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Abstract

Mixture models can be found in a wide variety of statistical applications. How-
ever, undertaking statistical inference in mixture models, especially non-parametric
mixture models, can be challenging. A general, or nonparametric, mixture model
has effectively an infinite dimensional parameter space. In frequentist statistics, the
maximum likelihood estimator with an infinite dimensional parameter may not be
consistent or efficient in the sense that the Cramer-Rao bound is not attained even
asymptotically. In Bayesian statistics, a prior on an infinite dimensional space is not

well defined and can be highly informative even with large amounts of data.

In this thesis, we mainly consider mixture and mixed-effects models, when the
mixing distribution is non-parametric. Following the dimensionality reduction idea in
[Marriott, 2002], we propose a reparameterization-approximation framework with a
complete orthonormal basis in a Hilbert space. The parameters in the reparameterized
models are interpreted as the generalized moments of a mixing distribution. We
consider different orthonormal bases, including the families of orthogonal polynomials
and the eigenfunctions of positive self-adjoint integral operators. We also study the
approximation errors of the truncation approximations of the reparameterized models

in some special cases.

The generalized moments in the truncated approximations of the reparameter-
ized models have a natural parameter space, called the generalized moment space.
We study the geometric properties of the generalized moment space and obtain two
important geometric properties: the positive representation and the gradient charac-
terization. The positive representation reveals the identifiability of the mixing distri-
bution by its generalized moments and provides an upper bound of the number of the
support points of the mixing distribution. On the other hand, the gradient charac-
terization provides the foundation of the class of gradient-based algorithms when the

feasible set is the generalized moment space.

Next, we aim to fit a non-parametric mixture model by a set of generalized mo-
ment conditions, which are from the proposed reparameterization-approximation pro-
cedure. We propose a new estimation method, called the generalized method of mo-

ments for mixture models. The proposed estimation method involves minimizing a



quadratic objective function over the generalized moment space. The proposed es-
timators can be easily computed through the gradient-based algorithms. We show
the convergence rate of the mean squared error of the proposed estimators, as the
sample size goes to infinity. Moreover, we design the quadratic objective function
to ensure that the proposed estimators are robust to the outliers. Compared to the
other existing estimation methods for mixture models, the GMM for mixture models

is more computationally friendly and robust to outliers.

Lastly, we consider the hypothesis testing problem on the regression parameter in
a mixed-effects model with univariate random effects. Through our new procedures,
we obtain a series of estimating equations parameterized in the regression parameter
and the generalized moments of the random-effects distribution. These parameters
are estimated under the framework of the generalized method of moments. In the case
that the number of the generalized moments diverges with the sample size and the
dimension of the regression parameter is fixed, we compute the convergence rate of
the generalized method of moments estimators for the mixed-effects models with uni-
variate random effects. Since the regularity conditions in [Wilks, 1938] fail under our
context, it is challenging to construct an asymptotically x? test statistic. We propose
using ensemble inference, in which an asymptotically x? test statistic is constructed
from a series of the estimators obtained from the generalized estimating equations

with different working correlation matrices.
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Guide to Notation

In this section, we provide brief explanation and representative examples of the
notation used in this thesis. Matrices and column vectors are typically denoted
using bold letters, e.g., A, and transpose is denoted using AT. For a parameter
3, we use B or B to denote the esimators of the parameter, 3* to denote the true
value of the parameter, and 3, to denote a value of the parameter. To establish
the asymptotic results, we use the order notations, O(-), o(-), O,(-) and o0,(+); see
[Small, 2010, p.g. 4-16] for precise definitions. We list the following notations
which are unified throughout this thesis.

symbol description

b, Random effects vector of the n'" individual in a mixed-

effects model

B Support set of the random effects

C Constant, which may vary between lines

C Generalized moment cone

fuix(z; Q) Mixture models with mixing distribution @

Iy +1 Dimension of the generalized moment vectors

m Generalized moment vectors for a mixture model

M Generalized moment space

Ky Number of models in an ensemble inference

N Sample size

P Dimension of the regression parameter B in a mixed-

effects model

Q Mixing or random effects distribution
R Real space

S Sample space

pr Probability functions

xXx1



T,
w

Lnt, Xnt

Ynt, Ynt
Znt7 Znt

© = > QR

operators

det
diag

Ex
Var X

Cov
IR

abbreviations

CMM
CNM

GLMM
GEE
GMM
LRTS

Number of visits of the n'" individual

Weighting matrices

Covariate vector to the fixed effects on the n'" individual
at t'™h visit

Response variable of the n'® individual at ¢! visit
Covariate vector to the random effects on the n'" indi-
vidual at ™" visit

Generalized moments vector for a mixed-effects model
Regression parameter vector in a mixed-effects model
The ;' largest eigenvalue

Mixing parameter

Support space of the mixing parameter

description

Determinant operator of a matrix

The operator to a vector that returns a square diago-
nal matrix with the elements of the vector on the main
diagonal

Expectation with respect to the random variable X
Variance with respect random variable X

Covariance operator to two random variables

2-norm of a matrix or L?-norm of a vector

description

Conditional mixed method

Constrained Newton method with multiple exchange ver-
tices

Generalized linear mixed models

Generalized estimating equations

Generalized method of moments

Likelihood ratio test statistics

xxii



MM
MLE
MSE
NPMLE
NEF-QVF

PQL

QIF
UMM

distributions

Bin(N, p)

Exp(0)
N(0,0?%)
Pois(0)

Xp

Method of Moments

Maximum likelihood estimators

Mean squared errors

Non-parametric maximum likelihood estimators

Natural exponential families with quadratic variance
function

Penalized quasi-likelihood

Quadratic inference function

Unconditional mixed method

description

Binomial distribution with number of trials N and suc-
cess probability p in each trial

Exponential distribution with mean 6

Normal distribution with mean 6 and variance o
Poisson distribution with mean ¢

x? distribution with degrees of freedom p
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Chapter 1

Introduction to Mixture Models

1.1 Introductions

A mixture model is one which can be written as a convex combination of mul-
tiple distribution functions; a comprehensive review of these models can be found
in [Lindsay, 1995]. Commonly used examples include finite mixture models with
known or unknown components, with known or unknown order, and parametric or
non-parametric mixture models. Here a parametric mixture is one where the mixing
distribution is assumed to lie in a known parametric family, while non-parametric will

mean the mixing distribution is unconstrained by any functional assumptions.

Much of the pioneering work on mixture models in statistics can be found in
[Pearson, 1898], [Feller, 1943] and [Teicher, 1960]. Good modern references include
[Titterington et al., 1985], [McLachlan and Basford, 1988], [Lindsay, 1995], [McLach-
lan and Peel, 2000], [Schlattmann, 2009] and [Mengersen et al., 2011].

Mixture models are useful in statistical modelling because of their flexibility
[McLachlan and Basford, 1988] and the potential interpretation of the mixing pro-
cess [Everitt et al., 2011]. However, mixture models create challenges for statistical
inference. Firstly, mixtures may not be identifiable; see [Tallis and Chesson, 1982,
[Lindsay and Roeder, 1993] and [Jasra et al., 2005]. Secondly, boundaries (and possi-

ble singularities) exist in the parameter space of a finite mixture; see [Leroux, 1992],



[Chen and Kalbfleisch, 1996] and [Li et al., 2009] and this is also true for more general
mixtures. Thirdly, a non-parametric mixture model can be thought of as having an
infinite dimensional parameter space; see [Lindsay, 1980, 1983] and [Marriott, 2007].
Lastly, log-likelihood functions may not be convex; see [Gan and Jiang, 1999]. A more
detailed discussion of these issues can be found in Section 1.2. Moreover, the chal-
lenges may also affect the convergence rates of associated computational algorithms,

see Section 1.3 for details.

Using the geometry of mixture models is a useful approach to overcome these chal-
lenges. Lindsay [1983] studied the geometry of mixture models in an embedding space
determined by the observed, and hence finite, sample (defined in Equation (1.1)) and
gave the fundamental properties of the non-parametric maximum likelihood estima-
tor for mixture models. These properties include identifiability and bounds on the
number of support points in a non-parametric maximum likelihood estimator. It also
leads to the class of gradient-based computational algorithms, which can be fast and
stable; see [Bohning, 1995] and [Wang, 2007]. However, these fundamental properties
of the non-parametric maximum likelihood are based on the observed sample. Devel-
oping asymptotic results on the non-parametric maximum likelihood estimator could
be theoretical challenging since the size of the sample space is unbounded. On the
other hand, Marriott [2002] considered the geometry of mixture models in an affine
space and introduced the class of local mixture models, which can successfully reduce
the number of parameters in a mixture model. However, a local mixture model may
not provide a consistent estimator to the true mixture model; see Section 1.4 for

details.

In this thesis, we develop estimation and inferential procedures for non-parametric
mixture (or mixed-effects) models under the framework of the generalized method of
moments. To deal with the dimensionality issue in a non-parametric mixture (or
mixed-effects) model, we reduce the dimension of the parameter space through a
reparameterization-approximation procedure with a complete orthonormal basis in a
Hilbert space; see Chapter 2. The proposed reparameterization-approximation frame-
work leads to the models with generalized moments as their parameters and a series of

generalized moment conditions. Next, we study the geometric properties of the set of



the generalized moments; see Chapter 3. They are helpful in studying the fundamen-
tal properties of the generalized method of moments and designing the computational
algorithms which are associated with the proposed estimators in later chapters. The
generalized moment conditions, which are obtained through the reparameterization-
approximation procedure, can be used to fit a non-parametric mixture model; see
Chapter 4. The proposed method is called the generalized method of moments for
mixture models. It can be made robust to the outliers when weighting matrix is
carefully designed. Then, we consider the class of mixture models with regression pa-
rameters, the mixed-effects models, under the framework of the generalized method of
moments; see Chapter 5 and 6. The asymptotic theorems of the generalized method
of moments estimators are established in the case that the dimension of the general-
ized moments diverges with the sample size; see Chapter 7. As will be pointed out
later, the asymptotic results of the generalized method of moments can not be used
for hypothesis testing problem on the regression parameters in a mixed-effects model
with univariate random effects. Therefore, we propose to use the ensemble inference;

see Chapter 8.

This chapter is organized as follows. In Section 1.2, we discuss important sta-
tistical inference issues for mixtures. In Section 1.3, we review the computational
algorithms. In Section 1.4, we consider the underlying geometry. In Section 1.5,
we look at the class of mixed-effects models. In Section 1.6, we list some real data

examples. Lastly, we give an outline of this thesis.

1.2 Inference for Mixture Models

In this section, we discuss the difficulties of undertaking statistical inference in

mixture models.

1.2.1 Identifiability

Titterington et al. [1985] described identifiability as “the existence of a unique

characterization for any one of the class of models being considered”. Identifiability



is defined in [Teicher, 1963] for finite, and [Tallis, 1969] for non-finite mixture. Some
studies have been done on the identifiability of non-finite mixtures, such as [Tallis,
1969] for countable, and [Tallis and Chesson, 1982] for general mixture models. Be-
cause of their wide applicability, more research has been done on finite mixtures, and
this work is summarized in [Titterington et al., 1985]. In this case, usually, we require
the mixing proportions be strictly positive and the mixing parameters to be unequal,;
see [Chen et al., 2004]. With these constraints, many component distributions, includ-
ing the Poisson [Teicher, 1961], exponential [Teicher, 1963], gamma [Teicher, 1963]
and negative binomial [Yakowitz and Spragins, 1968], are shown to be identifiable as

finite mixtures.

One special type of identifiability issue is the label switching problem when we
are making inferences about the individual components; see [Stephens, 2000], [Jasra
et al., 2005] and [Sperrin et al., 2010]. We could impose identifiability constraints
on a particular set of parameters; see [Richardson and Green, 1997]. However, the
successful of this often depends on the design and performance of the MCMC sampler,
as argued by Celeux et al. [2000]. Other possible solutions are reviewed in [Jasra et al.,

2005]. The following example shows another important form of lack of identifiability.

Example 1.1.

Consider a normal mizture of normal distributions such that X | 0 ~ N'(0,0%), where
6 ~ N(0,03) and N(0,0?) is the normal distribution with mean 6 and variance .
It can be shown that this model is equivalent to N'(0,0% + o3) for any o} and o3.

Therefore, this model is not identified.

1.2.2 The Parameter Space of Finite Mixture Models

The parameter space of a finite mixture model has boundaries, because the mixing
proportions are non-negative and sum to one. Moreover, singularities exist, since
we set the component parameters unequal for identifiability reasons. Undertaking
statistical inference near the boundaries or singularities is challenging; see [Cheng
and Traylor, 1995]. Firstly, the dimension of the parameter space is non-constant;
see [Ryden, 1995], [James et al., 2001], [Chen and Khalili, 2008]. Secondly, log-



likelihoods can not be approximated quadratically; see [Chen and Kalbfleisch, 1996],
[Chen, 1998] and [Li et al., 2009]. Lastly, some estimators might be inconsistent; see
[Kiefer and Wolfowitz, 1956], [Laird, 1978] and [Leroux, 1992]. To keep estimates
away from boundaries or singularities, penalty functions have been used; see [Chen
and Kalbfleisch, 1996], [Chen, 1998] and [Chen and Khalili, 2008].

The change of dimension of the parameter space causes problems for both fre-
quentist and Bayesian theory. Whenever the order is underestimated, the model is
mis-specified; see [Keribin, 2000]. On the other hand, if we overestimate the order,
Chen [1995] showed that the convergence rate of an over-parameterized mixture could
be lower than a finite mixture with a correctly specified order, when the sample size
goes to infinity. In Bayesian statistics, this change of dimension makes the posterior

distribution sensitive; see [Jasra et al., 2005].

To determine the order, many model selection techniques can be used, including
the log-likelihood ratio test statistic (LRTS) (summarized in [Everitt et al., 2011]),
the information criteria (summarized in [McLachlan and Peel, 2000]), the moment
matrix [Lindsay, 1989b] and the non-smooth penalty functions [Chen and Khalili,
2008]. Overall, as noted by Everitt et al. [2011], “research on model selection criteria
has not provided an unequivocal answer to the basic question of selecting the right

number of components.”

The failure of the quadratic approximation of log-likelihoods implies that the reg-
ularity conditions in [Wilks, 1938] are not satisfied. As a result, under the regularity
conditions given in [Chen, 1995], the likelihood ratio statistic of a mixture model has a
mixture of y? distributions as its asymptotic distribution, compared to a single x? dis-
tribution in the classical result. This also affects some information criteria depending
on log-likelihoods, such as the AIC and the BIC; see [Ray and Lindsay, 2007]. More-
over, convergence rates can be very slow in some computational algorithms, especially
the EM algorithm; see [Chen, 1998].

Example 1.2.
Consider the likelihood space of the family of binomial distribution Bin(2,0), where
2 is the number of trials and 6 denotes the probability of success in each trial. The

LRTS for the test of one versus of two components has asymptotic distribution as
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0.5x2 4 0.5x3, where X;% is the x? distribution with degrees of freedom p; see [Lindsay,
1995]. We simulate 1000 statistics under the true distribution Bin(2,0.5) with two
levels of sample size, 30 and 100, and show the Q-Q plots of them versus 0.5x2+0.5x?
in Figure 1.1.

Example 1.3.

Li et al. [2009] considered a mizture of two exponentials:
(1 —a)Exp(1) + aExp(6),

where Exp(6) denotes the exponential distribution with mean 6. Consider testing the
hypothesis o = 0 versus a > 0. Under the null hypothesis, the Fisher information is
infinite when 6 > 2.

The boundaries and singularities can also lead to the unbounded likelihood and
an inconsistent estimator; see [Kiefer and Wolfowitz, 1956] and [Cheng and Traylor,
1995]. However, many estimators for the mixing distributions, such as the penalized
maximum likelihood estimator [Chen, 1998], the penalized minimum distance estima-
tor [Chen and Kalbfleisch, 1996], and the maximum likelihood estimator (MLE) with

an upper bound of the order [Leroux, 1992], are still consistent.

Example 1.4.
Kiefer and Wolfowitz [1956] considered the normal mizture with unknown parameters

a and o:
aN(0,1) + (1 — a)N(0,0?),

where a € (0,1) and o > 0. Here the likelihood goes to infinity for any value of
a € (0,1) as the estimates of o goes to 0.

1.2.3 Parameter Space of Non-parametric Mixture Models

A non-parametric mixture model can be considered to have an infinite dimen-
sional parameter space, since an unknown mixing distribution is involved. When the

underlying mixing process is not of direct interest, it can be viewed as an infinite
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dimensional nuisance parameter. In frequentist statistics, the maximum likelihood
estimate with an infinite dimensional nuisance parameter may not give a consistent
estimator and may not be efficient in the sense that the Cramer-Rao bound is not at-
tained even asymptotically; see [Neyman and Scott, 1948]. In Bayesian statistics, the
prior on an infinite dimensional space may not be well defined; see [Marriott, 2007].
We can use the modified likelihood [Lindsay, 1980] or reduce the dimension of the
parameter space, such as the semi-nonparametric approach in [Gallant and Nychka,
1987] and local mixture models in [Marriott, 2002]. Moreover, the non-parametrical

maximum likelihood estimator (NPMLE) has also been proposed; see [Lindsay, 1995].

1.2.4 Non-convexity of Log-likelihood

Log-likelihoods of mixture models may have multi-modes. For example, Gan and

Jiang [1999] gave the following example to illustrate this point.

Example 1.5.

Consider the normal mizture
0.4N(0,1) + 0.6N(6,4).

Let 0 = —3. We independently generate 5000 random variables and fit the model.
The log-likelihood function, which is multi-modal, is plotted in Figure 1.2.

1.3 Computation in Mixture Models

The commonly used computational algorithms for mixture models include the EM
algorithm, gradient based algorithms, the method of moments, and MCMC methods.

In this section, we describe their strengths and weaknesses.

The EM-algorithm is popular for finding the MLE because, as pointed in [Redner
and Walker, 1984], a finite mixture model with a known order is a special case of the
model for incomplete data. It is reliable to find a local maximum but its converge

rate is extremely slow; see [Titterington et al., 1985] and [Bohning et al., 1994].
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Gradient based algorithms are used for the NPMLE; see [Bohning, 1995]. They are
based on the fundamental theorems of the NPMLE, which we discuss in the following
section. Bohning [1995] reviewed some existing gradient based algorithms, includ-
ing the vertex direction method, the vertex exchange method and the intra-simplex
direction method. These algorithms converge faster than the EM algorithm; see [Boh-
ning, 1995]. Wang [2007] proposed a faster algorithm called the constrained Newton
method with multiple vertex exchange (CNM). At each iteration step, the CNM al-
lows multiple points change in the support set, and thus increases the convergence

rate of the algorithm.

The method of moments for mixture models can be used for finite mixture models
with known orders; see [Lindsay, 1989b]. The mixing distribution is estimated from its
moments, as summarized in [Titterington et al., 1985]. However, the moments are not
easily obtained unless the mixture is with respect to the mean parameter in the family
of the quadratic variance natural exponential distributions; see [Morris, 1982] and
[Lindsay, 1989b]. Moreover, estimated component parameters are not necessarily in
the parameter space, due to sampling variability, and thus adjustments are suggested
by Lindsay [1989b].

MCMC methods for mixture models are popular, because it is hard to find a
prior which makes the posterior belong to a tractable distributional family. A routine
Bayesian analysis is proposed by [Diebolt and Robert, 1994] to finite mixture models
with a known order. Later, Escobar and West [1995] and Richardson and Green [1997]
studied the case in which orders are unknown. The computational effort of MCMC
methods can be intense partly, because of the label switching problem; see Jasra et al.
[2005]. Moreover, MCMC methods can suffer from convergence issues; see [Robert
and Casella, 2004].

1.4 Geometry of Mixture Models

In this section, we see the role of geometry in both inferences and computation of
mixture models. Firstly, we review Lindsay’s geometry in the likelihood space based

on a finite sample. Afterwards, we look at Marriott’s mixture affine geometry.
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1.4.1 Mixture Models in Likelihood Spaces

A framework for computing the NPMLE is given in [Lindsay, 1995]. Firstly, we

construct the feasible region in likelihood space:

L={L=(L(Q), -, Ln(Q))" € RY,
where () is a probability measure over ©}, (1.1)

and for each n,
1.Q) = [ £ 0)aQ(o)

and N is the number of observations. Secondly, we define and maximize the following

log-likelihood over L:
(L) =1"log(L),

where 1 = (1,...,1)T € RV, Let ¢(L) be maximized at L. Finally, we reconstruct
the NPMLE QNPMLE from the equation

~

L = L(Qxpuip)-

Lindsay’s fundamental theorems are based on the facts that £ is the convex hull

of the likelihood curve in likelihood space

and ((L) is strictly concave. With the condition that £() has full rank in RY it
follows that L is on the boundary of £ and QNPMLE has at most N support points;
see [Lindsay, 1995]. Moreover, there is a supporting hyperplane H of £ at L such
that

pT—=((L)<0, ifpecL,
and

pT—=((L)=0, ifpeH.



It follows that the gradient function, which is defined as
0
T

G(0) = (£(0)) a—Le(IL), for 6 € ©,

is non-positive and zeros are achieved at support points of QNPMLE; see [Lindsay,
1995]. These results allow the development of the class of gradient based algorithms

discussed in the previous section.

Example 1.2 (continued).

The probability function Bin(2,0) forms a curve in the likelihood space, as shown in
Figure 1.8 (a). The convex hull of the curve is the feasible region L. Moreover, we
also plot its supporting hyperplane at Bin(2,0.5). In Figure 1.3 (b), we plot the cone
structure, which leads to 0.5x2 + 0.5x% as the asymptotic distribution of the LRTS.

Geometry is also involved in deriving the asymptotic distribution of the non-
parametric mixture model likelihood ratio test statistic. If the model surface can
be approximated by score tangent cones, Chernoff [1954] proved that the asymptotic
distribution theory of the likelihood ratio test can be generated by projecting the
empirical likelihood onto these cones; also see [Shapiro, 1985]. This result leads to
the fact that the limiting distributions of some non-parametric tests are a mixture of

x>-distributions, see ; see [Lindsay, 1995].

1.4.2 Mixture Models in Affine Spaces

Marriott [2002] constructed an affine space (Xyiix, Vuix, +) for mixture models,

where Xy and Wy, are subsets of certain functional space with the form

Xy = {f(x) | /f(x)dx _ 1}, and Ve — {v(x) | /U(x)dx - o}

and + is the natural addition operation. The local mixture models are introduced in

a finite dimensional space (Xygix, Visis +), Where
Vll\/[ix = Span{vj(x> S VMiX?j = 1727 ) J} ;

see [Marriott, 2002]. Later, Marriott [2007] extended them to Hilbert spaces. When

the mixing distribution is not of primary interest and the component distributions

12



-o0rds aure o) Ul 130008 o1[) (9) :9U0D 91008 oY) () eoeds POOYI[ANI] oY) Ul A1oWI003 oY) (B) JO 01 €' 9INSL

e iU,

G0z

g

g0 b

S0

£o

o

g0

g0

Jug (o oT)

H XeALO T

20

¥0

[oo

20

Bumoddns

4 ¥BAIOTE

wcm_Eg}r ..

0

¥

Mg

g0

-

13



are mixed locally, local mixture models are able to keep the flexibility with a small
number of nuisance parameters; see [Marriott, 2002, 2007]. Other geometric properties
of embedding a mixture model in an affine space can be seen in [Zhang, 2005], [Zhang
and Hasto, 2006] and [Zhang, 2013].

Example 1.3. (continued)

The vector space Wik s spanned by its tangent and curvature vectors at 6 = 0.5
and approximated by the curvature only. And then, local mixture models locate on the

curvature as shown in Figure 1.3 (c).

1.5 Mixed-Effects Models

Mixture models involving both fixed and random effects are called mixed-effects
models; see [McCulloch and Neuhaus, 2005] for an introduction. Mixed-effects models
are popular in longitudinal data analysis, because they are able to incorporate subject
specific covariates and have a richer interpretation when the subject-specific effect is
of interest; see [Diggle, 2002] and [Wu and Zhang, 2006].

Semi-parametric mixture models form a subclass of the mixed-effects models,
where the random effects distribution is non-parametric. To fit semi-parametric mix-
ture models, it is common to maximize the likelihood but this is computationally chal-
lenging and requires explicit full likelihood functions; see [Aitkin, 1999] and [Wang,
2010]. Methods based on subject-specific generalized estimating equations form an-
other class of approaches for semi-parametric mixture models; see [Sutradhar and
Godambe, 1997], [Vonesh et al., 2002] and [Wang et al., 2012]. This is more robust to
the misspecification of the likelihood functions than the maximum likelihood meth-
ods, because no distribution assumption is made to the responses conditional on the

random effects.

Inference on the regression parameter in a semi-parametric mixture model is more
challenging than in a non-parametric mixture model. The challenges include the is-
sued of identifiability, the boundary in the parameter space and the issue of dimension

of the parameter space; see Section 1.2. When the random effects can be consistently
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predicated as the dimension of each response goes to infinity, inference on the regres-
sion parameter becomes possible in the methods based on subject-specific estimating
equation methods; see [Vonesh et al., 2002] and [Wang et al., 2012].

A parametric distributional assumption, and typically a normal distribution is
used, is made on the random effects distribution. Breslow and Clayton [1993] intro-
duced the penalized quasi-likelihood (PQL) methods based on the Laplace approxima-
tion. This estimation method can be computed easily but is a biased estimator. Later,
Lin and Breslow [1996] used a higher-order Laplace approximation and proposed a
bias correction method for PQL estimators. The generalized estimating equation
(GEE) method has been used for the mixed-effects model with normal random effects

distribution in [Zeger et al., 1988].

Model misspecification on the random effects distribution has attracted much re-
search interests. It was believed that inference on the regression parameters is quite
robust; while inference on the random effects distribution itself is much less robust;
see [Neuhaus et al., 1992]. However, the conditionally specified regression point es-
timators can result from using a simple random intercepts model when either the
random effects distribution depends on measured covariates or there are autoregres-

sive random effects; see in [Heagerty and Kurland, 2001].

1.6 Data Examples

To motivate both theoretical and methodological development in this thesis, a few
real world dataset will be used for illustration throughout this thesis. This section
begins with examples for mixture models and then describes examples for mixed-

effects models.

1.6.1 Thailand Cohort Study Data

The description of the study is adapted from [Schlattmann, 2009]. To study the
health status of 602 pre-school children, the number of times that a child who showed

15



symptoms of fever, a cough, a runny nose, or these symptoms together, is recorded

from June 1982 until September 1985.
The dataset has been studied in [Bohning et al., 1992] and [Schlattmann, 2009].

A Poisson distribution with X ~ Pois(#) is often chosen as a parametric model for
this kind of count data, where # is the mean parameter. With the independent and
identically distributed assumption, the maximum likelihood estimator of 6 is 4.4485
in the single Poisson model. As we can see from Figure 1.4, this Poisson model does

not fit the empirical distribution well.

Because a mixture of Poisson can take more variability into account than a single
Poisson distribution, the following model is suggested. Consider a general mixture of

Poisson distributions,

/ Pois(8)dQ(0),
S}

where Q(0) is an arbitrary probability measure over a compact set ©.

1.6.2 Epileptic Seizures Data

Thall and Vail [1990] analyzed the data from a clinical trail of 59 epileptics, which
aims to examine the effectiveness of the drug progabide in treating epileptic seizures.
The outcomes are counts of epileptic seizures during four consecutive two-week peri-
ods. For each patient, the number of seizures in the eight weeks preceding entry into
the trial and the age are recorded. Figure 1.5 displays a longitudinal plot of the data,

where each trajectory represents a time series of a patient.

Let y,; be the biweekly number of seizures for patient n at equally spaced time
t=1,2,3,4, and let x,; be the vector of covariates, including baseline seizure count,
treatment, age and possibly the interaction between treatment and age. The following
mixed model is used in [Breslow and Clayton, 1993]. For each n and ¢, it is assumed

that y,; follows Poisson distribution with mean (b, ), where
IOg /Lnt(bn) = "B;ftﬁ + bnl + Uy X bn2 + bnt07

where 3 is the regression parameter, v; is the t* visiting time, coded in (—0.3, —0.1,0.1,0.3)

from the first visiting time to the last, and b,, = (b,1, bno)* € R? is a bi-variate normal

16
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random effect and b, is additional random error terms that represent non-specific

over-dispersion beyond that introduced by the subject-to-subject variation.

1.6.3 Retinal Surgery Data

Song and Tan [2000] considered data from a prospective study in ophthalmolgy
where intraocular gas was used in complex retinal surgeries to provide internal tam-
ponade of retinal breaks in the eye; also see [Song, 2007]. Three gas concentration
levels were randomly administrated to 31 patients, who were then visited three to
fifteen times over a three-month period after as injection. The outcome is the volume
of the gas in the eyes of each patient at each follow-up visit, recorded as a percentage
of the initial gas volume. The aim of this study is to estimate the decay rate of gas
disappearance across three gas concentration levels. Figure 1.6 displays a longitudinal

plot of the data, where each trajectory represents a time series of a patient.

Let y,; be the percentage of gas volume for patient n at time t,, and let x,; be
the vector of covariates including the logarithm of time after surgery (in days) and its
square, and the gas concentration level. Song [2007] suggested the following model.
For each n and ¢, y,, is assumed to follow a simplex distribution with mean f,;(b,)

and dispersion o2, where

10git (1t (bn)) = 28 + byo, (1.3)
and 3 is the regression parameter and b,y € R follows a normal distribution. Here
the simplex distribution with mean 6 € (0,1) and dispersion parameter o2 > 0 has
the density

2 2 3\ ~1/2 x —0)?
J(@;0,0%) = (2mo” (x(1 = 2))") / =P (_ 2;2 z(1 —<x)u2()1 — 9)2> |

see [Barndorff-Nielsen and Jgrgensen, 1991].

1.7 Outline and Achievements of the Thesis

The structure and achievements of this thesis are as follows. In Chapter 2, a new

reparameterization-approximation procedure for non-parametric mixture (or mixed-
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effects) models is proposed. By embedding the likelihood functions (or estimating
functions) in a Hilbert space with countable dimension, the non-parametric mixing
(or random-effects) distributions in these models are reparameterized by their gener-
alized moments. Then, the reparameterized models are approximated by truncating
the terms associated with higher order generalized moments. Though this new proce-
dure, the dimension of the parameters in the considered models is successfully reduced
from infinite to countable in the reparameterization step, and from countable to fi-
nite in the approximation step. The considered basis for Hilbert spaces include the
eigenfunctions of an integral operator, and the families of orthogonal polynomials (the
Chebyshev and Hermite polynomials). In this chapter, the orders of the residuals in
the approximations are also computed as the number of generalized moments in a
truncated model goes to infinity. Several examples are given, including the mixture
of Poisson distributions, the mixture of normal distributions, and generalized linear
mixture models with log-link functions, logit-link functions and tang-link functions.
The materials of reparameterizing and approximating the mixture models in this
chapter and the geometric properties of the generalized moment spaces in Chapter 3
are published in the journal paper “Parameterizing Mixture Models with Generalized

Moments” accepted by the Annals of the Institute of Statistical Mathematics.

The major contribution in Chapter 3 is to derive two new important properties of
the generalized moment spaces: the positive representation and the gradient charac-
terization. The positive representation describes a sufficient and necessary condition
that a probability measure can be uniquely determined by its generalized moments. It
also gives an upper bound of the number of support points of a probability measure,
when it can be uniquely reconstructed from its generalized moments. The gradient
characterization is helpful in designing the class of the gradient-based computational
algorithms to reconstruct probability measures from their generalized moments. Sim-
ilar geometric properties are given in [Lindsay, 1995, when mixture models are in an
embedding space determined by the observed sample. In this chapter, the generalized
moment spaces induced by the power functions and the Chebyshev polynomials are

studied in details as examples.

The generalized method of moments for mixture models is proposed as a new es-
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timation method for mixture models in Chapter 4. The proposed method is based on
the generalized moment conditions, which are obtained from the reparameterization-
approximation procedure when the eigenfunctions of an integral operators are used
as the basis for a Hilbert space. It involves reweighed projecting a sample general-
ized moments vector onto a generalized moment space. The weighting matrices in
the proposed methods could be designed for different purposes. When weighting ma-
trices are identity, the proposed method could be interpreted under the information
geometry framework in [Zhang, 2013]. Another example is that the weighting matri-
ces are designed to obtain the robustness of the proposed estimators when a data is
contaminated with outliers. Because the geometry of the generalized moment spaces
are well-studied in Chapter 3, computational algorithms, such as the CNM algorithm
[Wang, 2007], can be easily adopted to compute the proposed estimators. The per-
formance of the proposed estimators are investigated through simulation studies, and

the proposed method is used to fit a model for the Thailand Cohort Study Data.

In Chapter 5, proposing the generalized method of moments for mixed-effects mod-
els with univariate random effects is the major contribution. This is a new estimation
method for the considered models. Through the reparameterization-approximation
procedure, the estimating functions, which are marginalized over the random effects,
can be approximated by the functions with the regression parameters and the gen-
eralized moments of the random effects distribution. Next, the weighted L2-norm of
the vector of the approximated estimating functions is minimized over the parameter
space (the generalized moment spaces for the generalized moments and the real space
for the regression parameters). In this proposed method, distributional assumption
on the random effects is not required. Therefore, the proposed estimators are robust
to the misspecification of the likelihood functions. Simulation studies are conducted
to investigative the performance of the proposed method and a random-effects model

for the Retina Surgery Data is fitted by it.

The contribution in Chapter 6 is extending the method proposed in Chapter 5
to a Poisson regression model with random intercept and slope. Although the ran-
dom effects distribution is bivariate, it is shown that the parameter space for the

generalized moments is a generalized moment cone, which has same geometric prop-
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erties as the generalized moment space. Through simulation studies, the robustness
of the proposed estimators to the misspecification of the random effects distributions
is studied. Moreover, a Poisson regression model with random intercept and slope for

the Epileptic Seizures Data is fitted by the proposed method.

In Chapter 7, the asymptotic results of the generalized method of moments for
mixed-effects models with univariate random effects are established. The major con-
tribution include that the convergence rate of the proposed estimators is computed
and the asymptotic normality in the proposed method is derived. These asymptotic
results are obtained in the case where the dimension of the generalized moments di-
verges with the sample size and the dimension of the regression parameter is fixed.

This is novel in the literature of mixed-effects models.

In Chapter 8, the idea of ensemble inference is firstly used to construct an asymp-
totically x? test statistic for the hypothesis testing problems on the regression param-
eters in a mixed-effects model. Because the asymptotic results in Chapter 7 involve
the generalized moments, which are unknown under the null hypothesis, there may
not exist a pivotal statistic when only regression parameters are of interest. This
is the motivation of using the ensemble idea. By using the generalized estimating
functions with different weighting matrices, an asymptotically normal statistic is ob-
tained in a space whose dimension is larger than the dimension of the generalized
moment vectors. This asymptotically normal statistic is still not pivotal under the
null hypothesis, because it involves the unknown generalized moments. However, by
projecting this asymptotically normal statistic into a lower dimensional space, an
asymptotically x? test statistic, which is pivotal under the null hypothesis, can be
constructed. Simulation studies show empirical evidence which supports this idea.

And, the Epileptic Seizures Data is analyzed by the proposed inferential procedure.
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Chapter 2

Reparameterization with

Generalized Moments

2.1 Introduction

In this chapter, we consider the class of statistical models of the form

ot (53 Q) = Eof(s6)] = / h(s:0)dQ(6) < oo, (2.1)

o

where h(s;0) is a known kernel function and is bounded over (s,0) € S x ©, and @ is
a probability measure over the set © C R?. Both mixture and mixed-effects models

can be written in the form of (2.1); see Section 2.3 and 2.4.

The model hyix(s; @) is nonparametric in the sense that no functional assumption
is made on (). Thus, the infinite dimensional parameter space could be a major

challenge in statistical inference; see Section 1.2.3.

This chapter aims to solve this problem through a reparameterization-approximation
procedure. In the reparameterization step, we reduce the infinite-dimensional param-
eter to a countable-dimensional parameter by rewriting the model hygix(s; @) in the
form of a countable sum. Then, we further reduce the dimension of the parameter by

truncating the higher-order terms.
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We make the following contributions in this chapter. Firstly, we give a general
framework for reparameterization of a mixture (or mixed-effects) model with a com-
plete orthonormal basis in a Hilbert space. Further, the parameter in the reparameter-
ized models can be interpreted as the generalized moments of the mixing distribution
@, which are induced by Chebyshev systems (see Definition 2.2.1).

Definition 2.1.1 (Generalized Moments).
Let {u;(0)}]_y with ug(f) = 1 form a Chebyshev system over ©. For j =0,...,J,
the ™" moment of a probability measure Q) induced by {uj(e)}}]:o is defined as

m(Q) = Eolu; (0)] = / u;(6)dQ(6) < oo, (2.2)

where 6 has a probability measure () on ©.

Secondly, under the proposed reparameterization framework, we apply different
orthonormal basises, including families of orthogonal polynomials and eigenfunctions

from positive self-adjoint integral operators to mixture (or mixed-effects) models.

Lastly, we study the approximation error of the truncation approximation, when
the basis in the expansion is the eigenfuctions of an integral operator and the Cheby-

shev or Hermite polynomials.

This chapter is organized as follows. In Section 2.2, we give an overview of the
reparameterization-approximation procedure. The reparameterization technique is
based on the orthonormal expansion of h(s;#) in Hilbert spaces. Because h(s;6) can
be considered either a function of s given # or a function of 6 given s, we expand it
in two different Hilbert spaces; see Subsection 2.2.1 and 2.2.2. To disclose the rela-
tionship between the new parameters and the mixing distribution (), we interpreted
them as the generalized moments of (); see Subsection 2.2.3. In the last subsection,

we describe the way to examine the quality of the truncation approximations.

In Section 2.3, we consider one-parameter mixture models (see Definition 2.3.1).
Two types of orthonormal basis are considered. One is the class of orthogonal polyno-
mials for natural exponential families with quadratic variance function (NEF-QVF);

see Subsection 2.3.1. The other is the eigenfunctions from an integral operator for
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the exponential families; see Subsection 2.3.2. In the last subsection, we discuss the

quality of the truncation approximations in detail.

In Section 2.4, we apply the reparameterization-approximation procedure to the
inverse of the link functions in mixed-effects models. We use the Chebyshev poly-
nomials (Subsection 2.4.1) and the Hermite polynomials (Subsection 2.4.2) for the
case when the random effects are univariate. In Subsection 2.4.3, we consider the
case when the random effects are multivariate and apply tensor product basises to a

mixed-effects model with a bivariate random effect.

In the last part of this chapter, we give some foundational theory including the
strictly totally positive kernel functions and the asymptotic coefficients of the expan-
sions by the Chebyshev polynomials and the Hermite polynomials. Also, the proofs

of theorems can be found in Appendix A.

2.2 Reparameterization Framework

2.2.1 Reparameterization with L*(S, 1)

Consider a measure space (S, T, 1) and the L*(S, 1) space induced by it. We
assume that 1 is a measure with support §. We will also denote, where appropriate,
vo(s) = ho(s)v(s) with respect to a fixed measure v, typically Lebesgue or a counting

measure, and hg(s) is a strictly positive function of s € S.
Let {e;(s)}32, be a complete orthonormal system in L*(S, 1), i.e., for each i and
VE
(6051656 sy = [ ex(o)es(s)dn = b,
where 9;; is the Kronecker delta. We make the following assumption.

Regularity Condition 2.A (Square integrable of h(s;8)/ho(s)).
For each 0 € ©, the function h(s;0)/ho(s) € L*(S, ), i.e., for each 6 € ©,

[ () an <o
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According to the standard results in Hilbert spaces [Debnath and Mikusiniski,
1999, p.g. 87-130], we have the expansion, for each (s,0) € S x O,

h(s;0) = Zujw)ej(s)ho(s),

where for each j,

u;(0) = (e;(s), h<5;9)/h0(5)>L2(3,u0) :

Additional to the boundedness of hyix(s; @) over S, the order of the integral and the

infinite sum in
mi(siQ) = [ S u5(0)es (9)ha()dQ

are exchangeable by the Fubini’s theorem. Therefore, we have the reparameterization

[e.9]

o (57m00) = Y my(Q)e; ()ho(s), (2:3)

J=0

where m,, = (mg, my,...)T € R™ for each j,

(@) = [ w®)dQ < o (2.4
e
After reparameterization, we have a model with a countable-dimensional parameter
M.

We may approximate the countable sum in (2.3) with a finite sum by truncating

the higher-order terms. It is

J
hyy(s;my) = ijej(s)ho(s), (2.5)
=0
where m; = (my,...,m;)T € R/T! and for each j, m; is defined in (2.4). If hypic(s; Q)

can be approximated by h,,(s;m ) appropriately, we successfully reduce the dimen-

sion of the parameter from infinity to finite with a loss which we will quantify.
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2.2.2 Reparameterization with L?(0, 1)

In the previous section, the reparameterization is based on the orthonormal ex-
pansion of h(s;0) in the Hilbert space L*(S,1). In this section, we consider the
expansion in the L?(0, y) space induced by the measure space (0, Y, o), where g
is a measure with support ©. Let po(0) = wo(6)u(0) with respect to a fixed measure
i, typically Lebesgue or a counting measure, and wg(6) is a strictly positive function
of € ©.

Let {v;(0)}52, be a complete orthonormal system in L*(©, o). We make the

following assumption.

Regularity Condition 2.B (Square integrable of h(s;0)/wo(0)).
For each s € S, the function h(s;0)/wy(0) € L*(O, o), i.e., for each s € S,

[ (o) <o

Similar to the previous section, we have the expansion in L?(©, y) that for each

(s,0) € S x O,

h(s;0) =Y v;(0)p;(s)wo(0),
j=0
where for each 7,

;(8) = (v(0), 1(5:0) [w0(0)) 126 i) -

Because hyix(s; Q) is bounded, we can change the order of the integrals by the Fubini’s

theorem and have the reparameterization
o (5M00) = Y m;(Q)ps(5), (2.6)
where m, = (mg, my,...)T € R® for each j,

(@ = [ vi(O)un()aQ < . .7
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Again, we have a model with a countable-dimensional parameter m,, after reparam-

eterization.

We further approximate (2.6) with a finite sum by truncating the higher order

terms. It is
J
hyuo(s;my) = ijwj(s), (2.8)
=0
where m; = (mg,...,m;)T € R/T! and for each j, m; is defined in (2.7). When the

truncation approximation h,(s;m ) is appropriate, the dimension of the model is

reduced to finite.

Reparameterizating hygi,(s; Q) with either L?(S, 1) or L*(©, o) depends on the
kernel function h(s;#). When h(s;0) is a NEF-QVF, the reparameterization with
L*(8, vp) is natural; see Subsection 2.3.1. When h(s; ) is the inverse of a link function
in a mixed-effects model, reparameterization with L?*(0, ug) would efficiently reduce
the parameters in the truncation approximation models; see Subsection 2.4.1 and

2.4.2. In certain cases, the two reparameterizations are equivalent; see Subsection
2.3.2.

2.2.3 Interpretation of the Parameters

The generalized moments of a distribution have been defined in Equation (2.2).
To interpret the parameters m in the truncation approximations (Equation (2.5)
and (2.8)) as the generalized moments, we need {u;(0)}/_, (or {v;(0)we(8)}7_,) to
form a Chebyshev system (defined as follows) with ug(0) = 1 (or vg(0)we(f) = 1).

Definition 2.2.1 (Chebyshev Systems).
The set of functions {u;(0) 37:0 is a Chebyshev system over © C R, if we have that
det(u;(0;))],_o > 0 whenever 6y < --- <0y and 0; € ©, j =0,...,J.

The class of Chebyshev system is wide; see [Karlin and Studden, 1966, p.g. 9-
20] for examples. An orthonormal basis is not necessarily a Chebyshev system. On

the other hand, a Chebyshev system is not necessarily orthonormal. However, we
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can obtain an orthonormal basis from a Chebyshev system by the Gram-Schmidt
process. We further prove that this orthonormal basis is still a Chebyshev system.

The following result can not be found in the existing literature.

Theorem 2.2.1.

Let {u;(0)}_y with ug = 1 be a set of functions in L*(©, po) such that {u;(0) 3-]:_01
and {u;(0)}/_y form two Chebyshev systems over ©. Also let {v;(0)}7_, be the or-
thonormal basis obtained by applying a Gram-Schmidt process sequentially to u;(9),
J=0,...,J, in L*(©, o). If each of {v;(0) 3]:0 is multiply appropriately by +1,
the set of orthonormal functions is converted into a Chebyshev system, defined in
Definition 2.2.1.

The truncation approximations can be written as
J
Ty (551m05) = eo(s)ho(s) + > mje;(s)ho(s),
j=1

when ug(f) =1, or
bualims) = [ H(s50)/un(0)d0 + 3" (),

when vy(0)wy(0) = 1. According to the above expressions, the truncation approxima-

tions are locally defined by {e;(s)ho(s)}7_, at eo(s)ho(s), or {goj(s)}jzl at [o h(s;0)/we(6)do.

2.2.4 Examination of the Truncation Approximations
In this subsection, we describe the way to examine approximation qualities of the
truncation approximations.

Let €,,.5(s; Q) be the approximation error of h,,(s;my), i.e.,

GVO,J(S; Q) = /eeuo,J(S; e)an

where

o

€vo,1(5:0) = > ej(s)ho(s)u;(6).

j=J+1
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Also let €, s(s; Q) be the approximation error of h,,(s;my), i.e.,

s (5:Q) = /@ s (5:6)4Q,

where

o

€u.a(5:0) = D @i(s)u;(O)wo(6).

j=J+1

In the reparameterization with L?(S, 1y), it is natural to evaluate the approxima-

tion error €,, s(s; Q) using the norm defined in L?(S, vy) that is

—6”0};’()((8'8;)@) ;s,yo) -, (Eyoii]o(<8;>@>2 e
:]i; (/@uj(ﬁ)dQ>2. (2.9)

However, this norm in L*(S, 1) can not be applied to the evaluation of €, s(s; Q),

because h(s;0)/wy(0) may not belong to the space L?(S, ).

Note that €,, j(s;Q) (or €,,,s(s;Q)) can be written as a convex combination of
€vo,7(5:0) (o €,,.5(s:6)). We can study €,,5(s;60) (or €,,.(s;0)) point-wisely over
(5,0) € Sx 0. If €,,5(5;0) (or €,,(s;6)) is uniformly small over S x O, we conclude

that the truncation approximation h,,(s;m,) (or h,(s;m;)) is appropriate.

2.3 Reparameterization in Mixture Models
The importance and challenges in mixture models has been described in Chapter
1. This section considers the one-parameter mixture models defined as follows.

Definition 2.3.1 (One-parameter Mixture Models).
Let f(x;0) be a parametric density function which comes from a known family of

distributions

{f(x;0)]0 € © CR}.
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Let Q) be a probability measure over ©. Then, the distribution with the following

density function is a one-parameter mixture model
fundwi Q) = [ f(as)dQ(0)
5

where f(x;0) is called the component distribution, Q(0) the mizing distribution and

0 the mixing parameter.

The one-parameter mixture models is a subclass of the statistical models in (2.1),

because

Fui(z; Q) = Eg [f (23 0)],
by setting s = = and h(s;0) = f(s;0).

In Subsection 2.3.1 and 2.3.2, we give two examples of reparameterizing the one-
parameter mixture models under the framework given in Section 2.2. In Subsection

2.3.3, we examine the approximation quality in each example.

2.3.1 Moments induced by Power Functions

We consider the one-parameter mixture models, in which the mixing parameter
0 is the mean of the component distribution f(x;6#) and the mixing distribution
Q(0) has mean #y. Furthermore, the component distributions are natural exponential
models with quadratic variance functions. This class includes the normal, Poisson,
gamma, binomial and negative binomial families; see [Morris, 1982, 1983], and has

the following formal definition.

Definition 2.3.2 (NEF-QVF).

If f(x;0) is a natural exponential family in the mean parameterization, then Vi(0),
defined by V;(0) = Ex[(X — 0)?], is called the variance function. If the variance
function V;(0) is quadratic with the form Vi(0) = co+ c10 + 262, then we say f(z;0)

1 a natural exponential family with quadratic variance function.

When the mixing distribution is localized at 6y, the mixture model fyg(x; Q) can

be expanded by the Laplace expansion; see [Marriott, 2002]. Here we describe this
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NEF-QVF Polynomial
Normal Hermite
Poisson Poisson-Charlier
Gamma Generalized Laguerre
Binomial Krawtchouk

Negative Binomial Meixner

Table 2.1: NEF-QVF and their associated orthonormal polynomials.

process in the view of expanding by orthonormal basis. Following [Morris, 1982], we
define, for y =0,1,...,

Vi) o
Pi(wi6) = 505 g

z;0),

where a; = j1[[/Z0 (1 +icy) = j'b; and VJ(H) is the j™ power of the variance function
Vi(0). The set of {Pj(x;0)}32, forms an orthogonal polynomial system in the sense
that

(Pi(w;00), Py(500)) 12500 = 01305V} (B0),

where dyy(x) = f(x;600)dz; see [Morris, 1982]. For each j, it can be shown through
algebra that

<Pj<x; ). Jf((x S )> > - | Pt s = 0,0~ 60

see [Morris, 1982]. Morris [1982] also pointed out that the orthogonal polynomial
systems {P;(z;6p)} are associated with different NEF-QVF; see Table 2.1.

For a given 6y € ©, a mixture of NEF-QVF can be reparameterized as

1P l’eo)

fry(x;mo) = f(2:6)) —l—Zm] i VJ(G)

f(SC, 00)7
where for each j =1,2,...,

my(Q) = / (0 — 807 dQ(0).
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Its truncation approximation is

J
1 P;(xz;0
fry(z;my) = f(x;00) + ij(Q)f,Mf(l‘; 0o), (2.10)
j=2 J: V}(GO)
where m; = (6, mo, . .. ,mJ)T € R’. Because m is induced by the set of the power

functions {(6 — Ho)j}jzo, which forms a Chebyshev system, fry(z;m;) is parameter-

ized in the moments induced by the power functions.

2.3.2 Moments induced by Eigenfunctions of an Integral Op-

erator

This subsection considers the mixture models whose the component distributions
f(x;0) are in the exponential family and © is a compact set in R. We further assume
that, for each 8 € O, f(x;0)/fo(x) € L*(S,vp) where dvy = fo(z)dx, and

Jo(z) = |§1|/e,]‘3(31:;9)d9 >0, forzeS

and |O] be the Lebesgue measure of ©. Note that fo(z) is well defined because O is

Lebesgue measurable under the compactness condition.

According to Equation (2.9), we see that the norm of €,, ;(z; Q)/ fo(z) in L*(S, 1)
depends on the unknown mixing distribution (). Therefore, it is hard to find an
orthonormal basis in L?(S, 1) which is optimal in the sense that the approximation
error is minimized. However, we may minimize the following upper-bound instead.

By the Cauchy-Schwarz inequality, we obtain the following upper-bound

ero.s(5:Q) ||” /(d ) = / )
AR < —Q ) do x u?(6)d6.
La(sw)  Jo \dY 2 o

fio(5) j=J+1

When (@ is either discrete or continuous on the compact set ©, (d/df) @ is bounded.

Therefore, minimizing this upper-bound is equivalent to minimizing

> /@u?(@)d@. (2.11)

j=J+1
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The optimal orthonormal basis in L*(S, 1) can be found through a spectral de-
composition of an integral operator. Let ¢;(z) be the eigenfunction associated with

the j'" largest eigenvalue of the integral operator

(Ag)(s) = /S g(2) K (2, 2')dz < oo, (2.12)

with the kernel function

n [ flx;0) f(a';0)
R a) = P P )

This integral operator is positive and self-adjoint, and thus its eigenvalues are all

do, (z,2')eSxS.

positive; see [Debnath and Mikusinski, 1999, Section 4.4 and 4.6]. Because for any
0eco

Flait) < [ f(ai0)d0 = ©lo(a).
we have, for each 6 € O,

/(9/Sf2(x;9)/fo(x)dxd0§/@/S|®|f(x;9)dxd9:|@|2‘

Therefore, the integral operator A(-) is Hilbert-Schmidt and thus compact. It follows
that the set of {¢;(x)/f, / 2(1’)}?‘;0 forms the complete orthonormal basis in L?(S, vg)
which minimizes (2.11), by the results of the functional principle decomposition in
[Horvath and Kokoszka, 2012].

Expanding f(z;6) with the basis {qﬁj(x)/fém(x) 20, We have
F(@:0) = folw) + 3 VA (0)83(2) o (2),
j=1

where for each j, \; is the j™ largest eigenvalue of A(-) and

; = 1 T () Y () dx
10 = /S F(:0),(x) 7 (). (2.13)

The reparameterization of fyg,(x; @) is

Fopee(@imoc) = follw) + v/ Amsos (2) fo'*(2), (2.14)
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and the truncation approximation is

J
fspec(x; mJ) = fO(I) + Z V )‘jmjgbj(x) 5/2(1'), (215)
j=1
where for each j,
®
With the following theorem, we can show that the reparameterization with L?(S, 1)

is equivalent to the reparameterization with L?(©, y) in this case.

Theorem 2.3.1 (Representation of v;(f)).
The eigenvalues \;, j = 0,1,..., of A(:) are also the eigenvalues of the integral

operator

(Ag)(s) = /@ g(0)K'(6.0)46 < oo,

with the kernel function

K(0.0)= | J;f/”;(i)) ! éf;(";; dz, (0,6) € © x 0. (2.16)

Moreover, the function v;(0) is the eigenfunction associated with the j* largest eigen-
value of A'(+).

Proof. See the Appendix. m

According to Theorem 2.3.1, the set of functions {7;(¢)}52, forms an orthonormal

basis in the space L?(©, i), where p is the Lebesgue measure, i.e., for each i and 7,

/ Yi(0);(0)dp = 635
(C]

It is also true that, for each j = 0,1, ...,

1

(F(@:0),%(0)) 2o = fo' (@) —=

(A'd;)(x)
= VNoi(a) fy (). (2.17)
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Therefore, Equation (2.14) can also be viewed as a reparameterization with L*(©, p).

Next, we show that {v;(6)}7_, forms a Chebyshev system with ~o(6) = 1/+/[6].
And thus, the parameter m; in Equation (2.15) are the generalized moments of @

induced by the eigenfunctions of A'(-).

Theorem 2.3.2.
Foreach J =1,2,..., the set {’yj(ﬁ)};}:O forms a Chebyshev system over ©. Moreover,

7(0) = 1//16].
Proof. See the Appendix. m

According to Equation (2.15), we have
| fpec(@ims) — fanx(z: Q) = D O(/X)), (2.18)
j=J+1

when for each j, m; is bounded. The decay of the eigenvalues is related to the
smoothness of the kernel function K'(6,0'), (6,0") € © x O; see [Reade, 1983] and
[Ha, 1986].

Proposition 2.3.1 ([Ha, 1986]).
If K'(0,0") is positive definite and symmetric, and if the symmetric derivative

821"
00700 K®,9)

exists and is continuous on © x ©, then for large j,

A = 0G0,

Applying Equation (A.3) to Equation (2.18), we have the following result.

Corollary 2.3.1.

Suppose that the symmetric derivative

627" ,
o000’ K@®,9)
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exists and is continuous on © X O, where K'(0,0') is defined in Equation (2.16). Then
for large J,

|fspec(x;mJ) - fMix(x; Q>| = O(‘]_r)v

for each x € S.

To illustrate the construction of the moments induced by the eigenfuncations of

A'(+), we give the following two examples.

Example 2.1 (Mixture of Poisson).
Let © = [0,25] and
1 %
fo(z) = %/0 Pois(x; 0)d0,
where Pois(x;0) is the probability function of the Poisson distribution with mean 6.
Figure 2.1 shows the largest 10 eigenvalues of the integral operator A(-), the functions

¢j(x) and its associated v;(0) corresponding to the largest 4 eigenvalues.

Example 2.2 (Mixture of Normal).

For each fized o* > 0, let © = [0,0.7] and
1 0.7
fo(z) = — N(x;0,0%)do,
0.7 Jo
where N (x;0,0?) is the probability density function of the normal with mean 6 and
variance 0. For o® = 0.07%, Figure 2.2 shows the largest 10 eigenvalues of the integral
operator A(-), the functions ¢;(x) and its associated v;(0) corresponding to the largest

4 eigenvalues.

2.3.3 Quality of Truncation Approximation

We consider the quality of the two truncation approximations from two aspects:

the non-negative sets and approximation error.

As an approximation to a probability function, we wish the truncation approxi-
mation f,,(z;m;) to behave like a probability function. In other words, the trunca-
tion approximation f,,(z;m ) should satisfy the following two conditions: for each

J=1,2,...,
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1. the integral of f,,(x;m ) with respect to x over S is one;

2. for each z € S, the truncation approximation f,,(z;m) must be strictly posi-

tive.

The first condition holds for either (2.10) or (2.15) because we have, for each
3=12,..,

/st(x; 00) f (a3 00)da = (P;(x;60), Po(x;60)) 125, = O

and

() f2 P (x I:L x;0); =
Lm>OUd ¢Eéﬂﬁmww 0.

However, the second condition is not always true. So, Marriott [2002, 2007] suggests

to add the non-negative conditions as constraints on the parameter space of m .

We return to Example 2.1 and 2.2 to examine the quality of the truncation ap-

proximations. Because each truncation approximation can be expressed as

M@mﬂ:LM@wMM@

the non-negativeness of f,, (z; w;(6)) implies the non-negativeness of f,,(x; m ), where
wy(0) = (u(0),...,us(0)" € R’. And thus, we examine the negative region
of fu,(x;us(0)) over S x ©. We also consider the point-wise approximation error
€1o.7(5:6) over S x © defined in Subsection 2.2.4

Example 2.1 (continued).

Let uy(0) = (up(9), ..., us(0))T € R>. We consider the cases where uy(0) is induced by

either the power functions with 6y = 12.5 or the eigenfunctions of A’(+). The function

fuo(z;us(8)) is denoted by fry(x;us(6)) and fopec(x;ws(8)) correspondingly. Figure

2.8 shows the negative region of f,,(x;us(f)) over S x [0,25] in these two cases.
Figure 2.4 examines the approximation error of each component. Various issues

of the reparameterization with power moments are seen from panel (a). Firstly, the

quality of the approximation is non-uniform at each point in the sample space. Sec-

ondly, the approximation is poor when 6 is away from 0 = 0y. This is due to the
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nature of the underlying Laplace approximation where a polynomial approximation
only behaves well in a small neighborhood of 6 = 6,. On the other hand, from the
panel (b), we see that the quality of the approzimation is almost uniform at each point

(x,0) € S x ©, when the moments are induced by the eigenfunctions of A'(-).

The above discussions are also supported in Figure 2.5. The approzimation fry(z;u4(6))
to the probability function Pois(x; @) is not appropriate when 0 is away from 6y = 12.5;
see the panel (a) and (c). The approzimation fspec(z;w4(0)) is not as good as fry(z;6)
when 0 is in a neighborhood of 6y = 12.5; see the panel (b). However, it is able to char-
acterize the shape of the probability function Pois(x;0) when 0 is away from 0y = 12.5;
see the panel (a) and (c).

Example 2.2 (continued).

Consider a fized 0 = 0.07%. Again consider us(0) = (u1(0),...,us(0))* € R* and
uy(0) is induced by either the power functions with 0y = 0.35 or the eigenfunctions
of A'(+). Figure 2.6 shows the negative regions of fo,(x;us(0)) over S x [0,0.7] under
these two types of reparameterizations. Also, Figure 2.7 gives the contour plots of
€vp.a(2:8) over S x [0,0.7]. From the panel (a), we see the non-uniform and local ap-
proximation properties of the reparameterization with the moments induced by power
functions. On the other hand, the quality of the approximation is more uniform,
when the moments are induced by the eigenfunctions of A'(-). This is also supported

by Figure 2.8.

2.4 Reparameterization in Mixed-Effects Models

Generalized linear mixed models has been widely used in longitudinal studies; see
[Diggle, 2002]. The following model is defined as the class of the generalized linear
mixed models (GLMMs).

Definition 2.4.1 (Generalized Linear Mixed Models).

Let Y, = (Yo1,...,Yar,)T € R™" be a response vector, X, = (Xy,..., X )" €
R™*P be the covariates matriz to the fived effects, Z, = (Z,y, ..., Zyy )T € R4
be the covariates matriz to the random effects, and b, = (by1,...,bny)" € R be the
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random effects vector. Conditional on (X,, Z,,b,), we assume that Y, follows a

multivariate distribution with mean
E[Y, | X, Z,b))=9"' (X,8+2Z,b,), (2.19)

where g~'(+) is the inverse of the link function g(-) and B € RP is the regression

parameter.

In Subsection 2.4.1 and 2.4.2, we consider the case that the random effect b, is
univariate. When the range of b, is compact, the GLMMs (2.19) can be reparame-
terized in the generalized moments induced by the Chebyshev polynomials. On the
other hand, the generalized moments induced by the Hermite polynomials are used,
when the range of b, is the real line. In Subsection 2.4.3, we consider the case that

the random effect is multivariate.

2.4.1 Moments induced by the Chebyshev Polynomials

In this subsection, we consider the GLMMs which have univariate random effects,

ie.,
E (Yo | Xty Znt, ba) = g7 (XpiB+ Ziby) | (2.20)

where Z,; € Rand b, € B=[-1,1]. Let s = X3, 0 = b, and h(s,0) = g ' (s+Z;0).
The mean of Y, | (Xnt, Znt) is

U(S7 Znt; Q) = E[Ynt ‘ Xntu Znt] - EG [971(5 + Znt0>] 9

which is the form of Equation (2.1).

For any random effect b,, defined on [a;, a,] # [—1, 1], we can have a new random
effect

Yo 2 b_aH—au

2.21
Qy — a ay — a’ (2.21)

which has the range [—1,1]. Then, the model can be written as

(@, — ay)b! a; + ay,
L4
2 + nt 2 )

E (Yo | Xoo ZoosH] = g~ (X,aﬁ 7
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which is the form of Equation (2.20).

Consider the space L?([—1,1], uo), where dyg = (1 — b*)71/2db. The Chebyshev
polynomials { T}() }52, (defined as follows) form a complete orthogonal system in the
space L*([—1,1], uo); see [Boyd, 2001, p.g. 64]. Figure 2.9 shows the functions 7}(z)
and Tj(z)(1 —22)~Y4 j =0,...,3, where for each i and 7,

/1 Ti(z)(1 — %)~V x Ti(z)(1 — 2*) Y4z = 6. (2.22)

1

Definition 2.4.2 (Chebyshev Polynomials).
The Chebyshev polynomial T;(x) of the first kind is a polynomial in x of degree j,
defined by the relation for j =2,3,...,

Tyi(x) = 20Ty (z) — Tyoa ()

with To(z) =1 and Ti(x) = x.

Assume that g7 (s + Z,:b,) belongs to L*([—1,1], ug) for each s € S. Then the
Chebyshev expansion of g7!(s + Z,;b,) is

oo

1
g s+ Zyby) = 50(8: Zut) To(ba) + > " ¢i(8, Zu) Tj(ba),
j=1
where for each j,

9 1
ci(s, Znt) = —/ (1-— bz)_l/Qg_l(s + Zub) T;(b)db.

T™J-1

The reparameterization of U(s, Z,; Q) is

UChebyshev(Sa Znt; moo) = C()(S, Znt) + Z Cj (Sa Znt)mj
j=1
and the truncation approximation is
J
Uchebyshev (8, Znt; 1) = co(S, Znt) + Z cj(8, Znt)m;
j=1
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where for each j € {1,2,...},

m; = /_1 T;(b)dQ.

1
For each b, € B, the truncation approximation of g=(s + Z,;b,) is

J

UChebyshev<57 Znt7 TJ(bn>> = CO<57 Znt) + Z cj<57 Znt) T](bn>7

=1
where T ;(b) = (To(b), ..., Ty(b))" € R/TL,

The Chebyshev polynomials can be described as the result of the Gram-Schmidt
orthogonalization of the set of powers functions, {1,z,z? ...} on [—1,1] with the
measure duy = (1 — 22)"/2dx; see [Walter and Shen, 2001, p.g. 114]. Therefore,
{T;(x)}/_, forms a Chebyshev system by Theorem 2.2.1. Additional to the fact that
To(z) = 1, the parameters m; can be interpreted by the generalized moments of @

induced by the Chebyshev polynomials.

If g7'(s + Zby,) is continuously differentiable, finitely or infinitely many times,

the Chebyshev expansion converges fast; see Proposition 2.4.1.

Proposition 2.4.1 ([Mason and Handscomb, 2002, Theorem 5.14]).
Let {c;}71_ be the coefficients in a Chebyshev expansion on [—1,1]; defined in Equation
(A.2). If a function f(0) has r + 1 continuous derivatives on [—1,1], then

‘f(G) =36 10) = 0.

Because
\U(, Znt; Q) — Uchebyshev (8, Znt; M)
= ‘/11 g1 (8 + Znibn) — Uchebyshev (8, Znt; Tr(by))d@Q
< 11 197" (s 4 Zntbn) — Uchebyshev (5, Znt; T (bn))| dQ,

the truncation approximation Ucnebyshey (S, Znt; M7) could converge to the true model
U(s, Zn; Q) fast; see Corollary 2.4.1.
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Corollary 2.4.1.
If g7Y(s + Zntbn) has v+ 1 continuous derivatives with respect to b, on [—1,1], then

|U(S7 Znt; Q) - UChebysheV(Sa Znt7 mJ(Q))| — O(J_T)

for each s € S and Z,; € R.

Some special functions can have explicit Chebyshev expansion (Example 2.3),

while other functions can be expanded numerically; see Example (2.4) and (2.5).

Example 2.3 (The Log-link Function).
The log-link function g(-) =log(-) is canonical in Poisson regression model; see [Dig-
gle, 2002]. According to [Mason and Handscomb, 2002, Equation (5.18)], we have the

expansion that
g s+ Zuiby) = exp (s 4+ Zpiby)
= exp(s) (Besselo(Znt) To(bn) + 2 Bessel;(Zu) :@(bn)) ,
j=1

where s = X 1,3 and Bessel;(x) is the j™ modified Bessel function of the first kind.

Suppose that the random effect b, has the range [—1,1]. The truncation approzimation
Of U(S, Znt; Q) is

J
Uchebyshev (S, Znt; M y) = exp(s) <2Besse10(Znt) +2 Z Besselj(Zm)mj> ,

=1
where for each 7,

m; = /_1 T;(h)dQ.

1

Let Z,y =1 and J = 3. In Figure 2.10 (a), we examine the point-wise approxima-
tion error €,,3(s;by) (see Subsection 2.2.4) for (s,by,) € [—5,5] x [—1,1] and see that
the approzimation is uniformly appropriate over the [—5,5] x [—1,1]; also see Figure
2.11.

o4



"uoI)ouUNy JUI[-S80[ ) I0] .S[eIOUATOd 9)TULIOF]

o1} (q) srermmoudiod AUSAQAY) oY) (®) Aq PeONpUI oIe SHUAWOW o) WM (¥q:s)€ "5 Jo sjord mojuoy) :0T'g 9mMSI]

0g1-

0oL-

st 1

05 o

ook

05l

(@ (&)

%)



'68°0 = “q (

o) pue o = “q (q) ‘80—
uq

= Yq (') UOYM ‘UOTI}OUN] YUI[-30] [IIM [9POU SIS

-poxtur e ut ((Mq)Sy 1 ‘s)*HUCHy) pue (M) 11 °s)RHY ((Mq)EL T '5)IHRIO) (Mg + 5) 6 Jo S10[d :TT'C 9IS

((G90)5TF 4T ') T™RH] s

] (g 0)EF 4T ') *seEy)

((ggro)tg i ‘) oiamog - —
(g8 + 5)dxe—a—

I
=1
re]

|
g
SNeA TOIEITm]

I
=1
vyl
o

oor

(@

.
0
102
- 0r
-109
—08
¢
z.
-00L m
._ =
3 )
_q 102k %
|
1
1
__ -0FL
1
I
]
i 1091
[ ey
! ((0)3 1747 %)y o
((Q)3 . o o) 4euskasioyy _ _ _
(&)clxe —a—
A, v ooz
q

((qgp—)et g i1 ‘s) ety
({58 0—)% F i1 &)Wy
((ggo—)t.p o &) 4ousiasam

(g80 — #)dxe—e—

I
=1
@

SNeA TOIRDTT

I
=1
v}

Juz]

(e)

56



Example 2.4 (The Logit-link Function).

The logit-link function is common in the literature of regression models; see [Diggle,
2002]. The model is given by

1
E Yn Xn ) Zn abn =
Yot | Xty Znt: bn 1+ exp(—X.L8 — Z,:b,)

and

! 1

1 1 +exp(—XLB — Z.b,)
Because 1/(1 + exp(—s — Znbyn)) € [0,1] for any Z,, b, and s,

1
/ (1 —02)"Y2(1 + exp(—s — Znsby)) 2db, < 0

1

foreachs € R and Z,; € R. Lets = X103, Z,y =1 and J = 3. In Figure 2.12 (a), we
exzamine the point-wise approximation error €,,3(s;by) for (s,b,) € [=5,5] x [—1,1]
and see that the approximation is appropriate uniformly over the [—5,5] x [—1,1].
Figure 2.13 also supports that Ucnebyshev (S, 1; T5(by)) approzimates 1/(1 + exp(—s —
b,)) appropriately.

Example 2.5 (The Tanh-link Function).
The hyperbolic link function is useful for modelling data that approaches an asymptote;

see [Vos, 1991]. The model is given by the nonlinear regression
E[Ynt | Xnta Znt7 bn] = tanh(thﬁ + Zntbn)a

and
1

E[Yo | X, Znt] = / tanh(X 58 + Zu:b,)dQ(by,).
1
Because tanh(s + Z,;b,) € [—1,1] for any Z,., b, and s, it is true that

1
/ (1 —b2)"Y2 (tanh(s 4 Zuby))* db, < 0o

1

foreachs € R and Z,; € R. Lets = X103, Z,y =1 and J = 3. In Figure 2.14 (a), we
examine the point-wise approximation error €,,3(s;by) for (s,b,) € [=5,5] x [—1,1]
and see that the approxzimation is appropriate uniformly over the [—5,5] x [—1,1].
In Figure 2.15, we also see that Uchebyshev (s, 1; T5(bn)) approximates tanh(s + by,)
appropriately.
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2.4.2 Moments induced by the Hermite Polynomials

In this subsection, we still consider the GLMMs with a univariate random effect
b, € R. Consider the space L*(R, ), where dug = exp(—b*)db. The Hermite
polynomials {H;(r)}32, (defined as follows) form a complete orthogonal system in
the space L*(RR, uo); see [Boyd, 2001, p.g. 64]. Figure 2.16 shows the functions H;(x)
and H;(x)exp(—2?/2), j =0,...,3, where for each i and j,

/OO Hi(x) exp(—2?/2) x Hj(z)exp(—2?/2)dz = §;;.

Definition 2.4.3 (Hermite Polynomials).
The Hermite polynomial H;(x) is a polynomial in x of degree j, defined by the relation
forj=23,...,

wHj(xr) = 1/2H;1(z) + jHj-1(z)

with Hy(z) =1 and Hy(z) = 2.

Assume that g~ (s+ Z,:b,) belongs to L*(R, p) for each s € S. Then the Hermite
expansion of g~ (s + Z,;b,) is

o0

g s—i—Zntb ch Sy Znt ) Hi(by),

7=0
where for each 7,
o\ —1/2 _
¢i(8, Zn) = (77227 (41)) / /exp(—bQ)g Y(s + Zub) H;(b)db.
R

Then, we have the reparameterization

o0

UHermlte(S Zntvmoo - ch S Znt
7=0
and the truncation approximation
J
Ubermite(8, Znt; M y) = ¢o(8, Znt) + Z cj (8, Zns)m,
j=1
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where for each j = {1,2,...},

%:A%@m

For each b, € B, the truncation approximation of ¢g='(s + Z,;b,) is

J
UHermite(Sy Znt; HJ(bn)) = CO(Sa Znt) + Z Cj (57 Znt)H](bn)u

j=1
where H ;(b) = (Hy(b), ..., H;(b))T € R/*L.

The Hermite polynomials can be obtained from the Gram-Schmidt orthogonal-
ization of the set of power functions {1,2z,(2x)?,...} on R with measure dyy =
exp(—a?)dz; see [Walter and Shen, 2001, p.g. 121]. Therefore, { H;(z)}/_, forms a
Chebyshev system by Theorem 2.2.1. Additional to the fact that Hy(xz) = 1, the
parameters m; can be interpreted by the generalized moments of () induced by the

Hermite polynomials.

Similar to the Chebyshev expansion, the Hermite expansion converges fast, if
g1 (s + Zuby,) is continuously differentiable, finitely or infinitely many times; see

Proposition 2.4.2.

Proposition 2.4.2.
Let {c;}]_y be the coefficients in the Hermite expansion on R. If f(s) is such that
(0"/0s"™) f(s) and s" f(s) are bounded and integrable on R for each s € R, then

J
‘ ZCJHJ
j=

J—'f'/2+1)

Because
|U(57 Znta Q) - UHermite(Sa Znt7 mJ>|

/9_1(5 + Zntb ) UHermlte(S Znta HJ( ))dQ
R

S / |g s+ Zntb ) UHermlte(s Znt; HJ ‘ dQ

the truncation approximation Unermite(S, Zne; M) converges to U(s, Zy; Q) fast; see
Corollary 2.4.2.
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Corollary 2.4.2.
If the function g~ (s+ Zniby) is such that (0" /ObY) g~ (s+ Zniby) and b7 g (s+ Z,iby,)
are bounded and integrable on R for each b, € R and s € S, then

U (8, Znt; Q) — Ustermite (8, Znt; my(Q))| = O(J /21,

for each s € S and Z,; € R.

We continue the following example to illustrate the Hermite expansion in GLMMs.

Example 2.3 (continued).
According to [Lebedev, 1972, p.g. 74], we have the expansion that

g_l(s + Znibn) = exp(s + Zniby)

=exp (s + Z2,/4) (il (%)jh@(bng ;

=

where s = X1 B3. The truncation approzimation of Un(s; Q) is

21 Zw )
UHermite(Sa ng, mJ) = exp (3 + Z721t/4) <Z - (Tt) m]> )

=0

where for each 7,

m:ém@@.

Let Z,y =1 and J = 3. Figure 2.10 (b) presents the point-wise approximation error
€10,3(8; b)) for (s,b,) € [=5,5]x[—1,1]. And Figure 2.11 shows that Unermite(s, 1; H3(by,))
can not appropriately approximate exp(s + b,) for some b, € [—1,1]. We need to in-

crease J to improve the quality of the approximation.

Because for each s, Z,; and b, it is true that
(1 +exp(—s — Zuby)) 2 €10,1],
and

(tanh(s + Z.uba))” € [0, 1,
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we have

/(1 + exp(—8 — Znib,)) 2dpo < 00
R
and

/ (tanh(s 4+ Zpb,))” dpig < o0
R

for each s € R and Z,; € R. Therefore, the Hermite expansions of the logit-link
function and the tanh-link function are valid. The point-wise approximation errors
€10,3(5; b)) of the logit-link function and the tanh-link function, when the moments
are induced by the Hermite polynomials, can be found in Figure 2.12 and 2.14 cor-
respondingly. From these examples, it is observed that Upnermite(S, Znt; 72) may not
approximate as well as Uchebyshev (S, Znt; M0y); see also Figure 2.13 and 2.15. The
reason is that the range of b, is the real line in the Hermite expansion, while it is
[—1,1] in the Chebyshev expansion. This observation also supports the fact that the
Hermite expansion has a slower convergence rate than the Chebyshev expansion; see
Corollary 2.4.1 and 2.4.2.

2.4.3 Extension to Multivariate Random Effects

Many GLMMs have multivariate random effects; see [Diggle, 2002]. A univariate
orthonormal basis for a function can be extended to a multivariate on by using tensor

product (defined as below).

Definition 2.4.4 (Tensor Product Basis).
If {ewj(2)}32o is an orthonormal basis of a Hilbert space Hy, for k = 1,...,q, the

functions
q
{Hekjk(l“k), for each jr, =0,1,... }
k=1
form an orthonormal basis for H; x --- x H,, called the tensor product basis.

Here we reparameterize the inverse of the link function in a GLMM with a bivari-

ate random effect by the tensor product basis induced by the Hermite polynomials.
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Similar procedure can be extended to any orthonormal basis for a univariate func-

tional space. Consider a GLMM with a bivariate random effect, i.e.,
E [Klt | Xntv Znta bn] = g_l (X,Eﬁ + Zntlbnl + Znt2bn2) 9

where Z, = (Zni, Znio)t € R? and b, = (by1,b,0)T € R2. Let s = X138 € S.
Assume that ¢! (s + Zu41bp1 + Znsobne) belongs to L*(R, ) x L*(R, pg) for each
s € 8, where dug = exp(—b?)db.

Because the Hermite polynomials form an orthogonal basis of L?(R, 1), the tensor

product basis induced by the Hermite polynomials for L*(R, ) x L*(R, o) is
{H;,;,(by) = Hj, (bp1) Hj,(bya), for each j; =0,1,...and j» =0,1,... }.

Then, we have the bivariate Hermite expansion

g_l(X;[;/B + Zg;fbn) = Z Z Cj1j2(37 Znt)]{jljé(bn)v

71=0 j2=0

where for each j; and js,
_ i) ey gy —1/2 _
Cj1j2<37 Znt) =m Y2 (2(J1+J2)31!]2!) /2 9 1(X7?t/6 + Z;ftbn)Hth(bn)dbn
R

The reparameterization is

[e.9] oo
UHermite(sa Znt; moo) = E E : Cj1j2(87 Znt)mjljza
J1=072=0
and the truncation approximation is
Ji e
UHermite(su Znt§ mJlJz) = E E Cj1j2<57 Znt)mj1j27
J1=0j2=0

where m j, 7, is a vector in R7172 whose elements
My 5, = /2 I{]&jz(bn)dQ? for jl = 07 BRI J17j2 = 07 ceey J27
R

and @ is the probability measure of the vector b, € R?. Note that the parameter
my,j, can not be interpreted as the generalized moments of () in Definition 2.2,

because the Chebyshev system is not defined on R2.
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If we further assume that b,; and b,s are independent and have distribution ),

and ()2 on © correspondingly, we have

J1 Jo
. Iy } : § : /
UHermite(Sa Ly mjlmeQ) = Ci1jo (37 Znt)mjlmjz’
J1=0 j2=0
where my, = (my,...,my)" € R and m/;, = (m),...,m/,)T € R”, and

m; :/®H7<bn1>dQ17 fOI'jZO,...,Jl,

and

m; = / ]{J(bng)ng fOI'j = 0, ceey JQ.
S}

Now, the parameters m;, and m , can be interpreted as the generalized moments of

(1 and ()5 induced by the Hermite polynomials.

Appendix: A

A.1 Strictly Totally Positive Kernel Functions

The strictly totally positive kernel functions and Chebyshev systems are defined
in the following ways in [Karlin and Studden, 1966]. In this subsection, the set O is

assumed to be compact.

Definition A.1 (Strictly Totally Positive).
A real valued kernel function K(s,0), (s,0) € S x © C R?, is called strictly totally

positive of order r, if for each J =1,... 7, we have det(K(s;, ej))%],j:o > 0, whenever

So <+ <S8, bp<---<0,and (s,0;) €Sx0,1,j=0,...,7.(s5)
Consider a kernel function for (s,s’) € S x &' C R?
K*(s,8') = / L(s,0)M(s, 0)do, (A1)
e

where L(s,0),(s,0) € S x © C R?* and M(s',6),(s',0) € S’ x © C R The following
proposition is proved in [Karlin and Studden, 1966].
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Proposition A.1.
If the kernel function in (A.1) exists for each (s,s") € S xS" and L(s,0) and M(s',0)
are strictly totally positive, then K (s,s") is strictly totally positive.

Pinkus [1996] further stated that the eigenfuctions from a strictly totally positive

kernel function could also form a Chebyshev system.

Proposition A.2.
Let

(Ag)(6) = / 9(0)K'(6,0/)d0,

S}

be a compact, self-adjoint, positive integral operator in the form of (2.12). More-
over, the kernel function K'(6,0") is strictly totally positive over © x ©. Then, the
integral operator A'(-) has the eigenvalues \g > A\ > --- > 0 and associated eigen-
functions ¢o(0), p1(0), ..., which are continuous over ©. For each J = 1,2,..., the
set {¢:(0)}_, forms a Chebyshev system over ©. Moreover, ¢o(6) is strictly one sign
on ©.

A.2 Asymptotic Coefficients of Orthogonal Polynomials Ex-

pansion

Consider the orthonormal polynomials {P;(s)}32, defined by the measure jo on
S. That is for each 7 and 7,

/B(S)Pj(s)dﬂo = 0ij-
S

We have the expansion of a function f(s) by {P;(s)}32, such that that

f(s) = chpj(S%

Jj=0

where for each j

= [ 6P )0 (A2)
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is known as the j** coefficient in the expansion.

When {P;(s)}32, is either the normalized Chebyshev or Hermite polynomials, the
polynomial P;(s) is bounded for each s and j; see [Boyd, 2001, p.g. 47] and [Boyd,
1984]. Therefore, we have

<M Y g,

j=J+1

HOED L0

where M is a positive constant. When ¢; decays fast, we may have

J

F(s) =Y eiPils)

J=0

= O(cy);

see [Boyd, 1984]. For such a reason, it is important to study the asymptotic properties
of ¢y, as J goes to infinity; see [Boyd, 2001] and [Mason and Handscomb, 2002]. With
the fact in [Orszag and Bender, 1999, p.g. 379] that, for large J and fixed r,

= 1 1

>, ==0 (—) (A.3)
r _ r—1 )7

27\

Proposition 2.4.1 and 2.4.2 are obtained from the following two propositions.

Proposition A.3 ([Mason and Handscomb, 2002, Equation (5.100)]).

Let {c;}7_ be the coefficients in a Chebyshev expansion on [=1,1]. If f(s) has r + 1

continuous deriwatives on [—1,1], then

les| = O(J 7).

Proposition A.4 ([Boyd, 1984]).
Let {c;}_ be the coefficients in a Hermite expansion on R. If f(s) is such that
(07/0s") f(s) and s" f(s) are bounded and integrable on R for all real s, then

lcs] = O(J 7).

A.3 Proof of Theorem 2.2.1

Proof. We use mathematical induction to prove this theorem. Note that vy(z) is a
constant function and it forms a Chebyshev system over S. All we need to show is

that {v;(s)}/_, forms a Chebyshev system if {vj(s)}j:_o1 forms a Chebyshev system.
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Let wy_1)(8) = (uo(0), ..., us—1(0))T and v(;_1)(0) = (vo(0), ..., vs—1(#))T be two

vectors in R/, Because {v;(6) };.];01 forms an orthonormal system for {u; (9)}3]:_01, there

exists a unique J x J full-rank matrix B with respect to L*(0, o) such that, for each
0 €O,

w-1)(0) = Bv_1)(0).
For any 0y < --- < 0;_1, let U_1) = [u(J,l)(QO),...,u(J,l)(HJ_l)} bea J x J
matrix and V{;_q) = [U(J,l)(eo), o ,U(J,l)(&],l)} be a J x J matrix. We have
Uyj-1y =BV, .
It follows that
det Ugj—1) = det B det V(;_y).
Because both det U(;_;) and det V{;_;) are positive, we have det B > 0.

For any 0y < --- < 65, there exists a vector C = (C(TJ_l), cy)T € R such that

\

T (J-1,J)

Uiy = |:CEFJ71) CJ} [ T ] )
Y)

where Uy = (UJ<90), . ,’LL(J)(@J))T € R7*! and vy = (UJ(@O), ... ,UJ(@J))T S R‘]Jrl,

and ¢(j_1) € R’ and c; is a scalar. Without losing generality, let c¢; > 0. Let

U(J,LJ) = [’U,(Jfl)((go), c ,u(J,l)(GJ)} be a J x (J + 1) matrix and ‘/(J,LJ) =

[v—1)(6o), ..., v—1)(8;)] be a J x (J + 1) matrix. Then, we have

B 0| |Vuy-1n Ui-1.n
T T - T =Uow).
C-1 @ ) @)

We can obtain that
B 0| |Vi;_
det Uy = det ([ h ] [ “T“)D
Cu-1 €I &)

= cydet (B)det V(.

Because det(B) > 0 and c¢; > 0 and det Uy, we have det V{;) > 0, for any 6, <
-++ < 0. In other words, {v;(6)}7_, forms a Chebyshev system.

O
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A.4 Proof of Theorem 2.3.1

Proof. We show that v;(#) in (2.13) is an eigenfunction associated with the eigenvalue
A; of A'(-). Because v;(6) is bounded over ©, by changing the order of integrals, we

have, for each 7,

= / f(:6) ¢;(2") K (x, 2")da'dx

B o) f@:8) . o [ [0 f@8) e
/e s f2%(x) folz) fol)d /s Jo(z) e

- / (0K (0,0)d0.
(C]

A.5 Proof of Theorem 2.3.2

Proof. The concept of strictly totally positive is given in Definition A.1. The prob-
ability function f(z;6) is an exponential family and thus is strictly totally positive;

see [Lindsay and Roeder, 1993]. According to Proposition A.1, the kernel function

K'(6,0') is strictly totally positive. Therefore, the set of eigenfuctions {v;(#)}7_,
forms a Chebyshev system over © and 7y(f) is strictly one-sign over ©, by Proposi-

tion A.2.

Because vo(6) = 1/4/]©] is strictly positive over O, we need to show that it is an
eigenfunction of the integral operator with the kernel K'(6,6"). We have

/@fyo(H)K’(@,@’)dG:/%(@) f(s:0) f(x;0)

dzdfd = |8]Y2 = |8y (0.
o Js fi%(x) £ (x) o7 = 1Ohel®)
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Chapter 3

Geometry of the (GGeneralized

Moment Space

3.1 Introduction

In the previous chapter, we introduce the truncation approximations of the repa-

rameterized mixture (or mixed-effects) models, which are in the form of
J
Ty (551m05) = eo(s)ho(s) + > mje;(s)ho(s),
j=1

where m; = (myg,...,m;)T € R/ and for each j,

m; Z/euj(g)dQ

and (@ is a probability measure over ©. Furthermore, {u;(f) 3]:0 forms a Chebyshev
system with ug(€) = 1. Note that the truncation approximation h,,(s;m ) also have
a similar expression. Because we do not use the orthonormal property of {ej(s)}}]:o

in L?(S, 1), we only discuss h,,(s;m ) in this chapter without losing generality.

The generalized moment space, defined as follows, is a natural parameter space of

my in h,(s;my).
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Definition 3.1.1 (Generalized Moment Space).

Let {u;(0)}]_y form a Chebyshev system over a compact set © C R with ue(f) = 1.

J

The generalized moment space in R’ induced by {u;(0)}]_, is

M, = {m] = (1,m1,...,mJ)T e R/*! ’ my = / ’Ug(@)d@} , (31)
e
where wy(0) = (ug(0),...,u;(0))T € R/ and Q is a probability measure over ©.

In this chapter, we study the geometry of the parameter space M ;. As we will
see, convex geometry provides a helpful tool to link the generalized moments m
to the probability measure (). We describe this link from two aspects: the positive
reparameterization and the gradient characterization. The positive representation
reveals the identifiability of () by its generalized moments m ; and provides an upper
bound of the number of the support points of ); see Section 3.3. On the other hand,
the gradient characterization provides the foundation of the class of gradient-based

algorithms when the feasible set is the generalized moment space; see Section 3.4.

This chapter is organized as follows. In Section 3.2, we introduce the concept of
the generalized moment cone and point out its connection to the generalized moment
space. In Section 3.3 and 3.4, we describe the positive representation and the gradient
characterization correspondingly. The proof of the theorems in this chapter can be

found in the Appendix B.

3.2 Generalized Moment Cone

We introduce the generalized moment cone induced by a Chebyshev system. The
generalized moment cone is of interest, because the boundary of the generalized mo-
ment space is a subset of the boundary of the generalized moment cone, whose geom-
etry has been well studied; see [Karlin and Studden, 1966, Chapter 2].

Assume that each element of the Chebyshev system {uj(e)}}]:o is a continuous
function of 6 over © = [a,b] and up(f) = 1. When 6 moves from a to b, the trace of

uy(0) € R’*! forms the moment curve I'; in R/*L.
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Definition 3.2.1 (Generalized Moment Cone).
Let {u;(0)}]_y form a Chebyshev system over a compact set © C R with ue(f) = 1.
The conical cone of the curve T'; is called the generalized moment cone induced by

{u;(0)}]_y, that is

j:O;

C;= {c = (coy...,c)T eRIT | e = /abuJ(H)da(Q)},

where o(0) is a nondecreasing right continuous function of bounded variation and
6 € [a,b].

The generalized moment cone contains the convex hull of I';,;, which is the
generalized moment space M ;, because for each m; € M, the vector m; =
fab u;(0)dQ(#), where Q() is a probability measure over [a,b]. Moreover, we give

the following result; also see Example 3.1.

Theorem 3.2.1.
If ug() = 1 in a Chebyshev system {u;(6)}7/_y over [a,b], then the boundary of M,

is a subset of the boundary of the generalized moment cone C; induced by {u;(6)}7_,.

Proof. See the Appendix. m

3.3 Positive Representation

As will be shown, a positive representation of a vector m; € M corresponds to
a probability measure (). To illustrate the positive representation of a nonzero vector

in M, we need to first introduce the positive representation and its index.

Definition 3.3.1 (Positive Representation).

A nonzero vector ¢ has a positive representation in a Chebyshev system {uj(ﬁ)}jzo,

if it can be written in the form of
c=> amu;(0), (3.2)
i=1

where uy(0) €Ty, a <6y <--- <0, <banda; >0,i=1,...,J. If > a; =1,

the positive representation (3.2) is called a convex representation.
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To evaluate the complexity of the positive representation of a nonzero vector

c € R7*! the index of a positive representation is introduced.

Definition 3.3.2 (Index of a Positive Representation).
Let

7(0) 1, if 6 € (a,b);
1/2, if @ =a orb.

If ¢ has the positive representation (3.2), the index of ¢, denoted by Z(c), is>._, Z(6;).

According to Carathéodory’s theorem, for each vector m; € M, there exists a

convex representation of m; by {u;(0)}7_, with r < .J 4 1. We have the following;

Theorem 3.3.1.

For each mj; € M, the generalized moment space, there exists a probability measure
Q(0) such that m; = ff u;(0)dQ(0) and Q(6) has at most J + 1 support points over
[a, 0]

If we further assume m; is on the boundary of M, the upper bound of the

number of support points can be sharpened using the following proposition.

Proposition 3.3.1 ([Karlin and Studden, 1966, Theorem 2.1]).

A nonzero vector c is a boundary point of C; the generalized moment cone, induced
by {u;(0)}/_y over [a,b] if and only if Z(c) < (J + 1)/2. Moreover, its positive
representation is unique with r < (J +2)/2.

With Proposition 3.3.1 and Theorem 3.2.1, we have the following.

Theorem 3.3.2.
If my is on the boundary of M, there exists one unique probability measure Q(0)
such that my = fab w;(0)dQ(0) and Q(0) has at most (J + 2)/2 support points.

Example 3.1.
Figure 3.1 shows the generalized moment cones Cy induced by the power functions
{67}5_ and the Chebyshev polynomials {%,(0)}>_,, where 6 € [—1,1]. In each plot,

=0’
the curve I'y is induced by the corresponding Chebyshev system.
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The boundary of Co contains the boundary of Ms; see Theorem 3.2.1. The bound-
ary vectors of My are either uy(0) € R? or (1 —a)ug(—1)+aus(1), where 0 < o < 1.
Therefore, the index of a boundary vector is either 1 or 1/2; see Theorem 3.5.2. On
the other hand, if the index of a vector is less than 3/2, it must locate on the bound-
ary. Moreover, when my is on the boundary, it uniquely corresponds to a probability
measure. For example, one point on T'y is the image of h(s;0) in R3, where h(s;0) is
the component of hyix(s; Q) in Equation (2.1).

3.4 Gradient Characterization

The gradient characterization is useful for computational algorithms. In the lit-
erature of the NPMLE for mixture models, there exists a class of computational al-
gorithms based on the same convex structure as considered here; see [Bohning et al.,
1992] and [Wang, 2007]. This class has more stable computational speeds than the

EM algorithm, which is also commonly used for mixture models.

In this subsection, we consider the following optimization problem

min  L(my) (3.3)

myEMy
where £(m ) is an arbitrary loss function and strictly convex with respect to m .

Since the optimization problem (3.3) is convex, its solution m; is unique in M.

There exists a supporting hyperplane of M ; at m; such that
H={h=1hi,....h;)" R/ | (m; —h)" 7 L(m,;) =0}.

The following theorem states the relationship between H and the support points of

A

@ in Theorem 3.3.2.

Theorem 3.4.1.
Let © be the set of support points of Q Then, if a point 6 € [a,b] is an element of
@, then UJ(é) 15 on the hyperplane H. The converse also holds.

Proof. See the Appendix. a
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The above theorem also implies that O is the set of zeros of the gradient function

of the objective function £(m ;) which is defined as

D(’l’hj, ’LLJ(@)) = %E((l — 6)7’?’&] + euJ(G))

= (us(0) —m;)" 7 L(my).

e=0

Moreover, we can use the gradient function to characterize m; as follows.

Theorem 3.4.2.

The following three statements are equivalent:

1. my; minimizes L(my).
2. infg D(ﬁ’L],U](Q)) = 0.

3. My mazimizes infy D(m;, u;(0)).
Proof. See the Appendix. n

Now, we continue Example 3.1 to illustrate Theorem 3.4.1 and 3.4.2.

Example 3.1 (continued).
In each panel of Figure 3.2, we see the images of the curve I's induced by {1, T1(0), T»(0)}
and its convex hull My in the space of (my, my) € R2. The contours show the identical

values of the objective function
E(m2> = (t - mg)T(t — mg),

where my = (1,my,my)" € R® and t = (—-0.7,—-1,0)T € R3. Because t ¢ My,
L(my) is strictly convex with respect to my. The minimum value of L(my) over M,
is 0.1825. As we see, the contour L(my) = 0.1825 has a unique intersection mq with
M. Moreover, the intersection My is on the boundary of Ms. In Figure 3.2(a),
the solid line represents the supporting hyperplane H of My at ms. Here we have

~

my = uy(0) € H; see Theorem 3.4.1.

Moreover, s7L(ms) is orthogonal to the supporting hyperplane. For any vector

us(0) # my on I'y, we have the vector us(0) — myo. From Figure 3.2(a), it can be
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seen that the angle ¢ € [0, 7] between 7L(M2) and us(0) — My is always acute.
Therefore, we have

D(113, uz(0))
V (us(0) — 1) T (ua(0) — 12)\/(VL(12)) T (VL (11 5))
see Theorem 3.4.2 (2). It is also obvious that cos(v) = 0 if and only if us(0) = M. In
Figure 3.2(b), we see that for any m/y, # My in Ms, there always exists a uy(0) € I'y

> 0;

cos() =

such that the angle ' between 7 L(mY) and uq(0') — mb is obtuse. It follows that
infy D(mly, us(0")) < 0; see Theorem 3.4.2 (3).

Appendix: B

B.1 Proof of Theorem 3.2.1

Proof. We want to show that for each boundary vector m* of M, there exists a
supporting hyperplane of M ; at m’ which is also a supporting hyperplane of C; at

Firstly, the convex hull M is the intersection of C; and the hyperplane H; =
{h=(1,hi,...,h;)T € R/T'}. Then, in H, there exists a vector a; = (ai,...,a,)" €

R’ such that for each m; € M, we have
J 7
D iy 2 ) mid;.
P =1

- J -
Let ag = — ijl mja;. For each m; € M, we have

J J
D myy 2 ) mid;.
j=0 =0
Therefore, the vector @ = (ag,at)" € R/™! determines the hyperplane
{h e R""(h —m})"a =0} (B.1)
as a supporting hyperplane of M; at mJ.
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Note that any vector in C; can be written as Am ;, where A > 0 and m; € M.

We have the inequality:

J J
Z(Amj —mj)a; = Z Amj; —m;
=0 j=1
J J
=(1-A4A) Zm;‘&j + Z(Am] —m})a
Jj=1 Jj=1
J
= AZ(mJ —mj)a; >0
i=1
and thus the hyperplane (B.1) is also a supporting hyperplane of C;. ]

B.2 Proof of Theorem 3.4.1

Proof. Because H is a supporting hyperplane of M ; at m;, we have for any point
m/, € M, but ¢ H,
(my; —m')" v L(my) < 0.

Assume that there exists a § € © such that w(0) ¢ H. Then,
Dsing, () = (1iny — w(B))" 7 Lrins) < 0.

In other words, the objective function can be decreased along the direction to 'u,(é)
Such statement conflicts to the fact that m; minimizes the objective function and is

unique. Therefore, wu,(f) must locates on H. O

B.3 Proof of Theorem 3.4.2

Proof. The first statement that 7 ; minimizes the objective function £(m ) holds if
and only if its path derivative from m; to any other u,(6) is non-negative. In other
words, we have infy D(m2y,u;(0)) = 0. Therefore, Statement 1 and Statement 2 are

equivalent.

Because the objective function £(m ) is strictly convex along any path, for any
0 € ©, we have
L(my) > L(us(0)) +D(my,u;(6)).
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For some m/; # my, it is true
L(my) > L{u,;(0)) + D(miy, uy(0)).

If infy D(m/;,u;(0)) > 0, we would have £(m/;) > L(m ;). This is contradiction to
the fact that m; minimizes £(m ;) over M ;. Therefore, Statement 1 and Statement

3 are equivalent. O
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Chapter 4

The Generalized Method of
Moments for Mixture Models

4.1 Introduction

Many existing methods can be used to fit one-parameter mixture model fyix(7; Q)
in Definition 2.3.1. The commonly used ones include the method of moments (MM),

minimum distance methods and the maximum likelihood method.

As early [Pearson, 1898], the MM has been used to fit a mixture of two normal
distributions with different mean and variance; see [Lindsay, 1989a,b] for further de-
velopments. Because computing the MM estimators involves solving a polynomial
equation system, it is computational friendly. And thus, it is often used as an initial
value for iterative numerical algorithms for other estimation methods; see [Furman
and Lindsay, 1994]. However, the MM can be used only when the component dis-
tributions are the NEF-QVF; see [Lindsay, 1989b]. Another issue of the MM is the
potential loss of efficiency comparing to the other methods; [Titterington et al., 1985,

p.g. 81].
A detailed review of the minimum distance estimators for mixture models can

be found in [Titterington et al., 1985, p.g. 114-117]. A lot of distance measures,
including the Kullbak-Leibler, Levy, chi-squared, modified chi-squared and averaged
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L?-norm measures, can be used to measure the difference between the mixture models
and the empirical distributions; see [Titterington et al., 1985, p.g. 116]. Minimizing
the Kullbak-Leibler distance between the empirical distribution and a mixture model
is equivalent to maximizing the likelihood; see [Titterington et al., 1985, p.g. 115].
The minimum Hellinger distance method for mixture models has attracted many
research interest, because the model complexity can be robustly estimated under
error contamination; see [Cutler and Cordero-Brana, 1996] and [Woo and Sriram,
2006].

The MLE for mixture models is popular, partly because of the philosophy of
likelihood-based inference; see [Titterington et al., 1985, p.g. 82]. However, due to
non-regularity, there are many inference and computational challenges in the maxi-
mum likelihood methods for either finite mixture models or non-parametric mixture

models; see Section 1.2.

This chapter aims to fit a non-parametric mixture model based on a set of general-
ized moment conditions (see Definition 4.2.1), which are from the reparameterization
procedure introduced in Subsection 2.3.2. The proposed method is called the general-
ized method of moments (GMM) for mixture models. Computing the GMM estimator
is a constrained quadratic minimization problem, which can be easily solved by the
gradient-based algorithms; see Section 4.7. The mean squared error (MSE) of the
GMM estimators converges to zero, as the sample size goes to infinity; see Section
4.5. Moreover, the GMM estimators are robust to the outliers when the quadratic

objective functions are carefully designed; see Section 4.6.

The main contribution of this chapter is the introduction of the GMM estimator
for mixture models. Asymptotic behaviour of the MSE and its robustness to outliers

are also studied.

This chapter is organized as follows. In Section 4.2, the generalized moment
conditions are introduced in our context. A set of countable generalized moment
conditions is obtained from the reparameterization procedure of mixture models. In
Section 4.3, we define the GMM for mixture models based on the generalized moment
conditions. Also, we discuss the situation when the GMM estimator is not unique.

In Section 4.4, we describe the GMM for mixture models in an information geometric

86



view, when the weighting matrices are identity matrix. In Section 4.5, we show
the convergence rate of the MSE of the GMM estimators with the sample size; see
Theorem 4.5.1. In Section 4.6, we introduce a weighting matrix that leads to robust
GMM estimators. Our work is supported by simulation studies in Section 4.7. Lastly,
we apply the GMM to fit a mixture model for the Thailand cohort study data, which
has been described in Subsection 1.6.1. The poofs of the theorems and lemmas and
the MATLAB code for the proposed algorithms in this chapter can be seen in the
Appendix C.

4.2 The Generalized Moment Conditions

The generalized method of moments was firstly proposed by Hansen [1982]. Later,
it becomes popular in econometrics; see [Matyds, 1999] and [Hall, 2005] for compre-
hensive introductions. This method is based on the a series of generalized moment
conditions defined as follows in our context. As we will see in this section, the general-

ized moment conditions can be easily constructed for the considered mixture models.

Definition 4.2.1 (Generalized Moment Conditions).
Suppose that the random variable X is from a mizture model fynx(x; Q*). Let (¢(x),v(6))

be a pair of known functions such that

Ex[o(X)] = Eolv(0)], (4.1)

where X follows the true mizture model fyix(z;Q*) and 0 follows the true mizing

distribution Q*. Equation (4.1) is called a generalized moment condition.

Recall that we have the following reparameterization of fyi,(z; Q) under the as-

sumptions given in Subsection 2.3.2
1/2
Fupee i) = fo(w) + D myo;() fo (x),
j=1

where for each 7,

m; = / VA(60)4Q
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and ¢;(z) is the eigenfunction associated with the j largest eigenvalue \; of the

integral operator A(-) in Equation (2.12) and
VAs(®) = [ £@i0)0,(a) 5 @o

By taking the expectation with respect to 8 on both sides of the above equation
and changing the order of integrals, we have, for each j € {0,1,...},

/\/_% dQ = /qﬁj 572 () e (2 Q)

It follows that, for each j € {0,1,...},

Ex [6,(X) ;' (X) = my] = 0. (4.2)

Therefore, there exist a countable number of generalized moment conditions for mix-

ture models.

4.3 The Generalized Method of Moments

We use the first J+1 generalized moment conditions for the generalized method of

moments, where J is a positive integer. Let v7(0) = (71(0),...,vs(0))T, @172 (x) =
0

(b1 (2) fy (@), ..., dy(@) f /2 (2))T and m = (my,...,my)T, which are the vectors

in R’. Given a random sample X1, ..., Xy, we estimate m by the sample average of
¢ —1/2(1‘) that
fo

_—Zd) —1/2 C(Zn ERJ

However, the simple estimator m may not respect the constraints on m. Therefore,

we use the generalized method of moments, defined as following.

Definition 4.3.1 (The GMM Estimator for Mixture Models).
Given a random sample Xy, ..., Xy from a mizture model fyix(z; Q) and a fized J,

the generalized method of moments estimator for mizture models with order J, denoted
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by QGMMJ, 18 the solution to the following optimization problem
mq}n (m — m)TW(J)(m —m) (4.3)

s.t. m(Q):/QAl/Q'y(@)dQERJ,

Q is a probability measure over © = [a, b),

where Wy is a J x J positive definite matriz and A is a J x J diagonal matriz whose

J™" diagonal element is \;.

The positive definite matrix W is called the weighting matrix. There are various
choices of the weighting matrix W{;. One simple choice is the identity matrix.
Another popular choice is the inverse of the covariance matrices of ¢ I (X), which
provides the most efficient GMM estimator under the regularity conditions in [Méty4s,
1999, Section 1.3]. In our context, the inverse of the covariance matrix may not
provide the most efficient GMM estimator due to the existence of the boundaries
in the parameter space. It is important to choose a suitable weighting matrix; see

Section 4.6 in which the weighting matrix is chosen for the robustness property.

Note that ~o(¢) = 1. The feasible set of the optimization problem (4.3) is equiv-
alent to m; € My, where m; = (1, mT)T € R/*! and M is the generalized
moment space induced by {y/A;7;(6) 7/_o in Definition 3.1.1. Therefore, the vector
my = (1, mT)T € R/*! is the projection of m; = (1,m™)T € R7*! onto the general-
ized moment space M ;, where m = m(QGMM 7). Furthermore, the GMM estimator

Qs is the positive representation of 1.

Because W/ is positive definite, finding 1 is a convex optimization problem and
there exists a unique m; € M ;. However, the uniqueness of QAGMM, J depends on m ;.
When m; is on the boundary of M ;, the GMM estimator QGMMJ is unique and has
at most J/2 support points over O; see Theorem 3.3.2. And, we use fyrix(2; QGMM, J)
to fit the mixture model. Otherwise, there is no unique QGMM, s and more generalized

moment conditions are necessary to obtain a unique Qcmm,J-

Given a random sample X7, ..., Xy, we have a series of vectors m; € R/t where

J=23,.... Let J be the smallest integer such that m; is not an interior point of
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M 7. Note that J is a random variable, because it depends on the random sample.
Let Jy be a number which increases with the sample size N. Also let A; be the event

that J > Jy. In the event A;, we fit the mixture model with

fspec(w3mM) = fo(x) + mT¢fg/2(x)
1 N
= )+ 5y DBl ),

where ¢f&/2(ZE) = (¢1(2) 5/2@), o Gy (@) 2 (2))T € RV and qbfo_l/z(x) € R/™. In

summary, the fitted model is

; fspec(T; M), if the event 4; happens,
foam(z) =77 (4.4)
fuix (75 Qamm,y ), otherwise.

4.4 An Information Geometric View of The Gen-

eralized Method of Moments

Zhang [2013] considered the information geometry of an affine submanifold formed
by a parametric model. It is known that a divergence function can uniquely determine
the information geometry of a statistical manifold, including a Riemannian metric
given by the Fisher information and a pair of dual connections that preserve the
metric under parallel transport by their joint actions; see [Zhang, 2013]. In this
section, we rewrite the objective function in the optimization problem (4.3) as a
divergence function under the framework given in [Zhang, 2013]. The Riemannian
metric and the pair of dual connection follow the divergence function; see [Zhang,
2005] and [Zhang, 2013].

Let G : R — R be a strictly convex function. Its convex conjugate Gonj is given
by

Geonj(t) =t x (3G) ™ (1) — G ((0G) ™" (1)),

where OG is the first order derivative of G(t) with respect to ¢, and (0G)7*(¢) is
the inverse function of OG; see [Zhang, 2013]. The conjugate representation of a

probability function is defined as follows.
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Definition 4.4.1 (Conjugate Representation [Zhang, 2004)).

For a strictly increasing function p : R — R, the p-representation of a probability
function pr is the mapping pr — p(pr). For a strictly increasing function 7 : R — R,
the T-representation of the probability function, pr — 7(pr) is conjugate to the p-
representation of the probability function pr with respect to a smooth and strictly

convex function G : R — R, if
7(pr) = 9G (p(pr)) < p(pr) = G eon; (T(pr)) -

In our context, given the initial measure fy(z), let
p(pr) = pr/ fo(z)
and

G(p(pr)) = 5 (p(pr))* fo(x)- (4.5)

N | —

Then, 7(pr) = pr. Consider the p-representation of fipec(x;m), we have

P(fspec(T3m)) = fipec(x;m)/ fo(z) =1 + mTQbf(;lN (z)

where m = (my,...,my,)T € R/¥. The model fy,ec(x;m) is called p-affine, because
its p-representation can be embedded into a countable-dimensional affine space; see
[Zhang, 2013]. Here we generalize the dimension of the affine space in the definition
of p-affine from finite to countable. The parameter m € R’V is called the natural
parameter of fpec(x;m). On the other hand, for any fuix(z; @), the expectation pa-

rameter of fyec(z;m) is defined as the projection of 7 ( fanx(x; @)) onto the functions
¢f71/2 (x), ie.
0

[ @@ (il Q)

see [Zhang, 2013]. By the generalized moment conditions in Equation (4.2), we have

that the natural parameter and expectation parameter are identical in fopec(x; m).

Definition 4.4.2 ([Zhang, 2013]).
Let G : R — R be smooth and strictly convex, and p : R — R be strictly increasing.
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The canonical divergence function between two probability functions pr and pr’ of

r €S is
A (p(pr), ~(pr')) = / (G(p(p1)) + Goon(r(p1')) = plor)7(p1')) s

where p is a measure such that dp = p(dz).

In [Zhang, 2013], the formula of the canonical divergence function is given, when
the parametric model is p-affine. By Corollary 11 in [Zhang, 2013], we find that
minimizing the objective function in the GMM with the identity weighting matrix is

equivalent to minimizing a canonical divergence function.

Corollary 4.4.1.
Let

(m; ) = /SG (p(fspee (3 m))) dpa,

where 1 is a probability measure of x defined on S, G is defined in Equation (4.5) and
P(fopec(T;m)) = fipec(x;m)/ fo(x). Then, the canonical divergence function between

the empirical distribution and fyix(x; Q) is

T 1 T =T 1 — _

1
illq>(m,m):§m m+-mm-—m m=

4.5 The Quality of Point Estimators

Suppose that the parameter 7 = E[s(X)] < oo is of interest, where X follows
Fai(2; Q%) and s(z) € L2(S, ) is a known function of . Given fau (), the GMM

estimator of 7 is
%GMM = / S(l‘)fGMM(LU)dQZ (46)
S

According to the following theorem, we know that the mean squared error of Tgwvwm

converges to zero as the sample size goes to infinity.

Theorem 4.5.1.

Let X1, ..., Xn be a random sample from a mizture of exponential families fyix(z; QF),
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where the mizing distribution Q* is defined on a compact set © = [a,b]. Given a set
of weighting matrices {Wy,J = 2,3,...}, suppose that sup; ||W |2 is bounded.
Further suppose that the covariance matriz ¢ Sl (X) € R’ is non-singular for each
J. Then, for each positive integer r, the mean squared error of the GMM estimator

Fanm has the optimal convergence rate O(N~"/0+1) when J](\?TH)]\V1 =0(1), i.e.,
E[(r - fGMM)Q} = O(N /)y,

To prove the above theorem, we study the MSE of 7gyu in the three possible
events A;, As and Ajz. The events Ay and A3 are the two possible sub-events of the
complement of A;. Let J* be the smallest integer such that m?. is a boundary point
of MJ* .

1. In the event Ay, Jy < J. This implies that m, is an interior point of M ;.

2. In the event A, J < min{J*, Jy}. This implies that m is not an interior
point of M7 but m? is.

3. In the event Az, J* < J < Jy. This implies that neither m; nor m’ is an
interior point of M 7.

With the following lemmas and
3
E [(T - 7A—GMM)2] = pr(Ai)E [(T - %GMM)2 | Ai] )
i=1

we have Theorem 4.5.1, where for each i, pr(.A;) is the probability that the event .A;
happens.

Lemma 4.5.1.

Under the conditions of Theorem 4.5.1, for each positive integer r, it is true that
pr(ANE [(7 — Fanm)? | Ai] = O(max{JZN "1, J3*'}).

Proof. See the Appendix. O
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Lemma 4.5.2.
Under the conditions of Theorem 4.5.1, it is true that

pI’(AQ)E [(7’ - 7A'GMM)2 ‘ AQ] = O(JJQVN_l)

Proof. See the Appendix. n

Lemma 4.5.3.
Under the conditions of Theorem 4.5.1, it is true that

pr(A)E [(7 — Fanm)? | Az] = O(JZNTY).
Proof. See the Appendix. 0

From the proof of Lemma 4.5.1, we observe the trade-off between bias and variance
as Jy varies. In the event A;, we have that the variance of 7g\ny is O(J3N™1) and
the squared bias is O(Jy*"); see the proof of Lemma 4.5.1 in the Appendix. With the
increase of Jy, the variance of 7guu in A; increases and the bias of Tgayy decreases.
Furthermore, in additional to Lemma 4.5.2 and 4.5.3, the convergence rate of the

MSE of 7ayu is minimized by Jy = NY/@+2),

4.6 Robustness Property

In this section, we study the robustness property of the GMM estimators to out-
liers. The influence function is a common tool to measure the robustness; see [Hampel,
1974]. However, the GMM estimators with constraints do not have explicit influence

functions. Instead, we consider the robustness of the gradient functions in Section
3.4.

Given a random sample X, ..., Xy, from fyi(z; Q%) and a fixed J, the GMM

estimator is determined by the gradient function

D(m,0) = (A>y(6) —m) W, (m —m),
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by Theorem 3.4.2. If this random sample is further contaminated by N, random
variables from A, where A, is the probability measure with mass 1 at the single

contaminated data point z, the gradient function for the new data is
D(m,0) = (A'24(0) = m)" Wiy (m — ),

where m = (1 — a)m + Oéd)fo—l/Z(Z) and o = Ny/(N; + N;). Because the elements
of qb 1/2( ) may not be bounded as fy(z) goes to zero, the gradient function is not
robust to the outliers when W(;) is the identity matrix. If we choose a weighting
matrix W) such that W, ¢ f0—1/2<Z) converges to a constant vector as fo(z) goes to

zero, we may achieve the robustness to the outliers.

For a fixed J, let L(0) = (L1(0),...,L;(#))T € R’, where for each j =1,...,J,

/fz% )95y

Note that {¢;(z) _1/2(x) 2 is a complete orthonormal basis in L*(S, vy) and ¢o(x) =
fO/Q( ); see Subsection 2.3.2. For each 6 € O, f(x; 9)]‘6”2(1’) € L*(S, ). Therefore,
L;(0) is finite for each j € {1,...,J} and 0 € [a,b]. We also have the expansion in
L2 (S, Vo)

Fla;0) f 2 (2 /f y: 0) F1% y)dy + L, )(e)qbfgl/z(x), (4.7)

where qbfo_l/g(x) = (¢1(x)f_1/2( ), oz )f_l/g(x), ...)T € R*. We call the matrix

Wshust = /@ Ly (0)L{;(0)d0 (4.8)
the robust weighting matrix.

Theorem 4.6.1.
As fo(2) goes to 0, the vector

Wy 02() == [ 16) [ Fs0) 13 whayas,
which 1s a constant vector in R°.

To illustrate the role of the robust weighting matrix plays, we consider the example

of a mixture of Poisson distributions.
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Example 4.1.

The basis functions {¢;(x)}32, for the mizture of Poisson have been illustrated in
Ezample 2.1. Figure 4.1 shows the functions {(bj(x)f(;l/Q(x)}?:l and the first four
elements of W(%‘;b“tq’)fo_l/z(x), when J = 18. As we can see, for each j, ¢, (x)fo_l/z(x)
goes to a large number as fo(x) goes to zero. And thus, a contaminated data z with
small fo(z) is able to change m significantly. On the other hand, W(l}‘)’b“St fo—l/2(l')
converges to a constant vector as fo(x) goes to zero. This controls the effects of a

contaminated data z on m. And thus, the robustness to the outliers is expected.

4.7 Computational Algorithms

Because the optimization framework of the GMM matches with the geometry dis-
cussed in Chapter 3, we have the gradient characterization of the m;, where J is a
fixed integer. This allows us to adopt the gradient-based algorithms to compute the
GMM estimators. Existing gradient-based computational algorithms include the ver-
tex directional method, vertex exchange method and intra simplex direction method;
see [Bohning et al., 1992, Bohning, 1995] for a review. Wang [2007]| proposed the
constrained Newton method with multiple exchange vertices (CNM) algorithm. Em-
pirically, Wang’s algorithm is the fastest and most accurate comparing to the other

algorithms. Therefore, we modify Wang’s algorithm for the GMM estimator.

Algorithm 4.1 (The CNM for GMM).
Set s = 0 and fix J. From an initial estimate Q© with finite support ©©) and
m©) = m(Q©) £ m, repeat the following steps:

1. Compute all the local minimas {93(8)}52)1 of the function
D(0) = (A?~(0) — m)) "W, (m") —m)
over |a,b|. The iteration stops if the minimum of D(0) is zero.
2. Construct a set of candidate support points by
OO+ = 0O U (4},

J=1
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Let 9% be the number of elements in ©©)+,

3. Solve the optimization problem

() T ()

min Z A y(0;) —m | Wiy Z a;A2y(0;) — m
=1 i=1

r(s)+

s.t. Z Q; = 1,
i=1

>0, i=1,... r®*

where 0; € OO+ We denote its solution by a® = (a\”, ... ,a£f2)7+)T. If the

minimum is zero, stop the interation and return m € R”.

4. Discard all 0;s with zero ags), update Q®, 0 and m® = m(Q¥), and set
s=s+1.

The convergence of the algorithm is shown in [Wang, 2007]. Further note that the
optimization problem in Step 3 at each iteration is a constrained quadratic program-
ming problem. Computational algorithms for the quadratic programming problem
can be found in [Antoniou and Lu, 2007]. The MATLAB code for Algorithm 4.1 can
be seen in the Appendix.

4.8 Simulation Studies

In this section, we study the performance of the GMM estimators through simula-
tions. Four mixtures of Poisson distributions with different types of mixing distribu-
tions (listed as follows) are considered; see Figure 4.2 for the shapes of the considered

models.

1. Let Q5(f) be the uniform distribution of 6 defined on [7,13] C R. This is an

example when the mixing distribution is continuous.

98



2. Let Q3(0) = 0.5I(60 < 3) +0.51(f < 9). This is an example when a finite
mixture model is regular in the sense that the elements of « is away from 0 and

the component distributions are different from each other.

3. Let @Q3(0) = 0.51(6 < 4.9) +0.51(0 < 5.1). Here Pois(4.9) and Pois(5.1) are
closely linearly dependent. This is an example when mixing distribution is

defined locally at 5; see [Marriott, 2002].

4. Let Q5(0) = 0.991(0 < 3)40.011(8 < 9). We consider 0.01 is a reasonable small
positive number. This is an example of the contamination mixing; see [Tukey,
1960].

We compare the performance of the GMM estimators and the NPMLE. In the
GMM, we set © = [0,20] and the weighting matrix is W™ in Equation (4.8),
where J+1 is the number of the used generalized moment conditions. The considered
sample size levels are 20, 50, 100 and 200. The number of repetition is 1000 in each

simulation.

We are interested in the point-wise MSE of the fitted mixture models: fGMM(a:)
and fMiX(.r;QNpMLE), where QNPMLE is the NPMLE for mixture models. In each
repetition, there exists a finite J such that m s is not an interior point of M ;.
In other words, fGMM(x) = fuix(; QGMMJ). In Figure 4.3 to 4.6, we present the
point-wise MSE of each fitted model. As we can see, fyrix(2; QNPMLE) has the smaller
point-wise MSE over x € R in general. However, the GMM estimator performs nearly
as well as the NPMLE.

In Table 4.1 and 4.2, we give the empirical cumulative distribution function of
J in each case and each sample size level. The J* is oo in the case where Q)7 is
the true mixing distribution, and 4 in the other three cases. With the increase of
the sample size, the empirical probability that J < J* non-increases; see Table 4.1
and 4.2. According to Table 4.1, the expectation of J increases with the increase
of the sample size, when ()7 is the true mixing distribution. This because that @7
is a continuous function and mJ is always an interior point of M for any J. The
observations from the tables imply that pr(J < J*) decreases to zero as the sample

size N goes to infinity; see Lemma 4.5.1. In Table 4.2, pr(J < J*) remains large
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when N = 200. This is because that the local (Q3) and contamination (Q}) mixtures
are close to a single-component Poisson distribution, and larger sample size is needed
to reduce pr(J < J*).

Next, we study the robustness of the GMM estimator. Let 5% of the data are
from the degenerate distribution A,, where z = 40. And the rests are from the true
models fuix(x; QF), for each 7 € {1,...,4}. We fix the number of generalized moment
conditions to 19, i.e., J = 18, and use the associated robust weighting matrix W(P}‘)’b“t.
Figure 4.7 to 4.10 show the point-wise MSE of the fitted models in each case. We see

that f(x; QGMM’ 7) has the smaller point-wise MSE over x € R in general.

4.9 Application to the Thailand Cohort Study Data

Consider the data on morbidity in northeast Thailand which has been described
in Subsection 1.6.1. We fit a mixture of Poisson with [a, b] = [0, 25] using the GMM.
The number J are taken to be 1,...,18 and the weighting matrix W = W(%‘))b“t is
associated with J. When J < 7, there is no unique GMM estimator for the mixing
distribution. When J > 8, the results are summarized in Table 4.3. The fitted
models with different Js are close, when J > 8. This implies that little information
is contained in the higher order generalized moment conditions, when the robust
weighting matrix is used. In Figure 4.11, we see that the fitted mixture model with

(J = 8) successfully characterize the shape of the histogram.

4.10 Conclusion and Discussion

In this chapter, we have introduced the GMM estimators for mixture models
and studied the asymptotic behavior of the MSE and the robustness property to
the outliers. We can see that the GMM is a promising estimation method for non-
parametric mixture models. In this section, we point out two possible future research

directions in the GMM for mixture models.

The weighting matrix W plays an important role in determining the properties
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of the GMM estimators. One example is the robust weighting matrix given in Sec-
tion 4.6. Naturally, we are also interested in some weighting matrices for the GMM
estimators with less robustness but more efficiency. Suppose that we have one robust
weighting matrix Wit and one efficient weighting matrix Weggicient- It is possible
to balance the robustness and the efficiency of the GMM estimators by using a convex

combination of the two weighted matrices, i.e.,
W = (1 - a)WRobust + aWEf‘ﬁcienta

where a € [0, 1].

Due to the existence of the constraints on the feasible set, it is challenging to
obtain the asymptotic distributions of 7gy defined in Equation (4.6). And thus, it
is challenging to construct interval estimators for the GMM estimator of 7. Some
previous researches have shown the existence of the asymptotic normality in the
NPMLE; see [Lambert and Tierney, 1984], [Van De Geer, 1997] and [Bohning and
Patilea, 2005]. Because the similar geometric structures between the GMM estimators
and the NPMLE, the previous results on the NPMLE direct possible paths to find

possible asymptotic normality in the GMM estimators.

Appendix: C

C.1 Proof of Lemma 4.5.1

Proof. In the event A;, the mixture model is fitted by fspec(z;m). For each x € S,

the mean square error equals the sum of the variance and the squared bias of the
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estimator, i.e., for each x € S,

pr(Ai)E [(T - %GMM)Q | «41}

< ipru | ([ s60) (At @) = o) = 6 0)m) dx)2|Ai]

—E (/5 s(z) (fMix(:B;Q ) — folz) — ¢f§/2($)m) d$>2]

_E ( /8 ()8 o (1) (" m)dx>2]

; </ (@) (F(@:Q") = folw) = % a(x)m”) d””)z |

where m* is the true values of m. By the Cauchy-Schwarz inequality, the variance

of the estimator is

By the Cauchy—Schwarz mequahty, we further have

[ sy - 5 ([ s >d:c)2

2 j=1

<Z/ ) folx dx/¢
:Zl/ssu

Under the assumption that [ s 55°(7) fo(r)dxr is bounded, say M, we have that

2

< JyM.
2

s(x) 12(x)dx
S<>¢f0/<>
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Note that
funws @) = [ fwi0)dQ" < fBlfa(o)
)

Therefore, for each j,

Varlgy (X)f5 (0] < ()57 ()] < 6] [ iado = fol.
Therefore, the variance of the estimator is O(J%/N) = O(N~"/(r+1)),

By the Cauchy-Schwarz inequality and Proposition 2.3.1, the squared bias
2
([ ) (7@ = flo) - 0wty o)
S 0
2
< / 2(2) fola)da / (F:Q") = o) = 8Ly )/ fo(a)d
= O(Jy"").

In sum, the mean square error of 7gyny in A; is O(max{J3 N1 Jy*"}). O

C.2 Proof of Lemma 4.5.2

Proof. In the event Ay, the mixture model is fitted by fuix(z; QGMM’ 7). Because © is
compact and f(x;#) is continuous with respect to 6 € O, there exists a finite number

M such that, for any possible 7,
|7A'GMM — 7‘| S M.

Therefore, the MSE of 7auvu conditional on the event A is bounded by M?2.

For a fixed J, let ¥ be the covariance matrix of G -1y (X) € R7. Also, let
0

m’ = ar inf m—m")TE(m —m"),
g(lva)TeaM‘]( ) ( )

where OM; is the boundary of M ;. By Theorem 3.3.2, the true moments m* =
(1, (m*)T)T € R/*L is an interior point of M. Therefore, (m’' — m*)*S Y (m/ —

m*) > 0.
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For any m; = (1,m™)T € R/ which is not an interior point of M, it is true
that
(m —-—m")TS{(m —m*) > (m —m*)'SH(m' —m").
Because m; is not an interior point of M ; in A,, we have

(m —m")TS(m —m*) > (m —m*)TS(m' —m").

By the Chebyshev inequality for random vectors [Chen and Zhou, 1997, Theorem
2.1}, we obtain that

(N(m —m*)'S (m —m*) > N(m' —m*)"'S7 (m' — m"))
1
(m/ _ m*)TE—l(m’ _ m*)

(JN7Y).

pr(m; € OM;) <p

—

IA
C =|«

Because, for each J, m; € OM; implies m 1 € OM 1, the two events m; €

OM; and J < J are equivalent. Therefore, we have

pr(ds) = Y pr(J =)

J<JNn

<> (I <))

J<Jn

= > pr(m; € OM,)

J<JIN

<> O(INT

J<Jn

=0 (JRN).

C.3 Proof of Lemma 4.5.3

Proof. In the event Ajs, the fitted model is fyix(z; QGMMJ). Let ©T be the union of
the support sets of * and QGMM, and " be the number of elements in ©*. Firstly,

we show that r+ < J + 1.
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When J = 2K, by Theorem 3.3.2, we have two cases where the positive represen-
tation of a boundary vector of M ;7 could have the largest possible number of support

points:

1. The positive representation has K support points in (a,b).

2. The positive representation has K — 1 support points in (a, b), and the two end

points a and b are also its support points.

Therefore, the number of elements in ©F, denoted by r*, is always less than 7 + 1,

when J is even.

When J = 2K + 1, by Theorem 3.3.2, we have two cases where the positive
representation of a boundary vector of M ;s could have the largest possible number

of support points:

1. The positive representation has K support points in (a,b) and one of the end

points a.

2. The positive representation has K support points in (a,b), and and one of the

end points b.

Therefore, the number of elements in O is always less than 7 + 1, when 7 is odd.

Let To+ be a (J + 1) x r* matrix whose i column is Asv7(0) where A is
the (J + 1) x (J + 1) diagonal matrix with the j"* diagonal element X; ;, and
v7(8) = (1,71(0),...,77(8))" € R7*1. Also let Fg+(z) be a vector in R”" whose
it element is f(x;6;), 6; € ©F. Because Q* and Qg are two probability measures
defined on ©*, each of them has an associated vector of weights, denoted by a* € R™"
and &onv € R correspondingly. Moreover, a* and agyy are uniquely determined

by m?; and m by Theorem 3.3.2. Therefore, we have
o = CI‘g+mj‘7

and

~ T A
AGMM — CI‘@+mJ,
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where C = (T3, Te+) .
Because 7 is finite and
fGMM(ﬂC) = fMix(x; QGMM) = F§+ (ZE)dGMM

we have
T = / s(x)fGMM(x)dx = / s(w)Fg+ (x)agymdr = Tg+dGMM,
S S

where To+ = [¢s(x)Fo+(z)dz € R
Let Do+ CTo+ = (o, tg+)" € R7HL. By the Cauchy-Schwarz inequality and the
fact that the first element of s and m?; are 1s, we have
. [ . ) 2
E [(7 — 7avm)” | As] = E | (T5+ (Ganm — ) | «43}
= E[(T3.CTL. (g — m3))* | Ay]

_E :(tg+ (1 —m")’ | A3i|

oxr—1/2 2 . 1|2
<E||W5ter|| x lIm—mliy, 14,

1/2

where for any vector a € RY, lally,, = a’W sya. Here W5 ~'/? exists because

W) is non-singular and positive definite by the assumptions.

Because f(z;0) is an exponential family distribution, both of f(x;#), for each
xz € S, and v;(0), foreach j € {1,...,J}, are continuous with respect to §. Therefore,
each element of W(}l)/ 2t6+ is also a continuous function of §. Additional to the
compactness of O, each element of W(}l)/ ’to+ is bounded by a finite number, say M.
Then ||[W/*to+|[3 is bounded by JM? and JyM? by J < Jy.

We use the non-expansive property in convex projection ([Deutsch, 2001, p.g. 72])
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and have

E |l —m [, | As| <E [Jm—m[l}y, | A

Note that

< E [[IWig)ll3 | — m*[l5 | As]

7
< Sup IWinll3 x B | Y (m; —m3)* | As
Lj=1 |
- .
< sup W3 x B | (m; —m3)* | As
Li=1 |

Frane(@: Q%) = /@ £(2:6)dQ" < O] (2).

Therefore, for each j ,

Varlo,(X) f; V(X)) < EIG(X) S5 (X)] < [©) / §(x)dz = (O]

In sum, we have

pr(.Ag)E [(7‘ — 7A'(3,MM)2 ‘ Ag}

< pr(As)E {HW(}I)/ ®to

2
A * (12
¢l | Al

> (my —m;)?| «43]

< pr(As) JyM? x sup Wiz x E

j=1
3 Jn

< InM? % sup W3 x> pr(A)E | > (m; —m3)* | Ai]
i=1 j=1

= InM® x sup [ Wi ll; < E

JIN
Z(mj - m;)QI

JN

= JNM? < sup [[Wip |13 x 3 Var [6,(X)fy ()

j=1

1
< NJ?VMz X |©] x sup [|[W|l3
J

= O(JEZNY).
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C.4 Proof of Theorem 4.6.1

Proof. Because of the compactness of © and Equation (4.7), we may change the order

of the integrals and the infinite sum and obtain
= /@L(oo) (Q)L(Too)(g)ﬁbf—m( z)do

- [ B (0571 [ 10 i)

Because for each 6 € ©
0< f(z0) <1O[fo(2),
we have that f(z Q)fo_l/Q( ) goes to zero as fo(z) goes to zero. Further note that,

for each j, L;(0) [, f s 1/ 2 (y)dy is bounded for each § € ©. We have that each

element of W&’;Du“(ﬁ f—l/z( ) converges to a constant as fy(z) goes to zero. O
0

C.5 MATLAB Code for Algorithm 4.1

function [mNew, weightshat, g, Ind]
= GMM.CNM(Up, Mhatp, q, as, W)

e = le—10;
msn = Upxas ’;
pLs = find(as > e);
Ind = 0;

count = 1;

while Ind = 0
ms = msn;
= Mhatp — ms’;
Utheta = ms(:,ones(1,length(q))) — Up;
g = cgx WkUtheta;
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dg = diff(g):
signdg = sign(dg);

dsigndg = diff(signdg);

minL. = find (dsigndg = 2)+1;

L = minL;

pLsnew = [1, pLs, L, length(q)];
pLsnew = unique (pLsnew);

Us = Up(:,pLsnew);

warning off;
options = optimset( display’, ’off’);
aso = lsqlin(real (W™ (1/2)xUs),
real (W™ (1/2)«Mhatp’) ,
—eye(size(Us,2)),
zeros (size (Us,2),1),
ones (1,length (pLsnew)) ,
L], [, [, options);
msn = Usxaso;

pLs = pLsnew(aso > e);

count = count + 1;

d = (ms—msn)  *Wx(ms—msn ) ;

if d< e || count > 100
Ind = 1;

end

end

mNew = msn;
weightshat = zeros(length(q),1);
weightshat (pLsnew) = aso;

122



dn = (msn — Mhatp’) "«Wx(msn — Mhatp ) ;

if max(abs(g)) < e || dn < e

Ind = 0; % the solution is mnot unique
else

Ind = 1; % the solution is wunique
end
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Chapter 5

The Generalized Method of
Moments for Mixed-Effects Models

with Univariate Random Effects

5.1 Introduction

Longitudinal data analysis has attracted considerable research interest in the past
decades. A good review can be found in [Diggle, 2002] and [Fitzmaurice et al., 2012]
and references therein. There are two classes of models for longitudinal data: the
population-average models and the subject-specific models; see [Lee and Nelder, 2004]
for a detailed discussion. The regression parameter has different interpretations in
these models, except when the link function is linear. Usually, the subject-specific
models are more useful when the main scientific objective is to make inferences about

individuals rather than the populations; see [Fitzmaurice et al., 2012].

Semi-parametric mixture models are a subclass of the subject-specific models,
where the distribution of the response conditional on the random effects is parametric
and the random effects distribution is non-parametric. It avoids the possible sensi-
tivity of the inference conclusions to the specification of random effects distributions;
see [Neuhaus et al., 1992] and [Heagerty and Kurland, 2001].
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To fit a semi-parametric mixture model, the maximum likelihoods method is com-
monly used. Under regularity conditions, the consistency of the MLE is established
by Kiefer and Wolfowitz [1956]. However, finding the MLE is widely regarded as
a computationally intensive problem; see [Aitkin, 1999] and [Wang, 2010] for some
computational suggestions. Moreover, few results related to making inferences with

the MLE for semi-parametric mixture models can be found in the literature.

Another class of approaches, including the (corrected) conditional mixed meth-
ods (CMM and CCMM) in [Sutradhar and Godambe, 1997|, the penalized gener-
alized weighted least squares method (PGWLS) [Jiang, 1999] and the mixed-effects
quadratic inference function (QIF) methods [Wang et al., 2012], are based on the
generalized estimating equations conditional on the random effects. This class of ap-
proaches involves the prediction of the random effects. Because the number of the
random effects always increases with the sample size, it is questionable if there is suf-
ficient information for all the random effects; see [Jiang, 1999]. Asymptotic results for
the mixed-effects QIF estimators are established when the sample size and the cluster
size go to infinity simultaneously; see [Wang et al., 2012]. However, the cluster size
may not always be large enough in real applications; see the two real data examples
in Section 1.6.2 and 1.6.3.

The unconditional mixed method (UMM) is based on the marginal generalized
estimating equations; see [Sutradhar and Godambe, 1997]. In the UMM, the marginal
estimating function is approximated by a function of the regression parameter and the
variance of the random effects distribution. However, such approximation is valid only
when the dispersion parameter of the random effects distribution is small. Similar idea
has also been used to the likelihood functions, when the random effects distribution

is normal; see [Breslow and Clayton, 1993].

The aim of this chapter is to fit a semi-parametric mixture model, when the ran-
dom effects are univariate. We reparameterize the inverse link function into a function
of the regression parameter and a countable set of the generalized moments of the
random-effects distribution. Then, we use a truncation approximation of the repa-
rameterized model and fit it using the GMM. The reparameterization-approximation

procedure is described in Section 5.4.1.
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The major contribution made in this chapter is the introduction of the GMM
for mixed-effects models with univariate random effects; see Section 5.2 for details of
the considered mixed-effects models. We apply the reparameterization-approximation
procedure to the considered mixed-effects models and use the GMM to fit the model.
As theoretically shown later in Chapter 6, the GMM estimator is consistent; see
Section 5.7 for simulation evidences. Because the proposed method is based on the
marginal estimating equations, the resulting estimator is robust to the misspecifica-

tion of the likelihood functions; see the simulation results in Section 5.7.

This chapter is organized as follows. In Section 5.2, we give the response model,
the mixed-effects models with univariate random effects, and its assumptions. The
response model is based on the estimating equations conditional on the random ef-
fects. In Section 5.3, we review the UMM proposed by [Sutradhar and Godambe,
1997]. We discuss the limits of the UMM and the motivation for using the GMM. In
Section 5.4, we introduce the GMM for mixed-effects models with univariate random
effects. Firstly, we describe the reparameterization-approximation procedure to the
considered mixed-effects models; see Section 5.4.1. Next, we give the definition of the
GMM estimator for the considered mixed-effects model in Section 5.4.2. The GMM
involves a minimization problem over a convex set and a computational algorithm is
given in Section 5.5. In Section 5.6, we discuss the assessment of the fitted model
using residual analysis. In the same section, we also give two possible estimates to
the covariance matrix of the residuals. Our work is supported by simulations studies
in Section 5.7. We use the proposed method of fit a model for the Retina Surgery
Data in Section 5.8. Lastly, we ends this chapter with a discussion. The MATLAB

code for the proposed algorithms in this chapter can be seen in Appendix D.

5.2 Response Model and its Assumptions

Our data setup is as follows. There are n = 1,..., N independent individuals,
each with t = 1,...,T), visits. At visit ¢, the complete data of the n'® individual is
(Yoe, Xty Znt), where Yy, € R is the response, X,,; € R? are the covariates to the fixed

effects, and Z,; € R are the covariates to the random effects. We use the notation
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}/n = (Ynla . ,YnTn)T - RT", -Xn = (th . aXnTn) and Zn = (an, R ZnTn)T e
R”». Let b, € R be the univariate random effects. For each n, the sample space of b,

is B.

Consider the epileptic seizures data, described in Section 1.6.2, as an example.
There are 59 epileptics, which are considered as independent individuals. Therefore,
N = 59. The number of epileptic seizures of each patient are observed 4 times. It
means that, for eachn =1,...,59, T, = 4. In the retina surgery data in Section 1.6.3.
There are 31 patients, i.e., N = 31. However, the number of visits of each patient is
different. For example, the first patient has 7 visits, while the second patient has 8

visits.

Suppose that the following model has been assumed:

1. Given the random effects b, the responses Yy, | (X, Znt, bn), t = 1,..., Ty,

are independent of one another.

2. For each n and t = 1,...,T,, the mean of Y,;; | (X, Zn, b,) depends on the

regression parameter 3 via the following linear predictor
g(E[Ynt ‘ Xnta an bn]) = X;{;:B + Zntbna (51)

where B8 = (84,...,08,)T € RP is the regression parameter and g(-) is a known

invertible link function.

3. For each n and t, the conditional variance of Y, | (X, Znt, by) satisfies
Var[Yo | Xpi, Znt,bn) = 0 x ho g X LB+ Zub,), (5.2)

where /(-) is a known variance function, o is a constant and g~'(-) is the inverse

link function g(-). Here we assume that o is known.

If a distribution assumption is further made on Yy | (X, Znt, bn), we can write

down the likelihood for each n as

t=1

Tn
prﬁ(Yn | Xm Zn) - /B {H prﬁ(Ynt | Xnta Znta bn)} an
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where prg(Ya | Xnt, Znt, by) has the mean g Y XLB+Z,b,) and the variance o x ho
g HX LB+ Z,4b,), and Q(b) is a probability measure defined on B . The above class of
models is known as semi-parametric mixture models, which have wide applications in
longitudinal data analysis; see [Diggle, 2002] and [Fitzmaurice et al., 2012] for details
and examples. In this chapter, we focus on (5.1) and (5.2) without any distribution

assumption on Yy | (X, Znt, by) and by,.

5.3 The Unconditional Mixed Method: A Review

Sutradhar and Godambe [1997] considered the class of random intercept models,
where the intercepts are identically distributed with zero mean and variance v2, but
no functional assumption is made on the random intercepts distribution. Here the
variance v? is unknown. The UMM is based on the condition that the unconditional
mean and covariance matrix of the response vector Y,, can be expressed as (or be ap-
proximated by) functions of the regression parameter 8 and the variance parameter
v2. Generally, the approximated unconditional means and variances can be obtained
through the Laplace approximation on prﬁ(Ym | Xnt,bn), when v? is small; see [Su-
tradhar and Rao, 1996] and [Sutradhar and Godambe, 1997]. A similar idea is also
used to approximate probability functions in [Marriott, 2002].

In the UMM, the following steps are repeated iteratively until the convergence to

the estimated values of 3 and v?:

1. Given the values of v?, the regression parameter 3 is estimated from the gen-
eralized estimating equations based on the approximated unconditional means

and variances.

2. Given the values of v? and 3, the random effects are predicated through the gen-
eralized estimating equations based on the approximated unconditional means

and variances.

2

3. The variance v* is estimated by using the predicated random effects.
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The UMM empirically shows superior performance to the CMM and CCMM,
which are proposed in the same paper by Sutradhar and Godambe. However, there
are two major issues. Firstly, the failure of the Laplace approximation could lead
to large bias to the estimators, when v? is large. This is due to the natural of
the Laplace approximation. Secondly, the predication of the random effects, whose
number increases with the sample size, increases the computational load and causes

the computational convergence issues, when the sample size is large.

We argue that the predication of all the random effects is necessary in the UMM.
The UMM is based on the generalized estimating equations methods, in which no
constraints is put on the non-negativeness of v?. To respect the non-negativeness of
v?, it is reasonable to estimate v? using the sample variance of the predicated random

effects.

However, in many real applications, the regression parameter 3 is the one of
interest. The predication of all the random effects would be unnecessary, if we can

repeat the following steps iteratively until the convergence to the estimated value of
B and v?%:

1. Given the values of v?, the regression parameter 3 is estimated from the gen-
eralized estimating equations based on the approximated unconditional means

and variance.

2. Given the values of 3, the variance v? is estimated from the generalized estimat-

ing equations based on the approximated unconditional means and variance.

Making inference on the regression parameter 3 without predicating the random
effects is the motivation of the GMM for mixed-effects models with univariate random

effects.
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5.4 The Generalized Method of Moments for Mixed-
effects Models with Univariate Random Ef-

fects

With the spirit of working at the marginal level, we can derive a marginal mean
of Y, from (5.1), i.e

E[Y EXM Znt ]Ebn [ [Ynt ’ Xnt7 Znt7 bn]]]

/ / ntﬁ + Zntbn)dQ X pr(wnh Znt)d(wnta Znt)7
XxZ

where pr(,, z,;) is the joint probability function of X,,; and Z,; with sample space
X x Z. For each n and t, let

where @ is a probability measure of the random effects b, over B. Let U,(3,Q) =
(Un(B,Q), ..., U, (8,Q))" € RT™. We then have the moment conditions, for each
n?

]EY'an,Zn [Un(ﬁy Q)] = 0 - RTn

Motivated by the discussion in Section 5.3, we propose our approach for mixed-
effects models with univariate random effects. By the reparameterization-approximation
procedure introduced in Section 2.4, we firstly approximate U,:(3, Q) as a function
of B and a, where o € R’V depends on the random effects distribution @ and the
dimension of a grows with the sample size N. Here the parameter a has a natural
parameter space; see Section 5.4.1. Then, we use the GMM to estimate 3 and «; see
Section 5.4.2.

5.4.1 The Reparameterization-Approximation Procedure with

Orthogonal Polynomials

Recall that in Section 2.4, we have introduced the reparameterization-approximation

procedure for the GLMM. Here we revisit the procedure in this current context.
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Let {P;(b)}52, be an orthonormal polynomial system defined on L*(B, 11), where
is a measure defined on B. Assume that, for each n and ¢, g~ 1(X L B+7,:b) € L*(B, u),

then we have the expansion
9 (XB + Zub) =Y Suis(B)F; (D),
j=0

where for each 7,

Pnti (B) = /B g (X8 + Znub) P;(b)d .

By changing the order of the integrals, we have
Unt(IB7 Q) =Y — Z ¢ntj(5)aj~
§=0
The truncation approximation of U,;(3, Q) is defined by
JIN
Unt(B,et) = Yy — Z bntj (B)ay,
5=0

where a = (ag, ..., az,)" € RV and for each j,

o7 :/Bpj(b)dQ

and Jy is an integer which can increase with the increase of the sample size N.

In matrix form, for each n, we have

U.(B,@) =Y, — ®,(B)e,

(5.5)

where ®,,(03) is a Jy x T,, matrix whose elements are ¢,,+;(3). Furthermore, the vector

o is defined on the convex set

M = {a - /BP(b)dQ € RJN}

where () is any probability measure defined on B and

P(b) = (Py(b),..., Py, (b)) € R
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is a vector function of b € B. By Definition 3.1.1, M is the generalized moment space

induced by {P;(b) }jﬁo.

On the other hand, assume that, for each n and t, h o g"Y(X L8 + Z,;b,) and
g HXEB + Zyb) are in L*(B, p). We also can use {P;(b)}/%, in an approximation,

ie.,
JN
o x hog Xy B+ Zuby) ~ 0 X Y an;(B)P5(b),
=0
and
2
(97 (XTB+ Zub))” = D cons(B) P (1),
=0
where for each j,

sB) = [ hog (X8 + 2P0 (5.7)

and

_ 2
cos(8) = [ (a7 XL+ Zub))’ P(b)ds 53)
B
By the law of total variance and the law of total expectation, we have

Var[Yi | X, Znd
=By, [Var[Yye | Xot, Znt, bnl] + Vary, [E [V | X, Zot, bn]
= By, [Var(Yo: | Xos, Zuts bn]] + Ep, [(E [Yor | Xots Zuts b))’
— (E[Yor | Xty Zi])? . (5.9)

Changing the order of the integrals, we can approximate the terms as

JIN
IE:bn [V&I‘[Ynt ‘ Xnta Zntabn“ ~ o X Zantj</6)aj7

J=0

JN
Ebn [(E [Ynt | Xnta an bn])Q} ~ Z Cnttj (B)aja
=0
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and

I 2
(E [Ynt ’ Xnt7 Znt]>2 ~ (Z (bntj(/a)aj) .
§=0
Therefore, the variance function of Y, | (X, Z,¢) is approximated by
2
Vi (B, ) = 0 x azt(ﬁ)a + Cgtt(ﬁ)a - ( Et(/@)a) ; (5.10)

Note that the approximations
JN

By, [Var(Yo | X, Zoa, ball = 0 x> anii(B)ay
j=0
and
JN JIn 2
Varb'n []E [Ynt | Xnt7 Zntu an ~ Z Cnttj (ﬂ)aj - (Z ¢ntj (B)aj>
§=0 j=0

may not be valid due to the non-negative constraints. Instead, we use the approxi-

mation

JIN
Ky, [Var[Yo: | Xot, Znt, by)] = max {e, o X Zantj(,ﬂ)aj} :

JN JIN 2
Varbn [E [Ynt | Xnta Znt7 bn]] A max « €, Z Cnttj (/B)Qj - (Z (bntj(ﬂ)aj) 9

=0 J=0
where € is a small positive number. Then, the variance function of Y,,; | (X, Zit) is

approximated by
Vadjnt(B, @) = max {e, 0 x a,,(B)a}
+ max {e,cf,(Ba - (¢r(B)a)’}
where
an(B) = (anio(B), - - - anery (B))" € R7Y,
Cott(B) = (Catt0(B), - - - s Cutray (B))T € RPN
and

Gni(B) = (Gnto(B), - - -, buray (B))" € RN,

As will be shown in Chapter 6, under some conditions, V,,;(3, &) could be positive

for each n and t € {1,...,T,}, for large sample size N.
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5.4.2 The Generalized Method of Moments
For each n, let
W,.(8,a) =V, *(B,0)R,'V, (8, a)

where V,,(8, ) is a T,, x T,, diagonal matrix whose diagonal elements are V,;(3, )
defined in Equation (5.10) and R, is a “working” correlation matrix. Common choices
of the “working” correlation matrix include the independence, the exchangeable and
the first order auto-regressive (AR(1)) correlation matrices; see [Liang and Zeger,
1986]. In the literature of the GEE methods and the GMM, the choice of the “working”

correlation matrix will not change the consistency of the estimators but the efficiency.

Let (,&d) be an initial estimator of (83, a) and for each n, W, = Wn(,é,d).
The initial estimates will be discussed later in Section 6.3. We define the GMM for

mixed-effects models with univariate random effects as follows.

Definition 5.4.1 (The GMM for Mixed-Effects Models with Univariate Random
Effects).

Given a data set (Y, X,, Z,), n=1,...,N, from the data setup in Section 5.2, the
GMM estimator for mized-effects models with univariate random effects, denoted by

(BGMM, agnm), i the solution of the following optimization problem

N
1 =
min - Z Ul (B, a)W,U, (B, a) (5.11)
n=1
st. aeM,

where M is defined in Equation (5.6).

5.5 Computational Algorithms

To obtain the GMM estimators for mixed-effects models with univariate random

effects, we propose the following computational algorithm for the optimization prob-
lem (5.11).
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Algorithm 5.1 (The Alternating Parameter Algorithm).
Set s = 0. From an initial estimate a® € R’, repeat the following steps at the

(s + 1)™ iteration:

1. Given o, solve the optimization problem

N
1 -
(s+1) _ : T (s) (s)
B = argmin ,;:1 U, (B,a YW, U,(B,a'”). (5.12)
2. Update
LN
(s+1) _ . T (s+1) x (s+1)
a arg min — T?: U, (B a)W,U, (B a). (5.13)

3. Update s = s+ 1. The iteration stops, when
la® — @ VZ + (8% — BV < ¢,

where € is a small positive number.

The optimization problem (5.12) in Step 2 is a regular minimization problem,

which is equivalent to solving the equation

1 o/ 9 T
¥ 2 (ga08.0)) Wi (8.a) =0

by the Newton-Raphson method. On the other hand, given B¢*Y, the objective
function of the optimization problem (5.13) is convex with respect to a and can be
solved by a modified version of the CNM for GMM in Algorithm 4.1.

Algorithm 5.2 (The CNM for GLMM).
Set s = 0 and given B. From an initial estimate Q° with finite support ©© and
a® = = [, P(0 )dQWO), repeat the following steps:

1. Compute all the local minimas {0; S)}”(s)l of the function

N
1 s 1 s
=2 (o ) ®.(8)W, (Y, — &l al)
n=1
over By. The iteration stops if the minimum of D(b) is zero.
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2. Construct a set of candidate support points by

&)+ _ s (8)yr(®
© =9 U{ej }j=1'

Let r)F be the number of elements in O+,

3. Solve the optimization problem

1 & r(3) 41 T MONE)
: T I T
min nz::l Y, — 2; n®'Pb) | W, |Y, - 2 m®TP(b;)
F().+
s.t. Z T = 1,
=1
>0, i=1,...,r®*

where b; € O+, We denote its solution by w®) = (7T§S), R A )T

4. Discard all b;s with zero 7TZ-(S), update Q©), O and a'® = a(Q), and set
s=s54+1.

5.6 Residual Analysis and Correlation Structure

Estimation

The adequacy of a fitted regression model can be assessed using residual analysis;
see [Fitzmaurice et al., 2012, p.g. 267]. In this section, we discuss the analysis
of transformed residuals and give two possible ways of estimating the correlation

structure of the residuals.

Given the GMM estimates (BGMM,dGMM), for each n € {1,..., N}, the fitted

mean is @E(BGMM)(&GMM € R™ and the residual is
L T/A A T
T =Y, — @, (Bamm)banm € R7.

However, because the elements of 7, are correlated and with different variances, we

need to standardized them so that they have constant variance and zero correlation.
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Let ¥,,(8*, Q%) be the covariance matrix of Y, | (X,,, Z,), which is positive definite.

The residual 7, can be standardized by
e, =X,"%(B", Q).

Then, the classical residual diagnostics for standard linear regression can be applied;
see [Fitzmaurice et al., 2012, p.g. 267]. Note that it is not necessary to check the
normality of the standardized residuals, because no distributional assumption is made

for the residuals.

There are two possible ways to estimate the covariance matrix 3, (8%, Q*): the
sample average and the parametric version. The sample average version is suitable

to a balanced design such that 7,, = T". The covariance matrix can be estimated as
| N
SR S Vo N r1/24 ATYr—1/2 | Yr1/2
3, =V (N;Vn Fofr V, )v; : (5.14)

where V,, = V,,(Banu, @eum) and V,, (3, a) is defined in Equation (5.10); see [Fitz-
maurice et al., 2012, p.g. 357].

In the parametric version, we approximately estimate 3, (8% Q*) under an addi-

tional assumption that, for each n and ¢, = 1,...,T,,

g HUXLEB+ Zub) x g H (XL, B+ Zuwb) € L*(B, ).

nt’
By the law of total covariance, we have
COV[Ynta Ynt’ | Xn7 Zn]

- Ebn [COV[Ynty Ynt’ | -Xna Zna bn”
+ Covy, [E [V | X, Zn, by X E[Yoe | X, Zn, 0]l

By the modelling assumption that Y,,; and Y, are independent conditional on b,

Cov[Youe, Yo | Xn, Zy,b,] = 0. We further apply the law of expectation and have

COV[Ynt> Ynt’ ‘ Xn7 Zn]
- Ebn [E [Ynt | Xna Zna bn] x E [Ynt’ | Xn7 Zna bn]]]
—EYu | X0, Z,]) X E[Y | X, Z,)].
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For each t and t/, by changing the order of the integrals, we have the approximations

JN
Ebn [E [Ynt | Xna Zn7 bn] x E [Ynt’ | Xna Z’m bn]“ ~ chtt’j(ﬁ)aja
=0
and
JN JN
]E[Ynt ‘ Xna Zn] X ]E[Ynt’ ‘ Xna Zn]] ~ <Z (bntj(/a)aj) X (Z ¢nt’j</8)aj> 3
7=0 J=0
where, for each 7,
ot (B) = / g HXLB+ Zub) x g HX LB+ Znwb) Pi(b)dpu. (5.15)
B

In sum, the off-diagonal elements of 32, are estimated by

ZNlmft’ (BGMM ) dGMM)

JIN
= Z Cntt'j (5GMM)56GMM,j
§=0

JN JN
- (Z ¢ntj(BGMM)@GMM,j> X (Z ¢nt'j(BGMM)@GMM,j> )
j=0 Jj=0

while the diagonal elements of 3, are estimated by Vnt(BGMM, &couvy) in Equation
(5.10). One possible issue of using the parametric version is that the resulting esti-

mated covariance matrix may not be positive definite.

5.7 Simulation Studies

To evaluate the performance of the GMM estimator (BGMM, Qg ), we consider

the following models.

Model 5.A (A Poisson Regression Model with a Log-link Function).
For eachn € {1,...,N} and t € {1,...,T,}, the response Yy, | (Xnt, Znt, bn) follows
a Poisson distribution with mean pi,(b,), where pn(b,) depends on the regression

parameter 3 via the log-link function

Nnt(bn) = E [Ynt | Xnta Zntv bn] = eXP(XEt,B + Zntbn)
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Model 5.B (A Binomial Regression Model with a Logit-link Function).
For eachn € {1,...,N} and t € {1,...,T,}, the response Vi | (Xnt, Znt, bn) follows
a binomial distribution with the number of trials B = 20 and the mean pu,(by,), where
tnt(bn) depends on the regression parameter 3 via the logit-link function

B
n bn :EYn Xn7Zn7le = '
% t( ) [ i | i t ] 1+ exp(—th,B — Zntbn)

For each n, let T,, follow a discrete uniform distribution over {1,...,5}. For each
nand t, let X,; = (Xpi1, Xpsos Xz, Xora) T € R* be the fixed effects, where X,,;; and
Xn2 independently follow a continuous uniform distribution over [—0.3,0.3], X,u3
follows a Bernoulli distribution with success probability 0.5 and X,,;4 = 10 x X413 X0
is considered as the interaction effects of X,;; and X,,;2. For each n and ¢, Z,; = t/20.
The true value of the regression parameter 3 is (—1,2,0.5,0)T € R*. The distribution
of the random effects Q(b) is 0.41(b < 0) +0.11(b < 1) +0.51(b < 2).

We use the Chebyshev polynomials (see Definition 2.4.2) defined on B = [—6, 6] as
the orthonormal basis {P;(b)}/%, in L*(B, 1), where y = (1 —b*)~/2db. The approx-
imation property has been studied in Section 2.4.1. For different sample sizes, the
dimensions of the generalized moments a € R/~ are different, where Jy = [2N 1/ 3],
with |a] denoting the largest integer not greater than a. Three sample size levels are
considered (N = 50,100 and 200).

We consider two different working correlation matrices: the independence and
the AR(1). The parameter in the AR(1) correlation matrix is 0.5. We also consider

the case when the weighting matrix is the inverse of the true correlation matrix of
U,(B, o).
We compare the GMM estimator with the NPMLE in [Wang, 2010], as the

NPMLE is considered as the most efficient estimator for the mixed-effects model
with univariate random effects. To study the robustness of the GMM estimator to
the misspecification of the likelihood function. We also use the following misspecified
models to fit the simulated data. Model 5.C is used to fit the data from Model 5.A,
and Model 5.D to fit the data from Model 5.B. Under our parameter setting, all of

the considered models are well-defined.
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Model 5.C (A Binomial Regression Model with a Log-link Function).
For eachn € {1,...,N} and t € {1,...,T,}, the response Vi | (Xnt, Znt, bn) follows
a binomial distribution with the number of trials B = 20 and the mean pu,(by,), where

tnt(bn) depends on the regression parameter (3 via the log-link function
,unt(bn) - E[Ynt | Xntu Znt7 bn] - eXp(X;{t/B + Zntbn)

Model 5.D (A Poisson Regression Model with a Logit-link Function).
Foreachn e {l,...,N} and t € {1,...,T,}, the response Yy | (Xnt, Znt, bn) follows
a Poisson distribution with mean fin:(b,), where pn(b,) depends on the regression

parameter 3 via the logit-link function

B
T exp(=X,8 — Zuby)

Hnt(bn) =E [Ynt | Xnt; Znta bn]

and B = 20.

The simulation results are summarized in Table 5.1 to 5.4. From these tables, we

have the following observations.

1. Although the correlation matrices are misspecified, the GMM estimators could
perform closely to the NPMLE; see Table 5.1 to 5.4. This implies that the lose

of information is not significant in this simulation sutdy.

2. In general, the NPMLE has smaller MSE than the GMM estimators; see Table
5.1 to 5.4. This is because that the maximum likelihood estimator is efficient

in general.

3. When the regression parameter is of interest, the GMM estimators could per-
form closely to the NPMLE; see Table 5.1 and 5.3.

4. The MSE of the GMM estimators for the generalized moments o are much larger
than the ones of the NPMLE; see Table 5.2 and 5.4. The reason is that the
GMM estimators use the modelling information from the marginal mean, while
the NPMLE use the modelling information from the conditional probability

function.
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We also can see the robustness of the GMM estimators to the misspecified likeli-
hoods from the simulation results. When Model 5.C is used to fit a random sample
from Model 5.A, the NPMLE performs as well as when Model 5.A is used; see Table
5.1 and 5.2. This is because that a non-parametric mixture of binomial distributions
with large number of trials could appropriately approximate any discrete probability
distributions; see [Wood, 1999]. On the other hand, when a random sample from
Model 5.B is fitted by Model 5.D, the NPMLE performs worse than the GMM esti-
mators, especially when the sample size is large; see Table 5.3 and 5.4. Note that a
Poisson distribution can be used to approximate a binomial distribution with large
number of trials when the success probability is either close to zero or one. In Figure
5.1, we show the simulated success probability when N = 1000, and see that few of
the simulated success probabilities is close to zero or one. Therefore, it is inappropri-
ate to use the mixture of Poisson distribution to approximate a binomial distribution

in our simulation setting.

5.8 Application to the Retina Surgery Data

The retina surgery data has been analyzed in [Song and Tan, 2000] and [Qiu et al.,
2008]. Let Y,; be the percentage of gas volume for the n'® patient at time ¢, and let
X+ be the vector of covariates including the logarithm of time after surgery (TIME)
and its square, and the gas concentration level (LEVEL). The following model is used
under the assumptions that Y, | (X,,Z,), n = 1,..., N, are independent to each
other and conditional on the random effects b,, Y., | (X,, Z,, b,) are independent

to each other.

Model 5.E.
For eachn and t,,, Yo, | (Xnt,,bn) follows a distribution with mean pu,,(by,) such that

10git (fint, (b)) = 1 log(TIME) + $3, (log(TIME))? 4+ S3LEVEL + b,,,

where b, € R has a probability measure QQ defined on B = [—20,50]. The variance of
Ynt ‘ (Xntabn) 7;5

Var [V | X, ba] = ((1 = pnt (0n)) e (b)) + 1)_1 :
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The Chebyshev polynomials defined on B is used to reparameterize and approxi-
mate Model 5.E. The numbers of generalized moments used in the truncation approx-
imation models are 5,7,9 and 11. We also consider two types of working correlation
matrices: the independence and the AR(1). The parameter used in the AR(1) cor-
relation matrix is 0.5. The estimated regression parameters are reported in Table
5.5. We also report the PQL estimates (with different approximation orders) from
[Qiu et al., 2008], where a mixture of the simplex distribution is considered and the
distribution of the random intercept b,, is normal. We notice that 3; and (5 could be
estimated very differently by the two methods, because that two different models are

used.

Panel (a) and (b) in Figure 5.2 display the standardized residuals against the
responses and fitted means, when the model is fitted by the GMM with AR(1) corre-
lation matrices and Jy = 5. The residuals are standardized by its working correlation
matrix. The two red lines represent the 97.5% and 2.5% empirical quantiles of the
standardized residuals. A linear trend is observed from Panel (a). It implies that some
information in the residuals is not characterized by Model F. This is because that the
working correlation matrices are misspecified. In Panel (b), we do not observe any
pattern between the fitted mean and the standardized residuals. This implies that the
correlation between them is small. Panel (c)-(e) in Figure 5.2 shows the fitted means
and the proportions over time across three levels of gas concentration. We see that
the fitted mean can successfully characterize the decaying trends of the proportions

over time.

5.9 Discussion

In this chapter, we introduce the GMM for mixed-effects models with univariate
random effects. By simulation, we see that the GMM estimator may not as efficient as
the NPMLE but it is robust to the misspecified likelihood functions. As we will see in
Chapter 6, it is challenging to evaluate the loss of efficiency. The major reason is that
neither the GMM estimator nor the NPMLE has an explicit form of the covariance

matrix due to the existence of the boundaries in the parameter space. In this section,
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Jyv  log(TIME) (log(TIME))*> LEVEL

0.46 -0.45 0.52
0.38 -0.43 0.46

AR(1)
0.32 -0.40 0.42
11 0.41 -0.46 0.48

GMM

0.31 -0.38 0.47
0.45 -0.45 0.51

Indep
0.45 -0.45 0.51
11 0.44 -0.45 0.50

order log(TIME) (log(TIME))* LEVEL

1 0.06 -0.35 0.44
PQL - 2 0.05 -0.35 0.45
4 0.14 -0.39 0.45
6 0.14 -0.39 0.45

Table 5.5: Estimated regression parameters in Model 5.E to the retina surgery data
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we discuss the following possible future research direction.

Firstly, to study the subject-specific model, we need to predict random effects in
some cases. Given the GMM estimator (BGMM, &coum ), we may use the solution of

the following optimization problem as the random effects predicator,

N
) 1 - .

{on}

n=1 n=1
| N
s.t. N Z P(bn) = dGMM,
n=1
where for each n, S,, is a T,, x T,, positive definite matrix, and
U,B,b,) =Y, —g (X B+ Z,b,) € R™.

The above optimization problem can be solved by the Lagrange multiplier method.

However, the properties of the predicated random effects need further investigation.

In this thesis, we assume that the parameter ¢ is constant and known. This
assumption is valid in the models considered in Section 5.7. An unknown or non-
constant o may lead to much more complex model. However, the GMM for ¢ requires

future work.

Another important research direction is the extension to multivariate mixed-effects
models. Recall that in Section 2.4, we have introduced the reparameterization-
approximation procedure for the GLMM with multivariate random effects. Designing
an efficient computational algorithm for multivariate mixed-effects models is challenge
for two major reasons. Firstly, the Chebyshev system for multivariate functions is not
well-defined. Secondly, few study has been done on the geometry of the generalized
moment space for multivariate distributions. As a result, the positive representa-
tion and the gradient characterization, which are necessary for the gradient-based

computational algorithms, are not established.

Lastly, we discuss the model selection problem. In the real examples, we considered
difference combinations between the working correlation matrices and the number of
the generalized moments. Different combination may lead to different point estimates

in the GMM. It is natural to ask which fitted model to use. Also, the graphical analysis
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of the standardized residuals are subjective in this thesis. Numerical analysis of the

residuals needs further investigation.

Appendix: D

D.1 MATLAB Code for Algorithm 5.1

function [betanew, as, out, objo]| = GIMGMM(DATA, q,
a0, betal, V, W)

Indl = 0;
countl = 1;
out = 1;
objo = 1leb;

while Indl =1

countl = countl + 1;

[betanew , unused, HO, W] = GMMNR(DATA, ¢, ...
a0, betal, V);

[asnew , obj] = GMM.CNM(DATA(: ,end), q,...
as, HO, W);

if countl > 5e2
Indl = 1;
out = 0;

end

if mnorm(betanew—betal)<le—5
Indl = 1;
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else
beta0) = betanew
as = asnew;
objo = obj;

end

end

function [betanew, obj, HOa, W, out] = GMMNR(DATA, q,...

aini, betaini, V, W)

% for logistic link functions

Ind = 0;
count = 1;
out = 1;

betal = betaini;

betap = length(betal);

X = DATA(:,2:2+ betap —1);

Z = DATA(:,2+betap );

S = DATA(: ,end);

HO0a = 1./(14+exp(—repmat (X«betal0 ,[1,length(q)])—Zx*q));
HO = HOax(VxV');

U = HOxaini ’;

dU = (1—HOa).xHOa;

D = X’.xrepmat (aini*(dUx(VxV’))’ [size(X,2),1]);
C = DsWx (S—U);

G = DsWxD’;

objini =(S-U) «Wx(S-U);

if( rcond(G) < le—5 )
Ind = 1;

out = 0;
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betanew = betaini;
obj = objini;

end

while Ind = 0
count = count + 1;
betanew = betal + G\C;
HOa = 1./(1+exp(—repmat (X«betanew ,[1,length(q)])—Z*q));
HO = HOax(VxV’);
U = HOxaini ’;
dU = (1—HOa).*HO0a;
D = X’.xrepmat (aini*(dUx(VxV’))’ [size(X,2),1]);
C = DsWx (S-U);
G = D«WxD’;
obj =(S-U) s«Wx(S-U);

if obj < objini
Ind = 1;
else
beta0 = betanew;

end

if count > 2e2
betanew = betaini;
obj = objini;
Ind =1,

end
end

HOa = 1./(1+exp(—repmat (Xs«betanew ,[1 ,length(q)])—%Zxq));
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D.2 MATLAB Code for Algorithm 5.2

function [as, Dsmin] = GMM.CNM.adj(S, q, ainit, HO, W)

Ind = 0;
e = le—10;

pLs = find (ainit > 0);

as = ainit;
U = HOxas ’;

g = —(S-U) "«Wx(HO-U(:,ones(1,length(q))));
Hc = HO’xWxHO ;

Ac = HO’«WxS;

Dsmino = (S-U) s«Wx(S-U);

while Ind = 0

dg = diff(g);

signdg = sign(dg);

dsigndg = diff(signdg);

minl, = find (dsigndg =— 2)+1;
L = minL;

pLsnew = [1 pLs L length(q)];

pLsnew = unique (pLsnew );

H = Hc(pLsnew, pLsnew);
A = Ac(pLsnew ,:);

Y%warning off;
options = optimset( Algorithm ’,
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"interior —point—convex ’,
"display ', Toff’);

Ast = quadprog ((H+H") /2, —A,
—eye(size(H,2)),
zeros (1 ,size(H,2)),
ones (1,size(H,2)), 1,
(1, [, [], options);

as = zeros(1,length(as));
as (pLsnew) = Ast;
pLs = pLsnew (Ast > 0);

U = HOxas ’;
g = —(S-U) «Wx(HO-U(:,ones(1,length(q))));
Dsmin = (S-U) «Wx(S-U);

if abs(Dsmin—Dsmino) < le—5 || max(g) < e
Ind = 1;

else
aso = as;
Dsmino = Dsmin;

end

end
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Chapter 6

The Generalized Method of
Moments for a Poisson Regression
Model with Random Intercept and
Slope

6.1 Introduction

In the previous chapter, we considered the case where the random effects in a
generalized linear mixed model are univariate. Now, we consider the generalized

method of moments for the following Poisson regression model.

Model 6.A.
For eachn € {1,...,N} and t € {1,...,T,}, the response Yy | (Xnt, Znt, bn) follows
a Poisson distribution with mean pi,(b,), where py(b,) depends on the regression

parameter 3 via the log-link function
IOg ,unt(bn) = Xy?t/@ + bnl + Znt X bn27

and X,y € RP are the covariates for the fixed effects, 3 € RP is the regression pa-

rameter, Z,; are the covariates to the random effects and b,, = (bn1,bn2)T € R? are
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random effects. Furthermore, b, and b, are assumed independent and their marginal

distribution are Q1 and Qo with the support sets By and By correspondingly.

The main contribution in this chapter is to extend the GMM for mixed-effects
models with univariate random effects to a Poisson regression model with random
intercept and slope (Model 6.A). After the reparameterization-approximation proce-
dure, we point out that the parameter space for Model 6.A is a generalized moment
cone which share the same geometric properties as the generalized moment space; see
Section 6.2. Therefore, the computational algorithms proposed in Chapter 5 can be
easily modified to compute the GMM estimators for Model 6.A; see Section 6.3. The
simulation studies in Section 6.4 provide empirical evidence that the GMM estimators
in Model 6.A is consistency and is robust to the misspecification of the random-effects

distribution. Also see Section 6.5 for a real data example.

We organize this chapter as follows. In Section 6.2, we describe the GMM for
Model 6.A. In Section 6.3, we give the modified computational algorithms for Model
6.A. The finite sample performance of the GMM for Model 6.A is examined through
simulations in Section 6.4. In Section 6.5, we fit the Epileptic Seizures Data by the
proposed methods, which has been described in Section 1.6.2. Finally, we end this

chapter with a discussion.

6.2 The Generalized Method of Moments

Let 2 be the range of the function exp(by;), for b,; € Bi. By the assumption that
bn1 and b,y are independent, for each n € {1,..., N} and t € {1,...,T,}, we have

E [Ynt | Xnta Znt] - / / Mnt(bn)dQldQQ
B1 J By
- / / exp (X8 + by + Zubrz) dQ1dQ,
B1 J By

= X / exp (Znibn2) X exp (X,}; )ng,
B2
where

m = / exp (bo) dQ) € 2.
B
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Assume that for each n € {1,...,N} and ¢t € {1,...,T,}, the function of bz,
exp(X LB + Znibpa), is an element of L?(B,p). Given an orthonormal polynomial

system {P;(b)}32, defined on L*(B, 1), we can reparameterize and approximate the

expectation E[Y,; | X, Zn] as
JN
E [Ynt ’ Xnt7 Znt] ~Mn X Zgbnt]’(ﬁ)a;a
j=0
where for each j € {0,...,Jy},

Gty (B) = /B exP(Zuibns) X exp (XLB) x Py (bea)du

and

For each n, let
Un(,@, a) = Yn - @g(ﬁ)a,

where ®,,(8) is a (Jy+1)xT,, matrix whose elements are ¢,,;;(3) and & = (a,
R/~ for each j € {1,..., Jn},

_ /
a; =7 XO[j.

The parameter space of a is

C(A) = {a = | POb)dQ ¢ RJN} ,

Ba

...,aJN)TG

where ()’ is a nondecreasing right continuous function of bounded variation such that
Jp, dQ" € A and P(b) = (Po(b), .. ., P;. (b))t € R/NFL is a vector function of b € Bs.
The set C(2l) is known as a subset of the moment cone (see Definition 3.2.1). When

Py(b) = 1, we have

Qo =M X/ d@2 = 7.
Ba
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On the other hand, by the law of total variance and the law of total expectation,

we have

Var[Yo: | Xty Znt]
= Ky, [Var[Yoe | Xnt, Znt, bn]] + Vary, [E Yo | Xty Zor, byl
= By, [Var(Yo: | Xt Zot, ba]] + Ep, [(E [Yae | Xt Zus, b))’
— (E[Yor | Xt Zut))*

Because Yy | (X, Znt, by) follows a Poisson distribution, we have
Var[Yo: | Xot, Znt, bn] = pine(by).
By changing the order of the integrals, we can approximate the following terms as
o, Vorl¥oe | X, Zubull = [ [ plbi)aQuac:

= ¢Zt<13)a7

IEbn [(]E [Ynt | Xnta Znt7 bn])Q} =72 X / (exp (XTE/B + Zm‘bn2))2 dQQ
Ba

A Y2 /71 X c;l;tt(18>a7

and
(E Yt | Xt Zud)? = (&5(B)0r)”,
where
Y2 I/ eXp(anl)dQl.
Bi1
Here for each n and t € {1,...,T,},

Gut(B) = (dn0(B), - - -, Pursy (B))" € RPN

and
Cntt(ﬁ) = (Cmto(ﬁ); - CnttJy (ﬁ))T S RJN,
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where for each 7,
2
cois(B) = [ (ex0 (XL + Zubia))” Py(biz)dQa
B2
Therefore, the variance function of Y, | (X, Zut) is approximated by

Vai(B, a,7) = ¢L(B)a + 10/ % by (B — (¢h(B)a)”, (6.1)

and correspondingly, the adjusted approximation is

2
V;ldjmt(ﬁa o,7y) = max {57 ¢;£t(ﬁ)a} + max {57 Yo/ X cztt(ﬁ)a - (d);ft(ﬁ)a) } )
where v = (71,72)T € R? and ¢ is a small positive number; also see Section 5.4.1.

For each n, let V,,(8, a, ) be the T,, x T,, diagonal matrix whose diagonal elements
are V, (B, a,7), t = 1,...,T,. Given the initial estimators (B, &,7), the GMM
estimator for Model 6.A is

A . - T(
(Barns, &) = arg | min ZU (8, )W, U,(8, ),

where for each n,
W, =V, 2(B.a.9)R, 'V, /*(B,&.7),
and R, is the working correlation matrix.

The initial estimators of («, 3,71) can be obtained by using fixed weighting ma-
trices {W,,}

assume that 75 is a function of ;. Because 43 = &g, we have 75 = 75(%). For

example, when @, is a normal distribution with mean zero and covariance o2, we

o1, when FPy(b) = 1. To obtain the initial estimator of 2, we further

have
1

- 2ro

TN

b2
/exp(bnl) exp (—ﬁ) db,1 = exp (¢°/2)
R o

and

1 b2,
= exp(2b,1) exp [ —=2L ) db,; = exp (20
Y2 \/%a /R P( 1) p < 952 ) 1 p( )

Therefore, we have
Fo =1
In general, we do not need the distributional assumption of b,; but a modelling

assumption on v, as a function of ~;.
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6.3 Computational Algorithms
To obtain the GMM estimators (BGMM, acum) for Model 6.A, the following al-
ternating parameter algorithm can be used.

Algorithm 6.1 (The Alternating Parameter Algorithm).
Set s = 0. From an initial estimate a® € R’ repeat the following steps at the

(s + 1)™ gteration:

1. Given o), solve the optimization problem

N
1 -
(s+1) _ o U8, aYw,U, (8, a®). 6.2
B arg mén N ngl n (B, ) (B, ) (6.2)
2. Update
1 — -
et =g min S UNE WS ) (03

3. Update s = s+ 1. The iteration stops, when
o — a2 4 8¢ — B < ¢,

where € is a small positive number.

The optimization problem (6.2) in Step 1 can be solved by the Newton-Raphson
method. On the other hand, given B¢+ the objective function of the optimization
problem (6.3) is convex with respect to a. As described in Section 3.2, the parameter
space Cy, () shares same boundary geometry with the generalized moment space M
defined in Equation (5.6). And thus, the CNM algorithms in [Wang, 2007] also can
be adopted for the optimization problem (6.3).

Algorithm 6.2 (The CNM for GLMM).
Set s = 0 and given B. From an initial estimate Q) with finite support ©©) and
a®) = Is, P(b)dQ", repeat the following steps:
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1. Compute all the local minimas {(9](.5)}’“(5) of the function

D(b) = %Z (@ — P(b))" @.(8)W, (Y, — @ al)

over By. The iteration stops if the minimum of D(b) is zero.

2. Construct a set of candidate support points by

)+ — ) (8)yr()
W =0 Ui’}

=L
Let r)F be the number of elements in O+,

3. Solve the optimization problem
T

1 N r(8) 41 r()41
min NZ Y,— > m®Pb)| W, |Y,— ) md,Pb)
n=1 i=1 i=1
st. m>0, i=1,... r®&+
where b; € O+, We denote its solution by ©© = (x{¥, ... ,7T7(:2)‘+)T.

4. Discard all b;s with zero WES), update Q¥), ©F) and a®® = Is, P(b)dQY, and
set s =s+1.

6.4 Simulation Studies

To evaluate the performance of the GMM estimator (BGMM, acgmu) for the Pois-
son regression model with random intercept and slope, we consider the following

parameter setting.

Foreachn € {1,..., N}, let T,, follow a discrete uniform distribution over {1,...,5}.
Foreachn € {1,...,N}and t € {1,...,T,}, let X,.s = (X1, Xpt2, Xpsz, Xpa) T € R?
be the fixed effects, where X,;; and X,,;» independently follow a continuous uniform
distribution over [—0.3,0.3], X3 follows a Bernoulli distribution with success prob-
ability 0.5 and X,y = 10 X X,,;1 X,,so is considered as the interaction effects of X,
and X,4. For each n and t, Z,; = t/20. The true value of the regression parameter

Bis (—1,2,0.5,0)T € R% Three possible random effects distributions are considered.
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1. The random effects b,,; and b, are independent to each other. Moreover, they

have the same marginal distribution

Q(b) = 0.4I(b < 0)+0.11(b < 1) +0.5I(b < 2).

2. The random effects b = (b1, bpa)™ € R? follow a bivariate normal distribution

1 0
0 0.1

3. The random effects b = (b,1,b,2)" € R? follow a bivariate normal distribution

with mean zero and covariance matrix

with mean zero and covariance matrix

5 1 0.9 x V0.1
0.9 x /0.1 0.1 '

We use the Chebyshev polynomials (see Definition 2.4.2) defined on B = [—6, 6] as
the orthonormal basis {P;(b)}7%, in L*(B, i), where y = (1 —b*)~/2db. The approx-
imation property has been studied in Section 2.4.1. For different sample sizes, the
dimensions of the generalized moments o € R’V are different, where Jy = [2N/3].
Three sample size levels are considered (N = 50,100 and 200).

We consider two different working correlation matrices: the independence and the
AR(1). The parameter in the AR(1) correlation matrices is 0.5. We also consider
the case in which the working correlation matrix R, is the true correlation matrix
of U,(B*,Q*). The initial estimators (d,B,ﬁ/) are estimated by the GMM with
W, = I,,, where for each n, I, is a T}, x T}, identity matrix. Moreover we let v, = ~{.
The number of the repetitions is 1000. The NPMLE can not be easily computed in
this case because the random-effects b,, is bivariate. Instead, we consider the Model
6.B, in which the random-effects distributions are bivariate normal, and fit it by the
penalized quasi-likelihood (PQL) method [Breslow and Clayton, 1993]. The PQL
estimators are calculated by the MATLAB code fitgmle in the Statistics and Machine

Learning Toolbox.
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Model 6.B.
For eachn e {1,...,N} andt € {1,...,T,}, the response Vi | (Xnt, Znt, bn) follows
a Poisson distribution with mean (b)), where 1, (b,) depends on the regression

parameter 3 via the log-link function

log ,unt(bn) = X;{tﬁ + (BO + bnl) + Znt X (bn2 + ﬁb)a

and X,; € RP are the covariates for the fixed effects, 3 € RP is the regression pa-
rameter, By and By are the mean of the random intercept and slope correspondingly,
Zne are the covariates to the random effects and b, = (bnl,an)T € R? are random
effects. Here b, € R? is assumed to follow a bivariate normal distribution with mean

zero and covariance matriz 3, where X is unknown.

The simulation results are summarized in Table 6.1-6.6. From these tables, we

observe the followings.

1. When the true model is correctly specified by 6.B, the PQL estimators could
have the smaller MSE than the GMM estimators; see Table 6.3-6.6. This is
because that the PQL use the modelling information of the probability function
pr(Y, | X, Z,) while the GMM only use the modelling information of the mean
condition E[Y,, | X,,, Z,|; and the random effects distribution is parametric in
Model 6.B, while it is non-parametric in Model 6.A.

2. When the regression parameter 3 is considered, the GMM estimators with the
true correlation matrices has smaller bias and MSE than the ones with the
working correlation matrices; see Table 6.1-6.6. This provide an empirical ev-
idence that correctly modelling the with-in subject correlation could increase
the efficiency of the GMM estimators.

3. When the random effects do not follow normal, the PQL estimators could be
very biased; see Table 6.1 and 6.2. On the other hand, the GMM estimators
are consistent and with smaller bias. The reason is that the random effects

distribution is misspecified in Model 6.B.
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4. When the random intercept b,; and the random slope b,o are correlated, we
observe slightly larger bias and MSE in the GMM estimators; see Table 6.5-6.6.

This is because that the independence assumption does not hold in Model 6.A.

6.5 Application to the Epileptic Seizures Data

In Section 1.6.2, we have described the epileptic seizures data, which has been
analyzed by [Thall and Vail, 1990] and [Breslow and Clayton, 1993]. The response
Y, is the biweekly number of seizures for the n'® patient at equally spaced times t =
1,2, 3,4. The covariates include baseline seizure count (BASE), treatment (TREAT),
age (AGE) and possibly the interaction between treatment and age (INTER). Prelim-
inary analysis indicated that the response were substantially lower during the fourth
visit and thus an indicator (V4) is introduced to model such effect; see [Breslow and

Clayton, 1993].

We consider the following two models under the independence assumptions that
Y, | (X, Z,),n=1,...,N, are independent to each other and conditional on the
random effects b,, and Y, | (X,, Z,,b,), t = 1,...,T,, are independent to each
other.

Model 6.C.
For each n and t, Y, | (Xu,bn) follows a Poisson distribution with mean i, (by,)
such that

108 it (bn) = by + B BASE,, + S TREAT,, + 85INTER,,
+ B4log(AGE,;) + (5V4,

where b, € R has a probability measure QQ defined on B = [—20,20]. The variance of
Ynt ‘ (Xntabn) 7;5 ,unt(bn>

Model 6.D.

For each n and t, Y | (X, by) follows a Poisson distribution with mean fin:(by,)
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such that

IOg ,unt(bn) = bnl + BlBASEnt + /62TR'EATTLt + ﬁ3INTERnt
+ ﬁ4 IOg(AGEnt) + anTIME,

where b, = (by, bn2)T € R?, b,; € R and b,y € R have probability measures Q1 and
Q2 defined on B = [—20,20], and the TIME effects is coded in (—0.3,—0.1,0.1,0.3).
The variance of Yo | (Xnt,bn) @S fne(bn). We further assume that b,y and bns are

independent.

Model 6.C can be fitted by the GMM with one generalized moment ag = |, 5 €xp(b)dQ,
while Model 6.D can be fitted by the GMM with the generalized moments a =
(a1, a, a3, )T € RY) where for each j € {1,...,4},

aj; = /Bexp(TIMEj X bp2)dQy X /Bexp(bnl)dQl

and TIME;s are associated with the coded TIME effects.

Table 6.7 presents the GMM estimates in Model 6.C and 6.D with two different
working correlation matrices: the independence and the AR(1). We also give the
PQL estimates from [Breslow and Clayton, 1993|, where b, in Model 6.D follows a

normal distribution and (b,1,b,2)T € R? follows a bivariate normal distribution.

In Figure 6.1 to 6.4, we use the standardized residuals to check the adequacy of
the GMM. Here the estimated covariance matrices in Equation (5.14) are used. Panel
(a), (b), (c) and (d) in each figure display to the plots of the standardized residuals
against the coded visiting time, patients, responses and fitted means. The red lines
represent the 97.5% and 2.5% empirical quantiles of the standardized residuals. The
black straight line represents the mean of the standardized residuals. We see that the
mean of the standardized residuals is close to zero and no trend is observed from any
of the panels. This means that the considered models adequately fit the data through
the GMM.
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Model 6.C Model 6.D
GMM PQL GMM PQL
AR(1) Indep AR(1) Indep

BASE 0.72 0.76 086  0.92 093 0.87
TREAT -0.74 -0.78 -0.93 -1.20 -1.07 -0.91
INTER 0.18 025 034 049 0.44  0.33

Log(Age) 044 040 047 086 0.79 0.46
V4 -0.00  -0.07 -0.10 - - -

Table 6.7: Estimated regression parameters in the models to the epilepsy seizures
data.

6.6 Conclusion and Discussion

In this chapter, we discussed the GMM for the Poisson regression models with
random intercept and slope. Because the parameter space share same geometric prop-
erties, the computational algorithms proposed in Section 5.5 can be easily adopted for
the GMM for Model 6.A. The simulation results indicate that the resulting estima-
tors are consistent, when the models are correctly specific. Moreover, we compare the
performance of the GMM with the QPL method in the simulation study. Because the
GMM does not require the distribution assumption on the random effects, it could

perform superior to the PQL, when the random effects distribution is not normal.

Model 6.A is more flexible than a Poisson regression model with univariate random-
effects. However, there still exists a strong modelling assumption that the random
intercept b,; and random slope b,» are independent to each other for each n. In
the following paragraphs, we discuss the case where the independent assumption is

relaxed.

Let

Q(by) = Q1(bn1) X Q2(bn2 | bn1)

be the joint probability measure of (b1, bye) defined on By x By, where Qo (bna | bpu1) is

the distribution of b, | b,;. Without the independent assumption, we have, for each
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ne{l,...,Nyand t € {1,...,T,},
BlXBQ

= / / exp (ngﬂ +bp1 + Zntbn2) dQ2(bn2 | bn1)dQ1(bn1)
B, JB,

= / eXP(bnl)/ exp (thﬁ + Zntbn2) dQ2(bn2 | by1)dQ1(bn1).
Bl BZ

By the reparameterization-approximation procedure, we have
/ eXp ( /6 + Zntan) dQQ n2 | bnl Z ¢nt]
Ba

where {P;(b) }‘j]ﬁo is an orthonormal polynomial system defined on (Bs, 1) and for each
j€10,...,Jn},

0s(B) = [ exp (XLB+ Zuibs) Py ()
2
and
a;(bnl) :/B P;(bn2)dQa(bna | bn1).
2
Then, the expectation of Y,,; | (X, Zn¢) is approximated by

U.(B,0) = @, (B)e, (6.4)

where ®,,(8) is a (Jy+1)xT,, matrix whose elements are ¢,;;(3) and a = (ap, ..., )T €
R/~*T! and for each j € {1,..., Jy},

%:éawmm&M-

Modelling either the conditional distribution Qs (b2 | b,1) or {a;(bnl)}jgo will give us

the approximation in Equation (6.4).

Appendix: E
E.1 MATLAB Code for Algorithm 6.1

179



function [beta, as, out, objo] = GIMGMM(DATA, q,
a0, betal, V, W)

Ind1l = 0;
countl = 1;
out = 1;
objo = 1leb;

while Indl = 0

countl = countl + 1;

[betanew , unused, HO] = GMMNR(DATA, ¢q,...
a0, betalO, V);

[asnew , obj] = GMM_CNM_adj(DATA(: ,end), q,...
as, HO, W);

if countl > 5e2
Indl = 1;
out = 0;

end

if mnorm(betanew—beta)<le—5
Indl = 1;
else
beta = betanew;
as = asnew;
objo = obj;

end

end
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function [betanew, obj, HO|] = GMMNR(DATA, q,...
a0, betal, V, W)

% for log—link functions

Ind = 0;

count = 1;

betap = length (beta);

X = DATA(:,2:2+ betap —1);

Z = DATA(:,2+betap );

S = DATA(: ,end);

HO0a = exp(repmat (X«beta,[1 ,length(q)])+Zxq);
HO = HOax(VxV’);

U = HOxaini ’;

D = X’.sxrepmat (U’ ,[size(X,2) ,1]);
C = DsWx(S-U);

G = DsWxD’;

objini =(S-U) «Wx(S-U);

while Ind = 0

count = count + 1;
betanew = beta + G\C;

HOa = exp(repmat (X«betanew ,[1,length(q)])+Zx*q);
HO = HOax(VxV’);
U = HOxaini ’;

D = X’.xrepmat (U’ ,[size (X,2),1]);
C = DsWx (S—U);

G = DD’

obj =(S-U) «Wx(S-U);
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if obj < objini
Ind = 1;

else
beta = betanew;

end

if count > le2
betanew = betaini;
obj = objini;
Ind =1;

end
end

HO0a = exp(repmat (X«betanew ,[1 ,length(q)])+Zxq);
HO = HOax(VxV’);

E.2 MATLAB Code for Algorithm 6.2

function [as, Dsmin] = GMM.CNM.adj(S, q,...
ainit , HO, W)

Ind = 0;
e = le—10;

pLs = find (ainit > 0);

as = ainit;
U = HOxas ’;
g = —(S-U) "«Wx(HO-U(:,ones(1,length(q))));
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Hc = HO’xWx«HO ;
Ac = HO’*WxS;
Dsmino = (S-U) «Wx(S-U);

while Ind = 0

dg = diff(g);

signdg = sign(dg);

dsigndg = diff(signdg);

minl, = find (dsigndg = 2)+1;
L = minL;

pLsnew = [1 pLs L length(q)];

pLsnew = unique (pLsnew );

H = Hc(pLsnew, pLsnew);
A = Ac(pLsnew ,:);

Y%warning off;
options = optimset( Algorithm ’,
“interior —point—convex’ ,...

"display’, ’off’);

Ast = quadprog ((H+H") /2, —A,
—eye(size(H,2)) ,...
zeros (1,size (H,2)),
[, 11, [, 11, [I, options);

as = zeros(1,length(as));
as (pLsnew) = Ast;
pLs = pLsnew (Ast > 0);

U = HOxas ’;
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g = —(SU) «Wx(HO-U(: ,ones(1,length(q))));
Dsmin = (S-U) «Wx(S-U);

if abs(Dsmin—Dsmino) < le—5 || max(g) < e

Ind = 1;
else
aso = as;
Dsmino = Dsmin;
end

end
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Chapter 7

Asymptotic Properties of the
Generalized Method of Moments
for Univariate Mixed-Effects
Models

7.1 Introduction

In the previous chapter, we introduced the generalized method of moments esti-
mator for univariate mixed-effects models; see Definition 5.4.1. In this chapter, we

study the asymptotic properties of the GMM estimator.

The statistical theory of estimators with a diverging number of parameters has at-
tracted interests from many researchers, especially with the advent of high-dimensional
data in many scientific areas; see [Lam and Fan, 2008], [Chen et al., 2009] and [Wang,
2011]. Under the framework that the dimension of the regression parameter grows to-
wards infinity with sample size, the asymptotic properties of many regular estimators
have been studied; see the profile-kernel likelihood estimator [Lam and Fan, 2008],
empirical likelihood estimators [Chen et al., 2009] and GEE estimators [Wang, 2011].

In this chapter, we consider the case where the dimension of the regression parameter
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3 is fixed but the dimension of the generalized moments vector a diverges with the
sample size N. To emphasize that the dimension of @ depends on the sample size,
we add N as a subscript to o and use the notation a for the generalized moments
vector. Although the estimation setting is different, similar techniques are used to
establish the asymptotic results as in [Lam and Fan, 2008] and [Wang, 2011].

We make the following contributions in this chapter. Firstly, we show N'/2.J ]:,1/ 2
as the convergence rate of the GMM estimator; see Theorem 7.3.1. Here Jy is the
dimension of the generalized moment vector ay. The dimension Jy may diverge
with the sample size N and lev/ *N-1/2 = o(1). Secondly, we prove that the plug-
in weighting matrices, obtained from the initial estimators, converges to non-random
matrices asymptotically; see Theorem 7.4.1. Next, we derive the asymptotic normality
for the GMM; see Theorem 7.5.1. Note that the regularity conditions in [Wilks, 1938]
fail in the GMM in the sense that the dimension of the parameter diverges with
the sample size and the true value of the parameter is a boundary point. However,
according to Theorem 7.5.1, an asymptotically normal test statistics can be obtained
in R?. Lastly, we show that the covariance matrix of Y,, | (X,,, Z,,) can be consistently

estimated; see Theorem 7.6.1.

We organize this chapter as follows. In Section 7.2, we list the regularity conditions
which are required to establish the asymptotic results in this chapter. We also give
some lemmas which are straightforward to prove from the regularity conditions. In
Section 7.3, we show the convergence rate of the GMM estimator. In Section 7.4,
we show that the weighting matrices, which are obtained from the initial estimators,
converges to non-random matrices as the sample size goes to infinity. In Section 7.5,
we give the asymptotic normality theorem for the GMM. In Section 7.6, we show
that the covariance matrix of Y, | (X,, Z,) can be consistently estimated from the
GMM estimators. Lastly, we discuss the challenges in using the asymptotic results for
hypothesis testing problems on the regression parameters. The proofs of the lemmas

can be found in Appendix E.
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7.2 Regularity Conditions

In this section, the regularity conditions for the asymptotic results are listed as
follows. Note that we use Cy as the notation of a finite number depending on the
sample size N, but the value of Cy may vary between lines. Examples satisfying
the following regularity conditions include the Poisson regression and the logistic

regression models with the range of the random effects defined on a compact set.

Regularity Condition 7.A.

For every integer N, there exists a finite number Cy such that

sup sup X, X < Cy
ne{l,...,.N} te{l,...Tn}

with probability one.

Regularity Condition 7.B.

Let JyN~1 converge to zero, as N goes to infinity. For any function h(b) € L*(B, i),
there exists an expansion of h(b) by an orthonormal system {Pj(b)}jﬁo in L*(B, )
such that

h(b) = XN: /B h(b)P;(b)duP;(b) + o( JyN~Y).

Regularity Condition 7.C.

The inverse link function g~'(s) is a smooth function of s € R. For each 3 € R? and
(X, Znt), n=1,...,N and t = 1,....T,, the following functions of b € R are in
the space L*(B, j1):

1. 971<X7F£€IB + Zntb);
2. gUXIB+ Zub),
3. GHUXEB+ Zub),

4. G HXEB+ Zub),

where g~ (s), §7'(s) and 'g'_l(s) are the first, second and third order derivatives of
g~ 1(s) with respect to s.
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Regularity Condition 7.D.
For every integer N and probability measure ) defined on B, there exists a finite
number Cn(Q) by which the following functions of B € RP are bounded:

-----

.....

Regularity Condition 7.E.
For each (X, Zngy X'y Zng), = 1,...,N and t,t' = 1,...,T,, and B3 € RP, the
following functions of b € R are in the space L*(B, u):

1' g_l(X;{;:B + Zntb) X g_l(X;LFt’IB + Znt’b)7

2' g_1<X;£t/6 + Zntb) X g_l(X’;[,[;‘/IB + Znt’b);

3' 971<X7Tt/6 + Zntb) X gil(X;L[;t’/B + Znt’b);

4' 971<X;£€/3 + Zntb) X 971(X£'B + Znt’b)'
Regularity Condition 7.F.
The function h o g='(s) is a smooth function with respect to s. For each 3 € RP and
(Xnty Znt), n=1,....,N and t = 1,...,T,, the following functions of b € R are in
the space L*(B, 1)

1. ho g N (X B+ Zub),

2. hog N (XB + Zub),

3. hog N (X4B + Zub),
where hog='(s) and ho g='(s) are the first and second order derwatives of ho g~ (s)

with respect to s.

Regularity Condition 7.G.
For every integer N and probability measure () defined on B, there exists a finite

number Cn(Q) by which the following functions of B € RP are bounded:
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-----

-----

Regularity Condition 7.H.
For each n € {1,...,N} and t € {1,...,T,}, the function Uy (B, ay) is Lipschitz
continuous, i.e., for any two different parameter values (B, an) and (3, ay), there

exists a finite number L,y > 0 such that

Uni(B, an) = Ui (B, ay)[* < L x (e — eyl + 18- 813), (7.1
where Upy (B, auy) is defined in Equation (5.4).

Regularity Condition 7.1.
For eachne{l,...,N} andt € {1,...,T,},

E[Un (B, Q)] = 0.

Moreover, for every integer N,

sup sup E [Uét(ﬁ*: Q*)}

ne{l,...,N} te{1,....Tn}

1s bounded, where B* is the true value of the regression parameter and Q* is the true

random-effects distribution defined on B.

Regularity Condition 7.J.
For eachn € {1,...,N} and t,t' € {1,...,T,},

Wty = Wpyy + Op(J}V/QNfl/Q). (7.2)

where Wy and Wy are the elements of Wn and W, correspondingly.

The listed regularity conditions provide the following lemmas. The proofs of these

lemmas can be found in Appendix E.1.
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Lemma 7.2.1.

Assume that Regularity Condition 7.B and 7.C are satisfied. Then, for every integer
N and B € RP, there exists a finite number C by which the following functions of
B € R?P are bounded:

..........
..........

777777777

where
D (B) = (Dni0(B), -, Suisy (B)) " € RN, (7.3)
Hu(8) = (So(B). - duus () € RN, (7.4
Bu(B) = (GuclB)s .- Guusy(8)) € R, (7.5
and for each j, ¢ny;(B) is defined in Equation (5.3), and
bus(8) = [ (X~ Zub) Py (7.6)
and
i) = [ 57X+ Zub) P (7.7
Lemma 7.2.2.

Assume that Regularity Condition 7.B, 7.C and 7.D are satisfied. Then, for every
integer N and (B3, o) € RP x M 11, there ezists a finite number C by which the
following functions of (8, an) € RP x M, .1 are bounded:

.......... ’

d)gt (B)an

2. SUPnef1,.. N} SUPte{1,. T}

)

égt(/@)aN

)
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4o SUPneqn, vy SWeqn,.1y | Boe(B)etn ],
where
$u(8) = (6,0(8), -, sy (B) € RPN (7.8)
and for each j,
0 (B) = /B GHXEB + Z,ub) Pj(b)dp. (7.9)

Lemma 7.2.3.

Assume that Regularity Condition 7.B and 7.F are satisfied. Then, for every integer
N and B € RP, there exists a finite number Cy by which the following functions of
B € RP are bounded:

----------

2. SWDpeqr,.. N} SWreqn,.. 7, @i (B)an(B),
where

@nt(B) = (ano(B); - -, iy (B)) " € RV (7.10)
and

ant(B) = (ani0(B), - - -, tney (B)) " € RNV, (7.11)

and for each j, anj(B) is defined in Equation (5.7), and

s () = /B hog (X + Zub) P;(b)dp.

Lemma 7.2.4.

Assume that Regularity Condition 7.B, 7.F and 7.G are satisfied. Then, for every
integer N and (B, an) € RP x M, 11, there exists a finite number C by which the
following functions of (8, an) € RP x M, 41 are bounded:

.......... ’
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..........

..........

where

a’nt(ﬂ) = (dnt[)(/@)u v 7dntJN(,3))T - RJN—H,

and for each j,
lB) = [ lro g™ (X8 + Zub) P

Lemma 7.2.5.

(7.12)

Assume that Regularity Condition 7.B and 7.E are satisfied. Then, for every integer

N and B € RP, there exists a finite number Cn by which the following functions of

B € R?P are bounded:

..........

----------

where

Cur(B) = (catvo(B), - - Cuaray (B)) T € RIVH

and

Crt' (B) = (Cnro(B), - - s Cntray (6))T € RVt

and for each j, cou;(B) is defined in Equation (5.8), and

et (B) = /B (57 (X8 + Zub) x g~ (XT,B + Zuub)

+ T XS B+ Zub) x g HXEB + Zub)) Pi(b)dp.

Lemma 7.2.6.

(7.13)

(7.14)

Assume that Regularity Condition 7.B, 7.D and 7.F are satisfied. Then, for every
integer N and (8, an) € RP x M, 11, there exists a finite number C by which the

following functions of (8, an) € RP x M, 41 are bounded:
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..........

-----

..........

where

éntt’ (/6) = (éntt’O(B)a ce aéntt’JN (/6))T € RJN+1 (715)

and for each j,

éntt’j(ﬁ) = /[:5 (g_1<X7r£:/3 + Zntb) X 9'_1(ng,3 + Zntb)

+ G XN B + Zub) x g (X B+ Zuih)
+ g N XN B+ Zagb) x g (X8 + Zub)
+ 5N X B+ Zub) x g (X B+ Zub)) Pi(b)dp.

nt’

Regularity Condition 7.B determines the error rate of the truncation approxima-

tions obtained from {Pj(b)}jgo; see Corollary 2.4.1 and 2.4.2 for more details.

By Regularity Condition 7.1, we have, foreachn € {1,..., N} and t € {1,...,T,},
|Une(B7, @%)] = Op(1). (7.16)
By the Markov inequality, for an arbitrary a > 0,

4 (3% (O
E[U(8", Q)] i4 sup sup E[Uét(/@*7Q*)].

4
a a” nef{1,.. N} te{l,.. T}

pr(|Um(B", Q)| > a) <

Therefore, |U,:(3*, Q*)| is bounded in probability. Furthermore, for every integer N,
Regularity Condition 7.I also implies that

sup  sup  E[U(8%.Q")]

ne{l,...,.N} te{l,....Tn}

is bounded by the Cauchy-Schwarz inequality.
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7.3 Existence and Consistency of the (Generalized

Method of Moments Estimator

In this section, we give the existence and consistency of the GMM estimators
as the sample size goes to infinity. Simulation-based evidence of the consistency of
the GMM estimator have been shown in Section 5.7. The proofs of the lemmas for

Theorem 7.3.1 can be found in Appendix E.2.

Theorem 7.3.1 (Existence and Consistency of the GMM Estimator).
Assume that Regularity Condition 7.A-7.J are satisfied and JyN—' = o(1), as the
sample size N goes to infinity. Then, there exists a local minima of the optimization

problem (5.11), denoted by (Bcyn, Gv.aym), such that
léen.ca — a3 + ||BGMM — B3 = O,(JyN),

where (8%, aly) is the true value of the parameters, and
ay = / P(b)dQ".
B

Proof. Let
XN

(B, an) = ~ > UL (B, an)W,U,(B, auy).

n=1
and Ay = lev/zN_l/z. We aim to show that, Ve > 0, there exists a C' > 0, depending
on Ny, such that, for any N > N,

pr (|t (B + Bxva.ak + Avva) > Qa3 ) 21—,

where v = (v}, v)" € Rt and ay + Ayve € M1 C RV Tt implies that
with probability 1, there is a local minima (BGMM, ancevu) in the ball with radius
CAy at (8", ay) such that |Gy can — |13 + 1Baant — 8713 = Op(A3).
By Taylor’s expansion at Ay = 0, we have
Q(B" + Anvg, iy + Ayva) — O(B", ay)

3

~ A2 ~ A ~
= Av0Q(B" ay) + X0 QB a) + SY0°Q(B. )

L2+ L+,
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where

- o -~
09(B,an) = aTQ(ﬁ + Ayvg, oy + Anve) ,
N An=0

2
(/37QN> aAQ (,3+ANUB,QN+ANUQ) )
ANZO

3
(/6 aN) aA?, (/8+ANvﬂ7aN+ANva) y
An=0

and (B, ay) lies between (8%, ady) and (8" + Ayvg, iy + Ayv,). In the following

of the proof, we examine the asymptotic order of the three terms I, I, and Is.

Foreachn € {1,...,N}and t,t' € {1,...,T,}, let W,y and wyy be the elements
of W, and W,, correspondingly. Also let

U (B, ay) = Unt(B + Anvg, ooy + Anve) ; (7.17)

9
IAN An=0
foreachn € {1,...,N}and t € {1,...,T,,}. We have

N T,

A 111 2 Z Z Wi OUy (8", oy ) Uny (B, oty )

n=1tt'=

= 2(Lyy + Lo+ Lis + L14),

where
N T
111 - Z Z wntt’aUnt /8 aN) nt’(;B Q )
n=1 t,t'=1
N T
Iy = Z Z W _wntt’)aUnt(B >CYN) nt’(/g Q" )
n=1t,t'=
N T,
I3 = Z Z Wi OUni (8", ) (Uny (B, o) — Upnw (8™, Q7))
n=1t,t'=
and

N T,

Il4 - Z Z wntt’ Wnte aUnt(ﬁ aN) (Unt(ﬁ*a a?\[) - Unt(ﬁ*a Q*>) .

n=1tt'=
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By Lemma F.5, we have
Iy = Op(N V21 [0]]2),

By Lemma F.1 and Equation (7.2) and (7.16), we have

N Tn

| T1a] < —Z D i = w0 (B°, aix)| Ui (87, Q)|

n=1 t,t'=1

= O, (N N7V2||v|,)

By Lemma F.1 and Regularity Condition 7.B-7.D, we have

N T,

15| < —Z D Nwniw] 10U(8%, @) [Une(B7, ey) = Unt (87, Q7)]

n=1t,t/=1

= o(JN N "2|[]l2).

By Lemma F.1, Regularity Condition 7.B-7.D, and Equation (7.2), we have

N T,

|]14| < —Z Z |wntt’ _wntt’| |8Unt(,8 aN)| |( nt(ﬁ aN) nt(IB*aQ*>)|

n=1tt'=

= 0p(Jv N~ |v]l2).

In sum,
= Op(ANTY*N72|[v]l2) + Oy (AN TN T2 |0]l5)
+ Op(ANINPNT2[0]9) + Op(Jx N7 |[0]l2)
= Op(JNN_1||v||2). (7.18)
Let
82
8 nt(/B aN) PYGE nt(ﬁ + AN’Uﬁ, oy + AN’l)a) s (719)
0A%, An=0
for each n and ¢. We have
N T,
AV = Z Z Wnir (AU (8", 03 )0Up (B, ay) + 0°Uni(B*, 0 ) Uni (B, )
n=1 t,t'=1

= Iy + oo + Iz + oy + Io5 + Lo,
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where

N T,
1 - x % * %
[21 = N Z Z wntt/aUnt(/B 7aN)aUnt/(/6 7aN)
n=1t,t'=1

N T
1 - ~ * * * *
[22 = N Z Z (wntt’ - wntt’)aUnt(IB 7aN)aUnt’</B aaN>

n=1t¢t'=1
| N
[23 == N Z Z wntt/82Unt(/6*> a*N>Unt’(/6*7 Q*)
n=1tt'=1
| NI
[24 = N Z Z wntt/82Unt(/8*7 a*N> (Unt’ (ﬁ*a a}k\f) - Unt’(ﬁ*a Q*))
n=1t,t'=1
| N
[25 - N Z (ﬁ]ntt’ - wntt’)azUnt(IB*a a}(\[)Unt’ (ﬁ*a Q*)
n=1tt'=1
and
| N T
s =5 ZEX;(w — W) PU (B, @) (Ui (87, ) — Untr (B, Q7)) -
By Lemma F.1, we have I,; = O(||v]|3). By Lemma F.1 and Equation (7.2), we
have
| NI
2] < 0D e — ww| 10U (87, )| [0U (8%, )|
n=1tt'=1

= O, (JN*N"12|w2).

By Lemma F.5, Ios = O,(Jy°N~'/2|v||2). By Lemma F.2 and Regularity Condition
7.B-7.D,

N T,

I < 5 37 e

n=1tt'=1

a2Unt</6*7 a?\/)‘ ’Unt’ (/8*7 a?\[) — Unt’(lg*u Q*)’

= O(JvN"Hvll3),

By Lemma F.2, Equation (7.2) and (7.16), we have

N T,

| Io5| < %Z Z (Wt — Wy |

n=1t¢t'=1

< O, (PN || 2).

U (B o)| |Un (B, Q)]
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By Lemma F.2, Regularity Condition 7.B-7.D, and Equation (7.2), we have

N T,

’[26‘ <= Z Z ‘wntt’ - wntt”

n=1t,t'=1

= O(JY*N=2|[w]}9).

By the condition that Jy/>N~1/2 = (1), we have

I = O(A}|[v][3) + Op(AX N2 |w]3)
+ O, (AL T N7V |v][2) + O(AY Ty N~ |v]13)
+ O, (AL TN NTV|0]3) + Op(AR VPN 2 |w]3)
= O,(JyN""[[0]3).

Let
3
(93Unt</87 aN) = WUnt(ﬁ+ANUﬁ7QN+ANUQ> ’
N AN=0
for each n and t. We have
N T,
6ANTs = Z;Z Wit OUnt (B, 6n )0 Uner (B, éwy)
1 N T,
+ = Z Z wntt/agUnt(ﬁa dN)Unt/(ﬁ7 dN)
n=1t,t'=1
= I3y + I3p + I3 + I34,
where
3 N T,
I3 = N ;ttlZI wntt@Unt(ﬁ )a Unt’(ﬁ7aN)
N T,
I3 = N ; ttlz W — wntt’)aUnt(ﬁa aN)a Unee (/6 N)
| NI
133 = — Z Z wmt@?’Unt(ﬁ, OuCN)U'TLI?/(/B’ dN)
n=1t,t/=1
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and

N T,

I3y = Z Z wntt’ - wntt’ (9 Unt(,@ ) nt’(/é dfN).

n=1 t,t'=1

By Lemma F.1 and F.2, we have

|I31| < —Z Z |wntt’

n=1 t,t'=

%

oU,.(3 ’ )62 (B, &)

= Op(Jlv]l2)-

By Equation (7.2), and Lemma F.1 and F.2, we have

N T,

IHEESY > Ve = e |00 B o )| 0200 (8, )

n=1tt'=

=@mﬂWWmm

By Regularity Condition 7.B-7.D and 7.H, Equation (7.16) and JyN—! = o(1),
we have
Uni(B, 6x) = Unt(B°, )| + [Unt(B7, aty) = Uni(B*, Q7))
+ U (8", Q")
< L X (I N7 o]l2 + o(IxNTH) + 0y(1)
= Op(l)‘

Unt(éad]\f)’ S

By Lemma F.3, we have

1 N T,
‘[33| < NZ Z |wntt”

n=1t,t'=1

= O(|lvl3)-

U, (B, dN))

Unt’ (/éu dN) ‘

By Lemma F.3 and Equation (7.2), we have

N T,

|34 < — Z Z | Wit — Wit | agUnt</éu Cv'tj\/)’

n=1tt'=

= Op(JxN " v]3)

Unt’ (/éa dN)‘
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Therefore,

Iy = O(AY[|]13) + Oy (A% TV 2N~V |w][3)
+ O0,(A%[|0]13) + O(A% I N1v|3)
= O,(JYNT*2|ol3). (7.22)

By Equation (7.18), (7.20) and (7.22), we find that
Q(/B* + AN”ﬂ? a*N + AN/Ua) - Q(/B*a a?\[)

is dominated by the term

N T
1 n
A?V_lgl = A?VN E E wmt/@Unt(B*, a})aUnt(ﬁ*, a?\[) >0

n=1tt'=1

by allowing ||v]|2 = C to be large enough. It follows that
Q(B" + Anvg, aly + Ayva) — Q(B", o)

converges to a positive number in probability. O]

7.4 Convergence of the Plug-in Weighting Matri-

ces

In Theorem 7.3.1, it is required that, for each n, W, converges to W, element-wise
at rate N/ 2J;,1/ 2; see Regularity Condition 7.J. We may use arbitrary non-random
weighting matrices to obtain the initial estimates (3, &) which converges to (8%, aly)
at rate NY/2J"2. According to the following theorem, the plug-in weighting matrix
Wn(é, ay), denoted by W, satisfies Regularity Condition 7.J.

Let (Bo, anp) € RP x M, 11 such that

~ 2
e — anoll3 + |8 - B, = Op(IxN )
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and () is a probability measure defined on B such that ayy = fB P(b)dQy. Also for

each n, let

W,.(8.Q) =V, *(B,Q)R, 'V, *(8,Q),

and V,(83,Q) is a T;, x T, diagonal matrix whose t'® diagonal element is
—1/ 3T —1/ 3T 2
Vul8.Q) = o [ hog (X18+ Zuna@ + [ (57 (XL8+ Zub))’ dQ
B B

2
— ( / g HXLB+ Zmb)dQ> : (7.23)
B
Here neither By nor () is required to be the true parameter values.

Theorem 7.4.1 (Consistency of W, (8, ax)).
Assume that Regularity Condition 7.A-7.G are satisfied. Further assume that the
initial estimator (B, &) converges to (Bo, ang) € RP x My, 11 in the sense that
lén — anolls + 18 = Bollz = Op(JNNTY).
Then, for eachn € {1,..., N}, W, converges in probability to W, (Bo, Qo) element-
wise at rate J§1/2N1/2, as the sample size N goes to infinity.
Proof. For each n € {1,..., N}, we have
W,.(B, an) — W,(Bo, Qo)

=V, (B, an) R, V, (B, ay) = V, V2 (Bo, Qo) R,V (8o, Qo)

= R, (V.18 aw) - V, (B, Qo)) R, M2, (7:24)
where the diagonal elements of V,,(3, ay) are

2

Vir(B, an) = 0 x ay(B)ay + ¢y, (B)ay — (¢,,(8)ay)”,

and ¢,:(3), ant(B) and ¢, (B) are defined in Equation (7.3), (7.10) and (7.13) cor-
respondingly.
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For eachn € {1,...,N}and t € {1,...,T,}, we consider the gradient function of

Vot (B, ay) at (Bo, aun) along direction (vg, ve) to (B, ay), ie.,

Vo (Bo + Avg, ano + Avg)
=0 X ay(Bo + Avg) (o + Ava) + (B + Avg) (v + Avg)
— (m(Bo + Avg) (oo + Ava))”,
where A = [|éy — anol3 + 18 = Boll2.

By Taylor’s expansion at A = 0, we have

Vot (Bo + Avg, ang + Ave) — Viu(Bo, anyp)

1 o
= OVyu(Bo, ano) A + éazvmt</67 OﬁN)AZa

where
avnt(ﬁoa OéN,o)
= TVl + A, + Ave) »
= (0@u(Bo) + cun(Bo) — 20, (Bo) w0t (Bo)) ' a
+ <0a3t(5)al\/ + égtt(ﬂ)aN - 2¢gt(ﬂ)aN¢3t(/B)aN) Xntvﬁ (7.25)
and

PV (B, én)

2
= %Vnt(ﬁo + Avg, ayo + Avg) s
= _2va¢nt([§)¢ (B)
+ 205 X, (001,(8) + €14 (B) — 261 (B)and(B) — 261,(B)cn b1, (B)) va

1%

T (aazxma]v + Ny (B)an — 200 (B)andl(B)dy - 208,(B)ax bl (B)ew)
X ngng;vﬁ.

and B = By + Avg and & = ag + Avg, and (B, &) is on the line segment between
(B, ay) and (BOaaN,O)-
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For each n € {1,..., N} and t € {1,...,T,}, we have

|8Vnt(/60a OfN,o)|

< )(Uant(/BO) + ¢t (Bo) — 2¢7th(/60)aN,0¢nt(ﬁ0))T Ua)
+ (Uagt(ﬁ>aN + égtt(ﬁ)aN - 2¢Et(ﬁ)aN¢;Et(ﬁ)aN>T X;I;’Ug
< [|o@n(Bo) + e (Bo) — 26, (Bo)aun0bni(Bo) |,

+ ‘Uazt(ﬁ)aN + égtt(zg>aN - 2¢}:t(:8>aN¢gt(B)aNH2 HXntHz )

which is bounded, according to Lemma 7.2.1-7.2.6 and Regularity Condition 7.A.

On the other hand, for each n € {1,..., N} and ¢t € {1,...,T,}, we have

92V,0(8, )
< |20au(B)9L(B)va
+ 205X, (001,(8) + €5,(8) — 201,(B)an 1 (B) — 26L,(B)an Gl (8) ) vel
+ |val (B)an + Ely(B)an — 208 (B)andL(B)cy — 205 (B)andl(Bay|

X /UﬁXntX’nt,vﬁ

< 2| ¢u(B), + 21 Xully ([cau()|, + e ()] + 2|l Bren]| |Su(B)],
+2|¢h(B)e| [$u(B)] ) + (|odn(B)en| + |ehu(B)ety]
+2|$h(B)en el (B)an| +2|on(B)andl (B)an|) x | Xl

which is also bounded, according to Lemma 7.2.1-7.2.6 and Regularity Condition 7.A.

Therefore, we have
V?’Lt(lé’ dN) - Vnt(ﬁm aN,O) = Op(J}V/QN—l/Q)‘
By Regularity Condition 7.E and 7.F, we have

Vet (Bo, aen0) — Vit (Bo, Qo)| = o( JyN ).
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We have that

Vnt(lé7 dN) - Vnt(ﬁOa QO)‘
S |Vnt(B0> aN,O) - Vnt(ﬁ()? QO)‘ +
= O, (JY N2,

Vnt(/é: dN) - Vnt(/607 O‘N,O)

Again, by Taylor’s expansion, we have, for every large N, n € {1,..., N} and

ted{l,.... T},
1 1 1 o
Vnt(BadN> -~ Viu(Bo, Qo) a V2(Bo, Qo) (Vm(ﬁ,a]\;) - Vm(:@O’Qo))
+ Vi,f’t (Vnt(B, an) — VulBo, Q0)>2
= ; 1/2 A7—1/2
Vot (Bo, Qo) +Op(IN N, (7.26)

where V,,, is on the line segment between V,;(8o, Qo) and Vnt(,é, ay).
By Equation (7.24) and (7.26), we have
W.,.(B. 6n) — Wo(Bo, Qo) = O, (J°N712).

This completes the proof. n

7.5 Asymptotic Normality in the Generalized Method

of Moments

Let D, (8, ay) be the diagonal matrix whose diagonal elements are ¢T,(3)ouy,
t=1,...,T,, where ént(,ﬂ) is defined in Equation (7.4). Then, we have
0
%Un(ﬁ, o) = Da(B, an) X, .

From Section 5.4, it is known that the GMM estimator (BGMM, an.cuM) is a solution

locally to (8%, ay) satisfying that

N
1 3 ~ X A ~
N Z X, D,,(Bevm, v evn) WUy (Bevu, v gvm) = 0 (7.27)

n=1
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and

N

X . 1 5 < A

QycMM = arg  min NE U, (Bouu, an) WU, (Baum, an) (7.28)
n=1

anEM 11

simultaneously.

For each n, let

G, (B, an) = (7.29)

o1 (8) ]
Dn(16> CMN)XE

where ®,,(3) is a (Jy + 1) x T, matrix whose t' column is ¢,,;(3) defined in Equation
(7.3). For each n, let

W, =W, (8", Q7),
and
D; = D,(8",Q"),

where D, (8, Q) is the diagonal matrix whose diagonal elements [, ¢~ (X,},8+Z,b,)dQ,
t=1,...,T,.

Note that the true parameter value a’y; may on the boundary of M, 1, and thus
the regularity conditions in [Wilks, 1938] fail and an asymptotic normality result may
not be derived from the optimization problem (7.28). Under the regularity conditions

listed in Section 7.2, we have the following theorem from Equation (7.27).

Theorem 7.5.1 (Asymptotic Normality in the GMM).
Assume that Regularity Condition 7.A-7.J are satisfied. Further assume that (ﬁGMM, QN.GMM)

and the initial estimator (B3, éuy) are in a neighbourhood of (3%, e such that
. 2
|G, et — Oﬂ}ka; + HﬁGMM - ﬂ*H2 = O,(JyN)
and

~ 2
e — a3 +]|8 - 87| = 0N,
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as the sample size N goes to infinity. Given a series of working correlation matriz

(RN, if INN™Y3 =0(1) as the sample size N goes to infinity, then

N A *
B n R ~ - R aNGMM — &
N~1/2 Z X, D, (Bcym; an.ennt) WG (Bevnt, v eum) | 4 *N
n=1 ﬁGMM - /6

converges in distribution to a multivariate normal random vector in RP with mean

zero and covariance matriz I', where the covariance matrix

N
. 1 * * * * * * T

and, for each n, 3,(8*, Q*) is the covariance matriz of Yy, | (X, Z,).

Proof. For each n, we have

X, D,,(Bcaw, dN,GMM)WnUn(BGMM> aN,GMM)

= I + Lo + Inz + Ing + Ips,
where
Iy = X, DLW, UL(B,Q),
Lz = X, D, (Bann, 6v,annt) Wi, <Un(BGMM; an.enm) — Un(B7, @*>> ;
Iy = X, (Du(Bown, @vennt) — D;) WiUn(B,Q°),
Ly = X, D;, (W, = W) U,(8,Q")
and

Ls = X, (Do(Boss, xann) — D; ) (W = W) U(8°, Q7).

By Lemma F.7 and F.11, we have

. R - . . anGMM — A
Lo = — X5, Dy (Bamm, an,anmt) Wn G (Bavm, Gnvgum) | 4 *
Bevm — B

O, (PN,
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By Lemma F.8 and F.9, we have,

1/2 Z[nS — JNN 1/2)
and

1/2 Z-[n4 — JNN 1/2)

Let I,,5; be the i*® element of I,,5, where i = 1,...,p. By Lemma F.6 and Theorem
7.4.1 and Regularity Condition 7.A, we have, for each 7,

I < 1 I8 QI % A ( (DB Gvn) — ;)
X Amax ((Wn - W:)Q)
= Op(JJQVN_z)>

where, for each i, X, is the i'! row of X,,, and, for any matrix A, \p.c(A) is the

largest eigenvalue of A. Therefore, we have

1/2 Z-[nfj — JNN 1/2)
By Lemma F.11 and JyN~'/3 = o(1), we have

N
N Z X, Dy (Bawn, an,eva) WaGr(Banm; v gvi)

n=1

N
NN "L,
n=1

which converges in distribution to a multivariate normal distribution by Lemma F.12.
O

~

Baum — B

[aN,GMM — Oé*N]
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7.6 Consistency of the Estimation of the Covari-

ance Structure of Y, | (X,,, Z,)

In this section, we aim to show that the parametric version of the covariance
matrix of Y, | (X,, Z,) introduced in Section 5.6 can be consistently estimated by
plug-in the GMM estimators.

Theorem 7.6.1.
Assume that Regularity Condition 7.A-7.1 are satisfied and JyN—' = o(1). Further
assume that (Banm, Gn.cant) converges to (8%, ady) in the sense that

. 2
|G aaint — Oé}”; + HIBGMM — 5*H2 = Op(t]NNil)-

Then, for each n, the parametric version f]n(BGMM, Qn.aMmmM) converges in probability

to X,(8*,Q*) element-wise at rate N1/2J;,1/2, as the sample size N goes to infinity.

Proof. Firstly, the diagonal elements of in(BGMM, &y gvM) converges to the variance
of Yy | (Xont, Zne) at rate Nl/QJ];l/Q, as has been shown in the proof of Theorem 7.4.1

Consider the off-diagonal element of 3, (8%, Q*) that is

Y (87, Q7) Z Critj( OéNj (Z Pntj (B OéN]> <Z Dt (B 04N3> )

where for each n € {1,...,N}, t,¢' € {1,...,T,,} and j € {1,...,Jn}, caw;(B) is
defined in Equation (5.8) and ¢,;(3) is defined in Equation (5.3).

For each n € {1,...,N} and ¢, € {1,...,T,}, by Taylor’s expansion at By, we

have
oo
ch (Baa) &y.avm — Z it (B%)ay ; = Ty + T + L,
=0
where

Iy = C‘;ftt’(/é)a*NXg;f <BGMM - B*> ’

Iy =chy (BGMM) (@noum — ay),
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and

o0

Iy = — Z e (B7) Ay

Jj=Jn+1
and B is on the line segment between ,C;'GMM and 3*.

By Lemma 7.2.6 and Regularity Condition 7.A, we have

9 2
Ill S

et (B X (Born — )

2 9 || A . 2
Xl | Bena = 8

|

égtt/ (B)a}k\f

= 0,(JyN7Y).

By Lemma 7.2.5, we have

R 2
I, < ‘ Cmt/(ﬁc;MM)H2 |Gen.avn — Oé}ka;

= O0,(JyN7).
By Regularity Condition 7.B and 7.E, we have
Iz =o(JyN7h).
In sum, we have

I = O,(JX*N7Y?) + O, (JN> N~V 4 o(JyN )

= O, (J)>’N~?). (7.30)
Next, we examine the asymptotic order of I,. For each n € {1,..., N} and

te{l,...,T,}, by Taylor’s expansion at By, we have

b (Bean)bann — > Guii (B )y = Tt + Inp + Is,
=0

where

I = ¢ft(3)aRX£ (BGMM - 5*> )

Iy = d)gt(BGMM) (N, avm — ayy)
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and

I3 = — Z ¢ntj(5*)04}kv,j-
j=Jn+1
By Lemma 7.2.2 and Regularity Condition 7.A, we have
13 < |4 (B)as

= 0,(JyN7Y).

2 9 || A . 2
Xl | B = 8

By Lemma 7.2.1, we have

I, < ¢7Tlt(BGMM)¢m(BGMM) l|Gen v — a}‘v\lﬁ

= 0,(JyN7).
By Regularity Condition 7.B and 7.E, we have
I3 = o(JyN7Y).
So, we have
Iy, = Op(J]1\[/2N71/2) + Op(lev/qu/z) X O(JNNfl)

= O, (J)>’N~?). (7.31)

By Equation (7.30) and (7.31), we have the convergence of the off-diagonal ele-
ments, i.e., for each ¢t,¢' € {1,...,T,} and t # ',

S ie (Bt @) = (8%, Q1) + Op(JN*N 172,

7.7 Discussion

In this chapter, we give the asymptotic properties of the GMM estimator for uni-

variate mixed-effects models, including the convergence rates of the GMM estimators,
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the convergence rate of the plugging in weighting matrices, the asymptotic normality
in the GMM and the consistency of the parametric version of the covariance structure
of Y, | (X,,Z,). We derive the asymptotic results in the case that the dimension
Jn of the generalized moment vector diverges with the sample size. As we have seen,
such divergence Jy slows the convergence rate of the GMM estimator. Moreover, an

asymptotic normality result can be achieved when JyN~Y2 = o(1).

However, it is still challenging to use the results in this chapter to make inference
for the regression parameter 3. One of the major reason is that the true value of the
generalized moments a’j, is unknown; see [Silvapulle and Sen, 2005] for hypothesis
testing problems in the presence of unknown nuisance parameters. Even if aj is
known, it is still challenging to obtain the asymptotic distribution of &y cym, because
the boundary of parameter space of (3, a) is involved. In Chapter 8, we will propose

a methodology to deal with such hypothesis testing problems.

Appendix: F

F.1 Proofs of the Lemmas in Section 7.2

Proof of Lemma 7.2.1

Proof. By Regularity Condition 7.B and 7.C, for every integer N, we have

sup sup ¢ (8)dne(B)

ne{l,...,.N} te{l,...Tn}

= sup sup Zgbw

ne{l,..,N} te{1,....T}

sup Z ¢’I’Ltj

ne{l,...,N} te{l, ,Tn

IN

2
- s s (Z%m(ﬂ)ﬂ-(b)) dp
ne{l,..,N} te{l,..Tn,} JB =0

----------

= sup Sup }/ (67 (X8 + Zub)) " dp
B

ne{l,...,N} te{1,....Tn
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is bounded. Similarly, we also can show that ¢7,(8)dn(8) and @, (8)d.n(8) is
uniformly bounded over n € {1,..., N} and t € {1,...,T,}. O

Proof of Lemma 7.2.2

Proof. Because ay € M, 41, there exists a probability measure (), defined on B
such that ay = [; P(b)dQa, by Theorem 3.3.1. By Regularity Condition 7.B-7.D,

for every integer N, we have that,

sup  sup | (B)a|
ne{l,...N}te{l,...Tn}

ne{l,... N} te{l,...Tn} |- _

JN
—  sup sup Z Gntj(B) w5
7=0

= sup sup / g X LB+ Zb)dQay + o(JyN )
B

ne{l,...,N} te{1,....Tn}

< sup sup / 9 UXEB + Zub)dQuay | + oIy N
B

ne{l,.. N} te{l,....Tn}

SL(B)aw| and |, (B)a|
are uniformly bounded over n € {1,..., N} and t € {1,...,T,}. O

is bounded. Similarly, we also can show that ‘qbgt(ﬁ)a N ),

Proof of Lemma 7.2.3

Proof. By Regularity Condition 7.B and 7.F, for every integer N, we have

sup  sup  ay(B)aw(B)
ne{l,...,.N} te{1,....Tn}

IN

ne{l,...N} te{l,...Tn} -_

= sup sup }L(;anﬁ(ﬁ)ﬂ(b)> du

ne{l,.. N} te{l,....Tn

sup  sup Y ar(B8)
7=0

= sup sup / (h og H(X LB+ meb))2 du
B

ne{l,...,N} te{l,....Tn}
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is bounded. Similarly, we also can show that a.,(3)a.,:(3) is uniformly bounded. [

Proof of Lemma 7.2.4

Proof. Because oy € M, 11, there exists a probability measure )4, defined on B

such that ay = [, P(b)dQqa, by Theorem 3.3.1. By Regularity Condition 7.B, 7.F

and 7.G, for every integer N, we have

<

sup

sup
ne{l,...,

sup
ne{l,...,

sup
ne{l,...,

sup @, (B)owy|

N}te{l

JINn
Sup Z antj(B)on
3=0

N} te{l

sup
N} te{l

sup
N} te{l

-----

,,,,,

.....

.....

Tn}

Tn}

To}

/ hog ' (X (B) + Zub)dQay + ol JNN™Y
B

/ ho g (XE(8) + Zub)dQay
B

+ ‘O(JNN_l)‘

is bounded. Similarly, we can also show that ‘agt(ﬁ)a N| and |al(8)a N| are uni-
formly bounded over n € {1,...,N}and t € {1,...,T,}. O

Proof of Lemma 7.2.5

Proof. Under Regularity Condition 7.B and 7.E, for every integer N, we have

sup sup

[e.e]

sup  sup Y chi(B)

ne{l,...,.N} te{l,..., T"}jzo

/ (Z Cntj(ij(b)) i

/ (07 (XT84 Zub) x g (X181 Zub)* du
B

IN

= sup sup
ne{l,.. N} te{l,....Tn}

= sup sup
ne{l,...,N} te{l,....Tn}
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is bounded. Similarly, we also can show that ¢!, (8)éuw () is uniformly bounded
overn e€{l,...,N}and t € {1,...,T,}. O

Proof of Lemma 7.2.6

Proof. Because ay € M, +1, there exists a probability measure (), defined on B
such that ay = [; P(b)dQa, by Theorem 3.3.1. By Regularity Condition 7.B, 7.D

and 7.E, for every integer N, we have that,

sup  sup [ eq(B)a|
ne{l,...,N} te{l,....Tn}

= sup sup Z Cntrrj (B)aj + O(JNN_I)

ne{l,...,N} te{l,....Tn} =0

= sup sup /g
ne{l,...,N} te{l,....Tn}

X8+ Zub) x ¢ HX B + Znb)dQay + o(INNT)

1

i (
< sup sup /g_l(th,@ + Zoth) X g HX LB+ Zpb)dQay | + |0(JNN_1)|

ne{l,..., N} te{l,...Tn} |/ B
1/2
_ 2 _ 2

< sup sup ( (97 (XmB+ Zub))” dQay x/(g Xy B+ Zuwb)) anN>

B

ne{l,.., N} te{l,....Tn} B

+ ‘O(JNN_l)‘

is bounded. Similarly, we also can show that |¢}, (8)an| and |éL, (B)ay| are uni-
formly bounded over n € {1,..., N} and t € {1,...,T,}. O

F.2 Proofs of the Lemmas for Theorem 7.3.1
Proof of Lemma F.1

Lemma F.1.

Assume that Regularity Conditions 7.A-7.D are satisfied. Then, OU, (B, o), de-
fined in Equation (7.17), is O(||v]]2), for each n € {1,...,N}, t € {1,...,T,} and
(B,an) € RP x My, 41.
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Proof. For eachn € {1,...,N}and t € {1,...,T,}, we have

JIN
Unt(B+ Avg, ay + Avg) = Yoy — Z Ot (B + Avg) (o + Avay ),

=0
where vq, ; is the j™ element of v,.

For eachn € {1,..., N}, t € {1,...,T,} and j € {1,..., Iy}, let

NV Onti(B) = antj(ﬁ) X X, € RP (F.1)

be the derivative of ¢,,;(8) with respect to 8, where gz.Sntj (B) is defined in Equation
(7.6). We write

V¢nt(16) - Xnt(p;ft(ﬁ)a

where ¢,,,(8) is defined in Equation (7.4).
The derivative of U,(8 + Avg, oy + Av,) with respect to A is

0
a—AUm(B + Avg, ay + Av,)

JIN
= =) (05w (B+ Avg)(an; + Avay ;) + b (B + Avg)vay ;)

= 0" (LB + M), (Vu(B + Avg)(ey + Ava))T) | (F2)

where ¢,;(8) € RV is defined in Equation (7.3).

Foreachn € {1,...,N} and t € {1,...,T,}, let
T
hoi(B. an) = (65(8), (Vou(Blan)") € IV, (F.3)

where (3, an) € R? x M, +1. When A = 0, by the Cauchy-Schwarz inequality,

Ao)z = (v hu(B, axn))’

S h’;{t(ﬁ% aN)h’nt(/Ba CXN>H'U||§

0
(a_AUnt(/B + A’Uﬁ, N + A’Ua)
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By Lemma 7.2.1, we have that ¢, (3)¢.(3) is bounded for each n and t. By Lemma
7.2.2 and Regularity Condition 7.A, we have
(Vén(Bow) " 7u(B)oy = e u(B) X3 X y(B)on

< (X300 (T (B)an)

is also bounded for each n and ¢. Therefore, for each (8,ay) € R? x M, 41, n €
{1,...,N}and t € {1,...,T,}, h5 (B, an)h. (B, ay) is bounded. It follows that,
foreachn € {1,...,N},t € {1,...,T,} and (B,an) € R? x M, 11,

OUne(B; o) = O(][v]2).

Proof of Lemma F.2

Lemma F.2.

Assume that Regularity Condition 7.A-7.D are satisfied. Then, 0*Un(B, ay), de-
fined in Equation (7.19), is O(||v||3), for each n € {1,...,N}, t € {1,...,T,} and
(B,an) € R? X My 41

Proof. For each n € {1,...,N}, t € {1,...,T,,} and 5 € {1,...,Jy}, the Hessian
matrix of ¢,;(B) with respect to 3 is
V2¢nt]’(ﬁ) = gbntj(/g)XntX;Fta (F4)
where ¢,,;;(3) has been defined in Equation (7.7).
The second order derivative of Uy (8 + Avg, an + Av,) with respect to A is

82
OA?

Jn
= = (vEV 0nij (B + Avg)vg(an; + Avay ;) + 205V 0nii (B + Avp)vay ;) -
=0

Unt(B + Avg, oy + Avy)
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When A = 0, we have
92

@Unt<,6 + A’Uﬁ, aN + A’Ua)

A=0

JN
= =Y (05’ 6u; (B)vsan, + 205V 6uii(B)Vay.;)
=0

JIN
- ’Ug <Z O‘N7jv2¢ntj(ﬁ)> Vg — 2’vgv¢m(ﬁ)va-

=0
By Lemma 7.2.2 and Regularity Condition 7.A, we have that

JNn
Ug‘; (Z @N,jv2¢ntj(5)) U3
=0

éntj (/B)aN ‘ 'UantX;E:/UB

2
< [lvgll3 | Xl

Pt (B)Oéfv‘
= O(||vl3).
On the other hand, by Lemma 7.2.1, we have that
(057 @u(Bva)” = (VXL (Bva)
= (0 X)" ($1(B)va)

2
i
< 1%l [ @us(B)]| I0sl3Ival3

= O(|lv[l3)-

By Equation (F.5), (F.6) and (F.7), it follows that, for each n € {1,...

t e {1, . 7Tn} and (,@, OAN) € RP x MJN+1,
0*Unt(B, o) = O([[v]13)-

Proof of Lemma F.3

Lemma F.3.

(F.5)

(F.6)

(F.7)

7N}7

Assume that Regularity Condition 7.A-7.D are satisfied. Then, 03U(B, ay), de-
fined in Equation (7.21), is O(||v||3), for each n € {1,...,N}, t € {1,...,T,} and

(B,an) € RP x M, 1.
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Proof. Foreachn € {1,... , N}, te{l,....T,}andj € {1,..., Iy}, let ¥ (UEVQQSntj(B)vg)
be the derivative of v *¢n;(8)vg with respect to B, i.e.,
\Y (UEV2¢ntj(B)Uﬁ) = 'Q‘gntj(/B)UEXnth;vﬁXnt;
where ‘éntj (B) is defined in Equation (7.9).
The third order derivative of U,.(3 + Avg, an + Av,) with respect to A is

93
N3

Jn
= - Z v (V (V5 V7 0nt; (B + Avg)vg) (an + Avay ;)
7=0

Unt(/B =+ Avﬁ7 ay + A’Ua)

+ 305V % 0ni; (B + Avg)vgvay ;) -

When A = 0, we have
3

— WUM(B + Avg, an + Avy)

A=0
JN
= (v5 V (V5 0nii(B)vp) anj + 305576t (B)VsVay.;) - (F.8)
=0

By Lemma 7.2.2 and Regularity Condition 7.A, we have that

JN
> vh 7 (057 0w (B)vs) | = BB (v Xor)’
7=0

< |ruB)ous 1 Xl 0]}

= O([[v[I2)- (F.9)
By Lemma 7.2.1 and Regularity Condition 7.A, we have
(Z vgv2¢ntj</3)vﬁva1v,j) - (ZUQN,j¢ntj<B)> ('ngntht'Uﬁ)
j=0 j=0
. N
< lvally x [valls x |6 (B3 x (X7 X)

= O([lv[l3)- (F.10)
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By Equation (F.8), (F.9) and (F.10), it follows that, for each n € {1,..., N},
te{l,....,T,} and (B,an) € R x M, .1,

FUn (B, an) = O(||[v]3).

Proof of Lemma F.4

Lemma F.4.
For eachn e {1,...,N} and t € {1,...,T,}, let Gu; be a function of (X, Zni). For
every integer N, suppose that there exists a finite number Cy such that

sup sup G < Cn
ne{l,...,.N} te{1,....Tn}

with probability one. Assume that Regularity Condition 7.1 is satisfied. Then, for
each n,

N T
1 = . s _
N Z Z wntt’gntUnt/(IB 7@ ) = Op(N 1/2).
n=1tt'=1
Proof. Let B, = N~1/2 ZZZ:I Whttr Gt Une (8%, Q). Firstly, we show that the variance
of B, denoted by o2, is bounded. We have that

. )
NVar[B,] <E (Z Wttt Gt Ut (87 Q*))

tt'=1

[/ Ty Ty
S E < Z witt/gntgnt’> X (Z Ugt(ﬁ*a Q*>>] .
L t=1

t,t'=1

Because W, is a positive definite matrix and G,; is bounded for each ¢, we further

have

NVar [B,] < CE

Th
S U8 Q*)]
t=1

Tn

=CY E[U(8.Q].

t=1



where C' > 0 is a finite number. By Regularity Condition 7.1, 62 = O(N1).

Next, we use the Lindeberg-Feller Central Limit Theorem [Bauer, 1996, p.g. 234],
to show that 32 | B, is O,(1). It suffices to check the Lindeberg condition, that is,
Ve > 0,

1
lim ——— Y E[B2I(|B,| >¢€)] = 0.
N_)OOZ'I’LI nnzjl

Given € > 0, by the Cauchy-Schwarz inequality, we have

=
=z

SCEIBA(B, > 0] < 3 (B [BL] x pr(|Ba > €)”.

n=1 n=1
Using Chebyshev’s inequality, we have

pr(|Bal > €) < —22 — O(NY).

€

On the other hand, by Regularity Condition 7.1,

_ - 4
E [B;ﬂ S Niz]E (Z wntt’gntUnt/ (/6*7 Q*)>
tt'=1

T, 2 T, 2
S N72]E ( Z wittlgntgnt’> X <Z Ugt (/6*7 Q*)>
t=1

/=1

T, 2
t=1
Tn

<N E[ULBY, QU8 Q)]

tt'=1

= O(N?).

Therefore, we have ng = SN E[B2I(|B,| > ¢)] = O(N~/?). This completes the

proof. ]
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Proof of Lemma F.5

Lemma F.5.
Assume that Regularity Condition 7.A-7.D and 7.1 are satisfied. Then,

N T
1 - * * * * -
T 2o D WaiwrdUn(B, @)U (87, Q) = Op(N ™23 |[v]l2),
n=1t,t/=1
1 N T
20D W lPUB, %) U (8°,Q) = Op( N2 o),
n=1tt'=1

where OU(B*, ay) is defined in Equation (7.17) and 0*Un (8%, &) is defined in
Equation (7.19).

Proof. By Equation (F.2) and the Cauchy-Schwarz inequality, we have

N T 2
1 n
N Z Z wntt/aUnt(B*, a*N)Unt’ (/6*7 Q*))
n=1t,t/=1
| NI 2
= [ o7 (N Z Z wntt/Unt’(/B*aQ*)hnt(ﬁ*7a*N)))
n=1 t,t/=1
| NI ?
< ‘ § D WU (B Q)8 )| ol
n=1t,t'=1 2

where h,+(3, ay) € R/¥*PH is defined in Equation (F.3).

By Lemma 7.2.1 and 7.2.2, we have that, for every integer N,

sup  sup hy, (8%, ey hiu (8", ay)
ne{l,...,.N} te{l,...,Tn}

is bounded. So, for every N and j € {1,...,Jn},

sup  sup  |ha (87, ay)|
ne{l,...,N} te{l,....Tn}

is bounded, where h,;;(3, ay) be the j™ element of h,;(83, ay). By Lemma F.4, we
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have

N T,
1 - * * * *
NZ Z wntt'Unt’(ﬁ ,Q )hnt(IB aaN)
n=1t,t'=1 2
Jn+p 1 N Th 2
= Z (NZ Z wntt/Unt’ /6 Q) nt](ﬁ aN))
7=0 n=1tt'=
- Op(Ni JN)
Therefore,
1 N T,
20D W dUn(B', a3 U (B, Q") = Oy I N2 o],
n=1t,t/=1

By Equation (F.5), we have

N T
1 n
N Z Z wntt’aQUnt<ﬁ*a Ol}kv)Unt'(ﬁ*u Q*)
n=1 t,t'=1
N T,

- - _Z Z wntt’vﬂ (Z aNJV ¢ntj )) vgUny (8", Q)

n=1 t,t'=
N T,

- _Z Z wntt’vﬁVQ,)Rt (B")valUni (8", @),

n=1tt'=
where for each n, t and j, \7¢,:(8*) is defined in Equation (F.4).

Consider the first term of on the right hand side of the above equation. By
Regularity Condition 7.A and Lemma 7.2.2, we have, for every integer N, each element
of Z;.]IZVO Ay ;V Gni(B7) is uniformly bounded over n € {1,..., N} and t € {1,...,T,}.
So is the largest eigenvalue of Z‘j]io Ay jV ®nt(B7). By Lemma F.4, we have

N T,
n=1 t,t'=
N T,
>3 2
O

wntt’vﬁ (Z ava ¢ntj )) vBUnt’</3*a Q*)

IN

wntt’Unt’ /3 Q max (Z OCN]V ¢nt]( *>> ||’Uﬁ||§

n=1 t,t'=

b (N2l 13).
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By Regularity Condition 7.A and Lemma 7.2.1, each element of X,,;, denoted by
X, and éntj(ﬁ*) are uniformly bounded over n € {1,...,N} and t € {1,...,T,}.
Then, by the Cauchy-Schwarz inequality and Lemma F.4, we also have

N Th 2
N Z Z wntt’vﬂv¢nt ﬂ)vaUnt’(B*7Q*))
n=1tt'=
N T, 2
- N Z Z wntt’vﬁ nt¢nt(6*)vaUnt’(B*> Q*))
n=1tt'=
2

IN

lva 3

‘ N T

5D w0 XU (8", Q)b B°)

n=1t,t'=1

2

JIN 1 N T, 2
Z ( N Z Z wntt’XntUnt’(/B Q" )@m(ﬁ )> H%H%

§=0 n=1t,

JIN
<>t 5
N T, 2
<zwwwz(zzmemgme

IN

2

lva 3

N T,
Z Z wntt’thUnt’(/B Q )anty(ﬁ*)

n=1tt'=

2

n=1tt

= O,(JnN"|vl3).

In sum,
N T,

szwmfa Uni(B", a3 )Unt(B", Q7) = Op(JN*N 2w [3).

n=1t,t'=

F.3 Proofs of the Lemmas for Theorem 7.5.1
Proof of Lemma F.6

Lemma F.6.
Assume that Regularity Condition 7.A-7.D are satisfied. Let (,é, ay) be an estimator

which converges to (B*, ay) in the sense that

ey — aill2 + 18 — B3 = O,(JyN7Y).
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Then, as the sample size N goes to infinity, for each n € {1,...,N} and t €
{1,...,T,.},

BB = [ 07 (XEB"+ Zuubi )
B
R T :
B-p nt(B") oy Xy
where ¢ (B) € RN s defined in Equation (7.6) and ¢n(B) is defined in Equation
(7.7).

+ O, (JNNY), (F.11)

Proof. By Taylor’s expansion with respect to 3 € R? locally at 3* € RP, we have

. ~

LBy = [ XL+ Zub Q" + L8 (6 = k)
+ $ul(B) er X1, (B~ 8)
+ Gu(B)" (@ — i) X1 (8- 8)
+(6-8) XubnBanxy (6-5)
BB~ [ 07 (XEB+ Zubi )G
B
where ,é is on the line segment between 3*, and B and '(},’)'m(ﬁ, ay) is defined in

Equation (7.8). By Lemma 7.2.1 and 7.2.2, and Regularity Condition 7.A, we have,
foreachn € {1,...,N}and t € {1,...,T,},

u(B)" (G — i) X, (B B")
$u(8")|| 1 Xl lGen — ey, ||8 — B
< OP(JNN_1)7

<

2

and

‘ (6-8) XubnBanxy (6-5)
2
2

BB

< [$uBan| 10l

=0,(JyN)
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and

S5 )l — /B G (XD 1 Zuba)dQ*| = oIy N Y.

Therefore, we have Equation (F.11). O

Proof of Lemma F.7

Lemma F.7.
Assume that Regularity Condition 7.A-7.D are satisfied. Let (B, ay) be an estimator

which converges to (B*, ay) in the sense that
léen — a3 + 118 = B3 = Op(JxN 7).

Then, as the sample size N goes to infinity, for each n € {1,...,N} and t €
{1,....T,},

Uni(B, én) = Uni(B*,Q7) — b1 (B7) (G — )
— G (B X, (B= ") +0,(IxN ),
where ¢ni(B) is defined in Equation (7.3) and ¢ni(8) is defined in Equation (7.4).

Proof. By Taylor’s expansion with respect to 3 € RP locally at 3* € RP, we have
Unt(B, én) = Unt(8", Q") — ¢ (87) (Guy — o)
- dn(B)an X, (B-87)
~ (o — o) du(B)X (8- 8)
. T s T [
~(B-8") Xud(BanX], (B-8")
+ Unt(/B*7 a?\f) - Unt(ﬂ*) Q*)7

where ,é is on the line segment between 3*, and g},’im(ﬁ, ay) is defined in Equation

(7.5). By Lemma 7.2.1 and 7.2.2, and Regularity Condition 7.A, we have, for each
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ne{l,...,Nyand t € {1,...,T,},

(G — o) du(B)XE (8- 4")

< | u (8] 1 Xuill | 8= 8 e — i
= Op(JNN_l)
and
~ T . o ~
‘ (B-8) Xudi(BarX (8-5)
< X1 X | BL e |6 -
= OP(JNNA)
and

Uil i) = Un(8", Q") = o(JxN "),
Therefore, we have
(G — o) $u(B)XE (B B") = UnlB', ay) + Un(B8,Q")
+(8-8) XudlBranxy (5-)
— 0,(JyN7Y).

Proof of Lemma F.8

Lemma F.8.
Assume that Regularity Condition 7.A-7.D are satisfied. Let (B, éuy) be an estimator

which converges to (B*, ay) in the sense that

lay — eyl + 118 = 8715 = Op(JNNT).
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Then, as the sample size N goes to infinity, for each n € {1,...,N} and i €

{1,...,p},
Nzxn,( w(B, ) = D) WoUn(B".Q") = O,(JyN ),

where X,,.; is the i row of X,, and D,(B, a) is a diagonal matriz whose diagonal

elements are ¢X,(B)ay.

Proof. By Lemma F.6, we have

X,.i (Du(B.é) = D}) WoU(8", Q")

ay — ay ' (I)n(/g*)
; X, ding ($1(8") oy

n

> + O, (IyN71) | diag(X,..;)

x WU, (8", Q"),

where @,,(3) is the (Jy +1) x T}, matrix whose columns are {¢,;(3)}2,, ®,(8) is the
(Jy +1) x T, matrix whose columns are {¢,;(8)}",, and for any vector A, diag(A)

is the diagonal matrix whose diagonal elements are A.

For each n and 1, let

®,(6")

d,i = )
X, diag ($7(8") e

) diag(X,..)W, U, (8", Q") € R/NT1H7,
By Lemma 7.2.1 and 7.2.2, and Regularity Condition 7.A, we have that, for every

integer N, each element of

©,(8")

X, diag (81(87)ag ) | E X

is uniformly bounded over n € {1,..., N} and ¢t € {1,...,T,}. Then, by Lemma F .4,

we have that each element of + Zivzl d,; is O,(N~1/2). Therefore, we have

Z dm

J1/2N_1/2).
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By the Cauchy-Schwarz inequality, we have

2|y X
(||aN—aN||2 ) an::ldni 2
-0 (J1/2 1/2) %< O (J1/2 1/2)
= O,(JyN7).
This completes the proof. O]

Proof of Lemma F.9

Lemma F.9.
Assume that Regularity Condition 7.A-7.G are satisfied. Further assume that the

initial estimator (B, &) converges to (Bo, any) in the sense that
lan — anoll + 118 = Boll3 = Op(INNTY),

where there exists a probability measure )y defined on B such that an g = fB P(b)dQo.
Then, as the sample size N goes to infinity, for each n € {1,...,N} and i €

{1,...,p},
N
%ZXTLZD:/ (Wn - Wn(/807 QO)) Un(ﬁ*a Q*) = Op(JNNil%
n=1

where X,,.; is the i™ row of X,, and D, (8, a) be a diagonal matriz whose diagonal

elements are ¢,(B)ay .

Proof. By Equation (7.26), we have, for each n € {1,..., N} and t € {1,...,T,},

Vn_tl<lé7 dN) - Vn_tl(ﬂ()a QO)
= — V:.2(Bo, Qo) (0V;ui(Bo, an0)A) + Op(JyNTY),
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where A = O,(J}/*N=1/2) and 9V,,,(3, cx) is defined in Equation (7.25).
Further, by Equation (7.24),

X,.iD;, (Wo = Wa(B0, Q) Un(87.Q)
= X DR, (VB G) = Vi (B, Qo)) R, VP08, Q)

=A [Vn_12(30, Q0)0Vn1(Bo, anp), - - -, Vn_Ti (Bo, Qo)OVar, (Bo, OéN,o)}

x diag (X, Dy R,"?) x RPUL(B7, Q%) + Op(JyN ™)
T

C,diag (X,..D;R,'*) x R,'*U,(B", Q") + O,(JyN ),

Vo

=A

U

where C, is a Jy + p + 1 x T, matrix whose t™* column is

0an(Bo) + cn(Bo) — 2¢gt(/80)aN,0¢nt(/60)
Xt (00l (B)e + €5, (B)aw — 26T,(B)and,(B)a)

For each n and 1, let
d,; = Cydiag (X,..DyR,'?) x R'UL (87, Q7).

By Lemma 7.2.1-7.2.6, and Regularity Condition 7.A, we have that, for every integer

N, each element of
C,diag (X,.D;R,"*) R,'/*

is uniformly bounded over n € {1,...,N} and t € {1,...,T,}; see the proof of
Theorem 7.4.1 for more details. Then, by Lemma F.4, we have that each element of
LN dl is O,(N~"/?). Therefore, we have

Zd

By the Cauchy-Schwarz inequahty, we have

1 N Va ' c
: N;LJ i) =5 Lﬁ] de
izd/,
anl m2

= Op(JNN71>.

— 0, 1/2 1/2).

<A
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This completes the proof. O]

Proof of Lemma F.10

Lemma F.10.
Assume that Regularity Condition 7.A-7.D are satisfied. Let (,[;', ay) be an estimator

which converges to (B*, ay) in the sense that
lan — ayllz + 18 = 875 = Op(JNNTY).
Then, as the sample size N goes to infinity, Gn(,é, ay) element-wise converges to

G, (B*, ay) in probability with rate N1/2(]];1/2'

Proof. By Lemma F.6, it is shown that D,,(3, &) element-wise converges to D, (3*, o)

in probability with rate N1/2.J"/ )

. The rest to show is that ®,,(8) element-wise con-
verges to ®,(8*) in probability at rate NV/2.J,"/2.

By Taylor’s expansion, we have, for each n € {1,...,N} and t € {1,...,T,} and
J€{0,...,Jn},

o c\NT .
6ni(B) — 6uis(8") = (Vous(B)) (B - B")
where /¢ () is defined in Equation (F.1) and B locates on the line segment between

B and B*. By Lemma 7.2.1 and Regularity Condition 7.A, we have, for each n €
{1,...,N}and t € {1,...,T,,} and j € {0, ..., In},

Gntj (B) — duij (B7)

<

Duis (B)| | Xl | B — 8
- Op(le\f/2N_1/2)-

2

This completes the proof. O

Proof of Lemma F.11

Lemma F.11.
Assume that Regularity Condition 7.A-7.1 are satisfied. Let (B,dN) be an estimator
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which converges to (3%, aly) in the sense that

p(JNNil)a

. 2
lan — O‘*NHQ

and JEN72 = o(1). Then, as the sample size N goes to infinity, for each n €

{1,...,N} andi € {1,...,p},

A e A ay — o
Xn.i Dy (B, 6y )Wy G (B, an) [ N *N]
B—B8
= X0 Dn(B, 6 )WaGo(B,a) | 0~ SN 4 0,(JPN T
B—-08
Proof. For each n, we have
A . .. 0N — o
anDn(Ba aN)WnGn(ﬁ 7aN) [ ]AV *N]
B—p
= Ini + Lnio + Lz + Lnia + Lnis,
where
~ ay — o
[nzl Xn'LD (/87 aN)WnG (BvaN) ]AV *N
B—B
A dN — a}k\,
Inio = XmD:LW* (5 o ) Gn(ﬁu OﬁN) X A )
(Gnier e ) B-p
Lis = Xoi (Du(B,6x) = D) W, (Gu(B,ay) = G(B, cv) )
y [div - "N] |
B—p
B—pB
and



By Lemma F.10, we have that, for each n € {1,..., N},

A ((Gn@*, o) = Gu(B.an)) (Gu(8" ) — Gu(B, dN)>T)
= Op(JyN7).

By Lemma 7.2.2 and Regularity Condition 7.A, and the Cauchy-Schwarz inequality,

we have

B <o ( (6ol 03) ~ GulB.aw) (Gu(B7.03) - Gulian) )
iy * T A *
< | X DLW [‘”Y B O‘N] [‘”f B “N]
B-p | | B-p
= 0, (J3N7?).
Similarly, we can show that

2 = Op(JyN7?),
I2i4 = Op(t]va_S)

n

and

I = OP(JJ%N_AL)

nib

by Lemma F.6 and F.10, Theorem 7.4.1 and Regularity Condition 7.A. This completes
the proof. O

Proof of Lemma F.12

Lemma F.12.
Assume that Regularity Condition 7.A-7.C and 7.1 are satisfied. Then, as the sample
size N goes to infinity,

N
N2> X, D)W, UL (8, Q%) (F.12)

n=1
converges in distribution to a multivariate normal random variable with mean zero

and covariance matriz I.
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Proof. Let
B,=N"'"’X,D:W;U,(B",Q") € R
and, for each i € {1,...,p},
By = N~V X, D, W,U(B°, Q")

is the i*® element of B,,, where X,,.; is the i*" row of X,,. We use the Lindeberg-Feller
Central Limit Theorem [Bauer, 1996, p.g. 234] to prove this lemma by checking the
Lindeberg condition.

2

ni’

Firstly, we show that for each ¢ € {1,...,p}, the variance of B,;, denoted by o
is bounded. By the Cauchy-Schwaz inequality, we have

NVar[Bm»]
= E [(X,..D,W,;U,(8".Q"))’]
=E[(X,..D;W;D,X\,) x U (8",Q")U,(8",Q")] .

Because W' is positive definite matrix and the elements in X,,;, D} are all bounded

by Regularity Condition 7.A and Lemma 7.2.1, we have
where

Ci= sup X,,D:W'D:X.

Moreover, because E [UnT(,B*, QU (8%, Q*)} is bounded for each n, by Regularity
Condition 7.1, we have 02, = O(N1).

For any ¢ > 0, by the Cauchy-Schwaz inequality, we have

STE[IBLIBI(IB.) > €)] < S (BB x pr(|Ballz > €)"?.

Using the Chebyshev’s inequality, we have

p
pr (|| B, >€) < N71672Z(772”4 =O(N).

i=1
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On the other hand, by the Cauchy-Schwarz inequality and Regularity Condition 7.A

and 7.1 and Lemma 7.2.1, we have

E[]| Bu|l2]
p 2
=E (Z Bfu.>
1=1
P
< PZE [Byi]
i=1

<pN S B[(X D Wi DX L) (UF(8°,Q)U.(8°, Q"))
=1

p

<P CE[(UNB.QIU.B.Q))]
— O(N72).

Therefore, -, B[ B, 3(|1Bl| > )] is O(N-/2).

For each n, the covariance matrix of B,, is

Cov[B,] =E [B,B!]
— N'E[X,D;W:, (8", Q" )W;:D:X],

where ¥,,(8%, Q") is the covariance matrix of Y,, | (X,,, Z,,). Under the assumption
that the elements of S~ Cov [B,] converges to a covariance matrix I' as N goes to

infinity, we complete the proof. O
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Chapter 8

Ensemble Inference with the
Generalized Method of Moments

Estimators

8.1 Introduction

Given a data set (Y, X,,Z,), n = 1,..., N, from the data setup in Section
5.2, we are interested in the inference about the regression parameter 3 € RP under
the framework of the generalized method of moments for mixed-effects models with
univariate random effects. In other words, the regression parameter 3 € R? is the
parameter of interest, while the generalized moments oy € R/¥*! are nuisance pa-
rameters. In this chapter, we use the generalized method of moments to construct a

x? test statistic for the following hypothesis testing problem
HO . ﬁ = /80, (81)

where 3y € RP is a real vector.

From Theorem 7.5.1 and its proof, we know that, given an estimator (B, ay)
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satisfying Equation (7.27), the asymptotic distribution of

is multivariate normal under the regularity conditions in Section 7.2, where

1 & ; z 3
=¥ Z X, D, (B,anx)W,®}(3)
n=1

and

N

Z D, (B, x)WaDu(B, i) X
Here for each n € {1,...,N}, ®,(8) is (Jy + 1) x T,, matrix whose elements are
®ntj(B) defined in Equatlon (5.3); D, (B, ay) is the diagonal matrix whose diagonal

elements are c,bnt(ﬁ)oz N, t=1,...,T,, where for each t, qu(,@) is defined in Equation
(7.4); the weighting matrix

Wn _ ‘~/7L—1/2R;1‘}n—1/27

where V,, = Vn(B,dN), V,.(B,ay) is a T, x T,, diagonal matrix whose diagonal
elements are V,;(3, a) defined in Equation (5.10), and R,, is the working correlation

matrix.

However, as we pointed out in Section 7.7, n € R? may not be directly used for
testing the hypothesis Hy in (8.1), because ayy € R’~ is unknown. However, if we

can find a unit vector e € R? such that
e"A=0¢€R,
and
e'B #0eR,
then we can construct an asymptotically normal test statistic for Hy,
e'n=N"?e"B (B — B*) eR

236



However, such unit vector e € R? does not exist, when A is a full rank p x (Jyv+1)
matrix and B is full rank p X p matrix. The reason is that the space spanned by the

columns of B is a subspace spanned by the columns of A.

We propose using the ensemble inference [Zhu, 2008] for testing the hypothesis
Hy under the framework of the generalized method of moments. We prove that the
proposed test statistic asymptotically follows a y? distribution. In the literature of
mixture models, it is uncommon to see asymptotically x? test statistics. Most of them
have a mixture of y? distributions as their asymptotic distributions; see [Lindsay,
1995] and [Li and Chen, 2010].

We organize this chapter as follows. In Section 8.2, we describe the procedure for
using the ensemble inference. In Section 8.3, we establish the appropriate asymptotic
theory. In Section 8.4, we conduct simulation studies to investigate the performance
of the ensemble inference. In Section 8.5, we use the ensemble inference to analyze

the Epileptic Seizures Data. Lastly, we end this chapter with a discussion.

8.2 Ensemble Inference

The ensemble idea that making inference with a collection of models rather than a
single model is not new to the literature of statistics. The famous ensemble methods
include the AdaBoost [Freund and Schapire, 1997] and the random forests [Breiman,
2001]; see [Zhu, 2008] for an insightful discussion. Our ensemble idea is to construct
a x? test statistic for Hy with an initial estimator (B,dN) and a collection of the
generalized estimating equations with different working correlation matrices. Here
the initial estimator is obtained from the GMM. This is a new application of the
ensemble idea, by our knowledge, while the ensemble methods are often used to

reduce the prediction errors in the existing statistical literature; see [Zhu, 2008].

Given a data set (Y, X,,Z,),n=1,..., N, from the data setup in Section 5.2,
the ensemble inference for the null hypothesis testing Hy in Equation (8.1) include
the following steps:

1. Compute the initial estimator (B,dN) by the GMM, where for each n, the
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weighting matrix is the identity matrix.

2. Let K be the smallest integer such that pKy > Jy + 1. Choose Ky random
matrix processes Ry, k = 1,..., Ky. For each k € {1,..., Kx}, generate a set
of random correlation matrices {R;k)}ff:l from the random matrix process Ry,
where R,Ef), n =1,...,N, are independent to each other. Moreover, for each
ne{l,...,N}, RV depends on the data (Y,, X,,, Z,) in the sense that RW

is a T,, x T,, matrix, where T}, is the dimension of Y,.

3. For each k € {1,..., Ky}, solve the estimating equations

N

1 _

N Z XﬂDnt{)Un(IB7 dN) =0, (83)
n=1

where for each n € {1,...,N}, D, = D,(8,éx), Un(8,ay) is defined in
Equation (5.5), and

Wék) _ ‘7”_1/2 (Rgf))—l Vﬂ-l/g
For each k € {1,..., Ky}, let 8% € RP be the solution of Equation (8.3).

4. Compute the matrix

Loy Tz oo Ty
P F<.2,1) F(.z,m & F(z,.Km | (8.4)
Tixvny Tavr oo Tigwr)
where for each k, k' € {1,..., Kn},
L
I - D W ES k)T T
Here for each n € {1,..., N}, ¥, is an estimator of the correlation matrix of

U, (B, ay). In Section 5.6, we have given two possible ways to calculate 3.

5. Let A be a pKy x (Jy + 1) matrix such that

A [(A(l))T L (A(KN))T]T, (8.6)



where for each k € {1,..., Ky},
L
i — Z X D.W*ST(3
(k) N = n-—m n n( ) (87)

Compute the projection matrix
P = Iy, ~TVA(ATTA) ATE, (8.8)
where Ik, is a pKy x pKy identity matrix.
6. Let B be a pKy x pKy matrix such that

By o
B = : (8.9)

o Bixy)
where O is the zero matrix and for each k € {1,..., Ky},

N

- 1 . -

B =+ > X,D,WD,X].
n=1

Compute the test statistic for Hy such that
( = NviB'T'/?PT "'/ Bug. (8.10)

where

T

wa= (B -p7) (0 -8)") er s

7. Reject the null hypothesis Hy, when ¢ exceeds some critical value to be deter-

mined by its limiting distribution.

Definition 8.2.1 (Ensemble Statistics).
The test statistic ¢ in Equation (8.10) is called the ensemble test statistics.

There are two basic rules for the models in a good ensemble method [Zhu, 2008]:

1. The estimation or predication using each model is accurate or appropriate;
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2. There are small correlation between individual models within the ensemble.

Our ensemble inference follows the exactly the same rule. Using the estimating equa-
tions, for each k € {1,..., Ky}, we have B® converges to B* in probability; see

Theorem 8.3.1. This ensures the accuracy of the model, at least asymptotically.

Meanwhile, we generate the random working correlation matrices to reduce the
correlation between B(k). To understand the role of random working correlation ma-
trices, we consider the following projection problem, which is equivalent to the esti-

mating equations (8.3),

N
. 1 T ~ (k) -

The optimization problem can be interpreted by projection the response vector Y,

into the model space ®I(3)ay, because
U,=Y,—® (B)ay.

Geometrically, different working correlation matrices determine different projecting
directions and different efficiencies of the corresponding estimates ,é(k) follows. Such
a variety in efficiency allows us to construct an asymptotically normal statistic in
a higher dimensional space (RPXV). Then, we can obtain an asymptotically normal

statistic in a lower dimensional subspace which is orthogonal to a .

We comment on each step of the ensemble inference. Firstly, the properties of
the GMM estimator (,(Ni', ay) in Step 1 have been studied in Chapter 5 and 7. It is
known that (B, ayy) is consistent under the regularity conditions listed in Section 7.2.

Moreover, asymptotic normality only exists in R?; see Theorem 7.5.1.

The following algorithm is used to generate the random correlation matrices in
Step 2. In it, the Wishart distribution is used, because it is defined over symmet-
ric, non-negative definite random matrices; see [Gelman et al., 2014, p.g. 582]. In
Bayesian statistics, it is a commonly used prior for the covariance matrices; see [Gel-
man et al., 2014, p.g. 582]. The generating process for the ensemble inference should
satisfy Regularity Condition 8.A-8.D. However, sufficient conditions for the generat-

ing processes require further investigation.
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Algorithm 8.1.
Let Thax = maxpeqr,., Ny In and I, be the t X t identity matriz. For k =1,..., Ky,
repeat the following steps:

1. For each t € {1,...,Thax}, generate a t X t random matrix St(k) from the
Wishart distribution with degrees of freedom 2t and scale matriz I,. For each

t=1,...,Thax, let pgk) be the correlation matriz of St(k).

2. Form=1,...,N, let

R} = pl,

where T;, 1s the dimension of Y,,.

To solve Equation (8.3) in Step 3, we can use the Newton-Raphson method. The
consistency of ,é(k), k=1,..., Ky, will be described in Theorem 8.3.1; see Section
8.3. It will be should later in Theorem 8.3.3 that

NY2p-1/2 (A'va + Bv;;) € RPEN
converges to a standard multivariate normal distribution in RPX~ | where

Vo = Gy — ay € RNTL (8.12)

In Step 5 and 6, we aim to find the vector space which is complement the space
spanned by the columns of A. Because pKy > Jy + 1, the complement space is
determined by the projection matrix P, whose rank is pKy — Jy — 1. Let V be a
pKn X (pKy — Jy — 1) matrix whose columns are the eigenvectors of P. This leads
to that

NVRIE (A + Bug) — NVAVTE 2B,
asymptotically follows a multivariate normal distribution in RPE~N=/~=1 " And thus,
¢ — NolBF12PE12 B,

= NvgB'T/?VVTT /2 Bug
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asymptotically follows a x? distribution with degrees of freedom pKy — Jy — 1. We

will show that the asymptotic distribution of { does not depend on the specific choices

N

of the initial estimators (3, &) and the set of random correlation matrices {R&k)}nzl,

k=1,..., Ky.

8.3 Asymptotic Theory

8.3.1 Existence and Consistency of ,é("“')

Firstly, we show the existence of the roots 5'(’“), k=1,...,Ky, and compute
their convergence rates. As same as the GEE method [Liang and Zeger, 1986], with
different working correlation matrices, the consistency of B(k) are consistent for each
k€ {1,..., Ky}. The regularity conditions are listed in Section 7.2. The proof can
be found in Appendix G.2.

Theorem 8.3.1 (Existence and Consistency of ).
Assume that Regularity Condition 7.A-7.J are satisfied and JyN~' = o(1). Further
assume that the initial estimator (B,éy) converges to (8%, a’) € RP x M in the

sense that

~ 2
e — a3+ |8 - 87| = 0p(awN ),

as the sample size N goes to infinity. Then, for each k € {1,..., Kx}, Equation (8.3)
has a root ﬁ(k) such that

2

|89 =8| = 0N,

as the sample size N goes to infinity.
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8.3.2 Asymptotic Distribution

Let
Ty Thy - Taxkw
I I ... I
I\* — ('271) (‘272) ‘ (27‘KN) , (8.13)
_I‘?KN,l) ]__h(kKN72) e eey F?KNyKN)_
where for each k, k' € {1,..., Ky},
1 N
Ty = Jim — > X,.DwWPE WD X, (8.14)

and, for each n, 3 is the covariance matrix of Y,, | (X, Z,),
WTEk) — ‘/;;1/2(/8*, Q*)Rglk)‘/;lflﬂ(/@*’ Q*)7

and V,,(8,Q) is a T,, x T,, diagonal matrix whose ' diagonal element is V,;(3, Q)
defined in Equation (7.23).

Also let A* be a pKy % (Jy + 1) matrix such that

A= [(An)" (A" (8.15)
and
BZ‘l) (0
B = : (8.16)
(0 BEFKN)

N
1
x 7 - *nr(k) T (g%
and
1 N
x __1: - * (B) py* v T
B, _]\}gr;oN E_l X, D)W "D: X, . (8.18)



Theorem 8.3.2.
Assume that Reqgularity Condition 7.A-7.1 are satisfied. Further assume that, for each
ke{l,...,Kx}, the initial estimator (B, ay) and (8%, ay) converges to (8%, ay)

in the sense that

~ 2
e — el + |8 — 8|, = Op(an N

and

~ 2
e = axll3 + B8, = 0p(axN ),

as the sample size N goes to infinity. If JyN~Y/% = o(1) as the sample size N goes
to infinity, then

N'2(A*vq + B*vg) € RPEN

converges in distribution to a multivariate normal random vector in RPEN with mean
zero and covariance matriz I'*, where vg and vo, are defined in Equation (8.11) and

(8.12) correspondingly.

Because I'*, A* are B* are unknown, in the rest of this subsection, we aim to

show that
N2 (P2 Avg + T2 Bug ) € R

asymptotically follows a standard multivariate normal distribution in RPX~ where T,
A and B are defined in Equation (8.4), (8.6) and (8.9) correspondingly. The proof
of the following theorem is given in Appendix G.6. Some of the required regularity

conditions are given in Section 7.2 and G.1.

Theorem 8.3.3.
Assume that Regularity Condition 7.A-7.1 and 8.A-8.D are satisfied and JyN~"/* =
o(1). Further assume that the initial estimator (B3, éuy) converges to (8%, ady) €

RP x M in the sense that

~ 2
e — anl3+]|8 - 87| = 0N,
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as the sample size N goes to infinity. As the sample size N goes to infinity, the

following statistic
NY2p-1/2 <Ava + Bv;;) € RPEW

converges in distribution to a standard multivariate normal distribution in RPEN

8.4 Simulation Studies

In this section, we conduct simulation studies to investigate the performance of
the ensemble inference. The considered model is the Poisson regression model with
a log-link function; see Model 5.A in Section 5.7. In Section 8.4.1, we describe the
setups of the simulation studies. Firstly, we argue that the finite sample distribution
of B(k) can not be appropriately approximated by normal distributions; see Section

/2 converges to (I'*)~Y/2 in

8.4.2. Secondly, we show some empirical evidence that -
the 2-norm; see Section 8.4.3. Next, we investigate the Type I errors in the ensemble
inference; see Section 8.4.4. Lastly, we study the powers of the ensemble test statistics;

see Section 8.4.5.

8.4.1 Simulation Setups

We set the parameter values in the Poisson regression model with a log-link
function as follows. For each n € {1,...,N}, let T, follow a discrete uniform
distribution over {1,...,4}. For each n € {1,...,N} and t € {1,...,T,}, let
X = (X1, Xoso, Xz, Xna) T € R be the fixed effects, where X,;;; and X, in-
dependently follow a continuous uniform distribution over [—0.3,0.3], X3 follows
a Bernoulli distribution with success probability 0.5 and X,y = 10 x X,;;1 X0 is
considered as the interaction effects of X,;; and X,;». For each n and t, Z,; fol-
lows a continuous distribution over [—1,1]. The true value of the regression pa-
rameter B is (—1,2,0.5,0)T € R* The distribution of the random effects Q(b) is
0.4I(b<—=2)4+0.11(b<0)+0.5I(b<1).
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We use the Chebyshev polynomials (see Definition 2.4.2) defined on B = [—3, 3] as
the orthonormal basis {P;(b)} /Y, in L*(B, u), where yu = (1—b*)~"/2db. The approxi-
mation property has been studied in Section 2.4.2. The dimensions of the generalized
moments a € R’V depends on the sample size N, where Jy = |2N'/?], with |a)
denoting the largest integer not greater than a. The random working correlation ma-

trices are generated from Algorithm 8.1, where Ky = 2. We consider six sample size
levels (N = 200, 300, 400, 500, 600 and 700).

8.4.2 Finite Sample Distribution of B(k)

Firstly, we argue that the elements of the estimators %) = (3% .. BT ¢ R4,
k= 1,2, do NOT follow normal distributions; see Figure 8.1 as an example. From
this figure, we see that a normal distribution does not appropriately approximate the
finite sample distribution of BAi(k), 1=1,....,4and k =1, 2.

To evaluate the approximation quantitatively, for each k € {1,2} andi € {1,...,4},
we use the one-sample Kolmogorov-Smirnov (K-S) test for the null hypothesis that
the finite sample distribution of the standardized Bi(k) can be fitted by NV (0, 1), where
BAi(k) is standardized by

— (3 - 5) (8.19)
OE,i,k

and og,;j is the simulated variance of BAl(k) Some of the results are reported in
Table 8.1. We see that the null hypothesis is rejected in some of the cases when the
significant level is 0.05. For examples, the p-values of the K-S test statistics for the
finite sample distributions of B:gl) are smaller than the significant level 0.05 at each
sample size level. The boundary effects in & € R’V is the major reason that Bi(k)s
are not normally distributed. In Figure 8.2, we plot the finite sample distributions of
the initial estimators of an;, j = 1,...,4 and N = 600. The boundary effects of the

generalized moment spaces can be observed easily.
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N =200 N =400 N =600

Parameter K-S p-value K-S p-value K-S p-value

B 0.039 0.087 0.033 0.227 0.025 0.531
1 Ba 0.045 0.034 0.035 0.180 0.037 0.119
B3 0.046 0.026 0.065 0.000 0.062 0.001
Ba 0.023 0.665 0.021 0.783 0.029 0.365
B 0.041 0.066 0.037 0.129 0.036  0.139
9 Ba 0.027 0.429 0.040 0.082 0.021  0.756
Bs 0.062 0.001 0.042 0.056 0.052  0.009
Ba 0.022 0.700 0.035 0.174 0.031 0.288

Table 8.1: The Kolmogorov-Smirnov test on the normality of the standardized Bi(k)’
where k = 1,2, ¢ = 1,...,4 and the sample size N = 200,400 and 600. The K-S

stands for the Kolmogorov-Smirnov test statistic.

8.4.3 The Convergence of I'"1/2

Regularity Condition 8.D is a necessary condition for the asymptotic theorems
of the ensemble inference; see Theorem 8.3.3. Without stronger conditions it is not
possible to prove that the estimators of T' follow this condition. Instead, we provide

some empirical evidence that

Hffl/z _ (1—\*)71/2

2
converges at rate J]%]/QN_V?

Because Jy = N'/? in our simulation setup, we study the finite sample distribution
of

N1/5 Hffl/z _ (I‘*)*l/Z

2

at sample size level N = 200,400 and 600; see Figure 8.3. In Figure 8.3, we see that
the finite sample distributions of N/5||T=1/2 — (I*)~1/2||, does not diverge with the

increase of sample size N.
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8.4.4 The Type I Errors in the Ensemble Inference

Table 8.2 summarizes the Type I errors of the proposed test statistic ¢ in Equation
(8.10). Because Ky = 2 for each sample size level N and the dimension of the

regression parameter p is 4, the degrees of freedom of the ensemble test statistics are
calculated by 8 — Jy, where Jy = [2N'/?] and N = 200, 300,400, 500, 600 and 700.

From Table 8.2, we see that the finite sample distributions of ¢ is not appropriately
approximated by its asymptotic distribution when the sample size is small (N = 200).
The failure of this approximation can be explained by Figure 8.3, in which the term
NY3||D=1/2 — (I*)~'/2||5 is much larger in the cases where N = 200 than the ones
in the other cases. Moreover, the large bias could be caused by the approximation

quality, because the number of the generalized moments is 5 when N = 200.

On the other hand, when the sample size is large, the asymptotic distribution

approximate the finite sample distribution appropriately.

N Jy df a=090 a=095 a=0.99

200 5 3 0.806 0.867 0.943
300 6 3 0.879 0.933 0.981
400 6 2 0.884 0.932 0.981
500 6 2 0.901 0.952 0.984
600 7 1 0.886 0.942 0.988
700 7 1 0.887 0.936 0.982

Table 8.2: The simulation results of the Type I errors in the ensemble inferences. The
d.f. is the degrees of freedom of the ensemble test statistic, and a is the significant

level.

8.4.5 The Power of the Ensemble Inference

Lastly, we study the powers that the null hypothesis

Hy: B=0¢cR (8.20)
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is rejected by the ensemble test statistic (. Table 8.3 summarizes the simulation
results. From Table 8.3, we see that the proposed test statistic ( has powers to reject
the null hypothesis in Equation (8.20). When N = 300, 400 and 500, the power of
increases with the sample size N. There is a drop of power at N = 600, because the
degrees of freedom of the x? test statistic reduces to 1. Moreover, with the increase

of the significant levels, the power decreases.

N Jy df a=090 a=095 a=0.99

300 6 2 0.786 0.740 0.610
400 6 2 0.812 0.774 0.636
500 6 2 0.847 0.803 0.706
600 7 1 0.665 0.610 0.511
700 7 1 0.693 0.644 0.543

Table 8.3: The simulation results of the powers of the ensemble test statistics. The
d.f. is the degrees of freedom of the ensemble test statistic, and a is the significant

level.

8.5 Application to the Epileptic Seizures Data

We have fitted the Epileptic Seizures Data in Section 6.5. In this section, we

consider the simple hypothesis
HO . ,8 =0e RS,

where 3 € R is the regression parameter in Model 6.C. Because there is only
one generalized moment oy = fB exp(b)d@ in the reparameterized model and the
dimension of the regression parameter is 5, we set Ky = 1. Therefore, the ensemble

test statistics follows a y? distribution with degrees of freedom 4.

In this data set, for each n € {1,...,59}, the visiting number of the n' individual

T, is 4. Therefore, we may use a same 4 x 4 random correlation matrix for each
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n=1,...,59, following Algorithm 8.1. We repeat the ensemble inference 5000 times.
In other words, we generate 5000 working correlation matrices from the Wishart
distribution under in Algorithm 8.1, and compute 5000 ensemble test statistics and
their p-values, each of which is associated with one generated working correlation

matrix.

In Figure 8.4, we plot the histogram of these p-values. From this figure, we see that
the ensemble test statistics do not have enough power to reject the null hypothesis.

One possible reason is that the sample size is not large enough (N = 59).

8.6 Conclusion and Discussion

In this section, we propose using the ensemble inferences to construct a y? dis-
tributed test statistic in the case that the true parameter is on the boundary of the
parameter space. Although simulation evidences supports the idea that the finite
sample distribution of the ensemble test statistics could be well approximated by the
asymptotic distribution, there still exist many points that requires further investiga-

tion.

Firstly, we need to derive sufficient conditions for that the random correlation
matrices generating process satisfies the regularity conditions listed in Section G.1.
Using random correlation matrices aims to reduce the correlation between ﬁ(k), k=
1,..., Ky, in the ensemble. However, the ensemble inference could be misleading if
Regularity Condition 8.A-8.D are not satisfied by the random correlation matrices

generating processes.

We also need to study the convergence rate of |[T=1/2 — (I'*)~1/2||5, where I is ob-
tained from the estimated covariance matrices 3, in Section 5.4. Although empirical
evidence was provided in our simulation studies, computing the convergence rate of

D12 — (I*)~/2||, would complete the framework of the ensemble inference.

Different weighting matrices are also used in the method of the quadratic infer-
ence functions (QIF); [Qu et al., 2000]. It was shown that, because different weighting

matrices are used, the QIF estimators are robust to the misspecification of the correla-
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tion structures; see [Qu and Song, 2004]. Note that different weighting matrices play
important roles in both of the methods. We conjecture that the ensemble inferences
are also robust to the misspecification of the correlation structure. It also worthwhile

to design a framework that unify the QIF method with the ensemble inference.

The ensemble inference is closely related to Bayesian statistics. When the random
matrices generating processes are given, we may consider them as a prior information
to models and B(k), k=1,..., Ky, follows a posterior distribution. Therefore, it
is also interesting to investigate the performances of the ensemble inference when

different random matrices generating processes are used.

Lastly, we want to point out that the asymptotically y? test statistic is not ob-
tained for free. The power loses when we project the asymptotically normal statistics
from RPEN to RPEN=I/N=1 " With the increase of the number of the generalized mo-
ments in a model, the degrees of freedom of the ensemble test statistics decrease.
And so the power of the proposed test statistic decreases. The power of the ensemble
statistics could be increased by increasing the number of models K. However, we
can not choose an arbitrary Ky, because we also need to control the convergence rate

of A, B and I'"/2, whose dimensions depend on K.

Appendix: G

G.1 Regularity Conditions

In the ensemble inference, we need the following important assumptions. However,
we could not prove that our proposed working correlation matrices generating process
and estimated covariance matrices I' could satisfies the given regularity conditions.
Although empirical evidence in given in the simulation studies, further investigations

are required.

Regularity Condition 8.A.
The pKy X (Jx + 1) matriz A* is full column rank, pKy > Jy + 1. For each Ky,
|A*||, is bounded. Here, for each matriz A, ||Alls is the 2-norm of the matriz A
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which is defined as
| All, = Amax (ATA) .

Moreover, for each k € {1,..., Ky}, the p X Jy + 1 matrix
L
LY X DWelE),
n=1

converges to A* element-wise at rate J}V/2N_1/2.

Regularity Condition 8.B.
The pKn x pKx matriz B* is full rank. For each Ky, ||B*||, is bounded. Moreover,
for each k € {1,..., Ky}, the p X p matriz and

N
Y X.D,WH DX,

n=1

1
N
converges to B* element-wise at rate :]]1\7/2]\[*1/2,

Regularity Condition 8.C.

The pKn X pKy covariance matriz T'* is full rank and its elements are bounded.

Regularity Condition 8.D.
The pKy X pKy matriz r—1/2 converges in probability to (I"")fl/2 in the sense that

~ _ 2 B
|2 =@ = o, (N,

as the sample size N goes to infinity.

G.2 Proof of Theorem 8.3.1

Proof. We aim to prove that, Ve > 0, there exists a C' > 0, depending on Ny, such
that, for any N > Ny,

N
pr ( sup (B—-p" (% Z X, D,WPU, (8, dN)> < 0)
n=1

I8=B*2=CAN

>1—c¢,
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where Ay = J}V/QN_I/Q; see [Ortega and Rheinboldt, 1970, Theorem 6.3.4] and [Wang,
2011].

By Taylor’s expansion, we have, for each n € {1,..., N},
(B~ 8" XuDuWPUL(B, G) = Lt + L,
where
= (8- 6" X.D,W U, (8", o)
and
Ly = (8- 8" X, D,W"D,(8,ax) X, (8- B"),
and B is on the line segment between B and 3*.

We write, for each n € {1,..., N},

I = L + Lo + Lus + L,

where
Lii= (B- 8" X, D;W®MU,(B",Q"),
Lio= (B-8" Xp;;w,gw( U.(B", an) — Un(B",Q")),
Lus= (88" X, (DLW - DyW® ) U.(8",Q"),
and

Ly = (8- 8" X, (DW= DyWN) (U,(8", éw) - U (8", Q"))

By Regularity Condition 7.A-7.C, Lemma F.6 and 7.2.2, Theorem 7.4.1 and Equa-
tion (7.16), we have

’[n12’2
* * o~ * * * 2
<118 = 81 U8, @) = Un(B, Q) Amax (X (D;W)° XT)
= OP<02AAZLV>7
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and

|In13|2

< 1B = B3 U8, Q)13 Amax (X0 X))
~ ~ 2
% Amax ((angm - D;;W,@) )
= 0,(C?A})
and

|I’r7,14|2
112 * o~ * %\ (12 T
< B = B3 1108, an) — Un(B*, Q%) ||5 Amax (X0 X))
~ ~ 2
X AmaX ((anék) - D:LWTEk)> )

- OP(CQA?V)-

By Lemma F.4 and the Cauchy-Schwarz inequality, we have

|
il I,
N; I

2 2

< 1B - B*[l3 x

N

1

~ > X D WPUL(B,Q)
n=1

2
< 0,(C°AY).

Therefore, we have
| XN
~ D Li=0,(CAY). (G.1)
n=1

Next, we evaluate the asymptotic order of I,,,. We have
Ly = Ina1 + Inao,
where

Lo = (B-8)" X, D;WHD: X (8-,
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and
By Regularity Condition 7.A and Lemma 7.2.1, we have

|In21| S ||/8 - :3*||§ )\max (XnDZWék)DZXg)
= OP(CQA?V).

By Theorem 7.4.1, Lemma 7.2.2 and F.6, Regularity Condition 7.A and Equation
(7.16), we have

|[n22|
< 1B = B3 Amax (XX ) Amax (DHW£k>Dn<B, ay) — D;W,gkm;;) ,
- OP(CQA?V)-

Therefore, we have
~ D Lo =0,(C*A%). (G.2)

By Equation (G.1) and (G.2), we have

is dominated by
1 — 1 —
N2 =5 (B8 XuD,W VDX (8- >0
n=1 n=1

by allowing C' to be large enough. It follows that
(/8 - /6*)T annwék)Un(ﬂa dN)

converges to a positive number in probability. O]
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G.3 Proof of Lemma G.1

Lemma G.1.
Assume that Regularity Condition 7.A-7.1 are satisfied. Further assume that, for each
ke{l,...,Ky}, (B, ay) and the initial estimator (B, &) converges to (3%, o)

in the sense that

~ 2
e — e} + (8% = 87| = Op(Ix N

and

~ 2
ey — anl3 +|8 - 87| = 0p(awN ),

as the sample size N goes to infinity. If JyN—Y/? = o(1) as the sample size N goes
to infinity, then, for each k € {1,..., Ky},

N'/2 (AZ}) (G — ary) + By (ﬁ Y- 6>)

N
= N2 3" X, D WHUL(B,Q%) + 0,(JuN"12).

n=1

Proof. For each n, we have

X, D,WWU, (8% ay)
=In + [n2 + In3 + In4a

where
Ly = X, D;W MU, (8", Q"),
Iy = X, D, W (U,(B%, &) = Un(8',Q"))
Ly =X, (DWW - ;WD) U,(8",Q")

and
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By Lemma F.7, we have

N
1 * ~ * * 2 * —
n=1

By Lemma F.8 and F.9, we have

N
% ; Lz = Op(JyNT).
By Regularity Condition 7.A, Theorem 7.4.1 and Lemma 7.2.2 and F.6, we have,
| Lna”
= [T.(8Y . an) - Uu8", Q")
X A ((Dnvif,g“ - D;;W;’f))z)

< O,(JFN72).

2
T
, Amax (X. X))

Because JyN~1/2 = o(1), we have
N2 (Afy (6 — o) + Bijy (BY = 8Y) + 0, (JnN)

N
= N71/2 Z 1.
n=1

G.4 Proof of Theorem 8.3.2

Proof. According to Lemma G.1, we have, for each k € {1,..., Ky},

N2 (A*vq + B vg)

Ly X,D:wWVUL(8%, Q)
= + Op(JNN_1/2)7
LYY X, D;WINU,(67, Q)
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as N goes to infinity. By Lemma F.12, it is known that, for each k € {1,..., Ky},
L
+ 2 XuDLWIU, (B, Q") €R

n=1

converges in distribution to a multivariate normal. It follows that

L3N X, D:wW VUL (87, Q)
: € RPEN

LS X, D:W VU, (8, Q)

converges in distribution to a multivariate normal in RPX~ converges in distribution
to a multivariate normal with mean zero and covariance matrix I'*, which is defined

in Equation (8.13). Here we complete the proof. O

G.5 Proof of Lemma G.2

Lemma G.2.

Assume that Regularity Condition 8.A and 8.B are satisfied. Further assume that,
as the sample size N goes to infinity, JxN~' = o(1), Ky = O(Jy), and for each
ke{l,..., Ky}, the initial estimator (B,&N) and (B(k),dN) converges to (3%, ay)

in the sense that

“ 2
I — eyl + |8 - 8|, = Op(IxN )

and

~ 2
e — anl3+]|8 - 87| = 0p(awN ).

Then, Ave + B’Uﬁ converge in probability to A*v, — B*vg in the sense that
HA’UQ + Bug — A"vg — B*’UBH = 0,(JyNY),
2
as the sample size N goes to infinity, where A, B, A*, B*, v, and vg are defined in

Equation (8.6), (8.9), (8.15), (8.16) , (8.12) and (8.11).
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Proof. By the triangle inequality we have

Av, + Bvlg — A"v, — B*vg‘

< HAUQ — A%v,
2

Buv, — B H
|| Bos — Brus|,

We consider the asymptotic order of the two terms on the right hand side of the above

inequality.

For each k € {1,..., Ky}, we have that A(k) and B(k) converges in probability
to Azkk) and BEkk) element-wise at rate JX,l/QNlﬂ7 by Theorem 7.4.1, Lemma F.6 and
Regularity Condition 8.A and 8.B. It follows that

Ky ~ 9
= 3 [ Awree — iy
k=1

Ky
<> valls
k=1

HAva — A'v,

2
2

2
2

A(k) - Afk) H

Kn , . . )
< Y lvally x pn x HA(k) - AZ})H
k=1 o0
= KnO,(JNN"HO(Jy)O(JyNH)
= O,(JxN7?).
On the other hand,
_ B . 2
HBUB - B*vﬁH = Byvs — B?k)”ﬁ))
2 — 2
Ky . 20 ~ . 2
k=1
Knoo 2 . N 2
2 o)
k=1

= KnO,(JyN"HO(1)O(JyN™1)
= O0,(JyN7?).

In sum, we have

HA’UQ + Bug — A*vg — B*'UBH2 = O0,(JyN).
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G.6 Proof of Theorem 8.3.3

Proof. Consider the expansion

N12p-1/2 (Ava + Bvﬁ) =L+ L+ I+ I

where

I = N'2(1*) " (A*v, + B'vg)

[2 _ N1/2 <f1—1/2 . (F*)—l/Q) (A*'Ua + B*'U@>,

I = NV2 (1) \/? ((A - A*) Vo + (B - B*) UB)
and

I, = N2 (f—1/2 - (1“*)‘1/2> ((A - A*> Vo + (B - B*> v5> .

By Theorem 8.3.2, we know that I; converges in distribution to a standard mul-
tivariate normal. So, it is sufficient to show that each element of I + I3 + I is 0,(1),

as N goes to infinity.

Let u; € RPEN whose i** element is one and the rests are zeros. We have

() e

2

< u;l“ <f‘_1/2—(F*)_1/2> A*v, u;f (f‘_l/2—(I‘*)_1/2> B*’Ug‘
1/2
T (—1/2 x\—1/2 2 * *
< (wf (P2 = @) 72) w) x (Jvall 1A% + Josll, [1B7,)
< o=@ x (vall, 1471, + loally 1B°11,)

= O (JYPN72) x O, (J\*N71/?)
= Op(JxNTY),

by Regularity Condition 8.A, 8.B and 8.D. Therefore, each element of I, is O,(J3N~1/2) =
op(1).
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Consider the asymptotic order of I5. We have

u; ()12 ((A — A*) Vo + (B - B*) v,;)‘
wl (r*)7! ui)l/2 (A - A*) Vo + (B - B*) vg
N

<
2

(w,
Op(JANTY)

by Lemma G.2 and Regularity Condition 8.C. Therefore, each element of I3 is
OP<JJQ\/N_1/2) = op(1).

Lastly, consider the asymptotic order of I,. We have
(P ) (A A%) vt (B B) )
< (ur (B @) ) (A A7) e (BB wg

= O,(JyN72).

2

Therefore, each element of I is also 0,(1). O
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Chapter 9

Concluding Remarks and Future
Work

9.1 Concluding Remarks

In this thesis, the following major contributions are made:

1. A new reparameterization-approximation procedure for non-parametric mixture

(or mixed-effects) models is proposed in Chapter 2.

2. Two new important properties of the generalized moment spaces, the positive

representation and the gradient characterization, are derived in Chapter 3.

3. The generalized method of moments is proposed as a new estimation method

for mixture models in Chapter 4;

4. The generalized method of moments is proposed as a new estimation method

for mixed-effects models with univariate random effects in Chapter 5.

5. The method proposed in Chapter 5 is extended to a Poisson regression model

with random intercept and slope in Chapter 6.

6. Some asymptotic results for the generalized method of moments for mixed-

effects models with univariate random effects are established in Chapter 7.
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7. The ensemble inference idea is used to construct an asymptotically x? test

statistic in Chapter 8.
We have, in this thesis, stated that

“Under the circumstances considered in this thesis, most of the
difficulties in estimating and undertaking statistical inference with the
mizing (or random effects) distribution Q) could be prevented or solved by
the methods proposed in this thesis, if the model hyix(s; Q), defined in

Equation (2.1), can be reparameterized in the generalized moments of Q.”

In the rest of this section, we revisit these difficulties, which have been discussed in

Chapter 1, and discuss how the methods proposed in this thesis overcome them.

9.1.1 Identifiability

Let h(s;m) be the model obtained through the reparameterization-approximation
procedure proposed in Chapter 2, where m € R/¥ are the generalized moments of
and Jy is an integer that diverges with the sample size N; see fypec(2;m) in Chapter

4 and U, (B, o) in Chapter 5 for examples.

Note that, while a probability measure can uniquely determine its generalized
moments, the converse is not true. In other words, the condition that h(s;m) is
identifiable by the generalized moments m € R/~ is a weaker condition comparing
to that hyix(s; @) is identifiable by its mixing distribution Q).

Moreover, because the model h(s;m) are constructed in an embedding affine
space, the generalized moment vectors m are always linear in h(s; m); see fopec(z;m)
and U, (B, a) for examples. Therefore, the identifiability of h(s;m) can be easily

shown by the linearly independent results in linear algebra.

9.1.2 Determining the Number of Generalized Moments

Using h(s;m) may introduce extra bias to the estimators from modelling. How-

ever, the asymptotic orders of the approximation residuals could be characterized by
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using Jy and the smoothness of the kernel function h(s;6) as a function of § € ©;
see Corollary 2.3.1, 2.4.1 and 2.4.2. In other words, Jy itself can be chosen to control

the asymptotic orders of the approximation residuals.

On the other hand, the asymptotic orders of the approximation residuals need to
be determined for inference purposes. For example, to compute the convergence rate

of the GMM estimators in Chapter 7, it is only required that, for each n,
|Un(16*, Q*) — Un<ﬂ*, a}kv>| — O(JJIV/2N_1/2),

see the proof of Theorem 7.3.1. However, the above condition is not sufficient enough
to derive the asymptotic normality results in the GMM; see Theorem 7.5.1. Instead,

Regularity Condition 7.B is needed to ensure that, for each n,
VN (U.(8,Q") = Un(B" i) = o IyN~72),

as JyN~Y2 =o(1).

In sum, given the sample size N and the smoothness of h(s;0), the Jy could
be chosen that not only controls the approximation residuals but also satisfies the

purpose of statistical inferences.

9.1.3 Dimension of the Parameter Space

When mixing (or random effects) distributions are non-parametric, in the previous
literature [Lindsay, 1995] and [Sutradhar and Godambe, 1997], models are always
embedded in a space whose dimension diverges with N at rate O(N) . For example,
in the NPMLE [Lindsay, 1995], the likelihood functions are embedded in a space
whose dimension is a half of the distinct number of observed sample, which is O(N)
when the sample space is not discrete and finite. Another example is predicating
the unobserved random effects in a mixed-effects model. Because the random effects
depends on each individual, the number of the random effects to be predicated is the
sample size N; see the UMM in [Sutradhar and Godambe, 1997]. Therefore, there
may not be enough information from data for fitting models and making inferences

with out further assumptions.
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Reparameterized in the generalized moments, the model h(s;m) is embedded in a
space whose dimension is Jy. Although Jy also diverges with the sample size N, it is
usually at a much lower rate. For examples, J ](\?HQ)N 1= O(1) in Theorem 4.5.1 and
J4N~! = 0(1) in Theorem 7.3.1, where r is an arbitrary positive integer. The diver-
gence of Jy may slow the convergence rate in the GMM; see Theorem 4.5.1 and 7.3.1
for examples. However, the lower order of Jy ensures that the parameters in h(s; m)
can be estimated consistently, under mild regularity conditions; see Theorem 4.5.1
and 7.3.1. Furthermore, the lower order of Jy also allow us to use extra information
for statistical inference. The test statistics  in the ensemble inference asymptotically
follows a X;Q;KNf 7y distribution, where pKy > Jy. If Jy is small, ¢ could have larger

degrees of freedom and thus more power to reject the null hypothesis.

9.1.4 Geometric Properties of the Parameter Space

It is always not easy to estimate and make inference with a finite mixture model.
One of the reasons is the complexity of the parameter space of a finite mixture model.
As discussed in Section 1.2, the parameter space may include singularities and bound-

aries.

Comparing to the parameter space of a finite mixture model, the generalized mo-
ment space, as the parameter space of h(s;m), is much better behaved. Firstly, with
the compactness assumption on the set of the mixing parameter ©, the generalized
moment space is compact. Secondly, the generalized moment spaces have bound-
aries, but the geometric properties on the boundaries are well studied; see the posi-
tive representation and the gradient characterization in Chapter 3. Lastly but most
importantly, the generalized moment space is a convex set. Therefore, by choosing a
convex function of m as an objective function to minimize over the generalized mo-
ment space, we can construct the estimators of m which are the solutions of convex
optimization problems; see the optimization problem (4.3) and (5.11) for examples.
Moreover, the computational speeds for the proposed estimators are stable and fast

by using the gradient-based computational algorithms; see Algorithm 4.1 and 5.1.

As we have seen in Theorem 7.5.1, the boundaries of the generalized method of
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moments still affect the asymptotic normality in the GMM. However, the boundary
issue is potentially solved by using the ensemble idea at the cost of losing powers to

reject the null hypothesis; see Chapter 8.

9.2 Future Work

There are many possible future research directions given in this thesis. In this

section, we discuss the following two.

9.2.1 From Univariate to Multivariate

Most of the models considered in this thesis have a univariate mixing parameter
(or random effects). The mixture (or mixed-effects) models with a multivariate mixing
parameter (or random effects) have much wider applications, because they are more
flexible. One of the examples is the Poisson regression model with random intercept
and slope, which has been seen in Chapter 6. Also see [Karlis and Meligkotsidou, 2007]
for finite mixture of multivariate Poisson distributions and [Chen and Tan, 2009] for
finite mixture of multivariate normal distributions. We have discussed some possible
extensions for mixed-effects models; see Section 2.4.3 and Chapter 6. However, there

requires much more future work.

Firstly, we need to define the generalized moments of multivariate random vari-
ables. Because the Chebyshev system for multivariate functions is not well-defined,
the generalized moments of multivariate random variables will be defined in a wider
class of system; see the tensor product basis given in Section 2.4.3. Next, we need
to investigate the geometric properties of the generalized moment space of multivari-
ate random variables. The new generalized moment space is convex and has two
important geometric properties, the positive representation and the gradient charac-
terization, can be preserved, because both are directly from the convexity. However, it
can be expected that both of the geometric properties become more complex, because

of the increase in the dimension.
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When the multivariate mixture models are considered, it is challenging to con-
struct the generalized moment conditions in Definition 4.2. It is possible that the

generalized moment conditions may not exist without extra conditions.

It might be straightforward to define the GMM for mixed-effects models with
multivariate random effects based on Definition 5.4.1. However, the challenges exist
in computing the estimators. The major reason is that the geometric properties of
generalized moment space of multivariate random variables is unclear. Moreover, it

could be even more difficult to predicate multivariate random effects.

9.2.2 The Families of Weighting Matrices

In the literature of the GMM (or GEE), choosing appropriate weighting (or work-
ing correlation) matrices has attracted much interest; see [Liang and Zeger, 1986,
[Matyés, 1999] and [Thall and Vail, 1990]. Under the regularity conditions listed in
[Matyas, 1999, Section 1.3], the inverse of the covariance matrix of the generalized mo-
ment conditions is optimal in the sense that the MSE of the resulting GMM estimator
is minimized. Although the regularity conditions in [Métyés, 1999] fail in this thesis,
we still observe the efficiency gain in the GMM estimators when the weighting ma-
trices are the inverse of the covariance matrix of the generalized moment conditions;
see Section 4.6, 5.7 and 6.4.

It turns out that, weighting (or working correlation) matrices can be carefully
designed either for efficiency or robustness, when our model is correctly specified. For
example, the weighting matrix is design for the robustness of the GMM for mixture
models in Section 4.6. Another example is the modelling of correlation matrix in the
GMM for mixed-effects model; see Section 5.6. From the simulation studies in Section
6.4, we see that the GMM estimator could gain huge increase in the efficiency when

the working correlation matrix are correctly specified.

Therefore, it becomes important to model the correlation structures of the gener-
alized moment conditions (or estimating functions); see [Liang and Zeger, 1986] and
[Thall and Vail, 1990]. However, modelling and validating the correlation structures

require further studies. Using different weighting (or working correlation) matrices
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is one possible alternative way; see the QIF in [Qu et al., 2000] and the ensemble
inference in Chapter 8. However, the way that a family of weighting (or correlation)
matrices systematically affect the estimation or statistical inference still remains as a

mystery.
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