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Abstract

Recent advances in Information Extraction, Linked Data Management and the Se-
mantic Web have led to a rapid increase in both the volume and the variety of publicly
available graph-structured data. As more and more businesses start to capitalize on graph-
structured data, data management systems are being exposed to workloads that are far
more diverse and dynamic than what they were designed to handle. In particular, most
systems rely on a workload-oblivious physical layout with a fixed-schema and are adaptive
only if the changes in the schema are minor. Thus, they are unable to perform consistently
well across different types of workloads.

This thesis introduces fundamental techniques for supporting diverse and dynamic
workloads in RDF data management systems. Instead of assuming anything about the
workload upfront, these techniques allow systems to adjust their physical designs as queries
are executed. This includes changing the way (i) records are clustered in the storage system,
(ii) data are organized and indexed, and (iii) queries are optimized, all at runtime. The
thesis proceeds with a discussion of the challenges that have been encountered in imple-
menting these ideas in a proof-of-concept prototype called chameleon-db, and it concludes
with a thorough experimental evaluation.
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Chapter 1

Introduction

The Resource Description Framework (RDF) is a standard for conceptually describing data
on the Web [125,170], and SPARQL Protocol and RDF Query Language (SPARQL) is the
query language for RDF [159].

Advances in the Semantic Web [39,173] and Linked Data Management [102, 103, 171],
together with the proliferation of very large, heterogeneous RDF datasets such as those
in the Linked Open Data (LOD) cloud [12,13] are contributing to the increase in both
the quantity and the variety of Web applications that rely on the SPARQL interface to
query RDF data [104,111]. Thus, the demand for high-performance RDF data management
systems is increasing. However, despite advances in RDF data management [06,16,48,55, 74,

, 180, 188,201], existing systems are still unable to achieve consistently good performance
across different types of SPARQL workloads [18].

The problem is that, with increasing diversity in Web applications, workloads that
RDF data management systems service are becoming far more diverse [30,43,71] and far
more dynamic [121] than what these systems were designed to support [19]. Specifically,
(i) web applications that are supported by RDF data management systems are far more
varied than conventional relational applications [13], (ii) data that are being handled are
far more heterogeneous [71], and (iii) SPARQL is far more flexible in how triple patterns
(i.e., the atomic query unit) can be combined [30], which all contribute to structural and
data-driven diversity [18]. For example, different parts of the database can be queried
with different query structures all within the same workload, which can be (i) linear (e.g.,
Figure 1.1a), (ii) star-shaped (e.g., Figure 1.1b), (iii) snowflake-shaped (e.g., Figure 1.1¢),
or (iv) an even more complex combination of structures, each requiring a different physical



(a) Q1 (b) @2 (c) Qs
Figure 1.1: Sample SPARQL queries

optimization such as a different type of index.! Likewise, some queries in the workload

can be very selective while the others involve aggregation and are not selective at all,
requiring a completely different physical representation, which is now a well-understood
problem for SQL and has led to the introduction of row-stores for Online Transaction
Processing (OLTP) and column-stores for Online Analytical Processing (OLAP). Further-
more, hotspots in RDF, which denote the RDF resources that are frequently queried, have
fluctuating phases of popularity. For example, an analysis over real SPARQL query logs
reveal that during one week intervals before, during and after a conference, the popularity
of the RDF resources related to that conference can significantly peak and then drop [124].

Under such diverse and dynamic workloads, queries for which a system performs poorly
are inevitable. Moreover, experiments in this thesis demonstrate that these problematic
queries may become so frequent in some workloads that the overall performance of the
system for that workload is reduced, even causing the system to time-out. To make matters
worse, this deficiency has not been thoroughly revealed in performance studies because
benchmark workloads do not truly capture this diversity and dynamism [15].

The argument of this thesis is that conventional methods used in physical RDF database
design are no longer adequate for the emerging types of SPARQL workloads. Specifically,
most of the existing RDF data management systems rely on a workload-oblivious design

! RDF and SPARQL are described in detail in Chapter 2. For now, it is sufficient to note the following:
(i) RDF logically represents data as subject-predicate-object (s,p,o0) statements called triples, (ii) basic
building block of SPARQL queries are triple patterns of the form (8, p, 6), where §, p or 6 can be variables;
and (iii) the semantics of SPARQL query evaluation is to find bindings for these variables in the RDF
data.



with a fized physical representation, and none of these systems can dynamically update
their physical representation or switch to a better one at runtime as the workload changes.
Moreover, techniques such as automatic (physical) schema design [10, 11,37,62, 92 135,

], materialized view selection [50, 86, 94], self-tuning databases [52,60] and database
cracking [05, 113—-115] are either offline or scalable at runtime only if the proposed changes
in the physical schema of the database are minor. However, the diversity and dynamism in
emerging SPARQL workloads may require global changes in the physical schema and the
design of the database. For example, it may be necessary to switch from a row-oriented
representation to a columnar representation at runtime (i.e., within minutes), but this is
not possible with existing solutions [19].

More specifically, existing view materialization techniques [56, 86, 94] are not truly
runtime-adaptive. In fact, computing the materialized views alone can take more than
half an hour as reported by experiments [36]. Conventional techniques in self-tuning
databases [52,60] are not scalable, either. The problem is that these techniques try to
tune the database aggressively. That is, if an index needs to be built, it will be built over
the whole table, or if an index needs to be dropped, the whole index will be dropped.
In that respect, database cracking [05, 113—-115] offers a more scalable solution because
tuning is lazy. That is, only very small chunks of the database are tuned at each tuning
step. On the other hand, database cracking is applicable only to in-memory arrays in a
column-store, and a much wider spectrum of solutions are needed for RDF systems. In
contrast, this thesis proposes techniques for workload-aware and runtime-adaptive RDF
data management.

This chapter is organized as follows. Section 1.1 discusses the problems with the phys-
ical design of existing RDF data management systems. Section 1.2 presents a vision for
developing workload-aware and runtime-adaptive RDF data management systems; and
Section 1.3 outlines the scope of this thesis, in particular, the assumptions that are taken,
a list of the techniques that have been developed so far to realize this vision, as well as the
challenges that are yet to be addressed.

1.1 Problems of Conventional Physical Design

RDF is a schema-free data model in which data are logically represented as subject-
predicate-object (s, p,0) statements called triples [125] (e.g., Figure 1.2a—1.2b). The RDF
data model does not explicitly enforce a schema on the data even when the data may be im-
plicitly structured. This flexibility makes publishing and linking data across heterogeneous
domains much easier, which is an important reason why the LOD cloud has been able to
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Figure 1.2: Sample RDF Dataset and its Graph Representation
achieve data integration at a very large scale [13]. On the downside, RDF’s flexibility comes

at a price: without the schema of the data known upfront, physical RDF database design is
difficult, which has led to the development of multiple competing physical representations.

One option of physically representing RDF data is to use a single large table with only
three attributes: s, p and o [55] (Figure 1.3a). As a slight variation of this representation,
another option is to maintain multiple copies of the table, where each table has a clustered
index that implements a different sort-order [34, , , 186]. Tt has also been argued
that for different workloads, grouping data can provide performance benefits [16, 175, 185].
Therefore, two other representations were developed: (i) grouping-by-predicates, where
the RDF database is partitioned into two-column tables (one table per predicate) with
the tables being stored in a column-store [0, 34] (Figure 1.3b); and (ii) grouping-by-
entities, where implicit relationships within the data are determined in advance (either
as a manual or automated process) to compute a relational schema, and data are mapped
to an instantiation of this schema [16, 188] (Figure 1.3c). Another alternative is to rely on
the native graph structure of the RDF data [18, 106, 109,201] (e.g., Figure 1.2¢). In this
case, grouping-by-graph vertices, whereby edges in the RDF graph are grouped based
on their incidence on a vertex, is a feasible physical representation (Figure 1.3d).

RDF data management systems, whether single node [0, 34, 46,48 55, 74,100, 148, 186,
,201] or distributed [121], rely on one of the above physical representations (or their
slight variations); however, all of these representations are workload-oblivious and each
representation has its shortcomings. Furthermore, none of the existing systems can dy-
namically switch to a better physical representation at runtime as the workloads change.
For systems like RDF-3z [118] and gStore [200], switching to a new representation is not
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an option because that would require redesigning and reimplementing the DBMS code
from scratch. For systems like Virtuoso [71] and DB2-RDF [10], which rely on the re-
lational representation, dynamically mapping the data to a new relational schema is not
practical due to the overhead of updating the physical design, where conventional self-
tuning techniques [52, 60] are not scalable—let alone the fact that these systems cannot
switch to a column-oriented physical representation. Consequently, under diverse and dy-
namic workloads, systems suffer from three major performance barriers: (i) physical data
fragmentation, (ii) suboptimal pruning by the indexes, and (iii) processing of unnecessary
intermediate result tuples.

1.1.1 Physical Data Fragmentation

In all of the four workload-oblivious representations in Figure 1.3, random I/O due to
fragmentation is inevitable for at least some type of queries. Consider ). In the single
table representation, the results of the triple pattern (?y, 7b, 7z) in @1 are fragmented across
the table (i.e., indicated by the colored triples in Figure 1.3a). Since this table is clustered
on disk according to attribute S, data are also physically fragmented, which would also be
true for any other index that implements a different sort order such as the indexes in RDF-
3x. In the columnar representation, these data are fragmented across multiple columns such
that they would actually be stored in different files (Figure 1.3b). In the adjacency list
representation, vertices vy, vog, Vo5 are fragmented across the hash buckets (Figure 1.3d),
hence, similar arguments can be made about physical layout. Whether data relevant to
this query are fragmented in the relational representations depends on the physical schema
of the database (Figure 1.3c), which is determined, by current techniques [16], based on
the entities in the dataset but not the workload.

1.1.2 Suboptimal Pruning by the Indexes

How data are grouped together impacts the natural choice of indexing. For example, in the
adjacency list representation, triples that are incident on the same vertex are clustered. In
other words, if two triples can be joined on their subject-subject (SS) or object-object (OO)
attributes, they must also be placed within the same list. SS and OO joins are the only two
types of joins necessary for answering star-shaped queries; therefore, an index built across
the adjacency list will have a clear advantage for star-shaped queries. As a case study,
consider gStore [201], which creates a signature entry for each vertex in the adjacency list
based on the corresponding values in the list, and stores these signatures in a VS-tree for



efficient lookup. Then, given a star-shaped query such as ()5 in Figure 1.1b, which has three
bound predicate patterns (i.e., A, B and ('), gStore can easily locate those vertices whose
incident edges satisfy all three patterns—in this case, vy and vg (Figure 1.3d). Contrast
this to RDF-3z [1158] that indexes the large SPO table on six combinations of attributes
(i.e., s-p, s-0, p-S, p-o, 0-s, 0-p), but these indexes can tell only which triples contain A or
B or C. To find out that only the stars centered at vy and vg satisfy all three patterns in
the query, the joins need to be computed on the fly (cf., Figure 1.4a).

1.1.3 Processing of Unnecessary Intermediate Result Tuples

In the relational representations, depending on how data are organized into tables, some
queries need to be decomposed, potentially resulting in the processing of unnecessary
intermediate tuples. In case of the single table data organization (and its variants used
in RDF-3z), every query needs to be decomposed into its triple patterns, where each
triple pattern is evaluated against the large table and the results are self-joined. In this
process, some intermediate tuples may not be needed for the computation of the final
results. Although runtime optimizations such as sideways information passing [117, 170]
exist, they are not always effective. Consider query @ (Figure 1.1b) and the two datasets in
Figure 1.4b and Figure 1.4c, where a shaded cell indicates that the value of an attribute (i.e.,
column) exists for the corresponding instance (i.e., row). For Dy, join operations can be
ordered such that the most selective triple pattern (i.e., A) is executed first. This technique,
combined with sideways information passing [117], can significantly reduce the sizes of the
intermediate result sets. In contrast, for D, these optimizations do not work. First, join
reordering does not make sense because each triple pattern is equally selective. Second, as
demonstrated in Figure 1.4a, sideways information passing will not be effective unless the
results from all selection operations are fully processed and the joins are computed.

To quantify the aforementioned problems, an experiment was conducted using the Wa-
terloo SPARQL Diversity Test Suite (WatDiv), which is a benchmark for identifying physi-
cal design issues in RDF data management systems [18] (see Chapter 6). Using the WatDiv
data generator, 100 million RDF' triples, and using the WatDiv stress testing tool, a di-
verse workload of 12500 SPARQL queries were generated. In the experiment, five popular
RDF data management systems are evaluated, namely, RDF-3x [118], MonetDB [112],
4Store [98] and Virtuoso Open Source (VOS) versions 6.1 [76] and 7.1 [71].

RDF-3x follows the single-table approach and creates multiple indexes; MonetDB is a
column-store, where RDF data are represented using vertical partitioning [0]; and the last
three systems are industrial systems. Both 4Store and VOS group and index data primarily
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% of queries for which
tested system is fastest

Total workload
execution time (hours)

Mean (per query)

execution time (seconds) 78 6.0 0-0 11.1) 208

Table 1.1: Summary of results over WatDiv 100M RDF triples, 12500 SPARQL queries.

based on RDF predicates, but VOS 6.1 is a row-store whereas VOS 7.1 is a column-store.
These systems are configured so that they make as much use of the available main memory
as possible.

The results of the experiment can be summarized as follows: (i) no single system
performs uniformly well, that is, systems that are fastest are only so for a small percentage
of queries in the workload (cf., Table 1.1); and (ii) there can be multiple orders of magnitude
difference between the execution times of the fastest and the relatively slower systems (cf.,
Figure 1.5). Consequently, when the workload is diverse, choosing a suitable system for
that workload is a difficult task. One can deploy the system that efficiently executes the
most frequent queries in a given workload. However, since the same system can be very
inefficient in executing the remaining queries, the overall performance of the system can
be far less than optimal. In fact, Table 1.1 illustrates that none of the systems that have
been evaluated have amortized (i.e., per query) execution times of less than six seconds,
which is unacceptable for interactive web applications [145].

1.2 Long-term Vision

It is likely that no single system will ever be the winner for every possible SPARQL query;
nevertheless, a much more robust solution can be developed. In particular, a system can
be developed that can automatically and continuously adapt to changing workloads. To
achieve this vision, this thesis (i) argues for a group-by-query (G-by-Q) representation
of RDF data that is purely workload-driven, and (ii) proposes ways of partially tuning
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Figure 1.5: Comparison of system performance. CAT-I, CAT-II and CAT-III consist of
queries for which, respectively, MonetDB, VOS [7.1] and RDF-3x are the fastest systems

(cf., Table 1.1).
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the database for a lightweight physical design that is easier to update and maintain at
runtime.

1.2.1 Group-by-query (G-by-(Q)) Representation

In the group-by-query (G-by-Q)) representation, the content of each database record, as well
as the way records are serialized on the storage system are dynamically determined based
on the workload. Furthermore, records are not necessarily of fixed-length, and grouped
into tables. Consider the dataset in Figure 1.2 and queries in Figure 1.1. In the G-by-Q
representation in Figure 1.6, different parts of the database are structured based on the
different types of queries in the workload (i.e., @1, @2, Q3). For example, P,—P; are the
three results of the linear query @)1, and Py,—P5 are structured based on the results of
the star-shaped query ). These records are serialized in the storage system in the order
P—Ps.

The G-by-Q representation in Figure 1.6 has multiple advantages over the workload-
oblivious representations in Figure 1.3. First, queries in the workload can be answered
more efficiently, that is, without unnecessary 1/O and with better cache utilization because
the triples that are needed to compute the results of the queries are already physically
clustered (cf., Section 1.1.1). Second, the G-by-@Q representation proposes a layout that
can be customized for any given workload. Therefore, depending on the workload, not
only SS and OO joins but also subject-object (SO) and object-subject (OS) joins will
be precomputed and clustered, enabling better indexing opportunities for different query
structures (cf., Section 1.1.2). Third, in the proposed representation, data are grouped such
that the results of most queries are not segmented, thereby eliminating the need for query
decomposition altogether, which was shown to be the culprit for unnecessary intermediate
result tuples (cf., Section 1.1.3).

1.2.2 Partial Tuning

For the G-by-(@) optimizations to be feasible, the system needs to be able to dynamically
update its physical design in a process that does not disrupt normal query execution. In
practice, this means that the overhead of each incremental update on the physical design
should be very small—given that most queries normally take sub-seconds to be executed,
the updates should be much faster, perhaps on the order of microseconds. However, these
types of updates are supported by existing self-tuning methods [52,60] in a scalable way
only if the physical schema changes are minor. This may not generally be true in RDF
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systems. Consider the single table representation in Figure 1.3a, and assume that data
are initially sorted and indexed on attribute O, and that this physical design is suitable
for only the first few queries. Hence, at runtime, a tuning advisor decides to switch to the
columnar representation in Figure 1.3b; however, to achieve this, the whole physical design
needs to be updated from scratch, which is prohibitively expensive. In fact, the table will
be partitioned on P and then each partition will be sorted and indexed on S. The former
physical design efforts are wasted and this process can take tens of minutes or hours.

This is where partial tuning would be beneficial: one can partially cluster and index the
database for only the relevant queries, thus preventing a waste of effort when the workload
changes (Figure 1.7). For example, one possible design optimization to reduce the I/O
overhead in an RDF database can be to co-cluster records on secondary storage based on
query access patterns. If this were to be done partially, one could cluster only those records
that correspond to the hotspots in the database, leaving the remaining ones unclustered.
Then, hot records can be represented in main-memory using adjacency lists or even more
sophisticated graph data structures, but for cold records, much less sophisticated data
structures would suffice. Indexes can be constructed across the records in such a way that
for frequent queries, they return a small number of false-positives (i.e., records that are
not relevant to the query) while for the remaining queries they can be less efficient.

The only mature work in self-tuning databases that can be considered as a partial
tuning technique is database cracking [115]. However, database cracking does not provide
a complete solution for this vision because it works only with arrays in the context of
in-memory column stores. As discussed earlier, in the context of RDF, column stores
are good only for a subset of SPARQL queries. Furthermore, database cracking focuses
on indexing; in contrast, data structures and algorithms are needed that support partial
tuning for multiple aspects of physical design in RDF.

1.2.3 Proposed System and Challenges

Figure 1.7 is a reference architecture of the proposed system that relies on the G-by-Q)
clustering and partial tuning techniques. A prototype implementation of this reference
architecture within the context of the chameleon-db system is discussed in Section 1.3.
There are multiple challenges in implementing this RDF data management system, and
these challenges are discussed with respect to each of the three major components of the
system, namely, the (i) storage system and cache, (ii) index, and (iii) query engine.
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Figure 1.7: Partial indexing and re-structuring of the database

Storage System and Cache

In relation to implementing the G-by-Q) approach in the storage system and cache, the
answers to two questions are non-trivial:

e Given a SPARQL workload, what is a “good” G-by-@Q clustering and how can G-by-Q)
clusters be materialized in the storage system?

e How can these clusters be efficiently updated when the workload changes?

To answer the first question, one needs to develop measures to quantify the “goodness”
of a G-by-(Q clustering with respect to a workload. These measures should take into account
the performance barriers discussed in Section 1.1, such as physical data fragmentation and
processing of unnecessary intermediate results, and the objectives of the G-by-Q) clustering
should be to minimize these problems. Once a “good” G-by-() clustering is computed,
a one-to-one mapping from the G-by-@) clusters to the physical records in the storage
system is possible, where each record can be serialized as a sequence of RDF triples in
some predefined order.

As the workload changes, the way data are grouped into records, which represent G-
by-@ clusters, may no longer be suitable for the new workload (due to physical data
fragmentation, suboptimal pruning by the indexes and/or processing of unnecessary in-
termediate results), therefore, they need to be updated. Second, access patterns over
the storage system will change, indicating that records need to be re-clustered to reduce
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random /O and cache stalls [12]. Clustering algorithms used in conventional database
design are not suitable for runtime execution—clustering is NP-hard and approximations
have quadratic complexity [1158]. Techniques are needed with similar objectives to these
clustering algorithms, but with linear running time.

Consider one possible approach that combines hashing with caching (Figure 1.7). Let
us assume that initially the database is structured such that each record contains exactly
one triple. Likely, this is not a good representation for many workloads; however, as
queries are executed, there is an opportunity for partially re-structuring the database by
predicting the future relevance of cached records and updating the database as the workload
changes. This is an open research problem (i.e., predictive models are discussed below).
However, assuming that a good prediction algorithm can be designed, there are various
opportunities: (i) multiple records may be packaged/merged into a new record, (ii) a
record may be split into multiple records, (iii) records that are co-accessed across multiple
queries may be placed contiguously on the storage system, or (iv) records that are no
longer co-accessed may be distributed. As shown in Figure 1.7, to quickly determine which
records go together, a hash function is used (i.e., records that have the same hash value
are assumed to have similar access patterns). The challenge is in designing an adaptive
hashing scheme that can auto-tune as the query access patterns change.

Index

Typically, the total number of attributes is much larger in RDF than enterprise relational
data. Furthermore, in the G-by-@Q) representation, records can be (i) variable sized, and
(ii) arbitrarily structured. These properties make indexing a non-trivial problem.

Irrespective of the actual implementation (a possible implementation will be discussed
in Section 5.5), the proposed index should have the following properties in order to support
partial tuning. Consider the abstract index structure in Figure 1.7. Given a query (@), let
I(Q) denote the set of records that are returned by the index (i.e., shaded and striped
pointers) and let R(Q) denote the records that are truly relevant to @ (i.e., shaded pointers).
As long as, for every possible query @, the index satisfies [(Q)) 2 R(Q) (i.e., the index may
return false-positive records but is guaranteed not to have any false-negatives) correct
query results can be produced because false-positives can be eliminated in a validation
step during query execution.

In the aforementioned scheme, there is clearly a trade-off between (i) the index con-
struction and maintenance overhead and (ii) the validation overhead. Therefore, the chal-
lenge is in designing an index such that for any query that lies within the window of interest
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(i.e., recent and frequent queries) it returns as few false-positives as possible whereas for
older queries that are no longer frequent, it deliberately returns false-positives. The ad-
vantage of this partial indexing scheme is that it is easy to update due to its small size
while still being efficient for queries that are currently in use.

Query Engine

The query engine is responsible for parsing SPARQL queries, generating (and optimizing)
query plans, and computing the results of queries based on these query plans.

In contrast to conventional (relational) records, clusters in the G-by-@Q) representation
do not have fixed sizes nor contain triples that have the same set of predicates. This
schemaless representation enables easy customization of the physical data structures and
indexes in the database based on the current workload, resulting in (i) more efficient I/O
and cache utilization, (ii) better indexing and data localization, and (iii) fewer intermediate
result tuples during query evaluation.

On the other hand, there is a price for this flexibility—generating and executing valid
query plans becomes more challenging than it is for fixed, non-adaptable representations.
First, one does not have any a priori knowledge about how data will be clustered and
physically organized in the storage system and within the indexes. All of these decisions
depend on the current workload, and as the workload changes, the underlying G-by-Q)
representation will change as well. This flexibility automatically rules out the possibil-
ity of designing and implementing query evaluation code in the DBMS based on a fixed
representation. Systems such as RDF-3x [118], MonetDB [112] and gStore [201] are all
implemented in this fashion. Second, there is no physical schema to describe the G-by-@)
representation (and such a schema is hard to be computed at runtime) that can be used
to efficiently generate valid query plans, which relational systems rely on heavily for query
plan generation and optimization [94].

1.3 Scope of the Thesis

This thesis address the challenges in Section 1.2.3 by introducing:

1. Measures to quantify the “goodness” of a G-by-@) clustering with respect to a given
SPARQL workload;

2. An algorithm to periodically compute G-by-Q clusters for a SPARQL workload;
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Figure 1.8: Implementation details of chameleon-db

3. An online algorithm to compute G-by-@Q) clusters for dynamically changing SPARQL
workloads;

4. A new query evaluation model that can accommodate the dynamic updating of the
underlying G-by-(@) clusters;

5. Query optimization techniques over the proposed query evaluation model; and

6. A partial, adaptive indexing scheme that is suitable for dynamically updated G-by-Q)
clusters.

The aforementioned techniques have been implemented in a prototype system called
chameleon-db. Figure 1.8 displays the architecture of chameleon-db. The Storage Advisor
of chameleon-db is responsible for computing the G-by-Q) clusters based on the workload
and for periodically updating these clusters, and the Storage System is responsible for
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physically storing these G-by-() clusters on disk. While chameleon-db relies on primarily
a disk-based implementation, the system caches frequently accessed G-by-Q) clusters in
its Buffer Pool. For simplicity, the details of the Buffer Pool have been omitted from
Figure 1.8.

The ideas presented in Section 1.2.3 are implemented using two types of indexes, namely,
the Spill Index and the Cluster Index. The Spill Index maintains information that is used
during query plan generation (and optimization), and the Cluster Index enables the proper
G-by-Q clusters to be located during the evaluation of the generated query plan. Various
types of indexes have been implemented as part of the Cluster Index, whose details are
discussed in Chapter 5.

In chameleon-db, query execution consists of two phases: plan generation (and opti-
mization) and plan evaluation, hence, the corresponding system components in Figure 1.8.
Statistics collected during query execution about the underlying G-by-@) clusters are com-
municated to the Storage Advisor, which uses this information to compute a better G-by-Q)
clustering next time the physical schema of the database is updated.

Currently, chameleon-db consists of more than 35,000 lines of C++ code (excluding
third-party components such as the SPARQL parser). chameleon-db is used to evaluate
the proposed techniques and compare them against techniques or systems that rely on
workload-oblivious representations. These evaluations use the Waterloo SPARQL Diversity
Test Suite (WatDiv) because, as shown in this thesis, existing SPARQL benchmarks cannot
be used for generating diverse and dynamically changing workloads (cf., Chapter 6) [15].

While the techniques presented in this thesis set foundations for achieving the long
term vision outlined in Section 1.2, some challenges are beyond the scope of this thesis,
and are left as future work.

First, this thesis focuses on the question of “how” to tune but omits the question of
“when”. The question of “when” to tune the physical design of an RDF data management
system is relevant because not all SPARQL workloads may exhibit the same degree of
dynamism. Automatically detecting when changes occur in a workload can be an important
step to eliminate or reduce redundant tuning steps (hence, the overhead of tuning).

Second, ideally, techniques are needed that can be used for tuning the RDF database
after the execution of every query in the workload (i.e., to support extreme dynamism
in workloads). While the techniques developed in this thesis are far more scalable than
existing solutions (cf., Chapter 6), they support periodic runtime updates such as after the
execution of every 10 or 100 queries. Extending these techniques to support more frequent
runtime updates is also left as future work.
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Third, the techniques presented in this thesis are for scaling-up and for robust query
execution across diverse workloads, and it is possible to develop techniques for distribution
and scaling-out in the future.

Lastly, the following is an (incomplete) list of other technical problems that remain as
future work (which is discussed further in Chapter 7):

1. In the G-by-Q clustering, an RDF triple is the smallest clusterable unit of informa-
tion; it may be possible to break down RDF triples further.

2. When serializing a G-by-@) cluster on the storage system, each cluster is treated as
a sequence of RDF triples sorted on the subjects of the triples, without concern for
compression and/or different orderings of the triples.

3. When a record that corresponds to a G-by-@ cluster is brought into the cache, it
is represented as an adjacency list—more sophisticated representations are possible,
but beyond the scope of this thesis.

4. The techniques proposed in this thesis assume at least some predictability in work-
loads; more sophisticated predictive models (e.g., those that incorporate oscillations)
can be developed in the future.

5. Potentially multiple types of indexes can be developed that implement the abstract
partial indexing scheme discussed in Section 1.2.3; however, in this thesis, only a
handful are considered.

6. The query engine handles a subset of SPARQL queries, known as basic graph patterns
(BGPs); techniques and optimizations beyond BGPs can be developed in the future.

This thesis is organized as follows. Chapter 2 discusses background and preliminar-
ies. Chapter 3 discusses related work. In Chapter 4, the periodic and online clustering
algorithms are introduced. In Chapter 5, query evaluation and indexing techniques are
discussed. Chapter 6 reports experimental evaluation of the techniques presented in the
thesis, and Chapter 7 concludes with a more detailed outline of future work.
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Chapter 2

Background and Preliminaries

In this thesis, both RDF data and the conjunctive fragment of SPARQL queries [159], which
is called basic graph patterns (BGPs), are represented as graphs; and query evaluation
is modeled as a subgraph homomorphism problem [123, 183]. Therefore, for the most
part, the standard formalization of SPARQL [157] is relied upon, and only the concepts
that are necessary to capture subgraph homomorphism, as it is used in evaluating BGPs
over RDF graphs, are introduced. The equivalence between the standard formalization of
SPARQL [157,168] and the one introduced herein is proven in [20].

Assume two disjoint, countably infinite sets of URIs (&) and literals (£), blank nodes
are not supported in this formalization. URIs uniquely denote Web resources or features
of Web resources. Literals denote values such as strings, natural numbers and booleans.
Then, an RDF triple is a 3-tuple from the set 7 =U x U X (L{ U E), where for each triple
(s,p,0) €T,

e s is the subject of the triple,
e p is the predicate, and
e 0 is the object.

Definition 1. An RDF graph is a directed, labeled multi-graph G = (V, E) where:

(a) the vertices (V') are finite set of URIs or literals such that V- C (U U L);

(b) the directed, labeled edges (E) are finite set of RDF triples such that E C (V X U X
V)NT; and
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(a) RDF dataset (b) Basic graph pattern

Figure 2.1: Sample dataset and query

(c) each vertex v € V appears in at least one edge, where for each edge (s,p,0) € E,

e s is the source of the edge,
e p is the label, and
e 0 is the target of the edge.

Hereafter, V(G) and E(G) are utilized to denote the set of vertices and the set of edges of
an RDF graph, respectively. O

Example 1. The RDF dataset in Figure 2.1a can be formally represented as G = (V, E)
where:

V= {Ul, V20, V21, V30, V40, V9g, U250} and
E - {(Ula A7 v?l)v (Ul) Av 'Ugg), (?}17 Aa U250)7
(va1, B, v20), (vos, C, v30), (Vaso, D, vag) } [

To define basic graph patterns, a countably infinite set of variables V' that is disjoint
from both ¢ and L is introduced. As a convention, variables are always preceded by the
question mark symbol (7). Similar to RDF graphs, BGPs have a graph-based representa-
tion.

Definition 2. A basic graph pattern (BGP) is a directed, labeled multi-graph () = (V, E)
where:

(a) the vertices (V) are variables, URIs, or literals such that V.C VUU U L;
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(b) the directed, labeled edges (E’) are S-tuples such that E C V x (YuuY) x V', where for
each edge (8,p,0) € E,

e 3§ is the source of the edge,
e p is the label, and
e 0 is the target of the edge; and

(c) each vertex v € V' appears in at least one edge.

Hereafter, V(G) and E(G) are utilized to denote the set of vertices and the set of edges of
a BGP, respectively. O

Example 2. The basic graph pattern in Figure 2.1b can be formally represented as Q) =
(V, E) where:

V= {72,%,72}
B = {(22,A,7y), (?y,7b,72)} .

Note that each edge in a BGP represents a triple pattern (cf., standard formalism

in [157]). Therefore, depending on the context, these two terms can be used interchange-
ably. Each triple pattern consists of three parts, namely, the subject, predicate and object
of the triple pattern [157-159]. If the subject, predicate or object of a triple pattern is a

variable, it is called an unbound pattern, otherwise, the pattern is bound [158, 159].

The only deviation from the standard formalism [157] is in the way solution mappings
are defined for BGPs. That is, for BGPs, solution mappings are computed from subgraphs
of a queried RDF graph that match the BGP. To accommodate this difference, first, the
notion of compatibility is introduced, which is defined between an edge in an RDF graph
and an edge in a BGP (Definition 3). Informally, two edges are compatible if they have
the potential to match. Formally:

Definition 3. Let e = (s,p,0) € E be an edge in an RDF graph G = (V, E), and let
é = (8,p,0) € E be an edge in a BGP QQ = (V,E). Edges e and é are compatible if either

® p=p, or
e pc V. [
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Example 3. Let G = (V, E) denote the RDF' graph in Figure 2.1a, and let QQ = (V,E)
denote the BGP in Figure 2.1b. The edge (7z, A,7y) € E is compatible with only three
edges in E, namely, (v1, A,va1), (v1, A, ves), (v1, A, va50), because only these three have the
same label as (7x, A, ?y). In contrast, the edge (7y,7b,7z) € E is compatible with all of the
edges in E because the label 7b is a variable. O

Using the notion of edge compatibility, a match between a BGP and an RDF graph
can be defined as surjection from the edges (and vertices) of a BGP onto the edges (and
vertices) of an RDF graph (possibly a subgraph of the queried RDF graph) such that
corresponding edges are compatible and the source (and the target) vertices of a pair of
corresponding edges are also mapped onto.

Definition 4. Let G = (V, E) be an RDF graph, and let Q = (V,E) be a BGP. Given a
solution mapping p, G p-matches @ if

(a) dom(pu) is the set of variables mentioned in Q, and
(b) there exist two surjective functions My : V =V and Mg : E — E such that:

o for each (01,v9) € V x V with My (1) = vs:
— if Uy €V, then pu(v1) = vy,
— else U1 = vy;
e for each (é1,e3) € E x E with Mg(é1) = ey, where & = (81,p1,01) and ey =
(52,p2,02):
— é1 and ey are compatible and if py € V, then py = u(py),
— MV(§1) = S9, and
— Mv(él) = 0y.

G matches Q if there exists a solution mapping pu such that G p-matches Q. [

Example 4. As shown in Figure 2.2, the colored RDF graph p-matches the BGP Tx N
2y 572 with u(?b) = B. 0

Putting it all together, the expected result of evaluating a BGP over an RDF graph
can be defined as follows.
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Figure 2.2: An example of a matching subgraph

Definition 5. The result of a BGP Q over an RDF graph G = (V, E), denoted by [Q]c,
is defined as [Q]a = {u | G’ is a subgraph of G and G’ p-matches Q} Hereafter, each
aforementioned G' such that G' p-matches @, is called a matching subgraph of G with
respect to Q. O

BGPs can be combined using operators AND, UNION, and OPT [157]. Thus, any BGP is
a SPARQL query, and if S; and S5 are SPARQL queries, and F is a filter expression, then
expressions (S7 AND S3), (S7 UNION Sy), (51 OPT S3), and (S; FILTER F') are also SPARQL
queries. The semantics of these queries can be defined using the standard formalism [157],

where solution mappings are combined or manipulated using union (U), join (), difference
(\) and selection (O).

The algorithms and data structures introduced in this thesis are optimized for BGPs,
and more complex fragments of SPARQL are beyond scope. Therefore, in the remainder
of this thesis, the focus will be on Definition 5, which defines the query result over all
subgraphs of an RDF graph that match a BGP. Nevertheless, the prototype implemen-
tation that was developed (i.e., chameleon-db) can handle a large subset of the SPARQL
1.0 specification (except for complex filter expressions involving built-in functions), and
additionally push filter expressions down into BGPs [168]. For the implementation of
joins (), unions (U) and set difference (\), existing techniques were slightly adapted and
utilized [118].
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Chapter 3

Related Work

This chapter studies existing RDF data management systems across four major dimensions:
(i) each system’s choice of physical layout (Section 3.1), (ii) the indexing techniques used
in the system (Section 3.2), (iii) query evaluation and optimization strategies used in the
system (Section 3.3), and (iv) techniques for scaling-out (Section 3.4). The chapter also
includes a discussion on existing techniques for evaluating RDF data management systems
(Section 3.5) as well as on locality-sensitive hashing (Section 3.6).

3.1 Choice of Physical Layout

Physical design has been the topic of ongoing discussion in the world of RDF and SPARQL |

, , 188]. In this thesis, based on their choice of physical design, existing systems are
classified into two: (i) systems with a workload-oblivious physical layout, and (ii) systems
with a workload-aware physical layout.

For workload-oblivious physical layouts, one option is to represent RDF data in a

single large table with only three attributes: s, p and o [55]. As a slight variation of this
representation, another option is to maintain multiple copies of the table, where each table
has a clustered index that implements a different sort-order [100, 148, 186]. Tt has also been

argued that for different workloads, grouping data can provide performance benefits [10,

, 188]. Therefore, two other representations were developed: (i) in the group-by-
predicate representation (commonly known as vertical partitioning), the RDF database
is partitioned into 2-column tables (one table per predicate) and the tables are stored in
a column-store [0]; and (ii) in the group-by-entity representation (commonly known as
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the property table approach), implicit relationships within the data are determined (either
as a manual or automated process) to compute a relational schema, and data are mapped
to an instantiation of this schema [10, 188]. Another alternative is to rely on the native
graph structure of RDF data [18, 106, 109,201]. In this case, edges in the RDF graph can
be grouped based on their incidence on a vertex (i.e., group-by-vertex).

The aforementioned physical representations are workload-oblivious and can lead to
suboptimal execution times for different types of queries, due to reasons such as frag-
mented data, unnecessarily large intermediate result tuples generated during query eval-
uation and/or suboptimal pruning by the indexes [19]. To address some of these issues,
workload-aware techniques have been proposed [19,20, 56,86, 107]. Workload-aware tech-
niques can be further classified into three: (i) systems in which the base layout (i.e., base
tables) is workload-oblivious, but materialized views are generated based on the work-
load [50,86], (ii) distributed systems in which data are distributed across compute-nodes
based on a workload, but the physical layout within each node is fixed in a workload-
agnostic way [13,82,97,106,154,155], and (iii) systems in which the base layout is workload-
aware (i.e., the topic of this thesis). The last option is the one advocated in this thesis,
where, the group-by-query representation is employed.

For example, view materialization techniques have been implemented for RDF over
relational engines [0, 86]. However, these materialized views are difficult to adapt to
changing workloads. Workload-aware distribution techniques have also been developed for
RDF [107] and implemented in systems such as WARP [107] and Partout [32].

3.1.1 Space of Solutions

e Workload-oblivious representations:

— Single-table [51,55,75,98, 100, 101, 146, 148,149,186, 189]:

The earliest RDF data management systems [51,55, 100, 101, 189] rely on the
single-table representation, where triples are stored in a single large table with
three attributes, corresponding to subject, predicate and object, hence, the
name, triplestore. Later on, this concept has been extended such that the table
includes a fourth attribute [98] to represent the subgraph URI that a set of
triples belongs to, to accommodate extensions to RDF [71]. These early systems
may have indexes over a few combination of attributes [75], but, the choice of
indexing is primarily based on a priori assumptions about the workload, which
may be speculative.
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The first breakthrough came with the development of Hexastore [186] and RDF-
3x [146, 148, 119]. These systems argue that ad-hoc choice of indexing does not
guarantee robust execution of queries [140, 148, 149, 180], and they proposed
indexes to be built across all binary permutations of attributes. That is, six dif-
ferent indexes are created for copies of the triples, where each index is clustered

(i.e., sorted) on SP, SO, OS, OP, PS or PO.

While experiments demonstrate that these systems are far more robust than the
earlier triplestores [146, 148, 119, 186], their major problem is that queries still
need to get decomposed into triple patterns, which may result in the genera-
tion of intermediate results that are computed from fragmented portions of the
clustered indexes [19]. As discussed in Chapter 1, query decomposition might in-
troduce additional problems such as processing of irrelevant intermediate results
and suboptimal utilization of the indexes. In contrast, the techniques proposed
in this thesis group data based on the queries in the workload, thus, eliminating
the need for query decomposition altogether, and /or minimizing the cardinality
of intermediate results.

Group-by-predicates [1,0,31,71,175,192]: It has been argued that grouping
RDF data can have advantages for various types of workloads [1, 6,34, 74, ,

, 192]. Ome way of grouping data is based on the predicates in the dataset.
Abadi et al. [1, 6] proposed a layout for RDF, where a two-attribute table is
created for each predicate in the dataset, and the values of subjects and objects
associated with that predicate are stored in that table (cf., Figure 1.3b). This
representation can be mapped to a column-store producing further advantages
(the research prototype C-Store [178] was used in the experiments of the original
paper [4], but, in the experiments of this thesis, a much more robust column-
store, namely, MonetDB [112] is used).

For queries in which the predicates to be matched are known in advance (i.e.,
bound), the aforementioned approach has advantages. On the other hand, in
the worst case when there is an unbound predicate pattern in the query, the
whole database needs to be searched, which is problematic. Furthermore, even
when the predicate patterns in the query are known (i.e., bound), some tables
can be very large (due to skewed data distributions), in which case, queries can
touch fragmented portions of the tables. The group-by-query representation
described in this thesis aims to overcome these limitations.

Group-by-entities [10, 179, 188]: Another way of grouping data is based on
the entities in the dataset [10, , 188]. In this approach, first, the entity
sets are discovered through either a manual [I88] or an automated [16, 179]
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process, and the data are mapped to a relational database, thus exploiting the
performance and optimization power of relational engines. This layout was
first used in Jena [1858], where a database administrator maps from RDF to a
relational schema. The experiments by Sidirourgos et al. [175] demonstrate
that there is no sole winner between the group-by-entities representation and
the group-by-predicates representation—that, it all depends on the use case
(i.e., workload) and the underlying engine used in the experiments. The group-
by-query representation that is exploited in this thesis allows data in different
parts of the database to be grouped/clustered based on different queries in
the workload, thus, better balancing the trade-offs evaluated by Sidirourgos et
al. [175].

A second approach in discovering/computing what constitutes an “entity set”
is through an automated process. Given a sample dataset, Bornea et al. [16] use
a graph coloring scheme to determine the set of entity sets in the dataset, and
then use this information to map the data to a relational database. To allow for
variability in the structure of the dataset, (i.e., instances of an entity set do not
need to share exactly the same set of predicates [71]) the predicates associated
with a given instance of an entity are stored as values in the tables, as opposed
to column names. Then, given a predicate, a hashing scheme is used to compute
the index of the column that stores that predicate (and the associated subject
value) [10]. For entities that have multiple values for a given predicate, extra
steps are taken. While this representation has been demonstrated to be more
efficient with respect to handling NULL values compared to the property table
approach, and more efficient in handling star-shaped queries [16], the process
of discovering the entity sets is based on the structure of the data but not the
queries in the workload. In contrast, in the group-by-query representation, the
physical layout is determined purely based on the workload.

Group-by-vertices [70, 109, 156,182, 190,200,201]: The RDF data model is
used for representing graph-structured data, and a natural way to (physically)
represent graph-structured data is using adjacency lists [200,201] (matrix rep-
resentation is also possible [34,192] but is not as common). In case of the
adjacency-list representation, data are naturally grouped based on the vertices
in the graph (hence, the name group-by-vertices). Multiple systems [70, ,

, 182,190,200,201] exploit this representation where triples that are incident
on the same vertex are clustered. In other words, if two triples can be joined on
their subject-subject (SS) or object-object (OO) attributes, they must also be
placed within the same list. Since S.S and OO joins are the only two building
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blocks of star-shaped queries, this representation has advantages for star-shaped
queries.

However, it has been demonstrated that for other types of queries, such as linear
or snowflake-shaped, this representation can still run into performance problems
due to fragmentation, irrelevant intermediate result tuples and/or suboptimal
pruning by the indexes [, 19]. The group-by-query representation aims to
address these issues.

e Workload-aware representations:

As noted earlier, workload-oblivious physical representations can have problems due
to fragmentation, unnecessary intermediate result tuples and/or suboptimal pruning
by the indexes [19]. Therefore, workload-driven techniques have been proposed for
computing the physical layouts in RDF data management systems [19,20,56,86,107].
These techniques can be evaluated within three categories:

— techniques for computing the base layout using information in the workload
(which is the topic of this thesis),

— techniques for computing materialized views over one of the workload-oblivious
representations [H0, 80],

— techniques for distributing RDF data across multiple compute-nodes using work-
load information [13,82,97, 106, 154, 155].

Materialized views are widely used in the context of SQL and relational databases [10),

,92,94,135,137,197,198], and it is only natural to expect similar techniques for RDF
databases. To this end, Abadi et al. [1] propose materialized views over the group-
by-predicates representation for commonly executed linear queries in the workload.
Both Castillo et al. [50] and Goasdoué et al. [36] propose algorithms for computing
materialized views over a relational representation of RDF (e.g., single-table represen-
tation, group-by-entities, etc.). They also discuss techniques for answering SPARQL
queries using these materialized views [30].

While view materialization can significantly improve performance for a variety of
workloads, existing techniques for updating the schemas of the materialized views
(and in general, other components of physical design) are scalable only if the changes
in the physical schema are minor, which is not always true for SPARQL workloads [30,

]. In fact, Goasdoué et al. [36] report that one could expect up to 30 minutes for
computing these materialized views and they argue that “while this may seem long,
[...] the complexity of search is high [...] as view selection is an off-line process.”.
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Thus, while being workload-driven, existing view materialization techniques over
RDF databases are not truly workload-adaptive—one cannot afford to pause query
execution for 30 minutes to update the materialized views.

The techniques presented in this thesis go beyond offline tuning by building lightweight
indexes that are easy to maintain, through query optimization techniques that allow
the underlying base layout to be updated without the need to maintain too much
information about the layout, and through partial tuning (i.e., physical design is
updated only for small parts of the database).

The third body of work deal with distribution design [57] in RDF databases and
advocate for a workload-driven design. This body of work span two types of systems:

— those that rely on MapReduce [09] type of platforms to distribute data and
answer queries [154,155]; and

— shared-nothing approaches that rely on a system such as RDF-3x [118] to com-
pute the answers to queries locally within each compute-node, and a master to
coordinate and decompose query execution [13,82,97, 100].

In both of the above, the “workload-driven” design is concerned with how the RDF
graph should be partitioned across the compute-nodes. In systems such as WARP [100]
and Partout [$2], the graph is partitioned in an offline process. In contrast, systems
such as PhDStore [13] support techniques for adaptively shuffling and/or replicating
data across the compute-nodes.

While these techniques are important for scaling-out, they are not concerned with
the choice of physical layout within each compute-node. In other words, one of the
workload-oblivious representations discussed earlier are utilized. For reasons dis-
cussed before, this might become a bottleneck for scaling-up. In that respect, the
techniques introduced in this thesis are complementary to workload-driven distribu-
tion techniques for building systems that can both scale-up and scale-out.

3.1.2 Adaptivity

In this section, the aforementioned techniques are evaluated with respect to adaptivity of
physical layout to workload changes. In this regard, systems can be classified into three:

e Systems in which the physical layout is fixed at design and implementation time:
In systems like RDF-3x [118], gStore [200,201], SW-Store [0, 7], the choices made
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regarding physical layout and design are hardcoded in the DBMS code, and they
cannot change at runtime. Therefore, these systems are not suitable for scenarios
in which the types of workloads cannot be predicted upfront and/or they fluctuate
significantly.

Systems in which the DBMS gives the flexibility to adjust the physical layout at
the time data are loaded and indexed: Systems that rely on an RDF-to-relational
mapping [27, 46, 188] fall under this category. However, once the data are loaded,
materialized views are generated and indexes are built, it is hard to adapt the physical
design of these systems. The problem is that techniques for automatic (physical)
schema design [10, 11,37,62,92, 135 198] and self-tuning databases [52, 60] are not
easily applicable to RDF because changes in physical layout in RDF could easily
imply switching from a columnar-representation (e.g., group-by-predicates) to a row-
oriented representation (e.g., single-table, group-by-entities) which is hard to achieve
using existing techniques [19]. The only system that has a hybrid (both row and
column-oriented) layout and that can adapt its layout is HoO [14], but this system
is not designed and optimized for RDF data and SPARQL queries.

Systems that rely on techniques that can automatically and either periodically or
continuously adapt their physical design to changing workloads: As mentioned in
Chapter 1, while achieving this objective fully remains a vision, the techniques dis-
cussed in this thesis provide a strong foundation. In these aspects, the work that
is most similar (and related) to the approach taken in this thesis is database crack-
ing [95, 113-115]. Database cracking is a technique implemented in MonetDB [112],
where in-memory arrays that represent the columns of the database are clustered
(i.e., sorted) and indexed as queries are executed. In other words, each query that
is executed on the system is treated as some advice on how each column should be
partitioned and sorted. One can think of this as an incremental version of quick-
sort [65], where the range predicates used in each query are used as the pivots for
sorting. Therefore, while the values in each column may initially be in a random
order, as queries are executed, the columns get more and more sorted. Furthermore,
as the data within each column are partitioned as such, the pivot values are used in
building tree-based indexes.

However, database cracking does not provide a complete solution for this vision
because it works only with arrays in the context of in-memory column stores. As
discussed earlier, in the context of RDF, column stores are good only for a subset of
SPARQL queries. Furthermore, database cracking focuses on indexing; in contrast,
data structures and algorithms are needed that support partial tuning for multiple
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aspects of physical design in RDF.

3.2 Techniques for Indexing

Indexes used in RDF data management systems can be classified into three categories.
The first category consists of conventional Bt-tree [30, (4, 126] or hash indexes [77, 120,

, 132, 136] that are also used in relational database management systems. Most RDF
data management systems, including those that rely on the single-table [51,55,75,98, 100,

, A6, 148, 149, 186, 189] or group-by-entity representations [16, 179, 188], employ this
approach. The second category consists of bitmap indexes [151-153]. Bitmap indexes can
be used to accompany conventional indexes in columnar RDF stores [0] or in native RDF
stores that rely on variations of the group-by-predicates representation [34,192]. The third

category includes graph indexes [18, 120,182, 190, 191,194,196, 199-201].

There are advantages and disadvantages to using indexes from each category. The
advantages of using bitmap indexes are that (i) join operations can be implemented ef-
ficiently using bitwise operations, and (ii) both the indexes and the intermediate results
generated during query evaluation can be represented efficiently in main memory [341]. On
the downside, updates can be problematic due to compression/decompression overhead,
and due to the fact that large amounts of data need to be moved around [31] (since the
bitmap assumes an inherent ordering of tuples which might get broken on updates). In
contrast, BT-tree and hash indexes are perhaps easier to update although these updates
might still result in random 1/0O.

The advantage of graph-indexes is that they can exploit the inherent graph-structure of
RDF data. For example, gStore [200,201] creates a signature entry for each vertex in the
RDF graph using a variant of Bloom-filters [15] based on the labels of edges that are inci-
dent on the vertex and the label of edges that are adjacent to the vertex in question (i.e.,
1-hop neighborhood). These signature indexes are organized within a VS*-Tree index [200)].
This specialized index has the advantage that star-shaped queries can be evaluated very
efficiently [19,200]. On the other hand, the choice of including incidence/adjacency infor-
mation only for the 1-hop neighborhood is arbitrary, and is based on a priori assumptions
about the RDF graph and the workloads. For example, this type of index may not be
suitable for graphs with a large number of high-degree vertices because then the VS* may
not be effective. Furthermore, this index does not offer any advantage for other types of
queries such as linear queries.

A majority of the aforementioned approaches support efficient bulk updates and, to a
certain extent, incremental updating of the data at runtime; thus, they are data-adaptive
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(i.e., indexes can be updated at runtime based on the changes in the data). On the
other hand, these indexing techniques are not workload-adaptive. The problem is that the
changes in the workload might dictate a tuning advisor to drop a number of indexes at
runtime and create a bunch of new ones, which can be hard to achieve dynamically. (For
some systems, this process can take minutes if not hours, even on relatively small datasets.)

Database cracking addresses these problems by embracing the “do not build indexes
upfront, but incrementally, as queries are executed” paradigm [95, 113-115]. In database
cracking, the sort, partition and merge operations that are commonly used in index con-
struction are deferred until queries are executed. Each query is treated as some advice
on how to sort, partition or merge portions of the database. In case of database crack-
ing [95, 113-115], with each query, a portion of an array (in-memory) that corresponds to
a column in a column-store gets “cracked” (i.e., sorted, partitioned, merged).

While the indexes used in chameleon-db are inspired by database cracking, there are
some differences:

e Database cracking adaptively indexes an array of values from the same domain (i.e.,
datatype), whereas the Cluster Index in chameleon-db adaptively indexes a set of
G-by-Q clusters.

e In database cracking range predicates are used as some advice for building the in-
dex, whereas the Cluster Index in chameleon-db relies on the subgraph/supergraph
relationships between BGP structures.

e In database cracking, each range query with a single predicate results in at most one
additional pivot to be added, whereas in the Cluster Index, the execution of a BGP
may result in the addition of more than one pivot to the index.

e In database cracking, the index returns a complete set of answers to the query whereas
the Cluster Index may return G-by-@Q clusters that are not related to the evaluation
of the query (i.e., false positives), which need to be pruned in a validation step during
query evaluation. (However, the Cluster Index guarantees that false negatives are
not returned).

e In database cracking, total ordering can be imposed on the values that are indexed
based on the pivots extracted from the range predicates, whereas it is not possible to
impose a total ordering on the G-by-() clusters based on the pivots extracted from
the BGPs.
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3.3 Techniques for Query Processing and Optimiza-
tion

Query evaluation and optimization techniques for SPARQL [26,84,90,94, 110, 147,156,160,
, 171,176, 195] can be classified into two: (i) those that try to adapt existing query
evaluation and optimization strategies in relational databases to RDF and SPARQL [84,
, 168,171, 176], and (ii) those that propose solutions for graph-based evaluation and
optimization of SPARQL queries [26, 156].

Techniques in the first category consist of (i) equivalence rules for rewriting SPARQL
expressions [108], (ii) join reordering techniques based on triple-pattern selectivity esti-
mation [176] and BGP selectivity estimation [117], (iii) adaptation of techniques such as
sideways information passing [07,138,172] to RDF and SPARQL [117], and (iv) adaptation
of query evaluation strategies over materialized views [91] for RDF and SPARQL [30].

Techniques in the second category exploit information about the graph-structure of
RDF to achieve further optimization [20]. The query evaluation and optimization strate-
gies presented in this thesis fall into the second category. What makes the techniques pro-
posed in this thesis (Chapter 5) unique is that they assume that the underlying physical
layout might be frequently changing, which makes query evaluation harder. The problem
is that the query plan generator needs to know about the underlying physical layout—
in particular, the way the RDF graph is partitioned to come up with a query plan that
produces correct results. On the one hand, one may choose to index and maintain all infor-
mation about the underlying physical layout, to facilitate query plan generation, but then,
updating the underlying physical layout becomes harder because all of the accompanying
information needs to be updated as well. On the other hand, one may choose to index and
maintain almost nothing about the underlying physical layout, in which case, it is harder
to generate query plans, but easier to update the physical layout. Instead, Chapter 5 pro-
poses a solution in-between, where query-rewrite rules are developed that enable efficient
generation of query plans while using as little information about the physical layout as
possible.

3.4 Techniques for Distribution

There are two main approaches to answering SPARQL queries over very large collections
of RDF data [103]. The first approach is data warehousing, where data from multiple RDF
sources are fetched and consolidated in a data warehouse, and queries are issued against
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this data warehouse [103]. The second approach is query federation, where SPARQL queries
are issued directly on the sources that publish the RDF data, but the results are shipped
back to and consolidated at the client-side [103]. There are advantages and disadvantages
of each solution [103], but an elaborate discussion is not the topic of this section. The
techniques presented in this thesis assume the first approach. Therefore, in the remaining
parts, the discussion will be on the scale-out techniques for the first approach (i.e., data
warehousing).

Broadly speaking, there are three ways of scaling-out data warehousing solutions in
RDF. The first (and earliest) body of work rely on Peer-to-Peer (P2P) systems [53,110,169].

The second body of work [63,78,84, 109, 111,154, 155,162, 164,160] rely on shared filesystems
and/or computing solutions on the cloud [121] such as MapReduce [69], Hadoop [187] and
Hadoop Distributed File System (HDFES) [174]. The third body of work [13,82,93,97, 106,

, 193] rely on shared-nothing architectures [177] where data are distributed across a

cluster of machines and each machine is deployed with a system such as RDF-3x [118].

Whether the underlying network model is Peer-to-Peer or client-server or whether the
distributed computing model is shared-nothing or shared-all, a common question that all
three groups of approaches try to answer is how the RDF database should be partitioned
across the nodes in the distributed system. In this respect, the techniques for distributing
RDF data across a cluster of machines can be workload-oblivious [53, 063,78, 93, , 140]
or workload-driven [13,32,97,106,155]. Furthermore, workload-driven techniques can be
offtine [$2,100] or adaptive [13,97,155].

Workload-oblivious techniques for distribution rely heavily on one or a combination
of (i) hash-based partitioning [133], (ii) range-based partitioning [58], or (iii) graph-based
partitioning [109]. In hash-based partitioning, RDF data are mapped to compute-nodes
based on the outcome of applying a hash function on the values of an attribute (or com-
binations of multiple attributes) [133]. For example, consider the single-table layout (cf.,
Figure 1.3a). It is possible to hash-partition this table based on the values of subject
attributes (of course, other partitioning schemes are also possible). Range-based partition-
ing is similar but instead of a hash function, range-predicates are used for partitioning the
data [58]. For example, the single-table can be range-partitioned on object values such
that objects that are lexicographically within a predefined range are stored in the same
compute-node (same goes for other compute-nodes). In graph-based partitioning [109],
techniques such as METIS [122] that are based on minimizing graph-cuts can be used to
decide which parts of the database should be stored in which compute-nodes.

The problem with any of the aforementioned workload-oblivious techniques is that they
are optimal for only certain types of queries. For example, consider hash-partitioning the
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single-table representation based on subject values in the table. In this case, triples that
share the same subject will be stored in the same compute-node. Therefore, a star-shaped
query (i.e., a single join vertex) with all outgoing edges can be answered locally (and in
parallel) within each compute-node, and then, the partial results can simply be unioned at
the master or the client-side. In contrast, the same statement would not be true for a star
query with both incoming and outgoing edges. In that case, query results cannot be com-
puted locally, and in the worst case, they will be computed by joining intermediate results
from multiple compute-nodes, which might add complexity [106]. Likewise, in graph-based
partitioning, whether or not the query results can be computed locally or by joining in-
termediate results from multiple partitions depends on how the graph is partitioned and
whether a query in the workload coincidentally crosses partition boundaries.

To avoid the aforementioned circumstances in which a query cannot be answered locally
within each compute-node, two complementary solutions have been proposed [13, 66,82,

, , . The first solution is to make more clever decisions about how the RDF
data are partitioned by including information about the workload [106]. For example,
information about a sample workload can be used as an additional input to the graph-
partitioning algorithm [106], so that when optimizing for the cost of a “cut” in the graph,
the algorithm also takes into account the potential consequences of the “cut” on evaluating
queries in the workload [106]. Likewise, in range-partitioning, it is possible to adjust the
range predicates by taking the workload into consideration.

The second solution is to rely on replication [13,106], where for example, data can still
be partitioned using an offline, workload-oblivious technique, but problematic cases (i.e.,
queries) are handled by maintaining partial copies of the data across compute-nodes so
that queries can still be answered locally within each node [13].

Consider the previous hash-partitioning example over the single-table layout, where
it was proposed that RDF triples could be hashed based on the subject attribute. It
was argued that star-shaped queries with both incoming and outgoing edges could be
problematic. A possible workaround to this problem can be to maintain, within each
compute-node, an extra set of triples that are just sufficient to answer these problematic
queries in the workload [133].

Even though the hierarchical clustering algorithm developed in Section 4.2 has similar-
ities with the workload-driven graph-partitioning algorithms for RDF [13,82,97, 106, 155],
the following differences need to be highlighted:

e The algorithms for RDF distribution try to partition the RDF graph into as many
partitions as there are compute-nodes in the cluster. This is typically in the orders of
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thousands. In contrast, the hierarchical clustering algorithm of Section 4.2 generates
G-by-Q clusters on the orders of millions.

e Most algorithms for RDF distribution follow a top-down approach (i.e., iteratively di-
vide the RDF graph) whereas the hierarchical clustering algorithm follows a bottom-
up approach (i.e., build G-by-Q clusters from smaller graphs).

e While most algorithms for workload-driven RDF distribution try to ensure that sub-
graphs that match a query in the workload are located in the same partition, the
hierarchical clustering places each matching subgraph in a separate G-by-@) cluster.

While a significant step forward, the aforementioned workload-driven techniques may
not be sufficient if the workloads change frequently such that there is a need to update
the partitioning (or replicated data) on-the-fly. Existing solutions that try to address this
problem take one of the following approaches. The first category of solutions dynamically
update the replicas that are maintained for each compute-node to ensure that queries can
be answered locally even when the workload changes [13]. The second category of solutions
implement a caching layer on top of the distributed partitions and try dynamically updating
the contents of the cache [155].

Both of these solutions are timely and relevant given the increasing need for supporting
diverse and dynamic SPARQL workloads [30,124]. In this respect, the techniques presented
in this thesis are also complementary. For example, it might be possible to use TUNABLE-
LSH (cf., Section 4.3) to adaptively decide how an RDF graph should be partitioned, what
parts of the graph should be replicated and where, and what parts of the graph should be
cached.

The techniques presented in this thesis are complementary also for the fact that while
adaptive, workload-driven scale-out techniques for RDF [13,97,155] deal with the problem
of adaptive distribution design, the RDF engines that are employed within each compute-
node use one of the workload-oblivious representations discussed in Chapter 1. In contrast,
an ideal solution is one that combines the techniques presented in this thesis for adaptively
figuring out the physical layout of RDF within each compute-node with the ones for adap-
tive distribution design.

3.5 SPARQL Benchmarks

In slightly more than a decade, numerous SPARQL benchmarks have been developed [5,
,24,44,87,91, 143, , 167]. Earlier benchmarks focused on testing how well systems
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implement different use cases of SPARQL [5, 14,91, , 167]. For example, the Lehigh
University Benchmark (LUBM) [91] was designed for testing the inferencing capabilities
of Semantic Web repositories. The Berlin SPARQL Benchmark (BSBM) [11] contains
multiple use cases such as (i) explore, (ii) update, and (iii) business intelligence use cases.
The explore use case is developed around an e-commerce scenario, where queries mimic
the search patterns of consumers who are browsing through products. The update use
case focuses on testing systems’ support for updates, while the business intelligence use
case is developed around an OLAP scenario. BSBM also goes into testing how well RDF
systems support different (and important) SPARQL features, namely, aggregation, union,
and optional graph patterns. The DBpedia SPARQL Benchmark (DBSB) uses real data
and real query logs to generate test queries [113].

These earlier benchmarks—even those that rely on real data and real query logs—have
been criticized for their lack of diversity, both in their datasets [71] as well as in their query
workloads [18]. To address these shortcomings, the Waterloo SPARQL Diversity Test Suite
(WatDiv) was developed, which is the benchmark used in the experimental evaluations of
this thesis.

Two benchmarking efforts are closely related to WatDiv: (i) RDF benchmarks devel-
oped by the Linked Data Benchmark Council (LDBC) [24], and (ii) SPLODGE [37].

LDBC benchmarks are developed in a manual process by a consortium of industrial
and academic partners [21]. The process behind the design of LDBC benchmarks is based
on identifying “choke-points” [24], i.e., use-cases or queries for which systems are likely to
experience problems. In this respect, both LDBC benchmarks and WatDiv are targeting
the same problem space. On the other hand, in WatDiv, the process of query template
generation is automated, whereas in LDBC, it is manual. Arguably, some of the queries
that are generated by WatDiv reflect rare use cases, and relatively few users may be
interested in executing such queries, but at the same time, LDBC benchmarks might be
missing cases that WatDiv is able to cover.

SPLODGE [57] is a benchmark for federated SPARQL query evaluation. SPLODGE
also introduces query features. However, there are three important differences. First, the
measures developed in WatDiv are used for evaluating the diversity of queries in bench-
marks, whereas the measures introduced in SPLODGE are used in systematically gener-
ating diverse queries. To this end, the data-driven measures in WatDiv rely on actual
selectivity and cardinality values, whereas the ones used in SPLODGE are only estimates.
Second, selectivity and cardinality measures are defined in a different way in WatDiv. Fur-
thermore, WatDiv is also concerned about the variance in selectivity values, which lets one
to consider cases in which all the triple patterns in a BGP contribute evenly to the overall

37



“selectiveness” of the query versus cases in which only a few triple patterns contribute to
the overall “selectiveness” of the query. Third, WatDiv focuses only on BGPs, whereas
SPLODGE considers a larger spectrum of SPARQL queries. In these aspects, WatDiv is
complementary to SPLODGE and the LDBC benchmarks.

3.6 Locality-Sensitive Hashing (LSH)

Locality-sensitive hashing (LSH) [3,116] has been used in various contexts such as nearest
neighbour search [23,31,79,108,116,180], Web document clustering [19,50] and query plan
caching [17]. In this paper, we use LSH in the physical design of RDF databases. While
multiple families of LSH functions have been developed [50,59,68,83,116], these functions
assume that the input distribution is either uniform or static. In contrast, TUNABLE-LSH
can continuously adapt to changes in the input distribution to achieve higher accuracy,
which translates to adapting to changes in the query access patterns in the workloads in
the context of RDF databases.
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Chapter 4

Group-by-Query (G-by-@)) Clustering

This chapter introduces two algorithms for computing group-by-query (G-by-Q) clusters.
The first algorithm has a higher computational overhead, but can produce more accurate
G-by-Q clusters (Section 4.2). The second algorithm is more dynamic and has a much
lower computational overhead, but does so with some loss in accuracy (Section 4.3). Before
discussing the details of these two algorithms, it is useful to discuss the objectives of G-by-Q)
clustering (Section 4.1), which is fundamental to the design of both algorithms.

4.1 Objectives of Group-by-Query (G-by-@)) Cluster-
ing

This section introduces a framework for evaluating how good a group-by-query clustering
(G-by-Q) is with respect to a workload. A precise definition of group-by-query clustering
is as follows:

Definition 6. Given an RDF graph G = (V, E), a group-by-query clustering of G is a set
of RDF graphs P ={P,..., P,} such that

1. Each P; is a subgraph of G,
2. P;’s are edge disjoint,
8. BE(G) =Upep E(F); and
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4 V(G =Uper V(P). =

In this section, two measures are developed, namely, segmentation and minimality,
that can be utilized for evaluating G-by-@) clusterings. Segmentation is a measure of how
distributed the subgraphs that match a BGP are across the group-by-query clusters. Min-
imality indicates how minimal the clusters are with respect to those subgraphs that match
a BGP. It is demonstrated that, often, there is no ideal G-by-Q) clustering with respect to a
given workload and that the aforementioned measures can be traded-off with one another.
Consequently, algorithms that rely on these measures for computing “good” G-by-@) clus-
terings try to find a balance between the two. Two such algorithms are introduced in this
thesis: Section 4.2 presents an algorithm in which the workload is given as input and the
algorithm periodically computes a “good” G-by-Q clustering with respect to that workload;
and Section 4.3 presents an online algorithm in which G-by-Q) clusters are continuously
updated to optimize for the most recent queries in the workload.

4.1.1 Overview of Query Evaluation

It was argued in Chapter 1 that group-by-query clustering could improve query perfor-
mance by (i) reducing physical data fragmentation, (ii) improving the pruning capabilities
of the indexes, and (iii) eliminating redundant intermediate result tuples. Some of these
optimizations depend on the query evaluation algorithm; therefore, for the sake of com-
pleteness, this section provides an overview of query evaluation in chameleon-db. Full
details of the algorithm, as well as important design considerations are discussed in Chap-
ter 5.

Evaluating a basic graph pattern over a G-by-() clustering consists of multiple steps.
Let @) denote the basic graph pattern and P denote the G-by-@ clustering in question.
Then, the algorithm operates as follows (the formal algorithm is given in Algorithm 1):

1. First, () is rewritten as a composition of a set of basic graph patterns, denoted by
Quec (cf., Algorithm 1, line 3). The details of query decomposition will be discussed
in Chapter 5; for now, it is sufficient to assume that an oracle computes the proper
decomposition of () that would produce correct results.

2. For each subquery Q); € Qge., the following steps are taken:

(a) Any cluster P; € P for which (); does not have a matching subgraph (i.e.,
[Q:]p, = 0), is pruned through an index lookup. The remaining set of clusters
are stored in P, (cf., Algorithm 1, line 6).
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Algorithm 1 Query Evaluation over Group-by-Query (G-by-Q) Clustering

1. procedure EvAL(Q, P) > Evaluate a BGP @ over a G-by-Q clustering P
2 R+ > Denotes the result of Q

3 Quec <+ DECOMPOSE(Q) > Decompose @ into a set of subqueries
4 for Q); € Q. do

5: R; 0 > Denotes the partial result of @Q);

6 P,e; < PRUNE(P, Q;) > Prune irrelevant clusters

7 for P; € P, do

8 R, + R;U [[Qi]]pj

9 end for

10: R+ R R;

11: end for

12: return R

13: end procedure

(b) For each cluster in P; € IP,¢, the result of Q; over P; is computed (i.e., [Q:]p,).

(c) The results from the previous step are unioned, which is stored in R;.

3. The partial results from Step (2) are joined (cf., Algorithm 1, line 10).

4.1.2 Clustering Objectives

Given a workload, a favorable G-by-@Q clustering is one in which (i) RDF triples (or
equivalently, edges in the graph representation) that are irrelevant to the evaluation of
a query in the workload are separated as much as possible from the relevant ones, and
(ii) this property holds for as many queries in the workload as possible. This is explained
through an example.

Consider evaluating the linear query = 7w Ao B 7y S 2 against the RDF
graph in Figure 4.1a. Any triple that lies outside the colored region is irrelevant to the
evaluation of the query. In other words, the result of the query does not change if triples
that are outside of the colored region are removed from the RDF graph. Under these
circumstances, Clustering A in Figure 4.1b is a better choice for () than Clustering B in
Figure 4.1c. First, all of the triples that are needed for the computation of the query result
are contained within a single cluster, namely, P%. Since the contents of each G-by-Q) cluster
are also physically clustered in the storage system, the result of the query can be computed
more efficiently over Clustering A, that is, with much better I/O and cache utilization.
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(c) Clustering B

Figure 4.1: Sample RDF graph and G-by-@) clusterings
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Source Vertex

Target Vertex

Source Vertex

Degree Degree Incoming Edge Signature
(UhA,’U@) 3 1 @
((U37A;,UQ) 4 1 {B}
| (vi,Byvs) | s 1%
P1 (Ug,B,’Ug) 1 4 (Z)
(U11,B,’U4) 1 3 (Z)
(v, Cur) | I a
(’U4, C, ’012) 3 1 {C}
(’Ul,A,Ug) 3 4 (Z)
p | e Bwg) | A A A
2 (Ug,c, ’04) 4 3 {B}
(’Ug,c, ’Ulo) 4 1 {B}
Edge Group | Source Vertex | Target Vertex Source Vertex
Max Degree Max Degree | Incoming Edge Signature
(%, A, %) 4 1 {B}
P, (*, B, *) 3 4 0
(x, C, %) 4 1 {A,C}
(%, A, %) 3 4 0
) (*, B, %) 4 4 {A}
(x, C, %) 4 3 {B}

Table 4.1: An index built over Clustering A in Figure 4.1b
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>1

> > 2 >2 >1
(22— ()
Figure 4.2: Degree and incidence constraints in ¢)

Second, indexes that are built over Clustering A will be naturally more efficient in
pruning clusters as whole: in this case, P, does not contain any relevant triples, hence, it
can easily be pruned out.

Consider the index in Table 4.1. This index is structured as follows: for each group
of edges with the same label in a cluster, the index contains (i) the max degree of the
source vertices, (ii) the max degree of the target vertices and (iii) a signature of the labels
of the incoming edges on the source vertices. For example, in P,, two edges have the same
label C', namely, (vs, C,vy) and (vs, C, v10). For the edge (vs, C,v10), v3 is the source vertex
and vy is the target vertex, where the degree of v3 is 4, the degree of vyg is 1, and since
(ve, B, v3) is the only incoming edge on vs, the edge signature is {B}.! Consequently, for
the edge group (x,C, %) in Py, where the wildcards can denote any vertex, the max source
vertex degree is 4, the max target vertex degree is 3 (which is the degree of v,), and the
incoming edge signature is {B} U{B} = {B}.

The aforementioned index can be used for pruning P; in the evaluation of @ (cf.,
Figure 4.2). Note that for an edge in the RDF graph in Figure 4.1a to be part of the result
of @, the following conditions must hold:

1. The label of the edge is A, B or C;

2. If the label of the edge is A, its source vertex has degree > 1, and its target vertex
has degree > 2;

3. If the label of the edge is B, its source vertex has degree > 2, its target vertex has
degree > 2, and the incoming edge signature of its source vertex contains label A;
and

4. If the label of the edge is C, its source vertex has degree > 2, its target vertex has
degree > 1, and the incoming edge signature of its source vertex contains label B.

!Degrees and incident edges are determined over the original RDF graph in Figure 4.1a.
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U1 U6
Ug V9 vy

U3 v9

U11 V4 12

Figure 4.3: Evaluation of ) over Clustering B

These conditions can be easily derived from the structural properties of the query graph,
shown in Figure 4.2. Since none of the edges in P, satisfy the aforementioned conditions,
this cluster can be pruned out.

Third, as a consequence of the pruning of P;, () can be evaluated directly over P, with-
out decomposition. Consequently, no irrelevant intermediate result tuples are produced,
even further improving query evaluation performance.

Next, consider Clustering B in Figure 4.1c, where triples that are irrelevant to the
evaluation of () are mixed with triples that are relevant. In this case, Algorithm 1 would
have to decompose () into at least two subqueries in order to produce the correct query

result: Q;= 7w 492 and Qo= Tz E>?y %92, The method of identifying a correct
decomposition is discussed in Chapter 5; however, in a nutshell, a basic graph pattern has
to be decomposed in Algorithm 1 if any of its matching subgraphs is segmented across

multiple clusters. For example, () has two matching subgraphs: v, A Vg N V3 =N vy and

V1 A Vg B, U3 =N v10; and both of them are segmented across P3 and P, in Clustering
B. Then, according to Algorithm 1, each subquery is evaluated over clusters P; and P,
producing two tuple sets, which are joined as shown in Figure 4.3.

In contrast to Clustering A, there are problems with the evaluation of () over Clustering
B. First, triples from which the query result is computed are fragmented across two clusters
in the storage system, increasing 1/O cost and reducing cache utilization. Second, during
query evaluation, it is more difficult to distinguish between relevant and irrelevant triples,
which generates unnecessary intermediate result tuples (cf., Figure 4.3). In this case,
reordering the join operations or applying sideways information passing [117] to early-
prune some of the tuples would not eliminate the problem.
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4.1.3 Goodness Measures

Given a basic graph pattern, to quantify how well a group-by-query clustering separates
triples that are irrelevant to the evaluation of that BGP from the relevant ones, a combi-
nation of two measures is used: segmentation and minimality. Informally, segmentation is
a measure of how distributed the subgraphs that match a BGP are across the group-by-
query clusters. Minimality indicates how minimal the clusters are with respect to those
subgraphs that match a BGP. These measures are introduced formally in Definition 7.

Definition 7. Given a clustering P of an RDF graph G, let
° I‘g denote the set of all distinct subgraphs of G that match a BGP @, and
o F* = UG,ng E(G).
Then, segmentation and minimality of P with respect to Q) are defined as follows:
seqm@ = |{(G\P) eT@xP | E(G)NE(P)£0}|—[r¢)

=

minim% =
: {E(P)| PEP and E(P)NE* £0},

The definitions of segmentation and minimality can be easily extended to a query

workload W = {Q"',...,Q"}:

n .
> segm$
segmy = MW and
n i
> minimg
minimy = =1
W]

Segmentation can take any positive real value, while minimality is always between [0, 1].
An ideal clustering for a workload is one whose segmentation is minimal (0) and minimality
takes the highest possible value (1). We say that a clustering is completely segmented with
respect to a query workload if its segmentation is maximal.
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Example 5. Let () denote the BGP in Figure 4.2. The segmentation of Clustering A in
Figure 4.1b with respect to Q) is 0, while the segmentation of Clustering B in Figure 4.1c
is 2. These values are computed as follows:

e First, note that both Clustering A and Clustering B are G-by-Q clusterings of the
RDF graph G in Figure 4.1a. In this case, I‘g consists of two subgraphs, namely, G,
and Go, where

G = (W, Ey) Gy = (Va, Ey)

Vi = {v1,v9,v3,04} Vo = {v1,v2,v3, 010}

Ey = {(v1, A, v2), (ve, B, v3), Ey = {(v1, A, v2), (ve, B,v3),
(v3, Cyvy) } (v3, Cyv10)}-

o Let Py ={P, P,} denote Clustering A (cf., Figure 4.1b).
— Then, the Cartesian product Fg X P4 consists of four tuples, that is,

Fg X IP)A = {(Gl, Pl), (GQ, Pl), (Gl, PQ), (GQ, PQ)}

— Among these four tuples, representing pairs of matching subgraphs and G-by-
Q clusters, only two pairs have common edges, namely, the pairs (Gy, P») and

(GQ,PQ).

— Consequently,

SengQA = |{(G17P2>7 (G27P2>}‘ - |{G17G2}‘
=2-2
=0.
o Let Pg = {Ps, Py} denote Clustering B (cf., Figure 4.1c).
— Then, the Cartesian product Fg X Pg consists of four tuples, that is,

T% x Py = {(Gy, Ps), (Ga, P3), (G1, Pa), (G, Py)}.

— Among these four tuples, representing pairs of matching subgraphs and G-by-Q)
clusters, all four pairs have common edges.

— Consequently, SegmgB =4-2=2. O
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Example 6. Let Q denote the BGP in Figure 4.2. The minimality of Clustering A in

Fz'gfre 4.1b with respect to Q is j—i, while the segmentation of Clustering B in Figure J.1c

18 -
e [irst, note that both Clustering A and Clustering B are G-by-Q) clusterings of the
RDF graph in Figure j.1a. Let us call this RDF graph G. In this case, Fg consists

of two subgraphs, namely, Gy and Gy, where

G, = (Wi, Ey) Gy = (Va, Es)

Vi = {vy, vg, v3, 04} Vo = {1, v2, 3, v10}

Ey = {(v1, A, v2), (ve, B, v3), Ey = {(v1, A, v2), (ve, B, v3),
(v3,Civy) } (v3,C v10)}-

e Furthermore,
E* = E(G1) U E(G,)
= F1 U E,
= {(Ulu A7 U?)v (U27 Ba 1)3)7 (U37 CJ U4)7 (U37 C7 UIO)}‘

o Let Py = {P, P} denote Clustering A (cf., Figure 4.1b).

— There is only one cluster in P4, namely, Py, such that E(Py) N E* # ().

— Consequently,

E* 4
mimmﬂ% = ‘— = —.

|B(Py)| 4

o Let Pp = {Ps, P} denote Clustering B (cf., Figure 4.1c).
— Fori € {3,4}, P, € Pg and E(P;) N E* # 0.
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b b
A A
(a) Sample RDF graph, G, (b) Sample BGP, Q1 (c¢) Sample BGP, @,

Figure 4.4: Sample data and queries for demonstrating the trade-offs between segmentation
and minimality

— Consequently,
- E*
mzmmH;QB = ‘E|(P2)|

B 4

’E(Ps) U E(P4)‘
4

~|E(Ps)| + |E(Py)|

_ 4 0
11

4.1.4 Discussion

When there is a single query in the workload, computing the ideal clustering (i.e., whose
segmentation = 0 and minimality = 1) is relatively straightforward. On the other hand,
when there are multiple queries in the workload, there may not be an ideal clustering at
all, let alone a single “best” solution. Often, there is a trade-off between segmentation
and minimality, and computing a “good” G-by-() clustering boils down to tuning these
trade-offs.

Consider the RDF graph in Figure 4.4a and the two BGPs in Figure 4.4b and 4.4c. Let
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G, denote the RDF graph and let (); and ()o denote the two BGPs, respectively. )1 has
four matching subgraphs in GG,; more specifically,

r'g = {GL,G2,G3, G4} such that

T

Galc = (V;cla E;) where V;l = {v1,v5,v9}

El = {(vy, A, v5), (vs, B,v1)}
Gy = (V7 ;) where V2 = {v2,v6, 00}

E? = {(vg, A, v5), (vs, C, 1)}
G? = (V2, E?) where V3 = {vs,v7, 09}

E2 = {(vy, A, v7), (v7, D, v3)}
G2 = (V4 E}) where VA = {vy, vs, 00}

E;% = {(U97A7U8)7 (U87E7U4>} )

and () has sixteen matching subgraphs in G,. Basically, each matching subgraph consists
of a pair of edges from the Cartesian product

{(U97 A7 U5)7 (Ug, A7 U6)7 (U97 Aa U7>7 (U97 A7 US)}X
{(vg, B,v10), (vg, C, v11), (vg, D, v12), (vg, E, v13) } O

Next, consider two possible G-by-Q clusterings of G,. Let Po = {Ps, Ps} denote
Clustering C' in Figure 4.5a, and let Pp = {P;} denote Clustering D in Figure 4.5b.
Assuming that a workload W consists of ()7 and (), the corresponding segmentation and
minimality values are as follows:

8 8

Segm?Qé =0 Segmﬂ?; =0 mzmmgc{ = g minz’m%é = _12

8 8

segm[%?; =16 segmgé =0 mmimgé =15 mz’m’m% 5

W W oy 10 W 8
segmp,, = 8 segmp, =0 minimp,, = i minimp 3 ]

In other words, going from Clustering C' to Clustering D, it is possible to reduce
segmentation, but that comes at the price of reducing minimality. A low segmentation
is desirable, as it generally implies that triples that are relevant to the evaluation of a
query in the workload are clustered, but on the other hand, low minimality means that
clusters contain triples that are relevant to other queries as well, which may negatively
affect performance. These trade-offs are taken into consideration in the next two sections,
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(a) Clustering C (b) Clustering D

Figure 4.5: Sample G-by-@ clusterings for demonstrating the trade-offs between segmen-
tation and minimality

where two clustering algorithms (periodic and online) are introduced.

4.2 A Periodic Clustering Algorithm

This section introduces an algorithm for periodically computing group-by-query clusters.
The input to the algorithm is a sequence of BGPs (called the training workload), which
is assumed to be representative of the true workload that will be executed by the sys-
tem (called the operational workload). The algorithm tries to optimize the underlying
G-by-Q) clustering using the training workload and runs in three phases: (i) training,
(ii) optimization, and (iii) operational phases.

In the first phase, the queries (i.e., BGPs) in the training workload are executed and
information is collected. During this phase, the underlying physical representation is not
updated yet, and thus, queries in the training workload may be executed using a suboptimal
clustering. In the optimization phase, information obtained during the training phase is
utilized for computing a new G-by-(@) clustering that is potentially closer to optimal, and
the underlying physical representation is updated based on the computed clusters. In the
operational phase, the operational workload is executed on the updated G-by-Q) clustering.
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(a) Basic Use Case
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Optimization
(b) Interleaved Optimization
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AN ‘ qx ‘ optimization; ‘ Q41 AAN ‘ Qik+m ‘qk+xn+1 AN ‘qm«rm optimization, ‘q2k+m+1 AN q2k+2m‘
%/—/ %/—/

Training; Operational; Training, Operational,

(c) The workload is artificially divided into segments of training and operational work-
loads and the algorithm is repeatedly invoked for each pair of training and operational

segments.

Figure 4.6: Use Cases of the Periodic Clustering Algorithm
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The aforementioned scenario constitutes the basic use case of the algorithm (cf., Fig-
ure 4.6a). In practice, more sophisticated use cases are possible. For example, the op-
timization and operational phases of the algorithm can be overlapping (cf., Figure 4.6b)
as done in chameleon-db [20,21]. Furthermore, the algorithm can be applied to changing
workloads as well, by (i) repeatedly invoking the algorithm at preset intervals or when-
ever there is detectable change in the characteristics of the workload, and (ii) treating
some parts of the workload as training and the remaining parts as operational [20,21], as
demonstrated in Figure 4.6¢. This section provides a description of the periodic algorithm
assuming the basic use case; more details about the optional uses cases are discussed in
Section 4.2.4.

4.2.1 Training Phase

To facilitate the computation of a suitable G-by-() clustering, in the training phase, upon
the execution of a BGP, each distinct subgraph that matches the BGP is annotated with
a unique label and a timestamp of query submission. Each annotation is of the form
(qid, sid, ts), where gid is a unique identifier generated by the system for every BGP that
is executed, sid is a unique identifier for each matching subgraph, and ts is a timestamp.
Matching subgraphs can be overlapping; therefore, for each edge of a matching subgraph,
the annotations are maintained separately. Below are the formal definitions of these con-
cepts.

Definition 8. An annotation is a 3-tuple from the set A = Z* x 7Z* x Z*, where for each
annotation {qid, sid,ts) € A,

e qid is the query identifier,
e sid is the matching subgraph identifier, and
e 1s 1s a timestamp. [

Definition 9. Given an RDF graph G = (V, E), an edge annotation of G is a 2-tuple
from the set Mg = (E x A). O

In a given sequence of BGPs, the same query structure may have multiple instantiations.
For example, both Prof; A E>?y < VLDB1j and Prof, Ao E>?y < SIGMOD14

are instantiations of the same linear query 7w N E>?y %22, In the training phase,
the algorithm detects if a particular query structure occurs frequently, and if so, it tunes
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the clustering algorithm to better support instantiations of that query structure. For
this purpose, every BGP that is evaluated during the training phase is generalized to its
structural form, which means that every URI or literal vertex in the BGP is replaced
with a distinct variable as shown above. Then, the frequency of occurrence of each query
structure is computed. Finally, the most frequent query structures are executed and the
RDF graph is annotated based on their results—just as one would do for any other query
in the training workload—to generate annotations also for the generalized BGPs.

The subsequent sections details of the optimization phase, when the clusters are formed.

4.2.2 Design of the Algorithm

To compute the group-by-query clustering, a hierarchical algorithm is used, which starts
from a completely segmented clustering, and successively merges clusters until the cluster-
ing objective is achieved. The algorithm operates as follows:

S1. Initially, each edge of the RDF graph resides in its own cluster, which corresponds to
a completely segmented group-by-query clustering for any possible workload;

S2. The pair of clusters, whose merging improves segmentation (cf., Section 4.1.3) the
most, while causing the least trade-off in minimality (cf., Section 4.1.3), is identified
(race conditions will be discussed shortly);

S3. Clusters found in Step 2 are merged, which results in a potential decrease in segmen-
tation and/or minimality;

S4. Steps 2-3 are repeated as long as the aggregate minimality of the clustering is greater
than a threshold.

It is important to note that segmentation and minimality measures are monotonically
decreasing within this algorithm. That is, whenever two clusters are merged, segmentation
will potentially decrease because edges with the same qid and sid labels may be brought
together. However, at the same time, edges with different ¢id labels may also be placed in
the same cluster, which does not affect segmentation, but reduces minimality.

As discussed in Section 4.1.4, while it is desirable to reduce segmentation, one would
also like to improve minimality. That is, when clusters contain too many edges that are
individually irrelevant to the execution of the majority of the queries, the overhead of sub-
graph matching within each cluster can undermine the benefits of reduced segmentation.
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In the implementation of chameleon-db, it has been observed that if the clusters contain
on average more than 10 times as many irrelevant triples as there are relevant ones, perfor-
mance of query evaluation starts to degrade. For this reason, the threshold on minimality
is set to 0.1 for the experiments with chameleon-db.

There are two reasons for choosing a hierarchical clustering algorithm. First, the way
hierarchical clustering works is aligned with the objectives of G-by-Q) clustering as clusters
are merged one pair at a time until a global objective is achieved. Thus, at each merge step
of the algorithm, segmentation can be improved with a quantifiable trade-off in minimality.
This would not be so easy to achieve with a centroid-based [1 18] or spectral [115] clustering
algorithm. Second, other algorithms such as k-means [118] require the final number of
clusters to be known in advance, which is not possible in the case of G-by-@Q) clustering.

As an assumption that generally holds, one can expect the final clustering to be fine-
grained since subgraphs that match the queries in the workload are likely to be comparable
in size to the query graphs, which are relatively small. Furthermore, the final clusters
are not likely to be much larger than these subgraphs due to the minimality threshold.
Therefore, a bottom-up (agglomerative) approach can reach the clustering objective in
fewer number of iterations than a top-down (divisive) approach (hence, the reason why the
algorithm starts with a completely segmented clustering and employs an agglomerative
approach).

Let P denote the set of G-by-@ clusters. A critical issue is to decide which pair of
clusters to merge in each iteration. In this regard, a distance function § : P x P — [0, 1] is
defined over the clusters such that:

1. 6 =1 is reserved for clusters that should not be merged; and

2. A smaller distance between two clusters implies that the decrease in segmentation is
higher (with a lower trade-off in minimality) if these two clusters are merged.

To compute the pairwise distances between clusters, the algorithm relies on the annota-
tions of edges in each pair of clusters, namely, the set of (qid, sid, t)-tuples. Consequently,
the distance between a pair of clusters is defined as a combination of two Jaccard distances:
s is defined over the sets of subgraph identifiers (sid), and dq is defined over the sets of
query identifiers (¢id). For any cluster P € P, let 74(P) and m,(P) denote the set of sub-
graph identifiers and the set of query identifiers with which P is annotated, respectively.
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Given two clusters P, and P, the distances 6g(P;, P2) and dg( Py, ) are defined as follows:

L m(P) NP

05 =1 |Ts(Pr) U ms(P2)| (4.1
. |7Tq(P1) N 71'q(P2)|

Y= (P Uy (P)] 42)

The two distance functions are complementary. That is, by merging P, with P,, seg-
mentation decreases by at least |m( Py )N7s(Py)], therefore, dg is more sensitive to predicting
the expected change in segmentation. Likewise, |m,(P1) U m ()| — |m,(P1) N 7wy (Ps)] is a
more accurate approximation of the expected reduction in minimality; thus, dg is more
sensitive to changes in minimality. Hence, the reliance on a combination of both distances.
However, in doing so, the algorithm pays particular attention to some race conditions.
Specifically, the distance function is designed such that the following order, in which clus-
ters are merged, is always preserved:

R1. A pair of clusters with g = 0 (which also implies that 6o = 0) are merged before any
other pair of clusters;

R2. Clusters with g # 0 and dg = 0, are merged next;

R3. Finally, clusters with dg # 0 and dg # 0 are merged according to a combined distance
d = ads + (1 — a)dg, where a = 0.5. Choosing « is left as future work.

Note that in the first two cases, minimality will not decrease because the two clusters
that are merged have subgraphs that match only a single query. Hence, they are preferred
over the third case, in which minimality is expected to decrease. Furthermore, even though
the first and second cases are both guaranteed to reduce segmentation (without compro-
mising minimality), the first case can achieve the same objective with smaller clusters,
hence, it is preferred over the other. When two clusters P, and P, are merged, all dis-
tances between the new cluster and any other existing cluster P, for which §(P, P,) < 1
or 0(Pz, P,) < 1 need to be updated.

4.2.3 Implementation of the Algorithm

The description of the variables that will be used across the pseudocodes described in this
section are given in Table 4.2.
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P | The G-by-Q clustering that is being computed

tables | HASHTABLE (F, L1sT (A) ) mapping RDF edges to LIST of annotations

tablep | HASHTABLE mapping RDF graphs to SET of distance structs

levelA, levelB | VECTORS of distance structs (used as FIFO queues)

minHeap | Instance of a slightly modified MIN-HEAP data structure

Table 4.2: Description of the common variables used in Algorithms 2-7

Algorithm 2 contains the pseudocode of the clustering algorithm. After initializations
of various data structures, the algorithm starts by creating the initial G-by-Q) clusters
where each triple is placed in its own cluster (lines 4-8), as outlined in S1 in Section 4.2.2.
Then, hashtable table, is populated with the edge annotations Mg that are given as input
(lines 9-14). Next, the initial distances between pairs of clusters that share a common
vertex are computed and stored in local data structures (lines 15-24) with the help of the
UPDATE-DISTANCES function.
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Algorithm 2 Cluster

Require:

An RDF graph G = (V, FE)
A set of edge annotations Mg = (e,a) C Mg
context: Variable with pointers to common data structures including

tablea: HASHTABLE (£, LiST (A) ) mapping RDF edges to LI1ST of annotations

Ensure:

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

28:
29:

Returns P, a G-by-Q clustering of G' based on edge annotations Mg
procedure CLUSTER(G, Mg, context)

P+ 0
10
for all (s,p,0) € FE do
construct G; = (V;, E;) with V; = {s,0} and E; = {(s,p,0)}
P+« PUG; > (s,p,0) denotes a triple
1 1+1
end for
for all (e,a) € My do
if lcontext—table,.HASKEY(e) then
context—table 4. INSERT (e, L1ST())
end if
context—table4[e] INSERT(a)
end for
for all v e V do
Eine < INCIDENT(G, v) > INCIDENT finds edges incident on v in G
for all e4 € E;,. do
for all eg € Ey,. \ {€a} do

G4 < CONTAINER(P, e4) > CONTAINER finds cluster in P
Gp < CONTAINER(P, ep) > that contains a given edge
UPDATE-DISTANCES(G 4, G, context)
end for
end for

end for
minHeap.BUILD()
while !level A.EMPTY() do
d < levelA.POoP-FRONT()
MERGE(d. first, d.second, P, context) > Clusters that satisfy R1 are merged
end while
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30: while llevel B.EMPTY() do

31: d < levelB.POP-FRONT()

32: MERGE(d.first, d.second, P, context) > Clusters that satisfy R2 are merged
33: end while

34: while !minHeap.EMPTY() AND MINIMALITY(P) > © do

35: d + minHeap.DELETE()

36: MERGE(d. first, d.second, P, context) > Clusters that satisfy R3 are merged

37: end while
38: return P
39: end procedure

The pseudocode of the UPDATE-DISTANCES function is given in Algorithm 3. In line 8,
the function calls CONSTRUCT-DISTANCES (Algorithm 4) to compute distances dg, dg and
0 between a pair of RDF graphs G; and ;. As outlined in R1-R3 in Section 4.2.2, distances
are categorized into three groups (i.e., to avoid race conditions), and stored respectively in
three variables: levelA, levelB and minHeap (lines 9-25). The variables levelA and level B
are FIFO queues and minHeap is a slightly modified minimum heap (binary) that can
accommodate updates given the index of an element within the heap. For simplicity, it
is also assumed that the REVERSE-LOOKUP function of minHeap returns the index of a
given element. Irrespective of its category, the distance between two RDF graphs G; and
G are stored in hashtablep with keys G; and G, respectively, to be used for fast lookups
in other parts of the algorithm.

Once initial distances are computed, Algorithm 2 builds the minimum heap (line 25).
In the last phase, clusters are merged a pair at a time with the help of the MERGE
function (Algorithm 6), while ensuring that the race conditions are respected (cf., R1-R3
in Section 4.2.2) and minimality threshold is not reached (lines 26-38).

The MERGE function (Algorithm 6) operates as follows. Given a pair of RDF graphs
G1 and Ga, first, G is constructed by merging G and Go (line 2). Then, old distances
are updated with the new distances between the merged RDF graph G,; and

e all the neighbors of G; (i.e., those with distances less than 1) except G, and

e all the neighbors of G (i.e., those with distances less than 1) except G; (lines 3-4).

For this purpose, the helper function TRAVERSE NEIGHBORS (cf., Algorithm 7) is invoked.
Next, the old distances are removed from hashtable tableD (lines 5-8). Lastly, P, which
represents the G-by-@Q clustering is updated (line 9).
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Due to the minimality threshold, it is safe to assume that the CONSTRUCT-DISTANCES
procedure (cf., Algorithm 4) always operates on a pair of G-by-(Q) clusters that are relatively
small (i.e., with respect to the entire RDF graph), hence, the procedure’s computational
complexity is O(1). Therefore, the computational complexity of the UPDATE-DISTANCES
procedure (cf., Algorithm 3) is determined by the cost of updating the minimum heap,

which is O(log(n)), where n represents the number of elements stored in the minimum
122
. V] ‘
|E| denotes the number of edges in the RDF graph and |V/| denotes the number of vertices.
Consequently, lines 2-25 of Algorithm 2 have O(nlog(n)) computational complexity.

heap. Based on lines 15-25 in Algorithm 2, it is safe to assume that n =~ O( ), where

Estimating the computational complexity of the TRAVERSE-NEIGHBORS procedure
(cf., Algorithm 7) is not as trivial: In the worst case, all the other G-by-Q clusters need
to be considered for each invocation of TRAVERSE-NEIGHBORS, which can be O(n) in
number. On the other hand, in practice, this number is much smaller due to the minimality
threshold. Assuming the worst-case, TRAVERSE-NEIGHBORS has O(n log(n)) complexity
because UPDATE-DISTANCES is invoked O(n) times. Therefore, lines 26-38 of Algorithm 2
have O(n2 log(n)) worst-case complexity, which is also the overall worst-case complexity of
Algorithm 2. A closer look at Algorithm 2 suggests that it is an average-linkage clustering
algorithm [139], thus, verifying the complexity analysis.

In practice, Algorithm 2 rarely hits its worst-case complexity because of two reasons.
First, only a small portion of the RDF graph is annotated, thus, reducing the number of
G-by-Q clusters that can be merged. Second, due to the minimality threshold, TRAVERSE-
NEIGHBORS rarely considers O(n) clusters. While an average-case complexity analysis is
beyond the scope of this thesis, experimental evaluation of Algorithm 2 suggests that
the computational overhead for the workloads considered is less than a second (cf., Sec-
tion 6.2.5). Nevertheless, Section 4.3 introduces a much more predictable algorithm with
O(|E|) worst-case computational complexity.

4.2.4 Updating the Physical Representation

Once a suitable G-by-Q) clustering is computed, the system performs the transformation
from the current physical representation to the desired one as a set of atomic update opera-
tions (i.e., deletion and insertion) on the set of physical clusters in the storage system. Each
operation has the property that before and after the operation, the database represents
exactly the same RDF graph but using a different clustering.

The update operations are executed concurrently with the queries, which is possible
because the query evaluation approach introduced in Section 4.1.1 is designed with an
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isolation guarantee: once results are computed within a cluster, query evaluation does
not need to access that cluster anymore, allowing it to be updated while query evaluation
proceeds over other clusters. In order to ensure that updates do not take place before a
query has completely “consumed” the contents of a cluster, a two-level locking scheme is
used.

More specifically, two types of locks are maintained: (i) a global lock on the database,
and (ii) a cluster-based lock on each G-by-@ cluster. A query needs to obtain and hold on
to the global lock until it fully determines which clusters are relevant to its execution (recall
that using the indexes it is possible to prune out irrelevant clusters, cf., Algorithm 1). At
this time, no updates can take place as they are also requesting the global lock. Then,
the query (i) obtains a cluster-based lock on each cluster that is relevant to its execution,
(ii) releases the global lock, and (iii) starts computing results within each cluster. The
isolation guarantee of Algorithm 1 plays an important role here because queries can be
evaluated independently of each cluster, and the results from one cluster do not interfere
with another. Therefore, as soon as the results are computed within a cluster, the query
can release the cluster-based lock, allowing that cluster to be updated. Now, an update
operation can successfully obtain, first the global lock and then the cluster-based lock,
and carry out its task. When the operation is complete, it releases both locks. The
aforementioned locking scheme can be easily extended to support concurrent execution of
queries (which is a topic of future work), in which case, (read-only) queries can obtain
shared cluster-based locks while the update operations need to obtain exclusive locks.

4.2.5 Discussion

The aforementioned mechanism enables complex use cases such as the ones depicted in
Figures 4.6b and 4.6¢ to be implemented, and to a certain extent, enables the algorithm to
be used for changing workloads as well (i.e., through repeated invocation of the algorithm).
However, the next section presents a different solution that can adapt even more easily to
changing workloads.
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Algorithm 3 Update Distances

Require:

G;i, Gj: Pair of RDF graphs between which distances are computed
context: Variable with pointers to common data structures including

tablea: HASHTABLE (E, LisT (A) ) mapping RDF edges to LIST of annotations
tablep: HASHTABLE mapping RDF graphs to SET of distance structs

levelA, levelB: VECTORS of distance structs

minHeap: Instance of a slightly modified MIN-HEAP data structure

Ensure:

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Distances dg, dg and 0 between two annotated RDF graphs G, G; are computed, and
relevant data structures are updated
procedure UPDATE-DISTANCES(G;, G}, context)

if lcontext—tablep. HASKEY(G;) then
context—tablep. INSERT (G}, LIST())

end if

if lcontext—tablep. HASKEY(G,) then
context—tablep. INSERT(G;, LIST())

end if

(dg, dg, d ) < CONSTRUCT-DISTANCES(G;, G, context—tabley)

if dg.distance = 0 then
context—level A.PUSH-BACK(dy)
context—tablep[G;].INSERT(dg)
context—tablep[G;].INSERT(dg)

else if dg.distance = 0 then
context—level B.PUsH-BACK(dg)
context—tablep|[G;]. INSERT(dg)
context—tablep[G;].INSERT(dg)

else if d.distance < 1 then
if (id < minHeap.INv-LoOKUP(d)) > 0 then

context—minHeap. UPDATE(id, d)
else
context—minHeap.INSERT(d)

end if
context—tablep|G;].INSERT(d)
context—tablep|[G,].INSERT(d)

end if

26: end procedure
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Algorithm 4 Construct Distances

Require:
Two RDF graphs G; = (V;, E;) and G; = (V}, E;) over which distances are to be
computed
tablea: HASHTABLE (E, LisT (A) ) mapping RDF edges to Li1ST of annotations
Ensure:
Computes and returns a 3-tuple consisting of structs containing dg, dg and d distances
1: procedure CONSTRUCT-DISTANCES(G;, G, tabley)
2 II; <~ GET-ANNOTATIONS(G}, tabley)
3 II; <~ GET-ANNOTATIONS(G;, tabley)
4: ds +— COMPUTE-S-DI1STANCE(IL;, I1;) > cf., Equation 4.1
5. 0g ¢ CoMPUTE-Q-DisTaNCE(I;, II;)
6 0 (55 + 5Q)/2
7 DistanceStruct dg(G;, Gy, ds)
8 DistanceStruct do(G;, G, 0g)
9: DistanceStruct d(G;, Gy, 6)
10: return ( dg, dg, d )
11: end procedure

Algorithm 5 Get Annotations
Require:
G = (V,E): An RDF graph
tablea: HASHTABLE (E, LisT (A) ) mapping RDF edges to Li1ST of annotations
Ensure:
IT, the union of annotations for all edges in G is returned
1. procedure GET-ANNOTATIONS(G, tabley)
2 I« 0
3 for all e € F do
4 if table,.HASKEY(e) then
5: for all a € tabley[e] do
6
7
8
9

II+<Ilua
end for
end if
end for
10: return II
11: end procedure
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Algorithm 6 Merge

Require:
G1, Ga2: Two RDF graphs that are being merged
P: The G-by-@Q clustering to be updated
context: Variable with pointers to common data structures including
tablep: HASHTABLE mapping RDF graphs to SET of distance structs
Ensure:
Merge RDF graphs G; and Gs
1: procedure MERGE(G, Go, P, context)
2 construct Gy = (Viy, Epr) with Vi, = Vi UV, and By = Ey U Ey
3 garbage < TRAVERSE-NEIGHBORS(G1, Gy, G, context)
4: garbage <— garbage U TRAVERSE-NEIGHBORS(Gs, G, Gy, context)
5: for all d,; € garbage do
6 context—tablep [dyg.first]. REMOVE(dyq)
7 context—tablep[dyq.second]. REMOVE(dyq)
8 end for
P <« (]P) \ {Gl,GQ}) U GM
10: end procedure
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Algorithm 7 Traverse Neighbors

Require:
G;: RDF graph whose neighbors are being traversed
G;: RDF graph to be excluded from traversal because it is being merged with G;
Gw: RDF graph resulting from the merge of G; and G
context: Variable with pointers to common data structures including
tablep: HASHTABLE mapping RDF graphs to SET of distance structs
Ensure:
Neighbors of G; are traversed (excluding G;), distances between each neighbor of G; and
the newly merged graph G, are computed, and relevant data structures are updated;
Stale distance structs are collected and returned for garbage collection.
1: procedure TRAVERSE-NEIGHBORS(G;, G, Gy, context)
2 garbage < ()
3 for all d,; € context—tablep[G;] do
4 if dgq.first= G; AND dg4.5econd# G; then
5: Gy + d,g.second
6: else if d,q.first# G; AND dg4.second= G; then
7 Gy + dOld.ﬁl"St
8
9

else
: continue
10: end if
11: UPDATE-DISTANCES(G )y, G, context)
12: garbage < garbage U d 4
13: end for
14: return garbage

15: end procedure

4.3 An Online Clustering Algorithm

Whenever a SPARQL query is executed, there is an opportunity to observe how records
in an RDF database are being utilized. This information about query access patterns can
be used to dynamically compute the G-by-@Q clusters in the storage system. Dynamism
is important in RDF systems because of the high variability and dynamism in SPARQL
workloads [30, 124].  While this problem has been studied as physical clustering [135]
and distribution design [57], the highly dynamic nature of the queries over RDF data
introduces new challenges. First, traditional algorithms are offline, and since clustering is
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an NP-hard problem and most approximations have quadratic complexity [1 18], they are
not suitable for online database clustering. Instead, techniques are needed with similar
clustering objectives, but that have constant running time. Second, systems are typically
expected to execute most queries in subseconds [1415], leaving only fractions of a second to
update their physical data structures (i.e., in case of chameleon-db, the main concern is
dynamically moving RDF triples across the storage system).

This section addresses the aforementioned issues by making two contributions. First,
as shown in Figure 1.7, instead of clustering the whole database, only the “hot” portions
of the database are clustered by relying on the admission policy of the existing database
cache. Second, a self-tuning locality-sensitive hash (LSH) function, namely, TUNABLE-
LSH is developed to decide in constant-time where in the storage system to place a triple.
TUNABLE-LSH has two important properties:

e It tries to ensure that (i) triples with similar utilization patterns (i.e., those triples
that are co-accessed across similar sets of queries) are mapped as much as possible to
the same G-by-Q clusters (hence, pages in the storage system) while (ii) minimizing
the number of triples with dissimilar utilization patterns that are falsely mapped to
the same G-by-Q) cluster.

e Unlike conventional LSH [3,116], TUNABLE-LSH can auto-tune so as to achieve the
aforementioned clustering objectives with high accuracy even when the workloads
change.

In determining which RDF triples are accessed together, the techniques in this section
rely on the labeling scheme introduced in Section 4.2.1. That is, whenever a BGP is
executed, each matching subgraph in the result of the BGP is marked with a unique
identifier (i.e., sid). Then, TUNABLE-LSH is used to cluster those RDF triples that share
the same identifier. The aforementioned subproperty (i) of TUNABLE-LSH ensures that
the segmentation of the generated G-by-@) clustering is low, while subproperty (ii) ensures
that its minimality is high (cf., Section 4.1).

These ideas are illustrated in Figure 1.7. Let us assume that initially, the triples are not
clustered according to any particular workload. Therefore, the performance of the system
is suboptimal. However, every time triples are fetched from the storage system, there
is an opportunity to bring together into the same G-by-Q) cluster those triples that are
co-accessed but are fragmented across the storage system. TUNABLE-LSH achieves these
with minimal overhead. Furthermore, TUNABLE-LSH is continuously updated to reflect
any changes in the workload characteristics. Consequently, as more queries are executed,
triples in the database become more clustered, and the performance of the system improves.
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The rest of this section is organized as follows: Section 4.3.1 gives a conceptual de-
scription of the problem. Section 4.3.2 describes the overview of our approach while the
remaining sections provide the details.

4.3.1 Preliminaries

In this section, the term “record” is used to denote a single RDF triple. However, the
following conceptualization can be generalized to other physical layouts, where a record
contains multiple RDF triples.

Given a sequence of database records that represent their serialization order in the
storage system, the access patterns of a query can conceptually be represented as a bit
vector, where a bit is set to 1 if the corresponding record in the sequence is accessed by
the query. This bit vector is called a query access vector (q).

As more queries are executed, their query access vectors can be accumulated column-
by-column in a matrix, as shown in Figure 4.7a. This matrix is called a query access
matriz. For presentation, it is assumed that queries are numbered according to their order
of execution by the RDF data management system. In chameleon-db, for each matching
subgraph of a BGP, a separate column is allocated in the matrix. In practice, other
groupings are also possible.

Each row of the query access matrix constitutes what is called a record utilization vector
(7), which represents the set of queries that access record r. As a convention, to distinguish
between a query and its access vector (likewise, a record and its utilization vector), the
symbols ¢ and ¢ (likewise, r and 7) are used, respectively. The complete list of symbols
that are used in this section are given in Table 4.3.

To model the memory hierarchy, an additional notation is used in the matrix repre-
sentation: records that are physically stored together on the same disk/memory page are
grouped together in the query access matrix. For example, Figure 4.7a and Figure 4.7b
represent two alternative ways in which the records in an RDF database can be clustered
(groups are separated by horizontal dashed lines). Even though both figures depict essen-
tially the same query access patterns, the physical organization in Figure 4.7b is preferable,
because in Figure 4.7a, most queries require access to 4 pages each, whereas in Figure 4.7b,
the number of accesses is reduced by almost half.

Given a sequence of queries and the number of pages in the storage system, the objective
of the online clustering algorithm is to compute a G-by-QQ) clustering such that records with
similar utilization vectors are grouped together so as to minimize the total number of page
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qo d1 92 93 44 4546 g7 qo 419293 44 95 46 g7 qo 92 96 494 43 G547 q1

r/0111:1111 r(0000:0000 r(0000:0000
r1] 1010:0000 7] 1010:0000 r1] 1100:0000
7] 0001:0101 741 1010:1010 4] 1111:0000
r3] 1010:1010 31 1010:1010 r3]1 1111:0000
r4] 1010:1010 ] 1111:1111 ] 1111:1111
5] 0101:0101 ] 0111:1111 ] 0111:1111
el 1111:1111 51 0101:0101 1] 0000:1111
7\ 0000:0000 2 \0001:0101 2\0000:1110
(a) Representation at t = 8. (b) Clustered on rows (c) Clustered on rows and
columns
GoGl GOGl
Cr7 0 0 Cr 0 0
C1 2 0 C1 2 0
Cq 2 2 Cy 4 0
C3 2 2 C3 4 0
ce| 4 4 cs| 4 4
co| 3 4 ol 3 4
Cs 2 2 Cs 0 4
Co 1 2 Co 0 3

(d) Grouping of bits  (e) Alternative grouping
Figure 4.7: Matrix representation of query access patterns.
accesses. To determine the similarity between record utilization vectors, the following
property is used. T'wo records are co-accessed by a query if both of the corresponding bits

in that query’s access vector are set to 1. Extending this concept to a set of queries, it is
assumed that two records are co-accessed across multiple queries if the corresponding bits
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Symbol

Description

Constants

database size (i.e., number of records)

number of pages in the storage system

maximum no. of query access vectors that can be stored
number of entries in each record utilization counter
current time

Data structures

wlﬁlﬁllev?T‘m &

wak

query access vector (contains w bits)

record utilization vector (contains k bits)

record utilization counter (contains b entries)

depending on the context, a point in a k-dimensional

or b-dimensional (Taxicab) space

query access matrix; contains the last k£ most
representative query access vectors (in columns),

or equivalently, w record utilization vectors (in rows)
frequency matrix; represents record utilization frequency
over b groups of query access vectors

Accessors

value of the i*" bit in query access vector ¢

value of the i*" bit in record utilization vector 7
value of the i'" entry in record utilization counter &
value of the i*" coordinate in point P

value of the i*" row and j* column in matrix

value of the i*" row and j* column in matrix

Distances

Hamming distance between two record utilization
vectors

MIN-HASH distance between two query access vectors
Manhattan distance between two points

Table 4.3: Symbols used throughout Section 4.3

co-accessed in all of the queries.
records are co-accessed, their Hamming distance |
utilization vectors for the same sequence of queries, their Hamming distance—denoted as

in the record utilization vectors are set to 1 for all the queries in the set. For example,
according to Figure 4.7a, records r; and r3 are co-accessed by queries ¢y and ¢o, and records
ro and rg are co-accessed across the queries ¢;—q7.

Given a sequence of queries, it may often be the case that a pair of records are not
Therefore, to measure the extent to which a pair of
] is used. Specifically, given two record

69



0(qx, qy)—1s defined as the minimum number of substitutions necessary to make the two
bit vectors the same [06].2 Hence, the smaller the Hamming distance between a pair of
records, the greater the extent to which they are co-accessed.

Consider the record utilization vectors 7, 75, 75 and 7 across the query sequence qo—¢q;
in Figure 4.7a. The pairwise Hamming distances are as follows: §(rg,76) = 1, d(r2,75) = 1,
d(ro,r5) = 3, 8(ro,1m2) = 4, 6(r5,76) = 4 and d(re,76) = 5. Consequently, to achieve better
physical clustering, the online clustering algorithm should try to store ry and r¢ together
and 79 and 75 together, while keeping ry and rg apart from ry and rs.

4.3.2 Overview of Tunable-LSH

The dynamic nature of queries over RDF data necessitate a solution different than existing
clustering algorithms [19]. That is, while conventional clustering algorithms [1 18] might
be perfectly applicable for the offiine tuning of a database, in an online scenario, what is
needed is an algorithm that clusters records on-the-fly and within microseconds. Clustering
is an NP-complete problem [118], and most approximations take at least quadratic time. It
is not very well-understood which clustering algorithm is more suitable for which types of
input distributions [3], let alone the fact that incremental versions of these algorithms are
largely domain-specific [9]. In contrast, TUNABLE-LSH is a self-tuning locality-sensitive
hash (LSH) function, which is used as follows:

As records are fetched from the storage system, records that are fragmented are iden-
tified. Then, TUNABLE-LSH is used to decide, in constant-time, how a fragmented record
needs to be clustered into G-by-Q) clusters in the storage system (cf., Figure. 1.7). Fur-
thermore, methods are developed to continuously auto-tune this LSH function to adapt to
changing query access patterns that are encountered while executing the workload. This
way, TUNABLE-LSH can achieve much higher clustering accuracy than conventional LSH
schemes, which are static.

Let Z,...s denote the set of integers in the interval [, 8], and let Z7 . 5 denote the

n-fold Cartesian product:

Za...ﬁ Xoeee XZam,B-

(. J/

n
2The Hamming distance between two record utilization vectors is equal to their edit distance [134], as
well as the Manhattan distance [128] between these two vectors in {; norm.
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Furthermore, assume that a non-injective, surjective function f : Zg...—1) — Zg... p—1) is
given, where b < k, and for all y € Zg...3—1), it holds that

i@ =) < [5].

In other words, f is a hash function with the property that, given k input values and b
possible outcomes, no more than (%] values in the domain of the function will be hashed
to the same value. Section 4.3.4 discusses in more detail how f can be constructed. Then,
TUNABLE-LSH is defined as h : Z’gm 1 = Zyg...(c—1), where € represents the number of pages

in the storage system. More specifically, h is defined as a composition of two functions h;
and hs.

Definition 10 (TuNABLE-LSH).

Let

Then, a tunable LSH function h is defined as
h= h2 O h1

where

hy 2 Z§.., = Z0 iy, where hy(F) = € iff

517

Vy cly] = ; { SM ;Eg 7:& Z

. 77b

nearest integer) on a space-filling curve [1//] of length € that covers ng

— Zy...(e—1), where hy(C) = v and v is the coordinate of ¢ (rounded up to the

. [l
M1
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According to Definition 10, h is constructed as follows:

1. Using a hash function f (which can be treated as a black box for the moment), a
record utilization vector ¥ with k bits is divided into b disjoint segments 7, ..., 71
such that 7, ..., 7,_; contain all the bits in 7, and each 79, ..., 7,_1 has at most (%}
bits. Then, a record utilization counter ¢ with b entries is computed such that the
it" entry of ¢ (i.e., c[i]) contains the number of 1-bits in 7 € {7, ...,7_1}. Without
loss of generality, a record utilization counter ¢ can be represented as a b-dimensional
point in the coordinate system ng sy

2. The final hash value is determined by computing the z-value [0, 144] of the points

in ng ok and dropping off the last m bits from the produced z-values, where m =
b

k — [log,€].

In Section 4.3.3, it is shown that TUNABLE-LSH that maps k-dimensional record uti-
lization vectors to natural numbers in the interval [0,...,e — 1] is locality-sensitive, with
two important implications: (i) records with similar record utilization vectors (i.e., small
Hamming distances) are likely going to be hashed to the same value, while (ii) records
with dissimilar record utilization vectors are likely going to be separated. Therefore, the
problem of computing G-by-@) clusters can be approximated using TUNABLE-LSH, such
that clustering n records takes O(n) time.

The quality of TUNABLE-LSH, that is, how well it approximates the original Hamming
distances, depends on two factors: (i) the characteristics of the workload so far, which is
reflected by the bit distribution in the record utilization vectors, and (ii) the choice of f.
In Section 4.3.4, it is demonstrated that f can be tuned to adapt to the changing patterns
in record utilization vectors to maintain the approximation quality of TUNABLE-LSH at
a steady and high level.

Algorithms 8-10 outline the computation of the outcome of TUNABLE-LSH outcome
and methods for incrementally tuning the LSH function every time a query is executed.
Note that there are two design considerations: (i) tuning should take constant-time,
otherwise, there is no point in using a function, (ii) the memory overhead should be low
because it would be desirable to maximize the allocation of memory to core database
functionality. Consequently, instead of relying on record utilization vectors, the algorithm
computes and incrementally maintains record utilization counters (cf., Algorithm 8) that
are much easier to maintain and that have a much smaller memory footprint due to the
fact that b < k. Then, whenever there is a need to compute the outcome of the LSH
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Algorithm 8 Initialize

Ensure:
Record utilization counters are allocated and initialized

1: procedure INITIALIZE()

2: construct int Clw][20] > For simplicity, C' is allocated
statically; however, in practice,
it can be allocated dynamically
to reduce memory footprint.

3 for alli € (0,...,w—1) do

4 for all j € (0,...,2b—1) do
5 Clij] < 0

6: end for

7 end for

8: end procedure

function for a given record, the HASH procedure is called with the id of the record, which
in turn relies on hy to compute the hash value (cf., Algorithm 10).

The TUNE procedure (Algorithm 9) looks at the next query access vector, and updates
f (line 2), which will be discussed in more detail in Section 4.3.4. Then it computes
positions of records that have been accessed by that query (line 3), and increments the
corresponding entries in the utilization counters of those records that have been accessed
(line 8). To determine which entry to increment, the algorithm relies on hy, hence, f(t)
(cf., Def. 10) and a shifting scheme. In line 11, old entries in record utilization counters
are reset based on an approach that is discussed in Section 4.3.5. In that section, also the
shifting scheme is discussed.

4.3.3 Properties of Tunable-LSH

This section discusses the locality-sensitive properties of h = hyo h; and demonstrates that
h can be used for clustering the records. First, the relationship between record utilization
vectors and the record utilization counters that are obtained by applying h is shown.

Theorem 1 (Distance Bounds). Given a pair of record utilization vectors 7y and 75 with
size k, let & and & denote two record utilization counters with size b such that & = hq(7)
and Gy = hy(72) (cf., Definition 10). Furthermore, let c1[i] and cs[i] denote the i™ entry in
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Algorithm 9 Tune

Require:
q:: query access vector produced at time ¢

Ensure:
Underlying data structures are updated and f is tuned such that the LSH function
maintains a steady approximation quality

1. procedure TUNE(q;)

2 RECONFIGURE-F(¢;)

3 for all i € POSITIONAL(q;) do

4 loc « f(t)

5: if loc < (shift % b) then

6: loc +=b

7 end if

8 Cli][loc]++ > Increment  record utilization
counters based on the new
query access pattern

9: if t%[%] =0 then > Reset “old” counters

10: shift++

11: C't][(shift+b)%2b] < 0

12: end if

13: end for
14: end procedure

c1 and ¢y, respectively. Then,

b—1

8(1,73) = > |eali] = ealil| (4.3)

i=0
where 6(r1,73) represents the Hamming distance between 71 and 7.

Proof 1. [t is possible to prove Theorem 1 by induction on b.

Base case: Theorem 1 holds when b = 1. According to Definition 10, when b =1, ¢[0]
and c2[0] correspond to the total number of 1-bits in T and Ty, respectively. Note that
the Hamming distance between 1 and 75 will be smallest if and only if these two record
utilization vectors are aligned on as many 1-bits as possible. In that case, they will differ
in only |c1[0] — c2[0]| bits, which corresponds to their Hamming distance. Consequently,

Equation 4.3 holds for b= 1.
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Algorithm 10 Hash
Require:
id: id of record whose hash is being computed
Ensure:
Hash value is returned
1. procedure HAsH(id)
2: return Z-VALUE(C]id]) > Apply he
3: end procedure

Inductive step: It needs to be shown that if Equation 4.3 holds for b < a, where « is a
natural number greater than or equal to 1, then it must also hold for b= o + 1.

Let I14(7, g) denote a record utilization vector r' = (r'[0],...,r'[k —1]) such that for all
i€{0,...,k—1}, r'[i]] = r[t] holds if f(i) = g, and r'[i] = 0 otherwise. Then,
b—1
O, 72) =Y 0(4(F1, ), (7, 9)). (4.4)
g=0

That is, the Hamming distance between any two record utilization vectors is the summation
of their individual Hamming distances within each group of bits that share the same hash
value with respect to f. This property holds because f is a (total) function, and I1; masks
all the irrelevant bits. As an abbreviation, let §, = d(1L¢(r1, g), (72, g)). Then, due to
the same reasoning as in the base case, for g = «, the following equation holds:

0a(11,73) = |er[a] — colo]| (4.5)

Consequently, using the additive property in Equation 4.4, it can be shown that Equation 4.3
holds also for b=« + 1. Thus, by induction, Theorem 1 holds. [

Theorem 1 suggests that the Hamming distance between any two record utilization
vectors 71 and 73 can be approximated using record utilization counters ¢; = hy(r7) and
¢ = hy(r3) because Equation 4.3 provides a lower bound on §(77,73). In fact, the right-
hand side of Equation 4.3 is equal to the Manhattan distance [128] between ¢1 and ¢3 in
ng L and since §(r7,73) is equal to the Manhattan distance between 7] and 75 in Z’gm 1

it is easy to see that h; is a transformation that approximates Manhattan distances. The
following corollary captures this property.

Corollary 2 (Distance Approximation). Given a pair of record utilization vectors 7 and
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Ty with size k, let ¢1 and ¢3 denote two points in the coordinate system Zg_“ o such that
b

éi = h(f) and ¢; = hi(7) (cf., Definition 10). Let 6™ (ri,73) denote the Manhattan
distance between 77 and 73, and let 6 (ci,¢3) denote the Manhattan distance between ¢;
and ¢5. Then, the following holds:

0(71,7) = 6™ (1, 73) = 0" (a1, &2) (4.6)

Proof 2. Hamming distance in ZE | is a special case of Manhattan distance. Furthermore,
by definition [125], the right hand side of Equation 4.3 equals the Manhattan distance
M (c1, ¢); therefore, Equation 4.6 holds. ]

Next, it is demonstrated that h = hy o hy is a locality-sensitive transformation [83, 116].
In particular, the definition of locality-sensitiveness by Tao et al. [180] is used, and it is
shown that the probability that two record utilization vectors 71 and 73 are hashed to the
same page increases as the (Manhattan) distance between r; and ro decreases.

Theorem 3 (Collision Probabilities). Given a pair of record utilization vectors r1 and 13
with size k, let §™ (7, 75) denote the Manhattan distance between 71 and 5. Furthermore,
let m denote the number of rightmost bits that are dropped by hy. When b = 1 (i.e., the
size of the record utilization counters produced by hy ), the probability that the pair of record
utilization vectors will be hashed to the same value by hy o hy provided that their initial
Manhattan distance is x s given by the following formula:

PR<h2 o by () = hy o hy () ] oM (77,7 = 1:)
555 @5 (5)0(A + 0 — 20,m)

_ a=0 A=0 22k (47)

where p(x,y,m) : (Zo...co, Li—oo 00y Lo . 00) — {0, 1} s a function such that

1 4f 0<{(z mod 2™) +y < 2™
p(:c,y,m)Z{O ejzse ( )ty

Proof 3. If the Hamming/Manhattan distance between 71 and 75 is x, then it means that
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these two vectors will differ in exactly x bits, as shown below.

a

"
r;: OO 111...10---000000
rp: JOJO000---01...111 OO0
—

r—a

Furthermore, if 71 has A + a bits set to 1, then r3 must have A + (x — a) bits set to 1,

where A denotes the number of matching 1-bits between 71 and r3. Note that when b =1,
=h(r)=(A+a) and &5 = h(72) = (A + 2 —a).

It is easy to see that a € Zyg..., and A € Zy...)._. For each value of a, the non-matching
bits in 1 and r3 can be combined in (i) possible ways, and these non-matching bits can be
positioned across the k bits in (kfx) possible ways. Likewise, for each value of A, those

matching 1-bits that are counted by A can be combined in (kgx) possible ways, hence, the

first three components of the multiplication in the numerator of Equation 4.7.

Among the aforementioned combinations, hy(C1) = ho(CGa) will be true if and only if the
binary representations of ¢1 and ¢y share the same sequence of bits except for their last m
bits. This condition will be satisfied if and only if A +a and A + x — a have the same
quotient when divided by 2™. In other words, (A +a) mod 2™ + (A+z —a) — (A +a)
must be greater than or equal to 0 or less than 2™, hence, the need to multiply by p in the
numerator of Equation 4.7.

Since 71 and 7 consist of k bits, there can be 2F x 28 = 22% possible combinations in
total, which corresponds to the denominator of Equation /.7. [

Next, Theorem 3 is extended to cases in which b > 2. However, first, some auxiliary
statements need to be made.

Lemma 4. Let p(z,y,m) : (Zo...cos Lo 005 Lo ... 00) — {0, 1} denote a function such that

1 4f 0<(x mod 2™)+y < 2™
p(x,y,m)Z{O olse ( )

Then, for any m € Zy...~, the following properties hold:

Property A. For any x € Zy...00, if 0 < 11 < o, then p(z,y1,m) > p(x,y2, m);

Property B. For any x € Zy...00, if Yo < 11 <0, then p(z,y1,m) > p(x,y2,m);
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Property C. For any x1, xa, Y1, Y2 such that x1,x9 € Zgy..o0 and x1 + y3 = o + Yo, if
0 S Y1 S Y2, then p(xlaylam) Z p<x27y27m)7' and

Property D. For any x1, x2, y1, Y2 Such that x1,x9 € Zg..oo and 1 + y1 = To + Yo, if
Yo S U1 S 0; then ,0(1’1,y1,m) 2 p<x27y27m);' and

Proof 4. All of the four properties are proven by contradiction.
Property A can be proven as follows:
Al. Foranyx € Zg...oo and m € Zy... 50,
0 <z mod 2™ < 2™ (4.8)
by the definition of the modulo operation.
A2. Assume 0 <y < ys.

o Assume p(z,y1,m) < p(z,y2,m).

Therefore, since 0 < y; < yo,

0<z mod 2™ 4+ y; < x mod 2™ + ys. (4.9)

Since p(:c7y17m> < P(xay%m); p(x7y17m> =0 and p(x7y27m) = 1. (NOte that
the codomain of p is the set {0,1}.)

If p(x,y1,m) = 0, according to the definition of p (cf., Lemma /) and Equa-
tion 4.8, and based on the fact that y, > 0, the following statement must be
true:

x mod 2™ + 1y > 2™, (4.10)

o Likewise, if p(x,y2,m) = 1, according to the definition of p (cf., Lemma /), the
following statement must be true:

0 <z mod 2™ + y, < 2™. (4.11)

e Therefore, according to Equations 4.10 and 4.11,

x mod 2™ + yy < x mod 2™ + ;. (4.12)
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e However, Fquation 4.12 contradicts Equation 4.9, therefore,
p<x7yl>m) Zp(x7y27m)' (413)

A8. Since Equation 4.13 holds under the assumption that 0 < y; < s, Property A in
Lemma 4 holds.

Property B can be proven as follows:
B1. For any x € Zg...oc and m € Zy... 50,

0 <z mod 2™ < 2™ (4.14)

by the definition of the modulo operation.
B2. Assume yy < y; < 0.

o Assume plz,y1,m) < p(z, ya,m).

Therefore, since ys < y1 < 0,

x mod 2™ +yo < x mod 2™ 4y < 2™, (4.15)

Since P(I7ylam) < p(xay%m); p(xuyhm) =0 and p(xay%m> =1 (NOt@ that
the codomain of p is the set {0,1}.)

If p(z,y1,m) = 0, according to the definition of p (cf., Lemma 4) and Equa-
tion 4.14, and based on the fact that y; < 0, the following statement must be
true:

x mod 2™ +y; < 0. (4.16)

o Likewise, if p(x,y2,m) = 1, according to the definition of p (cf., Lemma 4), the
following statement must be true:

0 <z mod 2™ + yy < 2™. (4.17)

e Therefore, according to Fquations 4.16 and 4.17,

x mod 2™ +y; < x mod 2™ + ys. (4.18)
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e However, Equation 4.18 contradicts Equation 4.15, therefore,
p<$7ylam) Zp<x>y2am)' (419)

B3. Since Equation 4.19 holds under the assumption that yo < y; < 0, Property B in
Lemma 4 holds.

Property C can be proven as follows:
Cl1. For any x1,x9 € Zg...oo and m € Zy... o0,

0<z; mod 2™ < 2™
0 <z mod 2™ < 2™ (4.20)

by the definition of the modulo operation.
C2. Assume

0 <y <yand
x|+ Y1 = T2 -+ Ya. (421)

o Assume p(xl,yl,m) < p(@;yz;m)-

o Since p(x1,y1,m) < p(za,y2,m), p(x1,y1,m) = 0 and p(xe,ys,m) = 1. (Note
that the codomain of p is the set {0,1}.)

o [f p(x1,y1,m) = 0, according to the definition of p (cf., Lemma /) and Equa-
tion 4.20, and based on the fact that y, > 0, the following statement must be
true:

x1 mod 2™ 4+ > 2™, (4.22)

o Likewise, if p(xa,y2, m) = 1, according to the definition of p (cf., Lemma 4), the
following statement must be true:

0 < xo mod 2™ 4 yo < 2™. (4.23)
e Since x1 = x9 + yo — y1 (c¢f., Equation 4.21), the following statements are true:

x1 mod 2™ = (x9 + Yo — y1) mod 2™
= (z2 mod 2™ + (y2 — y1) mod 2™) mod 2™. (4.24)
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e Note that
xo mod 2™ 4+ (yo — y1) mod 2™ > (x9 mod 2™ + (yo — y1) mod 2™) mod 2™

(i.e., the mod 2™ of any positive number is always less than or equal to the number
itself ).

e Therefore, Equation 4.2/ can be restated as
x1 mod 2™ < x9 mod 2™ + (yo — y1) mod 2™.
o Likewise, the following statement must be true:
1 mod 2™ < x9 mod 2™ + (yo — y1) (4.25)

because (yo — y1) > 0, therefore, yo — yy is always greater than or equal to its
modulo in 2™.

e Therefore,

x1 mod 2™ + 1y < xo mod 2™ + ys.

e [t is also known from Equation 4.23 that xomod2™ < 2™, therefore x1mod2™ < 2™
must also be true. This, however, contradicts Equation /.22, therefore,

p(x1,y1,m) > p(x2, Y2, m). (4.26)

C3. Since Equation 4.26 holds under the assumption that 0 < y; < yo and x1+x2 = y1+1s2,
Property C in Lemma 4 holds.

Property D can be proven as follows:

D1. For any x1,x9 € Zg...oo and m € Zyg... 0,

0<z; mod 2™ < 2™
0 <9 mod 2™ < 2™ (4.27)

by the definition of the modulo operation.
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D2. Assume

ya <y1 < 0and
T1+y1 = T2+ Y2 (4.28)

Assume p(z1,y1,m) < p(xa, Y2, m).

Since p(xluyhm) < p(x27y27m)7 p(‘rhybm) = 0 and p(x27y27m> =L (NOt@
that the codomain of p is the set {0,1}.)

If p(x1,y1,m) = 0, according to the definition of p (cf., Lemma 4) and Equa-
tion 4.27, and based on the fact that y, < 0, the following statement must be
true:

x1 mod 2™ 4 y; < 0. (4.29)

Likewise, if p(x2,y2,m) = 1, according to the definition of p (cf., Lemma /), the
following statement must be true:

0 < x9 mod 2™ + yy < 2™. (4.30)
Since xo = x1 + y1 — y2 (cf., Equation 4.28), the following statements are true:

o mod 2™ = (z1 +y1 — y2) mod 2™
= (z1 mod 2™ + (y1 — y2) mod 2™) mod 2™. (4.31)

Then, for the same reasons discussed in the proof of Property C,

< 1 mod 2™ + (y1 — y2) mod 2™
x9 mod 2™ < xy mod 2™ + y1 — Yo
< xy mod 2™ + y;. (4.32)

To mod 2™

Lo mod 2™ + 1o
Since x1 mod 2™ + 1y, < 0 (cf., Equation 4.29), according to Equation 4.532,
Lo mod 2™ +1yy < 0 must also hold, but this statement contradicts Equation 4.30.
Therefore,

p(x1,y1,m) > p(z2,y2, m). (4.33)

D3. Since Equation 4.33 holds under the assumption that yo < y; < 0 and x1+x2 = y1+Yyo,
Property D in Lemma 4 holds. [
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Lemma 5. Let 6" (7, 7;) denote the Manhattan distance between any two record utilization
vectors 7; and 7, and let m denote the number of rightmost bits that are dropped by ho,
where hy is utilized in h (cf., Definition 10). Furthermore, let PR==(F1-, T, x) denote the
posterior probability that, for any two record utilization vectors 7; and 7, h(7;) = h(7;)
provided that §™ (7, 7;) = x. Given any four record utilization vectors Ty, Ta, T35 and Ty
with size k such that k is even, 6™ (7, ) = x and 6™ (75, 74) = k — x, the following
property holds for any x < L%J and m € Zy...j_1:

PR-- (7, 72, ©) > PR==(T3, 74, k — @) (4.34)

where h = hy o hy (cf., Definition 10), and b = 1 denotes the number of entries in the
record utilization counters produced by hy.

Proof 5. The proof of Lemma 5 proceeds in multiple steps.

S1. It is shown that for any two natural numbers a and A such that a < 55 A< (k—x)
and A —a < ¥22 the following property holds:

Cj) (k;x)p(“A’ v —2a) >

e

This statement can be proven as follows:

e For any two natural numbers a and A such that a < 5 and A < (k—x), the
binomials are defined and their products are equal (and positive) on both sides of
the inequality.

o The condition a < 5 in S1 implies that 0 < (x — 2a).
e The condition A —a < k‘% in S1 implies that

k—2x

A—a<

20A—a)<k-—-2
2A — 20 < k —2zx
z—2a<k—x—2A.

o According to Property A in Lemma 4, p(a+ A, x —2a) > pla+ A, k—x —2A).
Therefore, statement S1 holds.
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S2. 1t is shown that for any two natural numbers a and A such that 5 < a < x, A < (k—x)

and A —a > k’gi, the following property holds:

C“;) (k;x)p(a-f-A, r — 2a) >
(’“;x) <z)p(a+A, k— 1z —2A).

This statement can be proven as follows:

(4.36)

e For any two natural numbers a and A such that 5 <a<uwmand A < (k—x), the
binomials are defined and their products are equal (and positive) on both sides of

the inequality.
o The condition a > § in S2 implies that (x — 2a) < 0.
e The condition A —a > k’% i S2 implies that

k —2x

A—a>
2(A—a) > k—2x
2A —2a > k — 2x

T —2a>k—x—2A.

e According to Property B in Lemma 4, p(a+ A, x —2a) > pla+ A, k —x —2A).

Therefore, statement S2 holds.

S3. It is shown that for any two natural numbers a and A such that a <
and A +a > g, the following property holds:

(z) (k;x)p(HA, r — 2a) >

k—x x
—A— — 2A).
(k—x—A) (x—a)p(k a,xr —k+2A)

This statement can be proven as follows:

%;Aﬁ(k_i’f');

(4.37)

e For any two natural numbers a and A such that a < § and A < (k — x), the
binomials are defined and their products are equal (and positive) on both sides of

the inequality because
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= () = (1), and
- (30 = (52
e Note that (a+A)+ (x —2a) = (k— A —a)+ (x — k+2A) is true as shown below:

?

(a+A)+ (xr—2a)=(k—A—a)+ (z—k+2A)
r+A—a=x+A—a.

o The condition a < § in S3 implies that 0 < (z — 2a).

e The condition A +a > £ in S3 implies that (x — 2a) < (z — k + 2A) as shown
below:

o

A+GZ§
—2(A+a) < -k
—2A —2a < —k
—2a < —k 4+ 2A
r—2a<x—k+2A.

e According to Property Cin Lemma 4, p(a+ A, x—2a) > p(k—A—a, x —k+2A)
is true because (a+A)+(x—2a) = (k—A—a)+(x —k+2A) and 0 < (x —2a) <
(x — k+2A). Therefore, statement S3 must be true.

S4. It is shown that for any two natural numbers a and A such that § < a < x, A < (k—x),
and A +a < g, the following property holds:

(‘Z) (k;”)p(HA, r — 2a) >

(kf:g (xfa)p(k—A—a,x—mm). (4.38)

This statement can be proven as follows:

e For any two natural numbers a and A such that % <a<zand A < (k—z), the

binomials are defined and their products are equal (and positive) on both sides of
the inequality because

= () = (L), and
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- (k::) - (k;f;fA) :
e Note that (a+A)+ (v —2a) = (k—A—a)+ (v —k+2A) is true as shown below:

?

(a+A)+ (zr—2a)=(k—A—a)+ (z—k+2A)
r+A—a=x+A—a.

o The condition a > § in S4 implies that (x — 2a) < 0.

o The condition A +a < % in S implies that (x — 2a) > (z — k + 2A) as shown
below:

o

A+a§§
—2(A+a) > —k
—2A —2a > —k
—2a > —k + 2A
Tz —2a>x—k+2A.

e According to Property D in Lemma 4, p(a+ A, x —2a) > p(k—A—a, x —k+2A)
is true because (a+A)+(x—2a) = (k—A—a)+ (x —k+2A) and (x —k+2A) <
(x — 2a) < 0. Therefore, statement S4 must be true.

S5. It is shown that for any two natural numbers a and A such that a < 5, A < (k — 1),
A—a > k_22“’", and A +a < g, if pla+ A, x —2a) < pla+ A, k—x—2A), there exists
two natural numbers a’' and A’ such that

k— 2z k— 2z

0<d=A-— <z and O0<A =a+

<k-—ux

and the following property holds:

(Z) (k;x) pla+ A, z—2a)+ (5/) (k;/x)p(a’ + A,z —2d) >
(k ; x) (z) pla+ A, k—z—270)+ (k;x) (;E) pld + AN, k—z—2A"). (4.39)

The statement is proven by showing that the following statements hold under the con-
ditions given in S5:

e 0<d <ux,
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e 0 <A <k —u,
o pla+ A, x—2a)=pld +A" k—x—2A"),
o pla + A, x—2d)=pla+ A, k—z—2A), and
o (L) = (G-
The proof steps are as follows:

e a >0 holds because

k—2
A—a> ’ cf., S5
k—2
A — 2x>a
a>a cf., S5
a >0 since a > 0.
o o < x holds because
k
Ata<? of, 85
k
A<§—CL
A_(k—2m><ﬁ_a_(k:—2m)
2 2 2
k—2
A—( 5 $><Z_G_Z+x
A—(k_2$><x—a
2
d <zr—a
d<r—a<ux since a > 0
ad <zx

87



o A’ >0 holds because

> cf., Lemma 5

>0 since a > 0

o N <k — x holds because

-2
A—a>k <

cf., S5

k—2x
2

k—2x
2

k—2x

A >a-+

k—x>A>a+ since A <k —=x

k—x>a+
E—ax>A.

e pla+ A, x—2a)=pld+ A", k—x—2A") holds because a + A = a' + A’ and
x—2a=k—x—2A', as shown below:

atA=d+A

k — k —
a+A;A—K72£7+a+£72ﬁ) of., S5
a+A=A+a,
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and

x—2a;k—x—2A/
k— 2z

x—2a;}€—x—2a—]€+2x since A" = a +
r —2a =z — 2a.
o p(a + A", x —2d) = pla+ A, k —x —2A) holds because a + A = o’ + A/, as
shown above, and x — 2a’ =k —x — 2/, as shown below:
v —2d =k —2—2A
2 —2A 12N — 2 =k —x—2A sincea = A —A+a

k—2
x—2A+%+k—2x—%;k—w—2A since ' = a + L

T—2A+k—2r =k —x—2A
k—ax—2A =k —ax—2A.

e Let M=d —a=A—-A>0and N=A—a =A —a=~52>0 (conditions

trivially follow from earlier proof steps). Then, (Z) (’Zx) < (kA_f’) (;,) is true, as
shown below:

(Z) <k;x) - OL!(;i ) (a+M+N)!(<::x$)ia—M—N)!

and

(Z) <k£m) - <a+M)!(;f!—a—M)! 8 (a+N)!((lf:j)ia—N)!'

Since the numerators are the same (and positive) in both of the equations above,
z\ (k—x k—x\ (z .
@) (27 < (30 @) or
al(z —a)! X(a—l—M+N)!(k—x—a—M—N)!>1
(a+ M) (z—a— M) (a+ N)l(k—x—a— N)! -
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By expanding the factorials, one obtains

M times M times
(x—a)x -+ x (x—a—M+1) y (a+N+M) x - x (a+N+1) .
(a+M) x -+ x (a+1) (k—x—a—N)x - x (k—x—a—N—-M+1) =
M;i,mes M;irmes
The inequality above can be simplified further, as shown below:
M . .
H(a+N+z)>< (x+1)—(a+1) (4.40)
-1 (a+1) (k—z+1)—(a+N+1i) — '
Note that
(a+N+i)+ (z+1) — (a+i) = (a+1i) + (k—x+1) — (a+N+1)
N+x+1l=k—x+1-N
k k k—2
——zr+rx+1l=k—x+1—-+2 since N= ‘
2 2 2
k k
—+1==+1
2 + 2 *
Therefore, Inequality 4.40 can be restated as:
M . k
+N+ b+l +N+
H (CL Z) ((2 ) (a' Z>) (441)

o (ati) : ((5+1) — (a+1))
Note that Inequality 4.41 holds iff
k 2 k 2
(§+1 — ((a+1) + (a+M))> > (§+1 — ((a+N+1) + (a+N+M))>
k 2 k 2
<§+1 — (2a+M+I)> > (§+I—(2a+M+I+2N)>

<§—2a—M)2 > ((§—2a—M) = 2N>2.
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Let & = % — 2a — M, then, the inequality can be restated as:

= -2

& > &% — ANE + 4N?

ANE > AN X N since N > 0
k
5—2a—M2N
-2
Z—Qa—MZZ—x sinceN:k2:B
20 + M < x. (4.42)

Note thatM:A—A’:A—a—g—l—x. Therefore,
k
2a—|—M:2a—|—A—a—§+x
k
:a—I—A—§+x.

Substituting for 2a + M in Inequality 4.42, it is possible to obtain

k
(L%‘ZX'— 5‘4‘2E/f;£5
k

atA<g (4.43)

Since a + A <
Consequently, (z

is a precondition of S5, Inequalities 4.40—4.43 must be true.

k—x k—x\ (x\ .

(A7) < (&) () s true,

o Since pla+ A, x —2a) < pla+ A, k—x—2A), the following statements must be
true:

—0 |

pla+ A, x—2a)=pld + A", k—2—2A")=0, and
pld + A",z —2d")=pla+ A k—x—2A)=1.

Hence, Inequality 4.39 can be simplified to:
x\ [(k—x k—x\ (x
>
a’ A )T A a)’
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which was shown to be true. Therefore, S5 holds.

S6. It is shown that for any two natural numbers a and A such that 5<a<uz, A< (k—x),

A—a<E 2 and Ada> % if plat+ A, x—2a) < pla+ A, k—x—2A), there exists

two natural numbers a’' and A’ such that

k—2 k—2
ng and O0< A =a+ ‘

<k-—ux

0<d=A-

and the following property holds:

(Z)(kgljp@r+A,x—2®—k(j)(k;ﬁ>pm“%Aﬂx—2d)z
(k N x) (Z) pla+ A, k—x—2A)+ (k;x) (;v) pla' + Ak —x—20). (4.44)

The statement is proven by showing that the following statements hold under the con-
ditions given in S6:

e 0<d <u,

e 0 <A <k —u,

e pla+ A, x—2a)=pld +A" k—x—2A"),

o p(d + A", x—2d)=pla+ A, k—x—2A), and

z\ (k—x k—z\ (x

o (L) = (@)

The proof steps are as follows:

e o' >0 holds because

k
A—l—a>§ cf., S6
k )
A+x>§ since a < x
k
A—§+$>O
k—2x
A — 0
2
a > 0. cf., S6
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e o' < x holds because

k—2
A—a 236 cf., S6
A_/{:—Zx
2
k—2
A — 2I<x since a < x
a < x.
o A’ >0 holds because
k—2
A—a< * of., S6
k—2
A<a+ *
-2
0<a—|—k2x since A >0
0< A
o N <k — x holds because
k
a§x§§ cf., S6 and Lemma 5
<k:
a J—
-2
+k; <k;+l<;
Ty TT=97Ty
k—2x
a—+ 5 <k-—-=x
AN <k-—zx

o pla+ A, x—2a)=p(d+A" k—x—2A") and p(a’ + A, x —2d') = pla+ A, k—
x—2A) hold for the same reasons discussed in S5 (i.e., the proofs are independent
of the conditions in S6).

e Let M=a—a =A—-A>0and N=A—a =A —a=~52>0 (conditions

trivially follow from earlier proof steps). Then, (m) (kzc) < (kA_f”) (;‘,) is true, as

a —
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shown below:

(2) <k;x) - a!(xxi )~ (a+N—M)!((llc€:xx>la—N+M)!

and

(j) <k;x) - (a—M)!(f—aJrM)! . (a+N)!(<lf:§)ia—N)!'

Since the numerators are the same (and positive) in both of the equations above,
z\ (k—=x k—z\ (x\ .
@R < () @)

al(z — a)! (a+ N—-—M(k—xz—a— N+ M)

> 1.
@Mz —a+r M) (@a+rNk—-z—a—N) -
By expanding the factorials, one obtains
M times M times
(a) x - x (a—M+1) y h—z—a-N+M)x--x(k—z—a—N+1)
(x—a+M) x -+ x (x—a+1) (a+N)x---x(a+N—-M+1)
M?';nes M;irmes
The inequality above can be simplified further, as shown below:
M . :
- M —r—a—-N+M+1-
H (a +.7,) " (k—z—a + .+ i) 51 (4.45)
(x —a+1) (a+N+1—1)

94



Note that

2

k
(@ =M +0)+(k—o—a—N+M+1-i)=7+1
ke N4+12 %4
2
k—x——+x+1£§+1
k k
—+1==+41
2 + 2 +
and
k
(x—a+0) + (a0 + N+1=0) = 5 +1
k
x+N+1£§+1
R tE
ATy AT,
k k
S4l=2-+41
2 2 +
Therefore, Inequality 4.45 can be restated as:
M k
— 24+ 1)—(a—M
H (a M+-z) (5 + (a + i) .- (4.46)
(r—a+i)  (5+1)—(z—a+1)

i=1

Note that Inequality 4.46 holds iff

((g+1)—«m—a+1}+@—a+ﬂln)22(X§+1)—«a—A[+U+{a—}{+A{»>
«§+¢y—@x—mwmi+n)22(X§+n—(m%4w+n>2
<§—2x+2a—A022<§—2a+NO% (4.47)
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Since M =N —(A—a)=%—2—A+aq,

(E—2m+M—A02=(Z—%w%a—g+xwws—zf

2
= (a—x+A>2

and

:(k—a—x—Af.

Therefore, Inequality 4.47 can be simplified to:
2 2
<a—x+A> Z(k:—a—x—A) (4.48)
or to
2

<A+a—x>22<k—x—(A+a)>. (4.49)

Note that A+a > g and % > x, therefore, A+a—x > 0, and there are only two
cases to consider:

— Case I: (k—x)— (A+a) >0, and
— Case II: (k—x) — (A+a) <0.
For Case I, it needs to be shown that
?
(A+a)—z>(k—2z)— (A+a)
?
2(A+a)>k—2z

? k
A+a2§—x
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SinceA+a>§ and x > 0,

k
A+CLZ§—ZE.

For Case II, it needs to be shown that

?
(A+a] — x> (A+a] — (k- 2)
?
—r > —k+=x
?
k> 2x,

which 1s true by definition. Therefore, Inequalities 4.40—4.43 must be true. Con-
sequently, (z) (’Zx) < (k;f) ((f,) is true.
o Since pla+ A, x —2a) < pla+ A, k—x—2A), the following statements must be
true:
pla+ A, x—2a)=pld +A" k—x—2A")=0, and
pla+ A"z —2d)=pla+ A, k—x—2A)=1.

Hence, Inequality 4.44 can be simplified to:
x\ [(k—x k—x\ (x
> Y
a’ A )T A a
which was shown to be true. Therefore, S6 holds.

S7. According to Equation 4.7, the probabilities PR:(Fl, T3, x) and PR:(Fg,, T4, k‘—x) can
be expanded as the summation of products that are shown in Table 4.4. For brevity,
the constant multiplier

22k

has been omitted from both equations.
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PR== (Fl, ’f“Q, I) PR== (Fg, 774, k— m)

a A a’ Al

0 0 I p(0,z) 0 0 3G 0,k —2)

0 1 I p(l,z) 1 0 196G el k—2—2)

0 k—xz—1 (g)(kf;fl) plk—z—1,2) k—xz—1 0 (kf;fl)(g) plk—xz—1,-k+x+2)
0 ke QGID__ ekmma) | k—z 0 G @) pk—m—k+o)

1 0 I p(l,z—2) 0 1 30 (@) 1k —2)

1 1 ¢ P2,z —2) 1 1 16 p2k—2—2)

1 k—z—1 (D7) plk —z, @ —2) k—z—1 1 GEr®) ek —a,—k+ 2 +2)
L kme OGID pk—atle=2) | koe 1 Go) (@) plb—z+l—k+a)
z-1 0 (*)(5") pa—1-—z+2) |0 a—1 (3905 pe-lk-z)

z—1 1 o)) plz, —z+2) 1 z—1 1965 plak—a—2)

-1 k—z-1 (")G"0) plk—2,-2+2) k—z—-1 2z-1 ("°)0%) plk—2-k+a+2)
cwol o k—e (I)GDD) ek-L—et?) | k-e o e—1 0 GIDGT) pk-l—kta)

T 0 @57 plz, —) 0 T 30 ©)  plak—a)

T 1 (2) (ka) plz +1,—x) 1 T (kix) (i) plx+1,k—x—2)

T k—z—1 (957 p(k —1,—x) k-—z—-1 = T pk—1,—k+z+2)
o kme o QGID__ ekw | k—z @ Gon) @) ple—kto)

Table 4.4: Pairings of products

S8. Each term on the left-hand side of Table 4.4 can be paired up with a term on the

right-hand side as follows:

o Pair-up (*) (*1%) plat+A, 2—2a) with (*7) (%) p(a'+A', k—z—2a"), where ' = A

A
and AN = a if
k—2
(ogagg, A< (k—=x)and A—a< x)or
k—2
(fgagx, A < (k—=x)and A—a> x)
2 2
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o Pair-up (%) ("“Zm) pla+A, x—2a) with (k;,x) (x) pld+A, k—x—2d"), where a’ =
k—x—A and A" = x—a if

(OSagg, A < (k—=x)and A—i—azg)or
(ggagx, A< (k—=x)and A+a§§).

e Else, pair-up (%) (I’Zz) pla+A, x—2a) with (k;,x) (X)) pla'+A', k—x—2d"), where

a =A and A = a.

S9. Based on the pairings outlined in S8, it can be shown that the summation of products
on the left-hand side of Table 4.4 is always greater than or equal to the summation
of products on the right-hand side. The reason is as follows: For the first case in S8,
statements S1 and S2 suggest that the product on the left-hand side of a pairing is
greater than or equal to the product on the right-hand side. For the second case in S8,
the same conclusion can be reached using statements S3 and S4. Whether the product
on the left-hand side of a pairing in the third case in S8 is greater than or equal to
the product on the right-hand side is questionable. If it is greater than or equal to
the product on the right-hand side, then there is no problem. Otherwise, it needs to be
checked whether the difference in the products (which is a loss for the summation on the
left-hand side) is compensated elsewhere. Fortunately, statements S5 and S6 suggest
that there exists another pairing (already covered by the first four cases) where the
difference in products compensates the loss in the summation of the left-hand side. It
can be easily inferred from the conditions of S5 and S6 that for each questionable (and
problematic) case, the pairing that compensates the loss is a distinct one. Therefore,
the summation on the left-hand side of Table 4.4 must be greater than or equal to the
summation on the right-hand side, thus, proving Lemma 5. [

Lemma 6. Let 6™ (7, 7;) denote the Manhattan distance between any two record utilization
vectors 7; and 75, and let m denote the number of rightmost bits that are dropped by hs,
which is wutilized in h (cf., Definition 10). Furthermore, let PR:('FZ-, T, x) denote the
posterior probability that, for any two record utilization vectors 7; and 7, h(7;) = h(7})
provided that §™ (7, 7;) = x. Given any four record utilization vectors 1, T2, T35 and Ty
with size \b such that ™ (7, ) = x and 6™ (73, 74) = \b— z, the following property holds
for any x < % and m = Tb:

PR-- (71, 7, ©) > PR==(T3, 74, Ab — x) (4.50)
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where h = hyohy (cf., Definition 10), b € Z ... denotes the number of entries in the record
utilization counters produced by hy, A is an even and positive number, and Y € Zq...x_1.

Proof 6. Lemma 6 is proven by induction on b.

Base case: It needs to be shown that Equation 4.50 holds when b = 1. The proof trivially
follows from Lemma 5.

Inductive Step: Assuming that Lemma 6 holds for b < a where o is a natural number
greater than or equal to 1, it needs to be shown that it also holds for b = o+ 1. The proof
steps are as follows:

S1.

S2.

S3.

S4.

Let 7[j] denote the group of bits in a record utilization vector r; that have the same
hash value j with respect to the hash function f, which is utilized within hy (cf., Def-
inition 4.50). (Assume that within each 7;[j], the ordering of bits in T; is preserved.)

Recall that the Manhattan distance between any two record utilization vectors is the
summation of their individual Manhattan distances within each group of bits that share
the same hash value with respect to f (cf., Equation 4.4). Therefore, since ™ (7, ) =
x}

if 8"(7a], R[a]) = a, then
707

M (7 [0] [ —1], B[0] -+ PRja—1]) =z —a
where 73[0] - - - 73 — 1] denotes the concatenation of the corresponding bit vectors.

Also note that h(ry) = h(ry) if and only if h(r1[j]) = h(7[j]) for all j € Zg..q4.
The reason is that h = hy o hy and h(ry) (respectively, h(Ts)) corresponds to the bit
vector that is produced by interleaving the bits in the binary representations of hy(71[0])
.. hi(M]a]) (respectively, hi(7]0]) ... hi(73[al)) and cutting off the rightmost YTb
bits [1//]. Consequently, for h(ry) = h(rs) to be true, for all j € Zy...o, h1(71[j]) and
hi(73[7]) must have the same sequence of bits except for the rightmost Y, which means

that h(Fi[j]) and h(F[j)).

As a consequence of statements S2 and S3, the following property holds:

PR:(Fl, 7, $> :Z PR==(7j1[O]...F1[a— 1], 0] - - - Pl — 1], & — a) y

a=0

T
=]
1
il
—~
=3
—
L
ot
2.
Q
X
U
j=]
IS
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So.

S6.

S7.

S8.

where PR, € {PRy,...,PR,} denotes a constant that represents the probability that
M (7 [a], Ta[a]) = a among all possible configurations such that 6™ (71, ) = .

Statement S2 holds also for 73 and Ty; therefore, since 6™ (7, 7y) = \b — x,
if oM (75[al, Tala)) = d, then
SM(75[0] - - - Pl — 1], 7[0] - - - Pyla — 1)) = Ao — 2z — o
where 75[0] - - - 7;[ac — 1] denotes the concatenation of the corresponding bit vectors.

Since there are Ab — X\ bits in 73[0] - - - 73] — 1] and 74[0] - - - Fa[a — 1], the edit distance
between these two bit vectors can be at most \b — X, thus,

SM(75[0] - - - e — 1], 74[0] - - - e — 1]) < Ab— A
Therefore, (A — x) < a’ < X must hold.
Consequently, similar to S4, the following statement must be true:
PR-- (73, 71, Ab— ) =

2 PRo(AB[0] - Fla — 1], 7[0] - Fae — 1), Ab — 2 — @) x
Z PR::EFg[O(], 7ila], @’) X PRy )

a'=\—zx

where PRy € {PR)_z, ..., PRy} denotes a constant that represents the probability that
M (5[, Fala]) = a' among all possible configurations such that 6™ (7, 7)) = A\b — .

The possible configurations in the summations in S4 and S7 for PR:(f}, T3, x) and
PR:(Fg, T4, Ab— :c) can be paired up as shown in Table 4.5.
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a a’
0 PRg X A PR’A
PR==(71[a], 72[c], 0) x PR=- EFg, [o], P4la], A) x
PR==(71[0] - - - 71 [ — 1], 72[0] - - - P2 [x — 1], ) PR (73[0] - - - 73[cx — 1], 74[0] - - - Fa[or — 1], Ab — z — X)
1 PRy X A—1 PRy ; X
PR==(71[a)], T2[a], 1) x PR=- é’?‘g lo], Pale], A —1) x
PR==(71[0] - - - 71 [ — 1], 72[0] - - - Po[oe — 1],  — 1) PR==(73[0] - - - P3[ov — 1], 74[0] - - Pafor — 1], Ab—z — A + 1)
T PRy X A—z  PRy_, X
PR==(71[a], T2[0], ) x PR=- (73[a], T4[a], A — z) x
PR== Fl[()] B ~'F'1[a — 1], 7_"2[0] B ~FQ[O¢ — 1], 0) PR::EFg[O] . ~F3[Oz — 1}, F4[0} . ~~774[Oé — 1}, Ab — )\)

Table 4.5: Possible pairs of configurations

S9. For each pair of configurations in Table 4.5, (i)a < x < % A—a and (1) a+A—a = A
hold. Therefore, Lemma 5 suggests that

PR--(71[], T[], a) > PR--(3]a], Tala], A — a).

S10. For each pair of configurations in Table 4.5, (x —a) < ’\(b2_1) < ANo—x—A+a holds:
o (r—a)< A(bgl) is true because
— x < 3 by definition (cf., Lemma 6);
- a> 0 therefore (x—a) < 3;and
< f or b > 2, which is the case for b in the inductive step.

e \Mb—x—A+a> (b2 D s true because

—r<?2 5 (cf., Lemma 6) and a > 0, therefore,

AN=—A—z+a>XN—-\—z

A
> -\ = —
> Ab— A 5

3\
> -
Ab 5

— For b > 2, which s true for the inductive step, A\b — SA > (b U must also
hold, therefore \b —x — X+ a > (2 U s true.
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Consequently, according to the inductive assumption, the following statement must be
true:

PR=-(71[0] - - - 71 [ — 1], 7[0] - - o[ — 1], z — a)
> PR=-(73[0] - - - [ — 1], 7[0] - - [ — 1], Ab — 2 — A + a).

S11. For each pair of configurations in Table 4.5, PR, = PR, _, because

(2.) ,_ Gawd Q) A A
PRa:)‘Z—)\, PR)_GZ%:? and (/\ )z()

— X T

S12. According to statements 89, S10 and S11, for each pair of configurations in Table 4.5,
the product on the left hand side is always greater than or equal to the product on the
right hand side, which means:

PR::(Fl, FQ, ZE) > PR::(T_’E),, 7?47 Ab — J])

Thus, Lemma 4.50 holds also for b = a+ 1 Consequently, Lemma 4.50 is proven by
induction on b. O

Theorem 7. Let 6™ (7, 7;) denote the Manhattan distance between any two record uti-
lization vectors 7; and 7; with size A\b, and let m denote the number of rightmost bits
that are dropped by ho, which is utilized in h (cf., Definition 10). For any éM < %, h
is (6™, A\b — 6™, PRy, PRy)-sensitive for some PRy > PRy where h = hy o hy (cf., Defini-
tion 10), X\ is an even and positive number, b € Zj .., denotes the number of entries in
the record utilization counters produced by hy, m = Yb, and T € Zq...\_1.

Proof 7. The proof steps are as follows:

S1. PRy corresponds to the posterior probability that h(7;) h(

= for any two record
utilization vectors 7; and 7j with size b such that 6 (7, 7;) <

)
M [180].

T
A

T
o

for any two record

)
b— &M [150].

S2. PRy corresponds to the posterior probability that h(r;) #
T

h(
utilization vectors 7; and 7; with size b such that 6™ (7, 7;) >
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S3. Note that

5]\/[

> PR (75, 7, ) (3p0,)
PR; = z=0 o

51VI

5 PR (7 75, 2 — ) (V)
PRy = 220 5%

S4. For allx € Zy..om (,,,) = (V).

S5. Therefore, for all x € Zy...sm

S

b o 9D

S6. According to Lemma 6, PR:(ﬁ-, T}, az) > PR:(FZ-, Tj, Ab — x) Consequently, PRy >
PRj. ]

Theorem 7 suggests that h is a function with locality-sensitive properties, and can be
used to approximate the clustering problem. However, it must be noted that the sensitivity
analysis of h is conservative. In other words, it is believed that stronger statements can
be made about A, in particular, due to the empirical observation that PR-- (ﬁ, T, x) is a
monotonically decreasing function. Proving this conjecture is left as future work.

4.3.4 Achieving and Maintaining Tighter Bounds on Tunable-
LSH

Next, techniques are presented for reducing the approximation error of hy, hence h. First,
the load factor of an entry of a record utilization counter is defined.

Definition 11 (Load Factor). Given a record utilization counter ¢ = (c[0], ..., c[b—1]) with
size b, the load factor of the i entry is cli]. O

Theorem 8 (Effects of Grouping). Given two record utilization vectors 11 and 75 with size
k, let ¢ and ¢; denote two record utilization counters with size b = 1 such that ¢i = hy(r7)
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and ¢ = hy(r3). Then,

oM (éq,¢3) c1[0] =1 AND |
Pr ( — M) | 0] = by =7 (4.51)
where
() ()
y min?_ o (4.52)
()Gl
and

lLinaz = max(ly, [2)

lmin = min(ll, lg)

Proof 8. Let 7,4, denote the record utilization vector with the most number of 1-bits
among 11 and 13, and let Ty, denote the vector with the least number of 1-bits. When
b=1, M(c,¢é) = 6(r1,73) holds if and only if the number of 1-bits on which 71 and 73
are aligned is Ly because in that case, both 6™ (1, ¢) and §(r1,73) are equal t0 lyay — Lmin
(note that 5™ (1, ¢3) is always equal to lyay — lmin). Assuming that the positions of 1-bits
N Tmaz are fized, there are (l"’”) possible ways of arranging the 1-bits of T, such that

lmin

0(71,7) = lmaz — lmin- Since the 1-bits of Ta can be arranged in (lrfaz) different ways,
there are (lm“) (1 K ) combinations such that (5M(51,52) = 0(71,73). Note that in total, the

l min max

bits of m1 and T3 can be arranged in (lfaz) (l k ) possible ways; therefore, Equations 4.51
and 4.52 describe the posterior probability that §™(c1,¢3) = 8(r1,73), given ¢1[0] = I; and
(&) [0] = l2. OJ

According to Equations 4.51 and 4.52 in Theorem 8, the probability that 6 (cj, ¢) is
an approximation of §(r7,73), but that it is not exactly equal to §(r7,73) is lower for load
factors that are close or equal to zero and likewise for load factors that are close or equal
to [%] (cf., Fig. 4.8). This property suggests that by carefully choosing f, it is possible to
achieve even tighter error bounds for h;. For b > 2, the probabilities for each group of bits
need to be multiplied as illustrated in the proof of Lemma 6. Therefore, the algorithm for
tuning f aims to make sure that the load factors are either low or high for as many of the
groups as possible.

Contrast the matrices in Figures 4.7b and 4.7c, which contain the same query access
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Figure 4.8: PR(0M # §) for k = 12, b = 1 and across varying load factors

vectors, but the columns are grouped in two different ways®: (i) in Figure 4.7b, the
grouping is based on the original sequence of execution, and (ii) in Figure 4.7¢, queries
with similar access patterns are grouped together. Figure 4.7d and Figure 4.7e represent the
corresponding record utilization counters for the record utilization vectors in the matrices
in Figure 4.7b and Figure 4.7c, respectively. Take 75 and 75, for instance. Their actual
Hamming distance with respect to go—qg7; is 8. Now consider the transformed matrices.
According to Figure 4.7d, the Hamming distance lower bound is 0, whereas according to
Figure 4.7e, it is 8. Clearly, the bounds in the second representation are closer to the
original. The reason is as follows. Even though 73 and 75 differ on all the bits for g¢o—q7,
when the bits are grouped as in Figure 4.7b, the counts alone cannot distinguish the two
bit vectors. In contrast, if the counts are computed based on the grouping in Figure 4.7c
(which clearly places the 1-bits in separate groups), the counts indicate that the two bit
vectors are indeed different.

The observations above are in accordance with Theorem 8. Consequently, the follow-
ing optimization can be made: Instead of randomly choosing a hash function, f can be
constructed such that it maps queries with similar access vectors (i.e., columns in the ma-
trix) to the same hash value. This way, it is possible to obtain record utilization counters
with entries that have either very high or very low load factors (cf., Definition 10), thus,
decreasing the probability of error (cf., Theorem 8).

Consequently, a technique is developed to efficiently determine groups of queries with
similar access patterns and to adaptively maintain these groups as the access patterns
change. The developed technique consists of two parts: (i) to approximate the similarity
between any two queries, the technique relies on the MIN-HASH scheme [19], and (ii) to
adaptively group similar queries, an incremental version of a multidimensional scaling

3Groups are separated by vertical dashed lines.
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Symbol  Description
begin natural number between 0...(k — 1), initial value is 0
size natural number between 0. .. (k — 1), keeps track of
the number of query access vectors that are
currently being maintained, initial value is 0
H;,» matrix that contains MIN-HASH values
for each query access vector
S]] array of vector(s), one for each MDS query point, that
pairs each MDS query point with a random subset of points
NI[] array of max-heap(s), one for each MDS query point, that
pairs each MDS query point with a set of neighboring points
X[] array of float(s), represents the coordinate
(single dimensional) of each MDS query point
V] array of float(s), represents the current
(directional) velocity of each MDS query point

Table 4.6: Data structures referenced in algorithms

(MDS) algorithm [112] has been developed.

MiN-HASsH offers a quick and efficient way of approximating the similarity, (more specif-
ically, the Jaccard similarity [117]), between two sets of integers. Therefore, to use it, the
query access vectors need to be translated into a set of positional identifiers that corre-
spond to the records for which the bits in the vector are set to 1.* For example, according
to Figure 4.7a, ¢i should be represented with the set {0, 5,6} because rg, r5 and rg are the
only records for which the bits are set to 1. Note that, the original query access vectors do
not need to be stored at all. In fact, after the access patterns over a query are determined,
its MIN-HASH value is computed and only that value is stored. This is important for
keeping the memory overhead of the algorithm low.

Queries with similar access patterns are grouped together using a multidimensional
scaling (MDS) algorithm [130] that was originally developed for data visualization, and
has recently been used for clustering [11]. Given a set of points and a distance function,
MDS assigns coordinates to points such that their original distances are preserved as much
as possible. In one efficient implementation [142], each point is initially assigned a random
set of coordinates, but these coordinates are adjusted iteratively based on a spring-force
analogy. That is, it is assumed that points exert a force on each other that is proportional

4In practice, this translation never takes place because chameleon-db maintains positional vectors to
begin with.
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to the difference between their actual and observed distances, where the latter refers to the
distance that is computed from the algorithm-assigned coordinates. These forces are used
for computing the current velocity (V' in Table 4.6) and the approximated coordinates of
a point (X in Table 4.6). The intuition is that, after successive iterations, the system will
reach equilibrium, at which point, the approximated coordinates can be reported. Since
computing all pairwise distances can be prohibitively expensive, the algorithm relies on
a combination of sampling (S]] in Table 4.6) and maintaining for each point, a list of its
nearest neighbours (N[] in Table 4.6)—only these distances are used in computing the net
force acting on a point. Then, the nearest neighbours are updated in each iteration by
removing the most distant neighbour of a point and replacing it with a new point from the
random sample if the distance between the point and the random sample is smaller than
the distance between the point and its most distant neighbour.

The algorithm cannot be used directly for the purposes herein because it is not incre-
mental. Therefore, a revised MDS algorithm is proposed in this section that incorporates
the following modifications:

1. Each point in the revised algorithm represents a query access vector. However, since
visualizing these points is not the main concern, but rather clustering them is, the
algorithm is revised to place these points along a single dimension. Then, by dividing
the coordinate space into consecutive regions, it is possible to determine similar query
access vectors.

2. Instead of computing the coordinates of all of the points at once, the revised algo-
rithm makes incremental adjustments to the coordinates every time reconfiguration
is needed.

The revised algorithm is given in Algorithm 11. First, the algorithm decides which
MDS point to assign to the new query access vector ¢; (line 2). It clears the array and
the heap data structures containing, respectively, (i) the randomly sampled, and (ii) the
neighbouring set of points (lines 3-4). Furthermore, it assigns a random coordinate to the
point within the interval [—0.5,0.5] (line 5), and resets its velocity to 0 (line 6). Next, it
computes the MIN-HASH value of ¢; and stores it in H[pos| (line 7). Then, it makes two
passes over all the points in the system (lines 13-21), while first updating their sample and
neighbouring lists (line 15), computing the net forces acting on them based on the MIN-
HAsH distances and updating their velocities (line 16); and then updating their coordinates
(line 20).
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Algorithm 11 Reconfigure-F
Require:
q:: query access vector produced at time ¢
Ensure:
Coordinates of MDS points are updated, which are used in determining the outcome
of f
1. procedure RECONFIGURE-F(q;)
2 pos < (begin + size) % k
3 S|pos].clear()
4: N{pos].clear()
5: X|[pos| <= —0.5 + rand() / RAND-MAX
6
7
8
9

V[pos| < 0
Hpos] <~ MIN-HASH(¢;)
if size < k then

size +=1
10: else
11: begin = (begin + 1) % k
12: end if
13: for i < 0,7 < size, i++ do
14: x 4 (begin +1i) % k
15: UPDATE-S-AND-N(z)
16: UPDATE-VELOCITY ()
17: end for
18: for i < 0,7 < size, i++ do
19: x 4 (begin +1i) % k
20: UPDATE-COORDINATES()
21: end for

22: end procedure

The procedures used in the last part are implemented in a similar way as the original
algorithm [112]; that is, in line 15, the sampled points are updated, in line 16, the velocities
assigned to the MDS points are updated, and in line 20, the coordinates of the MDS
points are updated based on these updated velocities. However, the implementation of the
UPDATE-VELOCITY procedure (line 16) is slightly different than the original. In particular,
in updating the velocities, a decay function is used so that the algorithm forgets “old” forces
that might have originated from the elements in S|[| and N[] that have been assigned to
new query access vectors in the meantime. Note that unless one keeps track of the history
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of all the forces that have acted on every point in the system, there is no other way of
“undoing” or “forgetting” these “old” forces.

Algorithm 12 Hash Function f
Require:
t: sequence number of a query access vector
Ensure:
f(t) is computed and returned
1: procedure F(t)
2 pos < t % k
3 (lo, hi) +— GROUP-BOUNDS(X [pos])
4: coid < CENTROID(lo, hi)
)
6:

return HASH(coid) % b
end procedure

Given the sequence number of a query access vector (t), the outcome of the hash
function f is determined based on the coordinates of the MDS point that had previously
been assigned to the query access vector by the RECONFIGURE procedure. To this end, the
coordinate space is divided into b groups containing points with consecutive coordinates
such that there are at most f%} points in each group. Then, one option is to use the group
identifier, which is a number in Zg...,_1, as the outcome of f, but there is a problem with
this naive implementation. Specifically, it has been observed that even though the relative
coordinates of MDS points within the “same” group may not change significantly across
successive calls to the RECONFIGURE procedure, points within a group, as a whole, may
shift. This is an inherent (and in fact, a desirable) property of the incremental algorithm.
However, the problem is that there may be far too many cases where the group identifier
of a point changes just because the absolute coordinates of the group have changed, even
though the point continues to be part of the “same” group. To solve this problem, a method
has been developed that computes the centroid within a group by taking the MIN-HASH
of the identifiers of points within that group such that these centroids rarely change across
successive iterations. Then, the identifier of the centroid, as opposed to its coordinates,
is used to compute the group number, hence, the outcome of f. The pseudocode of this
procedure is given in Algorithm 12.

One last observation can be made. Internally, MIN-HASH uses multiple hash functions
to approximate the degree to which two sets are similar [19]. Tt is also known that increasing
the number of internal hash functions used (within MIN-HASH) should increase the overall
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Figure 4.9: Assuming b = 3, [J indicates the allowed locations at each time tick, and ()
indicates the counter to be reset.

accuracy of the MIN-HASH scheme. However, as unintuitive as it may seem, in TUNA-
BLE-LSH, only a single hash function is used within MIN-HASH, yet, TUNABLE-LSH
is still able to achieve sufficiently high accuracy. The reason is as follows. Recall that
Algorithm 11 relies on multiple pairwise distances to position every point. Consequently,
even though individual pairwise distances may be inaccurate (because only a single hash
function is used within MIN-HASH), collectively the errors are cancelled out, and points
can be positioned accurately on the MDS coordinate space.

It is easy to show that the RECONFIGURE-F procedure (cf., Algorithm 11) has compu-
tational complexity of O(k log(heapSize) + |q§\), where k£ denotes the window size, heapSize
is a constant that determines the maximum size of the max-heap(s) (cf., Table 4.6), which is
usually set to vk [142], and |/ is the number of 1-bits in the query access vector(s). Since
the clustering algorithm introduced in this section has O(w) computational-complexity,
where w denotes the number of records in the database (i.e., clustering a database of w
records takes O(w) time), and since both k and || are independent of, and negligibly
small compared to w, it is safe to assume that RECONFIGURE-F has constant-time com-
plexity (in relation to the clustering algorithm). Consequently, the TUNE procedure (cf.
Algorithm 9) is also constant-time.

4.3.5 Resetting Old Entries in Record Utilization Counters in
Tunable-LSH

Once the group identifier is computed (cf., Algorithm 12), it should be straightforward to
update the record utilization counters (cf., line 8 in Algorithm 9). However, unless the
original query access vectors are maintained, there is no way of knowing which counters to
decrement when a query access vector becomes stale, as maintaining these original query
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access vectors is prohibitively expensive. Therefore, a more efficient scheme has been
developed in which old values can also be removed from the record utilization counters.

Instead of maintaining b entries in every record utilization counter, twice as many entries
(2b) are maintained. Then, whenever the TUNE procedure is called, instead of directly
using the outcome of f(t) to locate the counters to be incremented, f(¢) is mapped to a
location within an “allowed” region of consecutive entries in the record utilization counter
(cf., line 8 in Algorithm 9). At every [£]*™" iteration, this allowed region is shifted by one
to the right, wrapping back to the beginning if necessary. Consider Figure 4.9. Assuming
that b = 3 and that at time ¢ = 0 the allowed region spans entries from 0 to (b — 1), at
time t = [%1, the region will span entries from 1 to b; at time ¢ = k, the region will span
entries from b to 20— 1; and at time ¢ = [%1, the region will span entries 0 and those from
b+1to 20— 1.

Since f(t) produces a value between 0 and b — 1 (inclusive), whereas the entries are
numbered from 0 to 2b — 1 (inclusive), the RECONFIGURE procedure in Algorithm 9 uses
f(t) as follows. If the outcome of f(¢) directly corresponds to a location in the allowed
region, then it is used. Otherwise, the output is incremented by b (cf., line 8 in Algorithm 9).
Whenever the allowed region is shifted to the right, it may land on an already incremented
entry. If that is the case, that entry is reset, thereby allowing “old” values forgotten (cf.,
line 11 in Algorithm 9). These are shown by () in Figure 4.9. This scheme guarantees any
query access pattern that is less than k steps old is remembered, while any query access
pattern that is more than 2k old is forgotten.

4.3.6 Discussion

In Section (4.3), TUNABLE-LSH has been introduced, which is a tunable locality-sensitive
hashing scheme. It has been demonstrated that the original Hamming distances between
record utilization vectors can be approximated using TUNABLE-LSH with tight error
bounds. An adaptive clustering step has also been introduced, in which queries are pre-
clustered based on their access pattern similarity, which not only improves the error bounds
of TUNABLE-LSH, but also ensures that these tighter error bounds are maintained even
when the query access patterns change. These properties of TUNABLE-LSH enables it to
be used for clustering triples in chameleon-db to compute the G-by-(Q) clusters. TUNABLE-
LSH can also be used for determining the serialization order of G-by-Q) clusters, however,
as indicated earlier, that is beyond the scope of this thesis.

The clustering algorithm that is proposed in this section is oblivious to how the last
k most representative query access vectors are selected. Therefore, if more effective re-
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placement schemes are developed (which is orthogonal to this thesis), they can be easily
integrated.
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Chapter 5

Query Evaluation and Indexing

This chapter discusses the query evaluation and optimization algorithms used in chameleon-
db. Query evaluation in such a system is non-trivial for two reasons:

e While a good algorithm for computing the G-by-Q clusters, such as the ones discussed
in Sections 4.2 and 4.3, is necessary to achieve the desired CPU cache and I/O
optimizations, it is not sufficient. This is because a query evaluation algorithm that
is oblivious to the underlying G-by-() representation can easily obscure and even
reverse the effects of clustering.

e The query plan generator needs to know about the underlying physical layout—in
particular, the way the RDF graph is partitioned to come up with a query plan
that produces correct results. Even when the underlying G-by-@) clusters change
frequently, the system should be able to support the efficient generation and execution
of query plans (that produce correct results), and there are trade-offs. On the one
hand, it is possible to index and maintain everything about the underlying clusters,
in which case, query plans can be generated efficiently, but it becomes difficult to
update the clusters. On the other hand, one can choose to create indexes in a minimal
fashion, in which case, it is easy to update the clusters, but it becomes difficult to
generate query plans.

5.1 Overview of Query Evaluation

Consider two typical ways of evaluating BGPs over fixed, non-adaptive representations: In
HolisticEvaluation (Figure 5.1a), the whole BGP is evaluated over the whole RDF graph [201],

114



. Compute the result of the whole BGP
over the whole RDF graph according to
Definition 5.

(a) HolisticEvaluation

. Use indexes to locate only those clusters

that have a subgraph that matches the
whole BGP;

. For each satisfying cluster, compute the

result of the whole BGP over that cluster

1. Decompose the BGP into its triple pat- according to Definition 5; and

terns; 3. Take the union of the results.

2. For each triple pattern,

(a) Use indexes to locate only those
clusters that have a subgraph that
matches the triple pattern; 1

(c) OptimalEvaluation

. Preferably, do not decompose the BGP

(b) For each satisfying cluster, com- at all; however, if necessary, decompose
pute the result of the triple pat- it into as few number of segments as pos-
tern over that cluster according to sible;

Definiti ; .
efinition 5; 2. For each query segment, execute Opti-

(¢) Take the union of the results; and malEvaluation.

3. Join the intermediate results from Step 3. Join the intermediate results from Step
2. 2.

(b) TriviallyDecomposedEvaluation (d) SchemalessEvaluation

Figure 5.1: Alternative query evaluation algorithms

whereas in TriviallyDecomposedEvaluation (Figure 5.1b), the BGP is decomposed into its
triple patterns, and each triple pattern is evaluated independently over a clustering of the

graph [109].

While both algorithms would produce correct results over the G-by-(Q) representation,
they would be far from the optimal choice. HolisticEvaluation needs to consider the entire
RDF graph, which may lead to processing of irrelevant parts. TriviallyDecomposedEvaluation,
on the other hand, decomposes the BGP all the way down to its triple patterns, which
results in suboptimal performance for reasons discussed in Chapter 1.

Consider evaluating () = Tw Aoy E>?y %22 over Clustering A (cf., Figure 5.2b). Despite
the fact that Clustering A is a better choice for ) with respect to the clustering objectives
(cf., Section 4.1.2), in Step 2(a) of TriviallyDecomposedEvaluation, indexes cannot efficiently
localize query evaluation to only P, because P; contains at least one edge for each label A,
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(c) Clustering B

Figure 5.2: Sample RDF graph and G-by-@) clusterings
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B and C. That is, P; contains a match for each triple pattern in the query. This results
in the generation of irrelevant intermediate result tuples that may remain in the query
evaluation pipeline until all the joins in Step 3 are completed. Thus, TriviallyDecomposed-
Evaluation not only performs unnecessary computations, but it also results in poor I/O and
cache utilization.

In short, neither HolisticEvaluation nor TriviallyDecomposedEvaluation truly exploits the
fact that triples in the G-by-(Q) representation are already being clustered based on the
results of the queries in the workload. This is a useful property because given a query from
the workload, it is very likely that subgraphs that match the query (i.e., subgraphs that
contribute to the result of the query as per Definition 5), are each contained within at most
a single (but not necessarily the same) cluster. Recall how the two subgraphs in Clustering
A in Figure 5.2b that match @ are each contained in a single cluster.! Intuitively, if the
aforementioned conditions hold, the correct result of a BGP can be obtained (i) without
decomposing the BGP at all, and (ii) by evaluating the whole BGP independently over
each cluster in the G-by-() representation and taking the union of the results, thereby
avoiding the join step of TriviallyDecomposedEvaluation. These optimizations are captured in
OptimalEvaluation (Figure 5.1¢).

OptimalEvaluation is more efficient than both HolisticEvaluation and TriviallyDecomposed-
Evaluation. First, when evaluating ) over Clustering A, P, can be pruned out already in the
first step of the algorithm, which results in good data localization. Second, since the query
is evaluated entirely over P, (as opposed to being decomposed), query evaluation does
not produce any irrelevant intermediate result tuples—in fact, there are no intermediate
results. Needless to say, by fetching only a single cluster from the storage system, the
algorithm also achieves better 1/O and cache utilization.

Naturally, the storage advisor strives to compute a G-by-@) clustering such that for
every query in the workload, every subgraph that matches that query spans at most one
cluster. However, sometimes, this may be too ambitious to achieve. In practice, the
above condition may not hold for some queries in the workload, for which OptimalEva-
luation would not be applicable. Even in that case, it is argued that reverting all the way
down to the decomposition into triple patterns (i.e., TriviallyDecomposedEvaluation) may be
unnecessary. Therefore, SchemalessEvaluation is proposed (Figure 5.1d) that encapsulates
both TriviallyDecomposedEvaluation and OptimalEvaluation, but depending on the underlying
G-by-Q representation, can accommodate a whole range of decompositions in between.
Before any formalization, the following questions are answered.

ICoincidentally, in this example, both subgraphs are contained also within the same cluster, but that
is not a necessary condition.
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Q1— In SchemalessEvaluation, how can a decomposition of the query be found that produces
the correct result?

A — A bottom-up approach is followed. That is, the algorithm starts with the decom-
position of the query into its triple patterns (i.e., TriviallyDecomposedEvaluation), which
always produces correct results regardless of the underlying G-by-@Q representation (cf.,
Theorem 11 in Section 5.2), and rely on equivalence rules to simplify the decomposition.
These equivalence rules are conditional, and they exploit various properties about graphs
to dynamically determine whether subgraphs that match the query spill into multiple
G-by-Q clusters (Section 5.3).

Q2— How can one efficiently determine, at runtime, whether any of the matching sub-
graphs of a query spill into multiple G-by-@ clusters?

A — A lazy approach is followed: in general, there are two cases to consider. Initially (i.e.,
whenever a query is evaluated for the first time), it is assumed that all of the matching
subgraphs of the query spill into multiple clusters. However, as queries are evaluated,
summary information is maintained in an index called the Spill Index, which is used in
firing the conditional equivalence rules in subsequent queries. These equivalence rules
are designed such that queries can be optimized efficiently using as little information
about the underlying G-by-Q clusters as possible.

Q3— In Step 1 of OptimalEvaluation, how are the relevant clusters determined?

A — Another index, called the Cluster Indez is used. This index is also constructed in a
lazy fashion. That is, given the first query, the index assumes that any of the clusters
could be relevant to the evaluation of the query.? However, as queries are evaluated, it
uncovers more information about the clusters and indexes them.

Q4— What data structures are utilized to facilitate subgraph matching within a cluster?

A — To perform subgraph matching within each cluster, each RDF graph in the G-by-Q)
cluster is represented using an adjacency list and a variation of Ullmann’s algorithm [183]
is used. For each vertex ¢ in the BGP, the candidate matching vertices in the RDF graph

2This is an oversimplification because a signature-index containing information about the labels of edges
in each G-by-@ is maintained by default.
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are computed. If v is a URI or literal, one can directly lookup the vertex in the adjacency
list. Otherwise, if © is a variable, the algorithm relies on the labels of the edges that are
incident on v to prune the search space. While it is possible to build an index (other
than adjacency lists) over each cluster to facilitate subgraph matching, it is outside the
scope of this thesis.

5.2 Building Blocks of Schemaless-Evaluation (SE)

OptimalEvaluation and SchemalessEvaluation rely on two new operations: prune (Definition 12)
and clustered-match (Definition 13). Prune corresponds to Step 1 of OptimalEvaluation,
while clustered-match corresponds to Steps 2 and 3.

Definition 12. Gwen a clustering P of an RDF graph and a BGP @), the prune of P with
respect to @, which is denoted by og(P), is defined as og(P) = {PeP | [Q]p#0}. ]

The key aspect of prune is that unless there is a subgraph in a G-by-Q) cluster that
matches the whole query, that cluster will be discarded, even if the query has partial
matches. This property is exploited further when building indexes over the G-by-(@) clusters
(cf., Section 5.5).

Definition 13. Let Q be a BGP, P be a clustering of an RDF graph G and ' C P. The
clustered-match of @ over P, denoted as Q|P'], is defined by [Q|P']]l¢ = Upep [@lp. O

Clustered-match is different from standard match in that [Q]e = [Q|P]]e will hold
only if every subgraph of G that matches () is contained in at most one cluster in P. Note
that this is ezactly the objective of the G-by-Q clustering (cf., Section 4.1). Thus, for
most queries in the workload, one might expect to rely on OptimalEvaluation to compute
the correct query results. Of course, for cases when the clustering algorithm achieves its
objective only partially, the query will have to be decomposed into smaller segments (cf.,
SchemalessEvaluation) such that for each segment Q;, [Qi]¢ = [Q:i|P]]s holds. To determine
a good decomposition (ideally, one with no more than one query segments), the algorithm
starts with a decomposition that always produces the correct query result regardless of
how the RDF graph is clustered, and computes a better decomposition by dynamically
analyzing the current state of the clustering. Next, these concepts are formalized by first
defining the so-called SE expressions.

SE expressions are defined recursively. Given a BGP ) and a G-by-@Q clustering of
an RDF graph P, Q|P| and Q|og(P)| are SE expressions (they correspond to Steps 1
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and 2 of OptimalEvaluation, respectively). If M; and M, are SE expressions, then so are
(M U M) and (M, <1 My) (they correspond to Step 3 of OptimalEvaluation and Step 3 of
SchemalessEvaluation, respectively).

Next, it is shown that with the trivial decomposition of a BGP, in which the BGP is
decomposed into its triple patterns (Definition 14), the construction of an SE expression
M can be guaranteed such that [Q]¢ = [M]¢ for any BGP @ and any clustering P of an
RDF graph G (Theorem 11). Henceforth, this expression will be called the baseline SE
expression (Definition 15). Before formally introducing Theorem 11 and proving it, some
notation and lemmas are introduced (Lemma 9 and 10).

Definition 14. Given a BGP () = (V, E), then the trivial decomposition of Q) is defined
as the set @ = {Q1,...,Qr} of BGPs, where each Q; € Q contains exactly one edge, the

.k ok
set of edges in each Q; are disjoint, V = |J V(Q:), E = J E(Q:). O
i=1 i=1

Definition 15. Let Q) be a BGP, let G be an RDF graph, and let P be a clustering of G.
If {Q1,...,Qx} is the trivial decomposition of @), then the baseline SE expression for @
over P is Q1P| -+ > Q| P]. O

Definition 16. Given two BGPs Q4 and (), the concatenation of Q4 and Qp, denoted
by Qa ® Qp, is defined as a BGP Q = (V, E) such that (i) V = V(Qa) UV(Qp) and
(1)) £ = E(Qa) U E(Qp). O

Lemma 9. Let pu be a solution mapping; and let Q4 and Qg be two BGPs. Given an
RDF graph G, G p-matches the (concatenated) BGP Qa ® Qp iff there exist two solution
mappings fa and pp and two RDF graphs G4 and Gg such that G = G4 & Gg, Ga
wa-matches Qa, G pug-matches Qp, = paUpupg and pia ~ ppg.

Proof 9. To prove Lemma 9, it needs to be shown that both of the following statements
are true:

C1. Given two RDF graphs Ga = (Va, Ea) and G = (Vp, Ep), and two BGPs Q4 =
(VA,EA) and Qp = (VB,EB) if Gao pa-matches Q4 and Gp pug-matches Qp, where
a and pp are two solution mappings such that pa ~ pg, then G pu-matches @) =
(V,E) where G is an RDF graph with G = GAUGg, pp= ppaUpup and Q = Qa®Qp.

C2. Given an RDF graph G = (V, E), and two BGPs Q4 = (Va, E4) and Qp = (Vy, Ep),
if G pu-matches Q4 ® Qp, where i is a solution mapping, then there exists two RDF
graphs G4 = (Va, E4) and Gg = (Vg, Ep), and two solution mappings pa and pug
such that G4 pa-matches Qa, Gg pup-matches Qp, pa ~ pip, and p = s U pp.
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Both of the above statements are proven by construction. To prove that C1 s true, first
it is shown that p satisfies condition (a) in Definition 4 and then two surjective functions
My and Mg are constructed such that they satisfy condition (b) in Definition 4.

e dom(pu) is the set of variables mentioned in Q:

— Since p=paUpp,

dom(y) = dom(pa U pp)
= dom(ps) Udom(pgp) (5.1)

— Furthermore, QQ = Q4 ® Qp implies that the set of variables mentioned in Q)
1s the union of the set of variables mentioned in Q4 and the set of variables
mentioned in Q)p.

— Consequently, according to Equation 5.1, dom(u) denotes the set of variables
mentioned in Q.

e There are two surjective functions My and Mg such that condition (b) in Definition /
15 satisfied:
— Let My : (V4 U V) — (V4 U Vp) be defined such that
x My (v) = MA for every v € (VA \ VB)
x My (0) = MA for every v € (VA N VB) and
x My (0) = MV for every v € (Vg \ Vi), where
MA VA — V4 and MB VB — Vg denote the two surjective functions implied
by GA pa-matches Q4 and Gg pg-matches Q g, respectively.
— Let Mg : (EA U EB) (Ea U Eg) be defined such that
* Mp(é) = Ma for every é € (EA \ EB)
x Mg(é) = MA for every e € (EA ﬂEB) and
* ME( ) = MB for every é € (Eg \ E4), where
MA EA — E4 and M EB — Ep denote the two surjective functions implied
by GA pa-matches Q4 and Gg pg-matches Q g, respectively.
— Note that as long as
* M3 0) = ME(©) for every v € (VAHVB) and
« Ma(e) = MB(&) for every é € (E4N Ep),
it can be shown that both My and Mg satisfy condition (b) in Definition }
because of the way My and Mg are defined with respect to M}, MZ, M3 and
MBEB , which already satisfy condition (b) in Definition 4. That is,
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x It is known that if © is a constant, then M} (0) = © and ME(0) = 0,
therefore M3 (0) = ME(0).

x If o €V, then MP(9) = ua(0) and ME(0) = up(0).

x Since pa ~ ppg, it holds that pa(?x) = ( x) for all variables 7x €
dom(pa) Ndom(ug), where dom(pa) N dom( 5)=(VanVs)NV.

x Consequently, M3} () = MB( ) for every v € (V ! ) is true.

« The proof of M&(é) = MB(é) for every é € (E4N Eg) follows the same

logic.

For C2, only a proof sketch is included.

It is possible to construct a surjective function MF : Es— Ey4 by projecting Mg onto
the domain EA.

Likewise, a surjective function M} : Vi — Vi can be constructed by projecting My,
onto the domain VA.

It is not difficult to see that there exists a solution mapping pa, such that pa ~ p and
dom(pa) corresponds to the set of variables mentioned in Qa, for which condition

(b) in Definition 4 is satisfied.

— Perhaps the more difficult part is to prove that for each (é1,e2) € Es x Ey
with Mg(él) = €. él = (§1,ﬁ1,51) and €y = (Sg,pg,Og), Zf Mé<§1) = 89, then
M (61) = 0s.

— However, since VA and EA define a BGP (i.e. QA) it can easily be shown that
both the source and the target of each edge é € E 4 have to be elements of Va,
which makes the proof possible.

— The observation above can also be utilized in order to show that G4 = (Va, E4)
1s an RDF' graph.

Similar arguments can be made about the existence of an RDF graph Gp and a
solution mapping up such that Gg pg-matches Qp.

Since (i) pa ~ w and pug ~ p, and (it) dom(pa) € dom(p) and dom(up) C dom(u),
it also holds that pa ~ pp.

Furthermore, Q@ = Qa ® Qp implies that dom(u) = dom(pa) U dom(ug), hence, it
also holds that p = puas U pup.

Consequently, Statement C2 is true. O

Lemma 10. Given an RDF graph G and two BGPs Q4 and Qp, [Qa® Qp]c = [Qa]c <
[@5]c-
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Proof 10. To prove Lemma 10, it needs to be shown that both of the following statements
hold:

L1. If u is a solution mapping such that pn € [Qa ® Qplg, then u € ([[QA]]G D] [[QB]]G);

and

L2. If p is a solution mapping such that p € ([Qalc > [Q5]c), then p € [Q4 @ Qple.

Both of these statements are proven by contradiction.

To prove L1:

Assume there exists a solution mapping p such that p € [Qa ® Qplae, but u &
([Qalc = [Q5]e)-

By Definition 5, there exists an RDF graph G’ that is a subgraph of G such that G’
p-matches Qa & Qp where p & [Qale > [@5]c-

Then, according to Lemma 9, there exists two RDF graphs G4 and Gpg that are
subgraphs of G' such that G 4 pa-matches Q4 and Gp pp-matches Q g, where s and
wp are two solution mappings such that = pus U pup and pa ~ pp.

Since G4 and G are also subgraphs of G (transitively), according to Definition 5,
pa € [Qalc and pp € [Q5]e-

However, since p = pa U pupg and pa ~ pp, according to the standard definition of
join (1) in SPARQL algebra [157], i must also be an element of [Qa]c ™ [@5]q,
which is a contradiction.

Consequently, Statement L1 must hold.

To prove L2:

Assume there exists a solution mapping p such that p € ([[QA]]G D [[QBﬂg), but
1 [Qa® Qslc.

Based on the standard definition of join (1) in SPARQL algebra [157], there must
exist two solution mappings pa € [Qal]e and pup € [@pla such that p = pa U ug
and pig ~ Up.

According to Definition 5, there must exist two RDF graphs G4 and Gg such that
(i) G4 and Gp are both subgraphs of G, (ii) G s pa-matches Qa, and (iii) Gg up-
matches Qp.

Since = paUpup and pa ~ pp, Lemma 9 suggests that there also exists an RDF
graph G" such that G' = G4, UGpg and G’ p-matches Q4 ® Qp.

Since both G4 and Gg are subgraphs of G, so is G, and according to Definition 5,
p € [Qa® Qpla, however, this is a contradiction.
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o (Consequently, Statement L2 must hold. O

Now, Theorem 11 can be introduced and proven.

Theorem 11. Given a BGP Q, an RDF graph G and a clustering P of G, [Q]c = [M]q,

where M s the baseline SE expression for ) over P.

Proof 11. It needs to be shown that given a BGP @, an RDF graph G and a clustering
P of G, [Q]lc = M holds, where M is the baseline SE expression for QQ over P. Let
TD(Q) = {Q1,...,Qr} be the trivial decomposition of Q, and let P ={Py,..., P,}. Note
that according to Definition 13, for each @Q; € TD(Q),

QilP| = [Qi]p, U---U[Qi]p,. (5.2)

and based on Definition 14, it is also known that each @QQ; € TD(Q) contains exactly one
edge, therefore

[Qi]p, U - U[Qilp, = [Qilpu-up.,
and
Qi|P] = [Qi] PP, (5.3)
Since P = {P\, ..., Pn)} is a clustering of G, by Definition 6, P, U---U Py = G, hence,
Qi|P] = [Qi]c- (5.4)

Substituting values in the baseline SE expression with the right hand side of Equation 5.4,
one gets

M = [@Qi]c v 2 [Qi]e (5.5)

By recursively applying Lemma 10, one gets

M=[Q:1®- & Qe (5.6)

Since Q = Q1 P -+ - B Qr by definition of trivial decomposition, [Q]qg = M holds. O
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Name Equivalence Rules Condition

1 | Expansion [QalP|]c = 'Ul [QalP;i]]e 'U1 P,=P

2 | Join elimination* | [Qa|P1] < Qp|P2]]l¢ =0 | Thm. 12

3 | Join reduction*® [QalP1] =< Qg |P1]]c Thm. 13
= [(Qa0@5)|P1]]e

4 Identity (l><l) Ql <=0 Ql =0 Ql, QQ, 93

5 | Identity (U) QUD=0UQ, =0 are sets of

6 | Associativity (>1) | Q1 > (22 > Q3) solution
= (Q1 x1Q2) Q3 mappings

7 | Associativity (U) | €1 U (22U Q3)
= (L UQ) UQg

8 | Distributivity Q1 > (Q2 UQ3)
(l><] over U) = (Ql > Qg) U (Ql > Qg)
9 Reﬂexivity Ql > QQ = QQ > Ql

Table 5.1: Equivalence rules that are applicable to the evaluation of SE expressions
(Pyq,...,P,, represent sets of RDF graphs).

5.3 Query Rewriting Rules

To realize the aforementioned rewrite of the baseline expression into an equivalent expres-
sion with fewer number of join operations, equivalence rules are introduced that are in two
categories: generic and conditional. Generic rules are applicable irrespective of how the
RDF graph is clustered, whereas the applicability of a conditional rule depends on whether
the clustering satisfies certain conditions.

Assuming ) 4 and Q) g are two BGPs, let IP be a clustering of an RDF graph with subsets
Py,...,P, (P; CPforallie{l,...,m}). Table 5.1 lists the equivalence rules. Rules 1-3
are specific to the clustered-match operation, whereas rules 4-9 are derived from SPARQL
algebra [29]. Rules that are marked with an asterisk (*) are conditional. Observe that the
expansion rule relies on a condition that is independent of the way the graph is clustered.
In other words, for any clustering P of an RDF graph, one may generate some Py, ..., P,,,
such that the condition is satisfied. On the contrary, the conditions in join elimination and
join reduction are directly related to the way the graph is clustered; therefore, they need
to be checked every time a query is evaluated. The following two theorems formalize these
conditions and show their correctness.

Theorem 12. Given a clustering P of an RDF graph G and two BGPs Qs and Qp
with V(Qa) NV(Qp) # 0, let I =Up, pyep,xp, V(Fi) N V(F;), where P, Py € P. Then,
[Qa|P1]| < Qp|P2]]e = 0 if, for each vertex v € I, there exists a vertex v € V(Q4)NV(Qp)

125



and an edge é € inc(Q 4, 0)Uinc(Qp, 0) such that é is not compatible (cf., Definition 3) with
any edge in \pep,up, inc(P,v), where inc(G,v) denotes the set of edges that are incident
on a vertezr v.

Proof 12. It needs to be shown that Qa|P1| > Qp|P2| = 0 holds. Note that according to
Definition 13, a semantically equivalent expression that one can prove is LJ(PZ,J,],)GHD1 Py [Qa]p, <
[Qslp, = (). In the next part, the latter statement is proven by contradiction.

S1. Assume that there exist two clusters P; € Py and P; € Py such that [Qa]p, > [QB]p, #
0.

S2. Based on the standard SPARQL semantics [157], since the join in the above expression
returns a non-empty set of solution mappings, there must exist a solution mapping
1€ [Qa]p, > [@Bllp, and two solution mappings pa € [Qa]p, and pp € [Qs]p, such
that = paUpp and pia ~ up.

S3. Then, according to Definition 5, there must exist two RDF graphs G4 and Gg such
that (i) G 4 is a subgraph of P; and G 4 pa-matches Qa, and (i) Gp is a subgraph of
P; and Gp pp-matches Qp.

S4. Lemma 9 suggests that there also exists an RDF graph G’ such that G' = G4UGpg and
G’ pu-matches Q4 ® Qp.

S5. Statements (C) and (D), together with Definitions 2 and 4 imply that for every vertex
b€ V(Qa)NV(Qp)

e inc(Qa,0) # 0 and inc(Qp,v) # O (because according to Definition 2, a vertex
in a BGP cannot exist without an edge incident on it); and

e there erists a vertex v € V(Ga) NV (Gp) to which ¥ is mapped (because the three
surjective functions MS“, M‘?B and ME' implied by G4 pa-matches Qa, Gg
pup-matches Qp and G' p-matches Qa ® Qp must agree on all common vertices)
such that

— every edge é € inc(Qa,v) is compatible with an edge from e € inc(Ga,v);
— likewise, every edge é € inc(Qp,0) is compatible with an edge from e €
inc(Gp,v) (which follows the previous statement and Definition 4); and
S6. In other words, for every vertex v € V(Qa)NV(Qp), there exists a vertexv € V(G 4)N
V(Gp) such that every edge é € inc(Qa,v)Uinc(Qp,v) is compatible with an edge from
inc(Ga,v) Uinc(Gg,v).
S7. Recall that V(Qa)NV(Qp) # 0, therefore, Statement (F) also implies that there exists

a vertex v € V(Ga) NV (Gp) and a vertex v € V(Qa) NV (Qp) such that every edge
é € inc(Qa, ) Uinc(@p,0) is compatible with an edge from inc(G 4,v) U inc(Gp,v).
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S8. However, Statement (G) contradicts the conditions in Theorem 12, therefore proof-by-
contradiction suggests Statement (A) does not hold under these conditions.
89. Consequently, U p, p,)ep, xp, [Qalp, > [QB]p, = 0 and Theorem 12 holds. O

Theorem 13. Given a clustering P of an RDF graph G and two BGPs Q4 and Qg with

V(Qa)NV(Qp) # 0, [Qa|P| = Qp|P|lec = [(Qa®QB)|P|]c if, for each vertex v such
that |cont(P,v)| > 1 (where cont(P,v) denotes the subset of clusters in P that contain v),
either

(i) there ezists a vertex v € V(Qa) NV(Qp) and an edge é € inc(Qa,0) U inc(Qp,0)
such that é is not compatible with any edge from \Jpcp inc(P,v), or

(it) there exists a single cluster P € P such that for every edge e € |Jpp inc(P,v) and for
every verter © € V(Qa) NV(@p), if e is compatible with an edge from inc(Qa,v) U
inc(Qp,0), then cont(P,e) = {P}.

Proof 13. It needs to be shown that
QalP| = Qp|P| =Qs® Qp|P] (5.7)

holds. According to Definition 13, Equation 5.7 is equivalent to

U [Qalp, = [@5]F, = U [Qs® QB]p. (5.8)

(Pi,Pj)E([PX]P) PeP

Furthermore, according to Lemma 10, the right hand side of Equation 5.8 can be rewritten
as follows:

U [Qalr = [Qz]r, = [ J[Qalr > [Qs]r, (5.9)

(Pi,P]')E(]P)X]P) PecP

Given the equivalence of Equation 5.7 and Equation 5.9, Theorem 13 is proven by showing
that Equation 5.9 holds. Note that Equation 5.9 holds iff

[Qalp, > [Qs]p, =0 (5.10)

for all (P;, P;) € P x P with P, # P;. Therefore, it needs to be shown that Equation 5.10
holds both for sub-condition (i) and sub-condition (ii) in Theorem 13. The proof of sub-
condition (1) follows the same steps as the proof of Theorem 12, therefore, it is omitted.
Sub-condition (ii) is proven using proof-by-contradiction as follows:
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nc(Pyv1) | inc(P,vg) | inc(P,v3) in | inc(P,vy)

A A A B

V1 — V2 Vo <— U1 V3 — Vg P1 V4 — V11
A B B C

V1 — Vg Vo — U3 V3 < V2 PQ Vg < U3
B B C C

V1 — Us Vg — Vg V3 — U4 PQ Vg4 — “107

C C
Vo — U7 V3 — V10 P2

Table 5.2: Incident edges on v1—v4 in Clustering A (Figure 5.2b)

S1. Assume that there exist two clusters P;, P; € P, where P; # P;, such that [Qa]p, >
[QB]F, # 0.

S2. Same as Statements (B)—-(E) in the proof of Theorem 12.

S3. Furthermore, according to Definition 4, for every 0 € V(Qa) NV (Qg), there exists
an edge ey in inc(G 4, v), which is compatible with an edge in inc(Q4,0), such that
cont(P,es) = P; and an edge eg in inc(Gp,v), which is compatible with an edge in
inc(Qp,v), such that cont(P,ep) = P;.

S4. However, P; # Pj, which contradicts condition (ii) in Theorem 13.

S5. Proof-by-contradiction suggests Statement (A) does not hold under any of the above
conditions.

86. Consequently, U p, p,)ep, xp, [Qalp, > [QB]p, = 0 and Theorem 13 holds. O

Let @ be Q4 ® Qp (i.e., the concatenation of two BGPs). Theorem 13 formalizes that
if () does not have any matching subgraph that spans multiple clusters, then ) can be
evaluated by (i) computing the matching subgraphs of () within each cluster in isolation,
and (ii) taking the union of the results from step (i), thereby omitting the join. Thus,
if partial matches of Q4 and Qg do not join across clusters, query evaluation can be
simplified. Condition (i) guarantees that clusters in consideration do not share common
vertices (or if there are such vertices then they are not related to the evaluation of Q); and
condition (ii) says that if there is such a vertex, the edges incident on that vertex do not
match the query edges. Under these circumstances, () cannot have any matching subgraph
that spans multiple clusters and the join can be eliminated.

Next, the earlier query evaluation example is revisited to demonstrate how join reduc-

tion can be applied to the schemaless-evaluation of query 7w A E>?y %22 over the clus-
tering in Figure 5.2b. The baseline SE expression for this BGP is Q1| P| > Q2| P| < Q3| P},

where 7w 572, 70 22y, 7y 72 are the three BGPs Qy, Qs and Qs in the trivial decom-
position of the query, and P consists of P, and P, in Figure 5.2b. For simplicity, prune

operations are ignored for now. If [Q|P] < Q3|P|]¢ = [(Q2®Q3)|P]]c, this baseline
SE expression can be rewritten as Q|P] 01 (Q2@®Q3)|P]. For the given clustering, the
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Figure 5.3: Hlustration of query rewriting and optimization.

four vertices vy, vg, v3 and vy exist in multiple clusters. Therefore, the conditions in The-
orem 13 need to be checked. Note that inc(Qq, 7y) U inc(Qs, 7y) consists of two edges,
namely, (?z, B,?y) and (?y,C,?z). Condition (i) holds for v; because (?y,C,?7z) is not
compatible with any of the edges in inc(IP,v;), which is illustrated in Table 5.2. For vs,
(?y, B, ?7z) is not compatible with any of the edges in inc(IP,v9) due to the direction of
edges. The same argument applies to v4. Regarding vz, both (7x, B,?7y) and (?y,C,?7z)
have at least one compatible edge; therefore, condition (ii) also needs to be checked for
v3. Since all compatible edges are from the same cluster, namely, P,, the baseline SE
expression can be simplified to Q1 |P]| > (Q2®Q3)|P|. Continuing with the process, the
expression can be further simplified to (Q1 Q2P Q3)|P].

5.4 Query Rewriting Algorithm

The algorithm for rewriting a baseline SE expression proceeds in three phases (cf., Al-
gorithm 13 and 14). This algorithm is described using the example illustrated in Fig-
ure 5.3. Consider a baseline SE expression: @Q|og,(P)| < Q2]0g,(P)] > Q3|0g,(P)]
(Figure 5.3a). First, the joins in the baseline expression are reordered according to their
estimated selectivities [176]. Second, by using generic equivalence rules, the expression is
transformed into a canonical form. An SE expression is in canonical form if it consists of
the union of a set of sub-expressions 77 U - - - U T,,,, where each sub-expression is made up
of the exact same set of clustered-match operations, which differ only in the clusters they
operate on.
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To compute the canonical SE expression, first, each prune operation is evaluated,
producing multiple sets of clusters with one set for each prune operation (Figure 5.3b).
As illustrated in Figure 5.3b, these sets of clusters are factorized into maximal common
subsets such that factorization produces as few segments as possible. For example, let
P ={P,, By, P., P;} denote the set of clusters in the example; and assume that {P,, P,} is
a prune of P with respect to Q; and {P,, B, P;} and {P,, P,} are prunes with respect to (),
and @3, respectively. Then, P; = {P,, P,} and Py = {P;} are the maximal common sub-
sets. In the next step, each clustered-match operation is expanded across the corresponding
subsets of clusters using Rule 1. Rules 4-9 are applied to the nodes of the expression-tree
in a bottom-up fashion, which is repeated until no further rewriting is possible. At this
stage, the canonical expression is produced (Figure 5.3c).

In the third phase, each sub-expression in the canonical form is optimized independently
using conditional rules (i.e., Rules 2-3) as well as Rules 4-9. In this regard, join reduction
and join elimination are applied recursively to the nodes of each sub-expression until the
original query is decomposed into as few segments as possible. The right-hand side of
union is eliminated using join elimination (Figure 5.3c) and the remaining expression is
simplified to (Q1 P Q2P Q3)[S1] using join reduction.

In summary, query evaluation corresponds to query plan generation and optimization
followed by plan execution. Consequently, to evaluate a BGP, for that given BGP, an SE
expression is generated (which of the equivalent expressions the system chooses is the topic
of Section 5.3). Figure 5.3a illustrates a tree representation of such an SE expression. Then,
each sub-expression of the form o, (P) is evaluated by pruning out the irrelevant clusters
using the Cluster Index. Consequently, each sub-expression of the form Q;|og,(P)]| is
simplified to Q;|P; |, where P; C P. Then, for each resulting sub-expression Q;|P;], (i) the
sub-expression is evaluated in isolation on each cluster using a standard subgraph matching
technique [183], and (ii) the union of the results from each evaluation is computed. In the
subsequent steps, intermediate tuples from the evaluation of each sub-expression are joined
or unioned according to the standard definitions in SPARQL algebra [157].

The computational complexity of GET-BASELINE-EXPRESSION (cf., Algorithm 13) is
O(|Q[log(|Q]) + |Q] |cIndex]), where |Q| denotes the number of triple patterns in @ and
|cIndex| denotes the number of nodes in the Cluster Index. O(|Q]log(|Q])) comes from
line 13 and O(|Q| |cIndex]|) comes from lines 25-28 of Algorithm 13.
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Algorithm 13 Get-Baseline-Expression

Require:

Q: Basic graph pattern () for which query plan is to be generated.
cIndex: Pointer to the Cluster Index object.

Ensure:

The query plan tree for the baseline SE expression for () is generated and returned.

1: procedure GET-BASELINE-EXPRESSION(Q), cIndex)

2:
3:
4:

10:
11:
12:
13:

14:
15:

16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:

> Initialize variables
mt i<+ 0
vector(float, tPattern) tpSelArray « ()

> Decompose () into its triple patterns, and
> ...order the triple patterns based on their estimated selectivities.
vector (tPattern) tpArray <— GET-TRIPLE-PATTERNS(Q)
for ¢ < tpArray.length do
float sel <= ESTIMATE-SEL(tpArray|i])
tpSelArray[i] < (sel, tpArray[i])
i++
end for
SORT(tpSelArray, ASCENDING)

node root <~ NULL
vector(node) unionRoots <+ ()

> Generate query plan tree for the baseline SE expression.
140
for i < tpSelArray.length do

mt 7 <0

vector(node) nodeArray <+ ()

> For each segment of G-by-@) clusters that have a match for @,
> ...generate a plan node for clustered-match operation (cf., Definition 13).
tPattern tp < tpSelArray|[i].second
vector(int) segArray <— clusterIndex. GET-SEGMENTS(tp)
for j < segArray.length do
nodeArray[j] <~ MAKE-MATCH-NODE(tp, segArray|[j])
g+
end for
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29: > Combine clustered-match operations using union.

30: if nodeArray.length > 0 then

31: unionRoots|i] < nodeArray|0]

32: j+1

33: for j < nodeArray.length do

34: unionRoots[i] <— MAKE-UNION-NODE(unionRoots[i], nodeArray/[j])
35: g+

36: end for

37 else

38: unionRoots|i] <~ MAKE-EMPTY-NODE()

39: end if

40: > Combine the root union expressions using join.
41: if ¢ == 0 then

42: root <— unionRoots]i]

43: else

44: root <— MAKE-JOIN-NODE(root, unionRoots][i])
45: end if

46: 1++

47: end for

48: return root
49: end procedure
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Algorithm 14 Rewrite-Expression

Require:
root: Denotes the root of the query plan tree storing the baseline SE expression.
ruleList: List of rules that need to be applied to the baseline SE expression. Each
rule object denotes one of the equivalence rules in Table 5.1.

Ensure:
The baseline SE expression is rewritten according to the given equivalence rules. The
root of the new query plan tree is returned.

1. procedure REWRITE-EXPRESSION(root, ruleList)

2 bool updated < false

3 > Repeat until query plan cannot be updated

4: do

5: updated <« false

6 stack(node) st < ()

7 st.PUSH(root)

8 while !st.EMPTY() do

9: node n < st.POP()

10: bool ruleFound <« false

11: do

12: for all rule € ruleList do

13: > Check if rule is applicable to query plan sub-tree rooted at n
14: if ISAPPLICABLE(rule, n) then

15: > Modify sub-tree based on equivalence rule
16: n < APPLYRULE(rule, n)

17: > If n is the root of the entire query plan tree
18: > ...make sure to update the root variable
19: if n.parent == NULL then
20: root <—n
21: end if
22: ruleFound < true
23: updated < true
24: break
25: end if
26: end for
27: while ruleFound
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28: > Push children of n to stack for subsequent iterations

29: if n.rightChild !'= NULL then
30: st.PUSH(n.rightChild)

31: end if

32: if n.leftChild '= NULL then
33: st.PUsH(n.leftChild)

34: end if

35: end while

36: while updated

37 return root

38: end procedure

5.5 Partial, Adaptive Indexing

This section describes the indexing approach in chameleon-db. chameleon-db uses two
types of indexes: the Spill Index is used during query plan generation and the Cluster
Indez is used during query evaluation, as shown in Figure 5.4.

The Spill Index is simply a cache containing information about which vertices in the
graph are replicated across more than one G-by-@) cluster, the edge labels on such repli-
cated vertices, the degrees of replicated vertices, the degree distribution of such replicated
vertices across the G-by-@) clusters, and so on. This information is collected when query
plan decisions are made and used in firing the conditional equivalence rules introduced in
Section 5.3. Previous sections contained examples and discussions on how the Spill Index
is utilized, therefore, further discussion is omitted in this section.

The Cluster Index is a collection of indexes built across the G-by-Q clusters and is
utilized in step (1) of OptimalEvaluation after it is invoked from step (2) of SchemalessEva-
luation (cf., Figure 5.1). Given a G-by-@Q clustering P (of the RDF graph) that is being
indexed and a query (or sub-query) @, the Cluster Index is responsible for returning,
ideally®, the prune of P with respect to @ (cf., Definition 12).

There are three parts to the Cluster Index. Two simple graph indexes, namely, the
Vertex and Edge indexes, maintain information about which particular URI maps to which
G-by-Q) cluster. The implementation of these indexes are trivial, hence, a more detailed

3This will be explained shortly.
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Figure 5.4: Detailed architecture of chameleon-db

discussion is omitted. The third part of the Cluster Index is consists of the Structural
Index, whose details are discussed below.

An important property of the Structural Index is that it is built adaptively (with
respect to the workload) and in a partial manner. In other words, the index is not built
upfront, but incrementally, as queries are executed. Therefore, each query in the workload
is treated as some advice on what to index in the next iteration—much like in database
cracking [113-115].

The aforementioned adaptive, partial indexing scheme is implemented by relaxing the
condition on what the index should return: Given a query, instead of strictly returning the
prune of a G-by-(@) clustering with respect to that query, the Structural Index is allowed to
return additional clusters that are not in the prune set (i.e., false positives). These false
positives are eliminated in a validation step later on during query evaluation. However,
the Structural Index is never allowed to miss clusters that are in the prune set (i.e., false
negatives). In other words, for any query @ and any G-by-Q clustering P, 05(]?) D og(P)
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should hold, where 05(}?) denotes the set of clusters that are returned by the Structural
Index and og(P) denotes the actual prune set (cf., Definition 12).

In the worst case, the Structural Index returns all of the clusters in the G-by-@ cluster-
ing of an RDF graph (i.e., IP), which means that queries need to be evaluated aggressively
against the entire RDF graph, which may not be ideal from a performance point of view.
On the other hand, the cost of building this index is minimal—in fact, simply maintaining
a list of pointers to the G-by-@Q clusters would be sufficient. The index can be made more
efficient, for example, by sorting the list of pointers based on the number of edges in the
referenced G-by-@Q) clusters. In that case, if it can be inferred that all matching subgraphs
of a query (cf., Definition 5) need to have at least k edges, where k is some arbitrary con-
stant, then, the Structural Index can return only those G-by-Q) clusters that have k& edges
or more. This results in fewer false positives than the worst-case scenario, but it comes at
the expense of additional indexing overhead.

The Structural Index in chameleon-db balances the trade-off between the indexing
overhead and query performance by indexing only for queries it assumes will be present
in the workload. This way, chameleon-db avoids wasting any effort on improving the
Structural Index for queries that will never be executed, while making sure that queries
that are actually part of the workload can be executed more efficiently. In this respect, it is
assumed that queries that have been executed so far by the system are representative of the
future queries in the workload (more sophisticated workload predictability assumptions,
e.g., that can handle skew in workloads, are future work).

Before the implementation details of the Structural Index are presented, some notation
and formalisms need to be introduced.

Definition 17. Given a basic graph pattern Q = (V,E), its generalized structural form
(GSF) is a basic graph pattern Q° = (V°, E°) such that

o Voz{g(@)‘@ef/}, and

o E°={(9(3), b, 9(0)) | (3,p,0) € E}.

where g : (VUUU L) =V is an injective function with the property that

>

(o) = v eV
T = o0 eV\vars(E) 19 eUUL
and U&TS(E) is the set of variables mentioned in E such that

vars(E) = {z | 3(5,p,0) € E x € {5,p,6} NV}
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Example 7. Consider the BGP in Figure 5.5a. It consists of four vertices. Among these
four vertices, only one of them represents a variable, namely, Ta € V. The remaining three
are RDF terms (i.e., URIs or literals). The BGP in Figure 5.5b is the generalized structural
form of Q4. In translating Qa to Q%, each vertex that represents an RDF term has been
replaced with a distinct variable that is different from the set of variables mentioned in the
(edge triples of the) original query, namely, the set {?a}. O

Theorem 14. Given a clustering P of an RDF graph and a BGP Q)
o0: (B) 2 og(P)
where QQ° is the generalized structural form of Q.

Proof 14. To prove Theorem 14, it needs to be shown that for an RDF graph P, the
following statement holds:

IfP e UQ(]P)) then P € JQO(P). (5.11)

Equation 5.11 is proven by showing that P € ogo(P) holds under the assumption that
P € 0¢(P) is true. To prove P € ogo(IP), proof-by-contradiction is used. Consequently,
the proof steps are as follows:

S1. Let vars(Q°) denote the variables mentioned in Q° and vars(Q) denote the variables
mentioned in Q (cf., Definition 17).

137



S2. Let g: (WUUUL) — V denote the injective function that maps labels of vertices in Q
to labels of vertices in Q° (cf., Definition 17).

S3. Assume P € og(P).

(a) Assume P & ogo(P).
(b) According to Definition 12 and statement S3, [Q]p # 0.

(c) At the same time, according to Definition 12 and statement S3a, [Q°]p = 0 holds
because, otherwise, P € oge(P) has to be true.

(d) According to Definition 5 and statement S3b, there exists a solution mapping p
and an RDF graph P' = (V' E') such that P’ is a subgraph of P and P’ u-matches
Q.

(e) According to Definition 4 and statement S3d, dom(u) = vars(Q) and there ez-

ist two surjective functions My : V — V' and Mg : E — E’ that satisfy the
conditions in Definition /.
(f) Let p® denote a solution mapping such that
i. dom(p®) = vars(Q°);
ii. for every variable 7x € dom(u®) Ndom(p), u(?x) = u(?x); and
ii. for every variable 7y € dom(u®) \ dom(u), p°(?y) = g~ (7y).

Note that since g is injective, its inverse g~ is also injective; furthermore, by

definition, g~ is defined for every 7y € vars(Q°) \ vars(Q) (cf., Definition 17),
hence, for every Ty € dom(p®) \ dom(p).

(9) Let M :V° — V' and Mg, : E° — E' denote two surjective functions such that
i. for every vertex o° € V°, M3 (0°) = My (g7 '(0°)); and
ii. for every edge é° = (5,p,0) € E°, My5,(é°) = Mg(é),
where é = (g7 (8),p,97(0)).
(h) According to Definition 4 and statements S3f and S3g, P' p®-matches Q°.

(i) According to Definition 5 and statement S3h, [P']qe # 0, which contradicts state-
ment S3c.

(j) Thus, proof-by-contradiction suggests P € age(P).

S4. Since statement S3j holds under the assumption P € og(P), the if statement in Equa-
tion 5.11 holds, thus, proving Theorem 14. [
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Theorem 15. Given a group-by-query clustering P’ of an RDF graph and two BGPs Q4 =
(VA, EA) and Qp = (VB, EB) such that Q1 is a strict supergraph of Qo, then

0Qa (P) C 0@y (P>

Proof 15. To prove Theorem 15, it needs to be shown that for an RDF graph P, the
following statement holds:

IfP € og,(P) then P € og,(P). (5.12)

Equation 5.12 is proven by showing that P € og,(P) holds under the assumption that
P € 0g,(P) is true. To prove P € oq,(P), proof-by-contradiction is used. Consequently,
the proof steps are as follows:

S1. Assume P € 0g,(P).

(a) Assume P & og,(P).
(b) According to Definition 12 and statement S1, [Qa]p # 0.

(c) At the same time, according to Definition 12 and statement S1a, [Qp]lp = 0 holds
because, otherwise, P € og,(P) has to be true.

(d) Since Q4 is a strict supergraph of Qp, there must exist a BGP Qa = (VA, EA)
such that Q4 is Qp ® Qa (cf., Definition 16).

(e) According to Definition 5 and statement S1b, there exists a solution mapping pia
and an RDF graph Pa such that Pa is a subgraph of P and P4 p-matches Q) 4.

(f) Since Q4 is Qp ® Qa, according to Lemma 9 and statement Sle, there exist two
solution mappings pp and pa and two RDF graphs Pg and Pa such that

1. PA 18 PB @PA,
1. Pg ps-matches Qp, and
1. Pa pa-matches Qa.

(9) Then, according to Definition 5,
[@5]ps # 0. (5.13)

(h) Since Pp is a subgraph of Py, and Py is a subgraph of P, Equation 5.13 can be
restated as [Qg]p # 0, which contradicts statement S1c.

(1) Thus, proof-by-contradiction suggests P € og,(P).
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S2. Since statement S1i holds under the assumption P € og,(P), the if statement in
Equation 5.12 holds, thus, proving Theorem 15. [

Initially, the Structural Index consists of just a list of pointers, referencing all of the
G-by-Q clusters (i.e., P). When the first query (@) is executed, the whole list is traversed
and all of the G-by-@Q clusters are returned to the query engine. However, as the list
is being traversed, additional computations are made and the index is reorganized (for
subsequent queries). In particular, first, the query is generalized to a purely structural
form (cf., Definition 17). Informally, what this means is that each RDF term that appears
in the vertices of the query is replaced with a distinct variable.

In the second step, the list of pointers are partitioned around a pivot point such that
pointers to G-by-Q clusters in oqs(IP) are moved to the left of the pivot, and pointers to
G-by-Q clusters that are not in oge(IP) remain at or to the right of the pivot, where Qf
denotes the GSF of ;. Let LEFT denote the access path to G-by-Q) clusters on the left
side of this pivot, and RIGHT the access path to the G-by-(Q) clusters that are at or on the
right side of the pivot. The overhead of restructuring the list of pointers is small. Note
that the list has to be traversed anyway to compute the matching subgraphs, and while
doing so, pointers can be reordered in-place and in one-pass over the list—just like the
partitioning step of the quicksort algorithm [65].

For the next query (@), there are three possible scenarios. Let ()5 and @5 denote the
GSFs of )1 and @),, respectively.

e If the GSF of )y is the same as the GSF of (), the index can return the set of
G-by-Q) clusters that are reachable by the access path LEFT. Theorem 14 suggests
that it is safe to do so, because

0, (P) C 0gs(P) = 03 (P)

holds. G-by-Q clusters that are returned, but in which there is no matching subgraph
of ()2, can be discarded later on in the validation step.

o [f the GSF of (), is a strict supergraph of the GSF of @)1, Theorem 14 and Theorem 15
suggest that

0Q,(P) € og3(P) C og; (P).

Therefore, the index can safely return the set of G-by-(Q) clusters that are reachable
by the access path LEFT. However, since ogs(P) C og:(P) can also be true, the
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index needs to be reorganized again, this time for ). In particular, the pointers
that are reachable by the access path LEFT are further partitioned into two segments
LEFT — LEFT and LEFT — RIGHT such that the access path LEFT — LEFT leads
to clusters that are in ogg(P) while the access path LEFT — RIGHT leads to clusters
that are in ogs(P) but not in ogg(P).

e For all other cases, potentially some G-by-() clusters that are accesible from both
the LEFT and RIGHT access paths are in ogg (P). Therefore, both parts of the list
(i.e., LEFT and RIGHT) need to be partitioned further, thus, resulting in four new
access paths to be created: LEFT — LEFT, LEFT — RIGHT, RIGHT — LEFT, and
RIGHT — RIGHT.

As the list of pointers gets divided into multiple partitions, the system maintains the
access paths that are created using a binary search tree. The internal nodes of the tree
store the generalized structural forms of the executed queries, while the leaf level contains
pointers to the G-by-Q) clusters. Given a query, the pseudocode of the algorithm for
returning the set of G-by-Q) clusters that are relevant to the query and, at the same time,
updating the access paths and maintaining the binary search tree is given in Algorithm 15.

Given a query @) and its generalized structural form Q°, Algorithm 15 locates pointers
to the relevant G-by-() clusters and updates the index as follows: The tree is searched
recursively in a top-down fashion. At every internal node of the tree, )° is compared
against the query stored in the node’s predicate. If ¢ is the same as the node’s predicate,
the left access path is taken and the tree is not updated. Otherwise, if Q)° is a strict
supergraph of the query stored in the node’s predicate, then, search proceeds recursively
on the left access path, else it proceeds recursively on both access paths. When a leaf node
is reached, the segment of pointers are divided into two partitions as described earlier,
unless ()° has been encountered previously in the recursion stack. If partitioning takes
place, the tree is updated by making the leaf node an internal node and creating two leaf
nodes, one for each partition. In the worst-case, GET-AND-MAINTAIN (cf., Algorithm 15)
traverses and partitions the whole list of pointers to the G-by-Q) clusters, therefore, it has
O(n) computational complexity (n denotes the number of G-by-Q clusters in the database).

To efficiently invalidate false-positive G-by-(@) clusters that are returned by the Struc-
tural Index, second-level indexes are maintained. In particular, the wertexr-inder is a
hashtable that maps URIs to the subset of G-by-Q) clusters that contain the URI in their
set of vertices, and the range-index keeps track of the minimum and maximum literal val-
ues within each G-by-@) cluster and acts as an additional filter. These two indexes also
are built adaptively: Initially they are empty, but every time the Partition procedure (Al-
gorithm 16) is called (i.e., for the construction of the Structural Index) the set of G-by-Q
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clusters that are re-located to the left of the pivot are indexed in the vertex-index and the
range-index.

Lastly, updates are discussed. The expectation is that the G-by-Q) clusters are fre-
quently updated in chameleon-db to accommodate changes in the workload even when
the data are not updated. In the Structural Index, these updates are implemented as a
combination of deletions and insertions. Deleting a G-by-@Q cluster implies that the pointer
referencing the G-by-@ cluster needs to be removed from the list, which has a trivial im-
plementation and O(1) computational complexity. On the other hand, inserting a G-by-Q
cluster implies that the tree needs to be traversed top-down until a leaf-node is reached to
locate the sub-list of pointers that need to be updated. Let P denote the G-by-Q) cluster
that is being inserted and let ()¢ denote the predicate stored at the current node that is
being traversed. Then, tree traversal proceeds with the left child of the current node if
there is a subgraph in P that has a match for )¢, and with the right child otherwise. Since
the decision taken at each node is a binary decision, search is deterministic and there exists
exactly one access path to which P can be inserted. On average, insertion is an O(log(m))
operation, where m denotes the number of nodes in the tree, but in the worst-case it could
go up to O(m) when the tree is not balanced (balancing the tree is a topic of future work).
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Algorithm 15 GetAndMaintain
Require:
Q°: Query in generalized structural form
node: A node in the binary search tree
reOrganize: Boolean variable indicating whether it is necessary to re-organize the
underlying list of pointers
Ensure:
Set of pointers to G-by-@Q clusters for which ()° has a match is returned and if necessary
the list of pointers and the tree (rooted at node) is re-organized.
procedure GETANDMAINTAIN(Q®, node, reOrganize)
if node.ISLEAF() then > Base case of recursion
r <— MAKEVECTOR(node.begin, node.end)
if reOrganize then
pivot <— PARTITION(Q®, node.begin, node.end) > List is partitioned
node.left <~ MAKELEAF(node.begin, pivot —1) > Tree expanded to store
node.right < MAKELEAF(pivot, node.end) > information about partitions
node.predicate < )°
node.SETLEAF(false)
end if
return r
else
if ()° == node.predicate then > An equivalent query is encountered
return GETANDMAINTAIN(Q®, node.left, false) > No need to re-organize
else if 1ISSUPERGRAPH((Q®, node.predicate) then
return GETANDMAINTAIN(Q®, node.left, reOrganize)
else > Both left and right access paths may contain results
r1 < GETANDMAINTAIN(Q®, node.left, reOrganize)
r9 < GETANDMAINTAIN(Q®, node.right, reOrganize)
return r; Ury
end if
end if
end procedure
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Algorithm 16 Partition
Require:
Q°: Query in generalized structural form
i: Begin index (inclusive) on list of pointers to be partitioned
j: End index (inclusive) on list of pointers to be partitioned
Ensure:
Array of pointers are partitioned [05] such that pointers to G-by-Q clusters that have a
matching subgraph of )¢ are placed before pointers to G-by-Q clusters that do not have
a matching subgraph of Q°.
procedure PARTITION(Q®, 1, j)
pivot < ¢
Cursor <— ¢
for cursor < j do
if HAasMATCH(Q®, *cursor) then
SWAP(pivot, cursor)
pivot++
end if
cursor++
end for
return pivot
end procedure

5.6 Discussion

Chapter 4 introduced the G-by-() representation and showed its advantages using con-
trasting examples. Sections 4.2 and 4.3 introduced two practical algorithm to compute
good G-by-Q) representations. This chapter demonstrated that a poorly designed query
evaluation algorithm could easily diminish the benefits of clustering, even if the clustering
were to be perfect. Therefore, schemaless-evaluation was introduced, which is specifically
optimized for the G-by-(Q) representation.

Schemaless-evaluation offers important advantages. First of all, it is possible to compute
a clustering such that most of the queries in a workload do not require join operations across
clusters. Even in the worst case when a query cannot be rewritten as any other expression,
the baseline SE expression still guarantees correct results, thereby providing flexibility to
compute a clustering that favors the most frequent queries in a workload and allowing the
clustering to be updated as these frequencies change.
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Second, the scope of subgraph matching is limited to contents within each cluster,
thereby providing isolation with significant benefits. Since clusters are now truly iso-
lated from each other, new clusters can be added and existing clusters can be split or
merged without affecting the integrity of query evaluation on other parts of the graph.
Consequently, query evaluation can be more easily interleaved with re-clustering of the
graph, which is one of the key objectives of this work. There is also an opportunity for
parallelization—subgraph matching can be performed concurrently on multiple clusters.

Third, when determining whether or not a cluster contains a subgraph that matches a
query, the indexes need to consider only the subgraphs that reside within a single cluster.
This reduction in search space reduces the indexing overhead and facilitates easy updating
of the indexes.
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Chapter 6

Evaluation

In this chapter, the techniques proposed in this thesis are experimentally evaluated. For the
evaluations, the Waterloo SPARQL Diversity Test Suite (WatDiv) [18] is used. Section 6.1
discusses problems with existing SPARQL benchmarks and the reason why WatDiv was
developed (and characteristics of WatDiv), and Section 6.2 discusses the results of the
experimental evaluations using WatDiv.

6.1 Waterloo SPARQL Diversity Test Suite (WatDiv)

As argued earlier in Chapter 1, queries executed on RDF data management systems have
become increasingly more diverse [30], [71], [I121]. Existing systems have started to display
unpredictable behaviour over these workloads, even to the extent that on some queries they
time out. At the same time, data that are handled by these RDF data management systems
have become far more heterogeneous [71], and web applications that are supported by these
systems have become far more varied [30], [124]. Unfortunately, existing benchmarks do
not have the corresponding variability in their datasets and workloads to reveal the true
behavior of existing systems. Consequently, problems go undetected in evaluations using
these benchmarks until systems are actually deployed. To address these shortcomings, the
Waterloo SPARQL Diversity Test Suite (WatDiv) has been designed as part of this thesis
that offers stress testing tools to reveal a much wider range of problems with RDF data
management systems. Consequently, WatDiv is used across the experimental evaluations
in this thesis.

The contributions with WatDiv and the work leading up to its design can be summarized
in two steps. First, two classes of query features are introduced (cf., Section 6.1.1), namely,
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structural and data-driven features that should be used to evaluate the variability of the
datasets and workloads in a SPARQL benchmark. More specifically, these features aim to
differentiate as much as possible those types of queries that may result in unpredictable
system behaviour and are indicators of potential flaws in physical design. For example,
previous work has illustrated that the choice of physical design in an RDF system is very
sensitive to the types of joins that the system can efficiently support [19]. Hence, a feature
called “join vertex type” is introduced. Likewise, a system’s performance depends on the
characteristics of the data as much as the query itself. Consequently, additional features
that capture multiple notions of selectivity and result cardinality are introduced.

Second, an in-depth analysis is performed of existing SPARQL benchmarks using the
two classes of query features that are introduced in this chapter. The experimental eval-
uation demonstrates that no single benchmark (including those that are based on actual
query logs) is sufficiently varied to test whether a system has consistently good perfor-
mance across diverse workloads (cf., Section 6.1.2). Furthermore, these benchmarks do
not provide the tools to localize problems to specific types of queries if needed. For exam-
ple, it would be useful if one could diagnose that the system under test has problems with
queries that have a particular join vertex type, and drill down the evaluation if necessary.
These are exactly the type of evaluations that are aimed to be facilitated with WatDiv.

This section is organized as follows. Section 6.1.1 introduces the features used in the
evaluation of existing SPARQL benchmarks, and Section 6.1.2 discusses the results of
these evaluations. Section 6.1.3 introduces WatDiv while Section 6.1.4 compares WatDiv
to existing benchmarks with respect to the aforementioned features.

6.1.1 Preliminaries

This section defines the query features based on which the diversity of SPARQL bench-
mark workloads can be discussed. These features can be categorized into two classes:
(i) structural features and (ii) data-driven features [18].

These features are defined over a basic fragment of SPARQL — BGPs with filter ex-
pressions — which sufficiently covers the queries within the scope of this thesis. For the
sake of brevity, the queries in this fragment are denoted by a pair B = (B, F'), hereafter,
referred to as a constrained BGP (CBGP), where B is a finite set of triple patterns (i.e.,
a BGP) and F is a finite set of SPARQL filter expressions. Hence, by using the algebraic
syntax for SPARQL [25], a CBGP B = (B, F) with F = {f1,..., f.} is equivalent to a
SPARQL graph pattern P of the form (( ...(B FILTER fi)...) FILTER fn) (if F =0, then
P is the BGP B). Consequently, the evaluation of B over an RDF graph G, denoted by
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(a) Linear

(b) Star (¢) Snowflake

Figure 6.1: Example Query Structures

[B]g, is the set of solution mappings [P]s as defined by the standard SPARQL query
semantics [28], [99].

Structural Features

Every BGP (as used by a CBGP) combines a set of triple patterns into numerous query
structures such as those in Figures 6.1a—6.1c. As a basis for comparing the structural
diversity of different sets of CBGPs, four features are used in this thesis.

e Triple Pattern Count: This feature refers to the number of triple patterns in
(the BGP of) a CBGP. Triple pattern count allows one to broadly distinguish be-
tween simple and structurally complex queries. Ideally, one would like an RDF data
management system to execute simple queries extremely fast while scaling well with
increasing number of triple patterns. In fact, DBpedia query logs [113] reveal that
while in general most queries contain only a few triple patterns, users may issue
(albeit infrequently) queries having more than 50 triple patterns.

e Join Vertex Count: This feature represents the number of RDF terms (i.e., URIs
and literals) and variables that are the subject or object of multiple triple patterns
in a CBGP. Hereafter, these terms and variables are referred to as the join vertices

148



of the CBGP. Formally, if i/, £ and V denote the set of all URIs, the set of all literals
and the set of all variables, respectively, then an element x € (Y U LU V) is a join
verter of CBGP B = (B, F) if there exist two distinct triple patterns tp = (s, p, 0)
and tp’ = (¢, p),0") such that

— tp€ Band tp € B,
— x € {s,0}, and
—xe{s 0}

Join Vertex Degree: For each join vertex x of a CBGP B = (B, F), the degree of
x is the number of triple patterns in B whose subject or object is x. Hereafter, for
any such triple pattern (s,p,0) € B with x € {s,0}, the triple pattern is said to be
incident onx.

Join vertex count and join vertex degree offer a finer distinction of structural com-
plexity than the triple pattern count. For example, the two queries in Figure 6.1a and
Figure 6.1b have the same number of triple patterns but they differ in their join ver-
tex count and join vertex degrees. That is, Figure 6.1a is a long linear-shaped query
with multiple (4) low-degree (2) join vertices, whereas Figure 6.1b is a star-shaped
query with a single high-degree (5) join vertex. A system may show completely differ-
ent performance for these two queries and a stress-testing benchmark should capture
such blind spots if any.

Join Vertex Types: The data representation and indexing schemes employed
by RDF systems can result in completely different behaviour on different types of
joins [19], and a benchmark should include a sufficiently large sample of queries for
each join type. Consequently, the following three (mutually non-exclusive) types
of join vertices are distinguished based on the types of joins that will need to be
executed during query evaluation: A join vertex x of a CBGP B = (B, F) is of type

— SS* if z = s for every triple pattern (s,p,0) € B that is incident on z;
— OO™" if x = o for every (s,p,0) € B that is incident on z; and
— SOT if x = s and x = o for two triple patterns (s,p,0) € B and (s,p,0') € B

(both of which are incident on z, respectively).

For example, the join vertices ?a, ?z and ?y in Figure 6.1c have types SS™, SO
and OO™, respectively.
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Data-driven Features

The structural query features (discussed above) are often not sufficient. More specifically,
a system’s choice of a query (execution) plan depends on the characteristics of the data as
much as the query itself. For example, systems rely heavily on selectivity and cardinality
estimations for query plan optimization [176]. Consider the following example: A system
chooses to break down a BGP B = {tpa, tpg,tpc} into its triple patterns and to execute
them in a specific order, namely, tp4, tpp and then tps. The system picks this particular
query plan because the subset of triples that match tp4 is smaller. Furthermore, it estimates
the intermediate result cardinalities to be sufficiently low and decides to use in-memory
data structures and algorithms. To measure how diversely a benchmark covers systems’
different plan choices such as the one above, the following test cases are considered:

e queries have a diverse mix of result cardinalities;
e a single or few triple patterns are very selective, while the remaining ones are not;

e all of the triple patterns in a query are almost equally selective (hence, there is a
higher probability that the optimizer picks a sub-optimal query plan due to estimation
errors); etc.

Next, various notions of result cardinality and selectivity are defined to distinguish among
the aforementioned test cases.

e Result Cardinality: This feature represents the number of solutions in the result
of evaluating a CBGP B = (B, F) over an RDF graph G. Recall that this result,
denoted by [B]g, is a set of solution mappings (cf. Section 6.1.1). Consequently, if
Q) denotes the set [B]g and cardypy,, denotes the function that maps each solution
mapping u € €2 to its cardinality in the set [28], the result cardinality of B over G is
defined as

CARD(B,G) = cardy, (1). (6.1)

HEQ

e Filtered Triple Pattern Selectivity (f-TP Selectivity): Given some CBGP
B = (B,F) and a BGP B* such that B* C B, let A(B*) denote the CBGP B’ =
(B', F'y with B' = B* and F' = {f € F|vars(f) C vars(B*)}, where vars(-) denotes
the variables in a filter expression or a BGP. Then, for any triple pattern tp € B in
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a CBGP B = (B, F), the f-TP selectivity of tp over an RDF graph G, denoted by
seLE (tp), is the ratio of distinct solution mappings in [A({tp})]e to the number of
triples in G. Formally, if Q denotes the query result set [A({¢tp})]g, then

2]

SELS (tp) = Gl (6.2)

In evaluations of existing benchmarks, three related measures are used. The result
cardinality of a CBGP is used as it is defined. For {-TP selectivities, the mean and standard
deviation of the f-TP selectivities of the triple patterns in the CBGP are reported. The
latter is especially important in distinguishing queries whose triple patterns are almost
equally selective from queries with varying f-TP selectivities.

While result cardinality and f-TP selectivity are useful features, they are not sufficient.
More specifically, once a system picks a particular query plan and starts executing it, it
is often the case that there are intermediate solution mappings which do not make it to
the final result. What this means is that all triple patterns of a CBGP contribute to its
overall “selectiveness”, or stated differently, in every join step, some intermediate solution
mappings are being pruned. Contrast this to another possible case in which the overall
“selectiveness” of a CBGP can be attributed to a single triple pattern in that CBGP. In
that case, a system could use runtime optimization techniques such as sideways-information
passing [117] to early-prune most of the intermediate results, which may not be possible in
the original example (for a more detailed discussion refer to [19]). From a testing point of
view, it is important to include both cases. In fact, in Section 6.2, this example is revisited
and it is experimentally shown that systems behave differently on these two cases. To
capture these constraints, two more features are used, namely BGP-restricted and join-re-
stricted f-TP selectivity. The former is concerned with how much a filtered triple pattern
contributes to the overall “selectiveness” of the query, whereas the latter is concerned with
how much a filtered triple pattern contributes to the overall “selectiveness” of the join(s)
that it participates in. Just as is done for f-TP selectivity, the mean and standard deviation
of these two features are reported in the evaluations of benchmarks.

e BGP-Restricted f-TP Selectivity: For any triple pattern tp € B in a CBGP B =
(B, F), the B-restricted f-TP selectivity of tp over an RDF graph G, which is denoted
by seLL(tp | B), is the fraction of distinct solution mappings in [A({tp})]¢ that are
compatible (as per standard SPARQL semantics [28]) with a solution mapping in the
query result [B]g. Formally, if Q and €' denote the query result sets [M{{tp})]c
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(a) Sample RDF Graph

(b) Sample BGP
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Figure 6.2: Sample Evaluation

and [B]q, respectively, then

_ e Q|3 € d o tibl
SELg(tp|B) = HM L ”};T p ate compat! e}|. (6.3)

Join-Restricted f-TP Selectivity: Given a CBGP B = (B, F), a join vertex x of
B, and a triple pattern ¢tp € B that is incident on z, the z-restricted f-TP selectivity
of tp over an RDF graph G, denoted by ser’ (tp|z), is the fraction of distinct solution
mappings in [A({tp})]¢ that are compatible with a solution mapping in the (join)
query result [M(B®)]g with B® C B being the subset of all the triple patterns in B
that are incident on z (i.e, B* = {tp € B/|tp is incident on z}). Hence, if Q and
denote the sets [A({tp})]¢ and [N(B*)]q, respectively, then

eQ|dy e d tibl
SELG(tp | ) = ‘{,u EL ,u|a;;1‘ fU are compant e}|‘ (6.4)

Consider the RDF graph in Figure 6.2a and the BGP in Figure 6.2b. Consider the

triple pattern (7w, A, 7x) of the BGP. The BGP-Restricted {-TP selectivity of this triple
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pattern is % The reason is as follows: Note that the evaluation of this triple pattern

against the RDF graph returns 3 solution mappings (i.e., tuples). Hence, the denominator
in Equation 6.3 is 3. On the other hand, only 1 of these solution mappings is compatible
with any of the solution mappings in the result of the evaluation of the BGP (highlighted
in orange). Therefore, the numerator of Equation 6.3 is 1, thus, the BGP-Restricted {-TP
selectivity is %

6.1.2 Experimental Evaluation of Existing Benchmarks

In this section, some of the existing SPARQL benchmarks [11], [91], [113], [167] are ex-
perimentally evaluated using the structural and data-driven features introduced in Sec-
tion 6.1.1. This study demonstrates that these benchmarks lack diversity, hence, they fail
to appropriately stress test RDF data management systems. In this study, the following
more popular benchmarks are considered:

e The Lehigh University Benchmark (LUBM) [91] was originally designed for testing
the inferencing capabilities of Semantic Web repositories.

e The Berlin SPARQL Benchmark (BSBM) [11] contains multiple use cases such as
(i) explore, (ii) update, and (iii) business intelligence use cases. The explore use case is
developed around an e-commerce scenario, where queries mimic the search patterns
of consumers who are browsing through products. The update use case focuses
on testing systems’ support for updates, while the business intelligence use case is
developed around an OLAP scenario. BSBM also goes into testing how well RDF
systems support different (and important) SPARQL features, namely, aggregation,
union, and optional graph patterns.

e SP?Bench [167] tests various SPARQL features such as union and optional graph
patterns.

e The DBpedia SPARQL Benchmark [113] (DBSB) uses queries that have been gener-
ated by mining actual query logs over the DBpedia dataset [35]. Thus, it contains a
more “diverse set of queries” [1413].

In the study reported here, only SELECT queries are considered. For BSBM, the
study focuses on the explore use case, for which 100 queries have been generated for each
query template. This has been observed to be a sufficiently large sample to understand
the general properties of BSBM. For DBSB, a sample of 12500 queries have been drawn
uniformly at random from the subset of SELECT queries in the query logs [143] (the
other two benchmarks have a fixed number of queries). For WatDiv, the same number of
queries (12500) have been generated.
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Figure 6.3: Analysis w.r.t. structural features: in Fig. 6.3a—6.3c, each point indicates the
presence of a query with the corresponding x-axis value for a given feature.

Recall that the query features in Section 6.1.1 are defined over CBGPs. For this reason,
when analyzing existing benchmarks (with respect to these features), first each complex
non-CBGP query is translated into a CBGP by replacing OPT and UNION operators with
AND. Hereafter, these CBGPs (including those for which translation was not necessary)
are referred to as the queries of the benchmark. To compute the statistics reported in
this section, for each benchmark, a benchmark-specific dataset of 1 million triples was
generated, and queries of the benchmark were executed on this dataset.

Evaluation Using Structural Features

Consider Figure 6.3a, which compares queries in each benchmark with respect to their triple
pattern count (x-axis).! Benchmarks are stacked along the y-axis. For each benchmark,
the presence of a point indicates that the benchmark contains at least one query with the
corresponding number of triple patterns indicated by the x-axis value. Figure 6.3a-6.3c
and Figure 6.4a— 6.4f should be read similarly.

While most of the evaluated benchmarks contain large queries with more than 10 triple

'For the time being ignore WatDiv in these figures. The results about WatDiv are not important for
this section. They will be discussed in Section 6.1.3.
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patterns (cf., Figure 6.3a)>, LUBM contains only small queries—not exceeding 6 triple
patterns in cardinality. Furthermore, LUBM’s join vertex count is also lower than the
other benchmarks (Figure 6.3b). This is reasonable as LUBM is intended for semantic
inferencing. In fact, the true complexity of an LUBM query lies in its semantics, not in its
structure. For this reason, the suitability of LUBM for performance evaluation is limited
if the system under test does not support inferencing.

By considering mean join vertex degrees (Figure 6.3c), it can be observed that DBSB
is more diverse than any of the synthetic benchmarks (i.e., LUBM, BSBM, SP?Bench).
LUBM contains fairly simple queries (cf., Figure 6.3a), which explains why the mean join
vertex degree is also low for most of these queries. SP?Bench contains (i) linear queries
that are long, or (ii) star queries that are large and centered around a single join vertex,
but not much in between; hence, the join-vertex degree values are concentrated at the two
ends of the x-axis in Figure 6.3c. BSBM contains queries that are a little bit more diverse
in their join vertex degrees, but it does not test the two extremes as SP?Bench does.

In Figure 6.3d, benchmarks are compared and contrasted with respect to the types
of join vertices present in each of the queries. This comparison reveals three problems:
LUBM does not contain any query with an OO™ join; BSBM contains some, but their
percentage is significantly low. In DBSB, queries with both OO™ and SO™ joins have a
low percentage. Consequently, these three benchmarks may be biased towards particular
physical designs that are more effective for SS* (or SO™) joins, which limits the suitability
of these benchmarks for stress tests.

Evaluation Using Data-Driven Features

Regarding result cardinality, the following observations can be made. BSBM contains
only low-cardinality queries, SP?Bench contains almost only high-cardinality queries, and
LUBM contains only medium-cardinality queries (cf., Figure 6.4a), which reveals another
limitation of what each of these three benchmarks can test individually.

Figure 6.4b—6.4c show another issue with the evaluated benchmarks. Although these
benchmarks are fairly diverse with respect to f-TP selectivity (i.e., especially DBSB and
BSBM), the standard deviation of f-TP selectivities of filtered triple patterns (within any
single query) is generally high. As explained in Section 6.1.1, this implies that these
benchmarks are missing the test case in which the triple patterns are more or less equally
selective.

2Some DBSB queries have as many as 50 triple patterns, but for clarity of presentation, they are not
displayed.
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Figure 6.4: Analysis w.r.t. data-driven features at 1 million triples: each point indicates
the presence of a query with the corresponding x-axis value for a given feature.

As depicted in Figure 6.4d, among the four benchmarks, only SP?Bench has a diverse
selection of queries regarding mean BGP-restricted f-TP. LUBM, BSBM and DBSB have
queries in which either the mean value is 1.0, indicating that each triple pattern in sep-
aration does not contribute to the selectiveness of the query, or the mean is extremely
low, indicating the opposite. For BSBM, the contrast is even more extreme. Figure 6.4e
highlights an even further problem with DBSB and BSBM. For these two benchmarks, the
variation in BGP-restricted {-TP lies mostly in the lower end of the spectrum, which indi-
cates that these benchmarks cannot be used to test with queries in which triple patterns
contribute unevenly to the pruning of intermediate results (cf., Section 6.1.1).

Finally, consider Figure 6.4f, which compares benchmark queries using join-restricted f-
TP (mean). One can observe two important limitations. First, both LUBM and SP2Bench
queries sparsely cover the spectrum of possible values. Second, although BSBM and DBSB
are much more diverse, they cover completely different ends of the spectrum. A system
can generate completely different query plans for these two scenarios, and therefore, stress
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testing should use workloads that include both scenarios.

In summary, the best known benchmarks (including DBSB, which is based on actual
query logs), individually, are not sufficiently diverse to test the strengths and weaknesses
of different physical design choices employed by RDF systems. Aggregating results from
multiple benchmarks is not a good solution to the diversity problem either. First, the un-
derlying datasets have completely different characteristics; therefore, one may get queries
with completely disjoint distributions across the structural and data-driven features. For
example, even though it may appear, based on Figure 6.4f, that DBSB and BSBM com-
plement each other (i.e., they cover the opposite ends of the set of possible x-axis values),
Figure 6.4a suggests that it is not quite so. The problem is that these two benchmarks do
not complement each other on all possible features. Hence, in an aggregated (hypothetical)
benchmark, one would still be missing queries with high cardinality and high join-restricted
f-TP selectivity values. Second, scalability is an issue. It is not clear (i) how one can gener-
ate more queries given that some of the above-mentioned benchmarks have a fixed number
of queries, or (ii) how results from multiple benchmarks should be combined given that
each benchmark has its own scalability restrictions. WatDiv, which is introduced in the
next section, is designed to address these issues.

6.1.3 Characteristics of WatDiv

WatDiv consists of multiple tools [22] that enable stress testing of RDF data management
systems:

e The data generator generates scalable datasets at user-specified scale factors—a com-
mon feature of benchmarks. A more interesting feature is that data are generated
according to the WatDiv schema® with customizable value distributions. A tutorial
is available for customizing WatDiv’s schema [16].

e The query template generator traverses the WatDiv schema and generates a diverse
set of query templates (which is the first step in generating a workload for the stress
tests). Users can specify the number of query templates to be generated as well as
certain restrictions on the query templates such as the maximum number of triple
patterns or whether predicates in triple patterns should be bound.

e Given a set of query templates, the query generator instantiates these templates with
actual RDF terms from the dataset (which is the second and last step in generating

3http://db.uwaterloo.ca/watdiv/watdiv-data-model.txt
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Entity Sets Instances
Purchase 1500
User 1000 £
Offer 900 =
Product 250 T§
Website 50 &
Retailer 12 =
Topic 250
City 240
SubGenre 145
Language 25
Country 25 E@
Genre 21 §
ProductCategory 15
AgeGroup 9
Role 3
Gender 2

Figure 6.5: Entities generated according to the default WatDiv schema.

a workload for the stress tests). The number of queries to be instantiated per query
template can be specified by users.

e Given a workload of BGP queries, the query analysis tool lets one analyze the diver-
sity in the workload with respect to the query features discussed in Section 6.1.

Dataset Description

Table 6.5 lists the entities that are generated using the default WatDiv schema, and Ta-
ble 6.6 lists the characteristics of the RDF dataset. The generated database is a typical
electronic commerce database with a social-network component. That is, the database
maintains information about products, retailers and users, where retailers can make offers
on products, and users can purchase products and write reviews. Users are represented
within a social-network, where users have friends and may follow each other. While a
majority of the users are consumers, some users are producers as well—for example, a user
might as well be the director of a movie, or the author of a book.
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Count
triples 105257
URIs 5947
literals 14286
distinct subjects 5597
distinct predicates 85
distinct objects 13258
distinct literals 8018

Figure 6.6: Characteristics of the dataset generated from the default WatDiv schema at
scale factor= 1.

What distinguishes WatDiv datasets from existing RDF benchmarks is the diversity
of the structuredness: some entity sets in WatDiv are well-structured, meaning that they
contain few optional attributes, while some others are less well-structured [71]. As discussed
in Section 6.1.4, this enables the generation of test queries that are far more diverse in their
data-driven features.

Three properties contribute to the WatDiv’s diversity. First, instances of the same
entity set (i.e., class) do not necessarily have the same attributes. Consider the different
types of entities used in WatDiv. Product instances may be associated with different
Product Categories (e.g., Book, Movie, Classical Music Concert, etc.), but depending on
the category a product belongs to, it will have a different set of attributes. For example,
products that belong to the category “Classical Music Concert” have the attributes opus,
movement, composer and performer (in addition to the attributes that are common to
every product), whereas products that belong to the category “Book” have the attributes
isbn, bookEdition and numberOfPages.

Second, even within a single product category, not all instances share the same set
of attributes. For example, while isbn is a mandatory attribute for books, bookFEdition
(Pr = 0.5) and numberOfPages (Pr = 0.25) are optional attributes, where Pr indicates
the probability that an instance will be generated with that attribute. Users are able to
modify the WatDiv schema, hence these probabilities.

Third, a group of attributes can be correlated, which means that either all or none
of the correlated attributes in that group will be present in any instance of the entity
type. For example, opus and movement are two correlated attributes for “Classical Music
Concert” products (cf. <pgroup> construct in the WatDiv dataset schema).
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#mapping vl wsdbm:Topic uniform
#mapping v6 wsdbm:ProductCategory normal
SELECT 700 702 ?v3 7v4 7v5 WHERE {

700 og:tag %vl1% .

700 rdf:type 702 .

?v3 sorg:trailer 7v4 .

703 sorg:keywords 7v5 .

7v3 wsdbm:hasGenre 700 .

?v3 rdf:type %v6% . }

Figure 6.7: Sample query template generated by WatDiv as a result of the random walk
over the schema graph.

Test Queries

The benchmark queries are generated in two phases. First, a set of query templates are
created by performing a random walk over the graph representation of the schema of the
dataset (i.e., query template generator). In this regard, the following (internal) represen-
tation is used: every entity type in the schema corresponds to a graph vertex, relationships
among entity types (i.e., which correspond to RDF predicates in the instantiated dataset)
are represented using graph edges, and each vertex is annotated with the set of proper-
ties of that entity type. The traversal produces a set of BGPs with a maximum n triple
patterns, where n was set to 15 in the experiments in Section 6.1. Note that BGPs are
generated with triple patterns that have unbound subjects and objects, whereas their pred-
icates are bound. Then, k uniformly randomly selected subjects/objects are replaced with
WatDiv-specific placeholders (i.e., placeholders are enclosed within percentage [%] signs in
the benchmark). In the second phase, placeholders in each query template are instantiated
with RDF terms from the WatDiv dataset (i.e., query generator). To this end, the WatDiv
tools maintain, for each placeholder, a set of values that are applicable to that placeholder,
and during the instantiation phase, a value is drawn uniformly at random. For the study
in Section 6.1, 12500 test queries have been generated from a total of 125 query templates
(i.e., the same number of queries that were sampled in DBSB). These queries are available
online.*

A query template that is generated during the first phase may look like the sample in
Figure 6.7. This query template consists of six triple patterns. There are two placehold-
ers in the template, which should be instantiated with actual RDF terms in the second

4http://db.uwaterloo.ca/watdiv/stress-workloads.tar.gz
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phase. The first two lines in the query template indicate how the placeholders should
be instantiated. The first line tells the WatDiv query generator that the placeholder vl
should be instantiated with instances of the Topic entity set. Furthermore, it tells the
query generator that the values of v1 should be drawn from a uniform distribution. The
second line tells the query generator that the placeholder v6 should be instantiated with
Product Categories. However, this time, the values are drawn from a normal distribution.

6.1.4 Discussion

In Figures 6.3a-6.3d and Figures 6.4a-6.4f, the aforementioned 12500 WatDiv test queries
are characterized. With respect to most of the structural query features, WatDiv has
comparable characteristics to DBSB and it is far more diverse than LUBM, SP?Bench
and BSBM (cf., Figures 6.3a—6.3c). For example, the mean join vertex degree values are
densely distributed between 2.0 and 10.0, indicating a rich mix of queries. Furthermore,
with respect to join vertex types, WatDiv has a much more balanced distribution than
DBSB: a significant 18.0% of queries in the WatDiv workload have OO™-type join vertices,
compared to only 4.4% in DBSB, and 61.3% versus 5.4% for queries with SO™ joins.

With respect to most of the data-driven features, WatDiv is far more diverse, often
filling in the gaps that are not supported by existing benchmarks (cf., Figure 6.4d, 6.4e
and 6.4f). For example, while DBSB and BSBM cover only the opposite ends of the
spectrum of mean join-restricted f-TP selectivity values, WatDiv covers the full spectrum
(cf., Figure 6.4f). With respect to mean f-TP selectivity (hence, also standard deviation),
WatDiv covers a lower range of values than DBSB and other benchmarks (cf., Figures 6.4b—
6.4c). This is because in DBSB there are unselective queries that return the whole dataset,
that is, the subjects, predicates and objects in a triple pattern are all unbound. In contrast,
recall that queries were generated in which the predicates in a triple pattern are bound
(enabling this feature in WatDiv is a configuration option). Therefore, for this feature
WatDiv complements the other benchmarks.

It must be emphasized that WatDiv [18] is not meant to replace existing RDF/SPARQL
benchmarks. As noted earlier, WatDiv is only focusing on BGPs, which, for some appli-
cations, is not sufficient to cover important test cases. For example, LUBM [91] is an
important benchmark for semantic web applications where entailment regimes need to
be tested. Likewise, BSBM [14] and SP?Bench [1(7] cover important use cases such as
OPTIONAL and UNION. DBSB [143], on the other hand, is also important, because, first
of all, it is based on real queries and second, it is also relatively diverse. The argument
that is made by this study is that, WatDiv is more useful in identifying potential issues
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with respect to the physical design of systems early on in development (i.e., before sys-
tems are deployed and used in production workloads) because WatDiv workloads are more
diverse [18], and is suitable for evaluations in this thesis.

6.2 Experiments

In this section, the techniques proposed in this thesis are experimentally evaluated using
WatDiv.

6.2.1 Hardware Setup

In the subsequent experiments, a commodity machine is used. The machine is equipped
with an AMD Phenom II x4 955 3.20 GHz processor, a 16 GB of main memory and a
Seagate 3.AA hard disk drive with 100 GB of free space at the time of experimentation.
The operating system on the machine is Ubuntu 12.04 LTS.

6.2.2 Systems Under Test

RDF data management systems can be classified broadly into two categories with respect to
their data representations: (i) tabular and (ii) graph-based. For tabular implementations,
one option is to represent data in a single large table. While earlier triplestores followed
this approach [51,55], it has been demonstrated that maintaining redundant copies with
different sort orders and indexes can be much more effective [118]. Consequently, the
popular prototype RDF-3x [118] (v0.3.7) that follows the latter approach is included in
subsequent experiments. It has also been argued that grouping data can significantly
improve performance for some workloads [175]. Hence, a second option is to group data
by RDF predicates, where data are explicitly partitioned into multiple tables (one table
per predicate) and the tables are stored in a column-store [6]. The effectiveness of this
approach is tested on MonetDB [112] (v1.7), which is a state-of-the-art column-store. A
third option is to natively represent the RDF graph structure, for which the prototype
system gStore [200] (v0.2) is used. The tests in this thesis also include three industrial
systems, namely, Virtuoso Open Source (VOS) [71] (v6.1.8 and v7.1.0) and 4Store [93]
(v1.1.5). Both VOS and 4Store group and index data primarily based on RDF predicates.
Furthermore, VOS 6.1 is a row-store and VOS 7.1 is a column-store.
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The ideas presented in this thesis are tested using chameleon-db. chameleon-db is
implemented in C++, and it consists of more than 35K lines of native source code (exclud-
ing the SPARQL parser). Join operations are currently implemented using the hash-join
algorithm [70], which has been extended with an adaptation of sideways information pass-
ing [147], which is a technique that is also used by x-RDF-3x. The system relies on integer
encodings to compress URIs and order-preserving compression to reduce the size of the lit-
erals [25]. The dictionary is stored in Berkeley DB [150]. In main memory, each partition
is represented as an adjacency list and it is serialized on disk as a consecutive sequence of
RDF triples that are sorted on their subject attributes.

6.2.3 Experimental Setup

Unless otherwise stated, the following setup is used in the experiments. For evaluations,
the Waterloo SPARQL Diversity Test Suite (WatDiv) is used, because, as argued earlier, it
facilitates the generation of test cases that are more diverse than existing benchmarks [15].
In this regard, the WatDiv data generator is utilized to create two datasets: one with 10
million RDF triples and another with 100 million RDF triples (it has been observed that
systems under test (SUT) load data into main memory on the smaller dataset whereas at
100M triples, SUTs perform disk 1/O). Then, using the WatDiv query template generator,
125 query templates are created and each query template is instantiated with 100 queries,
thus, obtaining 12500 queries in total.

Each system is evaluated independently on each query template. Specifically, for each
query template, first, the system is warmed up by executing the workload for that query
template once (i.e., 100 queries). Then, the workload is executed five more times (i.e., 500
queries). To reduce and randomize the effects of query interactions, in each run, the queries
are shuffled. The average query execution times are reported over the last five workloads.
For practical reasons, query execution timeout is set to 60 seconds.

Note that chameleon-db starts with a completely segmented clustering, where each
cluster consists of a single triple. For reasons discussed throughout this thesis, this cluster-
ing is bad for almost any type of workload: it potentially leads to defragmentation, poor
data localization and generation of irrelevant intermediate result tuples. For each query
template, chameleon-db is allowed to execute the first 100 queries using this suboptimal
clustering, but a timeout threshold is set at 30 minutes (this is in addition to the 60 second
query timeout). If the system manages to execute the first 100 queries within 30 minutes,
then after the execution of the 100" query, the storage advisor kicks in to compute a
better group-by-query clustering. In that case, the last 500 queries are executed over the
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group-by-query clustering.® This way, with the given timeout threshold, it was possible to
collect results for a majority of 92 query templates over the smaller dataset and 76 query
templates over the larger one. In the remainder of this chapter, the focus is on only these
query templates.

For computing the group-by-query clustering, two techniques are tested independently.
The first technique relies on the hierarchical clustering algorithm introduced in Section 4.2
and the second technique is based on TUNABLE-LSH, which was introduced in Section 4.3.

Lastly, note that for chameleon-db, the time to update the underlying physical repre-
sentation is reflected in the execution times of the first few of the last 500 queries. Further-
more, for the first few queries (of the last 500), indexes are not yet fully constructed and
the cache can be cold. In particular, it has been observed that query execution times can
improve by an order of magnitude once the indexes are fully constructed and the cache is
hot.

6.2.4 Types of Evaluations

In this chapter, three sets of analyses are performed:

e The objective of the first set of analyses is to evaluate the end-to-end performance
of query evaluation in chameleon-db, and compare chameleon-db to state-of-the-art
RDF data management systems. The idea is to gain insight into when and why
chameleon-db performs better than existing systems, as well as when and why it is
slower, thus, outlining (and prioritizing) areas of future work. For this set of analyses,
chameleon-db is configured to use the clustering techniques introduced in Sections 4.2
and 4.3 (only one at a time), and the trade-offs of using one technique over the other
are discussed.

e The objective of the second set of analyses is to understand how (i) physical clus-
tering (cf., Chapters 4.2 and 4.3), (ii) indexing (cf., Section 5.5), and (iii) the query
optimization techniques (cf., Chapter 5) proposed in this thesis contribute individu-
ally to the overall performance of query evaluation in chameleon-db. For this reason,
the experimental logs generated for the above evaluations are sliced and diced across
different dimensions.

SImproving system performance for the completely segmented clustering or choosing a different initial
clustering is beyond the scope of this thesis.
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Table 6.2: End-to-end evaluation of systems on WatDiv 100M triples

e Some of the techniques proposed in this thesis, such as TUNABLE-LSH, have a
broader applicability than just clustering RDF triples. The objective of the third set
of analyses is to evaluate such techniques outside of chameleon-db and in different
contexts.

6.2.5 End-to-End Evaluation of Proposed Techniques

In this experiment, two versions of chameleon-db, one in which the G-by-@) clusters are
computed using the hierarchical clustering algorithm introduced in Section 4.2 (abbreviated
CDB-Hierarchical), and the other in which the G-by-Q clusters are computed using T'U-
NABLE-LSH, which was introduced in Section 4.3, (abbreviated CDB-Tunable-LSH) are
compared against five popular RDF data management systems, namely, RDF-3x [118],
MonetDB [112], 4Store [98] and Virtuoso Open Source (VOS) versions 6.1 [76] and 7.1 [71].

Tables 6.1 and 6.2 report the mean query execution times (geometric) across all of the
query templates discussed in Section 6.2.3, as well as the percentage of query templates
for which a particular systems is the fastest. The percentages are reported separately for
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Figure 6.8: Comparison of chameleon-db implemented using a hierarchical clustering algo-
rithm and with TUNABLE-LSH

the two versions of chameleon-db. Tables 6.1 and 6.2 demonstrate that with the G-by-Q)
clustering, it is possible to achieve significantly better, consistent performance across a
diverse selection of queries than any of the workload-oblivious approaches that have been
compared with. That is, for both datasets, at least one version of chameleon-db performs
better with the lowest mean query execution time. Furthermore, for the 10M dataset,
CDB-Hierarchical is the fastest system for over 80% of the considered 92 query templates.

These experiments indicate that on average, the time to compute the G-by-(Q) clusters
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decreases by an order of magnitude with the introduction of TUNABLE-LSH. For example,
for the 100M triples dataset, it takes 317.6 milliseconds on (geometric) average to compute
the G-by-@ clusters using the hierarchical clustering algorithm of Section 4.2, whereas
with TUNABLE-LSH, it takes only about 26.1 milliseconds. This is due to the approxi-
mate nature of TUNABLE-LSH. As shown in Tables 6.1 and 6.2 and in Figure 6.8, this
approximation has a slight impact on query performance, but for the 100M triples dataset,
CDB is still significantly faster than the other RDF data management systems. There is
one apparent reason for this: TUNABLE-LSH is an approximate method, and therefore,
the generated G-by-() clusters are not perfect. To verify this hypothesis, the logs gener-
ated during the experiments have been studied further, which revealed the following: using
the G-by-@Q clustering of Section 4.2 chameleon-db’s query engine is able to execute more
than 50% of the queries without any decomposition (a property that chameleon-db’s query
optimizer is trying to achieve [21]), whereas, G-by-@ clustering computed using TUNABLE-
LSH (cf., Section 4.3) has resulted in only 27.1% of the queries to be executed without
decomposition. Of course, it is possible to improve chameleon-db’s query optimizer further,
but that is a topic beyond the scope of this thesis.

This trade-off between the clustering overhead and the query execution time suggests
that for RDF workloads that are too dynamic to be predicted and sampled upfront, it
might be desirable to have frequent clustering steps, in which case, using TUNABLE-LSH
is a much better option because of its lower overhead.

Figures 6.9a and 6.9b depict the absolute mean query execution times for each query
template. To avoid cluttering the charts, for each query template, the fastest version of
chameleon-db is reported. Furthermore, for the remaining systems (i.e., RDF-3x, Mon-
etDB, 4Store, VOS [6.1] and VOS [7.1]), data points for only the fastest and the slowest
systems for that particular query template are reported, where the fastest system for one
query template is not necessarily the same as that for another query template. It is im-
portant to note that for query templates in which chameleon-db is not the fastest system
(i.e., the right hand sides of Figures 6.9a and 6.9b), it is still much faster than the slowest
system. On the other hand, going from the smaller dataset to the larger, a decrease can be
observed in the percentage of queries for which chameleon-db is fastest. Next, this issue is
investigated to prioritize potential areas of future work.

First, the improvement in performance due to G-by-@Q clustering is quantified to check
if there are any anomalies specific to the 100M triples dataset. It is observed that with
G-by-Q clustering, there is significant reduction in mean query execution time (details
will follow in Section 6.2.6), and the scale of this reduction is consistent in both datasets.
Specifically, for 10M triples, query execution becomes faster by a factor of 5.0 and for 100M
triples, it becomes faster by a factor of 4.8. This rules out any major anomalies.
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Figure 6.9: Detailed results

Second, the queries are divided into two groups: (i) those for which chameleon-db
is the fastest, and (ii) all the remaining ones. Then, the query logs are analyzed, which
keep track of (along with some other information) (i) the query plan the system is using
(i.e., OptimalEvaluation vs. SchemalessEvaluation) for a particular query, (i) as well as the
mean G-by-Q) cluster size (i.e., in terms of the number of triples) at the time that query
was evaluated. Based on this analysis, two important observations can be made (for the
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100M triples dataset): (i) in the second group, the mean cluster sizes are about an order
of magnitude larger than those in the first one; and (ii) for the first group, 82.9% of the
queries have been evaluated with OptimalEvaluation, whereas only 29.7% of queries have been
evaluated with OptimalEvaluation in the second group. Upon further manual inspection, it
is also noted that in some problematic cases, it would have been possible to choose Op-
timalEvaluation if stronger but potentially more compute-intensive conditional equivalence
rules existed (cf., Chapter 5). Consequently, as future work, better data structures can
be developed to improve performance of subgraph matching within each cluster, especially
when the clusters are large, Moreover, the query rewriting rules discussed in Chapter 5 can
be extended.

Third, cache misses can lead to disproportionately large increases in query evaluation
times; therefore, it is important that the system takes full advantage of the G-by-Q) cluster-
ing. In the prototype implementation of chameleon-db used in these experiments, clusters
are serialized in the order they are updated, which can be random due to the locking
scheme discussed in Section 4.2.4. More sophisticated serialization techniques to address
this problem are left as future work.

Next, a more detailed evaluation is performed by drilling down into particular query
features discussed in Section 6.1 (and combinations thereof), which is possible using the
WatDiv query analysis tool. Hypothetically speaking, it is possible to perform such analy-
ses using any possible combination of features (including any additional feature not covered
by this study). However, the focus in this thesis is on a few special cases where the results
stand out, and while doing so, WatDiv’s use for stress testing is also demonstrated.

As the first exercise, it is verified whether systems under test including chameleon-db
(best of both versions) are biased towards a particular query structure (i.e., linear vs.
star/snowflake). To this end, two sets of queries are selected from the test workloads:
(i) queries with mean join vertex degree < 3.0 and join vertex count > 3 (representing
linear queries), and (ii) queries with mean join vertex degree > 5.0 and join vertex count
< 2 (representing star-shaped or snowflake-shaped queries). Multiple conclusions can be
drawn from the results in Figure 6.10. First, even though chameleon-db is the fastest
system to execute linear queries, it is relatively much slower on linear queries than it is on
star or snowflake-shaped queries (hence, room for improvement). Second, the remaining
systems are also significantly biased against linear queries. Third, chameleon-db owes its
overall improvement in performance to star and/or snowflake-shaped queries because, as
Figure 6.10 suggests, it is much faster than other systems for this category of queries.

Next, the systems are tested to determine whether they behave differently for queries in
which all (or most) triple patterns contribute almost equally to the overall “selectiveness”
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Figure 6.10: Comparison of systems on different query structures using WatDiv 100M

of the query (Case-A) versus the case in which the overall “selectiveness” of the query can
be attributed to a single (or few) triple patterns (Case-B). To distinguish between these
two cases, the analysis relies on the standard deviation of BGP-restricted f-TP selectivity
(cf., Section 6.1), where a low (resp., high) standard deviation implies Case-A (resp., Case-
B). For this exercise, only the queries with result cardinality < 500 are taken into account
(i.e., selective queries). The spectrum of standard deviation values are divided into three
intervals such that there is more or less an equal number of queries in each interval.

Figure 6.11 depicts, for each system, the arithmetic mean of the query execution times
of all queries in two of the three intervals. It can be noted that for all systems except
chameleon-db, the (mean) query execution times decrease as the standard deviation of
BGP-restricted f-TP selectivity increases. This result indicates that, while systems have
integrated techniques to early-prune intermediate results [117], these techniques may not
be effective for Case-A. For chameleon-db, the opposite is true. An investigation that may
reveal a reason for this last observation is left as future work.

The next evaluation reveals how systems scale with increasing result cardinality. For
this analysis, the test queries are divided into three groups, namely: (i) query templates
with mean result cardinality between [0,5), (ii) query templates with mean result car-
dinality between [5,50), and (iii) query templates with mean result cardinality between

170



m[0.00, 0.02) m[0.10, 0.50)
1000

100
| I

Figure 6.11: Comparison of systems on queries with different BGP-restricted {-TP selec-
tivity (stdev) values using WatDiv 100M

Query Execution Time (ms)
[Arithmetic Mean]
o

[y

(50, 500).

While the choice of intervals are arbitrary, the experiments demonstrate a strong point.
Figure 6.12 suggests that chameleon-db (both versions) does a poor job when it comes
to queries with high-cardinality results. There can be multiple reasons for this. First, as
suggested earlier, when the result cardinalities are high, chameleon-db is likely accessing
multiple G-by-Q clusters, but in its current implementation these clusters are not necessar-
ily physically clustered in the storage system (i.e., inter-cluster serialization). Second, when
the result cardinality increases, even a minor deficiency in query optimization can lead to
significant drop in performance. Consequently, developing more robust query optimization
techniques is an important future work for chameleon-db.
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6.2.6 Evaluation of Individual Components

The purpose of the experiments in this section is to evaluate the individual contribution of
the techniques introduced in this thesis to the end-to-end improvements in query execution
times. The first analysis quantifies the impact of G-by-@) clustering on query execution.
To this end, queries are divided into three categories:

e queries for which the underlying physical clustering is based on a triple-based parti-
tioning of the dataset (i.e., each triple is placed in its own cluster), which corresponds
to the first 100 queries in the workload generated for each query template,

e queries for which the underlying G-by-Q clustering is computed using the algorithm
discussed in Section 4.2, which corresponds to the latter 500 queries in each workload,
and
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WatDiv 10M Triples Fully Optimized? All

Yes No
Triple-based Clustering 0.55  (3.3%) | 70.27 (96.7%) | 60.03
Hierarchical Clustering 3.01 (94.9%) | 16.00 (5.1%) | 3.28
Clustering w/ Tunable-LSH | 1.71 (33.8%) | 37.48 (66.2%) | 13.19

Table 6.3: Evaluation of the impact of different clustering techniques on query execution
times using WatDiv 10M triples

WatDiv 100M Triples Fully Optimized? All
Yes No

Triple-based Clustering 138.84 (28.8%) | 83.40 (71.2%) | 96.58

Hierarchical Clustering 508 (82.5%) | 222.49 (17.5%) | 9.84

Clustering w/ Tunable-LSH 1.73  (33.8%) | 134.15 (66.2%) | 28.18

Table 6.4: Evaluation of the impact of different clustering techniques on query execution
times using WatDiv 100M triples

e queries for which the underlying G-by-Q clustering is computed using the algorithm
discussed in Section 4.3, which also corresponds to the latter 500 queries in each
workload.

To discard (or at least minimize) the effects of indexing on this analysis, queries are filtered
out further such that if either the Spill Index or the Cluster Index is updated during the
execution of a query, that query is discarded. Furthermore, a distinction is made between
queries that cannot be fully optimized (i.e., where the number of query segments is greater
than 1) and queries that are fully optimized (i.e., where the number of query segments is
equal to 1).

Table 6.3 reports the results over the 10M triples dataset, while Table 6.4 reports them
over the 100M triples dataset. For each category of queries, the mean (geometric) query
execution times (milliseconds) are reported. If applicable, the ratio of queries that are
fully optimized to the ratio of queries that are not fully optimized are also reported using
percentage values.

Overall, G-by-(@) clustering can improve query execution times by an order of magnitude,
which makes sense because G-by-(Q tries to reduce random I/O and cache stalls, yet, some
details are important to mention. First, for the evaluations over the larger dataset and for
queries that are fully optimized, the aforementioned statement holds. On the other hand,
for the same dataset, the opposite holds if queries are not fully optimized. That is, G-
by-@Q) clustering appears not to make any improvement—in fact, query execution becomes
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Query Execution Time, ms | WatDiv 10M | WatDiv 100M
(geometric mean)
Cold Spill Index 15.97 31.01
Hot Spill Index 9.81 22.16

Table 6.5: Impact of cold versus hot Spill Indexes on query execution times

slower for this latter category of queries. This is in-line with the thesis of Chapter 5,
which states that while G-by-Q clustering is a desirable objective, G-by-Q clustering alone
cannot guarantee efficient query execution, and techniques are needed for proper query
optimization. As discussed in Chapter 5, in the latter case, irrelevant intermediate results
may be generated during query evaluation, which can result in random 1/O and cache
stalls since G-by-@) clustering does not guarantee that such triples that are irrelevant to
the evaluation of the query are physically clustered. Second, for the smaller dataset and
for queries that are fully optimized, G-by-Q) clustering does not seem to improve query
execution times. This is also understandable since the smaller dataset can fit into main
memory, where the advantages of G-by-Q) clustering over triple-based clustering due to
physical clustering may not be visible due to various types of overheads (e.g., locating the
correct clusters may become more difficult, subgraph matching within each cluster may
become more time-consuming with growing cluster size, etc.) and experimental noise.

In the next set of analyses, the impact of cold versus hot indexes on query execu-
tion times are evaluated. Recall from Section 5.5 that indexes in chameleon-db are not
built upfront, but as queries are executed, which is similar to the concept of database
cracking [113]. For these analyses, the Spill Index and the Cluster Index are evaluated
separately, and queries are divided into two categories:

e queries during the execution of which, either the Spill Index or the Cluster Index is
updated (i.e., cold index), and

e queries during the execution of which, the index in consideration is not updated (i.e.,
hot index).

Table 6.5 summarizes the results over the Spill Index. These results can be interpreted
in two ways. First, the fact that the mean query execution time drops when the index
becomes hotter suggests that the indexes are working as desired. That is, as queries are
executed, information about the way the RDF graph is partitioned is accumulated in the
Spill Index, which is then utilized during query optimization, thus, reducing the total
query optimization time. Recall that otherwise, this information needs to be computed
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Query Execution Time, ms | Triple-based | Hierarchical | Clustering w/ All
(geometric mean) Clustering Clustering | Tunable-LSH

Cold Cluster Index 79.14 61.26 75.35 | 71.99
Hot Cluster Index 31.95 3.86 14.18 9.86

Table 6.6: Evaluation of the impact of cold versus hot Cluster Indexes on query execution
times using WatDiv 10M triples

Query Execution Time, ms | Triple-based | Hierarchical | Clustering w/ All
(geometric mean) Clustering Clustering | Tunable-LSH

Cold Cluster Index 345.94 129.25 392.67 | 268.29
Hot Cluster Index 48.63 9.49 32.22 21.54

Table 6.7: Evaluation of the impact of cold versus hot Cluster Indexes on query execution
times using WatDiv 100M triples

on-the-fly, which can be time consuming. Second, the fact that the mean query execution
times even on a cold Spill Index are not unreasonably high suggests that the query rewrite
rules introduced in Chapter 5 are also working as desired, because these query rewrite rules
have been developed to reduce the amount of information that needs to be collected during
query optimization.

Tables 6.6 and 6.7 report the results for the Cluster Index. While some of the arguments
made about the Spill Index also apply to the Cluster Index, there is an important difference.
The gap between the query execution times over cold versus hot Cluster Indexes is high
(i.e., the difference can be an order of magnitude). This suggests that for queries that it
sees for the first time, the Cluster Index is not performing as well as desired. This can be
improved by building parts of the index upfront, for example, for types of queries that one
might predict are common to all (or most) workloads. However, improving the performance
of the Cluster Index is beyond the scope of this thesis and is an area of future work. The
second point to note is that hot Cluster Indexes work the best for the hierarchical clustering
algorithm. Again, this is due to the fact that the underlying clustering becomes fuzzier with
TUNABLE-LSH and even more so with the triple-based partitioning. Therefore, indexes
start returning more clusters, likely increasing the number of false-positive clusters that
are returned.

Lastly, the impact of the number of join operations on query execution times are
evaluated. Note that reducing the number of join operations is one of the primary ob-
jectives of the query optimization techniques discussed in Chapter 5. As illustrated in
Tables 6.8 and 6.9, as the number of join operations increase, so does the mean query exe-
cution time. Consequently, as future work, techniques can be developed such that queries
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Join Count Hierarchical | Clustering w/

Clustering | Tunable-LSH
0 10.66 33.48
[1,10] 269.43 117.58
[11,100]] 981.15 220.36
(101, 1000] 5516.19 387.82
[1001, 10000] N/A 563.95
(10001, 100000] N/A 6509.60

Table 6.8: Mean query execution time (arithmetic) in milliseconds for query plans with
increasing number of join operations on WatDiv 10M triples

Join Count Hierarchical | Clustering w/

Clustering | Tunable-LSH
0 162.84 25.95
[1,10] 563.78 412.99
[11,100]] 501.83 730.82
[101, 1000] N/A 918.12
[1001, 10000] N/A 1667.45
[10001, 100000] N/A 4805.77

Table 6.9: Mean query execution time (arithmetic) in milliseconds for query plans with
increasing number of join operations on WatDiv 100M triples
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are optimized further. This is especially important for fully utilizing the G-by-@Q cluster-
ing that is based on TUNABLE-LSH as it yields less optimal query plans (i.e., ones with
more number of join operations) compared to the G-by-@Q clustering that is based on the
hierarchical clustering algorithm.

6.2.7 Evaluation of Techniques Outside of the Prototype System

Although TUNABLE-LSH has been developed for computing the contents of G-by-@) clus-
ters, it can be applied to different problems. In this section, TUNABLE-LSH is evaluated
in an in-memory hashtable that has been developed where TUNABLE-LSH is used to dy-
namically cluster records in the hashtable. Hashtables are commonly used in RDF data
management systems. For example, the dictionary in such a system, which maps integer
identifiers to URIs or literals (and vice versa) is often implemented as a hashtable [6,71,135].
Secondary indexes can also be implemented as hashtables, whereby the hashtable acts as
a key-value store and maps tuple identifiers to the content of the tuples. In fact, in
chameleon-db, all indexes are secondary (dense) indexes.

The hashtable interface is very similar to that of a standard hashtable; except that
users are given the option to mark the beginning and end of queries. This information
is used to dynamically cluster records such that those that are co-accessed across similar
sets of queries also become physically co-located. All of the clustering and re-clustering is
transparent to the user, hence, it will be named the self-clustering hashtable.

The self-clustering hashtable has the following advantages and disadvantages: Com-
pared to a standard hashtable that tries to avoid hash-collisions, it deliberately co-locates
records that are accessed together. If the workloads favour a scenario in which many
records are frequently accessed together, then one can expect the self-clustering hashtable
to have improved fetch times due to better CPU cache utilization, prefetching, etc. [12].
On the other hand, these optimizations come with three types of overhead. First, every
time a query is executed, TUNABLE-LSH needs to be updated. Second, compared to a
standard hashtable in which the physical address of a record is determined solely using
the underlying hash function (which is deterministic throughout the entire workload), in
this case, the physical address of a record needs to be maintained dynamically because the
underlying hash function is not deterministic (i.e., it also changes dynamically through-
out the workload). Consequently, there is the overhead of going to a lookup table and
retrieving the physical address of a record. Third, physically moving records around in
the storage system takes time—in fact, this is often an expensive operation. Therefore,
the objectives of this set of experiments are twofold: (i) to evaluate the circumstances
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under which the self-clustering hashtable outperforms other popular data structures, and
(ii) to understand when the tuning overhead may become a bottleneck. Consequently, the
end-to-end query execution times over the self-clustering hashtable are reported, and if
necessary, these measurements are broken down into the time to (i) fetch the records, and
(ii) tune the data structures (which includes all types of overhead listed above).

In these experiments, the self-clustering hashtable is compared to popular implemen-
tations of three data structures: (i) std: :unordered_map [3], which is the C++ standard
library implementation of a hashtable, (ii) std: :map [2], which is the C++ standard library
implementation of a red-black tree, and (iii) stz: :btree [10], which is an open source in-
memory B+ tree implementation. As a baseline, a static version of the hashtable is also
included, i.e., one that does not rely on TUNABLE-LSH.

The experimental setup in this section is slightly different. More specifically, in the
evaluations, two types of workloads are considered: one in which records are accessed
sequentially and the other in which records are accessed randomly. Each workload consists
of 3000 queries that are synthetically generated using WatDiv [18]. For each data structure,
the end-to-end workload execution times are measured and the mean query execution time
is computed by dividing the total workload execution time by the number of queries in the
workload.

Queries in these workloads consist of changing query access patterns, and in different
experiments, different parameters such as the number of records that are accessed by
queries on average, the rate at which the query access patterns change in the workload,
etc. are controlled. Each experiment is repeated 20 times over workloads that are randomly
generated with the same characteristics (e.g., average number of records accessed by each
query, how fast the workload changes, etc.) and averages are reported across these 20 runs.
Standard errors are not reported because they are negligibly small and they do not add
significant value to the results.

For the sequential case, stz::btree and std: :map outperform the hashtables, which is
expected because once the first few records are fetched from main-memory, the remain-
ing ones can already be prefetched into the CPU cache (due to the predictability of the
sequential access pattern). Therefore, for the remaining part, the focus is on the random
access scenario, which is more common in RDF data management systems, and which can
be a bottleneck even in systems like RDF-3x [118] that have clustered indexes over all
permutations of attributes.

In this experiment, the number of records that a query needs to access (on average)
is controlled, where each record is set to 128 bytes. Figure 6.13a compares all the data
structures with respect to their end-to-end (mean) query execution times. Three obser-
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Figure 6.13: Experimental evaluation of TUNABLE-LSH in a self-clustering hashtable
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vations stand out: First, in the random access case, the self-clustering hashtable as well
as the standard hashtable perform much better than the other data structures, which is
what would be expected. This observation holds also for the subsequent experiments,
therefore, for presentation purposes, results for these data structures are not included in
Figures 6.13b—6.13d. Second, the baseline static version of the hashtable (i.e., without
TUNABLE-LSH) performs much worse than the standard hashtable, even worse than a B+
tree. This suggests that my implementation can be optimized further, which might im-
prove the performance of the self-clustering hashtable as well (this is left as future work).
Third, as the number of records that a query needs to access increases, the self-clustering
hashtable outperforms all the other data structures, which verifies the initial hypothesis.

For the same experiment above, Figure 6.13b focuses on the self-clustering hashtable
versus the standard hashtable, and illustrates why the performance improvement is higher
(for the self-clustering hashtable) for workloads in which queries access more records. Note
that while the fetch time of the self-clustering hashtable scales proportionally with respect
to std: :unordered _map, the tune overhead is proportionally much lower for workloads in
which queries access more records. This is because with increasing “records per query
count”, records can be re-located in batches across the pages in main-memory as opposed
to moving individual records around.

Next, the average number of records that a query needs to access is kept constant
at 2000, but the number of records in the database is controlled. As in the previous
experiment, each record is 128 bytes. As illustrated in Figure 6.13¢, increasing the number
of records in the database (i.e., scaling-up) favours the self-clustering hashtable. The reason
is that, when there are only a few records in the database, the records are likely clustered
to begin with.

The same experiment is repeated, but this time, by controlling the record size and keep-
ing the database size constant at 640 megabytes. Surprisingly, the relative improvement
with respect to the standard hashtable remains more or less constant, which indicates that
the improvement is largely dominated by the size of the database, and increasing it is to
the advantage of the self-clustering hashtable.

Finally, the sensitivity of the self-clustering hashtable to the dynamism in the workloads
is evaluated. Note that for the self-clustering hashtable to be useful at all, the workloads
need to be predictable—at least to a certain extent. That is, if records are physically clus-
tered but are never accessed in the future, then all those clustering efforts are wasted. To
verify this hypothesis, the expected number of query clusters (i.e., queries with similar but
not exactly the same access vectors) in any 100 consecutive queries in the workloads that
are generated is controlled. Let this property of the workload be called its 100-Uniqueness.
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Figure 6.14: Experimental evaluation of the sensitivity of TUNABLE-LSH

Figure. 6.13d illustrates how the tuning overhead starts to become a bottleneck as the
workloads become more and more dynamic, to the extent of being completely unique, i.e.,
each query accesses a distinct set of records.

In the next set of experiments, the sensitivity of TUNABLE-LSH is evaluated in isola-
tion, that is, without worrying about how it affects physical clustering, and it is compared
with three other hash functions: (i) a standard non-locality sensitive hash function [1],
(ii) bit-sampling, which is known to be locality-sensitive for Hamming distances [11(], and
(iii) TuNABLE-LSH without the optimizations discussed in Section 4.3.4. These com-
parisons are made across workloads with different characteristics (i.e., dense vs. sparse,
dynamic vs. stable, etc.) where parameters such as the average number of records accessed
per query and the expected number of query clusters within any 100-consecutive sequence
of queries in the workload are controlled.

These evaluations indicate that TUNABLE-LSH generally outperforms its alternatives.
In the remaining part, the most important observations will be summarized.

Figure 6.14a shows how the probability that the evaluated hash functions place records
with similar utilization vectors to nearby hash values changes as the workloads become
more and more dynamic. In computing these probabilities, both the original distances
(i.e., §) and the distances over the hashed values (i.e., §*) are normalized with respect
to the maximum distance in each geometry. As illustrated in Figure 6.14a, TUNABLE-
LSH achieves higher probability even when the workloads are dynamic. The unoptimized
version of TUNABLE-LSH behaves more or less like a static locality-sensitive hash function,
such as bit sampling, which is an expected result because TUNABLE-LSH cannot achieve
high accuracy without the workload-sensitive arrangement introduced in Section 4.3.4. It
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is also important to emphasize that even in that case TUNABLE-LSH is no worse than a
standard LSH scheme, which is aligned with the theorems in Section 4.3.3. The results on
the standard non-locality sensitive hash function are not included, because, as one might
guess, it has a probability distribution that is completely unparalleled to the clustering
objectives of TUNABLE-LSH.

Figure 6.14b demonstrates how the choice of b (or 2b as described in Section 4.3.5)
affects the accuracy of TUNABLE-LSH. Having a higher b implies less and less undesirable
collisions of query access vectors, hence, a higher accuracy. On the other hand, for bit
sampling, the ideal number of samples is equal to the query clusters in the workload, thus,
increasing b, which corresponds to the number of bits that are sampled, might result in
oversampling and therefore, lower accuracy. For example, consider two record utilization
vectors 1001 and 0001 with Hamming distance 1. If only 1 bit is sampled, there is %
probability that these two vectors will be hashed to the same value. On the other hand, if

2 bits are sampled, the probability drops to %

6.2.8 Discussion

In this section, the techniques proposed in this thesis have been evaluated. These evalua-
tions have aimed to answer the following key questions:

Can the techniques proposed in this thesis be used to develop systems that are more
robust across a diverse selection of SPARQL queries?

For what types of queries does chameleon-db require further improvements?

Which components of the prototype system need further improvements?

Can TUNABLE-LSH be used in other components of chameleon-db or even in other
contexts?

The results in Section 6.2.5 show that chameleon-db is generally more robust than
other systems across a diverse selection of SPARQL queries. Nevertheless, chameleon-db
needs to be optimized further for (i) queries with high-cardinality results and (ii) linear
queries (preferably in this order). The results in Section 6.2.6 verify that to fully exploit the
potential optimizations due to G-by-Q clustering, chameleon-db’s query optimizer needs to
be enhanced. To be more specific, developing and implementing additional query rewrite
rules could be one future direction, or implementing a cost-based physical query optimizer
could be another (right now, chameleon-db performs only logical query optimization).
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Lastly, the results in Section 6.2.7 show that TUNABLE-LSH can be used in contexts other
than computing the G-by-Q clusters. For example, it can be used to enhance the lookup
speeds in the dictionary of chameleon-db, or it can be used to dynamically determine the
inter-cluster serialization order of G-by-(Q) clusters in the storage system.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis addresses the issue of building RDF data management systems that can support
workloads in which queries are ad-hoc (i.e., diversity) and are frequently changing (i.e., dy-
namism). This is non-trivial for many Web applications that have different characteristics
than conventional enterprise applications.

Consider conventional enterprise applications such as those used in trade, banking,
reservation systems and so on. Each of these applications has a well-defined business logic,
which is not very likely to change over time. For example, the schema of a Customers
relation is not expected to change much—perhaps the most significant change occurred
in the last forty years or so when electronic-mails replaced fax, which necessitated the
inclusion of an e-mazil attribute in the schema. In this regard, one can argue that such
applications have low tuning requirements from a “database design” point of view. On
the other hand, when such changes occur (and they do from time to time), these type of
businesses can afford to tune their databases in an offline process [135], that is, during
scheduled maintenance periods and/or while a back-up server still continues to host the
running applications.

In contrast, Web applications have completely different requirements and constraints.
On the World Wide Web, things are volatile and highly unpredictable [30, 124, 165]. For
example, an event as trivial as Justin Bieber getting himself in trouble with the law can
create a chain reaction causing more than a dozen media outlets to cover the story online,
thousands of tweets to be generated about the subject, and people reading about these
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stories/tweets to become curious and issue ad-hoc queries about Justin Bieber—all of this
happening within hours, if not minutes. A database management system hosting these
queries has only a very short timeframe to tune its physical design to adapt to these
changes in the workload (otherwise, after a few hours, users might lose interest in the
subject). On the other hand, the tuning overhead to realize these changes can be much
higher than anticipated. For example, it might be necessary to switch from a row-oriented
representation to a columnar one, all at runtime, which can be hard to achieve using
existing techniques [14, 19, 115]. In other words, as applications become more and more
ad-hoc and more and more dynamic [30, , 165], their tuning overhead increases, while
the same does not hold for the tuning budget that is allocated to these applications. This
makes Web applications that are ad-hoc and dynamic in nature hard to support using
existing database management solutions.

This thesis acknowledges the problem and develops techniques for more adaptive RDF
database management systems. The reason RDF data management systems have been
chosen as a case study is the fact that RDF is a promising data model for represent-
ing graph-structured data (i.e., a significant portion of the data on the Web are graph-
structured [35,12,13,119]) and many Web applications have already started utilizing RDF
for that purpose [1841, 185].

The focus of the thesis has been on developing tuning solutions that are able to make
global changes in the physical schema of an RDF database in a lazy fashion, which is
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a problem area that has not been explored in depth before (Figure 7.1). In particular,
most of the existing solutions in self-tuning databases [52,60] work well when the changes
made to the physical schema of the database are local, e.g., adding indexes for a few
more attributes, dropping indexes on a few attributes, horizontally partitioning a table,
etc. The main reason for this is that, in this category of solutions, the database is tuned
in an aggressive fashion. For example, if the tuning advisor in a self-tuning database
management system decides to build an index on an attribute, the index is built after all
the values of that attribute are fully sorted, which can be a waste of time if the queries do
not uniformly look up all these values [115] or if at a later point in time, the tuning advisor
decides to drop the index. Database cracking [113—115] improves on this by interleaving
index construction with query execution. In other words, given an attribute, its values are
not fully sorted upfront, but instead, these values are partially sorted every time a query is
executed [113-115]. This way, it is easier to undo the changes made by each tuning step,
should the workloads change. However, database cracking still does not enable any global
changes to the physical schema of the database. After all, database cracking techniques
are implemented for column-stores where each index is built across the values of a column.
However, as outlined in Chapter 1, RDF databases are not restricted to column-stores,
where different physical designs offer different advantages [19]. Consequently, this thesis
takes database cracking a step forward and develops techniques where the physical schema
changes can be global. Following are the challenges that have been addressed in this thesis.

e [t is not trivial to determine which physical layout is suitable for which type of
SPARQL queries, let alone the fact that experiments demonstrate that no single layout
is good for all (cf., Chapter 1): This challenge has been addressed using a combina-
tion of two approaches. First, instead of trying to fit a single layout to the entire
database, techniques have been developed that allow different parts of the database
to be tuned for different queries in the workload. This way, for example, parts of
the database can act as a row-store, while the remaining parts act as a column-store.
Second, to determine the best possible physical layout for each of the aforementioned
parts of the database, two separate algorithms have been developed (cf., Section 4.2
and Section 4.3). The first algorithm relies on a hierarchical clustering algorithm [21]
and the second algorithm relies on a novel locality sensitive hashing scheme that is
developed in this thesis called TUNABLE-LSH [15]. Each algorithm has its advan-
tages and disadvantages. The hierarchical clustering algorithm can more optimally
determine the physical layout for each part of the database while taking longer to
compute. On the other hand, the algorithm that is based on TUNABLE-LSH is more
approximate, but computationally more efficient.
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e Updating the physical layout can be time consuming: To address this challenge, the
physical layout is updated in a lazy fashion. In other words, the physical layout
is updated only for parts of the database that are relevant to the recent queries in
the workload (cf., Section 4.2 and Section 4.3). The same principle is used when
updating the indexes when the physical layout for parts of the database changes (cf.,
Section 5.5).

o When the underlying physical layout is frequently changing, ensuring that queries
can be executed correctly and efficiently is not trivial: First, it must be guaranteed
that no matter how the underlying physical layout winds up (as a consequence of
executing the algorithms in Sections 4.2 and 4.3), the system has to return correct
results to the queries. To this end, Chapter 5 proposes query evaluation techniques
that are sound. Second, there is a trade-off between efficiently executing queries
and efficiently updating the underlying physical layout. On the one hand, one may
choose to index and maintain all information about the underlying physical layout,
in which case, query plan generation and execution might be easier, but updating
the underlying physical layout becomes harder. On the other hand, one may choose
to index and maintain almost nothing about the underlying physical layout, in which
case, it is harder to generate query plans, but easier to update the physical layout.
To address this second problem, Chapter 5 proposes a solution in-between, where
query-rewrite rules are developed that enable efficiently generating query plans while
using as little information about the physical layout as possible.

The aforementioned challenges have been addressed and the proposed techniques have
been implemented in a prototype system called chameleon-db. The system was solely
designed and developed to demonstrate and experiment with the techniques proposed in
this thesis. chameleon-db has been implemented in C++ and consists of more than 35
thousand lines of code. Experimental evaluation of these techniques demonstrate that it
is possible to build adaptive RDF data management systems. In particular, experimental
evaluation of chameleon-db (cf., Chapter 5) demonstrates that (i) the computational
overhead of tuning can be contained within less than a second on average (typically on the
orders of milliseconds with TUNABLE-LSH); (ii) chameleon-db can perform as well as most
state-of-the-art systems and in some cases even much better than the fastest of the state-
of-the-art systems in end-to-end evaluations, which combine the overhead of adaptively
updating the underlying physical layout with the time it takes to compute the results of
the queries; (iii) chameleon-db is much more robust than state-of-the art systems across a
diverse selection of queries; thereby, concluding that the space of solutions explored in this
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thesis is a good starting point for dealing with workloads that contain ad-hoc queries that
are frequently changing.

7.2 Future Work

While the experimental evaluation of the techniques presented in this thesis are promising,
chameleon-db does not yet fully achieve the vision presented in Chapter 1. Following are
some of the topics that need further investigation.

7.2.1 Extending the Tuning Model

This thesis does not investigate the problem of “when to tune”. In particular, it is assumed
that the last k£ queries are representative of the future queries in a SPARQL workload,
where k is set to a constant in most of the experimental evaluation in Chapter 6 (except
Section 6.2.7). However, in certain cases, this workload predictability assumption may be
too restrictive.

First of all, having a fixed £ may not be realistic. Instead, a more realistic scenario is
one in which the system dynamically adjusts k based on the current characteristics of the
workload. In that case, an important challenge is to balance the cost of tuning and the
optimizations achieved as a consequence of tuning.

Second, a preliminary (unpublished) investigation using real SPARQL workloads [33]
reveals that different RDF resources may have different fluctuations of popularity. For
example, some RDF resources are queried frequently and this frequency does not fluctuate
much over time (e.g., over a course of three months). In contrast, for some RDF resources,
this fluctuation in frequency can be very high. An initial attempt at modeling these fluc-
tuations using a measure called volatility (which is a measure used in economics to model
changes in the stock market [$1]) has revealed that the volatility of RDF resources follow
normal-like distributions [163]. While these results need to be verified further across multi-
ple workloads, they might indicate potential improvements to the proposed techniques (and
chameleon-db). For example, for parts of the database that contain RDF resources whose
popularity does not fluctuate much over time (i.e., low volatility), a clustering algorithm
that is more robust but computationally more intensive such as the one described in Sec-
tion 4.2 can be used. On the other hand, for parts of the database that contain “volatile”
RDF resources, a computationally-efficient but a less accurate clustering algorithm such
as the one based on TUNABLE-LSH in Section 4.3 can be used.
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A third challenge that needs to be addressed is dealing with oscillations in the work-
load. More specifically, there might be cases when the current workload dictates a par-
ticular physical layout and at a later point in time, the new workload dictates a different
(and potentially contradicting) layout, and this keeps oscillating back and forth. In its
current implementation, chameleon-db will keep switching between these two (potentially
contradictory) physical layouts, which might be considered a waste of tuning efforts. There
can be two solutions to this problem. The first solution is to detect such oscillations in
the workload and choose not to tune the database under such circumstances. However a
better solution can be to create materialized views for one of the conflicting layouts for
such oscillating queries in the workload.

7.2.2 Support for and Optimizations Beyond BGPs

Even though chameleon-db supports SPARQL queries with OPTIONAL graph patterns [157,

] and UNION [157,159], the system is only optimized for BGPs. Furthermore, the system
is not yet well-tested for such complex queries (i.e., there may be bugs). The SPARQL
standard [158, 159] is also continuously evolving. For example, now, SPARQL supports
property paths [158], reqular expressions [159] and aggregation [158], none of which are
supported by chameleon-db. There is also strong incentive towards supporting keyword-
search [61,72,181], similarity joins [129] and ranking [73] in RDF data management systems
because applications that use RDF typically deal with uncertain and noisy data [127] and
RDF datasets might contain a large chunk of unstructured text (i.e., as literal values) that
are better located using keyword-search techniques [01,72, 181]. Consequently, two types
of extensions are possible.

The first type of extension is to add new features to chameleon-db that are better
aligned with the evolving SPARQL standard and the evolving application requirements.
Each of the features mentioned above is a research topic on its own.

The second type of extension is to develop new query optimization strategies for Op-
TIONAL graph patterns and/or the UNION operation in SPARQL. While some existing
techniques try to address these challenges [32,33], most RDF data management systems
rely on optimizations within BGPs.
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7.2.3 Improving Existing Query Evaluation and/or Optimization
Techniques in chameleon-db for BGPs

The experiments with the clustering algorithm that relies on TUNABLE-LSH demonstrate
that chameleon-db cannot fully optimize queries when the underlying G-by-Q) clusters are
approximate. This suggests improvements to the existing query evaluation/optimization
algorithms in chameleon-db.

A potential improvement is to extend the set of query rewrite rules introduced in
Section 5.3. The purpose of these query rewrite rules is to enable efficient generation of
query plans even when the system does not know much about the underlying physical
layout. As discussed in Chapter 5, this enables the underlying physical layout to be
frequently updated. Having a richer set of equivalence rules (i.e., that use more information
about the underlying G-by-@ clusters) will enable query plans to be generated for a wider
range of G-by-@) clusters such as the ones generated by TUNABLE-LSH.

A second improvement is to develop and implement a wider range of physical operators.

For example, chameleon-db relies only on an implementation of hash join [17,70,88] and
sideways information passing [117]; however, operators for sort-merge join [70),3%], nested
loop join [88], etc. should also be supported in the future. These enhancements will give

rise to opportunities for physical query plan optimization, which is largely ignored in the
current version of chameleon-db. Furthermore, the implementation of clustered-match (cf.,
Section 5.2) relies on a naive extension of Ullman’s algorithm for subgraph matching [183],
which can be extended or improved. In particular, the algorithm does not scale when the
individual G-by-@ clusters become too large (cf., Section 6.2.5). Under such circumstances,
creating indexes within each G-by-@) cluster or incorporating better query optimization
techniques might also help, which is currently omitted in chameleon-db.

A third improvment requires a significant change in the design of chameleon-db. Cur-
rently, chameleon-db does not support pipelined execution of queries. Consequently, in-
termediate results are materialized, which is one of the main reasons why high-cardinality
queries are problematic (cf., Section 6.2.5). Furthermore, it is also the reason why some
WatDiv stress testing queries time-out when chameleon-db relies on a naive triple-based
partitioning. In particular, it has been observed that in such problematic cases, chameleon-
db starts overconsuming main memory resources, thus, triggering paging, which in turn
slows down query execution. Supporting a pipelined query execution model [39] might help
overcome these problems.
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7.2.4 Extending Indexing Techniques

The partial, adaptive indexes used in chameleon-db have the following problems, which
need to be improved in the future. First, the index warm-up phase is slow, hence, techniques
need to be developed to make it faster. Second, the indexes do not forget what they
have learnt from old queries, hence, techniques need to be developed to make the indexes
truly adaptive. Third, techniques that make sure that the tree index is balanced needed.
Fourth, the workload predictability assumptions mentioned earlier on in this chapter are
also applicable to the indexes built in chameleon-db, therefore, they can be exploited to
enhance indexing.

7.2.5 Extending Techniques for Adaptively Computing Physical
Layouts

In this thesis, techniques are proposed for computing and updating the base physical layout
in an RDF data management system. However, there is strong incentive to complement
these techniques with view materialization. An important use case is when there are os-
cillations in the workload: Instead of going back and forth between conflicting physical
layouts, materialized views can be created over the relevant parts of the database. The
challenge is that this view materialization process should be online and lazy unlike existing
solutions [56, 85, 86], which are offline and aggressive. Another possible area to explore is
whether hybrid techniques that rely on a combination of TUNABLE-LSH and the hierar-
chical clustering algorithm presented in this thesis could be employed to better balance
the trade-off between robust query execution and easier and faster tuning of the physical
layout.

7.2.6 Distributed chameleon-db

This thesis focuses on techniques for scaling-up but not scaling-out. However, the volume
of data that RDF data management systems need to deal with is increasing [119], and
techniques are needed for the distribution of chameleon-db. An interesting future direction
is implementing techniques for the adaptive distribution of RDF, where synergies between
existing techniques should be explored [13,97,155] (cf., Chapter 3).
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7.2.7 Extending WatDiv

Despite its early days, users have started adopting the WatDiv stress testing tools [93,
, 105]. Based on the feedback obtained from these users, the following items are worth
exploring:

e generating dynamic workloads,
e automatically generating dataset description models [16] from existing RDF datasets,
e supporting extensions to SPARQL such as property paths, and

e supporting predicate-predicate joins.
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