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Abstract 

Soil moisture information is critically important to weather, climate, and hydrology 

forecasts since the wetness of the land strongly affects the partitioning of energy and 

water at the land surface. Spatially distributed soil moisture information, especially at 

regional, continental, and global scales, is difficult to obtain from ground-based (in situ) 

measurements, which are typically based upon sparse point sources in practice. Satellite 

microwave remote sensing can provide large-scale monitoring of surface soil moisture 

because microwave measurements respond to changes in the surface soil’s dielectric 

properties, which are strongly controlled by soil water content. With recent advances in 

satellite microwave soil moisture estimation, in particular the launch of the Soil Moisture 

and Ocean Salinity (SMOS) satellite and the Soil Moisture Active Passive (SMAP) 

mission, there is an increased demand for exploiting the potential of satellite microwave 

soil moisture observations to improve the predictive capability of hydrologic and land 

surface models.   

 

In this work, an Ensemble Kalman Filter (EnKF) scheme is designed for assimilating 

satellite soil moisture into a land surface-hydrological model, Environment Canada’s 

standalone MESH to improve simulations of soil moisture. After validating the 

established assimilation scheme through an observing system simulation experiment 

(synthetic experiment), this study explores for the first time the assimilation of soil 

moisture retrievals, derived from SMOS, the Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E) and the Advanced Microwave Scanning 

Radiometer 2 (AMSR2), in the MESH model over the Great Lakes basin. A priori 
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rescaling on satellite retrievals (separately for each sensor) is performed by matching 

their cumulative distribution function (CDF) to the model surface soil moisture’s CDF, in 

order to reduce the satellite-model bias (systematic error) in the assimilation system that 

is based upon the hypothesis of unbiased errors in model and observation. The satellite 

retrievals, the open-loop model soil moisture (no assimilation) and the assimilation 

estimates are, respectively, validated against point-scale in situ soil moisture 

measurements in terms of the daily-spaced time series correlation coefficient (skill R).  

 

Results show that assimilating either L-band retrievals (SMOS) or X-band retrievals 

(AMSR-E/AMSR2) can favorably influence the model soil moisture skill for both surface 

and root zone soil layers except for the cases with a small observation (retrieval) skill and 

a large open-loop skill. The skill improvement ΔRA-M, defined as the skill for the 

assimilation soil moisture product minus the skill for the open-loop estimates, typically 

increases with the retrieval skill and decreases with increased open-loop skill, showing a 

strong dependence upon ΔRS-M, defined as the retrieval skill minus the model (open-loop) 

surface soil moisture skill. The SMOS assimilation reveals that the cropped areas 

typically experience large ΔRA-M, consistent with a high satellite observation skill and a 

low open-loop skill, while ΔRA-M is usually weak or even negative for the forest-

dominated grids due to the presence of a low retrieval skill and a high open-loop skill. 

The assimilation of L-band retrievals (SMOS) typically results in greater ΔRA-M than the 

assimilation of X-band products (AMSR-E/AMSR2), although the sensitivity of the 

assimilation to the satellite retrieval capability may become progressively weaker as the 
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open-loop skill increases. The joint assimilation of L-band and X-band retrievals does not 

necessarily yield the best skill improvement. 

 

As compared to previous studies, the primary contributions of this thesis are as follows. 

(i) This work examined the potential of latest satellite soil moisture products (SMOS and 

AMSR2), through data assimilation, to improve soil moisture model estimates. (ii) This 

work, by taking advantage of the ability of SMOS to estimate surface soil moisture 

underneath different vegetation types, revealed the vegetation cover modulation of 

satellite soil moisture assimilation. (iii) The assimilation of L-band retrievals (SMOS) 

was compared with the assimilation of X-band retrievals (AMSR-E/AMSR2), providing 

new insight into the dependence of the assimilation upon satellite retrieval capability. (iv) 

The influence of satellite-model skill difference ΔRS-M on skill improvement ΔRA-M was 

consistently demonstrated through assimilating soil moisture retrievals derived from 

radiometers operating at different microwave frequencies, different vegetation cover 

types, and different retrieval algorithms.  
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CHAPTER 1 

Introduction 

 

1.1 Background  

 

Changes in the spatial and temporal distribution of water resources are expected to play a 

major role in driving the impacts of climate and global change on human settlements and 

infrastructure (Bates et al., 2008). The monitoring and prediction of water resources under 

climate change typically rely on in situ and remote sensing observations, and reliable 

numerical modeling systems. In situ observations of hydrological conditions (e.g. 

precipitation, snow, soil moisture and evapotranspiration) are generally based upon uneven 

point sources, and have limited and sparse spatial coverage except in developed areas or 

well-designed field experiments. Satellite remote sensing offers better geographical 

coverage and holds the capability to provide large-scale spatially distributed 

measurements. A variety of hydrology-related variables, such as precipitation, snow cover, 

snow water equivalent, surface soil moisture, land surface temperature, leaf area index, and 

evapotranspiration, can be estimated using remote sensing (see the review papers by 

Rango, 1994; Tang et al., 2009; Zheng and Moskal, 2009; Li et al., 2009; Wang and Qu, 

2009; Dietz et al., 2012). Overall, however, the temporal and/or spatial coverage of remote 

sensing measurements is still not sufficient for many practical applications because remote 

sensing provides only instantaneous values of the object within the sampled area 

(instantaneous field of view, IFOV) at the observing time. Additionally, satellite remote 

sensing cannot measure the information (e.g. soil water content) below a thin surface layer.  
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On the other hand, land surface and hydrological model simulations, in particular for 

physically-based distributed models, allow for the estimation and prediction of hydrologic 

conditions at desired spatial and temporal scales. In practice, however, land surface and 

hydrologic modeling is often difficult because we have neither a perfect forecast model nor 

perfect forcing data. The accuracy of state estimation suffers from uncertainties in forcing 

fields and deficiencies in model physics and/or parameters. To improve the model 

simulations, one may constrain the model forecasted state in time with observations. A 

simplistic method is a direct insertion, which uses observations to directly replace the 

corresponding model predictions at measurement times. Nevertheless, observation errors, 

which always exist but are ignored in the direct insertion method, could degrade the state 

estimation (Additionally, a direct insertion is applicable only when the model variable is 

directly connected to the observed variable). To circumvent these problems, observations 

should be integrated into the model dynamical framework by taking into account both the 

model forecast and observation errors. The effects on the state estimation (analysis) of the 

model and observations will be controlled by their respective error statistics. This allows a 

state estimation superior to either the model forecast or the observation alone to be 

produced. Meanwhile, the observed information can, by means of consistency constraints 

based upon the time evolution and physical properties of the system, spread to times and 

locations that are not directly observed. This is the basic concept of data assimilation. 

 

Soil moisture information is critical to the monitoring and modeling of climate and 

global changes (e.g. Zhang and Frederiksen, 2003). As a reservoir for evapotranspiration, 

soil moisture has an important controlling on the partitioning of energy fluxes between 
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latent and sensible forms at the land surface. In the presence of extensive soil moisture 

anomalies, land surface fluxes may modulate the large-scale atmospheric circulation during 

the summer (e.g. Wolfson et al., 1987; Fischer et al. 2007). Soil moisture affects 

precipitation across a range of spatial and temporal scales (e.g. Talyor et al., 2012; Collow 

et al., 2014). Soil moisture regulates the partitioning of rainfall into runoff (surface 

discharge) and infiltration on land surfaces, and therefore has significant impacts upon 

streamflow forecasting in rainfall-runoff models (e.g., Maurer and Lettenmaier, 2003; Berg 

and Mulroy, 2006).  Traditionally, soil moisture can be in situ measured using a gravimetric 

method or ground-based sensors (probe, time domain reflectometry, ground penetrating 

radar, etc.). In situ measurements typically serve as the “ground truth”, but spatially 

distributed soil moisture information, especially at regional, continental, or global scales, 

is difficult to estimate from in situ measurements that are typically based upon sparse point 

sources in practice. Satellite microwave remote sensing (e.g. Jackson, 1997; Bindlish et al., 

2003; Njoku et al., 2003; Owe et al., 2008; Kerr et al., 2012; Entekhabi, et al., 2010a) holds 

the ability to provide a large-scale monitoring of surface soil moisture because microwave 

measurements respond to changes in the surface soil’s dielectric properties, which are 

strongly controlled by soil water content. Over the past decade, satellite microwave soil 

moisture retrievals have shown great potential to improve the predictive skill of land 

surface and hydrologic models, especially through data assimilation techniques (see section 

1.2.3). In a data assimilation system, near-surface soil moisture information derived from 

satellite microwave measurements can spread to deeper soil layers that cannot be directly 

measured by satellite microwave sensors. Furthermore, soil moisture observations from 
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different satellite platforms can, through data assimilation, be merged within the same 

model framework to yield a single optimal soil moisture estimation. 

 

With recent advances in satellite microwave soil moisture estimation, in particular the 

launches of the Soil Moisture and Ocean Salinity (SMOS) satellite and the Soil Moisture 

Active Passive (SMAP) mission, there is an increased demand for exploiting the potential 

of satellite microwave soil moisture observations to improve the predictive capability of 

hydrologic and land surface models. This doctoral study aims to assimilate satellite 

microwave soil moisture observations into a distributed land surface-hydrological model 

and to demonstrate the contribution of the assimilation to the model soil moisture estimates 

for both surface and root zone soil layers. The improved soil moisture estimates resulting 

from the assimilation would benefit weather and climate forecast initializations. In the long 

term, outcomes of this study can improve the monitoring and prediction of water recourses 

under climate change, thus providing better guidance for water resource related 

applications and management. 

 

1.2 Literature review 

 

1.2.1 Data assimilation methods 

 

In essence, data assimilation aims to estimate a posterior probability density function (PDF) 

of the model state given observations from one or more sources (Bayes' theorem). A great 

number of data assimilation methods have been developed for land and hydrologic 



 
 

5 
 

applications (Table A1). In most cases, we assume that the model and observation errors 

are Gaussian, and thus the analysis problem can be resolved with either a maximum-

likelihood estimator (e.g. variational assimilation methods) or a variance minimizing 

estimator (e.g. Kalman filter, KF; extended Kalman filter, EKF; or ensemble Kalman filter, 

EnKF). A variational assimilation method (e.g. three-dimensional variational assimilation, 

3DVAR; or four-dimensional variational assimilation, 4DVAR) seeks the state with the 

maximum likelihood by minimizing a cost function that contains, at least, a background 

term, a measure of the misfit between the model state x (unknown) and the forecast 

background (a priori sate), and an observation term, a measure of the misfit between x and 

observations. In contrast, the Kalman Filter (KF) and its variants (EKF, EnKF) directly 

compute the Kalman gain matrix and derive the analysis state based upon the analysis 

equation, which is supposed to ensure minimum analysis error variances. In the KF and the 

EKF, an additional error covariance equation is utilized to propagate the model forecast 

error information while the EnKF uses a Monte Carlo sampling (an ensemble of model 

states and an ensemble of perturbed observations) to estimate error statistics and the 

evolution of the model forecast error information is implemented by integrating the 

ensemble of model states forward in time. As compared to the variational methods, a 

variance minimizing estimator is relatively easy to implement since an adjoint version of 

the forecast model is not required. These assimilation techniques are further detailed as 

below.   
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a. Variational data assimilation 

 

A variational method does not directly compute the analysis state. Instead, it seeks an 

equivalent solution to the analysis problem by minimizing a predefined cost function, given 

by 

ሻݔሺܬ ൌ ሺݔ െ ݔଵ൫ିܤ௕ሻ்ݔ െ ൯	௕ݔ ൅ 	ሾܻ െ ሻሿ்ܴିଵሾܻݔሺܪ െ  ሻሿ                 (1.1)ݔሺܪ

where xb represents the background (a priori) model state, Y  is the observation, B and R 

denote the respective error covariances of xb and Y. H is a linear or linearized observation 

operator, which relates the model state variable to the observed variable. The superscript T 

denotes the transpose of the matrix. The first right-hand-side term of (1.1) is called the 

background term, which is an objective measure of the misfit between the state x 

(unknown) and the background model state xb. The second right-hand-side term of (1.1) is 

the observation term, which quantifies the misfit between x and the observation Y. If 

multiple observation types (assuming the observation errors are uncorrelated) are to be 

assimilated, the observation term in (1.1) can be broken down into multiple terms, each 

observation type having its own observation term. Additionally, to impose additional weak 

constraints, more terms (e.g. the penalty term) can be added to the right-hand-side of (1.1).  

In practice, a suitable descent algorithm is needed to iteratively search for an approximate 

solution to the minimization of J(x). At each iteration step, a new estimation of x is made 

to produce as possible as great reduction in J(x). The search direction (descent direction) 

is determined based upon the local slope, i.e. the gradient of the cost function. When the 

minimum of J(x) is found, the corresponding x is the optimal analysis state. In a realistic 
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application, only a small number of iterations are performed to ease the computational 

burden. The cost function in (1.1) can be employed to different spatial dimensions, such as 

one-dimensional variational assimilation 1DVAR (e.g. assimilation of satellite sounding 

data) and three-dimensional variational assimilation 3DVAR (e.g. a global assimilation 

analysis of the 3D meteorological fields).  

 

Further, if the minimization is extended to the time domain, it is called the four-

dimensional variational analysis (4DVAR). The corresponding cost function is defined as 

௧బ൯ݔ൫ܬ ൌ 	൫ݔ௧బ െ ௕൯ݔ
்
௧బݔ	ଵ൫ିܤ െ ௕൯ݔ ൅ ∑ ሾ ௧ܻ೔ െ ௧೔൯ሿݔ൫ܪ

்ܴ௧೔
ିଵ	ൣ ௧ܻ೔ െ ௧೔൯൧ݔ൫ܪ

௡
௜ୀ଴   (1.2) 

In (1.2), the observation term of the cost function contains the differences between the state 

x and observation Y over a time interval (t0 to tn), while the background term is defined 

only at initial time t0. The basic idea of 4DVAR is to seek an optimal state x at t0 (i.e. initial 

condition  ݔ௧బ	) to yield (through the forward integration of the model assuming the model 

is perfect) the sequence of optimal states ݔ௧೔	 (ti represent the observation time, i = 0, …, 

n), which will lead to the minimum of the cost function defined in (1.2). The minimization 

procedure of the 4DVAR cost function can be summarized as follows. (i) The forecast 

model is integrated forward (from t0 to tn) with a first guess of the initial condition to 

produce the forecast state at each observation time ti over the time interval, and the cost 

function (1.2) is calculated. (ii) The adjoint model of the forecast model (a conjugate 

transpose of the tangent linear model of the forecast model) is integrated backward to the 

beginning of the time window (from tn to t0), and the gradient of the cost function with 

respect to the initial condition is computed. (iii) Check whether the minimization 
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convergence criterion is met or not; if the convergence criterion is not met, the initial 

condition of the forward model is adjusted based upon the descent direction, which is 

estimated using the gradient of the cost function as calculated in (ii). (iv) Repeat the steps 

(i) to (iii) until the convergence criterion is met and the optimal forecast trajectory is 

determined. To perform 4DVAR, the construction of the adjoint model of the forecast 

model is required, and could be difficult if the forecast model is highly nonlinear and 

complex. In practice, some approximations have to be adopted when deriving the adjoint 

model (e.g. ignoring moisture physical processes in the adjoint atmospheric model) to limit 

possible numerical instability arising from nonlinear processes. The readers are referred to 

the relevant references (e.g., Talagrand and Courtier, 1987) for more details on the 

minimization of the cost function, the adjoint equations, and the descent algorithms  

 

Note that 4DVAR using the cost function defined in (1.2) deals with only the uncertainty 

in the model initial condition, and ignores deficiencies in the model physics and parameters 

(i.e. assuming that the model is perfect). This is the so-called strong-constraint, i.e. the 

sequence of model states over the time interval must completely comply with the forecast 

equations. To impose external weak constraints to deals with other errors such as the 

deficiencies in the model physics and noises in the forcing fields, additional terms can be 

placed to the right-hand-side of (1.2) (e.g. Reichle et al. 2001a). In 4DVAR, all the 

observations distributed in this interval are assimilated simultaneously, and the 

observational information is propagated not only from the past into the future but also from 

the future into the past. That is to say, the state estimation over the assimilation interval 
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(time window) is influenced by all the observations distributed in this interval. Therefore, 

4DVAR is a typical representative of the smoothing (or batch) algorithm.   

 

b. Kalman Filter and its variants 

 

The Kalman Filter (KF) and its various variants (extended Kalman Filter, EKF; ensemble 

Kalman Filter, EnKF) are typical ‘filtering’ (or sequential) assimilation techniques. As 

compared to the ‘smoothing’ algorithm 4DVAR, the implementation of sequential 

‘filtering’ technologies is relatively easy since an adjoint version of the forecast model is 

not required, and therefore makes themselves more attractive for land surface and 

hydrologic data assimilation. In the traditional KF, each assimilation cycle consists of two 

steps: a forecast step and an analysis step. In the forecast step, the forecast model is 

integrated forward in time (from an initial or analysis state) with an additional error 

covariance equation to propagate error information: 

௞ݔ
௙ ൌ ௞ିଵݔሺܯ

௔ ,  ௞ሻ                                                 (1.3)ݑ

௞ܲ
௙ ൌ ܯ ௞ܲିଵ

௔ ்ܯ ൅ ܳ                                              (1.4) 

where x and P denote the model state and the associated error covariance matrix, 

respectively; the subscript k denotes the time index; the superscripts f and a represent 

forecast and analysis, respectively. u denotes uncertainties in the model (errors in forcing 

data and/or deficiencies in model parameters/physics). M denotes the model operator and 

Q stands for the model error.  
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In the analysis step (time index k omitted) the new observation is used to adjust the current 

forecast estimation. The analysis equation of the KF is given by, 

௔ݔ ൌ ௙ݔ ൅ ܲ௙்ܪ	൫ܲܪ௙்ܪ ൅ ܴ	൯
ିଵ
ሾܻ െ  ௙ሻሿ                        (1.5)ݔሺܪ

Meanwhile, the error covariance matrix can be updated using  

ܲ௔ ൌ ܲ௙ െ ܲ௙்ܪ	൫ܲܪ௙்ܪ ൅ ܴ	൯
ିଵ
 ௙                            (1.6)ܲܪ

Starting from the updated state xa and error estimation Pa, equations (1.3) and (1.4) are then 

integrated forward to produce the forecasted ܺ௙ and ܲ௙for the next observation. As such, 

the observational information is accumulated into the model state in a sequential manner. 

 

The KF is valid only for linear systems. Its variants have been developed to solve the 

optimal estimation problem for nonlinear systems. The EKF still uses equations (1.3)-(1.6) 

but with M in equation (1.3) being a nonlinear operator and M in (1.4) being its linearized 

version. Equation (1.4) indicates that the linear KF and its nonlinear variant, the Extended 

Kalman filter (EKF), explicitly compute and propagate the error statistics. In practice, the 

full error covariances are difficult or impossible to be directly estimated due to an 

expensive computational cost and insufficient error information, especially for large-scale 

applications. Additionally, the use of a linearized and approximate error covariance 

equation may cause the EKF to fail to track the state space in a strongly nonlinear system 

since higher-order components are ignored. To this end, Evensen (1994) proposed the 

Ensemble Kalman filter (EnKF) where the Fokker-Planck equation defining the time 

evolution of the model state’s probability density was solved using a Monte Carlo method. 

The probability density function (PDF) of the model state is represented using an ensemble 

where the mean is the best estimate (Gaussian assumption) and the ensemble spread defines 
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the error variance. The measurement errors are represented using another ensemble with 

the mean equal to zero. The evolution of the forecast error statistics is implicit in ensemble 

forecasts. In contrast to the EKF, the error evolution is fully nonlinear in the EnKF but with 

lower rank (finite ensemble size).  

 

Similar to the KF and EKF, the EnKF sequentially conducts a forecast step and an 

analysis step. In the forecast step, the ensemble of model states, generated by a Monte Carlo 

method, are integrated forward in time, expressed as 

௝,௞ݔ
௙ ൌ ௝,௞ିଵݔ൫ܯ

௔ , ݆				௝,௞൯ݑ ൌ 1,… ,ܰ                                  (1.7) 

where M denotes the model operator, x denotes the model state,  uj denotes uncertainties in 

the model (perturbations to the forcing data or deficiencies in model parameters/physics), 

the superscripts f and a represent forecast and analyzed state, respectively; the subscript k 

denotes the time index, and j is the ensemble member index, counting from 1 to the number 

of model state ensemble N.  

 

In the analysis step (time index k omitted), the Kalman gain K is estimated from the 

forecast and measurement error covariances and each forecast ensemble member is then 

updated according to the Kalman analysis equation.  

ܭ ൌ ,൫ܺ௙ߪ ෠ܻ൯ሾߪ൫ ෠ܻ, ෠ܻ൯ ൅ ,ߝሺߪ                                (1.8)	ሻሿିଵߝ

௝ݔ
௔ ൌ ௝ݔ

௙ ൅ ௝ݕൣ	ܭ െ ݆					ො௝൧ݕ ൌ 1,… , ܰ                            (1.9) 

where σ denotes the covariance between two vectors,  ݔ௝
௙ and  ݔ௝

௔ denote the forecast and 

analysis model state of  the jth ensemble member.  ݕ௝	and  ݕො௝  represent the perturbed 
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observation and the corresponding model prediction. ܺ௙, ෠ܻ 	and ɛ represents the ensembles 

of		൛ݔ௝
௙ൟ, ൛ݕො௝ൟ	, and observation errors, respectively. The best estimation is represented by 

the analysis ensemble mean. With an infinite ensemble size the EnKF will yield exactly 

the same analysis as the EKF.  

 

1.2.2 Microwave remote sensing for surface soil moisture estimation  

 

Soil moisture is an important variable for numerical weather, climate, and hydrologic 

forecasts. This is because soil moisture plays a crucial role in hydrological cycle by 

controlling the partitioning of water and energy fluxes at the land surface and the moisture 

exchanges at the soil-vegetation-atmosphere interface. Surface soil moisture can be 

estimated using various remote sensing instruments including microwave, optical, and 

thermal infrared sensors (see a review by Wang and Qu, 2009). Microwave techniques are 

of particular value for surface soil moisture estimation because microwave measurements 

are sensitive to changes in the soil dielectric properties, which are strongly controlled by 

soil water content. Liquid water has a very high dielectric constant (~80-90 at 0-20ºC) 

while the dielectric constant is very low (only ~ 4) for dry soil. Such a high contrast between 

the dielectric constants of wet and dry soils forms the basis for deriving soil moisture 

information from microwave remote sensing measurements. Over the past decades, both 

active and passive microwave technologies have been developed for surface soil moisture 

estimation (Jackson, 2005). Passive microwave sensors (radiometers) measure the natural 

thermal radiation emitted from the soil (brightness temperature), while active microwave 

sensors (radars) emit energy to the land surface and observe the radiation backscattered by 
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the soil (backscattering coefficient). The mixed dielectric constant of the soil’s constituents 

can be retrieved based upon the acquired brightness temperatures or backscattering 

coefficients.  Ultimately, soil water content can be estimated by means of a soil dielectric 

mixing model.  

 

Tables A2 and A3 summarize the representative microwave sensors, respectively, for 

satellite active and passive soil moisture measurements. For spaceborne active 

measurements, the ESA Remote Sensing Satellite (ERS) Synthetic Aperture Radar (SAR) 

and Scatterometer (SCAT), the Canadian RADARSAT series (e.g. Merzouki et al., 2011), 

and the Advanced Scatterometer (ASCAT) onboard the Meteorological Operational 

(Metop) satellite (e.g., Bartalis et al., 2007; Albergel et al., 2009), successor of the SCAT, 

have played important roles within the past decades; while passive microwave observations 

typically relied upon the Special Sensor Microwave Imager (SSM/I) (e.g. Jackson, 1997), 

the Scanning Multichannel Microwave Radiometer (SMMR) (e.g. Reichle and Koster, 

2005; Owe et al., 2008), the Tropical Rainfall Measuring Mission Microwave Imager 

(TMI) (e.g. Bindlish et al., 2003), the Advanced Microwave Scanning Radiometer-Earth 

Observing System (AMSR-E) (e.g. Njoku et al., 2003; Njoku and Chan, 2006), the 

Advanced Microwave Scanning Radiometer 2 (AMSR2), or the Microwave Imaging 

Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture and Ocean 

Salinity (SMOS) satellite (Kerr et al., 2001; 2010; 2012). In particular, the SMOS mission 

and the newly launched (January 2015) Soil Moisture Active Passive (SMAP) mission 

(Entekhabi et al., 2010a) were designed exclusively for soil moisture monitoring. The L-

band (1.3 or 1.4 GHz) sensors carried by the two satellites have stronger penetration of soil 
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and vegetation than those operating at higher frequencies (e.g. X or C-band), and thus 

greatly enhance our capability to map large-scale surface soil moisture.  

 

There is usually an inverse relationship between a sensor’s temporal frequency and 

spatial resolution. The active SAR technology is able to scan the land at a high spatial 

resolution, but the revisit time is very long. Passive microwave sensors onboard polar-

orbiting satellites offer a higher time resolution (revisit per 1-3 days) due to their wide 

swaths, but generally result in relatively coarse spatial samplings. Overall, soil moisture 

retrieval is challenging for active microwave sensors because radar signal is highly 

sensitive to local features of the soil surface (surface roughness, topography, vegetation, 

etc.), while passive microwave soil moisture products are usually more reliable due to 

higher signal-to-noise ratio and mature retrieval algorithms.  Microwave sensors measure 

only the soil moisture within a near-surface layer. The soil thickness measured increases 

with the wavelength (approximately several tenths of the wavelength). For bare soil, the 

penetration depth is about 3-5 cm for L-band (1-2 GHz) sensors (e.g. SMOS), and only ~1-

1.5 cm for C (4-8 GHz) or X (8-12 GHz) band measurements (e.g. AMSR-E). Soil moisture 

estimation using microwave sensors is subject to vegetation effects. Where there is a 

vegetation cover, the radiation emitted or backscattered from the soil will be attenuated 

owing to the scattering and absorption by vegetation canopy. The magnitude of the 

vegetation attenuation increases with the sensor frequency and the vegetation density. 

Hence soil moisture retrieval at high microwave frequencies (> 5-6 GHz) is valid only for 

bare soil or sparely vegetated regions. Vegetation cover impacts upon sensors operating at 

low frequencies are less pronounced because the latter can penetrate moderately dense 
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canopies. For example, L-band sensors (e.g. SMOS) can provide reliable measurements 

over a wide range of vegetation cover (biomass ≤ 5 kg/m2).  

 

1.2.3 Assimilation of microwave remotely-sensed soil moisture in land surface and 

hydrological  models  

 

Thanks to the development of data assimilation technologies and the launches of various 

passive and active microwave sensor systems, there has been an intensive global research 

effort to assimilate microwave remote sensing soil moisture information into land surface 

or hydrological models within the past few decades (Table A4). The studies generally can 

be divided into three major categories as follows. 

 

(i) A direct assimilation of microwave brightness temperatures in land surface models 

(LSM). A series of synthetic assimilation experiments based upon the 1997 Southern Great 

Plains hydrology experiment demonstrated that a direct assimilation of microwave 

brightness temperature data in LSMs could provide reliable soil moisture estimates (e.g. 

Reichle et al., 2001a, 2001b, 2002b). In practical application, Margulis et al. (2002) used 

the EnKF method to assimilate airborne Electronically Steered Thinned Array Radiometer 

(ESTAR) 1.4 GHz surface brightness temperature measurements during SGP97 into Noah 

LSM. Crow and Wood (2003) conducted similar assimilation experiments with the 

TOPMODEL-Based Land Surface-Atmosphere Transfer Scheme (TOPLATS) model. 

Their results showed that the assimilation of ESTAR brightness temperature measurements 

led to good soil moisture estimates not only in the surface layer but also for root zone. 
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Mattia et al. (2009) demonstrated that high spatial resolution surface soil moisture could 

be estimated through an integration of SAR data and hydrologic modeling with a 

constrained minimization technique. In their SAR retrieval algorithm, the hydrological 

model provided the background information about soil moisture at coarse spatial resolution 

based on the Antecedent Precipitation Index (API) approach.  

 

(ii) Assimilation of microwave soil moisture retrievals in LSM. As one of the pioneer 

studies, for instance, Houser et al. (1998) incorporated soil moisture derived from the 

NASA L-band (1-2 GHz) push broom microwave radiometer (PBMR) mounted on a 

NASA C-130 aircraft into the hydrologic model TOPLATS with several assimilation 

schemes. Results showed that all the assimilation schemes could produce substantial 

improvements in the model surface soil moisture simulations. Reichle and Koster (2005) 

assimilated the surface soil moisture retrievals from SMMR into the NASA Catchment 

Land Surface Model (CLSM) with the EnKF method. Reichle et al. (2007) assimilated both 

SMMR and AMSR-E soil moisture retrievals into CLSM. The assimilation led to overall 

improvements, relative to either the model estimates or satellite retrievals alone, in terms 

of soil moisture anomaly time series correlation with in situ measurements. In Draper et al. 

(2009a), the Extended Kalman Filter (EKF) method was used to assimilate the surface soil 

moisture derived from AMSR-E C-band brightness temperature measurements with the 

Land Parameter Retrieval Model (LPRM) into the Interactions between Surface, 

Biosphere, and Atmosphere (ISBA) land model. The introduction of AMSR-E soil 

moisture did yield substantial analysis increments (changes in the model estimate between 

before and after the implementation of the analysis equation) for both surface and root-
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zone soil moisture, although the assimilation estimates were not validated against real in 

situ observations. Liu et al. (2011) showed that the assimilation of AMSR-E soil moisture 

was as efficient as the precipitation corrections for enhancing the model skill for soil 

moisture estimation (anomaly time series correlation coefficient with in situ 

measurements). The study assessed the contributions of two AMSR-E soil moisture 

products (June 2002 to July 2009), the NASA standard algorithm product archived at the 

National Snow and Ice Data Center (NSIDC) and the LPRM-derived AMSR-E soil 

moisture. The assimilation of LPRM product led to larger soil moisture skill improvement 

than the NSIDC product. Draper et al. (2012) suggested that the CLSM model soil moisture 

skill could be improved through the assimilation of either AMSR-E or ASCAT soil 

moisture retrievals. A joint assimilation of the two sensor products could produce the best 

soil moisture skill. Due to the bias (systematic error) between satellite retrievals and the 

model estimates, a priori rescaling on satellite retrievals (the cumulative distribution 

function (CDF) matching) was applied during the aforementioned efforts. Li et al. (2012) 

assimilated AMSR-E soil moisture retrievals (derived from the X-band brightness 

temperatures using single-channel algorithm), without a priori scaling, into the Noah land 

surface model. Their work was motivated by the assumption that the mean value of satellite 

retrievals have potential contribution to improving the model mean values of soil moisture. 

Although the study observed the improved soil moisture estimates (as indicated by reduced 

bias and root-mean-square-error against in situ measurements), especially for the mass 

conservation scheme, the analysis typically made systematic corrections to the model soil 

moisture estimation (a clear symptom of bias in the assimilation). This means that a 
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satellite-model bias removal is an indispensable part in a bias-blind assimilation system 

(i.e. correcting random errors only). 

 

(iii) Assimilation of microwave soil moisture observations in runoff models. During a 

flooding event, the affected areas are usually characterized by wet pre-storm soil moisture 

conditions. This provides an opportunity to improve streamflow forecasts by identifying 

antecedent soil moisture conditions with microwave remote sensing observations. Pauwels 

et al. (2002) improved the simulated hydrographs in TOPLATS through the assimilation 

of ERS SAR soil moisture estimates using a statistical correction approach. Francois et al. 

(2003) applied the EKF method to assimilating soil moisture retrieved from ERS-1 SAR 

into a lumped rainfall-runoff model. The study demonstrated that the sequential 

assimilation of SAR data had the potential to improve the runoff simulations. Jacobs et al. 

(2003) introduced the surface soil moisture observed by ESTAR during the SGP97 

hydrology experiment into a lumped rainfall-runoff model. The ESTAR soil moisture 

retrievals were used to represent antecedent soil moisture conditions and to update the 

curve numbers and the runoff predictions based upon a strong correlation between the 

curve number and soil moisture in the Soil Conservation Service (SCS) curve number 

method. Results showed an enhancement in runoff forecasts for the watersheds at different 

spatial scales. Regarding the earlier studies of assimilating ERS SAR soil moisture 

retrievals into hydrological models, we refer the readers to a review paper by Loumagne et 

al. (2001). Crow et al. (2005) suggested that the predictive capability of land surface’s 

response to precipitation was enhanced when TMI-derived surface soil moisture was 

sequentially assimilated into an API model. Brocca et al. (2010) explored the impact on 
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flood forecasting of assimilating ASCAT-based soil wetness index in a rainfall-runoff 

model. Results revealed that the assimilation of the ASCAT soil moisture estimates via a 

simple nudging scheme led to an enhancement in runoff predictions. Crow and Ryu (2009) 

proposed a new assimilation scheme in which remotely-sensed surface soil moisture 

measurements were employed to simultaneously adjust both antecedent soil moisture and 

rainfall accumulations during hydrological modeling. Their work was motivated by the 

additional capability of soil moisture data to filter errors contained in satellite-based rainfall 

products (Crow and Zhan, 2007; Crow et al., 2009). Preliminary results indicated that the 

new approach outperformed those schemes which considering only the calibration of 

antecedent wetness conditions. 

 

1.2.4 Research gaps and recommendations 

 

The encouraging results warrant further research efforts in this field. In particular, with the 

launches of SMOS and SMAP, our capability to map large-scale soil moisture by 

microwave remote sensing is progressively enhanced, which will surely trigger more 

research efforts in satellite soil moisture assimilation over the next decade. The upcoming 

research efforts should cover the following aspects: (i) assimilation of new L-band soil 

moisture products (mainly from SMOS and SMAP). Until recently satellite soil moisture 

measurements at X (8-12 GHz) and C (4-8 GHz) bands (e.g. SMMR, AMSR-E, TMI, 

ASCAT, or SAR) have been dominant in land/hydrologic data assimilation applications. 

The launches of SMOS and SMAP have opened up new opportunities for L-band soil 

moisture assimilation. Assimilation of SMOS and SMAP soil moisture is more attractive 
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because the ability of SMOS and SMAP to measure surface soil moisture for a wide range 

of vegetation covers is clearly of advantage for assessing the vegetation modulation of the 

assimilation. (ii) Comparison between L-band and X-band (or C-band) soil moisture 

measurements for land data assimilation. In land/hydrologic data assimilation applications, 

to date, there has been a lack of comparative studies of multi-sensor soil moisture products, 

especially from different microwave bands, which represent different retrieval capabilities. 

At the moment, satellite soil moisture estimates for the same location and within the same 

time period can be available for both L-band sensors (e.g. SMOS, SMAP) and X-band (or 

C-band) measurements (e.g. AMSR-E/AMSR2, ASCAT). Their comparison for land data 

assimilation and even their joint assimilation will offer further insight into the dependence 

of the assimilation upon the satellite observation skill. (iii) Application of nonlinear/non-

Gaussian assimilation approaches. Current methods (e.g. KF, EKF, EnKF, and 4DVAR) 

for assimilating satellite soil moisture are typically based upon the assumption of Gaussian 

error statistics. For a nonlinear system with the error statistics far from Gaussian, to take 

into account the influence of skewed PDF, general nonlinear/non-Gaussian filters (e.g. the 

Particle Filter) should be applied.    

 

1.3 Research objectives 

 

The overall goal of this research is to exploit the potential of satellite microwave soil 

moisture observations to improve the predictive capability of hydrologic and land surface 

models. The limited research objectives are set as follows: 1) to develop nonlinear filter 

algorithms for assimilation of satellite soil moisture in a distributed land surface-
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hydrological model; 2) to explore the impact of satellite microwave soil moisture, through 

a data assimilation scheme, upon the model soil moisture estimates; and 3) to advance our 

understanding of the satellite observation skill and vegetation cover impacts on the 

assimilation results.  In the long term, this study aims to improve the monitoring and 

prediction of water recourses under climate change, thus providing better guidance for 

water resource related applications and management. 

 

As part of an operational forecasting system developed at Environment Canada, the 

modelling system called Modélisation Environmentale-Surface et Hydrologie (MESH) 

provides a flexible framework for coupling land surface schemes, a hydrological model, 

and an atmospheric model (Pietroniro et al., 2007). In this thesis, the ensemble Kalman 

filter (EnKF) is utilized to assimilate SMOS, AMSR-E and AMSR2 soil moisture retrievals 

into the standalone version of MESH in which CLASS, the Canadian Land Surface 

Scheme, is coupled with a distributed hydrological model over the Great Lakes basin. This 

is the first study to assimilate these satellite retrievals in the MESH model. This work will 

address the following questions. Fundamentally, how will satellite retrievals of surface soil 

moisture, through data assimilation, impact the MESH model soil moisture estimates? 

Next, how does the vegetation cover modulate the assimilation performance? Finally, how 

important is the satellite observation skill to the assimilation estimates? To this end, the 

main contents of this thesis include: 1) to equip the MESH model with the EnKF scheme 

for assimilation of satellite soil moisture retrievals; 2) to validate the performance of the 

established assimilation system through observing system simulation experiments 

(synthetic experiments) and assimilation of real satellite retrievals; 3) to reveal the 
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vegetation modulation of assimilation by taking advantage of the ability of L-band senor 

(SMOS) to measure surface soil moisture for a wide range of vegetation covers; 4) to 

compare L-band retrievals (SMOS) and X-band retrievals (AMSRE/AMSR2) in the same 

assimilation system.  

 

In this thesis, the EnKF method is used because (i) as compared to the variational 

methods, the EnKF is relatively easy to implement since an adjoint version (a conjugate 

transpose of the tangent linear model) of the forecast model is not required; (ii) estimation 

of full error covariances (as used in the EKF) is not required in the EnKF, and the model 

and measurement error variances are defined by the ensemble spreading (although the input 

error parameters may need to be specified based upon empirical statistics or to be 

adaptively tuned); and (iii) the EnKF is an ensemble-based method and thus can be easily 

merged into the existing ensemble forecasting system in use with Environment Canada.  

 

The focus of this work is upon improvement in soil moisture estimates rather than in 

hydrologic forecasts (e.g. in the range of a few days). The soil moisture estimates (satellite, 

the model, and the assimilation) are quantitatively evaluated using the correlation R metric 

of skill, which is defined as the daily time series correlation with point-scale in situ soil 

moisture measurements. Note that satellite soil moisture retrievals are instantaneous 

observations (typically once every 1-3 days for this study). The satellite soil moisture skill 

R is computed only over the days with available satellite data, whereas the model and 

assimilation skill R values are obtained based upon the complete model simulation time 

series (except for snow covered or frozen soil periods) rather than using the soil moisture 
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estimates only at satellite observation (i.e. assimilation) times. The absolute error measure 

(e.g. the root-mean-square error (RMSE) metric) is not applicable here because (1) point 

soil moisture measurement typically contain substantial sampling errors in terms of 

absolute magnitude (Crow et al., 2012), while the temporal variability of soil moisture 

observed by point measurements used in this study is often spatially representative; and (2) 

the absolute magnitude of the soil moisture assimilation product is meaningless since the 

satellite retrievals are rescaled prior to the assimilation (Reichle et al., 2007). However, 

notice that through a percentile-based transformation (e.g., Entekhabi et al. 2010b) the time 

variations of soil moisture can be scaled to the soil moisture initial conditions of weather 

and climate models, while any bias (systematic error) in the soil moisture product can be 

scaled out (e.g. Zhang  and Frederiksen, 2003). Therefore, the resulting soil moisture 

assimilation product can benefit weather and climate forecast initializations as long as the 

time variability of soil moisture is better captured.   

 

The thesis is organized as follows. Chapter 2 describes the establishment of the EnKF 

assimilation scheme for the MESH model and examines the performance of the 

assimilation system under different conditions through the Observing System Simulation 

Experiment (synthetic experiments). Chapter 3 is focused upon the assimilation of SMOS 

soil moisture retrievals (2010-2013). Chapter 4 presents the assimilation of two AMSR-E 

soil moisture products (2003-2011) and their comparison with the assimilation of SMOS. 

Chapter 5 compares the assimilation of AMSR2 and SMOS retrievals for year 2013. The 

main conclusions and contributions of this thesis are presented in Chapter 6.   
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CHAPTER 2 

Synthetic Assimilation Experiments 

 

2.1  Introduction 

 

Soil moisture plays a crucial role in the Earth’s energy and water cycles. Specifically, (i) 

soil moisture is a key state variable linking the land surface and the atmosphere. Soil 

moisture can bring a significant component of memory into the soil-atmosphere system 

through an integration of precipitation and evaporation processes over time scales of days 

to weeks. The memory has an important influence on the surface saturation and the 

forecasting of flooding events; (ii) Soil moisture, as a reservoir for evapotranspiration, 

controls the partitioning of the incoming radiative energy between latent and sensible heat 

fluxes at the land surface. The soil water content greatly impacts the evaporative proportion 

from the land surface and the transpiration from the root zone, which in turn control the 

ground sensible heat fluxes; (iii) Soil moisture regulates the partitioning of rainfall into 

runoff (surface discharge) and infiltration at the land surface. In particular, accurate 

specification of antecedent (pre-storm) soil moisture conditions is crucial to flooding 

forecasts; (iv) Accurate initialization of soil moisture is critical to numerical weather and 

climate predictions. For example, in the presence of extensive soil moisture anomalies, 

land surface fluxes can modulate the large-scale atmospheric circulations during the 

summer, thus influencing short- and long-term precipitation and temperature patterns.  
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In situ measurements, which are typically based upon sparse point sources, cannot 

provide large-scale spatially distributed soil moisture information. Satellite microwave 

remote sensing holds the ability to map global surface soil moisture. This is attributed to a 

strong contrast between the dielectric constants of water (~80-90 at 0-20ºC) and dry soils 

(~ 4), which causes the sensitivity of microwave measurements to changes in the wetness 

of the soil. Both passive and active microwave remote sensing technologies have been 

developed for monitoring surface soil moisture (Jackson, 2005). Passive microwave 

sensors (radiometers) measure the natural thermal radiation emitted from the soil 

(brightness temperature), while active microwave sensors (radars) emit energy to the 

surface and observe the radiation backscattered by the soil (backscattering coefficient). The 

mixed dielectric constant of the soil’s constituents can be retrieved based upon the acquired 

brightness temperatures or backscattering coefficients.  Ultimately, soil water content can 

be estimated by means of a soil dielectric mixing model. Satellite microwave soil moisture 

measurements have been demonstrated to hold great potential to improve land and 

hydrologic modeling, especially through data assimilation (see a review by Xu et al., 2014). 

In land surface or hydrologic modeling, the state estimation is often subject to noises in 

forcing fields and deficiencies in model physical structure and/or parameters. Assimilation 

of satellite measurements can suppress stochastic noise in the model state estimation. 

Meanwhile, through data assimilation, satellite surface soil moisture information can 

propagate to the whole soil column. 

 

With recent advances in satellite microwave soil moisture estimation, there is an 

increased demand for assimilating satellite soil moisture into land surface/hydrological 
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models, which will greatly exploit the potential of current satellite microwave observations 

in water resources related applications. Here, our focus is upon Environment Canada’s 

MESH model (Pietroniro et al., 2007). This chapter describes a data assimilation scheme 

for assimilating satellite soil moisture in the standalone version of MESH in which CLASS, 

the Canadian Land Surface Scheme, is coupled with a distributed hydrological model. Prior 

to real applications, we conduct synthetic experiments, which are presented in this chapter. 

In a synthetic assimilation, satellite soil moisture data are simulated with the forecast model 

and the “true” states are known. This allows us to examine the performance of the 

established assimilation system in an idealized environment.    

 

2.2  Forecast model  

 

The forecast model used here is Environment Canada’s standalone MESH, which is a 

coupled land-surface and hydrological model (Pietroniro et al., 2007). The model originates 

from the University of Waterloo's WATCLASS (Soulis et al., 2000). A primary innovation 

of MESH is that the model uses a Grouped Response Unit (GRU) approach (Kouwen et 

al., 1993) to resolve the heterogeneity in geophysical fields. A GRU is a grouping of 

subareas with similar soil and/or vegetation attributes (Fig. 2.1a). In the version of MESH 

used in this work, the identification of GRUs is based solely on the land cover types, i.e., 

each GRU corresponds to one land cover class (other soil characteristics are assumed to be 

same for the same GRU).  Each model grid cell is represented by a limited number of 

distinct GRUs (tiles) weighted by their respective cell fractions. The land model is run on 

each GRU independently. The overall fluxes and prognostic variables of a grid cell are 

obtained by taking a weighted average of the results from GRUs. The soil column is 



 
 

28 
 

typically partitioned into three layers (0-10, 10-35, and 35-410 cm) to resolve water and 

temperature dynamics (Fig. 2.1b). At the moment, the land surface scheme considers only 

the vertical water movement between the soil layers, which is governed by the one 

dimensional Richard’s equation (Soulis et al., 2000):  
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ቁ                                 (2.1) 

where ߠ denotes the volumetric water content,  t is time,  z is the depth of soil,  ܭሺߠሻ	is 

hydraulic conductivity, and  ߰ሺߠሻ	is pressure head (soil water suction). The lateral 

movement of water between grids/tiles is not taken into account. The resulting horizontal 

flows (overland flow, interflow, and base flow) at grid cells are ultimately be routed into 

the stream and river network systems.  
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(a) 

                              

(b) 

 
 
 

Fig. 2.1  (a) The Grouped Response Unit (GRU) approach to basin discretization and (b) Soil 

moisture and drainage representation in MESH (adapted from Kouwen et al., 1993; Soulis et al., 

2000; 2005). 

 
  

The experiment domain is the Great Lakes basin (Fig. 2.2). The model configurations are 

similar to those as used in Pietroniro et al. (2007). Seven GRU types are identified for the 

whole domain: crop, grass, deciduous forest, coniferous forest, mixed forest, water, and 

impervious. Each GRU class has a different model parameter set. The basin is gridded at 

10 arcmins (~ 15 km × 15 km) in the modelling. Each model grid is a mosaic of the seven 

GRU classes weighted by their cell fractions.   
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Fig. 2.2  The Great Lakes basin. Note that each grid cell (1/6th of a degree resolution) may consist 

of a maximum of seven land cover classes (crop, grass, deciduous forest, coniferous forest, mixed 

forest, water, and impervious). Only the dominant land cover class is displayed for each grid here 

(the forest cover represents the sum of the deciduous, coniferous, and mixed forest classes). Water 

and impervious surfaces are not labelled since soil moisture estimates are not considered for them.  

 

2.3  Data assimilation scheme  

 

 

In a data assimilation system, the observed information is integrated into the model 

framework by taking into account both the model forecast and observation error 

characteristics. This allows the model forecast and observation to be optimally merged 

while without violating the model physical constraints. Many technologies have been 

developed for land/hydrologic data assimilation (Table A1).  In the present study, we use 

the ensemble Kalman Filter (EnKF) (Evensen, 1994, 2003) to assimilate synthetic satellite 

soil moisture in the MESH model. The EnKF, which was first introduced by Evensen 

(1994), uses a Monte Carlo approach to estimate the forecast and observation error 

statistics. An ensemble of model states is used to approximate the probability density of 
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the model state. The ensemble spread defines the forecast error variance and the ensemble 

mean is considered as the best estimate (Gaussian assumption). Thus, the error covariance 

equation (as used in the Kalman filer or the extended Kalman filter) for the evolution of 

the model forecast error information can be replaced by integrating the ensemble of model 

states forward in time, expressed as   

௝,௧ݔ
ି ൌ ௝,௧ିଵݔሺܯ

ା ,  ௝,௧ሻ                                                  (2.2)ݑ

where M denotes the forecast model operator,	ݔ௝,௧ିଵ
ା  represents a posterior (analysis) model 

state at measurement time t-1. ݔ௝,௧
ି  is a priori (forecast) model state at measurement time t. 

 ௝,௧ denotes the uncertainties in the model (perturbations to the forcing data or deficienciesݑ

in model parameters/physics). The subscript j is the ensemble member index, counting 

from 1 to the size of the ensemble N. The observation is perturbed to generate an ensemble 

of perturbed observations with the ensemble mean equal to the actual observation and the 

spreading of the ensemble as the observation error variance, i.e.,  

௝,௧ݕ ൌ ത௧ݕ ൅	ߝ௝,௧                                                      (2.3) 

ܴ௧ ൌ
1

ܰ െ 1
෍ߝ௝,௧	ߝ௝,௧

்

ே

௝ୀଵ

 (2.4)

where ݕത௧	and ݕ௝,௧ represent the actual observation and the perturbed observation at time t, 

respectively. ߝ௝,௧ and ܴ௧ denote the observation error perturbation and the observation error 

covariance, respectively. The superscript T denotes the vector transpose. At measurement 

time t, each of the model forecast state ensemble members ݔ௝,௧
ି  is updated to ݔ௝,௧

ା  according 

to the Kalman analysis equation, given by  

௝,௧ݔ
ା ൌ ௝,௧ݔ

ି ൅ ௧ܲ
௧ܪ௧்ሺܪି ௧ܲ

௧்ܪି ൅ ܴ௧ሻିଵሺݕ௝,௧ െ ௝,௧ݔ௧ܪ
ି )                      (2.5) 
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where ܪ௧ is the measurement operator. ௧ܲ
ି denotes the forecast error covariance. In the 

EnKF, ௧ܲ
ି is only implicitly needed through   
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1
ܰ െ 1
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Ultimately, through conducting in turn the forecast step (equation 2.2) and the update step 

(equation 2.5), the observational information is sequentially accumulated into the model 

state. Throughout this thesis, only the one-dimensional version of the Ensemble Kalman 

filter (1D-EnKF) is used where the horizontal correlations between the model grids are 

neglected and an observation influences only the model state at the observation location. 

The model state vector x, which has a dimension of 21 and is independent for each grid, is 

comprised of the volumetric liquid water content from the seven GRUs for the three soil 

layers. The observation	ݕ௝		is the perturbed satellite retrievals of surface soil moisture, and 

the corresponding model prediction ݔܪ௝
ି denotes the volumetric liquid water content (a 

weighted sum of GRUs within the grid) in the model surface layer. 

 

2.4  Experiment setup and results 

 

The synthetic experiment is designed as follows. First, the standalone MESH is integrated 

for one year period (1 January to 31 December) using the meteorological forcings derived 

from the Global Environmental Multiscale (GEM) model (Mailhot et al., 2006) forecasts 

of year 2005. Each GRU class has its own model parameter set, which was based upon a 
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global calibration with streamflow observations (Haghnegahdar et al., 2014). The model 

integration is spun up by a repeated integration with the GEM forcings of year 2004. The 

simulated soil moisture serves as the reference solution (“truth”). The synthetic satellite 

soil moisture retrievals are generated, independently for each model grid, by applying 

random noise (the error standard deviation is set to 0.08 m3/m3) to the true surface soil 

moisture sequence. Next, an open loop model simulation (without data assimilation), which 

intentionally deviates from the true integration, is performed. To this end, the MESH model 

is integrated for a one-year period again but with the  GEM forcings of year 2006 and using 

a different set of model parameters, which are generated by adding random noise with a 

standard deviation of 30% (of magnitude) to the model parameters used in the true 

integration. Finally, the synthetic soil moisture retrievals are assimilated into the open-loop 

integration, under different conditions, to examine the capability of the assimilation system 

to recover the true soil moisture. The assimilation experiments are listed in Table 2.1. More 

details on the experiments will be provided in the remainder of this section.  

 

Table 2.1   List of synthetic experiments  

Key Description 

A  Control experiment; Ensemble size N = 12; Assimilation interval is 24 hours 

B1 Same as A, but with N = 6 
B2 Same as A, but with N = 50 
B3  Same as A, but with N = 100 
C1 Same as A, but with assimilation interval of 12 hours 
C2  Same as A, but with assimilation interval of 72 hours 
D1 Same as A, except for a higher retrieval skill 
D2 Same as A, except for a lower retrieval skill 

E1-E25 Test the impact of the specified model and observation input error parameters 

 

 

 



 
 

34 
 

A.  Control experiment 

 

Experiment A is a control case. We use the 1D-EnKF with 12 ensemble members. To 

represent random errors in the forcing inputs, the cross-correlated forcing perturbation 

fields are generated (Table 2.2) following Reichle et al. (2007). Additionally, to account 

for the model uncertainties due to imperfect model parameters, temporally correlated error 

perturbations are added to the simulated volumetric liquid water content. Currently, the 

0.001 m3/m3, 0.0005 m3/m3, and 0.00005 m3/m3 error standard deviations are applied to the 

three soil layers, respectively (Table 2.2). The model error parameters are specified largely 

based upon order-of-magnitude considerations and are not on-line (adaptively) tuned in our 

assimilation. Smaller error parameters are applied to deeper soil layers to avoid the bias 

between the ensemble mean (without assimilation) and the unperturbed open-loop 

integration. The model error correlation time is set to 1 day. A true observation error 

standard deviation of 0.08 m3/m3 is used for the synthetic retrievals (Recall that the 

synthetic retrievals are generated by adding white noise with standard deviation of 0.08 

m3/m3 to the true surface soil moisture). The assimilation is performed at 24-hr intervals 

(i.e., we assume the observing frequency of once daily). The satellite retrieval-model 

discrepancies in climatological mean and scale are not present and thus not considered in 

our twin experiment.  
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Table 2.2  Error parameters for the selected forcing inputs and model variables 
 Perturbation 

Method 
Standard 
Deviation 

Temporal 
Correlation 

Cross 
Correlation 

Forcing inputs*     

Precipitation (P) Multiplicative 0.5 1 day -0.8 with SW; 
0.5 with LW 

Incoming shortwave 
radiation (SW) 

Multiplicative 0.2 1 day -0.8 with P; 
-0.5 with LW 

Incoming longwave 
radiation (LW) 

Additive 40 W m-2 1 day 0.5 with P; 
-0.5 with SW 

Volumetric liquid water       
1st soil layer  Additive 0.001 m3 m-3 1 day       n/a 
2nd soil layer Additive 0.0005 m3 m-3 1 day       n/a 
3rd soil layer Additive 0.00005 m3 m-3  1 day        n/a 

* Error parameters for the selected forcing inputs are adapted from Reichle et al. (2007).  
 

 Figure 2.3 shows the open-loop (without assimilation) and the assimilation surface (0-10 

cm) soil moisture estimates across the study domain, in comparison with the ‘true’ state. 

The assimilation estimates show, relative to open loop, better overall agreement with the 

true fields in terms of the distribution and magnitude of soil moisture across the study 

domain. This demonstrates that the EnKF scheme installed for the MESH model is 

effective to improve the model surface soil moisture estimates. The counterpart of Fig. 2.3 

for root-zone (0-35 cm) soil moisture is provided in Fig. 2.4.  The root-zone soil moisture 

estimates are also improved through the assimilation of the surface soil moisture retrievals. 

The successful updating of root-zone soil moisture indicates that through data assimilation, 

the near-surface soil moisture information, which can be acquired by satellite microwave 

remote sensing, can spread to deeper soil layers that are not directly measured by satellite 

sensors. Note that an efficient constraint of satellite retrievals on root-zone soil moisture 

relies upon the model’s accurate description of water movement in the soil column. In our 

twin experiment, the model physics is perfect since we used the same model (but with 

different model parameters) to generate the “true” state and to assimilate soil moisture 
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retrievals. In practice, it may be challenging to improve soil moisture estimates for root 

zone due to a lack of perfect forecast models and complete knowledge of the satellite 

observation errors. 

 

 

Fig. 2.3  Daily averaged surface (top 10 cm) soil moisture estimates from (left) the open-loop 

model, (middle) the assimilation, and (right) the true state for (top to bottom) days 180, 185, 190, 

and 195.  
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Fig. 2.4   Similar to Fig. 2.3, but for root-zone (top 35 cm) soil moisture, which is a depth-

weighted average of soil moisture in the model’s top two layers (0-10 and 10-35 cm). 

 

The assimilation can be quantitatively validated against the truth using different 

performance criteria. Here we measure the performance of the EnKF with the soil moisture 

skill R metric, which is defined as the daily time series correlation of soil moisture estimates 

(open-loop or assimilation) with the truth state, to be consistent with real applications 

(Chapters 3-5). We compute the R values using data from 1 April to 31 September since 
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for our study domain, in practice, the effects of snow cover and frozen soils are minimal 

on satellite soil moisture estimates during this period.  

 

 

Fig. 2.5  Soil moisture skill R from (left) the open-loop model and (middle) the assimilation, and 

(right) the skill improvement ΔR (Assimilation minus Open-loop) for (top) the surface layer (0-10 

cm) and (bottom) root-zone (0-35 cm). ΔR is displayed only when the open-loop R and the 

assimilation R are significantly (5% level) different from each other.  

 

Fig. 2.5 compares the skill R values from the open-loop and the assimilation estimates for 

both surface and root zone soil moisture across the study domain. The Fisher Z transform 

method (Dunn and Clark, 1969; Meng et al., 1992) is used to test the significance of the 

skill improvement ΔR, defined as the skill for the assimilation product minus the skill for 

the open-loop estimates (Fig. 2.5, right). Overall, either the open-loop model or the 

assimilation provide similar spatial pattern of skill for surface (Fig. 2.5, top) and root-zone 

soil moisture (Fig. 2.5, bottom). The open-loop model (Fig. 2.5, left) typically provides 
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lower soil moisture skill R at the grids dominated by crop cover (mean of 0.29 (0.16) for 

surface (root-zone)) than for forest-dominated grids (mean of 0.41(0.42) for surface (root-

zone)) (the vegetation cover distribution is shown in Fig. 2.2). Through data assimilation, 

almost all grids experience positive skill gains but with different magnitudes. In general, 

the skill improvement ΔR decreases with increased open-loop skill, coinciding with the 

finding by Reichle et al. (2008a). The stronger and statistically significant skill 

improvements are typically observed for crop-dominated grids. In real applications 

(Chapters 3-5), we will further assess the vegetation modulation of the assimilation and the 

impact of the open-loop skill and the satellite observation skill on the assimilation. 

 

B. Impact of ensemble size  

 

To perform the EnKF assimilation, the ensemble size N and the radius of influence for the 

observations r need to be appropriately configured. Throughout this work, r is zero since 

the 1D-EnKF is used (i.e. for a given observation, the analysis update (eq. (2)) is only 

applied to state variables at the observation location). In experiment A, an ensemble of 12 

member are used.  To assess the impact of ensemble size, we repeated experiment A with 

N = 6 (experiment B1), 50 (experiment B2), and 100 (experiment B3), respectively.  The 

mean soil moisture skill results from these experiments are summarized in Fig. 2.6. The 

soil moisture skill values from experiment B1 (N=6) are slightly reduced from those 

obtained in experiment A (N = 12).  On the other hand, increasing N to 50 or 100 has 

smaller (but opposite) effects. Such dependence on N is generally consistent with the 

synthetic EnKF results of Reichle et al. (2002a).  
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Fig. 2.6  Averaged soil moisture skill R for the open-loop model and the assimilation estimates 

from experiments A, B1, B2, and B3 (see Table 2.1 for key): (top) surface layer (top 10 cm) and 

(bottom) root zone (top 35 cm). The (area-averaged) R values are computed, respectively, for the 

crop-dominated grids, the forest-dominated grids, and all model grids (except for water and 

impervious surfaces) within the study domain. Error bars indicate 95% confidence intervals.  

 

Overall, a small ensemble size is generally sufficient for the 1D-EnKF to perform well.  

This is primarily because the analysis increment calculations are conducted independently 

for the model grids (horizontal correlations are neglected) in the 1D-EnKF and the state 

vector is thus relatively small in dimension. An increased size of the ensemble would be 

required if horizontal correlations are taken into account (i.e., a three-dimensional EnKF) 

(e.g. Reichle et al. 2002b; Houtekamer and Mitchell, 1998). Additionally, note that a larger 

ensemble size would clearly be of advantage for suppressing statistical noise in error 
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covariance estimates of the state variables and error correlations between the states and the 

measured variable (e.g. Reichle et al. 2002a).  

 

C.  Effect of observing frequency 

 

In reality, the satellite soil moisture retrievals derived from passive microwave sensors (e.g. 

AMSR-E, SMOS) or the Advanced Scatterometer (ASCAT) typically have a time 

resolution of 1-3 days (separately for the ascending and descending overpasses). 

Experiments C1 and C2 are designed to evaluate the impact of the frequency of the satellite 

observations on the assimilation estimates. Experiment C1 (C2) is the same as experiment 

A except for assimilating the synthetic retrievals at 12-hour (72-hour) intervals. Fig. 2.7 

presents the mean soil moisture skill from experiments A, C1 and C2.  Clearly the soil 

moisture estimates can be further enhanced (experiment C1) when the satellite observations 

are assimilated more frequently (i.e. a shorter assimilation interval). In contrast, a longer 

assimilation interval (experiment C2) decreased the skill improvement obtained by data 

assimilation. Inclusion of more observational information would clearly be of advantage. 

Therefore, in practice, to produce the best soil moisture estimates we should jointly 

assimilate the retrievals from both ascending and descending orbits or from different 

platforms. Draper et al. (2012) suggested that a joint assimilation of the AMSR-E and 

ASCAT soil moisture retrievals into the NASA Catchment land surface model led to higher 

soil moisture skill (anomaly R) than the alone assimilation of either of the two retrieval 

data sets.   
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Fig. 2.7   Similar to Fig. 2.6, except that the assimilation estimates are from experiments A, C1, 

and C2 (see Table 2.1 for key), respectively. 

 

 

In practice, however, the retrievals derived from different orbits (ascending or descending) 

or from different sensors may have different accuracies. For example, the descending 

AMSR-E soil moisture retrievals (1:30 A.M. LST) are usually expected to be more accurate 

than the ascending retrievals (1:30 P.M. LST) since the nighttime soil temperature and 

moisture profiles are more uniform. The L-band sensors (e.g. SMOS) are expected to 

provide better soil moisture estimates than the sensors operating at X or C bands (e.g. 

AMSR-E) since the latter (shorter bands) are more susceptible to vegetation effects. Such 

discrepancies could degrade the performance of a joint assimilation of different retrieval 

data sets, i.e., higher observing frequency (note that the best results from experiment C1 

are based upon the synthetic retrievals with the same accuracy. In Draper et al. (2012), the 
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AMSR-E and ASCAT products also have similar retrieval skills and therefore their joint 

assimilation was promising). To demonstrate this point, we also performed an additional 

experiment in which we jointly assimilated two synthetic retrieval data sets with different 

accuracies. The first retrieval data set is same as that used in experiment A (the synthetic 

retrievals were obtained once daily from the truth soil moisture by adding white noise with 

a standard deviation of 0.08 m3/m3). The second retrieval data set is generated once daily 

(measurement time is shifted by 12 hours relative to the first data set) by applying the noise 

standard deviations of 0.12 m3/m3 to the truth soil moisture. The mean (basin-averaged) 

retrieval skill (correlation R between synthetic retrievals and the truth fields) for the first 

and second retrieval data sets, and their combination are 0.60, 0.44, and 0.54, respectively. 

Results (not shown here) suggest that the soil moisture skill R from the joint assimilation 

(12-hr intervals) is higher than that when assimilating the second retrieval data set alone 

(24-hr intervals), but is lower than that from experiment A (24-hr intervals). This confirms 

that a joint assimilation of different retrieval data sets does not necessarily yield the “best” 

estimation. Note that the combined retrieval set (twice daily) has a different retrieval skill 

from either the first or second retrieval set (once daily), although the influence of retrieval 

skill (see a comparison of experiments A, D1 and D2 presented below) is a consistent 

explanation for the observing frequency modulation on the assimilation skill.   

 

D.   Impact of retrieval skill 

 

In experiment A, synthetic satellite retrievals (daily-spaced) were generated by applying 

white noise with a standard deviation of 0.08 m3/m3 to the truth soil moisture. The resulting 

retrieval data set has a mean (basin-averaged) retrieval skill of about 0.60. By applying the 
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noise standard deviations of 0.04 and 0.12 m3/m3, separately, to the truth soil moisture, two 

additional synthetic retrieval data sets (daily-spaced), with mean retrieval skill of 0.74 and 

0.43, respectively, are produced, and are subsequently assimilated into the model 

(experiments D1 and D2). Figure 2.8 compares the mean soil moisture skill results from 

experiments A, D1 and D2. Clearly assimilating the three separate synthetic retrieval data 

sets produce three sets of assimilation estimates with different accuracies. Relative to 

experiment A, the mean soil moisture skill is further improved in experiment D1, but is 

degraded in experiment D2. This demonstrates that the skill improvement increases with 

increasing retrieval skill.  

 

 

Fig. 2.8  Similar to Fig. 2.7, except that the assimilation estimates are from experiments A, D1, 

and D2 (see Table 2.1 for key), respectively.  
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E.   Sensitivity to input error parameters 

 

In experiment A, as mentioned earlier, the model error parameters, which were specified 

based upon order-of-magnitude considerations, were not tuned adaptively and a true 

observation error standard deviation was used for the synthetic retrievals. Now we test the 

impact of the specified model and observation error parameters through a group of new 

experiments. For the new experiments, the truth solution and synthetic satellite retrievals 

are different from those used in experiment A. Following Reichle et al. (2008b), the truth 

and synthetic satellite retrievals are generated as follows. First, we integrate the MESH 

model from 1 January to 31 December with the 2006 forcing data (the model is spun up by 

a 10-year repeated simulation using the 2005 forcings). The resulting soil moisture serves 

as the unperturbed ‘open-loop’ solution. Next, using the same forcing data and for the same 

period, we perform the MESH model ensemble simulations (12 members) with the error 

perturbation parameters listed in Table 2.2. We randomly select an ensemble member 

integration to serve as the synthetic ‘‘truth’’ (so that the perturbation parameters listed in 

Table 2.2 serve as the “truth’’ model error inputs). For a given grid, the synthetic satellite 

soil moisture retrievals are generated by adding white noise with a standard deviations of 

0.05 m3/m3 to the surface soil moisture estimates that are extracted from the ‘true’ fields at 

24-hr intervals. Finally, the synthetic retrievals are assimilated into the MESH model with 

the 1D-EnKF. The assimilation will be repeatedly conducted using different sets of error 

perturbation parameters to explore the impact of input error parameters.  
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Table 2.3  Input error parameters (unit: m3m-3) for experiments E1-E25 

Observation 
error stdev 

Error stdev for the modeled volumetric liquid water in the 3 soil layers 
2.E-04; 
1.E-04; 
2.E-06 

5.E-04; 
2.E-04; 
1.E-05 

1.E-03; 
5.E-04; 
5.E-05 

2.E-03; 
1.E-03; 
1.E-04 

4.E-03; 
2.E-03; 
2.E-04 

0.005 E1 E2 E3 E4 E5 
0.02 E6 E7 E8 E9 E10 
0.05 E11 E12  E13* E14 E15 
0.08 E16 E17 E18 E19 E20 

0.11 E21 E22 E23 E24 E25 

* The reference (‘‘truth’’) model and observation error parameters are used.  
 

Here we choose five sets of input model error parameters, which approximately represent 

five different forecast error stand deviations (stdev), and five values of observation error 

stdev (Table 2.3). Each of the five sets of input model error parameters and each 

observation error standard deviation are grouped together for use in the assimilation 

integrations. We do not change the forcing perturbations and the model error correlation 

time, which are taken from Table 2.2. Therefore, we can perform 25 assimilation 

experiments (E1 to E25). Note that one of the 25 experiments (E13 in Table 2.3) uses the 

reference (‘‘truth’’) model and observation error inputs.  
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Fig. 2.9   Skill improvement ΔR (Assimilation - Open loop) for (left) surface and (right) root 

zone soil moisture as a function of the forecast and observation error standard deviations (stdev, 

units: m3 m-3). The plus sign denotes the assimilation experiment with the true model and 

observation error inputs. 

 

Based upon the E1 to E25 results, we can obtain the assimilation performance, in terms of 

the (study domain-averaged) soil moisture skill improvement (Assimilation-Open loop), as 

a function of the (study domain and time averaged) forecast and observation error standard 

deviations (Fig. 2.9).  As expected, the skill improvement ΔR in both surface and root zone 

soil moisture is strongest when the input error parameters are close to their true values (plus 

signs). Typically, when the input error parameters are wrongly specified (i.e. deviating 

from their true values) the EnKF filter assimilation still produce an increased skill (i.e. a 

positive ΔR), although the skill improvement ΔR will be decreased. In particular, if a severe 

underestimation of observation error occurs, the skill improvement ΔR, especially for root 

zone soil moisture, will be weak or even negative (i.e. the assimilation estimates are worse 

than the open loop). This illustrates that even without on-line (adaptive) tuning of the 

observation and model error parameters the EnKF filter will typically be able to improve 

soil moisture estimates as long as the observation errors are not severely underestimated. 
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Reichle et al. (2008b), which measured the assimilation performance using the root-mean-

square error (RMSE) metric, came to the same general conclusions. 

 

2.5  Summary and Discussion 

 

In this chapter, we presented the implementation of the 1D-EnKF scheme to assimilate 

satellite soil moisture into the standalone version of MESH model. To examine the 

performance of the established assimilation scheme under different conditions, we have 

conducted a series of synthetic assimilation experiments in which satellite soil moisture 

observations and the reference (“truth”) states were produced with the same forecast model. 

The experiments demonstrate the capability of the assimilation system to accurately 

approximate the “true” surface and root zone soil moisture states with satellite observations 

and the intentionally degraded model estimates. The soil moisture skill R metric is used to 

measure the performance of the EnKF filter, to be consistent with real assimilation 

applications (Chapters 3-5). Through assimilation of satellite soil moisture, almost all areas 

experience positive skill gains ΔR (assimilation-open loop) but typically with stronger and 

statistically significant ΔR for cropped grids, which generally exhibit low open-loop skill. 

A small ensemble size is generally sufficient for the 1D-EnKF to perform well because the 

analysis increment calculations are conducted independently for the model grids 

(horizontal correlations are neglected). An increased observing frequency (i.e. a shorter 

assimilation interval) typically can further enhance the assimilation estimates. Therefore, 

in any practical application, to produce the best estimates we should jointly assimilate the 

retrievals from all the available sources. However, note that a joint assimilation (i.e. an 
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increased observing frequency) of the retrieval sets with significantly different observation 

skills does not necessarily yield the “best” estimation. The skill improvement typically 

increases with increasing retrieval skill. Even without on-line (adaptive) tuning of the 

observation and model error parameters the skill of the assimilation product typically 

exceeds the skill of the open-loop model (i.e. a positive ΔR) except when the observation 

errors are severely underestimated. The findings provide an important reference for the 

practical application of the assimilation scheme (e.g. the choice of the ensemble size, the 

specification of input errors, etc.).  

 

Note that in practice, the assimilation of satellite soil moisture will encounter a number of 

critical challenges, which were avoided in our synthetic experiments. They mainly include: 

(i) the model-satellite measurement scale discrepancy. Soil moisture derived from 

spaceborne passive microwave measurements typically have relatively coarse spatial 

resolution (> ~ 40 km; Table A3), whereas there is an increased demand for conducting 

land/hydrologic simulations at high spatial resolution. This raises a question: how to 

integrate coarse-scale satellite products and fine-scale land/hydrologic models. For the 1D-

EnKF assimilation, a priori disaggregation scheme may be needed, i.e., coarse resolution 

observations are disaggregated and remapped onto the model grids prior to assimilation. 

For the 3D-EnKF filter (i.e. horizontal correlations between model grids are considered), 

we can conduct a direct assimilation of coarse-scale satellite products by upscaling the 

model forecast; (ii) Statistical bias between satellite and model soil moisture estimates. In 

practice, satellite-based soil moisture and model estimates typically exhibit different 

climatologies, which will violate the hypothesis of unbiased errors in model and 
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observation (for a bias-blind assimilation system). To reduce or remove  the satellite-model 

bias, a priori observation rescaling by matching the cumulative distribution functions of 

the two data sets is often practical (e.g. Reichle and Koster, 2004). A prior calibration of 

the model with the climatology of satellite soil moisture also can be used to remove the 

bias (e.g. Kumar et al., 2012).  (iii) Difficulty in quantifying satellite observation error. The 

synthetic experiments indicate that accurate specification of observation error covariance 

is crucial to the success of the analysis. Satellite soil moisture retrievals are typically 

subject to both instrumental errors and representativeness errors. The latter are caused 

primarily by the observation operator used in the retrieval algorithm and the misfit between 

the observation space and the model space. In reality, the errors in satellite retrievals, 

especially the representativeness errors are difficult or impossible to completely estimate 

since they often vary with time and space. Some approximations could be efficient. For 

example, the satellite climatology can approximately serve as the observation error inputs 

for the EnKF integrations (e.g. Liu et al., 2011; Draper et al., 2012); (iv) Sampling errors 

in point-scale ground measurements. In practice, in situ measurements typically serve as 

the “ground truth”, but in most cases only sparse point measurements are available. Point-

scale ground measurements typically contain large sampling errors (e.g. Crow et al., 2012), 

which poses an obstacle to the validation of assimilation, especially when using the RMSE 

metric. To this end, we need to upscale sparse point measurements (e.g. Crow et al., 2012) 

or we may measure the performance with the correlation R metric considering that the 

temporal variability of soil moisture observed by point measurement may be spatially 

representative (e.g. Loew and Mauser, 2008; Martinez-Fernandez and Ceballos, 2005). 

These problems will be appropriately addressed in our real assimilation experiments.  
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CHAPTER 3 

Assimilation of SMOS Soil Moisture over the Great Lakes Basin 

 

3.1 Introduction 

 

Soil moisture, especially its anomaly information, is critical to weather and climate forecast 

initialization (e.g., Wolfson et al., 1987; Zhang and Frederiksen, 2003; Lau & Kim, 2012; 

Zeng et al., 2014). Microwave remote sensing technology offers an important approach for 

soil moisture estimation because changes in soil water content strongly affect the soil’s 

dielectric properties. Satellite microwave remote sensing holds the ability to provide the 

large-scale spatially distributed near-surface soil moisture estimates, which, relative to 

point in situ measurements, are more compatible in space with land/hydrologic models, 

especially the distributed models. In the past decade, satellite microwave soil moisture 

observations have been intensively integrated into land surface and hydrologic models, in 

particular through advanced data assimilation that merges the observation and the model 

forecast based on estimates of their respective error characteristics (see a review paper by 

Xu et al., 2014). Data assimilation can spread and smooth the observed information in time 

and space (Reichle, 2008). Through data assimilation, the remotely-sensed near-surface 

soil moisture information can be propagated to the soil layers or the model variables that 

are not directly measured by satellites (e.g. Reichle & Koster, 2005). Additionally, in a data 

assimilation system satellite retrievals from different platforms can be merged into the 

same model framework to produce a single optimal state estimation of interest (e.g. Draper 

et al., 2012).   
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Until recently, the satellite soil moisture products were mainly based upon the X (8-12 

GHz) or C (4-8 GHz) band measurements, such as the Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E), the Scanning Multichannel Microwave 

Radiometer (SMMR), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), 

the Advanced Scatterometer (ASCAT), and the RADARSAT series. A series of 

assimilation experiments based upon these products (e.g. Reichle & Koster, 2005; Reichle 

et al., 2007; Drusch, 2007; Liu et al., 2011; Draper et al., 2012; Crow et al., 2005; Brocca 

et al., 2010) have demonstrated the potential of satellite retrievals to improve the predictive 

capabilities of land surface and hydrologic models (e.g. soil moisture and runoff estimates) 

and provided insight into the main challenges in this field of research (e.g. the model-

satellite scale discrepancy; the statistical biases between satellite product and model 

estimation). However, X and C band sensors are susceptible to vegetation cover and are 

sensitive to only the near-surface soil moisture (top 1 to 1.5 cm). The launch of European 

Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite that carries an 

L-band (~1.4 GHz) Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) 

(Kerr et al., 2001; 2010) has opened up the new opportunities for land data assimilation. 

The assimilation of SMOS soil moisture is more attractive because the L-band microwave 

has a stronger penetration of vegetation and soil (as opposed to those operating at X or C 

band), which can provide surface soil moisture estimates for a wide range of vegetation 

conditions and thus offer the new opportunities for assessing the vegetation modulation of 

the assimilation.  
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In recent years, there has been an intensive global research effort to assimilate SMOS 

soil moisture data in various models (e.g., Zhao et al., 2014; Ridler et al., 2014). Zhao et 

al. (2014) incorporated the SMOS soil moisture retrievals into a land surface model by 

minimizing the distance of the model solution from the SMOS observation and the 

background model estimate (by calibrating the model using the SMOS data first), which 

produced the improved surface soil moisture estimates. However, the study averaged the 

SMOS data across the entire domain (located in the central Tibetan Plateau) and the 

assimilation was performed at a coarser scale (~100 km) than the SMOS product scale (~ 

15 km). A more recent study by Ridler et al. (2014) assimilated SMOS soil moisture in a 

bias-aware system (i.e., the observation bias is estimated jointly with the model state by 

state augmentation). The assimilation was conducted at a fine scale (by applying a 

vegetation-based disaggregation scheme to the SMOS observation bias) and led to superior 

soil moisture estimates (in terms of the square of the correlation), especially for the surface 

layer, although only one node retrievals were used.  

 

In this chapter, an ensemble Kalman filter (EnKF) is utilized to assimilate SMOS soil 

moisture retrievals (Level 2) into a coupled land-surface and hydrological model MESH 

over the Great Lakes basin. Due to the bias between the retrievals and the model surface 

soil moisture, a priori rescaling on the SMOS retrievals is performed by matching their 

cumulative distribution function (CDF) to the model surface soil moisture’s CDF. The 

retrievals, the open-loop model (no assimilation) soil moisture, and the assimilation 

estimates are validated against in situ soil moisture measurements from the Michigan 

Automated Weather Network, the Soil Climate Analysis Network, and the Fluxnet-Canada 

Research Network, in terms of the daily-spaced time series correlation coefficient (soil 
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moisture skill R). Our study differs from previous SMOS assimilation studies in three 

aspects: (1) the assimilation is conducted at a grid scale similar to the SMOS product scale 

(~ 15 km), and the assimilation estimates are validated at both the grid-scale and the 

subgrid-scale; (2) the Great Lakes basin was chosen as the study domain since it offers a 

range of vegetation conditions that favor the assessment of the vegetation impact on the 

assimilation; and (3) 4 years of SMOS data (2010-2013) are used, and the overall 

consistency between the years strongly demonstrates the robustness of our general 

conclusions. This chapter is organized as follows. In section 3.2, the data sets, the forecast 

model, and the assimilation scheme are described. Section 3.3 presents the skill for the 

SMOS soil moisture. Section 3.4 is focused upon the assimilation results. A summary and 

discussion is provided in section 3.5.  

 

3.2  Data and methods 

 

3.2.1  SMOS soil moisture retrievals 

 

In this work, we use the SMOS Level 2 Soil Moisture User Data Product (MIR_SMUDP2) 

delivered by ESA. The product comprises the instantaneous soil moisture retrievals (rather 

than the daily composite as provided in the Level 3 product) and abundant reference 

information, such as geophysical features, retrieved standard deviation (RSTD), etc. The 

retrieved soil moisture is primarily based upon an iterative algorithm, which matches the 

modeled L-band emission of the surface to that observed by SMOS/MIRAS (Kerr et al., 

2008; 2012). SMOS has a footprint of 43 km on average and a temporal resolution of 1-3 
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days for both ascending (6:00 am LST) and descending (6:00 pm LST) orbits. The 

MIR_SMUDP2 soil moisture retrievals are equally spaced at about 15 km (oversampled 

by a factor of nine). Four years (2010-2013) of SMOS retrievals from both ascending and 

descending overpasses are used in this study. Utilizing the attached reference information, 

a filtering is performed to exclude the retrievals with a large RSTD (> 0.08 m3/m3) and 

those contaminated by open water, frozen surface, snow, or rain, etc. To conduct the 

evaluation and assimilation, SMOS retrievals are resampled onto the hydrological forecast 

model grids (~15 km resolution) using a nearest neighbor approach. Whenever and 

wherever the model (combined with the rainfall forcing data) indicates the presence of 

precipitation, frozen soils, or snow cover, the satellite retrievals are also excluded from the 

evaluation and assimilation. Note that the processor version of the Level 2 product was 

changed over the four years with V501 (REPR data set) for 2010/2011 and V551 (OPER 

data set) for 2012/2013. Since different dielectric constant models are used in the two 

versions, there may be inconsistencies in the absolute magnitude of SMOS retrieval 

between 2010/2011 and 2012/2013. 

 

3.2.2 Hydrological model and in situ measurements 

 

The forecast model used here is Environment Canada’s standalone MESH (Modélisation 

Environmentale-Surface et Hydrologie) model (Pietroniro et al., 2007), which originates 

from the coupling of the land surface scheme CLASS with the hydrological model 

WATFLOOD (Soulis et al., 2000). The primary feature of MESH is that the model uses a 

Grouped Response Unit (GRU) approach to resolve the subgrid-scale variability. A GRU 
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is a grouping of subareas with similar soil and vegetation attributes, and each model grid 

cell is represented by a limited number of distinct GRUs weighted by their respective cell 

fractions. In the version of MESH used in this work, the identification of GRUs is based 

solely on the land cover types, i.e., each GRU corresponds to one land cover class (other 

soil characteristics are assumed to be same for the same GRU). The soil column is 

partitioned into three layers (0-10, 10-35, and 35-410 cm) to resolve soil moisture and 

temperature dynamics. At the moment, the land surface scheme considers only the vertical 

water movement between the soil layers, which is governed by Richard’s equation (Soulis 

et al., 2000). Within a grid cell, the fluxes and variables are computed independently for 

GRUs, ignoring the interactions between GRUs. The overall fluxes and prognostic 

variables of a grid cell are obtained by taking a weighted average of those from GRUs. The 

lateral movement of water between grid cells is not taken into account. The resulting 

horizontal flows (overland flow, interflow, and base flow) at grid cells are ultimately be 

routed into the stream and river network systems.  
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Fig. 3.1  Vegetation types (gridded at 1/6th of a degree resolution) over the Great Lakes basin 

and location of in situ stations for soil moisture measurements. In situ stations are from the 

Michigan Automated Weather Network (79 sites), the Soil Climate Analysis Network (3 

sites), and the Fluxnet-Canada Research Network (1 site). Stations that are not used for 

validation are marked with plus signs (SMOS retrievals are not available or not considered 

over these stations due to the impact of open water). 

 

The study domain for this work is the Great Lakes basin (Fig. 3.1). The basin, straddling 

the Canada-United States border, consists of the largest group of freshwater lakes on earth 

and the surrounding lands, with a drainage area of about 1000,000 km2. The five primary 

fresh lakes are naturally interconnected and contain roughly one-fifth of the world’s fresh 

surface water supply. The model configurations are similar to those used in Pietroniro et 

al. (2007) and Haghnegahdar et al. (2014). The model is run at a resolution of 1/6th of a 

degree (~15 km) using a time step of 30 minutes. Each model grid cell is divided into a 

mosaic of GRUs. Each GRU corresponds to one land cover type and is weighted by the 
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fraction of the land cover class within the cell. Seven GRU types are used for this domain, 

including crop, grass, deciduous forest, coniferous forest, mixed forest, water, and 

impervious. The land cover types were derived from a United States Geological Survey 

(USGS) climatological database. In this work, the model parameter sets are directly taken 

from a global calibration experiment where GRU specific parameters are calibrated basin-

wide to streamflow observations (Haghnegahdar et al., 2014). Here MESH is forced using 

the gridded hourly precipitation data derived from the Canadian Precipitation Analysis 

(CaPA; Mahfouf et al., 2007); other meteorological forcing data (incoming shortwave and 

longwave radiations, surface air temperature, wind speed, pressure, and specific humidity) 

come from the Global Environmental Multiscale (GEM) model forecasts (Mailhot et al., 

2006).  

 

In this work, in situ soil moisture measurements (Fig. 3.1) from the Michigan 

Automated Weather Network (MAWN; http://www.agweather.geo.msu.edu/mawn/), the 

Soil Climate Analysis Network (SCAN; http://www.wcc.nrcs.usda.gov/scan/), and the 

Fluxnet-Canada Research Network (FCRN) are used to validate the SMOS retrievals, the 

model and the assimilation estimates. The specification of in situ stations and 

measurements is provided in Table A5. MAWN is comprised of about 79 stations. Each 

station uses two Campbell Scientific water content reflectometers (CS615 or CS616) to 

measure soil moisture. The two probes are horizontally inserted to provide hourly soil 

moisture measurements at depths of 10 and 25 cm  (for 46 MAWN sites) or are vertically 

installed to measure soil moisture in the upper 60 cm profile (0-30 and  30-60 cm) (for 33 

MAWN sites since about the middle of year 2008). Additionally, in situ data from three 
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SCAN sites (SCAN2003, 2011, and 2073) and one FCRN site (the Borden forest station) 

are included in this study. At SCAN sites, Stevens Hydra Probe sensors are horizontally 

inserted to provide hourly soil moisture measurements at 5, 10, 20, 50, and 100 cm below 

the surface, while at the Borden station (44.32°N, 79.93°W) 30 min-averaged soil moisture 

measurements are taken with CS615 probes at 2, 5, 10, 20, 50, and 100 cm below the 

surface at two locations.  A filtering step is applied to all in situ data to ensure the reliability 

and effectiveness of the subsequent validations. In situ soil moisture observations are 

rejected if (1) they are beyond any realistic ranges (e.g., too high or too low to be explained 

by physical variability); (2) the time series contains sudden changes (significant “jump”) 

that are impossibly attributed to any physical process; or (3) the soil is frozen. 

 

3.2.3 The EnKF method 

 

Data assimilation typically can be viewed as a process to optimally merge the model 

forecast and the observed information based upon some estimate of their error 

characteristics. A great number of methods have been developed for land/hydrologic data 

assimilation (Table A1). The reader is referred to the relevant articles for details on the 

properties of different algorithms. In the present study, the ensemble Kalman filter (EnKF) 

is used to assimilate SMOS soil moisture in the MESH model. The traditional Kalman 

Filter (KF) and its various variants (extended Kalman Filter, EKF; EnKF) are typical 

‘filtering’ (or sequential) assimilation techniques. In the traditional KF, each assimilation 

cycle consists of a forecast step and an analysis step. In the forecast step, the forecast model 

is integrated forward in time (from an initial or analysis state) with an additional error 

covariance equation (linear model operator) to propagate the error information, while at 
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the analysis step the new observation is used to update the current forecast estimation. The 

KF is valid only for linear systems. Its nonlinear variant, the EKF, can be utilized to solve 

the nonlinear optimal estimation problem. The EKF still explicitly estimates and 

propagates the error information, but with a linearized and approximate error covariance 

equation. In practice, however, the full error covariances are difficult or impossible to 

directly estimate due to an expensive computational cost and insufficient error information, 

especially for large-scale applications. Additionally, the EKF may not be suitable for highly 

nonlinear systems since the high-order moments are ignored in its error covariance 

equation. To this end, Evensen (1994) proposed the EnKF scheme.  

 

The primary innovation of the EnKF is that a Monte Carlo approach is used to estimate 

model and measurement error statistics. The probability density of the model states is 

represented using an ensemble where the mean is the best estimate (Gaussian assumption), 

and the ensemble spread defines the error variance. The model error statistics evolve by 

integrating the ensemble of model states forward in time. The measurement errors are 

represented using another ensemble with the mean equal to zero (Gaussian assumption) 

and the spreading of the ensemble consistent with the realistic or predefined observation 

error variance. The measurement errors are imposed onto the actual measurement to yield 

the ensemble of observations. At measurement times, a variance-minimizing analysis is 

applied to the ensemble of model forecast states, given by 

௝ݔ
ା ൌ ௝ݔ

ି ൅ ்ܪିܲܪሾ்ܪିܲ ൅ ܴሿିଵ	ሾݕ௝ െ ௝ݔܪ
ିሿ  , j = 1, …, N            (3.1) 

where j is the ensemble member index, counting from 1 to the ensemble size N.  ݔ௝
ି and 

௝ݔ
ା denote the a priori and posterior model state estimates, respectively. ݕ௝	 represents the 
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perturbed observation.	ܪ	is the measurement operator. ܲି	and R denote the error 

covariances for model forecast and observation, respectively. In contrast to the EKF, the 

error evolution is implicit and fully nonlinear in the EnKF but with a lower rank (finite 

ensemble size).  

 

3.3 Skill for SMOS soil moisture retrievals 

 

SMOS soil moisture products have been evaluated over different regions/scales with in-

situ data from point (e.g. Al Bitar et al., 2012; Albergel et al., 2012) or network 

measurements (e.g. Gherboudj et al., 2012; Jackson et al. 2012; Zhao et al., 2014; Ridler 

et al., 2014). The validation studies have suggested that the SMOS retrievals typically 

exhibit an underestimation bias. The performance of the retrievals varies with the scale of 

the validation, typically showing a better accuracy for a large-scale average. Overall the 

desired accuracy of 0.04 m3/m3 for SMOS retrievals is met wherever the vegetation cover 

is light (nominal surfaces). However, the validation of coarse-scale satellite soil moisture 

unavoidably suffers from the disparity in spatial representativeness between satellite 

products and ground measurements (Jackson et al., 2010; Crow et al., 2012). Point-scale 

ground measurements, relative to the spatial averages, typically contain large uncertainties, 

which are strongly controlled by the precipitation type (e.g. convective or stratiform) and 

the local variability in geophysical fields (such as surface type, soil texture, and 

topography). Even for a soil moisture network, the spatial extent of ground observations 

may not always represent the satellite footprint area since the latter varies over time. These 
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factors pose an obstacle to validating satellite soil moisture products, especially when using 

the root-mean-square error (RMSE) metric.  

 

Although point measurements are not readily converted to the spatial averages, the 

temporal variability of soil moisture observed by point measurement may be spatially 

representative (e.g. Brocca et al., 2009; Loew & Mauser, 2008; Martinez-Fernandez & 

Ceballos, 2005). Fig. 3.2 presents the soil moisture time sequences observed at four pairs 

of neighboring sites (all from MAWN). Each pair of sites may lie within the same SMOS 

footprint area. Although the absolute magnitudes of soil moisture are not necessarily 

matched, each pair of sites typically show good agreement for the temporal pattern of soil 

moisture. Likewise, at the Borden station soil moisture measurements taken at two 

locations are not always same in magnitude but showing consistent temporal dynamics for 

the period of record (not shown). Regarding the SCAN measurements, Liu et al. (2011) 

suggested that the SCAN point observations were highly correlated with the watershed 

average soil moisture obtained from network measurements and thus were suitable for 

evaluating the assimilation estimates with the correlation metric. Thus, overall the point-

scale measurements (from MAWN, SCAN, and Borden) being used in this work are 

assumed to represent the areal average (satellite product scale or model grid cell) in terms 

of the temporal variability of soil moisture.  
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Fig. 3.2  Comparison of volumetric water content (VWC) daily time sequences for four pairs of 

MAWN sites. For each panel, location of the two sites and their distance are shown, and R denotes 

the correlation coefficient between the two soil moisture sequences. The labels on the x-axis denote 

the first day of each month.  

 

Since the absolute magnitude of soil moisture for the areal average (corresponding to 

the satellite footprint scale) is difficult to estimate based upon point-source observations, 
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the SMOS retrievals are not validated with the RMSE metric in this study. Instead, we only 

assess the SMOS soil moisture skill R, which is defined as the daily time series correlation 

of SMOS retrievals with point measurements. SMOS measures only the water content 

within the top ~ 5-6 cm soil layer. Although the 5 cm depth matches well with the average 

soil penetration of SMOS, here the SMOS soil moisture skill is computed using in situ 

measurements taken at 10 cm depth or in the top 30 cm profile (for those sites with the 

vertically installed probes), to be consistent with the subsequent assessment of the model 

surface soil moisture skill (sections 3.4.2 and 3.4.3). Overall the use of 10 cm-depth and 0-

30 cm measurements is acceptable in this study since typically the time patterns of soil 

moisture between in situ measurements taken at 5 cm, 10 cm, and 20/25 cm are highly 

correlated.      

 

To be consistent with the subsequent 1D-EnKF (section 3.4), the SMOS retrievals (from 

both ascending and descending orbits) are mapped onto the MESH model grid cells (at a 

1/6th degree resolution) using a nearest neighbor approach. Given a model grid, the SMOS 

skill (daily time series correlation R with in situ data) is assessed using in situ 

measurements falling within the grid cell. Typically only one in situ site is available per 

model grid cell. We do not compute the R values when any of the following occurs: (1) the 

effective length of SMOS soil moisture daily time series is less than 60 days per year; (2) 

in situ soil moisture (unfrozen) time series are shorter than 100 days per year; (3) the time 

series standard deviation of in situ soil moisture is less than 0.02 m3/m3 (since the 

measurement noise may significantly impact the R values when the time series standard 

deviation is too small); or (4) linear or quadratic trends in the SMOS or in situ time series 
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significantly contribute to the correlation (by examining if a linear regression or a 

polynomial of the 2nd degree gives statistically significant trends).  

 

Fig. 3.3 shows the SMOS soil moisture skill. To be consistent with the subsequent 

validation of the assimilation estimates, we classify the model grid cells into four types: (1) 

sCmC: the SMOS soil moisture has a nominal (low vegetation) surface type (the retrieval 

case value is 12 in MIR_SMUDP2;  in this study, for the grids of interest, a nominal surface 

is typically a crop surface) and the crop cover is also dominant (> 50%) within the model 

grid square; (2) sCmF: the SMOS soil moisture is from a crop surface node, but the fraction 

of forest cover (the sum of the deciduous, coniferous, and mixed forest classes) within the 

model grid cell exceeds 50% (note that since a model grid square and the SMOS node 

mapped onto the grid are not exactly matched in space their surface types may be not 

always the same); (3) sFmC:  the SMOS retrieval mapped onto a model grid is from a forest 

surface node (the retrieval case values equals 11 in MIR_SMUDP2), but the model grid is 

dominated by crop cover; and (4) sFmF: the SMOS retrieval case is a forest surface and 

the model grid is also covered dominantly by forest. Table 3.1 provides the median and 

mean skill R for each grid type. 
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Fig. 3.3 SMOS soil moisture skill, which is defined as the correlation coefficient R of daily 

averaged SMOS retrievals with in situ measurements, over four individual years. R is computed 

after the SMOS retrievals are mapped onto the model grid coordinate system. Symbols indicate 

the model grid types as defined in the text: (triangles) sCmC, (diamonds) sCmF, (squares) 

sFmC, and (circles) sFmF. R values that are not significantly (5% level) different from zero are 

indicated by open symbols in grey. 

 

The SMOS retrievals from crop surfaces, i.e., at the sCmC and sCmF grids (triangles 

and diamonds in Fig. 3.3), typically show modest to high skill R (median of 0.55 for sCmC 

and 0.64 for sCmF), which means that the time variation of SMOS soil moisture at these 

grids agrees well with the temporal pattern of in situ measurements. In contrast, the SMOS 
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observation skill is usually low at the sFmC and sFmF grids (squares and circles) where 

the retrievals come from forest cover-dominated surfaces (with a median of 0.23 for sFmC 

and 0.32 for sFmF). The identified SMOS skill disparity between forested and cropped 

surfaces is consistent with the fact that the satellite retrieval capabilities decrease with 

increased canopy density. Additionally, the forest grids with low SMOS skill are typically 

located near the lakes. The corresponding SMOS retrievals may also be impacted by the 

presence of open water and a low quality of the reconstructed brightness temperatures 

caused by the Gibbs effect (Gibbs, 1899) over the coast. Al Bitar et al. (2012) suggested 

that the temporal dynamics of soil moisture between SMOS and SCAN/SNOTEL point 

stations were typically well matched, but negatively affected by the increasing forest and/or 

water fractions within the satellite node. Note that such a vegetation modulation of the 

SMOS observation skill can strongly impact the model soil moisture skill gain through data 

assimilation (sections 3.4.2 and 3.4.3).  

 

Table 3.1  Median and mean skill R within each grid type for soil moisture from 

SMOS, the open-loop model, and the assimilation, respectively 

Soil layer Grid type N 

 

Median R 

 

Mean R with 95% confidence intervals 

SMOS Open-loop Assim. SMOS Open-loop Assim. 

0-10 cm  sCmC 91 0.55 0.39 0.64 0.55±0.01 0.39±0.01 0.64±0.01 

 sCmF 8 0.64 0.60 0.74 0.62±0.04 0.61±0.03 0.73±0.02 

 sFmC 21  0.23 0.40 0.52 0.23±0.04 0.42±0.02 0.50±0.02 

 sFmF 33  0.32 0.62 0.60 0.29±0.03 0.60±0.02 0.61±0.02 

          

0-35 cm sCmC 89  - 0.51 0.72 - 0.47±0.01 0.71±0.01 

 sCmF 8  - 0.65 0.80 - 0.67±0.03 0.77±0.02 

 sFmC 20  - 0.49 0.54 - 0.48±0.02 0.53±0.02 

 sFmF 32  - 0.67 0.65 - 0.64±0.02 0.62±0.02 

Grid types are defined in the text. N denotes the combined number of grid-based R values for 2010-2013.  
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3.4 Assimilation of SMOS soil moisture 

 

A 1D-EnKF (i.e., the analysis increment computation is performed independently for the 

model grids) with 12 ensemble members is applied to assimilating SMOS retrievals into 

the MESH model. Given a model grid, in the EnKF analysis equation (3.1) the model state 

vector ݔ௝	(dimension is 21) is comprised of the volumetric liquid water content from all the 

seven GRUs within the grid cell and all the three soil layers modelled in MESH. The 

observation ݕ௝		is the perturbed SMOS soil moisture and the corresponding model 

prediction ݔܪ௝
ି denotes the model estimates of the grid-averaged volumetric liquid water 

content (a weighted sum of GRU values) in the model surface layer (0-10 cm). The 

assimilation period is from 1 January 2010 through 31 December 2013. The model is spun 

up for a 8-year period with the 2002-2009 forcing data. 

 

 In the EnKF, the estimates of the model forecast errors are derived from an ensemble 

of model integrations. To represent random errors in the forcing inputs, cross-correlated 

forcing perturbation fields are generated (Table 2.2), following Reichle et al. (2007). The 

selected perturbation parameters are largely based upon order-of-magnitude considerations 

(Reichle et al., 2002a). To account for the model forecast errors due to deficiency in model 

physics and/or parameters, temporally correlated error perturbations are applied to soil 

moisture (volumetric liquid water content) estimates in the model. The following equation 

is used to yield the time evolution of error perturbations.   

௞ݍ ൌ ሾሺ1	ߪ െ ݇/߬ሻ	ݓ଴ ൅ ඥ1 െ ሺ1 െ ݇/߬ሻଶ	ݓ௞ሿ	                             (3.2) 
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where q is the error perturbation ensemble, w is white noise ensemble with mean of 0 and 

variance of 1,  ߬ is the correlation time length (unit: the model time step), k denotes the 

time index (0 ൑ ݇ ൏ ߬ሻ, and ߪ represents the specified model error standard deviation. 

Currently, the 0.001 m3/m3, 0.0005 m3/m3, and 0.00005 m3/m3 error standard deviations 

are applied to the model’s three layers (0-10, 10-35, and 35-410 cm), respectively. The 

model error correlation time is set to 1 day, which is the approximate frequency for the 

SMOS observations (1 or 2 observations every 3 days for both ascending and descending 

passes). In the EnKF, the measurement errors are represented using another ensemble with 

the mean equal to zero and the variance equal to the observation error variance. In this 

study, a uniform error standard deviation of 0.08 m3/m3 (derived from the SMOS 

climatology) is assumed for the SMOS retrievals.  

 

3.4.1.  Bias detection and reduction 

 

If we directly assimilate the unscaled SMOS soil moisture product, the analysis (updating 

the model forecast with a SMOS observation) typically makes systematic corrections to 

the model estimate. Negative mean increments (change in the model estimate between after 

and before the updating) are pronounced across the study region for both the surface layer 

and the root zone (not shown here). This provides clear evidence of the presence of bias in 

the system. If the system is bias-free (i.e., no systematic errors in either the model or the 

SMOS observation), mean analysis increments should be close to zero. This bias problem 

was also indicated by non-zero mean innovations and non-zero difference between 

climatology of satellite retrievals and that of their model equivalents.  
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Data assimilation systems are usually designed to produce an optimal estimate based 

upon the hypothesis of unbiased (and uncorrelated) errors in model and observation (i.e., a 

bias-blind system). In practice, biases in model forecast or observation (including 

observation operator) would contribute to the error variances, resulting in a suboptimal 

analysis. Observation biases, if present and known, should be removed prior to the 

assimilation. Provided that we can attribute the systematic errors to proper sources, and 

they also can be represented, by design, using appropriate parameters, the biases can be 

estimated jointly with the model state by adding the designed parameters to the state vector 

(i.e., a bias-aware system). However, this is extremely complicated to achieve considering 

limited reference data and thus beyond the scope of this work. 

 

Following previous studies (e.g., Reichle and Koster, 2004; Reichle et al., 2007; Liu et 

al., 2011; Draper et al., 2012) we utilize a bias reduction scheme that matches the 

cumulative distribution function (CDF) of SMOS retrievals to the MESH model surface 

soil moisture’s CDF by scaling the retrievals. The CDF matching scheme can effectively 

remove the climatological difference (mean and standard deviation) between satellite 

retrievals and model data, with little impact on the SMOS soil moisture skill. The skill for 

the rescaled SMOS retrievals is almost identical to the skill of unscaled SMOS (Fig. 3.3). 

However, notice that since the absolute magnitude of SMOS soil moisture is changed the 

assimilation products are meaningful only in terms of the time variability of soil moisture, 

which is consistent with the advantage of point measurements (section 3.3). In the present 

study, the model CDF is based on the 4-year (2010-2013) model surface soil moisture, 

while the SMOS soil moisture CDF (and the scaling of SMOS) is calculated separately for 
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2010/2011 and 2012/2013 since there are non-negligible inconsistencies in SMOS 

retrievals between the two periods (due to the change of the dielectric constant model in 

the retrieval algorithms). Correspondingly, the SMOS observation error standard deviation 

(0.08 m3/m3) is rescaled by multiplying it with the ratio between the scaled SMOS time 

series standard deviation (very close to the model soil moisture standard deviation) and the 

unscaled SMOS time series standard deviation. The rescaling of the SMOS retrievals and 

their error standard deviations is conducted locally. In addition, we also matched the 

satellite and model CDFs separately for the two model periods (2010-2011 and 2012-2013) 

and independently for each season. Results indicated that the rescaling parameters 

depended only weakly upon the model period and the season for this study.  

 

3.4.2.  Skill improvement over open-loop  
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Fig. 3.4  Skill for surface soil moisture (0-10 cm) from (left) the open-loop model and (middle) 

the assimilation, and (right) the skill improvement ΔRA-M (Assimilation minus Open-loop) over 

four individual years (top to bottom: 2010, 2011, 2012, and 2013). In the right column, ΔRA-M 

is denoted by an open symbol in grey if the open-loop R and the assimilation R are not 

significantly (5% level) different from each other. Symbols denote the model grid types, same 

as in Fig. 3.3.   
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Fig. 3.4 compares the surface soil moisture skills from the open-loop model (single 

integration without assimilation) and the assimilation estimates based upon the scaled 

SMOS retrievals. Here the surface soil moisture skill refers to the correlation R (daily time 

series) between the grid-averaged soil moisture from the model surface layer (0-10 cm) 

and in situ measurements taken at 10 cm depth or in the 0-30 cm profile (the probe is 

vertically installed for some sites). R values are not computed if the length of SMOS and/or 

in situ soil moisture time series is short or when the correlation is strongly affected by the 

in situ measurement noise or the trends (section 3.3). Consistent with the assessment of the 

SMOS skill, the model grids are categorized as the sCmC, sCmF, sFmC, and sFmF types 

(section 3.3). Table 3.1 summarizes the median and mean skill R within each grid type for 

each soil moisture product.  

 

To test the significance of the difference between skills for the three soil moisture 

products (SMOS, the open-loop, and the assimilation), the Fisher Z transform method is 

used. Assuming that two correlations R1 and R2 are independent, the Z-score for the 

difference between the two correlations can be expressed as (Dunn & Clark, 1969; Meng 

et al., 1992) 

ݖ ൌ 	
ቀ଴.ହ	௟௡	భశೃభ

భషೃభ
ቁିቀ଴.ହ	௟௡	భశೃమ

భషೃమ
ቁ

ට
భ

ಿభషయ
ା భ
ಿమషయ

		                            (3.3) 

where N1 and N2 are the sample sizes for R1 and R2. Given a significance level, the two 

correlations are statistically different from each other if the absolute Z-score exceeds the 

corresponding critical value. In practice, the assumption that the correlations (skills) are 

independent is not strictly valid for the three soil moisture products. To this end, the 
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significance was estimated using a Monte Carlo approach for a limited number of grids 

(due to computational burden). This preliminary test confirmed the results assuming 

independence very closely approximate the Monte Carlo-based results. Thus, all statistical 

tests for the skill difference reported in the work utilize the independence assumption and 

are not Monte Carlo based.  

 

 The open-loop model (Fig. 3.4, left column) typically provides higher surface soil 

moisture skill R at the sFmF and sCmF grids (median/mean of about 0.61), which are 

covered dominantly by forest, than at the sCmC and sFmC grids (median/mean of about 

0.40) that are dominated by crop cover. Through the assimilation, the four grid types 

experience different skill gains ΔRA-M, defined as the skill for the assimilation soil moisture 

product minus the skill for the open-loop estimates (Fig. 3.4, right). Overall the sCmC grids 

(triangles) have the largest improvement ΔRA-M, and the sFmF grids (circles) show the 

weakest or even negative ΔRA-M ; while soil moisture from the sCmF and sFmC grids 

(diamond and square signs) typically shows low to modest increase in skill. The skill gain 

ΔRA-M is typically statistically significant for the sCmC grids. After the assimilation (Fig. 

3.4, middle), the surface soil moisture skill R for the sCmC grids (median/mean of about 

0.64) are typically closer to or even larger than R for the forest-dominated grids (sCmF and 

sFmF). Similarly, Draper et al. (2012) revealed larger skill (anomaly R) improvements for 

the cropland than for the mixed cover class (10-60% trees or woody plants) when 

assimilating the AMSR-E and ASCAT retrievals in the Catchment Land Surface Model 

(CLSM). 
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Fig. 3.5   Similar to Fig. 3.4, but for root-zone (top 35 cm) soil moisture. 

 

The counterpart of Fig. 3.4 for root-zone soil moisture (0-35 cm) is provided in Fig.3.5. 

The root-zone soil moisture skill is derived using a depth-weighted average of soil moisture 

estimates in the model’s top two layers  (0-10 and 10-35 cm) against the arithmetic mean 

of in situ measurements at 10 and 25 cm depths or the 0-30 cm profiles measured by 

vertically installed sensors. The variations with the grid types of the open-loop skill and 
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the skill gain ΔRA-M for root-zone soil moisture are quite similar to those observed for the 

surface soil moisture. Overall the open-loop skill for root-zone soil moisture (Fig. 3.5, left 

column) is higher at forest-dominated grids (sFmF and sCmF) than at crop cover-

dominated grids (sCmC and sFmC). The strongest skill improvement ΔRA-M for root-zone 

soil moisture are also observed for the sCmC grids (triangles in Fig.3.5, right). This clearly 

indicates that the surface soil moisture information measured by SMOS, through the EnKF 

assimilation, can be propagated to the soil layers that are not directly measured. For a given 

grid type, on average, the skill for root-zone soil moisture is slightly higher than the surface 

soil moisture skill (for either the open-loop or the assimilation product) (Table 3.1).  

 

 

Fig. 3.6  Skill improvement ΔRA-M (skill for the assimilation minus the open-loop skill, ordinate) 

for (left) surface and (right) root-zone soil moisture against ΔRS-M (skill for the SMOS 

observation minus skill for the open-loop surface soil moisture, abscissa). Symbols indicate the 

model grid types as defined in the text: (triangles) sCmC, (diamonds) sCmF, (squares) sFmC, 

and (circles) sFmF. Symbols in red mean that ΔRA-M are not statistically significant at the 5% 

level. The horizontal dashed line denotes ΔRA-M = 0. The two vertical dashed lines denote ΔRS-

M = -0.3 and ΔRS-M = 0, respectively.  
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The skill improvement ΔRA-M is controlled not only by the satellite observation skill but 

also by the skill for the open-loop estimates. In general, the skill improvement ΔRA-M 

increases as the satellite observation skill, but decreases with increased open-loop skill 

(Reichle et al., 2008a). Therefore, when the satellite observation skill is high and the model 

(open-loop) skill is low, the largest skill improvement ΔRA-M  is expected, which typically 

corresponds to the sCmC case. On the contrary, if the satellite observation skill is low and 

the open-loop model skill is high, we usually expect weak ΔRA-M, as observed for the sFmF 

grids. When the satellite skill and the open-loop skill are either both high (e.g. sCmF grids) 

or both low (e.g. sFmC grids), ΔRA-M are typically low to modest.  

 

The skill improvement ΔRA-M (the assimilation skill minus the open-loop skill) against 

ΔRS-M, defined as the SMOS observation skill minus the skill for the open-loop surface soil 

moisture, is provided in Fig. 3.6. Overall the skill improvement ΔRA-M for both surface and 

root-zone soil moisture (the ordinate) is strongly related to ΔRS-M
 (the abscissa). Every time 

the SMOS skill is greater than or equal to the open-loop surface soil moisture skill, the 

assimilation is typically able to significantly improve the skill of the model estimates. Such 

is the case with most of the sCmC grids (triangles). When the satellite observation skill is 

about 0~0.3 lower than the open-loop model (i.e., ΔRS-M along the abscissa is between -0.3 

and 0), the open-loop skill was still improved by the assimilation for most cases (85% for 

surface soil moisture and 80% for root-zone soil moisture), but the improvements are not 

always statistically significant. If the skill for SMOS retrievals is more than about 0.3 below 

the open-loop skill (i.e., ΔRS-M is less than -0.3), the assimilation is not helpful and even 
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negatively affects the open-loop skill. The results are fairly consistent with Draper et al. 

(2012). The study showed that the assimilation of AMSR-E and ASCAT retrievals in 

CLSM typically generated an improved skill (in terms of anomaly R) for both the surface 

and root zone soil moisture as long as the satellite observation skill is no more than about 

0.2 lower than the open-loop skill.  

 

For the retrievals with very low or even negative skill (ΔRS-M is thus small in Fig.3.6), 

which generally reflect poor satellite observations, their real errors could be severely 

underestimated by the input error parameters, thus causing negative ΔRA-M. Overall, 

negative ΔRA-M is more severe in root zone than for the surface layer (Fig. 3.6).  This is 

generally consistent with the finding that poorly specified observation errors have a fiercer 

impact on the assimilation estimates of root zone soil moisture than on surface soil moisture 

estimates (Reichle et al., 2008b). The on-line quality control routines (e.g., Reichle, 2008) 

and on-line tuning of error covariances (Reichle et al., 2008b) may be helpful for 

controlling the occurrence of negative ΔRA-M. Note that although the assimilation skill does 

not necessarily exceed the skill of the open-loop model for individual grids, the assimilation 

product always outperforms or at least match the open-loop counterpart in terms of the 

averaged skill for each grid type (Table 3.1), coinciding with the finding based on synthetic 

assimilation experiments (Reichle et al., 2008a). Additionally, as shown in Fig. 3.6, overall 

the surface soil moisture ΔRA-M, relative to root-zone ΔRA-M, exhibits a better linear 

relationship with ΔRS-M. For a given ΔRS-M, the skill improvement ΔRA-M is usually more 

variable (along the ordinate) for root-zone soil moisture than for surface soil moisture. This 

may be due to the fact that during the assimilation the updating of root-zone soil moisture 
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is subject to the accurate information exchanges between the surface soil and the deeper 

layers, which, in turn, are controlled by many factors (e.g. the model dynamics and the 

input error parameters). However, notice that a perfect linear relationship between ΔRA-M 

and ΔRS-M is not expected since the sensitivity of ΔRA-M to ΔRS-M is additionally affected 

by the magnitude of open loop skill. 

 

3.4.3.   Skill improvement over SMOS  

 

In theory, the assimilation seeks to produce superior estimates, relative to both the open-

loop model and the observation product alone. In this section, we investigate the skill 

improvement, relative to the SMOS observation skill, by the assimilation. Fig. 3.7 shows 

ΔRA-S, defined as the skill for the surface soil moisture assimilation product minus the 

SMOS observation skill. It is expected that ΔRA-S, as opposed to ΔRA-M, increases as the 

open-loop skill (since the assimilation product skill typically increases with the open-loop 

skill for the same observation skill), but decreases with increased satellite observation skill. 

As expected, overall the variation of ΔRA-S with the grid type (Fig. 3.7) is opposite to that 

for ΔRA-M (Fig. 3.4, right column). At the sFmF and sFmC grids (circles and squares in 

Fig. 3.7), the surface soil moisture skill for the assimilation typically significantly exceeds 

the skill of SMOS product alone (but the corresponding ΔRA-M is typically small or even 

negative, as discussed above). This is mainly because that for the two grid types the open-

loop skill is typically much higher than the satellite skill (e.g. Table 3.1). In contrast, 

smaller ΔRA-S
 are usually observed for the sCmC grids (triangles in Fig. 3.7; the 

corresponding ΔRA-M is typically the strongest).  
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The SMOS observation skill could even exceed the assimilation skill at a few of the sCmC 

grids (Fig. 3.7). Reichle et al. (2008a), based upon synthetic experiments (Fig. 2a therein), 

also found that the surface soil moisture skill from the assimilation was not always above 

the satellite observation skill (anomaly R was used therein), especially in the presence of a 

poor open-loop model skill and a high satellite skill (such is the case with our sCmC grids 

showing negative ΔRA-S). As they pointed out, the reasons for the occurrence of negative 

ΔRA-S
 may include the effects from the nonlinearity of the system, a small ensemble size, 

and the imperfect input error parameters, etc. However, note that overall the surface soil 

moisture assimilation skill (median/mean of 0.64) is still significantly better than the 

SMOS product skill (median/mean of 0.55) for the sCmC-type grid (Table 3.1). 
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Fig. 3.7  Skill improvement ΔRA-S, defined as the skill for the surface soil moisture assimilation 

product minus the SMOS observation skill. ΔRA-S in grey open symbol means that the 

assimilation skill and the SMOS skill are not significantly (5% level) different from each other. 

Symbols denote the model grid types, same as in Fig. 3.4.   

 

3.4.4.   Subgrid-scale (GRU) soil moisture skill 

 

In the above, point in situ measurements are used to assess the skill for the grid-scale soil 

moisture. It is acknowledged that there could be a mismatch in vegetation or soil 

characteristics between the two products with different spatial scales. A model grid square 

typically represents a mixture of multiple land cover and soil attributes, while a point 
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station corresponds to only a specific vegetation and/or soil type. In this study, however, 

this factor is expected to have negligible effects on the skill evaluation above since the land 

cover type for in situ station is typically consistent with the dominant land cover class for 

the grid-scale soil moisture.  

 

We also computed the subgrid-scale soil moisture skill, i.e., point measurements are 

compared with the model soil moisture from a subgrid area that has the same vegetation or 

soil characteristics as the point site. In the MESH model, the subgrid-scale variability is 

resolved using the GRU approach (section 3.2.2). Each model grid cell is a mosaic of up 

to seven GRUs. Each GRU corresponds to one land cover class (other soil characteristics 

are assumed to be the same for the same GRU type) and is weighted by the fraction of the 

land cover class within the grid cell.  Hence, for a given grid location, the soil moisture 

skill for a specific GRU, which corresponds to the land cover class for the in situ station, 

is assessed. Overall the subgrid-scale (GRU) soil moisture (not shown) and the grid-

averaged soil moisture reveal a consistent vegetation modulation of skill for both the open-

loop and the assimilation. The open-loop model usually provides strong soil moisture skill 

for forest GRUs and weaker skill for crop GRUs. A crop GRU, if the SMOS soil moisture 

sampled from a crop surface node is assimilated, typically experiences a large skill 

improvement ΔRA-M. When the assimilated SMOS retrievals come from a forest-type 

surface, the skill improvement ΔRA-M for the crop GRU soil moisture is relatively weak. 

The assimilation typically leads to smaller or even negative ΔRA-M for forest-GRUs, even 

when the assimilated SMOS soil moisture is from a crop surface node. To further improve 
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the assessment of the soil moisture skill, dense in situ observations would clearly be of 

advantage, although such data are not available for this study. 

 

3.5  Summary and Discussion 

 

Since the launch of SMOS satellite mission, the validation and assimilation of SMOS soil 

moisture has been an active research area. In this chapter, the 1D-EnKF is used to assimilate 

SMOS soil moisture retrievals into the MESH model over the Great Lakes basin. The 

satellite retrievals, the open-loop soil moisture, and the assimilation estimates are validated 

against point-scale in situ soil moisture measurements from MAWN, SCAN and FCRN, in 

terms of the daily time series correlation coefficient (soil moisture skill R). Due to the bias 

between the SMOS retrievals and the model soil moisture estimates, a priori rescaling on 

the retrievals is performed using the CDF matching. Our focus in this work is thus on the 

assimilation of the scaled SMOS retrievals. The main results from this study are as follows. 

 

(1) The observation skill is typically low for the SMOS retrievals from forest surfaces, but 

becomes high for those from crop surfaces, consistent with the effect of canopy density 

on the satellite retrieval capabilities. On the other hand, the open-loop model typically 

provides higher soil moisture skill R over forests than over crops.  

 

(2) Overall the assimilation can favorably influence the model soil moisture skill for both 

the surface layer and the root zone except for the cases with a small SMOS observation 

skill and a large open-loop skill. The skill improvement ΔRA-M, defined as the skill for 

the assimilation soil moisture product minus the skill for the open-loop estimates, for 
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both surface and root-zone soil moisture typically increases as the SMOS observation 

skill and decreases with increased open-loop skill, showing a strong dependence upon 

ΔRS-M, defined as the SMOS observation skill minus the open-loop surface soil 

moisture skill. When the SMOS skill is greater than or equal to the open-loop surface 

soil moisture skill, the assimilation is typically able to significantly increase the open-

loop soil moisture skill.  

 

(3) The crop-dominated grids typically experience the largest ΔRA-M if the assimilated 

SMOS retrievals also come from crop surfaces, consistent with a high satellite 

observation skill and a low open-loop skill, while ΔRA-M is usually the weakest for the 

forest-dominated grids when the SMOS retrievals from forested surfaces are 

assimilated, due to a low observation skill and a high open-loop skill.  

 

(4) On average, the skill for the surface soil moisture assimilation product is significantly 

better than the skill for the SMOS product alone, although the dependence of ΔRA-S 

(skill for the surface soil moisture assimilation product minus the SMOS observation 

skill) upon the open-loop skill and the satellite observation skill is opposite to that for 

ΔRA-M. The forest-dominated grids, if the assimilated SMOS retrievals also come from 

forest surfaces, typically have large ΔRA-S because the corresponding open-loop skill 

is generally higher than the satellite skill. In contrast, smaller ΔRA-S are typically 

observed when the assimilated SMOS retrievals are from cropped surfaces since the 

corresponding SMOS observation skill is high. 
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(5) We also investigated the subgrid-scale (GRU) soil moisture skill by comparing point 

measurements with the GRU soil moisture (a GRU and an in situ site lie within the 

same grid cell and have the same land cover class). Overall the GRU soil moisture skill 

and the grid-scale soil moisture skill show a consistent vegetation modulation for both 

the open-loop and assimilation estimates. This confirms a negligible impact of point 

measurements (in situ data) on the skill assessment for the grid-scale soil moisture 

(model and SMOS) due to the possible disparity in vegetation characteristics between 

them. 

 

Unlike previous assimilation studies of SMOS soil moisture (e.g. Zhao et al., 2014; Ridler 

et al., 2014), this work assimilated 4 years of SMOS retrievals (2010-2013) at a grid scale 

of ~15 km. The overall agreement within the same grid type and the overall consistency 

between the years are observed for each of the three soil moisture products (SMOS, the 

open-loop, and the assimilation), which demonstrates the robustness of our results. This 

study also suggests that the ability of SMOS/MIRAS to measure surface soil moisture for 

a wide range of vegetation covers is clearly of advantage for assessing the vegetation 

modulation of the assimilation. The results offer further insight into the dependence of the 

assimilation upon the open-loop skill and the satellite observation skill.  

 

In this work, only the correlation R metric of skill is used to assess the three data sets 

(SMOS alone, the open-loop model, and the assimilation estimates) because (1) the 

temporal variability of soil moisture (rather than the absolute magnitude) observed by point 

measurements is spatially representative; and (2) the absolute magnitude of the soil 



 
 

86 
 

moisture assimilation product is meaningless since the satellite retrievals are rescaled prior 

to the assimilation (Reichle et al., 2007). Note that through a percentile-based 

transformation (e.g., Entekhabi et al. 2010b) the time variations of soil moisture can be 

scaled to the soil moisture initial conditions of weather and climate models, while any bias 

(systematic error) in the soil moisture product can be scaled out (e.g. Zhang & Frederiksen, 

2003). Therefore, the resulting soil moisture assimilation product can benefit weather and 

climate forecast initializations as long as the time variability of soil moisture is captured 

accurately. The skill R values presented in this work are derived based upon the raw soil 

moisture time series that include the seasonal cycle. To assess the impact of soil moisture 

seasonality on the skill R evaluation, we also analyzed the anomaly R. The soil moisture 

anomalies are defined as departures of daily soil moisture from the seasonal (monthly 

mean) climatology (e.g., Reichle et al., 2007). Note that the anomaly R computation is 

restricted to only a portion of the validation grids presented above since (i) at least three 

years of complete estimates, for each soil moisture product, are required for extracting the 

soil moisture seasonal climatology, and (ii) for more sites (relative to the raw time series) 

the variability of the anomaly time series is lower than the measurement noise level, which 

results in meaningless correlations. Overall, the raw R metric and the anomaly R results 

(not shown here) are qualitatively similar and consistently lead to the general conclusions 

presented above.  

 

In the present work, overall the open loop soil moisture skill for 2010/2011 is lower than 

that for 2012/2013 (Figs. 3.4 and 3.5). The difference may be caused by two sources: (i) 

the meteorological forcing data (notably rainfall) used for 2010/2011 may be of relatively 
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low quality; and (ii) the model parameters (related to physiography, vegetation, and soil 

characteristics), which were based upon a calibration with the 2004-2005 streamflow 

observations (Haghnegahdar et al., 2014), may be not the “best” for 2010/2011. If the 

improved forcing data and/or calibrated model parameters are applied, the 2010/2011 open-

loop skill could be increased and the corresponding skill improvement through the 

assimilation is expected to decrease (as shown for 2012/2013). However, our general 

conclusions remain valid. 
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CHAPTER 4 

Assimilation of AMSR-E Soil Moisture in the MESH Model 

 

4.1 Introduction 

 

Soil moisture information is critically important to the monitoring and modelling of climate 

and global changes since the wetness of the land strongly affects the energy, water and 

biogeochemical cycles of the climate system (e.g. Seneviratne et al. 2010). In practice, 

spatially distributed soil moisture information, especially at regional, continental, and 

global scales, is difficult to estimate using ground-based (in situ) measurements since in 

situ stations routinely acquiring soil moisture are sparse globally. Moreover, in situ soil 

moisture measurements are typically point-scale observations and thus have difficulty 

representing spatial averages, especially in terms of the absolute magnitude of soil 

moisture. Space-based remote sensing, especially microwave measurements that are 

sensitive to changes in soil water content, holds the ability to measure large-scale spatially 

distributed surface soil moisture. So far, spaceborne microwave soil moisture observations 

typically come from passive sensors such as the Special Sensor Microwave Imager (e.g. 

Jackson, 1997), the Scanning Multichannel Microwave Radiometer (e.g. Reichle and 

Koster, 2005), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (e.g. 

Bindlish et al., 2003), the Advanced Microwave Scanning Radiometer-Earth Observing 

System (AMSR-E) (e.g. Njoku et al., 2003), and the Advanced Microwave Scanning 

Radiometer 2 (AMSR2), as well as active systems such as the European Space Agency 

Remote Sensing Satellite (ERS) Synthetic Aperture Radar (SAR), the Canadian 
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RADARSAT series (e.g. Merzouki et al., 2011), the Scatterometer (SCAT), and the 

Advanced Scatterometer (ASCAT) (e.g., Bartalis et al., 2007; Albergel et al., 2009). The 

Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil 

Moisture and Ocean Salinity (SMOS) satellite (Kerr et al., 2012) and the newly launched 

Soil Moisture Active Passive (SMAP) mission, which were designed exclusively for soil 

moisture measurement, hold enhanced capabilities to estimate surface soil moisture. 

Spaceborne microwave sensors measure only soil moisture within a near-surface layer. The 

soil thickness measured increases with the wavelength (several tenths of the wavelength). 

For bare soil, the penetration depth is about 3-5 cm for L-band (1-2 GHz) measurements 

(e.g. SMOS), and only ~1-1.5 cm for C- (4-8 GHz) or X- (8-12 GHz) band measurements 

(e.g. AMSR-E, ASCAT). Where there is a vegetation cover, the radiation emitted or 

backscattered from the soil would be attenuated owing to the scattering and absorption by 

vegetation canopy. The magnitude of the vegetation attenuation increases with the sensor’s 

operating frequency and the vegetation density. Hence soil moisture retrievals at high 

microwave frequencies (> 5-6 GHz) are typically valid only for bare soil and lightly or 

moderately vegetated regions.  

 

Over the past decades, satellite microwave soil moisture retrievals, which are, relative 

to point measurements, more compatible in space with distributed numerical models, have 

shown great potential to improve the predictive skill of land surface and hydrologic models, 

especially through advanced data assimilation (e.g. Xu et al., 2014). In practice, land 

surface and hydrological modelling is typically subject to uncertainties in forcing fields 

and deficiencies in model physical structure and parameters, while satellite microwave soil 
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moisture retrievals are only available for the surface layer and typically contain 

instrumental and representativeness errors. Advanced data assimilation offers a framework 

to merge model forecast and satellite retrievals based upon some estimate of their error 

characteristics. The merging is achieved, most commonly, either by maximum-likelihood 

estimators (e.g. variational methods) or by variance minimizing estimators (e.g. the 

Kalman filter, KF; the extended Kalman filter, EKF; and the ensemble Kalman filter, 

EnKF). The former assumes that the error statistics of the background (a priori state) and 

the observation are known and seeks the state with the maximum likelihood by minimizing 

a cost function that measures the distance of the model state (unknown) to the observations 

and to the background. In contrast, a variance minimizing estimator directly derives the 

analysis state based upon an analysis equation, which can ensure that the total analysis 

error variances are minimum over the whole space and time domain. Through data 

assimilation near-surface soil moisture information derived from satellite microwave 

measurements can spread to deeper soil layers that cannot be directly measured by satellite 

microwave remote sensing. Furthermore, in a data assimilation system, soil moisture 

retrievals from different satellite platforms can, by means of consistency constraints in time 

evolution and physical properties, be interpolated and extrapolated to yield a single optimal 

soil moisture estimation.  

 

Ten years (2002-2011) of operations of the Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E) had acquired important near-surface soil 

moisture data for land and hydrologic data assimilation. Reichle et al. (2007) assimilated 

the Level-2B AMSR-E soil moisture product, based upon the NASA standard algorithm, 
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into the NASA Catchment Land Surface Model (CLSM) using the EnKF method. The 

assimilation led to an overall improvement relative to either the model estimates or satellite 

retrievals alone, in terms of soil moisture anomaly time series correlation with in situ 

measurements. In Draper et al. (2009a), the Extended Kalman Filter (EKF) method was 

utilized to assimilate the surface soil moisture derived from AMSR-E C-band brightness 

temperature measurements with the Land Parameter Retrieval Model (LPRM) into the 

Interactions between Surface, Biosphere, and Atmosphere (ISBA) land model. The 

introduction of AMSR-E soil moisture did yield substantial analysis increments (changes 

in the model estimate between before and after the implementation of the analysis equation) 

for both surface and root-zone soil moisture, although the assimilation estimates were not 

validated against real in situ observations. Liu et al. (2011) showed that the assimilation of 

AMSR-E soil moisture was as efficient as the precipitation corrections for enhancing the 

model skill for soil moisture estimation (anomaly time series correlation coefficient with 

in situ measurements). The study assessed the contributions of two AMSR-E soil moisture 

products (June 2002 to July 2009), the NASA standard algorithm product archived at the 

National Snow and Ice Data Center (NSIDC) and the LPRM-derived AMSR-E soil 

moisture. The assimilation of LPRM product led to larger soil moisture skill improvement 

than the NSIDC product. More recently, Draper et al. (2012) suggested that the CLSM soil 

moisture skill could be improved through the assimilation of either AMSR-E or ASCAT 

soil moisture products. A joint assimilation of the two sensor products could produce the 

best soil moisture skill. Due to the bias (systematic error) between satellite retrievals and 

model soil moisture estimates, a priori rescaling on AMSR-E retrievals (the cumulative 

distribution function (CDF) matching) was applied for the aforementioned efforts. Li et al. 
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(2012) assimilated AMSR-E soil moisture retrievals (derived from the X-band brightness 

temperatures using single-channel algorithm), without a priori scaling, into the Noah land 

surface model. Their work was motivated by the assumption that the mean value of satellite 

retrievals have the potential to improve the model mean values of soil moisture. Although 

the study observed the improved soil moisture estimates (as indicated by reduced bias and 

root-mean-square-error against in situ measurements), especially for the mass conservation 

scheme, the analysis typically made systematic corrections to the model soil moisture 

estimation (a clear symptom of bias in the assimilation). This means that a satellite-model 

bias removal is an indispensable part in a bias-blind assimilation system (i.e. correcting 

random errors only). 

 

In this chapter, the 1D-EnKF is applied to assimilating AMSR-E soil moisture retrievals, 

based upon the NASA standard and LPRM algorithms, respectively, into the standalone 

version of MESH in which CLASS, the Canadian Land Surface Scheme, is coupled with a 

distributed hydrological model. The assimilation estimates are validated over the Great 

Lakes basin using in situ soil moisture measurements from the Michigan Automated 

Weather Network. Our goal is to investigate how the assimilation of AMSR-E soil moisture 

affects the MESH model soil moisture estimates and how well our results are compared 

with the AMSR-E assimilation in other models and for other regions. Relative to AMSR-

E, newer satellite instruments operating at L-band and designed exclusively for soil 

moisture measurement, such as  SMOS and SMAP, are expected to hold an enhanced 

capability to estimate surface soil moisture due to their stronger penetration of vegetation 

and soils. The assimilation of AMSR-E could be used a benchmark for evaluating the 
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assimilation of the SMOS and SMAP soil moisture, in particular for assessing the impact 

of the retrieval skill on the assimilation of remotely-sensed soil moisture. The present study 

differs from other AMSR-E assimilation studies in two aspects: (1) this work is the first 

time to assimilate AMSR-E soil moisture in the MESH model and for the Great Lakes 

basin; and (2) the AMSR-E assimilation is compared with the assimilation of SMOS 

retrievals, providing further insight into the dependence of the assimilation upon the 

satellite retrieval skill.  

 

4.2  Data and Methods 

 

4.2.1  Standalone MESH model 

 

Environment Canada’s standalone MESH is a coupled land-surface and hydrological 

model (Pietroniro et al., 2007).  The model involves both the vertical water transfers and 

the horizontal flows (overland flow, interflow, base flow). The soil column is partitioned 

into three or more layers to resolve water and temperature dynamics. The vertical water 

movement between the soil layers is governed by Richard’s equation. The model uses a 

Grouped Response Unit (GRU) approach to resolve the subgrid-scale variability. In the 

version of MESH used in this study, each model grid cell is divided into a limited number 

of distinct GRUs based on the distribution of land cover classes within the cell. Within a 

grid cell, the fluxes and variables are computed independently for GRUs, ignoring the 

interactions between GRUs. The overall fluxes and prognostic variables of a grid cell are 
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obtained by taking a weighted average of those from GRUs. The lateral movement of soil 

water between grid cells is not taken into account.  

 
  

The study domain for this work is the Great Lakes basin (Fig. 3.1). The model 

configurations are similar to those used in Pietroniro et al. (2007) and Haghnegahdar et al. 

(2014). Seven GRU types based upon land cover class are used here, including crop, grass, 

deciduous forest, coniferous forest, mixed forest, water, and impervious. Each grid cell is 

a mosaic of the seven GRUs, weighted by their cell fractions. In this work, the model 

parameter sets for all GRU types are directly taken from a global calibration strategy using 

streamflow observations (Haghnegahdar et al., 2014). The forecast model is forced using 

the gridded hourly precipitation data derived from the Canadian Precipitation Analysis 

(CaPA; Mahfouf et al., 2007); other meteorological forcing data (incoming shortwave and 

longwave radiations, surface air temperature, wind speed, pressure, and specific humidity) 

come from the Global Environmental Multiscale (GEM) model forecasts (Mailhot et al., 

2006). A three-layer soil structure is used: 0-10, 10-35, and 35-410 cm. The simulations 

are performed at a resolution of 1/6th of a degree (~15 km) with a time step of 30 minutes.  

 

4.2.2   AMSR-E soil moisture products and data assimilation scheme 

 

A number of algorithms had been developed to extract soil moisture from AMSR-E 

measurements.  In this work, we assimilate two AMSR-E soil moisture products: (i) the 

AMSR-E/Aqua Level-2B land surface product (Njoku 2004), based upon the NASA 

standard algorithm, archived at NSIDC (data version V09), and (ii) the LPRM algorithm-

based AMSR-E Level 2 soil moisture product (Owe et al. 2008) archived at the NASA 
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Goddard Earth Sciences Data and Information Services Center (GES DISC). The two 

products have been widely used in various validation and assimilation studies. In the 

remainder of this thesis, the two AMSR-E products are referred to as NSIDC and LPRM 

products, respectively. 

 

The NSIDC product is delivered at a 25 km Equal-Area Scalable Earth Grid (EASE-Grid) 

cell spacing. The soil moisture retrievals were derived from the X-band (10.7 GHz) 

brightness temperature measurements using the Polarization Ratios (PR) approach 

(modified version from Njoku et al., 2003; Njoku and Chan, 2006). The use of normalized 

PRs (brightness temperature difference between the vertical and horizontal polarizations at 

a given frequency normalized by their sum) can effectively remove the surface temperature 

dependence. PRs at 10.7 GHz and 18.7 GHz are used to derive the vegetation/roughness 

parameter based upon empirical relationships. Soil moisture is then estimated based upon 

departures of PR at 10.7 GHz from local monthly minima, which is used as a baseline 

value. Except for surface soil moisture and vegetation/roughness parameter, the NSIDC 

product also contains useful ancillary data, such as surface type and quality control flags. 

Utilizing the ancillary information, a filtering is performed to exclude the soil moisture 

retrievals that are contaminated by dense vegetation, open water, frozen surface, snow 

cover, radio-frequency interference (RFI), or rainfall, etc. 

 

The LPRM algorithm uses a forward radiative transfer model to retrieve surface soil 

moisture and vegetation optical depth through a nonlinear iterative procedure (Owe et al., 

2001; 2008). The LPRM product includes soil moisture retrievals and vegetation optical 
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depths derived from both the AMSR-E’s X-band (10.7 GHz) and C-band (6.9 GHz) 

brightness temperature measurements and the land surface temperature that is separately 

derived from the vertical polarization brightness temperatures at 36.5 GHz. In order to 

reduce the RFI effects, here we use only the X-band LPRM retrievals. The retrievals are 

not used whenever (1) the land surface is frozen, (2) the vegetation optical depth exceeds 

0.8, or (3) the uncertainty of soil moisture (simultaneously provided) is greater than 8%.  

 

Temporal coverage for the AMSR-E soil moisture products is from 18 June 2002 

through 4 October 2011, with a resolution of 1-2 days for both ascending (01:30 pm LST) 

and descending (01:30 am LST) orbits. Prior to the assimilation, the AMSR-E retrievals 

are resampled onto the MESH model grids (~15 km resolution) using a nearest neighbor 

approach. Whenever and wherever the model (combined with the rainfall forcing data) 

indicates the presence of precipitation, frozen soils, or snow cover, the satellite retrievals 

are also excluded from the evaluation and assimilation. 

 

Here we use a 1D-EnKF (i.e. the analysis increment computation is performed 

independently for the model grids) with 12 ensemble members to assimilate soil moisture 

retrievals into the MESH model. The primary innovation of the EnKF is that a Monte Carlo 

approach is used to estimate model and measurement error statistics. The probability 

density of the model states is represented using an ensemble where the mean is the best 

estimate (Gaussian assumption), and the ensemble spread defines the error variance. The 

model error statistics evolve by integrating the ensemble of model states forward in time. 

The measurement errors are represented using another ensemble with the mean equal to 
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zero (Gaussian assumption) and the spreading of the ensemble consistent with the realistic 

or predefined observation error variance. The measurement errors are imposed onto the 

actual measurement to yield the ensemble of observations. At measurement times, a 

variance-minimizing analysis is applied to the ensemble of model forecast states, given by 

௝ݔ
ା ൌ ௝ݔ

ି ൅ ,൫ܺିߪ ෠ܻ൯ሾߪ൫ ෠ܻ, ෠ܻ൯ ൅ ,ߝሺߪ ௝ݕሾ	ሻሿିଵߝ െ  ො௝ሿ  , j = 1, …, N            (4.1)ݕ

 
where σ denotes the covariance between the two vectors,  j is the ensemble member index, 

counting from 1 to the ensemble size N.  ݔ௝
ି and ݔ௝

ା denote the a priori and posterior model 

state estimates, respectively. ݕ௝	and ݕො௝ represent the perturbed observation and the 

corresponding model prediction. ܺି, ෠ܻ 	and ɛ denote the ensembles of		൛ݔ௝
ିൟ, ൛ݕො௝ൟ	, and 

observation errors, respectively. In the 1D-EnKF,  ݔ௝	, for a given grid, is comprised of the 

volumetric liquid water content from all GRUs within the grid cell and all the three soil 

layers. The observation ݕ௝		is the perturbed satellite soil moisture and the corresponding 

model prediction ݕො௝ denotes the model estimates of the grid-averaged volumetric liquid 

water content (a weighted sum of GRU values) in the model surface layer (0-10 cm).  

 

 In the EnKF, the estimates of the model forecast errors are derived from an ensemble 

of model integrations. To represent random errors in the forcing inputs, cross-correlated 

forcing perturbation fields are generated following Reichle et al. (2007). To account for the 

model forecast errors due to deficiency in model physics and/or parameters, temporally 

correlated error perturbations are applied to the forecasted soil moisture (volumetric liquid 

water content). Currently, the 0.001 m3/m3, 0.0005 m3/m3, and 0.00005 m3/m3 error 

standard deviations are applied to the model’s three layers (0-10, 10-35, and 35-410 cm), 
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respectively. The model error correlation time is set to 1 day. The observation errors are 

represented using another ensemble with the mean equal to zero and the variance equal to 

the observation error variance. In this study, the error standard deviations of 0.02 m3/m3 

and 0.08 m3/m3 (derived from the climatology) are assumed for NSIDC product and LPRM 

product, respectively.  

 

Since the satellite retrievals and model surface soil moisture exhibit different 

climatologies, which would impede an optimal merging of the two data sets, a priori 

rescaling (bias reduction) is applied to AMSR-E retrievals and the observation error 

standard deviations (stdev). The retrievals are rescaled by matching their cumulative 

distribution function (CDF) to the MESH surface soil moisture’s CDF. The observation 

error stdev is rescaled by multiplying it with the ratio between the time series stdev of the 

scaled retrievals (almost identical to the model soil moisture stdev) and that of the unscaled 

retrievals. The rescaling of the retrievals and their error stdev is conducted independently 

for each grid cell. The CDF matching scheme can effectively remove the climatological 

difference (mean and standard deviation) between satellite retrievals and model data, with 

little impact on the retrieval skill (correlation with in situ measurements). However, note 

that since the absolute magnitude of satellite soil moisture is changed, the assimilation 

product has merit only in the time variability of soil moisture, which is consistent with the 

advantage of point measurements. The assimilation period is from 1 January 2003 through 

04 October 2011.  
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4.2.3  In situ soil moisture observations and skill metric 

 

In this work, in situ soil moisture measurements from the Michigan Automated Weather 

Network (MAWN; http://www.agweather.geo.msu.edu/mawn/) are used to validate the 

satellite retrievals, the model and the assimilation estimates (Fig. 3.1). MAWN is 

comprised of 79 stations. Each station uses two Campbell Scientific water content 

reflectometers (CS615 or CS616) to measure soil moisture. The two probes are horizontally 

inserted to provide hourly soil moisture measurements at depths of 10 and 25 cm  (for 46 

MAWN sites) or are vertically installed to measure soil moisture in the upper 60 cm profile 

(0-30 and  30-60 cm) (for 33 MAWN sites since about the middle of year 2008). In this 

study, only 30 stations, which generally correspond to the “sCmC” grids (i.e. a crop cover-

dominated grid with satellite soil moisture also from a cropped surface) defined in Chapter 

3, are used for the validation because the AMSR-E retrievals are not available or not 

considered for the rest stations due to the impact of open water and/or dense vegetation. A 

filtering step is applied to all in situ data to ensure the reliability and effectiveness of the 

subsequent validations. In situ soil moisture observations are rejected if (1) they are beyond 

any realistic ranges (e.g., too high or too low to be explained by physical variability); (2) 

the time series contains sudden changes (significant “jump”) that are impossibly attributed 

to physical process; or (3) the surface soil is frozen. 

 
Typically only one in situ site is available per model grid cell. Since the absolute 

magnitude of soil moisture for the areal average (satellite product scale or model grid cell) 

is difficult to estimate based upon point-source observations, the root-mean-square error 

(RMSE) metric is not used for the validation in this study. Instead, we use only the skill 
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metric R, which is defined as the daily time series correlation with point measurements. 

This is because the temporal variability of soil moisture observed by point measurement 

may be spatially representative (e.g. Brocca et al., 2009; Loew and Mauser, 2008; 

Martinez-Fernandez and Ceballos, 2005), although point measurements are not readily 

converted to the spatial averages. The neighboring MAWN sites typically show good 

agreement for the temporal pattern of soil moisture (Chapter 3), indicating that  overall the 

point ground measurements being used in this work can represent the areal average 

(satellite product scale or model grid cell) in terms of the temporal variability of soil 

moisture.   

 

4.3 Results 

 

4.3.1 Soil moisture skill comparison between NSIDC and LPRM products 

 

As mentioned earlier, only point ground measurements are available for the validation in 

this study. Since the absolute magnitude of soil moisture for the areal average 

(corresponding to the satellite footprint scale or the model grid cell) is difficult to estimate 

based upon point-source observations, we use the skill metric R, which is defined as the 

daily time series correlation with point measurements. AMSR-E measures only the water 

content within the top ~ 1 cm soil layer. The retrievals (from both ascending and 

descending orbits) are mapped onto the model grid cells using a nearest neighbor approach. 

After using the CDF matching approach, the satellite retrievals correspond to the model 

surface layer (0-10 cm). Note that the CDF matching scheme has no impact on the retrieval 
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skill. For a given model grid, the skill for the retrievals, the open-loop model, and the 

assimilation is assessed using in situ measurements falling within the grid cell. Typically 

only one in situ site is available per model grid cell. In this study, the surface soil moisture 

skill (satellite retrievals, open-loop and assimilation) are computed using in situ 

measurements taken at 10 cm depth or in the top 30 cm profile (for those sites where the 

probes are vertically installed). The root-zone soil moisture skill (open-loop and 

assimilation) is derived using a depth-weighted average of soil moisture estimates in the 

model’s top two layers  (0-10 and 10-35 cm) against the arithmetic mean of in situ 

measurements at 10 and 25 cm depths or the 0-30 cm profiles measured by vertically 

installed sensors. The skill R, for a given grid cell, is computed separately for each year 

(unfrozen period). We do not compute the R values when any of the following occurs: (1) 

the effective length of satellite retrieval daily time series is less than 60 days per year; (2) 

in situ soil moisture (unfrozen) time series are shorter than 100 days per year; (3) the time 

series standard deviation of in situ soil moisture is less than 0.02 m3/m3 (since the 

measurement noise may significantly impact the R values when the time series standard 

deviation is too small); or (4) linear or quadratic trends in the soil moisture time series 

significantly contribute to the correlations. Fig. 4.1 shows the spatial distribution of the 

retrieval skill for the two AMSR-E products. The comparison between the skill of the open-

loop model (single integration without assimilation) and the skill for the assimilation 

estimates are provided in Fig.4.2 for surface soil moisture and in Fig. 4.3 for root-zone soil 

moisture. The years 2009, 2010 and 2011, which have the most in situ data available, are 

chosen for shown.  
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The two AMSR-E soil moisture products (NSIDC and LPRM) have been evaluated 

using in situ point or network measurements over different regions such as the United 

States (e.g., Jackson et al. 2010; Crow and Zhan, 2007), Canada (e.g. Champagne et al., 

2010), Europe (e.g., Brocca et al., 2011; Wagner et al., 2007), and Australia (e.g. Draper 

et al. 2009b). Each product performed differently in different studies. It is generally 

accepted that the LPRM product has better correlations with in situ data than the NSIDC 

retrievals. In the present work (Fig. 4.1), the two retrieval products typically have low to 

modest skill R with a median of 0.31 for the NSIDC product and a median of 0.42 for the 

LPRM product. Each product performed differently at different locations. Overall, the 

retrievals from LPRM (mean R = 0.39) showed higher skill than the NSIDC product (mean 

R = 0.31), which is fairly consistent with the evaluations over other regions (e.g., Jackson 

et al. 2010; Brocca et al., 2011; Draper et al. 2009b).  

 

 

Fig. 4.1  Retrieval skill for (top) AMSR-E NSIDC product and (bottom) AMSR-E LPRM 

product over years (left) 2009, (middle) 2010, and (right) 2011, respectively.  
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The open-loop model (Fig. 4.2, top row) typically provides low to modest surface soil 

moisture skill (a median of 0.38). After the assimilation (Fig. 4.2, the 2nd and 3rd rows), 

the model surface soil moisture skill was increased, especially for the LPRM assimilation 

(to a median of 0.59). The statistically significant skill gain ΔRA-M, defined as the skill for 

the assimilation minus the skill for the open-loop, are observed less frequently for the 

NSIDC assimilation (Fig. 4.2, the 4th row) than through assimilating the LPRM product 

(Fig. 4.2, bottom row). Overall, skill improvement ΔRA-M is larger for the LPRM 

assimilation, consistent with higher retrieval skill for the LPRM product.  
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Fig. 4.2  Skill for surface soil moisture from (top row) the open-loop model, (2nd row) the 

assimilation of NSIDC product, (3rd row) the assimilation of LPRM, (4th row) the skill 

improvement ΔRA-M (Assimilation minus Open-loop) from the NSIDC assimilation, and (bottom) 

ΔRA-M from the LPRM assimilation, over three individual years (left to right: 2009, 2010, and 
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2011). In the bottom two rows, ΔRA-M is denoted by an open symbol in grey if the open-loop R and 

the assimilation R are not significantly (5% level) different from each other. Symbols denote 

locations of the validation grids.  

 

 

The open-loop skill and its response to the assimilation for root-zone soil moisture (Fig. 

4.3) are similar to those observed for the surface soil moisture (Fig. 4.2). Overall, the root-

zone soil moisture skill is slightly higher than the surface soil moisture skill for both the 

open-loop and the assimilation estimates. This reflects the increase of the assimilation 

product skill with the open loop skill. The stronger skill improvement ΔRA-M for the LPRM 

assimilation than for the NSIDC assimilation are also observed for root-zone soil moisture. 

The skill gain in root zone soil moisture indicates that the surface soil moisture information 

acquired by AMSR-E, through the EnKF assimilation, can propagate to the soil layers that 

are not directly measured. Note that the single soil moisture skill R (for single grid and 

single year) from the assimilation estimates was not always above that from the open loop 

model. Negative ΔRA-M  may be observed (blue triangles in the last two rows in Figs. 4.2 

and 4.3) for the grids where the retrieval skill is much lower than the open loop skill (see 

section 4.3.2 for details).    
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Fig. 4.3   Similar to Fig. 4.2, but for root zone soil moisture. 
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Mean soil moisture skill R values (over all sites and all years) with 95% confidence 

intervals are summarized in Figure 4.4 for the retrievals, the open-loop, and the assimilation 

estimates, respectively. The confidence interval for the mean R is estimated using	ሾ തܴ െ

ݐ ௌ

√ே
, തܴ ൅ ݐ ௌ

√ே
ሿ	, where തܴ is the sample mean of all the single R values (single site and 

single year) for a given soil moisture product, N is the sample size, which is the summation 

over available validation sites and years in this study, and S is the sample standard 

deviation. The value of t, which depends upon the degrees of freedom (i.e. N-1) and the 

level of confidence, can be determined from the known t table. The mean retrieval skill is 

significantly higher for AMSR-E/LPRM (0.39 (mean R) ± 0.03 (95% confidence level)) 

than for AMSR-E/NSIDC (0.31 ± 0.03). The mean R for the model open-loop is 0.37 for 

the surface soil moisture, and is 0.46 for the root zone soil moisture. As expected, the 

improvement in the model skill R through assimilation increases with increasing retrieval 

skill. After the assimilation of NSIDC product, the mean model skill R is increased by 

about 0.11 for both the surface and root zone soil moisture. After assimilating the LPRM 

product, the mean skill improvement ΔRA-M is about 0.19 for both the surface and root zone 

soil moisture. All the mean skill improvements are statistically significant. The skill 

difference between the two assimilation estimates (about 0.08) for either surface or root 

zone soil moisture is approximately equal to that between the two retrieval products (0.31 

for NSIDC and 0.39 for LPRM). However, note that the increase in assimilation skill, for 

a given open loop model skill, is typically slower (smaller) than the increasing in retrieval 

skill (Reichle et al., 2008a).  
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Fig. 4.4  Mean soil moisture skill R for the AMSR-E retrievals, the open-loop model, and 

the assimilation estimates. The retrievals and the assimilation estimates are based upon the 

AMSR-E/NSIDC product alone and the AMSR-E/LPRM product alone, respectively. Error 

bars indicate 95% confidence intervals 

 

Fig. 4.4 shows that the mean skill for the assimilation estimates always exceeds that of the 

open-loop model, even when the retrieval skill (e.g. NSIDC) is lower than that of the open-

loop model. Through synthetic assimilation experiments, Reichle et al. (2008a) pointed out 

that if the open-loop model skill was low to modest even the retrievals of low skill could 

contribute to the assimilation skill. The synthetic study also indicated that the surface soil 

moisture skill from the assimilation estimates was typically above the satellite observation 

skill, except for the presence of a poor open-loop model skill and a high satellite skill. 

Similarly, Fig. 4.5 shows that the mean ΔRA-S, defined as the skill for the surface soil 

moisture assimilation product minus the observation skill is about 0.17 for the assimilation 

of either NSIDC or LPRM product. This evidently demonstrates that the assimilation 
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produced superior soil moisture estimates, relative to both the open-loop model and the 

observation product alone.  

 

Liu et al. (2011) assessed the contributions of both the NSIDC and LPRM products (June 

2002 to July 2009), through the EnKF assimilation, to the CLSM model soil moisture skill 

using in situ measurements from the continental United States Soil Climate Analysis 

Network (SCAN). We can compare their skill levels with our results. Note that differences 

between the two studies are expected since the model, forcing data, and in situ 

measurements used in Liu et al. (2011) are different from those used in our study. However, 

the two studies showed similar modulation of the two AMSR-E products on the model soil 

moisture skill. Liu et al. (2011) showed that the retrieval skill was higher for LPRM than 

for NSIDC (Fig. 3 therein). Accordingly, the LPRM retrievals resulted in greater skill in 

assimilation product than the NSIDC product. For the CLSM model forced with 

precipitation from the NASA Modern Era Retrospective analysis for Research and 

Applications (MERRA), which has the mean open-loop skill (0.43 for surface soil moisture 

and 0.47 for root zone) similar to ours (Fig. 4.4), the skill improvement from the 

assimilation (for both surface and root zone) is about 0.05 for NSIDC and about 0.11 for 

LPRM. Their skill improvements are smaller than those obtain in the present study (0.11 

for NSIDC and 0.19 for LPRM), which may be due to the use of anomaly R metric in their 

study. Draper et al. (2012) demonstrated that through assimilating 3.5 years (January 2007 

to May 2010) of LPRM retrievals in CLSM the mean skill (anomaly R) improvement is 

about 0.09 (the open loop skill is about 0.45) over the United States SCAN/SNOTEL 

network and the Murrumbidgee Soil Moisture Monitoring Network in southeast Australia. 
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Overall our raw R metric of skill and the anomaly R metric (e.g. Liu et al., 2011; Draper et 

al., 2012) supports the same general conclusions, especially for the assimilation 

dependence on the satellite retrieval skill.      

 

4.3.2 Dependence of the assimilation upon the retrieval-model skill difference  

 

The skill improvement ΔRA-M  is controlled not only by the satellite observation (retrieval) 

skill but also by the skill for the open-loop estimates. In general, the skill improvement 

ΔRA-M increases as the satellite observation skill, but decreases with increased open-loop 

skill (Reichle, et al. 2008a). To further investigate the impact of the open-loop skill and the 

retrieval skill on the assimilation, Fig. 4.5 provides the skill improvement ΔRA-M (the 

assimilation skill minus the open-loop skill) against ΔRS-M, defined as the retrieval skill 

minus the skill for the open-loop surface soil moisture. The skill improvement ΔRA-M 

approximately increases linearly with ΔRS-M when assimilating either AMSR-E/NSIDC or 

AMSR-E/LPRM retrievals. As long as ΔRS-M exceeds -0.2 (i.e., assimilating retrievals with 

a skill no more than 0.2 below the open-loop skill), the assimilation is typically able to 

increase the model skill (i.e. a positive ΔRA-M is expected). If the retrieval skill is greater 

than or equal to the open-loop surface soil moisture skill (i.e. ΔRS-M ≥ 0.), the skill 

improvement ΔRA-M are often statistically significant. When the skill for the retrievals is 

more than 0.2 below the open-loop skill (i.e., ΔRS-M < -0.2), the chances for positive ΔRA-

M become slim. The results are fairly consistent with Draper et al. (2012). The study showed 

that the assimilation of AMSR-E and ASCAT retrievals in CLSM typically generated an 

improved skill (in terms of anomaly R) for both the surface and root zone soil moisture as 
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long as the satellite observation skill is no more than about 0.2 lower than the open-loop 

skill. Chapter 3 also suggested that the assimilation of SMOS soil moisture may be not 

helpful and even negatively affect the open-loop skill if the skill for SMOS retrievals is 

more than about 0.3 below the open-loop skill.  

 

 

 

Fig. 4.5  Skill improvement ΔRA-M (skill for the assimilation minus the open-loop skill, ordinate) 

for (top) surface and (bottom) root-zone soil moisture against ΔRS-M (skill for the satellite 

retrievals minus skill for the open-loop surface soil moisture, abscissa), derived from (left) the 
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assimilation of AMSR-E/NSIDC and (right) the assimilation of AMSR-E/LPRM. Symbols in 

red mean that ΔRA-M are not statistically significant at the 5% level. The horizontal dashed line 

denotes ΔRA-M = 0. The two vertical dashed lines denote ΔRS-M = -0.2 and ΔRS-M = 0, 

respectively.  

 

As shown in Fig. 4.5, overall the surface soil moisture ΔRA-M, relative to root-zone ΔRA-M, 

exhibits a better linear relationship with ΔRS-M. For a given ΔRS-M, the skill improvement 

ΔRA-M is usually more variable (along the ordinate) for root-zone soil moisture than for 

surface soil moisture. This may be associated with the fact that during the assimilation the 

update of root-zone soil moisture is subject to the accurate information exchanges between 

the surface soil and deeper layers, which, in turn, are controlled by many factors such as 

model dynamics and input error parameters. However, note that the linear association 

between ΔRA-M and ΔRS-M is not expected to be perfect since the sensitivity of ΔRA-M to 

ΔRS-M is additionally affected by the magnitude of open-loop skill R. Reichle et al. (2008a) 

showed that along the axis of retrieval skill the contour lines of the skill improvement ΔRA-

M are denser at low to modest open-loop R than at  higher open-loop R (Figure 2c and 2d 

therein), i.e., the skill improvement ΔRA-M is more sensitive to the increase in the retrieval 

skill when the open-loop R is low to modest than when the open-loop R is high. Therefore, 

the same ΔRS-M typically leads to larger ΔRA-M  at low open-loop R than at high open-loop 

R. From their Figure 2c, for example, for the retrieval with skill R = 0.4 and an open-loop 

surface soil moisture with skill R = 0.3, ΔRS-M was 0.1 and ΔRA-M was about 0.13, while 

for the retrieval with R = 0.5 and an open-loop skill R = 0.4, ΔRS-M was still 0.1 but ΔRA-M  

was only about 0.08.   
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4.3.3 Comparison with SMOS assimilation  

 

The launch of SMOS satellite that carries an L-band (~1.4 GHz) Microwave Imaging 

Radiometer with Aperture Synthesis (MIRAS) has opened up new opportunities for land 

data assimilation. Chapter 3 reported the assimilation of SMOS soil moisture retrievals 

(2010-2013) in the MESH model over the Great Lakes region. The study revealed the 

impact upon the assimilation of the open-loop skill and the satellite observation skill. The 

crop-dominated grids typically experienced substantial skill improvement ΔRA-M when the 

assimilated SMOS retrievals also came from crop surfaces, due to the presence of a high 

satellite observation skill and a low open-loop skill. Here we perform the comparison 

between the assimilation results from SMOS and AMSR-E, which may offer further insight 

into the dependence of the assimilation upon the satellite retrieval skill. As a reminder, the 

AMSR-E products covered June 2002 to October 2011 while the SMOS retrievals are 

available from January 2010 to present.  First, we compare the summarized results from 

the 2003-2011 AMSR-E assimilation (Fig. 4.4) to those based upon the 2010-2013 SMOS 

assimilation (Table 3.1). For the SMOS assimilation, we only take into account the 

validation results over the “sCmC” grids, to be consistent with the AMSR-E assimilation. 

The open-loop model skill for 2010-2013 (R = 0.39 for surface and R = 0.47 for root zone 

soil moisture) is similar to that for 2002-2011(R = 0.37 for surface and R = 0.46 for root 

zone soil moisture). The mean retrieval skill is higher for SMOS (R = 0.55) than for the 

AMSR-E products (R=0.31 for NSIDC and R=0.39 for LPRM). Accordingly, the 

assimilation of SMOS retrievals resulted in greater skill improvement (mean ΔRA-M = 0.25) 
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than the assimilation of AMSR-E products (mean ΔRA-M = 0.11 for NSIDC and 0.19 for 

LPRM).  

 

 

 

Fig. 4.6  Mean soil moisture skill R for the satellite retrievals, the open-loop model, and the 

assimilation estimates, based on two years (2010-2011) of results. The retrievals and the 

assimilation estimates are based upon the AMSR-E/NSIDC product alone, the AMSR-E/LPRM 

product alone, the SMOS product alone, the combination of NSIDC and SMOS, and the 

combination of LPRM and SMOS, respectively.  Error bars indicate 95% confidence intervals 

 

 

Next, we compute the mean skill based upon only the years (i.e. 2010 and 2011) for which 

both SMOS and AMSR-E retrievals are available. Furthermore, since the two sensors have 

different overpassing time (01:30 am/pm LST for AMSR-E; 06:00 am/pm LST for SMOS), 

we also perform the combined assimilation of instantaneous soil moisture retrievals from 

the two instruments (AMSR-E/NSIDC + SMOS and AMSR-E/LPRM + SMOS). The 

SMOS soil moisture product used here is same as that used in Chapter 3. Prior to the joint 
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assimilation, all the retrieval products (separately) are rescaled using the CDF matching 

where the model CDF is based on the 10-year (2002-2011) MESH model surface soil 

moisture. Figure 4.6 summarizes the mean skill for the retrievals, open-loop model, and 

the assimilation estimates, using a space-time mask for AMSR-E and SMOS 

measurements. The results further reveals that the skill for the assimilation estimates for 

both surface and root zone soil moisture increases as the satellite retrieval skill. For the 

retrieval skill, SMOS soil moisture (R = 0.49) is significantly higher than the LPRM 

product (R = 0.34) and the NSIDC product (R=0.30). The mean open-loop skill R is 0.32 

for surface soil moisture. After assimilating the three products separately, the mean skill R 

values for surface soil moisture are increased (statistically significant at 5% level) to 0.44 

(NSIDC), 0.53 (LPRM), and 0.62 (SMOS), respectively.  For the root zone soil moisture, 

the NSIDC, LPRM, and SMOS products lead to the gains (statistically significant at 5% 

level) of 0.16, 0.23, and 0.30 in the mean skill, respectively.  

 

The retrieval skill for the combined AMSR-E and SMOS (R=0.41 for NSIDC + SMOS; 

R = 0.45 for LPRM+SMOS) is significantly higher than the AMSR-E product alone 

(R=0.30 for NSIDC and R=0.34 for LPRM), but is lower than the SMOS product alone 

(R=0.49) (Fig. 4.6). Consequently, the assimilation skill from the joint assimilation of 

AMSR-E and SMOS is greater than that from the assimilation of AMSR-E alone 

(especially for the NSIDC product), but is not superior to that from the SMOS alone 

assimilation. Draper et al. (2012) showed that the joint assimilation of AMSR-E and 

ASCAT soil moisture could produce slightly better skill improvement (not statistically 

significant) than assimilating either of them. This could be because that AMSR-E and 
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ASCAT operate at similar microwave frequencies and have similar retrieval skills. Our 

results indicate that the combined assimilation of X-band (AMSR-E) and L-band (SMOS) 

products does not necessarily yield the best skill improvement. 

 

4.4 Discussion 

 

In our EnKF assimilation, the model input error parameters are not on-line tuned. Although 

the assimilation estimates are subject to the specified input error parameters, Reichle et al. 

(2008b) demonstrates that a non-adaptive EnKF typically leads to improved soil moisture 

estimates (over the open loop), even when the input error parameters moderately deviate 

from their true values. However, when the error estimates for the model and/or the 

retrievals are far from the realistic conditions, the assimilation estimates may be even worse 

than the open-loop model (Reichle et al., 2008b). This could be used to explain the 

occurrence of negative ΔRA-M  when the retrieval skill is very low or even negative (the 

corresponding ΔRS-M is thus small) (Fig. 4.5). For the retrievals with very low or even 

negative skill, which generally reflect poor satellite observations, their real errors could be 

severely underestimated by the input error parameters, thus causing negative ΔRA-M. 

Overall, negative ΔRA-M is severer in root zone than for the surface layer (Fig. 4.5).  This 

is because poorly specified observation error variances have a stronger impact on the 

assimilation estimates of root zone soil moisture than on surface soil moisture estimates 

(Reichle et al., 2008b). To avoid this problem, on-line quality control routines (e.g. cross-

comparisons, Reichle, 2008) and on-line adjusting of input errors parameters (Reichle et 

al., 2008b) need to be added to the assimilation system.  
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In the present work, the R value is derived based upon the raw time series rather than 

using the anomaly time series (e.g. Reichle et al., 2007; Liu et al., 2011; Draper et al., 2012) 

considering that the extraction of anomaly soil moisture for this study is hampered by a 

number of factors. First, the soil moisture anomalies, defined as departures of daily soil 

moisture from the climatological annual cycle, are sensitive to the computation of the 

climatology. Different climatology calculations, such as monthly mean (e.g. Reichle et al., 

2007; Liu et al., 2011); 31-day window running average (e.g. Draper et al., 2012), and 

normalized 5-week moving average (e.g. Brocca et al. 2011) typically lead to different 

anomalies. Second, the in situ record lengths are different across the validation sites, and 

the time coverage is less than 3 years for a substantial portion of stations. Third, depths of 

in situ soil moisture were changed over the years. Some sites have measured soil moisture 

in the upper 60 cm profile (0-30 and 30-60 cm) since the middle of year 2008, as compared 

to  previous observations at horizontal depths of 10 and 25 cm. However, note that overall 

our raw R metric of skill and the anomaly R metric (e.g. Liu et al., 2011; Draper et al., 

2012) qualitatively provide the same general conclusions, especially for the assimilation 

dependence on the satellite observation skill.    

 

4.5 Summary and Conclusion 

 

The assimilation of AMSR-E soil moisture has been an active research area. In this chapter, 

the 1D-EnKF is adopted to assimilate the two AMSR-E retrieval products (2003-2011), 

NSIDC and LPRM, into the MESH model over the Great Lakes basin. The satellite 
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retrievals, the open-loop model, and the assimilation estimates are validated against point-

scale in situ soil moisture measurements, in terms of the daily time series correlation 

coefficient (soil moisture skill R). Due to the bias (systematic error) between the satellite 

retrievals and the model soil moisture estimates, a priori rescaling on the retrievals is 

performed (the CDF matching). Additionally, the AMSR-E sensor-based assimilation 

results are compared with the assimilation of SMOS retrievals (only for lightly or 

moderately vegetated areas). The following conclusions can be drawn from this work. 

 

 Overall, the assimilation of either NSIDC or LPRM product led to superior skill, relative 

to either the open-loop model skill or the retrieval skill.  The improvement in the model 

skill R through assimilation increases with increasing retrieval skill. On average, the 

LPRM assimilation yielded larger skill improvement ΔRA-M, defined as the skill for the 

assimilation soil moisture product minus the skill for the open-loop estimates, for both 

surface and root-zone soil moisture than the NSIDC assimilation. 

 

 The skill improvement ΔRA-M is strongly controlled by ΔRS-M, defined as the retrieval 

skill minus the open-loop surface soil moisture skill. For a single site and a single year, 

as long as ΔRS-M exceeds -0.2 (i.e., assimilating retrievals with a skill less than 0.2 below 

the open-loop skill), the assimilation is typically able to produce increased skill (i.e. a 

positive ΔRA-M). 

 

 The assimilation of SMOS retrievals resulted in greater skill improvement ΔRA-M  than 

the assimilation of AMSR-E products. The skill improvement ΔRA-M from the joint 
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assimilation of AMSR-E and SMOS is greater than that from the assimilation of AMSR-

E alone, but is lower than that from the assimilation of SMOS alone.   
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CHAPTER 5 

Comparison of AMSR2 and SMOS Soil Moisture 

Retrievals for Land Data Assimilation 

 

5.1 Introduction 

 

Data assimilation aims to optimally merge model estimates and observations by 

quantifying their respective error characteristics. For land surface and hydrologic 

modeling, data assimilation techniques handle the optimization problem in the presence of 

random noise in forcing fields and uncertainties in model physics and/or parameters. 

Assimilation of satellite microwave soil moisture in land surface and hydrologic models 

has received considerable attention within the past decades. In particular, ten years (2002-

2011) of operations of the Advanced Microwave Scanning Radiometer-Earth Observing 

System (AMSR-E) provided key data sources for advances in land data assimilation (e.g. 

Reichle et al., 2007; Draper et al., 2009, 2012; Liu et al., 2011; Li et al., 2012). In Chapter 

4, we presented the assimilation of AMSR-E soil moisture in the MESH model as well as 

the comparison between the assimilation of AMSR-E and SMOS. Since October 2011, the 

AMSR-E soil moisture data have been no longer available due to a technical problem with 

the instrument’s antenna. As the successor of AMSR-E, the Advanced Microwave 

Scanning Radiometer 2 (AMSR2) onboard the first generation of the Global Change 

Observation Mission-Water (GCOM-W1) satellite, launched by the Japan Aerospace 

Exploration Agency (JAXA) in May 2012, is currently in operation. The coexistence of 

AMSR2 (May 2012-present), SMOS (November 2009-present), and SMAP (January 2015-
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present) will open up the new opportunities for filling the research gap regarding 

assimilation of satellite soil moisture measurements obtained at different microwave 

frequencies (namely, X/C band vs.  L band). In this chapter, we conduct a comparative 

study of assimilating AMSR2 and SMOS soil moisture in the MESH model. This study is 

intended to complement the AMSR-E and SMOS comparison, as presented in Chapter 4.  

 

5.2  Methodology 

 

We will use the 1D-EnKF to assimilate AMSR2 and SMOS soil moisture retrievals, 

separately and jointly. The forecast model, the assimilation filter, the study domain and the 

SMOS retrievals used here are same as those described in Chapter 3. Here we describe only 

the AMSR2 soil moisture retrievals. AMSR2 is generally same as the AMSR-E instrument 

(Table A3). AMSR2 acquires microwave emission from the Earth’s surface and 

atmosphere with a temporal resolution of 1-2 days for both ascending (1:30 pm LST) and 

descending (1:30 am LST) overpasses. In this work, we assimilate the AMSR2 Level 2 

Soil Moisture Content (SMC) product released by JAXA. The product version is Ver. 1.1 

(1.110.100) (during the preparation of this work, the Ver. 2.0 (2.220.2.00) of AMSR2 

products was released). The inversion of soil moisture is based upon a lookup table method, 

which was also adopted to produce the JAXA AMSR-E soil moisture (Fujii et al., 2009). 

The lookup table, which was derived from theoretical calculations using a forward radiative 

transfer model, describes the relation of soil water content and vegetation water content (as 

well as the fractional vegetation cover) with two indices, the normalized polarization 

difference at 10.7 GHz (i.e. brightness temperature difference between the vertical and 
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horizontal polarizations normalized by their average) and the normalized frequency 

difference between 36.5 GHz and 10.7 GHz horizontal polarizations (i.e. difference 

between brightness temperatures obtained at the two frequencies normalized by their 

average). By looking up the table, soil moisture and vegetation water content can be 

estimated based upon the observed polarization difference and frequency difference (as 

well as the observed fractional vegetation cover). Currently only volumetric soil moisture 

data are stored in the AMSR2 Level 2 SMC product.  

 

 

Fig. 5.1  Location of validation sites/grids (23). In situ soil moisture measurements are 

taken from the Michigan Automated Weather Network.  

 

Prior to the assimilation, both AMSR2 and SMOS retrievals are resampled onto the MESH 

model grids (~15 km resolution) using a nearest neighbor approach. Whenever and 

wherever the model (combined with the precipitation data) indicates the presence of 

precipitation, frozen soils, or snow cover, the retrievals are excluded from the evaluation 

and assimilation. We also exclude the forested grids (the sum of deciduous, coniferous, and 
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mixed forest classes within the grid cell exceeds 50%) for analysis considering that 

AMSR2 soil moisture is typically valid only for low or moderate vegetation cover.  

 

Since the satellite retrievals and model surface soil moisture exhibit different climatologies, 

a priori rescaling is applied to the retrievals and the observation error standard deviations 

(stdev). The retrievals are rescaled by matching their cumulative distribution function 

(CDF) to the model surface soil moisture’s CDF. The observation error stdev (0.05 m3/m3 

and 0.08 m3/m3, derived from the satellite climatology, are assumed for the AMSR2 

product and the SMOS product, respectively) is rescaled by multiplying it with the ratio 

between the time series stdev of the scaled retrievals and that of the unscaled retrievals. 

The rescaling of the retrievals and their error stdev is conducted independently for each 

model grid, respectively, for AMSR2 and SMOS. Only one year (2013) of soil moisture 

retrievals are used in this study. The assimilation period is from 1 January through 31 

December 2013. The model (ensemble integration without assimilation) is spun up for a 3-

year period with the 2010-2012 forcing data. The study domain is still the Great Lakes 

basin (Fig. 5.1). The satellite retrievals, the open-loop model, and the assimilation estimates 

are validated against point-scale in situ soil moisture measurements from the Michigan 

Automated Weather Network (MAWN), in terms of the soil moisture skill R (see previous 

chapters for details). After the quality control step, R values are computed only for 23 

model grids (Fig. 5.1) where both AMSR2 and SMOS products are available. 

 

5.3 Results and discussion 
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5.3.1  AMSR2 vs. SMOS scatterplot  

 

Fig. 5.2 presents the SMOS versus AMSR2 retrieval skill for the 23 validation sites (grid 

cells). The retrieval skill for SMOS soil moisture always exceeds or matches that of the 

AMSR2 product (The symbols of triangle are typically located above the one-to-one line 

in Fig. 5.2, left). This is consistent with the dependence of satellite soil moisture retrieval 

capabilities upon the microwave frequency. The L-band measurements (SMOS) are more 

sensitive to changes in soil water content than the X-band measurements (AMSR2). 

Although the two instruments are not in agreement in term of the magnitude of the retrieval 

skill, the correlation between the two sets of retrieval skill is as high as 0.81 (not listed in 

Fig. 5.2). This means that the spatial patterns are similar for the two sets of retrieval skill. 

Note that the retrieval skill (daily time series correlation between retrievals and in situ 

measurements) is calculated using only the days with available retrievals.  Since there are 

different revisit times (separately for the descending and ascending orbits) for the two sets 

of satellite measurements with 1-3 days for SMOS and 1-2 days for AMSR2, the number 

of days with AMSR2 retrievals (between 150 to 180 after the quality control step) is always 

greater than the daily sequence length of SMOS retrievals, ranging from 120 to 140, in this 

study (Fig. 5.2, right). Therefore, the SMOS and AMSR2 retrieval skill values are obtained 

based upon different data sequence lengths.  
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Fig. 5.2   Scatterplot of SMOS vs AMSR2 for (left) the retrieval skill and (right) the number of 

days with available retrieval data (after quality control). The dashed line is the one-to-one line. In 

the left plot, a grey symbol of triangle means that the retrieval skill values for SMOS and AMSR2 

are significantly (5% level) different from each other. 

 

Fig. 5.3 shows the SMOS versus AMSR2 comparison, in terms of the skill for the 

assimilation estimates and the skill improvement ΔRA-M (defined as the skill for the 

assimilation soil moisture product minus the skill for the open-loop estimates), 

respectively. In contrast with their evident difference in retrieval skill (Fig. 5.2, left), the 

assimilation soil moisture product skill (and thus the skill improvement ΔRA-M) obtained 

with the two sets of retrievals are in good overall agreement. In general, the contribution 

of satellite retrievals to the assimilation (i.e. the skill improvement ΔRA-M) is expected to 

increase as the retrieval skill increases (e.g. Chapter 2; Chapter 4; Reichle et al., 2008).  

Here, while the SMOS retrieval skill is typically higher than the AMSR2 retrieval skill, the 

skill gain ΔRA-M caused by assimilating SMOS does not necessarily exceed the 

corresponding ΔRA-M by assimilating AMSR2. For either surface or root zone soil moisture, 
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the skill improvements ΔRA-M from assimilating SMOS is within 0.05 of the corresponding 

ΔRA-M obtained through assimilating AMSR2 for 18 out of 23 validation sites (i.e. squares 

scattered near the one-to-one line in Fig. 5.3). This means that the SMOS and AMSR2 

retrievals, although with statistically different observation skill, made similar contributions 

to the model soil moisture skill through data assimilation. Considering that an increased 

assimilation frequency (i.e. a shorter assimilation interval) typically can favorably 

influences the assimilation skill (Chapter 2), a deficit in retrieval skill for the AMSR2 

assimilation may be partly offset by a higher frequency of the measurements (Fig. 5.2, 

right).  

 

 

Fig. 5.3   (left) Surface and (right) root zone soil moisture scatterplot of SMOS vs AMSR2 for 

(circles) the assimilation skill and (squares) the skill improvement (Assimilation-Open loop). The 

dashed line is the one-to-one line. 

 

Although good overall agreement is seen between SMOS and AMSR2 in terms of 

contribution to the assimilation estimates, the assimilation product skill, for an individual 
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grid (validation site), does not always exceed the open loop skill. Fig. 5.4 illustrates the 

dependence of the skill improvement ΔRA-M  for both surface and root zone soil moisture 

upon the retrieval skill and the open loop skill. Overall the SMOS and AMSR2 assimilation 

experiments provide consistent information. When the satellite observation skill (retrieval 

skill) is modest to high (≥ ~ 0.3) and the open-loop model skill is low to modest (≤ ~ 0.5), 

the skill gain ΔRA-M  is typically strong (i.e. the symbols appearing in the lower-right portion 

of the plot in Fig. 5.4). In contrast, if the satellite retrieval skill is low or even negative (≤ 

~ 0.2) or if the open-loop model skill is high (≥ ~ 0.6), ΔRA-M is often weak or even negative 

(i.e. the assimilation is worse than the open-loop). A positive skill improvement (but not 

necessarily significant in statistics) is typically expected as long as the retrievals skill is 

less than about 0.2 below the open-loop skill (i.e., located at the lower-right side of the 

dashed line in Fig. 5.4).   

 

The skill for the assimilation estimates should, in theory, always exceed or match the 

open-loop skill if the model and observation errors are accurately quantified in the 

assimilation system. Here negative ΔRA-M values, which occurred primarily for very low 

or negative retrieval skill, especially for the AMSR2 assimilation (Fig. 5.4), are due to the 

lack of on-line quality control routines (Reichle, 2008) and on-line adjusting of input errors 

parameters (Reichle et al., 2008b). When the poor quality of satellite retrievals (the 

corresponding retrieval skill is very small or negative) are assimilated, their real errors 

could be severely underestimated by the specified input error parameters. Under this 

situation, the assimilation estimates may be worse than the open-loop model (Reichle et 

al., 2008b), thus causing the occurrence of negative ΔRA-M.  



 
 

128 
 

 

Fig. 5.4   Skill improvement ΔRA-M (skill for the assimilation minus the open-loop skill, symbols) 

for (left) surface and (right) root-zone soil moisture as a function of the retrieval skill (abscissa) 

and open loop skill (ordinate), from assimilating either (triangles) AMSR2 or (circles) SMOS. The 

dashed line denotes ΔRS-M (skill for the retrievals minus skill for the open-loop) = -0.2. 

 

5.3.2  Mean soil moisture skill  

 

We also compute the mean soil moisture skill over the 23 validate sites for the retrievals, 

the open-loop, and the assimilation estimates, respectively (Fig. 5.5). The confidence 

interval for the mean R is estimated using	ሾ തܴ െ ݐ ௌ

√ே
, തܴ ൅ ݐ ௌ

√ே
ሿ	, where തܴ is the sample 

mean of all the single R values (single validation site) for a given soil moisture product, N 

is the sample size, which is the summation over available validation sites in this study, and 

S is the sample standard deviation. The value of t, which depends upon the degrees of 

freedom (i.e. N-1) and the level of confidence, can be determined from the known t table. 

For either the retrieval skill or the assimilation skill, the confidence interval is quite large 

for AMSR2 (Fig. 5.5), which should be related to the negative AMSR2 retrieval skill 
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appeared at several validation grids (Fig. 5.4). As expected, the mean retrieval skill for 

SMOS soil moisture (R = 0.51) is significantly higher than that of AMSR2 product (R = 

0.29). 

 

 

 

Fig. 5.5  Mean soil moisture skill R for the satellite retrievals, the open-loop model, and the 

assimilation estimates. The retrievals and the assimilation estimates are based upon the AMSR2 

product alone, the SMOS product alone, and the combination of AMSR2 and SMOS, respectively.  

Error bars indicate 95% confidence intervals. 

 

The mean open-loop skill R are 0.47 for surface soil moisture and 0.55 for root zone soil 

moisture. After assimilating the AMSR2 and SMOS products, separately, the mean skill R 

are increased to 0.58 (AMSR2) and 0.62 (SMOS) for surface soil moisture, and to 0.63 

(AMSR2) and 0.67 (SMOS) for root zone soil moisture. On average, the assimilation skill 

(and thus the skill improvement ΔRA-M) is only marginally sensitive to the increase in the 

retrieval skill. This is attributed largely to a relatively high open-loop skill for this year (a 

higher measurement frequency for AMSR2 may also play a role, as discussed in the above 
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section). Reichle et al. (2008b) showed that along the axis of retrieval skill the contour lines 

for assimilation product skill become progressively flatter as the open-loop skill R increases 

(Figures 2a and 2b therein). This means that the sensitivity of the assimilation to the 

retrieval skill becomes weaker as the open-loop R increases, i.e., the same increase in the 

retrieval skill typically leads to a weaker improvement in the assimilation skill for a  high 

open-loop R than for a lower open-loop R. In Fig. 5.5, however, note that although the two 

sets of assimilation skill are similar (not significantly different), the confidence levels for 

their respective assimilation improvement (relative to the open-loop skill) are different. 

The confidence level is greater (lower) than 95% for the skill improvement in either surface 

or root zone soil moisture through the assimilation of SMOS (AMSR2). 

 

Since AMSR2 and SMOS have different overpassing time (01:30 am/pm LST for 

AMSR2; 06:00 am/pm LST for SMOS), we can also perform the combined assimilation of 

instantaneous soil moisture retrievals from the two instruments. Recall that prior to the 

joint assimilation, the two sets of retrieval products are (independently) rescaled using the 

CDF matching approach. The mean retrieval skill for the combined AMSR2 and SMOS is 

0.41, which does not significantly (5% level) differ from that for either the AMSR2 product 

alone or the SMOS product alone (Fig. 5.5). The joint assimilation of AMSR2 and SMOS 

increases the mean model skill from 0.47 to 0.62 for surface soil moisture, which is 

statistically significant (5% level), and from 0.55 to 0.66 for root zone soil moisture, which 

does not reach the 5% level of significance. Overall the combined assimilation of two 

sensor products does not, relative to the assimilation of either product alone, further 

significantly improve the assimilation skill.  
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5.4 Summary  

 

As a complementary work to the AMSR-E vs. SMOS comparison for land data assimilation 

(section 4.3.3), this chapter compares the contributions of AMSR2 and SMOS retrievals, 

through data assimilation, to the MESH model soil moisture estimates. The AMSR2 and 

SMOS retrievals (year 2013) are assimilated into the MESH model over the Great Lakes 

basin with the 1D-EnKF. A priori rescaling on the retrievals, separately for the two 

instruments, is performed by matching their cumulative distribution function (CDF) to the 

model surface soil moisture’s CDF. Across the 23 validation grids, the retrieval skill for L-

band measurements (SMOS product) typically exceeds that of X-band measurements 

(AMSR2), consistent with the impact of the microwave frequency upon satellite retrieval 

capabilities. For most of the validation sites, however, the two sets of retrievals made 

similar contributions to soil moisture skill in the assimilation system. The possible 

explanations include (i) the relatively high open-loop skill (since the sensitivity of the 

assimilation to the retrieval skill becomes weaker as the open-loop R increases) and (ii) the 

higher measurement frequency for AMSR2 (since a shorter assimilation interval typically 

can favorably influences the assimilation skill). In terms of mean soil moisture skill, 

although the two sets of assimilation skill are not significantly different, the confidence 

level for the assimilation improvement (relative to the open-loop skill) is higher for 

assimilating SMOS than for assimilation of AMSR2. The combined assimilation of two 

sensor products does not further significantly improve the assimilation skill. 
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Overall, the SMOS and AMSR2 assimilation experiments provide consistent information 

regarding the dependence of the skill improvement ΔRA-M  upon the retrieval skill and the 

open loop skill. When the satellite observation skill (retrieval skill) is modest to high and 

the open-loop model skill is low to modest, the skill gain ΔRA-M  is typically strong. A 

positive skill improvement (but not necessarily significant in statistics) is typically 

expected as long as the retrievals skill is less than about 0.2 below the open-loop skill. To 

suppress the occurrence of negative ΔRA-M values, on-line quality control routines and 

adaptive adjusting of input error parameters should be useful.  
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CHAPTER 6 

Conclusions and Contributions 

 

6.1 Chapter synthesis and conclusions 

 

As indicated in Chapter 1, this work was motivated by several questions: how will satellite 

retrievals of surface soil moisture, through data assimilation, impact the MESH model’s 

soil moisture? how does the vegetation cover modulate the assimilation performance?  And 

how important is the satellite observation skill to the assimilation estimates? To address 

these questions, the one-dimensional version of the Ensemble Kalman filter (1D-EnKF) 

scheme was designed for the assimilation of satellite soil moisture in the standalone version 

of MESH model. After validating the established assimilation scheme through the 

Observing System Simulation Experiment (Chapter 2), this study explored the assimilation 

of soil moisture retrievals, derived from SMOS (Chapter 3), AMSR-E (Chapter 4), and 

AMSR2 (Chapter 5), in the MESH model over the Great Lakes basin. A priori rescaling 

on satellite retrievals (separately for each sensor) was performed by matching their 

cumulative distribution function (CDF) to the model surface soil moisture’s CDF, in order 

to reduce the satellite-model bias (systematic error) in the assimilation system that was 

based upon the hypothesis of unbiased errors in model and observation. The satellite 

retrievals, the open-loop soil moisture (no assimilation) and the assimilation estimates 

were, respectively, validated against point-scale in situ measurements, in terms of the daily-

spaced time series correlation coefficient (skill R). The main findings and conclusions are 

as follows.  
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• The skill for satellite soil moisture retrievals typically decreases with increased canopy 

density. The retrieval skill for L-band measurements (SMOS) is unsurprisingly higher 

than that for X-band measurements (AMSR-E/AMSR2).   

 

• Assimilating either L-band retrievals (SMOS) or X-band retrievals (AMSR-E/AMSR2) 

can favorably influence the model soil moisture skill for both the surface layer and root 

zone except for the cases with a small observation (retrieval) skill and a large open-loop 

skill. The skill improvement ΔRA-M, defined as the skill for the assimilation estimates 

minus the skill for the open-loop soil moisture, is strongly controlled by ΔRS-M, defined 

as the retrieval skill minus the open-loop surface soil moisture skill.  

 

• The ability of SMOS to measure surface soil moisture for a wide range of vegetation 

covers is clearly of advantage for assessing the vegetation modulation of the 

assimilation. The crop-dominated grids typically experience strong ΔRA-M if the 

assimilated SMOS retrievals also come from crop surfaces (note that a model grid cell 

and the SMOS node mapped onto the grid are not exactly matched in space), consistent 

with a high satellite observation skill and a low open-loop skill, while ΔRA-M is usually 

weak or even negative for the forest-dominated grids when the SMOS retrievals also 

from forested surfaces are assimilated, due to the presence of a low observation skill 

and a high open-loop skill.  
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• The assimilation of L-band retrievals (SMOS) typically resulted in greater skill 

improvements ΔRA-M than the assimilation of X-band retrievals (AMSR-E/AMSR2), 

although the sensitivity of the assimilation to the retrieval skill becomes weaker as the 

open-loop skill increases. The joint assimilation of L-band and X-band retrievals, 

relative to assimilation of either band product alone, does not necessarily yield better 

skill improvement.  

 

6.2  Originality and contributions  

 

This thesis explored for the first time the assimilation of SMOS, AMSR-E and AMSR2 

soil moisture in the MESH model. As compared to previous studies, the present work has 

provided new results to demonstrate the impact upon soil moisture estimates of assimilating 

remotely sensed soil moisture in a hydrological model. The original contributions are as 

follows. (1) This work examined the potential of latest satellite soil moisture products 

(SMOS and AMSR2), through data assimilation, to improve soil moisture model estimates. 

(2) This work revealed the vegetation modulation of satellite soil moisture assimilation. (3) 

The assimilation of L-band retrievals (SMOS) was compared with the assimilation of X-

band retrievals (AMSR-E/AMSR2), providing further insight into the dependence of the 

assimilation upon satellite soil moisture retrieval capability. (4) The influence of satellite-

model skill difference ΔRS-M on skill improvement ΔRA-M was consistently demonstrated 

through the assimilation of soil moisture retrievals derived from radiometers operating at 

different microwave frequencies, different vegetation cover types, and different retrieval 

algorithms.  
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6.3  Future work 

 

Overall, assimilation of satellite soil moisture in land surface/hydrological models is still 

in its infancy. There are some important issues that were outside the scope of this thesis 

and need to be considered in the future.  

 

(i) On-line quality control of satellite soil moisture. In theory, the assimilation results 

should be always better than or at least match the modeling without assimilation (open-

loop). In practice, however, negative skill improvement ΔRA-M may occur when 

observation errors for very poor quality of satellite retrievals (the corresponding retrieval 

skill is typically very small or negative) are severely underestimated in the assimilation 

system. If on-line quality control routines (e.g. Reichle, 2008) are applied to the 

assimilation system, those inconsistent satellite observations, through cross-comparison 

between multiple observational sources and models, can be excluded for the assimilation, 

thus controlling the occurrence of negative ΔRA-M and improving the assimilation 

performance.  

 

(ii) On-line (adaptive) tuning of model and observation input error parameters. The 

assimilation estimates are subject to model and observation error variances, which are 

strongly controlled by the specified input error parameters in this work (although a non-

adaptive EnKF typically performs well for soil moisture estimates, even when the input 

error parameters moderately deviate from their true values). The input error parameters can 

be on-line (adaptively) tuned based upon the variance information of the normalized 
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innovations, which is defined as the innovations (satellite observation minus model 

background residuals) divided by the square root of the sum of the forecast error covariance 

in observation space and the measurement error covariance (Reichle et al., 2007). For 

instance, if the variance of the normalized innovations is greater than 1, it means that the 

input error covariances are typically smaller than their optimal values that should lead to 

the expected value of 1 for the normalized innovations variance. Thus, by increasing the 

strength of the model error perturbations, our normalized innovations variance could draw 

close to its expected value of 1, which should, in theory, lead to better assimilation 

products. Reichle et al. (2008b), based on synthetic assimilation experiments, demonstrated 

the potential of an adaptive tuning of input errors to improve the assimilation estimates, 

although a long time period is typically required for steady estimates of model and 

measurement error variances.   

 

(iii) Establishment of a bias-aware assimilation system. The satellite-model bias removal 

is an indispensable part in a bias-blind assimilation system (i.e. correct random errors only) 

since satellite retrievals and model surface soil moisture typically exhibit different 

climatologies, which impedes an optimal merging of the two data sets. As used in this 

study, a priori rescaling on the retrievals by matching their CDF to the model surface soil 

moisture’s CDF has the ability to eliminate the satellite-model bias (in terms of 

climatological mean and standard deviation).  To deal with the bias problem, another type 

of idea is to establish a bias-aware system. Provided that we can attribute the systematic 

errors to proper sources, and they also can be represented, by design, using appropriate 
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parameters, the bias can be estimated jointly with the model state by adding the designed 

parameters to the state vector (i.e., a bias-aware system). 

 

(iv) Application of nonlinear/non-Gaussian filters. The Kalman Filters (KF, EKF, and 

EnKF) directly estimate the posterior state using the Kalman analysis equation that is 

derived on the basis of the assumption of Gaussian statistics. Realistic applications have 

suggested that the Gaussian assumption-based methods work efficiently for the systems 

with PDFs being or close to Gaussian, but are nonetheless subject to the influence of the 

PDF skewness (e.g., Bengtsson et al., 2003; Reichle et al., 2002b). A general nonlinear 

filter (nonlinear/non-Gaussian) is expected to be efficient when used for nonlinear 

dynamical models with considerably skewed PDF for the predicted errors (e.g. multi-modal 

structure) (Miller et al., 1999; Han and Li, 2008). Nonlinear/non-Gaussian filters can be 

implemented through particle interpretations (e.g. Pham, 2001) or kernel approximation 

(Miller et al., 1999). For example, the Particle Filter (PF) uses a set of particles (sampled 

from a proposal distribution) with associated importance weights to approximate the 

posterior PDF. In theory, the PF is suitable for all types of systems (linear or nonlinear) 

and PDFs (Gaussian or non-Gaussian) due to the ability to track the full state space 

(Arulampalam et al., 2002). Some researchers have conducted satellite snow assimilation 

with the PF (e.g. Dechant and Moradkhani, 2011) and the preliminary results showed 

promising.  

 

(v) Impact of assimilating satellite soil moisture upon streamflow prediction. This topic 

may be more attractive to the hydrological community. However, note that the contribution 
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of satellite soil moisture assimilation is expected to be weaker to runoff estimates than to 

soil moisture simulations (e.g. Reichle et al., 2008b). If the non-adaptive EnKF method is 

used, the estimation of streamflow is susceptible to the specified input error parameters.  

Wrongly specified input error parameters could severely degrade the flow estimates. 

Reichle et al. (2008b) demonstrated the potential of an adaptive tuning of input error 

parameters to improve streamflow estimates. Additionally, the model runoff estimates, for 

a given watershed, are influenced by all upstream grids that make up the watershed, while 

satellite soil moisture measurements are not always available, especially for the presence 

of dense vegetation cover. Therefore, the 1D-EnKF assimilation may not be conducted for 

all upstream grids, thus impacting the improvement in streamflow estimates.  

 

(vi) Assimilation of SMAP soil moisture. The SMAP mission, which was launched during 

the preparation of this thesis (January 2015), represents the current state-of-the-art in 

satellite microwave soil moisture estimation. In particular, the simultaneous acquisition of 

an L-band radiometer (1.41 GHz) and an L-band radar (1.26 GHz) onboard SMAP will 

provide soil moisture products at different scales (radiometer-only, 36 km resolution; radar-

only, 3 km and the fusion of radiometer and radar, 9 km). It is worthwhile to explore how 

SMAP retrievals of surface soil moisture, in comparison with the SMOS and AMSR2 

products, through data assimilation, impacts the hydrological model soil moisture 

simulations, which can provide further insight into the dependence of the assimilation upon 

the satellite observation skill.  
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Appendixes 

Table A1  Summary of data assimilation methods for land/hydrologic applications 

Methods Specifications Examples 

Direct 
insertion 

Directly replace the model forecast with an observation Rodell and Houser 
(2004); Tang and 
Lettenmaier (2010) 

Statistical 
correction 
 

Statistical characteristics (e.g. mean, standard deviation) 
of the modeled variables are adjusted to match those 
observed  

Houser et al. (1998) 
Pauwels et al. (2002) 

Successive  
corrections 
 

Update the modeled variables at each grid based on the 
surrounding observations by multiple passes. The 
weight of an observation depends upon its  distance to 
the model grid  

Rodríguez et al. (2003) 

Nudging 
 

Add a nudging term, which is proportional to the 
model/observation difference, to the prognostic 
equations. The nudging term will force the integration 
of prognostic equations towards observations 

Houser et al. (1998) 
Brocca et al. (2010) 

Optimal 
interpolation 
 

Observations are weighted according to known or 
estimated errors. Determine the optimum weight (gain) 
matrix using least squares so that the total analysis error 
is minimum 

Houser et al. (1998) 
Liston and Hiemstra 
(2008) 
 

Three 
dimensional 
variational 
(3DVAR) 
 

Seek a state with the maximum likelihood by iteratively 
minimizing a cost function, which measures the misfit 
between the model simulations and observations. 
Dynamical constraints are included when minimizing 
the cost function 

Seo et al. (2003a, 
2003b) 

Four 
dimensional  
variational 
(4DVAR) 
 

Extension of 3DVAR to the time dimension. Being a 
smoothing algorithm; Seek an optimal fit of the model 
forecast to observations over an assimilation interval; 
The state estimation is affected by all the observations 
within the assimilation interval 

Reichle et al. (2001a, 
2001b) 

Kalman Filter 
(KF) 
 

A variance minimizing analysis in the framework of a 
sequential assimilation; Each assimilation cycle consists 
of two steps: the forecast step (the model state is 
integrated forward in time) and the analysis step (the 
model prediction is updated with observations); Explicit 
error covariance propagation; Valid only for linear 
systems 

Walker and Houser 
(2001) 
Crow et al. (2005) 
Crow and Zhan  
(2007) 
 

Extended 
Kalman Filter 
(EKF) 

A nonlinear counterpart of the KF; A linearized and 
approximate error covariance is used; Being able to deal 
with some non-linear/Gaussian processes 

Francois et al. 
(2003);  
Draper et al. (2009a) 

(continued) 
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Table A1 (continued) 

Methods Specifications Examples 

Ensemble Kalman 
Filter (EnKF) 
 

A Monte Carlo variant of the KF; The error statistics 
are represented by an ensemble of model states and 
the ensemble spread defines the error variance; The 
ensemble mean is the best estimate (assumption of 
Gaussian statistics)  

Reichle et al. (2002b; 
2007); Crow and Wood 
(2003); De Lannoy et 
al. (2010; 2012); Draper 
et al. (2012) 

Ensemble Kalman 
Smoother (EnKS) 
 

Similar to EnKF except that the time dimension is 
included; Being a smoothing variance-minimizing 
estimator 

Crow and Ryu (2009) 

Bayesian Filter Seeks a posterior probability density function (PDF) 
at a current time given all the observations up to the 
current time based on Bayes theorem 

Kolberg et al. (2006) 

Particle Filter (PF) A Monte Carlo importance sampling is used, and the 
posterior PDF of the model state is represented by a 
weighted sum of the particles that are sampled from 
a proposal distribution. Update the importance 
weights at the analysis step; Being a nonlinear/non-
Gaussian filter 

Moradkhani et al. 
(2012); 
Dechant and 
Moradkhani (2011) 
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Table A2  Summary of spaceborne active microwave sensors for soil moisture estimation 

Sensor/Satellite Period of 
Operation 

Frequency  Polarization Spatial 
Resolution 

Repeat 
Cycle 

SAR/ERS-1 1991-1999 5.3 GHz VV 30 m 35 days 

SAR/ERS-2 1995-2011 5.3 GHz VV 25 m 35 days 

ASAR/Envisat 2002-2012 5.3 GHz VV/HH,HV/HH, 
VH/VV 

30 - 1000 m 35 days 

SAR/TerraSAR-X 2007-
present 

9.6 GHz HH,VV,HV,VH 1 - 18 m 11 days 

SAR/RADARSAT-1 1995-
present 

5.3 GHz HH 

 

8 - 100 m 24 days 

SAR/RADARSAT-2 2007-
present 

5.4 GHz HH,VV,HV,VH 3 - 100 m 24 days 

SAR/JERS-1 1992-1998 1.3 GHz HH 18 m 44 days 

PALSAR/ALOS 2006-
present 

1.3 GHz HH,VV,HV,VH 7 - 100 m 46 days 

SCAT/ERS-1&2 1991-2011 5.3 GHz VV 25 km / 50 
km 

3-4 
days 

ASCAT/Metop 2006-
present 

5.3 GHz VV 25 km / 50 
km 

1-2 
days 

Radar/SMAP  Jan 2015-
present 

1.26 GHz VV,HH,HV 3 km 2-3 
days 

Abbreviations: ERS, European Remote Sensing Satellite; SAR, Synthetic Aperture Radar;  
ASAR, Advanced Synthetic Aperture Radar; Envisat, Environmental Satellite; JERS, 
Japanese Earth Resources Satellite; PALSAR, Phased Array type L-band Synthetic Aperture 
Radar; ALOS, Advanced Land Observing Satellite; SCAT, Scatterometer; ASCAT, the 
Advanced Scatterometer; SMAP, the Soil Moisture Active Passive mission. 
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Table A3 Summary of spaceborne passive microwave sensors for soil moisture estimation  

Sensor 
(Satellite) 

Period of 
Operation 

Frequency/Footprint Size 
(along track × cross track) 

Polarization 
Data 

Acquisiti
on 

SMMR 
(Nimbus-7) 

1978-1987 6.6 GHz / 148 km × 95 km 
10.7 GHz / 91 km × 59 km 
18.0 GHz / 55 km × 41 km 
21.0 GHz / 50 km × 38 km 
37.0 GHz / 27 km × 18 km 

H & V Every 
other 
day 

SSM/I 
(DMSP) 

1987-
present 

19.3 GHz / 69 km × 43 km 
22.0 GHz / 60 km × 40 km 
37.0 GHz / 37 km × 29 km 
85.5 GHz / 15 km × 13 km 

H & V Daily 

TMI 
(TRMM) 

1997-
present 

10.7 GHz / 63 km × 39 km 
19.4 GHz / 30 km × 18 km 
21.3 GHz / 28 km × 28 km 
37.0 GHz / 16 km × 10 km 
85.5 GHz / 7 km × 5.1 km 

H & V Daily 

AMSR-E 
(Aqua) 

2002-2011 6.9 GHz / 74 km × 43 km 
10.7 GHz / 51 km × 30 km 
18.7 GHz / 27 km × 16 km 
23.8 GHz / 31 km × 18 km 
36.5 GHz / 14 km × 8 km 
89.0 GHz / 6 km × 4 km 

H & V 1-2 days 

AMSR2 
(GCOM-W1) 

2012-
present 

6.9/7.3 GHz / 62 km × 35 km 
10.7 GHz / 42 km × 24 km 
18.7 GHz / 22 km × 14 km 
23.8 GHz / 26 km × 15 km 
36.5 GHz / 12 km × 7 km 
89.0 GHz / 5 km × 3 km 

H & V 1-2 days 

MIRAS 
(SMOS) 

2010-
present 

1.4 GHz / ~ 43 km × 43 km H & V Every 1-
3 days 

Radiometer 
(SMAP) 

Jan 2015-
present 

1.41GHz/ 47 km × 39 km H, V, 3rd & 
4th Stokes 

Every 2 
-3 days 

Abbreviations: SMMR, Scanning Multichannel Microwave Radiometer; SSM/I, Special 
Sensor Microwave/Imager; DMSP, Defense Meteorological Satellite Program; TMI, Tropical 
Rainfall Measuring Mission (TRMM) Microwave Imager; AMSR-E, Advanced Microwave 
Scanning Radiometer for EOS; AMSR2, Advanced Microwave Scanning Radiometer 2; 
GCOM-W1, Global Change Observation Mission 1st - Water "SHIZUKU"; MIRAS, 
Microwave Imaging Radiometer with Aperture Synthesis; SMOS, Soil Moisture and Ocean 
Salinity satellite. SMAP, the Soil Moisture Active Passive mission. 
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Table A4  Summary of efforts to assimilate microwave soil moisture data into land/hydrologic models 

Authors Microwave data Data period Land/hydrologic models Assimilation 
methods 

Study region 

Reichle et 
al.(2001a, b; 
2002b) 

Simulated L-band 
brightness temperatures 
based upon SGP97  

June  to July, 1997 A soil-vegetation-
atmosphere transfer 
scheme (SVAT)  

4D-VAR; 
EnKF 

Central Oklahoma 

Crosson et al. 
(2002) 

Brightness temperatures by 
a ground-based SLMR 
during SGP97 

23 June-16 July 
1997 

A land surface flux–soil 
moisture model SHEELS 

KF Central Oklahoma 

Margulis et al. 
(2002); 
Crow and 
Wood (2003) 

Brightness temperatures by 
Airborne ESTAR during 
SGP97 
(resolution: 800 m) 

16 of the 30 days 
(June 18-July 17, 
1997) 

Noah LSM; 
TOPLATS model  

EnKF (updating with 
both point-and 
footprint-scale 
observations) 

Central Oklahoma 
 

Merlin et al. 
(2006) 

Synthetic SMOS-type soil 
moisture data 

 A distributed  SVAT 
model 

EnKF The Walnut 
Gulch Watershed, 
Arizona 

Pauwels et al. 
(2002) 

Soil moisture retrievals 
from SAR on ERS-1 and 2 
(resolution: 25-30 m) 

13 measurements 
between October 
1995-February 
2000 

TOPLATS Statistical correction The Zwalm 
catchment, 
Belgium 

Francois et 
al.(2003) 

Soil moisture retrievals 
from SAR on ERS-1 
(spatial resolution: 30 m) 

25 measurements 
between 1995-1997 

The two-layer conceptual 
hydrological model 
GRKAL  

EKF The Orgeval 
agricultural river 
basin, France 

Reichle and 
Koster (2005); 
Ni-Meister et 
al. (2006) 

SMMR (C-band) surface 
soil moisture retrievals 
(resolution: ~120 km) 

January 1979-
August 1987 

Catchment LSM EnKF Global; 
Eurasian 
catchments 

Reichle et al. 
(2007) 

Soil moisture retrievals 
from AMSR-E (X-band) 
and SMMR (C-band) 

June 2002-May 
2006 (AMSR-E); 
January 1979-
August 1987 
(SMMR) 

Catchment LSM EnKF Global 

(continued)   
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Table A4  (continued) 

Authors Microwave data Data period Land/hydrologic models Assimilation 
methods 

Study region 

Draper et 
al. (2009a) 

Surface soil moisture 
retrievals from AMSR-E C-
band observations (resolution: 
~60 km) 

Over 2006 The Interactions between 
Surface, Biosphere, and 
Atmosphere (ISBA) LSM 

EKF European domain 

Li et al. 
(2012) 

AMSR-E (X-band) soil 
moisture product (resampled 
spatial resolution: ~ 25 km) 

2006-2007 Noah LSM EnKF The Little Washita 
watershed, 
Oklahoma 

Brocca et 
al. (2010) 

Soil wetness index (SWI) 
product from ASCAT 
(spatial resolution: 25 km) 

January 2007-June 
2009 

A rainfall-runoff model 
MISDc  

Update the modeled 
saturation degree 
using a nudging 
scheme 

5 subcatchments 
of the Upper 
Tiber River in 
central Italy 

Draper et 
al. (2012) 

Surface soil moisture 
retrievals from AMSR-E  (X-
band) and ASCAT  

January 2007 to May 
2010 

Catchment LSM EnKF CONUS and 
southeast 
Australia 

Crow et al. 
(2005) 

Soil moisture retrievals from 
TMI X-band observations 

December 1997 -
September 2002 

An antecedent 
precipitation index (API) 
model 

Updating API based 
upon TMI soil 
moisture with the KF 

26 basins in the 
U. S. Southern 
Great Plains 

Crow and 
Zhan  
(2007)  
 

Soil moisture retrievals from 
dual- and single-polarization 
AMSR-E X-band brightness 
temperatures,  ERS-1 and -2 
SCAT backscattering 
coefficients, and GOES 
thermal observations, 
respectively 

July 1, 2002 to 
December 31, 2005 
(AMSR-E); January 
1, 1997 to December 
31, 2005 (SCAT); 
2002–2004 growing 
seasons (GOES) 

API model Rainfall correction 
based upon remotely 
sensed soil moisture 
with the KF 

CONUS 

Crow et al. 
(2009) 

AMSR-E (X-band) soil 
moisture retrievals   

1 July 2002 to 31 
December 2006 

API model Rainfall correction 
with the KF 

CONUS 

Crow and 
Ryu (2009) 

Synthetic remotely sensed soil 
moisture retrievals by the SAC 
model 

 The Sacramento (SAC) 
hydrologic model  

Simultaneously adjust 
the model state (EnKF 
or EnKS) and rainfall 
accumulations (KF) 

MOPEX basins, 
USA 

Abbreviations: KF, the Kalman Filter; EKF, the Extended Kalman Filter; EnKF, the Ensemble Kalman Filter; EnKS, the Ensemble Kalman 
Smoother; SLMR, S- and L-band Microwave Radiometer;  TOPLATS, TOPMODEL-based land atmosphere transfer scheme; MOPEX,  the 
Model Parameterization Experiment. 
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Table A5.  List of in situ soil moisture measurements  
Network Site ID Location Latitude 

(o) 
Longitude 

(o) 
Vegetation 
cover 

Soil depth 

MAWN ALB Albion, MI 42.26 -84.77 Crop 10,  25cm 

MAWN ARL Manton,MI 44.40 -85.29 Tree 10,  25cm 

MAWN BBC Watervliet, MI 42.13 -86.27 Crop 0-30, 30-60 cm 

MAWN BAT Laingsburg, MI 42.83 -84.37 Crop 0-30, 30-60 cm 

MAWN BLK Bear Lake, MI 44.37 -86.16 Crop 0-30, 30-60 cm 

MAWN BEL Belding, MI 43.11 -85.31 Crop 0-30, 30-60 cm 

MAWN SWM Benton Harbor, MI 42.08 -86.36 Crop 0-30, 30-60 cm 

MAWN BNZ Benzonia, MI 44.56 -86.12 Tree 10,  25cm 

MAWN BRS Berrien Springs, MI 41.94 -86.38 Crop 0-30, 30-60 cm 

MAWN CAS Cassopolis, MI 41.95 -85.99 Crop 10,  25cm 

MAWN CER Ceresco, MI 42.22 -85.15 Crop 0-30, 30-60 cm 

MAWN CLT Charlotte, MI 42.65 -84.92 Crop 10,  25cm 

MAWN CTH Chatham, MI 46.34 -86.93 Tree 10,  25cm 

MAWN CLR Clarksville, MI 42.87 -85.26 Crop 0-30, 30-60 cm 

MAWN CLD Coldwater, MI 41.93 -85.11 Crop 0-30, 30-60 cm 

MAWN CMC Commerce Twp., MI 42.60 -83.60 Crop 0-30, 30-60 cm 

MAWN CNT Constantine, MI 41.83 -85.66 Crop 0-30, 30-60 cm 

MAWN DOW Dowagiac, MI 42.02 -86.17 Tree 10, 25 cm 

MAWN MSU East Lansing, MI 42.67 -84.49 Crop 0-30, 30-60 cm 

MAWN HTC East Lansing, MI 42.71 -84.48 Crop 0-30, 30-60 cm 

MAWN ELD Suttons Bay, MI 45.03 -85.67 Tree 10, 25 cm 

MAWN EPR Eastport, MI 45.08 -85.34 Crop 10, 25 cm 

MAWN ELK Elk Rapids, MI 44.84 -85.41 Tree 10, 25 cm 

MAWN EMT Emmett, MI 42.99 -82.76 Crop 0-30, 30-60 cm 

MAWN ENT Lakeview, MI 43.35 -85.18 Crop 0-30, 30-60 cm 

MAWN ESC Escanaba, MI 45.86 -87.18 Tree 10,  25cm 

MAWN FGV Fairgrove, MI 43.53 -83.49 Crop 0-30, 30-60 cm 

MAWN FEV Fennville, MI 42.60 -86.16 Tree 10, 25 cm 

MAWN FLT Flint, MI 43.02 -83.67 Crop 10,  25cm 

MAWN FRL Freeland, MI 43.56 -84.02 Crop 0-30, 30-60 cm 

MAWN FRM Fremont, MI 43.42 -85.96 Crop 0-30, 30-60 cm 

MAWN GAY Gaylord, MI 45.03 -84.85 Crop 10,  25 cm 

MAWN GRJ Grand Junction, MI 42.40 -86.07 Tree 10,  25 cm 

MAWN HRT Hart, MI 43.74 -86.36 Crop 0-30, 30-60 cm 

MAWN HFD Hartford, MI 42.23 -86.16 Crop 0-30, 30-60 cm 

MAWN PCC Hastings, MI 42.54 -85.30 Tree 10,  25 cm 

MAWN HAW Hawks, MI 45.30 -83.85 Crop 10,  25 cm 

MAWN KBS Hickory Corners, MI 42.41 -85.37 Crop 5, 20 cm 

MAWN HDN Clayton, MI 41.87 -84.23 Crop 10,  25 cm 

MAWN HVL Hudsonville, MI 42.86 -85.89 Crop 0-30, 30-60 cm 
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MAWN ITH Ithaca, MI 43.32 -84.49 Crop 0-30, 30-60 cm 

MAWN KZO Kalamazoo, MI 42.35 -85.59 Tree 10,  25 cm 

MAWN KAL Kalkaska, MI 44.66 -85.07 Crop 10,  25 cm 

MAWN KLR Hartford, MI 42.18 -86.18 Tree 0-30, 30-60 cm 

MAWN KCT Kent City, MI 43.25 -85.77 Crop 10,  25 cm 

MAWN KWD Kewadin, MI 44.95 -85.36 Crop 10, 25 cm 

MAWN KND Kinde, MI 43.92 -83.01 Crop 10,  25 cm 

MAWN LPR Lapeer, MI 43.08 -83.31 Crop 0-30, 30-60 cm 

MAWN TPD Paw Paw, MI 42.21 -85.96 Tree 10,  25 cm 

MAWN LAW Lawton, MI 42.16 -85.83 Crop 10,  25 cm 

MAWN LES Leslie, MI 42.47 -84.46 Crop 10,  25 cm 

MAWN LIN Kawkawlin, MI 43.72 -84.03 Crop 0-30, 30-60 cm 

MAWN LDT Ludington, MI 43.90 -86.38 Crop 0-30, 30-60 cm 

MAWN MCB McBain, MI 44.19 -85.13 Crop 10,  25 cm 

MAWN MCT Mecosta, MI 43.57 -85.24 Crop 10,  25 cm 

MAWN MEN Mendon, MI 41.98 -85.43 Crop 0-30, 30-60 cm 

MAWN MML McMillan, MI 46.31 -85.65 Crop 10,  25 cm 

MAWN MGR Munger, MI 43.56 -83.76 Crop 0-30, 30-60 cm 

MAWN NTH Northport, MI 45.14 -85.65 Tree 10, 25 cm 

MAWN OLD Old Mission, MI 44.93 -85.50 Crop 10, 25 cm 

MAWN OST Kalamazoo, MI 42.30 -85.70 Tree 10,  25 cm 

MAWN PTR Dundee, MI 41.93 -83.70 Crop 10,  25 cm 

MAWN PIG Pigeon, MI 43.90 -83.27 Crop 0-30, 30-60 cm 

MAWN RVL Frankenmuth, MI 43.40 -83.70 Crop 10,  25 cm 

MAWN ROM Romeo, MI 42.78 -83.02 Crop 0-30, 30-60 cm 

MAWN SDK Sandusky, MI 43.46 -82.84 Crop 10,  25 cm 

MAWN SCD St. Joseph, MI 42.02 -86.43 Crop 0-30, 30-60 cm 

MAWN SHV South Haven, MI 42.36 -86.29 Tree 10,  25 cm 

MAWN SPO Sparta, MI 43.12 -85.76 Crop 0-30, 30-60 cm 

MAWN STV Stephenson, MI 45.41 -87.61 Crop 10,  25 cm 

MAWN NWM Traverse City, MI 44.88 -85.68 Tree 10, 25 cm 

MAWN VER Verona, MI 43.81 -82.85 Crop 10,  25 cm 

MAWN WEO West Olive, MI 42.97 -86.08 Crop 0-30, 30-60 cm 

MAWN LUX Casco, WI 44.56 -87.65 Tree 10,  25cm 

MAWN EHB Egg Harbor, WI 45.05 -87.26 Tree 10,  25cm 

MAWN NSW Nasewaupee, WI 44.76 -87.51 Tree 10, 25 cm 

MAWN SRB Sister Bay, WI 45.22 -87.07 Tree 10, 25 cm 

MAWN STB Sturgeon Bay, WI 44.89 -87.37 Tree 10, 25 cm  

MAWN WJP West Jacksonport, WI 45.01 -87.23 Tree 10, 25 cm  

SCAN 2003 Wabeno, WI 45.47 -88.58 Tree 5, 10, 20, 50, 100 cm 

SCAN 2011 Geneva, NY 42.88 -77.03 Tree 5, 10, 20, 50, 100 cm 

SCAN 2073 Sunleaf Nursery, OH 41.80 -81.08 Tree 5, 10, 20, 50, 100 cm 
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FCRN  Borden, ON 44.32 -79.93 Tree 2, 5, 10, 20, 50, 100 cm 

 


