to test the radar response to an increase in SWE with no change in the depth 

hoar layer.  In case 3 the grain size of a single layer snowpack was iteratively increased from a 

Dmax of 1 to 4 mm in four steps.  This test investigated the radar response to increasing grain size 

only.      
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Table 3.6 MEMLS3-A parametrization for three cases.  Volumetric fraction of liquid water and salinity were held at 

0. Dmax was converted to pex using the method by Durand et al. (2008) for implementation in the model. Layer 

number 1 represents the lower layer in the snowpack and layer number 2, where present, represents the upper layer.  

Depth hoar is abbreviated to DH. 

 

MEMLS3-A predictions for case 1 and case 2 are shown in Figure 3.15.  A noticeable 

increase in backscatter occurred across all incidence angles at both frequencies, with the first 

increase in depth hoar layer thickness.  Ku-band backscatter increased by nearly 5 dB while X-

band backscatter increased by nearly 4 dB.  For subsequent increases in thickness, backscatter 

continued to rise but the difference was smaller with 2 dB or less separating each subsequent 

increase in thickness.  The pattern remained consistent across all incidence angles.  In case 2 

there was virtually no difference in backscatter at either frequency as SWE increased. 

Case Step
Layer 

Number

Temperature 

(K)

Liquid Water                        

(%)

Density      

(kg m
-3

)

Layer 

Thickness                        

(cm)

Salinity 

(ppm)

p ex 

(mm)

D max                                                 

(mm)

1 1 1 270 0 230 1 0 0.29 3.5

2 250 0 300 59 0 0.11 0.5

2 1 270 0 230 15 0 0.29 3.5

2 250 0 300 45 0 0.11 0.5

3 1 270 0 230 30 0 0.29 3.5

2 250 0 300 30 0 0.11 0.5

4 1 270 0 230 45 0 0.29 3.5

2 250 0 300 15 0 0.11 0.5

5 1 270 0 230 59 0 0.29 3.5

2 250 0 300 1 0 0.11 0.5

2 1 1 270 0 230 15 0 0.29 3.5

2 250 0 300 1 0 0.11 0.5

2 1 270 0 230 15 0 0.29 3.5

2 250 0 300 15 0 0.11 0.5

3 1 270 0 230 15 0 0.29 3.5

2 250 0 300 30 0 0.11 0.5

4 1 270 0 230 15 0 0.29 3.5

2 250 0 300 45 0 0.11 0.5

5 1 270 0 230 15 0 0.29 3.5

2 250 0 300 60 0 0.11 0.5

3 1 1 260 0 230 50 0 0.18 1.0

2 1 260 0 230 50 0 0.24 2.0

3 1 260 0 230 50 0 0.28 3.0

4 1 260 0 230 50 0 0.31 4.0
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Figure 3.15 MEMLS3-A backscatter predictions for case 1 and case 2.  VV (black line) and VH (blue line) 

polarizations have been shown for Ku- and X-band frequencies.  HH polarization has been omitted for clarity but 

was similar to VV polarization. 

 MEMLS3-A predictions for case 3 are shown in Figure 3.16.  The pattern is similar to 

that of case 1 for both frequencies.  With the first increase in grain size there was a 3 dB increase 

in backscatter at both frequencies.  Subsequent increases in grain size resulted in increasingly 

smaller increases in backscatter ranging from less than 2 dB to nearly 1 dB.  This was consistent 

across all incidence angles.  

 

Figure 3.16 MEMLS3-A prediction for case 3.  Grain size of a single layer pack was incremented in four 1 mm 

steps.  Black line represents VV polarization while blue line represents VH. 

Incidence Angle (degrees) Incidence Angle (degrees)

CASE 1 – Ku CASE 1 – X

CASE 2 – Ku CASE 2 – X

CASE 3 - Ku CASE 3 - X
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 The combined results of the three special cases support the argument that the backscatter 

response was more heavily influenced by grain size than by SWE alone.  From the model 

observations, the influence of large-grained layer thickness appeared to be slightly stronger than 

that of grain size alone, when all other variables were held constant.  This points to the 

importance of the relative number of scatterers interacting with the waves since the number of 

scatterers would increase with an increase in layer thickness, however as grain sizes continue to 

grow, approaching λ, Mie scattering could produce a stronger effect on backscatter.  While these 

results highlight the relative importance of grain size compared with SWE in terms of radar 

response, they do not suggest the mechanism behind their influence.  As a point of clarification, 

note that MEMLS3-A was parameterized based on grain size only and not by grain type so it 

says nothing about the effects of grain type or shape.  In other words we cannot say whether 

depth hoar itself has caused these model predictions, but rather spherical snow grains of a 

particular size. This poses the question of what microstructural aspect is actually causing this 

response:  is it strictly grain size or does the shape, and number of scatterers, have an influence 

as well?  

3.6.3 Sources of error 

 The results of case 1, 2 and 3 in Figure 3.15 and Figure 3.16 underscore the relative 

importance of grain size in terms of active microwave remote sensing, and therefore highlight a 

critical limitation of this study.  In the field a gridded comparator card and hand lens were used 

to observe Dmax as a proxy for grain size.  Results from this subjective method vary with the 

observer and can be inaccurate (Painter et al., 2007).  There was also error associated with the 

conversion from Dmax to pex as seen in Figure 3.17. If we consider only that error, specified in 

(3.2), MEMLS3-A predicts a difference of nearly 3 dB at Ku-band for the co-polarized vertical 
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response and over 2.5 dB for the cross-polarized response for a Dmax of 1 mm; magnitudes are 

slightly less at X-band.  The error introduced by the conversion is likely larger than that 

introduced by in-field  Dmax measurements and thus underscores the need for a better relationship 

between Dmax and pex or a more accurate field method for estimating grain size (Durand et al., 

2008). 

 

Figure 3.17 Effects of grain size error introduced by conversion from Dmax to pex. 

Uncertainty in grain size estimation was also introduced with the assumption that grain 

characteristics observed at one snow pit adjacent to the field of view were representative of the 

entire scene since large spatial variability can exist on the scale of metres (Marshall et al., 2007; 

Sturm et al., 2004).  Our sites were generally in exposed areas, devoid of drifts and other visible 

small-scale features; for this reason, we suspect the snowpack characteristics in the field of view 

were relatively homogeneous therefore minimizing the impacts of spatial heterogeneity.  A more 

rigorous approach would employ trench-style snow pit observations as in Tape et al. (2010). 

Snowpack characterization provided another source of error in terms of identifying the 

position of distinct snow layers, especially those consisting of depth hoar.  There was often no 
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clear delineation between layers.  Instead, they were often separated by a gradient of grain types 

and sizes and so determining layer position required a subjective judgement from the observer.  

This becomes especially important when parameterizing a model such as MEMLS3A with 

snowpit observations.  Given the likelihood of error introduced at this step, parameterizing a 

model with snowpit observations could result in substantial error. 

In terms of overall error of the study, we need to include the error introduced by the UW-

SCAT measurements and post-processing procedures.  The combined systematic and random 

post-processing error associated with UW-SCAT was estimated at ± 2.0 dB (King et al., 2015).  

Uncertainty introduced during the scatterometer observations was generally caused by human 

error which included improper levelling of the equipment, inaccurate sighting of the in-scene 

calibration target, and inaccurate measurement of sensor height and distance to the calibration 

target.  Another source of error in the study involved the accuracy of equipment positioning 

throughout the season.  Efforts were made, using markers at the sites and GPS receivers, to 

ensure accurate positioning of the equipment throughout however there was likely some lateral 

shift in platform position in time; positional error was estimated at about ± 5 cm in each lateral 

direction.  Because of the signal averaging in the azimuth direction, this error likely had a 

minimal impact on observations.  Despite these sources of error and uncertainty, the results from 

this study appear reasonable when compared to output from MEMLS3-A and previous studies; 

they also proved to be repeatable over the two years of observations. 

3.7 Conclusion 

A range of SWE from 0 to 186 mm was observed using a ground-based polarimetric 

scatterometer at Ku- and X-band frequencies over two winters and 26 observations in Maryhill 

and Englehart, Ontario.  Results from the 2014-15 season replicated and confirmed results from 
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the 2013-14 season.  From these observations it appeared that that Ku-band backscatter increased 

with SWE up to 140 mm after which point reduced sensitivity was observed, while X-band did 

not respond to these levels of SWE.  However, an investigation of the seasonal depth hoar 

evolution suggested that the backscatter was responding to development of the depth hoar layers 

instead of SWE and that once growth of those layers ceased, backscatter no longer increased.  

MEMLS3-A, an electromagnetic model, was used to test the radar response to increasing grain 

size within a simplified snowpack.  Results of this test showed that these frequencies were more 

strongly influenced by an increase in grain size than an increase in SWE.  Through evaluation of 

the polarimetric response in these conditions vegetation was found to play a strong role as a 

depolarizing scatterer within the early season snowpack; increased snow accumulation decreased 

depolarization to levels common with non-vegetated sites.  

MEMLS3-A also highlighted a major source of uncertainty in this study.  Grain size was 

shown to exert considerable control on the radar response and it follows that accurate estimation 

of this parameter in the field is paramount.  Field estimates of grain size were subjective and 

likely introduced considerable variance from the true value. 

Overall, these results suggest that the Ku- and X-band frequency respond as strongly, if 

not more so to the presence and development of depth hoar within the snowpack than to 

accumulation of SWE. With this in mind future work should be directed at exploring the nature 

of the relationship between depth hoar and backscatter at these frequencies with respect to the 

relative magnitude of the effects of grain size and shape: is the elevated backscatter more 

strongly influenced by the increase in grain size, the faceted shape of depth hoar crystals, or 

some combination thereof?   
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Chapter 4 Thesis conclusions 

This thesis explored the response of Ku- and X-band microwaves to a series of seasonal, 

mid-latitude snowpacks in agricultural fields in Maryhill, and Englehart Ontario during the 

winters of 2013-14 and 2014-15.  In order to quantify and characterize the microwave response, 

26 observations were made over a range of snow depths up to 67 cm, corresponding to 186 mm 

of SWE.  As in earlier studies, an apparent relationship between Ku-band backscatter and SWE 

was observed but sensitivity was reduced beyond 140 mm of SWE, with no appreciable increase 

in backscatter up to the maximum observed value.  The loss of sensitivity contrasted with the 

theory that supported penetration in these conditions beyond the observed snow depths.  It is 

suggested, therefore, that other mechanisms were driving the response.  A comparison of the 

seasonal evolution of depth hoar with backscatter revealed an apparent relationship between the 

DWGS of a snowpack and backscatter at both frequencies.  However, while this relationship was 

more apparent at X-band, the effects of underlying vegetation, ice layers, and non-frozen ground 

in the early season tended to mask this relationship at Ku-band.  MEMLS3-A was used to 

simulate the development of depth hoar and non-depth hoar layers in three simple scenarios 

designed to investigate the radar response to grain size.  Backscatter was shown to increase, at 

both frequencies, when the thickness of the depth hoar layer was increased, at the expense of the 

non-depth hoar layer, and also when the grain size of a single-layer snowpack was iteratively 

increased.  Backscatter did not substantially increase when only the thickness of the non-depth 

hoar layer was increased.  Overall these simulations supported the hypothesis that grain size had 

more influence over the backscatter response than SWE, but it was not clear whether it was the 

grain size, the thickness of the depth hoar layers, or the grain shape (unaccounted for in the 

model) that was driving this effect. 
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The polarimetric response of the snowpack in this environment was investigated and 

found to yield important information that was not apparent from backscatter alone.  The use of 

polarimetric data was shown to be a useful tool for understanding microwave interactions with a 

target especially in terms of depolarization. Using polarimetric data, the early season response of 

dense, low lying subnivean vegetation was identified in the winter of 2014-15.  Early season 

depolarization along with elevated backscatter was observed in the presence of dense vegetation 

in and beneath the snowpack, especially at Ku-band.  As snow accumulated, much of the 

vegetation was matted down and its influence on depolarization and backscatter was tempered.  

The backscatter and amount of depolarization subsequently returned to levels common to other 

non-vegetated sites observed in the study.  Further use of the polarization histograms and 

signatures could include investigation of wave interaction with changing snow microstructure 

and stratigraphy.  Furthermore, the shape of the polarization signatures could provide 

information on wave interaction but was not exploited in this thesis. 

Sources of uncertainty in this study stemmed largely from human error, specifically in the 

estimation of grain size in the field.  Methods such as the use of SMP combined with multiple 

grain size estimations in snow pits could have improved the accuracy of the estimations.  Other 

sources of human error likely resulted from measurements of system height and distance to the 

in-scene calibration target.  Although positional inaccuracy of the scatterometer with each site 

visit contributed to the overall error, these impacts were minimized by averaging across each 

azimuth scan.  Error associated with post-processing of the radar data was estimated at ± 2.0 dB.  

Despite these sources of error, the results appeared appropriate when compared to other studies, 

and were repeatable from one year to the next. 
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The results of this thesis give direction to future studies on the interaction of snow and 

Ku- and X-band radar.  The effects of grain size and shape on the radar return need to be better 

understood and separated from each other. Research should continue to focus on these 

microstructural aspects and their inter-relationships to determine whether the increase in 

observed backscatter was caused simply by an increase in grain size or if snow layer morphology 

and orientation of depth hoar grains in the snowpack exerts a significant controlling influence.  

The field data set collected in this thesis, in conjunction with electromagnetic models such as 

MEMLS3-A, can provide a starting point to do so.  
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APPENDIX 
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Appendix A  

A  Polarization histograms and signatures 

Instantaneous polarization-state histograms and polarization signatures at Ku- and X-

band frequencies for all sites and dates are provided in the following figures.  A detailed 

explanation of figure interpretation is provided in section 3.4.4. 
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Figure A 1 Polarization histograms and signatures for Ku-band, 2013-14 season. 
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Figure A 2 Polarization histograms and signatures for X-band, 2013-14 season. 
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Figure A 3 Polarization histograms and signatures for Ku-band, 2014-15 season, Zinger site. 
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Figure A 4 Polarization histograms and signatures for X-band, 2014-15 season, Zinger site. 
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Figure A 5 Polarization histograms and signatures for Ku-band, 2014-15 season, John's farm. 
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Figure A 6 Polarization histograms and signatures for X-band, 2014-15 season, John's farm. 
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Figure A 7 Polarization histograms and signatures for Ku-band, 2014-15 season, Englehart. 
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Figure A 8 Polarization histograms and signatures for X-band, 2014-15 season, Englehart. 
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B  Sample calculation for density-weighted grain size (DWGS) 

This sample calculation shows the procedure used to calculate DWGS.  Data used in this 

calculation is for demonstration only and does not represent observed conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer Number Layer Density         

(kg m
-3

)

Long Axis Grain 

Size (mm)

Calculation Density Weighting  

(unitless)

Calculation DWGS per Layer 

(mm)

1 200 0.5 200 / 1290 = 0.155 0.5 X 0.155 = 0.08

2 240 0.8 240 / 1290 = 0.186 0.8 X 0.186 = 0.15

3 300 1 300 / 1290 = 0.233 1 X 0.233 = 0.23

4 220 2 220 / 1290 = 0.171 2 X 0.171 = 0.34

5 330 3 330 / 1290 = 0.256 3 X 0.256 = 0.77

SUM= 1290 SUM = 1.000 SUM= 1.57

TOTAL DWGS  (mm)= 1.57
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