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Abstract

Mixture models can be found in a wide variety of statistical applications. How-

ever, undertaking statistical inference in mixture models, especially non-parametric

mixture models, can be challenging. A general, or nonparametric, mixture model

has effectively an infinite dimensional parameter space. In frequentist statistics, the

maximum likelihood estimator with an infinite dimensional parameter may not be

consistent or efficient in the sense that the Cramer-Rao bound is not attained even

asymptotically. In Bayesian statistics, a prior on an infinite dimensional space is not

well defined and can be highly informative even with large amounts of data.

In this thesis, we mainly consider mixture and mixed-effects models, when the

mixing distribution is non-parametric. Following the dimensionality reduction idea in

[Marriott, 2002], we propose a reparameterization-approximation framework with a

complete orthonormal basis in a Hilbert space. The parameters in the reparameterized

models are interpreted as the generalized moments of a mixing distribution. We

consider different orthonormal bases, including the families of orthogonal polynomials

and the eigenfunctions of positive self-adjoint integral operators. We also study the

approximation errors of the truncation approximations of the reparameterized models

in some special cases.

The generalized moments in the truncated approximations of the reparameter-

ized models have a natural parameter space, called the generalized moment space.

We study the geometric properties of the generalized moment space and obtain two

important geometric properties: the positive representation and the gradient charac-

terization. The positive representation reveals the identifiability of the mixing distri-

bution by its generalized moments and provides an upper bound of the number of the

support points of the mixing distribution. On the other hand, the gradient charac-

terization provides the foundation of the class of gradient-based algorithms when the

feasible set is the generalized moment space.

Next, we aim to fit a non-parametric mixture model by a set of generalized mo-

ment conditions, which are from the proposed reparameterization-approximation pro-

cedure. We propose a new estimation method, called the generalized method of mo-

ments for mixture models. The proposed estimation method involves minimizing a
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quadratic objective function over the generalized moment space. The proposed es-

timators can be easily computed through the gradient-based algorithms. We show

the convergence rate of the mean squared error of the proposed estimators, as the

sample size goes to infinity. Moreover, we design the quadratic objective function

to ensure that the proposed estimators are robust to the outliers. Compared to the

other existing estimation methods for mixture models, the GMM for mixture models

is more computationally friendly and robust to outliers.

Lastly, we consider the hypothesis testing problem on the regression parameter in

a mixed-effects model with univariate random effects. Through our new procedures,

we obtain a series of estimating equations parameterized in the regression parameter

and the generalized moments of the random-effects distribution. These parameters

are estimated under the framework of the generalized method of moments. In the case

that the number of the generalized moments diverges with the sample size and the

dimension of the regression parameter is fixed, we compute the convergence rate of

the generalized method of moments estimators for the mixed-effects models with uni-

variate random effects. Since the regularity conditions in [Wilks, 1938] fail under our

context, it is challenging to construct an asymptotically χ2 test statistic. We propose

using ensemble inference, in which an asymptotically χ2 test statistic is constructed

from a series of the estimators obtained from the generalized estimating equations

with different working correlation matrices.
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Guide to Notation

In this section, we provide brief explanation and representative examples of the

notation used in this thesis. Matrices and column vectors are typically denoted

using bold letters, e.g., A, and transpose is denoted using AT. For a parameter

β, we use β̃ or β̂ to denote the esimators of the parameter, β∗ to denote the true

value of the parameter, and β0 to denote a value of the parameter. To establish

the asymptotic results, we use the order notations, O(·), o(·), Op(·) and op(·); see

[Small, 2010, p.g. 4-16] for precise definitions. We list the following notations

which are unified throughout this thesis.

symbol description

bn Random effects vector of the nth individual in a mixed-

effects model

B Support set of the random effects

C Constant, which may vary between lines

C Generalized moment cone

fMix(x;Q) Mixture models with mixing distribution Q

JN + 1 Dimension of the generalized moment vectors

m Generalized moment vectors for a mixture model

M Generalized moment space

KN Number of models in an ensemble inference

N Sample size

p Dimension of the regression parameter β in a mixed-

effects model

Q Mixing or random effects distribution

R Real space

S Sample space

pr Probability functions
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Tn Number of visits of the nth individual

W Weighting matrices

xnt, Xnt Covariate vector to the fixed effects on the nth individual

at tth visit

ynt, Ynt Response variable of the nth individual at tth visit

znt, Znt Covariate vector to the random effects on the nth indi-

vidual at tth visit

α Generalized moments vector for a mixed-effects model

β Regression parameter vector in a mixed-effects model

λj The jth largest eigenvalue

θ Mixing parameter

Θ Support space of the mixing parameter θ

operators description

det Determinant operator of a matrix

diag The operator to a vector that returns a square diago-

nal matrix with the elements of the vector on the main

diagonal

EX Expectation with respect to the random variable X

VarX Variance with respect random variable X

Cov Covariance operator to two random variables

‖·‖2 2-norm of a matrix or L2-norm of a vector

abbreviations description

CMM Conditional mixed method

CNM Constrained Newton method with multiple exchange ver-

tices

GLMM Generalized linear mixed models

GEE Generalized estimating equations

GMM Generalized method of moments

LRTS Likelihood ratio test statistics
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MM Method of Moments

MLE Maximum likelihood estimators

MSE Mean squared errors

NPMLE Non-parametric maximum likelihood estimators

NEF-QVF Natural exponential families with quadratic variance

function

PQL Penalized quasi-likelihood

QIF Quadratic inference function

UMM Unconditional mixed method

distributions description

Bin(N, p) Binomial distribution with number of trials N and suc-

cess probability p in each trial

Exp(θ) Exponential distribution with mean θ

N (θ, σ2) Normal distribution with mean θ and variance σ2

Pois(θ) Poisson distribution with mean θ

χ2
p χ2 distribution with degrees of freedom p
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Chapter 1

Introduction to Mixture Models

1.1 Introductions

A mixture model is one which can be written as a convex combination of mul-

tiple distribution functions; a comprehensive review of these models can be found

in [Lindsay, 1995]. Commonly used examples include finite mixture models with

known or unknown components, with known or unknown order, and parametric or

non-parametric mixture models. Here a parametric mixture is one where the mixing

distribution is assumed to lie in a known parametric family, while non-parametric will

mean the mixing distribution is unconstrained by any functional assumptions.

Much of the pioneering work on mixture models in statistics can be found in

[Pearson, 1898], [Feller, 1943] and [Teicher, 1960]. Good modern references include

[Titterington et al., 1985], [McLachlan and Basford, 1988], [Lindsay, 1995], [McLach-

lan and Peel, 2000], [Schlattmann, 2009] and [Mengersen et al., 2011].

Mixture models are useful in statistical modelling because of their flexibility

[McLachlan and Basford, 1988] and the potential interpretation of the mixing pro-

cess [Everitt et al., 2011]. However, mixture models create challenges for statistical

inference. Firstly, mixtures may not be identifiable; see [Tallis and Chesson, 1982],

[Lindsay and Roeder, 1993] and [Jasra et al., 2005]. Secondly, boundaries (and possi-

ble singularities) exist in the parameter space of a finite mixture; see [Leroux, 1992],

1



[Chen and Kalbfleisch, 1996] and [Li et al., 2009] and this is also true for more general

mixtures. Thirdly, a non-parametric mixture model can be thought of as having an

infinite dimensional parameter space; see [Lindsay, 1980, 1983] and [Marriott, 2007].

Lastly, log-likelihood functions may not be convex; see [Gan and Jiang, 1999]. A more

detailed discussion of these issues can be found in Section 1.2. Moreover, the chal-

lenges may also affect the convergence rates of associated computational algorithms,

see Section 1.3 for details.

Using the geometry of mixture models is a useful approach to overcome these chal-

lenges. Lindsay [1983] studied the geometry of mixture models in an embedding space

determined by the observed, and hence finite, sample (defined in Equation (1.1)) and

gave the fundamental properties of the non-parametric maximum likelihood estima-

tor for mixture models. These properties include identifiability and bounds on the

number of support points in a non-parametric maximum likelihood estimator. It also

leads to the class of gradient-based computational algorithms, which can be fast and

stable; see [Böhning, 1995] and [Wang, 2007]. However, these fundamental properties

of the non-parametric maximum likelihood are based on the observed sample. Devel-

oping asymptotic results on the non-parametric maximum likelihood estimator could

be theoretical challenging since the size of the sample space is unbounded. On the

other hand, Marriott [2002] considered the geometry of mixture models in an affine

space and introduced the class of local mixture models, which can successfully reduce

the number of parameters in a mixture model. However, a local mixture model may

not provide a consistent estimator to the true mixture model; see Section 1.4 for

details.

In this thesis, we develop estimation and inferential procedures for non-parametric

mixture (or mixed-effects) models under the framework of the generalized method of

moments. To deal with the dimensionality issue in a non-parametric mixture (or

mixed-effects) model, we reduce the dimension of the parameter space through a

reparameterization-approximation procedure with a complete orthonormal basis in a

Hilbert space; see Chapter 2. The proposed reparameterization-approximation frame-

work leads to the models with generalized moments as their parameters and a series of

generalized moment conditions. Next, we study the geometric properties of the set of
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the generalized moments; see Chapter 3. They are helpful in studying the fundamen-

tal properties of the generalized method of moments and designing the computational

algorithms which are associated with the proposed estimators in later chapters. The

generalized moment conditions, which are obtained through the reparameterization-

approximation procedure, can be used to fit a non-parametric mixture model; see

Chapter 4. The proposed method is called the generalized method of moments for

mixture models. It can be made robust to the outliers when weighting matrix is

carefully designed. Then, we consider the class of mixture models with regression pa-

rameters, the mixed-effects models, under the framework of the generalized method of

moments; see Chapter 5 and 6. The asymptotic theorems of the generalized method

of moments estimators are established in the case that the dimension of the general-

ized moments diverges with the sample size; see Chapter 7. As will be pointed out

later, the asymptotic results of the generalized method of moments can not be used

for hypothesis testing problem on the regression parameters in a mixed-effects model

with univariate random effects. Therefore, we propose to use the ensemble inference;

see Chapter 8.

This chapter is organized as follows. In Section 1.2, we discuss important sta-

tistical inference issues for mixtures. In Section 1.3, we review the computational

algorithms. In Section 1.4, we consider the underlying geometry. In Section 1.5,

we look at the class of mixed-effects models. In Section 1.6, we list some real data

examples. Lastly, we give an outline of this thesis.

1.2 Inference for Mixture Models

In this section, we discuss the difficulties of undertaking statistical inference in

mixture models.

1.2.1 Identifiability

Titterington et al. [1985] described identifiability as “the existence of a unique

characterization for any one of the class of models being considered”. Identifiability
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is defined in [Teicher, 1963] for finite, and [Tallis, 1969] for non-finite mixture. Some

studies have been done on the identifiability of non-finite mixtures, such as [Tallis,

1969] for countable, and [Tallis and Chesson, 1982] for general mixture models. Be-

cause of their wide applicability, more research has been done on finite mixtures, and

this work is summarized in [Titterington et al., 1985]. In this case, usually, we require

the mixing proportions be strictly positive and the mixing parameters to be unequal;

see [Chen et al., 2004]. With these constraints, many component distributions, includ-

ing the Poisson [Teicher, 1961], exponential [Teicher, 1963], gamma [Teicher, 1963]

and negative binomial [Yakowitz and Spragins, 1968], are shown to be identifiable as

finite mixtures.

One special type of identifiability issue is the label switching problem when we

are making inferences about the individual components; see [Stephens, 2000], [Jasra

et al., 2005] and [Sperrin et al., 2010]. We could impose identifiability constraints

on a particular set of parameters; see [Richardson and Green, 1997]. However, the

successful of this often depends on the design and performance of the MCMC sampler,

as argued by Celeux et al. [2000]. Other possible solutions are reviewed in [Jasra et al.,

2005]. The following example shows another important form of lack of identifiability.

Example 1.1.

Consider a normal mixture of normal distributions such that X | θ ∼ N (θ, σ2
1), where

θ ∼ N (0, σ2
2) and N (θ, σ2) is the normal distribution with mean θ and variance σ2.

It can be shown that this model is equivalent to N (0, σ2
1 + σ2

2) for any σ2
1 and σ2

2.

Therefore, this model is not identified.

1.2.2 The Parameter Space of Finite Mixture Models

The parameter space of a finite mixture model has boundaries, because the mixing

proportions are non-negative and sum to one. Moreover, singularities exist, since

we set the component parameters unequal for identifiability reasons. Undertaking

statistical inference near the boundaries or singularities is challenging; see [Cheng

and Traylor, 1995]. Firstly, the dimension of the parameter space is non-constant;

see [Ryden, 1995], [James et al., 2001], [Chen and Khalili, 2008]. Secondly, log-
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likelihoods can not be approximated quadratically; see [Chen and Kalbfleisch, 1996],

[Chen, 1998] and [Li et al., 2009]. Lastly, some estimators might be inconsistent; see

[Kiefer and Wolfowitz, 1956], [Laird, 1978] and [Leroux, 1992]. To keep estimates

away from boundaries or singularities, penalty functions have been used; see [Chen

and Kalbfleisch, 1996], [Chen, 1998] and [Chen and Khalili, 2008].

The change of dimension of the parameter space causes problems for both fre-

quentist and Bayesian theory. Whenever the order is underestimated, the model is

mis-specified; see [Keribin, 2000]. On the other hand, if we overestimate the order,

Chen [1995] showed that the convergence rate of an over-parameterized mixture could

be lower than a finite mixture with a correctly specified order, when the sample size

goes to infinity. In Bayesian statistics, this change of dimension makes the posterior

distribution sensitive; see [Jasra et al., 2005].

To determine the order, many model selection techniques can be used, including

the log-likelihood ratio test statistic (LRTS) (summarized in [Everitt et al., 2011]),

the information criteria (summarized in [McLachlan and Peel, 2000]), the moment

matrix [Lindsay, 1989b] and the non-smooth penalty functions [Chen and Khalili,

2008]. Overall, as noted by Everitt et al. [2011], “research on model selection criteria

has not provided an unequivocal answer to the basic question of selecting the right

number of components.”

The failure of the quadratic approximation of log-likelihoods implies that the reg-

ularity conditions in [Wilks, 1938] are not satisfied. As a result, under the regularity

conditions given in [Chen, 1995], the likelihood ratio statistic of a mixture model has a

mixture of χ2 distributions as its asymptotic distribution, compared to a single χ2 dis-

tribution in the classical result. This also affects some information criteria depending

on log-likelihoods, such as the AIC and the BIC; see [Ray and Lindsay, 2007]. More-

over, convergence rates can be very slow in some computational algorithms, especially

the EM algorithm; see [Chen, 1998].

Example 1.2.

Consider the likelihood space of the family of binomial distribution Bin(2, θ), where

2 is the number of trials and θ denotes the probability of success in each trial. The

LRTS for the test of one versus of two components has asymptotic distribution as
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0.5χ2
0 + 0.5χ2

1, where χ2
p is the χ2 distribution with degrees of freedom p; see [Lindsay,

1995]. We simulate 1000 statistics under the true distribution Bin(2, 0.5) with two

levels of sample size, 30 and 100, and show the Q-Q plots of them versus 0.5χ2
0 +0.5χ2

1

in Figure 1.1.

Example 1.3.

Li et al. [2009] considered a mixture of two exponentials:

(1− α)Exp(1) + αExp(θ),

where Exp(θ) denotes the exponential distribution with mean θ. Consider testing the

hypothesis α = 0 versus α > 0. Under the null hypothesis, the Fisher information is

infinite when θ ≥ 2.

The boundaries and singularities can also lead to the unbounded likelihood and

an inconsistent estimator; see [Kiefer and Wolfowitz, 1956] and [Cheng and Traylor,

1995]. However, many estimators for the mixing distributions, such as the penalized

maximum likelihood estimator [Chen, 1998], the penalized minimum distance estima-

tor [Chen and Kalbfleisch, 1996], and the maximum likelihood estimator (MLE) with

an upper bound of the order [Leroux, 1992], are still consistent.

Example 1.4.

Kiefer and Wolfowitz [1956] considered the normal mixture with unknown parameters

α and σ:

αN (0, 1) + (1− α)N (0, σ2),

where α ∈ (0, 1) and σ ≥ 0. Here the likelihood goes to infinity for any value of

α ∈ (0, 1) as the estimates of σ goes to 0.

1.2.3 Parameter Space of Non-parametric Mixture Models

A non-parametric mixture model can be considered to have an infinite dimen-

sional parameter space, since an unknown mixing distribution is involved. When the

underlying mixing process is not of direct interest, it can be viewed as an infinite
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dimensional nuisance parameter. In frequentist statistics, the maximum likelihood

estimate with an infinite dimensional nuisance parameter may not give a consistent

estimator and may not be efficient in the sense that the Cramer-Rao bound is not at-

tained even asymptotically; see [Neyman and Scott, 1948]. In Bayesian statistics, the

prior on an infinite dimensional space may not be well defined; see [Marriott, 2007].

We can use the modified likelihood [Lindsay, 1980] or reduce the dimension of the

parameter space, such as the semi-nonparametric approach in [Gallant and Nychka,

1987] and local mixture models in [Marriott, 2002]. Moreover, the non-parametrical

maximum likelihood estimator (NPMLE) has also been proposed; see [Lindsay, 1995].

1.2.4 Non-convexity of Log-likelihood

Log-likelihoods of mixture models may have multi-modes. For example, Gan and

Jiang [1999] gave the following example to illustrate this point.

Example 1.5.

Consider the normal mixture

0.4N (θ, 1) + 0.6N (6, 4).

Let θ = −3. We independently generate 5000 random variables and fit the model.

The log-likelihood function, which is multi-modal, is plotted in Figure 1.2.

1.3 Computation in Mixture Models

The commonly used computational algorithms for mixture models include the EM

algorithm, gradient based algorithms, the method of moments, and MCMC methods.

In this section, we describe their strengths and weaknesses.

The EM-algorithm is popular for finding the MLE because, as pointed in [Redner

and Walker, 1984], a finite mixture model with a known order is a special case of the

model for incomplete data. It is reliable to find a local maximum but its converge

rate is extremely slow; see [Titterington et al., 1985] and [Böhning et al., 1994].
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Gradient based algorithms are used for the NPMLE; see [Böhning, 1995]. They are

based on the fundamental theorems of the NPMLE, which we discuss in the following

section. Böhning [1995] reviewed some existing gradient based algorithms, includ-

ing the vertex direction method, the vertex exchange method and the intra-simplex

direction method. These algorithms converge faster than the EM algorithm; see [Böh-

ning, 1995]. Wang [2007] proposed a faster algorithm called the constrained Newton

method with multiple vertex exchange (CNM). At each iteration step, the CNM al-

lows multiple points change in the support set, and thus increases the convergence

rate of the algorithm.

The method of moments for mixture models can be used for finite mixture models

with known orders; see [Lindsay, 1989b]. The mixing distribution is estimated from its

moments, as summarized in [Titterington et al., 1985]. However, the moments are not

easily obtained unless the mixture is with respect to the mean parameter in the family

of the quadratic variance natural exponential distributions; see [Morris, 1982] and

[Lindsay, 1989b]. Moreover, estimated component parameters are not necessarily in

the parameter space, due to sampling variability, and thus adjustments are suggested

by Lindsay [1989b].

MCMC methods for mixture models are popular, because it is hard to find a

prior which makes the posterior belong to a tractable distributional family. A routine

Bayesian analysis is proposed by [Diebolt and Robert, 1994] to finite mixture models

with a known order. Later, Escobar and West [1995] and Richardson and Green [1997]

studied the case in which orders are unknown. The computational effort of MCMC

methods can be intense partly, because of the label switching problem; see Jasra et al.

[2005]. Moreover, MCMC methods can suffer from convergence issues; see [Robert

and Casella, 2004].

1.4 Geometry of Mixture Models

In this section, we see the role of geometry in both inferences and computation of

mixture models. Firstly, we review Lindsay’s geometry in the likelihood space based

on a finite sample. Afterwards, we look at Marriott’s mixture affine geometry.
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1.4.1 Mixture Models in Likelihood Spaces

A framework for computing the NPMLE is given in [Lindsay, 1995]. Firstly, we

construct the feasible region in likelihood space:

L = {L =(L1(Q), · · · , LN(Q))T ∈ RN ,

where Q is a probability measure over Θ}, (1.1)

and for each n,

Ln(Q) =

∫
Θ

f(xn; θ)dQ(θ)

and N is the number of observations. Secondly, we define and maximize the following

log-likelihood over L:

`(L) = 1T log(L),

where 1 = (1, . . . , 1)T ∈ RN . Let `(L) be maximized at L̂. Finally, we reconstruct

the NPMLE Q̂NPMLE from the equation

L̂ = L(Q̂NPMLE).

Lindsay’s fundamental theorems are based on the facts that L is the convex hull

of the likelihood curve in likelihood space{
f(θ) = (f(x1; θ), · · · , f(xN ; θ))T ∈ RN | θ ∈ Θ

}
, (1.2)

and `(L) is strictly concave. With the condition that f(θ) has full rank in RN , it

follows that L̂ is on the boundary of L and Q̂NPMLE has at most N support points;

see [Lindsay, 1995]. Moreover, there is a supporting hyperplane H of L at L̂ such

that

pT ∂

∂L
`(L̂) ≤ 0, if p ∈ L,

and

pT ∂

∂L
`(L̂) = 0, if p ∈ H.
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It follows that the gradient function, which is defined as

G(θ) = (f(θ))T ∂

∂L
`(L̂), for θ ∈ Θ,

is non-positive and zeros are achieved at support points of Q̂NPMLE; see [Lindsay,

1995]. These results allow the development of the class of gradient based algorithms

discussed in the previous section.

Example 1.2 (continued).

The probability function Bin(2, θ) forms a curve in the likelihood space, as shown in

Figure 1.3 (a). The convex hull of the curve is the feasible region L. Moreover, we

also plot its supporting hyperplane at Bin(2, 0.5). In Figure 1.3 (b), we plot the cone

structure, which leads to 0.5χ2
0 + 0.5χ2

1 as the asymptotic distribution of the LRTS.

Geometry is also involved in deriving the asymptotic distribution of the non-

parametric mixture model likelihood ratio test statistic. If the model surface can

be approximated by score tangent cones, Chernoff [1954] proved that the asymptotic

distribution theory of the likelihood ratio test can be generated by projecting the

empirical likelihood onto these cones; also see [Shapiro, 1985]. This result leads to

the fact that the limiting distributions of some non-parametric tests are a mixture of

χ2-distributions, see ; see [Lindsay, 1995].

1.4.2 Mixture Models in Affine Spaces

Marriott [2002] constructed an affine space (XMix,VMix,+) for mixture models,

where XMix and VMix are subsets of certain functional space with the form

XMix =

{
f(x) |

∫
f(x)dx = 1

}
, and VMix =

{
v(x) |

∫
v(x)dx = 0

}
and + is the natural addition operation. The local mixture models are introduced in

a finite dimensional space (XMix,V ′Mix,+), where

V ′Mix = span {vj(x) ∈ VMix, j = 1, 2, · · · , J} ;

see [Marriott, 2002]. Later, Marriott [2007] extended them to Hilbert spaces. When

the mixing distribution is not of primary interest and the component distributions
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are mixed locally, local mixture models are able to keep the flexibility with a small

number of nuisance parameters; see [Marriott, 2002, 2007]. Other geometric properties

of embedding a mixture model in an affine space can be seen in [Zhang, 2005], [Zhang

and Hasto, 2006] and [Zhang, 2013].

Example 1.3. (continued)

The vector space VMix is spanned by its tangent and curvature vectors at θ = 0.5

and approximated by the curvature only. And then, local mixture models locate on the

curvature as shown in Figure 1.3 (c).

1.5 Mixed-Effects Models

Mixture models involving both fixed and random effects are called mixed-effects

models; see [McCulloch and Neuhaus, 2005] for an introduction. Mixed-effects models

are popular in longitudinal data analysis, because they are able to incorporate subject

specific covariates and have a richer interpretation when the subject-specific effect is

of interest; see [Diggle, 2002] and [Wu and Zhang, 2006].

Semi-parametric mixture models form a subclass of the mixed-effects models,

where the random effects distribution is non-parametric. To fit semi-parametric mix-

ture models, it is common to maximize the likelihood but this is computationally chal-

lenging and requires explicit full likelihood functions; see [Aitkin, 1999] and [Wang,

2010]. Methods based on subject-specific generalized estimating equations form an-

other class of approaches for semi-parametric mixture models; see [Sutradhar and

Godambe, 1997], [Vonesh et al., 2002] and [Wang et al., 2012]. This is more robust to

the misspecification of the likelihood functions than the maximum likelihood meth-

ods, because no distribution assumption is made to the responses conditional on the

random effects.

Inference on the regression parameter in a semi-parametric mixture model is more

challenging than in a non-parametric mixture model. The challenges include the is-

sued of identifiability, the boundary in the parameter space and the issue of dimension

of the parameter space; see Section 1.2. When the random effects can be consistently
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predicated as the dimension of each response goes to infinity, inference on the regres-

sion parameter becomes possible in the methods based on subject-specific estimating

equation methods; see [Vonesh et al., 2002] and [Wang et al., 2012].

A parametric distributional assumption, and typically a normal distribution is

used, is made on the random effects distribution. Breslow and Clayton [1993] intro-

duced the penalized quasi-likelihood (PQL) methods based on the Laplace approxima-

tion. This estimation method can be computed easily but is a biased estimator. Later,

Lin and Breslow [1996] used a higher-order Laplace approximation and proposed a

bias correction method for PQL estimators. The generalized estimating equation

(GEE) method has been used for the mixed-effects model with normal random effects

distribution in [Zeger et al., 1988].

Model misspecification on the random effects distribution has attracted much re-

search interests. It was believed that inference on the regression parameters is quite

robust; while inference on the random effects distribution itself is much less robust;

see [Neuhaus et al., 1992]. However, the conditionally specified regression point es-

timators can result from using a simple random intercepts model when either the

random effects distribution depends on measured covariates or there are autoregres-

sive random effects; see in [Heagerty and Kurland, 2001].

1.6 Data Examples

To motivate both theoretical and methodological development in this thesis, a few

real world dataset will be used for illustration throughout this thesis. This section

begins with examples for mixture models and then describes examples for mixed-

effects models.

1.6.1 Thailand Cohort Study Data

The description of the study is adapted from [Schlattmann, 2009]. To study the

health status of 602 pre-school children, the number of times that a child who showed

15



symptoms of fever, a cough, a runny nose, or these symptoms together, is recorded

from June 1982 until September 1985.

The dataset has been studied in [Böhning et al., 1992] and [Schlattmann, 2009].

A Poisson distribution with X ∼ Pois(θ) is often chosen as a parametric model for

this kind of count data, where θ is the mean parameter. With the independent and

identically distributed assumption, the maximum likelihood estimator of θ is 4.4485

in the single Poisson model. As we can see from Figure 1.4, this Poisson model does

not fit the empirical distribution well.

Because a mixture of Poisson can take more variability into account than a single

Poisson distribution, the following model is suggested. Consider a general mixture of

Poisson distributions, ∫
Θ

Pois(θ)dQ(θ),

where Q(θ) is an arbitrary probability measure over a compact set Θ.

1.6.2 Epileptic Seizures Data

Thall and Vail [1990] analyzed the data from a clinical trail of 59 epileptics, which

aims to examine the effectiveness of the drug progabide in treating epileptic seizures.

The outcomes are counts of epileptic seizures during four consecutive two-week peri-

ods. For each patient, the number of seizures in the eight weeks preceding entry into

the trial and the age are recorded. Figure 1.5 displays a longitudinal plot of the data,

where each trajectory represents a time series of a patient.

Let ynt be the biweekly number of seizures for patient n at equally spaced time

t = 1, 2, 3, 4, and let xnt be the vector of covariates, including baseline seizure count,

treatment, age and possibly the interaction between treatment and age. The following

mixed model is used in [Breslow and Clayton, 1993]. For each n and t, it is assumed

that ynt follows Poisson distribution with mean µnt(bn), where

log µnt(bn) = xT
ntβ + bn1 + vt × bn2 + bnt0,

where β is the regression parameter, vt is the tth visiting time, coded in (−0.3,−0.1, 0.1, 0.3)

from the first visiting time to the last, and bn = (bn1, bn2)T ∈ R2 is a bi-variate normal
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random effect and bnt0 is additional random error terms that represent non-specific

over-dispersion beyond that introduced by the subject-to-subject variation.

1.6.3 Retinal Surgery Data

Song and Tan [2000] considered data from a prospective study in ophthalmolgy

where intraocular gas was used in complex retinal surgeries to provide internal tam-

ponade of retinal breaks in the eye; also see [Song, 2007]. Three gas concentration

levels were randomly administrated to 31 patients, who were then visited three to

fifteen times over a three-month period after as injection. The outcome is the volume

of the gas in the eyes of each patient at each follow-up visit, recorded as a percentage

of the initial gas volume. The aim of this study is to estimate the decay rate of gas

disappearance across three gas concentration levels. Figure 1.6 displays a longitudinal

plot of the data, where each trajectory represents a time series of a patient.

Let ynt be the percentage of gas volume for patient n at time tn and let xnt be

the vector of covariates including the logarithm of time after surgery (in days) and its

square, and the gas concentration level. Song [2007] suggested the following model.

For each n and t, ynt is assumed to follow a simplex distribution with mean µnt(bn)

and dispersion σ2, where

logit(µnt(bn)) = xT
ntβ + bn0, (1.3)

and β is the regression parameter and bn0 ∈ R follows a normal distribution. Here

the simplex distribution with mean θ ∈ (0, 1) and dispersion parameter σ2 > 0 has

the density

f(x; θ, σ2) =
(
2πσ2 (x(1− x))3)−1/2

exp

(
− 1

2σ2

(x− θ)2

x(1− x)µ2(1− θ)2

)
;

see [Barndorff-Nielsen and Jørgensen, 1991].

1.7 Outline and Achievements of the Thesis

The structure and achievements of this thesis are as follows. In Chapter 2, a new

reparameterization-approximation procedure for non-parametric mixture (or mixed-

19



F
ig

u
re

1.
6:

P
lo

t
of

th
e

re
ti

n
al

su
rg

er
y

d
at

a.

20



effects) models is proposed. By embedding the likelihood functions (or estimating

functions) in a Hilbert space with countable dimension, the non-parametric mixing

(or random-effects) distributions in these models are reparameterized by their gener-

alized moments. Then, the reparameterized models are approximated by truncating

the terms associated with higher order generalized moments. Though this new proce-

dure, the dimension of the parameters in the considered models is successfully reduced

from infinite to countable in the reparameterization step, and from countable to fi-

nite in the approximation step. The considered basis for Hilbert spaces include the

eigenfunctions of an integral operator, and the families of orthogonal polynomials (the

Chebyshev and Hermite polynomials). In this chapter, the orders of the residuals in

the approximations are also computed as the number of generalized moments in a

truncated model goes to infinity. Several examples are given, including the mixture

of Poisson distributions, the mixture of normal distributions, and generalized linear

mixture models with log-link functions, logit-link functions and tang-link functions.

The materials of reparameterizing and approximating the mixture models in this

chapter and the geometric properties of the generalized moment spaces in Chapter 3

are published in the journal paper “Parameterizing Mixture Models with Generalized

Moments” accepted by the Annals of the Institute of Statistical Mathematics.

The major contribution in Chapter 3 is to derive two new important properties of

the generalized moment spaces: the positive representation and the gradient charac-

terization. The positive representation describes a sufficient and necessary condition

that a probability measure can be uniquely determined by its generalized moments. It

also gives an upper bound of the number of support points of a probability measure,

when it can be uniquely reconstructed from its generalized moments. The gradient

characterization is helpful in designing the class of the gradient-based computational

algorithms to reconstruct probability measures from their generalized moments. Sim-

ilar geometric properties are given in [Lindsay, 1995], when mixture models are in an

embedding space determined by the observed sample. In this chapter, the generalized

moment spaces induced by the power functions and the Chebyshev polynomials are

studied in details as examples.

The generalized method of moments for mixture models is proposed as a new es-
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timation method for mixture models in Chapter 4. The proposed method is based on

the generalized moment conditions, which are obtained from the reparameterization-

approximation procedure when the eigenfunctions of an integral operators are used

as the basis for a Hilbert space. It involves reweighed projecting a sample general-

ized moments vector onto a generalized moment space. The weighting matrices in

the proposed methods could be designed for different purposes. When weighting ma-

trices are identity, the proposed method could be interpreted under the information

geometry framework in [Zhang, 2013]. Another example is that the weighting matri-

ces are designed to obtain the robustness of the proposed estimators when a data is

contaminated with outliers. Because the geometry of the generalized moment spaces

are well-studied in Chapter 3, computational algorithms, such as the CNM algorithm

[Wang, 2007], can be easily adopted to compute the proposed estimators. The per-

formance of the proposed estimators are investigated through simulation studies, and

the proposed method is used to fit a model for the Thailand Cohort Study Data.

In Chapter 5, proposing the generalized method of moments for mixed-effects mod-

els with univariate random effects is the major contribution. This is a new estimation

method for the considered models. Through the reparameterization-approximation

procedure, the estimating functions, which are marginalized over the random effects,

can be approximated by the functions with the regression parameters and the gen-

eralized moments of the random effects distribution. Next, the weighted L2-norm of

the vector of the approximated estimating functions is minimized over the parameter

space (the generalized moment spaces for the generalized moments and the real space

for the regression parameters). In this proposed method, distributional assumption

on the random effects is not required. Therefore, the proposed estimators are robust

to the misspecification of the likelihood functions. Simulation studies are conducted

to investigative the performance of the proposed method and a random-effects model

for the Retina Surgery Data is fitted by it.

The contribution in Chapter 6 is extending the method proposed in Chapter 5

to a Poisson regression model with random intercept and slope. Although the ran-

dom effects distribution is bivariate, it is shown that the parameter space for the

generalized moments is a generalized moment cone, which has same geometric prop-
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erties as the generalized moment space. Through simulation studies, the robustness

of the proposed estimators to the misspecification of the random effects distributions

is studied. Moreover, a Poisson regression model with random intercept and slope for

the Epileptic Seizures Data is fitted by the proposed method.

In Chapter 7, the asymptotic results of the generalized method of moments for

mixed-effects models with univariate random effects are established. The major con-

tribution include that the convergence rate of the proposed estimators is computed

and the asymptotic normality in the proposed method is derived. These asymptotic

results are obtained in the case where the dimension of the generalized moments di-

verges with the sample size and the dimension of the regression parameter is fixed.

This is novel in the literature of mixed-effects models.

In Chapter 8, the idea of ensemble inference is firstly used to construct an asymp-

totically χ2 test statistic for the hypothesis testing problems on the regression param-

eters in a mixed-effects model. Because the asymptotic results in Chapter 7 involve

the generalized moments, which are unknown under the null hypothesis, there may

not exist a pivotal statistic when only regression parameters are of interest. This

is the motivation of using the ensemble idea. By using the generalized estimating

functions with different weighting matrices, an asymptotically normal statistic is ob-

tained in a space whose dimension is larger than the dimension of the generalized

moment vectors. This asymptotically normal statistic is still not pivotal under the

null hypothesis, because it involves the unknown generalized moments. However, by

projecting this asymptotically normal statistic into a lower dimensional space, an

asymptotically χ2 test statistic, which is pivotal under the null hypothesis, can be

constructed. Simulation studies show empirical evidence which supports this idea.

And, the Epileptic Seizures Data is analyzed by the proposed inferential procedure.
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Chapter 2

Reparameterization with

Generalized Moments

2.1 Introduction

In this chapter, we consider the class of statistical models of the form

hMix(s;Q) = Eθ[h(s; θ)] =

∫
Θ

h(s; θ)dQ(θ) <∞, (2.1)

where h(s; θ) is a known kernel function and is bounded over (s, θ) ∈ S ×Θ, and Q is

a probability measure over the set Θ ⊆ Rq. Both mixture and mixed-effects models

can be written in the form of (2.1); see Section 2.3 and 2.4.

The model hMix(s;Q) is nonparametric in the sense that no functional assumption

is made on Q. Thus, the infinite dimensional parameter space could be a major

challenge in statistical inference; see Section 1.2.3.

This chapter aims to solve this problem through a reparameterization-approximation

procedure. In the reparameterization step, we reduce the infinite-dimensional param-

eter to a countable-dimensional parameter by rewriting the model hMix(s;Q) in the

form of a countable sum. Then, we further reduce the dimension of the parameter by

truncating the higher-order terms.
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We make the following contributions in this chapter. Firstly, we give a general

framework for reparameterization of a mixture (or mixed-effects) model with a com-

plete orthonormal basis in a Hilbert space. Further, the parameter in the reparameter-

ized models can be interpreted as the generalized moments of the mixing distribution

Q, which are induced by Chebyshev systems (see Definition 2.2.1).

Definition 2.1.1 (Generalized Moments).

Let {uj(θ)}Jj=0 with u0(θ) ≡ 1 form a Chebyshev system over Θ. For j = 0, . . . , J ,

the jth moment of a probability measure Q(θ) induced by {uj(θ)}Jj=0 is defined as

mj(Q) = Eθ[uj(θ)] =

∫
Θ

uj(θ)dQ(θ) <∞, (2.2)

where θ has a probability measure Q on Θ.

Secondly, under the proposed reparameterization framework, we apply different

orthonormal basises, including families of orthogonal polynomials and eigenfunctions

from positive self-adjoint integral operators to mixture (or mixed-effects) models.

Lastly, we study the approximation error of the truncation approximation, when

the basis in the expansion is the eigenfuctions of an integral operator and the Cheby-

shev or Hermite polynomials.

This chapter is organized as follows. In Section 2.2, we give an overview of the

reparameterization-approximation procedure. The reparameterization technique is

based on the orthonormal expansion of h(s; θ) in Hilbert spaces. Because h(s; θ) can

be considered either a function of s given θ or a function of θ given s, we expand it

in two different Hilbert spaces; see Subsection 2.2.1 and 2.2.2. To disclose the rela-

tionship between the new parameters and the mixing distribution Q, we interpreted

them as the generalized moments of Q; see Subsection 2.2.3. In the last subsection,

we describe the way to examine the quality of the truncation approximations.

In Section 2.3, we consider one-parameter mixture models (see Definition 2.3.1).

Two types of orthonormal basis are considered. One is the class of orthogonal polyno-

mials for natural exponential families with quadratic variance function (NEF-QVF);

see Subsection 2.3.1. The other is the eigenfunctions from an integral operator for

26



the exponential families; see Subsection 2.3.2. In the last subsection, we discuss the

quality of the truncation approximations in detail.

In Section 2.4, we apply the reparameterization-approximation procedure to the

inverse of the link functions in mixed-effects models. We use the Chebyshev poly-

nomials (Subsection 2.4.1) and the Hermite polynomials (Subsection 2.4.2) for the

case when the random effects are univariate. In Subsection 2.4.3, we consider the

case when the random effects are multivariate and apply tensor product basises to a

mixed-effects model with a bivariate random effect.

In the last part of this chapter, we give some foundational theory including the

strictly totally positive kernel functions and the asymptotic coefficients of the expan-

sions by the Chebyshev polynomials and the Hermite polynomials. Also, the proofs

of theorems can be found in Appendix A.

2.2 Reparameterization Framework

2.2.1 Reparameterization with L2(S, ν0)

Consider a measure space (S,Υ, ν0) and the L2(S, ν0) space induced by it. We

assume that ν0 is a measure with support S. We will also denote, where appropriate,

ν0(s) = h0(s)ν(s) with respect to a fixed measure ν, typically Lebesgue or a counting

measure, and h0(s) is a strictly positive function of s ∈ S.

Let {ej(s)}∞j=0 be a complete orthonormal system in L2(S, ν0), i.e., for each i and

j,

〈ei(s), ej(s)〉L2(S,ν0) =

∫
S
ei(s)ej(s)dν0 = δij,

where δij is the Kronecker delta. We make the following assumption.

Regularity Condition 2.A (Square integrable of h(s; θ)/h0(s)).

For each θ ∈ Θ, the function h(s; θ)/h0(s) ∈ L2(S, ν0), i.e., for each θ ∈ Θ,∫
S

(
h(s; θ)

h0(s)

)2

dν0 <∞.
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According to the standard results in Hilbert spaces [Debnath and Mikusiński,

1999, p.g. 87-130], we have the expansion, for each (s, θ) ∈ S ×Θ,

h(s; θ) =
∞∑
j=0

uj(θ)ej(s)h0(s),

where for each j,

uj(θ) = 〈ej(s), h(s; θ)/h0(s)〉L2(S,ν0) .

Additional to the boundedness of hMix(s;Q) over S, the order of the integral and the

infinite sum in

hMix(s;Q) =

∫
Θ

∞∑
j=0

uj(θ)ej(s)h0(s)dQ

are exchangeable by the Fubini’s theorem. Therefore, we have the reparameterization

hν0(s;m∞) =
∞∑
j=0

mj(Q)ej(s)h0(s), (2.3)

where m∞ = (m0,m1, . . .)
T ∈ R∞ for each j,

mj(Q) =

∫
Θ

uj(θ)dQ <∞. (2.4)

After reparameterization, we have a model with a countable-dimensional parameter

m∞.

We may approximate the countable sum in (2.3) with a finite sum by truncating

the higher-order terms. It is

hν0(s;mJ) =
J∑
j=0

mjej(s)h0(s), (2.5)

wheremJ = (m0, . . . ,mJ)T ∈ RJ+1 and for each j, mj is defined in (2.4). If hMix(s;Q)

can be approximated by hν0(s;mJ) appropriately, we successfully reduce the dimen-

sion of the parameter from infinity to finite with a loss which we will quantify.
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2.2.2 Reparameterization with L2(Θ, µ0)

In the previous section, the reparameterization is based on the orthonormal ex-

pansion of h(s; θ) in the Hilbert space L2(S, ν0). In this section, we consider the

expansion in the L2(Θ, µ0) space induced by the measure space (Θ,Υ′, µ0), where µ0

is a measure with support Θ. Let µ0(θ) = w0(θ)µ(θ) with respect to a fixed measure

µ, typically Lebesgue or a counting measure, and w0(θ) is a strictly positive function

of θ ∈ Θ.

Let {υj(θ)}∞j=0 be a complete orthonormal system in L2(Θ, µ0). We make the

following assumption.

Regularity Condition 2.B (Square integrable of h(s; θ)/w0(θ)).

For each s ∈ S, the function h(s; θ)/w0(θ) ∈ L2(Θ, µ0), i.e., for each s ∈ S,∫
Θ

(
h(s; θ)

w0(θ)

)2

dµ0 <∞.

Similar to the previous section, we have the expansion in L2(Θ, µ0) that for each

(s, θ) ∈ S ×Θ,

h(s; θ) =
∞∑
j=0

υj(θ)ϕj(s)w0(θ),

where for each j,

ϕj(s) = 〈υj(θ), h(s; θ)/w0(θ)〉L2(Θ,µ0) .

Because hMix(s;Q) is bounded, we can change the order of the integrals by the Fubini’s

theorem and have the reparameterization

hµ0(s;m∞) =
∞∑
j=0

mj(Q)ϕj(s), (2.6)

where m∞ = (m0,m1, . . .)
T ∈ R∞ for each j,

mj(Q) =

∫
Θ

υj(θ)w0(θ)dQ <∞. (2.7)
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Again, we have a model with a countable-dimensional parameter m∞ after reparam-

eterization.

We further approximate (2.6) with a finite sum by truncating the higher order

terms. It is

hµ0(s;mJ) =
J∑
j=0

mjϕj(s), (2.8)

where mJ = (m0, . . . ,mJ)T ∈ RJ+1 and for each j, mj is defined in (2.7). When the

truncation approximation hµ0(s;mJ) is appropriate, the dimension of the model is

reduced to finite.

Reparameterizating hMix(s;Q) with either L2(S, ν0) or L2(Θ, µ0) depends on the

kernel function h(s; θ). When h(s; θ) is a NEF-QVF, the reparameterization with

L2(S, ν0) is natural; see Subsection 2.3.1. When h(s; θ) is the inverse of a link function

in a mixed-effects model, reparameterization with L2(Θ, µ0) would efficiently reduce

the parameters in the truncation approximation models; see Subsection 2.4.1 and

2.4.2. In certain cases, the two reparameterizations are equivalent; see Subsection

2.3.2.

2.2.3 Interpretation of the Parameters

The generalized moments of a distribution have been defined in Equation (2.2).

To interpret the parameters mJ in the truncation approximations (Equation (2.5)

and (2.8)) as the generalized moments, we need {uj(θ)}Jj=0 (or {υj(θ)w0(θ)}Jj=0) to

form a Chebyshev system (defined as follows) with u0(θ) ≡ 1 (or υ0(θ)w0(θ) ≡ 1).

Definition 2.2.1 (Chebyshev Systems).

The set of functions {uj(θ)}Jj=0 is a Chebyshev system over Θ ⊆ R, if we have that

det(ui(θj))
J
i,j=0 > 0 whenever θ0 < · · · < θJ and θj ∈ Θ, j = 0, . . . , J .

The class of Chebyshev system is wide; see [Karlin and Studden, 1966, p.g. 9-

20] for examples. An orthonormal basis is not necessarily a Chebyshev system. On

the other hand, a Chebyshev system is not necessarily orthonormal. However, we
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can obtain an orthonormal basis from a Chebyshev system by the Gram-Schmidt

process. We further prove that this orthonormal basis is still a Chebyshev system.

The following result can not be found in the existing literature.

Theorem 2.2.1.

Let {uj(θ)}Jj=0 with u0 ≡ 1 be a set of functions in L2(Θ, µ0) such that {uj(θ)}J−1
j=0

and {uj(θ)}Jj=0 form two Chebyshev systems over Θ. Also let {vj(θ)}Jj=0 be the or-

thonormal basis obtained by applying a Gram-Schmidt process sequentially to uj(θ),

j = 0, . . . , J , in L2(Θ, µ0). If each of {υj(θ)}Jj=0 is multiply appropriately by ±1,

the set of orthonormal functions is converted into a Chebyshev system, defined in

Definition 2.2.1.

The truncation approximations can be written as

hν0(s;mJ) = e0(s)h0(s) +
J∑
j=1

mjej(s)h0(s),

when u0(θ) ≡ 1, or

hµ0(s;mJ) =

∫
Θ

h(s; θ)/w0(θ)dθ +
J∑
j=1

mjϕj(s),

when υ0(θ)w0(θ) ≡ 1. According to the above expressions, the truncation approxima-

tions are locally defined by {ej(s)h0(s)}Jj=1 at e0(s)h0(s), or {ϕj(s)}Jj=1 at
∫

Θ
h(s; θ)/w0(θ)dθ.

2.2.4 Examination of the Truncation Approximations

In this subsection, we describe the way to examine approximation qualities of the

truncation approximations.

Let εν0,J(s;Q) be the approximation error of hν0(s;mJ), i.e.,

εν0,J(s;Q) =

∫
Θ

εν0,J(s; θ)dQ,

where

εν0,J(s; θ) =
∞∑

j=J+1

ej(s)h0(s)uj(θ).
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Also let εµ0,J(s;Q) be the approximation error of hµ0(s;mJ), i.e.,

εµ0,J(s;Q) =

∫
Θ

εµ0,J(s; θ)dQ,

where

εµ0,J(s; θ) =
∞∑

j=J+1

ϕj(s)υj(θ)w0(θ).

In the reparameterization with L2(S, ν0), it is natural to evaluate the approxima-

tion error εν0,J(s;Q) using the norm defined in L2(S, ν0) that is∥∥∥∥εν0,J(s;Q)

h0(s)

∥∥∥∥2

L2(S,ν0)

=

∫
S

(
εν0,J(s;Q)

h0(s)

)2

dν0

=
∞∑

j=J+1

(∫
Θ

uj(θ)dQ

)2

. (2.9)

However, this norm in L2(S, ν0) can not be applied to the evaluation of εµ0,J(s;Q),

because h(s; θ)/w0(θ) may not belong to the space L2(S, ν0).

Note that εν0,J(s;Q) (or εµ0,J(s;Q)) can be written as a convex combination of

εν0,J(s; θ) (or εµ0,J(s; θ)). We can study εν0,J(s; θ) (or εµ0,J(s; θ)) point-wisely over

(s, θ) ∈ S ×Θ. If εν0,J(s; θ) (or εµ0,J(s; θ)) is uniformly small over S ×Θ, we conclude

that the truncation approximation hν0(s;mJ) (or hµ0(s;mJ)) is appropriate.

2.3 Reparameterization in Mixture Models

The importance and challenges in mixture models has been described in Chapter

1. This section considers the one-parameter mixture models defined as follows.

Definition 2.3.1 (One-parameter Mixture Models).

Let f(x; θ) be a parametric density function which comes from a known family of

distributions

{f(x; θ) | θ ∈ Θ ⊆ R} .
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Let Q be a probability measure over Θ. Then, the distribution with the following

density function is a one-parameter mixture model

fMix(x;Q) =

∫
Θ

f(x; θ)dQ(θ),

where f(x; θ) is called the component distribution, Q(θ) the mixing distribution and

θ the mixing parameter.

The one-parameter mixture models is a subclass of the statistical models in (2.1),

because

fMix(x;Q) = Eθ [f(x; θ)] ,

by setting s = x and h(s; θ) = f(s; θ).

In Subsection 2.3.1 and 2.3.2, we give two examples of reparameterizing the one-

parameter mixture models under the framework given in Section 2.2. In Subsection

2.3.3, we examine the approximation quality in each example.

2.3.1 Moments induced by Power Functions

We consider the one-parameter mixture models, in which the mixing parameter

θ is the mean of the component distribution f(x; θ) and the mixing distribution

Q(θ) has mean θ0. Furthermore, the component distributions are natural exponential

models with quadratic variance functions. This class includes the normal, Poisson,

gamma, binomial and negative binomial families; see [Morris, 1982, 1983], and has

the following formal definition.

Definition 2.3.2 (NEF-QVF).

If f(x; θ) is a natural exponential family in the mean parameterization, then Vf (θ),

defined by Vf (θ) = EX [(X − θ)2], is called the variance function. If the variance

function Vf (θ) is quadratic with the form Vf (θ) = c0 + c1θ+ c2θ
2, then we say f(x; θ)

is a natural exponential family with quadratic variance function.

When the mixing distribution is localized at θ0, the mixture model fMix(x;Q) can

be expanded by the Laplace expansion; see [Marriott, 2002]. Here we describe this

33



NEF-QVF Polynomial

Normal Hermite

Poisson Poisson-Charlier

Gamma Generalized Laguerre

Binomial Krawtchouk

Negative Binomial Meixner

Table 2.1: NEF-QVF and their associated orthonormal polynomials.

process in the view of expanding by orthonormal basis. Following [Morris, 1982], we

define, for j = 0, 1, . . . ,

Pj(x; θ) =
V j
f (θ)

f(x; θ)

∂j

∂θj
f(x; θ),

where aj = j!
∏j−1

i=0 (1 + ic2) ≡ j!bj and V j
f (θ) is the jth power of the variance function

Vf (θ). The set of {Pj(x; θ)}∞j=0 forms an orthogonal polynomial system in the sense

that

〈Pi(x; θ0), Pj(x; θ0)〉L2(S,ν0) = δijajV
j
f (θ0),

where dν0(x) = f(x; θ0)dx; see [Morris, 1982]. For each j, it can be shown through

algebra that〈
Pj(x; θ0),

f(x; θ)

f(x; θ0)

〉
L2(S,ν0)

=

∫
S
Pj(x; θ0)f(x; θ)dx = bj(θ − θ0)j;

see [Morris, 1982]. Morris [1982] also pointed out that the orthogonal polynomial

systems {Pj(x; θ0)} are associated with different NEF-QVF; see Table 2.1.

For a given θ0 ∈ Θ, a mixture of NEF-QVF can be reparameterized as

fTy(x;m∞) = f(x; θ0) +
∞∑
j=2

mj(Q)
1

j!

Pj(x; θ0)

V j
f (θ0)

f(x; θ0),

where for each j = 1, 2, . . . ,

mj(Q) =

∫
Θ

(θ − θ0)jdQ(θ).
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Its truncation approximation is

fTy(x;mJ) = f(x; θ0) +
J∑
j=2

mj(Q)
1

j!

Pj(x; θ0)

V j
f (θ0)

f(x; θ0), (2.10)

where mJ = (θ0,m2, . . . ,mJ)T ∈ RJ . Because mJ is induced by the set of the power

functions {(θ − θ0)j}Jj=0, which forms a Chebyshev system, fTy(x;mJ) is parameter-

ized in the moments induced by the power functions.

2.3.2 Moments induced by Eigenfunctions of an Integral Op-

erator

This subsection considers the mixture models whose the component distributions

f(x; θ) are in the exponential family and Θ is a compact set in R. We further assume

that, for each θ ∈ Θ, f(x; θ)/f0(x) ∈ L2(S, ν0) where dν0 = f0(x)dx, and

f0(x) =
1

|Θ|

∫
Θ

f(x; θ)dθ > 0, for x ∈ S

and |Θ| be the Lebesgue measure of Θ. Note that f0(x) is well defined because Θ is

Lebesgue measurable under the compactness condition.

According to Equation (2.9), we see that the norm of εν0,J(x;Q)/f0(x) in L2(S, ν0)

depends on the unknown mixing distribution Q. Therefore, it is hard to find an

orthonormal basis in L2(S, ν0) which is optimal in the sense that the approximation

error is minimized. However, we may minimize the following upper-bound instead.

By the Cauchy-Schwarz inequality, we obtain the following upper-bound∥∥∥∥εν0,J(s;Q)

h0(s)

∥∥∥∥2

L2(S,ν0)

≤
∫

Θ

(
d

dθ
Q

)2

dθ ×
∞∑

j=J+1

∫
Θ

u2
j(θ)dθ.

When Q is either discrete or continuous on the compact set Θ, (d/dθ)Q is bounded.

Therefore, minimizing this upper-bound is equivalent to minimizing

∞∑
j=J+1

∫
Θ

u2
j(θ)dθ. (2.11)
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The optimal orthonormal basis in L2(S, ν0) can be found through a spectral de-

composition of an integral operator. Let φj(x) be the eigenfunction associated with

the jth largest eigenvalue of the integral operator

(Ag)(s) =

∫
S
g(x)K(x, x′)dx <∞, (2.12)

with the kernel function

K(x, x′) =

∫
Θ

f(x; θ)

f
1/2
0 (x)

f(x′; θ)

f
1/2
0 (x′)

dθ, (x, x′) ∈ S × S.

This integral operator is positive and self-adjoint, and thus its eigenvalues are all

positive; see [Debnath and Mikusiński, 1999, Section 4.4 and 4.6]. Because for any

θ ∈ Θ

f(x; θ) ≤
∫

Θ

f(x; θ)dθ = |Θ|f0(x),

we have, for each θ ∈ Θ,∫
Θ

∫
S
f 2(x; θ)/f0(x)dxdθ ≤

∫
Θ

∫
S
|Θ|f(x; θ)dxdθ = |Θ|2.

Therefore, the integral operator A(·) is Hilbert-Schmidt and thus compact. It follows

that the set of {φj(x)/f
1/2
0 (x)}∞j=0 forms the complete orthonormal basis in L2(S, ν0)

which minimizes (2.11), by the results of the functional principle decomposition in

[Horváth and Kokoszka, 2012].

Expanding f(x; θ) with the basis {φj(x)/f
1/2
0 (x)}∞j=0, we have

f(x; θ) = f0(x) +
∞∑
j=1

√
λjγj(θ)φj(x)f

1/2
0 (x),

where for each j, λj is the jth largest eigenvalue of A(·) and

γj(θ) =
1√
λj

∫
S
f(x; θ)φj(x)f

−1/2
0 (x)dx. (2.13)

The reparameterization of fMix(x;Q) is

fspec(x;m∞) = f0(x) +
∞∑
j=1

√
λjmjφj(x)f

1/2
0 (x), (2.14)
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and the truncation approximation is

fspec(x;mJ) = f0(x) +
J∑
j=1

√
λjmjφj(x)f

1/2
0 (x), (2.15)

where for each j,

mj =

∫
Θ

γj(θ)dQ.

With the following theorem, we can show that the reparameterization with L2(S, ν0)

is equivalent to the reparameterization with L2(Θ, µ0) in this case.

Theorem 2.3.1 (Representation of γj(θ)).

The eigenvalues λj, j = 0, 1, . . . , of A(·) are also the eigenvalues of the integral

operator

(A′g)(s) =

∫
Θ

g(θ)K ′(θ, θ′)dθ <∞,

with the kernel function

K ′(θ, θ′) =

∫
S

f(x; θ)

f
1/2
0 (x)

f(x; θ′)

f
1/2
0 (x)

dx, (θ, θ′) ∈ Θ×Θ. (2.16)

Moreover, the function γj(θ) is the eigenfunction associated with the jth largest eigen-

value of A′(·).

Proof. See the Appendix.

According to Theorem 2.3.1, the set of functions {γj(θ)}∞j=0 forms an orthonormal

basis in the space L2(Θ, µ), where µ is the Lebesgue measure, i.e., for each i and j,∫
Θ

γi(θ)γj(θ)dµ = δij.

It is also true that, for each j = 0, 1, . . .,

〈f(x; θ), γj(θ)〉L2(Θ,µ) = f
1/2
0 (x)

1√
λj

(A′φj)(x)

=
√
λjφj(x)f

1/2
0 (x). (2.17)
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Therefore, Equation (2.14) can also be viewed as a reparameterization with L2(Θ, µ).

Next, we show that {γj(θ)}Jj=0 forms a Chebyshev system with γ0(θ) ≡ 1/
√
|Θ|.

And thus, the parameter mJ in Equation (2.15) are the generalized moments of Q

induced by the eigenfunctions of A′(·).

Theorem 2.3.2.

For each J = 1, 2, . . ., the set {γj(θ)}Jj=0 forms a Chebyshev system over Θ. Moreover,

γ0(θ) ≡ 1/
√
|Θ|.

Proof. See the Appendix.

According to Equation (2.15), we have

|fspec(x;mJ)− fMix(x;Q)| =
∞∑

j=J+1

O(
√
λj), (2.18)

when for each j, mj is bounded. The decay of the eigenvalues is related to the

smoothness of the kernel function K ′(θ, θ′), (θ, θ′) ∈ Θ × Θ; see [Reade, 1983] and

[Ha, 1986].

Proposition 2.3.1 ([Ha, 1986]).

If K ′(θ, θ′) is positive definite and symmetric, and if the symmetric derivative

∂2r

∂θr∂θ′r
K(θ, θ′)

exists and is continuous on Θ×Θ, then for large j,

λj = O(j−2r−1).

Applying Equation (A.3) to Equation (2.18), we have the following result.

Corollary 2.3.1.

Suppose that the symmetric derivative

∂2r

∂θr∂θ′r
K(θ, θ′)
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exists and is continuous on Θ×Θ, where K ′(θ, θ′) is defined in Equation (2.16). Then

for large J ,

|fspec(x;mJ)− fMix(x;Q)| = O(J−r),

for each x ∈ S.

To illustrate the construction of the moments induced by the eigenfuncations of

A′(·), we give the following two examples.

Example 2.1 (Mixture of Poisson).

Let Θ = [0, 25] and

f0(x) =
1

25

∫ 25

0

Pois(x; θ)dθ,

where Pois(x; θ) is the probability function of the Poisson distribution with mean θ.

Figure 2.1 shows the largest 10 eigenvalues of the integral operator A(·), the functions

φj(x) and its associated γj(θ) corresponding to the largest 4 eigenvalues.

Example 2.2 (Mixture of Normal).

For each fixed σ2 ≥ 0, let Θ = [0, 0.7] and

f0(x) =
1

0.7

∫ 0.7

0

N (x; θ, σ2)dθ,

where N (x; θ, σ2) is the probability density function of the normal with mean θ and

variance σ2. For σ2 = 0.072, Figure 2.2 shows the largest 10 eigenvalues of the integral

operator A(·), the functions φj(x) and its associated γj(θ) corresponding to the largest

4 eigenvalues.

2.3.3 Quality of Truncation Approximation

We consider the quality of the two truncation approximations from two aspects:

the non-negative sets and approximation error.

As an approximation to a probability function, we wish the truncation approxi-

mation fν0(x;mJ) to behave like a probability function. In other words, the trunca-

tion approximation fν0(x;mJ) should satisfy the following two conditions: for each

J = 1, 2, . . . ,
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1. the integral of fν0(x;mJ) with respect to x over S is one;

2. for each x ∈ S, the truncation approximation fν0(x;mJ) must be strictly posi-

tive.

The first condition holds for either (2.10) or (2.15) because we have, for each

j = 1, 2, . . ., ∫
S
Pj(x; θ0)f(x; θ0)dx = 〈Pj(x; θ0), P0(x; θ0)〉L2(S,ν0) = 0

and ∫
S
φj(x)f

1/2
0 (x)dx =

1√
λj

∫
Θ

f(x; θ)γj(θ)dθ = 0.

However, the second condition is not always true. So, Marriott [2002, 2007] suggests

to add the non-negative conditions as constraints on the parameter space of mJ .

We return to Example 2.1 and 2.2 to examine the quality of the truncation ap-

proximations. Because each truncation approximation can be expressed as

fν0(x;mJ) =

∫
Θ

fν0(x;uJ(θ))dQ,

the non-negativeness of fν0(x;uJ(θ)) implies the non-negativeness of fν0(x;mJ), where

uJ(θ) = (u1(θ), . . . , uJ(θ))T ∈ RJ . And thus, we examine the negative region

of fν0(x;uJ(θ)) over S × Θ. We also consider the point-wise approximation error

εν0,J(s; θ) over S ×Θ defined in Subsection 2.2.4

Example 2.1 (continued).

Let u4(θ) = (u0(θ), . . . , u4(θ))T ∈ R5. We consider the cases where u4(θ) is induced by

either the power functions with θ0 = 12.5 or the eigenfunctions of A′(·). The function

fν0(x;uJ(θ)) is denoted by fTy(x;uJ(θ)) and fspec(x;uJ(θ)) correspondingly. Figure

2.3 shows the negative region of fν0(x;u4(θ)) over S × [0, 25] in these two cases.

Figure 2.4 examines the approximation error of each component. Various issues

of the reparameterization with power moments are seen from panel (a). Firstly, the

quality of the approximation is non-uniform at each point in the sample space. Sec-

ondly, the approximation is poor when θ is away from θ = θ0. This is due to the
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nature of the underlying Laplace approximation where a polynomial approximation

only behaves well in a small neighborhood of θ = θ0. On the other hand, from the

panel (b), we see that the quality of the approximation is almost uniform at each point

(x, θ) ∈ S ×Θ, when the moments are induced by the eigenfunctions of A′(·).

The above discussions are also supported in Figure 2.5. The approximation fTy(x;u4(θ))

to the probability function Pois(x; θ) is not appropriate when θ is away from θ0 = 12.5;

see the panel (a) and (c). The approximation fspec(x;u4(θ)) is not as good as fTy(x; θ)

when θ is in a neighborhood of θ0 = 12.5; see the panel (b). However, it is able to char-

acterize the shape of the probability function Pois(x; θ) when θ is away from θ0 = 12.5;

see the panel (a) and (c).

Example 2.2 (continued).

Consider a fixed σ2 = 0.072. Again consider u4(θ) = (u1(θ), . . . , u4(θ))T ∈ R4 and

u4(θ) is induced by either the power functions with θ0 = 0.35 or the eigenfunctions

of A′(·). Figure 2.6 shows the negative regions of fν0(x;u4(θ)) over S × [0, 0.7] under

these two types of reparameterizations. Also, Figure 2.7 gives the contour plots of

εν0,4(x; θ) over S × [0, 0.7]. From the panel (a), we see the non-uniform and local ap-

proximation properties of the reparameterization with the moments induced by power

functions. On the other hand, the quality of the approximation is more uniform,

when the moments are induced by the eigenfunctions of A′(·). This is also supported

by Figure 2.8.

2.4 Reparameterization in Mixed-Effects Models

Generalized linear mixed models has been widely used in longitudinal studies; see

[Diggle, 2002]. The following model is defined as the class of the generalized linear

mixed models (GLMMs).

Definition 2.4.1 (Generalized Linear Mixed Models).

Let Yn = (Yn1, . . . , YnTn)T ∈ RTn be a response vector, Xn = (XT
n1, . . . ,X

T
nTn

)T ∈
RTn×p be the covariates matrix to the fixed effects, Zn = (ZT

n1, . . . ,Z
T
nTn

)T ∈ RTn×q

be the covariates matrix to the random effects, and bn = (bn1, . . . , bnq)
T ∈ Rq be the
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random effects vector. Conditional on (Xn,Zn, bn), we assume that Yn follows a

multivariate distribution with mean

E [Yn |Xn,Zn, bn] = g−1
(
XT

n β +ZT
n bn

)
, (2.19)

where g−1(·) is the inverse of the link function g(·) and β ∈ Rp is the regression

parameter.

In Subsection 2.4.1 and 2.4.2, we consider the case that the random effect bn is

univariate. When the range of bn is compact, the GLMMs (2.19) can be reparame-

terized in the generalized moments induced by the Chebyshev polynomials. On the

other hand, the generalized moments induced by the Hermite polynomials are used,

when the range of bn is the real line. In Subsection 2.4.3, we consider the case that

the random effect is multivariate.

2.4.1 Moments induced by the Chebyshev Polynomials

In this subsection, we consider the GLMMs which have univariate random effects,

i.e.,

E [Ynt |Xnt, Znt, bn] = g−1
(
XT

ntβ + Zntbn
)
, (2.20)

where Znt ∈ R and bn ∈ B = [−1, 1]. Let s = XT
n β, θ = bn and h(s, θ) = g−1(s+Zntθ).

The mean of Ynt | (Xnt, Znt) is

U(s, Znt;Q) = E[Ynt |Xnt, Znt] = Eθ
[
g−1(s+ Zntθ)

]
,

which is the form of Equation (2.1).

For any random effect bn defined on [al, au] 6= [−1, 1], we can have a new random

effect

b′n =
2

au − al
bn −

al + au
au − al

, (2.21)

which has the range [−1, 1]. Then, the model can be written as

E [Ynt |Xnt, Znt, b
′
n] = g−1

(
XT

ntβ + Znt
(au − al)b′n

2
+ Znt

al + au
2

)
,
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which is the form of Equation (2.20).

Consider the space L2([−1, 1], µ0), where dµ0 = (1− b2)−1/2db. The Chebyshev

polynomials {Tj(x)}∞j=0 (defined as follows) form a complete orthogonal system in the

space L2([−1, 1], µ0); see [Boyd, 2001, p.g. 64]. Figure 2.9 shows the functions Tj(x)

and Tj(x)(1− x2)−1/4, j = 0, . . . , 3, where for each i and j,∫ 1

−1

Ti(x)(1− x2)−1/4 × Tj(x)(1− x2)−1/4dx = δij. (2.22)

Definition 2.4.2 (Chebyshev Polynomials).

The Chebyshev polynomial Tj(x) of the first kind is a polynomial in x of degree j,

defined by the relation for j = 2, 3, . . . ,

Tj+1(x) = 2xTj(x)− Tj−1(x)

with T0(x) = 1 and T1(x) = x.

Assume that g−1(s + Zntbn) belongs to L2([−1, 1], µ0) for each s ∈ S. Then the

Chebyshev expansion of g−1(s+ Zntbn) is

g−1(s+ Zntbn) =
1

2
c0(s, Znt)T0(bn) +

∞∑
j=1

cj(s, Znt)Tj(bn),

where for each j,

cj(s, Znt) =
2

π

∫ 1

−1

(1− b2)−1/2g−1(s+ Zntb)Tj(b)db.

The reparameterization of U(s, Znt;Q) is

UChebyshev(s, Znt;m∞) = c0(s, Znt) +
∞∑
j=1

cj(s, Znt)mj

and the truncation approximation is

UChebyshev(s, Znt;mJ) = c0(s, Znt) +
J∑
j=1

cj(s, Znt)mj
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where for each j ∈ {1, 2, . . .},

mj =

∫ 1

−1

Tj(b)dQ.

For each bn ∈ B, the truncation approximation of g−1(s+ Zntbn) is

UChebyshev(s, Znt; TJ(bn)) = c0(s, Znt) +
J∑
j=1

cj(s, Znt)Tj(bn),

where T J(b) = (T0(b), . . . ,TJ(b))T ∈ RJ+1.

The Chebyshev polynomials can be described as the result of the Gram-Schmidt

orthogonalization of the set of powers functions, {1, x, x2, . . .} on [−1, 1] with the

measure dµ0 = (1 − x2)−1/2dx; see [Walter and Shen, 2001, p.g. 114]. Therefore,

{Tj(x)}Jj=0 forms a Chebyshev system by Theorem 2.2.1. Additional to the fact that

T0(x) ≡ 1, the parameters mJ can be interpreted by the generalized moments of Q

induced by the Chebyshev polynomials.

If g−1(s + Zntbn) is continuously differentiable, finitely or infinitely many times,

the Chebyshev expansion converges fast; see Proposition 2.4.1.

Proposition 2.4.1 ([Mason and Handscomb, 2002, Theorem 5.14]).

Let {cj}Jj=0 be the coefficients in a Chebyshev expansion on [−1, 1]; defined in Equation

(A.2). If a function f(θ) has r + 1 continuous derivatives on [−1, 1], then∣∣∣∣∣f(θ)−
J∑
j=0

cjTj(θ)

∣∣∣∣∣ = O(J−r).

Because

|U(s, Znt;Q)− UChebyshev(s, Znt;mJ)|

=

∣∣∣∣∫ 1

−1

g−1(s+ Zntbn)− UChebyshev(s, Znt; TJ(bn))dQ

∣∣∣∣
≤
∫ 1

−1

∣∣g−1(s+ Zntbn)− UChebyshev(s, Znt; TJ(bn))
∣∣ dQ,

the truncation approximation UChebyshev(s, Znt;mJ) could converge to the true model

U(s, Znt;Q) fast; see Corollary 2.4.1.
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Corollary 2.4.1.

If g−1(s+ Zntbn) has r + 1 continuous derivatives with respect to bn on [−1, 1], then

|U(s, Znt;Q)− UChebyshev(s, Znt;mJ(Q))| = O(J−r)

for each s ∈ S and Znt ∈ R.

Some special functions can have explicit Chebyshev expansion (Example 2.3),

while other functions can be expanded numerically; see Example (2.4) and (2.5).

Example 2.3 (The Log-link Function).

The log-link function g(·) = log(·) is canonical in Poisson regression model; see [Dig-

gle, 2002]. According to [Mason and Handscomb, 2002, Equation (5.18)], we have the

expansion that

g−1(s+ Zntbn) = exp (s+ Zntbn)

= exp(s)

(
Bessel0(Znt)T0(bn) + 2

∞∑
j=1

Besselj(Znt)Tj(bn)

)
,

where s = XT
ntβ and Besselj(x) is the jth modified Bessel function of the first kind.

Suppose that the random effect bn has the range [−1, 1]. The truncation approximation

of U(s, Znt;Q) is

UChebyshev(s, Znt;mJ) = exp(s)

(
2Bessel0(Znt) + 2

J∑
j=1

Besselj(Znt)mj

)
,

where for each j,

mj =

∫ 1

−1

Tj(b)dQ.

Let Znt = 1 and J = 3. In Figure 2.10 (a), we examine the point-wise approxima-

tion error εµ0,3(s; bn) (see Subsection 2.2.4) for (s, bn) ∈ [−5, 5]× [−1, 1] and see that

the approximation is uniformly appropriate over the [−5, 5]× [−1, 1]; also see Figure

2.11.
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Example 2.4 (The Logit-link Function).

The logit-link function is common in the literature of regression models; see [Diggle,

2002]. The model is given by

E[Ynt |Xnt, Znt, bn] =
1

1 + exp(−XT
ntβ − Zntbn)

and

E[Ynt |Xnt, Znt] =

∫ 1

−1

1

1 + exp(−XT
ntβ − Zntbn)

dQ(bn).

Because 1/(1 + exp(−s− Zntbn)) ∈ [0, 1] for any Znt, bn and s,∫ 1

−1

(1− b2
n)−1/2(1 + exp(−s− Zntbn))−2dbn <∞

for each s ∈ R and Znt ∈ R. Let s = XT
ntβ, Znt = 1 and J = 3. In Figure 2.12 (a), we

examine the point-wise approximation error εµ0,3(s; bn) for (s, bn) ∈ [−5, 5] × [−1, 1]

and see that the approximation is appropriate uniformly over the [−5, 5] × [−1, 1].

Figure 2.13 also supports that UChebyshev(s, 1; T3(bn)) approximates 1/(1 + exp(−s −
bn)) appropriately.

Example 2.5 (The Tanh-link Function).

The hyperbolic link function is useful for modelling data that approaches an asymptote;

see [Vos, 1991]. The model is given by the nonlinear regression

E[Ynt |Xnt, Znt, bn] = tanh(XT
ntβ + Zntbn),

and

E[Ynt |Xnt, Znt] =

∫ 1

−1

tanh(XT
ntβ + Zntbn)dQ(bn).

Because tanh(s+ Zntbn) ∈ [−1, 1] for any Znt, bn and s, it is true that∫ 1

−1

(1− b2
n)−1/2 (tanh(s+ Zntbn))2 dbn <∞

for each s ∈ R and Znt ∈ R. Let s = XT
ntβ, Znt = 1 and J = 3. In Figure 2.14 (a), we

examine the point-wise approximation error εµ0,3(s; bn) for (s, bn) ∈ [−5, 5] × [−1, 1]

and see that the approximation is appropriate uniformly over the [−5, 5] × [−1, 1].

In Figure 2.15, we also see that UChebyshev(s, 1; T3(bn)) approximates tanh(s + bn)

appropriately.
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2.4.2 Moments induced by the Hermite Polynomials

In this subsection, we still consider the GLMMs with a univariate random effect

bn ∈ R. Consider the space L2(R, µ0), where dµ0 = exp(−b2)db. The Hermite

polynomials {Hj(x)}∞j=0 (defined as follows) form a complete orthogonal system in

the space L2(R, µ0); see [Boyd, 2001, p.g. 64]. Figure 2.16 shows the functions Hj(x)

and Hj(x) exp(−x2/2), j = 0, . . . , 3, where for each i and j,∫ ∞
−∞

Hi(x) exp(−x2/2)× Hj(x) exp(−x2/2)dx = δij.

Definition 2.4.3 (Hermite Polynomials).

The Hermite polynomial Hj(x) is a polynomial in x of degree j, defined by the relation

for j = 2, 3, . . . ,

xHj(x) = 1/2Hj+1(x) + jHj−1(x)

with H0(x) = 1 and H1(x) = 2x.

Assume that g−1(s+Zntbn) belongs to L2(R, µ0) for each s ∈ S. Then the Hermite

expansion of g−1(s+ Zntbn) is

g−1(s+ Zntbn) =
∞∑
j=0

cj(s, Znt)Hj(bn),

where for each j,

cj(s, Znt) =
(
π1/22j(j!)

)−1/2
∫
R

exp(−b2)g−1(s+ Zntb)Hj(b)db.

Then, we have the reparameterization

UHermite(s, Znt;m∞) =
∞∑
j=0

cj(s, Znt)mj

and the truncation approximation

UHermite(s, Znt;mJ) = c0(s, Znt) +
J∑
j=1

cj(s, Znt)mj
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where for each j = {1, 2, . . .},

mj =

∫
R

Hj(b)dQ.

For each bn ∈ B, the truncation approximation of g−1(s+ Zntbn) is

UHermite(s, Znt;H J(bn)) = c0(s, Znt) +
J∑
j=1

cj(s, Znt)Hj(bn),

where H J(b) = (H0(b), . . . ,HJ(b))T ∈ RJ+1.

The Hermite polynomials can be obtained from the Gram-Schmidt orthogonal-

ization of the set of power functions {1, 2x, (2x)2, . . .} on R with measure dµ0 =

exp(−x2)dx; see [Walter and Shen, 2001, p.g. 121]. Therefore, {Hj(x)}Jj=0 forms a

Chebyshev system by Theorem 2.2.1. Additional to the fact that H0(x) ≡ 1, the

parameters mJ can be interpreted by the generalized moments of Q induced by the

Hermite polynomials.

Similar to the Chebyshev expansion, the Hermite expansion converges fast, if

g−1(s + Zntbn) is continuously differentiable, finitely or infinitely many times; see

Proposition 2.4.2.

Proposition 2.4.2.

Let {cj}Jj=0 be the coefficients in the Hermite expansion on R. If f(s) is such that

(∂r/∂sr) f(s) and srf(s) are bounded and integrable on R for each s ∈ R, then∣∣∣∣∣f(s)−
J∑
j=0

cjHj(s)

∣∣∣∣∣ = O(J−r/2+1).

Because

|U(s, Znt;Q)− UHermite(s, Znt;mJ)|

=

∣∣∣∣∫
R
g−1(s+ Zntbn)− UHermite(s, Znt;H J(bn))dQ

∣∣∣∣
≤
∫
R

∣∣g−1(s+ Zntbn)− UHermite(s, Znt;H J(bn))
∣∣ dQ,

the truncation approximation UHermite(s, Znt;mJ) converges to U(s, Znt;Q) fast; see

Corollary 2.4.2.
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Corollary 2.4.2.

If the function g−1(s+Zntbn) is such that (∂r/∂brn) g−1(s+Zntbn) and brng
−1(s+Zntbn)

are bounded and integrable on R for each bn ∈ R and s ∈ S, then

|U(s, Znt;Q)− UHermite(s, Znt;mJ(Q))| = O(J−r/2+1),

for each s ∈ S and Znt ∈ R.

We continue the following example to illustrate the Hermite expansion in GLMMs.

Example 2.3 (continued).

According to [Lebedev, 1972, p.g. 74], we have the expansion that

g−1(s+ Zntbn) = exp(s+ Zntbn)

= exp
(
s+ Z2

nt/4
)( ∞∑

j=0

1

j!

(
Znt
2

)j
Hj(bn)

)
,

where s = XT
ntβ. The truncation approximation of Unt(s;Q) is

UHermite(s, Znt;mJ) = exp
(
s+ Z2

nt/4
)( ∞∑

j=0

1

j!

(
Znt
2

)j
mj

)
,

where for each j,

mj =

∫
R

Hj(b)dQ.

Let Znt = 1 and J = 3. Figure 2.10 (b) presents the point-wise approximation error

εµ0,3(s; bn) for (s, bn) ∈ [−5, 5]×[−1, 1]. And Figure 2.11 shows that UHermite(s, 1;H 3(bn))

can not appropriately approximate exp(s+ bn) for some bn ∈ [−1, 1]. We need to in-

crease J to improve the quality of the approximation.

Because for each s, Znt and bn, it is true that

(1 + exp(−s− Zntbn))−2 ∈ [0, 1],

and

(tanh(s+ Zntbn))2 ∈ [0, 1],

65



we have ∫
R
(1 + exp(−s− Zntbn))−2dµ0 <∞

and ∫
R

(tanh(s+ Zntbn))2 dµ0 <∞

for each s ∈ R and Znt ∈ R. Therefore, the Hermite expansions of the logit-link

function and the tanh-link function are valid. The point-wise approximation errors

εµ0,3(s; bn) of the logit-link function and the tanh-link function, when the moments

are induced by the Hermite polynomials, can be found in Figure 2.12 and 2.14 cor-

respondingly. From these examples, it is observed that UHermite(s, Znt;mJ) may not

approximate as well as UChebyshev(s, Znt;mJ); see also Figure 2.13 and 2.15. The

reason is that the range of bn is the real line in the Hermite expansion, while it is

[−1, 1] in the Chebyshev expansion. This observation also supports the fact that the

Hermite expansion has a slower convergence rate than the Chebyshev expansion; see

Corollary 2.4.1 and 2.4.2.

2.4.3 Extension to Multivariate Random Effects

Many GLMMs have multivariate random effects; see [Diggle, 2002]. A univariate

orthonormal basis for a function can be extended to a multivariate on by using tensor

product (defined as below).

Definition 2.4.4 (Tensor Product Basis).

If {ekj(x)}∞j=0 is an orthonormal basis of a Hilbert space Hk for k = 1, . . . , q, the

functions {
q∏

k=1

ekjk(xk), for each jk = 0, 1, . . .

}
form an orthonormal basis for H1 × · · · ×Hq, called the tensor product basis.

Here we reparameterize the inverse of the link function in a GLMM with a bivari-

ate random effect by the tensor product basis induced by the Hermite polynomials.
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Similar procedure can be extended to any orthonormal basis for a univariate func-

tional space. Consider a GLMM with a bivariate random effect, i.e.,

E [Ynt |Xnt,Znt, bn] = g−1
(
XT

ntβ + Znt1bn1 + Znt2bn2

)
,

where Znt = (Znt1, Znt2)T ∈ R2 and bn = (bn1, bn2)T ∈ R2. Let s = XT
ntβ ∈ S.

Assume that g−1 (s+ Znt1bn1 + Znt2bn2) belongs to L2(R, µ0) × L2(R, µ0) for each

s ∈ S, where dµ0 = exp(−b2)db.

Because the Hermite polynomials form an orthogonal basis of L2(R, µ0), the tensor

product basis induced by the Hermite polynomials for L2(R, µ0)× L2(R, µ0) is

{Hj1j2(bn) = Hj1(bn1)Hj2(bn2), for each j1 = 0, 1, . . . and j2 = 0, 1, . . . } .

Then, we have the bivariate Hermite expansion

g−1(XT
ntβ +ZT

ntbn) =
∞∑
j1=0

∞∑
j2=0

cj1j2(s,Znt)Hj1j2(bn),

where for each j1 and j2,

cj1j2(s,Znt) = π−1/2
(
2(j1+j2)j1!j2!

)−1/2
∫
R2

g−1(XT
ntβ +ZT

ntbn)Hj1j2(bn)dbn.

The reparameterization is

UHermite(s,Znt;m∞) =
∞∑
j1=0

∞∑
j2=0

cj1j2(s,Znt)mj1j2 ,

and the truncation approximation is

UHermite(s,Znt;mJ1J2) =

J1∑
j1=0

J2∑
j2=0

cj1j2(s,Znt)mj1j2 ,

where mJ1J2 is a vector in RJ1J2 whose elements

mj1j2 =

∫
R2

Hj1j2(bn)dQ, for j1 = 0, . . . , J1, j2 = 0, . . . , J2,

and Q is the probability measure of the vector bn ∈ R2. Note that the parameter

mJ1J2 can not be interpreted as the generalized moments of Q in Definition 2.2,

because the Chebyshev system is not defined on R2.
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If we further assume that bn1 and bn2 are independent and have distribution Q1

and Q2 on Θ correspondingly, we have

UHermite(s,Znt;mJ1 ,m
′
J2

) =

J1∑
j1=0

J2∑
j2=0

cj1j2(s,Znt)mj1m
′
j2
,

where mJ1 = (m1, . . . ,mJ1)
T ∈ RJ1 and m′J2 = (m′1, . . . ,m

′
J2

)T ∈ RJ2 , and

mj =

∫
Θ

Hj(bn1)dQ1, for j = 0, . . . , J1,

and

m′j =

∫
Θ

Hj(bn2)dQ2 for j = 0, . . . , J2.

Now, the parameters mJ1 and mJ2 can be interpreted as the generalized moments of

Q1 and Q2 induced by the Hermite polynomials.

Appendix: A

A.1 Strictly Totally Positive Kernel Functions

The strictly totally positive kernel functions and Chebyshev systems are defined

in the following ways in [Karlin and Studden, 1966]. In this subsection, the set Θ is

assumed to be compact.

Definition A.1 (Strictly Totally Positive).

A real valued kernel function K(s, θ), (s, θ) ∈ S × Θ ⊆ R2, is called strictly totally

positive of order r, if for each J = 1, . . . , r, we have det(K(si, θj))
J
i,j=0 > 0, whenever

s0 < · · · < sr, θ0 < · · · < θr and (si, θj) ∈ S ×Θ, i, j = 0, . . . , r.(s,s’)

Consider a kernel function for (s, s′) ∈ S × S ′ ⊆ R2,

K∗(s, s′) =

∫
Θ

L(s, θ)M(s′, θ)dθ, (A.1)

where L(s, θ), (s, θ) ∈ S ×Θ ⊂ R2 and M(s′, θ), (s′, θ) ∈ S ′ ×Θ ⊂ R2. The following

proposition is proved in [Karlin and Studden, 1966].

68



Proposition A.1.

If the kernel function in (A.1) exists for each (s, s′) ∈ S×S ′ and L(s, θ) and M(s′, θ)

are strictly totally positive, then K(s, s′) is strictly totally positive.

Pinkus [1996] further stated that the eigenfuctions from a strictly totally positive

kernel function could also form a Chebyshev system.

Proposition A.2.

Let

(A′g)(θ) =

∫
Θ

g(θ)K ′(θ, θ′)dθ,

be a compact, self-adjoint, positive integral operator in the form of (2.12). More-

over, the kernel function K ′(θ, θ′) is strictly totally positive over Θ × Θ. Then, the

integral operator A′(·) has the eigenvalues λ0 > λ1 > · · · > 0 and associated eigen-

functions φ0(θ), φ1(θ), . . ., which are continuous over Θ. For each J = 1, 2, . . ., the

set {φi(θ)}Ji=0 forms a Chebyshev system over Θ. Moreover, φ0(θ) is strictly one sign

on Θ.

A.2 Asymptotic Coefficients of Orthogonal Polynomials Ex-

pansion

Consider the orthonormal polynomials {Pj(s)}∞j=0 defined by the measure µ0 on

S. That is for each i and j, ∫
S
Pi(s)Pj(s)dµ0 = δij.

We have the expansion of a function f(s) by {Pj(s)}∞j=0 such that that

f(s) =
∞∑
j=0

cjPj(s),

where for each j

cj =

∫
S
f(s)Pj(s)dµ0 (A.2)
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is known as the jth coefficient in the expansion.

When {Pj(s)}∞j=0 is either the normalized Chebyshev or Hermite polynomials, the

polynomial Pj(s) is bounded for each s and j; see [Boyd, 2001, p.g. 47] and [Boyd,

1984]. Therefore, we have∣∣∣∣∣f(s)−
J∑
j=0

cjPj(s)

∣∣∣∣∣ ≤M

∞∑
j=J+1

|cj|,

where M is a positive constant. When cj decays fast, we may have∣∣∣∣∣f(s)−
J∑
j=0

cjPj(s)

∣∣∣∣∣ = O(cJ);

see [Boyd, 1984]. For such a reason, it is important to study the asymptotic properties

of cJ , as J goes to infinity; see [Boyd, 2001] and [Mason and Handscomb, 2002]. With

the fact in [Orszag and Bender, 1999, p.g. 379] that, for large J and fixed r,

∞∑
j=J+1

1

jr
= O

(
1

(r − 1)Jr−1

)
, (A.3)

Proposition 2.4.1 and 2.4.2 are obtained from the following two propositions.

Proposition A.3 ([Mason and Handscomb, 2002, Equation (5.100)]).

Let {cj}Jj=0 be the coefficients in a Chebyshev expansion on [−1, 1]. If f(s) has r + 1

continuous derivatives on [−1, 1], then

|cJ | = O(J−r−1).

Proposition A.4 ([Boyd, 1984]).

Let {cj}Jj=0 be the coefficients in a Hermite expansion on R. If f(s) is such that

(∂r/∂sr) f(s) and srf(s) are bounded and integrable on R for all real s, then

|cJ | = O(J−r/2).

A.3 Proof of Theorem 2.2.1

Proof. We use mathematical induction to prove this theorem. Note that v0(x) is a

constant function and it forms a Chebyshev system over S. All we need to show is

that {vj(s)}Jj=0 forms a Chebyshev system if {vj(s)}J−1
j=0 forms a Chebyshev system.
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Let u(J−1)(θ) = (u0(θ), . . . , uJ−1(θ))T and v(J−1)(θ) = (v0(θ), . . . , vJ−1(θ))T be two

vectors in RJ . Because {vj(θ)}J−1
j=0 forms an orthonormal system for {uj(θ)}J−1

j=0 , there

exists a unique J×J full-rank matrix B with respect to L2(Θ, µ0) such that, for each

θ ∈ Θ,

u(J−1)(θ) = Bv(J−1)(θ).

For any θ0 < · · · < θJ−1, let U(J−1) =
[
u(J−1)(θ0), . . . ,u(J−1)(θJ−1)

]
be a J × J

matrix and V(J−1) =
[
v(J−1)(θ0), . . . ,v(J−1)(θJ−1)

]
be a J × J matrix. We have

U(J−1) = BV(J−1).

It follows that

detU(J−1) = detB detV(J−1).

Because both detU(J−1) and detV(J−1) are positive, we have detB > 0.

For any θ0 < · · · < θJ , there exists a vector C = (cT
(J−1), cJ)T ∈ RJ+1 such that

uT
(J) =

[
cT

(J−1) cJ

] [V(J−1,J)

vT
(J)

]
,

where u(J) = (uJ(θ0), . . . , u(J)(θJ))T ∈ RJ+1 and v(J) = (vJ(θ0), . . . , vJ(θJ))T ∈ RJ+1,

and c(J−1) ∈ RJ and cJ is a scalar. Without losing generality, let cJ > 0. Let

U(J−1,J) =
[
u(J−1)(θ0), . . . ,u(J−1)(θJ)

]
be a J × (J + 1) matrix and V(J−1,J) =[

v(J−1)(θ0), . . . ,v(J−1)(θJ)
]

be a J × (J + 1) matrix. Then, we have[
B 0

cT
(J−1) cJ

][
V(J−1,J)

vT
(J)

]
=

[
U(J−1,J)

uT
(J)

]
= U(J).

We can obtain that

detU(J) = det

([
B 0

cT
(J−1) cJ

][
V(J−1,J)

vT
(J)

])
= cJ det (B) detV(J).

Because det(B) > 0 and cJ > 0 and detU(J), we have detV(J) > 0, for any θ0 <

· · · < θJ . In other words, {vj(θ)}Jj=0 forms a Chebyshev system.
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A.4 Proof of Theorem 2.3.1

Proof. We show that γj(θ) in (2.13) is an eigenfunction associated with the eigenvalue

λj of A′(·). Because γj(θ) is bounded over Θ, by changing the order of integrals, we

have, for each j,

λjγj(θ) = λj

∫
S

φj(x)

f
1/2
0 (x)

f(x; θ)dx

=

∫
S

f(x; θ)

f
1/2
0 (x)

∫
S
φj(x

′)K(x, x′)dx′dx

=

∫
Θ

∫
S

φj(x)

f
1/2
0 (x)

f(x; θ′)

f0(x)
f0(x)dx

∫
S

f(x′; θ)f(x′; θ′)

f0(x)
dx′dθ′

=

∫
Θ

γj(θ
′)K ′(θ, θ′)dθ′.

A.5 Proof of Theorem 2.3.2

Proof. The concept of strictly totally positive is given in Definition A.1. The prob-

ability function f(x; θ) is an exponential family and thus is strictly totally positive;

see [Lindsay and Roeder, 1993]. According to Proposition A.1, the kernel function

K ′(θ, θ′) is strictly totally positive. Therefore, the set of eigenfuctions {γj(θ)}Jj=0

forms a Chebyshev system over Θ and γ0(θ) is strictly one-sign over Θ, by Proposi-

tion A.2.

Because γ0(θ) ≡ 1/
√
|Θ| is strictly positive over Θ, we need to show that it is an

eigenfunction of the integral operator with the kernel K ′(θ, θ′). We have∫
Θ

γ0(θ)K ′(θ, θ′)dθ =

∫
Θ

γ0(θ)

∫
S

f(s; θ)

f
1/2
0 (x)

f(x; θ′)

f
1/2
0 (x)

dxdθ = |Θ|1/2 = |Θ|γ0(θ′).
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Chapter 3

Geometry of the Generalized

Moment Space

3.1 Introduction

In the previous chapter, we introduce the truncation approximations of the repa-

rameterized mixture (or mixed-effects) models, which are in the form of

hν0(s;mJ) = e0(s)h0(s) +
J∑
j=1

mjej(s)h0(s),

where mJ = (m0, . . . ,mJ)T ∈ RJ+1 and for each j,

mj =

∫
Θ

uj(θ)dQ

and Q is a probability measure over Θ. Furthermore, {uj(θ)}Jj=0 forms a Chebyshev

system with u0(θ) ≡ 1. Note that the truncation approximation hµ0(s;mJ) also have

a similar expression. Because we do not use the orthonormal property of {ej(s)}Jj=0

in L2(S, ν0), we only discuss hν0(s;mJ) in this chapter without losing generality.

The generalized moment space, defined as follows, is a natural parameter space of

mJ in hν0(s;mJ).
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Definition 3.1.1 (Generalized Moment Space).

Let {uj(θ)}Jj=0 form a Chebyshev system over a compact set Θ ⊆ R with u0(θ) ≡ 1.

The generalized moment space in RJ+1 induced by {uj(θ)}Jj=0 is

MJ =

{
mJ = (1,m1, . . . ,mJ)T ∈ RJ+1 |mJ =

∫
Θ

uJ(θ)dQ

}
, (3.1)

where uJ(θ) = (u0(θ), . . . , uJ(θ))T ∈ RJ+1 and Q is a probability measure over Θ.

In this chapter, we study the geometry of the parameter space MJ . As we will

see, convex geometry provides a helpful tool to link the generalized moments mJ

to the probability measure Q. We describe this link from two aspects: the positive

reparameterization and the gradient characterization. The positive representation

reveals the identifiability of Q by its generalized moments mJ and provides an upper

bound of the number of the support points of Q; see Section 3.3. On the other hand,

the gradient characterization provides the foundation of the class of gradient-based

algorithms when the feasible set is the generalized moment space; see Section 3.4.

This chapter is organized as follows. In Section 3.2, we introduce the concept of

the generalized moment cone and point out its connection to the generalized moment

space. In Section 3.3 and 3.4, we describe the positive representation and the gradient

characterization correspondingly. The proof of the theorems in this chapter can be

found in the Appendix B.

3.2 Generalized Moment Cone

We introduce the generalized moment cone induced by a Chebyshev system. The

generalized moment cone is of interest, because the boundary of the generalized mo-

ment space is a subset of the boundary of the generalized moment cone, whose geom-

etry has been well studied; see [Karlin and Studden, 1966, Chapter 2].

Assume that each element of the Chebyshev system {uj(θ)}Jj=0 is a continuous

function of θ over Θ = [a, b] and u0(θ) ≡ 1. When θ moves from a to b, the trace of

uJ(θ) ∈ RJ+1 forms the moment curve ΓJ in RJ+1.
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Definition 3.2.1 (Generalized Moment Cone).

Let {uj(θ)}Jj=0 form a Chebyshev system over a compact set Θ ⊆ R with u0(θ) ≡ 1.

The conical cone of the curve ΓJ is called the generalized moment cone induced by

{uj(θ)}Jj=0, that is

CJ =

{
c = (c0, . . . , cJ)T ∈ RJ+1 | c =

∫ b

a

uJ(θ)dσ(θ)

}
,

where σ(θ) is a nondecreasing right continuous function of bounded variation and

θ ∈ [a, b].

The generalized moment cone contains the convex hull of ΓJ+1, which is the

generalized moment space MJ , because for each mJ ∈ MJ , the vector mJ =∫ b
a
uJ(θ)dQ(θ), where Q(θ) is a probability measure over [a, b]. Moreover, we give

the following result; also see Example 3.1.

Theorem 3.2.1.

If u0(θ) ≡ 1 in a Chebyshev system {uj(θ)}Jj=0 over [a, b], then the boundary of MJ

is a subset of the boundary of the generalized moment cone CJ induced by {uj(θ)}Jj=0.

Proof. See the Appendix.

3.3 Positive Representation

As will be shown, a positive representation of a vector mJ ∈ MJ corresponds to

a probability measure Q. To illustrate the positive representation of a nonzero vector

in MJ , we need to first introduce the positive representation and its index.

Definition 3.3.1 (Positive Representation).

A nonzero vector c has a positive representation in a Chebyshev system {uj(θ)}Jj=0,

if it can be written in the form of

c =
r∑
i=1

aiuJ(θi), (3.2)

where uJ(θ) ∈ ΓJ , a ≤ θ1 < · · · < θr ≤ b and ai > 0, i = 1, . . . , J . If
∑r

i=1 ai = 1,

the positive representation (3.2) is called a convex representation.
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To evaluate the complexity of the positive representation of a nonzero vector

c ∈ RJ+1, the index of a positive representation is introduced.

Definition 3.3.2 (Index of a Positive Representation).

Let

I(θ) =

{
1, if θ ∈ (a, b);

1/2, if θ = a or b.

If c has the positive representation (3.2), the index of c, denoted by I(c), is
∑r

i=1 I(θi).

According to Carathéodory’s theorem, for each vector mJ ∈ MJ , there exists a

convex representation of mJ by {uj(θ)}Jj=0 with r ≤ J + 1. We have the following:

Theorem 3.3.1.

For each mJ ∈MJ , the generalized moment space, there exists a probability measure

Q(θ) such that mJ =
∫ b
a
uJ(θ)dQ(θ) and Q(θ) has at most J + 1 support points over

[a, b].

If we further assume mJ is on the boundary of MJ , the upper bound of the

number of support points can be sharpened using the following proposition.

Proposition 3.3.1 ([Karlin and Studden, 1966, Theorem 2.1]).

A nonzero vector c is a boundary point of CJ the generalized moment cone, induced

by {uj(θ)}Jj=0 over [a, b] if and only if I(c) < (J + 1)/2. Moreover, its positive

representation is unique with r ≤ (J + 2)/2.

With Proposition 3.3.1 and Theorem 3.2.1, we have the following.

Theorem 3.3.2.

If mJ is on the boundary of MJ , there exists one unique probability measure Q(θ)

such that mJ =
∫ b
a
uJ(θ)dQ(θ) and Q(θ) has at most (J + 2)/2 support points.

Example 3.1.

Figure 3.1 shows the generalized moment cones C2 induced by the power functions

{θj}2
j=0 and the Chebyshev polynomials {Tj(θ)}2

j=0, where θ ∈ [−1, 1]. In each plot,

the curve Γ2 is induced by the corresponding Chebyshev system.
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The boundary of C2 contains the boundary of M2; see Theorem 3.2.1. The bound-

ary vectors ofM2 are either u2(θ) ∈ R3 or (1−α)u2(−1)+αu2(1), where 0 < α < 1.

Therefore, the index of a boundary vector is either 1 or 1/2; see Theorem 3.3.2. On

the other hand, if the index of a vector is less than 3/2, it must locate on the bound-

ary. Moreover, when m2 is on the boundary, it uniquely corresponds to a probability

measure. For example, one point on Γ2 is the image of h(s; 0) in R3, where h(s; θ) is

the component of hMix(s;Q) in Equation (2.1).

3.4 Gradient Characterization

The gradient characterization is useful for computational algorithms. In the lit-

erature of the NPMLE for mixture models, there exists a class of computational al-

gorithms based on the same convex structure as considered here; see [Böhning et al.,

1992] and [Wang, 2007]. This class has more stable computational speeds than the

EM algorithm, which is also commonly used for mixture models.

In this subsection, we consider the following optimization problem

min
mJ∈MJ

L(mJ) (3.3)

where L(mJ) is an arbitrary loss function and strictly convex with respect to mJ .

Since the optimization problem (3.3) is convex, its solution m̂J is unique in MJ .

There exists a supporting hyperplane of MJ at m̂J such that

H =
{
h = (1, h1, . . . , hJ)T ∈ RJ+1 | (m̂J − h)T5L(m̂J) = 0

}
.

The following theorem states the relationship between H and the support points of

Q̂ in Theorem 3.3.2.

Theorem 3.4.1.

Let Θ̂ be the set of support points of Q̂. Then, if a point θ̂ ∈ [a, b] is an element of

Θ̂, then uJ(θ̂) is on the hyperplane H. The converse also holds.

Proof. See the Appendix.

77



F
ig

u
re

3.
1:

P
lo

ts
of

th
e

m
om

en
t

co
n
es

in
d
u
ce

d
b
y

(a
)
{θ

j
}2 J

=
0
;

an
d

(b
)
{T

j
(θ

)}
2 j=

0
.

78



The above theorem also implies that Θ̂ is the set of zeros of the gradient function

of the objective function L(mJ) which is defined as

D(m̂J ,uJ(θ)) =
∂

∂ε
L((1− ε)m̂J + εuJ(θ))

∣∣∣∣
ε=0

= (uJ(θ)− m̂J)T5L(m̂J).

Moreover, we can use the gradient function to characterize m̂J as follows.

Theorem 3.4.2.

The following three statements are equivalent:

1. m̂J minimizes L(mJ).

2. infθD(m̂J ,uJ(θ)) = 0.

3. m̂J maximizes infθD(mJ ,uJ(θ)).

Proof. See the Appendix.

Now, we continue Example 3.1 to illustrate Theorem 3.4.1 and 3.4.2.

Example 3.1 (continued).

In each panel of Figure 3.2, we see the images of the curve Γ2 induced by {1,T1(θ),T2(θ)}
and its convex hullM2 in the space of (m1,m2) ∈ R2. The contours show the identical

values of the objective function

L(m2) = (t−m2)T(t−m2),

where m2 = (1,m1,m2)T ∈ R3 and t = (−0.7,−1, 0)T ∈ R3. Because t /∈ M2,

L(m2) is strictly convex with respect to m2. The minimum value of L(m2) over M2

is 0.1825. As we see, the contour L(m2) = 0.1825 has a unique intersection m̂2 with

M2. Moreover, the intersection m̂2 is on the boundary of M2. In Figure 3.2(a),

the solid line represents the supporting hyperplane H of M2 at m̂2. Here we have

m̂2 = u2(θ̂) ∈ H; see Theorem 3.4.1.

Moreover, 5L(m̂2) is orthogonal to the supporting hyperplane. For any vector

u2(θ) 6= m̂2 on Γ2, we have the vector u2(θ) − m̂2. From Figure 3.2(a), it can be
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seen that the angle ψ ∈ [0, π] between 5L(m̂2) and u2(θ) − m̂2 is always acute.

Therefore, we have

cos(ψ) =
D(m̂2,u2(θ))√

(u2(θ)− m̂2)T(u2(θ)− m̂2)
√

(5L(m̂2))T(5L(m̂J))
> 0;

see Theorem 3.4.2 (2). It is also obvious that cos(ψ) = 0 if and only if u2(θ) = m̂2. In

Figure 3.2(b), we see that for any m′2 6= m̂2 in M2, there always exists a u2(θ) ∈ Γ2

such that the angle ψ′ between 5L(m′2) and u2(θ′) −m′2 is obtuse. It follows that

infθD(m′2,u2(θ′)) < 0; see Theorem 3.4.2 (3).

Appendix: B

B.1 Proof of Theorem 3.2.1

Proof. We want to show that for each boundary vector m∗J of MJ , there exists a

supporting hyperplane of MJ at m∗J which is also a supporting hyperplane of CJ at

m∗J .

Firstly, the convex hull MJ is the intersection of CJ and the hyperplane H1 ={
h = (1, h1, . . . , hJ)T ∈ RJ+1

}
. Then, inH1, there exists a vector ãJ = (ã1, . . . , ãJ)T ∈

RJ such that for each mJ ∈MJ , we have

J∑
j=1

mj ãj ≥
J∑
j=1

m∗j ãj.

Let ã0 = −
∑J

j=1 m
∗
j ãj. For each mJ ∈MJ , we have

J∑
j=0

mj ãj ≥
J∑
j=0

m∗j ãj.

Therefore, the vector ã = (ã0, ã
T
J )T ∈ RJ+1 determines the hyperplane{

h ∈ RJ+1|(h−m∗J)Tã = 0
}

(B.1)

as a supporting hyperplane of MJ at m∗J .
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Note that any vector in CJ can be written as ∆mJ , where ∆ ≥ 0 and mJ ∈MJ .

We have the inequality:

J∑
j=0

(∆mj −m∗j)ãj = (∆− 1)ã0 +
J∑
j=1

(∆mj −m∗j)ãj

= (1−∆)
J∑
j=1

m∗j ãj +
J∑
j=1

(∆mj −m∗j)ãj

= ∆
J∑
i=1

(mj −m∗j)ãj ≥ 0,

and thus the hyperplane (B.1) is also a supporting hyperplane of CJ .

B.2 Proof of Theorem 3.4.1

Proof. Because H is a supporting hyperplane of MJ at m̂J , we have for any point

m′J ∈MJ but /∈ H,

(m̂J −m′J)T5L(m̂J) < 0.

Assume that there exists a θ̂ ∈ Θ̂ such that uJ(θ̂) /∈ H. Then,

D(m̂J ,u(θ̂)) = (m̂J − u(θ̂))T5L(m̂J) < 0.

In other words, the objective function can be decreased along the direction to u(θ̂).

Such statement conflicts to the fact that m̂J minimizes the objective function and is

unique. Therefore, uJ(θ̂) must locates on H.

B.3 Proof of Theorem 3.4.2

Proof. The first statement that m̂J minimizes the objective function L(mJ) holds if

and only if its path derivative from m̂J to any other uJ(θ) is non-negative. In other

words, we have infθD(m̂J ,uJ(θ)) = 0. Therefore, Statement 1 and Statement 2 are

equivalent.

Because the objective function L(mJ) is strictly convex along any path, for any

θ ∈ Θ, we have

L(mJ) ≥ L(uJ(θ)) +D(mJ ,uJ(θ)).
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For some m′J 6= m̂J , it is true

L(m′J) ≥ L(uJ(θ)) +D(m′J ,uJ(θ)).

If infθD(m′J ,uJ(θ)) ≥ 0, we would have L(m′J) ≥ L(m̂J). This is contradiction to

the fact that m̂J minimizes L(mJ) overMJ . Therefore, Statement 1 and Statement

3 are equivalent.
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Chapter 4

The Generalized Method of

Moments for Mixture Models

4.1 Introduction

Many existing methods can be used to fit one-parameter mixture model fMix(x;Q)

in Definition 2.3.1. The commonly used ones include the method of moments (MM),

minimum distance methods and the maximum likelihood method.

As early [Pearson, 1898], the MM has been used to fit a mixture of two normal

distributions with different mean and variance; see [Lindsay, 1989a,b] for further de-

velopments. Because computing the MM estimators involves solving a polynomial

equation system, it is computational friendly. And thus, it is often used as an initial

value for iterative numerical algorithms for other estimation methods; see [Furman

and Lindsay, 1994]. However, the MM can be used only when the component dis-

tributions are the NEF-QVF; see [Lindsay, 1989b]. Another issue of the MM is the

potential loss of efficiency comparing to the other methods; [Titterington et al., 1985,

p.g. 81].

A detailed review of the minimum distance estimators for mixture models can

be found in [Titterington et al., 1985, p.g. 114-117]. A lot of distance measures,

including the Kullbak-Leibler, Levy, chi-squared, modified chi-squared and averaged
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L2-norm measures, can be used to measure the difference between the mixture models

and the empirical distributions; see [Titterington et al., 1985, p.g. 116]. Minimizing

the Kullbak-Leibler distance between the empirical distribution and a mixture model

is equivalent to maximizing the likelihood; see [Titterington et al., 1985, p.g. 115].

The minimum Hellinger distance method for mixture models has attracted many

research interest, because the model complexity can be robustly estimated under

error contamination; see [Cutler and Cordero-Braña, 1996] and [Woo and Sriram,

2006].

The MLE for mixture models is popular, partly because of the philosophy of

likelihood-based inference; see [Titterington et al., 1985, p.g. 82]. However, due to

non-regularity, there are many inference and computational challenges in the maxi-

mum likelihood methods for either finite mixture models or non-parametric mixture

models; see Section 1.2.

This chapter aims to fit a non-parametric mixture model based on a set of general-

ized moment conditions (see Definition 4.2.1), which are from the reparameterization

procedure introduced in Subsection 2.3.2. The proposed method is called the general-

ized method of moments (GMM) for mixture models. Computing the GMM estimator

is a constrained quadratic minimization problem, which can be easily solved by the

gradient-based algorithms; see Section 4.7. The mean squared error (MSE) of the

GMM estimators converges to zero, as the sample size goes to infinity; see Section

4.5. Moreover, the GMM estimators are robust to the outliers when the quadratic

objective functions are carefully designed; see Section 4.6.

The main contribution of this chapter is the introduction of the GMM estimator

for mixture models. Asymptotic behaviour of the MSE and its robustness to outliers

are also studied.

This chapter is organized as follows. In Section 4.2, the generalized moment

conditions are introduced in our context. A set of countable generalized moment

conditions is obtained from the reparameterization procedure of mixture models. In

Section 4.3, we define the GMM for mixture models based on the generalized moment

conditions. Also, we discuss the situation when the GMM estimator is not unique.

In Section 4.4, we describe the GMM for mixture models in an information geometric
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view, when the weighting matrices are identity matrix. In Section 4.5, we show

the convergence rate of the MSE of the GMM estimators with the sample size; see

Theorem 4.5.1. In Section 4.6, we introduce a weighting matrix that leads to robust

GMM estimators. Our work is supported by simulation studies in Section 4.7. Lastly,

we apply the GMM to fit a mixture model for the Thailand cohort study data, which

has been described in Subsection 1.6.1. The poofs of the theorems and lemmas and

the MATLAB code for the proposed algorithms in this chapter can be seen in the

Appendix C.

4.2 The Generalized Moment Conditions

The generalized method of moments was firstly proposed by Hansen [1982]. Later,

it becomes popular in econometrics; see [Mátyás, 1999] and [Hall, 2005] for compre-

hensive introductions. This method is based on the a series of generalized moment

conditions defined as follows in our context. As we will see in this section, the general-

ized moment conditions can be easily constructed for the considered mixture models.

Definition 4.2.1 (Generalized Moment Conditions).

Suppose that the random variable X is from a mixture model fMix(x;Q∗). Let (φ(x), γ(θ))

be a pair of known functions such that

EX [φ(X)] = Eθ[γ(θ)], (4.1)

where X follows the true mixture model fMix(x;Q∗) and θ follows the true mixing

distribution Q∗. Equation (4.1) is called a generalized moment condition.

Recall that we have the following reparameterization of fMix(x;Q) under the as-

sumptions given in Subsection 2.3.2

fspec(x;m) = f0(x) +
∞∑
j=1

mjφj(x)f
1/2
0 (x),

where for each j,

mj =

∫
Θ

√
λjγj(θ)dQ
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and φj(x) is the eigenfunction associated with the jth largest eigenvalue λj of the

integral operator A(·) in Equation (2.12) and√
λjγj(θ) =

∫
S
f(x; θ)φj(x)f

−1/2
0 (x)dx.

By taking the expectation with respect to θ on both sides of the above equation

and changing the order of integrals, we have, for each j ∈ {0, 1, . . .},∫
Θ

√
λjγj(θ)dQ =

∫
S
φj(x)f

−1/2
0 (x)fMix(x;Q)dx.

It follows that, for each j ∈ {0, 1, . . .},

EX
[
φj(X)f

−1/2
0 (X)−mj

]
= 0. (4.2)

Therefore, there exist a countable number of generalized moment conditions for mix-

ture models.

4.3 The Generalized Method of Moments

We use the first J+1 generalized moment conditions for the generalized method of

moments, where J is a positive integer. Let γJ(θ) = (γ1(θ), . . . , γJ(θ))T, φ
f
−1/2
0

(x) =

(φ1(x)f
−1/2
0 (x), . . . , φJ(x)f

−1/2
0 (x))T and m = (m1, . . . ,mJ)T, which are the vectors

in RJ . Given a random sample X1, . . . , XN , we estimate m by the sample average of

φ
f
−1/2
0

(x) that

m̄ =
1

N

N∑
n=1

φ
f
−1/2
0

(xn) ∈ RJ .

However, the simple estimator m̄ may not respect the constraints on m. Therefore,

we use the generalized method of moments, defined as following.

Definition 4.3.1 (The GMM Estimator for Mixture Models).

Given a random sample X1, . . . , XN from a mixture model fMix(x;Q) and a fixed J ,

the generalized method of moments estimator for mixture models with order J , denoted
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by Q̂GMM,J , is the solution to the following optimization problem

min
Q

(m̄−m)TW(J)(m̄−m) (4.3)

s.t. m(Q) =

∫
Θ

Λ1/2γ(θ)dQ ∈ RJ ,

Q is a probability measure over Θ = [a, b],

where W(J) is a J×J positive definite matrix and Λ is a J×J diagonal matrix whose

jth diagonal element is λj.

The positive definite matrixW(J) is called the weighting matrix. There are various

choices of the weighting matrix W(J). One simple choice is the identity matrix.

Another popular choice is the inverse of the covariance matrices of φ
f
−1/2
0

(X), which

provides the most efficient GMM estimator under the regularity conditions in [Mátyás,

1999, Section 1.3]. In our context, the inverse of the covariance matrix may not

provide the most efficient GMM estimator due to the existence of the boundaries

in the parameter space. It is important to choose a suitable weighting matrix; see

Section 4.6 in which the weighting matrix is chosen for the robustness property.

Note that γ0(θ) ≡ 1. The feasible set of the optimization problem (4.3) is equiv-

alent to mJ ∈ MJ , where mJ = (1,mT)T ∈ RJ+1 and MJ is the generalized

moment space induced by {
√
λjγj(θ)}Jj=0 in Definition 3.1.1. Therefore, the vector

m̂J = (1, m̂T)T ∈ RJ+1 is the projection of m̄J = (1, m̄T)T ∈ RJ+1 onto the general-

ized moment spaceMJ , where m̂ = m(Q̂GMM,J). Furthermore, the GMM estimator

Q̂GMM,J is the positive representation of m̂J .

BecauseW(J) is positive definite, finding m̂J is a convex optimization problem and

there exists a unique m̂J ∈MJ . However, the uniqueness of Q̂GMM,J depends on m̂J .

When m̂J is on the boundary ofMJ , the GMM estimator Q̂GMM,J is unique and has

at most J/2 support points over Θ; see Theorem 3.3.2. And, we use fMix(x; Q̂GMM,J)

to fit the mixture model. Otherwise, there is no unique Q̂GMM,J and more generalized

moment conditions are necessary to obtain a unique Q̂GMM,J .

Given a random sample X1, . . . , XN , we have a series of vectors m̂J ∈ RJ+1, where

J = 2, 3, . . .. Let J be the smallest integer such that m̂J is not an interior point of
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MJ . Note that J is a random variable, because it depends on the random sample.

Let JN be a number which increases with the sample size N . Also let A1 be the event

that J ≥ JN . In the event A1, we fit the mixture model with

fspec(x; m̄) = f0(x) + m̄Tφ
f
1/2
0

(x)

= f0(x) +
1

N

N∑
n=1

φT

f
−1/2
0

(xn)φ
f
1/2
0

(x),

where φ
f
1/2
0

(x) = (φ1(x)f
1/2
0 (x), . . . , φJN (x)f 1/2(x))T ∈ RJN and φ

f
−1/2
0

(x) ∈ RJN . In

summary, the fitted model is

f̂GMM(x) =

fspec(x; m̄), if the event A1 happens,

fMix(x; Q̂GMM,J ), otherwise.
(4.4)

4.4 An Information Geometric View of The Gen-

eralized Method of Moments

Zhang [2013] considered the information geometry of an affine submanifold formed

by a parametric model. It is known that a divergence function can uniquely determine

the information geometry of a statistical manifold, including a Riemannian metric

given by the Fisher information and a pair of dual connections that preserve the

metric under parallel transport by their joint actions; see [Zhang, 2013]. In this

section, we rewrite the objective function in the optimization problem (4.3) as a

divergence function under the framework given in [Zhang, 2013]. The Riemannian

metric and the pair of dual connection follow the divergence function; see [Zhang,

2005] and [Zhang, 2013].

Let G : R → R be a strictly convex function. Its convex conjugate Gconj is given

by

Gconj(t) = t× (∂G)−1 (t)−G
(
(∂G)−1 (t)

)
,

where ∂G is the first order derivative of G(t) with respect to t, and (∂G)−1(t) is

the inverse function of ∂G; see [Zhang, 2013]. The conjugate representation of a

probability function is defined as follows.
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Definition 4.4.1 (Conjugate Representation [Zhang, 2004]).

For a strictly increasing function ρ : R → R, the ρ-representation of a probability

function pr is the mapping pr 7→ ρ(pr). For a strictly increasing function τ : R→ R,

the τ -representation of the probability function, pr 7→ τ(pr) is conjugate to the ρ-

representation of the probability function pr with respect to a smooth and strictly

convex function G : R→ R, if

τ(pr) = ∂G (ρ(pr))⇔ ρ(pr) = ∂Gconj (τ(pr)) .

In our context, given the initial measure f0(x), let

ρ(pr) = pr/f0(x)

and

G(ρ(pr)) =
1

2
(ρ(pr))2 f0(x). (4.5)

Then, τ(pr) = pr. Consider the ρ-representation of fspec(x;m), we have

ρ(fspec(x;m)) = fspec(x;m)/f0(x) = 1 +mTφ
f
−1/2
0

(x)

where m = (m1, . . . ,mJN )T ∈ RJN . The model fspec(x;m) is called ρ-affine, because

its ρ-representation can be embedded into a countable-dimensional affine space; see

[Zhang, 2013]. Here we generalize the dimension of the affine space in the definition

of ρ-affine from finite to countable. The parameter m ∈ RJN is called the natural

parameter of fspec(x;m). On the other hand, for any fMix(x;Q), the expectation pa-

rameter of fspec(x;m) is defined as the projection of τ (fMix(x;Q)) onto the functions

φ
f
−1/2
0

(x), i.e. ∫
S
φ
f
−1/2
0

(x)τ (fMix(x;Q)) dx;

see [Zhang, 2013]. By the generalized moment conditions in Equation (4.2), we have

that the natural parameter and expectation parameter are identical in fspec(x;m).

Definition 4.4.2 ([Zhang, 2013]).

Let G : R → R be smooth and strictly convex, and ρ : R → R be strictly increasing.

91



The canonical divergence function between two probability functions pr and pr′ of

x ∈ S is

AG(ρ(pr), τ(pr′)) =

∫
(G(ρ(pr)) +Gconj(τ(pr′))− ρ(pr)τ(pr′)) dµ,

where µ is a measure such that dµ = µ(dx).

In [Zhang, 2013], the formula of the canonical divergence function is given, when

the parametric model is ρ-affine. By Corollary 11 in [Zhang, 2013], we find that

minimizing the objective function in the GMM with the identity weighting matrix is

equivalent to minimizing a canonical divergence function.

Corollary 4.4.1.

Let

Φ(m;µ) =

∫
S
G (ρ(fspec(x;m))) dµ,

where µ is a probability measure of x defined on S, G is defined in Equation (4.5) and

ρ(fspec(x;m)) = fspec(x;m)/f0(x). Then, the canonical divergence function between

the empirical distribution and fMix(x;Q) is

AΦ(m, m̄) =
1

2
mTm+

1

2
m̄Tm̄− m̄Tm =

1

2
(m− m̄)T (m− m̄) .

4.5 The Quality of Point Estimators

Suppose that the parameter τ = E[s(X)] < ∞ is of interest, where X follows

fMix(x;Q∗) and s(x) ∈ L2(S, ν0) is a known function of x. Given f̂GMM(x), the GMM

estimator of τ is

τ̂GMM =

∫
S
s(x)f̂GMM(x)dx. (4.6)

According to the following theorem, we know that the mean squared error of τ̂GMM

converges to zero as the sample size goes to infinity.

Theorem 4.5.1.

Let X1, . . . , XN be a random sample from a mixture of exponential families fMix(x;Q∗),
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where the mixing distribution Q∗ is defined on a compact set Θ = [a, b]. Given a set

of weighting matrices {W(J), J = 2, 3, . . .}, suppose that supJ ‖W(J)‖2 is bounded.

Further suppose that the covariance matrix φ
f
−1/2
0

(X) ∈ RJ is non-singular for each

J . Then, for each positive integer r, the mean squared error of the GMM estimator

τ̂GMM has the optimal convergence rate O(N−r/(r+1)), when J
(2r+2)
N N−1 = O(1), i.e.,

E
[
(τ − τ̂GMM)2] = O(N−r/(r+1)).

To prove the above theorem, we study the MSE of τ̂GMM in the three possible

events A1, A2 and A3. The events A2 and A3 are the two possible sub-events of the

complement of A1. Let J∗ be the smallest integer such that m∗J∗ is a boundary point

of MJ∗ .

1. In the event A1, JN ≤ J . This implies that m̂JN is an interior point of MJ .

2. In the event A2, J < min{J∗, JN}. This implies that m̂J is not an interior

point of MJ but m∗J is.

3. In the event A3, J∗ ≤ J < JN . This implies that neither m̂J nor m∗J is an

interior point of MJ .

With the following lemmas and

E
[
(τ − τ̂GMM)2] =

3∑
i=1

pr(Ai)E
[
(τ − τ̂GMM)2 | Ai

]
,

we have Theorem 4.5.1, where for each i, pr(Ai) is the probability that the event Ai
happens.

Lemma 4.5.1.

Under the conditions of Theorem 4.5.1, for each positive integer r, it is true that

pr(A1)E
[
(τ − τ̂GMM)2 | A1

]
= O(max{J2

NN
−1, J−2r

N }).

Proof. See the Appendix.
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Lemma 4.5.2.

Under the conditions of Theorem 4.5.1, it is true that

pr(A2)E
[
(τ − τ̂GMM)2 | A2

]
= O(J2

NN
−1).

Proof. See the Appendix.

Lemma 4.5.3.

Under the conditions of Theorem 4.5.1, it is true that

pr(A3)E
[
(τ − τ̂GMM)2 | A3

]
= O(J2

NN
−1).

Proof. See the Appendix.

From the proof of Lemma 4.5.1, we observe the trade-off between bias and variance

as JN varies. In the event A1, we have that the variance of τ̂GMM is O(J2
NN

−1) and

the squared bias is O(J−2r
N ); see the proof of Lemma 4.5.1 in the Appendix. With the

increase of JN , the variance of τ̂GMM in A1 increases and the bias of τ̂GMM decreases.

Furthermore, in additional to Lemma 4.5.2 and 4.5.3, the convergence rate of the

MSE of τ̂GMM is minimized by JN = N1/(2r+2).

4.6 Robustness Property

In this section, we study the robustness property of the GMM estimators to out-

liers. The influence function is a common tool to measure the robustness; see [Hampel,

1974]. However, the GMM estimators with constraints do not have explicit influence

functions. Instead, we consider the robustness of the gradient functions in Section

3.4.

Given a random sample X1, . . . , XN1 from fMix(x;Q∗) and a fixed J , the GMM

estimator is determined by the gradient function

D(m, θ) =
(
Λ1/2γ(θ)−m

)T
W(J) (m− m̄) ,
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by Theorem 3.4.2. If this random sample is further contaminated by N2 random

variables from ∆z, where ∆z is the probability measure with mass 1 at the single

contaminated data point z, the gradient function for the new data is

D̃(m, θ) =
(
Λ1/2γ(θ)−m

)T
W(J) (m− m̃) ,

where m̃ = (1 − α)m̄ + αφ
f
−1/2
0

(z) and α = N2/(N1 + N2). Because the elements

of φ
f
−1/2
0

(z) may not be bounded as f0(z) goes to zero, the gradient function is not

robust to the outliers when W(J) is the identity matrix. If we choose a weighting

matrix W(J) such that W(J)φf−1/2
0

(z) converges to a constant vector as f0(z) goes to

zero, we may achieve the robustness to the outliers.

For a fixed J , let L(J)(θ) = (L1(θ), . . . , LJ(θ))T ∈ RJ , where for each j = 1, . . . , J ,

Lj(θ) =

∫
S
f(y; θ)φj(y)dy.

Note that {φj(x)f
−1/2
0 (x)}∞j=0 is a complete orthonormal basis in L2(S, ν0) and φ0(x) =

f
1/2
0 (x); see Subsection 2.3.2. For each θ ∈ Θ, f(x; θ)f

−1/2
0 (x) ∈ L2(S, ν0). Therefore,

Lj(θ) is finite for each j ∈ {1, . . . , J} and θ ∈ [a, b]. We also have the expansion in

L2(S, ν0)

f(x; θ)f
−1/2
0 (x) =

∫
S
f(y; θ)f

1/2
0 (y)dy +LT

(∞)(θ)φf−1/2
0

(x), (4.7)

where φ
f
−1/2
0

(x) = (φ1(x)f
−1/2
0 (x), φ2(x)f

−1/2
0 (x), . . .)T ∈ R∞. We call the matrix

W Robust
(J) =

∫
Θ

L(J)(θ)L
T
(J)(θ)dθ (4.8)

the robust weighting matrix.

Theorem 4.6.1.

As f0(z) goes to 0, the vector

W Robust
(∞) φ

f
−1/2
0

(z) = −
∫

Θ

L(θ)

∫
S
f(y; θ)f

1/2
0 (y)dydθ,

which is a constant vector in R∞.

To illustrate the role of the robust weighting matrix plays, we consider the example

of a mixture of Poisson distributions.
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Example 4.1.

The basis functions {φj(x)}∞j=0 for the mixture of Poisson have been illustrated in

Example 2.1. Figure 4.1 shows the functions {φj(x)f
−1/2
0 (x)}4

j=1 and the first four

elements of W Robust
(J) φ

f
−1/2
0

(x), when J = 18. As we can see, for each j, φj(x)f
−1/2
0 (x)

goes to a large number as f0(x) goes to zero. And thus, a contaminated data z with

small f0(z) is able to change m̄ significantly. On the other hand, W Robust
(J) φ

f
−1/2
0

(x)

converges to a constant vector as f0(x) goes to zero. This controls the effects of a

contaminated data z on m̄. And thus, the robustness to the outliers is expected.

4.7 Computational Algorithms

Because the optimization framework of the GMM matches with the geometry dis-

cussed in Chapter 3, we have the gradient characterization of the m̂J , where J is a

fixed integer. This allows us to adopt the gradient-based algorithms to compute the

GMM estimators. Existing gradient-based computational algorithms include the ver-

tex directional method, vertex exchange method and intra simplex direction method;

see [Böhning et al., 1992, Böhning, 1995] for a review. Wang [2007] proposed the

constrained Newton method with multiple exchange vertices (CNM) algorithm. Em-

pirically, Wang’s algorithm is the fastest and most accurate comparing to the other

algorithms. Therefore, we modify Wang’s algorithm for the GMM estimator.

Algorithm 4.1 (The CNM for GMM).

Set s = 0 and fix J . From an initial estimate Q(0) with finite support Θ(0) and

m(0) = m(Q(0)) 6= m̄, repeat the following steps:

1. Compute all the local minimas {θ(s)
j }r

(s)

j=1 of the function

D(θ) = (Λ1/2γ(θ)−m(s))TW(J)(m
(s) − m̄)

over [a, b]. The iteration stops if the minimum of D(θ) is zero.

2. Construct a set of candidate support points by

Θ(s),+ = Θ(s) ∪ {θ(s)
j }r

(s)

j=1.
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Let r(s),+ be the number of elements in Θ(s),+.

3. Solve the optimization problem

min

r(s),+∑
i=1

αiΛ
1/2γ(θi)− m̄

T

W(J)

r(s),+∑
i=1

αiΛ
1/2γ(θi)− m̄


s.t.

r(s),+∑
i=1

αi = 1,

αi ≥ 0, i = 1, . . . , r(s),+,

where θi ∈ Θ(s),+. We denote its solution by α(s) = (α
(s)
1 , . . . , α

(s)

r(s),+
)T. If the

minimum is zero, stop the interation and return m̄ ∈ RJ .

4. Discard all θis with zero α
(s)
i , update Q(s), Θ(s) and m(s) = m(Q(s)), and set

s = s+ 1.

The convergence of the algorithm is shown in [Wang, 2007]. Further note that the

optimization problem in Step 3 at each iteration is a constrained quadratic program-

ming problem. Computational algorithms for the quadratic programming problem

can be found in [Antoniou and Lu, 2007]. The MATLAB code for Algorithm 4.1 can

be seen in the Appendix.

4.8 Simulation Studies

In this section, we study the performance of the GMM estimators through simula-

tions. Four mixtures of Poisson distributions with different types of mixing distribu-

tions (listed as follows) are considered; see Figure 4.2 for the shapes of the considered

models.

1. Let Q∗1(θ) be the uniform distribution of θ defined on [7, 13] ⊂ R. This is an

example when the mixing distribution is continuous.
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2. Let Q∗2(θ) = 0.5I(θ ≤ 3) + 0.5I(θ ≤ 9). This is an example when a finite

mixture model is regular in the sense that the elements of α is away from 0 and

the component distributions are different from each other.

3. Let Q∗3(θ) = 0.5I(θ ≤ 4.9) + 0.5I(θ ≤ 5.1). Here Pois(4.9) and Pois(5.1) are

closely linearly dependent. This is an example when mixing distribution is

defined locally at 5; see [Marriott, 2002].

4. Let Q∗4(θ) = 0.99I(θ ≤ 3)+0.01I(θ ≤ 9). We consider 0.01 is a reasonable small

positive number. This is an example of the contamination mixing; see [Tukey,

1960].

We compare the performance of the GMM estimators and the NPMLE. In the

GMM, we set Θ = [0, 20] and the weighting matrix is W Robust
(J) in Equation (4.8),

where J+1 is the number of the used generalized moment conditions. The considered

sample size levels are 20, 50, 100 and 200. The number of repetition is 1000 in each

simulation.

We are interested in the point-wise MSE of the fitted mixture models: f̂GMM(x)

and fMix(x; Q̂NPMLE), where Q̂NPMLE is the NPMLE for mixture models. In each

repetition, there exists a finite J such that m̂J is not an interior point of MJ .

In other words, f̂GMM(x) = fMix(x; Q̂GMM,J ). In Figure 4.3 to 4.6, we present the

point-wise MSE of each fitted model. As we can see, fMix(x; Q̂NPMLE) has the smaller

point-wise MSE over x ∈ R in general. However, the GMM estimator performs nearly

as well as the NPMLE.

In Table 4.1 and 4.2, we give the empirical cumulative distribution function of

J in each case and each sample size level. The J∗ is ∞ in the case where Q∗1 is

the true mixing distribution, and 4 in the other three cases. With the increase of

the sample size, the empirical probability that J < J∗ non-increases; see Table 4.1

and 4.2. According to Table 4.1, the expectation of J increases with the increase

of the sample size, when Q∗1 is the true mixing distribution. This because that Q∗1

is a continuous function and m∗J is always an interior point of MJ for any J . The

observations from the tables imply that pr(J ≤ J∗) decreases to zero as the sample

size N goes to infinity; see Lemma 4.5.1. In Table 4.2, pr(J < J∗) remains large
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when N = 200. This is because that the local (Q∗3) and contamination (Q∗4) mixtures

are close to a single-component Poisson distribution, and larger sample size is needed

to reduce pr(J < J∗).

Next, we study the robustness of the GMM estimator. Let 5% of the data are

from the degenerate distribution ∆z, where z = 40. And the rests are from the true

models fMix(x;Q∗i ), for each i ∈ {1, . . . , 4}. We fix the number of generalized moment

conditions to 19, i.e., J = 18, and use the associated robust weighting matrixW Robust
(J) .

Figure 4.7 to 4.10 show the point-wise MSE of the fitted models in each case. We see

that f(x; Q̂GMM,J) has the smaller point-wise MSE over x ∈ R in general.

4.9 Application to the Thailand Cohort Study Data

Consider the data on morbidity in northeast Thailand which has been described

in Subsection 1.6.1. We fit a mixture of Poisson with [a, b] = [0, 25] using the GMM.

The number J are taken to be 1, . . . , 18 and the weighting matrix W = W Robust
(J) is

associated with J . When J ≤ 7, there is no unique GMM estimator for the mixing

distribution. When J ≥ 8, the results are summarized in Table 4.3. The fitted

models with different Js are close, when J ≥ 8. This implies that little information

is contained in the higher order generalized moment conditions, when the robust

weighting matrix is used. In Figure 4.11, we see that the fitted mixture model with

(J = 8) successfully characterize the shape of the histogram.

4.10 Conclusion and Discussion

In this chapter, we have introduced the GMM estimators for mixture models

and studied the asymptotic behavior of the MSE and the robustness property to

the outliers. We can see that the GMM is a promising estimation method for non-

parametric mixture models. In this section, we point out two possible future research

directions in the GMM for mixture models.

The weighting matrix W plays an important role in determining the properties
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of the GMM estimators. One example is the robust weighting matrix given in Sec-

tion 4.6. Naturally, we are also interested in some weighting matrices for the GMM

estimators with less robustness but more efficiency. Suppose that we have one robust

weighting matrix WRobust and one efficient weighting matrix WEfficient. It is possible

to balance the robustness and the efficiency of the GMM estimators by using a convex

combination of the two weighted matrices, i.e.,

W = (1− α)WRobust + αWEfficient,

where α ∈ [0, 1].

Due to the existence of the constraints on the feasible set, it is challenging to

obtain the asymptotic distributions of τ̂GMM defined in Equation (4.6). And thus, it

is challenging to construct interval estimators for the GMM estimator of τ . Some

previous researches have shown the existence of the asymptotic normality in the

NPMLE; see [Lambert and Tierney, 1984], [Van De Geer, 1997] and [Böhning and

Patilea, 2005]. Because the similar geometric structures between the GMM estimators

and the NPMLE, the previous results on the NPMLE direct possible paths to find

possible asymptotic normality in the GMM estimators.

Appendix: C

C.1 Proof of Lemma 4.5.1

Proof. In the event A1, the mixture model is fitted by fspec(x; m̄). For each x ∈ S,

the mean square error equals the sum of the variance and the squared bias of the
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estimator, i.e., for each x ∈ S,

pr(A1)E
[
(τ − τ̂GMM)2 | A1

]
≤

3∑
i=1

pr(Ai)E

[(∫
S
s(x)

(
fMix(x;Q∗)− f0(x)− φT

f
1/2
0

(x)m̄
)

dx

)2

| Ai

]

= E

[(∫
S
s(x)

(
fMix(x;Q∗)− f0(x)− φT

f
1/2
0

(x)m̄
)

dx

)2
]

= E

[(∫
S
s(x)φT

f
1/2
0

(x)(m∗ − m̄)dx

)2
]

+

(∫
S
s(x)

(
f(x;Q∗)− f0(x)− φT

f
1/2
0

(x)m∗
)

dx

)2

,

where m∗ is the true values of m. By the Cauchy-Schwarz inequality, the variance

of the estimator is

E

[(∫
S
s(x)φT

f
1/2
0

(x)(m∗ − m̄)dx

)2
]

= E

[(∫
S
s(x)φT

f
1/2
0

(x)dx (m̄−m∗)
)2
]

≤ E

[
‖m̄−m∗‖2

2

∥∥∥∥∫
S
s(x)φ

f
1/2
0

(x)dx

∥∥∥∥2

2

]

=
1

N

JN∑
j=1

Var[φj(X)f
−1/2
0 (X)]

∥∥∥∥∫
S
s(x)φ

f
1/2
0

(x)dx

∥∥∥∥2

2

.

By the Cauchy-Schwarz inequality, we further have∥∥∥∥∫
S
s(x)φ

f
1/2
0

(x)dx

∥∥∥∥2

2

=

JN∑
j=1

(∫
S
s(x)φj(x)f

1/2
0 (x)dx

)2

≤
JN∑
j=1

∫
S
s2(x)f0(x)dx

∫
S
φ2
j(x)dx

=

JN∑
j=1

∫
S
s2(x)f0(x)dx.

Under the assumption that
∫
S s

2(x)f0(x)dx is bounded, say M , we have that∥∥∥∥∫
S
s(x)φ

f
1/2
0

(x)dx

∥∥∥∥2

2

≤ JNM.
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Note that

fMix(x;Q∗) =

∫
Θ

f(x; θ)dQ∗ ≤ |Θ|f0(x).

Therefore, for each j,

Var[φj(X)f
−1/2
0 (X)] ≤ E[φ2

j(X)f−1
0 (X)] ≤ |Θ|

∫
Θ

φ2
j(x)dx = |Θ|.

Therefore, the variance of the estimator is O(J2
N/N) = O(N−r/(r+1)).

By the Cauchy-Schwarz inequality and Proposition 2.3.1, the squared bias(∫
S
s(x)

(
f(x;Q∗)− f0(x)− φT

f
1/2
0

(x)m∗
)

dx

)2

≤
∫
S
s2(x)f0(x)dx

∫
S

(
f(x;Q∗)− f0(x)− φT

f
1/2
0

(x)m∗
)2

/f0(x)dx

= O(J−2r
N ).

In sum, the mean square error of τ̂GMM in A1 is O(max{J2
NN

−1, J−2r
N }).

C.2 Proof of Lemma 4.5.2

Proof. In the event A2, the mixture model is fitted by fMix(x; Q̂GMM,J ). Because Θ is

compact and f(x; θ) is continuous with respect to θ ∈ Θ, there exists a finite number

M such that, for any possible τ ,

|τ̂GMM − τ | ≤M.

Therefore, the MSE of τ̂GMM conditional on the event A2 is bounded by M2.

For a fixed J , let Σ be the covariance matrix of φ
f
−1/2
0

(X) ∈ RJ . Also, let

m′ = arg inf
(1,mT)T∈∂MJ

(m−m∗)TΣ−1(m−m∗),

where ∂MJ is the boundary of MJ . By Theorem 3.3.2, the true moments m∗J =

(1, (m∗)T)T ∈ RJ+1 is an interior point of MJ . Therefore, (m′ −m∗)TΣ−1(m′ −
m∗) > 0.
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For any mJ = (1,mT)T ∈ RJ+1 which is not an interior point of MJ , it is true

that

(m−m∗)TΣ−1(m−m∗) ≥ (m′ −m∗)TΣ−1(m′ −m∗).

Because m̄J is not an interior point of MJ in A2, we have

(m̄−m∗)TΣ−1(m̄−m∗) ≥ (m′ −m∗)TΣ−1(m′ −m∗).

By the Chebyshev inequality for random vectors [Chen and Zhou, 1997, Theorem

2.1], we obtain that

pr (m̂J ∈ ∂MJ) ≤ pr
(
N(m̄−m∗)TΣ−1(m̄−m∗) ≥ N(m′ −m∗)TΣ−1(m′ −m∗)

)
≤ J

N

1

(m′ −m∗)TΣ−1(m′ −m∗)
= O

(
JN−1

)
.

Because, for each J , m̂J ∈ ∂MJ implies m̂J+1 ∈ ∂MJ+1, the two events m̂J ∈
∂MJ and J ≤ J are equivalent. Therefore, we have

pr (A2) =
∑
J≤JN

pr (J = J)

≤
∑
J≤JN

pr (J ≤ J)

=
∑
J≤JN

pr (m̂J ∈ ∂MJ)

≤
∑
J≤JN

O
(
JN−1

)
= O

(
J2
NN

−1
)
.

C.3 Proof of Lemma 4.5.3

Proof. In the event A3, the fitted model is fMix(x; Q̂GMM,J ). Let Θ+ be the union of

the support sets of Q∗ and Q̂GMM, and r+ be the number of elements in Θ+. Firstly,

we show that r+ ≤ J + 1.
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When J = 2K, by Theorem 3.3.2, we have two cases where the positive represen-

tation of a boundary vector ofMJ could have the largest possible number of support

points:

1. The positive representation has K support points in (a, b).

2. The positive representation has K − 1 support points in (a, b), and the two end

points a and b are also its support points.

Therefore, the number of elements in Θ+, denoted by r+, is always less than J + 1,

when J is even.

When J = 2K + 1, by Theorem 3.3.2, we have two cases where the positive

representation of a boundary vector of MJ could have the largest possible number

of support points:

1. The positive representation has K support points in (a, b) and one of the end

points a.

2. The positive representation has K support points in (a, b), and and one of the

end points b.

Therefore, the number of elements in Θ+ is always less than J + 1, when J is odd.

Let ΓΘ+ be a (J + 1) × r+ matrix whose ith column is ΛJγJ (θ) where ΛJ is

the (J + 1) × (J + 1) diagonal matrix with the jth diagonal element λj−1, and

γJ (θ) = (1, γ1(θ), . . . , γJ (θ))T ∈ RJ+1. Also let FΘ+(x) be a vector in Rr+ whose

ith element is f(x; θi), θi ∈ Θ+. Because Q∗ and Q̂GMM are two probability measures

defined on Θ+, each of them has an associated vector of weights, denoted by α∗ ∈ Rr+

and α̂GMM ∈ Rr+ correspondingly. Moreover, α∗ and α̂GMM are uniquely determined

by m∗J and m̂J by Theorem 3.3.2. Therefore, we have

α∗ = CΓT
Θ+m∗J

and

α̂GMM = CΓT
Θ+m̂J ,
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where C =
(
ΓT

Θ+ΓΘ+

)−1
.

Because τ is finite and

f̂GMM(x) = fMix(x; Q̂GMM) = F T
Θ+(x)α̂GMM

we have

τ =

∫
S
s(x)f̂GMM(x)dx =

∫
S
s(x)F T

Θ+(x)α̂GMMdx = T T
Θ+α̂GMM,

where TΘ+ =
∫
S s(x)FΘ+(x)dx ∈ Rr+ .

Let ΓΘ+CTΘ+ = (t0, t
T
Θ+)T ∈ RJ+1. By the Cauchy-Schwarz inequality and the

fact that the first element of m̂J and m∗J are 1s, we have

E
[
(τ − τ̂GMM)2 | A3

]
= E

[(
T T

Θ+(α̂GMM −α∗)
)2 | A3

]
= E

[(
T T

Θ+CΓT
Θ+(m̂J −m∗J )

)2 | A3

]
= E

[(
tTΘ+(m̂−m∗)

)2 | A3

]
≤ E

[∥∥∥W−1/2
(J ) tΘ+

∥∥∥2

2
× ‖m̂−m∗‖2

W(J )
| A3

]
,

where for any vector a ∈ RJ , ‖a‖2
W(J )

= aTW(J )a. Here W(J )
−1/2 exists because

W(J ) is non-singular and positive definite by the assumptions.

Because f(x; θ) is an exponential family distribution, both of f(x; θ), for each

x ∈ S, and γj(θ), for each j ∈ {1, . . . ,J }, are continuous with respect to θ. Therefore,

each element of W
−1/2
(J ) tΘ+ is also a continuous function of θ. Additional to the

compactness of Θ, each element of W
−1/2
(J ) tΘ+ is bounded by a finite number, say M .

Then ‖W−1/2
(J ) tΘ+‖2

2 is bounded by JM2 and JNM
2 by J ≤ JN .

We use the non-expansive property in convex projection ([Deutsch, 2001, p.g. 72])
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and have

E
[
‖m̂−m∗‖2

W(J )
| A3

]
≤ E

[
‖m̄−m∗‖2

W(J )
| A3

]
≤ E

[
‖W(J )‖2

2 ‖m̄−m∗‖
2
2 | A3

]
≤ sup

J
‖W(J)‖2

2 × E

[
J∑
j=1

(m̄j −m∗j)2 | A3

]

≤ sup
J
‖W(J)‖2

2 × E

[
JN∑
j=1

(m̄j −m∗j)2 | A3

]
.

Note that

fMix(x;Q∗) =

∫
Θ

f(x; θ)dQ∗ ≤ |Θ|f0(x).

Therefore, for each j ,

Var[φj(X)f
−1/2
0 (X)] ≤ E[φ2

j(X)f−1
0 (X)] ≤ |Θ|

∫
Θ

φ2
j(x)dx = |Θ|.

In sum, we have

pr(A3)E
[
(τ − τ̂GMM)2 | A3

]
≤ pr(A3)E

[∥∥∥W−1/2
(J ) tΘ+

∥∥∥2

2
× ‖m̂−m∗‖2

W(J )
| A3

]
≤ pr(A3)JNM

2 × sup
J
‖W(J)‖2

2 × E

[
JN∑
j=1

(m̄j −m∗j)2 | A3

]

≤ JNM
2 × sup

J
‖W(J)‖2

2 ×
3∑
i=1

pr(Ai)E

[
JN∑
j=1

(m̄j −m∗j)2 | Ai

]

= JNM
2 × sup

J
‖W(J)‖2

2 × E

[
JN∑
j=1

(m̄j −m∗j)2

]

= JNM
2 × sup

J
‖W(J)‖2

2 ×
JN∑
j=1

Var
[
φj(X)f

−1/2
0 (X)

]
≤ 1

N
J2
NM

2 × |Θ| × sup
J
‖W(J)‖2

2

= O(J2
NN

−1).
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C.4 Proof of Theorem 4.6.1

Proof. Because of the compactness of Θ and Equation (4.7), we may change the order

of the integrals and the infinite sum and obtain∫
Θ

L(∞)(θ)L
T
(∞)(θ)dθφf−1/2

0
(z)

=

∫
Θ

L(∞)(θ)L
T
(∞)(θ)φf−1/2

0
(z)dθ

=

∫
Θ

L(∞)(θ)

(
f(z; θ)f

−1/2
0 (z)−

∫
S
f(y; θ)f

1/2
0 (y)dy

)
dθ.

Because for each θ ∈ Θ

0 ≤ f(z; θ) ≤ |Θ|f0(z),

we have that f(z; θ)f
−1/2
0 (z) goes to zero as f0(z) goes to zero. Further note that,

for each j, Lj(θ)
∫
S f(y; θ)f

1/2
0 (y)dy is bounded for each θ ∈ Θ. We have that each

element of W Robust
(∞) φ

f
−1/2
0

(z) converges to a constant as f0(z) goes to zero.

C.5 MATLAB Code for Algorithm 4.1

function [mNew, weightshat , g , Ind ] . . .

= GMMCNM(Up, Mhatp , q , as , W)

e = 1e−10;

msn = Up∗as ’ ;

pLs = find ( as > e ) ;

Ind = 0 ;

count = 1 ;

while Ind == 0

ms = msn ;

cg = Mhatp − ms ’ ;

Utheta = ms ( : , ones (1 , length ( q ) ) ) − Up;

g = cg∗ W∗Utheta ;
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dg = d i f f ( g ) ;

s igndg = sign ( dg ) ;

ds igndg = d i f f ( s igndg ) ;

minL = find ( ds igndg == 2)+1;

L = minL ;

pLsnew = [ 1 , pLs , L , length ( q ) ] ;

pLsnew = unique ( pLsnew ) ;

Us = Up( : , pLsnew ) ;

warning o f f ;

opt ions = optimset ( ’ d i s p l ay ’ , ’ o f f ’ ) ;

aso = l s q l i n ( real (Wˆ(1/2)∗Us ) , . . .

real (Wˆ(1/2)∗Mhatp ’ ) , . . .

−eye ( s ize (Us , 2 ) ) , . . .

zeros ( s ize (Us , 2 ) , 1 ) , . . .

ones (1 , length ( pLsnew ) ) , . . .

1 , [ ] , [ ] , [ ] , opt ions ) ;

msn = Us∗aso ;

pLs = pLsnew ( aso > e ) ;

count = count + 1 ;

d = (ms−msn) ’∗W∗(ms−msn ) ;

i f d < e | | count > 100

Ind = 1 ;

end

end

mNew = msn ;

weightshat = zeros ( length ( q ) , 1 ) ;

we ightshat ( pLsnew ) = aso ;
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dn = (msn − Mhatp ’ ) ’ ∗W∗(msn − Mhatp ’ ) ;

i f max(abs ( g ) ) < e | | dn < e

Ind = 0 ; % the s o l u t i o n i s not unique

else

Ind = 1 ; % the s o l u t i o n i s unique

end
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Chapter 5

The Generalized Method of

Moments for Mixed-Effects Models

with Univariate Random Effects

5.1 Introduction

Longitudinal data analysis has attracted considerable research interest in the past

decades. A good review can be found in [Diggle, 2002] and [Fitzmaurice et al., 2012]

and references therein. There are two classes of models for longitudinal data: the

population-average models and the subject-specific models; see [Lee and Nelder, 2004]

for a detailed discussion. The regression parameter has different interpretations in

these models, except when the link function is linear. Usually, the subject-specific

models are more useful when the main scientific objective is to make inferences about

individuals rather than the populations; see [Fitzmaurice et al., 2012].

Semi-parametric mixture models are a subclass of the subject-specific models,

where the distribution of the response conditional on the random effects is parametric

and the random effects distribution is non-parametric. It avoids the possible sensi-

tivity of the inference conclusions to the specification of random effects distributions;

see [Neuhaus et al., 1992] and [Heagerty and Kurland, 2001].
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To fit a semi-parametric mixture model, the maximum likelihoods method is com-

monly used. Under regularity conditions, the consistency of the MLE is established

by Kiefer and Wolfowitz [1956]. However, finding the MLE is widely regarded as

a computationally intensive problem; see [Aitkin, 1999] and [Wang, 2010] for some

computational suggestions. Moreover, few results related to making inferences with

the MLE for semi-parametric mixture models can be found in the literature.

Another class of approaches, including the (corrected) conditional mixed meth-

ods (CMM and CCMM) in [Sutradhar and Godambe, 1997], the penalized gener-

alized weighted least squares method (PGWLS) [Jiang, 1999] and the mixed-effects

quadratic inference function (QIF) methods [Wang et al., 2012], are based on the

generalized estimating equations conditional on the random effects. This class of ap-

proaches involves the prediction of the random effects. Because the number of the

random effects always increases with the sample size, it is questionable if there is suf-

ficient information for all the random effects; see [Jiang, 1999]. Asymptotic results for

the mixed-effects QIF estimators are established when the sample size and the cluster

size go to infinity simultaneously; see [Wang et al., 2012]. However, the cluster size

may not always be large enough in real applications; see the two real data examples

in Section 1.6.2 and 1.6.3.

The unconditional mixed method (UMM) is based on the marginal generalized

estimating equations; see [Sutradhar and Godambe, 1997]. In the UMM, the marginal

estimating function is approximated by a function of the regression parameter and the

variance of the random effects distribution. However, such approximation is valid only

when the dispersion parameter of the random effects distribution is small. Similar idea

has also been used to the likelihood functions, when the random effects distribution

is normal; see [Breslow and Clayton, 1993].

The aim of this chapter is to fit a semi-parametric mixture model, when the ran-

dom effects are univariate. We reparameterize the inverse link function into a function

of the regression parameter and a countable set of the generalized moments of the

random-effects distribution. Then, we use a truncation approximation of the repa-

rameterized model and fit it using the GMM. The reparameterization-approximation

procedure is described in Section 5.4.1.
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The major contribution made in this chapter is the introduction of the GMM

for mixed-effects models with univariate random effects; see Section 5.2 for details of

the considered mixed-effects models. We apply the reparameterization-approximation

procedure to the considered mixed-effects models and use the GMM to fit the model.

As theoretically shown later in Chapter 6, the GMM estimator is consistent; see

Section 5.7 for simulation evidences. Because the proposed method is based on the

marginal estimating equations, the resulting estimator is robust to the misspecifica-

tion of the likelihood functions; see the simulation results in Section 5.7.

This chapter is organized as follows. In Section 5.2, we give the response model,

the mixed-effects models with univariate random effects, and its assumptions. The

response model is based on the estimating equations conditional on the random ef-

fects. In Section 5.3, we review the UMM proposed by [Sutradhar and Godambe,

1997]. We discuss the limits of the UMM and the motivation for using the GMM. In

Section 5.4, we introduce the GMM for mixed-effects models with univariate random

effects. Firstly, we describe the reparameterization-approximation procedure to the

considered mixed-effects models; see Section 5.4.1. Next, we give the definition of the

GMM estimator for the considered mixed-effects model in Section 5.4.2. The GMM

involves a minimization problem over a convex set and a computational algorithm is

given in Section 5.5. In Section 5.6, we discuss the assessment of the fitted model

using residual analysis. In the same section, we also give two possible estimates to

the covariance matrix of the residuals. Our work is supported by simulations studies

in Section 5.7. We use the proposed method of fit a model for the Retina Surgery

Data in Section 5.8. Lastly, we ends this chapter with a discussion. The MATLAB

code for the proposed algorithms in this chapter can be seen in Appendix D.

5.2 Response Model and its Assumptions

Our data setup is as follows. There are n = 1, . . . , N independent individuals,

each with t = 1, . . . , Tn visits. At visit t, the complete data of the nth individual is

(Ynt,Xnt, Znt), where Ynt ∈ R is the response, Xnt ∈ Rp are the covariates to the fixed

effects, and Znt ∈ R are the covariates to the random effects. We use the notation
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Yn = (Yn1, . . . , YnTn)T ∈ RTn , Xn = (Xn1, . . . ,XnTn) and Zn = (Zn1, . . . , ZnTn)T ∈
RTn . Let bn ∈ R be the univariate random effects. For each n, the sample space of bn

is B.

Consider the epileptic seizures data, described in Section 1.6.2, as an example.

There are 59 epileptics, which are considered as independent individuals. Therefore,

N = 59. The number of epileptic seizures of each patient are observed 4 times. It

means that, for each n = 1, . . . , 59, Tn = 4. In the retina surgery data in Section 1.6.3.

There are 31 patients, i.e., N = 31. However, the number of visits of each patient is

different. For example, the first patient has 7 visits, while the second patient has 8

visits.

Suppose that the following model has been assumed:

1. Given the random effects bn, the responses Ynt | (Xnt, Znt, bn), t = 1, . . . , Tn,

are independent of one another.

2. For each n and t = 1, . . . , Tn, the mean of Ynt | (Xnt, Znt, bn) depends on the

regression parameter β via the following linear predictor

g(E[Ynt |Xnt, Znt, bn]) = XT
ntβ + Zntbn, (5.1)

where β = (β1, . . . , βp)
T ∈ Rp is the regression parameter and g(·) is a known

invertible link function.

3. For each n and t, the conditional variance of Ynt | (Xnt, Znt, bn) satisfies

Var[Ynt |Xnt, Znt, bn] = σ × h ◦ g−1(XT
ntβ + Zntbn), (5.2)

where h(·) is a known variance function, σ is a constant and g−1(·) is the inverse

link function g(·). Here we assume that σ is known.

If a distribution assumption is further made on Ynt | (Xnt, Znt, bn), we can write

down the likelihood for each n as

prβ(Yn |Xn, Zn) =

∫
B

{
Tn∏
t=1

prβ(Ynt |Xnt, Znt, bn)

}
dQ,
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where prβ(Ynt |Xnt, Znt, bn) has the mean g−1(XT
ntβ+Zntbn) and the variance σ×h◦

g−1(XT
ntβ+Zntbn), and Q(b) is a probability measure defined on B . The above class of

models is known as semi-parametric mixture models, which have wide applications in

longitudinal data analysis; see [Diggle, 2002] and [Fitzmaurice et al., 2012] for details

and examples. In this chapter, we focus on (5.1) and (5.2) without any distribution

assumption on Ynt | (Xnt, Znt, bn) and bn.

5.3 The Unconditional Mixed Method: A Review

Sutradhar and Godambe [1997] considered the class of random intercept models,

where the intercepts are identically distributed with zero mean and variance υ2, but

no functional assumption is made on the random intercepts distribution. Here the

variance υ2 is unknown. The UMM is based on the condition that the unconditional

mean and covariance matrix of the response vector Yn can be expressed as (or be ap-

proximated by) functions of the regression parameter β and the variance parameter

υ2. Generally, the approximated unconditional means and variances can be obtained

through the Laplace approximation on prβ(Ynt | Xnt, bn), when υ2 is small; see [Su-

tradhar and Rao, 1996] and [Sutradhar and Godambe, 1997]. A similar idea is also

used to approximate probability functions in [Marriott, 2002].

In the UMM, the following steps are repeated iteratively until the convergence to

the estimated values of β and υ2:

1. Given the values of υ2, the regression parameter β is estimated from the gen-

eralized estimating equations based on the approximated unconditional means

and variances.

2. Given the values of υ2 and β, the random effects are predicated through the gen-

eralized estimating equations based on the approximated unconditional means

and variances.

3. The variance υ2 is estimated by using the predicated random effects.
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The UMM empirically shows superior performance to the CMM and CCMM,

which are proposed in the same paper by Sutradhar and Godambe. However, there

are two major issues. Firstly, the failure of the Laplace approximation could lead

to large bias to the estimators, when υ2 is large. This is due to the natural of

the Laplace approximation. Secondly, the predication of the random effects, whose

number increases with the sample size, increases the computational load and causes

the computational convergence issues, when the sample size is large.

We argue that the predication of all the random effects is necessary in the UMM.

The UMM is based on the generalized estimating equations methods, in which no

constraints is put on the non-negativeness of υ2. To respect the non-negativeness of

υ2, it is reasonable to estimate υ2 using the sample variance of the predicated random

effects.

However, in many real applications, the regression parameter β is the one of

interest. The predication of all the random effects would be unnecessary, if we can

repeat the following steps iteratively until the convergence to the estimated value of

β and υ2:

1. Given the values of υ2, the regression parameter β is estimated from the gen-

eralized estimating equations based on the approximated unconditional means

and variance.

2. Given the values of β, the variance υ2 is estimated from the generalized estimat-

ing equations based on the approximated unconditional means and variance.

Making inference on the regression parameter β without predicating the random

effects is the motivation of the GMM for mixed-effects models with univariate random

effects.
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5.4 The Generalized Method of Moments for Mixed-

effects Models with Univariate Random Ef-

fects

With the spirit of working at the marginal level, we can derive a marginal mean

of Ynt from (5.1), i.e.

E[Ynt] = EXnt,Znt [Ebn [E [Ynt |Xnt, Znt, bn]]]

=

∫
X×Z

∫
B
g−1(xT

ntβ + zntbn)dQ× pr(xnt, znt)d(xnt, znt),

where pr(xnt, znt) is the joint probability function of Xnt and Znt with sample space

X × Z. For each n and t, let

Unt(β, Q) = Ynt −
∫
B
g−1(XT

ntβ + Zntbn)dQ,

where Q is a probability measure of the random effects bn over B. Let Un(β, Q) =

(Un1(β, Q), . . . , UnTn(β, Q))T ∈ RTn . We then have the moment conditions, for each

n,

EYn,Xn,Zn [Un(β, Q)] = 0 ∈ RTn .

Motivated by the discussion in Section 5.3, we propose our approach for mixed-

effects models with univariate random effects. By the reparameterization-approximation

procedure introduced in Section 2.4, we firstly approximate Unt(β, Q) as a function

of β and α, where α ∈ RJN depends on the random effects distribution Q and the

dimension of α grows with the sample size N . Here the parameter α has a natural

parameter space; see Section 5.4.1. Then, we use the GMM to estimate β and α; see

Section 5.4.2.

5.4.1 The Reparameterization-Approximation Procedure with

Orthogonal Polynomials

Recall that in Section 2.4, we have introduced the reparameterization-approximation

procedure for the GLMM. Here we revisit the procedure in this current context.
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Let {Pj(b)}∞j=0 be an orthonormal polynomial system defined on L2(B, µ), where µ

is a measure defined on B. Assume that, for each n and t, g−1(XT
ntβ+Zntb) ∈ L2(B, µ),

then we have the expansion

g−1(XT
ntβ + Zntb) =

∞∑
j=0

φntj(β)Pj(b),

where for each j,

φntj(β) =

∫
B
g−1(XT

ntβ + Zntb)Pj(b)dµ. (5.3)

By changing the order of the integrals, we have

Unt(β, Q) = Ynt −
∞∑
j=0

φntj(β)αj.

The truncation approximation of Unt(β, Q) is defined by

Unt(β,α) = Ynt −
JN∑
j=0

φntj(β)αj, (5.4)

where α = (α0, . . . , αJN )T ∈ RJN and for each j,

αj =

∫
B
Pj(b)dQ

and JN is an integer which can increase with the increase of the sample size N .

In matrix form, for each n, we have

Un(β,α) = Yn −ΦT
n (β)α, (5.5)

where Φn(β) is a JN×Tn matrix whose elements are φntj(β). Furthermore, the vector

α is defined on the convex set

M =

{
α =

∫
B
P (b)dQ ∈ RJN

}
(5.6)

where Q is any probability measure defined on B and

P (b) = (P0(b), . . . , PJN (b))T ∈ RJN
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is a vector function of b ∈ B. By Definition 3.1.1,M is the generalized moment space

induced by {Pj(b)}JNj=0.

On the other hand, assume that, for each n and t, h ◦ g−1(XT
ntβ + Zntbn) and

g−1(XT
ntβ + Zntb) are in L2(B, µ). We also can use {Pj(b)}JNj=0 in an approximation,

i.e.,

σ × h ◦ g−1(XT
ntβ + Zntbn) ≈ σ ×

JN∑
j=0

antj(β)Pj(b),

and

(
g−1(XT

n β + Zntb)
)2 ≈

JN∑
j=0

cnttj(β)Pj(b),

where for each j,

antj(β) =

∫
B
h ◦ g−1(XT

ntβ + Zntb)Pj(b)dµ (5.7)

and

cnttj(β) =

∫
B

(
g−1(XT

ntβ + Zntb)
)2
Pj(b)dµ. (5.8)

By the law of total variance and the law of total expectation, we have

Var[Ynt |Xnt, Znt]

= Ebn [Var[Ynt |Xnt, Znt, bn]] + Varbn [E [Ynt |Xnt, Znt, bn]]

= Ebn [Var[Ynt |Xnt, Znt, bn]] + Ebn
[
(E [Ynt |Xnt, Znt, bn])2]

− (E [Ynt |Xnt, Znt])
2 . (5.9)

Changing the order of the integrals, we can approximate the terms as

Ebn [Var[Ynt |Xnt, Znt, bn]] ≈ σ ×
JN∑
j=0

antj(β)αj,

Ebn
[
(E [Ynt |Xnt, Znt, bn])2] ≈ JN∑

j=0

cnttj(β)αj,
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and

(E [Ynt |Xnt, Znt])
2 ≈

(
JN∑
j=0

φntj(β)αj

)2

.

Therefore, the variance function of Ynt | (Xnt, Znt) is approximated by

Vnt(β,α) = σ × aT
nt(β)α+ cT

ntt(β)α−
(
φT
nt(β)α

)2
, (5.10)

Note that the approximations

Ebn [Var[Ynt |Xnt, Znt, bn]] ≈ σ ×
JN∑
j=0

antj(β)αj

and

Varbn [E [Ynt |Xnt, Znt, bn]] ≈
JN∑
j=0

cnttj(β)αj −

(
JN∑
j=0

φntj(β)αj

)2

may not be valid due to the non-negative constraints. Instead, we use the approxi-

mation

Ebn [Var[Ynt |Xnt, Znt, bn]] ≈ max

{
ε, σ ×

JN∑
j=0

antj(β)αj

}
,

Varbn [E [Ynt |Xnt, Znt, bn]] ≈ max

ε,
JN∑
j=0

cnttj(β)αj −

(
JN∑
j=0

φntj(β)αj

)2
 ,

where ε is a small positive number. Then, the variance function of Ynt | (Xnt, Znt) is

approximated by

Vadj,nt(β,α) = max
{
ε, σ × aT

nt(β)α
}

+ max
{
ε, cT

ntt(β)α−
(
φT
nt(β)α

)2
}
,

where

ant(β) = (ant0(β), . . . , antJN (β))T ∈ RJN ,

cntt(β) = (cntt0(β), . . . , cnttJN (β))T ∈ RJN

and

φnt(β) = (φnt0(β), . . . , φntJN (β))T ∈ RJN .

As will be shown in Chapter 6, under some conditions, Vnt(β,α) could be positive

for each n and t ∈ {1, . . . , Tn}, for large sample size N .
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5.4.2 The Generalized Method of Moments

For each n, let

Wn(β,α) = V −1/2
n (β,α)R−1

n V
−1/2
n (β,α)

where Vn(β,α) is a Tn × Tn diagonal matrix whose diagonal elements are Vnt(β,α)

defined in Equation (5.10) andRn is a“working”correlation matrix. Common choices

of the “working” correlation matrix include the independence, the exchangeable and

the first order auto-regressive (AR(1)) correlation matrices; see [Liang and Zeger,

1986]. In the literature of the GEE methods and the GMM, the choice of the“working”

correlation matrix will not change the consistency of the estimators but the efficiency.

Let (β̃, α̃) be an initial estimator of (β,α) and for each n, W̃n = Wn(β̃, α̃).

The initial estimates will be discussed later in Section 6.3. We define the GMM for

mixed-effects models with univariate random effects as follows.

Definition 5.4.1 (The GMM for Mixed-Effects Models with Univariate Random

Effects).

Given a data set (Yn,Xn,Zn), n = 1, . . . , N , from the data setup in Section 5.2, the

GMM estimator for mixed-effects models with univariate random effects, denoted by

(β̂GMM, α̂GMM), is the solution of the following optimization problem

min
1

N

N∑
n=1

UT
n (β,α)W̃nUn(β,α) (5.11)

s.t. α ∈M,

where M is defined in Equation (5.6).

5.5 Computational Algorithms

To obtain the GMM estimators for mixed-effects models with univariate random

effects, we propose the following computational algorithm for the optimization prob-

lem (5.11).
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Algorithm 5.1 (The Alternating Parameter Algorithm).

Set s = 0. From an initial estimate α(0) ∈ RJ , repeat the following steps at the

(s+ 1)th iteration:

1. Given α(s), solve the optimization problem

β(s+1) = arg min
β

1

N

N∑
n=1

UT
n (β,α(s))W̃nUn(β,α(s)). (5.12)

2. Update

α(s+1) = arg min
α∈M

1

N

N∑
n=1

UT
n (β(s+1),α)W̃nUn(β(s+1),α). (5.13)

3. Update s = s+ 1. The iteration stops, when

‖α(s) −α(s+1)‖2
2 + ‖β(s) − β(s+1)‖2

2 < ε,

where ε is a small positive number.

The optimization problem (5.12) in Step 2 is a regular minimization problem,

which is equivalent to solving the equation

1

N

N∑
n=1

(
∂

∂β
Un(β,α(s))

)T

W̃nUn(β,α(s)) = 0,

by the Newton-Raphson method. On the other hand, given β(s+1), the objective

function of the optimization problem (5.13) is convex with respect to α and can be

solved by a modified version of the CNM for GMM in Algorithm 4.1.

Algorithm 5.2 (The CNM for GLMM).

Set s = 0 and given β. From an initial estimate Q(0) with finite support Θ(0) and

α(0) =
∫
B2 P (θ)dQ(0), repeat the following steps:

1. Compute all the local minimas {θ(s)
j }r

(s)

j=1 of the function

D(b) =
1

N

N∑
n=1

(
α(s) − P (b)

)T
Φn(β)W̃n

(
Yn −ΦT

nα
(s)
)

over B2. The iteration stops if the minimum of D(b) is zero.
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2. Construct a set of candidate support points by

Θ(s),+ = Θ(s) ∪ {θ(s)
j }r

(s)

j=1.

Let r(s),+ be the number of elements in Θ(s),+.

3. Solve the optimization problem

min
1

N

N∑
n=1

Yn − r(s)+1∑
i=1

πiΦ
T
nP (bi)

T

W̃n

Yn − r(s)+1∑
i=1

πiΦ
T
nP (bi)


s.t.

r(s),+∑
i=1

πi = 1,

πi ≥ 0, i = 1, . . . , r(s),+,

where bi ∈ Θ(s),+. We denote its solution by π(s) = (π
(s)
1 , . . . , π

(s)

r(s),+
)T.

4. Discard all bis with zero π
(s)
i , update Q(s), Θ(s) and α(s) = α(Q(s)), and set

s = s+ 1.

5.6 Residual Analysis and Correlation Structure

Estimation

The adequacy of a fitted regression model can be assessed using residual analysis;

see [Fitzmaurice et al., 2012, p.g. 267]. In this section, we discuss the analysis

of transformed residuals and give two possible ways of estimating the correlation

structure of the residuals.

Given the GMM estimates (β̂GMM, α̂GMM), for each n ∈ {1, . . . , N}, the fitted

mean is ΦT
n (β̂GMM)α̂GMM ∈ RTn and the residual is

r̂n = Yn −ΦT
n (β̂GMM)α̂GMM ∈ RTn .

However, because the elements of r̂n are correlated and with different variances, we

need to standardized them so that they have constant variance and zero correlation.
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Let Σn(β∗, Q∗) be the covariance matrix of Yn | (Xn,Zn), which is positive definite.

The residual r̂n can be standardized by

ên = Σ−1/2
n (β∗, Q∗)r̂n.

Then, the classical residual diagnostics for standard linear regression can be applied;

see [Fitzmaurice et al., 2012, p.g. 267]. Note that it is not necessary to check the

normality of the standardized residuals, because no distributional assumption is made

for the residuals.

There are two possible ways to estimate the covariance matrix Σn(β∗, Q∗): the

sample average and the parametric version. The sample average version is suitable

to a balanced design such that Tn = T . The covariance matrix can be estimated as

Σ̂n = V̂ 1/2
n

(
1

N

N∑
n=1

V̂ −1/2
n r̂nr̂

T
n V̂

−1/2
n

)
V̂ 1/2
n , (5.14)

where V̂n = Vn(β̂GMM, α̂GMM) and Vn(β,α) is defined in Equation (5.10); see [Fitz-

maurice et al., 2012, p.g. 357].

In the parametric version, we approximately estimate Σn(β∗, Q∗) under an addi-

tional assumption that, for each n and t, t′ = 1, . . . , Tn,

g−1(XT
ntβ + Zntb)× g−1(XT

nt′β + Znt′b) ∈ L2(B, µ).

By the law of total covariance, we have

Cov[Ynt, Ynt′ |Xn,Zn]

= Ebn [Cov[Ynt, Ynt′ |Xn,Zn, bn]]

+ Covbn [E [Ynt |Xn,Zn, bn]× E [Ynt′ |Xn,Zn, bn]].

By the modelling assumption that Ynt and Ynt′ are independent conditional on bn,

Cov[Ynt, Ynt′ |Xn,Zn, bn] = 0. We further apply the law of expectation and have

Cov[Ynt, Ynt′ |Xn,Zn]

= Ebn [E [Ynt |Xn,Zn, bn]× E [Ynt′ |Xn,Zn, bn]]]

− E [Ynt |Xn,Zn]× E [Ynt′ |Xn,Zn] .
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For each t and t′, by changing the order of the integrals, we have the approximations

Ebn [E [Ynt |Xn,Zn, bn]× E [Ynt′ |Xn,Zn, bn]]] ≈
JN∑
j=0

cntt′j(β)αj,

and

E [Ynt |Xn,Zn]× E [Ynt′ |Xn,Zn]] ≈

(
JN∑
j=0

φntj(β)αj

)
×

(
JN∑
j=0

φnt′j(β)αj

)
,

where, for each j,

cntt′j(β) =

∫
B
g−1(XT

ntβ + Zntb)× g−1(XT
nt′β + Znt′b)Pj(b)dµ. (5.15)

In sum, the off-diagonal elements of Σn are estimated by

Σ̃ntt′(β̂GMM, α̂GMM)

=

JN∑
j=0

cntt′j(β̂GMM)α̂GMM,j

−

(
JN∑
j=0

φntj(β̂GMM)α̂GMM,j

)
×

(
JN∑
j=0

φnt′j(β̂GMM)α̂GMM,j

)
,

while the diagonal elements of Σn are estimated by Vnt(β̂GMM, α̂GMM) in Equation

(5.10). One possible issue of using the parametric version is that the resulting esti-

mated covariance matrix may not be positive definite.

5.7 Simulation Studies

To evaluate the performance of the GMM estimator (β̂GMM, α̂GMM), we consider

the following models.

Model 5.A (A Poisson Regression Model with a Log-link Function).

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the response Ynt | (Xnt, Znt, bn) follows

a Poisson distribution with mean µnt(bn), where µnt(bn) depends on the regression

parameter β via the log-link function

µnt(bn) = E [Ynt |Xnt, Znt, bn] = exp(XT
ntβ + Zntbn).
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Model 5.B (A Binomial Regression Model with a Logit-link Function).

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the response Ynt | (Xnt, Znt, bn) follows

a binomial distribution with the number of trials B = 20 and the mean µnt(bn), where

µnt(bn) depends on the regression parameter β via the logit-link function

µnt(bn) = E[Ynt |Xnt, Znt, bn] =
B

1 + exp(−XT
ntβ − Zntbn)

.

For each n, let Tn follow a discrete uniform distribution over {1, . . . , 5}. For each

n and t, let Xnt = (Xnt1, Xnt2, Xnt3, Xnt4)T ∈ R4 be the fixed effects, where Xnt1 and

Xnt2 independently follow a continuous uniform distribution over [−0.3, 0.3], Xnt3

follows a Bernoulli distribution with success probability 0.5 and Xnt4 = 10×Xnt1Xnt2

is considered as the interaction effects of Xnt1 and Xnt2. For each n and t, Znt = t/20.

The true value of the regression parameter β is (−1, 2, 0.5, 0)T ∈ R4. The distribution

of the random effects Q(b) is 0.4I(b ≤ 0) + 0.1I(b ≤ 1) + 0.5I(b ≤ 2).

We use the Chebyshev polynomials (see Definition 2.4.2) defined on B = [−6, 6] as

the orthonormal basis {Pj(b)}JNj=0 in L2(B, µ), where µ = (1− b2)−1/2db. The approx-

imation property has been studied in Section 2.4.1. For different sample sizes, the

dimensions of the generalized moments α ∈ RJN are different, where JN = b2N1/3c,
with bac denoting the largest integer not greater than a. Three sample size levels are

considered (N = 50, 100 and 200).

We consider two different working correlation matrices: the independence and

the AR(1). The parameter in the AR(1) correlation matrix is 0.5. We also consider

the case when the weighting matrix is the inverse of the true correlation matrix of

Un(β,α).

We compare the GMM estimator with the NPMLE in [Wang, 2010], as the

NPMLE is considered as the most efficient estimator for the mixed-effects model

with univariate random effects. To study the robustness of the GMM estimator to

the misspecification of the likelihood function. We also use the following misspecified

models to fit the simulated data. Model 5.C is used to fit the data from Model 5.A,

and Model 5.D to fit the data from Model 5.B. Under our parameter setting, all of

the considered models are well-defined.
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Model 5.C (A Binomial Regression Model with a Log-link Function).

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the response Ynt | (Xnt, Znt, bn) follows

a binomial distribution with the number of trials B = 20 and the mean µnt(bn), where

µnt(bn) depends on the regression parameter β via the log-link function

µnt(bn) = E[Ynt |Xnt, Znt, bn] = exp(XT
ntβ + Zntbn).

Model 5.D (A Poisson Regression Model with a Logit-link Function).

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the response Ynt | (Xnt, Znt, bn) follows

a Poisson distribution with mean µnt(bn), where µnt(bn) depends on the regression

parameter β via the logit-link function

µnt(bn) = E [Ynt |Xnt, Znt, bn] =
B

1 + exp(−XT
ntβ − Zntbn)

and B = 20.

The simulation results are summarized in Table 5.1 to 5.4. From these tables, we

have the following observations.

1. Although the correlation matrices are misspecified, the GMM estimators could

perform closely to the NPMLE; see Table 5.1 to 5.4. This implies that the lose

of information is not significant in this simulation sutdy.

2. In general, the NPMLE has smaller MSE than the GMM estimators; see Table

5.1 to 5.4. This is because that the maximum likelihood estimator is efficient

in general.

3. When the regression parameter is of interest, the GMM estimators could per-

form closely to the NPMLE; see Table 5.1 and 5.3.

4. The MSE of the GMM estimators for the generalized momentsα are much larger

than the ones of the NPMLE; see Table 5.2 and 5.4. The reason is that the

GMM estimators use the modelling information from the marginal mean, while

the NPMLE use the modelling information from the conditional probability

function.
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We also can see the robustness of the GMM estimators to the misspecified likeli-

hoods from the simulation results. When Model 5.C is used to fit a random sample

from Model 5.A, the NPMLE performs as well as when Model 5.A is used; see Table

5.1 and 5.2. This is because that a non-parametric mixture of binomial distributions

with large number of trials could appropriately approximate any discrete probability

distributions; see [Wood, 1999]. On the other hand, when a random sample from

Model 5.B is fitted by Model 5.D, the NPMLE performs worse than the GMM esti-

mators, especially when the sample size is large; see Table 5.3 and 5.4. Note that a

Poisson distribution can be used to approximate a binomial distribution with large

number of trials when the success probability is either close to zero or one. In Figure

5.1, we show the simulated success probability when N = 1000, and see that few of

the simulated success probabilities is close to zero or one. Therefore, it is inappropri-

ate to use the mixture of Poisson distribution to approximate a binomial distribution

in our simulation setting.

5.8 Application to the Retina Surgery Data

The retina surgery data has been analyzed in [Song and Tan, 2000] and [Qiu et al.,

2008]. Let Ynt be the percentage of gas volume for the nth patient at time tn and let

Xnt be the vector of covariates including the logarithm of time after surgery (TIME)

and its square, and the gas concentration level (LEVEL). The following model is used

under the assumptions that Yn | (Xn,Zn), n = 1, . . . , N , are independent to each

other and conditional on the random effects bn, Yntn | (Xn,Zn, bn) are independent

to each other.

Model 5.E.

For each n and tn, Yntn | (Xntn , bn) follows a distribution with mean µnt(bn) such that

logit(µntn(bn)) = β1 log(TIME) + β2 (log(TIME))2 + β3LEVEL + bn,

where bn ∈ R has a probability measure Q defined on B = [−20, 50]. The variance of

Ynt | (Xnt, bn) is

Var [Ynt |Xnt, bn] = ((1− µnt(bn))µnt(bn) + 1)−1 .
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The Chebyshev polynomials defined on B is used to reparameterize and approxi-

mate Model 5.E. The numbers of generalized moments used in the truncation approx-

imation models are 5, 7, 9 and 11. We also consider two types of working correlation

matrices: the independence and the AR(1). The parameter used in the AR(1) cor-

relation matrix is 0.5. The estimated regression parameters are reported in Table

5.5. We also report the PQL estimates (with different approximation orders) from

[Qiu et al., 2008], where a mixture of the simplex distribution is considered and the

distribution of the random intercept bn is normal. We notice that β1 and β2 could be

estimated very differently by the two methods, because that two different models are

used.

Panel (a) and (b) in Figure 5.2 display the standardized residuals against the

responses and fitted means, when the model is fitted by the GMM with AR(1) corre-

lation matrices and JN = 5. The residuals are standardized by its working correlation

matrix. The two red lines represent the 97.5% and 2.5% empirical quantiles of the

standardized residuals. A linear trend is observed from Panel (a). It implies that some

information in the residuals is not characterized by Model F. This is because that the

working correlation matrices are misspecified. In Panel (b), we do not observe any

pattern between the fitted mean and the standardized residuals. This implies that the

correlation between them is small. Panel (c)-(e) in Figure 5.2 shows the fitted means

and the proportions over time across three levels of gas concentration. We see that

the fitted mean can successfully characterize the decaying trends of the proportions

over time.

5.9 Discussion

In this chapter, we introduce the GMM for mixed-effects models with univariate

random effects. By simulation, we see that the GMM estimator may not as efficient as

the NPMLE but it is robust to the misspecified likelihood functions. As we will see in

Chapter 6, it is challenging to evaluate the loss of efficiency. The major reason is that

neither the GMM estimator nor the NPMLE has an explicit form of the covariance

matrix due to the existence of the boundaries in the parameter space. In this section,
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JN log(TIME) (log(TIME))2 LEVEL

GMM

AR(1)

5 0.46 -0.45 0.52

7 0.38 -0.43 0.46

9 0.32 -0.40 0.42

11 0.41 -0.46 0.48

Indep

5 0.31 -0.38 0.47

7 0.45 -0.45 0.51

9 0.45 -0.45 0.51

11 0.44 -0.45 0.50

PQL -

order log(TIME) (log(TIME))2 LEVEL

1 0.06 -0.35 0.44

2 0.05 -0.35 0.45

4 0.14 -0.39 0.45

6 0.14 -0.39 0.45

Table 5.5: Estimated regression parameters in Model 5.E to the retina surgery data
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we discuss the following possible future research direction.

Firstly, to study the subject-specific model, we need to predict random effects in

some cases. Given the GMM estimator (β̂GMM, α̂GMM), we may use the solution of

the following optimization problem as the random effects predicator,

min
{bn}Nn=1

1

N

N∑
n=1

UT
n (β̂GMM, bn)SnUn(β̂GMM, bn) (5.16)

s.t.
1

N

N∑
n=1

P (bn) = α̂GMM,

where for each n, Sn is a Tn × Tn positive definite matrix, and

Un(β, bn) = Yn − g−1(XT
n β +Znbn) ∈ RTn .

The above optimization problem can be solved by the Lagrange multiplier method.

However, the properties of the predicated random effects need further investigation.

In this thesis, we assume that the parameter σ is constant and known. This

assumption is valid in the models considered in Section 5.7. An unknown or non-

constant σ may lead to much more complex model. However, the GMM for σ requires

future work.

Another important research direction is the extension to multivariate mixed-effects

models. Recall that in Section 2.4, we have introduced the reparameterization-

approximation procedure for the GLMM with multivariate random effects. Designing

an efficient computational algorithm for multivariate mixed-effects models is challenge

for two major reasons. Firstly, the Chebyshev system for multivariate functions is not

well-defined. Secondly, few study has been done on the geometry of the generalized

moment space for multivariate distributions. As a result, the positive representa-

tion and the gradient characterization, which are necessary for the gradient-based

computational algorithms, are not established.

Lastly, we discuss the model selection problem. In the real examples, we considered

difference combinations between the working correlation matrices and the number of

the generalized moments. Different combination may lead to different point estimates

in the GMM. It is natural to ask which fitted model to use. Also, the graphical analysis
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of the standardized residuals are subjective in this thesis. Numerical analysis of the

residuals needs further investigation.

Appendix: D

D.1 MATLAB Code for Algorithm 5.1

function [ betanew , as , out , objo ] = GLMGMM(DATA, q , . . .

a0 , beta0 , V, W)

Ind1 = 0 ;

count1 = 1 ;

out = 1 ;

objo = 1e5 ;

while Ind1 == 1

count1 = count1 + 1 ;

[ betanew , unused , H0 , W] = GMM NR(DATA, q , . . .

a0 , beta0 , V) ;

[ asnew , obj ] = GMMCNM(DATA( : , end ) , q , . . .

as , H0 , W) ;

i f count1 > 5e2

Ind1 = 1 ;

out = 0 ;

end

i f norm( betanew−beta0)<1e−5

Ind1 = 1 ;
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else

beta0 = betanew ;

as = asnew ;

objo = obj ;

end

end

function [ betanew , obj , H0a , W, out ] = GMM NR(DATA, q , . . .

a in i , b e ta in i , V, W)

% f o r l o g i s t i c l i n k f u n c t i o n s

Ind = 0 ;

count = 1 ;

out = 1 ;

beta0 = b e t a i n i ;

betap = length ( beta0 ) ;

X = DATA( : , 2 : 2+ betap −1);

Z = DATA(: ,2+ betap ) ;

S = DATA( : , end ) ;

H0a = 1./(1+exp(−repmat (X∗beta0 , [ 1 , length ( q )])−Z∗q ) ) ;

H0 = H0a∗(V∗V’ ) ;

U = H0∗ a in i ’ ;

dU = (1−H0a ) . ∗H0a ;

D = X’ . ∗ repmat ( a i n i ∗(dU∗(V∗V’ ) ) ’ , [ s ize (X, 2 ) , 1 ] ) ;

C = D∗W∗(S−U) ;

G = D∗W∗D’ ;

o b j i n i =(S−U) ’∗W∗(S−U) ;

i f ( rcond (G) < 1e−5 )

Ind = 1 ;

out = 0 ;
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betanew = b e t a i n i ;

obj = o b j i n i ;

end

while Ind == 0

count = count + 1 ;

betanew = beta0 + G\C;

H0a = 1./(1+exp(−repmat (X∗betanew , [ 1 , length ( q )])−Z∗q ) ) ;

H0 = H0a∗(V∗V’ ) ;

U = H0∗ a in i ’ ;

dU = (1−H0a ) . ∗H0a ;

D = X’ . ∗ repmat ( a i n i ∗(dU∗(V∗V’ ) ) ’ , [ s ize (X, 2 ) , 1 ] ) ;

C = D∗W∗(S−U) ;

G = D∗W∗D’ ;

obj =(S−U) ’∗W∗(S−U) ;

i f obj < o b j i n i

Ind = 1 ;

else

beta0 = betanew ;

end

i f count > 2e2

betanew = b e t a i n i ;

obj = o b j i n i ;

Ind =1;

end

end

H0a = 1./(1+exp(−repmat (X∗betanew , [ 1 , length ( q )])−Z∗q ) ) ;
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D.2 MATLAB Code for Algorithm 5.2

function [ as , Dsmin ] = GMM CNM adj(S , q , a i n i t , H0 , W)

Ind = 0 ;

e = 1e−10;

pLs = find ( a i n i t > 0 ) ;

as = a i n i t ;

U = H0∗as ’ ;

g = −(S−U) ’∗W∗(H0−U( : , ones (1 , length ( q ) ) ) ) ;

Hc = H0’∗W∗H0 ;

Ac = H0’∗W∗S ;

Dsmino = (S−U) ’∗W∗(S−U) ;

while Ind == 0

dg = d i f f ( g ) ;

s igndg = sign ( dg ) ;

ds igndg = d i f f ( s igndg ) ;

minL = find ( ds igndg == 2)+1;

L = minL ;

pLsnew = [ 1 pLs L length ( q ) ] ;

pLsnew = unique ( pLsnew ) ;

H = Hc( pLsnew , pLsnew ) ;

A = Ac( pLsnew , : ) ;

%warning o f f ;

opt ions = optimset ( ’ Algorithm ’ , . . .
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’ i n t e r i o r−point−convex ’ , . . .

’ d i s p l ay ’ , ’ o f f ’ ) ;

Ast = quadprog ( (H+H’ ) / 2 , −A, . . .

−eye ( s ize (H, 2 ) ) , . . .

zeros (1 , s ize (H, 2 ) ) , . . .

ones (1 , s ize (H, 2 ) ) , 1 , . . .

[ ] , [ ] , [ ] , opt ions ) ;

as = zeros (1 , length ( as ) ) ;

as ( pLsnew ) = Ast ;

pLs = pLsnew ( Ast > 0 ) ;

U = H0∗as ’ ;

g = −(S−U) ’∗W∗(H0−U( : , ones (1 , length ( q ) ) ) ) ;

Dsmin = (S−U) ’∗W∗(S−U) ;

i f abs (Dsmin−Dsmino ) < 1e−5 | | max( g ) < e

Ind = 1 ;

else

aso = as ;

Dsmino = Dsmin ;

end

end
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Chapter 6

The Generalized Method of

Moments for a Poisson Regression

Model with Random Intercept and

Slope

6.1 Introduction

In the previous chapter, we considered the case where the random effects in a

generalized linear mixed model are univariate. Now, we consider the generalized

method of moments for the following Poisson regression model.

Model 6.A.

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the response Ynt | (Xnt, Znt, bn) follows

a Poisson distribution with mean µnt(bn), where µnt(bn) depends on the regression

parameter β via the log-link function

log µnt(bn) = XT
ntβ + bn1 + Znt × bn2,

and Xnt ∈ Rp are the covariates for the fixed effects, β ∈ Rp is the regression pa-

rameter, Znt are the covariates to the random effects and bn = (bn1, bn2)T ∈ R2 are
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random effects. Furthermore, bn1 and bn2 are assumed independent and their marginal

distribution are Q1 and Q2 with the support sets B1 and B2 correspondingly.

The main contribution in this chapter is to extend the GMM for mixed-effects

models with univariate random effects to a Poisson regression model with random

intercept and slope (Model 6.A). After the reparameterization-approximation proce-

dure, we point out that the parameter space for Model 6.A is a generalized moment

cone which share the same geometric properties as the generalized moment space; see

Section 6.2. Therefore, the computational algorithms proposed in Chapter 5 can be

easily modified to compute the GMM estimators for Model 6.A; see Section 6.3. The

simulation studies in Section 6.4 provide empirical evidence that the GMM estimators

in Model 6.A is consistency and is robust to the misspecification of the random-effects

distribution. Also see Section 6.5 for a real data example.

We organize this chapter as follows. In Section 6.2, we describe the GMM for

Model 6.A. In Section 6.3, we give the modified computational algorithms for Model

6.A. The finite sample performance of the GMM for Model 6.A is examined through

simulations in Section 6.4. In Section 6.5, we fit the Epileptic Seizures Data by the

proposed methods, which has been described in Section 1.6.2. Finally, we end this

chapter with a discussion.

6.2 The Generalized Method of Moments

Let A be the range of the function exp(bn1), for bn1 ∈ B1. By the assumption that

bn1 and bn2 are independent, for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, we have

E [Ynt |Xnt, Znt] =

∫
B1

∫
B2
µnt(bn)dQ1dQ2

=

∫
B1

∫
B2

exp
(
XT

ntβ + bn1 + Zntbn2

)
dQ1dQ2

= γ1 ×
∫
B2

exp (Zntbn2)× exp
(
XT

ntβ
)

dQ2,

where

γ1 =

∫
B1

exp (bn1) dQ1 ∈ A.
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Assume that for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the function of bn2,

exp(XT
ntβ + Zntbn2), is an element of L2(B, µ). Given an orthonormal polynomial

system {Pj(b)}∞j=0 defined on L2(B, µ), we can reparameterize and approximate the

expectation E [Ynt |Xnt, Znt] as

E [Ynt |Xnt, Znt] ≈ γ1 ×
JN∑
j=0

φntj(β)α′j,

where for each j ∈ {0, . . . , JN},

φntj(β) =

∫
B2

exp(Zntbn2)× exp
(
XT

ntβ
)
× Pj(bn2)dµ

and

α′j =

∫
B2
Pj(b)dQ2.

For each n, let

Un(β,α) = Yn −ΦT
n (β)α,

where Φn(β) is a (JN+1)×Tn matrix whose elements are φntj(β) andα = (α0, . . . , αJN )T ∈
RJN+1, for each j ∈ {1, . . . , JN},

αj = γ1 × α′j.

The parameter space of α is

C(A) =

{
α =

∫
B2
P (b)dQ′ ∈ RJN

}
,

where Q′ is a nondecreasing right continuous function of bounded variation such that∫
B2 dQ′ ∈ A and P (b) = (P0(b), . . . , PJN (b))T ∈ RJN+1 is a vector function of b ∈ B2.

The set C(A) is known as a subset of the moment cone (see Definition 3.2.1). When

P0(b) ≡ 1, we have

α0 = γ1 ×
∫
B2

dQ2 = γ1.
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On the other hand, by the law of total variance and the law of total expectation,

we have

Var[Ynt |Xnt, Znt]

= Ebn [Var[Ynt |Xnt, Znt, bn]] + Varbn [E [Ynt |Xnt, Znt, bn]]

= Ebn [Var[Ynt |Xnt, Znt, bn]] + Ebn
[
(E [Ynt |Xnt, Znt, bn])2]

− (E [Ynt |Xnt, Znt])
2 .

Because Ynt | (Xnt, Znt, bn) follows a Poisson distribution, we have

Var[Ynt |Xnt, Znt, bn] = µnt(bn).

By changing the order of the integrals, we can approximate the following terms as

Ebn [Var[Ynt |Xnt, Znt, bn]] =

∫
B1

∫
B2
µnt(bn)dQ1dQ2

≈ φT
nt(β)α,

Ebn
[
(E [Ynt |Xnt, Znt, bn])2] = γ2 ×

∫
B2

(
exp

(
XT

ntβ + Zntbn2

))2
dQ2

≈ γ2/γ1 × cT
ntt(β)α,

and

(E [Ynt |Xnt, Znt])
2 ≈

(
φT
nt(β)α

)2
,

where

γ2 =

∫
B1

exp(2bn1)dQ1.

Here for each n and t ∈ {1, . . . , Tn},

φnt(β) = (φnt0(β), . . . , φntJN (β))T ∈ RJN

and

cntt(β) = (cntt0(β), . . . , cnttJN (β))T ∈ RJN ,
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where for each j,

cnttj(β) =

∫
B2

(
exp

(
XT

ntβ + Zntbn2

))2
Pj(bn2)dQ2.

Therefore, the variance function of Ynt | (Xnt, Znt) is approximated by

Vnt(β,α,γ) = φT
nt(β)α+ γ2/γ1 × cT

ntt(β)α−
(
φT
nt(β)α

)2
, (6.1)

and correspondingly, the adjusted approximation is

Vadj,nt(β,α,γ) = max
{
ε,φT

nt(β)α
}

+ max
{
ε, γ2/γ1 × cT

ntt(β)α−
(
φT
nt(β)α

)2
}
,

where γ = (γ1, γ2)T ∈ R2 and ε is a small positive number; also see Section 5.4.1.

For each n, let Vn(β,α,γ) be the Tn×Tn diagonal matrix whose diagonal elements

are Vnt(β,α,γ), t = 1, . . . , Tn. Given the initial estimators (β̃, α̃, γ̃), the GMM

estimator for Model 6.A is

(β̂GMM, α̂GMM) = arg min
β∈Rp,α∈C(A)

1

N

N∑
n=1

UT
n (β,α)W̃nUn(β,α),

where for each n,

W̃n = V −1/2
n (β̃, α̃, γ̃)R−1

n V
−1/2
n (β̃, α̃, γ̃),

and Rn is the working correlation matrix.

The initial estimators of (α,β, γ1) can be obtained by using fixed weighting ma-

trices {Wn}Nn=1, when P0(b) ≡ 1. To obtain the initial estimator of γ2, we further

assume that γ2 is a function of γ1. Because γ̃1 = α̃0, we have γ̃2 = γ2(γ̃1). For

example, when Q1 is a normal distribution with mean zero and covariance σ2, we

have

γ1 =
1√
2πσ

∫
R

exp(bn1) exp

(
− b

2
n1

2σ2

)
dbn1 = exp

(
σ2/2

)
and

γ2 =
1√
2πσ

∫
R

exp(2bn1) exp

(
− b

2
n1

2σ2

)
dbn1 = exp

(
2σ2
)
.

Therefore, we have

γ̃2 = γ̃4
1 .

In general, we do not need the distributional assumption of bn1 but a modelling

assumption on γ2 as a function of γ1.
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6.3 Computational Algorithms

To obtain the GMM estimators (β̂GMM, α̂GMM) for Model 6.A, the following al-

ternating parameter algorithm can be used.

Algorithm 6.1 (The Alternating Parameter Algorithm).

Set s = 0. From an initial estimate α(0) ∈ RJ , repeat the following steps at the

(s+ 1)th iteration:

1. Given α(s), solve the optimization problem

β(s+1) = arg min
β

1

N

N∑
n=1

UT
n (β,α(s))W̃nUn(β,α(s)). (6.2)

2. Update

α(s+1) = arg min
α∈C(A)

1

N

N∑
n=1

UT
n (β(s+1),α)W̃nUn(β(s+1),α). (6.3)

3. Update s = s+ 1. The iteration stops, when

‖α(s) −α(s+1)‖2
2 + ‖β(s) − β(s+1)‖2

2 < ε′,

where ε′ is a small positive number.

The optimization problem (6.2) in Step 1 can be solved by the Newton-Raphson

method. On the other hand, given β(s+1), the objective function of the optimization

problem (6.3) is convex with respect to α. As described in Section 3.2, the parameter

space CJN (A) shares same boundary geometry with the generalized moment spaceM
defined in Equation (5.6). And thus, the CNM algorithms in [Wang, 2007] also can

be adopted for the optimization problem (6.3).

Algorithm 6.2 (The CNM for GLMM).

Set s = 0 and given β. From an initial estimate Q(0) with finite support Θ(0) and

α(0) =
∫
B2 P (b)dQ(0), repeat the following steps:
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1. Compute all the local minimas {θ(s)
j }r

(s)

j=1 of the function

D(b) =
1

N

N∑
n=1

(
α(s) − P (b)

)T
Φn(β)W̃n

(
Yn −ΦT

nα
(s)
)

over B2. The iteration stops if the minimum of D(b) is zero.

2. Construct a set of candidate support points by

Θ(s),+ = Θ(s) ∪ {θ(s)
j }r

(s)

j=1.

Let r(s),+ be the number of elements in Θ(s),+.

3. Solve the optimization problem

min
1

N

N∑
n=1

Yn − r(s)+1∑
i=1

πiΦ
T
nP (bi)

T

W̃n

Yn − r(s)+1∑
i=1

πiΦ
T
nP (bi)


s.t. πi ≥ 0, i = 1, . . . , r(s),+,

where bi ∈ Θ(s),+. We denote its solution by π(s) = (π
(s)
1 , . . . , π

(s)

r(s),+
)T.

4. Discard all bis with zero π
(s)
i , update Q(s), Θ(s) and α(s) =

∫
B2 P (b)dQ(s), and

set s = s+ 1.

6.4 Simulation Studies

To evaluate the performance of the GMM estimator (β̂GMM, α̂GMM) for the Pois-

son regression model with random intercept and slope, we consider the following

parameter setting.

For each n ∈ {1, . . . , N}, let Tn follow a discrete uniform distribution over {1, . . . , 5}.
For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, let Xnt = (Xnt1, Xnt2, Xnt3, Xnt4)T ∈ R4

be the fixed effects, where Xnt1 and Xnt2 independently follow a continuous uniform

distribution over [−0.3, 0.3], Xnt3 follows a Bernoulli distribution with success prob-

ability 0.5 and Xnt4 = 10 × Xnt1Xnt2 is considered as the interaction effects of Xnt1

and Xnt2. For each n and t, Znt = t/20. The true value of the regression parameter

β is (−1, 2, 0.5, 0)T ∈ R4. Three possible random effects distributions are considered.
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1. The random effects bn1 and bn2 are independent to each other. Moreover, they

have the same marginal distribution

Q(b) = 0.4I(b ≤ 0) + 0.1I(b ≤ 1) + 0.5I(b ≤ 2).

2. The random effects b = (bn1, bn2)T ∈ R2 follow a bivariate normal distribution

with mean zero and covariance matrix

Σ =

[
1 0

0 0.1

]
.

3. The random effects b = (bn1, bn2)T ∈ R2 follow a bivariate normal distribution

with mean zero and covariance matrix

Σ =

[
1 0.9×

√
0.1

0.9×
√

0.1 0.1

]
.

We use the Chebyshev polynomials (see Definition 2.4.2) defined on B = [−6, 6] as

the orthonormal basis {Pj(b)}JNj=0 in L2(B, µ), where µ = (1− b2)−1/2db. The approx-

imation property has been studied in Section 2.4.1. For different sample sizes, the

dimensions of the generalized moments α ∈ RJN are different, where JN = b2N1/3c.
Three sample size levels are considered (N = 50, 100 and 200).

We consider two different working correlation matrices: the independence and the

AR(1). The parameter in the AR(1) correlation matrices is 0.5. We also consider

the case in which the working correlation matrix Rn is the true correlation matrix

of Un(β∗, Q∗). The initial estimators (α̃, β̃, γ̃) are estimated by the GMM with

Wn = In, where for each n, In is a Tn×Tn identity matrix. Moreover we let γ2 = γ4
1 .

The number of the repetitions is 1000. The NPMLE can not be easily computed in

this case because the random-effects bn is bivariate. Instead, we consider the Model

6.B, in which the random-effects distributions are bivariate normal, and fit it by the

penalized quasi-likelihood (PQL) method [Breslow and Clayton, 1993]. The PQL

estimators are calculated by the MATLAB code fitgmle in the Statistics and Machine

Learning Toolbox.
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Model 6.B.

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the response Ynt | (Xnt, Znt, bn) follows

a Poisson distribution with mean µnt(bn), where µnt(bn) depends on the regression

parameter β via the log-link function

log µnt(bn) = XT
ntβ + (β0 + bn1) + Znt × (bn2 + βb),

and Xnt ∈ Rp are the covariates for the fixed effects, β ∈ Rp is the regression pa-

rameter, β0 and βb are the mean of the random intercept and slope correspondingly,

Znt are the covariates to the random effects and bn = (bn1, bn2)T ∈ R2 are random

effects. Here bn ∈ R2 is assumed to follow a bivariate normal distribution with mean

zero and covariance matrix Σ, where Σ is unknown.

The simulation results are summarized in Table 6.1-6.6. From these tables, we

observe the followings.

1. When the true model is correctly specified by 6.B, the PQL estimators could

have the smaller MSE than the GMM estimators; see Table 6.3-6.6. This is

because that the PQL use the modelling information of the probability function

pr(Yn |Xn,Zn) while the GMM only use the modelling information of the mean

condition E[Yn | Xn,Zn]; and the random effects distribution is parametric in

Model 6.B, while it is non-parametric in Model 6.A.

2. When the regression parameter β is considered, the GMM estimators with the

true correlation matrices has smaller bias and MSE than the ones with the

working correlation matrices; see Table 6.1-6.6. This provide an empirical ev-

idence that correctly modelling the with-in subject correlation could increase

the efficiency of the GMM estimators.

3. When the random effects do not follow normal, the PQL estimators could be

very biased; see Table 6.1 and 6.2. On the other hand, the GMM estimators

are consistent and with smaller bias. The reason is that the random effects

distribution is misspecified in Model 6.B.
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4. When the random intercept bn1 and the random slope bn2 are correlated, we

observe slightly larger bias and MSE in the GMM estimators; see Table 6.5-6.6.

This is because that the independence assumption does not hold in Model 6.A.

6.5 Application to the Epileptic Seizures Data

In Section 1.6.2, we have described the epileptic seizures data, which has been

analyzed by [Thall and Vail, 1990] and [Breslow and Clayton, 1993]. The response

Ynt is the biweekly number of seizures for the nth patient at equally spaced times t =

1, 2, 3, 4. The covariates include baseline seizure count (BASE), treatment (TREAT),

age (AGE) and possibly the interaction between treatment and age (INTER). Prelim-

inary analysis indicated that the response were substantially lower during the fourth

visit and thus an indicator (V4) is introduced to model such effect; see [Breslow and

Clayton, 1993].

We consider the following two models under the independence assumptions that

Yn | (Xn,Zn), n = 1, . . . , N , are independent to each other and conditional on the

random effects bn, and Ynt | (Xn,Zn, bn), t = 1, . . . , Tn, are independent to each

other.

Model 6.C.

For each n and t, Ynt | (Xnt, bn) follows a Poisson distribution with mean µnt(bn)

such that

log µnt(bn) = bn + β1BASEnt + β2TREATnt + β3INTERnt

+ β4 log(AGEnt) + β5V4,

where bn ∈ R has a probability measure Q defined on B = [−20, 20]. The variance of

Ynt | (Xnt, bn) is µnt(bn).

Model 6.D.

For each n and t, Ynt | (Xnt, bn) follows a Poisson distribution with mean µnt(bn)
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such that

log µnt(bn) = bn1 + β1BASEnt + β2TREATnt + β3INTERnt

+ β4 log(AGEnt) + bn2TIME,

where bn = (bn1, bn2)T ∈ R2, bn1 ∈ R and bn2 ∈ R have probability measures Q1 and

Q2 defined on B = [−20, 20], and the TIME effects is coded in (−0.3,−0.1, 0.1, 0.3).

The variance of Ynt | (Xnt, bn) is µnt(bn). We further assume that bn1 and bn2 are

independent.

Model 6.C can be fitted by the GMM with one generalized moment α0 =
∫
B exp(b)dQ,

while Model 6.D can be fitted by the GMM with the generalized moments α =

(α1, α2, α3, α4)T ∈ R4, where for each j ∈ {1, . . . , 4},

αj =

∫
B

exp(TIMEj × bn2)dQ2 ×
∫
B

exp(bn1)dQ1

and TIMEjs are associated with the coded TIME effects.

Table 6.7 presents the GMM estimates in Model 6.C and 6.D with two different

working correlation matrices: the independence and the AR(1). We also give the

PQL estimates from [Breslow and Clayton, 1993], where bn in Model 6.D follows a

normal distribution and (bn1, bn2)T ∈ R2 follows a bivariate normal distribution.

In Figure 6.1 to 6.4, we use the standardized residuals to check the adequacy of

the GMM. Here the estimated covariance matrices in Equation (5.14) are used. Panel

(a), (b), (c) and (d) in each figure display to the plots of the standardized residuals

against the coded visiting time, patients, responses and fitted means. The red lines

represent the 97.5% and 2.5% empirical quantiles of the standardized residuals. The

black straight line represents the mean of the standardized residuals. We see that the

mean of the standardized residuals is close to zero and no trend is observed from any

of the panels. This means that the considered models adequately fit the data through

the GMM.
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Model 6.C Model 6.D

GMM PQL GMM PQL

AR(1) Indep AR(1) Indep

BASE 0.72 0.76 0.86 0.92 0.93 0.87

TREAT -0.74 -0.78 -0.93 -1.20 -1.07 -0.91

INTER 0.18 0.25 0.34 0.49 0.44 0.33

Log(Age) 0.44 0.40 0.47 0.86 0.79 0.46

V4 -0.00 -0.07 -0.10 - - -

Table 6.7: Estimated regression parameters in the models to the epilepsy seizures

data.

6.6 Conclusion and Discussion

In this chapter, we discussed the GMM for the Poisson regression models with

random intercept and slope. Because the parameter space share same geometric prop-

erties, the computational algorithms proposed in Section 5.5 can be easily adopted for

the GMM for Model 6.A. The simulation results indicate that the resulting estima-

tors are consistent, when the models are correctly specific. Moreover, we compare the

performance of the GMM with the QPL method in the simulation study. Because the

GMM does not require the distribution assumption on the random effects, it could

perform superior to the PQL, when the random effects distribution is not normal.

Model 6.A is more flexible than a Poisson regression model with univariate random-

effects. However, there still exists a strong modelling assumption that the random

intercept bn1 and random slope bn2 are independent to each other for each n. In

the following paragraphs, we discuss the case where the independent assumption is

relaxed.

Let

Q(bn) = Q1(bn1)×Q2(bn2 | bn1)

be the joint probability measure of (bn1, bn2) defined on B1×B2, where Q2(bn2 | bn1) is

the distribution of bn2 | bn1. Without the independent assumption, we have, for each
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n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn},

E [Ynt |Xnt, Znt] =

∫
B1×B2

µnt(bn)dQ(bn)

=

∫
B1

∫
B2

exp
(
XT

ntβ + bn1 + Zntbn2

)
dQ2(bn2 | bn1)dQ1(bn1)

=

∫
B1

exp(bn1)

∫
B2

exp
(
XT

ntβ + Zntbn2

)
dQ2(bn2 | bn1)dQ1(bn1).

By the reparameterization-approximation procedure, we have∫
B2

exp
(
XT

ntβ + Zntbn2

)
dQ2(bn2 | bn1) ≈

JN∑
j=0

φT
ntj(β)α′j(bn1),

where {Pj(b)}JNj=0 is an orthonormal polynomial system defined on (B2, µ) and for each

j ∈ {0, . . . , JN},

φntj(β) =

∫
B2

exp
(
XT

ntβ + Zntbn2

)
Pj(bn2)dµ

and

α′j(bn1) =

∫
B2
Pj(bn2)dQ2(bn2 | bn1).

Then, the expectation of Ynt | (Xnt, Znt) is approximated by

Un(β,α) = ΦT
n (β)α, (6.4)

where Φn(β) is a (JN+1)×Tn matrix whose elements are φntj(β) andα = (α0, . . . , αJN )T ∈
RJN+1 and for each j ∈ {1, . . . , JN},

αj =

∫
Bn1

α′j(bn1)dQ1(bn1).

Modelling either the conditional distribution Q2(bn2 | bn1) or {α′j(bn1)}JNj=0 will give us

the approximation in Equation (6.4).

Appendix: E

E.1 MATLAB Code for Algorithm 6.1
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function [ beta , as , out , objo ] = GLMGMM(DATA, q , . . .

a0 , beta0 , V, W)

Ind1 = 0 ;

count1 = 1 ;

out = 1 ;

objo = 1e5 ;

while Ind1 == 0

count1 = count1 + 1 ;

[ betanew , unused , H0 ] = GMM NR(DATA, q , . . .

a0 , beta0 , V) ;

[ asnew , obj ] = GMM CNM adj(DATA( : , end ) , q , . . .

as , H0 , W) ;

i f count1 > 5e2

Ind1 = 1 ;

out = 0 ;

end

i f norm( betanew−beta)<1e−5

Ind1 = 1 ;

else

beta = betanew ;

as = asnew ;

objo = obj ;

end

end

180



function [ betanew , obj , H0 ] = GMM NR(DATA, q , . . .

a0 , beta0 , V, W)

% f o r log−l i n k f u n c t i o n s

Ind = 0 ;

count = 1 ;

betap = length ( beta ) ;

X = DATA( : , 2 : 2+ betap −1);

Z = DATA(: ,2+ betap ) ;

S = DATA( : , end ) ;

H0a = exp( repmat (X∗beta , [ 1 , length ( q ) ] )+Z∗q ) ;

H0 = H0a∗(V∗V’ ) ;

U = H0∗ a in i ’ ;

D = X’ . ∗ repmat (U’ , [ s ize (X, 2 ) , 1 ] ) ;

C = D∗W∗(S−U) ;

G = D∗W∗D’ ;

o b j i n i =(S−U) ’∗W∗(S−U) ;

while Ind == 0

count = count + 1 ;

betanew = beta + G\C;

H0a = exp( repmat (X∗betanew , [ 1 , length ( q ) ] )+Z∗q ) ;

H0 = H0a∗(V∗V’ ) ;

U = H0∗ a in i ’ ;

D = X’ . ∗ repmat (U’ , [ s ize (X, 2 ) , 1 ] ) ;

C = D∗W∗(S−U) ;

G = D∗W∗D’ ;

obj =(S−U) ’∗W∗(S−U) ;
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i f obj < o b j i n i

Ind = 1 ;

else

beta = betanew ;

end

i f count > 1e2

betanew = b e t a i n i ;

obj = o b j i n i ;

Ind =1;

end

end

H0a = exp( repmat (X∗betanew , [ 1 , length ( q ) ] )+Z∗q ) ;

H0 = H0a∗(V∗V’ ) ;

E.2 MATLAB Code for Algorithm 6.2

function [ as , Dsmin ] = GMM CNM adj(S , q , . . .

a i n i t , H0 , W)

Ind = 0 ;

e = 1e−10;

pLs = find ( a i n i t > 0 ) ;

as = a i n i t ;

U = H0∗as ’ ;

g = −(S−U) ’∗W∗(H0−U( : , ones (1 , length ( q ) ) ) ) ;
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Hc = H0’∗W∗H0 ;

Ac = H0’∗W∗S ;

Dsmino = (S−U) ’∗W∗(S−U) ;

while Ind == 0

dg = d i f f ( g ) ;

s igndg = sign ( dg ) ;

ds igndg = d i f f ( s igndg ) ;

minL = find ( ds igndg == 2)+1;

L = minL ;

pLsnew = [ 1 pLs L length ( q ) ] ;

pLsnew = unique ( pLsnew ) ;

H = Hc( pLsnew , pLsnew ) ;

A = Ac( pLsnew , : ) ;

%warning o f f ;

opt ions = optimset ( ’ Algorithm ’ , . . . .

’ i n t e r i o r−point−convex ’ , . . .

’ d i s p l ay ’ , ’ o f f ’ ) ;

Ast = quadprog ( (H+H’ ) / 2 , −A, . . .

−eye ( s ize (H, 2 ) ) , . . .

zeros (1 , s ize (H, 2 ) ) , . . .

[ ] , [ ] , [ ] , [ ] , [ ] , opt i ons ) ;

as = zeros (1 , length ( as ) ) ;

as ( pLsnew ) = Ast ;

pLs = pLsnew ( Ast > 0 ) ;

U = H0∗as ’ ;
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g = −(S−U) ’∗W∗(H0−U( : , ones (1 , length ( q ) ) ) ) ;

Dsmin = (S−U) ’∗W∗(S−U) ;

i f abs (Dsmin−Dsmino ) < 1e−5 | | max( g ) < e

Ind = 1 ;

else

aso = as ;

Dsmino = Dsmin ;

end

end
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Chapter 7

Asymptotic Properties of the

Generalized Method of Moments

for Univariate Mixed-Effects

Models

7.1 Introduction

In the previous chapter, we introduced the generalized method of moments esti-

mator for univariate mixed-effects models; see Definition 5.4.1. In this chapter, we

study the asymptotic properties of the GMM estimator.

The statistical theory of estimators with a diverging number of parameters has at-

tracted interests from many researchers, especially with the advent of high-dimensional

data in many scientific areas; see [Lam and Fan, 2008], [Chen et al., 2009] and [Wang,

2011]. Under the framework that the dimension of the regression parameter grows to-

wards infinity with sample size, the asymptotic properties of many regular estimators

have been studied; see the profile-kernel likelihood estimator [Lam and Fan, 2008],

empirical likelihood estimators [Chen et al., 2009] and GEE estimators [Wang, 2011].

In this chapter, we consider the case where the dimension of the regression parameter
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β is fixed but the dimension of the generalized moments vector α diverges with the

sample size N . To emphasize that the dimension of α depends on the sample size,

we add N as a subscript to α and use the notation αN for the generalized moments

vector. Although the estimation setting is different, similar techniques are used to

establish the asymptotic results as in [Lam and Fan, 2008] and [Wang, 2011].

We make the following contributions in this chapter. Firstly, we show N1/2J
−1/2
N

as the convergence rate of the GMM estimator; see Theorem 7.3.1. Here JN is the

dimension of the generalized moment vector αN . The dimension JN may diverge

with the sample size N and J
1/2
N N−1/2 = o(1). Secondly, we prove that the plug-

in weighting matrices, obtained from the initial estimators, converges to non-random

matrices asymptotically; see Theorem 7.4.1. Next, we derive the asymptotic normality

for the GMM; see Theorem 7.5.1. Note that the regularity conditions in [Wilks, 1938]

fail in the GMM in the sense that the dimension of the parameter diverges with

the sample size and the true value of the parameter is a boundary point. However,

according to Theorem 7.5.1, an asymptotically normal test statistics can be obtained

in Rp. Lastly, we show that the covariance matrix of Yn | (Xn,Zn) can be consistently

estimated; see Theorem 7.6.1.

We organize this chapter as follows. In Section 7.2, we list the regularity conditions

which are required to establish the asymptotic results in this chapter. We also give

some lemmas which are straightforward to prove from the regularity conditions. In

Section 7.3, we show the convergence rate of the GMM estimator. In Section 7.4,

we show that the weighting matrices, which are obtained from the initial estimators,

converges to non-random matrices as the sample size goes to infinity. In Section 7.5,

we give the asymptotic normality theorem for the GMM. In Section 7.6, we show

that the covariance matrix of Yn | (Xn,Zn) can be consistently estimated from the

GMM estimators. Lastly, we discuss the challenges in using the asymptotic results for

hypothesis testing problems on the regression parameters. The proofs of the lemmas

can be found in Appendix E.
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7.2 Regularity Conditions

In this section, the regularity conditions for the asymptotic results are listed as

follows. Note that we use CN as the notation of a finite number depending on the

sample size N , but the value of CN may vary between lines. Examples satisfying

the following regularity conditions include the Poisson regression and the logistic

regression models with the range of the random effects defined on a compact set.

Regularity Condition 7.A.

For every integer N , there exists a finite number CN such that

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

XT
ntXnt ≤ CN

with probability one.

Regularity Condition 7.B.

Let JNN
−1 converge to zero, as N goes to infinity. For any function h(b) ∈ L2(B, µ),

there exists an expansion of h(b) by an orthonormal system {Pj(b)}JNj=0 in L2(B, µ)

such that

h(b) =

JN∑
j=0

∫
B
h(b)Pj(b)dµPj(b) + o(JNN

−1).

Regularity Condition 7.C.

The inverse link function g−1(s) is a smooth function of s ∈ R. For each β ∈ Rp and

(Xnt, Znt), n = 1, . . . , N and t = 1, . . . , Tn, the following functions of b ∈ R are in

the space L2(B, µ):

1. g−1(XT
ntβ + Zntb),

2. ġ−1(XT
ntβ + Zntb),

3. g̈−1(XT
ntβ + Zntb),

4.
...
g −1(XT

ntβ + Zntb),

where ġ−1(s), g̈−1(s) and
...
g −1(s) are the first, second and third order derivatives of

g−1(s) with respect to s.
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Regularity Condition 7.D.

For every integer N and probability measure Q defined on B, there exists a finite

number CN(Q) by which the following functions of β ∈ Rp are bounded:

1. supn∈{1,...,N} sup{(Xnt,Znt)}Tnt=1

∫
B

(
g−1(XT

ntβ + Zntb)
)2

dQ,

2. supn∈{1,...,N} sup{(Xnt,Znt)}Tnt=1

∫
B

(
ġ−1(XT

ntβ + Zntb)
)2

dQ,

3. supn∈{1,...,N} sup{(Xnt,Znt)}Tnt=1

∫
B

(...
g −1(XT

ntβ + Zntb)
)2

dQ.

Regularity Condition 7.E.

For each (Xnt, Znt,Xnt′ , Znt), n = 1, . . . , N and t, t′ = 1, . . . , Tn, and β ∈ Rp, the

following functions of b ∈ R are in the space L2(B, µ):

1. g−1(XT
ntβ + Zntb)× g−1(XT

nt′β + Znt′b),

2. g−1(XT
ntβ + Zntb)× ġ−1(XT

nt′β + Znt′b),

3. ġ−1(XT
ntβ + Zntb)× ġ−1(XT

nt′β + Znt′b),

4. g̈−1(XT
ntβ + Zntb)× g−1(XT

nt′β + Znt′b).

Regularity Condition 7.F.

The function h ◦ g−1(s) is a smooth function with respect to s. For each β ∈ Rp and

(Xnt, Znt), n = 1, . . . , N and t = 1, . . . , Tn, the following functions of b ∈ R are in

the space L2(B, µ):

1. h ◦ g−1(XT
ntβ + Zntb),

2. ḣ ◦ g−1(XT
ntβ + Zntb),

3. ḧ ◦ g−1(XT
ntβ + Zntb),

where ḣ ◦ g−1(s) and ḧ ◦ g−1(s) are the first and second order derivatives of h ◦ g−1(s)

with respect to s.

Regularity Condition 7.G.

For every integer N and probability measure Q defined on B, there exists a finite

number CN(Q) by which the following functions of β ∈ Rp are bounded:
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1. supn∈{1,...,N} sup{(Xnt,Znt)}Tnt=1

∫
B

(
h ◦ g−1(XT

ntβ + Zntb)
)2

dQ,

2. supn∈{1,...,N} sup{(Xnt,Znt)}Tnt=1

∫
B

(
ḣ ◦ g−1(XT

ntβ + Zntb)
)2

dQ,

3. supn∈{1,...,N} sup{(Xnt,Znt)}Tnt=1

∫
B

(
ḧ ◦ g−1(XT

ntβ + Zntb)
)2

dQ.

Regularity Condition 7.H.

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, the function Unt(β,αN) is Lipschitz

continuous, i.e., for any two different parameter values (β,αN) and (β′,α′N), there

exists a finite number Lnt > 0 such that

|Unt(β,αN)− Unt(β′,α′N)|2 ≤ Lnt ×
(
‖αN −α′N‖2

2 + ‖β − β′‖2
2

)
, (7.1)

where Unt(β,αN) is defined in Equation (5.4).

Regularity Condition 7.I.

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn},

E [Unt(β
∗, Q∗)] = 0.

Moreover, for every integer N ,

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

E
[
U4
nt(β

∗, Q∗)
]

is bounded, where β∗ is the true value of the regression parameter and Q∗ is the true

random-effects distribution defined on B.

Regularity Condition 7.J.

For each n ∈ {1, . . . , N} and t, t′ ∈ {1, . . . , Tn},

w̃ntt′ = wntt′ +Op(J
1/2
N N−1/2). (7.2)

where w̃ntt′ and wntt′ are the elements of W̃n and Wn correspondingly.

The listed regularity conditions provide the following lemmas. The proofs of these

lemmas can be found in Appendix E.1.
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Lemma 7.2.1.

Assume that Regularity Condition 7.B and 7.C are satisfied. Then, for every integer

N and β ∈ Rp, there exists a finite number CN by which the following functions of

β ∈ Rp are bounded:

1. supn∈{1,...,N} supt∈{1,...,Tn}φ
T
nt(β)φnt(β),

2. supn∈{1,...,N} supt∈{1,...,Tn} φ̇
T
nt(β)φ̇nt(β),

3. supn∈{1,...,N} supt∈{1,...,Tn} φ̈
T
nt(β)φ̈nt(β),

where

φnt(β) = (φnt0(β), . . . , φntJN (β))T ∈ RJN+1, (7.3)

φ̇nt(β) =
(
φ̇nt0(β), . . . , φ̇ntJN (β)

)T

∈ RJN+1, (7.4)

φ̈nt(β) =
(
φ̈nt0(β), . . . , φ̈ntJN (β)

)T

∈ RJN+1, (7.5)

and for each j, φntj(β) is defined in Equation (5.3), and

φ̇ntj(β) =

∫
B
ġ−1(XT

ntβ + Zntb)Pj(b)dµ, (7.6)

and

φ̈ntj(β) =

∫
B
g̈−1(XT

ntβ + Zntb)Pj(b)dµ. (7.7)

Lemma 7.2.2.

Assume that Regularity Condition 7.B, 7.C and 7.D are satisfied. Then, for every

integer N and (β,αN) ∈ Rp ×MJN+1, there exists a finite number CN by which the

following functions of (β,αN) ∈ Rp ×MJN+1 are bounded:

1. supn∈{1,...,N} supt∈{1,...,Tn}
∣∣φT

nt(β)αN
∣∣,

2. supn∈{1,...,N} supt∈{1,...,Tn}

∣∣∣φ̇T
nt(β)αN

∣∣∣,
3. supn∈{1,...,N} supt∈{1,...,Tn}

∣∣∣φ̈T
nt(β)αN

∣∣∣,
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4. supn∈{1,...,N} supt∈{1,...,Tn}

∣∣∣...φT

nt(β)αN

∣∣∣,
where

...
φnt(β) =

(...
φnt0(β), . . . ,

...
φntJN (β)

)T ∈ RJN+1 (7.8)

and for each j,

...
φntj(β) =

∫
B

...
g −1(XT

ntβ + Zntb)Pj(b)dµ. (7.9)

Lemma 7.2.3.

Assume that Regularity Condition 7.B and 7.F are satisfied. Then, for every integer

N and β ∈ Rp, there exists a finite number CN by which the following functions of

β ∈ Rp are bounded:

1. supn∈{1,...,N} supt∈{1,...,Tn} a
T
nt(β)ant(β),

2. supn∈{1,...,N} supt∈{1,...,Tn} ȧ
T
nt(β)ȧnt(β),

where

ant(β) = (ant0(β), . . . , antJN (β))T ∈ RJN+1 (7.10)

and

ȧnt(β) = (ȧnt0(β), . . . , ȧntJN (β))T ∈ RJN+1, (7.11)

and for each j, antj(β) is defined in Equation (5.7), and

ȧntj(β) =

∫
B
ḣ ◦ g−1(XT

ntβ + Zntb)Pj(b)dµ.

Lemma 7.2.4.

Assume that Regularity Condition 7.B, 7.F and 7.G are satisfied. Then, for every

integer N and (β,αN) ∈ Rp ×MJN+1, there exists a finite number CN by which the

following functions of (β,αN) ∈ Rp ×MJN+1 are bounded:

1. supn∈{1,...,N} supt∈{1,...,Tn}
∣∣aT

nt(β)αN
∣∣,
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2. supn∈{1,...,N} supt∈{1,...,Tn}
∣∣ȧT

nt(β)αN
∣∣,

3. supn∈{1,...,N} supt∈{1,...,Tn}
∣∣äT

nt(β)αN
∣∣,

where

änt(β) = (änt0(β), . . . , äntJN (β))T ∈ RJN+1, (7.12)

and for each j,

äntj(β) =

∫
B
ḧ ◦ g−1(XT

ntβ + Zntb)Pj(b)dµ.

Lemma 7.2.5.

Assume that Regularity Condition 7.B and 7.E are satisfied. Then, for every integer

N and β ∈ Rp, there exists a finite number CN by which the following functions of

β ∈ Rp are bounded:

1. supn∈{1,...,N} supt∈{1,...,Tn} c
T
ntt′(β)cntt′(β),

2. supn∈{1,...,N} supt∈{1,...,Tn} ċ
T
ntt′(β)ċntt′(β),

where

cntt′(β) = (cntt′0(β), . . . , cntt′JN (β))T ∈ RJN+1 (7.13)

and

ċntt′(β) = (ċntt′0(β), . . . , ċntt′JN (β))T ∈ RJN+1, (7.14)

and for each j, cntt′j(β) is defined in Equation (5.8), and

ċntt′j(β) =

∫
B

(
ġ−1(XT

ntβ + Zntb)× g−1(XT
nt′β + Zntb)

+ ġ−1(XT
nt′β + Zntb)× g−1(XT

ntβ + Zntb)
)
Pj(b)dµ.

Lemma 7.2.6.

Assume that Regularity Condition 7.B, 7.D and 7.E are satisfied. Then, for every

integer N and (β,αN) ∈ Rp ×MJN+1, there exists a finite number CN by which the

following functions of (β,αN) ∈ Rp ×MJN+1 are bounded:
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1. supn∈{1,...,N} supt∈{1,...,Tn}
∣∣cT
ntt′(β)αN

∣∣,
2. supn∈{1,...,N} supt∈{1,...,Tn}

∣∣ċT
ntt′(β)αN

∣∣,
3. supn∈{1,...,N} supt∈{1,...,Tn}

∣∣c̈T
ntt′(β)αN

∣∣,
where

c̈ntt′(β) = (c̈ntt′0(β), . . . , c̈ntt′JN (β))T ∈ RJN+1 (7.15)

and for each j,

c̈ntt′j(β) =

∫
B

(
ġ−1(XT

ntβ + Zntb)× ġ−1(XT
nt′β + Zntb)

+ g̈−1(XT
ntβ + Zntb)× g−1(XT

nt′β + Zntb)

+ ġ−1(XT
nt′β + Zntb)× ġ−1(XT

ntβ + Zntb)

+ g̈−1(XT
nt′β + Zntb)× g−1(XT

ntβ + Zntb)
)
Pj(b)dµ.

Regularity Condition 7.B determines the error rate of the truncation approxima-

tions obtained from {Pj(b)}JNj=0; see Corollary 2.4.1 and 2.4.2 for more details.

By Regularity Condition 7.I, we have, for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn},

|Unt(β∗, Q∗)| = Op(1). (7.16)

By the Markov inequality, for an arbitrary a > 0,

pr(|Unt(β∗, Q∗)| > a) ≤ E[U4
nt(β

∗, Q∗)]

a4
≤ 1

a4
sup

n∈{1,...,N}
sup

t∈{1,...,Tn}
E
[
U4
nt(β

∗, Q∗)
]
.

Therefore, |Unt(β∗, Q∗)| is bounded in probability. Furthermore, for every integer N ,

Regularity Condition 7.I also implies that

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

E
[
U2
nt(β

∗, Q∗)
]

is bounded by the Cauchy-Schwarz inequality.
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7.3 Existence and Consistency of the Generalized

Method of Moments Estimator

In this section, we give the existence and consistency of the GMM estimators

as the sample size goes to infinity. Simulation-based evidence of the consistency of

the GMM estimator have been shown in Section 5.7. The proofs of the lemmas for

Theorem 7.3.1 can be found in Appendix E.2.

Theorem 7.3.1 (Existence and Consistency of the GMM Estimator).

Assume that Regularity Condition 7.A-7.J are satisfied and JNN
−1 = o(1), as the

sample size N goes to infinity. Then, there exists a local minima of the optimization

problem (5.11), denoted by (β̂GMM, α̂N,GMM), such that

‖α̂N,GMM −α∗N‖2
2 + ‖β̂GMM − β∗‖2

2 = Op(JNN
−1),

where (β∗,α∗N) is the true value of the parameters, and

α∗N =

∫
B
P (b)dQ∗.

Proof. Let

Q̃(β,αN) =
1

N

N∑
n=1

UT
n (β,αN)W̃nUn(β,αN).

and ∆N = J
1/2
N N−1/2. We aim to show that, ∀ε > 0, there exists a C > 0, depending

on N0, such that, for any N ≥ N0,

pr

(
inf
‖v‖2=C

Q̃(β∗ + ∆Nvβ,α
∗
N + ∆Nvα) > Q̃(β∗,α∗N)

)
≥ 1− ε,

where v = (vT
α,v

T
β )T ∈ RJN+p+1 and α∗N + ∆Nvα ∈MJN+1 ⊂ RJN+1. It implies that

with probability 1, there is a local minima (β̂GMM, α̂N,GMM) in the ball with radius

C∆N at (β∗,α∗N) such that ‖α̂N,GMM −α∗N‖2
2 + ‖β̂GMM − β∗‖2

2 = Op(∆
2
N).

By Taylor’s expansion at ∆N = 0, we have

Q̃(β∗ + ∆Nvβ,α
∗
N + ∆Nvα)− Q̃(β∗,α∗N)

= ∆N∂Q̃(β∗,α∗N) +
∆2
N

2
∂2Q̃(β∗,α∗N) +

∆3
N

3!
∂3Q̃(β̆, ᾰN)

, I1 + I2 + I3,
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where

∂Q̃(β,αN) =
∂

∂∆N

Q̃(β + ∆Nvβ,αN + ∆Nvα)

∣∣∣∣
∆N=0

,

∂2Q̃(β,αN) =
∂2

∂∆2
N

Q̃(β + ∆Nvβ,αN + ∆Nvα)

∣∣∣∣
∆N=0

,

∂3Q̃(β,αN) =
∂3

∂∆3
N

Q̃(β + ∆Nvβ,αN + ∆Nvα)

∣∣∣∣
∆N=0

,

and (β̆, ᾰN) lies between (β∗,α∗N) and (β∗ + ∆Nvβ,α
∗
N + ∆Nvα). In the following

of the proof, we examine the asymptotic order of the three terms I1, I2 and I3.

For each n ∈ {1, . . . , N} and t, t′ ∈ {1, . . . , Tn}, let w̃ntt′ and wntt′ be the elements

of W̃n and Wn correspondingly. Also let

∂Unt(β,αN) =
∂

∂∆N

Unt(β + ∆Nvβ,αN + ∆Nvα)

∣∣∣∣
∆N=0

, (7.17)

for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}. We have

∆−1
N I1 =

2

N

N∑
n=1

Tn∑
t,t′=1

w̃ntt′∂Unt(β
∗,α∗N)Unt′(β

∗,α∗N)

= 2(I11 + I12 + I13 + I14),

where

I11 =
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β
∗,α∗N)Unt′(β

∗, Q∗),

I12 =
1

N

N∑
n=1

Tn∑
t,t′=1

(w̃ntt′ − wntt′)∂Unt(β∗,α∗N)Unt′(β
∗, Q∗),

I13 =
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β
∗,α∗N) (Unt′(β

∗,α∗N)− Unt′(β∗, Q∗)) ,

and

I14 =
1

N

N∑
n=1

Tn∑
t,t′=1

(w̃ntt′ − wntt′)∂Unt(β∗,α∗N) (Unt(β
∗,α∗N)− Unt(β∗, Q∗)) .
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By Lemma F.5, we have

I11 = Op(N
−1/2J

1/2
N ‖v‖2),

By Lemma F.1 and Equation (7.2) and (7.16), we have

|I12| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|w̃ntt′ − wntt′ | |∂Unt(β∗,α∗N)| |Unt′(β∗, Q∗)|

= Op(J
1/2
N N−1/2‖v‖2)

By Lemma F.1 and Regularity Condition 7.B-7.D, we have

|I13| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|wntt′| |∂Unt(β∗,α∗N)| |Unt(β∗,α∗N)− Unt(β∗, Q∗)|

= o(J
1/2
N N−1/2‖v‖2).

By Lemma F.1, Regularity Condition 7.B-7.D, and Equation (7.2), we have

|I14| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|w̃ntt′ − wntt′| |∂Unt(β∗,α∗N)| |(Unt(β∗,α∗N)− Unt(β∗, Q∗))|

= op(JNN
−1‖v‖2).

In sum,

I1 = Op(∆NJ
1/2
N N−1/2‖v‖2) +Op(∆NJ

1/2
N N−1/2‖v‖2)

+Op(∆NJ
1/2
N N−1/2‖v‖2) +Op(JNN

−1‖v‖2)

= Op(JNN
−1‖v‖2). (7.18)

Let

∂2Unt(β,αN) =
∂2

∂∆2
N

Unt(β + ∆Nvβ,αN + ∆Nvα)

∣∣∣∣
∆N=0

, (7.19)

for each n and t. We have

∆−2
N I2 =

1

N

N∑
n=1

Tn∑
t,t′=1

w̃ntt′
(
∂Unt(β

∗,α∗N)∂Unt′(β
∗,α∗N) + ∂2Unt(β

∗,α∗N)Unt′(β
∗,α∗N)

)
= I21 + I22 + I23 + I24 + I25 + I26,
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where

I21 =
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β
∗,α∗N)∂Unt′(β

∗,α∗N)

I22 =
1

N

N∑
n=1

Tn∑
t,t′=1

(w̃ntt′ − wntt′)∂Unt(β∗,α∗N)∂Unt′(β
∗,α∗N)

I23 =
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂
2Unt(β

∗,α∗N)Unt′(β
∗, Q∗)

I24 =
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂
2Unt(β

∗,α∗N) (Unt′ (β
∗,α∗N)− Unt′(β∗, Q∗))

I25 =
1

N

N∑
n=1

Tn∑
t,t′=1

(w̃ntt′ − wntt′)∂2Unt(β
∗,α∗N)Unt′(β

∗, Q∗)

and

I26 =
1

N

N∑
n=1

Tn∑
t,t′=1

(w̃ntt′ − wntt′)∂2Unt(β
∗,α∗N) (Unt′(β

∗,α∗N)− Unt′(β∗, Q∗)) .

By Lemma F.1, we have I21 = O(‖v‖2
2). By Lemma F.1 and Equation (7.2), we

have

|I22| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|w̃ntt′ − wntt′ | |∂Unt(β∗,α∗N)| |∂Unt′(β∗,α∗N)|

= Op(J
1/2
N N−1/2‖v‖2

2).

By Lemma F.5, I23 = Op(J
1/2
N N−1/2‖v‖2

2). By Lemma F.2 and Regularity Condition

7.B-7.D,

|I24| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|wntt′|
∣∣∂2Unt(β

∗,α∗N)
∣∣ |Unt′ (β∗,α∗N)− Unt′(β∗, Q∗)|

= O(JNN
−1‖v‖2

2),

By Lemma F.2, Equation (7.2) and (7.16), we have

|I25| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|w̃ntt′ − wntt′ |
∣∣∂2Unt(β

∗,α∗N)
∣∣ |Unt′(β∗, Q∗)|

≤ Op(J
1/2
N N−1/2‖v‖2

2).
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By Lemma F.2, Regularity Condition 7.B-7.D, and Equation (7.2), we have

|I26| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|w̃ntt′ − wntt′ |
∣∣∂2Unt(β

∗,α∗N)
∣∣ |Unt′(β∗,α∗N)− Unt′(β∗, Q∗)|

= O(J
3/2
N N−3/2‖v‖2

2).

By the condition that J
1/2
N N−1/2 = o(1), we have

I2 = O(∆2
N‖v‖2

2) +Op(∆
2
NJ

1/2
N N−1/2‖v‖2

2)

+Op(∆
2
NJ

1/2
N N−1/2‖v‖2

2) +O(∆2
NJNN

−1‖v‖2
2)

+Op(∆
2
NJ

1/2
N N−1/2‖v‖2

2) +Op(∆
2
NJ

3/2
N N−3/2‖v‖2

2)

= Op(JNN
−1‖v‖2

2). (7.20)

Let

∂3Unt(β,αN) =
∂3

∂∆3
N

Unt(β + ∆Nvβ,αN + ∆Nvα)

∣∣∣∣
∆N=0

, (7.21)

for each n and t. We have

6∆−3
N I3 =

3

N

N∑
n=1

Tn∑
t,t′=1

w̃ntt′∂Unt(β̆, ᾰN)∂2Unt′(β̆, ᾰN)

+
1

N

N∑
n=1

Tn∑
t,t′=1

w̃ntt′∂
3Unt(β̆, ᾰN)Unt′(β̆, ᾰN)

= I31 + I32 + I33 + I34,

where

I31 =
3

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β̆, ᾰN)∂2Unt′(β̆, ᾰN)

I32 =
3

N

N∑
n=1

Tn∑
t,t′=1

(w̃ntt′ − wntt′)∂Unt(β̆, ᾰN)∂2Unt′(β̆, ᾰN)

I33 =
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂
3Unt(β̆, ᾰN)Unt′(β̆, ᾰN)

198



and

I34 =
1

N

N∑
n=1

Tn∑
t,t′=1

(w̃ntt′ − wntt′)∂3Unt(β̆, ᾰN)Unt′(β̆, ᾰN).

By Lemma F.1 and F.2, we have

|I31| ≤
3

N

N∑
n=1

Tn∑
t,t′=1

|wntt′|
∣∣∣∂Unt(β̆, ᾰN)

∣∣∣ ∣∣∣∂2Unt′(β̆, ᾰN)
∣∣∣

= Op(‖v‖3
2).

By Equation (7.2), and Lemma F.1 and F.2, we have

|I32| ≤
3

N

N∑
n=1

Tn∑
t,t′=1

|w̃ntt′ − wntt′ |
∣∣∣∂Unt(β̆, ᾰN)

∣∣∣ ∣∣∣∂2Unt′(β̆, ᾰN)
∣∣∣

= Op(J
1/2
N N−1/2‖v‖3

2).

By Regularity Condition 7.B-7.D and 7.H, Equation (7.16) and JNN
−1 = o(1),

we have∣∣∣Unt(β̆, ᾰN)
∣∣∣ ≤ ∣∣∣Unt(β̆, ᾰN)− Unt(β∗,α∗N)

∣∣∣+ |Unt(β∗,α∗N)− Unt(β∗, Q∗)|

+ |Unt(β∗, Q∗)|

≤ Lnt × (J
1/2
N N−1/2)‖v‖2 + o(JNN

−1) +Op(1)

= Op(1).

By Lemma F.3, we have

|I33| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|wntt′|
∣∣∣∂3Unt(β̆, ᾰN)

∣∣∣ ∣∣∣Unt′(β̆, ᾰN)
∣∣∣

= O(‖v‖3
2).

By Lemma F.3 and Equation (7.2), we have

|I34| ≤
1

N

N∑
n=1

Tn∑
t,t′=1

|w̃ntt′ − wntt′ |
∣∣∣∂3Unt(β̆, ᾰN)

∣∣∣ ∣∣∣Unt′(β̆, ᾰN)
∣∣∣

= Op(JNN
−1‖v‖3

2)
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Therefore,

I3 = O(∆3
N‖v‖3

2) +Op(∆
3
NJ

1/2
N N−1/2‖v‖3

2)

+Op(∆
3
N‖v‖3

2) +O(∆3
NJNN

−1‖v‖3
2)

= Op(J
3/2
N N−3/2‖v‖3

2). (7.22)

By Equation (7.18), (7.20) and (7.22), we find that

Q̃(β∗ + ∆Nvβ,α
∗
N + ∆Nvα)− Q̃(β∗,α∗N)

is dominated by the term

∆2
NI21 = ∆2

N

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β
∗,α∗N)∂Unt(β

∗,α∗N) > 0

by allowing ‖v‖2 = C to be large enough. It follows that

Q̃(β∗ + ∆Nvβ,α
∗
N + ∆Nvα)− Q̃(β∗,α∗N)

converges to a positive number in probability.

7.4 Convergence of the Plug-in Weighting Matri-

ces

In Theorem 7.3.1, it is required that, for each n, W̃n converges toWn element-wise

at rate N1/2J
−1/2
N ; see Regularity Condition 7.J. We may use arbitrary non-random

weighting matrices to obtain the initial estimates (β̃, α̃N) which converges to (β∗,α∗N)

at rate N1/2J
−1/2
N . According to the following theorem, the plug-in weighting matrix

Wn(β̃, α̃N), denoted by W̃n, satisfies Regularity Condition 7.J.

Let (β0,αN,0) ∈ Rp ×MJN+1 such that

‖α̃N −αN,0‖2
2 +

∥∥∥β̃ − β0

∥∥∥2

2
= Op(JNN

−1)
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and Q0 is a probability measure defined on B such that αN,0 =
∫
B P (b)dQ0. Also for

each n, let

Wn(β, Q) = V −1/2
n (β, Q)R−1

n V
−1/2
n (β, Q),

and Vn(β, Q) is a Tn × Tn diagonal matrix whose tth diagonal element is

Vnt(β, Q) = σ

∫
B
h ◦ g−1(XT

ntβ + Zntb)dQ+

∫
B

(
g−1(XT

ntβ + Zntb)
)2

dQ

−
(∫
B
g−1(XT

ntβ + Zntb)dQ

)2

. (7.23)

Here neither β0 nor Q0 is required to be the true parameter values.

Theorem 7.4.1 (Consistency of Wn(β,αN)).

Assume that Regularity Condition 7.A-7.G are satisfied. Further assume that the

initial estimator (β̃, α̃N) converges to (β0,αN,0) ∈ Rp ×MJN+1 in the sense that

‖α̃N −αN,0‖2
2 + ‖β̃ − β0‖2

2 = Op(JNN
−1).

Then, for each n ∈ {1, . . . , N}, W̃n converges in probability to Wn(β0, Q0) element-

wise at rate J
−1/2
N N1/2, as the sample size N goes to infinity.

Proof. For each n ∈ {1, . . . , N}, we have

Wn(β̃, α̃N)−Wn(β0, Q0)

= V −1/2
n (β̃, α̃N)R−1

n V
−1/2
n (β̃, α̃N)− V −1/2

n (β0, Q0)R−1
n V

−1/2
n (β0, Q0)

= R−1/2
n

(
V −1
n (β̃, α̃N)− V −1

n (β0, Q0)
)
R−1/2
n , (7.24)

where the diagonal elements of Vn(β,αN) are

Vnt(β,αN) = σ × aT
nt(β)αN + cT

ntt(β)αN −
(
φT
nt(β)αN

)2
,

and φnt(β), ant(β) and cntt(β) are defined in Equation (7.3), (7.10) and (7.13) cor-

respondingly.

201



For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, we consider the gradient function of

Vnt(β,αN) at (β0,αN,0) along direction (vβ,vα) to (β̃, α̃N), i.e.,

Vnt(β0 + ∆vβ,αN,0 + ∆vα)

= σ × aT
nt(β0 + ∆vβ) (αN,0 + ∆vα) + cT

ntt(β0 + ∆vβ) (αN,0 + ∆vα)

−
(
φT
nt(β0 + ∆vβ) (αN,0 + ∆vα)

)2
,

where ∆ = ‖α̃N −αN,0‖2
2 + ‖β̃ − β0‖2.

By Taylor’s expansion at ∆ = 0, we have

Vnt(β0 + ∆vβ,αN,0 + ∆vα)− Vnt(β0,αN,0)

= ∂Vnt(β0,αN,0)∆ +
1

2
∂2Vnt(β̆, ᾰN)∆2,

where

∂Vnt(β0,αN,0)

=
∂

∂∆
Vnt(β0 + ∆vβ,αN,0 + ∆vα)

∣∣∣∣
∆=0

=
(
σant(β0) + cntt(β0)− 2φT

nt(β0)αN,0φnt(β0)
)T
vα

+
(
σȧT

nt(β)αN + ċT
ntt(β)αN − 2φT

nt(β)αN φ̇
T
nt(β)αN

)T

XT
ntvβ (7.25)

and

∂2Vnt(β̆, ᾰN)

=
∂2

∂∆2
Vnt(β0 + ∆vβ,αN,0 + ∆vα)

∣∣∣∣
∆=∆̆

= − 2vαφnt(β̆)φT
nt(β̆)vα

+ 2vT
βXnt

(
σȧT

nt(β̆) + ċT
ntt(β̆)− 2φ̇T

nt(β̆)ᾰN φ̇
T
nt(β̆)− 2φT

nt(β̆)ᾰN φ̈
T
nt(β̆)

)
vα

+
(
σäT

nt(β̆)ᾰN + c̈T
ntt(β̆)ᾰN − 2φ̇T

nt(β̆)ᾰN φ̇
T
nt(β̆)ᾰN − 2φT

nt(β̆)ᾰN φ̈
T
nt(β̆)ᾰN

)
× vT

βXntX
T
ntvβ.

and β̆ = β0 + ∆̆vβ and ᾰ = α0 + ∆̆vα, and (β̆, ᾰ) is on the line segment between

(β̃, α̃N) and (β0,αN,0).
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For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, we have

|∂Vnt(β0,αN,0)|

≤
∣∣∣(σant(β0) + cntt(β0)− 2φT

nt(β0)αN,0φnt(β0)
)T
vα

∣∣∣
+

∣∣∣∣(σȧT
nt(β)αN + ċT

ntt(β)αN − 2φT
nt(β)αN φ̇

T
nt(β)αN

)T

XT
ntvβ

∣∣∣∣
≤
∥∥σant(β0) + cntt(β0)− 2φT

nt(β0)αN,0φnt(β0)
∥∥

2

+
∥∥∥σȧT

nt(β)αN + ċT
ntt(β)αN − 2φT

nt(β)αN φ̇
T
nt(β)αN

∥∥∥
2
‖Xnt‖2 ,

which is bounded, according to Lemma 7.2.1-7.2.6 and Regularity Condition 7.A.

On the other hand, for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, we have∣∣∣∂2Vnt(β̆, ᾰN)
∣∣∣

≤
∣∣∣2vαφnt(β̆)φT

nt(β̆)vα

∣∣∣
+
∣∣∣2vT

βXnt

(
σȧT

nt(β̆) + ċT
ntt(β̆)− 2φ̇T

nt(β̆)ᾰN φ̇
T
nt(β̆)− 2φT

nt(β̆)ᾰN φ̈
T
nt(β̆)

)
vα

∣∣∣
+
∣∣∣σäT

nt(β̆)ᾰN + c̈T
ntt(β̆)ᾰN − 2φ̇T

nt(β̆)ᾰN φ̇
T
nt(β̆)ᾰN − 2φT

nt(β̆)ᾰN φ̈
T
nt(β̆)ᾰN

∣∣∣
× vT

βXntX
T
ntvβ

≤ 2
∥∥∥φnt(β̆)

∥∥∥
2

+ 2 ‖Xnt‖2

(∥∥∥σȧnt(β̆)
∥∥∥

2
+
∥∥∥ċntt(β̆)

∥∥∥+ 2
∣∣∣φ̇T

nt(β̆)ᾰN

∣∣∣ ∥∥∥φ̇nt(β̆)
∥∥∥

2

+2
∣∣∣φT

nt(β̆)ᾰN

∣∣∣ ∥∥∥φ̈nt(β̆)
∥∥∥

2

)
+
(∣∣∣σäT

nt(β̆)ᾰN

∣∣∣+
∣∣∣c̈T
ntt(β̆)ᾰN

∣∣∣
+2
∣∣∣φ̇T

nt(β̆)ᾰN φ̇
T
nt(β̆)ᾰN

∣∣∣+ 2
∣∣∣φT

nt(β̆)ᾰN φ̈
T
nt(β̆)ᾰN

∣∣∣)× ‖Xnt‖2
2 ,

which is also bounded, according to Lemma 7.2.1-7.2.6 and Regularity Condition 7.A.

Therefore, we have

Vnt(β̃, α̃N)− Vnt(β0,αN,0) = Op(J
1/2
N N−1/2).

By Regularity Condition 7.E and 7.F, we have

|Vnt(β0,αN,0)− Vnt(β0, Q0)| = o(JNN
−1).
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We have that ∣∣∣Vnt(β̃, α̃N)− Vnt(β0, Q0)
∣∣∣

≤ |Vnt(β0,αN,0)− Vnt(β0, Q0)|+
∣∣∣Vnt(β̃, α̃N)− Vnt(β0,αN,0)

∣∣∣
= Op(J

1/2
N N−1/2).

Again, by Taylor’s expansion, we have, for every large N , n ∈ {1, . . . , N} and

t ∈ {1, . . . , Tn},
1

Vnt(β̃, α̃N)
=

1

Vnt(β0, Q0)
− 1

V 2
nt(β0, Q0)

(
Vnt(β̃, α̃N)− Vnt(β0, Q0)

)
+

1

V̆ 3
nt

(
Vnt(β̃, α̃N)− Vnt(β0, Q0)

)2

=
1

Vnt(β0, Q0)
+Op(J

1/2
N N−1/2), (7.26)

where V̆nt is on the line segment between Vnt(β0, Q0) and Vnt(β̃, α̃N).

By Equation (7.24) and (7.26), we have

Wn(β̃, α̃N)−Wn(β0, Q0) = Op(J
1/2
N N−1/2).

This completes the proof.

7.5 Asymptotic Normality in the Generalized Method

of Moments

Let Dn(β,αN) be the diagonal matrix whose diagonal elements are φ̇T
nt(β)αN ,

t = 1, . . . , Tn, where φ̇nt(β) is defined in Equation (7.4). Then, we have

∂

∂β
Un(β,αN) = Dn(β,αN)XT

n .

From Section 5.4, it is known that the GMM estimator (β̂GMM, α̂N,GMM) is a solution

locally to (β∗,α∗N) satisfying that

1

N

N∑
n=1

XnDn(β̂GMM, α̂N,GMM)W̃nUn(β̂GMM, α̂N,GMM) = 0 (7.27)
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and

α̂N,GMM = arg min
αN∈MJN+1

1

N

N∑
n=1

UT
n (β̂GMM,αN)W̃nUn(β̂GMM,αN) (7.28)

simultaneously.

For each n, let

Gn(β,αN) =

[
ΦT
n (β)

Dn(β,αN)XT
n

]
(7.29)

where Φn(β) is a (JN +1)×Tn matrix whose tth column is φnt(β) defined in Equation

(7.3). For each n, let

W ∗
n = Wn(β∗, Q∗),

and

D∗n = Dn(β∗, Q∗),

whereDn(β, Q) is the diagonal matrix whose diagonal elements
∫
B ġ
−1(XT

ntβ+Zntbn)dQ,

t = 1, . . . , Tn.

Note that the true parameter value α∗N may on the boundary ofMJN+1, and thus

the regularity conditions in [Wilks, 1938] fail and an asymptotic normality result may

not be derived from the optimization problem (7.28). Under the regularity conditions

listed in Section 7.2, we have the following theorem from Equation (7.27).

Theorem 7.5.1 (Asymptotic Normality in the GMM).

Assume that Regularity Condition 7.A-7.J are satisfied. Further assume that (β̂GMM, α̂N,GMM)

and the initial estimator (β̃, α̃N) are in a neighbourhood of (β∗,α∗N) such that

‖α̂N,GMM −α∗N‖
2
2 +

∥∥∥β̂GMM − β∗
∥∥∥2

2
= Op(JNN

−1)

and

‖α̃N −α∗N‖
2
2 +

∥∥∥β̃ − β∗∥∥∥2

2
= Op(JNN

−1),
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as the sample size N goes to infinity. Given a series of working correlation matrix

{Rn}Nn=1, if JNN
−1/3 = o(1) as the sample size N goes to infinity, then

N−1/2

N∑
n=1

XnDn(β̂GMM, α̂N,GMM)W̃nGn(β̂GMM, α̂N,GMM)

[
α̂N,GMM −α∗N
β̂GMM − β∗

]

converges in distribution to a multivariate normal random vector in Rp with mean

zero and covariance matrix Γ, where the covariance matrix

Γ = lim
N→∞

1

N

N∑
n=1

XnD
∗
nW

∗
nΣn(β∗, Q∗)W ∗

nD
∗
nX

T
n ,

and, for each n, Σn(β∗, Q∗) is the covariance matrix of Yn | (Xn,Zn).

Proof. For each n, we have

XnDn(β̂GMM, α̂N,GMM)W̃nUn(β̂GMM, α̂N,GMM)

= In1 + In2 + In3 + In4 + In5,

where

In1 = XnD
∗
nW

∗
nUn(β∗, Q∗),

In2 = XnDn(β̂GMM, α̂N,GMM)W̃n

(
Un(β̂GMM, α̂N,GMM)−Un(β∗, Q∗)

)
,

In3 = Xn

(
Dn(β̂GMM, α̂N,GMM)−D∗n

)
W ∗

nUn(β∗, Q∗),

In4 = XnD
∗
n

(
W̃n −W ∗

n

)
Un(β∗, Q∗)

and

In5 = Xn

(
Dn(β̂GMM, α̂N,GMM)−D∗n

)(
W̃n −W ∗

n

)
Un(β∗, Q∗).

By Lemma F.7 and F.11, we have

In2 = −XnDn(β̂GMM, α̂N,GMM)W̃nGn(β̂GMM, α̂N,GMM)

[
α̂N,GMM −α∗N
β̂GMM − β∗

]
+Op(J

3/2
N N−1).

206



By Lemma F.8 and F.9, we have,

N−1/2

N∑
n=1

In3 = Op(JNN
−1/2)

and

N−1/2

N∑
n=1

In4 = Op(JNN
−1/2).

Let In5i be the ith element of In5, where i = 1, . . . , p. By Lemma F.6 and Theorem

7.4.1 and Regularity Condition 7.A, we have, for each i,

I2
n5i ≤ ‖Xn·i‖2

2‖Un(β∗, Q∗)‖2
2 × λmax

((
Dn(β̂GMM, α̂N,GMM)−D∗n

)2
)

× λmax

((
W̃n −W ∗

n

)2
)

= Op(J
2
NN

−2),

where, for each i, Xn·i is the ith row of Xn, and, for any matrix A, λmax(A) is the

largest eigenvalue of A. Therefore, we have

N−1/2

N∑
n=1

In5 = Op(JNN
−1/2).

By Lemma F.11 and JNN
−1/3 = o(1), we have

N−1/2

N∑
n=1

XnDn(β̂GMM, α̂N,GMM)W̃nGn(β̂GMM, α̂N,GMM)

[
α̂N,GMM −α∗N
β̂GMM − β∗

]

= N−1/2

N∑
n=1

In1,

which converges in distribution to a multivariate normal distribution by Lemma F.12.
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7.6 Consistency of the Estimation of the Covari-

ance Structure of Yn | (Xn,Zn)

In this section, we aim to show that the parametric version of the covariance

matrix of Yn | (Xn,Zn) introduced in Section 5.6 can be consistently estimated by

plug-in the GMM estimators.

Theorem 7.6.1.

Assume that Regularity Condition 7.A-7.I are satisfied and JNN
−1 = o(1). Further

assume that (β̂GMM, α̂N,GMM) converges to (β∗,α∗N) in the sense that

‖α̂N,GMM −α∗N‖
2
2 +

∥∥∥β̂GMM − β∗
∥∥∥2

2
= Op(JNN

−1).

Then, for each n, the parametric version Σ̃n(β̂GMM, α̂N,GMM) converges in probability

to Σn(β∗, Q∗) element-wise at rate N1/2J
−1/2
N , as the sample size N goes to infinity.

Proof. Firstly, the diagonal elements of Σ̃n(β̂GMM, α̂N,GMM) converges to the variance

of Ynt | (Xnt, Znt) at rate N1/2J
−1/2
N , as has been shown in the proof of Theorem 7.4.1

Consider the off-diagonal element of Σn(β∗, Q∗) that is

Σntt′(β
∗, Q∗) =

∞∑
j=0

cntt′j(β
∗)α∗N,j −

(
∞∑
j=0

φntj(β
∗)α∗N,j

)
×

(
∞∑
j=0

φnt′j(β
∗)α∗N,j

)
,

where for each n ∈ {1, . . . , N}, t, t′ ∈ {1, . . . , Tn} and j ∈ {1, . . . , JN}, cntt′j(β) is

defined in Equation (5.8) and φntj(β) is defined in Equation (5.3).

For each n ∈ {1, . . . , N} and t, t′ ∈ {1, . . . , Tn}, by Taylor’s expansion at β0, we

have

cT
ntt′(β̂GMM)α̂N,GMM −

∞∑
j=0

cntt′j(β
∗)α∗N,j = I11 + I12 + I13,

where

I11 = ċT
ntt′(β̆)α∗NX

T
nt

(
β̂GMM − β∗

)
,

I12 = cT
ntt′(β̂GMM) (α̂N,GMM −α∗N) ,
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and

I13 = −
∞∑

j=JN+1

cntt′j(β
∗)α∗N,j,

and β̆ is on the line segment between β̂GMM and β∗.

By Lemma 7.2.6 and Regularity Condition 7.A, we have

I2
11 ≤

∣∣∣ċT
ntt′(β̆)α∗NX

T
nt

(
β̂GMM − β∗

)∣∣∣2
≤
∥∥∥ċT

ntt′(β̆)α∗N

∥∥∥2

2
‖Xnt‖2

2

∥∥∥β̂GMM − β∗
∥∥∥2

2

= Op(JNN
−1).

By Lemma 7.2.5, we have

I2
12 ≤

∥∥∥cntt′(β̂GMM)
∥∥∥2

2
‖α̂N,GMM −α∗N‖

2
2

= Op(JNN
−1).

By Regularity Condition 7.B and 7.E, we have

I13 = o(JNN
−1).

In sum, we have

I1 = Op(J
1/2
N N−1/2) +Op(J

1/2
N N−1/2) + o(JNN

−1)

= Op(J
1/2
N N−1/2). (7.30)

Next, we examine the asymptotic order of I2. For each n ∈ {1, . . . , N} and

t ∈ {1, . . . , Tn}, by Taylor’s expansion at β0, we have

φT
nt(β̂GMM)α̂GMM −

∞∑
j=0

φntj(β
∗)α∗N,j = I21 + I22 + I23,

where

I21 = φ̇T
nt(β̆)α∗NX

T
nt

(
β̂GMM − β∗

)
,

I22 = φT
nt(β̂GMM) (α̂N,GMM −α∗N)
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and

I23 = −
∞∑

j=JN+1

φntj(β
∗)α∗N,j.

By Lemma 7.2.2 and Regularity Condition 7.A, we have

I2
21 ≤

∥∥∥φ̇T
nt(β̆)α∗N

∥∥∥2

2
‖Xnt‖2

2

∥∥∥β̂GMM − β∗
∥∥∥2

2

= Op(JNN
−1).

By Lemma 7.2.1, we have

I2
22 ≤ φT

nt(β̂GMM)φnt(β̂GMM) ‖α̂N,GMM −α∗N‖
2
2

= Op(JNN
−1).

By Regularity Condition 7.B and 7.E, we have

I23 = o(JNN
−1).

So, we have

I2 = Op(J
1/2
N N−1/2) +Op(J

1/2
N N−1/2) + o(JNN

−1)

= Op(J
1/2
N N−1/2). (7.31)

By Equation (7.30) and (7.31), we have the convergence of the off-diagonal ele-

ments, i.e., for each t, t′ ∈ {1, . . . , Tn} and t 6= t′,

Σ̃ntt′(β̂GMM, α̂N,GMM) = Σntt′(β
∗, Q∗) +Op(J

1/2
N N−1/2).

7.7 Discussion

In this chapter, we give the asymptotic properties of the GMM estimator for uni-

variate mixed-effects models, including the convergence rates of the GMM estimators,
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the convergence rate of the plugging in weighting matrices, the asymptotic normality

in the GMM and the consistency of the parametric version of the covariance structure

of Yn | (Xn,Zn). We derive the asymptotic results in the case that the dimension

JN of the generalized moment vector diverges with the sample size. As we have seen,

such divergence JN slows the convergence rate of the GMM estimator. Moreover, an

asymptotic normality result can be achieved when JNN
−1/2 = o(1).

However, it is still challenging to use the results in this chapter to make inference

for the regression parameter β. One of the major reason is that the true value of the

generalized moments α∗N is unknown; see [Silvapulle and Sen, 2005] for hypothesis

testing problems in the presence of unknown nuisance parameters. Even if α∗N is

known, it is still challenging to obtain the asymptotic distribution of α̂N,GMM, because

the boundary of parameter space of (β,αN) is involved. In Chapter 8, we will propose

a methodology to deal with such hypothesis testing problems.

Appendix: F

F.1 Proofs of the Lemmas in Section 7.2

Proof of Lemma 7.2.1

Proof. By Regularity Condition 7.B and 7.C, for every integer N , we have

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

φT
nt(β)φnt(β)

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

JN∑
j=0

φ2
ntj(β)

≤ sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∞∑
j=0

φ2
ntj(β)

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∫
B

(
∞∑
j=0

φntj(β)Pj(b)

)2

dµ

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∫
B

(
g−1(XT

ntβ + Zntb)
)2

dµ
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is bounded. Similarly, we also can show that φ̇T
nt(β)φ̇nt(β) and φ̈T

nt(β)φ̈nt(β) is

uniformly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}.

Proof of Lemma 7.2.2

Proof. Because αN ∈ MJN+1, there exists a probability measure QαN
defined on B

such that αN =
∫
B P (b)dQαN

by Theorem 3.3.1. By Regularity Condition 7.B-7.D,

for every integer N , we have that,

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∣∣φT
nt(β)αN

∣∣
= sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∣
JN∑
j=0

φntj(β)αN,j

∣∣∣∣∣
= sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∫
B
g−1(XT

ntβ + Zntb)dQαN
+ o(JNN

−1)

∣∣∣∣
≤ sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∫
B
g−1(XT

ntβ + Zntb)dQαN

∣∣∣∣+
∣∣o(JNN−1)

∣∣ ,
is bounded. Similarly, we also can show that

∣∣∣φ̇T
nt(β)αN

∣∣∣, ∣∣∣φ̈T
nt(β)αN

∣∣∣ and
∣∣∣...φT

nt(β)αN

∣∣∣
are uniformly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}.

Proof of Lemma 7.2.3

Proof. By Regularity Condition 7.B and 7.F, for every integer N , we have

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

aT
nt(β)ant(β)

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

JN∑
j=0

a2
ntj(β)

≤ sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∞∑
j=0

a2
ntj(β)

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∫
B

(
∞∑
j=0

antj(β)Pj(b)

)2

dµ

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∫
B

(
h ◦ g−1(XT

ntβ + Zntb)
)2

dµ

212



is bounded. Similarly, we also can show that ȧT
nt(β)ȧnt(β) is uniformly bounded.

Proof of Lemma 7.2.4

Proof. Because αN ∈ MJN+1, there exists a probability measure QαN
defined on B

such that αN =
∫
B P (b)dQαN

by Theorem 3.3.1. By Regularity Condition 7.B, 7.F

and 7.G, for every integer N , we have

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∣∣aT
nt(β)αN

∣∣
= sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∣
JN∑
j=0

antj(β)αN,j

∣∣∣∣∣
= sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∫
B
h ◦ g−1(XT

nt(β) + Zntb)dQαN
+ o(JNN

−1)

∣∣∣∣
≤ sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∫
B
h ◦ g−1(XT

nt(β) + Zntb)dQαN

∣∣∣∣+
∣∣o(JNN−1)

∣∣
is bounded. Similarly, we can also show that

∣∣ȧT
nt(β)αN

∣∣ and
∣∣äT

nt(β)αN
∣∣ are uni-

formly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}.

Proof of Lemma 7.2.5

Proof. Under Regularity Condition 7.B and 7.E, for every integer N , we have

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

cT
nt(β)cnt(β)

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

JN∑
j=0

c2
ntj(β)

≤ sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∞∑
j=0

c2
ntj(β)

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∫
B

(
∞∑
j=0

cntj(β)Pj(b)

)2

dµ

= sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∫
B

(
g−1(XT

ntβ + Zntb)× g−1(XT
nt′β + Zntb)

)2
dµ
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is bounded. Similarly, we also can show that ċT
ntt′(β)ċntt′(β) is uniformly bounded

over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}.

Proof of Lemma 7.2.6

Proof. Because αN ∈ MJN+1, there exists a probability measure QαN
defined on B

such that αN =
∫
B P (b)dQαN

by Theorem 3.3.1. By Regularity Condition 7.B, 7.D

and 7.E, for every integer N , we have that,

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

∣∣cT
ntt′(β)αN

∣∣
= sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∣
∞∑
j=0

cntt′j(β)αj + o(JNN
−1)

∣∣∣∣∣
= sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∫
B
g−1(XT

ntβ + Zntb)× g−1(XT
nt′β + Znt′b)dQαN

+ o(JNN
−1)

∣∣∣∣
≤ sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

∣∣∣∣∫
B
g−1(XT

ntβ + Zntb)× g−1(XT
nt′β + Znt′b)dQαN

∣∣∣∣+
∣∣o(JNN−1)

∣∣
≤ sup

n∈{1,...,N}
sup

t∈{1,...,Tn}

(∫
B

(
g−1(XT

ntβ + Zntb)
)2

dQαN
×
∫
B

(
g−1(XT

nt′β + Znt′b)
)2

dQαN

)1/2

+
∣∣o(JNN−1)

∣∣
is bounded. Similarly, we also can show that

∣∣ċT
ntt′(β)αN

∣∣ and
∣∣c̈T
ntt′(β)αN

∣∣ are uni-

formly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}.

F.2 Proofs of the Lemmas for Theorem 7.3.1

Proof of Lemma F.1

Lemma F.1.

Assume that Regularity Conditions 7.A-7.D are satisfied. Then, ∂Unt(β,αN), de-

fined in Equation (7.17), is O(‖v‖2), for each n ∈ {1, . . . , N}, t ∈ {1, . . . , Tn} and

(β,αN) ∈ Rp ×MJN+1.

214



Proof. For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, we have

Unt(β + ∆vβ,αN + ∆vα) = Ynt −
JN∑
j=0

φntj(β + ∆vβ)(αN,j + ∆vαN ,j),

where vαN ,j is the jth element of vα.

For each n ∈ {1, . . . , N}, t ∈ {1, . . . , Tn} and j ∈ {1, . . . , JN}, let

5φntj(β) = φ̇ntj(β)×Xnt ∈ Rp (F.1)

be the derivative of φntj(β) with respect to β, where φ̇ntj(β) is defined in Equation

(7.6). We write

5φnt(β) = Xntφ̇
T
nt(β),

where φ̇nt(β) is defined in Equation (7.4).

The derivative of Unt(β + ∆vβ,αN + ∆vα) with respect to ∆ is

∂

∂∆
Unt(β + ∆vβ,αN + ∆vα)

= −
JN∑
j=0

(
vT
β5φntj(β + ∆vβ)(αN,j + ∆vαN ,j) + φntj(β + ∆vβ)vαN ,j

)
= − vT

(
φT
nt(β + ∆vβ), (5φnt(β + ∆vβ)(αN + ∆vα))T

)T

, (F.2)

where φnt(β) ∈ RJN+1 is defined in Equation (7.3).

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, let

hnt(β,αN) =
(
φT
nt(β), (5φnt(β)αN)T

)T

∈ Rp+JN+1, (F.3)

where (β,αN) ∈ Rp ×MJN+1. When ∆ = 0, by the Cauchy-Schwarz inequality,(
∂

∂∆
Unt(β + ∆vβ,αN + ∆vα)

∣∣∣∣
∆=0

)2

=
(
vThnt(β,αN)

)2

≤ hT
nt(β,αN)hnt(β,αN)‖v‖2

2.
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By Lemma 7.2.1, we have that φT
nt(β)φnt(β) is bounded for each n and t. By Lemma

7.2.2 and Regularity Condition 7.A, we have

(5φnt(β)αN)T5φnt(β)αN = αT
N φ̇nt(β)XT

ntXntφ̇
T
nt(β)αN

≤ (XT
ntXnt)

(
φ̇T
nt(β)αN

)2

is also bounded for each n and t. Therefore, for each (β,αN) ∈ Rp ×MJN+1, n ∈
{1, . . . , N} and t ∈ {1, . . . , Tn}, hT

nt(β,αN)hnt(β,αN) is bounded. It follows that,

for each n ∈ {1, . . . , N}, t ∈ {1, . . . , Tn} and (β,αN) ∈ Rp ×MJN+1,

∂Unt(β,αN) = O(‖v‖2).

Proof of Lemma F.2

Lemma F.2.

Assume that Regularity Condition 7.A-7.D are satisfied. Then, ∂2Unt(β,αN), de-

fined in Equation (7.19), is O(‖v‖2
2), for each n ∈ {1, . . . , N}, t ∈ {1, . . . , Tn} and

(β,αN) ∈ Rp ×MJN+1.

Proof. For each n ∈ {1, . . . , N}, t ∈ {1, . . . , Tn} and j ∈ {1, . . . , JN}, the Hessian

matrix of φntj(β) with respect to β is

52φntj(β) = φ̈ntj(β)XntX
T
nt, (F.4)

where φ̈ntj(β) has been defined in Equation (7.7).

The second order derivative of Unt(β + ∆vβ,αN + ∆vα) with respect to ∆ is

∂2

∂∆2
Unt(β + ∆vβ,αN + ∆vα)

= −
JN∑
j=0

(
vT
β52φntj(β + ∆vβ)vβ(αN,j + ∆vαN ,j) + 2vT

β5φntj(β + ∆vβ)vαN ,j

)
.
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When ∆ = 0, we have

∂2

∂∆2
Unt(β + ∆vβ,αN + ∆vα)

∣∣∣∣
∆=0

= −
JN∑
j=0

(
vT
β52φntj(β)vβαN,j + 2vT

β5φntj(β)vαN ,j

)
= − vT

β

(
JN∑
j=0

αN,j52φntj(β)

)
vβ − 2vT

β5φnt(β)vα. (F.5)

By Lemma 7.2.2 and Regularity Condition 7.A, we have that∣∣∣∣∣vT
β

(
JN∑
j=0

αN,j52φntj(β)

)
vβ

∣∣∣∣∣ =
∣∣∣φ̈ntj(β)αN

∣∣∣vT
βXntX

T
ntvβ

≤ ‖vβ‖2
2 ‖Xnt‖2

2

∣∣∣φ̈ntj(β)αN

∣∣∣
= O(‖v‖2

2). (F.6)

On the other hand, by Lemma 7.2.1, we have that(
vT
β5φnt(β)vα

)2
=
(
vT
βXntφ̇

T
nt(β)vα

)2

=
(
vT
βXnt

)2
(
φ̇T
nt(β)vα

)2

≤ ‖Xnt‖2
2

∥∥∥φ̇nt(β)
∥∥∥2

2
‖vβ‖2

2‖vα‖2
2

= O(‖v‖4
2). (F.7)

By Equation (F.5), (F.6) and (F.7), it follows that, for each n ∈ {1, . . . , N},
t ∈ {1, . . . , Tn} and (β,αN) ∈ Rp ×MJN+1,

∂2Unt(β,αN) = O(‖v‖2
2).

Proof of Lemma F.3

Lemma F.3.

Assume that Regularity Condition 7.A-7.D are satisfied. Then, ∂3Unt(β,αN), de-

fined in Equation (7.21), is O(‖v‖3
2), for each n ∈ {1, . . . , N}, t ∈ {1, . . . , Tn} and

(β,αN) ∈ Rp ×MJN+1.
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Proof. For each n ∈ {1, . . . , N}, t ∈ {1, . . . , Tn} and j ∈ {1, . . . , JN}, let5
(
vT
β52φntj(β)vβ

)
be the derivative of vT

β52φntj(β)vβ with respect to β, i.e.,

5
(
vT
β52φntj(β)vβ

)
=

...
φntj(β)vT

βXntX
T
ntvβXnt,

where
...
φntj(β) is defined in Equation (7.9).

The third order derivative of Unt(β + ∆vβ,αN + ∆vα) with respect to ∆ is

∂3

∂∆3
Unt(β + ∆vβ,αN + ∆vα)

= −
JN∑
j=0

vT
β

(
5
(
vT
β52φntj(β + ∆vβ)vβ

)
(αN,j + ∆vαN ,j)

+ 3vT
β52φntj(β + ∆vβ)vβvαN ,j

)
.

When ∆ = 0, we have

− ∂3

∂∆3
Unt(β + ∆vβ,αN + ∆vα)

∣∣∣∣
∆=0

=

JN∑
j=0

(
vT
β 5

(
vT
β52φntj(β)vβ

)
αN,j + 3vT

β52φntj(β)vβvαN ,j

)
. (F.8)

By Lemma 7.2.2 and Regularity Condition 7.A, we have that∣∣∣∣∣
JN∑
j=0

vT
β 5

(
vT
β52φntj(β)vβ

)
αN,j

∣∣∣∣∣ =
∣∣∣...φT

nt(β)αN
(
vT
βXnt

)3
∣∣∣

≤
∣∣∣...φT

nt(β)αN

∣∣∣ ‖Xnt‖3
2 ‖v‖

3
2

= O(‖v‖3
2). (F.9)

By Lemma 7.2.1 and Regularity Condition 7.A, we have(
JN∑
j=0

vT
β52φntj(β)vβvαN ,j

)2

=

(
JN∑
j=0

vαN ,jφ̈ntj(β)

)2 (
vT
βXntX

T
ntvβ

)2

≤ ‖vα‖2
2 × ‖vβ‖

4
2 × ‖φ̈nt(β)‖2

2 ×
(
XT

ntXnt

)2

= O(‖v‖6
2). (F.10)
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By Equation (F.8), (F.9) and (F.10), it follows that, for each n ∈ {1, . . . , N},
t ∈ {1, . . . , Tn} and (β,αN) ∈ Rp ×MJN+1,

∂3Unt(β,αN) = O(‖v‖3
2).

Proof of Lemma F.4

Lemma F.4.

For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, let Gnt be a function of (Xnt, Znt). For

every integer N , suppose that there exists a finite number CN such that

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

Gnt ≤ CN

with probability one. Assume that Regularity Condition 7.I is satisfied. Then, for

each n,

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′GntUnt′(β∗, Q∗) = Op(N
−1/2).

Proof. Let Bn = N−1/2
∑Tn

t,t′=1 wntt′GntUnt′(β∗, Q∗). Firstly, we show that the variance

of Bn, denoted by σ2
n, is bounded. We have that

NVar [Bn] ≤ E

( Tn∑
t,t′=1

wntt′GntUnt′(β∗, Q∗)

)2


≤ E

[(
Tn∑

t,t′=1

w2
ntt′GntGnt′

)
×

(
Tn∑
t=1

U2
nt(β

∗, Q∗)

)]
.

Because Wn is a positive definite matrix and Gnt is bounded for each t, we further

have

NVar [Bn] ≤ CE

[
Tn∑
t=1

U2
nt(β

∗, Q∗)

]

= C
Tn∑
t=1

E
[
U2
nt(β

∗, Q∗)
]
,
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where C > 0 is a finite number. By Regularity Condition 7.I, σ2
n = O(N−1).

Next, we use the Lindeberg-Feller Central Limit Theorem [Bauer, 1996, p.g. 234],

to show that
∑N

n=1Bn is Op(1). It suffices to check the Lindeberg condition, that is,

∀ε > 0,

lim
N→∞

1∑N
n=1 σ

2
n

N∑
n=1

E[B2
nI(|Bn| > ε)] = 0.

Given ε > 0, by the Cauchy-Schwarz inequality, we have

N∑
n=1

E[B2
nI(|Bn| > ε)] ≤

N∑
n=1

(
E
[
B4
n

]
× pr (|Bn| > ε)

)1/2
.

Using Chebyshev’s inequality, we have

pr (|Bn| > ε) ≤ σ2
n

ε2
= O(N−1).

On the other hand, by Regularity Condition 7.I,

E
[
B4
n

]
≤ N−2E

( Tn∑
t,t′=1

wntt′GntUnt′(β∗, Q∗)

)4


≤ N−2E

( Tn∑
t,t′=1

w2
ntt′GntGnt′

)2

×

(
Tn∑
t=1

U2
nt(β

∗, Q∗)

)2


= N−2C2E

( Tn∑
t=1

U2
nt(β

∗, Q∗)

)2


≤ N−2C2

Tn∑
t,t′=1

E
[
U2
nt(β

∗, Q∗)U2
nt′(β

∗, Q∗)
]

= O(N−2).

Therefore, we have 1∑N
n=1 σ

2
n

∑N
n=1 E[B2

nI(|Bn| > ε)] = O(N−1/2). This completes the

proof.
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Proof of Lemma F.5

Lemma F.5.

Assume that Regularity Condition 7.A-7.D and 7.I are satisfied. Then,

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β
∗,α∗N)Unt′(β

∗, Q∗) = Op(N
−1/2J

1/2
N ‖v‖2),

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂
2Unt(β

∗,α∗N)Unt′(β
∗, Q∗) = Op(J

1/2
N N−1/2‖v‖2

2),

where ∂Unt(β
∗,α∗N) is defined in Equation (7.17) and ∂2Unt(β

∗,α∗N) is defined in

Equation (7.19).

Proof. By Equation (F.2) and the Cauchy-Schwarz inequality, we have(
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β
∗,α∗N)Unt′(β

∗, Q∗)

)2

=

(
vT

(
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′Unt′(β
∗, Q∗)hnt(β

∗,α∗N)

))2

≤

∥∥∥∥∥ 1

N

N∑
n=1

Tn∑
t,t′=1

wntt′Unt′(β
∗, Q∗)hnt(β

∗,α∗N)

∥∥∥∥∥
2

2

‖v‖2
2,

where hnt(β,αN) ∈ RJN+p+1 is defined in Equation (F.3).

By Lemma 7.2.1 and 7.2.2, we have that, for every integer N ,

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

hT
nt(β

∗,α∗N)hnt(β
∗,α∗N)

is bounded. So, for every N and j ∈ {1, . . . , JN},

sup
n∈{1,...,N}

sup
t∈{1,...,Tn}

|hntj(β∗,α∗N)|

is bounded, where hntj(β,αN) be the jth element of hnt(β,αN). By Lemma F.4, we
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have ∥∥∥∥∥ 1

N

N∑
n=1

Tn∑
t,t′=1

wntt′Unt′(β
∗, Q∗)hnt(β

∗,α∗N)

∥∥∥∥∥
2

2

=

JN+p∑
j=0

(
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′Unt′(β
∗, Q∗)hntj(β

∗,α∗N)

)2

= Op(N
−1JN).

Therefore,

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂Unt(β
∗,α∗N)Unt′(β

∗, Q∗) = Op(J
1/2
N N−1/2‖v‖2).

By Equation (F.5), we have

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂
2Unt(β

∗,α∗N)Unt′(β
∗, Q∗)

= − 1

N

N∑
n=1

Tn∑
t,t′=1

wntt′v
T
β

(
JN∑
j=0

α∗N,j52φntj(β
∗)

)
vβUnt′(β

∗, Q∗)

− 2

N

N∑
n=1

Tn∑
t,t′=1

wntt′v
T
β5φnt(β∗)vαUnt′(β∗, Q∗),

where for each n, t and j, 5φnt(β∗) is defined in Equation (F.4).

Consider the first term of on the right hand side of the above equation. By

Regularity Condition 7.A and Lemma 7.2.2, we have, for every integerN , each element

of
∑JN

j=0 α
∗
N,j5φnt(β∗) is uniformly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}.

So is the largest eigenvalue of
∑JN

j=0 α
∗
N,j5φnt(β∗). By Lemma F.4, we have

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′v
T
β

(
JN∑
j=0

α∗N,j52φntj(β
∗)

)
vβUnt′(β

∗, Q∗)

≤ 1

N

N∑
n=1

Tn∑
t,t′=1

wntt′Unt′(β
∗, Q∗)λmax

(
JN∑
j=0

α∗N,j52φntj(β
∗)

)
‖vβ‖2

2

= Op(N
−1/2‖v‖2

2).
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By Regularity Condition 7.A and Lemma 7.2.1, each element of Xnt, denoted by

Xnti, and φ̇ntj(β
∗) are uniformly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}.

Then, by the Cauchy-Schwarz inequality and Lemma F.4, we also have(
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′v
T
β5φnt(β)vαUnt′(β

∗, Q∗)

)2

=

(
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′v
T
βXntφ̇

T
nt(β

∗)vαUnt′(β
∗, Q∗)

)2

≤

∥∥∥∥∥ 1

N

N∑
n=1

Tn∑
t,t′=1

wntt′v
T
βXntUnt′(β

∗, Q∗)φ̇nt(β
∗)

∥∥∥∥∥
2

2

‖vα‖2
2

≤
JN∑
j=0

(
vT
β

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′XntUnt′(β
∗, Q∗)φ̇ntj(β

∗)

)2

‖vα‖2
2

≤
JN∑
j=0

‖vβ‖2
2

∥∥∥∥∥ 1

N

N∑
n=1

Tn∑
t,t′=1

wntt′XntUnt′(β
∗, Q∗)φ̇ntj(β

∗)

∥∥∥∥∥
2

2

‖vα‖2
2

≤
JN∑
j=0

‖vβ‖2
2‖vα‖2

2

p∑
i=1

(
1

N

N∑
n=1

Tn∑
t,t′=1

wntt′XntiUnt′(β
∗, Q∗)φ̇ntj(β

∗)

)2

= Op(JNN
−1‖v‖4

2).

In sum,

1

N

N∑
n=1

Tn∑
t,t′=1

wntt′∂
2Unt(β

∗,α∗N)Unt(β
∗, Q∗) = Op(J

1/2
N N−1/2‖v‖2

2).

F.3 Proofs of the Lemmas for Theorem 7.5.1

Proof of Lemma F.6

Lemma F.6.

Assume that Regularity Condition 7.A-7.D are satisfied. Let (β̂, α̂N) be an estimator

which converges to (β∗,α∗N) in the sense that

‖α̂N −α∗N‖2
2 + ‖β̂ − β∗‖2

2 = Op(JNN
−1).
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Then, as the sample size N goes to infinity, for each n ∈ {1, . . . , N} and t ∈
{1, . . . , Tn},

φ̇T
nt(β̂)α̂N =

∫
B
ġ−1(XT

ntβ
∗ + Zntbn)dQ∗

+

[
α̂N −α∗N
β̂ − β∗

]T [
φ̇nt(β

∗)

φ̈T
nt(β

∗)α∗NXnt

]
+Op(JNN

−1), (F.11)

where φ̇nt(β) ∈ RJN+1 is defined in Equation (7.6) and φ̈nt(β) is defined in Equation

(7.7).

Proof. By Taylor’s expansion with respect to β ∈ Rp locally at β∗ ∈ Rp, we have

φ̇T
nt(β̂)α̂N =

∫
B
ġ−1(XT

ntβ
∗ + Zntbn)dQ∗ + φ̇T

nt(β
∗) (α̂N −α∗N)

+ φ̈nt(β
∗)Tα∗NX

T
nt

(
β̂ − β∗

)
+ φ̈nt(β

∗)T (α̂N −α∗N)XT
nt

(
β̂ − β∗

)
+
(
β̂ − β∗

)T

Xnt

...
φ

T

nt(β̆)α̂NX
T
nt

(
β̂ − β∗

)
+ φ̇T

nt(β
∗)α∗N −

∫
B
ġ−1(XT

ntβ
∗ + Zntbn)dQ∗,

where β̆ is on the line segment between β∗, and β̂ and
...
φnt(β,αN) is defined in

Equation (7.8). By Lemma 7.2.1 and 7.2.2, and Regularity Condition 7.A, we have,

for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn},∣∣∣φ̈nt(β∗)T (α̂N −α∗N)XT
nt

(
β̂ − β∗

)∣∣∣
≤
∥∥∥φ̈nt(β∗)∥∥∥

2
‖Xnt‖2 ‖α̂N −α

∗
N‖2

∥∥∥β̂ − β∗∥∥∥
2

≤ Op(JNN
−1),

and ∣∣∣∣(β̂ − β∗)T

Xnt

...
φ

T

nt(β̆)α̂NX
T
nt

(
β̂ − β∗

)∣∣∣∣
≤
∣∣∣...φT

nt(β̂)ᾰN

∣∣∣ ‖Xnt‖2
2

∥∥∥β̂ − β∗∥∥∥2

2

= Op(JNN
−1)

224



and ∣∣∣∣φ̇T
nt(β

∗)α∗N −
∫
B
ġ−1(XT

ntβ
∗ + Zntbn)dQ∗

∣∣∣∣ = o(JNN
−1).

Therefore, we have Equation (F.11).

Proof of Lemma F.7

Lemma F.7.

Assume that Regularity Condition 7.A-7.D are satisfied. Let (β̂, α̂N) be an estimator

which converges to (β∗,α∗N) in the sense that

‖α̂N −α∗N‖2
2 + ‖β̂ − β∗‖2

2 = Op(JNN
−1).

Then, as the sample size N goes to infinity, for each n ∈ {1, . . . , N} and t ∈
{1, . . . , Tn},

Unt(β̂, α̂N) = Unt(β
∗, Q∗)− φT

nt(β
∗) (α̂N −α∗N)

− φ̇T
nt(β

∗)α∗NX
T
nt

(
β̂ − β∗

)
+ op(JNN

−1),

where φnt(β) is defined in Equation (7.3) and φ̇nt(β) is defined in Equation (7.4).

Proof. By Taylor’s expansion with respect to β ∈ Rp locally at β∗ ∈ Rp, we have

Unt(β̂, α̂N) = Unt(β
∗, Q∗)− φT

nt(β
∗) (α̂N −α∗N)

− φ̇T
nt(β

∗)α∗NX
T
nt

(
β̂ − β∗

)
− (α̂N −α∗N)T φ̇nt(β

∗)XT
nt

(
β̂ − β∗

)
−
(
β̂ − β∗

)T

Xntφ̈
T
nt(β̆)α̂NX

T
nt

(
β̂ − β∗

)
+ Unt(β

∗,α∗N)− Unt(β∗, Q∗),

where β̆ is on the line segment between β∗, and φ̈nt(β,αN) is defined in Equation

(7.5). By Lemma 7.2.1 and 7.2.2, and Regularity Condition 7.A, we have, for each
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n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn},∣∣∣(α̂N −α∗N)T φ̇nt(β
∗)XT

nt

(
β̂ − β∗

)∣∣∣
≤
∥∥∥φ̇nt(β∗)∥∥∥

2
‖Xnt‖2

∥∥∥β̂ − β∗∥∥∥
2
‖α̂N −α∗N‖2

= Op(JNN
−1)

and ∣∣∣∣(β̂ − β∗)T

Xntφ̈
T
nt(β̆)α∗NX

T
nt

(
β̂ − β∗

)∣∣∣∣
≤XT

ntXnt

∣∣∣φ̈T
nt(β̆)α∗N

∣∣∣ ∥∥∥β̂ − β∗∥∥∥2

2

= Op(JNN
−1)

and

|Unt(β∗,α∗N)− Unt(β∗, Q∗)| = o(JNN
−1).

Therefore, we have

(α̂N −α∗N)T φ̇nt(β
∗)XT

nt

(
β̂ − β∗

)
− Unt(β∗,α∗N) + Unt(β

∗, Q∗)

+
(
β̂ − β∗

)T

Xntφ̈
T
nt(β̆)α̂NX

T
nt

(
β̂ − β∗

)
= Op(JNN

−1).

Proof of Lemma F.8

Lemma F.8.

Assume that Regularity Condition 7.A-7.D are satisfied. Let (β̂, α̂N) be an estimator

which converges to (β∗,α∗N) in the sense that

‖α̂N −α∗N‖2
2 + ‖β̂ − β∗‖2

2 = Op(JNN
−1).
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Then, as the sample size N goes to infinity, for each n ∈ {1, . . . , N} and i ∈
{1, . . . , p},

1

N

N∑
n=1

Xn·i

(
Dn(β̂, α̂N)−D∗n

)
WnUn(β∗, Q∗) = Op(JNN

−1),

where Xn·i is the ith row of Xn and Dn(β,αN) is a diagonal matrix whose diagonal

elements are φ̇T
nt(β)αN .

Proof. By Lemma F.6, we have

Xn·i

(
Dn(β̂, α̂N)−D∗n

)
WnUn(β∗, Q∗)

=

[α̂N −α∗N
β̂ − β∗

]T
 Φ̇n(β∗)

Xndiag
(
Φ̈T
n (β∗)α∗N

)+Op(JNN
−1)

 diag(Xn·i)

×WnUn(β∗, Q∗),

where Φ̇n(β) is the (JN +1)×Tn matrix whose columns are {φ̇nt(β)}Tnt=1, Φ̈n(β) is the

(JN + 1)× Tn matrix whose columns are {φ̈nt(β)}Tnt=1, and for any vector A, diag(A)

is the diagonal matrix whose diagonal elements are A.

For each n and i, let

dni =

 Φ̇n(β∗)

Xndiag
(
Φ̈T
n (β∗)α∗N

) diag(Xn·i)WnUn(β∗, Q∗) ∈ RJN+1+p.

By Lemma 7.2.1 and 7.2.2, and Regularity Condition 7.A, we have that, for every

integer N , each element of Φ̇n(β∗)

Xndiag
(
Φ̈T
n (β∗)α∗N

) diag(Xn·i)

is uniformly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}. Then, by Lemma F.4,

we have that each element of 1
N

∑N
n=1 dni is Op(N

−1/2). Therefore, we have∥∥∥∥∥ 1

N

N∑
n=1

dni

∥∥∥∥∥
2

= Op(J
1/2
N N−1/2).
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By the Cauchy-Schwarz inequality, we have∣∣∣∣∣∣ 1

N

N∑
n=1

[
α̂N −α∗N
β̂ − β∗

]T

dni

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[
α̂N −α∗N
β̂ − β∗

]T

1

N

N∑
n=1

dni

∣∣∣∣∣∣
≤
(
‖α̂N −α∗N‖

2
2 +

∥∥∥β̂ − β∗∥∥∥2

2

)1/2
∥∥∥∥∥ 1

N

N∑
n=1

dni

∥∥∥∥∥
2

= Op(J
1/2
N N−1/2)×Op(J

1/2
N N−1/2)

= Op(JNN
−1).

This completes the proof.

Proof of Lemma F.9

Lemma F.9.

Assume that Regularity Condition 7.A-7.G are satisfied. Further assume that the

initial estimator (β̃, α̃N) converges to (β0,αN,0) in the sense that

‖α̃N −αN,0‖2
2 + ‖β̃ − β0‖2

2 = Op(JNN
−1),

where there exists a probability measure Q0 defined on B such that αN,0 =
∫
B P (b)dQ0.

Then, as the sample size N goes to infinity, for each n ∈ {1, . . . , N} and i ∈
{1, . . . , p},

1

N

N∑
n=1

Xn·iD
∗
n

(
W̃n −Wn(β0, Q0)

)
Un(β∗, Q∗) = Op(JNN

−1),

where Xn·i is the ith row of Xn and Dn(β,αN) be a diagonal matrix whose diagonal

elements are φ̇T
nt(β)αN .

Proof. By Equation (7.26), we have, for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn},

V −1
nt (β̃, α̃N)− V −1

nt (β0, Q0)

= − V −2
nt (β0, Q0) (∂Vnt(β0,αN,0)∆) +Op(JNN

−1),
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where ∆ = Op(J
1/2
N N−1/2) and ∂Vnt(β,α) is defined in Equation (7.25).

Further, by Equation (7.24),

Xn·iD
∗
n

(
W̃n −Wn(β0, Q0)

)
Un(β∗, Q∗)

= Xn·iD
∗
nR
−1/2
n

(
V −1
n (β̃, α̃N)− V −1

n (β0, Q0)
)
R−1/2
n Un(β∗, Q∗)

= ∆
[
V −2
n1 (β0, Q0)∂Vn1(β0,αN,0), . . . , V −2

nTn
(β0, Q0)∂VnTn(β0,αN,0)

]
× diag

(
Xn·iD

∗
nR
−1/2
n

)
×R−1/2

n Un(β∗, Q∗) +Op(JNN
−1)

= ∆

[
vα

vβ

]T

Cndiag
(
Xn·iD

∗
nR
−1/2
n

)
×R−1/2

n Un(β∗, Q∗) +Op(JNN
−1),

where Cn is a JN + p+ 1× Tn matrix whose tth column is σant(β0) + cntt(β0)− 2φT
nt(β0)αN,0φnt(β0)

Xnt

(
σȧT

nt(β)αN + ċT
ntt(β)αN − 2φT

nt(β)αN φ̇
T
nt(β)αN

) .
For each n and i, let

d′ni = Cndiag
(
Xn·iD

∗
nR
−1/2
n

)
×R−1/2

n Un(β∗, Q∗).

By Lemma 7.2.1-7.2.6, and Regularity Condition 7.A, we have that, for every integer

N , each element of

Cndiag
(
Xn·iD

∗
nR
−1/2
n

)
R−1/2
n

is uniformly bounded over n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}; see the proof of

Theorem 7.4.1 for more details. Then, by Lemma F.4, we have that each element of
1
N

∑N
n=1 d

′
ni is Op(N

−1/2). Therefore, we have∥∥∥∥∥ 1

N

N∑
n=1

d′ni

∥∥∥∥∥
2

= Op(J
1/2
N N−1/2).

By the Cauchy-Schwarz inequality, we have

∆

∣∣∣∣∣∣ 1

N

N∑
n=1

[
vα

vβ

]T

d′ni

∣∣∣∣∣∣ = ∆

∣∣∣∣∣∣
[
vα

vβ

]T

1

N

N∑
n=1

d′ni

∣∣∣∣∣∣
≤ ∆

∥∥∥∥∥ 1

N

N∑
n=1

d′ni

∥∥∥∥∥
2

= Op(JNN
−1).
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This completes the proof.

Proof of Lemma F.10

Lemma F.10.

Assume that Regularity Condition 7.A-7.D are satisfied. Let (β̂, α̂N) be an estimator

which converges to (β∗,α∗N) in the sense that

‖α̂N −α∗N‖2
2 + ‖β̂ − β∗‖2

2 = Op(JNN
−1).

Then, as the sample size N goes to infinity, Gn(β̂, α̂N) element-wise converges to

Gn(β∗,α∗N) in probability with rate N1/2J
−1/2
N .

Proof. By Lemma F.6, it is shown thatDn(β̂, α̂N) element-wise converges toDn(β∗,α∗N)

in probability with rate N1/2J
−1/2
N . The rest to show is that Φn(β̂) element-wise con-

verges to Φn(β∗) in probability at rate N1/2J
−1/2
N .

By Taylor’s expansion, we have, for each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn} and

j ∈ {0, . . . , JN},

φntj(β̂)− φntj(β∗) =
(
5φntj(β̆)

)T

(β̂ − β∗)

= φ̇ntj(β)XT
nt(β̂ − β∗),

where5φntj(β) is defined in Equation (F.1) and β̆ locates on the line segment between

β̂ and β∗. By Lemma 7.2.1 and Regularity Condition 7.A, we have, for each n ∈
{1, . . . , N} and t ∈ {1, . . . , Tn} and j ∈ {0, . . . , JN},∣∣∣φntj(β̂)− φntj(β∗)

∣∣∣ ≤ ∣∣∣φ̇ntj(β)
∣∣∣ ‖Xnt‖2

∥∥∥β̂ − β∗∥∥∥
2

= Op(J
1/2
N N−1/2).

This completes the proof.

Proof of Lemma F.11

Lemma F.11.

Assume that Regularity Condition 7.A-7.I are satisfied. Let (β̂, α̂N) be an estimator
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which converges to (β∗,α∗N) in the sense that

‖α̂N −α∗N‖
2
2 +

∥∥∥β̂ − β∗∥∥∥2

2
= Op(JNN

−1),

and J3
NN

−2 = o(1). Then, as the sample size N goes to infinity, for each n ∈
{1, . . . , N} and i ∈ {1, . . . , p},

Xn·iDn(β̂, α̂N)W̃nGn(β̂, α̂N)

[
α̂N −α∗N
β̂ − β∗

]

= Xn·iDn(β̂, α̂N)W̃nGn(β∗,α∗N)

[
α̂N −α∗N
β̂ − β∗

]
+Op(J

3/2
N N−1)

Proof. For each n, we have

Xn·iDn(β̂, α̂N)W̃nGn(β∗,α∗N)

[
α̂N −α∗N
β̂ − β∗

]
= Ini1 + Ini2 + Ini3 + Ini4 + Ini5,

where

Ini1 = Xn·iDn(β̂, α̂N)W̃nGn(β̂, α̂N)

[
α̂N −α∗N
β̂ − β∗

]
,

Ini2 = Xn·iD
∗
nW

∗
n

(
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)
×

[
α̂N −α∗N
β̂ − β∗

]
,

Ini3 = Xn·i

(
Dn(β̂, α̂N)−D∗n

)
W ∗

n

(
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)
×

[
α̂N −α∗N
β̂ − β∗

]
,

Ini4 = Xn·iD
∗
n

(
W̃n −W ∗

n

)(
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)
×

[
α̂N −α∗N
β̂ − β∗

]
and

Ini5 = Xn·i

(
Dn(β̂, α̂N)−D∗n

)(
W̃n −W ∗

n

)
×
(
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)[α̂N −α∗N
β̂ − β∗

]
.
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By Lemma F.10, we have that, for each n ∈ {1, . . . , N},

λmax

((
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)(
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)T
)

= Op(J
2
NN

−1).

By Lemma 7.2.2 and Regularity Condition 7.A, and the Cauchy-Schwarz inequality,

we have

I2
ni2 ≤ λmax

((
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)(
Gn(β∗,α∗N)−Gn(β̂, α̂N)

)T
)

× ‖Xn·iD
∗
nW

∗
n‖

2
2

[
α̂N −α∗N
β̂ − β∗

]T [
α̂N −α∗N
β̂ − β∗

]
= Op(J

3
NN

−2).

Similarly, we can show that

I2
ni3 = Op(J

4
NN

−3),

I2
ni4 = Op(J

4
NN

−3)

and

I2
ni5 = Op(J

5
NN

−4)

by Lemma F.6 and F.10, Theorem 7.4.1 and Regularity Condition 7.A. This completes

the proof.

Proof of Lemma F.12

Lemma F.12.

Assume that Regularity Condition 7.A-7.C and 7.I are satisfied. Then, as the sample

size N goes to infinity,

N−1/2

N∑
n=1

XnD
∗
nW

∗
nUn(β∗, Q∗) (F.12)

converges in distribution to a multivariate normal random variable with mean zero

and covariance matrix Γ.
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Proof. Let

Bn = N−1/2XnD
∗
nW

∗
nUn(β∗, Q∗) ∈ Rp

and, for each i ∈ {1, . . . , p},

Bni = N−1/2Xn·iD
∗
nW

∗
nUn(β∗, Q∗)

is the ith element of Bn, where Xn·i is the ith row of Xn. We use the Lindeberg-Feller

Central Limit Theorem [Bauer, 1996, p.g. 234] to prove this lemma by checking the

Lindeberg condition.

Firstly, we show that for each i ∈ {1, . . . , p}, the variance of Bni, denoted by σ2
ni,

is bounded. By the Cauchy-Schwaz inequality, we have

NVar[Bni]

= E
[
(Xn·iD

∗
nW

∗
nUn(β∗, Q∗))2]

= E
[(
Xn·iD

∗
nW

∗
nD

∗
nX

T
n·i
)
×UT

n (β∗, Q∗)Un(β∗, Q∗)
]
.

Because W ∗
n is positive definite matrix and the elements in Xn·i, D

∗
n are all bounded

by Regularity Condition 7.A and Lemma 7.2.1, we have

NVar[Bni] ≤ CiE
[
UT
n (β∗, Q∗)Un(β∗, Q∗)

]
,

where

Ci = sup
n∈{1,...,N}

Xn·iD
∗
nW

∗
nD

∗
nX

T
n·i.

Moreover, because E
[
UT
n (β∗, Q∗)Un(β∗, Q∗)

]
is bounded for each n, by Regularity

Condition 7.I, we have σ2
ni = O(N−1).

For any ε > 0, by the Cauchy-Schwaz inequality, we have

N∑
n=1

E
[
‖Bn‖2

2I(‖Bn‖ > ε)
]
≤

N∑
n=1

(
E[‖Bn‖4

2]× pr(‖Bn‖2 > ε)
)1/2

.

Using the Chebyshev’s inequality, we have

pr (‖Bn‖ > ε) ≤ N−1ε−2

p∑
i=1

σ2
ni = O(N−1).
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On the other hand, by the Cauchy-Schwarz inequality and Regularity Condition 7.A

and 7.I and Lemma 7.2.1, we have

E[‖Bn‖4
2]

= E

( p∑
i=1

B2
ni

)2


≤ p

p∑
i=1

E
[
B4
ni

]
≤ pN−2

p∑
i=1

E
[(
Xn·iD

∗
nW

∗
nD

∗
nX

T
n·i
)2 (
UT
n (β∗, Q∗)Un(β∗, Q∗)

)2
]

≤ p

p∑
i=1

C2
i E
[(
UT
n (β∗, Q∗)Un(β∗, Q∗)

)2
]

= O(N−2).

Therefore,
∑N

n=1 E [‖Bn‖2
2I(‖Bn‖ > ε)] is O(N−1/2).

For each n, the covariance matrix of Bn is

Cov [Bn] = E
[
BnB

T
n

]
= N−1E

[
XnD

∗
nW

∗
nΣn(β∗,Q∗)W ∗

nD
∗
nX

T
n

]
,

where Σn(β∗, Q∗) is the covariance matrix of Yn | (Xn,Zn). Under the assumption

that the elements of
∑N

n=1 Cov [Bn] converges to a covariance matrix Γ as N goes to

infinity, we complete the proof.
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Chapter 8

Ensemble Inference with the

Generalized Method of Moments

Estimators

8.1 Introduction

Given a data set (Yn,Xn,Zn), n = 1, . . . , N , from the data setup in Section

5.2, we are interested in the inference about the regression parameter β ∈ Rp under

the framework of the generalized method of moments for mixed-effects models with

univariate random effects. In other words, the regression parameter β ∈ Rp is the

parameter of interest, while the generalized moments αN ∈ RJN+1 are nuisance pa-

rameters. In this chapter, we use the generalized method of moments to construct a

χ2 test statistic for the following hypothesis testing problem

H0 : β = β0, (8.1)

where β0 ∈ Rp is a real vector.

From Theorem 7.5.1 and its proof, we know that, given an estimator (β̂, α̂N)
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satisfying Equation (7.27), the asymptotic distribution of

η = N1/2
[
Â, B̂

] [α̂N −α∗N
β̂ − β∗

]
∈ Rp (8.2)

is multivariate normal under the regularity conditions in Section 7.2, where

Â =
1

N

N∑
n=1

XnDn(β̂, α̂N)W̃nΦ
T
n (β̂)

and

B̂ =
1

N

N∑
n=1

XnDn(β̂, α̂N)W̃nDn(β̂, α̂N)XT
n .

Here for each n ∈ {1, . . . , N}, Φn(β) is (JN + 1) × Tn matrix whose elements are

φntj(β) defined in Equation (5.3); Dn(β,αN) is the diagonal matrix whose diagonal

elements are φ̇T
nt(β)αN , t = 1, . . . , Tn, where for each t, φ̇nt(β) is defined in Equation

(7.4); the weighting matrix

W̃n = Ṽ −1/2
n R−1

n Ṽ
−1/2
n ,

where Ṽn = Vn(β̃, α̃N), Vn(β,αN) is a Tn × Tn diagonal matrix whose diagonal

elements are Vnt(β,αN) defined in Equation (5.10), and Rn is the working correlation

matrix.

However, as we pointed out in Section 7.7, η ∈ Rp may not be directly used for

testing the hypothesis H0 in (8.1), because α∗N ∈ RJN is unknown. However, if we

can find a unit vector e ∈ Rp such that

eTÂ = 0 ∈ R,

and

eTB̂ 6= 0 ∈ R,

then we can construct an asymptotically normal test statistic for H0,

eTη = N1/2eTB̂
(
β̂ − β∗

)
∈ R.
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However, such unit vector e ∈ Rp does not exist, when Â is a full rank p× (JN + 1)

matrix and B̂ is full rank p× p matrix. The reason is that the space spanned by the

columns of B̂ is a subspace spanned by the columns of Â.

We propose using the ensemble inference [Zhu, 2008] for testing the hypothesis

H0 under the framework of the generalized method of moments. We prove that the

proposed test statistic asymptotically follows a χ2 distribution. In the literature of

mixture models, it is uncommon to see asymptotically χ2 test statistics. Most of them

have a mixture of χ2 distributions as their asymptotic distributions; see [Lindsay,

1995] and [Li and Chen, 2010].

We organize this chapter as follows. In Section 8.2, we describe the procedure for

using the ensemble inference. In Section 8.3, we establish the appropriate asymptotic

theory. In Section 8.4, we conduct simulation studies to investigate the performance

of the ensemble inference. In Section 8.5, we use the ensemble inference to analyze

the Epileptic Seizures Data. Lastly, we end this chapter with a discussion.

8.2 Ensemble Inference

The ensemble idea that making inference with a collection of models rather than a

single model is not new to the literature of statistics. The famous ensemble methods

include the AdaBoost [Freund and Schapire, 1997] and the random forests [Breiman,

2001]; see [Zhu, 2008] for an insightful discussion. Our ensemble idea is to construct

a χ2 test statistic for H0 with an initial estimator (β̃, α̃N) and a collection of the

generalized estimating equations with different working correlation matrices. Here

the initial estimator is obtained from the GMM. This is a new application of the

ensemble idea, by our knowledge, while the ensemble methods are often used to

reduce the prediction errors in the existing statistical literature; see [Zhu, 2008].

Given a data set (Yn,Xn,Zn), n = 1, . . . , N , from the data setup in Section 5.2,

the ensemble inference for the null hypothesis testing H0 in Equation (8.1) include

the following steps:

1. Compute the initial estimator (β̃, α̃N) by the GMM, where for each n, the
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weighting matrix is the identity matrix.

2. Let KN be the smallest integer such that pKN > JN + 1. Choose KN random

matrix processes Rk, k = 1, . . . , KN . For each k ∈ {1, . . . , KN}, generate a set

of random correlation matrices {R(k)
n }Nn=1 from the random matrix process Rk,

where R
(k)
n , n = 1, . . . , N, are independent to each other. Moreover, for each

n ∈ {1, . . . , N}, R(k)
n depends on the data (Yn,Xn,Zn) in the sense that R

(k)
n

is a Tn × Tn matrix, where Tn is the dimension of Yn.

3. For each k ∈ {1, . . . , KN}, solve the estimating equations

1

N

N∑
n=1

XnD̃nW̃
(k)
n Un(β, α̃N) = 0, (8.3)

where for each n ∈ {1, . . . , N}, D̃n = Dn(β̃, α̃N), Un(β,αN) is defined in

Equation (5.5), and

W̃ (k)
n = Ṽ −1/2

n

(
R(k)
n

)−1
Ṽ −1/2
n .

For each k ∈ {1, . . . , KN}, let β̂(k) ∈ Rp be the solution of Equation (8.3).

4. Compute the matrix

Γ̃ =


Γ̃(1,1) Γ̃(1,2) . . . Γ̃(1,KN )

Γ̃(2,1) Γ̃(2,2) . . . Γ̃(2,KN )

...
...

. . .
...

Γ̃(KN ,1) Γ̃(KN ,2) . . . Γ̃(KN ,KN )

 , (8.4)

where for each k, k′ ∈ {1, . . . , KN},

Γ̃(k,k′) =
1

N

N∑
n=1

XnD̃nW̃
(k)
n Σ̃nW̃

(k)
n D̃nX

T
n . (8.5)

Here for each n ∈ {1, . . . , N}, Σ̃n is an estimator of the correlation matrix of

Un(β,αN). In Section 5.6, we have given two possible ways to calculate Σ̃.

5. Let Ã be a pKN × (JN + 1) matrix such that

Ã =

[(
Ã(1)

)T

, · · · ,
(
Ã(KN )

)T
]T

, (8.6)
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where for each k ∈ {1, . . . , KN},

Ã(k) =
1

N

N∑
n=1

XnD̃nW̃
(k)
n ΦT

n (β̃). (8.7)

Compute the projection matrix

P̃ = IpKN
− Γ̃−1/2Ã

(
ÃTΓ−1Ã

)−1

ÃTΓ̃−1/2, (8.8)

where IpKN
is a pKN × pKN identity matrix.

6. Let B̃ be a pKN × pKN matrix such that

B̃ =


B̃(1) O

. . .

O B̃(KN )

 , (8.9)

where O is the zero matrix and for each k ∈ {1, . . . , KN},

B̃(k) =
1

N

N∑
n=1

XnD̃nW̃
(k)
n D̃nX

T
n .

Compute the test statistic for H0 such that

ζ = NvT
βB̃

TΓ̃−1/2P̃ Γ̃−1/2B̃vβ. (8.10)

where

vβ =

((
β̂(1) − β∗

)T

, . . . ,
(
β̂(KN ) − β∗

)T
)T

∈ RpKN . (8.11)

7. Reject the null hypothesis H0, when ζ exceeds some critical value to be deter-

mined by its limiting distribution.

Definition 8.2.1 (Ensemble Statistics).

The test statistic ζ in Equation (8.10) is called the ensemble test statistics.

There are two basic rules for the models in a good ensemble method [Zhu, 2008]:

1. The estimation or predication using each model is accurate or appropriate;
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2. There are small correlation between individual models within the ensemble.

Our ensemble inference follows the exactly the same rule. Using the estimating equa-

tions, for each k ∈ {1, . . . , KN}, we have β̂(k) converges to β∗ in probability; see

Theorem 8.3.1. This ensures the accuracy of the model, at least asymptotically.

Meanwhile, we generate the random working correlation matrices to reduce the

correlation between β̂(k). To understand the role of random working correlation ma-

trices, we consider the following projection problem, which is equivalent to the esti-

mating equations (8.3),

min
β∈Rp

1

N

N∑
n=1

UT
n (β, α̃N)W̃ (k)

n Un(β, α̃N).

The optimization problem can be interpreted by projection the response vector Yn

into the model space ΦT
n (β)α̃N , because

Un = Yn −ΦT
n (β)αN .

Geometrically, different working correlation matrices determine different projecting

directions and different efficiencies of the corresponding estimates β̂(k) follows. Such

a variety in efficiency allows us to construct an asymptotically normal statistic in

a higher dimensional space (RpKN ). Then, we can obtain an asymptotically normal

statistic in a lower dimensional subspace which is orthogonal to α̃N .

We comment on each step of the ensemble inference. Firstly, the properties of

the GMM estimator (β̃, α̃N) in Step 1 have been studied in Chapter 5 and 7. It is

known that (β̃, α̃N) is consistent under the regularity conditions listed in Section 7.2.

Moreover, asymptotic normality only exists in Rp; see Theorem 7.5.1.

The following algorithm is used to generate the random correlation matrices in

Step 2. In it, the Wishart distribution is used, because it is defined over symmet-

ric, non-negative definite random matrices; see [Gelman et al., 2014, p.g. 582]. In

Bayesian statistics, it is a commonly used prior for the covariance matrices; see [Gel-

man et al., 2014, p.g. 582]. The generating process for the ensemble inference should

satisfy Regularity Condition 8.A-8.D. However, sufficient conditions for the generat-

ing processes require further investigation.
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Algorithm 8.1.

Let Tmax = maxn∈{1,...,N} Tn and It be the t × t identity matrix. For k = 1, . . . , KN ,

repeat the following steps:

1. For each t ∈ {1, . . . , Tmax}, generate a t × t random matrix S
(k)
t from the

Wishart distribution with degrees of freedom 2t and scale matrix It. For each

t = 1, . . . , Tmax, let ρ
(k)
t be the correlation matrix of S

(k)
t .

2. For n = 1, . . . , N , let

R(k)
n = ρ

(k)
Tn
,

where Tn is the dimension of Yn.

To solve Equation (8.3) in Step 3, we can use the Newton-Raphson method. The

consistency of β̂(k), k = 1, . . . , KN , will be described in Theorem 8.3.1; see Section

8.3. It will be should later in Theorem 8.3.3 that

N1/2Γ̃−1/2
(
Ãvα + B̃vβ

)
∈ RpKN

converges to a standard multivariate normal distribution in RpKN , where

vα = α̃N −α∗N ∈ RJN+1. (8.12)

In Step 5 and 6, we aim to find the vector space which is complement the space

spanned by the columns of Ã. Because pKN > JN + 1, the complement space is

determined by the projection matrix P̃ , whose rank is pKN − JN − 1. Let Ṽ be a

pKN × (pKN − JN − 1) matrix whose columns are the eigenvectors of P̃ . This leads

to that

N1/2Ṽ TΓ̃−1/2
(
Ãvα + B̃vβ

)
= N1/2Ṽ TΓ̃−1/2B̃vβ

asymptotically follows a multivariate normal distribution in RpKN−JN−1. And thus,

ζ = NvT
βB̃

TΓ̃−1/2P̃ Γ̃−1/2B̃vβ

= NvT
βB̃

TΓ̃−1/2Ṽ Ṽ TΓ̃−1/2B̃vβ
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asymptotically follows a χ2 distribution with degrees of freedom pKN − JN − 1. We

will show that the asymptotic distribution of ζ does not depend on the specific choices

of the initial estimators (β̃, α̃N) and the set of random correlation matrices {R(k)
n }Nn=1,

k = 1, . . . , KN .

8.3 Asymptotic Theory

8.3.1 Existence and Consistency of β̂(k)

Firstly, we show the existence of the roots β̂(k), k = 1, . . . , KN , and compute

their convergence rates. As same as the GEE method [Liang and Zeger, 1986], with

different working correlation matrices, the consistency of β̂(k) are consistent for each

k ∈ {1, . . . , KN}. The regularity conditions are listed in Section 7.2. The proof can

be found in Appendix G.2.

Theorem 8.3.1 (Existence and Consistency of β̂(k)).

Assume that Regularity Condition 7.A-7.J are satisfied and JNN
−1 = o(1). Further

assume that the initial estimator (β̃, α̃N) converges to (β∗,α∗N) ∈ Rp ×M in the

sense that

‖α̃N −α∗N‖
2
2 +

∥∥∥β̃ − β∗∥∥∥2

2
= Op(JNN

−1),

as the sample size N goes to infinity. Then, for each k ∈ {1, . . . , KN}, Equation (8.3)

has a root β̂(k) such that ∥∥∥β̂(k) − β∗
∥∥∥2

2
= Op(JNN

−1),

as the sample size N goes to infinity.
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8.3.2 Asymptotic Distribution

Let

Γ∗ =


Γ∗(1,1) Γ∗(1,2) . . . Γ∗(1,KN )

Γ∗(2,1) Γ∗(2,2) . . . Γ∗(2,KN )
...

...
. . .

...

Γ∗(KN ,1) Γ∗(KN ,2) . . . , Γ∗(KN ,KN )

 , (8.13)

where for each k, k′ ∈ {1, . . . , KN},

Γ∗(k,k′) = lim
N→∞

1

N

N∑
n=1

XnD
∗
nW

(k)
n Σ∗nW

(k′)
n D∗nX

T
n , (8.14)

and, for each n, Σ∗n is the covariance matrix of Yn | (Xn,Zn),

W (k)
n = V −1/2

n (β∗, Q∗)R(k)
n V

−1/2
n (β∗, Q∗),

and Vn(β, Q) is a Tn × Tn diagonal matrix whose tth diagonal element is Vnt(β, Q)

defined in Equation (7.23).

Also let A∗ be a pKN × (JN + 1) matrix such that

A∗ =
[(
A∗(1)

)T
, · · · ,

(
A∗(KN )

)T
]T

, (8.15)

and

B∗ =


B∗(1) O

. . .

O B∗(KN )

 , (8.16)

where for each k ∈ {1, . . . , KN},

A∗(k) = lim
N→∞

1

N

N∑
n=1

XnD
∗
nW

(k)
n ΦT

n (β∗), (8.17)

and

B∗(k) = lim
N→∞

1

N

N∑
n=1

XnD
∗
nW

(k)
n D∗nX

T
n . (8.18)
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Theorem 8.3.2.

Assume that Regularity Condition 7.A-7.I are satisfied. Further assume that, for each

k ∈ {1, . . . , KN}, the initial estimator (β̃, α̃N) and (β̂(k), α̃N) converges to (β∗,α∗N)

in the sense that

‖α̃N −α∗N‖
2
2 +

∥∥∥β̂(k) − β∗
∥∥∥2

2
= Op(JNN

−1)

and

‖α̃N −α∗N‖
2
2 +

∥∥∥β̃ − β∗∥∥∥2

2
= Op(JNN

−1),

as the sample size N goes to infinity. If JNN
−1/2 = o(1) as the sample size N goes

to infinity, then

N1/2 (A∗vα +B∗vβ) ∈ RpKN

converges in distribution to a multivariate normal random vector in RpKN with mean

zero and covariance matrix Γ∗, where vβ and vα are defined in Equation (8.11) and

(8.12) correspondingly.

Because Γ∗, A∗ are B∗ are unknown, in the rest of this subsection, we aim to

show that

N1/2
(
Γ̃−1/2Ãvα + Γ̃−1/2B̃vβ

)
∈ RpKN

asymptotically follows a standard multivariate normal distribution in RpKN , where Γ̃,

Ã and B̃ are defined in Equation (8.4), (8.6) and (8.9) correspondingly. The proof

of the following theorem is given in Appendix G.6. Some of the required regularity

conditions are given in Section 7.2 and G.1.

Theorem 8.3.3.

Assume that Regularity Condition 7.A-7.I and 8.A-8.D are satisfied and JNN
−1/4 =

o(1). Further assume that the initial estimator (β̃, α̃N) converges to (β∗,α∗N) ∈
Rp ×M in the sense that

‖α̃N −α∗N‖
2
2 +

∥∥∥β̃ − β∗∥∥∥2

2
= Op(JNN

−1),
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as the sample size N goes to infinity. As the sample size N goes to infinity, the

following statistic

N1/2Γ̃−1/2
(
Ãvα + B̃vβ

)
∈ RpKN

converges in distribution to a standard multivariate normal distribution in RpKN .

8.4 Simulation Studies

In this section, we conduct simulation studies to investigate the performance of

the ensemble inference. The considered model is the Poisson regression model with

a log-link function; see Model 5.A in Section 5.7. In Section 8.4.1, we describe the

setups of the simulation studies. Firstly, we argue that the finite sample distribution

of β̂(k) can not be appropriately approximated by normal distributions; see Section

8.4.2. Secondly, we show some empirical evidence that Γ̃−1/2 converges to (Γ∗)−1/2 in

the 2-norm; see Section 8.4.3. Next, we investigate the Type I errors in the ensemble

inference; see Section 8.4.4. Lastly, we study the powers of the ensemble test statistics;

see Section 8.4.5.

8.4.1 Simulation Setups

We set the parameter values in the Poisson regression model with a log-link

function as follows. For each n ∈ {1, . . . , N}, let Tn follow a discrete uniform

distribution over {1, . . . , 4}. For each n ∈ {1, . . . , N} and t ∈ {1, . . . , Tn}, let

Xnt = (Xnt1, Xnt2, Xnt3, Xnt4)T ∈ R4 be the fixed effects, where Xnt1 and Xnt2 in-

dependently follow a continuous uniform distribution over [−0.3, 0.3], Xnt3 follows

a Bernoulli distribution with success probability 0.5 and Xnt4 = 10 × Xnt1Xnt2 is

considered as the interaction effects of Xnt1 and Xnt2. For each n and t, Znt fol-

lows a continuous distribution over [−1, 1]. The true value of the regression pa-

rameter β is (−1, 2, 0.5, 0)T ∈ R4. The distribution of the random effects Q(b) is

0.4I(b ≤ −2) + 0.1I(b ≤ 0) + 0.5I(b ≤ 1).
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We use the Chebyshev polynomials (see Definition 2.4.2) defined on B = [−3, 3] as

the orthonormal basis {Pj(b)}JNj=0 in L2(B, µ), where µ = (1− b2)−1/2db. The approxi-

mation property has been studied in Section 2.4.2. The dimensions of the generalized

moments α ∈ RJN depends on the sample size N , where JN = b2N1/5c, with bac
denoting the largest integer not greater than a. The random working correlation ma-

trices are generated from Algorithm 8.1, where KN = 2. We consider six sample size

levels (N = 200, 300, 400, 500, 600 and 700).

8.4.2 Finite Sample Distribution of β̂(k)

Firstly, we argue that the elements of the estimators β̂(k) = (β̂
(k)
1 , . . . , β̂

(k)
4 )T ∈ R4,

k = 1, 2, do NOT follow normal distributions; see Figure 8.1 as an example. From

this figure, we see that a normal distribution does not appropriately approximate the

finite sample distribution of β̂
(k)
i , i = 1, . . . , 4 and k = 1, 2.

To evaluate the approximation quantitatively, for each k ∈ {1, 2} and i ∈ {1, . . . , 4},
we use the one-sample Kolmogorov-Smirnov (K-S) test for the null hypothesis that

the finite sample distribution of the standardized β̂
(k)
i can be fitted by N (0, 1), where

β̂
(k)
i is standardized by

1

σE,i,k

(
β̂

(k)
i − β∗i

)
(8.19)

and σE,i,k is the simulated variance of β̂
(k)
i . Some of the results are reported in

Table 8.1. We see that the null hypothesis is rejected in some of the cases when the

significant level is 0.05. For examples, the p-values of the K-S test statistics for the

finite sample distributions of β̂
(1)
3 are smaller than the significant level 0.05 at each

sample size level. The boundary effects in α̃N ∈ RJN is the major reason that β̂
(k)
i s

are not normally distributed. In Figure 8.2, we plot the finite sample distributions of

the initial estimators of α̃N,j, j = 1, . . . , 4 and N = 600. The boundary effects of the

generalized moment spaces can be observed easily.
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N = 200 N = 400 N = 600

Parameter K-S p-value K-S p-value K-S p-value

k = 1

β1 0.039 0.087 0.033 0.227 0.025 0.531

β2 0.045 0.034 0.035 0.180 0.037 0.119

β3 0.046 0.026 0.065 0.000 0.062 0.001

β4 0.023 0.665 0.021 0.783 0.029 0.365

k = 2

β1 0.041 0.066 0.037 0.129 0.036 0.139

β2 0.027 0.429 0.040 0.082 0.021 0.756

β3 0.062 0.001 0.042 0.056 0.052 0.009

β4 0.022 0.700 0.035 0.174 0.031 0.288

Table 8.1: The Kolmogorov-Smirnov test on the normality of the standardized β̂
(k)
i ,

where k = 1, 2, i = 1, . . . , 4 and the sample size N = 200, 400 and 600. The K-S

stands for the Kolmogorov-Smirnov test statistic.

8.4.3 The Convergence of Γ̃−1/2

Regularity Condition 8.D is a necessary condition for the asymptotic theorems

of the ensemble inference; see Theorem 8.3.3. Without stronger conditions it is not

possible to prove that the estimators of Γ̃ follow this condition. Instead, we provide

some empirical evidence that ∥∥∥Γ̃−1/2 − (Γ∗)−1/2
∥∥∥

2

converges at rate J
3/2
N N−1/2.

Because JN = N1/5 in our simulation setup, we study the finite sample distribution

of

N1/5
∥∥∥Γ̃−1/2 − (Γ∗)−1/2

∥∥∥
2

at sample size level N = 200, 400 and 600; see Figure 8.3. In Figure 8.3, we see that

the finite sample distributions of N1/5‖Γ̃−1/2 − (Γ∗)−1/2‖2 does not diverge with the

increase of sample size N .
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8.4.4 The Type I Errors in the Ensemble Inference

Table 8.2 summarizes the Type I errors of the proposed test statistic ζ in Equation

(8.10). Because KN = 2 for each sample size level N and the dimension of the

regression parameter p is 4, the degrees of freedom of the ensemble test statistics are

calculated by 8− JN , where JN = b2N1/5c and N = 200, 300, 400, 500, 600 and 700.

From Table 8.2, we see that the finite sample distributions of ζ is not appropriately

approximated by its asymptotic distribution when the sample size is small (N = 200).

The failure of this approximation can be explained by Figure 8.3, in which the term

N1/5‖Γ̃−1/2 − (Γ∗)−1/2‖2 is much larger in the cases where N = 200 than the ones

in the other cases. Moreover, the large bias could be caused by the approximation

quality, because the number of the generalized moments is 5 when N = 200.

On the other hand, when the sample size is large, the asymptotic distribution

approximate the finite sample distribution appropriately.

N JN d.f. a = 0.90 a = 0.95 a = 0.99

200 5 3 0.806 0.867 0.943

300 6 3 0.879 0.933 0.981

400 6 2 0.884 0.932 0.981

500 6 2 0.901 0.952 0.984

600 7 1 0.886 0.942 0.988

700 7 1 0.887 0.936 0.982

Table 8.2: The simulation results of the Type I errors in the ensemble inferences. The

d.f. is the degrees of freedom of the ensemble test statistic, and a is the significant

level.

8.4.5 The Power of the Ensemble Inference

Lastly, we study the powers that the null hypothesis

H0 : β = 0 ∈ R4 (8.20)
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is rejected by the ensemble test statistic ζ. Table 8.3 summarizes the simulation

results. From Table 8.3, we see that the proposed test statistic ζ has powers to reject

the null hypothesis in Equation (8.20). When N = 300, 400 and 500, the power of ζ

increases with the sample size N . There is a drop of power at N = 600, because the

degrees of freedom of the χ2 test statistic reduces to 1. Moreover, with the increase

of the significant levels, the power decreases.

N JN d.f. a = 0.90 a = 0.95 a = 0.99

300 6 2 0.786 0.740 0.610

400 6 2 0.812 0.774 0.636

500 6 2 0.847 0.803 0.706

600 7 1 0.665 0.610 0.511

700 7 1 0.693 0.644 0.543

Table 8.3: The simulation results of the powers of the ensemble test statistics. The

d.f. is the degrees of freedom of the ensemble test statistic, and a is the significant

level.

8.5 Application to the Epileptic Seizures Data

We have fitted the Epileptic Seizures Data in Section 6.5. In this section, we

consider the simple hypothesis

H0 : β = 0 ∈ R5,

where β ∈ R5 is the regression parameter in Model 6.C. Because there is only

one generalized moment α1 =
∫
B exp(b)dQ in the reparameterized model and the

dimension of the regression parameter is 5, we set KN = 1. Therefore, the ensemble

test statistics follows a χ2 distribution with degrees of freedom 4.

In this data set, for each n ∈ {1, . . . , 59}, the visiting number of the nth individual

Tn is 4. Therefore, we may use a same 4 × 4 random correlation matrix for each
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n = 1, . . . , 59, following Algorithm 8.1. We repeat the ensemble inference 5000 times.

In other words, we generate 5000 working correlation matrices from the Wishart

distribution under in Algorithm 8.1, and compute 5000 ensemble test statistics and

their p-values, each of which is associated with one generated working correlation

matrix.

In Figure 8.4, we plot the histogram of these p-values. From this figure, we see that

the ensemble test statistics do not have enough power to reject the null hypothesis.

One possible reason is that the sample size is not large enough (N = 59).

8.6 Conclusion and Discussion

In this section, we propose using the ensemble inferences to construct a χ2 dis-

tributed test statistic in the case that the true parameter is on the boundary of the

parameter space. Although simulation evidences supports the idea that the finite

sample distribution of the ensemble test statistics could be well approximated by the

asymptotic distribution, there still exist many points that requires further investiga-

tion.

Firstly, we need to derive sufficient conditions for that the random correlation

matrices generating process satisfies the regularity conditions listed in Section G.1.

Using random correlation matrices aims to reduce the correlation between β̂(k), k =

1, . . . , KN , in the ensemble. However, the ensemble inference could be misleading if

Regularity Condition 8.A-8.D are not satisfied by the random correlation matrices

generating processes.

We also need to study the convergence rate of ‖Γ̃−1/2− (Γ∗)−1/2‖2, where Γ̃ is ob-

tained from the estimated covariance matrices Σ̃n in Section 5.4. Although empirical

evidence was provided in our simulation studies, computing the convergence rate of

‖Γ̃−1/2 − (Γ∗)−1/2‖2 would complete the framework of the ensemble inference.

Different weighting matrices are also used in the method of the quadratic infer-

ence functions (QIF); [Qu et al., 2000]. It was shown that, because different weighting

matrices are used, the QIF estimators are robust to the misspecification of the correla-
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tion structures; see [Qu and Song, 2004]. Note that different weighting matrices play

important roles in both of the methods. We conjecture that the ensemble inferences

are also robust to the misspecification of the correlation structure. It also worthwhile

to design a framework that unify the QIF method with the ensemble inference.

The ensemble inference is closely related to Bayesian statistics. When the random

matrices generating processes are given, we may consider them as a prior information

to models and β̂(k), k = 1, . . . , KN , follows a posterior distribution. Therefore, it

is also interesting to investigate the performances of the ensemble inference when

different random matrices generating processes are used.

Lastly, we want to point out that the asymptotically χ2 test statistic is not ob-

tained for free. The power loses when we project the asymptotically normal statistics

from RpKN to RpKN−JN−1. With the increase of the number of the generalized mo-

ments in a model, the degrees of freedom of the ensemble test statistics decrease.

And so the power of the proposed test statistic decreases. The power of the ensemble

statistics could be increased by increasing the number of models KN . However, we

can not choose an arbitrary KN , because we also need to control the convergence rate

of Ã, B̃ and Γ̃−1/2, whose dimensions depend on KN .

Appendix: G

G.1 Regularity Conditions

In the ensemble inference, we need the following important assumptions. However,

we could not prove that our proposed working correlation matrices generating process

and estimated covariance matrices Γ̃ could satisfies the given regularity conditions.

Although empirical evidence in given in the simulation studies, further investigations

are required.

Regularity Condition 8.A.

The pKN × (JN + 1) matrix A∗ is full column rank, pKN > JN + 1. For each KN ,

‖A∗‖2 is bounded. Here, for each matrix A, ‖A‖2 is the 2-norm of the matrix A
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which is defined as

‖A‖2 = λmax

(
ATA

)
.

Moreover, for each k ∈ {1, . . . , KN}, the p× JN + 1 matrix

1

N

N∑
n=1

XnD
∗
nW

(k)
n ΦT

n (β∗),

converges to A∗ element-wise at rate J
1/2
N N−1/2.

Regularity Condition 8.B.

The pKN × pKN matrix B∗ is full rank. For each KN , ‖B∗‖2 is bounded. Moreover,

for each k ∈ {1, . . . , KN}, the p× p matrix and

1

N

N∑
n=1

XnD
∗
nW

(k)
n D∗nX

T
n .

converges to B∗ element-wise at rate J
1/2
N N−1/2.

Regularity Condition 8.C.

The pKN × pKN covariance matrix Γ∗ is full rank and its elements are bounded.

Regularity Condition 8.D.

The pKN × pKN matrix Γ̃−1/2 converges in probability to (Γ∗)−1/2 in the sense that∥∥∥Γ̃−1/2 − (Γ∗)−1/2
∥∥∥2

2
= Op(J

3
NN

−1),

as the sample size N goes to infinity.

G.2 Proof of Theorem 8.3.1

Proof. We aim to prove that, ∀ε > 0, there exists a C > 0, depending on N0, such

that, for any N ≥ N0,

pr

(
sup

‖β−β∗‖2=C∆N

(β − β∗)T

(
1

N

N∑
n=1

XnD̃nW̃
(k)
n Un(β, α̃N)

)
< 0

)
≥ 1− ε,
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where ∆N = J
1/2
N N−1/2; see [Ortega and Rheinboldt, 1970, Theorem 6.3.4] and [Wang,

2011].

By Taylor’s expansion, we have, for each n ∈ {1, . . . , N},

(β − β∗)TXnD̃nW̃
(k)
n Un(β, α̃N) = In1 + In2,

where

In1 = (β − β∗)TXnD̃nW̃
(k)
n Un(β∗, α̃N)

and

In2 = (β − β∗)TXnD̃nW̃
(k)
n Dn(β̆, α̃N)XT

n (β − β∗) ,

and β̆ is on the line segment between β and β∗.

We write, for each n ∈ {1, . . . , N},

In1 = In11 + In12 + In13 + In14,

where

In11 = (β − β∗)TXnD
∗
nW

(k)
n Un(β∗, Q∗),

In12 = (β − β∗)TXnD
∗
nW

(k)
n (Un(β∗, α̃N)−Un(β∗, Q∗)) ,

In13 = (β − β∗)TXn

(
D̃nW̃

(k)
n −D∗nW (k)

n

)
Un(β∗, Q∗),

and

In14 = (β − β∗)TXn

(
D̃nW̃

(k)
n −D∗nW (k)

n

)
(Un(β∗, α̃N)−Un(β∗, Q∗)) .

By Regularity Condition 7.A-7.C, Lemma F.6 and 7.2.2, Theorem 7.4.1 and Equa-

tion (7.16), we have

|In12|2

≤ ‖β − β∗‖2
2 ‖Un(β∗, α̃N)−Un(β∗, Q∗)‖2

2 λmax

(
Xn

(
D∗nW

(k)
n

)2
XT

n

)
= Op(C

2∆4
N),
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and

|In13|2

≤ ‖β − β∗‖2
2 ‖Un(β∗, Q∗)‖2

2 λmax

(
XnX

T
n

)
× λmax

((
D̃nW̃

(k)
n −D∗nW (k)

n

)2
)

= Op(C
2∆4

N)

and

|In14|2

≤ ‖β − β∗‖2
2 ‖Un(β∗, α̃N)−Un(β∗, Q∗)‖2

2 λmax

(
XnX

T
n

)
× λmax

((
D̃nW̃

(k)
n −D∗nW (k)

n

)2
)

= Op(C
2∆6

N).

By Lemma F.4 and the Cauchy-Schwarz inequality, we have∣∣∣∣∣ 1

N

N∑
n=1

In11

∣∣∣∣∣
2

≤ ‖β − β∗‖2
2 ×

∥∥∥∥∥ 1

N

N∑
n=1

XnD
∗
nW

(k)
n Un(β∗, Q∗)

∥∥∥∥∥
2

2

≤ Op(C
2∆4

N).

Therefore, we have

1

N

N∑
n=1

In1 = Op(C∆2
N). (G.1)

Next, we evaluate the asymptotic order of In2. We have

In2 = In21 + In22,

where

In21 = (β − β∗)TXnD
∗
nW

(k)
n D∗nX

T
n (β − β∗) ,
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and

In22 = (β − β∗)TXn

(
D̃nW̃

(k)
n Dn(β̆, α̃N)−D∗nW (k)

n D∗n

)
XT

n (β − β∗)

By Regularity Condition 7.A and Lemma 7.2.1, we have

|In21| ≤ ‖β − β∗‖2
2 λmax

(
XnD

∗
nW

(k)
n D∗nX

T
n

)
= Op(C

2∆2
N).

By Theorem 7.4.1, Lemma 7.2.2 and F.6, Regularity Condition 7.A and Equation

(7.16), we have

|In22|

≤ ‖β − β∗‖2
2 λmax

(
XnX

T
n

)
λmax

(
D̃nW̃

(k)
n Dn(β̆, α̃N)−D∗nW (k)

n D∗n

)
,

= Op(C
2∆3

N).

Therefore, we have

1

N

N∑
n=1

In2 = Op(C
2∆2

N). (G.2)

By Equation (G.1) and (G.2), we have

(β − β∗)TXnD̃nW̃
(k)
n Un(β, α̃N)

is dominated by

1

N

N∑
n=1

In21 =
1

N

N∑
n=1

(β − β∗)TXnD
∗
nW

(k)
n D∗nX

T
n (β − β∗) > 0

by allowing C to be large enough. It follows that

(β − β∗)TXnD̃nW̃
(k)
n Un(β, α̃N)

converges to a positive number in probability.
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G.3 Proof of Lemma G.1

Lemma G.1.

Assume that Regularity Condition 7.A-7.I are satisfied. Further assume that, for each

k ∈ {1, . . . , KN}, (β̂(k), α̃N) and the initial estimator (β̃, α̃N) converges to (β∗,α∗N)

in the sense that

‖α̃N −α∗N‖
2
2 +

∥∥∥β̂(k) − β∗
∥∥∥2

2
= Op(JNN

−1)

and

‖α̃N −α∗N‖
2
2 +

∥∥∥β̃ − β∗∥∥∥2

2
= Op(JNN

−1),

as the sample size N goes to infinity. If JNN
−1/2 = o(1) as the sample size N goes

to infinity, then, for each k ∈ {1, . . . , KN},

N1/2
(
A∗(k) (α̃N −α∗N) +B∗(k)

(
β̂(k) − β∗

))
= N1/2

N∑
n=1

XnD
∗
nW

(k)
n Un(β∗, Q∗) + op(JNN

−1/2).

Proof. For each n, we have

XnD̃nW̃
(k)
n Un(β̂(k), α̃N)

= In1 + In2 + In3 + In4,

where

In1 = XnD
∗
nW

(k)
n Un(β∗, Q∗),

In2 = XnD
∗
nW

(k)
n

(
Un(β̂(k), α̃N)−Un(β∗, Q∗)

)
,

In3 = Xn

(
D̃nW̃

(k)
n −D∗nW (k)

n

)
Un(β∗, Q∗)

and

In4 = Xn

(
D̃nW̃

(k)
n −D∗nW (k)

n

)(
Un(β̂(k), α̃N)−Un(β∗, Q∗)

)
.
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By Lemma F.7, we have

− 1

N

N∑
n=1

In2 = A∗(k)(α̃−α∗) +B∗(k)(β̃ − β∗) + op(JNN
−1)

By Lemma F.8 and F.9, we have

1

N

N∑
n=1

In3 = Op(JNN
−1).

By Regularity Condition 7.A, Theorem 7.4.1 and Lemma 7.2.2 and F.6, we have,

|In4|2

=
∥∥∥Un(β̂(k), α̃N)−Un(β∗, Q∗)

∥∥∥2

2
λmax

(
XnX

T
n

)
× λmax

((
D̃nW̃

(k)
n −D∗nW (k)

n

)2
)

≤ Op(J
2
NN

−2).

Because JNN
−1/2 = o(1), we have

N1/2
(
A∗(k)(α̃−α∗) +B∗(k)(β

(k) − β∗)
)

+ op(JNN
−1/2)

= N−1/2

N∑
n=1

In1.

G.4 Proof of Theorem 8.3.2

Proof. According to Lemma G.1, we have, for each k ∈ {1, . . . , KN},

N1/2 (A∗vα +B∗vβ)

=


1
N

∑N
n=1XnD

∗
nW

(1)
n Un(β∗, Q∗)

...
1
N

∑N
n=1XnD

∗
nW

(KN )
n Un(β∗, Q∗)

+ op(JNN
−1/2),
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as N goes to infinity. By Lemma F.12, it is known that, for each k ∈ {1, . . . , KN},

1

N

N∑
n=1

XnD
∗
nW

(k)
n Un(β∗, Q∗) ∈ Rp

converges in distribution to a multivariate normal. It follows that
1
N

∑N
n=1XnD

∗
nW

(1)
n Un(β∗, Q∗)

...
1
N

∑N
n=1XnD

∗
nW

(KN )
n Un(β∗, Q∗)

 ∈ RpKN

converges in distribution to a multivariate normal in RpKN converges in distribution

to a multivariate normal with mean zero and covariance matrix Γ∗, which is defined

in Equation (8.13). Here we complete the proof.

G.5 Proof of Lemma G.2

Lemma G.2.

Assume that Regularity Condition 8.A and 8.B are satisfied. Further assume that,

as the sample size N goes to infinity, J2
NN

−1 = o(1), KN = O(JN), and for each

k ∈ {1, . . . , KN}, the initial estimator (β̃, α̃N) and (β̂(k), α̃N) converges to (β∗,α∗N)

in the sense that

‖α̃N −α∗N‖
2
2 +

∥∥∥β̂(k) − β∗
∥∥∥2

2
= Op(JNN

−1)

and

‖α̃N −α∗N‖
2
2 +

∥∥∥β̃ − β∗∥∥∥2

2
= Op(JNN

−1).

Then, Ãvα + B̃vβ converge in probability to A∗vα −B∗vβ in the sense that∥∥∥Ãvα + B̃vβ −A∗vα −B∗vβ
∥∥∥

2
= Op(J

2
NN

−1),

as the sample size N goes to infinity, where Ã, B̃, A∗, B∗, vα and vβ are defined in

Equation (8.6), (8.9), (8.15), (8.16) , (8.12) and (8.11).
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Proof. By the triangle inequality we have∥∥∥Ãvα + B̃vβ −A∗vα −B∗vβ
∥∥∥

2
≤
∥∥∥Ãvα −A∗vα∥∥∥

2
+
∥∥∥B̃vβ −B∗vβ∥∥∥

2
.

We consider the asymptotic order of the two terms on the right hand side of the above

inequality.

For each k ∈ {1, . . . , KN}, we have that Ã(k) and B̃(k) converges in probability

to A∗(k) and B∗(k) element-wise at rate J
−1/2
N N1/2, by Theorem 7.4.1, Lemma F.6 and

Regularity Condition 8.A and 8.B. It follows that∥∥∥Ãvα −A∗vα∥∥∥2

2
=

KN∑
k=1

∥∥∥Ã(k)vα −A∗(k)vα

∥∥∥2

2

≤
KN∑
k=1

‖vα‖2
2

∥∥∥Ã(k) − Ã∗(k)

∥∥∥2

2

≤
KN∑
k=1

‖vα‖2
2 × pJN ×

∥∥∥Ã(k) − Ã∗(k)

∥∥∥2

∞

= KNOp(JNN
−1)O(JN)O(JNN

−1)

= Op(J
4
NN

−2).

On the other hand,∥∥∥B̃vβ −B∗vβ∥∥∥
2

=

KN∑
k=1

∥∥∥B̃(k)vβ −B∗(k)vβ

∥∥∥2

2

≤
KN∑
k=1

∥∥∥β̂(k) − β∗
∥∥∥2

2

∥∥∥B̃(k) − B̃∗(k)

∥∥∥2

2

≤
KN∑
k=1

∥∥∥β̂(k) − β∗
∥∥∥2

2
× p2 ×

∥∥∥B̃(k) − B̃∗(k)

∥∥∥2

∞

= KNOp(JNN
−1)O(1)O(JNN

−1)

= Op(J
3
NN

−2).

In sum, we have∥∥∥Ãvα + B̃vβ −A∗vα −B∗vβ
∥∥∥

2
= Op(J

2
NN

−1).
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G.6 Proof of Theorem 8.3.3

Proof. Consider the expansion

N1/2Γ̃−1/2
(
Ãvα + B̃vβ

)
= I1 + I2 + I3 + I4

where

I1 = N1/2 (Γ∗)−1/2 (A∗vα +B∗vβ) ,

I2 = N1/2
(
Γ̃−1/2 − (Γ∗)−1/2

)
(A∗vα +B∗vβ) ,

I3 = N1/2 (Γ∗)−1/2
((
Ã−A∗

)
vα +

(
B̃ −B∗

)
vβ

)

and

I4 = N1/2
(
Γ̃−1/2 − (Γ∗)−1/2

)((
Ã−A∗

)
vα +

(
B̃ −B∗

)
vβ

)
.

By Theorem 8.3.2, we know that I1 converges in distribution to a standard mul-

tivariate normal. So, it is sufficient to show that each element of I2 + I3 + I4 is op(1),

as N goes to infinity.

Let ui ∈ RpKN whose ith element is one and the rests are zeros. We have∣∣∣uT
i

(
Γ̃−1/2 − (Γ∗)−1/2

)
(A∗vα +B∗vβ)

∣∣∣
≤
∣∣∣uT

i

(
Γ̃−1/2 − (Γ∗)−1/2

)
A∗vα

∣∣∣+
∣∣∣uT

i

(
Γ̃−1/2 − (Γ∗)−1/2

)
B∗vβ

∣∣∣
≤
(
uT
i

(
Γ̃−1/2 − (Γ∗)−1/2

)2

ui

)1/2

×
(
‖vα‖2 ‖A

∗‖2 + ‖vβ‖2 ‖B
∗‖2

)
≤
∥∥∥Γ̃−1/2 − (Γ∗)−1/2

∥∥∥
2
×
(
‖vα‖2 ‖A

∗‖2 + ‖vβ‖2 ‖B
∗‖2

)
= Op(J

3/2
N N−1/2)×Op(J

1/2
N N−1/2)

= Op(J
2
NN

−1),

by Regularity Condition 8.A, 8.B and 8.D. Therefore, each element of I2 isOp(J
2
NN

−1/2) =

op(1).
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Consider the asymptotic order of I3. We have∣∣∣uT
i (Γ∗)−1/2

((
Ã−A∗

)
vα +

(
B̃ −B∗

)
vβ

)∣∣∣
≤
(
uT
i (Γ∗)−1 ui

)1/2
∥∥∥(Ã−A∗)vα +

(
B̃ −B∗

)
vβ

∥∥∥
2

= Op(J
2
NN

−1)

by Lemma G.2 and Regularity Condition 8.C. Therefore, each element of I3 is

Op(J
2
NN

−1/2) = op(1).

Lastly, consider the asymptotic order of I4. We have∣∣∣uT
i

(
Γ̃−1/2 − (Γ∗)−1/2

)((
Ã−A∗

)
vα +

(
B̃ −B∗

)
vβ

)∣∣∣
≤
(
uT
i

(
Γ̃−1/2 − (Γ∗)−1/2

)2

ui

)1/2

×
∥∥∥(Ã−A∗)vα +

(
B̃ −B∗

)
vβ

∥∥∥
2

= Op(J
4
NN

−2).

Therefore, each element of I4 is also op(1).
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Chapter 9

Concluding Remarks and Future

Work

9.1 Concluding Remarks

In this thesis, the following major contributions are made:

1. A new reparameterization-approximation procedure for non-parametric mixture

(or mixed-effects) models is proposed in Chapter 2.

2. Two new important properties of the generalized moment spaces, the positive

representation and the gradient characterization, are derived in Chapter 3.

3. The generalized method of moments is proposed as a new estimation method

for mixture models in Chapter 4;

4. The generalized method of moments is proposed as a new estimation method

for mixed-effects models with univariate random effects in Chapter 5.

5. The method proposed in Chapter 5 is extended to a Poisson regression model

with random intercept and slope in Chapter 6.

6. Some asymptotic results for the generalized method of moments for mixed-

effects models with univariate random effects are established in Chapter 7.
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7. The ensemble inference idea is used to construct an asymptotically χ2 test

statistic in Chapter 8.

We have, in this thesis, stated that

“Under the circumstances considered in this thesis, most of the

difficulties in estimating and undertaking statistical inference with the

mixing (or random effects) distribution Q could be prevented or solved by

the methods proposed in this thesis, if the model hMix(s;Q), defined in

Equation (2.1), can be reparameterized in the generalized moments of Q.”

In the rest of this section, we revisit these difficulties, which have been discussed in

Chapter 1, and discuss how the methods proposed in this thesis overcome them.

9.1.1 Identifiability

Let h(s;m) be the model obtained through the reparameterization-approximation

procedure proposed in Chapter 2, where m ∈ RJN are the generalized moments of Q

and JN is an integer that diverges with the sample size N ; see fspec(x;m) in Chapter

4 and Un(β,α) in Chapter 5 for examples.

Note that, while a probability measure can uniquely determine its generalized

moments, the converse is not true. In other words, the condition that h(s;m) is

identifiable by the generalized moments m ∈ RJN is a weaker condition comparing

to that hMix(s;Q) is identifiable by its mixing distribution Q.

Moreover, because the model h(s;m) are constructed in an embedding affine

space, the generalized moment vectors m are always linear in h(s;m); see fspec(x;m)

and Un(β,α) for examples. Therefore, the identifiability of h(s;m) can be easily

shown by the linearly independent results in linear algebra.

9.1.2 Determining the Number of Generalized Moments

Using h(s;m) may introduce extra bias to the estimators from modelling. How-

ever, the asymptotic orders of the approximation residuals could be characterized by
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using JN and the smoothness of the kernel function h(s; θ) as a function of θ ∈ Θ;

see Corollary 2.3.1, 2.4.1 and 2.4.2. In other words, JN itself can be chosen to control

the asymptotic orders of the approximation residuals.

On the other hand, the asymptotic orders of the approximation residuals need to

be determined for inference purposes. For example, to compute the convergence rate

of the GMM estimators in Chapter 7, it is only required that, for each n,

|Un(β∗, Q∗)−Un(β∗,α∗N)| = o(J
1/2
N N−1/2);

see the proof of Theorem 7.3.1. However, the above condition is not sufficient enough

to derive the asymptotic normality results in the GMM; see Theorem 7.5.1. Instead,

Regularity Condition 7.B is needed to ensure that, for each n,

√
N (Un(β∗, Q∗)−Un(β∗,α∗N)) = o(JNN

−1/2),

as JNN
−1/2 = o(1).

In sum, given the sample size N and the smoothness of h(s; θ), the JN could

be chosen that not only controls the approximation residuals but also satisfies the

purpose of statistical inferences.

9.1.3 Dimension of the Parameter Space

When mixing (or random effects) distributions are non-parametric, in the previous

literature [Lindsay, 1995] and [Sutradhar and Godambe, 1997], models are always

embedded in a space whose dimension diverges with N at rate O(N) . For example,

in the NPMLE [Lindsay, 1995], the likelihood functions are embedded in a space

whose dimension is a half of the distinct number of observed sample, which is O(N)

when the sample space is not discrete and finite. Another example is predicating

the unobserved random effects in a mixed-effects model. Because the random effects

depends on each individual, the number of the random effects to be predicated is the

sample size N ; see the UMM in [Sutradhar and Godambe, 1997]. Therefore, there

may not be enough information from data for fitting models and making inferences

with out further assumptions.
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Reparameterized in the generalized moments, the model h(s;m) is embedded in a

space whose dimension is JN . Although JN also diverges with the sample size N , it is

usually at a much lower rate. For examples, J
(2r+2)
N N−1 = O(1) in Theorem 4.5.1 and

J2
NN

−1 = o(1) in Theorem 7.3.1, where r is an arbitrary positive integer. The diver-

gence of JN may slow the convergence rate in the GMM; see Theorem 4.5.1 and 7.3.1

for examples. However, the lower order of JN ensures that the parameters in h(s;m)

can be estimated consistently, under mild regularity conditions; see Theorem 4.5.1

and 7.3.1. Furthermore, the lower order of JN also allow us to use extra information

for statistical inference. The test statistics ζ in the ensemble inference asymptotically

follows a χ2
pKN−JN distribution, where pKN > JN . If JN is small, ζ could have larger

degrees of freedom and thus more power to reject the null hypothesis.

9.1.4 Geometric Properties of the Parameter Space

It is always not easy to estimate and make inference with a finite mixture model.

One of the reasons is the complexity of the parameter space of a finite mixture model.

As discussed in Section 1.2, the parameter space may include singularities and bound-

aries.

Comparing to the parameter space of a finite mixture model, the generalized mo-

ment space, as the parameter space of h(s;m), is much better behaved. Firstly, with

the compactness assumption on the set of the mixing parameter Θ, the generalized

moment space is compact. Secondly, the generalized moment spaces have bound-

aries, but the geometric properties on the boundaries are well studied; see the posi-

tive representation and the gradient characterization in Chapter 3. Lastly but most

importantly, the generalized moment space is a convex set. Therefore, by choosing a

convex function of m as an objective function to minimize over the generalized mo-

ment space, we can construct the estimators of m which are the solutions of convex

optimization problems; see the optimization problem (4.3) and (5.11) for examples.

Moreover, the computational speeds for the proposed estimators are stable and fast

by using the gradient-based computational algorithms; see Algorithm 4.1 and 5.1.

As we have seen in Theorem 7.5.1, the boundaries of the generalized method of
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moments still affect the asymptotic normality in the GMM. However, the boundary

issue is potentially solved by using the ensemble idea at the cost of losing powers to

reject the null hypothesis; see Chapter 8.

9.2 Future Work

There are many possible future research directions given in this thesis. In this

section, we discuss the following two.

9.2.1 From Univariate to Multivariate

Most of the models considered in this thesis have a univariate mixing parameter

(or random effects). The mixture (or mixed-effects) models with a multivariate mixing

parameter (or random effects) have much wider applications, because they are more

flexible. One of the examples is the Poisson regression model with random intercept

and slope, which has been seen in Chapter 6. Also see [Karlis and Meligkotsidou, 2007]

for finite mixture of multivariate Poisson distributions and [Chen and Tan, 2009] for

finite mixture of multivariate normal distributions. We have discussed some possible

extensions for mixed-effects models; see Section 2.4.3 and Chapter 6. However, there

requires much more future work.

Firstly, we need to define the generalized moments of multivariate random vari-

ables. Because the Chebyshev system for multivariate functions is not well-defined,

the generalized moments of multivariate random variables will be defined in a wider

class of system; see the tensor product basis given in Section 2.4.3. Next, we need

to investigate the geometric properties of the generalized moment space of multivari-

ate random variables. The new generalized moment space is convex and has two

important geometric properties, the positive representation and the gradient charac-

terization, can be preserved, because both are directly from the convexity. However, it

can be expected that both of the geometric properties become more complex, because

of the increase in the dimension.
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When the multivariate mixture models are considered, it is challenging to con-

struct the generalized moment conditions in Definition 4.2. It is possible that the

generalized moment conditions may not exist without extra conditions.

It might be straightforward to define the GMM for mixed-effects models with

multivariate random effects based on Definition 5.4.1. However, the challenges exist

in computing the estimators. The major reason is that the geometric properties of

generalized moment space of multivariate random variables is unclear. Moreover, it

could be even more difficult to predicate multivariate random effects.

9.2.2 The Families of Weighting Matrices

In the literature of the GMM (or GEE), choosing appropriate weighting (or work-

ing correlation) matrices has attracted much interest; see [Liang and Zeger, 1986],

[Mátyás, 1999] and [Thall and Vail, 1990]. Under the regularity conditions listed in

[Mátyás, 1999, Section 1.3], the inverse of the covariance matrix of the generalized mo-

ment conditions is optimal in the sense that the MSE of the resulting GMM estimator

is minimized. Although the regularity conditions in [Mátyás, 1999] fail in this thesis,

we still observe the efficiency gain in the GMM estimators when the weighting ma-

trices are the inverse of the covariance matrix of the generalized moment conditions;

see Section 4.6, 5.7 and 6.4.

It turns out that, weighting (or working correlation) matrices can be carefully

designed either for efficiency or robustness, when our model is correctly specified. For

example, the weighting matrix is design for the robustness of the GMM for mixture

models in Section 4.6. Another example is the modelling of correlation matrix in the

GMM for mixed-effects model; see Section 5.6. From the simulation studies in Section

6.4, we see that the GMM estimator could gain huge increase in the efficiency when

the working correlation matrix are correctly specified.

Therefore, it becomes important to model the correlation structures of the gener-

alized moment conditions (or estimating functions); see [Liang and Zeger, 1986] and

[Thall and Vail, 1990]. However, modelling and validating the correlation structures

require further studies. Using different weighting (or working correlation) matrices
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is one possible alternative way; see the QIF in [Qu et al., 2000] and the ensemble

inference in Chapter 8. However, the way that a family of weighting (or correlation)

matrices systematically affect the estimation or statistical inference still remains as a

mystery.
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