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Abstract

Non-commutative differential geometry (NCG) [ | extends Riemannian geometry
and yields a striking reinterpretation of the standard model of particle physics (SM) as
gravity on a ‘non-commutative’ manifold | ]. The basic idea behind NCG is to

shift focus away from topological spaces and manifolds, to instead focus on the algebra of
functions defined over them (“the algebra of coordinates”). This simple idea allows one to
explore geometries where one has only the algebra and there is no classical notion of the
underlying space whatsoever | |. In particular, this idea extends to the case in which
the input algebra is non-commutative. In this thesis we go a step further: we propose a
simple reformulation of the input data corresponding to NCG, which naturally extends to
describe geometries which may also be non-associative.

The content of our reformulation is as follows: In the traditional approach to NCG, one
replaces the usual geometric data of manifolds and metrics { M, g} with ‘spectral’ data held
in so called ‘spectral triples’ T' = { A, H, D}, consisting of an input algebra A, and a Dirac
operator D represented on a Hilbert space H. We show that the data held in a spectral
triple may be ‘fused’ together into a larger ‘fused’ algebra QB | ]. In this way the
various elements of NCG are unified together into a single more fundamental object, while
their seemingly unrelated geometric axioms and conditions are re-expressed simply and
naturally as the intrinsic properties of 0B. This approach naturally extends to describe
non-associative spaces in the sense that (2B need not be associative. When 2B has more
general associativity properties, then appropriate generalizations of the associative NCG
axioms derive readily from the intrinsic properties of (2B, allowing for the construction of
a wide range of non-associative geometries which we showcase in this work.

While our formulation naturally extends to describe non-associative NCG, it also eluci-
dates many aspects of the associative formalism. We show that asking for (2B to be asso-
ciative imposes new constraints beyond those traditionally imposed by the NCG axioms.
These new constraints resolve a long-standing problem plaguing the NCG construction of
the SM, by precisely eliminating from the action a collection of 7 unwanted terms that
previously had to be removed by an extra, non-geometric, assumption | , ].
We also explain how this same reformulation yields a new perspective on the symmetries
of a NCG, which arise simply and naturally as the automorphisms of Q2B. Applying this
perspective to the NCG traditionally used to describe the SM we find, instead, an extension
of the SM by an extra U(1) B — L gauge symmetry, and a single extra complex scalar field
o, which is a singlet under the SM gauge group, but has B — L =2 | |. The o field
has cosmological implications [ |, and offers a similar solution to the discrepancy
between the observed Higgs mass and the NCG prediction as that proposed in | ].
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Chapter 1

Introduction

The standard model of particle physics (SM)!, in its current formulation as a quantum field
theory (QFT) leaves many foundational questions unanswered. Why for example are there
three particle generations, and what mechanism if any singles out the observed SM gauge
symmetries? When trying to address such questions in QFT there are unfortunately very
few theoretical constraints aside from renormalisability, gauge invariance, and anomaly
cancellation. As a result, an abundance of models describing beyond the SM (BSM)
physics have emerged. In this work I explore the idea that geometry might provide helpful
guidance in singling out those models of greatest relevance; and in particular I will focus
on Non-commutative differential geometry (NCG), which is an extension of Riemannian
geometry that is of particular physical interest since it offers a novel geometric explanation
for certain otherwise-unexplained features of the SM. I will describe a reformulation of
NCG initiated by myself and Latham Boyle, which on the one hand is simpler and more
generally applicable to answering questions in particle theory, while on the other hand
it unifies many features of NCG, and readily generalizes to non-associative differential
geometry (NAG).

To motivate the use of NCG in particle physics it will be necessary to explain at the
outset what geometry is useful for, starting in the most basic setting with three dimensional
Euclidean geometry. Euclidean geometry provides a useful framework for describing the
world on familiar human scales: that is, at the low speeds we travel at, and over the
distances we are accustomed to. Most importantly, within their range of applicability
Euclid’s axioms may be used to infer information without ever having to make a direct

!Here and everywhere else in the text I refer to the ¥YMSM simply as the standard model, i.e. the base
standard model with one extra right handed neutrino per generation | ]



measurement, a fact that surveyors take full advantage of every day around the world.
That is, to be explicit: the rules of Euclidean geometry allow one to determine all the
angles and side lengths of a geometric problem given some suitable subset as input. This
usefulness is of course in no way restricted to Euclidean geometry. Breakthroughs in
physics often follow from a new framework for describing the geometry of spacetime, and
perhaps the best example is seen in the work of Einstein, who taught us to replace Euclid’s
flat 3D space, first with Minkowski’s flat 4D spacetime, and then with Riemann’s curved
4D spacetime. Astronomers and cosmologists are now quite comfortable making use of
Riemannian geometry to infer information about the curvature of the intervening space
between the earth and distant lensed galaxies. One might also argue that black-holes,
gravitational waves, and even the big bang are predictions which have arisen from our
improved understanding of geometry?. Can the same be said for particle physics? Is there
a geometric framework appropriate for describing SM physics, and if so can we use it to
infer information about the SM and its possible extensions?

Connes’ NCG is a generalization of Riemannian geometry that has been developed ex-
tensively by pure mathematicians (see e.g. [ , , ]). Tt is of physical interest
because it provides an elegant framework for describing Yang-Mills theories, coupled to
Einstein-Hilbert gravity. When applied to the SM of particle physics, it provides a tighter
and more elegant framework for formulating the SM particle content and Lagrangian, in-
cluding its coupling to Einstein gravity | , , ; , , , ,

: , | (for a pedagogical introduction, see | : ]). In particu-
lar, the NCG axioms place heavy restrictions on the allowed particle content, along with
its representation under the various gauge symmetries. It is natural to ask whether the
axioms of NCG together with the known particle content might also be used to uncover
information about particles which as yet remain undiscovered. On initial inspection the

outlook is promising: a quick review of the literature | | reveals that indeed NCG
did ‘predict’ the SM Higgs prior to the 2013 detection at CERN | , |, and it
also ‘postdicts’ Majorana neutrinos | 1 ]3. Unfortunately, the formalism also

runs almost immediately into problems. For example, an incorrect Higgs mass at 170Gev

2Although technically these ideas all rely on additional information: the equations of motion which
describe the dynamics of a geometry.

3 Although this could very easily have been a ‘prediction’ as right handed neutrinos arose in the formal-
ism rather unexpectedly and only a few years after the discovery of neutrino-oscillations when attempting
to solve fermion doubling in the NCG SM! In conversations with Alain Connes he claims that Jaques
Dixmier had been encouraging him ever since the 98 measurements by Super Kamiokande and SNOLab,
to incorporate right handed neutrinos and that he was trying to do so in a model with 16 fermions per
generation instead of 15. But the ‘Majorana’ mass terms in the model were a surprise to him, as he had
never heard of the ‘see-saw mechanism’.



was initially predicted by the NCG formalism | , , |, and to obtain the
SM scalar content an extra ad-hoc and non-geometric constraint known as the ‘massless
photon condition’ is imposed | , ]*. Can the formalism be salvaged and made
useful for particle physics model building?

Solutions to the above mentioned problems are found via a rather unexpected route:
in developing a reformulation of NCG which is general enough to describe non-associative
geometries. This work will focus on the generalization from NCG to NAG, its application
to the (associative) standard model, and to developing SM extensions. The organization is
as follows: in the present section I explain how the work of my thesis fits into the literature.
I introduce NCG, focusing on its successes, and on its failures, and explain the motivation
for generalizing to non-associative differential geometries. I point to previous work, and
summarize the salient features of the non-associative generalization. In Chapter 2 I provide
the relevant background for understanding the details of my work, including a review
of the necessary mathematical preliminaries, and the NCG formalism in the traditional
approach. In Chapter 3 I introduce our reformulation of the NCG input data which
generalizes naturally to describe non-associative geometries. The main idea is that the
usual NCG input data consisting of five objects {A, H, D, J,~} is ‘fused’ together into an
algebra 2B, while at the same time many of the NCG axioms derive from the properties
of QB (such as its associativity). In Chapter 4 I apply this reformulation to the associative
NCG SM, and show how it provides natural solutions to a number of outstanding problems.
In Chapter 5 I provide example non-associative geometries which correspond to regular
associative Yang-Mills theories, before finally closing in Chapter 6.

1.1 What is NCG?

The key idea behind NCG is to shift attention away from topological spaces and man-
ifolds, to instead focus on the algebra of functions defined over them (“the algebra of
coordinates”). This simple idea allows one to explore geometries where one has only the
algebra and there is no classical notion of the underlying space whatsoever. Alain Connes
established NCG in the 80’s and 90’s | : | as an extension of Riemannian dif-
ferential geometry, much as Riemannian geometry generalizes Euclidean geometry. Just
as Riemann extended the framework of geometry to include spaces that are curved, NCG
further extends it to include spaces that are “noncommutative” in a sense I will explain

41t should be stated at the outset that while the so called ‘massless photon condition’ is ad hoc and lacks
geometric motivation, it is exceptionally elegant in the sense that it may be stated simply and concisely
using only the input data of the NCG SM.



below. In Riemann’s approach, a geometry is specified by providing the following data: the
manifold M and its metric g,,. In the spectral approach, one instead specifies a geometry
by providing a so-called “spectral triple” {A, H, D}: here A is an algebra, which is repre-
sented by linear operators acting on the Hilbert space H, and D is an additional Hermitian
operator on H | |. In fact, to fully specify a spectral geometry, one often needs to
give two additional operators, called v and J | |, so that the full spectral data is
{A,H,D,~,J}. Notice that the data {A, H,D,~,J} is still called a “spectral triple” in
the literature, even though it contains 5 elements! (The various elements of the spectral
triple, and their meaning, are explained below.)

Before describing general non-commutative geometries let’s first focus on the canonical
example: that of Riemannian geometries. Just as Riemannian geometry contains Euclidean
geometry, and reduces to Euclidean geometry for a special class of Riemannian data®, NCG
contains Riemannian geometry®, and reduces to Riemannian geometry for a special class
of spectral data: namely, when the spectral data {A, H, D,~, J} is given by the so-called
“canonical spectral triple” M = {A., H., D¢, %e, Jo}. In the canonical triple, the input
algebra A. = C (M) is the algebra of smooth complex-valued functions over the manifold
M; H. = L*(M, S) is the Hilbert space of (square integrable) Dirac spinors on {M, g, };
D.= —z"y”Vﬁ is the ordinary curved-space Dirac operator on {M, g, }; 7. is the chirality
operator on H, (i.e. what physicists usually call 45 in 4 dimensions); and J, is the charge
conjugation operator on H.. As for the representation of A, on H., the functions f € A,
act on the spinor fields ¢ € H, by pointwise multiplication: ¥ (z) — f(z)¥(z). The idea is
that the Riemannian data {M, g,,} and the canonical triple M provide dual descriptions
of the same geometry, so that the canonical spectral triple may be obtained from the

Riemannian data, or vice versa. Following attempts by Rennie and Varilly | ] Connes
gave a formal proof of this correspondence in | ] (see also | ] for work on the
reconstruction of manifolds and also | , ] for more recent work on reconstruction
theorems).

When reconstructing a Riemannian geometry from canonical spectral data, specifying
the algebra A. amounts to specifying the manifold M, while specifying the operator D,
amounts to specifying the metric g,,. Let’s unpack these statements a bit. How does the
algebra A. encode the manifold M? On the one hand every Riemannian manifold can
be seen to give rise to an algebra of smooth functions (i.e. maps from the manifold to
the complex numbers). Proving the reverse statement is more difficult. According to the
commutative Gelfand-Naimark theorem, any commutative algebra (or, more correctly, any

®Namely, when the manifold M is given by R" and the metric g, is given by the flat Euclidean metric
O -
6Technically Riemannian spin geometry i.e. Riemannian manifolds which admit spinors.
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commutative C*-algebra) is equivalent to the algebra of complex-valued functions over a
certain topological space X 4 encoded by A, where X 4 is the space of “characters” of A
— i.e. *-homomorphisms ¢ : A — C. In particular, for the algebra A. = C*°(M), the
characters (which are in one-to-one correspondence with the points p € M) are precisely
the maps ¢, : A — C given by ¢,(f) = f(p); and Diff (M) (the group of diffeomorphisms
of the manifold M) is nothing but Aut(A.) (the group of automorphism of the algebra A.).
Next let us see how D, (a differential operator) interacts with A, (the algebra of functions
on M) to encode the metric g,,”. To see how differentiation of functions on a manifold
may be translated into distances, it is enough to consider a simple 1-dimensional example:
we can re-express the distance |z, — x| between two points x, and z; on the real line in
a dual fashion, as the maximum possible excursion |f(z,) — f(x)| that any function f(z)
can make between those two points, subject to the constraint that its derivative cannot
be too large (|df /dz| < 1). But to re-express distances in this way notice that we need
a derivative operator which interacts with the functions. This example is just meant to
convey the key idea: I provide more details of the reconstruction of Riemannian geometries
from spectral data in subsection 2.2.1, and the reader may also consult | , , ,
, , , , , ] and references therein for further information.

Finally, the other elements of the canonical spectral triple also have geometric meaning;:
the operator ., which provides a notion of chirality (left or right handedness) of spinors,
encodes the volume form of the underlying Riemannian geometry; and the anti-unitary
operator J., which maps spinors to their anti-spinors, provides a “real structure” to the
geometry, much as the operation of complex conjugation selects a preferred line (the real
line) inside the complex plane.

In order to describe the dynamics of a NCG there is a natural action functional which
assigns a real number to each spectral triple. It is given by the simple formula®

S ="Te[f(D/M)] + ($|D]) (1.1)

where f(x) is a real, even function of a single variable, which vanishes rapidly for |z| > 1;
and v is an element of the Hilbert space H. The first term in the action S, = Tr[f(D/A)]
is known as the ‘spectral action’” and when describing physical theories it determines the
dynamics of the bosonic degrees of freedom. The second term Sy = (¢| D)) is known as
the ‘fermionic action’, and describes the dynamics of the fermionic degrees of freedom. This

"Intuitively, the Dirac operator I) knows about the metric since its square is the Laplacian, whose

. . 2
principle symbol is g**: P° = 9" 0,0, + ...

8Note that actually the fermionic part of the action will depend on the ‘KO-dimension’ of the model
being constructed. For Euclidean models in KO-dimension 2 (the dimension of physical interest) the
fermionic part of the action is given by (Jy|D|v).



general expression may be derived from the “spectral action principle” (i.e. the requirement
that the action should only depend on the spectrum of the operator D), together with the
requirement that the action of the union of two geometries is the sum of their respective
actions, as usual | , ].

When applied to a canonical spectral triple M, the spectral action term Tr[f(D./A)]
may be expanded in powers of A, using the standard heat kernel expansion | , l;
the leading terms in this expansion are given by

A o2

Te[f(D/AN)] = [ d* Jul_ Jo 1.2
(000 = [ doi (55 - PR (12)
where f, = fooo f(z)z" 'dr. In other words, this term reduces to the ordinary action

for Einstein gravity (cosmological constant term plus Einstein-Hilbert term), so that the
term Tr[f(D/A)] may be regarded as the natural generalization of Einstein gravity in the
context of spectral geometry. Meanwhile, the fermionic term in (1.1) becomes:

WD) = [ dteyGit @)D.te) = ~i [ d'e gy iuts). (1.3)

In other words, this term reduces to the Euclidean action for a single, massless Dirac
fermion.

So much for the correspondence between canonical spectral triples and Riemannian
manifolds, what about the more general case? Once geometry has been reformulated in
spectral terms, one finds that it naturally extends to a class of spectral triples that is
far broader than the subclass of canonical spectral triples. Thus one obtains a natural
extension of Riemannian geometry, capable of handling many mathematical spaces that
lie beyond the boundaries of ordinary Riemannian geometry. In particular, although the
algebra A, in the canonical triple is commutative, the algebra A in the general triple need
not be; this is the reason behind the name ‘non-commutative geometry’.

To give a warm-up (but very important) example, consider the simple SU(N) con-
structions outlined in | , §2], and also in Subsection 3.1.5 of this work: These con-
structions take as input the algebra of complex N x N matrices Ap = My(C), where
Ap is represented on itself, ie. Hp = My(C). The real structure operator is given by
the adjoint on matrices, Jph = (h)* for h € Hp, while the grading on H is given by
the identity operator v = Iy. Compatibility with the chirality (i.e. {v,D} = 0 (see
section 2.2.2)) then forces Dp = 0. This simple finite non-commutative spectral triple
{Ap,Hp,Dp, Jp,vr} = {Mn(C), MyN(C),0,*,1} describes a zero dimensional geometry
with a symmetry group given by the automorphisms of the input algebra: SU(N). I will
discuss at length the symmetries of a NCG in chapter 3.



While ‘non-commutative’ geometries are exciting to explore from a purely mathematical
standpoint, their real interest (at least for physicists) lies in their applications to physics.
In particular, just as Riemannian geometry provides an elegant framework for describing
gravitational theories, NCG provides an economical framework within which to describe
more complicated gauge theories as ‘gravity’ on non-commutative space-times. So far
the NCGs of interest in such applications seem to be the so called ‘almost-commutative’
geometries: that is, geometries which are formed as the product between a canonical triple
M and a finite dimensional non-commutative spectral triple F' based on finite dimensional
matrix algebras:

T=MxF (1.4)

The basic idea behind almost-commutative geometries is very similar to that of Kaluza-
Klein theories: the ‘internal’ gauge degrees of freedom of a physical theory are described at
each point on the manifold by the finite space F', with the gauge symmetries arising roughly
speaking as the ‘inner automorphisms’ of the finite input algebra. The continuous ‘external’
degrees of freedom are described by the canonical space M, with the diffeomorphisms of
the manifold arising as the ‘outer automorphisms’ of the canonical input algebra. This
construction is actually quite restrictive, and the vast majority of gauge theories cannot be
constructed as a NCG. Rather remarkably however, the standard model of particle physics
can be constructed in just this way as an almost-commutative geometry.

When applying the spectral action (1.1) to almost-commutative spectral triples; the
key result is that, for a certain (rather simple and natural) class of almost-commutative
spectral triples { A, H, D,~, J}, the spectral action (1.1) reduces precisely to the action for
Einstein gravity coupled to the full SU.(3) x SU,(2) x Uy,(1) standard model of particle
physics, in all its detail. In particular, Tr[f(D/A)] produces the bosonic terms in the
action (the gravitational terms, the kinetic terms for the gauge bosons, and the kinetic
and potential terms for the Higgs doublet), while (¢)| D) produces the fermionic terms
(the kinetic terms for the leptons and quarks, their Yukawa interactions with the Higgs
doublet, and the neutrino mass terms). For the detailed derivation of this result, see

[ ) , , , , . T will also discuss the construction the
NCG SM in Ch. 4 and Appendix A.

It is worth pausing to emphasize the difference between this perspective on noncom-
mutativity, and the one more commonly encountered in the physics literature. Often,
noncommutative geometry is taken to mean the noncommutativity of the 4-dimensional
spacetime coordinates themselves; it is regarded as a property of quantum gravity that
presumably becomes manifest at the Planck energy scale (i.e. the exceedingly high energy
scale of 10! GeV). By contrast, from the perspective of the spectral reformulation of

7



the standard model, all of the non-gravitational fields in nature at low energies are rein-
terpreted as the direct manifestations of noncommutative geometry, right in front of our
nose, staring us in the face!

1.2 A brief historical overview

Although not crucial for understanding the rest of the work, some readers might appre-
ciate a short historical interlude outlining the development of NCG, and in particular
the construction of the SM as a NCG. I will provide a rapid-fire and incomplete his-
tory here: Attempts towards the construction of a NCG SM date back to the work

of Dubois-Violette, Madore, and Kerner in | : |, and to that
of Connes and Lott in | : |, followed by the work of Iochum and Schiicker
in [ , , , ] and Krajewski in | ]. The earliest models displayed many

of the interesting features of the current construction, but did not make use of a real struc-
ture operator J, relying instead on so called ‘bi-vector’ potentials. The earliest models also
did not feature gravity. Real structure operators were introduced by Connes in | ].
Likewise, it was the later work of Chamseddine and Connes which introduced the current
spectral action, and showed how to unify the NCG SM with gravity | , , ].
The early models also suffered from a ‘fermion quadrupling problem’; as was pointed out
by Lizzi et al. | |. This problem was solved independently by Connes and Bar-
rett | , | by changing the so called ‘KO-signature’ of the NCG SM internal
space from zero to 6. This shift in KO-dimension also allowed for a description of right
handed neutrinos and neutrino mixing as shown in the work of Chamseddine, Connes, and
Marcolli | |, and Barrett | ].

The NCG SM is in very good agreement with phenomenology, however based on a
minimal set of assumptions (such as the big desert hypothesis) it made an early prediction
for the SM Higgs mass at approximately 170GeV | , , ]. This prediction
was disfavored by the Tevatron, and later ruled out by the LHC. The incorrect Higgs mass
prediction prompted the development of models beyond the standard model such as those
developed by Stephan | , , , | as well as that constructed by
Chamseddine, Connes and van Suulekom [ ]. A number of minimal solutions to
the ‘Higgs mass problem’ were also put forward, notably by Estrada and Marcolli | ]
and by Chamseddine and Connes | ]. Along with the development of the NCG SM,
models of cosmology based on NCG have also been developed, notably by Marcolli and
collaborators | , , , , ]

My own work with Latham Boyle | , , ] enters the field quite late and
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focuses on cleaning up various aspects of the NCG SM construction and uncovering their
true meaning(!), using NCG to explore beyond the standard model physics, and on gen-
eralizing the NCG framework to describe non-associative geometries. My work is con-
temporary with that of Beenakker et al. | , , |, and Ishihara et
al. | , , | which focuses on supersymmetric extensions of the stan-
dard model, as well as the work of Chamseddine et al. which focuses on Pati-Salam type
extensions of the NCG SM | , ], the ‘grand symmetry’ aproach of Devastato
et al. | | which focus on a unification with gravity, and the work of Dungen | ]
which focuses on Lorentzian spectral triples. For previous work on non-associative geom-
etry in a somewhat different context see | , , , , ].

1.3 What does NCG get right?

What is the physical motivation for reformulating the familiar action for the standard
model (coupled to gravity) in the unfamiliar language of spectral triples and the spectral
action? In this section I would like to stress that there are two key motivations for the
NCG approach: unification and constraint.

Unification

In generalizing from Riemannian geometry to NCG, the algebra A generalizes the manifold
M; and the group Aut(.A) of automorphisms of A generalizes the group Diff (M) of diffeo-
morphisms of M. In particular, in the canonical spectral triple, where A = C*°(M,C) is
the commutative x-algebra of smooth functions f : M — C, we have Aut(A) = Diff(M).
Now consider the next simplest case, in which A = C*°(M, M,,(C)) is the noncommutative
x-algebra of smooth functions f : M — M,(C), where M, (C) denotes the set of n x n
complex matrices (i.e an ‘almost-commutative’ input algebra). In this case, Aut(.A) is the
semi-direct product of two groups

Aut(A) = Map(M, SU(N)) x Diff (M) (1.5)

where Map(M, SU(N)) is the group of maps from M to the group SU(N). Notice that
the group on the right-hand side of Eq. (1.5) also has another interpretation: it is the
full symmetry group of SU(N) gauge theory coupled to Einstein gravity — namely, the
semi-direct product of the group Map(M, SU(N)) of gauge transformations and the group
Diff (M) of gravitational symmetries. Indeed, if one evaluates the spectral action (1.1) for



a spectral triple based on this algebra C*°(M, M,,(C)), one finds that it reduces to SU(N)
gauge theory coupled to Einstein gravity | ]. In this example, we see that an elegant
and conceptually satisfying picture emerges: the full symmetry group of a gauge theory
coupled to gravity is reinterpreted in a unified way as simply Aut(A), the automorphism
group of an underlying algebra; and this, in turn, is interpreted as the group of “purely
gravitational” transformations of a corresponding non-commutative space. In essence, this
basic picture is also behind the spectral reformulation of the standard model coupled to
gravity.

To see what is compelling about this picture, it is interesting to contrast it with Kaluza-
Klein (KK) theory. To see the contrast clearly, it is enough to consider the original and
simplest KK model. In this model, one starts with the 5D Einstein-Hilbert action Sxx =
(167G5)~"! [ d°X\/=g5R5, where X, G5, g5 and Rs denote the 5D spacetime coordinates,
Newton constant, metric determinant and Ricci scalar, respectively. Next, one supposes
that the 5D manifold is the product of a 4D manifold and a circle (M5 = My x S;), where
x# are the 4D coordinates on My and z is the coordinate on S;. Finally, one writes the
general 5D line element in the form

ds? = g® dXmdX" = e‘p/‘/ggfﬁ,)dm“dat” + 6_2“’/‘/3(Audx“ + dz)? (1.6)
(5

and observes that, if the 5D metric gm% only depends on the 4D coordinates z*, then the
5D action Skx reduces to a 4D action of the form

Ry 1 1 _
SkK / z g4 [167TG4 2(690) 46 (1.7)

where Gy, g4 and R4 are the 4D Newton constant, metric determinant and Ricci scalar,
respectively, while F},,, is the 4D Maxwell field strength derived from the 4D gauge potential
A,. This simple example captures what is appealing about KK theory — that one starts
from the simple and purely gravitational action for Einstein gravity in 5D and obtains
something tantalizingly close to 4D Einstein gravity plus 4D gauge theory — but it also
captures what is unappealing about KK theory. For one thing, one typically obtains extra,
unwanted fields with unwanted couplings (in this example, the massless scalar field ¢, with
its experimentally untenable e V3r 2 coupling to electromagnetism), and one must explain
why these extra fields and couplings are not observed in nature. For another thing, the
reduction from the initial 5D action, which has the huge symmetry group Diff(Mj5), to the
final 4D action, which has the much smaller symmetry group Map(My, U(1)) x Diff (My),
fundamentally relies on the assumption that the 5D metric 97(27)1 only depends on the 4D
coordinates x*. This assumption is supposed to be justified, in turn, by the fact that the
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compactified direction is so small; but this justification assumes that one has stabilized the
extra dimension — i.e. found a way to make it small and keep it small, without letting it
shrink down to a singularity or blow up to macroscopic size. The problem of stabilizing
extra dimensions in KK theory is a famously thorny one and, furthermore, is ultimately
at the root of the so-called landscape problem in string theory.

Thus the spectral and KK approaches share a similar spirit: in both cases the goal is to
reinterpret the action describing ordinary 4-dimensional physics as arising from a simpler
action formulated on an “extension” of 4-dimensional spacetime. But the spectral action
seems to achieve this goal more elegantly and directly. In KK theory, the starting point is
an action with too many fields and too much symmetry, and one must then jump through
many hoops to explain why these extra fields and symmetries are unobserved in nature.
By contrast, in the NCG approach, the field content and symmetries of the standard model
are obtained directly.

In the 5D KK model, three different objects are all packaged together as different parts
of the metric on the extended (5D) geometry: (i) the 4D metric, (ii) the 4D gauge field
and (iii) the 4D dilaton field. Analogously, in the spectral action, four different objects
are unified, in the sense that they are all packaged together as different parts of the Dirac
operator D on the extended (spectral) geometry: (i) the 4D Levi-Civita connection (which
is related to the 4D metric), (ii) the 4D gauge fields, (iii) the Higgs field and (iv) the matrix
of Yukawa couplings. Note that in the spectral case, the 4 objects which are unified in
this way are all crucial and experimentally verified components of the standard model of
particle physics. In the spectral framework, the remaining fields (i.e. the fermions) are
nothing but the basis vectors on the Hilbert space H.

Constraints

The spectral action (1.1) packages all of the complexity of gravity and the standard model
of particle physics into two simple and elegant terms which, in turn, follow from a simple
principle (the spectral action principle described above). As we will describe, it also ends
up explaining aspects of the structure of the SM which are otherwise unexplained. The
compactness and tautness of this formulation suggest that it may be a step in the right
direction. To give a provocative analogy: much as Minkowski “discovered” that the rather
cumbersome Lorentz transformations (which formed the basis of Einstein’s original formu-
lation of special relativity) could be elegantly re-interpreted as the geometrical statement
that we live in a 4-dimensional Minkowski spacetime, Chamseddine and Connes seem to
have discovered that the rather cumbersome action and particle content for the standard
model coupled to gravity can be elegantly re-interpreted as the geometric statement that we
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live in a certain type of noncommutative geometry. (Einstein initially rejected Minkowski’s
unfamiliar formulation of special relativity as worse than useless, calling it “superfluous
learnedness,” and quipping that “since the mathematicians have tackled the theory of rel-
ativity, I myself no longer understand it anymore” | ]. Ultimately, of course, it proved
to be a crucial step on the road to general relativity.)

The tautness of the NCG formalism is not restricted to the spectral action. The amazing
fact is that the set of input data required for constructing the SM as a NCG is greatly
reduced when compared with the input required in the more familiar QFT description. To
see exactly why this is true, I will provide a side by side comparison of the minimal input
data required in each construction. I begin with the familiar QF'T construction, where the
minimal input data may be provided compactly in three steps, each corresponding roughly
to one of the three kinds of particles present in the SM: gauge fields, fermions, and scalars.

| H QFT [ NCG H
Step 1. G:U1 XSUQXSU3 AF:C@H@Mg(C)
SU.(3) [ 20,2 | Uy (1)
qr 3 3 +1/6
Step 2. || dg 3 1 -1/3 Hp=C% 7
lr, 1 2 0
VR 1 1 —1
er | 1 1| +1/2
Step 3. | h 1 2 1/2 Dp

Table 1.1: QFT vs NCG: A comparison between SM constructions.

(1) In the first step the symmetries of the theory must be specified, and in particular
the gauge symmetries of the model are found experimentally to be G = U, (1) x SU,(2) x
SU.(3). Once the SM gauge group is provided as input, Yang-Mills theory then says that
there exists a gauge field corresponding to each generator of the gauge symmetry, and
that these gauge fields must transform into one another in the adjoint representation. The
gauge sector of the model is therefore completely specified by the choice of gauge group.
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(2) Having specified the gauge sector of the SM, the next step is to outline the fermionic
content. There is currently no good understanding for the number of particle species that
we observe, and aside from anomaly cancellation there is also little theoretical justifica-
tion for the various charges and representations under the SM gauge group. All of this
information must be provided as input.

(3) Once the fermionic and gauge sectors of the model are specified, the final input
required relates to the scalar sector. Just as with the fermionic sector, the number of
scalars present, along with their charges and representations is known observationally, but
remains undetermined theoretically, and so must be provided as input.

Given the above three pieces of input data, the SM may then be constructed as the
most general Lagrangian consistent with the symmetries and particle content. The free
parameters in the model are then fit by experiment. This input data is indeed exceptionally
minimal, but now let me compare it to that required in the NCG description of the same
model. Again the input data may be thought of in three input steps, each corresponding
roughly to the three elements of a spectral triple {A, H, D}:

(1) The first step in constructing the SM as a NCG is the specification of an input
algebra, and in particular a finite dimensional algebra. In the case of the SM the finite
dimensional algebra is given by Arp = C @ H & M;3(C). This first step is analogous to that
taken in the more familiar QFT construction, as the symmetries of the theory correspond,
roughly speaking, to the automorphisms of the input algebra (I will make this statement
more precise in Section 3.3). However, it has also been argued that under certain very

minimal assumptions this input algebra is in some sense the simplest algebra consistent
with the NCG formalism | ]

(2) The next step in the NCG approach is to specify the representation of the input
algebra on a Hilbert space. In practice this means specifying the representation 7 of the
finite algebra Ar, which for the standard model is given on the Hilbert space Hy = C (the
‘96’ corresponds to the number of unique fermions in the model including three particle
generations and a right handed neutrino per generation). Notice that in contrast to the
QFT approach, the main piece of input data being represented here is an algebra and not a
group. The representation theory for finite associative *-algebras is much more restrictive
than the representation theory for groups, and so in the NCG approach it is no longer
a mystery why the particle content always appears in fundamental, adjoint, and singlet
representations - this is obtained as an output of the formalism rather than being provided
as input. In addition, in the NCG approach it is an explained output that each fermionic
species is charged under at most two non-abelian gauge symmetries (a fact which arises
from the bi-module structure of the input Hilbert space, ‘bi’ being the operative prefix).
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(3) Step three is where the NCG approach really pulls ahead of the competition. There
is in fact no third piece of input data required in the NCG approach! Just as when specifying
the properties of a triangle in Euclidean geometry one need not give all three angles as
input, once two pieces if input data are supplied in NCG (an algebra and Hilbert space
in this case), the third piece of data, a finite Dirac operator D, is then derivable as an
output from the NCG axioms alone. The Dirac operator in turn specifies the scalar sector
of the model, with the Higgs fields appearing as connections on the finite space in exactly
the same way that the gauge fields appear as connections on the continuous space (I will
discuss this point in detail in Subsection 2.2.3). In other words the Higgs sector is not an
independent input once the gauge and fermion sectors are specified. In effect the Higgs
boson is an extra “component” of the gauge field, reflecting the fact that the spacetime is
non-commutative.

Finally, once the input data of the NCG SM has been specified one can construct the
spectral and fermionic actions. On performing the Heat kernel expansion one then obtains
the SM coupled to Einstein-Hilbert gravity in all of its detail.

The key benefit of the NCG approach to physics is that it requires a reduced set of
input data as compared with the traditional QFT approach to constructing gauge theories.
In this sense, certain aspects of the theory may be explained or understood or predicted
which otherwise seem arbitrary. Indeed, from knowledge of the SM fermionic and gauge
sectors alone, NCG did ‘predict’ the existence of an SU, Higgs field prior to the discovery
of the SM Higgs field at the LHC (NCG also makes a ‘post-diction’ for the existance of
right handed neutrinos and Majorana mass terms). One would hope to go further, and
to predict particle content beyond the standard model. This predictive power of NCG is
perhaps its most beautiful feature, and unfortunately, does not seem widely understood or
appreciated.

1.4 Where does NCG fail?

NCG gives a remarkably complete account of the SM in all of its detail, including the
fermions, gauge bosons, and scalar fields. Bearing this success in mind, one might hope
to use the constraints in the NCG formalism to explore beyond the SM, and indeed some
have tried | , , , , , , |. Unfortunately the traditional
formalism has run into a string of problems which have limited its effectiveness as a model
building tool. These include:

1. Unification As described in Section 1.3, one of the most beautiful features of the

14



NCG approach to physics is that it provides a unified description of symmetries:
both the manifold diffeomorphisms, and internal gauge symmetries of a physical
model arise in the same way as the automorphisms of an input algebra. In addition
the gauge and Higgs bosons share a unified description, with scalar fields appearing
as connections on the ‘internal’ part of a geometry, and gauge bosons appearing
as connections on the ‘continuous’ part of a geometry. While this unification is
impressive, the formalism still relies on five separate input elements (ie. a spectral
triple {A, H, D, J,~}) for its description, each satisfying its own unique set of rules
and conditions. It would be conceptually much more satisfying if there were a more
coherent description of the NCG input data and its axioms. As I will describe in
Section 3.2, this is precisely what our reformulation does: it packages together all of
the data held in a spectral triple into a single involutive, differential, graded algebra
which we label 2B. In our formulation, many of the otherwise separate axioms and
conditions satisfied by the elements of a NCG arise simply as the properties of the
algebra QB.

. Euclidean signature: The current NCG formulation is only well defined for ge-
ometries with Euclidean signature. In practice, when constructing a physical theory
as a NCG one performs all calculations in Fuclidean signature, before computing the
spectral action, and then finally Wick rotating at the end. Generalizing NCG to the
Lorentzian setting is an active area of research, which is outside the scope of this
thesis. The interested reader can find some recent work in | , , ].

. Quantization: While NCG is constructed in the language of quantum mechanics:
that is as operators and Hilbert spaces, the spectral action remains a tool for produc-
ing a classical action. Recent work on using NCG to construct quantum mechanical
models can be found for example in | , ]. T will mention this topic briefly
when I conclude in Ch. 6.

. Weinberg angle problem: The spectral action given in Eq. (1.1) is defined at
a scale A. When calculating the heat kernel expansion for the SM one finds the
same constraint on the gauge couplings that holds at the unification scale Ap;s
for SU(5) grand unified theories, i.e. g2 = g, = 5/395. This constraint leads to
the interpretation that the spectral action must be defined at the unification scale:
A = Aynip. Unfortunately it is known experimentally that the gauge couplings do
not unify exactly, and so the NCG SM suffers from the well known ‘Weinberg angle
problem’. For work on solving the unification problem see for example | . 1
will discuss our own attempted solution to this problem at the end of Chapter 4.
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5. Three generations: While NCG explains a number of the otherwise ad-hoc features
of the standard model (fermion representations, each fermion being charged only
under at most two non-abelian symmetries groups, the Higgs field appearing as an
internal connection, etc), it has no explanation for the appearance of three particle
generations. This is still taken as unexplained input in the current model. T will
motivate a possible solution to this problem in Subsection 5.3.3.

6. Unwanted Higgs fields: As discussed in section 1.3, one of the key advantages
of the NCG formalism is that it provides a more constrained description of gauge
theories. In particular, given the fermionic and gauge bosonic input data of a gauge
theory, the NCG axioms may then be used to determine the Higgs sector as output.
Unfortunately this is not quite what has traditionally happened. In practice, when
constructing the SM, the traditional NCG axioms place very heavy restrictions on the
SM Higgs sector but do not uniquely restrict to the SM Higgs. As a solution to this
problem an additional ad-hoc non-geometric condition is imposed, which essentially
removes the unwanted fields by hand | , . Our reformulation of the
NCG input data offers a rather natural solution to this problem which I discuss in
Subsection 4.1.3.

7. Higgs Mass: The NCG SM spectral action is slightly more constrained than the
usual QFT description of the standard model. As a result it is possible to obtain,
under some mild assumptions, a predicted value for the Higgs mass. Unfortunately
the naive value is calculated to be approximately 170GeV | , |, which is
ruled out by experiment. As a solution to this problem Chamseddine and Connes
add a real scalar field into the model by hand effectively increasing the parameter
space of the model and making it compatible with the 125GeV detected Higgs mass
value | ]. Unfortunately this solution conflicts with one of the most beautiful
features of the NCG: the scalar sector is no longer obtained as an output?. As it
turns out, our reformulation of the NCG input data yields a strikingly simple and
natural solution to this problem, which I will discuss in Subsection. 4.2.2

8. Cosmological constant: NCG does not provide a solution to the cosmological
constant problem. As shown in the most recent version of the NCG SM | ]
a cosmological constant term does appear in the expansion of the NCG SM bosonic
action, but the formalism does not provide any natural way of matching this constant
to its physically measured value.

9 Another potential solution to the Higgs mass problem has been proposed by Estrada and Marcolli,
in which they assume the asymptotic safety of gravity [ ], in the sense of Shaposhnikov and Wet-
terich | ], T will however not discuss this solution.
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Before making full use of the NCG formalism to explore beyond SM physics, the above
mentioned problems indicate one should first carefully understand and distinguish between
those NCG axioms which are fundamental and natural, and those which are less well moti-
vated, or are more arbitrary. As I will explain below in Section 1.5, there are good reasons,
both mathematical and physical, for removing the axiomatic restriction to associative in-
put algebras taken in the traditional formulation of NCG. As it turns out, in the process
of removing this restriction, many otherwise confusing elements of the NCG construction
are elucidated, even when considering purely associative geometries such as the NCG SM.
In generalizing to the non-associative setting, the solutions to a number of problems in the
associative formalism become in some sense ‘obvious’. I discuss the unexpected benefits of
extending to a non-associative formalism in chapter 4. For the remainder of this chapter
I focus instead on the original motivations for generalizing to a non-associative geometry:
there are two.

1.5 Why generalize to non-associative differential ge-
ometry?

Over the past few centuries, physicists and mathematicians have become well accustomed
to the fact that noncommutative structures are of central and ubiquitous importance. But,
for most physicists, nonassociativity still carries a whiff of disreputability'?. It is important
then to start by explaining the two key motivations for studying nonassociativity in this
paper: first a general motivation, followed by a more specific one.

General mathematical motivation

Let’s start with the more general mathematical motivation. The fundamental point is that,
in the ordinary approach to physics, the basic input is a symmetry group. By contrast, in
the NCG approach, the fundamental input is an algebra, and the symmetry group then
emerges as the automorphism group of that algebra. Symmetry groups are associative by
nature, but algebras are not. Just as some of the most beautiful and important groups
are non-commutative, some of the most beautiful and important algebras (including Lie

0Even though Lie algebras are at the heart of much of physics, interest usually lies in the associative
groups that they generate, and so the non-associativity of Lie algebras is conveniently hidden away and
forgotten about. For an example of where non-associativity arises explicitly in a physical system see for
example the addition of velocities in special relativity [ ].
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algebras, Jordan algebras and the Octonions) are non-associative. Just as it would be un-
natural to restrict attention to commutative groups (as physicists originally did in studying
gauge theory, prior to Yang-Mills), it is unnatural to restrict attention to associative alge-
bras. In either case, imposing such an unnatural restriction amounts to blinding ourselves
of something essential that the formalism is trying to say. From this standpoint, it is a nat-
ural task to reformulate the spectral approach to physics in such a way that the extension
to non-associative algebras becomes obvious and natural.

Physical motivation

Next the physical motivation. Although I would like to use the framework of NCG to
explore beyond the standard model of particle physics, many of the most interesting ex-
tensions are out of reach of the associative formalism. As a specific example, in order
to reformulate the most successful Grand Unified Theories (GUTs) — e.g. those based
on SU(5), SO(10) and Eg — in terms of the spectral action, we are forced to use non-
associative input algebras. To appreciate this point, first note that the representation
theory of associative x-algebras is much more restricted than the representation theory of
Lie groups | |: Lie groups (like SU(5)) have an infinite number of irreps, but asso-
ciative algebras (like the corresponding x-algebra M;5(C) of 5 x 5 complex matrices, whose
automorphism group is SU(5)) only have a finite number. In particular, if we ask whether
key fermionic representations needed in GUT model building — such as the 10 of SU(5),
the 16 of SO(10), or the 27 of Eg — are available as the irreps of algebras with the cor-
rect corresponding automorphism groups, the answer is “no” for associative algebras, and
“yes” for non-associative algebras. Furthermore, if we ask whether the exceptional groups
(including Fj, which is of particular interest for GUT model building, and Eg, which is of
particular interest in connection with string theory) appear as the automorphism groups
of corresponding algebras, again the answer is “no” for associative algebras and “yes” for
non-associative algebras.

1.6 Non-associative geometry: what is it?

Connes generalized Riemannian geometry to NCG by shifting his focus away from geo-
metric spaces to the algebras of functions defined over them. His approach was to first
reformulate as much as possible of ordinary Riemannian geometry on a manifold M in
terms of the algebra C*°(M), including differential forms, bundles, connections, and coho-
mology [Mar]. The idea is that the data {M, g} describing a Riemannian geometry can
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be replaced by a dual set of data {A,#, D} consisting of a very special choice of input
algebra A, Hilbert space H and Dirac operator D satisfying certain conditions:

{M,g} < {AH, D} (1.8)

The benefit of the ‘spectral’ description of geometry is that the spectral notions of differ-
ential forms, bundles, connections, and cohomology all continue to make sense when the
input algebra is taken to be non-commutative. The spectral approach therefore readily
allows for the description of ‘non-commutative’ geometries.

The spectral data corresponding to a Riemannian geometry satisfy a very special set
of conditions | ]. What conditions then should a spectral triple corresponding to
a more general NCG satisfy when its underlying space is not necessarily known? Connes
generalized the conditions satisfied by Riemannian geometries to a set of axioms satisfied by
more general NCGs which have non-commutative input algebras (as I will discuss in Ch.2).
Our main contribution is the realization that one can go a step further: the input data of
a spectral triple can be ‘fused’ together to form an involutive, differential graded x-algebra
2B. Then many of the traditional NCG axioms as well as a number of new constraints
arise from the intrinsic algebraic properties on QB if QB is taken to be associative.

(M, g} & {A,H,D} + QB (1.9)

A key realization of ours is the fact that (2B need not be associative. In particular, if QB
satisfies more general associativity properties (ie. if it is a Jordan algebra for example) then
generalized NCG axioms are derived readily from the intrinsic properties of 0B. In short,
I will argue that a non-associative differential geometry is an NCG who’s corresponding
fused algebra 2B is non-associative.

Finally, it is important to stress at the outset that the physical theories that are con-
structible as as non-associative NCGs are still normal associative gauge theories. Just as
(non-associative) Lie algebras generate the associative groups of everyday use in physics,
the symmetries of non-associative NCGs are associative. There is no funny non-associativity
of space-time which arises, or anything non-associativity of the sort that should worry the
reader from a physics stand point.

1.7 Summary of key results

I will close this introductory chapter with a brief listing of our key results:
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. We reformulate the NCG input data in terms of ‘fused algebras’ 2B, which are
constructed as square zero extensions 3.2.

. We show that many of the associative NCG conditions which were previously taken as
axiom may be derived from the more fundamental condition that (2B is an associative,
involutive, differential graded algebra 3.2.4.

. We show that the associativity of 2B imposes new constraints on NCGs beyond those
imposed by the traditional NCG axioms, and show how these new constraints may
be used to place phenomenologically accurate restrictions on the NCG SM  4.1.3.

. We show that (2B need not be associative, and as such the fused algebra formulation
allows for a natural description of non-associative NCGs 3.2.

. We describe how the symmetries of a NCG are given new meaning as the automor-
phisms of 2B 3.3.

. We show how the fused algebra formulation of NCG leads to a natural and phe-
nomenologically viable extension of the SM 4.2.1, and describe how this extension
provides a possible solution to the NCG Higgs mass problem 4.2.2.

. We construct the first non-associative geometries in 3.1.5 and 5.
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Chapter 2

Preliminaries

NCG grows out of the simple idea that one should shift attention away from geometric
spaces, to instead focus on the algebras of functions defined on them. As a result, a good
understanding of algebras and their representations will be necessary for understanding the
bulk of this work. This chapter has two goals: The first goal is to introduce/review the basic
definitions and tools needed when working with (non-associative) algebras. In particular
I will review involutive algebras, graded algebras, differential graded algebras (DGAs),
opposite algebras, algebra automorphisms and algebra representations. I will also lay out
most of the notation that will be used throughout this work. The second goal is to give
a pedagogical introduction to NCG in the traditional approach. In particular I will give a
brief overview of the NCG axioms, and will describe explicitly how one constructs so called
‘almost-commutative’ geometries. For information beyond that which is provided in this
work the reader is encouraged to consult | , , , ,CM, , ].

2.1 Mathematical preliminaries

2.1.1 Algebras

An algebra A is a vector space (over a field F), which is equipped with a product: ab € A
Va,b € A, which is distributive over addition:

ag(ay + az) = apay + apas,  (ag + ai)as = agas + ajas, (2.1)

Va; € A. 1 will only ever consider algebras which are constructed over the field of real R or
complex C numbers, and to reduce notation the product between any two algebra elements
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will always be notated by juxtaposition unless explicitly stated otherwise. An algebra is
said to be unital if it is equipped with a multiplicative unit I which satisfies

al =Ia = a, Va € A. (2.2)

An algebra is said to be ‘non-commutative’ if its product is non-commutative: ab # ba,
for some a,b € A. Similarly, an algebra is said to be ‘non-associative’ if its product is
non-associative: (ab)c # a(be), a,b,c € A. Just as the “commutator” [a,b] is introduced
to characterize the failure of commutativity, the “associator” [a, b, ¢] is introduced to char-
acterize the failure of associativity:

la,b] = ab — ba, [a, b, c] = (ab)e — a(bc) a,b,ce A (2.3)

While there are many interesting classes of non-associative algebras, there are three which
are most widely known and studied. These are also the only three which I will explore in
this work:

1. Lie algebras: A Lie algebra A is a vector space over a field F equipped with the
‘Lie product’, which satisfies:

lag, a1] =0, (anti-symmetry) (2.4a)
= ()7

ao(aas) + as(apay) + ai(azap) (Jacobi identity) (2.4Db)

Vai € A

2. Jordan algebras: A Jordan algebra A is a vector space over a field F equipped
with the ‘Jordan product’, which satisfies:

{ap,a1} =0, (symmetry) (2.5a)
[ag, a1, al] =0, (Jordan identity) (2.5b)

Va; € A. Notice that all commutative, associative algebras satisfy Eq. (2.5), and so
all commutative, associative algebras are examples of Jordan algebras.

As an interesting historical aside, Jordan algebras were first discovered by physicists:
One of the major advances of the last century was the discovery of quantum mechan-
ics in which one passes from the commutative algebra of classical observables to the
non-commutative algebra of quantum mechanical observables | |. In the usual
approach to quantum mechanics, the observables of a system are given by Hermitian
operators, and two operators can only be measured simultaneously if they commute.
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In other words, if X, and Y are two hermitian operators, than XY is not in general
observable unless [X,Y] = 0. Jordan algebras were first introduced by Pascual Jor-

dan, John von Neumann and Wigner | |, in an attempt to formalize quantum
theory in terms of its essential ingredients: observables, states, expectation values
and their time evolution | |. They noticed that while observables (hermitian

operators) are not in general closed under matrix multiplication (ie. the product of
two self-adjoint operators is in general not self-adjoint), they are closed under the
‘Jordan’ product

roy=uxy+ yx, (2.6)

and they form a Jordan algebra satisfying the properties outlined in Eq. (2.5). Indeed,
there is a Jordan algebra approach to quantum mechanics which is equivalent to the
usual C* algebra formulation | ].

3. Alternative algebras: An alternative algebra A is a vector space over a field F
equipped with an ‘alternative product’, for which the associator is ‘alternating’:

[ao(1), Ao(2), Go(3)] = sgn(o)[ar, az, as], (2.7)

for any permutation o, and Va; € A. Notice that all associative algebras trivially
satisfy the ‘alternative’ identity given in Eq. (2.7), and so all associative algebras are
also examples of alternative algebras.

An algebra A is said to be ‘involutive’! if it is equipped with an involution operator
x : A — A which satisfies:

(a*)" = a, (2.8a)
(apar)* = ajay, (2.8b)
(pap + aray)* = apagy + @ra) (2.8¢)

Va; € A, and where Va; € C the overline denotes the usual complex conjugation. For
example: the complex numbers C are a commutative x-algebra over R, where the % op-
eration is complex conjugation z — Z; and the n x n complex matrices M, (C) form a
non-commutative x-algebra (over C), where the x operation is the conjugate transpose ()
operation m — m'. I will sometimes indicate explicitly that an algebra A is equipped with
an involution * by writing {A, *}.

nvolutive algebras are also known as star algebras or *-algebras.
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An algebra A is said to be ‘normed’ if it is equipped with a norm |.|| : A — R which
has the properties | |:

|lal[ = 0, (2.9a)

lla]| =0 = a =0, (2.9b)
laal[ = |efllall, (2.9¢)
llao + ax[| < llaol| + [laall; (2.9d)
llaoas || < flaol[[as]], (2.9¢)

Va; € A, a € F. The ‘distance’ between any two elements of a normed algebra can
be defined using the norm: d(ag,a;1) = ||ag — a1]|. A ‘Cauchy’ sequence of elements in a
normed algebra A is a sequence of elements a; who’s ‘distance’ between each other becomes
arbitrarily close as the sequence progresses. Explicitly, a sequence is defined to be Cauchy if
for every finite positive number p € R, there is an N such that d(a,,, a,,) < pfor n,m > N.
A normed algebra A is said to be ‘complete’ if every Cauchy sequence of elements a; € A
has a limit that is also in A.

A normed algebra is said to be ‘Banach’ if it is complete with respect to the norm. A
C*-algebra is an associative, involution ‘Banach’ algebra satisfying:

la*all = [lal[*, (2.10)

VA € A. Equation (2.9e) together with equation (2.10) can be used to show that C*-
algebras also satisfy the condition:

[la"[| = [lal], (2.11)

Va € A.

Given an algebra A, a left(right) ideal Zjp) is a subset of A which is closed under
left(right) multiplication by elements A: av € Z; Ya € A, v € I (va € Ig Ya € A,
v € Zgr). An ideal which is closed under both left and right multiplication is called ‘two
sided’. Given a two-sided ideal Z;, p C A, an equivalence relation ~ can be defined such
that:

ag ~ a1 iff apg — ay € z (212)

It is easy to check that this relation is reflexive, transitive, and symmetric. The equivalence
class given in (2.12) defines a new ‘quotient’ algebra A/Z with elements [a] given by:

[a] = {a + 7”’7“ € -,Z:L,R}' (213)
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An ideal 7 is said to be ‘maximal’ in A if there is no ideal 7 such that Z C J C A.

Finally, in order to describe algebras (especially nonassociative algebras) it is convenient
to introduce the standard notation [ | in which L, denotes the left-action of a, and
R, denotes the right-action of a:

Laoal = Qpay, Raoal = a10Qy. (214)

VYa; € A. In other words, L, and R, are two different linear operators on the vector
space A. As an illustration of this notation one may write ag((azv)a1) = LgyRa, Laov for
a;,v € A. In particular, note that when A is nonassociative, the left-hand side of this
equation requires parentheses, but the right-hand side does not.

Examples

1. The set of continuous, smooth, complex functions A = C*°(M, C) over a manifold M
form a commutative, associative, involutive algebra with multiplication given by the
point-wise product (f.g)(x) := f(z)g(x) ¥Vf,g € A, and with the involution given by
complex conjugation. While this algebra is an example of an associative algebra, it
is also an example of a Jordan algebra, and an alternative algebra because it satisfies
the properties given in Eq. (2.5) and Eq. (2.7) respectively.

2. The set of finite, complex n x n matrices M, (C) equipped with the matrix prod-
uct, and hermitian conjugation form a complex, non-commutative, associative star-
algebra.

3. The set of finite, complex, anti-hermitian n x n matrices M, (C)~ equipped with the
anti-symmetrised matrix product

ap X a; = apay — a1ay, (2.15)

form a real Lie algebra (and not a complex algebra because in general an anti-
hermitian matrix multiplied by a complex scalar will not be anti-hermitian).

4. The set of finite, complex, hermitian n x n matrices M,(C)* equipped with the
symmetrised matrix product

ap X a1 = apaq + ajag, (216)

form a real Jordan algebra (and not a complex algebra because in general a hermitian
matrix multiplied by a complex scalar will not be hermitian).
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5. The octonions are an example of an alternative algebra, and occupy a special place in
mathematics. They are one of only four normed division? algebras: the real numbers
R, the complex numbers C, the quaternions H and the octonions Q. The algebras R,
C, H, and O are respectively 1,2,4, and 8 dimensional with 0,1,3, and 7 imaginary
elements which square to negative one. The octonions are the largest and most
general algebra in the natural sequence R C C C H C O, and they are intimately
connected to some of the most beautiful structures in mathematics, including the
exceptional Lie algebras and the exceptional Jordan algebra. For a nice expository
introduction to the octonions, and their connections to other areas of mathematics,
see | .

The octonionic product is neatly summarized by the Fano plane given in Figure 2.1.
The Fano plane is a diagram with seven points and seven oriented lines. The seven
points correspond to the seven imaginary basis elements e;, 1 < ¢ < 7 of the octonions.
Each pair of distinct points lies on a unique line and each line runs through exactly
three points (and wraps back around again). The multiplication of any two imaginary
elements is determined by following the ordered lines in the Fano plane. For example
in Figure 2.1, eqes = e;, while egey4 = —ey. The Fano plane together with the
following rules completely defines the octonionic multiplication:

e ¢q is the multiplicative identity,

eci=—-1for1<i<T7.

From a NCG model building perspective the interest in the octonions is as follows:
In each particle generation of the SM, there are 8 different ‘types’ of particles. That
is, each generation has two quarks which act as a triplet under strong SU(3), and
each generation also has two leptons which act as singlets under strong SU(3). As
a matter of simple minded numerology, the octonions are interesting to consider
from the model building perspective because they form an 8 dimensional algebra.
In addition their automorphism group is G5 which has both SU(3), and SU(2) as
a subgroup. In particular, one obtains SU(3) as the subgroup which leaves a single
imaginary basis element of the octonions fixed such that on symmetry ‘breaking’
from G2 to SU(3) one obtains a ‘quark’ triplet (the six imaginary elements which
transform as a complex triplet under the SU(3) subgroup), and a ‘lepton’ singlet
(the real element, and the single imaginary element form a complex ‘singlet’ under
the SU(3) sub-group).

2An algebra A is a division algebra if for any element ag € A and any non-zero element a; € A there
exists precisely one element x € A for which ag = a;x and precisely one element y € A such that ag = ya;.
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Figure 2.1: The Fano plane: multiplication between any two of the 7 imaginary elements
is determined by ‘following’ the direction of the arrows. Notice that any three elements
(together with the unit) which lie on the same line (for example ey, e; and e3, or es, e, and
e7) describe a quaternionic sub algebra, and any single imaginary element (together with
the unit) describes a complex sub algebra. Notice that unlike the complex numbers, the
quaternionic and octonionic products are not unique. The product on the quaternions can
be defined in two possible ways corresponding to the sign choice: ejes = +es3, while there
are 480 different possibilities for the octonions corresponding the different ways that the
arrows may be oriented in the Fano plane | ]

2.1.2 Involutive differential graded algebras (x-DGAs)

In Ch. 3 I will explain how to reformulate the input data of a NCG in terms of involutive
differential graded algebras (x-DGAs), and so it is necessary that I introduce them here.
An algebra A is said to be ‘graded’ if it decomposes into subspaces A = $,,A,,, and the
product respects the decomposition: w,, € A, w, € A, = wnw, € A,i,. A differential
graded algebra is then a graded algebra A that is also equipped with a differential d: a
linear map from A,, to A,,;; that is nilpotent (d> = 0) and satisfies the graded Liebniz
condition:

d(Wmwy) = d(wm)w, + (—1)"wyd(w,), (2.17a)

for any w,, € A,, and w, € A,.

A %-DGA is a DGA which is additionally equipped with an involution wy, which satisfies
equations (2.8) and the condition:
dw:) = r(=1)"d(w,)" (2.17Db)

n

VYw, € A", and where k is a choice of sign.
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Examples

1. The canonical example of a DGA is the exterior algebra of differential forms.

2. The universal differential graded algebra QA4 = Q°A ¢ Q' A @ ... associated to any
unital algebra A over a field F is an example of a DGA, and is constructed as
follows: In degree zero the universal differential graded algebra is given by A itself,
ie. 2°A = A. An order one differential operator d is then equipped, which satisfies:

a2 =0 (2.184)
dla;a;] = dla;]a; + a;d[a;] (2.18Db)
dlaa; + Baj] = ad|a,] + Bd]a,] (2.18c¢)

for a;,a; € A, o, € F. Higher order forms are freely generated by juxtaposi-
tion of the elements a € A and the formal symbols d(a) € Q'A. For example
(d[as]ay)d[ag] € Q2A, (d[as]d[ap])(ard]as]) € Q3A. Notice that the product is com-
pletely free modulo the conditions given in 2.18, and there is no sort of graded
commutativity (usually in the literature associativity is imposed [ ], T will drop
this assumption however). If QA is an involutive algebra, then QA is said to be a
x-DGA if it satisfies condition 2.17b. Any differential graded algebra which in degree
zero is equal to A can be constructed from a projection of the universal differential
algebra QA | |. T discuss universal differential graded algebras again in 2.2.1, a
pedagogical introduction in the associative case is given in | ]. Note that T will
often use the notation A4 to indicate that an algebra is a DGA although in the math
literature this notation is usually reserved for universal differential graded algebras
and their projections.

2.1.3 Opposite algebras A,,
Given an (involutive) algebra {A, x}, one can always define what is known as the opposite
algebra { Aoy, Xp, %}, where A,, has the same vector space as A, and the same * operation,

while the opposite product is defined by:

a Xop b= ba, (2.19)
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for a,b € A,,. Note that the involution * is compatible with A and A,,:
(@ xop b)"r = (ba)*
=a"b"
= B X g 4" (2.20)

When constructing the opposite algebra QA,, = {Asp, Xop, d, *} associated to a *-DGA
QA = {A,d,*} one has to be careful to take account of the grading when defining the
product:

Win, Xop Wy, 1= (—=1)™"wW! Wi, (2.21)

for Q,, € Q"A, w], € Q" A. The sign on the right hand side of Eq. (2.21) is necessary in
order to ensure that the opposite algebra satisfies the graded Liebniz rule:

dlwm Xop wy)

(=)™ dlwpwm]

(=)™ d[wpJwm + (=1)"(=1)™"w, d[wn]

(=)™ (=)™ Dy X gp dlewn] + (=1)" (= 1) (=1)" " Vdfw] Xop w,
d[wm] Xop wh, + (—1)"wim Xop dwh]. (2.22)

2.1.4 Automorphisms and derivations

If A is a x-algebra, then an automorphism of A is an invertible linear map a : A — A
which respects the product and involution operations in A:

alapay) = alag)alay), (2.23a)
a(a®) = (ala))", (2.23b)

and a derivation of A is a linear map 0 : A — A which satisfies

(5(&0@1) = 5((10)@1 + a05(a1), (224&)
5(a*) = (6(a))", (2.24b)

Va; € A. The automorphisms of A form a group which is denoted Aut(A). Note that,
when the automorphism « is infinitesimally close to the identity map “I,” it can be written
as a = [+ where 9 is a derivation, i.e. the derivations of A are the infinitesimal generators
of the automorphisms of A: aa = e’a. They form a Lie algebra which is denoted Der(A),
with Lie product given by [01,0s] = 1 0 09 — 09 0 ; (where o denotes composition of
operators).
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Examples

1. Consider the x-algebra of smooth complex functions over a manifold A = C*(M, C).
In this case the automorphisms a, : A — A are nothing but the maps a,(f) =
fop™t where f : M — C is a smooth function and ¢ : M — M is a diffeomorphism;
and if we consider the automorphisms infinitessimally close to the identity, we see
that the corresponding derivations have the form 6,(f) = v*0, f, where v¥(z) is a
real contravariant vector field on M. To see that the maps a4 act as automorphisms
on A it is sufficient to check that they satisfy conditions (2.23a) and (2.23b):

as(f.9)(x) = (f.9)(¢ ')
= (¢~ 2)g(¢™"x)

= ayf(z)asg(x) = (apf.asg)(z) (2.25)
agf(z) = asf(z)

= f(¢™ ')

= f(¢7'2) = asf(x). (2.26)

2. Consider the finite, non-commutative, associative, involutive algebra of n xn complex
matrices Ap = M,,(C). The algebra Ap has automorphisms «,, : Ar — Ap which
take the form a,a = vau*, where u € Ap is unitary. Again, to check that the maps
a,, act as automorphisms on A it is sufficient to check that they satisfy conditions
(2.23a) and (2.23b):

ay(apay) = uagayu*
= uapuuaju’ = ay(ag)oy(ay), (2.27a)
ay(a*) = ua*u”
= (uau™)* = ay(a)”, (2.27b)

Va; € Ar and unitary u € Apr. The maps «, are known as ‘inner’ automorphisms
(notated Inn(A)), because they are constructible from elements of the algebra itself*.
Noting that the unitary elements u are generated by anti-hermitian elements x € Ap
(u = €*) and studing the inner automorphisms infinitesimally close to the identity

3For a formal definition of inner automorphisms and their derivations see the work of Schafer and
Jacobson | , ]. Every derivation of a semisimple algebra (that is, direct sum of simple algebras)
with a unit over a field of characteristic zero is inner.
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map, it is seen that the corresponding ‘inner’ derivations (i.e. the generators of the
inner automorphisms) are d,(a) = [z, a or equivalently:

6% = L, — R,. (2.28a)

where z is an anti-hermitian element of A. The inner automorphisms on Ap = M,,(C)
may therefore be written as a,a = e®*a. It can be shown that every derivation on
semi-simple finite associative algebras (like M, (C)) is of the form given in (2.28a)

[Jac37].

. Just as finite non-commutative, associative algebras have inner automorphisms, so
too in general do finite non-associative algebras. This thesis focuses on the Lie,
Jordan, and alternative algebras, which were introduced in Section 2.1.2. Their
respective algebras of inner derivations are generated by elements of the form | ,

]:

07 = Ly = =R, (2.28h)
527 = [Lw, L.] = [Lu, R.] = [Ru, R.], (2.28¢)
(5;45 = [La, Ly] + [La, Ry] + [Re, Ry]7 (2.28d)

for anti-hermitian x,y € Ap, and hermitian w, z € Ap. The inner automorphisms

on finite (non-associative) algebras may therefore be written as a,a = """ a, where
the form that 6™ takes depends on the associativity class that the finite algebra
Ar belongs to. Notice, that Eq. (2.28b) gives new meaning to the Jacobi identity
given in Eq. (2.4b): it is nothing but the Leibniz rule given in Eq. (2.24a). The
reader is encouraged to check for themselves that the derivations given in Eq. (2.28a),
Eq. (2.28¢) and Eq. (2.28d) similarly satisfy the Leibniz rule when acting on elements
of associative, Jordan, or alternative algebras respectively.

. As afinal example consider the algebra of smooth Ay valued functions over a manifold
M: A= C>(M,Ar), where Ap is a finite algebra. In this case the automorphisms
are generated by derivations of the general form § = v"9,, 4+ §'™", where the form that
the inner derivations d,, take depends on the class of algebras to which Ar belongs.
The group of automorphisms Inn(A) generated at each point on M by Der(Ar)
form a normal subgroup of Aut(.A), which can be shown as follows. For 5 € Aut(A)
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and o/™ € Inn(A), we find that

5 o alnn ° 6—1(a) — 66661nn6_6a,

Inn
= eAdsd a,

= exp(6'™ + [Ads, 6" + 1/2[Ads, [Ads, 6™]]...)(a)

= a'"(a), (2.29)
where in the third equality I have used the Baker-Campbell-Hausdorff formula and in
the last equality I have used the fact that derivations of inner derivations are inner,
which follows directly from (2.24a) and the fact that inner derivations are constructed

from elements of the algebra itself. This means that the ‘outer automorphisms’ may
be defined by the quotient group:

Out(A) = Aut(A)/Inn(A). (2.30)

2.1.5 Direct products and sums

Throughout the text I will often form direct sums and products of vector spaces and
algebras. These are defined as follows:

1. Direct product: Given two vector spaces H; and H, over a field FF, one is able to
form the direct product, which is denoted:

Hiz = H1 QF Ha. (2.31)

Notice that when it is obvious which field I am tensoring over I will often drop the
subscript F. The tensor product space Hio is a new vector space over [ of ordered
pairs (a,b), for a € H; and b € H,, satisfying the following properties:

(q1,p1) + (q1,p2) = (q1,p1 + p2) (2.32a)
(q1,p1) + (q2.m1) = (@1 + @2, 1) (2.32b)
AMai,p1) = (Aq1, p1) = (q1, Ap1) (2.32¢)

for ¢; € Hi, p; € H1, and A € F. Ordered pairs (g;, p;) satisfying equations (2.36)
will be denoted p; ® ¢;. The tensor product of two algebras A; and A, over a field F
forms a new algebra 4,2 which in addition to the conditions given in equations (2.36),
satisfies:

(g1 ®p1)(g2 @ p2) = (q192 @ p1p2) (2.33)
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Given two linear maps Op : H1 — Vi and O, : Hy — Vs, their tensor product maps
01 ® 0y : Hy @ Ha — V1 @ Vs, and is defined by:

(01 ® O2)(g; @ pi) = O1(q;) ® Oa(p;) (2.34)

Notice that it does not make sense to form the tensor product between two vector
spaces or algebras defined over different fields. Whenever I form a tensor product
between two real (complex) vector space I am implicitly forming the tensor product
over the real (complex) numbers. Whenever I form the tensor product between a
complex vector space and a real vector space I am implicitly viewing the complex
space as a real space of twice the dimension, i.e. C* ~ R?". The complex numbers
may be viewed as a real vector space equipped with a ‘complex element’ i : R2 — R?
which acts on pairs as i : (a,b) — (=b, a).

. Direct sum: Given two vector spaces H; and Hs over a field IF, one is able to form
the Direct sum, which is denoted

H1+2 = Hl @]F H2 (235)

Notice that when it is obvious which field I am forming the sum over I will often drop
the subscript F. The summed space Hi,o is a new vector space over F of ordered
pairs (a,b), for a € Hy and b € H,, satisfying the following properties:

(qu. 1) + (q2,02) = (1 + G2, p1 + p2) (2.36a)
a1, p1) = (Agi, Ap1) (2.36b)

for ¢; € Hy, p; € H1, and A € F. Ordered pairs (g;, p;) satisfying equations (2.36)
will be denoted p; @ ¢;.

Direct sums only make sense if both vector spaces are taken over the same field.
Whenever I form a direct sum between two real (complex) vector space I am implicitly
forming the direct sum over the real (complex) numbers. Occasionally we will want
to form the direct sum or product between a real vector space Hg and a complex
vector space He (for example in the NCG SM). In this special case there are two ways
that one is able to proceed in principle: (i) One might first complexity the real vector
space, and then form the direct sum over the complex numbers: C ®g Hg ¢ He. (i)
one might instead view the complex vector space H¢ as a real vector space of twice
the dimension, and then form the direct sum over the real numbers Hg Gr He. In
practice we will only ever consider the second case.
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2.1.6 Associative representations

In this subsection I will review representations as they are traditionally defined. The reader
should be aware however that the traditional definition and notation are both obstructive
when generalizing to the non-associative setting and originally prevented us from making
progress. In Ch. 3 I will introduce a definition and corresponding notation which are much
more useful for our purposes.

If A is an associative algebra over F, and H is a vector space over F, then an associative
representation 7 of A on H is an algebra homomorphism from A to the endomorphisms of

H:

m: A— End(H) (2.37)
m(a) : H — H, (2.38)

where the product between elements in 7(.A) is given by composition:
m(ab) = m(a) o (b) (2.39)

for a,b € A. If the operators 7(a) act from the left (right), the representation is known as
a left (right) representation.

Equivalently, a left representation is given by a bi-linear map:

b AxH —H, (2.40)
ér(a,h) =m(a)h € H, (2.41)

which satisfies:
¢r(ab,h) = ¢r(a, dr(b, b)), (2.42)

a,b € A, h € H. Similarly a right representation is given by a bi-linear map:

TR HXA—H (2.43)
¢r(h,a) = hr(a) € H, (2.44)

which satisfies:
¢r(h,ab) = ¢r(¢r(h, a),b), (2.45)
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a,b e A, h € H. An algebra A is said to be ‘bi-represented’ on H (or equivalently H acts
as a bi-module over A), if it has both a left and a right representation and satisfies the
compatibility condition:

¢R(¢L(a7 h)? b) = ¢L(av ¢R(h7 b)) (246>

In practice, the notation 7, and ¢ is often overly cumbersome, and especially so when
dealing with non-associative representations where we also have to carry around parenthe-
ses. When there is no possibility of confusion (almost always), I will drop the 7, and ¢
notation, and indicate the right or left action of algebra elements on vector space elements
simply by juxtaposition. In other words, I will indicate the left action of an algebra element
a € Aon h € H simply by ah € H. For instance it is much more illuminating to write
Eq. (2.46) simply as [a, h,b] = 0, which shows that it is actually an associator identity!

Involutive representations:

If A is a x-algebra over [F, and H is a vector space over IF, then we define a x-representation
7w of A on H to be a bi-representation which is additionally equipped with a unitary anti-
linear operator * : H — H, which satisfies the following properties:

(h*)" =¢€h (2.47a)
(r(a)h)* = h*n(a)* (2.47Db)
(h(a))* = n(a)*h* (2.47¢)

where for ordinary matrix representations the involution 7(a)* = 7(a*) is given simply by
the conjugate transpose, and where e = £1 is a choice of sign. Notice that in comparison
to Eq. (2.8) T have not imposed the condition ‘4> = T’ but instead the slightly weaker
condition ‘** =T

Graded representations:

If A is a graded algebra over F with grading A = @®,,.A,,, and H is a vector space (over
F) with grading H = @®,,H,,, then an associative graded left (right) representation is a
bi-linear map: A,, X H, = Husn (Hn X Ap — Hpmin), which satisfies:

(ww'h = w(W'h) € H, (h(ww') = (hw)w' € H), (2.48)
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w,w' € A, h € H. A graded algebra A is said to be ‘bi-represented’ on H (or equivalently
H is a graded bi-module over A), if it has both a left and a right graded representation
and satisfies the compatibility condition:

(wh)w') = (w(ho')) € H (2.49)

Vw,w' € A, h € H. Notice that I have dropped the ¢ and 7 notation here, but otherwise
equations (2.48) and (2.49) are simply graded versions of equations (2.42),(2.45), and
(2.46).

Differential graded representations (DGRs)

Finally, let A be a DGA, with grading A = &,,.4,, and differential d; and let H be a vector
space with grading H = @,,H,,. Then we say that a graded bi-representation 7 of A on H
is a differential graded bi-representation m of A on H (or, equivalently H is a differential
graded bi-module over A) if H is also equipped with its own differential dy;: i.e. a linear
operator from H,, to H,,.1 that is nilpotent (d3, = 0) and satisfies the graded Leibniz
conditions:

dylwmhn] = dlwm)hn + (—1) "W dy ), (2.50a)
dylhmwn] = dylhm|wn + (1) hyd[wy], (2.50b)

for any a,, € A,, and h,, € H,,. Notice that I will almost always drop the subscript ‘H’',
and simply write the differential on H as d.

2.2 NCG preliminaries

In this section I will outline the basics of NCG model building. The organization is as
follows. I will start in the commutative setting. In Subsection 2.2.1 T will give a little
bit more detail on a few of the important ideas behind the reconstruction of Riemannian
geometries from spectral triples: the Gel‘fand-Naimark theorem, reconstructing geodesic
distances, and the exterior algebra. In subsection 2.2.2 I will review the geometric axioms
which apply more generally to associative (non-commutative) spectral triples. Then finally
in subsection 2.2.3 I describe the construction of so called ‘almost-commutative’ geometries
which correspond to Yang-Mills theories coupled to Einstein Hilbert gravity. In particu-
lar T describe how the internal gauge symmetries arise, and the so called spectral action
associated to any NCG.
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2.2.1 Reconstruction

Every compact oriented Riemannian spin manifold M gives rise to a canonical spectral
triple, and after substantial attempts by Rennie and Varilly | |, more recently Connes
put forward a proof of the reverse | |: that a spectral triple with commutative algebra
and satisfying certain conditions necessarily arises from a compact oriented Riemannian
manifold*. This equivalence was first conjectured in 1996 | ] and motivated spec-
tral triples more generally as the objects which describe ‘non-commutative Riemannian
manifolds’: On the one hand, the Gel’fand-Naimark theorem asserts a one-to-one corre-
spondence between topological spaces and commutative C* algebras, suggesting we can
trade one for the other, which is the starting point of NCG. More formally, the com-
mutative Gelfand-Naimark theorem constructs an equivalence between the category of
compact Hausdorff spaces with morphisms given by continuous maps, and the category of
commutative unital C*-algebras with x-homomorphisms. This equivalence motivates the
identification in non-commutative geometry of the category of C*-algebras as the category
of non-commutative topological spaces. On the other hand, the Atiyah-Singer Dirac oper-
ator of compact spin manifolds motivates generalized Dirac operators as the receptacle for
metric data | ]°. Before introducing non-commutative geometries, let us start with a
few of the key ideas in the reconstruction of commutative geometries.

The input algebra A: Gel’fand-Naimark theorem

Let us start with the Gel’fand-Naimark theorem. Note however that while this topic is
very interesting, and part of the conceptual underpinnings of NCG, it is not central to my
own work and I simply include it here for completeness. In practice it will not be used in
any of the calculations that I perform and may be skipped over by the casual reader. I
follow closely the presentation given in | ]:

The Gel’fand-Naimark theorem states that any commutative C*-algebra A is isomet-
rically *-isomorphic to the algebra of continuous functions C(M,C) over a manifold M.
The equivalence is seen as follows:

4More recently Caci¢ extended the reconstruction theorem to Connes-Landi deformations of commu-

tative spectral triples [C14], and also to the so called almost-commutative spectral triples which describe
Yang-Mills theories | ] coupled to Einstein-Hilbert gravity.
SFollowing [ ], By a generalized Dirac operator D I mean a first order hermitian differential

operator on H which satisfies JD = ¢ DJ, {D,y} = 0 (see Subsection 2.2.2), and who’s square is a
generalized Laplacian in the sense of | ]
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Because A is commutative, any non-trivial irreducible representation ¢, is one dimen-
sional, and is therefore a #-linear functional ¢, : A — C, which satisfies ¢(ab) = ¢(a)p(a)
a,b € A. The space of such representations of A is denoted A, and can be made into a
topological space by endowing it with the so called ‘Gel’fand topology’.

The closed sets S of the Gel’fand topology on A are defined as follows: a sequence
{&r}ren of elements in A is said to converge to ¢ € A iff Va € A the set of elements
{¢x(a)}rea in C converges to ¢(a) € C (where A is a directed set). A set S € A is then
defined to be closed in the Gel'fand topology if all sequences {¢py}rea for ¢\ € S converge
to some ¢ € S.

Given an element a € A, its Gel'fand transform @ : A — C is defined as:

Any representation ¢; € A satisfies ¢i(aoa;) = ¢i(ao)pi(ap), and so the Gel’fand transforms
satisfy:

C@(@) = ¢i(a0@1)
= ¢1(ao)@i(ar) = do(di)dr (i) (2.52)

Vo, € A. But this is just a point-wise product of Gel'fand transforms over A, and a is
continuous for each a € A. We therefore get the interpretation that the elements of A
act as C-valued continuous functions over the topological space A. The Gel'fand-Naimark
theorem states that all continuous functions over A are of the form given in equation (2.51).

~

Finally the supremum norm on A(A) satisfies ||a|| = supy, 4]a(¢i)| = supy,c 4lPi(c)| =
|lc|]. This tells us that the Gel'fand transform a — G is an isometric *-isomorphism of A

onto A(A).

The Dirac operator: geodesic distance

The geodesic distance between any two points x and y on a Riemannian manifold is defined

by:
1
d, (. y) = int / ds — inf / S ()7 () dt, (2.53a)
v ~ Y 0

where the infimum is over all smooth curves () on the manifold parametrized such that
v(0) = z, v(1) = y. In other words, the distance is given by the shortest connected
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path between two points. When reconstructing Riemannian geometries from the canonical
spectral data, the Dirac operator D provides metric information for the spectral triple.
The geodesic distance formula given in Eq. (2.53a) is replaced with a new formula which
depends only on the spectral input data | |:

dp(w,y) = sup{|f(2) — FW)| f € A D, flll <1} (2.53b)
Let us see how Eq. (2.53b) works on a canonical manifold. In the canonical case I is
described locally in terms of the Levi-Civita connection ) = —M“VE on the spinnor
bundle S — M. The spin connection satisfies the Leibniz rule:

VA (fU) = fV + (0., (2.54)

for f € C>*(M,C), v € L*(M,S). Contracting this expression on both sides with —ivy*,
then yields | ):

(D, [l = =iy (0 ). (2.55)

In other words, the commutator [ID, f] is given by the Clifford multiplication of the gradient
V(f) of f. In particular this means that the operator norm of [Ip, f] on H = L*(M, S) is
given by | ]:

(2, f1]] = sup ||V f]| (2.56)

It then follows by integration along the path from = to y that |f(z) — f(y)| < dy(z,y),
provided Eq. (2.56) is bounded by 1. Hence the equivalence between Eq (2.53a) and
Eq. (2.53b). For further information on the reconstruction of geodesic distances from
spectral input data see | , ].

Junk forms and the exterior algebra

The differential graded algebra of forms associated to a (canonical) NCG can be constructed
as a projection from an associative universal x-DGA. A review of *-DGAs and universal
differential graded algebras is given in Subsection 2.1.2, but in brief: starting with the
input algebra A, the associative universal differential graded algebra QA = $,Q"A, is
constructed by equipping Q°A = A with a nilpotent (d*> = 0) differential operator d, which
satisfies the conditions given in Eq. (2.17). Elements in 2" A are then constructed by
juxtaposing elements a € A, and n formal symbols d[a] € Q' A.
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A representation 7 of the differential graded algebra A on the input Hilbert space H
is constructed by making use of the input Dirac operator D:

m: QA — B(H)
m(apd[a;]d[as)...d[ay]) = ao[D, a1][D, as]...[D, ay) (2.57)
a; € A. While 7 is an algebra homomorphism, as described in | ] it is usually not

a homomorphism between differential graded algebras because in general, 7(w,) = 0 does
not imply 7(d[w,]) = 0. Such forms d|w,]| for which 7(w,) = 0 are known as ‘junk forms’
and must be removed in order to form a true graded differential representation in which
the Liebniz rule makes sense. To see what goes wrong consider for example the following
equation for the case in which w,,w,, € QA, and 7(w,) = 0:

m(d[wnew,])

(dlwn))wr, + (=1)" 7 (wnd[wy,,])
(d]wn]), . (2.58a)

™
m m

We see that when 7(d[w,]) # 0 the Liebniz rule is not satisfied. Consider also for example
the following equation:

dlwnh] = dlwp|h + (—1)"w,d[h]
= d[wy,]h (2.58Db)

for w, € Q" A, h € H. When 7(w,,) = 0 the left hand side of Eq. (2.58b) is equal to zero,
while the right hand side is only zero if 7(d[w,]) = 0. Fortunately, in the associative case
the set of all such troubling ‘junk’ forms denoted ‘J’ form a two sided ideal of 2A, and
so can be removed by forming the new quotient algebra QpA = QA/J | ]. To see
this, consider an element w = w, + dw;,_|] € JP, where J = Jy + d.Jo, and Jy = ®;Jg,
where J§ = {w € Q'A|r(w) = 0}. It is clear that Jy is an ideal, and so if n € Q" A, then
nw = (nwp, — (=1)"dnjw, ;) + (=1)"d[nw,_,], which is also in JP*".

For canonical spectral triples M = {A., H., D.}, the algebra QpA is nothing but the
usual exterior algebra of differential forms over the manifold M. In this case the first ‘junk
forms’ appear at order one. They take the form fd[g] — d[g|f for f,g € C>(M,C):

m(fdlg] —d[glf) = —irv"(f(Oug) — (Oug)f) =0, (2.59a)
while,
m(d(fd[g] — dlglf)) = —v"v"(0uf)(Oug) — V7" (0u9)(0, f)
= {7 /" HO,£)(Dug) # 0. (2.59b)
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The right hand side of equation (2.59b) is just a symmetric ‘two form’ in Q?A. At all
higher orders the junk similarly consists of the symmetric elements in QA. Modding out
by these ‘junk’ elements, the algebra QpA = QA/J is nothing but the usual algebra
of differential forms over the field C*>°(M, C), which is generated by the anti-symmetric
elements y#, YAV Ay~ Pl AliavArATl where the 4's are Dirac gamma matrices. A good
account of the differential graded algebra {2p.A in the associative setting is given in | -

Cyclic homology and the exterior algebra

I have reviewed how to construct the differential graded algebra of forms Qp.A from a
projection of the universal DGA Q.A. Let me briefly discuss an alternative algebraic for-
mulation of differential forms in NCG, which is made in terms of Hochschild and Cyclic
(Co)homology. Note that while this alternative formulation is central to NCG, in practice
I will only ever make use of the universal differential graded algebra construction. Just as
with the Gel’fand-Naimark theorem cyclic (co)homology is not central to my own work,
and I simply include this subsection for completeness. I follow closely the presentations
given in | ] and | ):

The Hochschild homology H.(H,.A) of an associative algebra A bi-represented on the
vector space H is the homology of the complex
C.(M,A) =P Cu(H, A), C.(H,A)=HaA" (2.60)
n>0

with boundary operator

b(h® a; ® as...an) = hay @ ay...a, + (—=1)"a,h @ a; @ ay...a5_1
—|—Z(—1)kh®a1 R .. @ Al & .., (2.61)
which satisfies o> = 0 even when A is non-commutative, as long as it is associative. Of
course, an associative algebra A can always be naturally bi-represented on itself, and so one
can always construct the homology H,(A, A). The algebraic formulation of a differential

form is a so called Hochschild ‘cycle’ in the Homology H,.(A, A) | . An n-cycle is
defined to be a ‘closed’ element ¢ € C,,(A, A), ie. be = 0.

When A is commutative it is easy to construct a Hochschild cycle, it suffices to take
any elements a’ € A and consider the sum over permutations o

c= Z e(0)a’ ® a®V ® P .. @ a”™ (2.62)
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The representation of the Hochschild cycle given in Eq. (2.62) on a vector space H is then
given by:

w(c) =Y e(0)a’[D,aD)[D,a”®]...[D, a”™)] (2.63)

where D is a Dirac type operator on ‘H. Notice that in the case of a canonical geometry this
construction exactly reproduces the differential graded algebra of forms which is obtained
from the universal differential graded algebra by quotienting out by junk forms: QpA =

QA/J.

Finally, the cyclic homology of an associative algebra A is defined by the homology
of the quotient space C}(A) = C,(A)/(I — t), where the operator ¢ acting on n-cycles is
defined by:

tlag®a; ® ...ap) = (=1)"a, ® ag R a1 ® ...ap_1. (2.64)

For further information on cyclic homology, and also cohomology the reader may consult

[ ) ’ ) ) } :

2.2.2 Spectral triples and the NCG axioms

NCG extends Riemannian geometry just as Riemannian geometry extends Euclidean Ge-
ometry. In order to reconstruct Riemannian geometries one must select a very special set
of canonical input data {A., H., D, Je, 7.}, which satisfies a list of geometric conditions.
Similarly, when constructing more general non-commutative geometries, the input data
{A,H, D, J,v} may not be selected arbitrarily, but instead must satisfy a list of geomet-
ric axioms which were generalized from the conditions satisfied by commutative spectral
triples | ]. In this section I outline the NCG axioms and conditions:

1. The input algebra A is a real, unital, associative, involutive, (non-commutative)
algebra represented faithfully by bounded operators on the Hilbert space H.

2. The Dirac operator D is a (possibly unbounded) self-adjoint operator on H with
compact resolvent.

3. A spectral triple is said to be ‘even’ if it is equipped with a a hermitian Z5 grading
operator v on H which satisfies v =1, v* =77}, [y,a] =0, Va € A.

4. Compatibility of D with
DA} =0 (2.65)
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5. A spectral triple is said to be ‘real’ if it is equipped with an anti-linear unitary ‘real
structure’ operator J on H satisfying

J? = e (2.66a)
JD =¢DJ (2.66D)
Jy=¢€"vJ (2.66¢)

where the + signs {¢, €, €’} depend on the KO-signature of the geometry being con-
structed®. As explained in | |, there are two possible sign choices in the case of

Table 2.1: Mod 8 KO-signature table

even signature, as the real structure operator may always be replaced with J — Jv.
The choices marked by e in table 2.1 are those taken by Connes.

6. The left and right actions of A on H are related by:

R,=JL:J ! (2.67a)

Lo=JR:J,  acA (2.67b)
7. The order zero condition

lag, JaijJ* ] =0, a; € A, (2.68)

where J* = J 1

6For Riemannian geometries there are several equivalent ways of defining the dimension of a mani-
fold | , ]. For non-commutative spaces these various different notions of dimension may no-
longer agree. One such notion based on KO-theory is the so called KO-dimension (an integer modulo 8),
which is determined by the signs of the commutation relations of J, v, and D. In the NCG literature the
KO table given in 2.1 is usually called a ‘KO-dimension’ table because most NCG practitioners are usually
only interested in the euclidean case where there is no distinction between dimension and signature. As
pointed out in [ ], the signs given in 2.1 really depend on the ‘signature’ of the geometry in question.
See also appendix B of | ] for a nice review in the commutative setting.

43



8. The operator [D, a] is a bounded operator on H, for all a € A, and satisfies the order
one condition

D, a), JajJ* | =0, a; €A (2.69)

In addition to the above mentioned ‘axioms’ satisfied by associative NCG, there are also
a number of salient facts about associative NCGs that are worth noting. These include:

1. The symmetries of a NCG are given by the automorphisms of the input algebra A
‘lifted” to the Hilbert space H, or rather in terms of the adjoint representation of
the unitary group of the input algebra in the sense of | ]. In particular, the
action of the inner derivations of A on H are given by 6, = x — Jx*J*, where z is an
anti-hermitian element in A.

2. To ensure covariance of the formalism with respect to the inner automorphisms of the
input algebra, the ‘flat’ or ‘ground state’ Dirac operator is replaced with a ‘fluctuated’
Dirac operator Dy = D+ A+¢€ JAJ*, where A =)"_, a[D,b] is a hermitian operator
on H which transforms ‘covariantly’ as A — A’ = uAu* + u[D, u*] (explained below
in subsection 2.2.3).

3. Given two real, even triples, T} = {A1, Hy, D1, 7, J1} and Ty = {As, Ha, Do, 72, Jo }, &
third spectral triple 115 = {A12, H12, D12, 712, J12} may be constructed, where A5 =
A1 ® Ay, Hip = Hi ® Hy, D1y = D1 @Iy +71 ® Dy, 712 =71 @2, and Jiz = J; @ Jo.
I will only ever need to take the product between even spectral triples. For the
even-odd, odd-even, and odd-odd cases see for example | ].

2.2.3 Almost-commutative geometries

The NCGs that are of most interest in this work, and have so far proven to be the ones of
interest for physics are the so called ‘almost-commutative’ geometries discussed briefly in
Ch. 1. Almost-commutative geometries are constructed as the product between a commu-
tative canonical spectral triple M = {C>*(M,C), L*(M, S), V*, J.,7.}, and a finite non-
commutative geometry F' = {Ag, Hp, Dp, Jp, Vr}:

M x F = {COC)(M,AF),Lz(M,S)®HF,VS®]IF+70®DF7JC®JF776®7F} (270)

Note that when Ap is a real algebra, the continuous algebra is replaced with the real
algebra C*>°(M,R), such that C*°(M,R)@r Ap = C°(M, Ap) [C'13]. The key idea behind
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almost-commutative geometries is that the ‘external’” gravitational degrees of freedom come
from the continuous part of the geometry M, while the ‘internal’ gauge/higgs degrees of
freedom come from the finite part of the geometry F. As described in example four of
Subsection (2.1.4) the automorphisms of the input algebra are given by the semi-direct
product of two groups

Aut(A) = Inn(A) x Out(A), (2.71)

where Inn(A) = Map(M, Aut(Ap)) is the group of maps from M to the group Aut(Ap),
and Out(A) = Dif f(M). Notice that the group on the right-hand side of Eq. (2.71) also
has another interpretation: it is the full symmetry group of Aut(Ar) gauge theory coupled
to Einstein gravity. One striking feature of almost-commutative geometries is that, while
the metric dimension of F' is zero, its KO dimension may be any n modulo 8 | ]
(for ordinary Riemannian geometries the two notions of dimension are always degenerate).
In particular, when constructing the standard particle model one must select the KO-
dimension of the finite space F' to be 6 modulo 8 in order to obtain the correct fermionic
content | , |. It is impossible not to wonder about what deep connection might
hide behind the 446 modulo 8 dimensional NCG SM, and 10 dimensional super-symmetric
string theories.

The elegant and conceptually satisfying picture emerges in almost-commutative geom-
etry that the full symmetry group of a gauge theory coupled to gravity is reinterpreted in
a unified way as the automorphism group of an underlying algebra A; and this, in turn,
is interpreted as the group of purely gravitational transformations of a corresponding non-
commutative space. The unification which occurs for almost-commutative geometry goes
further however: Notice that the Dirac operator of an almost-commutative geometry has
both a finite part, and a continuous part. The Higgs degrees of freedom appear as con-
nections on the internal space in exactly the same way that that gauge degrees of freedom
appear as connections on the continuous space, through a ‘fluctuation’ procedure of the
Dirac operator D (explained below in Subsection 2.2.4). Meanwhile all interactions be-
tween the input algebra A and the Dirac operator D are mediated by the Hilbert space H,
which is precisely where the fermionic degrees of freedom live. Indeed, if one evaluates the
spectral action (1.1) for an almost-commutative spectral triple, one finds that it reduces
to gauge theory coupled to Einstein gravity | .

2.2.4 The spectral action

The dynamics of a NCG are traditionally described by the ‘spectral action’, first introduced
by Chamseddine and Connes in | ]. In this Subsection I review the construction of
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spectral actions from input data satisfying the axioms and conditions outlined in subsec-
tion 2.2.2.

Fluctuating the Dirac operator

In ordinary gauge theory, the principle of gauge covariance leads one to replace the partial
derivative 0, by the gauge covariant derivative D, = 0, + A,, which is ultimately the
object from which a gauge-invariant action is built. In a closely analogous way, in spectral
geometry the principle of x-automorphism covariance leads one to replace the ‘flat’ or
‘ground state’ Dirac operator D with the “fluctuated” or “s-automorphism covariant” Dirac
operator D4, which is ultimately the object from which the x-automorphism-invariant
spectral action is built.

It is helpful, then, to warm up by reviewing the story in ordinary gauge theory. We can
write a general gauge transformation in the form u(x) = expla®(x)T,], where T, are the
generators of the gauge group. Now consider a multiplet of matter fields ¢ that transforms
covariantly under a gauge transformation: ¢ — 9’ = wp. We would like to introduce
a gauge-covariant derivative operator D, with the property that D, also transforms
covariantly: D,y — D" = uD,y. In other words, we want D,, to transform as

D, — D), =uD,u"". (2.72)

Start with the special case where D, = 0,, and perform an infinitessimal gauge transfor-
mation to obtain D], = d, — [0, a®(z)]T,. By inspection of this formula, we see that in
the general case we can take

D, =0,+ B, where B, = BT,. (2.73)

Here By are arbitrary gauge fields (one for each linearly independent generator Ty). To
make D, transform as in Eq. (2.72), we should take B,, to transform as

B, — B, = uB,u" + u[d,, u”"]. (2.74)

Let us now present the analogous story in NCG. The symmetries of any geometry
are given by maps on the input data which leave the dynamics invariant. The bulk of the
differential-topological data of a NCG is held in the input algebra A, and so its symmetries
are given naturally by automorphisms on A, which are structure preserving, invertible
maps. Similarly the symmetries act as invertible maps on the Hilbert space H which leave
its real structure, grading, and the spectrum of the Dirac operator invariant. In other
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words the symmetries are given by unitary maps on the Hilbert space which commute
with J and v, and which induce automorphisms on the representation of the input algebra
by conjugation. In the cases of interested in this work the group Inn(A) corresponds to
the ‘internal’ gauge symmetries, while Out(A) = Aut(A)/Inn(A) corresponds to ‘external’
diffeomorphisms. Here I will focus on the symmetries of a geometry corresponding to the
inner automorphisms of an associative input algebra.

The two spectral triples:
{AH, D, Jv} = {AH,UDU, J,v}, (2.75)

are ‘gauge equivalent’, where U = uJuJ ' € B(H), and u is the representation of a unitary
element of A as a bounded operator on . Let us see what action the elements U € B(H)
have on the elements of a spectral triple. Using the order zero condition given in Eq. (2.68)
the operators U = uJu.J ! may be written out in terms of their generating elements §:

U=uJuJ ' =e"e/™" =¢, (2.76)

where
S=x— Jr*J 7t (2.77)
and z* = —z € A. Under the action of U the representation of the input algebra elements

transforms as follows:

UaU™"' = wJuJ taJu ' T u™t
= uau* (2.78)
Va € m(A), and where the second equality is obtained using the order zero condition.
As required, conjugation of input algebra elements by the unitary operators U induces

inner automorphisms on the elements of the input algebra (see Subsection 2.1.4). Under
conjugation by U the real structure operator and grading operators are invariant:

UJU ' =uJuJ YT Ju T u™t

=J, (2.79)
UyU = wJu Py Ju Tt
1, (2.80)

where the order zero condition, the condition [, a] = 0Va € A, the real structure conditions
J? = el, and Jy = €"v.J, and the unitarity of J have all been used.
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Finally, under the action of U the Dirac operator transforms as:

UDU = wJuJ 'DJu gyt
= D +uJuJ ' Ju T D u Y + wJud D, Ju T e
=D+ u[D,u ]+ uJuJ ' I[D,u T !
=D +u[D,u ]+ €JulD,u )T (2.81)

where the real structure condition DJ = ¢ JD is used in the third equality, and the
final equality both the order zero and order one conditions have been used. A gauge
transformation of the spectral input data is therefore given by:

h— uJuJ ‘h

a — uau "

D — D+ulD,u "] +¢€Ju[D,u]J ",

In order to ensure that the Dirac operator transforms in the appropriate way, the ‘ground
state’” or ‘flat” Dirac operator is replaced by a ‘fluctuated’ Dirac operator:

D—Dy=D+A+€JAT, (2.82)
where the ‘gauge potential’ A must gauge transform as:
A= UAU +ulD,u™]. (2.83)

Under the transformation given in equation (2.83), the fluctuated Dirac operator trans-
forms as:

Dy =D+ UAU ! +ulD,u |+ JUAU +u[D,uv])J !
=UDU, (2.84)
which is the required transformation. The form that the fluctution terms take is determined

using Morita equivalence or semi-group methods to be a bounded hermitian operator on
H of the form [C)M, : |:

A= "alD,b], (2.85)

where a,b € A. Using the order one condition then, one immediately sees that UAU ! =
wAu~!, and so finally an internal gauge transformation of the spectral input data is given
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h — uJuJ 'h, (2.86a)
a — uau" ', (2.86b)
A = uAut +u[D,u] (2.86¢)

which should be compared for example with Eq. (2.74).

For the special case of an almost-commutative geometry, fluctuating the Dirac operator
with respect to the inner automorphisms on A yields:

DA = —iy“(@u + BH) + ’}/5(13, (287)

where B, = )", a(d,b) + Ja(9,b)J) is the gauge potential, and & = Dp + ), a[Dp,b] +
¢ Jra[Dp,b]J5" is a scalar ‘Higgs’ field.

The spectral action

The dynamics of a NCG are described by the action given in Eq. (1.1), and which I reviewed
briefly in Section 1.1 for Riemannian geometries. This action functional has two terms: the
first term is the so called bosonic or ‘spectral’ action, while the second term is fermionic. In
this subsection I will discuss the spectral action or ‘bosonic’ action for almost-commutative
geometries:

Sy = Trlf(Da/N)], (2.88)

where D4 is the fluctuated Dirac operator, f is a positive even function which interpolates
between one and zero, and A is a cut-off scale. This action depends only on the discrete
spectrum of the fluctuated Dirac operator D 4, and so is invariant under the unitary ‘gauge
transformations’ shown in Eq. (2.84) | : ]. As outlined in | ], to obtain
a formula which is more recognizable as a local action formula, the spectral action can
be expanded in powers of A. The first step in this so called ‘heat kernel expansion’ is
to square the fluctuated Dirac operator. For an almost-commutative geometry with a
fluctuated Dirac operator as in Eq. (2.87), the square is given by (see Appendix A):

D% = AP — iR — 14y F,, — 5[V7, @] + 9% (2.89a)

where
AP = —gVIVYE, (2.89D)
E,, =0,B, —0,B,,+[B,, B, (2.89¢)
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where V{f = Vﬁ QI+ BL ® 0;, and R is the Ricci scalar. The square of the Dirac operator
for an almost-commutative geometry is therefore of the form of a generalized Laplacian in
the sense of | ], which allows us to use the ‘heat kernel expansion’ formula for the
spectral action reviewed in | ]:

Sy =Tr[f(Da/N)] ~ 2fsN'ag(D%) + 2foN?az(D%) + f(0)as(D3) + O(A™Y)  (2.90)
where the f; are the moments of the function f, and the ‘Seeley-DeWitt coefficients’ are:

ax(D2) = /M ax(z, D2)/Igld'z, (2.91)

and ignoring boundary terms the first three coefficients are given by:

ao(z, DY) = (47)" 2 Tr(Id) (2.92)

as(x, D) = (47) 2 Tr(L R — 3?) (2.93)
n 1

as(z,D?) = (47) 2 mTr(gR? — 2R, R* + 2Ry, RMPT + 30005, Q0P + 60RD’

+180(34#4 "y Fu Fpr — SRO* — [VZ, @7 + @), (2.94)

The terms R,,, and R,,, are the Ricci tensor and Riemann tensor respectively, while
QF, = Qiu ®I+1, ® F,,, and Tr(QiVQS‘“’) = —3Ryupe R**°, where Qf, and Qiu are the
curvatures of the connections Vf and Vﬁ respectively.

We therefore see that the heat kernel expansion for the spectral action corresponding
to an almost-commutative geometry yields the action for a Yang-Mills theory coupled
to gravity. For more information on the spectral action and the heat kernel expansion
see [ , , , |. T also compute the heat kernel expansion explicitly for a
minimal NCG SM extension in Appendix A (as well as the corresponding fermionic action).
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Chapter 3

Non-associative geometry:
foundations

When Connes originally proposed spectral triples as the objects which describe ‘non-
commutative Riemannian manifolds’, he generalized the conditions satisfied by canonical
commutative spectral triples to produce a set of axioms satisfied by more general NCGs
with non-commutative input algebras | |. In this chapter I will go a step further, and
generalize the axioms of NCG so as to allow for non-associative input algebras. The goal
is to develop the foundations of non-associative, non-commutative differential geometry.
Ultimately I will describe a reformulation in which the input data of a NCG is ‘fused’
together to form a so called ‘fused *-DGA’, denoted QB:

{A,H,D, J v} +— QB (3.1)

This reformulation or ‘fusion’ has four key benefits over the traditional approach:

1. The five otherwise separate input objects {A, H, D, J,~} of a NCG are unified into
a single object 2B. At the same time many of the otherwise seemingly unrelated
axioms of associative NCG are re-expressed, and given new meaning as the intrinsic
algebraic properties of QB (which for an associative NCG is an associative *-DGA).

2. In addition to the traditional NCG constraints, new ‘axioms’ on the NCG input
data naturally arise from the algebraic properties of 2B. These new ‘axioms’ place
additional constraints on the allowable gauge theories which may be constructed as
NCGs. In particular new ‘higher order’ associativity constraints place phenomeno-
logically accurate restrictions on the NCG SM scalar sector - constraints which were
previously put by hand into the construction.
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3. While the repackaging of the NCG input data in terms of (2B elucidates many aspects
of the associative formalism, it also allows ready generalization to the non-associative
setting. This is because (0B need not be associative. When QB is taken to have more
general associative properties (for example if it is taken to be Jordan, or alternative),
generalized NCG axioms are ‘derived’ from its intrinsic algebraic properties.

4. The symmetries of a NCG are given new meaning, and are expressed simply and
succinctly as the automorphisms of 2B. In particular on analyzing the symmetries
of the algebra Q0B corresponding to the NCG SM, one finds that the formalism forces
a minimal SM extension with gauged baryon-lepton number (B — L) symmetry, and
an additional scalar field which is responsible for Majorana masses, and for breaking
the extra B — L symmetry. This extension does not suffer from the various problems
which plague the Higgs sector in the traditional approach to the NCG SM.

Before introducing Q2B 1 will first start in Section 3.1 by reviewing my early attempts
at generalizing the axioms of associative NCG. These first steps into the non-associative
setting were made in | |, and relied heavily on simple finite examples, and I approached
the generalization of the spectral data and its axioms in a piecewise fashion. This naive
approach gets surprisingly good mileage, and as I will show it is possible to construct very
simple non-associative geometries with very little modification of Connes original axioms.
Ultimately, however one is led to introduce the fused algebra formulation of NCG as we
did in | |. Section 3.2 follows this work. In it I will introduce the fused algebra QB
by building it up in three steps: to start with in Subsection 3.2.1 I will introduce the
algebra By C 2B which unifies together the elements {A,H, J} of a spectral triple. In
Subsection 3.2.2 T will introduce the algebra B, which provides an incomplete unification
of the elements {A,H,D,J}. In Subsections 3.2.3 and 3.2.3 T will introduce the full
algebra B, which unifies all elements of the spectral triple {A,H, D, J,~v}. Finally, In
section 3.3 I will describe the work introduced in [ |, in which we described the gauge
symmetries associated to finite non-associative, and almost-associative geometries as the
automorphisms of QB.

3.1 Non-associative geometry: a first attempt.

In subsection 2.2.2 T reviewed the axioms which are imposed on an associative NCG.
When attempting to extend to a non-associative geometry a list of ‘obvious’ questions
arises relating to these axioms. These include:
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1. In associative NCG, the input algebra A is represented by bounded linear operators
on the input Hilbert space H (see Subsection 2.1.6 for a review of associative represen-
tations). The product between elements 7(ab) := m(a)om(b) is given by composition,
which is associative, so what does it even mean to represent a non-associative input
algebra?

2. In associative NCG, a right action of algebra elements on the input Hilbert space is
constructed by making use of a so called ‘real structure’ operator J. However the real
structure J had its origins as a modular conjugation operator in the Tomita-Takesaki
theory of associative Von-Neumann algebras (and also as the charge conjugation
operator on spinors) | : ]. An obvious question then is to ask: ‘is there
some analogue of the real structure operator in non-associative geometry and can it
be used to construct a right action of input algebra elements?’

3. How do the NCG axioms generalize? In particular, the ‘order zero’ and ‘order one’
conditions are both already generalized in going from commutative geometries to
associative NCGs | ]. Do these axioms need further generalization in the non-
associative setting, and if so what are their generalizations?

4. Are the symmetries of a non-associative geometry still related to the automorphisms
of the input algebra? If so how do they act on the input Hilbert space?

5. Can non-trivial Dirac operators be constructed in the non-associative setting? What
form do they take, and how are their ‘fluctuations’ determined?

This list of questions is of course by no means exhaustive. The goal of this Section
however is to outline my first attempts at answering them. In particular I will review my
first attempts at generalizing the NCG axioms to allow for non-associative input algebras,
and will outline my first attempt at constructing a simple non-associative NCG based on
the well known algebra of octonions represented on themselves | |. The organization
is as follows: In subsection 3.1.1, I introduce a notion of representation for non-associative
x-algebras A on a Hilbert space H. In Subsection 3.1.2, I re-introduce the grading and real
structure operators v and J in the non-associative setting, and explain how the usual
‘order zero’ condition generalizes. In subsection 3.1.3, T articulate the principle of *-
automorphism covariance, which ties together the transformations of the input algebra
A with those of the Hilbert space H, and all of the operators that act on it. The principle
of x-automorphism covariance subsumes and replaces the traditional covariance principles
of physics: diffeomorphism covariance (in Einstein gravity) and gauge covariance (in gauge
theory). Then in Subsection 3.1.4, I explain how to obtain a ‘fluctuated’ Dirac operator D 4
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from a flat ‘un-fluctuated’ Dirac operator D. In subsection 3.1.5 I introduce the simplest
almost-associative geometry based on the algebra of octonions, and explicitly construct its
spectral action. Then finally in Subsection 3.1.6 I show how to obtain this same octonionic
geometry by ‘twisting’ from an associative geoemtry.

3.1.1 Representing a non-associative x-algebra

The starting point when constructing a physical theory as a NCG is a x-algebra A that
is represented (or, more correctly, ‘bi-represented’ — i.e. represented from both the left
and the right) as bounded operators on a vector space H. However there seems to be an
immediate problem in attempting to extend the definition of a bi-representation of A on H
to the case where A is non-associative: as described in Subsection 2.1.6 a representation of
A on H is usually taken to be a linear map from each element a € A to a linear operator
7(a) in End(H), such that the composition of such operators represents the product on A:
m(a) ow(b) = w(ab). Yet the composition of linear operators is associative, so it seems one
cannot, possibly represent the non-associativity of A in this way. A shift in perspective is
required.

Fortunately there is a prototype for what is meant by a non-associative bi-representation:
any (non-associative) algebra has a natural bi-representation over itself. That is, take the
bi-module H over an input algebra A to be the vector space of the input algebra H = A
itself, and take the action between algebra elements and vector space elements to be in-
herited from the product on the algebra itself. This natural representation motivates the
following definition for a non-associative representation, which although we developed it
separately, was first introduced by Samuel Eilenberg | |, and which is nicely explained
in Ch. I1.4 of | |:

Definition: Let ah € H denote the left-action of a € A on h € H (a bilinear map from
A x H — H); and similarly ha denotes the right-action of @ € A on h € H (a bilinear
map from H x A — H). Given a class C of (non-associative) algebras defined by a set
of multi-linear identities I;(ay, ...,a,,) = 0, and an algebra A in C, then A is said to be
bi-represented on #H in C (or, equivalently, that # is a bimodule over A in C) if all of the
identities obtained by replacing any single a; € A by any h € H are satisfied.

As an example, consider the class C,4 of associative algebras; that is the class of algebras
satisfying the multilinear identity:

lai,a9,a3] =0 (Va; € A). (3.2a)
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If A € Cus is bi-represented on a vector space H, then following Eilenberg’s definition,
replacing any one algebra element in (3.2a) with a vector space element h € H, results in
the following conditions

[as, a5, h) = Laa;h — Lo, La,h = 0, (3.2b)
[h, a;,a;] = Ra; Ra;h — Raa;h = 0, (3.2¢)
[ai, h, aj] = RjLzh - Lszh = 07 (32(:1)

for all a, € A, and h € H. But Eq. (3.2b) is just an unfamiliar way of phrasing the
familiar fact that .4 has an associative left representation on H: mw(ab) = m(a) o w(b), i.e.
the condition given in Eq. (2.42). Similarly, Eq. (3.2¢) says that A has an associative
right representation on H, i.e. the condition given in Eq. (2.45). Finally, Eq. (3.2d) says
that the left and right representations are compatible with one another in the sense that
they commute, i.e the condition given in Eq. (2.46). In other words Eilenberg’s definition
reproduces the usual definition of an associative bi-representation for the class of associative
algebras.

As shown in Eq. (3.2), the products between elements in an associative representation
7(a), m(b) € 7w(A) are given by composition 7(a)w(b) = m(a) o w(b). Composition is asso-
ciative, and so expressions like 7(a)m(b)7(c) and m(a)r(b)h are unambiguous, and do not
require any additional parentheses. By contrast, in the case where A is non-associative,
the operator m(a) has two different roles that should be carefully distinguished: on the one
hand it can operate on a vector h € H, mapping it to a new vector m(a)h € H; on the other
hand, it can multiply another operator 7(b) to form a third operator (7(a)w(b)). It is im-
portant to note that, since the operators 7(a) and 7(b) represent elements in an underlying
non-associative algebra A, their product (m(a)m(b)) will not be given by the composition
of the operators m(a) and 7(b) on H (which is associative); instead, it will be given by
some other product that reflects the non-associativity of A: m(a)m(b) = m(ab). In left-right
notation, this is again the statement that L) Lrp) # Lr(ar), and Rr(o)Rrp) # Rrpa) for
non-associative input algebras A.

Example: The ultimate goal of this Section is to construct a simple example non-
associative NCG based on the octonion algebra. Let’s therefore consider as an example
the algebra of octonions bi-represented on itself A = H = O, with the action of algebra
elements on H given by the octonionic product. The octonions do not belong to the class
of associative algebras and as a result this bi-representation does not satisfy the conditions
given in eq. (3.2). The octonions do however belong to the class of alternative algebras
which satisfy the multilinear conditions given in eq. (2.7). This bi-representation will
clearly satisfy the conditions of an alternative algebra.
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Hilbert spaces

The input vector space ‘H of a NCG is always taken to be a Hilbert space. A Hilbert space
H is a real or complex vector space equipped with an inner product (_| ) : Ax A — F, and
where H is complete with respect to the distance function induced by the inner product:

d(z,y) = /(z —ylz —y) (3.3)

for z,y € H. For a complex vector space the inner product is skew-linear in its first
argument, linear in its second argument, skew-symmetric ({a|c) = (c|a)*), and positive
definite ((a|a) > 0). For a real vector space the inner product is bi-linear, symmetric, and
positive definite.

As a simple illustration, consider once again the case where the algebra of octonions
is bi-represented on itself A = H = O; the algebra homomorphism 7 is taken to be the
identity map (@ = a); and the product of two operators a and b, and the action of an
operator a on a Hilbert space element h, is taken to be given by the underlying product
in A: ab = ab, ah = ah. As a normed algebra the octonions are equipped with a natural
inner product (a|b) = (1/2)(a*b+ b*a) = Re(a*b) where a* is the octonionic conjugate of
a.

Almost-associative representations

In practice, all of the non-associative geometries that I will describe in this work will be ei-
ther finite non-associative, or almost-associative in the sense that they will be constructed
as the product between a finite non-associative geometry and a canonical geometry'. In
this way the non-associativity is always relegated to the finite part of the geometry. Fo-
cusing on finite non-associative geometries has the benefit that all linear operators will be
bounded, and so many of the difficulties which arise in the continuous case are avoided.
What is not immediately clear however is if the product is taken between a finite dimen-
sional non-associative algebra (represented on a finite Hilbert space) and an associative
and commutative algebra of functions over a manifold (which is represented as bounded
operators on an infinite dimensional Hilbert space), then will the resulting algebra be rep-
resented on the tensor product Hilbert space by bounded operators? One would hope that
since the non-associativity is confined to a finite dimensional representation, even if the

! Almost-associative geometries are the non-associative NCGs which are of most immediate physical
interest, as they correspond to Yang-Mills theories non-minimally coupled to Einstein-Hilbert gravity on
a normal associative space-time.
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total resulting Hilbert space is infinite dimensional the total algebra would still have a
representation as bounded operators. Let’s check if this is indeed true.

Suppose that there are two Hilbert spaces H, and H,, then their tensor product is
defined such that the inner product on the tensor space is given by:

(D1 @ 1, P2 @ o) = (@1, P2) (Y1, 1a), (3.4)
for @1, p2 € Hy, and 91,1 € Hy.

Next, let H,; be a finite dimensional Hilbert space on which a finite, non-associative,
unital, involutive algebra A, is represented, and let Hy, = L*(M,S) be the canonical
Hilbert space on which A, = C*(M,C) is represented as bounded operators.

Consider an arbitrary element v = ), ¢; ®1; € Hy®H,. One can always choose a basis
on H, and Hy which is orthonormal with respect to their inner products. By bilinearity,
the v;’s can be replaced by an orthonormal basis of their span, and so it is safe to assume
that the 1);’s are orthonormal, and also therefore given the definition of the inner product
that the >, ¢; ® ¢;’s are. Next consider the norm squared of the algebra element a, ® I,
acting on v. Once again the ), a¢; ® ¢;’s are orthonormal by the same argument, and so
we can write:

1(ag @ Ty)oll* = O asdi @i, Y _ agdi ® )

= Z(%Q% apPi)

i

= Magil” < D MaglPlleill” = lag|[*[[o]?, (3.5)
where the inequality derives from the definition of the operator norm. We therefore have:
(g @ Ly)|| < lag] (3.6a)
and by symmetry:
1T ® ay)|| < [ay|] (3.6b)
By the triangle identity (see Eq. (2.9¢)) we therefore have:
I(ag @ ay)l| < llag @ Ly||.|[Is @ ay|| < [lag||-[|ay|] (3.7)

It then follows that every operator in the algebraic tensor product space can be represented
by bounded operators on H 4 ® Hg. Actually, this point should be intuitive from the form
of the inner product given in Eq. (3.4) alone, and we really need not have gone through the
above proof at all. Notice also that non-associativity never entered into the above proof,
as we were never dealing with the product of more than two elements.
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3.1.2 The real structure J, and the Z, grading v

So much for the input algebra A, and its representation on the Hilbert space H. Let us
next have a look at the operators J and . A spectral triple is said to be “real” if it is
equipped with a real structure operator J and “even” if it is equipped with a Z, grading
operator . One uses the real structure operator in associative NCG to construct the
right action of associative algebra elements on the input Hilbert space. However the real
structure operator has its origins as a modular conjugation operator in the Tomita-Takesaki
theory of associative Von-Neumann algebras | |. Meanwhile the grading operator
arises in associative NCG as the representation of a Hochschild cycle v = 7(c), defined for
associative algebras [ |. In this section I will briefly discuss the generalization of both
operators to the non-associative case. For a complete exposition in the associative case see
references | : , ].

The real structure J

First consider the real structure J. The basic observation, which remains perfectly valid
when A is non-associative, is that J can be thought of as extending the * operation from
the x-algebra A to the bimodule H over A: The real structure J : H — H is introduced as a
unitary anti-linear operator, which parallels the anti-linear operation (a € A) — (a* € A),
satisfying (ab)* = b*a* (see Eq. (2.8)). Viewed in this way, it must therefore have a
compatible action on any product of algebra elements a € A and Hilbert space elements
h € H: in particular following Eq. (2.47), J(ah) = (Jh)a* and J(ha) = a*(Jh). In other
words, Connes’ familiar relation between the left and right acting algebra elements on H
as given in Eq. (2.67) is recovered:

R, = JL.J", (3.8a)
Lo = JRgJ". (3.8b)

The real structure J plays an important role in Connes’ so-called order-zero and order-
one conditions (2.68) and (2.69). Let us see what the meaning is behind the order zero
condition (I will discuss the order one condition once we have the appropriate tools in
Section 3.2):

[JLZQ ‘]*7 La1]h = [Raza Lal]h
= (alh)ag — al(hag)
—_= [CLl’ h7 CLQ] —_= 0 (39)
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From the perspective presented here, the order zero condition is really just an assumption
about the associativity of the bi-representation of A on #H (i.e it tells us that the left
and right actions are compatible in the sense of Eq. (2.46)). This assumption must be
appropriately modified in the case where A is non-associative. To clarify this point, lets
consider two simple examples:

1. Consider first the simple finite SU(N) construction outlined in Section 1.1, which
has as input the algebra of complex n x n matrices Ar = M, (C), bi-represented
on itself, i.e. Hp = M, (C). The real structure operator is given by the adjoint on
matrices, Jph = (h)! for h € Hp, while the grading on H is given by the identity
operator vp = [y. Compatibility with the chirality (i.e. {7, D} =0 (see Eq. (2.65)))
then forces Dr = 0. The order zero condition in this example is given by:

[Jb* Tt alh = (b'(ah)")T — a(bThT)
= (ah)b — a(hb) = 0, a,be Ap;h € Hp, (3.10)

where the final line is equal to zero because in this example A is an associative
algebra with an associative bi-representation on Hp.?

2. Next, consider a mild variation on the first example: consider the prototype example
which is of most interest to us, Ar = Hp = O, where the input algebra is taken to be
the octonion algebra, bi-represented on itself in the natural way. With the octonions
acting on themselves, it is natural to take J to be given by octonionic conjugation.
With this input data, the order zero condition yields:

[JLy-J*, Lo = (b*(ah)*)* — a(b*h*)*
= (ah)b — a(hb) # 0, a,be Ap;h € Hp. (3.11)

As the octonions are non-associative, the associator is typically non-zero, so we see
that the traditional order-zero condition (2.68) is incompatible with the representa-
tion of the octonions on themselves, which is the most natural representation.

As discussed in Subsection 3.1.1, rather than satisfying associative order conditions (ie.
associative multi-linear identities), a non-associative algebra represented on a Hilbert space
should instead satisfy a set of conditions appropriate to the associativity class to which it

2Notice that the associative order 1 condition will be trivially satisfied in this finite geometry because
D = 0. In addition, on forming the corresponding almost-commutative geometry one would find that the
order one condition would follow automatically due to the order zero condition on the finite space.
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belongs. The non-associative bimodule given above, A = H = O, will for example satisfy
alternative order zero conditions, because the octonions are an alternative algebra?:

[R5, La] = [Ly, Ral, (3.12a)
[R;, La] = Ly, — L;Las = RaR; — Roj. (3.12h)

So what is the purpose behind the order zero condition, and does it matter that the
associative order zero condition isn’t satisfied in general when the input algebra is non-
associative? The main purpose of the associative order zero condition is to ensure that
the bi-representation is associative when the input algebra is associative. This ensures
automorphism covariance, which I will describe shortly in Subsection 3.1.3. In brief, the
associative order zero condition ensures that the inner-symmetries of a NCG are generated
by inner derivations which take the associative form given in Eq. (2.28a). More generally,
the order zero condition, together with the operator J defines the bi-module structure
of the Hilbert space H, and ensures covariance under the automorphisms of the input
algebra regardless of its associativity properties. For example, if we wanted to represent a
Jordan algebra, then ‘Jordan’ order zero conditions should be imposed such that the inner
symmetries are generated by derivation elements of Jordan form given in (2.28¢c). All of
these statements will be made precise below in Subsection 3.1.3, and in Section 3.3. In
this section I will only consider finite examples with zero Dirac operators so as to avoid
the need to discuss the order one condition given in Eq. (2.69). I discuss the higher order
conditions in Section 3.2.

The grading v

Now let’s consider the Zy grading ~. It is a linear operator on H that commutes with the
action of A on H. It is both hermitian (v* = ~) and unitary (v* = y~1): hence it satisfies
~% =1, so its eigenvalues are £1, and it correspondingly decomposes H into two subspaces
H =H, & H_. Note that all of these defining properties continue to make perfect sense
when A is non-associative, and require no modification.

For physicists, the familiar example is Dirac’s helicity operator 75 which has the above
properties and decomposes the space of Dirac spinors into positive and negative (helicity)
subspaces: L*(M,S) = L3 (M, S) & L? (M, S). Another nice way to think of 5 is as a
volume form. Recall that on a spin manifold the Dirac operator is given by I) = —m“vﬁ,
where the v* are the Dirac Gamma matrices, and Vﬁ is the Levi-Civita connection on

3These order zero conditions simply restate the alternative conditions given in Eq. (2.7) as commutator
expressions. For example (3.12a) can be seen as follows: [R;, Ls|h = [a, h,b] = —[b, h,a] = [L;, Rah.
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the spinor bundle. Although this Dirac operator may be unbounded, its commutator
with elements of the algebra of functions over the manifold df = [, f] = —iy*(9,f) is
bounded. In fact this bounded operator gives the Clifford representation of the 1-form
df = da*(0,f) | |. Similarly, we see that the ~5 grading operator in the canonical
case can be considered as the Clifford representation of a volume form.

TV VY =Y = . (3.13)

As a volume form, the grading operator may be viewed on an n-dimensional even
space as the representation of a Hochschild n-cycle: v = w(c) for ¢ € C,, (A, A) | ].
Unfortunately Hochschild homology is only well defined for associative algebras. To see
what goes wrong consider the action of the homology operator b described in Eq. (2.61),
on elements of Cy(A, A):

b2(a0 ® a1 ® az) = blaga; ® az — ag @ aras + azag ® ay)

= lag, a1, az] + [az, ag, aq1] + a1, az, ag). (3.14)

As can be seen in Eq. (3.14), when acting with b* on elements of Cy(A,.A) one obtains a
sum of associators. Likewise when acting with b? on elements of C,, (A, A) for n > 3 one also
obtains expressions with associators in them. The condition b? = 0 is therefore clearly only
satisfied for associative algebras. Hochschild (co)homology was generalized for the non-
commutative setting to cyclic (co)homology, with major contributions coming from Tsygan,
Connes, Loday, Kassel and Quillen | ]. When extending to the non-associative case
further generalization is necessary. Fortunately, much work has already been done in
this direction. The authors Kustermans, Murphy, and Tuset generalize to ‘twisted cyclic
cohomology’ in order to describe differential calculi over quantum groups | |, while
the authors Akrami, Majid, and Beggs generalize to twisted braided cyclic cohomology to
describe the cohomology associated to non-associative algebras obtained by Drinfeld-type
cochain twists | , |]. More recently Hassanzadeh, Shapiro, and Siitli | ]
generalized to describe the cyclic homology associated to Hom-associative algebras®*.

I will not describe the non-associative generalization of Hochschild (co)homology any
further in this work (it belongs in a separate thesis). Instead I simply take for now the
defining properties of the grading operator which continue to make sense in the non-
associative setting: 2 =1,v* =~71, {7,D} =0, vJ = €"Jv, and [y,a] = 0, for a € A.

4M. Hassanzadeh has told me he is currently also working on generalizations to describe the
(co)homology associated to general Jordan and alternative algebras, with some progress already made
for Jordan algebras.
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3.1.3 The principle of automorphism covariance

I have so far discussed the elements { A, H, J, v} of a spectral triple. Let us next discuss the
symmetries of a non-associative NCG. Consider an automorphism « of the input x-algebra
A, which maps each element a € A to a new element ¢’ € A. Corresponding to each
automorphism « : A — A, one can find corresponding transformations & which map each
operator @ to a new operator @', as well as transformations & : H — H:

a — d =afa), (3.15a)
i — & =al(a), (3.15b)
h = I =a(h). (3.15¢)

To tie the transformations «, @ and & together, one demands that they satisfy the principle
of automorphism covarariance, which states that the whole formalism should “commute”
with automorphisms of the underlying x-algebra. In other words, any sensible expression
should have the property that if one first transforms its components and then evaluates the
expression, this should be the same as first evaluating the expression and then transforming
the result. Note that, given the automorphism « : A — A, the compatible maps & and
& may be non-unique. Indeed, there may be whole families of maps & and & that are
compatible with a given alpha. For example, one may often ‘centrally extend’ the operators
& by unitary operators on H which commute with the algebra representation. This point
will turn out to be phenomenologically important in our analysis of the standard model
later in this thesis in section 3.3.

Let’s see how the principle of automorphism covariance works in practice. For starters,
let’s apply the principle to the expression a = 7(a): it requires that m(«a(a)) = a(n(a)),
VYa € A; or, in other words:

Toa=@aom (3.16)

where o denotes composition of functions. Next, apply the principle to the expression ah:
it requires that &(ah) = a(a)a(h); or, in other words:

@ =a(@)=daoaoa™' VacA (3.17)

Example: For illustration, consider the simple example of an algebra represented on
itself: ‘H = A. In this case we can always find maps & and & that are compatible with
a in the sense of Eq. (3.16) and Eq. (3.17) by simply choosing & = «, and aa = Gad™.
This example shows as proof of principle that there exists choices for @ and & that are
compatible with «. even in the case where A is a non-associative algebra.
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When constructing a NCG, there are three key linear operators which act on H: namely,
D, ~, and J. Applying the principle to the expressions Dh, vh and Jh we see that, under
an automorphism «, these operators must transform as

D — D' =aoDoat, (3.18a)
v ﬁ)/:dof)/ od_l, (318b)
J — J =daoJoa (3.18¢)

Both the real structure J and the Z, grading v should be compatible with the automor-
phisms of the underlying *x-algebra, in the sense that automorphisms should not affect the
split between positive and negative helicity states, or between particles and anti-particles
(the Hilbert space will eventually describe the fermionic degrees of freedom in physical
models). We can express this requirement in terms of automorphisms:

[a,y] = 0, (3.19a)
(&, J] = 0, (3.19b)

[

or in terms of the derivations that generate them:

[0,9] = 0, (3.20a)
[6,7] = o0, (3.20b)

Notice that the condition given in Eq. (3.19b) is really just a rephrasing of the defining
property of x-automorphisms given in Eq. (2.23b). The condition given in. (3.19a) is really
just the statement that the automorphisms on H should respect the grading on H.

Ezample: As described in Eq. (2.77), in the associative setting inner derivations on H
are of the form §, = a+JaJ*, for anti-hermitian a € A and so readily satisfy the conditions
given in Eq. (3.20):

[00,7] = (a + JaJ*)y — v(a+ €"¢" JaJ*) = 0, (3.21a)

(00, ] = aJ + Ja— Ja — J?aJ* =0, (3.21b)

where in the last line I have used the real structure condition J? = €l given in Eq. (2.66a),
and the fact that JJ* = I, which together imply J = eJ*.

Ezample: Consider once again the prototype non-associative geometry where A =
H = O. The inner derivations on H are of the form d,, = [Ls, Ly] + [Le, JL;J 7] +
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J[Ly,L,]J! (see Eq. (2.28d)), and it can be shown that they satisfy the conditions given
in Eq. (3.20):

[00y7] = (L, Ly] + [Lay JL3 T 71+ J[La, L))y

— ([Lo, Ly + €"€"[ Ly, JL,J ' + €"€" J[Ly, Ly)J ")y = 0, (3.22a)
[00,ys J] = [Lay Ly)J + (Lo, JLL T T + J[Ly, Ly

— J[Lg, Ly) — J[Lg, JL;J ) — JJ[Ly, L) J

= J([JLoJ " L] — [Ly, JL,J 7)) = 0, (3.22b)

where in the last equality of Eq. (3.22b) I have used the alternating condition given in
Eq. (2.7), which is satisfied because the octonions are an alternative algebra.

We propose that it is natural to take the compatibility conditions given in Eq. (3.20)
to be true more generally; i.e. to take them as axiomatic in non-associative geometry. We
do not impose the same requirement on D: instead, the automorphisms of the underlying
x-algebra A induce a transformation or “fluctuation” of D, from which the bosonic fields
arise.

The principle of automorphism covariance is a fundamental principle lying at the base
of the spectral reformulation of physics: it replaces (or subsumes or implies) the more famil-
iar principles of covariance under coordinate transformations and gauge transformations,
which are usually taken as the starting points for Einstein gravity and gauge theory. This
principle will give us all the guidance necessary in this section, for formulating the spec-
tral action principle unambiguously, even when A is non-associative. The reader should
be aware however that in section 3.2, I will be reformulating spectral triples in terms of
x-DGAs denoted 2B. When I do so, the notion of ‘automorphism covariance” will itself
be subsumed by the compact statement that the symmetries of a NCG are simply the
x-automorphisms of QB.

3.1.4 Inner fluctuations and covariance

Almost-associative geometries

In Subsection 2.2.3 I reviewed the construction of so called ‘fluctuated’ Dirac operators,
which transform covariantly with respect to the automorphisms of the input algebra in
a NCG. The usual fluctuation terms given in eq. (2.85) are derived using Morita equiva-
lence [C')M] or semi-group methods | : |. Both of these methods rely on the
associativity of the input algebra, and so before continuing it is necessary to first develop
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a fluctuation procedure which also works in the more general case. Fortunately, follow-
ing Eq. (3.18a) we already know how covariant Dirac operators must transform, and this
tells us what form their fluctuations must take. Following eq. (2.81) a kx-automorphism
covariant Dirac operator must transform as:

D—D'=aDa'=D—a[D,a'] (3.23)
N——
fluctuation
As in regular gauge theory, the form of the covariant Dirac operator must remain stable
under continued fluctuation. By inspecting the fluctuation terms in Eq. (3.23) we are
therefore able to determine the more general form of the fluctuated Dirac operator. Let’s
consider the associative case first:

Following eq. (2.28a), the input algebra of an associative NCG geometry has inner
derivations which take the form 6 = L, — R,, for v+ = —x* € A. For an associative NCG
eq. (3.23) may therefore be written to first order in the form:

D' = e De % ~ D — [D, ]
=D~ [D,x+JxJ =D~ [D,x] - €JD,x]J ", (3.24)

fluctuation term

The fluctuation term in eq. (3.24) is constructed from hermitian exact one forms. By
inspection, general fluctuation terms are therefore constructed from general hermitian one
forms as:

Dy =D+ Aqy+€eJAnJ ", (3.25)

where the generalized hermitian forms are given by Ay = >_a[D,b], with the sum taken
over elements a,b € A. But this approach recovers exactly the traditional fluctuation
formula described for the associative case in Eq. (2.85). From this perspective, the struc-
ture of the inner fluctuations ultimately comes from the underlying structure of the inner
derivations, and is analogous to the connection term that appears in Eq. (2.73), for regular
gauge theory.

Before proceeding with the non-associative case let’s first consider again the special
case of an associative almost-commutative geometry, the input algebra C*°(M, Ar) is the
algebra of Ap valued functions over a manifold M. The inner derivations ¢ acting on H,
may be written as 6 = ¢(z) ® &;, where the set {§; = L., — Re.|e; = —e! € A} form
a basis of anti-hermitian derivations acting on Hp, while ¢!(z) are spatially-varying real
coefficient functions (i.e. functions from M to R). The Dirac operator of an associative
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almost-commutative geometry is given by D = ) ® Iy + 7. ® Df (see subsection 2.2.2).
Following eq. (3.25) the fluctuated Dirac operator of an almost-commutative geometry is
therefore given by:

Dy = —M"Vf RIp+ Z(iw“ac[au, b.] ® apbr) + € J(iv"a.[0,, be) ® apbp)J !
+ 7 ® D + Z acbeye @ ap[Dp, bp] + € Jacheye ® ap[Dp, bp)J ™
= —iy"Vi ®@Lp + v ac(0ube) ® (apbp) + iv"ac(0,be) @ Jp(apbp)Jy"
+ 7% ® Dr + Z acbeye @ ap[Dp, bp] + €pacbeye ® Jpap[Dp, bpl g
= —m“vﬁ RIp— zy“AL(x) ® (%—F\%(bij ® (ei[Dr,e;] + Jpepe;[Dr, ej]ngl. (3.26)

A g
Gauge Higgs

where a.®ap, b.Qbp € C°(M)® Ap. The gauge fields appear in the adjoint representation
of the automorphism group of the input algebra, while the representation of the scalar fields
depends on the form of the finite Dirac operator.

So much for the associative case, lets consider a non-associative geometry. For a
non-associative geometry the fluctuated Dirac operator should transform under inner -
automorphisms of the input algebra as shown in equation (3.23). The only difference is
that now the automorphisms will be generated by elements of the algebra of derivations
D(A) for the non-associative algebra in question, rather than by associative derivations of
the form 0. = L. — R.. Lets consider an input algebra satisfying the Jordan conditions
given in eq. (2.5)°. Following eq. (2.28c), the inner derivations of a Jordan algebra are
given by .y = [L,, L,]. To first order the Dirac operator must transform as

D' = e De™% ~ D — [D, 5]
=D - [[D,Lg],La} + [[DaLéLLE]? (327)

N

TV
fluctuation terms

where comparison between equations (3.24) and (3.27) should be stressed. Once again the
form of the fluctuated Dirac operator is determined by inspection, and is given by:

Dy=D+ Z (5,4(1)714(0) = Z[A(l)’ A(O)], (328)

where the sum is taken over generalized hermitian ‘one forms’ Ay, and generalized ‘zero
forms” Agy. The ‘zero forms’ A g will simply be given by left acting elements of the Jordan

5T choose a Jordan algebra here as an example rather than our prototype octonions because the inner
derivations of a Jordan algebra take a simpler form than the derivations of an alternative algebra.
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algebra. The generalized ‘one forms’ will depend on the representation of the algebra
and the form of the un-fluctuated Dirac operator D. I will give an explicit example below
in Subsection 3.1.5.

Although the fluctuation of D, involves algebra elements a € A drawn from the non-
associative algebra A, D, is simply a linear operator on H, and is not in any sense non-
associative. In particular, note that the fluctuations of D are built not from the elements
a € A themselves, but from L, and R,, i.e. the (associative) operators which represent
the left-action and right-action of @ on H. Furthermore, these operators L, and R, are
grouped together in a particular way, structured by the derivations of A. Even when
A is non-associative, its automorphisms still form an ordinary (associative) group, and
its derivations (from which the fluctuations of D, are built) still form an ordinary Lie
algebra. This means that, when we take an almost-associative geometry, and plug D 4 into
the spectral action, the spectral action will yield an ordinary Yang-Mills theory, just as it
does in the almost-commutative case. Let us now look at a concrete example.

3.1.5 The octonion example
SU(N) Gauge theory

As a warm up before considering an example non-associative geometry consider first
the archetypal almost-commutative geometry M x F with finite space given by: F =
{Ap,Hp, Dg, Jp,vr}, where Ap = M,(C) is the algebra of n x n complex matrices®
represented on itself: Hp = Ap. The real structure is given by hermitian conjugation
Jr = 1, and the grading is given by the identity 77 = Ir. Compatibility with the chi-
rality {Dp,yr} = 0 then sets Dr = 0. This geometry satisfies J& = I, [Dp, Jp] = 0,
[vr, Jr]) = 0 and so is of KO-dimension 0 or 7 (see table 2.1). Only in KO-dimension 0
however does it make sense to impose the condition { Dg,vr} = 0, thereby setting D = 0.

Tensoring the finite space with a four dimensional canonical triple yields a KO-dimension
4 almost-commutative spectral triple given by:

M x F = {C>®(M, M,(C)), L*(M, ) © M,(C), P ®1p, J. ® t,7. @ Ir}, (3.29)

where all tensor products are taken over the complex numbers. The fluctuated Dirac

6Here n = N.
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operator is given by:

DA = ZD (%9 ]IF + A(l) + GIJA(l)J_l
=Dy + z'fy“AZ(:I;) ® e; + J(i’y“AZ(m) ®e)J !
=D RIp+in"Al(x) ® (e — Jpel o)
=P Ip+ir"Al(z) ®9; (3.30)

for anti-hermitian basis elements e; € Ar and with real valued coefficients AL(%) € A..

Having constructed the fluctuated Dirac operator, the spectral action is then given
by [ Y 9 9 ]7:

S =Tr (F(5))
~ 2fiNag(D}) + 2foNaz(D7) + f(0)as(D7) + O(A™?) (3.31)

where the f, = [ f(z)z" 'dz (n > 0) and a;(D?) are the Seeley-deWitt coefficients, and
the square of the fluctuated dirac operator is given by

D? = (—m“vﬁ QI —in" Al ® 0;)?

=AY -1y ®F,, —iRQ®]I, (3.32)

where R is the Ricci scalar, and
A =—gVIVYE, (3.33)
F.=0,A, —0,A, +[A, A (3.34)

where Vi = Vi @ [+ B}, ® 6;. For a compact Euclidean manifold without boundary
eq. (3.42) can then be expanded:

1

ao(D?) = /M N (3.35)
1

2 4

as(D?) = /M d'e\/g 1R (3.36)
11

(D) = /M d4$\/§167r2 %Tr[(ZSLRQ = 2R R A 2Ry 00 R
+ 4579717 Fyu Fp + 300, ()], (3.37)

"See Subsection 2.2.4 for a review of the spectral action.
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where QF, = Q3 @ I+ I, ® F,,, and Tr(Q5, Q%) = — 3R, R"*°, where where R,
and R, are the Ricci tensor and Riemann tensor respectively and Q7 and Qiu are the

curvatures of the connections Vf and Vﬁ respectively. The full bosonic action is then

N? 2
~ [ A+ ZRfoA?
Sb /]\/[ x\/§(4ﬂ_)2[8f4 + 3Rf2
f(0) , e 240 ,
+ 260 (5R? — 8R,, R"™ — TR0 R"P7 — mTr(FWF“ N (3.38)

where I have used the fact that the dimension of the finite Hilbert space is N?2.

The action given in Eq. (3.38) describes an SU(N) Yang-Mills theory minimally coupled
to Einstein-Hilbert gravity (minimally coupled in the sense that there is no term like ®*R
in the action). For this example I have only constructed the bosonic part of the action
given in Eq. (1.1). I will construct the fermionic action for more interesting models in

Ch. 4.

G, Gauge theory

Next, consider our prototype almost-associative geometry M x I’ with finite space given by:
F ={Ap,Hp,Dp, Jr,vr}, where instead of a matrix algebra we take Ap = O, the algebra
of octonions represented on itself: Hp = Ap. The real structure is given by octonionic
conjugation Jp = %, and the grading is given by the identity v = [r. Compatibility with
the chirality {D,~} = 0 then sets Dp = 0. This geometry satisfies J& = I, [Df, Jr| = 0,
[vr, Jr] = 0 and so is of KO-dimension 0 (see table 2.1).

This finite non-associative geometry has a number of properties which make it inter-

esting as a first example:

1. It takes as input a unital, finite, simple algebra, and so all of its automorphisms are
well characterized, and inner | : ].

2. Because the finite Dirac operator is taken to be zero, the first order condition (what-
ever form it happens to take in the non-associative case) is automatically satisfied,
and so can be safely ignored (for now, but I will come back to it later in this thesis).

3. The octonions are normed and so have a canonical inner product, which means they
are also naturally a Hilbert space.

4. As will be discussed shortly in Subsection 3.1.6 this non-associative geometry can be
obtained by a ‘twisting’” procedure from an associative geometry.
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Let us see what the corresponding almost-commutative geometry looks like. Tensor-
ing the finite space F' together with a four dimensional canonical triple M yields a KO-
dimension 4 almost-commutative spectral triple given by:

M x F ={C®(M,0),L*(M,S) ® 0, —iry*V; @I, J. ® *,7. ® Ir}, (3.39)

where each tensor product is taken over R. Under inner automorphisms of the total input
algebra the Dirac operator must transform to first order as (see Eq. (2.28d)):

D' = aDa™' ~ D — D, 4]
=D - HD7 Lé]v LE] + HDv LE]7 ’]LEJ*] - E/J[[Du LI;]7 LE]J*
+[[D, La), L) — €[J[D, L J*, L;] + € J[[D, L, L;] J*, (3.40)

By inspection the fluctuated Dirac operator is therefore given by:

Da=D®Ip+) [An), Ao — [Aq), JAw©J] + € J[Aw), Ap)J",
=D lp+ Y iv* Al Al (Lo, Le,) + [Leyy Jo L2, J*) + [JeLe I, Je L, Jpt),
= D Ir +iv"Al(z) ® ; (3.41)

where the e; € Ap are the anti-hermitian (imaginary) octonionic basis elements, the 51
are a basis of derivations of the octonions (these derivations form the go Lie algebra) and
the A’(x) are real valued coefficient functions (the components of the Gy gauge field). As
expected we obtain a gauge potential in the adjoint representation of g, while the Higgs
sector is empty because the finite part of the Dirac operator was set to zero. As there is no
scalar field to break the symmetries of the theory, the theory will remain massless. From
this fluctuated Dirac operator we are now able to construct the spectral action, which is
given by | , , , |:

So = Tr ((5)

3 2
~ [ A* + ZRfoA?
/M $\/§(47r)2 BN 3Rf2
24
4 —J; (6%) (5R? — SRy R — TR, p0 R — ?OTr( Fy, F*)) (3.42)

where I have used the fact that the finite Hilbert space has 8 real dimensions. Notice, that
once the fluctuated Dirac operator is constructed, the construction of the spectral action
goes ahead as usual. This simple almost-associative geometry based on the finite algebra of
octonions describes a G5 Yang-Mills theory minimally coupled to Einstein-Hilbert gravity.
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3.1.6 Cochain twisted Geometry

In the previous Subsection I showed how to construct what is in some sense the simplest
finite non-associative geometry F' and used it to form an almost-associative geometry
corresponding to a (G5 gauge theory coupled to gravity. This was in fact the first non-
associative geometry constructed | ], and which I used as a working example when
developing the more general non-associative formalism based on the fused x-DGAs QB.
The simplicity of the octonion example was not the only reason that I chose to construct
it however. It turns out that the finite example octonion geometry may also be obtained
through a ‘cochain twist’ of an appropriate associative finite spectral triple. One can
therefore arrive at our example nonassociative spectral triple F' and check that it makes
sense, in two different ways. On the one hand, F' satisfies all of the required axioms
for a spectral triple (including the appropriate nonassociative generalization of the order
zero condition presented in Subsection 3.1.2), and is compatible with the principle of
automorphism covariance, as explained in Subsection 3.1.3. On the other hand, one can
start with an appropriate associative spectral triple that satisfies the standard axioms of
associative NCG, and then perform a so called ‘cochain twist” into the nonassociative triple
F'. In this subsection I explain this twisting procedure, which relies heavily on the quasi-
Hopf algebra description of the octonions developed by Albuquerque and Majid | ].
I have tried to make this subsection as self-contained as possible, but for those readers
needing more information I highly recommend the references | , |. In addition,
while this Subsection does present an interesting approach to non-associative geometry
(cochain twisting from an associative geometry) the content may be completely skipped
over without influencing the reader’s understanding of the remainder of the text in any
way.

I begin by introducing a few pieces of mathematical background. The octonions have a
so called ‘quasialgebra’ structure. For our present purposes a quasialgebra can be thought
of as an algebra that is, in some well defined way, related to certain other algebras. Specifi-
cally, starting with an associative algebra (A4, -), we can perform what is known as a ‘twist’
to obtain a new quasialgebra (Ap, X). The new algebra Ap shares the same underlying
vector space as A4 but has a new product (“x” instead of “-”). It is possible in this way
to describe the non-associativity of a quasialgebra (Ag, X) as resulting from a ‘twist’ from
an associative quasialgebra (A, -).

The authors Albuquerque and Majid | | have already described in full detail the
octonions as a quasialgebra resulting from a ‘twist’ on a particular associative group alge-
bra. A group algebra is defined by taking a group G and a field K® together in a natural

8Here I use the notation K to denote a field rather than F, because it is the notation commonly seen
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way: namely, arbitrary linear combinations of the form ) . k;g;, where k; € K and ¢, € G.
These elements may be added and multiplied in the obvious way, and thus form an algebra
over the field K; the dimension of the algebra KG is just the order of the group G. KG
is naturally a x-algebra, with the x operation given by (3, kig:)* = Y., kfg;i'; and it is
also naturally a Hilbert space, with the inner product of two vectors v(*) = > l<;§1) g; and
o® = 30k gs given by (V] = 37,0k

In the case of the octonions, the corresponding associative group algebra of interest is
KG, where K = R, and G = Zy X Zo X Zs, so that KG is an 8-dimensional algebra over
the real numbers | , , ]. Each basis element of KG may be written
in the form g; = (i1, i2,13), Where i; € {0,1}; and then KG simply inherits the group
multiplication law: j - £ means adding the two vectors (j and k), mod 2. From here, we
can obtain the octonions by performing a ‘twist’ —i.e. by replacing the multiplication law
x -y with the new multiplication law:

9i X 9 = i - 9;F (9, 95) Vgi,g; € G, (3.43)

where F'is known as a ‘2-cochain twist’ taking values in the field K over which the algebra
Ap is defined. The 2-cochain F' is given in the octonion case as | ]:

F(gi,g;) = (—1)7,
[ =11(J1 + J2 + J3) + i2(j2 + J3) + isjs + Juiois + i17213 + i1i2]s. (3.44)

In discussing the twist from A = KG to Ar = O the authors Albuquerque and Majid
[ | give a ‘natural involution’ (x operation) on the twisted algebra basis:

Jei = F(@i, 61')62'. (345)

From equation (3.44) it can be seen that this involution is simply octonionic conjugation.
Prior to twisting however the involution is simply given by F'(e;, e;) = 1, Ve; € KG. Notice
that in KG each basis element is its own inverse. For this reason the ‘natural’ * operation
coincides in the untwisted case with what is known as the ‘antipode’ operator S on KG:

Je; = Se; = e; 1. (3.46)

The triple {A,H,J} = {0,0, Jr} may be considered as being ‘twisted’ from the data
{KG,KG,S}. Tt is therefore natural to consider a spectral triple {A, H, D,~, J} where
A and H are both given by KG, and A is represented in the obvious way: i.e. w is the

in the relevant literature.
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identity map (so @ = a), and the action of the operator @ on an element of H is given by the
ordinary product in KG. Furthermore, we can take v = 1; the condition {, D} = 0 then
implies D = 0. Finally, the action of J on H is naturally given by the x-operation in KG:
Jh = J( kigi) = (3, kigi)* = >, krg;'. The twist given in equation (3.43) then maps
between the associative finite spectral triple corresponding to the group algebra KG and
the non-associative finite spectral triple corresponding to the octonion algebra Arp = Q.

We are now in a position to analyze how the order zero condition behaves under a
‘twist’ from the associative A = H = KG to the non-associative Ap = Hrp = Q. As A is
associative it will satisfy the order zero condition given in Eq.(2.68):

7y, ol = (Gi - 9n) - G5 — G- (G - §5) = 9i9j» 9k € G,
‘twist’ = 0= F ' (gi, g) F (9 gk;.%)( k) X G
— F7H(gi 9x - 95)F ™ (gk, 95) i % (é X gJ)
_ 1 -1 s~ o =
T F(9i,91°95)F(9k.95) (®givgk:§] (g ) — gi X <gk X gj))
_ 1 ~
- F(ingk'gj)F(gkvgj)[ng L] gy (3.47)
where the ‘associator’ is defined as @z, 5, 5. = ggg?g:?;g%é’:?_;. In other words, an aug-
i j ,9j
mented order zero condition is obtained, and is given by:
[Rl;, La]@ =0 Va, be AF, (348)

where the subscript ® can be seen as telling us when to ‘flip’ the brackets on one side of the
commutator when acting on a hilbert space element. Note that for an associative algebra,
the ‘associator’ ® will be trivial and our augmented order zero condition will collapse back
to that given in the associative case (2.68). Note also, that in the octonion example, when
a = b, the ‘associator’ ® will be trivial, as would be expected following the alternative
order conditions given in Eq. (3.12). Indeed the twisted order zero condition in this case
contains the same information as the alternative conditions given in Eq. (3.12), it is simply
hidden away in the ‘associator’ ®.

It should be stressed that one can arrive at our prototype nonassociative spectral triple
F, and check that it makes sense in two different ways. On the one hand, F satisfies all of
the required axioms for a spectral triple (including the appropriate alternative generaliza-
tion of the order zero condition given in Eq. (3.12)), and is compatible with the principle
of automorphism covariance, as explained in Subsection 3.1.3. On the other hand, one can
start with the associative spectral triple: Fy = {KG,KG, 0,1, Jx}, where KG is the group
algebra based on K = R and G = Zy X Zs X Zs, and Jg denotes the natural * operation in
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KG. This spectral triple satisfies the standard axioms for an associative spectral triple of
KO dimension zero. But then, when one twists KG into O, the associative spectral triple
Fy is correspondingly twisted into the finite octonion nonassociative triple F'.

3.2 The fused algebra approach and non-associative
geometry.

In Section 3.1 I discussed the first steps towards a reformulation of the NCG input data,
which would naturally describe non-associative geometries. There were four key ideas
explored in the approach:

1. All algebras, including non-associative algebras have a natural representation on
themselves. This ‘natural’ representation acts as a prototype for what is meant by a
non-associative representation.

2. The idea of automorphism covariance: all elements of a spectral triple should trans-
form covariantly with respect to the automorphisms of the input algebra.

3. The fluctuated Dirac operator is nothing but a ‘covariant’ Dirac operator, which acts
‘covariantly’ with respect to the automorphisms of the input algebra.

4. The traditional order zero condition is an ‘associativity’ condition, which ensures that
the symmetries of a NCG are generated by the derivations of the associative form
given in eq. (2.28a). More generally however, the order zero condition should be seen
as an associator, which describes the associativity properties of the bi-representation

of Aon H.

These four ideas ultimately allow one under very minimal assumptions to construct
the simplest almost-associative models as in Subsection 3.1.5. Unfortunately, while the
elements of a spectral triple do seem at least naively to generalize quite naturally, up
to this point their generalization has been made in a piecewise fashion. The ultimate
goal of this thesis is to produce a reformulation of the NCG input data which not only
extends to describe the most general non-associative geometries, but also gives a more
unified description of the five elements of a spectral triple, along with their axioms. In this
section I introduce just such an approach: I will show how to fuse the five elements of a
spectral triple together into a so called ‘fused’ *-DGA denoted 2B. The organisation is
as follows: In Subsection 3.2.1 I will introduce the algebra By which unifies together the
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elements {A,H,J} of a spectral triple. In Subsection 3.2.2 I will introduce the algebra
B, which provides an incomplete unification of the elements {4, H, D, J}. Finally, in
Subsections 3.2.3 and 3.2.3 I will introduce the full algebra (2B, which unifies all elements
of the spectral triple { A, H, D, J,~v}.

3.2.1 The algebra By= A& H

As outlined in Section 3.1, developing a clean notion of non-associative algebra representa-
tions is essential if one wishes to generalize the NCG formalism to accept non-associative
input data. In Subsection 3.1.1 I introduced bi-representations in the sense of Eilenberg.
As it turns out, Eilenberg’s definition can be constructed in a way which draws together
the various elements of a triple in a cohesive, and unified fashion. The general idea is ac-
tually very simple, and it involves replacing the spectral data {A, H, D, J, v} with a larger
algebra (2B, which we call a ‘fused algebra’. T will begin in this Subsection by constructing
the subalgebra By C 2B, which unifies together the elements {A, H, J}.

Definition: Given an algebra A over a field F and a vector space H over the same field
F, a bi-representation m of A on H (or equivalently a bi-module H over A) is nothing but
a pair of F-bilinear products ah € H and ha € H (a € A, h € H), where ah € H denotes
the left-action of @ € A on h € H (a bilinear map from A x H — H); and similarly ha
denotes the right-action of @ € A on h € H (a bilinear map from H x A — H) | ).

This definition is equivalent to the definition of a new fused algebra B,?, with vector
space:

Bo=A®H, (3.49)

which is equipped with the following bi-linear product between two elements of By (by =
a+hand by =d +1'):

boby = ad’ + ah’ + hd’ (3.50)
where aa’ € A is the product inherited from A, while ah’ € H and ha’ € H are the

products inherited from 7, and hh' = 0. In addition, the algebra By defined this way is
automatically a superalgebra — i.e. a Zs-graded algebra, with “even” and “odd” subspaces

9In general one can only construct the direct sum between two vector spaces formed over the same
field F. Notice however in the finite NCG SM the input algebra is real, while the vector space is complex.
The representation is made by embedding the real input algebra in a complex matrix algebra such that
¢d(a, W) = Ao(a,v) for a € A, A € C, v € H. It appears as though the correct interpretation may be to
view the finite NCG SM Hilbert space as a real vector space, although this is a subtle point we have not
yet completely dealt with.
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A and H, respectively. Because hh' = 0 for all h,h' € H, By is referred to in the math
literature as a ‘square zero extension’ of A.

So far nothing has been assumed about the associativity or any other properties of
A or By (in other words nothing has been assumed about the associativity of the repre-
sentation 7(ab) = w(a)w(b))). On the one hand, if By is assumed to be associative, then
(as explained below) we precisely recover the traditional associative definition of the bi-
representation of A on H. But, on the other hand, one need not necessarily assume that
By is associative: for example, if A is a Jordan algebra (see Subsection 2.1.2 for the Jordan
algebra definition), then it is natural to define its representation on H by taking By to
also be a Jordan algebra [ , , ]. We adopted fused algebras in | , ]
as a way of defining the representation of A on H that naturally generalizes from non-
commutative geometry (where A, the algebra of coordinates, may be non-commutative)
to non-associative geometry (where A may also be non-associative). The fused algebra, or
algebra extensions definition of bi-modules was first introduced by Eilenberg | |, and
is equivalent to that defined in Subsection 3.1.1 for the special case in which By is taken
to have the same associativity properties as A. The key benefit of this later definition is
that it provides a perspective in which two otherwise separate elements of a spectral triple
A, and H are ‘fused’ or ‘unified’ into a larger object By, which will be key in going further
as we shall see.

Let us now explain our assertion (from the previous paragraph) that if we assume
By is associative, then we precisely recover the traditional definition of an associative
representation of A on H. If By is associative, all the associators [b,, bf,, by] must vanish.
This implies four non-trivial constraints:

[avalaa”] 07 (351&)
[a,a',h"] = 0, (3.51Db)
[h,d',ad"] = 0, (3.51c)
[a,h',ad"] = 0, (3.51d)

while the remaining associators (in which two or three arguments are from #) vanish
trivially because hh/ = 0. Comparing with Eq. (3.2), Eq. (3.51a) is simply the require-
ment that A itself is associative; Eq. (3.51b) says that ah is a traditional associative
left-representation of A on H; Eq. (3.51c) says that ha is a traditional associative right-
representation of A4 on H; and Eq. (3.51d) says that the left- and right-representations
commute with each other. In other words, we recover the traditional associative definition
of a left-right bi-representation of A on H (or, equivalently, the traditional associative
definition of a left-right bi-module H over A); and the special cases of a left-representation
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(left-module) or right-representation (right-module) are recovered, respectively, when ei-
ther the right action ha or the left action ah vanishes identically.

Representing x-algebras

When constructing NCGs, the input algebras of interest are always involutive in the sense
that they are always equipped with an involution * satisfying the properties outlined in
Eq. (2.8). Just as one constructs a fused algebra by extending the product of A to a
product on A@ H, one is able to construct a fused x-algebra by exending the involution on
the input algebra to A @ H. Indeed many of the traditional axioms/assumptions of NCG
follow from the requirement that By is equipped with an involution.

To extend Eilenberg’s construction from algebras to x-algebras, we equip an anti-linear
involution % : By — By, which satisfies (apa1)* = ajag ( see Eq. (2.8)). Rather than
assume that * has period two as in Eq. (2.8a) (i.e. ™ = a), we only assume the slightly
weaker condition that it has period four (a™*)** = a. The involution on By must also have
two more properties in addition to those outlined in Eq. (2.8): (i) compatibility with the x
operation on the sub-algebra A C By; and (ii) compatibility with the natural inner product
on H (see below). The first requirement together with the fact that the involution is of
period four further implies compatibility with the intrinsic Z, grading on By'%; the first
requirement therefore fixes the x operation to be of the form

by =a"+ Jh (3.52)

where a* is the x-operation on A, while J is an invertible anti-linear operator on H. The
second requirement forces

Lo =L}, (3.53)

The fact that By is a *x-algebra then implies and unifies six traditionally-assumed facts
about NCG, including: (i) that A is a *-algebra; and (ii) that H is equipped with an
invertible anti-linear operator J. In addition, (iii) the anti-homomorphism property implies
(ah)* = h*a* and (ha)* = a*h*, which implies that A is not just left-represented or right-
represented on H, but left-right bi-represented on ‘H, with the left and right representations
related by R, = JLy,-J ' and L, = JR,-J~!. Consistency of these two equations then

10To be completely explicit: Compatibility with the involution on the sub-algebra means that bj € A
when by € A, and then the period four condition forces b € H when by € H because if the involution
mapped elements our of H into A the closure of A under its own involution would violate the period four
requirement.
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implies (iv) that [J?, L,] = [J* R, = 0 for any a € A (in NCG, one assumes J? is
proportional to the identity). Finally, (v) if J? is proportional to the identity, then the
fact that the *-operation has period four implies J? = ¢, with e = £1'1.

Example x-representations

Any (non-associative) x-algebra has a natural representation on itself. However, let’s con-
sider two example non-associative representations which are slightly more interesting:

e Lie algebra representations Consider the real Lie algebra A = M, (C)~ of n x n
anti-hermitian complex matrices bi-represented on H = C** (viewed as a real vector
space) by the matrix elements:

—a

r(a) = (8 OT> . (3.54)

To be explicit, the product between elements in the algebra A is simply the lie
product (the commutator), while the product between elements in A and those in H
is given by the matrix product: w(ab)h = (7(a)w(b) — w(b)w(a))h. The involution is
extended from the input algebra to the algebra By = A @& H by introducing a real
structure operator (a + h)* = a' + Jh, where:

0 I,
J = (Hn 0) o cc, (3.55)

where again the action of J on H is simply given by ordinary matrix multiplication.
The right action is readily determined to be Ry, = J LL(Q) J = —Lz(q)- The algebra
By is clearly not an associative algebra, because for example w(ab)h # m(a)(mw(b)h).
It is however a Lie algebra, as the sub algebra A is a Lie algebra, while the product
involving an element h € H is also anti-symmetric and satisfies the Jacobi identity:

m(a)(m(b)h) + hm(ab) + w(b)(hn(a)) = w(a)w(b)h — [r(a), 7 (b)]h — w(b)7(a)h
=0, a,be A;heH, (3.56)

where on the right hand side, all products are given by composition, and so brackets
are not required.

1 Although it is worth stressing that the spectral triple corresponding to the Lorentzian NCG SM is of
KO-dimension 0 | ], for which e = 1, and so its fused algebra has a true involution with period 2 (this
is possibly an important hint about why spacetime has the dimension it does).
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e Jordan algebra representations Consider the real Jordan algebra A = M, (C)"
of n X n complex hermitian matrices bi-represented on H = C?>" (viewed as a real
vector space) by the matrix elements:

m(a) = (g aOT) . (3.57)

To be explicit, the product between elements in the algebra A is simply the Jordan
product (i.e. the symmetric product), while the product between elements in A and H
is given by the matrix product: m(ab)h = 3(m(a)m(b)h+m(b)m(a)h)'. The involution
is extended from the input algebra to the algebra By = A @ H by introducing a real
structure operator (a + h)* = al + Jh, where:

0 I,
J = (Hn 0) o cc, (3.58)

and again the action of J on H is simply given by matrix multiplication. The right
action is readily determined to be Ry = J LL(G)J -1 = L. The algebra By is
clearly not an associative algebra, because for example m(ab)h # w(a)(mw(b)h). It
is however a Jordan algebra, as the sub algebra A is a Jordan algebra, while the
product involving an element A € H is also anti-symmetric and satisfies the Jordan

identity:

w(a)(hr(a®)) — (n(a)h)n(a®) = jm(a){n(a),w(a)}h — 3{m(a),7(a)}m(a)h
=0, a€ A heH, (3.59)

where on the right hand side all products are given by composition and so brackets
are not required.

3.2.2 The algebra B=QADH

So far I have introduced the subalgebra By C (B, which seems to successfully ‘unify’ the
data {A,H, J} into one object By. From the single requirement that By is an associative
x-algebra, six of the traditional NCG axioms and assumptions are recovered, namely: (i)
that A is an associative *-algebra; (ii) that A is (associatively) left-represented on H; (iii)
that A is (associatively) right-represented on #; (iv) that the left and right representations

12Where again I am being a little bit lazy with notation: all products on the right of the expression are
given by composition.
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of A on H commute with each other (the so-called “order-zero condition”); (v) that H is
equipped with an anti-unitary operator .J; and (vi) that the left and right actions of a € A
on H must be related via the formula R, = JL?.J*. On the other-hand, this new perspective
naturally generalizes from non-commutative to non-associative geometry (in the sense that
neither A nor By needs to be associative for the formalism to make sense).

In order for By to completely describe a geometry, it must additionally be equipped
with a Dirac operator D. It is the interaction between D and A on H that provides metric
information. The operator D will also provide a means of explicitly constructing gauge
potentials, higher order forms, and eventually an action. The next step is therefore to work
out how to incorporate a Dirac operator D into the algebra By. The answer is that when
constructing a NCG it is not only the algebra A which is represented on H, but instead
the full differential graded algebra 2.4 constructed from A and D which is represented on
H. In this Subsection I therefore discuss the construction of a differential graded *-algebra
B =QA®H"3.

Representing QA on H

Any associative differential graded x-algebra which in degree zero is equal to A can
be constructed as a projection from the associative universal differential graded algebra
QA [ ]. As reviewed in Ch. 2, the associative universal differential graded *-algebra
QA=A NAD ..., with Q°A = A, is constructed by equipping A with a differential
operator d which satisfies:

d* =0, (3.60a)

d[aa + pb] = ad[a] + Bd[b], (3.60Db)
d[ab] = d[a]b + ad][b], (3.60¢)

d[a*] = kda]* (3.60d)

for a,8 € F, a,b € A, and kK = £1. QA is generated by elements a € Q°A, and the
formal symbols d[a] € Q' A by juxtaposition, such that the subset Q™A is populated by
elements in which ‘d’ appears n times. For example wy = d[ad[b]c € Q?A. The associative
algebra QA is free in the sense that aside from the conditions given in Eq. (3.60), and
those inherited from the product on A, this algebra is free. Notice however that none
of the defining properties of A, including the properties d given in Eq. (3.60), relies on
associativity, and so universal DGAs continue to make sense even when the base algebra

13 Although as we will see B does not really satisfy all the properties of a *-DGA.
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%A = A is non-associative. One simply has to be careful to take account of bracketing,
and QA must be taken to be completely free in the sense that not even associativity is
assumed.

To obtain a representation of the elements d[a] € Q' A on H, an operator D is intro-
duced, which is regarded as the representation of the map d : Q°A — Q' A on H. The
operator D’s interaction with A and H satisfies a Leibniz condition Dah = d[alh + aDh,
for a € A, h € QH. In this way the left-action of the exact one-form d[a] is represented by

La(atal) = [D; La]- (3.61)

In the associative setting the product between elements of 7(€.A) is simply given by com-
position, and so the representation of exact forms given in Eq. (3.61) naturally extends to
higher order forms, 7 : QA — B(H):

m(apd[ai]...d[a,)) = ag|D, ai]...|D, a,) (3.62)

for a; € A. In the non-associative case the situation is not so simple. To see why, consider
for example the case in which a non-associative input algebra A is represented on 2n copies
of itself H = A*" (i.e a column vector of 2n copies of A). Just as in the associative case,
the universal DGA QA constructed from A can be represented on on ‘H by introducing an
operator D on ‘H. However, the Leibniz condition given in Eq. (3.60) together with the
left action of exact forms given in Eq. (3.61) implies:

[D, Lay] = Lir(ajas))
= Lr(dap) + Lr(aapy, — a,b€ A (3.63)

Or in other words the operator [D, __] must act as a derivation on 7(.A). In the associative
case this places no restriction on the operator D, as the product for an associative repre-
sentation is simply given by composition, which is associative, and commutators act like
derivations on associative products.

In the non-associative setting it will be interesting to consider the large class of Dirac
operators of the form:

D = ~'s;, (3.64)

where 7" is a hermitian matrix operator with values in F, and which commutes with both
the left and right representation of the input algebra; and ¢; is an anti-hermitian derivation
element on A. Notice that the canonical Dirac operator i4*0, is already in this form. For
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the class of Dirac operators given in Eq. (3.64), the representation of exact one forms
naturally extends to the representation of higher order forms as:

w(ao(dlar)...(d[an-1]d]an]))) = 777 (a0 (3i(a1)-- (55 (@n-1)54(@n))); (3.65)

for a; € A. In Eq. (3.65) all brackets are shifted right, but this is just an example, all other
bracketings can also occur. I provide explicit examples later in this Section.

The representation of 2.4 on H is equivalent to a fused algebra B = QA & H (with
several problems as I will discuss shortly). Just as By was constructed as a x-algebra in
Subsection 3.2.1, we ultimately want to use the representation 7 to construct B as a ‘fused’
differential graded x-algebra. In constructing (2.4 no modifications have been made to the
Hilbert space H, and so it is quite natural to take the involution on the whole of B to be
given by the extension of the one given on Bjy:

(wo + h)* = w? + Jh (3.66)

for w, € Q" A. The right action of QA is therefore naturally extended to the whole of
QA, and is given by:

R, =JL:J*, (3.67a)
L,=JRJ, (3.67b)

Order conditions and the algebra QA ® H

So far in the construction of B, nothing has been assumed about its associativity, or about
the associativity of QQA. If however we assume that B is an associative differential graded
x-algebra, then many of Connes’ axioms and assumptions are recovered in addition to the
six which were recovered when constructing By. Let’s explore what happens when we
take B to be an associative x-algebra: Demanding that B is associative, is equivalent to
demanding that all associators vanish, ie. [b,0',0"] = 0 Vb € B. This demand imposes four
non-trivial conditions on B:

lw,w’, w"] =0, (3.68a)
[w,w', h] =0 (3.68Db)
[h,w,w'] =0 (3.68c¢)
[w, h,w'] =0, (3.68d)



for w,w’ € QA, h € H, while the remaining associators (in which two or three argu-
ments are from H) vanish trivially because hh' = 0. As expected the conditions given
in Eq. (3.68) coincide with those of Eq. (3.51) when w,w’ € Q°A. Note that (3.68a) is
simply the requirement that QA itself is associative; (3.68b) says that wh is a traditional
associative left-representation of 2.4 on H; (3.68c) says that hw is a traditional associative
right-representation of A on #; and (3.68d) says that the left- and right-representations
commute with each other. In other words, we recover the traditional associative definition
of a left-right bi-representation of QA on H (or, equivalently, the traditional associative
definition of a left-right bi-module H over Q.A4); and the special cases of a left-representation
(left-module) or right-representation (right-module) are recovered, respectively, when ei-
ther the right action hw or the left action wh vanishes identically.

Now let us have a closer look at the associativity condition given in Eq. 3.68d. As
expected, in the special case where w,w’ € Q°A, this associativity condition reproduces
Connes order zero condition outlined in Eq. (2.68). In the special case where w = d[a] €

QA and W' = b € Q°A, we find:
[w, h,w'] = (d[a]h)b — d[a](hb)
= [Jb*J*,[D,allh =0, (3.69)
which is just the order one condition outlined in Eq. (2.69), which was first imposed
by Connes | |. In other words, from the fused algebra perspective, Connes’ order
conditions are simply replaced by associativity conditions on B. Notice however that there

are now also new higher order conditions. For the case where w = d[a],w’ = d[b] € Q' A,
we find:

[w, b, w'] = (d]a]h)d[b] — d[a](hd][b])
= [J[D,b*J*,[D,allh =0, (3.70)
This higher order associativity condition places constraints on the input Dirac operator
beyond those already imposed in the traditional approach to NCG. As it turns out this
condition exactly removes unwanted terms from the finite Dirac operator of the NCG
SM, which were previously removed by an additional non-geometric assumption known as

the ‘massless-photon condition’ | , |. I will discuss this situation in detail in
Subsection 4.1.3.

Removing the junk

While B = QA & H might at first sight appear to be a well defined differential graded
x-algebra, it is in general not. The problem, as described in 2.2.1 for the associative case,
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is that while 7 is an algebra homomorphism it is usually not a homomorphism between
differential graded algebras because in general 7(w) = 0 does not imply 7(dw]) = 0 | .
Such ‘junk forms’ must be removed in order to form a true graded differential representation
in which the Leibniz rule makes sense. Fortunately, as outlined in Section 2.2.1, in the
associative case such troublesome elements form an ideal of 2A, and so may be modded
out to form a new quotient algebra QpA = QA/J, where J = @&;J¢ + dJ§ and J, = {w €
Q'Alr(w) = 0}. Once the junk forms have been modded out we arrive at a new fused
algebra which we denote B’ = Qp A @ H (but again this algebra has several interrelated
problems which I will discuss shortly).

In the associative case junk forms appear because the algebra 2A is free in the sense that
the product is simply defined by juxtaposition, and there is nothing like graded commuta-
tivity. When constructing a representation of 2A, introducing the operator D introduces
an explicit product on 7(€2.A) and in particular the commutator of certain elements may be
zero. The situation is even more interesting and must be worked out in full detail for the
non-associative case, where not just commutators, but also associators of elements must
be taken into consideration. There is also the added complication when constructing a
non-associative representation of the universal differential graded *-algebra 2.4, that the
elements Jy = @®;J¢ = {w € VA|r(w) = 0} do not in general form an ideal of QA. In
turn J = @;J} + dJ¢, will not in general form an ideal of QA, which prevents one from
constructing the well defined quotient algebra QpA = A/J. We therefore introduce the
following condition which all sensible non-associative NCGs must satisfy:

Aziom: Given the input data {A, H, D}, the set Jy = §;J; = {w € Q'Aln(w) = 0}
forms a two sided ideal of Q.A.

All of the finite associative, and almost-associative NCGs that I will consider naturally
satisfy this condition. Just as in the associative case, when Jy forms an ideal of Q2A, the
elements J = Jy+ d.Jy also form an ideal and so just as in the associative case we can mod

out by the junk to form a new differential graded algebra QpA = A/J (associativity does
not enter at any point into the proof given in 2.2.1 that J is a two sided ideal).

e Octonion example Consider the finite non-associative geometry given by:
{Ap,Hp, Dp} = {0, 07 ioy0}, (3.71)

where the representation of the input algebra is given by 7(a) = aly, d is an arbitrary
element in Der(Q), and oy is the second Pauli matrix. We also equip the real
structure and grading operators Jrp = Iy o %, yp = diag{1,—1}. As required, this
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geometry satisfies {Dp,yr} = 0. Tt also satisfies J? =1y, [Dp, Jp] =0, [vr, Jp] =0
and so is of KO-dimension 0 (see Table 2.1).

This is the first non-associative geometry that we have so far seen with non-trivial
Dirac operator. We can use Dp to construct a representation of QA4 on H:

. 0 1
Lﬂ-(d[a])h = [DF, L,T(a)]h = 20‘2[5, La]h = (_1 0> L(;(a)h, (372)

where in the last equality I have used the fact that inner derivations satisfy the
Leibniz rule: d(ah) = d(a)h+a(6h) = [0, L,) = d(a)h. This representation naturally
extends to higher order forms, 7 : QA — B(H). For example:

_( 0 b _ (—c(é[blofa]) 0
m(bda)) = (_b(s[a] 0 ) m(c(d[b]d[a])) = ( 0 _C(a[b]a[a]))’
(3.73)

for a, b, c € A. Higher order forms of odd order are similarly off-diagonal, while higher
order forms of even order are diagonal. We see that there is no distinction between the
representation of the element c(d[b]d[a]) € Q*A, and the element —c(d[b]d[a]) € Q°A.
This is identical to the situation which occurs for the canonical spectral triple prior to
quotienting out by the junk forms. For canonical spectral triples the representation
of the element {d[a],d[b]} € Q?A is indistinguishable from the representation of the
element 20, (a)0"(b) € QYA (see Subsection 2.2.1).

The octonions are a division algebra, and so it is clear from the representations given
in Eq. (3.73) that the elements Jy = @;J5 = {w € Q' A|r(w) = 0} form an ideal of
the differential graded algebra 24 when A = Q. Just as in the associative case we
can mod out by the junk, to form a new differential graded algebra QpA = QA/J.
Let’s have a look at the form that the junk takes.

Consider elements of the form wy = cla,d[b],a] = ¢((ad[b])a — a(d[b]a)). The dif-
ferential graded x-algebra (2.A has a priori no graded commutativity or associativity
properties and so w; # 0. When we represent w; on H = Q% however we find:

_ 0 c((ad[b])a — a(d[bla))\ _
m(wn) = <—c((a(5[b])a ~ a(8[bla)) 0 ) =0, (3.74)

where the second equality holds due to alternativity (see Eq. (2.7)). For the repre-
sentation of d[w;]| we find:

7r(d[wl]) —c((0[ald[b])a — (ad[b])é[a] + dla](d[b]a) — a(d[b)d[al))I2
—c([0]al, 0[b], a] — [a, 6[b], 6[a]])I2
- 2c[a, 5[b), 8[a]]I, # 0 (3.75)
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where the last equality holds due to alternativity (see Eq. (2.7)). By appropriate
choice of a,b,c € O one can find 7(dw;]) = d'l; for any ¢’ € @. We therefore see
that by quotienting out by the junk we impose alternativity conditions, and remove
all forms of order two and higher. In other words:

QpA~71(ADQA), (3.76)
where QLA is an alternative bi-module over A.
Jordan example Consider the finite non-associative geometry given by:
{Ap,Hp, Dp} = {M5(C)", C*", diag{ioss,ic20}}, (3.77)

where the representation of the input algebra is given by m(a) = diag{aly, a’ Iy}, ¢ is
an arbitrary element in Der(M3(C)"), and o9 is the second Pauli matrix. The real
structure and grading operators are taken to be:

i 0 ]IQ % 0
Jp = (H2 0) o ce, VP = <0 03> , (3.78)

where o3 is the third Pauli matrix. As required, this geometry satisfies { D, yr} = 0.
It also satisfies J& = 0, [Jr, Dr] = 0, [Jr,7r] = 0, and so is once again of KO-
dimension 0. The Dirac operator D can be used to construct a representation of
QA on H. The action of exact one-forms on H is given by:

Lﬁ(d[a])h = [DF, Lﬂ(a)]h = diag{iO'QL(ga, Z’O’QLE}]/L,
0 6@ O 0

—6(a) 0 0 0

— 7w(d[a]) = 0 0 0 3a) (3.79)

0 0

—d(a) 0

Higher order forms are then similarly constructed. As an example, an element of
02 A may be represented as:

(sl 0 0 0
s = | o U e 0 ] 6w
0 0 0 —cOpPa)

As in the octonion example above, we see that there is no distinction between the
representation of the element c(d[b]d[a]) € Q*A, and the element —c(d[b]d[a]) € Q°A.
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Once again the elements Jy = @;Jf = {w € Q'Ajr(w) = 0} form an ideal of the
differential graded algebra 2A. Just as in the associative case we can mod out by
the junk to form a new differential graded algebra QpA = A/J. Let’s have a look at
the form that the junk takes.

Consider elements of the form wy = c¢(ad[b] —d[bla). The differential graded *-algebra
QA has a priori no graded commutativity or associativity properties and so w; # 0.
When we represent w; on H = C** however we find:

0 c(ao(b) — o(b)a) 0 0
—c(ad(b) — d(b)a) 0 0 0
mwi) = 0 0 0 (o) = 5(0)a)
0 0 —c(ad(b) — d(b)a) 0
-0, (3.81)

where the second equality holds because Jordan algebras are commutative (see Eq. (2.5)).
For the representation of d[w;] we find:

r(dlw]) = —2diag{e(5(a)3(b)) L, c(5(@)d(5))La} # 0 (3.82)

One can always find an appropriate form w = 37, c[b,d[a]] € Q"A such that
n(dw]) = diag{a'ly,a Ty} for any o’ € M3(C)". We therefore see that by quoti-
enting out by the junk we impose Jordan conditions, and remove all forms of order
two and higher. In other words:

OpA~7(A®QLHA), (3.83)

where QLA acts as a Jordan bi-module over A.

Problems with the algebra B’ = Qp A ® H

So far the fused algebra B’ = QpA & H seems to successfully bring together the elements
{A,H, D, J} of aspectral triple. In addition many of the traditional axioms and conditions
imposed in associative NCG are obtained from the simple statement that B’ is an associa-
tive, differential, graded x-algebra. Unfortunately B’ suffers from four major interrelated
problems which until now I have avoided discussing. These are:

e Associativity: In order for B to be associative the condition [b,¥',b”] = 0 must be
satisfied for all b,0/,b"” € B, as described in Eq. (3.68). In particular, asking for com-
patibility between the left and right actions in the sense of Eq. (3.68d) seems to not
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only reproduce Connes’ order conditions, but also to provide additional higher order
constraints on D. Unfortunately, while this condition imposes phenomenologically
accurate constraints on the finite part of the NCG SM (see Subsection 4.1.3), it is
not in general satisfied by the canonical spectral triples corresponding to Riemannian
geometries where for w = d[a],w’ = d[b] € Q}L.A, we find:

lw, h,w'] = [J[D,b]*.J*, [D, allh
= —[v",7"1(9,0)(0a) # 0, (3.84)

for a,b € C>*(M,C), D = —M“Vﬁ, J = ~%42 o cc. Either canonical spectral triples
are examples of non-associative geometries, or else some incorrect assumption has
been made in the construction of B’.

The algebra B’ is in general not well defined: As it turns out B’ will in general
suffer from a much more serious problem than non-associativity, which hints that we
have made some incorrect assumption in the construction of B’. It turns out that
in general B’ is not well defined. On first inspection this seems odd. If one starts
with an associative algebra and mods out by a two-sided ideal, then the resulting
algebra is well defined and always associative. The differential graded algebra Q2p.A is
constructed from 24 by modding out by the junk J, which forms a two-sided ideal,
so what could go wrong? The trouble is that the junk J is only an ideal of the sub
algebra 2.4, and not of the entire algebra B. As a result B’ will in general be poorly
defined. To avoid this problem, one would need to mod out by an appropriate ideal
of B. Unfortunately in the cases of physical interest this would necessitate modding
out by the whole of H.

The grading on #H: The operator D was incorporated into the fused algebra for-
mulation of NCG by making the extension:

Notice that there is something strange about this extension. While A is extended
to the differential graded algebra Qp.A, the Hilbert space H is left unaffected and so
it does not provide a true differential graded representation in the sense of Subsec-
tion 2.1.6. In addition for even spectral triples the Hilbert space is equipped with its
own Zsy grading . But this grading on H seems completely unrelated to the grading
on {2pA. What would be preferable, would be a formulation which naturally draws
together all five elements of a spectral triple along with their defining axioms. The
algebra B’ only seems to give a partial picture, and while it does reproduce some of
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the properties of J, and the order conditions, it says nothing about the real structure
table 2.1, or the properties of .

A possible remedy to this undesirable situation is hinted at if one pays closer attention
to the ‘derivation’ of the right action given in Eq. (3.67). The form of the right
action was determined using the anti-automorphism property of the involution given
in Eq. (2.8): R, = JL:J~'. In comparison, the left action was determined in
Eq. (3.61) by making use of the Leibniz rule Dah = dla]h + aDh, for a,€ A, and
h € H. One could repeat the ‘derivation’ of the right action of forms in exactly the
same way by making use of the Leibniz rule: D(ha) = (Dh)a+ hd[a], for a, € A, and
h € H. If one does so, one finds that the right action of exact forms is given by:

Rd[a] = [Da Ra]
= —J[D, L] J* (3.85)

which is clearly in disagreement up to sign with the right action of forms given
previously in Eq. (3.67). To derive the ‘correct’ right action of forms it appears that
one should instead use the ‘graded’ Leibniz rule

D(ha) = (Dh)a — € hd]al, (3.86)

where the ‘order’ of the Hilbert space element h is determined by the real structure
sign €. If this is the correct interpretation, then one notices immediately that if H
is to be viewed as ‘graded’, then its order is fixed in two ways:

1. The elements of 2p.A are represented as bounded operators on H, and so the
action of any n-form will map H to H. In other words the ‘order’ of H seems
unaffected by the action of n-forms.

2. The sign € is fixed by the geometry.

It is tempting for these reasons to consider the space H to be assigned a grading
equal to oo, ie. H*™. As I will explain shortly in Subsection 3.2.3 however, this is
not quite the correct approach to take. The correct interpretation is that the Hilbert
space should simply be graded H = €, H", such that the representation becomes a
true differential, graded, involutive representation.

Nilpotency d? = 0: For B’ to truly by a differential graded x-algebra then it must
be equipped with a differential operator d which squares to zero. We introduced
the Dirac operator D on H, which we regarded as the representation of the map
d: QYA — QLA and demanded that it satisfy the Liebniz property Dah = d[a]h +
aDh. Unfortunately this Dirac operator does not square to zero, and so it is not a
differential operator in the sense of Eq. (3.60).
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3.2.3 The work of Brouder et al.

In subsection 3.2.1 I constructed the fused algebra By = A @ H as a square zero extension
of A. The key idea was that By should extend all of the properties of A. By extending
the associative product on A and its involution, many aspects of the NCG formalism were
recovered. While this initial construction is promising, in practice when constructing a
NCG one is not interested in just the algebra A, but instead the full differential graded
x-algebra QpA constructed from A and D, which comes with a lot more structure. In
Subsection 3.2.2 the algebra B = QA @ H was constructed in an attempt to extend the
involutive, differential, graded structure of Q.A. Again many aspects of the NCG formalism
were captured by this construction including the order one condition. Unfortunately B is
not a differential graded x-algebra, and for the NCGs which are of physical interest, B
is certainly not associative (even when considering physical models with associative input
algebra A such as the NCG SM). A solution to these problems was pointed out by Brouder
et al. in | ], who suggested that as a DGA, QA should have a true differential graded
representation, and made a proposal for how the fused algebra could extend the differential
properties of QA. In this subsection I provide a brief review of the Brouder et al. proposal.

As outlined in Subsection 2.1.6, a graded algebra A =, A" is a graded vector space
equipped with a product which is compatible with the grading: A" x A™ — A"t™, In
other words, for any two elements w,, € A", and w/, € A™, their product is a new element
(wpw! ) € A™™ A differential graded algebra is a graded algebra which is additionally
equipped with an order one differential operator d : A" — A""! which satisfies the
properties outlined in Eq. (2.17), ie. d*> =0, djw,w!,| = dlwp|w!, + (—1)"wpd[w!,].

m

A graded bi-representation of an algebra A = @, A", is a graded vector space H =
P,, H", which is equipped with a bilinear left action A" x H™ — H"™™, and a bilinear
right action H"™ x A™ — H"t™. In other words, for w, € A", and h,, € H™, the left action
is given by (wph,,) € H™*™ and the right action is given by (h,w,) € H"™™. A differential
graded representation of a differential graded algebra is a graded representation, which is
additionally equipped with an order one differential operator d : H" — H"*! satisfying the
compatibility conditions d* = 0, d[w,h,,] = d[wp|hm +wnd[h.y] (again see Subsection 2.1.6
for further details).

A differential graded bi-representation of A on H is equivalent to the differential graded

14 Actually the condition d? = 0 is not usually imposed, but from our perspective it should be, such that
our differential graded representations are equivalent to true fused DGAs.
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fused algebra

B=A"aH"). (3.87)

n

Note that while I have used the notation ‘B’ here in Eq. (3.87) to denote a general differ-
ential graded fused algebra, it should not be confused with the fused algebra B = QA ® H
introduced in Subsection 3.2.2. The fused algebra B given in (3.87) is graded in two differ-
ent ways or, more precisely, it is graded over the ring Z X Z,. In other words, it has its new
grading ®,, (A, +H,,) over Z; but, in addition, it still has another independent Z, grading
that splits it into an even part A and an odd part H, thereby making it a super-algebra
(or, in this case, a super-DGA).

Brouder et al. in | |, proposed that the differential graded algebra Q2p.A should
be bi-represented on a differential graded vector space which I denote QH = @ Q"H. This
graded vector space could be copies of the bounded operators B(H) on H, or copies of H,
or something else (for now I leave it general). I will use the notation 2B to denote the
super-DGA associated to the differential graded representation of 2p.A on QH:

OB = PEOpAeQH). (3.88)

n

One of the main problems with the fused algebra B = QA @ H introduced in Sub-
section 3.2.2, is that it does not in general have the same associativity properties as the
sub-algebra A (in particular the canonical NCGs have a corresponding algebra B which
is non-associative). Let us see what effect the grading has on the associativity properties
of QB. The condition which is of most immediate interest is that given in Eq. (3.68d),
which describes the compatibility between the left and right action of forms. This is the
condition which places constraints on the Dirac operator when constructing the NCG SM.
For a graded representation the associativity condition given in Eq. (3.68d) becomes:

[Winy i, w)] = 0, Vwm,w' € QpA, h, € QH. (3.89)

T P

In order to make use of Eq. (3.89) it is first necessary to work out how to construct the
right action of forms on Q2H. In Subsection 3.2.1 I constructed a right action of algebra
elements by extending the involution on A to By. In going from the fused algebra By to
B, no changes were made to the representation space, and so in Subsection 3.2.2 I once
again used J to extend the involution from QA4 to the whole of B, and to construct the
right action of forms given in Eq. (3.67). It is no longer obvious how one should extend the
involution to the whole of QH when constructing the algebra 2B. Rather than assuming
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the form of the involution, Brouder et al. instead use the opposite algebra Q5,, to derive
the right action of forms:

B X Wy = (—1)""wy, Xop Ry wn, € VA, h,, € Q"H. (3.90)

The compatibility conditions for the opposite product defined in Subsection 2.1.3 uniquely
determine the form that the right action takes. The right action of zero forms is already
known, which allows one to determine:

a Xop Ny = hpa
= JaJ 'h,y, (3.91)

for a € %A, and h,, € QH. Knowing the right action of zero forms, the right action of
exact one forms is then readily derived:

dla] X op hen = (—1)™hynd]a]
= dlhpal — (dhy)a
= [D, JaJ |, (3.92)

for a € QY A, and h,,, € QH. In the first equality I used of the definition for the graded
opposite product given in Eq. (2.21), and in the second equality I have used the graded
Liebniz rule given in Eq. (2.17). Restricting to the associative case, higher order forms are
constructed by composition of zero and one forms and so Eq. (3.91) and Eq. (3.92) are all
that is needed to determine the right action of general forms. In particular:

(—=1)P ) (B! Y,
(= 1)t (W] win)
(—=1)™™(whwm) Xop hp, (3.93)

Win Xop (Wy, Xop Np)

for wy,, w), € QpA, and h, € QH, which tells us that the right action of higher order forms
Wi = apd|ay]...d[an] € QLA can be broken down into the much more manageable task of
representing m one forms:

1)mn
l)mn-i-(m 1)+(m— 2) +1d[ ]X

(-

( op d[al] Xop Ao Xo, h

( 1)mn+(m 1)+(m—2).. +1( ) ( )mJ[D7am],_,a0J 1hn

= ()™ (=1 DR gt Ty, (3.94)
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Eq. (3.94) gives the right action of forms on a graded vector space. Importantly, beyond
order zero the right action clearly differs up to signs from the right action determined in
Eq. 3.67.

Having determined the form of the right action, it is interesting to once again check
the associativity conditions given in Eq. (3.68). In particular, Eq. (3.68d) yields:

(@, A, b] = (€')° ( DJb* J(ah,,) — (€)°(—=1)%a(Jb* Jhy,)
= [Jb*J*, alhy = 0 (3.95a)
[d[a], b, b] = (€)°(=1)° 6" T* (d[alh) — (¢')°(=1)°d[a](Jb" T~ hu)

= [Jb*J*, (D, a]]hm =0 (3.95b)

[b, hins dla]] = (€)' (=1)" 1 Jd[a]'T* (bh) — (€)'} (=1)"* b(Jd[a]' T~ )
= —(=1)™[J[D,a)' J*, blhy, = 0 (3.95¢)

[dla], b, d[b] = ( N =1)m 2 gd[b] T (d]a Jhm)—(e’)%—l)’”“d[a](Jd[b]*J*hm)
¢(=1)"™{[J[D,b]*J*,[D, a]} hpm (3.95d)
for a,b € Q°A.

As can be seen, both the order zero and order one conditions remain unchanged because
the right action of zero forms is unchanged by the grading on the Hilbert space, and because
zero forms do not change the grading when acting on elements of QH. Comparing with
Eq. (3.70) however, the second order order associativity condition in Eq. (3.95d) differs by
a sign, ie. we obtain an anti-commutator condition rather than a commutator condition.
As T will describe in Ch. 4, rather surprisingly Eq. (3.70) and Eq. (3.95d) place exactly the
same constraints on the finite part of the NCG SM. The big difference is that Eq. (3.95d)
is satisfied modulo ‘junk’ by the continuous part of the geometry!®, while Eq. (3.70) is
violated. In other words Riemannian geometries, and the NCG SM are associative so long
as one takes full account of their grading, and the junk.

Junk forms and QH

The bi-representation of QA as bounded operators on H is not a graded representation
because B(H) is not graded. To obtain a true graded representation Brouder et al. replace
the representation © : QA — B(H) with a new representation 7 : QA — B®(H) =
@D,, B"(H), where the B"(H) are copies of B(H). In practice, so long as one keeps track

15 As shown in Eq. (2.59b) for canonical geometries the second order junk consist of symmetric elements
of the form {[D,a],[D, b]}.
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of the degree there is no need to distinguish between m and 7 and so I will drop all tildes
from this point on.

So far I have not described the graded space QH on which QA is represented. The
obvious choice is to take multiple copies of H:

OH = EPH™, (3.96)

But this choice runs into similar problems as when representing on a single copy of H: To
ensure that the representation 7 (ie. 7) is a well defined differential graded representation,
one must remove the junk forms: QpA = QA/J. However, in such a picture one would have
to represent over the graded vector space QH, where Q"H = w(w" A)H /7 (5[J) " A])H.
Often this results in the removal of all elements Q"H for n > 2, leaving a Hilbert space
with only two levels. This is a priori not an issue, but it does result in the higher order
associativity conditions given in Eq. (3.95d) becoming trivial.

3.2.4 The x-DGA QB = QA ¢ QH

In subsection 3.2.3 the algebra 2B was constructed as a graded extension of 2p.A, following
the work of Brouder et al. | ]. So far however QB has not been equipped with an
involution which naturally extends from 2p.A4, and so it is not a true involutive graded
algebra. If one could find a natural extension of the involution on €2p.A compatible with the
grading, then presumably one would be able to use it to define the right action of forms,
replacing the derivation given in Eq. (3.94), which relies heavily on the associativity of
QB. In addition if one regards the Dirac operator as the representation of the differential
d acting on QQH, then one still has the problem that D is not a nilpotent operator, ie.
D? # 0. The algebra QB is therefore not truly a *-DGA. In this Subsection I address both
of these problems. What we will find is that once 2B is made into a true x-DGA, almost
all of Connes axioms outlined in Subsection 2.2.2 derive from the algebraic properties of

QB.

The involution on QB

Let’s consider the involution on QB first. We would like to see if we can construct an
involution which is compatible with the right action derived in Eq. (3.94). The anti-
linear involution on 2B must satisfy the conditions outlined in Eq. (2.8): (apa1)* = ajag.
Following Subsection 3.2.1, rather than assume that * has period two as in Eq. (2.8a) (i.e.
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a*™ = a), we only assume the slightly weaker condition that it has period four (a**)** = a.
The involution on 2B must be compatible with the % operation on the sub-algebra Qp.A C
B, and also compatible with the Zy x Z grading. This fixes the * operation to be

(Wi + hn)* = W+ Juh, (3.97)

for w,, € QBA, h, € Q"H, and where J,, : Q"H — Q"H!. Following Eq. (2.8), the J,
must be anti-linear, and following Eq. (2.11), the J, must also be unitary to ensure that
the involution acts as an isometry. This means that without loss of generality we may
write:

Jn = JoXn (3.98)

where x,, is unitary. Compatibility with the derivation d on QB (see Eq. (3.60)) then
implies further that the involution must satisfy d(b,,)* = x(—1)"d(b,), or when acting on
OH:

Jnt1d(hy) = (=1)"d(J,hy). (3.99)

for h,, € Q"H. If we adopt the convention:
i1 = (=1 = J,, = (=1)"FV2 (3.100)
Then Eq. (3.99) reduces to:
d[Johy,] = £KrJod[hy)], (3.101)

from which we infer kK = 4¢'. There seem to be two sensible choices for €. Notice for now

that this is exactly the situation which occurs for even KO0-signature, as shown in table
2.1 ].

So much for the involution on elements of QH, let us next determine the form that the
involution should take on elements of Q2p.A. Once again, following Eq. (3.60), compatibility
with the differential d implies:

dla]* = kd]a”]
= +¢[D, Li] = ¥ [D', L,]", (3.102)

for a € A, and where T will depend on the algebra representation in question. For asso-
ciative matrix algebras it will indicate hermitian conjugation. For matrices of octonions it

16Later on we will consider the interpretation in which the grading on Q% is given by +, in which case
we would need to relax this condition when ¢’ = —1.
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will indicate transpose octonionic conjugation, etc. If additionally we take the condition
D = D7, then the involution on higher order forms may be written compactly as:

wh = (F)"wl (3.103)

Having constructed an involution on both {254, and on QYH, we are now in a position to
construct a right action of forms by making use of the involution property h,,w, = (wih: )*
(see Eq. (2.8)). The right action is then given by:

= (ngl)n(_1)(m+n)(m+n¥1)/2+m(m$1)/2Jowlj[;1hm

= ()" (=1)" D2 Jowl Ty, (3.104)

which is exactly the same expression for the right action of forms as was determined in
Eq. (3.94).

Junk forms

Having introduced the algebra Q2 B, let us next take the ‘obvious’ choice for the bi-representation,
which is to take multiple copies of H: QH = @,, ™. Let us introduce some matrix no-
tation to describe the representation of the input algebra Q°A4 on QH:

7'('3(&) 0
my(a) = 0 0 , (3.105)
0 0
0 mo(a)
where a € A and for now I will take m = 7, for all n. The differential operator and real
structure on QH are given by d{w,, + hy| = djwn,] + dyhy,, and (W, + hy)* = W', + Jhy,
where

dy 0 0 Js 0 0 O

0
dy = 00 d 0] J= 0 J, 0 0] (3.106)
00 0 d 0 0 J 0
00 0 0 0 0 0 Jy
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and J, = (=1)"™¥Y/2 ], For now the interpretation is that D = dy = d; = ds... is a
Dirac operator which satisfies the properties outlined in Subsection 2.2.2, such that the
representation of exact one forms on QH is given by:

mon(da]) = [dy, Lrgy(a) = , (3.107)

a € A. We are also in the midst of analyzing an alternative interpretation in which each
d; is actually ‘half’ of a Dirac operator such that D = dy + dj;, which I will discuss shortly
in this section. Notice that while zero forms are represented along the diagonal, one forms
are adjacent to the diagonal, two forms will likewise be two from diagonal, etc. This is
nothing but the statement that the representation is graded, 7 : QA — B*>(H).

To explore the junk, let’s consider as an example the canonical spectral data corre-
sponding to Riemannian geometries: M = {C°°(M), L*(M,S), ),7°v* o cc,v5}. For a
graded representation the one-form elements {w € Q'A|r(w) = 0} will be of the form
w = fdlg] — d|g]f, for f,g € A and so the representation of the junk is given by:

0 [x(f),[D,7(g)]] 0 0
m(w) = 0 0 [7(f),[D,7(9)]] 0 =0, (3.108)

0 0 0 [*(f),[D,m(9)]]
0 0 0 0
0 0 {[D.7(f).[D,7m(9)]} 0

m(dw]) = 00 0 {D, =), D, 7(¢)]} | > (3.109)
0 0 0 0
0 0 0 0

We cannot simply represent QpA = QA/J on QH because the representation would not in
general be well defined. Instead we must represent on 7(Q2")H /7 (d.Jy *)H. For canonical
NCGs this quotient is trivial for n > 2.
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Re-interpreting D

Having introduced the graded vector space H, one immediately starts to wonder what the
physical significance of the grading is. Is the grading ‘invisible’ aside from the higher order
conditions as suggested by Brouder et al. | |7 or could it be related to the number
of particle generations? Or, if the grading really does only have two levels, is this the same
grading as that singled out by the v operator? Let us explore this last option: Brouder
et al. avoid representing 2p.A on copies of ‘H because at least in the cases of physical
interest (Riemannian geometries and the NCG SM) the quotient H /7 (dJy 1)H is trivial
for n > 2. This situation is not necessarily undesirable however; far from being a problem
we think this might be a feature. It means the differential operator is nil-potent up to junk:
d3;hym = 0+ ‘junk’ for h,, € QH, which means that QB is truly a *-DGA. Let us therefore
take seriously the two level grading, and assign to it a Z, grading operator v = diag(—1,I).
Note that this automatically implies two more standard NCG assumptions {dz,~v} = 0,
and [a,v] = [Ja*J1,9] = 0.

With this interpretation let us consider once again the canonical NCG input data
{C®(M), D, L*(M, S), J,s}, but this time in a different guise. Take the representation

fI, 0 0 O
T (f) = 0 fIb 0 0 |, (3.110)
0 0 fI, 0
0 0 0 fI

on the vector space QH = @, H™, where H = C? is the space of 2-component Weyl
spinnors on M. Once again take the differential and involution operations on QH to be
given by

06 0 0 Js 0 0 0

dy = 009 0|, J= 0 J, 0 0] (3.111)
000 9 0 0 J, 0
0000 0 0 0 J

where Jy = ioyocc, J, = (—1)""FV/2 Jo: and 0 = 1,0y — i0°0;. After modding out by junk
we find once again that Q"H = H/x(dJ} )H is trivial for n > 2. We therefore obtain a
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differential graded algebra where QH ~ L?(M, S), and:

)= (5 ) = (o ).

(£Jy 0 (I, 0
Ji_(o Jo)’ 7_(0 ]12)' (3.112)

The choice of sign for the real structure corresponds to the convention selected in Eq. (3.100).
The two choices relate via the map J, = «J_, and following Table 2.1 both correspond to
a geometry with KO-signature 4. The Dirac operator is then constructed as:

D = dy +dl, (3.113)

As a final remark, notice that if we wished to tensor together two fused x-DGAs, to form
a new fused x-DGA (ie. a product space), then the naive order one differential operator
dr = d; ® Iy +1; ® d would not satisfy the nilpotency condition d% = 0:

dalw, @ W] = dr[d[wn] @ Wl + w, @ daw,]]
= d}[wn] @ wy, + di[wn] @ dy[w],] + di[wn] @ daw],] + wn @ d[w),]
= dl [wn] & dg [w;n] + dl [wn] X d2 [w;n] (3114)

for w,®@w,, € QBr = QB;®1B,. Instead, one must define the graded differential operator:
dr = d; @ I + (—1)"[; ® dy acting on an element w, ® w/, € QBr = OB} ® QBy. With
this definition in place the total Dirac operator is given by:

DT:dT+d;:D1®]IQ+’}/1®D2 (3115)

Which recovers the standard form for the Dirac operator on the tensor product of two
spectral triples, giving further evidence for the consistency of this interpretation. With
this interpretation, the simple statement that 2B is an associative *-DGA reproduces the
following NCG axioms and assumptions as output:

1. The associativity of the algebra 2p.A, which results from the associativity of QB.

2. The associativity of the left and right actions of Q2p.A on QH, which results from the
associativity of QB.

3. The extension of the involution on A to the whole of QB gives a raison d’etre for J
and the bi-module structure of QH on QpA.
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10.
11.

12.

13.

The right action of forms on QH, arising from the grading compatible involution on
QB.

. The order zero condition [a, Jb*J '] = 0, which results from the associativity of QB.

. The order one condition [[D,a], Jb*J'] = 0, which results from the associativity of

QB.

New higher order conditions which replace the ‘massless photon condition’ introduced
in | ] (in the case where the Hilbert space elements of degree 2 are non-trivial
after removing the junk).

. The differential graded structure, and the removal of junk gives a raison d’etre for

the introduction of a Z, grading operator.

. The conditions 42 =1, v~ =41, {D,~v} = 0.

The hermiticity of D, is built in: D =dy +dj; = D = D*

The sign in the real structure condition J? = €l, (¢ = +1) is linked to the period
of the involution. The condition JD = ¢’ D.J is linked to the choice of sign & in the
compatibility condition dw?] = x(—1)d[w,]* given in Eq. (2.17).

The formula for the Dirac operator on a tensored space Dy = Dy ® Is + 11 ® Dy
derives from the requirement that the differential operator dr square to zero.

The symmetries of a NCG arise cleanly as the automorphisms of QB (discussed below
in Sec. 3.3).

Finally, if this interpretation is correct, then one notices two additional interesting
points:

1.

It is natural to consider the ‘right action’ of all operators acting on the graded space
QH. If one does so, one finds:

Ry=JJJ ' =eJ, (3.116a)
Rp=JD*J ' =¢€D, (3.116b)
R, =Jv'J ' =¢". (3.116¢)

where the epsilons correspond to those in the KO-signature table 2.1. It is not clear
what meaning is behind this observation however.
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2. This construction seems to single out geometries with even KO-signature. In ad-
dition, a true *-DGA should really be equipped with an involution of period 2. If
we want D to be of order 1 and J to be of order zero this further requires that the
involution should respect the grading in the sense that [J,4] = 0. In other words the
construction seems to single out the KO-signature 0. This happens to be exactly the
KO-signature of the Lorentzian NCG SM | |. This may be an intriguing hint as
to why the universe has the dimension that it does!

3.3 Symmetries in non-associative NCG.

The ‘fused algebra’ or ‘square zero extension’ formulation of NCG outlined in Section 3.2
replaces the algebra A as the main piece of input data with a full x-DGA QB which
naturally incorporates all five elemnts of the spectral triple {A,H, D, J,v}. From this
perspective the symmetries of a NCG are not described by the automorphisms of A, but
by the automorphisms of the full differential graded algebra (2B. This should not come
as a surprise to the reader, as even in the traditional approach the symmetries of a NCG
are not given exactly by the automorphisms of A. To elucidate this point consider for
example the symmetries of the finite NCG SM input algebra Ap = COH® M3(C). While
the x-automorphisms of M3(C) are SU(3), the *-automorphisms of C are not U(1) but
merely Zs, and the x-automorphisms of the quaternion algebra H are SO(3). For this
reason non-commutative geometers have had to identify the gauge group with the unitary
group of the input algebra despite the fact that the automorphisms gave the original
motivation | ]. One of the motivating ideas behind NCG was that the symmetries
of a geometry should arise as the automorphisms of the input algebra. In this Section I
will introduce the idea that the symmetries of a NCG are not the automorphisms of A,
but instead they arise simply and naturally as the automorphisms of the full *-DGA QB.

3.3.1 The automorphisms of Bj.

Let’s start by first considering the automorphisms of the sub-algebra By = A®QH C QB'7,
i.e. the invertible linear transformations a : By — By that also preserve the grading,

"Notice that I now include the whole graded Hilbert space in By, because I am working with the
interpretation introduced in Subsection 3.2.4, that the grading on QH corresponds to the grading ~.
However, even if one does not take this interpretation, the content of this Subsection remains unchanged
because the zero forms do not change the degree when acting on an element of QH.
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product and *-operation on Bjy:

a= o ®ay, (3.117a)
a(bt) = a(b)a(V), (3.117b)
a(b*) = a(b)*, (3.117¢)

where ay : A — A, ay : QH — QH, and b0 € By. The direct sum notation in
Eq. (3.117a), means that aa = aya when a € A, and ah = ayh when h € QH. For an even
geometry, the fact that diffeomorphisms are either orientation-preserving or orientation-
reversing translates to the NCG condition that ay : H — H either commutes or anti-
commutes with the orientation . We are interested here in the orientation or grading
preserving automorphisms, which translates to the condition (see also Eq. (3.19a)):

[az, 7] = 0. (3.117d)

The automorphisms az must leave the action given in Eq. (1.1) invariant. As outlined in
Eq. (2.84), the fluctuated Dirac operator of a NCG transforms under the action of oy by
conjugation Dy — D’y = ay D AozH As the spectral action depends only on the spectrum
of the Dirac operator D 4, this tells us that the maps a3 on H must be unitary such that
the spectrum of D, is fixed:

al, = a;l. (3.117¢)

The conditions (3.117a, 3.117b, 3.117¢c, 3.117d, 3.117e) on the automorphism a = e° are
readily translated into conditions on its infinitessimal generator, the derivation 9:

5 =04® 0n, (3.118a)
S(bb') = 8(b)Y + bS (1), (3.118b)
5(b*) = () (3.118¢)
[6,,7] = (3.118d)
5L: 5%- (3.118¢)

where 64 : A — A, 63 : H — H,and b, b’ € By. By the direct sum notation in Eq. (3.118a),
I mean that da = d4a when a € A, and dh = dyh when h € H.

It is often more elucidating to work with the derivations ¢ rather than with the au-
tomorphisms they generate. To see what constraints the conditions given in Eq. (3.118)
place on the form that the derivations take, consider the case where a derivation element
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0 acts on an element ah € H, where a € A and h € H:

5H(ah) = (5A(a)h + a(SHh

= [57'17 La] = L5Aa (3119&)
= [5?-[’ Ra] = R5Aa (3'119b)

In other words, for a graded derivation 6 = d4 @ 6y, the elements d4 and dy are not
arbitrary with respect to one another, but are related by Eq. (3.119). This is extremely
useful in practice as the form that the derivation elements take on A is usually well known.
Further constraint can also be placed on d3 by use of Eq. (3.118¢), which implies:

(634, 7] = 0. (3.120)

Examples

1. So far the discussion of symmetries has not relied in any way on the associativity of
either A or of By. It is instructive however to consider as an example the derivations
of the sub-algebra B, corresponding to a finite associative NCG. All the derivations
of a finite semi-simple algebra are inner | , |, and as the input algebra A is
associative all of its derivations are well known, and of the form given in Eq. (2.28a).
The derivations on By may therefore all be written in the form:

5= 64 by
= (Ly — Ry) ® 0y, (3.121)

where z* = —z € A. The conditions given in Eq. (3.119) together with the associative
order zero condition (2.68) then further restricts the derivations on By to be of the

form:
6= (L, —R,)® (x— Jz*J " +1T), (3.122)
where ¥ = —x € A, and T is an operator on H which satisfies:
T, L, =[T,R,] = [T,J] =[T,~] =0, T =-T. (3.123)

If the conditions given in Eq. (3.123) are satisfied, then d3 automatically satisfies
conditions Eq. (3.118).
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Comparing Eq. (3.125) with Eq. (2.76), it is clear that the inner derivations of By
reproduce the infinitesimal generators of Connes, but there are also additional gen-
erators of the form 7. These derivations generate ‘central extensions’ in the sense of
Schiicker [ , |, although in this case they may be non-abelian. The reason
that By is able to have derivations which are not inner is because even when A is
semi-simple, By is not (because H is a non-trivial nilpotent ideal).

2. Consider as a second example the derivations of the sub-algebra By corresponding to
a finite alternative NCG (that is where By is an alternative algebra). As a finite semi-
simple alternative algebra, all derivations of the input algebra A are well known, and
of the form given in Eq. (2.28d) | : |. The derivations on By may therefore
all be written in the form:

(5 - 5A EB 57_[
= ([La, Ly] + [Lo, Ry] + [Re, Ry]) © 03, (3.124)

where z* = —z,y* = —y € A. Conditions Eq. (3.119) together with the alternative
order zero conditions (3.12) then further restricts the derivations on By to be of the
form:

0 = ([La, Ly) + [Ley Ry + [Re, R))) @ ([Lay Ly) — [Luy JLyJ Y + J[Ly, L)+ T),
(3.125)

where z* = —x,y* = —y € A, and T is once again an operator on H which satisfies
the conditions given in Eq. (3.123). If the conditions given in Eq. (3.123) are satisfied,
then d3; automatically satisfies conditions Eq. (3.118).

Now that we have discussed the automorphisms of By we can once again ask the ques-
tion: ‘so what is the purpose behind the order zero condition, and does it matter that the
associative order zero condition isn’t satisfied in general when the input algebra is non-
associative?” As described in Sec 3.1 the main purpose of the order zero condition is to
ensure automorphism covariance. From the perspective of our reformulation the associa-
tive order zero condition simply ensures that By is an associative algebra so that its inner
automorphisms are generated by inner derivations which take the associative form given
in Eq. (2.28a). More generally, the order zero conditions determine the properties of By,
and in turn the form that its inner derivations take.
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3.3.2 The automorphisms of 2B

In practice the symmetries of a NCG will be given not just by the automorphisms of the
sub-algebra By, but of the full +-DGA QB. The x-automorphisms of 2B will once again
satisfy the conditions given in Eq. (3.117) however they now act on graded spaces in the
sense:

as=ay®a .. (3.126a)
ay=a3 day®.. (3.126b)

Similarly the automorphism generating derivations still satisfy the conditions given in
Eq. (3.118), but now act on graded spaces in the sense:

S4 =040y D ... (3.126¢)
On =03 B0 D ... (3.126d)

In general, the derivations of B will be more more restricted than the derivations of By,
because in addition to the conditions given in Eq. (3.119), the elements dz on QB will
have to also satisfy conditions of the form:

(081, Lio,] = Linw, € La(an ) (3.127a)
(081, Ru,] = Rsnw, € Rr(an ) (3.127b)

where w, € Q}.A, and no sum is implied.

So far, we have characterized the classical symmetries associated to a given NCG; these
will generate the symmetries of the corresponding classical gauge theory obtained from the
spectral action. In order for these gauge symmetries to remain consistent at the quantum
level, they must also be anomaly free. If {d%} denotes a basis for the space of all operators
03 obtained by satisfying the restrictions (3.118), then anomaly freedom corresponds to
the additional constraint

Trly 6%,{d5, 63} = 0 (3.128)

for any basis elements 65, 576 and ¢}, — see Eq. (20.81) in Ref. | |. In contrast to the
classical constraints (3.118), we do not know if the quantum constraint (3.128) has a more
fundamental geometric reinterpretation in our formalism.
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Chapter 4

Non-associative geometry and
particle physics applications

In this Chapter I will explain in detail how the SM is constructed as an almost-commutative
geometry, and discuss NCG SM phenomenology. In particular I will focus on problems in
the NCG construction, and the solutions that our reformulation proposes. The organi-
zation is as follows: in Section 4.1 I introduce the finite dimensional input data for the
NCG SM, focusing on the constraints in the Higgs sector which arise from the traditional
NCG geometric axioms. I will also review the ‘massless photon’ constraint which must
be imposed in the traditional approach to NCG in order to single out the SM higgs sec-
tor uniquely | . In Subsection 4.1.2 T will show explicitly how to fluctuate the
NCG SM Dirac operator to obtain the SU.(3) x SU,(2) x U,(1) gauge fields, and the SM
electroweak Higgs field. In Subsection 4.1.3 T will describe the higher order associativity
conditions which we first introduced in | |, and I will show explicitly how they con-
strain the NCG SM Higgs sector, replacing the ad hoc ‘massless photon condition’. In
Subsection 4.1.4 I will explain how the incorrect 170GeV Higgs mass prediction was made
within the framework of NCG. Having discussed the NCG SM in Section 4.1, in Section 4.2
I will describe a viable extension of the NCG SM which we first introduced in | |, and
which arises naturally in the fused algebra formulation of NCG. This extension is similar
to that which we discussed in [ ] outside of the context of NCG, and features the
SM symmetry group extended by a gauged U(1) baryon-lepton number symmstry (B-L),
which also fluctuates an extended Higgs sector. In Section 4.2.2 I will review how the
gauged B-L extension of the NCG SM does not suffer from the same Higgs mass problem
as the NCG SM. In Section 4.2.3 I will discuss an attempted solution to the Weinberg
angle problem.
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As a final note, many of the calculations discussed in this section are currently underway.
This is particularly true of Subsections 4.1.4 and 4.2.2 where I calculate the Higgs boson
mass for the standard model, and for a standard model extension, and also in Subsection
4.2.3 where I discuss the Weinberg angle problem. These sections are included to provide
a snapshot of my current work.

4.1 The NCG SM: input data and particle content

The standard model is described by an almost commutative geometry which is constructed
as the product between a finite non-commutative spectral triple with a continuous com-
mutative spectral triple M x F'. In the following construction I will deal with a single-
generation of standard model fermions; the extension to the full set of three generations
is straightforward. For further information the reader may refer to |

) ) ) Y ]'

Y ) Y

4.1.1 The finite input data

The finite geometry corresponding to the NCG SM is described by a real even spectral triple
F ={Ap,Hp, Dp, Jp,vr} of KO-signature 6 | , |. The finite input algebra Ap
is given by the real x-algebra C @ H & M3(C), where C is the algebra of complex numbers,
H is the algebra of quaternions, and M3(C) is the algebra of 3 x 3 complex matrices. The
finite Hilbert space Hr is a 32-dimensional complex Hilbert space, where the dimensionality
relates to the number of fermionic degrees of freedom in one standard model generation,
including the right-handed neutrino (six quarks and two leptons, each with a choice of
chirality and a corresponding anti-particle, (6 4+ 2) x 2 x 2 = 32). To describe the action
of the grading v and real structure operator Jr on the Hilbert space Hp, it is convenient
to split Hp into four 8-dimensional subspaces Hr = Hp ® Hr ® Hr ® Hr.The spaces Hp
and Hy, contain the right-handed and left-handed particles respectively, while Hz and H,
contain their corresponding anti-particles. If hg € Hpg is a right-handed particle (with
hr € Hg the corresponding anti-particle) and hy € Hp is a left-handed particle (with
hr € Hy the corresponding anti-particle), then the finite helicity operator vz and the
anti-linear charge conjugation operator Jr act as follows:

Yrhp=—hr, Yrhr=hr, ~Yrhr=hg, , ~yrhy=—hr,

- _ _ — 4.1
Jrhr=hg, Jehp=hr, Jphr=hg,  Jrhp=hy. 4D
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To describe the action of Ar on Hp, it is convenient to further split each of the four spaces
(Hr, Hr, Hr,H1) into a lepton and quark subspace: Hr = Lr @ Qp, Hy = L; @ Qp,
Hpr = Lr ® Qr, and Hy = Ly ® Q. Each of the four lepton spaces {Lg, L, Lg, L1}
is a copy of C?; an element of any of these four spaces correspondingly carries a doublet
(neutrino vs. electron) index. Each of the four quark spaces {Qg,Qr, Qr, QL} is a copy
of C? ® C3; an element of any one of these four spaces correspondingly carries two indices:
a doublet (up quark vs. down quark) index and a triplet (color) index. Now consider an
element a = {\,q,m} € Ap, where A € C is a complex number, ¢ € H is a quaternion,
and m € M;(C) is a 3 x 3 complex matrix, and write

(52 e-(Gl) e

where a and [ are complex numbers. Here ¢ is the standard 2 x 2 complex matrix rep-
resentation of a quaternion, and ¢, is the corresponding diagonal embedding of C in H.
Then L, (the left action of a on H) is given by

LoLr = q\Lk, L,Ly = qlp,

LQr = 0@r, LQr = qQr, (4.3)
LoLr = MaxoLg, L,L, = MaxoLyp,

L.Qr = mQg, L.Qr = mQr.

where ¢, ¢, and Aly.» act on the doublet index, while m acts on the color index.

As outlined in Subsection 2.2.2; the finite Dirac operator Dg obeys the following four
geometric constraints in KO-dimension 6: Df, = Dp, {Dp,vr} = 0, [Dp, Jp] = 0 and
[[DFa La]7 Rb] = 0. In the basis {LRJ QR; LL7 QLJ LR7 QR; LL7 QL}? these lmply

0 0|y 0 |m at |0 0
0 0|0 wyw|@a 0]0 o0
yw 0]l0 O0]0 0]0 o0
|l 0 y |0 o]0 00 o0
D=l w0 o0 o v 0 (44)
n 00 00 0|0 y
o o]o o]g o]0 o
0 0|0 0|0 g |0 0

where

y:(y y) and yq:(yq’“ y) (45)

Yio1 Yoo Yg21 Yg20
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are arbitrary 2 x 2 matrices that act on the doublet indices in the lepton and quark sectors,

respectively, while
a b c d
mz(b O) and n:(o 0) (4.6)

are 2 X 2 and 6 x 2 matrices, respectively; and in n I have used bold notation to emphasize
that ¢, d and 0 are 3x 1 columns. Of the 8 complex parameters {a, b, ¢, d}, only a is present
in the standard model (where it corresponds to the right-handed neutrino’s majorana self-
coupling). The remaining 7 parameters {b, ¢, d} present a puzzle — they are an unwanted
blemish that must be removed in order to match observations. If they are not removed,
they result in Higgs SU.(3) triplets when the Dirac operator is fluctuated, which are ruled
out experimentally. Further, on fluctuating D the terms y; and y, will only result in the
correct SM SU,(2) Higgs doublet if they satisfy the additional conditions:

Y2 = —Yi.219,22, Yg,11Yq 12 = —Yq,21Yq,22 (4.7)

Traditionally, the seven unwanted terms in Dp are removed by introducing an extra non-
geometric assumption (non-geometric in the sense that no similar constraint is satisfied by
the continuous geometry) known as the ‘massless photon condition’ | ]:

[Laa DF] = 07 a= {>‘a Q)\,O} €A (48)

This constraint also diagonalizes y; and y,, ensuring that they satisfy Eq. (4.7) trivially; but
as emphasized by Chamseddine and Connes (see e.g. Sec. 5 of Ref. | |), this solution
is ad hoc and unsatisfying, and cries out for a better understanding.

4.1.2 Fluctuating the Dirac operator

While the fermionic degrees of freedom are held in the Hilbert space H, the gauge bosons
appear just as in regular gauge theory as connections on the continuous space. As reviewed
in Subsection 2.2.4, a rather novel feature of NCG is that scalar fields arise in exactly
the same way as gauge bosons do: that is, as connections on the internal space. To
determine the form that the Gauge and Higgs fields take, Connes provides a prescription
for ‘fluctuating’ the Dirac operator of a NCG: one first starts with the ‘ground state’ Dirac
operator which is ‘un-fluctuated’ by inner automorphisms. For the full standard model the
‘ground state’ Dirac operator is given by:

D = —in"vy @ Ip + 75 ® Dp, (4.9)
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where Dy is given as in Eq. (4.4) with the ‘massless photon condition’ of Eq. (4.8) applied
such that all the unwanted extra terms are removed. Following Eq. (2.85) the fluctuated
Dirac operator is then given by:

Dy=D+A+eJAT (4.10)

where A = )", a[D, b] is hermitian, and a,b € A. Gauge fields appear when one ‘fluctuates’
the continuous part of the Dirac operator, while Higgs fields arise from the finite part. I
will review the gauge and Higgs sectors of the NCG SM separately.

The NCG SM gauge sector

The fluctuations of the continuous part of the Dirac operator are given by hermitian op-
erators of the form:

A= (an ® ap)[~ir", @ Ip, by @ by]
=Y —iv"(bydubu) ® (arbp)
= —M“AL(:B) ® e; (4.11)
where ay ®@ap, by @bp € C°(M)®Ap, the A/ (x) € C*°(M) are real continuous functions,

and the e; are anti-hermitian basis elements in 7(Ag). The full fluctuated continuous Dirac
operator is therefore given by:

D = —in" (9, + wy) —iv" A () ®@ e; — € T A (2) ' @ Jpe;J !
= =iy (O + wy) — VA (1) ® [e; + €€l Tre; 5
= =i (O + wp) — V" A (2) ® [ — Jrel ;']
( ) = () ®

= —1"(0,, + wy w“AZ x (4.12)
where the subscript ‘¢’ indicates that the real structure sign €., corresponds to the ‘continu-
ous’ part of the geometry. Using the representation of the finite algebra given in Eq. (4.3),
and the finite real structure operator given in Eq. (4.1), it is found that the action of the

‘gauge potential’ A (x) ® d; on the basis {Lr, Qr, Lz, QL, Lr,Qr,L1,Qr} is given by:

AL (x) ® 8 = iy By() © 6V + iy Wi(z) @ 67 + in' Gl (x) @ 6.7 (4.13)

)
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where

6(1) - {yg)7 y}(g) ® H37 yg)a yéq) ® ]137

iR @ L, gl i @ T}, (4.142)
3 = {0,0,i05,i0; ® I,0,0,70;, i0; ® I3} (4.14b)
58 = {0,1,®i\;, 0, 1,@i\;, 0, L&k, 0, [,®X,}, (4.14c)

o' and \* are the Pauli and Gell-Mann matrices respectively, and

1
W _of —3 0 O o 0 0
Y, —2z< 0o _ >, yR—Zz( 0 -1 )

@ o T 0 @ _ o +§ 0
Y —21< 0 4+ >, Yg _22( o 1) (4.15)

1
6

N |#—=

(=N

In other words, the derivations §; = ¢; — J el J~! correspond precisely to the generators 5V,
51(2) and 61-(3) of the familiar standard model gauge group U(1)y x SU(2); x SU(3)¢, with the
right- and left-handed leptons and quarks transforming in their familiar representations,
including the correct hyper-charges.

The NCG SM Higgs sector
The fluctuations of the finite part of the Dirac operator are given by:

A= (am ® ap)lys @ D, by ® b
= Z Ysanbyr @ ar[Dr, br] (4.16)

where ap ® ap, by ® bp € C°(M) ® Ap, and where ayy, by, are real coefficient functions.
The full fluctuated finite Dirac operator is therefore given by:

D = ¥5 ® DF + ZW5CLMbM X (IF[DF, bF] + EIJC’)/5(IMbMJC_1 & JFCLF[DF, bF]JEI
=7 ® Dp + Z Ysanrbar ® (ap[Dp,bp] + Jrap[Dp, br|J5")
=70 (4.17)

where by an abuse of notation I have dropped the tensor notation in the last line. The Dirac
operator corresponds to the Dirac operator D given in Eq. (4.4) taken after applying the
so called ‘massless photon condition’, such that the terms b, ¢, d in Eq. (4.6) are set to zero,
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and the terms y, and y; in Eq. (4.4) are diagonalized | ]. Using the representation of
the finite algebra given in Eq. (4.3), and the finite real structure operator given in Eq. (4.1),
the operator ® on the basis {Lg, Qr, L1, Qr, Lr,Qr, L1, Qr} is then given by

o oYy of|m o]0 o
o 0|0 Y/ 0 00 0
Y, 0[]0 0|0 0|0 0
o Y |0 O0]0 O0]O0 0
b — g (4.18)
m 0,0 00 o0V o
o 0|0 o000 0|0 Y
O 0|0 O0|Y 00 0
o 0|0 0,0 Y |0 0
where
Yopr —Yepo Yupr —Yapo
Y= ), Y= 2 4.19
: ( Yoo +Yepr ) 7 ( Yupa +Yapr (4.19)

with {Y,, Y., Yy, Yy, 01,02} € C. The fields ¢; form a complex Higgs doublet. Notice that
the Majorana term m remains un-fluctuated under the action of the SM inner automor-
phisms, and so is given just as in Eq. (4.6) with b = 0.

The full Dirac operator is simply the sum of the fluctuated continuous and finite parts.
This is precisely the almost-commutative data that generates the standard model of par-
ticle physics | , , , ! The standard model action is generated by
substituting the full fluctuated Dirac operator into the action 1.1:

Ssu = (JUIDAE) + Tr[f(Da/A) (4.20)

where the fermionic part is restricted to the set of anti-commuting Grassmann variables
Y’ for even vectors ¢» € HT, with H™ = {4 € H|y) = ¢}. 1 give a complete description
of (a minimal extension to) the standard model action in Appendix A.

4.1.3 Higgs sector constraints revisited
In Subsections 4.1.1 and 4.1.2 I reviewed the construction of the SM as a NCG. In the

traditional construction the geometric constraints D = D* {v,D} = 0, [D,J] = 0,
[[D,a], JbJ*] = 0 are not enough to fully constrain the SM Higgs sector. To obtain
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the correct phenomenology, an additional non-geometric condition known as the ‘mass-
less photon’ condition must be imposed in order to constrain the Higgs sector | ].
But this additional condition amounts to removing the extra unwanted scalar fields by
hand. Our reformulation yields a simple and satisfying alternative solution. As we saw
in Subsections 3.2.2 and 3.2.3, when constructing the fused algebras B = QpA & H and
QB = QpA @ QH associated to a NCG, associativity implies new constraints beyond the
traditional constraints usually imposed:

(Wi, hyw! ] =0 (4.21)

for w,,w!, € QpA, h € H. For n+ m = 0, Eq. (4.21) implies the traditional order
zero condition ([Lg, Rp] = 0), while for n +m = 1 it implies the order one condition
([[D, La], Ry) = 0. For n +m > 2 it implies new constraints on D. Let us see what these
additional constraints imply in the case of the NCG SM.

Associativity constraints on the algebra B

We first introduced the associativity constraints [wy,, b, w],] = 0 given in Eq. (3.68), in | ].
At that time we were still working with the incomplete description of spectral triples pro-
vided by the fused algebra B = Q2.4 & H. For this algebra the right action of forms on H
is given in Eq. (3.67) as R, = Jw*J ™!, and so the associativity conditions yield:

[wWn, hyw! ] =0
= [JuwpJ ™ wa] = (4.22)
for wy,w!, € QA, h € H. In particular the ‘order two’ condition:
(D, al, J[D,b]"J"] =0, (4.23)

must hold Va,b € A. For the Dirac operator given in Eq. (4.4) this constraint may be
satisfied in four different ways: by setting (i) b=c=d = 0; (ii) Y, 11 = Y21 = b = 0; (iii)
Yin=Yoa=c=d=0;or (iv) V11 = Y21 = Y11 = Y, 21 = ¢ = 0. Note, in particular,
that solution (i) precisely corresponds to setting the 7 unwanted parameters (b, c,d) to
zero, without the additional ad hoc assumption (the massless photon condition) described
above!

We can go further by noting that the general embedding of C in H is given by ¢)(n) =
Re(M)laxo + Im(A)n - &, where ¢ are the three Pauli matrices, and 7 is a unit 3-vector
specifying the embedding direction. Since all of these embeddings are equivalent, the
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diagonal embedding g, = ¢\(2) in Eq. (4.2) was arbitrary, and may be replaced by the
more general possibility L,Lr = ¢\(7)Lr and L,Qr = ¢\(7y)@r- If we redo the preceding
analysis with this modification, the four solutions for D are modified accordingly: in
particular, in solution (i), D is given by Eq. (4.4), where the 2 x 2 matrices y, and y,
are arbitrary, the 6 x 2 matrix n vanishes, and the 2 x 2 matrix m is given by m = PTM P,
with M an arbitrary 2 x 2 symmetric matrix and P = (Ioyo + 7y - &)/v/2 a projection
operator. Then, one can check the following result: given the arbitrary 2 x 2 matrices y;,
y, and M, there is a preferred choice for the embedding directions n; and n, such that, after
a change of basis on H, L, is given by Eq. (4.2) [with the diagonal embedding g, = ¢x(2)],
D is given by Eq. (4.4), m and n are given by Eq. (4.6) with b = ¢ = d = 0, while Y; and
Y, are given by:

Y1 —Yepo Yupr —Yapo
Y= 2, Y= 2 4.24
: ( Y00 Yo ) “ < Yoo +Yupr (424)

with {Y,,, Y., Yy, Ya, 1, 02} € C.

Associativity constraints on the algebra QB

While the fused algebra B = Qp A® H seems to give a very good account of the NCG SM,
as I discussed in Subsection 3.2.3 it suffers from the serious drawback that B can not be
made into an associative x-DGA for the full NCG SM. In particular, while the associativity
condition given in Eq. (4.22) imposes phenomenologically accurate constraints on the finite
part of the NCG SM, it is not satisfied by the continuous part.

In | ] Brouder et al. introduced differential graded representations of QpA, ie.
the fused algebra QB = QpA @ QH. The right action of forms on a graded vector space
must take account of the grading and is given by: h,w, = (€)*(—1)""*+V/2 Jyw! Jo 1 h,, (see
Subsections 3.2.3 and 3.2.4). Because the right action of zero forms remains unchanged,
and because zero forms do not affect the degree when acting on elements in QH, both
the order zero and order one conditions remain unaffected by the graded representation.
The higher order associativity condition given in Eq. (4.22) however now results in the
anti-commutator constraint on D (see Eq. (3.95d)):

{[D,a), J[D,b)*J '} =0, a,be A (4.25)

Unlike the commutator relation which arose when imposing associativity constraints on
the algebra B, this anti-commutator is satisfied by the continuous part of the standard
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model up to junk!. Let us see what constraints this anti-commutator condition places on
the finite part of the NCG SM.

For the NCG SM the associativity condition given in Eq. (4.25) must hold up to junk
in the finite part for the corresponding fused algebra Q2B to be associative. What Brouder
et al. found was that for the finite Dirac operator given in (4.4) (prior to imposing the
massless photon condition of Eq. (4.8)) the order two condition for 2B does not completely
overlap with the junk of order two. In other words, if one calculates the 32 x 32 dimensional
matrix corresponding to a general element of the finite second order junk (for one particle
generation), and then one calculates the 32 x 32 dimensional matrix {[DF, a}, J[Dg, b]*J '}
for general a,b € Ap, one finds that the two do not completely overlap (as they would for
the continuous geometry). The non-zero second order terms which do not overlap with the
junk must be set to zero, and this places constraints on the finite Dirac operator. In their
words:

“Among the pairs of indices where the junk is zero, 68 of them correspond to matrix
elements of {[Dp,al, J[Dp,b]*J'} that are not generically zero. This situation is shown
in figure 4.1. Since these 68 elements cannot be compensated by the junk, the condition
of order two implies that these 68 matrix elements must be equal to zero... we recover
exactly the four solutions ... (i) b=c=d =0; (ii) Y11 = Yg21 =0 =0; (ill) Y11 = Y21 =
c=d=0;or (iv) Y111 = Y121 = Yg11 = Yg21 = ¢ = 0. Three of these four solutions are
not physically acceptable... while the remaining solution (i) is precisely the result of the
condition of zero photon mass.”

Notice that even though imposing associativity on B yields a commutator condition,
and imposing associativity on 2B yields an anti-commutator condition, both place the
same constraint on Dg. This is because the non-zero elements of [Dg, a]J[Dg,b]*J~! and
J[Dp,b)* J Y[ DF,a] do not overlap and so to cancel the commutator or the anti-commutator
requires [Dg, a]J[Dp,b]*J~' = J[Dp,b|*J ' [Dp,a] = 0.

Associativity constraints, junk, and the Z, grading on H

So far in the discussion I have avoided describing the graded vector space on which the
NCG SM finite algebra Q2p.A is bi-represented. Recall, that for canonical spectral triples if
the graded vector space is taken to be QH = @@, H" where each H" is a copy of L*(M,S),
then on modding out by the junk, all elements of QH for n > 2 are removed along with the
junk (see Subsections 3.2.4 and 3.2.3). If a similar effect were to occur for the finite part of

1For canonical spectral triples the second order junk consists of symmetric elements of the form
{7, 7" }(0,a)(0,b), see Eq. (2.59b) for a full description
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Figure 4.1: Each dot at position (4, j) corresponds to a generally non-zero element at line
i and column j. The elements of the condition of order two {[D, al, J|D,b*]J "'} are black
dots. The other dots describe the junk. The green dots correspond to [D,a][D,b]Jc*J !,
the pink dots to [D, Ja*J'][D, Jb*J'|c and the blue dots to aJb*J~'. Note that the
non-zero matrix elements of the junk and of the second-order condition do not overlap
(figure taken with permission from [BBB15]).

the NCG SM then the second order condition would become trivial. In addition, while the
associativity constraints on the finite algebras B and 2B may be used to set b =c=d =0
in Eq. (4.4), associativity alone does not seem to ‘diagonalize’ the Yukawa terms Y as is
done by the massless photon condition given in Eq. (4.8). Diagonalizing the Yukawa terms
Y, ensures that they are trivially of the form given in Eq. (4.7), which in turn ensures that
only the SM scalar degrees of freedom are fluctuated. So what is the graded representation
space for the finite NCG SM, and can the Dirac operator be consistently constrained from
the associativity of the representation alone?

Let us take a closer look at the ‘obvious’ proposal: let us see what form the junk takes
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when we represent the differential graded algebra Qp.A on copies of C%. To simplify the
discussion notice that the finite Dirac operator does not mix leptons and quarks. I will
therefore focus on one generation of leptons only, i.e. an electroweak model represented on
the graded vector space QH = @, H", where each H" is taken to be a copy of C® with
basis {Lg, L1, Lg, Ly}. This restriction greatly simplifies the calculation. The calculation
for the full a NCG SM proceeds in exactly the same way, but where the salient features
are more easily lost for the long and tedious algebra.

As in Eq. (4.3), the left action of the algebra C & H on {Lg, L1, Lg, L1} is given by

L,Lr = qLg, L.L;, = qLp,

- _ _ _ (4.26)

LoLr = AMaxoLg, LoLi = AbxoLy,
where ¢, ¢, are given as in Eq. (4.2), and together with Al act on the lepton doublet
index. The leptons do not carry any SU.(3) triplet index. The helicity operator v and
the anti-linear charge conjugation operator Jg are given just as in Eq. (4.1):

YrLp=—Lg, ~rLp=Lr, ~rLr=Lgr, , vrLr=—Ly,

i - - - (4.27)
JrpLr= Lk, JpLp =Ly, JrpLr=Lg,  JpLp=1Ly.

Meanwhile the finite Dirac operator (prior to imposing the massless photon condition or
the second order condition) is given by

0 o |mh o0

Y 0 0 0
Dr = 4.28
" m 0 0 le ( )

0 0| vy 0

where
Yiar Yo a b )

= ’ ’ and m = 4.29
o ( Y21 Y22 ) ( b 0 ( )

are both 2 x 2 complex matrices which act on the lepton doublet indices.

To work out the second degree junk for this finite electroweak data, we must look for
elements w € Q' A such that, m(w) = 0, while 7(d[w]) # 0. To start with, a general element
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w=>_ddla] € Q' A is left represented by:

0 0

0 ¢(Y'q — oY) (ﬁ’(n o)

dYign — qY1) 0 0 0
T W) =
=2 0 BN
0 0 0
0 0

0 0 0 0

(4.30)

where the sum is over algebra elements o’ = {X,¢'},a = {A, ¢} € Ap, and where I have
defined 6\ = A — A. For a generic one form to be equal to zero we therefore require:

S ¢ (Yiar — a¥i) = ( Ao+ AYar  AgYip + AgYa ) .
—A3Y1 + AsYsr —AYis+ A1Yoes )

BiY1 — BYs BsYi + B,Y
"vig— oy = (21in T Derar Dsr i+ Balan)
ZQA( 14— YY) <B4Y12 — B3Y 9 ByYi9+ B1Yo ’

D NA=D N

where _
A=Y dAN—a)+ F'5, By => N(a—=2\),
Ay => p'(N—a)—dp, By = > NB,
Ay =2 F(\—a)-ap, By = S N,

A=YF0-0)+F8,  Bi=XN@-\).

(4.31a)

(4.31D)

(4.31c)

(4.31d)

Let us next look at general second order elements of the form 7 (d[w]) = > [D,d']|D, a
subject to the conditions given in Eq. (4.31). To start with, a general two form satisfying

condition Eq. (4.31c) is given by:
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(V'e = Y, (Yigr — ) 0 0 0
0 0
0 Y. — Y)Y g — YD) | (YVidh — V) | -
( 19y — q l)( 14— 4gx ) ( 19\ — q z) (bé)\ 0)
0 boN ’
0 (0 . )(Yqu—qAYﬁ) 0 0
0 0 0 0
(4.32)



Next, notice that the conditions given in Eq. (4.31a) and Eq. (4.31b) may be satisfied
in two different ways: Case (i): For generic Y}, the conditions given in Eq. (4.31a) and
Eq. (4.31b) are satisfied when each A;, and B; vanish separately. Imposing these conditions,
the left action of the general second order form given in Eq. (4.32) becomes:

0 0 00
0 (Yigh—¢V)(Y'g—aqYH [0 0
m(dw]) = Mgy — ¢'Y)(Y,'q — Y 7 (4.33)
0 0 0 0
0 0 0 0
while the corresponding right acting junk element is given by:
0 0]0 0
0 0]0 0
Jr(dw) g = 4.34
(de) — - (1.34)

0 00 ((Yigh — Y)Y g —qYT)T

Notice that in this first case the junk only acts on the basis elements {Ly, L.}, and so
it is clear that when we form the quotient algebra 2B we will not need to mod out by
the whole of Q?H. One would hope therefore that the second order condition given in
Eq. (4.25) would place non-trivial constraints on Dp. Unfortunately this does not turn out
to be the case, the second order condition is indeed trivial on the quotient algebra for this
input data.

Case (ii): Notice, that in the special case when Y11Y 12 = —Y712Y 99, then the conditions
given in Eq. (4.31a) and Eq. (4.31b) have additional solutions when A;Y;; = —AyYay,
AgYVH = A4Y§1, 31?11 = 32?21, and Bg?n = —34721. But note that this special case
is exactly the case of physical interest outlined in Eq. (4.7)! Notice also that in this case
the Junk will be much larger (because in this special case the junk does not necessarily
satisfy the conditions A; = B; = 0 for all 4, j, and it is likely that once again this will
result in all of QH being removed for n > 2, in which case the condition d?> = 0 would
automatically be satisfied up to junk. Calculations are currently ongoing. It is not yet
clear how one should consistently impose the higher order associativity conditions along
with the condition d? = 0 in order to obtain the correct SM Dirac operator.

4.1.4 Higgs boson mass prediction

NCG made a prediction for the SM Higgs at approximately 170GeV | , , ],
which is now ruled out by experiment | , ]. Since then a number of solutions
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to the ‘Higgs mass problem’ have been proposed. Notably by Estrada and Marcolli who
include gravitation corrections to obtain a 125 GeV Higgs | ], while Chamseddine
and Connes propose an alternative solution in which they add an extra scalar field ¢ into
the model by hand | ]. Later papers by Devastato et al. | | and Chamseddine
et al. | | construct standard model extensions which naturally include the o field
as an output. Our fused algebra formulation of the NCG SM offers a natural solution to
the problem which I will outline in full detail in Section 4.2.2: in short a complex varient
of the scalar field ¢ introduced Chamseddine and Connes | ] arises naturally as an
output in our formalism, without the need to alter the NCG SM input data or the axioms
of the formalism. In this section I lay the ground work for that discussion by reviewing
very briefly how the original 170GeV prediction was made. For further detail the reader
should refer to the appropriate literature | , , ].

A Higgs mass prediction is possible within the NCG formulation of the SM because
the spectral action is slightly more constrained than the usual SM bosonic action. This
can be seen immediately when calculating the heat kernel expansion of the bosonic action.
Following Appendix A, and ignoring boundary terms, gravitational interactions and the
cosmological constant term, the expansion of the bosonic action is given by:

Af

d*x
= [ S fO)Tr[-[v", @) — == A*®*>+ &' - 1F, F" AT
S= | SRl OTr-[75. 8 - 22Nt 1 8 =37, P+ 0(1 )

= / L2af(0)[10.0 — 29y Buid + LguiW, 0]
M

+2(f(0)e — 2f2a?)[0* + £(0)b]g|*
= F(0)(39; B, B + gy Wi W™ + g2G 0, G™)] + O(AY), (4.35)

Yy py

where the terms a,b and c¢ relate to the Yukawa couplings, and are given in Eq. (A.15).
To express Eq. (4.35) in a more canonical form, the scalar and gauge kinetic terms are
normalized:

S, = /M d'2310,0" = 39,Buid + 390iW,00 1" = 5u6ld' + 32516

+ 1Bl B + Wi W + G GM)] + O(AT), (4.36)
where
a e —2a.f2A? A 2
¢ =/ 4Qg, £ = _(%), 2= M_J}EO), (4.37a)
and
5é‘£8) 5 — %gi — %g? = %1_ (4.37b)

120



On normalizing the gauge kinetic terms as in Eq. (4.37b), one finds that the relationship
5gy /3 = g2 = g holds. This is the familiar relationship found in SU(5) grand unification
at the unification scale A,;,;r. The interpretation is that the spectral action is defined at
the grand unification scale, and so the Higgs mass calculation relies on the so called ‘big
desert hypothesis’ | ]. The important point to note is that in the heat kernel expansion
of the NCG SM spectral action, the gauge kinetic terms and the scalar quartic couplings
appear at the same order and so their coefficients are related (note that this relationship,
and the one given in Eq. (4.37b) only hold at the scale A,,;r however!). This is where the
additional constraint arises in the bosonic action, allowing for a prediction to be made for
the Higgs mass.

Having re-expressed the bosonic action in the canonical form of Eq. (4.36), lets now
turn to the calculation of the NCG SM tree level bosonic mass spectrum starting first with
the gauge bosons and then working out the Higgs mass. For i, > 0, the minimum of the
scalar potential occurs at

o = Ho _ 2a? foA* — aef(0)
A b2

(4.38)

The fields that satisfy this relation are called the vacuum states of the Higgs field | .
Without any loss of generality I will choose the vacuum state diag{0, v, }, where the vacuum
expectation value vy, is a real parameter given by Eq. (4.38). Working in the ‘unitary’ gauge

= {0, v, + H}, the relevant terms in the bosonic action for determining the boson masses
are expressed as:

iguiWioid' — 1g,Bid/ | — %216/ + 2216/ = L2 [iW} + W2 (vy + H)?
—|gw2VV3 + gyz’B \2(% + H)2
— By, + H)? + 22 (v, + HY. (4.39)

By inspecting the coefficients of the scalar quadratic terms, the gauge boson mass squared

matrix on the basis {W = \%(Wﬁ +iW2), W, = \%(Wl} —iW2), W2, B,}, is therefore:

1.2,2
auls 1 (2) 2 ! !
0 29U 0 0
M= O 12 (4.40)
190w 190945
00 dguge? gk

The eigenvalues of M% are given by: {4ng¢, 4ng¢, L2 + gy)vd), 0}. The masses of the
W;t and Zy bosons are therefore my+ = 3 19,vg, and My = 2,/ gz, + gjvg Tespectively,
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while the photon is massless. Experimentally, physicists have very good measurements of
Fermi’s coupling constant G(%# = v/2¢% /8M2,, as well as the W and Z boson masses,
which allows both the weak coupling constant, and the Higgs VEV vy4 to be determined;
both of which are necessary for determining the mass of the Higgs. Next let us determine
the Higgs mass. Inspecting the coefficient of the quadratic scalar term in Eq. (4.39), the
Higgs boson mass is given by:

My = —pg + 303
= 2\4v; (4.41)

where in the second line the value for the Higgs VEV 4 = /\qﬂ)é given in Eq. (4.38) has
been used. The only remaining step is to determine the value of Ay at the electroweak
scale. Fortunately the value of the quartic coupling is known at the unification scale, and
so its value at the electroweak scale can be determined using the renormalization flow.
Substituting Eq. (4.37b) into Eq. (4.37a) yields:

Ag = 4g2b/a? (4.42)

at the scale A. If further it is assumed that the top quark Yukawa coupling is much larger
than the other Yukawa couplings? then Eq. (4.42) simplifies to

Ao = 4g2 /3. (4.43)

The first step in determining the scalar quartic coupling is therefore to determine g, at
Aunif. Following [ |, the one loop SM beta functions for the gauge couplings are:

(475 (95) =~ 68 (1.442)

(47)°B(g2) = —%993 (4.44b)

(47)?B(gy) = +%1g§, (4.44c¢)

The gauge couplings are well known at the electroweak scale, and on examining their
running it is clear that there is no scale at which all three unify (see Fig. 4.2). T will return
to this point when I discuss the Weinberg angle problem in Eq. 4.2.3.

2This is not necessarily a good assumption, as depending on the mechanism behind the neutrino masses
the 7-neutrino Yukawa coupling could for example also be quite large. I will be more careful in Section 4.2.2
when discussing our solution to the Higgs mass problem.
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Figure 4.2: Standard model gauge couplings: g¢. (black), g,, (red), g, (black, dashed).

The next step is to determine the running of the top Yukawa coupling, as the quartic
coupling beta function depends on it. The one loop beta function for the top Yukawa
coupling is | ):

Y, 1
(4m?Y, T = DY) + 863 — 03—
where the g; are determined as solutions to Eq. 4.44, and I have ignored all Yukawa
couplings other than the top Yukawa coupling (see Fig. 4.3).

g; (4.45a)
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Figure 4.3: Standard model top quark Yukawa coupling.
Finally the one loop beta function for the Higgs quartic coupling is given by | ]
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(see Fig. 4.4):

9 3 3
(4m)% B = 247, = 6(Y/Y)? +12Y Vi — 395 + 3g3) M + 03 + 20, + (030, (446)

The initial value for the quartic coupling is set at the unification scale, but as shown

0.35-

0.30r

M(ll)

0.25r

0.20+
2 4 6 8 10 12 14 16
Log,,(1/GeV)

Figure 4.4: Standard model quartic coupling running.

in Fig. 4.2 there is no scale at which all three coupling constants unify. I will therefore
determine the Higgs mass at 10'2GeV < Aunip < 10'"GeV. The determined value of the
quartic coupling at the electroweak scale can then be substituted into Eq. 4.41 to determine

the tree level Higgs mass. The Higgs mass is determined in this way to lie approximately
in the range 170GeV < mpgqs < 178GEeV .

4.2 The NCG SM symmetries revisited
(a gauged B-L SM extension).

The ‘fused algebra’ or ‘square zero extensions’ formulation of NCG outlined in Ch. 3
replaces the algebra A as the main piece of input data with a full x-DGA QB which
incorporates all five elements of the spectral triple {A,H, D, J,v}. As explained in Sec-
tion 3.3, from this perspective it is clear that the symmetries of a NCG are not given by
the automorphisms of the input algebra A, but by the automorphisms of the full x-DGA
B. In this section I re-examine the symmetries of the NCG SM from the fused algebra
perspective.
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4.2.1 The symmetries of (0B
Symmetries of the NCG SM sub-algebra B

Often the simplest approach to determining the symmetries of a NCG is to work out the
form that the infinitesimal generators take. This is the approach I will take here. To begin
with, first consider the NCG SM sub-algebra By = A® QH?3, where A = C*(M, Ar), and
OH = L*(M,S)®C?2. As described in example four of Subsection 2.1.4, general derivations
of the sub-algebra A are of the form 64 = v*9, + L, — R, where the v* are real functions
on M, and x is any anti-hermitian element of A. The grading preserving derivations on
the full algebra § : By — By are therefore of the form § = (v*0, + L, — R,) @ 6. The
conditions given in Eq. (3.118), can then be used to fix the form of the d4. In particular
the Leibniz condition given in Eq. (3.118b) restricts the generating derivations on By to
be of the form:

6= ("0, + L, — R,) ® (v"0, +x — JolJ '+ T), (4.47)

where the term v*9, generates manifold translations, and the term x — Jz'J~! generates
inner automorphisms. Note that the term v#0, on the right hand side of Eq. (4.47) is not
covariant. The covariant term would be of the form v* Vﬁ , and so we should expect to find
an appropriate connection term amongst the possible T’s. This is in fact exactly what I will
show below. To display the inner derivations more explicitly, let us denote an element of
the algebra Ap = C@H® M;3(C) by a = (A, ¢,m) where A € C is a complex number, g € H
is a quaternion, and m € M3(C) is a 3 x 3 complex matrix. The anti-hermitian elements of
Ap can be split into 3 pieces: namely (i) a; = (A, 0, pll3) where A € C and p € C are pure
imaginary and I3 is the 3 x 3 identity matrix, (i) ay = (0, ¢,0) where ¢ is a general anti-
hermitian 2 x 2 matrix, and (iii) ag = (0,0, m) where m is a general traceless anti-hermitian
3 x 3 matrix. Demanding that the corresponding symmetry generators 5“ Lo, — R,, are

anomaly free (3.128) yields the additional restriction 4 = —\/3. The 5% are block diagonal;
if, as in Ref. | ], we label the subspaces of Hr as {Lg,Qgr, L1, Qr,Lr,Qr,Lr,QL},
the blocks are

l
52) = {yR7 )®H3uy2)7y2)®]137

79,79 @ I, ), 5 @ I3} (4.48a)
55—?) = {0707q7Q®H370707q7Q®H3} (448b)
58 = {0,I,@m, 0, l,om, 0, l,&m, 0, [,om} (4.48¢)

3Notice that I am including all of QA in By here, and not just Q'H.
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where

N[

a — 0 a 0 0
+: 0 +2 0
ygq):2A< N, ) yg”:m( K ) (4.49)

In other words, from the derivations é,, = L, — R, we precisely obtain the generators ¢ (1),

&g) and (5?(3) of the familiar standard model gauge group U(1)y x SU(2)x SU(3)¢, with the
right- and left-handed leptons and quarks transforming in their familiar representations.

(=

[
W=

Without loss of generality the operator 7" in Eq. (4.47) may be written as T'= > T, ®
Tr, where each T, may be taken to be an arbitrary hermitian matrix operator on H, =
L*(M, S), while each T is an arbitrary anti-hermitian matrix operator acting on Hp = C%,
which satisfies [T, ar] = [T, JrakJ '] = 0, Var € Ap. In order to be a derivation, the
operator T" must also satisfy the commutator conditions given in Eq. (3.118¢,3.118a), ie.
[T,J] = [T] = 0. It is easy to show that there are only two possible types of non-trivial
solutions to these commutator equations. The first is when each T, ® Ty independently
satisfies [T, 7.] = [Tr,vr] = [T., Je| = [TF,Jr] = 0. The second is when each T, ® Tp
independently satisfies [1¢,7.] = [ITF,vr) = {T¢, J.} = {Tr, Jr} = 0. It turns out that
the two solutions {7,,v.} = {Tr,vr} = [T, Je] = [TF, Jr] = 0 and {T.,v.} = {Tr,vr} =
{T., J.} ={Tr,Jr} =0 to Eq. (3.118¢,3.1184a) are trivial because the condition [T, ar] =
[T, JrakJ ] = 0, Var € Ap diagonalizes each Tr (and ~yp is diagonal). Similarly there are
no other interesting solutions constructed from sums » T, ® Tr. The two possible types
of solutions for the operator T'= T, ® T are shown in table 4.1.

| H [Te 7 = [T, = 0 )

[T,,J.] = [Tr, Jr] =0 =3 (f%]b f?]b) ® Ty, fo € C®(M,R)
{T.,J.} ={Tp, Jp} =0 Tt=%" (fio"i f,?jj> ®TH,  fifi € C(M,R)

Table 4.1: The outer derivations 7" for the NCG SM fused algebra By.

In table 4.1 the operators T, and T} are given by:

Ty = {ag,,75,®l,icy, @y, icy, ®ls, Ty, Tg, ®ls,icy, ®ly,icy, ®ls}, (4.50a)
Ty = {z} x5, ®ls ic;, ®ly,ich @lg, 27,1/, @, icy, @y, ich g}, (4.50b)
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where

+ +
a;lizz(cgﬂ Oi>, x;t:i(C%R Oi) (4.50¢)

/ /
CLR CQR
and ¢; € R. Aside from anomaly cancellation, no further restriction can be placed on the
generators of the form T at the level of the sub-algebra By C QB.

Symmetries of the NCG SM algebra 2B

To put further constraint on the generators 7', one must consider the constraints imposed
on the full xDGA QB. In particular, derivations on 2B must map n forms to n forms:
[0, wn] = w!, (See Eq. (3.127)). Consider for example an arbitrary one form:

Wy = Z ae[031, 0] @ cp + Z V5Ce @ ap[dp2,bp), (4.51)

for ac, b, c. € A, ap,br,cr € Ap. For one forms given as in Eq. (4.51) to remain ‘closed’
under commutation, we must further restrict the allowed generators T to be of the form:

T = Z fo]I4 X 5B,L (452&)
=) < 0 f;i0j> ® I, (4.52b)

where the generators dp ;, are of the form:
dp.1 = {illy, iblg, illy, iblg, —illly, —iblg, —illy, —ibls}, (4.52¢)

and b,[ € R. Finally, demanding that the symmetry generators T are anomaly free (3.128)
yields the additional restriction [ = —3b. The derivation elements given in Eq. (4.52a)
therefore generate a gauged baryon - Lepton number (B— L) symmetry, while the derivation
elements given in Eq. (4.52b) generate local SO(4) transformations.

4.2.2 Higgs boson mass revisited
The fused algebra formulation of the NCG SM offers a natural solution to the ‘Higgs mass
problem’ (See Section 4.1.4) which does not rely on any modification of the NCG SM

input data. The idea is very simple: When constructing a NCG the scalar fields appear
as connections on the internal space through a ‘fluctuation’ procedure (see Section 4.1).
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In the traditional approach only the inner fluctuations of the finite Dirac operator were
considered, and so only the scalar fields charged under the SM gauge group SU.(3) X
SU,(2) x Uy(1) were ‘turned on’. As shown in Eq. (4.18), the term in the finite Dirac
operator responsible for Neutrino Majorana masses is completely unaffected by the NCG
SM inner automorphisms and so remains unfluctuated. The story is different however if
we consider the full automorphism group of the fused algebra (2B corresponding to the
NCG SM, which includes a gauged B-L symmetry. Under this extra symmetry the term
in the finite Dirac operator responsible for Majorana masses fluctuates or ‘turns on’. In
other words, we obtain a minimal extension of the SM with an additional gauged boson
associated the gauged B-L symmetry, and an additional complex scalar, which Higgses the
gauged B-L symmetry. As shown by Chamseddine and Connes in | |, such an extended
Higgs sector can be made compatible with the 125GeV detection at the LHC, and stabilizes
the electroweak vacuum (previously there was also a concern that the Higgs quartic self-
coupling would become negative at high energy | , , : D
In their work however, Chamseddine and Connes introduced their real scalar field into the
model by hand. In contrast, we obtain a complex analog of their scalar field which is
charged under the gauged B-L symmetry as an output. In this Section I show how this all
happens explicitly, and follow the computation given in | ], in which the Higgs mass
is recalculated taking into consideration the extended scalar sector.

Under an automorphism a : Q2B — B, the Dirac operator D : QH — QH must
transform covariantly: D— D'=ayDay' &~ D — [D,d3]. As in ordinary gauge theory, by
inspecting the fluctuation term [D, 04|, we can read off the “connection” terms which must
be added to D in order to make it covariant. The Dirac operator D on the product space is
the sum of two terms, D = D .®Ip+v.® Dp, where D, = v*V , is the ordinary curved space
Dirac operator, while Dp is a finite dimensional Hermitian matrix (see Ref. | s
thus its fluctuation has two terms as well:

Although it may be expressed in unfamiliar notation, the first (D,.) term on the right-hand
side of (4.53) is nothing but the familiar term that, in ordinary gauge theory, forces one to
introduce a gauge field Af, corresponding to each generator ¢* of the gauge group [in this
case, SU(3)c x SU(2), x U(1)y x U(1)p_r] in order to make the derivatives transform
covariantly. In an analogous way, the second (D) term on the right-hand side of (4.53)
forces us to add extra fields; but, whereas the first term involves the regular curved space
Dirac operator D, = —iv“Vﬁ , and thus induces fields v#A,, with a spacetime index p, the
second term involves the finite matrix Dg, with no spacetime index, and thus induces fields
with no spacetime index — i.e. scalars. This is one of the most important advantages of
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Connes’ approach: the gauge fields and scalar fields and their properties emerge hand in
hand, from a single formula, as an inevitable consequence of covariance (in constrast to the
standard approach, where the gauge fields and their properties emerge this way, but the
scalar fields and their properties do not, and must instead just be added to the theory by
hand). Let us now compute fluctuations associated to the Dp term in (4.53) and inspect
the result.

As explained in Section 4.1.3 (see also Ref. | : ]), there are only four matrices
Dp compatible with the associative algebras Br and 2Br. The one which is relevant to
describing the standard model is given by (4.4), where Y; and Y, are arbitrary 2 x 2 matrices
that act on the doublet indices in the lepton and quark sectors, respectively, m = diag{a, 0}
is 2 x 2 diagonal, and for brevity we have written Y} in place of Y, ®1I5. Thus, if we calculate
the fluctuation D — D' &~ D—[v.® Dp, ds], where oy = 5S)(x)+5§{2) (93)+5§{1)(:L‘)+a(x)(5§i)/,
we find Y}, Y, and m transform as

Y/ = Yl o(x) + q(2)Y (4.54a)
V! =Y, — Yr(2) + a2, (454b)
m' =m+ 22a(x)m (4.54¢)

where gy(7) = diag{\(x),A\(z)}. From this, we read off that, to make D covariant, as
before Y; and Y, and must be promoted to fields

Yéy Yo Yadr Yatn
Yi— (Yy@ Yewz)’ Yo~ (sz Ym)’ (4.55)

where {p1(z),p2(x)} and {¢1(z),12(x)} are scalar fields that transform as SU(2), dou-
blets, with hypercharge y = +1/2 and y = —1/2, respectively, while now we also find
m — diag{o, 0}, where o(z) transforms with charge +2 under U(1)p_p, but is a singlet
under SU(3)¢c x SU(2), x U(1)y. Finally, as explained in Ref. | |, one can choose
the embedding of C in H so that {¢1,v2} = {—@2, ¢1}; in this way, instead of obtaining
a 2-higgs doublet model, one obtains a single higgs doublet {1, v} (or alternatively one
could keep the usual embedding and start with a ‘flat’ Dirac operator satisfying Eq. (4.7)
and obtain the same result).

The scalar field o has important phenomological consequences. (i) As noted already,
although the traditional NCG construction of the standard model predicted an incorrect
Higgs mass (my, ~ 170 GeV), several recent works | , ) ) | have
explained that an additional real singlet scalar field o can resolve this problem, and also
restore the stability of the Higgs vacuum. Our o field, although somewhat different (since
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it is complex, and charged under B — L), solves these same two problems for exactly the
same reasons (as may be readily seen in the U(1)p_;, gauge where o is real). (ii) Second,
precisely this field content (the standard model, including a right-handed neutrino in each
generation of fermions, plus a U(1)p_1, gauge boson C,,, and a complex scalar field o that
is a singlet under SU(3)¢ x SU(2), x U(1)y but carries B — L = 2) has been previously
considered | , ] because it provides a minimal and experimentally viable ex-
tension of the standard model that can account for several cosmological phenomena that
are otherwise not explained: namely, the cosmological matter-antimatter asymmetry, the
nature and abundance of dark matter, and the origin of nearly scale-invariant, gaussian
and adiabatic spectrum of primordial curvature perturbations.

Next let us see more explicitly what effect the extended scalar sector has on the Higgs
mass prediction. The following calculation follows closely the procedure for calculating the
Higgs mass outlined in | -

The bosonic action

Following Appendix A, and ignoring boundary terms, gravitational interactions and the
cosmological constant term, the expansion of the bosonic action is given by:

Af
£(0)
=1 /M L5 1(0)[al 96 — 39y Buid + $9uiW,0i6[* + §1(0, — 2igs1Cp)o|”
— #5 0% (4al o[ + 2¢[a]?) + blg|* + 2e|o*|6[* + 3d|ol*
— (292B,,B™" + 39,91B,,,C'" + 2g7_,C1, O

+ ga W W + g2G G")] + O(ATY), (4.56a)

d*z

Sb:z'/M— (O)Tr[—[v, ] -

82 A@? 1 @' — 1, P + O(A™)

where terms a,b,c,d and e relate to the Yukawa couplings, and are given in Eq. (A.15).
To express Eq. (4.35) in a more canonical form, the kinetic terms may be normalised:

Sp ~ /M d4$%[|(au - %gyB#i + %gwiWﬁai)(b/F + %|(8u - 2igb—lCu>U/|2
— 531" + 1zlo"1?) + 16l [+ 20 0" Pl¢ ) + Ao lo])
— 1(& AL A W, W 4 G, G (4.56b)
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where

1 [af( 1 [cfo) Mo _ 2[A2 _ p2
¢ =\ "= o' =/ LF0, 5 =t = (4.57a)
Ao w2 A 272%e Ao _  m2d
f — 2427(0)° 2 7 caf(0)’ 4 T 2f(0) (4'57]0)
As is done in | ], T have also re-expressed the U(1) kinetic terms in the action as

—i [y, d*25&; AL, A where AS = B, and A, = C,,, and the coefficients ¢ are given
by:

§B = =3°39y, &Bec =& = %%gygbfb Sco = 2];(20) 8 0r1, (4.58a)

Setting pp = Eoc = 1 fixes Epe = &g = /1/10, and 2¢2 = 22 = g, = gs. This

normalization also fixes the value 120 g2 — 1,
3 Y

wl

The scalar mass spectrum

Having constructed the bosonic action, the next task is to determine the tree level mass
spectrum of this NCG SM B-L extension. To make the calculation easier we can work in
the unitary gauge where three real scalars of the complex Higgs doublet, and also one real
scalar of the ¢’ complex singlet are gauged away:

/o 0 !/
¢ = (v¢+H>’ o' =v, + p. (4.59)

For tree-level symmetry breaking, we find

Aoty — At

2
vy = Nohy A2 (4.60a)
Aom?2 — \,ym>
2 ¢! m'oe
— . 4.60b
Vo )\o')\¢ . )\’%l ( )

We take vy to be equal to the Higgs VEV at 246GeV, and for now we take v, = Ruvy,
where the ratio of the VEVs R is large, but so far undefined (it will need to be large to
fit experiment as discussed below in Subsection 4.2.3). If we expand about the vacuum,
we find that the potential energy at the minimum is negative and the mass matrix at the

minimum is ) )
2 ( )\mviR /\UR2U§) ) ’ (4.61)
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We can diagonalize this matrix to find the mass eigenstates and the corresponding mass-
squared eigenvalues:

i =02 [(Ag + A R2) £ 1/ (Ao — A R2)2 + 403, R2]. (4.62)
For R >> 1 the two mass eigenstates are given by:

m? =~ 2\,vs(R? + ﬁ) (4.63)

2
mi ~ 2A505(1 — A ¥

a0
We have only to determine the value of the scalar quartic couplings. Fortunately, as was
the case in Section 4.1.4 we can relate the quartic couplings in the bosonic action (4.56a)
to the gauge couplings and Yukawa couplings at the unification scale A. Following | ],
I will work in the rough approximation where the Yukawa couplings of the top quark Y;,
and tau neutrino (both Dirac and Majorana) Y;, Y, are dominant. I define Y, = /nY},
Y, = \/mY;, where n, and m are dimensionless constants that relate Y; to Y, and Y, at
the scale A. Using this approximation the terms given in Eq. (A.15) may be written as
a=@B+nY'Y, b= B+n) )2 ¢ = YiY, d= (Y]Y,)? and e = nY]Y,YV]'Y,
Substituting these relations and the relation %(20) g2 =1 into Eq. (4.57b) yields:

Ao = 4(3+n?)g2 /(3 +n)?, A = 8ng2 /(3 + n), Ao = 892, (4.64)

which hold only at the unification scale A. To determine the Higgs mas, we can there-
fore run the quartic couplings from the scale A down to the electroweak scale, and then
substitute them into Eq. (4.63).

The quartic coupling beta functions depend on the Yukawa, and gauge couplings, and
so their running must first be determined. The beta functions for the B-L extended SM,
are slightly more complicated than those outlined in Subsection 4.1.4 because there will be
mixing between the two species of scalar, and between the two U(1) kinetic terms. There
are two possible ways to deal with the mixing of the two U(1) gauge couplings which
occurs when running their gauge couplings. One could either continuously re-diagonalize
the gauge kinetic terms, or alternatively one could simply run the off-diagonal mixing term
&;; introduced in Eq. (4.56). I follow the second approach, which is developed in | ,

, , , ]. In this approach the one loop beta functions for the
SU.(3) x SU,(2) x Uy(1) gauge couplings are unchanged from those given in Eq. (4.44).
The beta function for the Uy (1) gauge coupling is given by:

72

(47)*Blgu) = +5-9y. (4.65a)
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As explained in Subsection 4.1.4, the strong, electroweak, and hypercharge gauge couplings
are well known at the electroweak scale, and on examining their running it is clear that
there is no scale at which all three unify. To simplify the following calculations I will simply
take the unification scale to be defined as the point at which the SU,(3) and SU,,(2) gauge
couplings meet. As shown in | ] however a 125Gev Higgs mass solution can be found
for unification scale ranging between 102GeV and 10'’GeV. One might hope that the
extra U(1) gauge symmetry might help fix the so called ‘Weinberg angle’ problem, and
this is something that I will discuss in 4.2.3. The gauge coupling runnings are shown in
Figure 4.5.

0.9F : N
0.8}

~ 0.7}

3 [ AN 1

5 - el 1
0.6 \\\\\\\\\‘ T~ i

2 4 6 8 10 12 14 16
Log,,(1/GeV)

Figure 4.5: Gauge coupling of the NCG SM with gauged B-L extension: g. (black,dashed),
gw (red,dashed), 1/5/3g, (red,solid), 1/8/3¢gy—; (black,solid).

Our next goal is to determine the running of the gauge-kinetic mixing coefficients. Their
one loop beta functions are given by:

4
(47)*By, = §1<§yy - 1)g; (4.66a)
(47)% o0 = %2(59090 —1)g3 (4.66b)
(47)*B. = (%gi + 129&)/@ — %gygbl (4.66¢)

where I have defined k = {gc = &cp. The gauge kinetic mixing terms have been canonically
normalized in Eq. (4.56) such that {gp = {oc = 1, which fixes o = Eop = /1/10 at the
unification scale. Note that with this choice of normalization the diagonal terms {gp, and
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Figure 4.6: Gauge coupling kinetic mixing term écp for the NCG SM with gauged B-L
extension

¢cc remain normalized and do not run. The running of the off diagonal term is shown in
Figure 4.6.

The next step is to determine the running of the Yukawa couplings, as the scalar
quartic coupling beta function depends on them. The one loop beta functions for the
Yukawa couplings are given by:

ay; 9 9
(4m)2y 2t = 2V VY, — 865 — 203
17, 5 2,
a9t 3R — 9] (4.67a)
dy, 5 9 1
4 2Y71_V — _YT}/; 3YTY 2, = 71YO-YTYV
(7T> Vo dt 9T + oY, Yy 492+2 v P
1,3
1T3[9 + 3K9y9u — 6931 (4.67b)
dy, .
(4m) =2 =YY+ (YY) + VoYY 4 DY Ty Y
+ 75 695Y7] (4.67¢)
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Figure 4.7: Yukawa coupling terms for the NCG SM with gauged B-L extension: Y; (Black),
Y; (Red), Yy, (black, dashed).

While the beta functions for the scalar quartic couplings are given by:

(47)2 B = 2477 + 42, — 2b + da)y,

2 4 2 2
g 9,,.3_ 9 3 939
BT RN g s e T il (4.68a)
(4m)2B, = 2072 + 82, — Tr[(Y,1Y;,)?] + Te[Y, Vin] A,
as Iy oI (4.68)
1—k2°% (1 — K2)? .
/@29295[
(47)2 B = [12X, + 8A + 8A A — 2T [V, YV, Vi) + 6(1 _yﬂ2)2
3 2+ 16g;
+(20+ TV Y] A — SAm (305 + —gyl — szg ") (4.68c)

Having run the quartic couplings, their value at the electroweak scale can be substituted
into (4.63) to determine the value of the Higgs mass which will now be given as a function
of the free parameters m and n (and the unification scale). Chamseddine and Connes
claim to find 125GeV Higgs mass solutions | ], which we are currently in the midst of
checking.
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Figure 4.8: Scalar quadratic couplings terms for the NCG SM with gauged B-L extension:
Ay (black, dashed), A, (black), A, (red).

4.2.3 The Weinberg angle problem.

Let us have a closer look at the gauge boson mass spectrum in our gauged B-L extended
SM, and compare it to the mass spectrum of the standard model. To begin with consider
once again the SM. The SM bosonic mass matrix M? given in Eq. (4.40) is expressed in
the so called ‘kinetic basis’. To determine the physical masses of the system one must first
change to the ‘mass basis’ in which the mass matrix is diagonalized. One can diagonalize
by conjugating with the ‘rotation” matrix R:

1 0 0 0

0 | 0 0 1 0 0 0
R=lo o 0u o |=|0 1 0 y (4.69)
N N/ 0 0 coslw]  sin[0w]
o 0 - \/ggy+g2 \/ggfﬂz 0 0 —sinlfw] coslfw]

9y g

where T have defined sin[0y] = T cos[w] = \/%, and Oy, is known as the ‘Wein-
Jw gy Jw gy

berg’ or ‘electroweak mixing’ angle. The mass eigenvalues are given by: {i gfﬂvé, %1 gfvv;, 411( g;—i—

gfv)vi, 0}, and one notices in particular that the ratio of the W bosons to the Z boson is
given by:

MW — Jw
My,  \/9i+d?
The masses of the W and Z bosons are measured to extremely high precision, which places
very strong constraint on the value of the electroweak coupling at the electroweak scale. In

= cos|Ow| (4.70)
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particular, without new physics entering above the electroweak scale this rules out gauge
coupling unification. Said another way: if we impose the GUT relation 2¢2 = g2 = g7 at
the point at which the strong and electroweak couplings are equal, then on running down
all three couplings to the electroweak scale, they do not satisfy Eq. (4.70).

Our extended SM with gauged B-L symmetry has additional particle content, and one
would hope that this might allow for a consistent picture in which all four gauge couplings
do unify. Let’s see if this is the case. The first step is to diagonalize the U(1) gauge kinetic
terms & A ALY given in Eq. (4.56). We do this by making the transformation A} —
(S AR and & — (S71)LEF(S))] with the matrix (remembering our normalization épp =

§oc = 1,&pc = o = K):

-1 _ \/1/_2 _\/m
% (w/—z w/—z> (.71)

After this transformation & = diag{1l — k,1 + k}, and we can absorb these diagonal val-
ues into a renormalization of the gauge potentials. We therefore define the diagonalized,
renormalized U(1) field strength tensors to be:

()= (o ) (7 o) (i W) (&) e

where the final matrix on the left represents the freedom to make an arbitrary SO(2)
transformation of the fields once they have been diagonalized and normalized. We will
leave the angle 6 arbitrary for now. To ensure the rest of the action remains invariant
under this field re-definition we similarly define new fermionic and scalar couplings and
charges:

(0) = Gl o) (0" wuies) (Vi ) )
73

where j ranges over all fermions and scalars. Having Diagonalized the gauge kinetic terms
we can now determine the mass spectrum of the gauge bosons at tree level by considering
the scalar kinetic terms in Eq. (4.56):

5| DS + 31D’ * = $|(0, + iqy 9- A, + iq) g+ Al +iguW,ios)d' |
+ 310, +iq, g-A, +igfg Ao (4.74)
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Working in the Unitary gauge (see Eq. (4.59)) the relevant terms in the extended La-
grangian for determining the masses of the gauge bosons on the basis {I/V!;F W Wj’, A:[, ALY
then become:

g% 0 0 0 0
2 92 0 0 0
" G —2q} guwg+ —2q; G- o (4.75)

0

0 0

0 0 —2¢59u9+ 97((¢3)° +R*(¢))?) 9-9+(a,q; +R*q,q))
0 0 —2¢,909- 9-9+(aza; + R*¢;qr) 9> ((q;)” + R*(q;)?)

which has eigenvalues { M7, My, , M7, M7%,,0}, where the eigenstate with zero mass is the
photon 7,; the two eigenstates with mass-squared (1/4)g2v; are the the familiar le and
the W~ bosons; and the remaining two eigenvalues correspond to two additional massive
gauge bosons: the Z, boson and a new heavy boson Z /:, with mass squared values

m1v2 m1U2
M =" 01— \J1 ARy /md),  ME = "S0(14 (/1 —4R?my/m3),  (4.76a)
mi = g2 ((¢;)* + R*(4;)?) + 3 ((a5)* + R*(¢))?) + gu s (4.76b)

my = 29" 914, ¢, 4 aF + 931(a)2 (62 (ay)° + gnd) + 92 (4, )2 (95 (a))* + 924s). (4.76c)

The main point to note is that the ratio of the W boson and Z boson masses is no
longer given as in Eq. (4.70). The ratio of the masses is determined now as a function of
the scalar charges which are know, and the gauge couplings g., gy, g»—1, Which are fixed
at the electroweak scale by the running: ie we can run the couplings g, and g. from
the electroweak scale up to the scale at which they ‘unify’ and then impose the relation
292 = %95 = ga, = g2 obtained from the expansion of the spectral action. We can then run
all four couplings back down to the electroweak scale (see Fig. 4.5). Notice however that
the ratio of the W boson and Z boson masses is now also a function of ratio between the
two scalar VEVs R, which is a free parameter. It might be possible to select a value of R
which gives the correct electroweak phenomenology, and which is also large enough so that
the Z’' boson is out of range of current detectors. Unfortunately this is not what happens.

As might have been guessed. Rather than ‘fix’ the Weinberg angle ‘problem’ the model
simply asymptotes to the same incorrect value of mz as would be obtained by assuming
unification in the SM. If it had asymptoted from above, then a solution might have been
possible.
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Figure 4.9: W and Z boson masses for the NCG SM with gauged B-L extension as a
function of the ratio of the two scalar VEVs: My, (dashed), My (solid).
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Chapter 5

Example non-associative geometries

The fused algebra perspective allows access to a range of new geometries beyond those of
the associative formalism. One might imagine therefore that once we relax the associativity
requirements of (2B, that there would be a flood of new example geometries to play with.
As it turns out however, the formalism remains quite restrictive, and in particular it is
very difficult to construct sensible finite non-associative geometries that display a non-
trivial Dirac operator. Indeed, I introduced the first almost-associative geometry in | ],
which described Einstein gravity coupled to a Gy gauge theory. This model however had a
trivial finite Dirac operator, which resulted in a trivial Higgs sector, and massless fermions
(see Subsection 3.1.5 for details). In this chapter I will provide a wide range of examples.
The organization is as follows: in Section 5.1 I construct a family of simple non-associative
geometries in each KO-dimension. In Subsection 5.2 I provide a pair of representations
By, which are ‘exotic’ in the sense that By has different associativity properties to A. In
Section 5.3 I explore models in which non-abelian symmetries arise as outer automorphisms.
In Subsection 5.3.2 T show how to construct Pati-Salam-like models from non-associative
input data. Finally in Subsection 5.3.3 I discuss more exotic grand unified theories based
on the exceptional Jordan algebra.

5.1 A family of fully non-associative spaces

In this Section I construct a family of finite non-associative geometries which have both
non-associative input algebras, and non-trivial Higgs sectors. The family is based on the
simple non-associative octonionic example which I outlined in Subsection 3.1.5. We start
by introducing the representation 7 of a finite (non-associative) x-algebra A over the field
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IF on a Hilbert space H. We will be interested in simple models in which the finite Hilbert
space H, is the space of n-vectors with components valued in A. The inner product on
H is given by (x|y) = > _ (Tm|ym). Elements a € A will be represented on H as n X n
matrices, proportional to a itself, so we can factor out a and write

m(a)=pa (5.1)

where p is an nxn matrix with its components valued in F. The condition mw(ab) = 7(a)7w(b)
implies p must be idempotent: p* = p; and the condition 7(a*) = 7(a)* implies that either
p=7porp=p', depending on whether we choose to define w(a)* as pa* or p'a*. Eliminating
any ambiguity, we assume that both conditions hold, which implies that p is also symmetric
(p = p"). Next, we introduce the generalized Dirac operator D, as a n x n matrix, with
components valued in the derivations of A, D(A) — that is, each component D;; is an inner
derivation acting on the components of elements of H. Since D is hermitian and each
component (i.e. each derivation on A) is anti-hermitian A we have

]
Such a Dirac operator can be written in the form:
D = %04, (5.3)

where the v¢ are n X n anti-hermitian matrices with elements valued in I, and the 4, are
a basis of inner derivation elements. We will adopt this notation from here on. Next we
introduce the anti-linear, unitary operator J:

J=jo“x" (5.4)

In other words, J is the composition of j with %, where j is an ordinary n X n unitary
matrix with components valued in F, and “*” is the involution operation in A. As J is
an anti-linear, unitary operator, its adjoint is defined by (J'z|y) := (z|Jy) (Vx,y € Hp),
so that we have JI.J = 1, with J' = j7 o “%”. Finally, in the case of even KO dimension,
we also introduce the operator 7, an n X n matrix valued in [F; it is both hermitian and
unitary (v =" = v71), and hence has eigenvalues 1. We require that v commutes with

the action of the algebra on H, and anti-commutes with D:

[V, La) =0  (Va€A),
{vr, e} =0,
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for all a € A, and all « labelling the basis elements of D(.A). Finally, to get the right KO0
dimension, we must choose j, D and 7 such that

JP=e & 3T = €7, (5.7a)

JD =¢€DJ & Ve = €8], (5.7b)

Jy=¢€"vJ & Jjy = €'vj. (5.7¢)

where the signs €, € and €” are either plus or mimus one | ]. We will be interested in

constructing simple geometries in which the algebra 2B has the same associative properties
as A. The simplest way of doing this is to ensure that both the order zero, and order one
commutators are proportional to associators. We will not consider the restrictions placed
on the Dirac operator by the higher order conditions here. The order zero commutator
evaluates to

[La, J Ly J'Jh = (pjpi")ja(hib) — (jps'p);(aha)b, (5.8)
where h € H;a,b, € A, and the i, j are matrix and vector indices ranging from 1 to n. We
therefore demand that the matrices p and j satisfy

. jpi' =0, (5.9)

which results in the commutator evaluating on any Hilbert space element to an n-vector
of A valued associators:

[Lay J L= J'Th = —(pjps");la, hi, b]. (5.10)

Notice that in the special case in which the input algebra is associative, the right hand side
of (5.10) is identically zero for any choice of h € H, and the expression therefore collapses
to the familiar order zero condition. More generally, the associator on the right hand side of
equation 5.10 will by definition satisfy the required multilinear associator identities of any
input algebra A, because a, b, h; € A. Next we should consider the order one commutator,
but first however note that

[D, LyJh = v§Ls,ah + 00|V, La)h. (5.11)

We eliminate the term proportional to ¢, in the above expression by demanding that the
matrices D and p commute:

[V p] = 0. (5.12)

With this condition, the order one commutator automatically evaluates on any Hilbert
space element to an n-vector of A valued associators:

[TLy ", [D, La]lihi = (pjp™3)5[(6aa), i, B, (5.13)
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where h € H;b,d,a € A, and the i, j are matrix and vector indices ranging from 1 to n. By
definition, the right hand side of equation 5.13 satisfies the required multilinear associative
identities of A. In the case where A is associative, equation 5.13 reduces to the familiar
order one condition.

Now that we have laid out the conditions that must be satisfied, we can present the
simplest geometry (with non-vanishing D) which satisfies these conditions in each KO
dimension:

A _ _ 0 +o _( +1 0 0
K0=0: w(a)=aly D_<_5 O) J_< 0 —i—l)o x7(5.14a)

Ko=1: n(a)=al D:<_05 J[f) J:<J61 _()1)0“*”(5.1410)
K0=2: n(a)=al D:(_% J[f) J:<_01 451)0“*”(5.14@
K0=3: m(a)=al D:(_Oé JEf) J:<_01 —Bl>o“*”(5.14d)
K0o=4: w(a)=aly D:(+2+ +€+) J:<—BU fa>o“*”(5.14e)
K0=5: m(a)=al, D:(_Z_ +§) J:<+O°' fa>o“*”(5.14f)
K0=6: n(a)=al, D:(O% "05) J:<]102 % )o“*”(5.14g)
K0=7: n(a)=al D:(_O(S JB‘S> J:<J61 _Sl)o“*”(5.14h)

where I, and I are the 2 x 2 and 4 x 4 identity matrices, respectively; the 2 x 2 matrices
o and A, are given by

(0 +1 [ 01 +09
0:(_1 ; ) Ai_(:% i&)’ (5.15)
and, in the case of even KO dimension, ~ is given by

N ( JBH _0]1 ) _ (5.16)

Notice that in KO-dimensions 4, 5, and 6 the simplest models displaying a non-trivial Dirac
operator require a larger vector space representation than the rest (n = 4).
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5.2 Exotic spaces.

The ‘square zero extensions’ definition of algebra representations outlined in Section (3.2) is
equivalent to the ‘multi-linear identities’ definition outlined in 3.1 only in the special case in
which the input algebra A is taken to have the same associativity properties as the algebra
By. To this point, I have only explored models which are of this type. While these models
are in some sense ‘natural’ there is no reason a priori for this restriction (it is as natural as
restricting to associative models for example). In this section I will explicitly construct two
non-trivial example fused algebras in which By and A have different associative properties,
and determine the form that inner derivations take on Bj.

5.2.1 Associative-Jordan representations

As a first example, consider a fused algebra By = A ® H, where the input algebra A is
taken to be a finite, non-commutative associative algebra represented on itself (ie. H = A)
via the Jordan product L, = R, = k{a,_}, for £ € R. As usual, the product on By
is defined as in equation (3.50). This extended algebra is clearly not a Jordan algebra,
because A is associative and not commutative, but it is also not an associative algebra
because the product between elements of A on H does not associate with the product
between elements of A, ie. [a,b, h] # 0. I will call such an algebra an ‘associative-Jordan’
square zero extension, or an associative-Jordan fused algebra.

Let’s determine the general form that inner derivations take on the full algebra B.
For an associative algebra the inner derivations are given by equation (2.28a), while for a
Jordan algebra the derivations are given by equation (2.28¢). By however is neither purely
associative, nor purely Jordan. It is instead some kind of hybrid. Let us therefore make
the following guess for the general form of the grading preserving inner derivations on By:

Ouy = [La, Ly| + S[Lz, Ry| + [Ra, Ry, (5.17)

for 2,y € By and S € R. Actually, for derivations of the form given in Eq. (5.17) to
generate unitary automorphisms then z,y € A. Derivations of this form are automatically
compatible with the natural involution on By in the sense of Eq. (2.24b) for anti-hermitian
x,y € A. We do however have to check that these derivations satisfy the leibniz property
given in equation (2.24a):

Sy (ab) = 8y ()b + adyy (D) (5.18a)
Suy(Lah) = Ly, oh + LaOuy(h), (5.18h)
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Checking (5.18a) is fairly straightforward; we have:

Oay(a)b + adyy (b) = [[z,y], alb + a[[x, y]b]
[z, y], ab] = 6,,(ab) (5.19)

for a,b,z,y € A. We see that the required Leibniz property is satisfied for all values of
k,S € R. Checking condition (5.18b) is a little more leg work, but yields:

L‘Swyah + La5wy(h) - L[[J},yLa}h + (2 + S)-La[Lm; Ly]h
= 5 [La, Ly)Loh + (24 S — 75) La[ Ly, Ly h. (5.20)

We see that condition (5.18b) is only satisfied when S = 1?12 — 2. We therefore take inner
derivations on By to be of the form

ey = [Los L) + (G = 2)[Le Ry] + [Re, R (5.21a)

where x, y are anti-hermitian elements in A. Notice that when acting on elements in A the
derivations given in Eq. (5.21a) collapsed to the usual associative form 6,y = Ly 4 — Rz,
while on elements of H it collapses to the Jordan form d,, = 1%2 (L, L,]. In other words, we
could have constructed these ‘associative-jordan’ inner derivations directly by considering
at the outset the general form 0 = d4 @ dgy, in which case we would find:

0= L[m,y] — R[ac,y] ) I%?[Lx? Ly] (5.21b)

5.2.2 Associative-alternative representations

In associative NCG many left right symmetric models of interest beyond the standard
model are excluded by the associative order one condition. In a recent paper | | the
associative order one condition was removed in order to build a Pati-Salam type model.
Let’s go one step further and look at representations in which the order zero condition is not
satisfied. Consider for example a model in which the finite associative algebra A = M,,(C)
is represented as a real algebra on the input Hilbert space H = C?:

m(a) = (g 2) . J= ((1) (1)) o ce, (5.22)

for a € A. While A is associative, By is not because the order zero condition is not satisfied.
Unlike in Subsection 5.2.1, let us use the prescription for determining the inner derivations
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of By that we developed in Subsection 3.3.1. To start with we know that general inner
derivations will take the form:

§ =640, (5.23)

where because the sub-algebra A is associative, 04 will be of the form L, — R, where x
is an anti-hermitian element of A. Derivations on By must satisfy the Leibniz conditions
given in equation (2.24a), and so we have:

{5H7 La] = L[az,a] = [Lma La]

=g = L, + 0p (5.24)
[6H7 Ra] - R[z,a] - _[Rm Ra]
where [L,,0g] = [Ra,0r] = 0 for all a € A. For an associative representation satisfying

the order zero condition (ie [R,, L;] = 0 Va,b € A) one could simply set 60, = L,, and
0r = —R,, in which case a general derivation would be of the form § = (L,—R,)®(L,—R,).
In other words we would recover Connes inner derivations because By would be associative.
Unfortunately this example representation does not satisfy the order zero condition, and
so at first glance it looks as though By may not have any non-zero inner derivations. The
reader may check however, that for anti-hermitian x € A that indeed L, = —R,. So finally,
we may write general inner derivations on By as:

§=(L,— R))® L, = (L, — R,) ® R, (5.26)

for any anti-hermitian x € A. Notice that in the case were we may write x = [y, z] for
anti-hermitian y, z € A, then (5.26) may be written as:

0= ([Lyv Lz] - [sz Ry]) 2 ([LwLZ] + [Ly7LZ] - [Lya Lz])
= ([Ly, L:] + [Ry, R:] + [Ly, R.]) ® ([Ly, L:] + [Ry, R.] + [Ly, R.]), (5.27)

where on the associative input algebra, terms of the form [L,, R,| (ie. associators) are
equal to zero. We may therefore write all such inner derivations on By compactly as
Ouy = [Ly, L.] + [Ly, R.] + [Ry, R.] for z,y € A, which comparing with Eq. (2.28d) we
notice to be of alternative form. Notice also that [a, h,b] = —[b, h,a], |a,b, h] = —[b, a, k],
and [h,a,b] = —[h,b,a] Va,b € A;h € H, which are all alternative conditions as given in
Eq. (2.7)*. For this reason I will call this kind of representation an associative-alternative
representation.

I Actually these last two conditions are trivially true because the representation is both left associative,
and right associative
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5.3 Non-abelian outer symmetries

As outlined in Section 3.3, finite NCGs often have automorphism groups which are larger
than just the group of inner automorphisms of A because their corresponding fused algebras
By are not semi-simple. These extra symmetries (in the U(1) case) have been explored
in the NCG literature, and are known as central extensions [ , |. The gauged
B-L symmetry, and local SO(4) symmetry which appears in the extended NCG SM are
both examples of such ‘extended’ symmetries, as they are not constructible from input
algebra elements (see Section 4.2). In this section I provide example models which display
non-abelian ‘extended’ or ‘accidental’” symmetries.

5.3.1 Jordan algebra example

Consider the input data {A, H = A%, J,v}, where A is the finite, unital, Jordan algebra of
n X n complex hermitian matrices with representation 7(a) = ally on H, and:

J— (]?2 %) o(x), 7= G)? _%2> = ;. (5.28)

The grading preserving automorphisms of the fused algebra By = A @® H are generated by
derivations of the form:

0p =04 D om, (5.29)

which must satisfy the Leibniz condition given in Eq. (2.24a), and also preserve the invo-
lution on B in the sense of Eq. (2.24b):

dp[(a—+h)(a"+ 1) =dpla+ hl(a"+ ")+ (a+ h)dgla’ + ']

= (daa + 0gh)(d + ')+ (a+ h)(dad + ouh’) (5.30)
dp(a* + h*) = d4(a*) + ouJh
sz(a)* +J5Hh:53(a—|—h)*. (531)

for a,d’,dpa,opa’ € A, and h,h',dgh,0gh’ € H. The Leibniz and involution conditions
together with grading compatibility imply:

[5H, La] — LéAa; [5H; Ra] - R5Aa7 [5H7 '7] = 07 [6H7 J] = 07 (532>
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for a € A and where the derivations on the subalgebra A are all inner, and take the form
given in Eq. (2.28¢): 64 = [Ly, L,]. The anti-hermitian derivations dp = d4 @ dy which
satisfy all of these conditions on B are given by:

Opy = [La, Ly ® ([La, L) + T, r,ye A (5.33)
where:
T,L,) =[T,R,] = [T,~] =T, J] =0, T =-T. (5.34)

The generators T which satisfy these conditions are of the form:

To= (0 —Z'H) L= (o E) (5.35)

But these are the infinitesimal generators of U(2), and so the full symmetry group of this
model will be given by SU(n) x U(2).

5.3.2 Pati-Salam revisited.

One of the unexplained features of the NCG SM is that it takes as part of its finite
input the Quaternionic algebra. Chamseddine and Connes are able to derive much of
the NCG SM data from very minimal assumptions [ |, but the quaternions H remain
as a mysterious input. Why for example is the input algebra of the NCG SM given by
C @ H @ M;3(C) and not the seemingly more natural C @ My(C) @ M;(C) | , 1?7
Recent attempts at going beyond the NCG SM also rely heavily on the quaternions. For
example, attempts have been made to construct Pati-Salam? type extensions and ‘grand
symmetry’ extensions by enlarging the finite input algebra to H @& H @ M4(C) | ]
or M,(H) & Ms(C) | ]. These extensions however do not satisfy the associative
order one condition. Rather than enlarge the input algebra, it might be possible to obtain
the desired symmetries of a model as ‘extended’ symmetries by reducing the size of the
input algebra. In particular Subsection 5.3.1 promotes the idea that we might be able to

2The Pati-Salam model is a grand unified theory in which the quarks and leptons are grouped together
into a ‘lepto-quark’ quadruplet charged under an SU(4) gauge symmetry | ]. The model has left-right
symmetry, in the sense that both left handed and right handed particles are charged under SU(2) gauge
symmetries, such that the full gauge group of the model is given by SU;4(4) x SUL(2) x SUg(2). The
model predicts the existence of a high energy right handed weak interaction with heavy W’ and Z’ bosons.
It is a viable alternative to Georgi-Glashow SU(5) unified models, and can be embedded within an SO(10)
unification model.
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construct Pati-Salam type models in which the group SU(2) x SU(2) x SU(4) is obtained
in this way.

Consider the finite data {A, D,H = C32,J, v}, where A is the associative algebra of
4 x 4 complex matrices My(C), with representation 7(a) = diag{aly,aly} and on the basis
of ‘lepto-quarks’ {ur,dr,ugr,dr,ar,dr,ugr,dr} we have:

SO ) e

where the (%) operation is complex conjugation. We can again form the fused algebra
By =A® H, and determine its derivations, which are of the form:

0y = (Ly — Ry) & (Lo +T) (5.37)

for anti-hermitian x € A. The inner derivations therefore generate the group SU(4). The
infinitesimal generators 7' must satisfy the conditions given in (5.34), and are of the form:

T = diag{a‘io; + a"ily, b'io; + BYlly, a'ic; — a'illy, b'io; — BYill,} (5.38)

for a,b, o, f € R. Eventually if we were to construct an almost-associative NCG out of this
model, then anomaly cancellation would impose that @ = 3, which means that the extra
U(1)’s are actually degenerate. In other words, the full symmetry group is given by.

SUL(2) x SUR(2) x SU(4) x U(1), (5.39)

Note that one might also consider imposing the so called ‘unimodularity condition’ [
], to restrict further to the group SUL(2) x SUR(2) x SU(4), but I won’t consider this
possibility here.

Next consider equipping a finite Dirac operator D

_(Ds Dr
D= (D; 55)' (5.40)

where in KO-dimension 6:

. 0 D H - D 1 0
b= (2 7). pom (B 0) san
where D7 is symmetric. This is as far as D can be restricted without imposing higher order
conditions. Notice that in the construction of the Pati-Salam model given in | | the
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authors build a NCG which satisfies the associative order zero condition, but which does
not satisfy the associative order one condition. In other words By is associative, but (B
is not. Without an order one condition there is no reason a priori for restricting the finite
Dirac operator any further than that shown in Eq. (5.41), and one should expect when
fluctuating the Dirac operator to see the full set of Higgs fields outlined in the appendix
of | | (rather than the restricted set mentioned in their abstract).

Fortunately we do have higher order conditions which we are able to impose. In par-
ticular this geometry has been constructed as an associative-alternative representation in
the sense of Subsection 5.2.2. It is therefore natural to impose the associative-alternative
order one condition:

(d[a], h, b] = —[b, h, d[a]] (5.42)

A full analysis of the resulting Higgs sector is yet to be completed but one might hope
that the order one condition given in Eq. (5.42) might leave only the phenomenologically
desirable Higgs fields, while eliminating the excess unwanted fields found in | .

5.3.3 Exceptional Jordan algebras and unification.

Apart from a few exotic cases, all of the non-associative NCGs that I have described in
this work have been based either on the octonion algebra, or on Jordan matrix algebras.
This thesis would be incomplete without a brief discussion of the algebra which is most
interesting for non-associative model building, and which draws together many of the most
interesting properties of both the Jordan algebras and octonions: the exceptional Jordan
algebra. The vector space of the exceptional Jordan algebra J3(Q) (sometimes called the
‘Albert algebra’) is the 27 dimensional real vector space of 3 x 3 hermitian octonionic
matrices, ie. elements of the form:

< =<2
N| = >

Y
Z (5.43)
C

for a,b,c € R, and X,Y,Z € O, and where the bar indicates octonionic conjugation.
The product is given by the symmetric octonionic matrix product Ao B = AB + BA,
for A, B € J3(0). This algebra is known as exceptional because according to a famous
classification theorem of Jordan, Wigner, and Von Neumann, Jordan algebras fall into one
of four infinite families with just this one fascinating exception.
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As mentioned in Subsection 2.1.2 the octonion algebra is interesting from the perspec-
tive of non-associative model building because it is 8 dimensional (the SM fermions come
in groups of 8), and it has both SU(2) and SU(3) as subgroups of its automorphisms. One
of the downsides of using the octonions however is that one still has to explain the three
generations of fermions. Three ‘generations’ (and a tiny bit of ‘dark’ matter) is a feature
of the exceptional Jordan algebra. Unfortunately, the Exceptional Jordan algebra is often
discarded as a useful candidate for unified physics because it has F} as its automorphism
group. The group F} is of rank 4, but it does not have SU(3) x SU(2) x U(1) as a sub-
group | |. Fortunately this is not a problem in our approach because the symmetry
group of an NCG is in general larger than the inner automorphisms of its input algebra.

Let us look a bit closer at the representation outlined in Eq. (5.43). When analyzing the
symmetries of the octonion algebra one finds that the subgroup of the automorphisms which
leaves both the identity element, and one of the imaginary basis elements fixed, is SU(3).
Similarly, the exceptional Jordan algebra is constructed from three off-diagonal octonion
elements, and three diagonal real elements, and so it is natural to ask: ‘does Fj have a
subgroup which leaves the three diagonal real elements, as well as the real element and one
imaginary element from each off-diagonal octonion invariant?’ The subgroup is once again
exactly SU(3). In other words, on breaking down from Fy to SU(3) one obtains three
‘quark’ triplets, three ‘lepton’ singlets, and three ‘Majorana’ like dark matter candidates.
The hope would be to obtain the electroweak symmetry as outer ‘extended’ automorphisms
between two copies of the exceptional Jordan algebra, and as is outlined in Section 5.1 if
one represents J3(0) on itself in KO dimension 6 one is forced to take multiple copies in
order to obtain a non-trivial Higgs sector.

These are just some preliminary thoughts on this topic, which I hope to flesh out into
a more complete model in the future.
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Chapter 6

Conclusion and outlook

We have presented an approach to NCG which naturally extends to describe non-associative
geometries. The key idea is very simple: we draw together the elements held in a spectral
triple into a single ‘fused’ algebra Q2B:

{A,H,D,~,J} < QB

The elements {H, D, J,~v} are seen as extending the xDGA QA = {A,d,*}, where the
representation H is seen as the extension of the underlying vectorspace and product, D is
seen as extending the differential, J is seen as extending the involution, and + is seen as
extending the grading!. At the same time the various axioms and assumptions of NCG
are reformulated in terms the intrinsic properties of 2B: for associative NCG, 2B is an
associative, involutive x*-DGA. Their are two key benefits to this approach:

1. It provides a more unified description of the various elements of a NCG, and a natural
description of the symmetries of a NCG as the automorphisms of Q2B.

2. It readily generalizes to describe non-associative geometry in the sense that (2B need
not be associative.

The simplicity of our formulation elucidates many aspects of NCG in both the associa-
tive and non-associative setting. In particular it has already seen three applications:

1. The axioms of a NCG become in some sense ‘derivable’ from the intrinsic properties
of 2B. What we find are a set of ‘new’ constraints in addition the traditional NCG

!depending on the perspective taken.
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axioms which arise as higher order associativity conditions on 2B. These new condi-
tions can be used to place phenomenologically accurate restrictions on the NCG SM
Higgs sector.

2. If one analyses the automorphisms of the fused algebra (2B corresponding to the
NCG SM, one finds instead a minimal and viable extension by an additional gauged
B — L symmetry. This symmetry fluctuates an additional complex scalar field which
has two roles: (i) it extends the scalar sector, and allows compatibility of the model
with the 125GeV Higgs detection. (ii) The extra scalar ‘Higgses’ the additional
gauged B — L symmetry. The perspective that the symmetries of NCG arise as the
automorphisms of Q2B also allows one to explore more exotic extensions to the SM
in which non-abelian gauge symmetries are obtained as outer automorphisms.

3. If one constructs a non-associative fused algebra (2B, then the appropriate non-
associative generalizations of the NCG axioms become in some sense ‘derivable’ from
the intrinsic properties of 2B. In other words, one need not analyze the generalization
of each axiom independently! This fact has allowed us to construct a wide range of
example non-associative geometries.

There is now fertile new ground for future work. We must continue exploring the
particle phenomenology and cosmology of our gauged B — L extended SM, and there are
now a wide range of models to consider building, including Pati-Salam-type GUT models,
and GUT models based on the exceptional Jordan algebra. There are also still many subtle
issues surrounding the Junk and the higher order conditions that must be ironed out, as
well as the appropriate generalizations of cyclic (Co)homology to be made for the classes of
non-associative algebras of interest. It is interesting to ask if our formalism has anything to
say about the three particle generations, and also to what extent KO-dimension 0 models
are singled out. We now have an object (0B which contains all of the physically relevant
fields, and so it is curious to ask if one could quantize it using well-known tools which
already exist for quantizing differential graded algebras such as those methods applied
in the Batalin-Vilkovisky approach. These are among the exciting new areas of research
which are opened up by our fused algebra approach to NCG, and which we are currently
considering.
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Appendix A

The B-L extended NCG SM action

In this Section I will explicitly construct the bosonic and fermionic actions of the gauged
B — L extended NCG SM which was introduced in Section 4.2.1. The calculation follows
exactly the prescription outlined in | | for the base standard model, and the reader
is encouraged to consult that reference for further detail.

A.1 Squaring the Dirac operator

The action corresponding to an almost-commutative geometry is constructed from both a
bosonic, and a fermionic part. The first step in constructing the bosonic part of the action
is squaring the fluctuated Dirac operator. The full fluctuated Dirac operator for an almost
commutative geometry is given by D = —iy*(0, +w,) @ Ip — iy*Fl(2) @ 6; + 75 @ ® (sce
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Eq. (2.87)). We start by first working out the square of the curved space Dirac operator:

(lD)Q:_'YH(a +lwuab7 ) Y0, + WVfg'Y 9)

= =7 (O + §Wuary™) (B + 1w rg7’)
(Y Ouel + §eewpanl[y® ] ])(3 + W)

= =" (0, + wuaw )(a + {9
V(Y Ol + gelwuan(n” " = 1°v")) (0, + fwirg?’?)

= =" (9 + {Wpar?* )3y+iwym )

— VY (Ol + wnenn™) (O + Lwy 7Y
= —7""{(0, + 'Wuab’Y )(61/ + zl;WVfg’V ) — Fgu(&, + iWUfQVfg)}
= —W“VV{VEV F‘;M o (A1)

Having determined the square of the curved space Dirac operator, we next include the
gauge connection terms by defining —m“vf = —m“vﬁ + F, where F = —i'y“FZcSi =
—iy* (AL oy + K0, + QZ o + V’(SC), with the potentials corresponding to gauged B — L,
hypercharge weak and strong forces respectively. Using this notation, squaring (—i~y* Vf )2
then yields:

(—iy"vi)? = —V”VVVEVE — Ve,V

= =" (V. v, =T}, v7)
= —g"”(V“V — T, 97) = 50" VLV
= —g" (v, v, =T}, V7
— %[’y ’y ](Guwy +w,0, + 0, F, + F,0, + wyw, +w, F, + Fw, + F,F,)
—g" (Vv = T},V7)
— il ]([%awu] — [0, wul + W, wi] + [0, 2] = [0, Fu] + [Fu, F])
= —g" (Vv =T, VE) = 57" (D, + Fu), (A2)

where ny = [Vﬁ, VSl = 1Rupry?y" and F, = 0,F, — 0,F, + [F,, F,]. Finally, the square
of the full Dirac operator is given by:
D? = (V2 + ASF + FAS + F? + N8 + 30N + Fd + OF + @2
= (VO 4 450 AF + APy d + 02
—g" (Vv = TR, 7) = 39" (g, + Fu) — 5[v7, @] + &7

=NF — }—lR — 57 AN Z e — v5[VE, @] + P2 (A.3)
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A.2 The heat kernel expansion

Having determined the form of the square of the Dirac operator the next task is to calculate
the heat kernel expansion of the bosonic action. Following | | the Heat kernel
expansion for an almost commutative spectral triple is given as:

Sy = Tr[f(D/A)] ~ 2fiMao(D?) + 2foM2as(D?) + f(0)as(D?) + O(A™Y)  (A.4)

where the Seeley-DeWitt coefficients are:

ax(D?) = /M ax(x, D?)y/Jgld'z, (A.5)

and ignoring boundary terms the first three coefficients are given by:

ao(x, D?) = (47) " 2Tr(1d) (A.6)
as(x, D?) = (47) 2 Tr(L R — ?) (A.7)
as(x, D?) = (47) "3 %Tr(éﬂﬁ — 9Ry R 1 2R, R+ 3005054 4 60RD?

+ 180(37"Y VY Zuw Zpr — 3RO* — =iV, ®]* + @) (A.8)

I will ignore gravitational interactions from here out, in which case the full bosonic action
is given by:

Sy ~ \/W (0 iV, o) — f{(;)A2¢2+¢4—%FuuF“”]+O(A1> (A.9)

where the trace is over the finite degrees of freedom. We can use the form of the gauge
generators to determine more explicitly the form of the gauge kinetic terms:

Tr[Fp ™) = Tr{Au A" + K K™ + QuuQ™ + Vi V]
= 24(F AW A + P K + K A + Tr(QuQ™ + Vi V™)) (A10)

where in the last line the trace is only taken over the generators o; and \;. Finally we are
able to introduce gauge coupling constants by defining:

Au = %gyB;u Ku = %gb—lc;u QZ = ng V,z = %QCGZ- (A'll)
In which case the gauge kinetic terms can then be written as:

24
Tr(F P = 5 (G BB + 302 CoC™ + 49119, B,0C"

+ @2 W, W + g2G, G"™) (A.12)
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Next we calculate the scalar kinetic terms as:

Trl=[—iy"v,, @) = 0" Tr([0, + Z,,, ][0, + Z,, D]
= 4a|0,¢ — $B,i¢ + 5iW,,0:0|* + 2¢/(0, — 2iC,)o |, (A.13)

and the scalar potential terms as:

4 4
Tr[— f2 pogr 1) = — /2 A%(4a|p)? + 2¢|o|?) + 4b|o[* + 8e|o|?|¢|* + 2d|o|*  (A.14)
f(0) f(0)
where we have defined:
a=Tr[YY,+ Y'Y, +3Y,)Y, +3Y;Yy (A.15a)
b=Tr((Y;Y,)? + (Y2Yo)? + 3(Y, V) + 3(Y;Ya)?] (A.15b)
c=Tr[Y)Y,] (A.15¢)
d=Tr[(Y}Y,) (A.15d)
e=TrlYY,Y)Y,] (A.15¢e)
Putting everything together, the full bosonic action is:
S, i / 2|06 — 39, Byid + LguiWiciol + |8 — 2gpiC)o]
M
—mp|¢|* —mi|ol* + Aglgl* + 2An|o PO + Ao lo]*
— i(fijALijW + W, W +G,G") (A.16a)

where we have re-expressed the U(1) kinetic terms in the action as —i [}, d4mi§ijAZUAj“”,
where A% = By, and A, = C,,,. We have also normalized the scalar fields to absorb the
coefficients in their kinetic terms. The various coefficients are then given by:

2 2 f2 2
— =22 A Al
m¢ my, 27r2 ( 7a)
272bh 8m2e 47%d
? 7 f(0)a?’ f(0)ac f(0)e ( )
{Bp = 2];(20)%9;’ {c = Ecp = %%gygb_z, o = 2J:r(20) 391 (A-17c)

Normalizing the gauge kinetic terms, and setting {égp = £oc = 1 fixes Epe = éop =
V/1/10, and 2¢2 = 87 = g, = g,. This normalization also fixes the value %(20)95 =1 at
the scale A at which the action is defined.
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A.3 The NCG SM fermionic action

The total NCG SM action is composed of a bosonic, and a fermionic part. Our next
task then is therefore to determine the form of the fermionic action, which Connes and
chamseddine give in KO dimension 2 as:

5y = HvIDV) = § [ da(av|Dw) (A18)

restricted to the set of anti-commuting Grassmann variables ¢’ for even vectors ¢» € HT,
with HT = {4 € H|y) = ¢}. We can decompose the fermionic action into three parts:

5V DY) = 3{J¥|(—in"8, © 1)y)
+ 3 (TN (=ir" Fy ® 6,)0')
+ 1T (35 © @)¢) (4.19)

A general element of the tensor product of two spaces consists of the sums of tensor
products, so an arbitrary element of H' can be written as:

V=xXrRQUr+ XL @V +Er® VL +&, @ Vg (A.20)

By an abuse of notation, let us write v*, 7%, e}, &*, u¢ as a set of independent
Dirac spinors, where the A labels family indices, and ¢ labels colour. We can then write a

generic anti-commuting Grassman variable for the NCG SM as:

_ —cA
A )\7 uc)\, ch) d

V= Up QUE U QU TR T, T QT
+ep@epte; ey +epRe; +2; REp
+up @ up +up @up + Uy @U) + Uy @ Up
td e +d od +dy®d, +d, @dy
Next, notice that the week force generators will mix v, € Hr and e;, € Hp, and similarly
for the left handed quarks. Choosing the normalization e = ic®, Tr[c%c?] = 2% for the

SU(2) generators, and also T% = i\, Tr[A*\] = 26 for the SU(3), the gauge coupling
terms are then given as:

HIY|(—Lgo"C @ 8" ') = Lo 1 Cu [+ (TP |y 0?) + (e |y e?)
_ —A
— L@ |y ety — S Jyd |y d)]
Y _
= 29,10, < Jul "1 > =2 (@ ")) (A.21)

159



5 (V=597 By @ 8)Y') = =19y Bu[ (I " (1 + 75)0*)
— (Ju@ (1 + y5)e”) + 4(Jyet |y e?)
+ (I (1 + ys)uy = S (Tl u)
— (I |1+ 75)d) + STy |y )]
= — L, Bul(Jnl Iy (1 +75)0°1)
(Tl (L + )0l
+ 4<JME>‘|7“6’\> — %(JMﬂ]’y“u’\>
+ 4 < Jyd |y )] (A.22)

STV (=297 Wi & 62)0) = 19uW, [+(IuP 7" (1 4 75)e™)
+ (T (L + ys)0)
+ (S |y (1 4 75)d™)
F (Tud (L + )
+ 390 Wi = (TP |in" (1 + 75)e)
+ (T iy™ (1 + 45)?)
— (I i* (1 4 5)d™)
 (Tad [y (1 + y5)u)
+ 190 WP (1 4 75)07)
— (S (1 +75)e)
+ (I (1 + 5 )u)
— (I (14 75)dY)
= g, Wil |y (1 + 95)eil?)
+ (@ " (1 + y5) 0007 (A.23)

. . _ . _)\ .
STV (=590 G, @ 55)Y") = 596G (I [y idiu )+ < Taed [y iNd™)]
= 39.G, (I " iNig™) (A.24)
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Next we determine the ‘derivative’ part of the fermion kinetic part of the action:

LY |(=ir"8, @ T') = —i[ (TP 7 0,) + (Ju@ |/ 0ue?)
+ (@ 0,u) + (Jard [7#8,d)]

Finally the Yukawa terms are given by:

%(JT//‘(’YS ® ®)Y) = %[2<JMVR’YV(¢173 + ¢2€R))
— 2(JnTL|Y) (Pve + oer))
—2(Jmer|Y (drer — govr))
+ 2(Jaer|Ye(d1€r — GoVR))
+ (Jyvr|Ysovgr) — (JyvL|YSo0L)
+ 2(Jnur|Yu($1Tg + ¢2dr))
— 2(JnTL| Y, (Prur + dody))
— 2(Jndp| Yy (drdr — our))
+ 2(Jndr|Ya(1dr — douR)) (A.25)
Which we re-write compactly as:
3 (U (3 @ ®)') = [(TnvrlYoolr) — (Iumr]Y) ¢lL))
+ (Juer|Yedioolr) — (Jaer|Y, dioslr)
(Tarur|Yudr) — (Jartip|Yy éqr))
(

Indg|Yadioaqr) — (Judp|Yy dioaqy)

+
+
+ %<JMI/R‘YUUI/R> - %(JMEL‘YU*WLH

where the [ and ¢ are lepton and quark doublets.
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