
Robot Patrolling for Stochastic and
Adversarial Events

by

Ahmad Bilal Asghar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Ahmad Bilal Asghar 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we present and analyze two robot patrolling problems. The first problem
discusses stochastic patrolling strategies in adversarial environments where intruders use
the information about a patrolling path to increase chances of successful attacks on the
environment. We use Markov chains to design the random patrolling paths on graphs. We
present four different intruder models, each of which use the information about patrolling
paths in a different manner. We characterize the expected rewards for those intruder
models as a function of the Markov chain that is being used for patrolling. We show
that minimizing the reward functions is a non convex constrained optimization problem
in general. We then discuss the application of different numerical optimization methods
to minimize the expected reward for any given type of intruder and propose a pattern
search algorithm to determine a locally optimal patrolling strategy. We also show that for
a certain type of intruder, a deterministic patrolling policy given by the orienteering tour
of the graph is the optimal patrolling strategy.

The second problem that we define and analyze is the Event Detection and Confirmation
Problem in which the events arrive randomly on the vertices of a graph and stay active for
a random amount of time. The events that stay longer than a certain amount of time are
defined to be true events. The monitoring robot can traverse the graph to detect newly
arrived events and can revisit these events in order to classify them as true events. The
goal is to maximize the number of true events that are correctly classified by the robot.
We show that the off-line version of the problem is NP-hard. We then consider a simple
patrolling policy based on the TSP tour of the graph and characterize the probability of
correctly classifying a true event. We investigate the problem when multiple robots follow
the same path, and show that the optimal spacing between the robots in that case can be
non uniform.

iii

Acknowledgements

I would like to thank my advisor Professor Stephen Smith for his constant guidance
and support throughout the program. I would like to express my sincere gratitude for his
patience, motivation and highly informative discussions during our meetings.

I would also like to thank the readers of this thesis — Professor Andrew Heunis and
Professor Steven Waslander — for their valuable time.

I should also thank Frank Imeson and Armin Sadeghi for their help and insightful
discussions.

Finally, I would like to express my gratitude to my family for their love and support.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Patrolling in Adversarial Settings . 1

1.2 Robot Monitoring for Detection and Confirmation of Stochastic Events . . 3

1.3 Contributions . 5

1.4 Organization . 6

2 Preliminaries 7

2.1 Probability and Random Processes . 7

2.1.1 Random Variables . 9

2.1.2 Some Distribution Functions . 10

2.1.3 Poisson Process . 12

2.2 Markov Chains . 13

2.3 Graphs . 16

2.3.1 Orienteering Problem . 17

3 Patrolling in Adversarial Settings 18

3.1 Problem Statement . 18

v

3.2 Intruder Attack Models . 19

3.2.1 Success Matrix . 20

3.2.2 Attack Model 1: Näıve Attacks . 22

3.2.3 Attack Model 2: Deterministic Intruder 23

3.2.4 Attack Model 3: Intelligent Intruder with Assigned Locations . . . 24

3.2.5 Attack Model 4: Intelligent Intruder 25

3.3 Patrolling Policy . 26

3.3.1 Deterministic Patrolling Policy for Intelligent Intruder with Assigned
Locations . 29

3.4 Numerical Optimization of the Objective Function 31

3.4.1 Gradient Projection Algorithm . 31

3.4.2 Gradient Free methods . 35

3.5 Experimental Results . 37

4 Robot Monitoring for Detection and Confirmation of Stochastic Events 44

4.1 Problem Statement . 44

4.2 Complexity of the Problem . 47

4.2.1 Off-line Version . 47

4.2.2 Hardness of Off-line Problem . 48

4.3 Analysis of a Periodic Policy for a Single Vertex 49

4.3.1 Confirmation Avoiding Interval for True Events 49

4.3.2 Probability of Correctly Classifying True Events 51

4.4 Single Robot Policy Based on TSP . 52

4.4.1 Probability of Correct Classification for the Tour 52

4.4.2 Policy based on a TSP tour . 54

4.5 Multiple Robots . 55

4.5.1 Specializing Robot Capabilities . 56

4.5.2 Optimal Spacing Between Two Robots on a Common Path 57

4.6 Application Example . 60

vi

5 Conclusions and Future Work 63

5.1 Future Directions for Patrolling in Adversarial Settings 64

5.1.1 Real Time Learning of Markov Chains 64

5.1.2 Multiple Robots . 66

5.2 Future Directions for Event Detection and Confirmation Problem 68

References 69

vii

List of Tables

3.1 Summary of attack models . 27

3.2 Performance of pattern search from different starting points 38

3.3 Comparison of Policies . 39

viii

List of Figures

3.1 Randomly generated graph with 30 vertices 40

3.2 Performance of Pattern search on graph of size 30 40

3.3 The grid graph representing an indoor environment to be monitored 41

3.4 Expected reward vs. length of attack for grid graph 42

3.5 Performance of pattern search method on grid graph 42

3.6 Comparison of attack models . 43

4.1 A parking lot environment and a possible patrolling tour based on the TSP. 46

4.2 Confirmation avoiding interval . 50

4.3 The probability of correctly classifying true events 55

4.4 The probability of ticketing overstaying vehicles for multiple robots 61

4.5 Comparison of probabilities of confirming events for two robots 62

ix

Chapter 1

Introduction

We discuss two robot patrolling problems in this thesis. The problem of finding a path
in an environment to optimize some objective is a wide area of research ranging from
Traveling Salesman Problem where the objective function is to minimize the length of the
path to persistent monitoring of stochastic events where the target is to minimize the delay
between observations of events. We look at two monitoring problems where the events of
interest are stochastic and/or intelligent.

1.1 Patrolling in Adversarial Settings

Consider a marketplace where a security agent is patrolling at night to avoid thefts. Each
of the shops has a certain value, e.g. a jewelery shop has more incentive for the thief than a
grocery shop. If the patrolling path of the agent is predictable, a potential thief can study
the path, and time the theft to avoid being detected. As a simple example, assume that
the patrolling agent takes 45 minutes to complete a round of the market and hence visits
each shop every 45 minutes. If the thief requires half an hour to steal, he can commit the
crime without being detected. Moreover, if the patrolling agent visits the grocery shop as
often as the jewelery shop, the thief would make an attempt at the more valuable item.
So, in such a case, randomizing the patrolling path can increase the surveillance quality of
the area. Another relevant example is in border patrol [3, 1] where an intruder can time
its crossing of the border in order to infiltrate unnoticed.

We model the environment to be monitored as a graph. The robot visits the regions of
the environment(vertices of the graph) on its surveillance path and detects any malicious

1

activities. Some regions of the environment might be more important or more prone to
attack than others. Meanwhile, an intruder is trying to launch attacks on the region
with a specified length of attack. If the intruder is intelligent enough, it can observe the
patrolling path and use the information to increase its chances of successfully attacking
the environment. We study the effects of randomizing the patrolling path in the presence
of such intruders and attempt to design the paths with a better surveillance quality for the
environment.

The robotic surveillance problem is very well studied and there is a substantial amount
of work related to design of patrolling policies for surveillance of environments. For deter-
ministic paths, there is a breadth of work considering both single and multiple robots [39,
34, 42, 16]. In [5] the authors discuss deterministic monitoring strategies to minimize the
weighted latency of the path(i.e. the maximum time between visits to a vertex weighted
by the importance of that vertex). The path visits the vertices with more weight more
often. Our work looks at a similar problem, but considers intelligent intruders and thus
we look at non deterministic paths.

Srivastava et al. [40] advocate random patrolling paths by showing that it is hard
to find deterministic strategies that satisfy the surveillance criterion of visiting vertices
proportional to their importance. In [24] the authors consider stochastic surveillance paths
so that the intruders cannot easily exploit the predictability of a deterministic path. We
extend this notion and look at ways in which an intelligent intruder can learn a randomized
path, and utilize this information to launch attacks.

In [3] the authors look at intelligent intruders in a perimeter patrolling problem. Our
problem is different in the sense that we deal with environments represented as graphs,
for which border patrol is a special case. Burda et al. [14] find maximum entropy random
walks such that all the paths of length t with the same endpoints have equal probability
of being traversed.

Markov chains are often used to model random paths on a graph [40, 24, 2]. For
example, in [2] the authors represent the environment as a graph and design Markov
chains that generate randomized paths with desired behaviors. They use semidefinite
programming to minimize the mean first passage time from one state of the Markov chain
to any other state, which is constant for a given chain and is called Kemeny constant [26].
The problem can be formulated as a semidefinite program for reversible Markov chains only.
They also use the Markov chains on weighted graphs, where the probability of traversing
an edge is independent of the weight of that edge in the graph. This formulation is more
useful in the case of surveillance since the environment is usually represented as a weighted
graph and the Markov chain is then defined on that graph. This doubly weighted graph

2

formulation is not studied much in the literature to the best of our knowledge. We study
the problem for both the weighted and unweighted graphs.

Boyd et al. [12] design a Markov chain with fastest mixing time which approaches the
steady state distribution as quickly as possible. They also formulate the problem as a
semidefinite problem. In [4] the authors use a finite set of Markov chains to formulate the
problem as a Bayesian Stackelberg Game where the patroller first picks a mixed optimal
strategy and the adversary then picks the region to attack to maximize its payoff.

In [37] the authors empirically show that randomizing the paths can decrease the prob-
ability of successful intrusions.They use different ways to randomize the path instead of
using Markov chains, like randomly visiting some vertices within a traveling salesman prob-
lem(TSP) tour or randomly interchanging the order of vertices in each cycle of the TSP
tour. They consider three different types of intruders based on the attacking strategy. We
also present different attack models for the intruders and analyze their performance. The
approach of presenting attack intruder models for attacks on the environment is similar
to that used in the computer security literature (for example, [21] on encryption or [9] on
wireless sensor networks).

1.2 Robot Monitoring for Detection and Confirma-

tion of Stochastic Events

Consider the following motivating example. An autonomous robotic vehicle traverses a
parking lot, issuing tickets to vehicles that have overstayed the allowed amount of parking
time T . The robot goes from spot to spot, recording the time and license plate numbers
of the parked vehicles. If a vehicle has been present for more than T time units after it
was first spotted by the robot, then it gets a ticket. However, there is a possibility that
some vehicles overstay their allowed parking time but leave before the robot has a chance
to ticket them. Our goal is to define a monitoring policy for the robot which minimizes
the number of un-ticketed, overstaying vehicles.

Formally, we define the event detection and confirmation problem as follows. We are
given a weighted graph. Events arrive randomly at the vertices of the graph, and a robot
or group of robots can patrol the graph by traversing its edges. Once an event arrives at
a particular vertex it remains active for a randomly distributed amount of time. If the
event remains active for more than a given threshold time T > 0, then we say it is a true
event, otherwise it is a false event. For a robot to verify that an event is true, it must first
detect the event by visiting the vertex, and then must revisit the vertex at least T time

3

units later to confirm the event. Thus, the goal for the robots is to maximize the expected
number of true events that are successfully confirmed. This is a classification problem in
which false positives are not permitted: Each event is initially classified as false, and it can
be classified as true only if it is confirmed.

Several closely related problems to the proposed event detection and confirmation prob-
lem have been studied in the literature. In the patrolling problems discussed in [16, 3, 8],
the goal is to monitor an environment or boundary using one or more robots/sensors. The
performance criteria is to minimize the maximum time between visits to any region in the
environment. In [16], the problem is considered for multiple robots, and it is shown that
good patrolling performance can be achieved by computing a single traveling salesman
tour (TSP) [28], and then equally distributing the robots along this tour. We show that
for the event detection and confirmation problem, equally distributing two robots along a
tour might not be the best choice.

In [32], the authors look at cooperative patrolling problems and give approximation
algorithms for certain classes of discrete environments. In [5] the patrolling is extended
to environments in which each region has a different importance level, and the goal is to
minimize the time between visits to a region, weighted by that regions importance. The
authors give approximation algorithms to the hard problem. The work in this thesis can
be thought of as a natural extension of patrolling in which an action must be taken if an
event is detected during the patrol (that action being confirmation).

TSP with time windows [38, 29] is also a related problem where the input is a graph
along with a time window assigned to each vertex. The goal is to find the shortest tour
that visits each vertex exactly once, and within its time window. We show that the event
confirmation aspect of our problem is closely related to TSP with time windows, since
each event must be confirmed at least T time units after its detection, but before the event
expires.

Another closely related problem is the pickup and delivery problem [35], where one
seeks to pick up a set of customers at their origin locations and drop them off at their
desired destination locations, all within their specified time windows. Our problem can be
thought of as a variation in which the pickup time (i.e., the event arrival time) is unknown
to the robot, the pickup and destination locations coincide, and the dropoff time window
depends on the time that the pickup occurred (i.e., the event was detected).

The stochastic aspect of the problem bears a close resemblance to dynamic vehicle
routing (DVR) [13], where spatially distributed customers arrive stochastically over time,
and the goal is to minimize the expected time between a customers arrival and the time
it is visited by a vehicle. The most closely related work in this area is [33], in which the

4

customers are impatient and hence exit the system if they are not visited within a time
window. However, DVR differs from the proposed work in three regards: i) the environment
is a Euclidean space rather than a graph, ii) the customer is known to the vehicles upon
arrival, and iii) a second confirmation visit is not required.

The event detection and confirmation problem is also related to [42] where a patroller
is visiting the vertices of a graph to detect stochastic events. The arrival rate of the
events at each station is different and known to the patroller. The authors discuss two
objective functions. First is to maximize the minimum expected number of observed events
at a location and the second is to minimize the maximum delay between consecutive
observations at a location. They propose an optimal policy which optimizes both of these
objective functions for a given cyclic tour of the graph. Our approach is similar to theirs
in the respect that we also analyze our problem based on a periodic tour of the graph.

1.3 Contributions

We analyze two patrolling problems in this thesis. For the patrolling in adversarial settings
problem, we formally define the intruder attack models for four different types of intruders.
Each of the intruder models require different capabilities and knowledge from the intruder.
We characterize the intelligent intruders that can learn the patrolling path and use this
information to launch attacks on the environment. The expected reward for each of these
intruders is derived given a stochastic patrolling policy. The expected reward for a given
intruder serves as the objective function to find a patrolling policy in the presence of that
intruder. We then show that for an intelligent intruder that has to attack pre-assigned
locations of the environment, a deterministic patrolling policy minimizes the intruder’s
expected reward. Finding this deterministic patrolling path is equivalent to solving the
orienteering problem which is a hard problem. The expected reward of the intruder is
a non convex and non smooth function of the patrolling policy, and hence we discuss some
of the numerical optimization techniques from the existing literature that can be applied
to our problem. We show that the gradient projection method can be applied to find a
local minimum of the of the objective function, but it is very inefficient. We propose the
pattern search method to find the local minimum of the expected reward and present the
experimental results.

For the event detection and confirmation problem, we characterize the complexity of the
problem by relating the off-line version of the problem to the TSP with time windows. We
then propose a simple periodic visit strategy based on the TSP and evaluate the probability
of confirming a true event for that policy. We show that for more than one robot, it is not

5

always optimal to equally space the robots if they are on the same path, unlike traditional
patrolling [16],

1.4 Organization

The organization of this thesis is as follows. The mathematical preliminaries and back-
ground are given in chapter 2. We also introduce some notation in this chapter that we will
be using throughout the thesis. Chapter 3 discusses patrolling in adversarial settings in de-
tail. The event detection and confirmation problem is presented and studied in chapter 4.
Finally, the conclusions and future work directions are given in chapter 5.

6

Chapter 2

Preliminaries

In this chapter we provide some mathematical background and notation for the thesis.
We present some concepts related to probability and random processes in Section 2.1. In
Section 2.2 we present Markov chains. Some basic definition from graph theory are given
in Section 2.3. The definitions related to probability and random processes are from [25].
The background on Markov chains is from [26, 25] and the definitions for graph theory are
from [11].

2.1 Probability and Random Processes

We cannot predict the outcome of a random experiment with certainty before the comple-
tion of the experiment. Probability is a way to model the uncertainty in the outcomes of
random experiments. We present some basic definitions from probability theory and then
mention some results which will be useful in this thesis.

Definition 2.1.1 (Sample Space). The set of all possible outcomes of an experiment is
called the sample space and is denoted by Ω

A collection of outcomes of an experiment is called an event. The empty set φ is called
the impossible event and the set Ω is called a certain event since the experiment’s outcome
will certainly be an element of Ω by the definition of sample space.

Definition 2.1.2 (σ-field). A collection F of subsets of Ω is called a σ-field if it satisfies
the following conditions.

7

1. ∅ ∈ F

2. If A1, A2, . . . ∈ F , then
∞⋃
i=1

Ai ∈ F

3. If A ∈ F , then Ac ∈ F

where Ac = Ω\A is the complement of set A.

It follows from the definition that the smallest σ-field is always {φ,Ω} and the power
set of Ω written as 2Ω and containing all the subsets of Ω is also a σ-field.

Definition 2.1.3 (Probability Measure). A function P : F → [0, 1] satisfying

1. P(φ) = 0.

2. P(Ω) = 1.

3. If A1, A2, . . . are disjoint members of F , then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai)

is called a probability measure.

Definition 2.1.4 (Probability space). The triple (Ω,F ,P) is called a probability space.

Definition 2.1.5 (Conditional Probability). Given two events A and B such that P(B) >
0, the conditional probability of A occurring given that B occurs is

P(A|B) =
P(A ∩B)

P(B)

Definition 2.1.6 (Independence). Events A and B are called independent if

P(A ∩B) = P(A)P(B)

8

2.1.1 Random Variables

Random variables can be thought of as consequences related to the outcomes of the exper-
iments.

Definition 2.1.7 (Random Variable). A random variable is a function X : Ω → R such
that {ω ∈ Ω|X(ω) ≤ x} ∈ F for each x ∈ R.

Definition 2.1.8 (Distribution Function). The distribution function of a random variable
X is a function F : R→ [0, 1] given by

F (x) = P [X ≤ x]

Definition 2.1.9 (Discrete Random Variable). The random variable X is called discrete
if takes values in some countable set. It has a probability mass function(PMF) f :
R→ [0, 1] given by

f(x) = P [X = x]

Definition 2.1.10 (Continuous Random Variable). The random variable X is called con-
tinuous if its distribution function F (x) can be written as

F (x) =

∫ x

−∞
f(u)du

for some integrable function f : R → [0,∞] called the probability density func-
tion(PDF) of X.

Definition 2.1.11 (Expectation of Discrete Random Variable). The expected value or
expectation of a discrete random variable X with PMF f(x) is

E(X) =
∑
x

xf(x)

Definition 2.1.12 (Expectation of Continuous Random Variable). The expected value or
expectation of a continuous random variable X with PDF f(x) is

E(X) =

∫ ∞
−∞

xf(x)dx

For a function g : R→ R, the expectation of the function g(X) of random variable X
is given by E(g(X)) =

∫∞
−∞ g(x)f(x)dx.

Expectation is a linear operator. So

E(aX + bY) = aE(X) + bE(Y), a, b ∈ R

9

Definition 2.1.13 (Variance). The variance of a random variable X is

Var(X) =E([X − E(X)]2)

=E(X2)− (E(X))2

2.1.2 Some Distribution Functions

Now we describe some useful distribution functions that we will be using in the thesis.

Exponential Distribution

A positive random variable X is said to be exponentially distributed with parameter λ > 0
if

P [X ≤ x] = F (x) = 1− e−λx

The probability density function of the random variable is given by

f(x) = λe−λx

The parameter λ is usually called the rate parameter. This distribution is commonly
used to model the time between unpredictable events. The mean of an exponentially
distributed variable with parameter λ is 1/λ.

An exponentially distributed variable obeys the memoryless property which is defined
below.

Definition 2.1.14. The probability distribution of a continuous random variable X is
memoryless if

P [X > s+ t|X > s] = P [X > t] , ∀s, t > 0

Multinomial Distribution

Let X ∈ {1, 2, . . . , K} be a discrete random variable, and P [X = j] = θj, then

P [X] =
K∏
j=1

θ
(X=j)
j

10

is a multinomial distribution where (X = j) is a truth statement that evaluates to 1
or 0. In Chapter 5, we represent each row of the transition matrix of Markov chain as
a multinomial distribution. Then, learning of Markov chains is equivalent to estimating
the parameters of the multinomial distributions. In that case the parameters θ of the
multinomial distributions are not fixed and we can write

P [X|θ] =
K∏
j=1

θ
(X=j)
j

Given n independent trials, let Xi be the discrete random variable representing the
number of times the outcome of the trial is i ∈ {1, 2, . . . , K}. Then the probability mass
function of multinomial distribution is also defined as

f(x1, . . . , xK) =

{
n!

x1!...xK !
θx11 . . . θxKK , when

∑K
i=1 xi = n

0, otherwise.

Dirichlet Distribution

Dirichlet distribution is a continuous multivariate distribution. The Dirichlet distribution
with parameters α = {α1, α2, . . . , αK} has the probability density function

f(x1, . . . , xK) =
1

β(α)

K∏
i=1

xαi−1
i

such that

x1, x2, . . . , xK−1 > 0

x1 + x2 + . . .+ xK−1 < 1

xK = 1− x1 − . . .−xK−1

The function β(α) is the normalizing constant.

The mean of the random variable Xi from the Dirichlet distribution is given by

E [Xi] =
αi
αo

(2.1)

and the variance in Xi is given by

11

VarXi =
αi(αo − αi)
α2
o(αo + 1)

(2.2)

where αo =
∑

i αi.

2.1.3 Poisson Process

A family {Xt : t ∈ T}of random variables is called a random process. If T = {1, 2, , . . .}, it
is discrete random process whereas if T = R or T = R+, it is a continuous random process.

Poisson process is a continuous time random process that counts the number of events
N(t) that have arrived in the time interval [0, t] with N(0) = 0. So, the process can be
written as {N(t) : t ≥ 0}.

A Poisson process with intensity λ takes values {0, 1, . . .} such that

1. N(0) = 0

2. If s < t, then N(s) ≤ N(t).

3.

P [N(t+ h) = n+m|N(t) = n] =

λh+ o(h) ifm = 1

o(h) ifm > 1

1− λh+ o(h) ifm = 0

(2.3)

4. If s < t, then number of events arriving in (s, t] is independent of the number of
events in [0, s].

The distribution of Poisson process is given by

P [N(t) = j] =
(λt)j

j!
e−λt

Let To = 0 and Ti be the time of arrival of the ith event. Then the random variable
Xn = Tn − Tn−1 is called the nth inter arrival time. The inter arrival times X1, X2, . . . of a
Poisson process are independent and exponentially distributed with parameter λ.

The expected number of arrivals during an interval of length t for a Poisson process is

E(N(t)) = λt

The following result about Poisson processes will be useful in our analysis.

12

Lemma 2.1.15 (Poisson Arrival Time Distribution, [36]). Given that k events arrived in
the time interval (a, b], the times t1, t2, . . . , tk of these arrivals, considered as unordered
random variables, are independent and uniformly distributed on (a, b].

A consequence of this result is that if we know that an event arrived in an interval of
time, then its arrival time is uniformly distributed over that time interval.

Now we move on to a discrete random process called Markov chain which is helpful in
modeling random paths on graphs.

2.2 Markov Chains

We will be using Markov chains to model random surveillance paths. This section gives
the necessary background on Markov chains.

A Markov chain is a discrete stochastic process X = {Xo, X1, . . .} where Xi takes values
in a countable set S called the state space.

Definition 2.2.1 (Markov Chain). A Markov chain is random process X that satisfies the
Markov condition

P [Xn = s|Xo = xo, X1 = x1, . . . , Xn−1 = xn−1] = P [Xn = s|Xn−1 = xn−1]

for all n ≥ 1 and for s, x1, x2, . . . , xn−1 ∈ S

Definition 2.2.2 (Homogeneous Markov Chain). A Markov chain is called homogeneous
if the transition probability from one state to the other is independent of time, i.e.

P [Xn+1 = j|Xn = i] = P [X1 = j|Xo = i]

for all n ≥ 1 and for all i, j ∈ S.

Definition 2.2.3 (Transition Matrix). The transition matrix of a homogeneous Markov
chain P is the |S| × |S| matrix of the transition probabilities. So,

pij = P [Xn+1 = j|Xn = i]

We will only be considering homogeneous Markov chains and we will use notation P
generally for the transition matrix.

The transition matrix is a row stochastic matrix, i.e.

13

• pij ≥ 0, for all i, j.

•
∑

j pij = 1 for all i.

Definition 2.2.4 (Recurrent State). A state i ∈ S is called recurrent if the probability of
eventually visiting state i, starting from state i is 1. If this probability is less than 1, then
the state is called transient.

In the following definition, the notation p
(n)
ij will represent the element in the ith row

and jth column of the matrix P n.

Definition 2.2.5 (Communication). We say that state i communicates with state j, if

p
(m)
ij > 0 for some m > 0. The states i and j intercommunicate with each other if i

communicates with j and j communicates with i.

Definition 2.2.6 (Communicating Class). A set of states C is called a communicating
class if states i and j intercommunicate with each other for i, j ∈ C and no state in C
communicates with any state not in C.

Notice that if a Markov chain has more than one communicating class, we can decom-
pose the chain into two independent Markov chains. Hence, we will not be considering
Markov chains with more than one communicating class in this thesis. However, a Markov
chain with one communicating class can have a set of transient states as well. Once, the
chain leaves the set of transient states and moves into the communicating class, it will not
return to those states.

Definition 2.2.7 (Irreducible Chain). A Markov chain is called irreducible if states i and
j intercommunicate with each other, for all i, j ∈ S.

Definition 2.2.8 (Regular Markov Chain). A Markov chain is called regular if all suffi-
ciently higher powers of the transition matrix have only positive elements.

We will be dealing with the Markov chains with one communicating class in this thesis.
The regular Markov chains are a subset of Markov chains with one communicating class.
The work done in [2] relating to minimizing the Kemeny constant of a Markov chain
considers regular Markov chains only. We will refer to their work for comparison purposes.
It should be noted that the method we propose deals with Markov chains that have one
communicating class and are not necessarily regular.

Definition 2.2.9 (Stationary Distribution). The vector π ∈ R1×|S| is called the stationary
distribution of Markov chain if

14

1. πj ≥ 0, for all j.

2.
∑

j πj = 1.

3. πP = π.

Definition 2.2.10 (First Passage Time, [2, 26]). Let Tj denote the number of transitions
after which the chain reaches state j for the first time, i.e. Tj = min{k ≥ 1 : Xk = j}.
Then the conditional mean of this time mij = E [Tj|X0 = i] is called the first passage time
from state i to state j.

The mean first passage time can be written as

mij = pij +
∑
k 6=j

pik(mik + 1)

Theorem 2.2.11 (Kemeny Constant, [26]). The quantity
∑

jmijπj is independent of the
starting state i for a regular Markov chain.

Definition 2.2.12. The quantity
∑

jmijπj represents the mean of the first passage time
from state i to any other state and is called the Kemeny constant of the Markov chain.

For the Markov chains, where all the transitions do not take equal amount of time, the
above defined first passage times will refer to the number of transitions instead of the time
taken in going from one state to the other. Let wij be the time spent in the transition from
state i to state j. Then the first passage time nij will be given by [2]

nij = pij(wij) +
∑
k 6=j

pik(nkj + wkj).

This concept of first passage times for weighted graphs is used in [2] to find Markov
chains with minimal first passage times.

The next section gives some basic definitions from graph theory that we will be using
in the thesis.

15

2.3 Graphs

A graph G is defined as a pair G = (V,E), where V represents the set of vertices or nodes
of the graph and E represents the set of edges connecting the vertices of the graph. The
vertices u, v ∈ V are connected if {u, v} ∈ E

Definition 2.3.1 (Weighted Graph). A graph is weighted if there is a function w : E → R
assigning lengths to edges of the graph.

We write a weighted graph as a triple G = (V,E,w). In this thesis we may also treat
the weights on the edges as a matrix W = [wij] where the element wij gives the length
on the edge {i, j}. Moreover, we will only deal with graphs that have non negative edge
weights.

Definition 2.3.2 (Directed Graph). A graph is called a directed graph if edges are directed
from one vertex to the other. In this case, each edge is an ordered pair of the form (u, v)
which means that the edge points from u to v. So, E ⊆ V × V .

In this thesis, we only consider undirected graphs.

Definition 2.3.3 (Subgraph). A subgraph H = (VH , EH) of G is a graph with VH ⊆ V
and EH ⊆ E.

Definition 2.3.4 (Path). A path in a graph G = (V,E) is a subgraph

P = ({v1, v2, . . . , vk+1}, {e1, e2, . . . , ek})

such that vi 6= vj,∀i 6= j and ei = {vi, vi+1}

Definition 2.3.5 (Walk). A walk is a sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 such that ei =
{vi, vi+1} and ei 6= ej, for all i 6= j.

Definition 2.3.6 (Edge Progression). An edge progression is a sequence v1, e1, v2, e2, . . . , vk, ek, vk+1

such that ei = {vi, vi+1}.

In this thesis we often refer to the path as just a sequence of vertices or an edge
progression in the graph. In this context a random path on a graph is just a random
sequence of vertices of the graph.

The following section discusses a combinatorial problem related to graph theory that
we will be referring to in the thesis.

16

2.3.1 Orienteering Problem

The orienteering problem [23] is a variant of the traveling salesman problem.
The input to the problem is a weighted directed or undirected graph G = (V,E,w), two
vertices s, t ∈ V , and a time limit Tmax. Each vertex i ∈ V has a score ψi associated with
it. The problem is to find an s− t walk of length not exceeding Tmax which maximizes the
total score obtained by visiting the vertices. If a vertex is visited more than once in the
walk, its score is counted only once.

A straightforward reduction from TSP renders the orienteering problem NP-hard.
Chekuri et al. [15] give a (2 + ε) approximation algorithm for the problem. The exist-
ing exact and approximation algorithms are discussed and compared in [41].

We will refer to a slight variation of the orienteering problem where instead of
finding an s − t walk, the objective is to find any closed path(edge progression) in the
graph of length at most Tmax maximizing the collected score. So, the input to the problem
does not contain the vertices s and t.

17

Chapter 3

Patrolling in Adversarial Settings

In this chapter we discuss the patrolling problem in adversarial settings where the intruders
may be intelligent enough to increase the chances of undetected attacks on the environ-
ments. We define the problem in Section 3.1. Then we present the intruder models for
different types of intruders and analyze their performance in Section 3.2. In Section 3.3
we characterize the objective function and advocate deterministic patrolling paths for a
certain type of intruder. We present some numerical methods to optimize the objective
function in Section 3.4. We give experimental results in Section 3.5.

3.1 Problem Statement

Consider a surveillance robot monitoring an environment to detect possible attacks on the
areas of the environment by an intruder. We represent the environment by an undirected
graph G = (V,E) where the set of vertices V = {1, 2, ..., n} represents the areas to be
monitored and the edges represent the links along which robot can travel. Each vertex i
of the graph has an importance associated with it given by φi. This importance represents
the value of that vertex or equivalently intruder’s reward for launching a successful attack
on vertex i. The length of attack is defined as l and an attack is called successful if the
surveillance robot does not visit the attacked vertex for the duration of the attack. An
intelligent intruder would try to learn the surveillance path and use the information to pre-
dict the robot’s location in the future. For example if the surveillance path is deterministic
and the time taken between consecutive visits to some vertex is greater than the length of
attack, then the intruder can time the attack to make sure that it is successful. In such
a case, having a random patrolling path may decrease the chances of successful attacks.

18

We use first order Markov chains to define random patrolling paths on the graphs. The
transition matrix of the Markov chain P = [pij] governs the random path of the robot. The
probability of going from vertex i to vertex j is independent of the history of the path and
is given by pij. Note that higher order Markov chains can be employed to use the history
of the path to decide the next move but we only consider first order chains in this work.
We call the transition matrix P the patrolling policy since it completely characterizes the
patrolling path to be followed by the robot.

The probability of successful attack on a vertex depends on the attack model being
followed by the intruder. The attack model defines the procedure by which the intruder
decides the time and vertex of attack. The model may or may not use the information the
intruder has gathered about the robot’s patrolling path. Our goal is to find a patrolling
policy given an attack model that minimizes the expected reward of the intruder.

Problem Statement: Given a graph G = (V,E) and the intruder’s attack
model, determine a patrolling policy P that minimizes the expected reward of
the intruder.

We will formally define some of the attack models in the next section and find expres-
sions for the probability of successful attacks on the vertices of the graph.

3.2 Intruder Attack Models

This section discusses some of the possible policies that an intruder can follow to launch
attacks on the environment. We will assume that there is only one attack on the envi-
ronment at a time. The intruder model will govern the vertex at which the attack is to
be launched and the time of launching the attack. To be precise, an intruder model will
define the following:

• Vertex of attack: The intruder chooses the vertex of attack according to some prob-
ability distribution defined in the model. The probability of launching an attack on
vertex i denoted as P [attack = i], and

∑
i∈V P [attack = i] = 1

• Time of attack: This defines the vertex at which the patrolling robot is when the
attack is launched. The intruder may wait until the robot reaches a certain vertex
before launching an attack. In general, this will be a function of the vertex of attack.

19

We can find the probability of an attack being successful with the help of success matrix
defined in the following section.

3.2.1 Success Matrix

The Markov chain transition matrix P can be used to determine the probability of launch-
ing a successful attack on vertex j when the patrolling robot is at vertex i. For a given
Markov chain, we can calculate the probability of going from state i to state j in exactly
k steps. This probability is computed in [25]. The time taken in each transition is called
a step, therefore, these results will be valid for the Markov chains on unweighted graphs.
We extend these results for graphs with edge weights where each transition can take a
different amount of time. Unweighted graphs can model the environments in the form of
grid graphs, whereas weighted graphs capture the more general problem since the travel
times between different nodes of the environment can be different.

First Visit Time for Unweighted Graphs

The following result gives an iterative method to calculate the probability of first visit from
vertex i to vertex j. We have included the proof because the result on first visit time for
weighted graphs relies on the extension of this proof.

Lemma 3.2.1. [17] The probability of the first visit to the state j ∈ V from the starting
state i ∈ V in k steps is given by

Fk(i, j) =

{
pij, k = 1∑

h6=j PihFk−1(h, j), k ≥ 2
(3.1)

Proof. For k = 1, F1(i, j) is simply the probability of going from j to i in one step, which
by definition of P is pij.
For k ≥ 2, let X0 be the starting state of the chain and Xm be the state of the chain after
m steps, then

Fk(i, j) = P [X1 6= j, . . . , Xk−1 6= j,Xk = j|X0 = i]

=
∑
h6=j

P [X1 = h|X0 = i]P [X2 6= j, . . . , Xk−1 6= j,Xk = j|X0 = i,X1 = h]

=
∑
h6=j

pihP [X1 6= j, . . . , Xk−2 6= j,Xk−1 = j|X0 = h]

20

because of the property of stationary Markov chains.

This calculation can be done using matrix multiplication as

Fk = P (Fk−1 − Fk−1,d)

where Fk−1,d = diag(Fk−1(1, 1), Fk−1(2, 2), . . . , Fk−1(n, n)).

First Visit Time for Weighted Graphs

The expression for the probability of first visit to a state given the starting state for
weighted graphs can be extended from the unweighted graphs case. We will assume that
the weights on the edges of the graphs are integers i.e. the graph is given as G = (V,E,w)
where w : E → N>0. So, we can calculate the Fk matrices for any integer value of k > 0.
Now, instead of writing steps taken from state i to state j, we write time taken from state
i to state j, where the time taken along one edge is a positive integer.

Given a graph G = (V,E), edge weights W and the transition matrix P , The probability
mass function of the time taken for the first visit from state i to state j is given by

Fk(i, j) =

{
pij(wij = 1), k = 1∑

h6=j PihFk−wih
(h, j) + pij(wij = k), k ≥ 2

(3.2)

where (wij = 1) is a truth statement which evaluates to 1 or 0, and Fk(i, j) = 0 for non
positive values of k.

Given a starting state i and a goal state j, the elements Fk(i, j) give a probability mass
function over the random variable K which is the amount of time/steps taken from in
hitting the state j for the first time starting from i. Hence,

∞∑
k=1

Fk(i, j) = 1, ∀i, j ∈ {1, 2, . . . , n}.

In the subsequent sections, we will refer to the three dimensional matrix F as the first
visit matrix. Most of the analysis and discussion will depend on F , but we will not need
to explicitly mention whether the first visit matrix is for a weighted or unweighted graph.

21

Success Matrix

We will now use the first visit matrix F to calculate the probability of successful attacks
by an intruder on the environment. An attack on a particular location is successful if the
patrolling robot does not visit that location for the entire duration of the attack. So, for a
specified length of attack l, the probability of attack being successful given the patrolling
robot’s position is i at the time of launching the attack can be simply calculated as

P [success at j|i] = 1−
l∑

k=1

Fk(i, j)

which is the probability of not visiting the state j in l consecutive steps from the state i.
For notational convenience, we define the success matrix S, whose element sij gives the
probability of a successful attack at vertex j of the graph if the robot is at vertex i at the
time the attack is launched.

sij:=P [success at j|i]

Hence, we can write the matrix S as

S = J −
l∑

k=1

Fk (3.3)

where J is a matrix of all ones. The matrix S may or may not be used by the intruders
to decide on the location and the time of the attack. The following sections present some
intruder models.

3.2.2 Attack Model 1: Näıve Attacks

The näıve attack model represents a näıve intruder that does not learn or use any informa-
tion about the patrolling path of the robot. The time and vertex of attack for this model
are decided as follows.

Vertex of attack: Whenever an attack is to be launched, the vertex of attack is chosen
depending on the importance of that vertex. So, the probability of attacking vertex j is
given by

P [attack = j] =
φj∑
i φi

22

Time of attack: In this model, the intruder launches the attack randomly and inde-
pendent of robot’s location. The location of the robot at the time of attack is a random
variable, and the probability that the robot is at location i when the attack arrives is given
by the frequency with which robot visits location i, which is πi where π is the station-
ary distribution of the Markov chain being followed by the robot. Using the expression
P [robot at i] for the probability of the robot being at i when the attack is launched, we
can write

P [robot at i] = πi.

Objective function: Using the time and vertex of attack, the reward function for this
intruder model can be written as

f(P) =
n∑
j=1

φjP [success at j]P [attack = j]

=
n∑
j=1

φjP [success at j]φj

assuming φ is normalized. Then using Bayes theorem,

f(P) =
n∑
j=1

φ2
j

n∑
i=1

P [success at j|i]P [robot at i]

=
n∑
j=1

φ2
j

n∑
i=1

sijπi

= π>Sφ2

where π and φ are vectors. The reward function is a function of the transition matrix P ,
since the matrix S and the vector π are functions of P .

3.2.3 Attack Model 2: Deterministic Intruder

The deterministic intruder model is motivated by the intruder that attacks a vertex imme-
diately after the patrolling robot departs that vertex. This is an effective strategy if the
patrolling robot is following a cyclic tour of the graph.

23

Vertex of attack: The vertex of attack is chosen depending on the importance of that
vertex just like the näıve policy, so

P [attack = j] =
φj∑
i φi

.

Time of attack: The intruder waits and launches the attack on vertex i as soon as
the patrolling robot leaves vertex i on its path. Hence,

P [robot at i] =

{
1 attack is on vertex i

0 otherwise

Objective function: The reward function for such an intruder will be

f(P) =
n∑
i=1

φ2
i sii.

If the patrolling path of the robot is a TSP tour and the length of the tour is greater
than the length of attack, then this attack policy is optimal in terms of choosing the time
of attack.

3.2.4 Attack Model 3: Intelligent Intruder with Assigned Loca-
tions

Let us consider an intruder that has observed the patrolling path of the robot and wants
to use the learned information to increase the chances of a successful attack. The models
presented in this and the next section address such intruders. We will assume that the
intruder has observed the surveillance path long enough to have modeled the transition
matrix P of the patrolling Markov chain. The learning of the Markov chain is discussed in
Section 5.1.1.

Vertex of attack: According to this model, the vertex to attack is selected based on
its importance like the previous two models. So, the intruder does not use the patrolling
path information to choose the vertex of attack. Hence,

P [attack = j] =
φj∑
i φi

.

24

This can be realized in a scenario where the intruder has been pre-assigned the locations
that it has to attack, and the intruder then uses the information about the patrolling path
to choose the time of attack for those locations.

Time of attack: Since the intruder has access to the transition matrix P , it can
calculate the success matrix S (3.3) and use it to figure out the best possible time to
attack. The element sij gives the probability of a successful attack on j if the attack is
launched when the robot is at vertex i. The intruder wants to maximize its chances of a
successful attack at vertex j, so it attacks when the robot is at vertex i such that

i = arg max
x

sxj.

So, given the vertex j to attack, the location of the robot at the time of attack is given by

P [robot at i] =

{
1, i = arg maxx sxj.

0, otherwise

Hence, the intruder looks at the column of S corresponding to the vertex it has to attack
and the index of the maximum element in that column gives the vertex at which the robot
should be when that attack is launched. The intruder waits until the robot reaches vertex
i to launch the attack at j.

Objective function: The expected reward for the intruder following this attack model
will be

f(P) =
n∑
j=1

φ2
j

n∑
i=1

P [success at j|i]P [robot at i]

=
n∑
j=1

φ2
j max

i
{sij}

= max(S)φ2

where max(S) is a row vector with jth element being the maximum entry in the jth column
of matrix S.

3.2.5 Attack Model 4: Intelligent Intruder

This model also uses the transition matrix P learned by observing the patrolling path.
Unlike the previous model, the intruder has not been assigned the locations to attack.

25

Instead, the intruder has to maximize its reward from the environment and hence this
model allows the intruder to choose the vertex of attack as well.

Vertex of attack: The intruder has the matrix S calculated using the transition
matrix, and the maximum expected reward the intruder can obtain is by attacking the
best possible vertex at the best possible time. The vertex with the maximum expected
reward is given by

j = arg max
y

{
φy max

i
{siy}

}
.

Here maxi{siy} gives the highest probability of attack on vertex y. So, φy maxi{siy}
gives the expected reward for attacking the vertex y and the vertex to attack j is chosen
as the vertex that gives the most expected reward.

Time of attack: The best time to attack vertex j is given by the index of the maximum
entry in the jth column of S. The position of robot at the time of attack is then given by

i = arg max
x

sxj.

Objective function: So, the maximum expected reward for the intruder is

f(P) = max
j

{
φj max

i
{sij}

}
= max

i,j
{φjsij}

Among the attack models that decide the time and vertex of attack based on the pa-
trolling policy P only, this attack model is optimal in the sense that it maximizes the
intruder’s reward. Given any patrolling policy P , the expected reward of any of the given
intruders can not be greater than that of the intelligent intruder.

The summary of the intruder attack models is provided in Table 3.1. We presented
the reward functions for some of the intruder attack models in this section. The expected
reward of the intruder is a function of patrolling policy P and we hope to find a transition
matrix which gives a reasonably low value for the expected intruder reward. In the next
section we look at some possible ways to find a paroling strategy for the robot.

3.3 Patrolling Policy

The objective of patrolling is to minimize the loss incurred by the intrusion on the environ-
ment. Given one of the intruder models, our task is to find the patrolling policy P which

26

Intruder Vertex of attack Time of attack Objective
model P [attack at j] P [robot at i] function f(P)

1
φj∑
i φi

πi π>Sφ2

2
φj∑
i φi

{
1, attack on i

0, otherwise

∑n
i=1 φ

2
i sii

3
φj∑
i φi

{
1, i = arg maxx sxj.

0, otherwise
max(S)φ2

4

{
1, j = arg maxy

{
φy maxi{siy}

}
0, otherwise

{
1, i = arg maxx sxj.

0, otherwise
maxi,j{φjsij}

Table 3.1: Summary of the attack models

minimizes the expected reward for that intruder. So, we seek to minimize the objective
function f(P) that is given for each intruder model. In this section, f(P) will generally
refer to the reward function independent of the attack model unless a model is specified.

The Optimization Problem

The transition matrix P is a stochastic matrix defined on the graph G = (V,E). The
optimization problem is to minimize the objective function f(P) for the given intruder
model, over the constrained set of transition matrices. The objective function f(P) oper-
ates on the transition matrices P of Markov chains. The argument P of the function has
the properties that pij ≥ 0,∀i, j ∈ {1, . . . , n} and

∑
j pij = 1,∀i ∈ {1, . . . , n}. Moreover, if

edge {i, j} is not in the edge set of the graph then pij = 0. So the domain of the objective
function is the closed convex set

C = {P ∈ Rn×n : pij ≥ 0,
∑
j

pij = 1, {i, j} /∈ E =⇒ pij = 0}

Note that if a chain has more than one communicating class, we can decompose that
chain into separate single communicating class Markov chains. Then the reward for each
of those Markov chains can be calculated and the minimum of those rewards can be used
as the objective value. Then the single communicating class Markov chain that gave the
minimum value of the reward will govern the patrolling path of the robot. So, although the
Markov chains of our interest are the chains with a single communicating class, the domain
of the objective function can be the set of all transition matrices on the given graph.

27

The optimization problem is to minimize f : C ⊂ Rn×n → R≥0. The optimization
problem can be written as

minimize
P

f(P)

subject to
n∑
j=1

pij = 1 for all i

pij ≥ 0 for all i, j

pij = 0 for {i, j} /∈ E.

(3.4)

given the graph G = (V,E,w), and the importance φi for each vertex i.

Non Convexity of the Problem

The optimization problem 3.4 is not, in general, a convex problem. The space of allowed
transition matrices is a convex set, but the objective function for any of the intruders is
not a convex function in general. The following example demonstrates this.

Example 3.3.1. The element sij of the success matrix is a function of the problem variables
Pxy for i, j, x, y,∈ {1, . . . , n}. Consider the problem with length of attack l = 2. Then

sij = 1− F1(i, j)− F2(i, j)

∂2sij
∂pxy∂pkl

=
−∂2F1(i, j)

∂pxy∂pkl
− ∂2F2(i, j)

∂pxy∂pkl

Consider s11 and the variables p12 and p21 as the first two variables in the indexing of the
Hessian of s11. Then

∂2F1(1, 1)

∂p12∂p21

+
∂2F2(1, 1)

∂p12∂p21

=
∂2p11

∂p12∂p12

+
∂2(p12p21 +

∑n
h=3 p1hph1)

∂p12∂p21

= 1

and

∂2F1(1, 1)

∂p12∂p12

+
∂2F2(1, 1)

∂p12∂p12

=
∂2F1(1, 1)

∂p21∂p21

+
∂2F2(1, 1)

∂p21∂p21

= 0

So, the first and the second principal minor of the Hessian of s11 evaluates to 0 and −1
respectively. So, s11 is not a convex function of P and hence f(P) is not in general a
convex function of P .

28

Hence we cannot use convex programming to find the global optimal patrolling policy
P . Therefore we will look into nonlinear optimization techniques to locally minimize the
intruder reward function. But let us first look at an interesting result about the optimal
patrolling policy for the intruder model given in Section 3.2.4.

3.3.1 Deterministic Patrolling Policy for Intelligent Intruder with
Assigned Locations

The motivation behind randomizing the patrolling path is that if the path were deter-
ministic, then this information could be exploited by the intruder. However, in the case
where the intruder is following attack model 3, a deterministic path minimizes the expected
reward. Informally, that is because the intruder has to attack all the vertices according
to their importance, and if the patrolling robot just visits the ‘most important’ vertices
with tour length less than l, the intruder can never successfully attack those vertices. The
following proposition formally presents the result.

Proposition 3.3.2. The solution to the orienteering problem for the graph G =
(V,E,w) with score on vertex i ∈ V given by ψi = φ2

i , and the time limit Tmax = l
minimizes the expected reward for the intruder following attack model 3(intelligent intruder
with assigned locations).

Proof. The intruder under consideration can only choose the time of attack to increase the
chances of successful attack. The vertex of attack is decided by the weights of the vertices.
Therefore, we can construct the same objective function for an intruder that picks the
vertex to attack uniformly at random, by changing the weights on the vertices of the graph
to ψ = φ2/n.

f =
n∑
j=1

φ2
jP [success at j]P [attack = j]

=
n∑
j=1

φ2
j maxi{sij}

n

=max(S)ψ

We get the same reward function with φ2 replaced by φ, and the two cases are equivalent.
So, each vertex of the graph is attacked with equal probability.

29

Let the vertices belonging to solution of orienteering problem be U ⊆ V . Since
the robot will follow a deterministic tour of vertices in U and the tour time is not greater
than the length of attack l, the probability of successful attack on the vertices of the tour
is 0, whereas that of the vertices not in tour is 1. So, sij = 0,∀i ∈ {1, . . . , n}, j ∈ U , and
sij = 1,∀i ∈ {1, . . . , n}, j ∈ V \ U . So, the value of reward for the intruder will be

f =
∑
j∈V \U

ψj

So, trivially any random path which visits only the vertices in U cannot perform better
than the orienteering tour.

Now assume that there is a vertex r ∈ V \ U outside the orienteering tour by visiting
which the robot can decrease the intruder’s reward. Consider the suboptimal attack time
selection strategy by the intruder to attack vertex r and each vertex in U when the robot
leaves vertex r. Then the probability of successful attack on r is srr. Moreover, whenever
the robot comes back to r from r in less than l time(with a probability of 1 − srr), it is
sure to miss the vertices in U with a collective score of ψmissed ≥ ψr, by the definition of
orienteering tour. So the reward among the vertices U ∪r which was originally ψr becomes

f ′ = srrψr + (1− srr)ψmissed
≥ srrψr + (1− srr)ψr
≥ ψr

Hence, by visiting the vertex outside the orienteering tour, the reward of the intruder
following a suboptimal strategy can only increase. Therefore, it cannot decrease for the
intruder following the optimal attack time strategy. So, the deterministic path in the
orienteering tour minimizes the objective function.

Note that the deterministic path may or may not be written as a Markov chain. So,
this optimal strategy does not necessarily fall into the set of the policies over which we
have defined our optimization problem. However, the objective function is well defined for
the deterministic tours, where the probability of successful attack on a vertex is given as

P [success at j] =

{
1, τj > l

0, τj ≤ l

where τj is the maximum time between consecutive visits to vertex j. So, the result
presented above shows that a deterministic strategy can minimize the expected reward of

30

a certain type of intruder and it also shows that the deterministic path which minimizes
the reward is given by orienteering tour.

3.4 Numerical Optimization of the Objective Func-

tion

Finding the optimal policy P for patrolling given an attack model is a constrained opti-
mization problem where the function f(P) is a nonlinear and non convex function. There-
fore, to optimize the function over P , we employ numerical optimization methods. In
this section we investigate several numerical optimization techniques and tailor them for
our function. We then advocate the use of pattern search method for the optimization of
intruders reward.

3.4.1 Gradient Projection Algorithm

The gradient descent algorithm is one of the common methods used for the optimization
of continuous differentiable functions. The basic idea is to move along the direction of
negative gradient of the function at each step until the gradient becomes zero. In the
case of constrained optimization where the feasible region is a convex set, the gradient
projection method can be used [10]. The gradient descent or projection algorithms require
the gradient of the function to be defined in the feasible set. Our objective function is
non smooth because it picks the maximum element among the columns of S. In these
cases when the objective function is not continuously differentiable, we can use the gener-
alized gradient descent for locally Lipschitz functions. The following result shows that the
objective functions that we are dealing with are locally Lipschitz.

Lemma 3.4.1. Let fh : Rd → R be locally Lipschitz functions at x ∈ Rd for h = {1, . . . ,m}
then fmax(x) = max{fh(x)} is locally Lipschitz at x [18].

Proposition 3.4.2. The objective functions f : C ⊂ Rn×n → R for intruder models 1,2,3
and 4 are locally Lipschitz at each P ∈ C.

Proof. Each element Fk(i, j) is a polynomial in the variables pxy for x, y ∈ {1, . . . , n}.
So, Fk(i, j) is continuously differentiable with respect to the transition probabilities of the
Markov chain. Therefore, the functions sij : C → R are continuously differentiable and
hence locally Lipschitz at any P ∈ C. Applying lemma 3.4.1 on the functions sij proves
that the objective functions under consideration are locally Lipschitz.

31

So, the objective function for any given intruder model is locally Lipschitz and hence
we can define the generalized gradient of f(P) at each point P .

Definition 3.4.3 (Generalized Gradient). [19] The generalized gradient ∂f : Rd →
B(Rd) of a locally Lipschitz function f : Rd → R is defined as

∂f(x) = co{ lim
i→∞
∇f(xi) : xi → x, xi /∈ T ∪ Ωf}, (3.5)

where co denotes convex hull, B(Rd) denotes the collection of subsets of Rd, Ωf ⊂ Rd

denotes the set of points where f is not differentiable and T ⊂ Rd is a set of measure zero
that can be arbitrarily chosen to simplify the computation.

Informally, the generalized gradient of f at x is the convex combination of all the
possible limits of the gradient at neighboring points of x where f is differentiable. Using
this definition, we can define the gradient for our non-smooth objective function and use
it for the gradient projection method. The gradient descent method uses the gradient ∇f
where it is defined, since it gives the direction of steepest descent of the function. At the
non-smooth points, where we have to consider the generalized gradient, the direction of
maximum descent is given by the least norm element in the generalized gradient, denoted
by −Ln(∂f) [19].

In the subsequent discussion of the gradient projection method, we will use the term
gradient to refer to the actual gradient of the function when its differentiable and to the
generalized gradient at the points where it is not. Let us now define the projection and
then discuss the gradient projection method for our objective function.

Definition 3.4.4 (Projection on a Convex Set). Given a point x in Rd, the projection
of point x on a closed convex set X ⊂ R is the point [x]X ∈ X which is at the minimum
distance from x and is the optimal point of the following problem.

minimize
z

‖z − x‖2

subject to

z ∈ X

We will use the notation [x]X for the projection of point x on the set X.

An iteration of the gradient projection method is of the form [10]

P k+1 = P k + αk(P̄ k − P k) (3.6)

32

where
P̄ k = [P k − sk∇f(P k)]C

The variables αk ∈ (0, 1] and sk are step sizes. So, the method moves current point
P k in the direction of negative gradient by the amount sk∇f(P k) and hence moves in the
direction of steepest descent. The resultant point may not be a feasible point, so it is
projected back onto the set of transition matrices. The vector P̄ k−P k is a feasible vector,
as in moving along this vector with αk ∈ (0, 1] will keep the point in the feasible set.

Proposition 3.4.5. The direction (P̄ k − P k) given in (3.6) is a direction of descent for
the function f(P).

Proof. By the projection theorem [10], a point x∗ ∈ X is equal to the projection [z]X of
point z if and only if

(z − x∗)>(x− x∗) ≤ 0, ∀x ∈ X

since our function’s domain is matrix, let us denote the dot product of two matrices A and
B of same dimensions as 〈A,B〉 =

∑
i,j(aijbij). Then, since the point P̄ k is the projection

of P k − sk∇f(P k), using the projection theorem, we get

〈P k − sk∇f(P k)− P̄ k, P − P̄ k)〉 ≤ 0, ∀P ∈ C

Plugging in P = P k, we obtain

〈∇f(P k), P k − P̄ k〉 ≤ − 1

sk
〈P k − P̄ k, P k − P̄ k〉

Since 〈P k− P̄ k, P k− P̄ k〉 is the norm of the vector P k− P̄ , it is always positive and hence
the dot product of the direction (P̄ k − P k) with the gradient is negative, implying that it
is a direction of descent of the function.

So, taking the projection after moving in the direction of steepest descent and then
moving towards the projected point decreases the function. Hence the method will termi-
nate if the projected point is the same as the current point, which means that the gradient
when projected onto the set is 0.

At each iteration, the resultant point after moving in the direction of gradient may not
be a feasible point and hence it needs to be projected onto the set of allowed transition
matrices. The following section gives a method to project any point P̃ ∈ Rn×n onto the
set C.

33

Projection Onto the Set of Allowed Transition Matrices

The projection onto the convex set can be written as the following optimization problem.

minimize
P̄

‖vec(P̄)− vec(P̃)‖

subject to
n∑
j=1

p̄ij = 1 for all i

p̄ij ≥ 0 for all i, j

p̄ij = 0 for {i, j} /∈ E.

where vec(P) vectorizes the matrix P ∈ Rn×n to a vector in Rn2
. Note that

‖vec(P̄)− vec(P̃)‖2 =
n∑
i=1

‖P̄i − P̃i‖2

where Pi is the ith row of matrix P . Moreover, the constraints of a row are independent
of the constraints of the other rows. Hence, we can project each row i of the matrix P̃
separately.

Each row i of the transition matrix P should lie in the qi dimensional simplex
∑

j pij =
1, pij ≥ 0, where qi is the degree of vertex i. So, we can use the following simple algorithm
for the projection of each row of the point onto the simplex [22].

Let vj be the elements of the vector to be projected onto the simplex. In our case they
will be the elements of a row i of the point P̃ such that (i, j) ∈ E. Then the corresponding
projected vector wj is given by

wj = max{vj − θ, 0}

where θ is found as follows. Sort v into µ, i.e. µ1 ≥ µ2 ≥ ... ≥ µqi , and evaluate

ρ = max
{
j ∈ {1, 2, ...qi} : µj −

1

j

(j∑
r=1

µr − 1
)
> 0
}

θ =
1

ρ

(ρ∑
r=1

µr − 1
)
.

34

So, we can project each row i of the matrix onto the qi dimensional simplex using this
algorithm. This method is efficient as compared to the general convex optimization since
it employs simple vector operations and its runtime is dominated by sorting the elements
of v.

Complexity of Gradient Projection Method: Calculating the gradient of the
function at each iteration in gradient descent algorithm is too expensive. If we assume
matrix multiplication of two n×n matrices takes O(n3) time, then the gradient calculation
for one element of S with respect to P takes O(n5l) time if the graph has O(n2) edges. That
is because we have to take derivative of Fk(i, j) for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . , l}.
So, we have to calculate the derivative of O(n2l) elements. Each of these derivatives
involves matrix multiplication and hence the total runtime becomes O(n5l). For planar
graphs, with O(n) edges, the runtime for gradient calculation is O(n4l). This is quite
inefficient and therefore, we look at some gradient free methods to optimize our objective
function.

3.4.2 Gradient Free methods

The following optimization methods do not require the calculation of gradient of the func-
tion.

Approximating the Gradient and Nelder Mead Method

One way to avoid gradient calculation of function f is to approximate the value of ∇f by
evaluating the function at n+ 1 points where n is the dimension of the function’s domain.
The basic idea is to use the Taylor’s theorem.

f(x+ p) ≈ f(x) +∇f(x)>p

So, using this we get that partial derivative of f is approximated by [31]

∂f

∂xi
(x) ≈ f(x+ εei)− f(x)

ε

where ei is the unit direction vector.

Another method of derivative free optimization is called Nelder-Mead method [31]. In
this method, we keep track of n + 1 points, whose convex hull forms a simplex. In each

35

iteration, the vertex of the simplex with the worst function value is replaced by a better
point or we shrink the simplex around the best available point.

However, in our case, these methods are also inefficient. We seek gradient free methods
because calculating the gradient is too expensive for our objective function. Both of these
methods require the calculation of the objective function at n2 points for our case(the
objective function is defined on a n × n matrix, where n is the number of vertices in
the graph). The calculation of the function in the general case takes O(n3l) time and
therefore, each iteration of these methods requires O(n5l) time, which is the same as
gradient projection method.

Pattern Search

At each iteration of the pattern search method, a set of search directions are chosen and the
function is evaluated at a given step length along these direction. As soon as a better point
is found, it is chosen as the current point and the method proceeds to the next iteration.

Let Dk denote the set of possible directions to chose from at kth iteration and let the step
length at iteration k is given by γk. The algorithm 1 gives the pattern search method [31].

Algorithm 1 Pattern Search Method

1: Pick starting point P ∈ C ⊂ Rn×n and γo
2: for k = 1, 2, . . . do
3: if γk < γt then
4: stop
5: end if
6: if f(Pk + γkdk) < f(Pk)− ρ(γk) for some dk ∈ Dk then
7: Pk+1 ← Pk + γkdk
8: γk+1 ← φkγk
9: else
10: Pk+1 ← Pk
11: γk+1 ← θkγk
12: end if
13: end for

In the algorithm, φk > 1 is used to increase step length for the next iteration if a
decrease direction is found. The parameter θk < 1 decreases the step length if no decrease
direction is found in the said iteration. If the step length becomes less than a set value

36

γt, the algorithm terminates. The sufficient decrease function ρ(γk) is chosen to be Mγ
3/2
k

where M is a constant, as suggested by [31] for the algorithm to converge.

The set of directions should have the property that at least one of the directions should
be a direction of descent whenever the gradient of the function is not zero. So, a proposed
set is the set of all unit directions. In our case, the optimization is constrained to the set
of stochastic matrices. So, we define the set Dk as follows. For each row i of the transition
matrix, we have a simplex in Rqi dimensions where qi is the number of neighbors of vertex
i. So, we can define qi− 1 mutually perpendicular directions on the simplex for each i and
use them as the possible directions. In our implementation, we also include some random
directions in Dk.

Pattern search method moves to the next iteration as soon as a better point is found
instead of calculating the objective function exactly n2 times for each iteration. Hence one
iteration of pattern search is less expensive then that of the methods discussed earlier. On
the other hand, the gradient projection method may require fewer iterations to converge
although each iteration is much more expensive due to the calculation of the gradient.
We used both the gradient projection and pattern search methods to find the patrolling
policies for a variety of graphs and found the pattern search method to be much faster in
practice.

3.5 Experimental Results

We performed the optimization of the expected reward for a given intruder using pattern
search method discussed in Section 3.4.2 on some instances of the problem. This section
presents and examines the results of those experiments.

Random problem instances

The sample instances of the graph were created randomly following a procedure similar
to [37]. A graph of n vertices was constructed using n Euclidean points in a plane of
size MAX × MAX. Each point was at least MIN distance apart from all the other
points. Each point was connected to k of its nearest points where k was chosen randomly
between NBRmin and NBRmax. Moreover, each point was connected to some other random
points by a probability Pconn. The Euclidean distance between the connected points was
calculated and then rounded off to give integer weights on the edges.

37

Starting point Kemeny best of 1000 Random Uniform
Best point(for 40 runs) 3 8 27 2

Table 3.2: The table depicting the performance of the pattern search method from different
starting points.

Comparison with other policies

In our first experiment, we ran the pattern search method on small instances of the graph
for different starting points and compared the results with some other patrolling policies.
The intruder model chosen was the ‘intelligent intruder’ given in 3.2.5 and so the objective
function was the expected reward for the intelligent intruder. The graph had n = 10
vertices, placed in a plane of size MAX = 10. Each point was at least MIN = 3 units of
distance apart from the others. The number of nearest neighbors was taken to be between
NBRmin = 3 and NBRmax = 5. By a probability of Pconn = 0.1 each point was connected to
some other random point as well. The wights on the vertices of the graph were randomly
picked to be between 1 and 3. The length of the attack was taken to be the total length
of the minimum spanning tree of the graph.

The experiment was performed for 40 different graphs, and for each of the graph in-
stance, the pattern search was run from 4 different starting points mentioned below.

1. Kemeny starting point: This starting point was picked as a point with the minimum
Kemeny constant. The point was calculated using a semidefinite optimization given
in [2].

2. Best of 1000: This point was chosen out of 1000 randomly picked points in C with
the best value for the objective function.

3. Random: A randomly picked point in the domain C.

4. Uniform: The entry pij in each row i of the starting point P was picked to be 1/qi
where qi is the number of neighbors of ith vertex.

For each instance of the graph, the best starting point is given as the point from which
the pattern search found the local optimal point with minimum value for the function. The
performance of the method from different starting points is given in table 3.5 and it can
be seen that a randomly picked point serves as the best starting point most of the time.

For each of the 40 instances of the graph, we also compared the performance of the
policy(transition matrix) found by the pattern search method to the following two policies.

38

Policy Minimum Kemeny Constant Uniform Pattern Search
1 1.42 1.56 1
2 1.21 1.43 1
3 1.36 1.41 1
4 1.32 1.34 1
5 1.56 1.86 1

Table 3.3: The expected reward of the intruder for different policies.

1. Minimum Kemeny Constant Policy: The policy given in [2] of finding the transition
matrix with minimum Kemeny constant.

2. Uniform Policy: The transition matrix P is chosen such that the entry pij in each
row i of P is 1/qi where qi is the number of neighbors of ith vertex.

The pattern search method found a better policy for all of the 40 instances since it
particularly minimizes the objective function. The comparison for 5 of those instances is
given in table 3.5. The expected reward is normalized such that it is 1 for the pattern
search method.

A randomly generated graph with 30 vertices is shown in Figure 3.1. The performance
and convergence of the pattern search method on this graph is shown in Figure 3.2. The
length of attack is half the length of minimum spanning tree of the graph, and the weights
on the vertices are randomly chosen between 1 and 3. The plot is normalized such that
the random starting point has the objective value of 1.

Patrolling in indoor environment using unweighted graph

For the next experiment we consider the intruder model presented in Section 3.2.4. Here
the intruder cannot choose the vertex to attack but can choose the time to launch the
attack. We consider an unweighted grid graph which can be used for patrolling in indoor
environments. The graph has n = 52 vertices and the graph is shown in Figure 3.3. The
weights on the vertices of the graph are 1 for all the vertices. The minimized expected
rewards through pattern search are plotted against different lengths of attack in Figure 3.4.
It can be seen that as the length of attack increases, the expected reward for the intruder
decreases. A deterministic tour can cover all of the vertices in 58 steps and therefore
for lengths of attack greater than 58, the expected reward of intruder can be made 0 by
following a deterministic path. However, for the random path, the expected reward for

39

Figure 3.1: The randomly generated graph with 30 vertices.

0 5 10 15 20 25 30 35 40 45
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

iteration no.

fu
nc

tio
n

va
lu

e

Figure 3.2: Performance of Pattern search on a random graph of 30 vertices.

40

Figure 3.3: The grid graph representing an indoor environment to be monitored. The
vertices of the graph are represented by discs. The green colored discs represent the
vertices in the orienteering tour of length 44.

those lengths of attack is non zero. Hence, for very large lengths of attack, deterministic
paths are obvious better choices.

In the Figure 3.5, we have plotted the performance of pattern search on the grid graph
for length of attack l = 44. The starting point of the pattern search was a random Markov
chain, and it can be observed that the expected reward for the intruder was almost 1
for that chain. It means that the intruder was always able to find a suitable time to
attack for any of the vertices of the graph. Hence, for all the vertices of the graph, the
probability of successful attack for the intruder following model 3 was almost 1. The
pattern search decreased the expected reward of the intruder to 0.278. Notice that since
we are considering the intruder model 3, the orienteering tour of the graph with time limit
44 is the optimal solution. The green vertices of the graph in Figure 3.3 represent the
vertices in the orienteering tour. If the robot follows that deterministic path, the intruder
can attack the blue vertices with 100% success rate and it can never successfully attack
the green vertices. So the expected reward for the intruder will be 11/52 = 0.2115.

Comparison of attack models

Now we compare the expected rewards of different attack models for a given patrolling
policy. The policy P was determined by running pattern search for intruder model 4 with
length of attack l = 17. For this experiment we considered a random weighted graph
with n = 20 vertices. The rewards of the intruders are plotted against length of attack in

41

20 25 30 35 40 45 50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

length of attack

ex
pe

ct
ed

 r
ew

ar
d

Figure 3.4: The expected reward for intruder following attack model 3 vs. length of attack
for a grid graph.

0 50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration no.

ex
pe

ct
ed

 r
ew

ar
d

Figure 3.5: The performance of pattern search method for grid graph with l = 44.

42

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

length of attack

ex
pe

ct
ed

 r
ew

ar
d

attack model 1
attack model 2
attack model 3
attack model 4

Figure 3.6: The expected reward of different attack models versus the length of attack.

Figure 3.6. Although the policy P was optimized for attack model 4 for l = 17, it still
gives the maximum reward among the four models.

43

Chapter 4

Robot Monitoring for Detection and
Confirmation of Stochastic Events

We define and study the Event Detection and Confirmation Problem in this chapter. The
problem is formally defined in Section 4.1. In Section 4.2, we discuss the complexity of
the off-line version of the problem. In Section 4.3 we derive the probability of successfully
classification for a single vertex of the graph. We calculate the probability expression for
the whole graph and propose a TSP based policy in Section 4.4. Section 4.5 presents the
optimal spacing between two robots following the same tour on the graph. Finally, in
Section 4.6, we give a working example of the problem.

4.1 Problem Statement

The Event Detection and Confirmation problem is defined on an undirected weighted
graph G = (V,E,w), where the vertex set V = {1, 2, . . . , N} represents the locations to be
monitored, E is the set of edges connecting the vertices and w : E → R represents edge
weights. The edge weight wij on the edge {i, j} can be thought as the distance the robot
has to travel to go from i to j. We take the metric closure [5] of the graph G in order to
obtain a complete graph, in which the length of each edge is equal to the shortest path
distance in the original graph. Since we will be discussing the problem for this complete
graph, we will refer to it as G = (V,E,w) for simplicity.

The events arrive at each vertex v ∈ V randomly and the time of arrival of events is
not known to the patrolling robot even after the event has arrived. We model the arrival

44

of events at each vertex as a Poisson process with the arrival rate at vertex v given by
λv. We assume that this arrival rate is known to the patrolling robot.The events stay
active at a vertex for a random amount of time and can only be observed by the robot if
the robot visits that vertex during the activity period of the event. We assume that the
activity period of an event at vertex v is exponentially distributed with parameter µv. The
Poisson distribution and the exponential distribution are often used to model customer
arrival times and customer service times in queuing theory [27]. Most of the analysis in
this chapter holds for more general distributions as well, however, the ability of obtain
closed form expressions leverages these specific distributions.

The events are distinct and they can be identified uniquely by the robots. Moreover,
only one event can be active at a vertex at a time and the next event can only arrive at
that vertex after the previous one has gone inactive. The arrival times and the activity
times of the events at different vertices are independent.

A critical time T is also the input to the problem which is used to define the following
terms.

True Event: We call an event a true event if it remains active for an amount of time
that is greater than or equal to T .

Detection: The detection of an event is the discovering of that event by a robot for
the first time at its vertex.

Confirmation: Observing an event at a vertex at least T time later than detection of
that event is called confirmation.

A robot, while on its patrolling path performs detection and confirmation of events. It
can classify an event as true if and only if it confirms that event. Notice that if a true
event becomes inactive before being confirmed by a robot, it cannot be classified as a true
event.

When a robot reaches a vertex in its tour, it faces one of the following scenarios.

1. The vertex is empty (no event at the vertex): then, the robot can delete the event
from its database which was recorded to be at that vertex (if any).

2. There is a new event at the vertex: then the robot stores it against that vertex with
the current time stamp.

3. There is an event at the vertex which was detected at some previous check at that
vertex: In this case the robot looks up the time stamp of that event and compares it
with current time to see whether it is a true event or not.

45

Figure 4.1: A parking lot environment and a possible patrolling tour based on the TSP.

Now, we can formally write the objective of the problem.

Event Detection and Confirmation Problem: Find patrolling paths for
the robots to minimize the probability of incorrectly classified events. The
problem does not allow the robots to classify a false event as true, so the
optimization task can be stated as maximizing the probability of correctly
classifying true events.

The following example is helpful in depicting the features of the problem.

Example 4.1.1. The problem is analogous to the problem of finding routes in a parking
lot where cars are arriving and departing according to some random process and we have
to ticket the cars staying more than the allowed parking time. The vertices of the graph
represent individual parking spaces and the arrival and activity time of events at a vertex is
equivalent to arrival and staying time of vehicles at a parking spot. The cars are identifiable
by their license plates and there can be only one car at a spot. Moreover, the robot can
ticket a car only if the time between its detection and ticketing is more than the allowed
parking time. The cars that stay more than the allowed parking time but leave before a
robot confirms it cannot be ticketed. An example parking lot environment and a possible
patrolling route are shown in Figure 4.1. Here we assume that when moving along an aisle
in the parking lot, the robot can view the parking spots on either side of the aisle.

46

4.2 Complexity of the Problem

Let us now characterize the complexity of the problem. Let us consider the off-line version
of the problem to understand the complexity of the problem.

4.2.1 Off-line Version

In the off-line version of the problem, all the required data is available beforehand. So the
arrival times and activity periods of events at each vertex of the graph are known before
devising a patrolling path. An input instance to the off-line problem is:

• An undirected weighted graph G = (V,E,w).

• The critical time T .

• Total number of events M .

• The events Ei, i ∈ {1, 2, . . . ,M} where each event is given by Ei = (v, ts, tf), v ∈ V .
The vertex of the event is represented by v, and [ts, tf] gives the interval during which
the event remains active.

More than one event can arrive at a vertex, but their active intervals need to be disjoint.
Given this data, the events with active times less than the minimum staying time T can
be ignored. For the other(true) events with tf − ts ≥ T , the monitoring robot needs to
visit their vertex twice: once after their arrival to detect them and then before tf but at
least time T after the first visit to confirm them. This means that we can assign two time
windows at each vertex and the robot has to visit each vertex during those time windows.
We name the windows as detection window and confirmation window, given by

Detection Window: [ts, tf − T]

Confirmation Window: [tdet + T, tf] where tdet ∈ [ts, tf − T] represents the actual
visit time of vertex v by the robot during the first window.

Note that the confirmation window is dynamic in the sense that its length depends on
the visit time during the detection window.

Now we show that the off-line version of the problem is NP-Complete.

47

4.2.2 Hardness of Off-line Problem

The following result shows that the off-line version of the Event Detection and Confirmation
problem is NP-Complete.

Proposition 4.2.1 (Hardness of Offline Problem). The problem of finding a feasible
tour for the off-line version of Event Detection and Confirmation Problem(EDC) is NP-
Complete.

Proof. The following reduction from the decision version of traveling salesman prob-
lem with time windows(TSPTW) to the off-line EDC shows that the off-line EDC
problem is at least as hard as the problem of finding a feasible solution in TSPTW, which
is known to be NP-Complete [38].

The input instance of TSPTW takes is

• An undirected weighted graph G = (V ′, E ′, w′).

• A time window for each vertex i ∈ V ′, denoted by [ei, li].

The decision version of the problem is to find whether a tour exists which visits each
vertex i ∈ V ′ of the graph within the time window [ei, li] associated with that vertex.

Given an instance of TSPTW, we generate the following instance of off-line EDC.

(V,E,w) = (V ′, E ′, w′)

T =
∑
i,j

wij + max
i∈V ′
{li} −min

i∈V ′
{ei}

Ei = (v, ts, tf) = (i, ei, li + T) ∀i ∈ V ′

The detection window for the off-line EDC at vertex v will therefore be

[ts, tf − T] = [ei, li].

If a patrolling path for off-line EDC exists, that means that the robot can visit each
vertex in its detection window, which is same as the time window for TSPTW.

Similarly, if a feasible solution to the TSPTW exists, then the robot can visit all
the vertices of EDC during their detection windows. Let that path be called ‘detection
path’. Then it can also visit all the vertices in their confirmation windows by following

48

the detection path with a time lag of T . This is possible because the robot will cover all
the vertices in t1 ≤ maxi{li} −mini{ei}, and it can go to the first vertex on the detection
path from the last in t2 ≤

∑
i,j wij. So, once it reaches the starting vertex of the detection

path, it can wait for T − t1 − t2 > 0 time and then follow the same path to visit all the
vertices in their confirmation windows.

Therefore, the decision version of TSPTW is true if and only if off-line EDC is true.
Moreover, given any certificate of off-line EDC, it can be easily checked in polynomial
time whether it visits all the vertices in their corresponding detection and confirmation
windows. Hence, off-line EDC is NP-Complete.

The above result shows that it is computationally intractable to even determine a
feasible patrolling path given all the problem data beforehand. This implies that the
optimization version of the off-line problem is NP-hard. Thus, we do not expect there to
exist a tractable algorithm for optimally solving the online problem, in which events arrive
over time and the robot does not know their arrival times or activity periods.

In the following section we look at the probability of confirmation at a single vertex
in the graph when one robot is patrolling the graph. Using this we can analyze the
performance of a policy based on a traveling salesman problem (TSP) tour.

4.3 Analysis of a Periodic Policy for a Single Vertex

Let us consider a deterministic patrolling policy that visits the vertices of the graph peri-
odically and let the period for a vertex v be τv. The arrival of events is governed by the
Poisson process, so the inter-arrival times are exponentially distributed with parameter λv
for vertex v. The staying time of the events is also exponentially distributed with param-
eter µv. Since the arrival and departure process at a vertex are independent of the states
of the other vertices, we can focus on the analysis of a single vertex. For the simplicity of
notation, we will drop the subscript v and use the parameters λ and µ for the arrival and
departure rates for the vertex under study and τ as the period for that vertex.

4.3.1 Confirmation Avoiding Interval for True Events

The goal of the problem is to find a policy that maximizes the probability of correctly
classifying true events. There is a chance that a true event becomes inactive without being
confirmed, because the robot does not know the exact time of the arrival of the event and

49

0 t'+Tt'

T

T

nτ (n+1)ττ (n+2)τ

Figure 4.2: The events remaining active until t′+T are true, but they cannot be confirmed
unless they stay until (n+ 2)τ .

it may not be able to visit the vertex exactly T time after the detection. We characterize
the time interval during which a true event can become inactive and avoid confirmation.

Proposition 4.3.1 (False Negatives). Suppose an event arrives at a vertex between two
consecutive visits made by the robot at 0 and τ , and the arrival time of the event is given
by t′ ∈ (0, τ]. Then, if that event becomes inactive in the time interval(

t′ + T, (n+ 2)τ
)
, where (4.1)

n =

{
T
τ
− 1, if T is a multiple of τ⌊
T
τ

⌋
, otherwise,

(4.2)

it will be a true event that can not be confirmed.

Proof. The starting point of the interval (t′ + T, (n + 2)τ) is trivial since the event will
become true after t = t′ + T . For the end point, notice that the robot detected the
event at t = τ , and it will only be able to confirm the event on times that are integer
multiples of τ . By the definition of n, nτ < T ≤ (n + 1)τ . So when the robot observes
the same event at (n + 2)τ , it confirms that is has been there for more than T , since
(n + 2)τ − τ = (n + 1)τ ≥ T . Moreover, there can be cases for some T and t′ when
t′+T < (n+1)τ , as shown in Figure 4.3.1, but since the robot detected the event at τ and
(n + 1)τ − τ = nτ < T , the robot does not know that the event has been active for more
than T and cannot confirm it. So it will only be able to confirm that event at (n+2)τ .

The events which become inactive in the interval (4.1) will be true events, but cannot be
correctly classified by the robot as true. We will use this fact along with the exponential
active times of the events in the following section to calculate the chances of correctly
classifying a true event.

50

4.3.2 Probability of Correctly Classifying True Events

The events which were detected at t = τ will be classified as true if they remain active
until t = (n + 2)τ , as shown in Proposition 4.3.1. If the robot detects an event, then it
knows that the event arrived in the interval between the last two visits to its vertex. By
the property of stationary increments, the time scale can be shifted to say that the arrival
time of the event is given by t′ ∈ (0, τ]. Using the consequence of Lemma 2.1.15, the arrival
time t′ is uniformly distributed over (0, τ]. We write this distribution of t′ in (0, τ] as

f(t′) =
1

τ
for t′ ∈ (0, τ]. (4.3)

We will use this uniform density along with the interval (4.1) to find the probability of
confirming true events.

Proposition 4.3.2 (Probability of Successful Classification). The probability of confirming
a true event at vertex v with arrival rate λ, departure rate µ, for a robot with visit period
τ is

P [confirm|v] =
e−µ[(n+2)τ−T](eµτ − 1)

µτ
, (4.4)

where n is defined in (4.2).

Proof. According to the confirmation avoiding interval given in (4.1), the events arriving
at time t′ ∈ (0, τ] and departing after (n + 2)τ will be confirmed by the robot. Using
the exponential staying time distribution ,we can find the probability of confirming a true
event given that it arrived at time t′ ∈ (0, τ].

P [confirm|v and t’] =

∫ ∞
(n+2)τ

µe−µ(t−t′)dt∫ ∞
T

µe−µtdt

,

= e−µ[(n+2)τ−T]eµt
′

(4.5)

The numerator in (4.5) represents the events that will stay long enough to be confirmed,
and the denominator represents all the events that are true. Using the arrival time density
in the interval (0, τ] from (4.3), f(t′) = 1

τ
where t′ ∈ (0, τ], and un-conditioning the arrival

time

51

P [confirm|v] =

∫ τ

0

P [confirm|v and t’] f(t′)dt′,

we get

P [confirm|v] =

∫ τ

0

e−µ[(n+2)τ−T]eµt
′

τ
dt′

=
e−µ[(n+2)τ−T](eµτ − 1)

µτ
.

The Event Detection and Confirmation problem seeks to maximize the number of true
events that are confirmed. So, one would want to maximize the probability of confirmed
true events given in (4.4). However, this expression is just for a single vertex on the path of
the robot. We will extend it to the complete path, and then try to maximize the probability
of confirming true events over the whole graph.

4.4 Single Robot Policy Based on TSP

The expression for the probability of successfully confirming a true event for one vertex
can be used to find the probability of confirming true events over the whole graph. In this
section, we will derive the expression for the said probability and then use it in a particular
case to recommend a policy based on the cyclic tour of the graph.

4.4.1 Probability of Correct Classification for the Tour

We start with the analysis of any patrolling policy with possibly different periodic visit
times to vertices, and then specialize the equation for the case when the periodic visit times
to the vertices are equal and the events’ activity period is governed by the same process
for all the vertices.

Using equation (4.4), for a vertex v with arrival and departure rates given by λv and
µv respectively, the robot visiting that vertex with a period τv will confirm true events on
that vertex with a probability given by

52

P [confirm|v] =
e−µ[(nv+2)τv−T](eµvτv − 1)

µvτv
,

where nv =

{
T
τv
− 1, if T is a multiple of τv⌊
T
τv

⌋
, otherwise,

(4.6)

Proposition 4.4.1 (Probability Expression). The probability of correctly classifying true
events for the periodic tour is given by

P [confirm] =

∑
v P [confirm|v]λv∑

v λv
, (4.7)

where P [confirm|v] is given in equation (4.6). Moreover, in the special case where τv = τ ,
and µv = µ, for all v ∈ V , then

P [confirm] =
e−µ[(n+2)τ−T](eµτ − 1)

µτ
,

where n =

{
T
τ
− 1, if T is a multiple of τ⌊
T
τ

⌋
, otherwise.

(4.8)

Proof. We want to remove the condition of arrival being on a certain vertex v from equation
(4.6). We know that

P [confirm] =
∑
v

P [confirm|v]P [arrival at v] .

Since the arrivals of events at different vertices are independent processes, the proba-
bility of arrival of an event being on vertex v is

P [arrival at v] =
λv∑
v λv

.

Therefore,

P [confirm] =

∑
v P [confirm|v]λv∑

v λv
.

If we consider the special case when the staying times on all the vertices are identically
distributed and the robot follows a cyclic policy, i.e. it visits all the vertices in some

53

order with the same period for each vertex, then µv = µ, τv = τ, ∀v ∈ V . In this case,
P [confirm|v] is same for all the vertices, and can be factored out of the summation, giving
us equation (4.8).

Notice that the probability expression (4.8) is independent of λ. The reason for this can
be understood by noting that in equation (4.7), the number of confirmed events depends on
λ, but so does the number of total events. As a result, the probability remains unaffected.

4.4.2 Policy based on a TSP tour

Expression (4.8) holds for the case when the period of visits for the robot is same for all
vertices and the activity times of events at different vertices are identically distributed. A
TSP tour (which is the shortest tour to visit all vertices in the graph) minimizes the time
τ for a given speed of the robot.

However, there are cases when decreasing the robot speed and thus increasing τ results
in a higher probability in expression (4.8). This is due to the discontinuity of n in equa-
tion (4.2) and can be seen in Figure 4.3. Intuitively it means that timing the visits such
that T is a multiple of τ tends to decrease the chances of missing the confirmation of true
events. That is because the robot will reach the vertex of the event at the earliest possible
time the robot can confirm that event.

Thus, we need to check two possible robot speeds: maximum speed, or a speed such
that τ is a multiple of T . Based on this observation, we arrive at following single robot
policy.

Policy for a Single Robot:

1. Calculate the TSP tour of the graph, and find the minimum time τmin to complete
that tour by the robot at its maximum speed.

2. Find τpeak ≥ τmin such that T is a multiple of τpeak and there is no other τ between
τmin and τpeak which is a multiple of T .

3. Calculate the probability of correctly classifying true events from equation (4.8) for
τ = τmin and τ = τpeak.

54

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
ro

ba
bi

lit
ie

s
of

 C
or

re
ct

ly
 C

la
ss

ify
in

g
T

ru
e

E
ve

nt
s

Figure 4.3: The probability of correctly classifying true events versus τ , with T = 1, µ = 1.

4. Choose the tour period which gives greater probability and adjust the speed of the
robot to the optimal speed to match the chosen period.

Remark 4.4.2 (Omitting Vertices from Tour). An instance of the problem with equal
arrival rates can be constructed where missing a far away vertex in the graph will result
in a tour which has a much lower value of τ for the other vertices. Then the probability
of confirming true events on the missed vertex becomes 0 since the robot never visits that
vertex and hence, the probability of correctly classifying true events on the whole graph can
be written as

P [confirm] =

∑N−1
v=0 P [confirm|v]λ+ 0∑N

v=0 λ

=
N − 1

N

e−µ[(n+2)τ−T](eµτ − 1)

µτ
.

(4.9)

If the period τ is reduced enough for the other vertices by omitting some vertex, the
probability of confirming true events can be increased. However, such policies raise the
possibility that “intelligent” events would begin to choose this unvisited vertex more fre-
quently, altering the arrival rates.

4.5 Multiple Robots

In this section we discuss the case of multiple robots. We give some general results and
then give the optimal lag between the robots for the two robot scenario. We then generalize
the result for the optimal lag for multiple robot case.

55

We assume that the communication graph between the robots is strongly connected, so
that any two robots can communicate without significant delay. Thus, we can assume that
the database containing all active events is shared among the robots. This means that it
is possible to have robot i detect an event and robot j confirm it and vice versa.

4.5.1 Specializing Robot Capabilities

One possible solution in the multi-robot case is to utilize specialization in which a robot
performs exclusively detection, or exclusively confirmation.

Definition 4.5.1 (Specialized robot capability). We say that a robot is a detection (con-
firmation) robot if it is capable of performing only event detections (confirmations).

First, it is easy to see that specialization cannot be optimal. In specializing we eliminate
the possibility of a confirmation robot detecting an event, even if it is the first robot to visit
the vertex after the events’ arrival. Similarly, we eliminate the possibility of a detection
robot confirming an event, even when it visits the event vertex more than T time units
after detection.

However, there are cases where specialization may be required, for example, if the
sensors needed for detection and confirmation differ. For example, in the case of patrolling
a parking lot to ticket overstaying vehicles, the confirmation robot might require additional
capabilities to be able to ticket the vehicle, whereas the detection robot just has to observe
the vehicles. The following simple lemma shows that when specializing, detection is the
bottleneck.

Lemma 4.5.2 (Specialization among robots). Given nd detection robots, confirmation can
be performed optimally using only nd confirmation robots.

Proof. Let the paths followed by the nd detection robots be P1, . . . , Pnd
. We then create

nd confirmation paths by placing a confirmation robot on each detection path, but with a
time lag of exactly T seconds.

An event that is detected on a given path Pi will be confirmed exactly T time units
later by the corresponding confirmation robot. In other words, given the detection times,
each confirmation will be performed optimally using the nd confirmation paths, with a
time lag of T .

56

The consequence of this result is that detection is the bottleneck when looking at spe-
cialized robots. Given detection patrolling paths, the corresponding optimal confirmation
paths are defined. Thus, in this case, one can use existing techniques to design patrolling
paths for detection, and then use Lemma 4.5.2 for the confirmation paths. In the next
section we focus on the more complex case in which each robot can both detect and confirm.

4.5.2 Optimal Spacing Between Two Robots on a Common Path

In this section we look at the case where each robot can both detect and confirm events.
We focus on the special case in which there are two robots moving along the same tour
with a period of τ > 0. Moreover, we assume that the staying times at different vertices
are identically distributed. We look to optimize the spacing between the robots along the
tour. We discuss the extension to m robots at the end of this section.

To this end, define the variable to optimize as tlag which is the time lag between the
first and second robot on the common tour. Since the robots travel the tour with period
τ , we have tlag ∈ (0, τ). Consider an event that arrives at a vertex at time t′ ≥ 0. We can
shift the time scale such that t′ ∈ [0, τ).

Consider the times at which that event can be detected and confirmed: we call these
times tdet and tconf , respectively, where tconf ≥ tdet + T and tdet ≥ t′. If these times are
known, then the probability of confirming a true event given the arrival time of the event
t′ is

P [confirm|t′] =
P [active > tconf − t′]

P [active > T]

=
e−µ(tconf−t′)

e−µT

= eµt
′
e−µ(tconf−T), (4.10)

where we have used the fact that an event’s active time is distributed according to
an exponential random variable with parameter µ. Also, recall that n is defined in equa-
tion (4.2).

Notice that the robots visit the vertex of interest at the times 0, tlag, τ and so on. We
call the robot that visits the vertex at tlag robot 1, whereas the robot that visits at τ is
called robot 2. Now, we calculate tdet and tconf as a function of tlag using the following two

57

cases, each containing two sub-cases.

Case 1: Robot 1 detects the event
If t′ ∈ (0, tlag] then the event will be detected by robot 1 and tdet = tlag. There are two
further sub-cases.

1. Robot 2 confirms the event: If tlag +T ≤ (n+ 1)τ then the earliest time that the
event can be confirmed is tconf = (n+ 1)τ and robot 2 will confirm the event.

2. Robot 1 confirms the event: If tlag + T > (n+ 1)τ , then robot 1 will confirm the
event and the confirmation time is tconf = (n+ 1)τ + tlag.

Case 2: Robot 2 detects the event
If t′ ∈ (tlag, τ] then the event will be detected at tdet = τ by robot 2. Again, there are two
sub-cases:

1. Robot 1 confirms the event: If τ + T ≤ (n + 1)τ + tlag i.e., tlag ≥ T − nτ , then
the earliest time that the event can be confirmed is tconf = (n+ 1)τ + tlag and it will
be confirmed by robot 1.

2. Robot 2 confirms the event: If tlag < T − nτ , then the event will be confirmed
by robot 2 at tconf = (n+ 2)τ .

Based on the four cases and equation (4.10), we can compute the probability of detection
as a function of tlag as

P [confirm] =

∫ τ

0

P [confirm|t′] f(t′)dt′,

where f(t′) is the uniform distribution from equation (4.3).

When evaluating this integral, there are two more cases, depending on whether or not
T − nτ ≤ (n+ 1)τ − T :

• If T − nτ ≤ (n+ 1)τ − T we get

P [confirm] =

1
µτ

(e−µ((n+1)τ−T)(eµtlag(1− e−µτ)), tlag ≤ T − nτ,
1
µτ

(e−µ((n+1)τ−T)(eµtlag + eµ(τ−tlag) − 2), T − nτ < tlag ≤ (n+ 1)τ − T,
1
µτ

(e−µ((n+1)τ+tlag−T)(eµτ − 1), tlag > (n+ 1)τ − T.
(4.11)

58

• If T − nτ > (n+ 1)τ − T , we get

P [confirm] =

1
µτ

(e−µ((n+1)τ−T)(eµtlag(1− e−µτ)), tlag ≤ (n+ 1)τ − T,
1
µτ

(e−µ((n+1)τ−T)(2− e−µtlag − e−µ(τ−tlag)), (n+ 1)τ − T < tlag ≤ T − nτ,
1
µτ

(e−µ((n+1)τ+tlag−T)(eµτ − 1), tlag > T − nτ.
(4.12)

Notice that in the case when tlag = τ/2, the expressions in (4.11) and (4.12) both
simplify to equation (4.8) with τ replaced by τ/2. We can now use these expressions to
find the optimal tlag.

Proposition 4.5.3 (Optimal value of tlag). The equations (4.11) and (4.12) achieve their
global maxima at one (or more) of the following points: i) tlag = τ

2
; ii) tlag = T − nτ ; iii)

tlag = (n+ 2)τ − T .

Proof. The equations (4.11) and (4.12) are piecewise continuous and have discontinuities
at points tlag = T − nτ and tlag = (n+ 2)τ − T . The continuous pieces defined on the first
and third interval of the equations are strictly monotone and achieve their maximum values
at the discontinuities. The third continuous part has an extremum at tlag = τ

2
which can

be easily verified by equating the derivative of the function to zero. Thus the maximum of
the probability lies either at τ

2
or at one of the discontinuities. So, for one of these values

of tlag, the probability will be maximized.

These values of tlag will optimize the probability for a given value of τ . However, for the
case when the robots are equally spaced, equation (4.8) gives the probability of confirming
events with τ replaced by τ/2. We have observed in the single robot case that increasing
τ can result in a higher probability. Similarly, in the two robot case, when the robots
are equally spaced, decreasing the speed of the robot to increase τ to a divisor of 2T can
result in a higher probability. Based on this, we arrive at the following policy for two robots:

Policy for Optimizing the Spacing of Two Robots:

1. Evaluate the expression (4.11) or (4.12) depending on whether T −nτ ≤ (n+1)τ−T
or not, at the points tlag = τ/2, tlag = T − nτ and tlag = (n + 2)τ − T . Choose the
value of tlag that gives the maximum probability. Call it tlag1 .

2. Increase τ to the nearest divisor of 2T , call it τn and evaluate equation (4.12) at
tlag = τn/2 and τ = τn.

59

3. If tlag = τn/2 gives the higher probability, choose τ = τn and tlag = τn/2. Otherwise,
choose tlag = tlag1 .

The following remark discusses the extension to m robots.

Remark 4.5.4 (Generalizing to m robots). In the case that there are m robots, there are
m− 1 variables to optimize, each for the lag between robots on a cyclic path. The number
of cases to consider becomes too large to complete the same analysis. However, based on
the observations made for two robots, the following can be said for the n-robot case:

1. If τ/m is a multiple of T , then equally space the robots on the path.

2. Otherwise, if τ < mT , decrease τ to the nearest divisor of mT and using this new
period, equally space the robots.

3. If τ > mT , choose the spacing such that the robots follow each other by a time lag of
T .

This policy follows from the observation that in the two robot case this procedure often yields
the optimal tlag. However, it is not, in general guaranteed to find the optimal spacing.

4.6 Application Example

Let us consider the parking lot shown in Figure 4.1 and apply the patrolling policies to
that parking lot. The parking lot is situated at a market place and for the purposes of
simulation, we assume the expected staying time of vehicles to be around 75 minutes and
the allowed parking time to be two hours. This gives µ = 1

75
and T = 120. Moreover, the

length of the patrolling path shown in Figure 4.1 is calculated to be approximately 870
meters.

Figure 4.4 shows the plot of probabilities of ticketing overstaying vehicles versus pa-
trolling period of the robot in the cases of i) a single robot; ii) two robots with a spacing
of τ/2; and iii) two robots with optimized spacing.

We assume the robot has a maximum speed of 1 m/s, which gives a minimum tour
period of 14.5 minutes. The probability of ticketing for a tour with this period comes out
to be 0.7905 from equation (4.8). However, if we increase the period to 15 minutes by
decreasing the speed of robot to 0.967 m/s, using equation (4.8) the probability increases
to 0.9063 — an increase of 14.6%.

60

5 10 15 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

P
ro

ba
bi

lit
ie

s
of

 T
ic

ke
tin

g
O

ve
rs

ta
yi

ng
 V

eh
ic

le
s

Two robots with τ/2 lag
Two robots with optimized lag
Single robot

Figure 4.4: The probability of ticketing overstaying vehicles as a function of τ for 1) a
single robot, 2) two robots with lag of τ/2, and 3) two robots with optimized lag. Here
T = 120, and µ = 1/75.

In case of two robots, the probability of ticketing an overstaying vehicle using a period of
14.5 minutes and the robots equally spaced will be 0.9128 from equation (4.12) . But, if one
robot follows the other with a time lag of T−nτ = 4 minutes or (n+1)τ−T = 10.5 minutes
(since the robots are on a cycle, these configurations are equivalent), then the probability
increases to 0.9221 from equation (4.11). However, there is still room for improvement. If
both the robots decrease their speed to make their period a multiple of T and then follow
each other with a lag of τ/2 = 7.5 minutes, the probability will be 0.9515 which can be
calculated using equation (4.12) or equation (4.8) with τ replaced by τ/2.

This example shows that decreasing the speed can be helpful in terms of increasing the
probability of confirming a true event. However, it may not always be true. Looking at
Figure 4.4 that most of the times a lag of τ/2 would result in better probability, and even
if it does not, the optimal lag seems to provide very little advantage. However, Figure 4.5
shows that in the cases when τ > 2T in a two robot scenario, optimal lag provides much
better results. Such cases can arise when robots have to monitor very large environments.

61

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
ro

ba
bi

lit
ie

s
of

 C
on

fir
m

in
g

T
ru

e
E

ve
nt

s

Two robots with τ/2 lag
Two robots with optimized lag

Figure 4.5: Comparison of probabilities of confirming events for two robots with different
lags versus τ . Parameter values are T = 1, µ = 1.

62

Chapter 5

Conclusions and Future Work

We presented and analyzed two patrolling problems in this thesis. The first problem dis-
cussed stochastic patrolling strategies in adversarial environments. Markov chains were
used to represent stochastic patrolling paths on the graphs. We modeled four different
types of intruders that can attack the environment, each with a different level of intelli-
gence. The expected reward for each of the intruders was characterized as a function of
the transition matrix of the Markov chain being used for patrolling. We discussed the
application of different numerical optimization techniques to optimize the expected reward
for any given type of intruder, and propose the pattern search method to determine a
stochastic patrolling policy. We present the performance of the pattern search method on
some example problem instances. We also show that for a certain type of intruder given in
Section 3.2.4, a deterministic patrolling path given by the orienteering tour of the graph is
the optimal patrolling strategy.

In the second part of the thesis we consider the Event Detection and Confirmation
Problem. The events arrive randomly on the vertices of a graph and stay active for a
random amount of time. The events that stay active for longer than a certain amount of
time are called true events. The monitoring robot has to classify the events as true or false.
We showed that the off-line version of the problem is NP-complete. We considered a simple
patrolling policy based on the TSP tour of the graph and characterized the probability of
correctly classifying true events. We gave some insight into the multiple robot problem
and showed that if all robots follow the same path, the optimal spacing between the robots
can be non uniform.

63

5.1 Future Directions for Patrolling in Adversarial

Settings

In this section we discuss two possible future directions for the patrolling problem in
adversarial settings.

5.1.1 Real Time Learning of Markov Chains

The intelligent intruder models given in Sections 3.2.4 and 3.2.5 assume that the intruder
has access to the transition matrix of the Markov chain that the robot is following. How-
ever, in a real scenario, the intruder might have to learn the Markov chain by observing
the patrolling path of the robot. Then the success matrix S calculated by the intruder
will depend on the learned transition matrix P̂ instead of the actual transition matrix P .
So, the vertex and time to attack selected by the intruder based on the learned model
might not be optimal, since the robot is following a different chain from the one modeled
by the intruder. Therefore, one of the possible future directions is to look for patrolling
policies that are hard to learn. In the following section we present a learning technique
from [30, 6], and then we discuss the future direction in a detailed manner.

Bayesian Estimation for Markov Chains

Bayesian Estimation is used to estimate the parameters of a probability density given the
samples drawn from that distribution. If we denote the observed samples by D and the
actual parameters of the distribution by θ, then using Bayes’ law, we can calculate the
posterior estimate of the parameters.

P [θ|D] =
P [D|θ]P [θ]

P [D]

This can be interpreted as

posterior =
likelihood of data given parameters×prior

marginal likelihood

For Markov chains, each row i of the transition matrix can be thought of as a multi-
nomial distribution with the number of parameters equal to the number of neighbors of
vertex i. Given that the chain is in state i, the next state is drawn from the multinomial

64

distribution. So estimating the transition matrix is equivalent to estimating n independent
multinomial distributions.

The prior used to estimate multinomial distributions is given by the Dirichlet distri-
bution [20]. So, for the multinomial parameters θi1, θi2, . . . , θiqi that correspond to the
transition probabilities from a state i to its qi neighbors, the prior is

P [θi1, . . . , θiqi] = Dir(θi1, . . . , θiqi |αi1, . . . , αiqi)

where αi1, . . . , αiqi are the parameters of the Dirichlet distribution. The parameter αij for
the multinomial distribution i of the Markov chain can be intuitively thought of as the
number of transitions from i to j in prior observations.

If we use the above prior, the maximum a posteriori(MAP) estimate comes out to be

p̂ij =
yij + αij∑n

k=1(yik + αik)
(5.1)

where yij is the number of observed transitions from state i to state j. The Laplace
prior is αij = 1, for i ∈ {1, . . . , n}, j ∈ {1, 2, . . . , qi} and is used when no information about
the chain is available beforehand.

The MAP estimate given in equation (5.1) gives a point estimate of the transition
probabilities. The posterior estimate calculated using Bayes’ law gives a distribution over
the parameter values. If the Dirichlet distribution is used as the prior for estimating a
multinomial distribution, the posterior is also a Dirichlet distribution. So,

P [θi1, . . . , θiqi |D] = Dir(θi1, . . . , θiqi |αi1 + yi1, . . . , αiqi + yiqi)

The MAP estimate is the mean of this posterior Dirichlet distribution. This distribution
can be used by the intruder to compute the confidence in its estimate of the parameters
of the transition matrix. We can write the variance in the parameter θij in terms of the
MAP estimate p̂ij as

Var(θij) =
p̂ij(1− p̂ij)
yi + qi + 1

(5.2)

where yi =
∑

j yij is the number of times state i is visited and qi is the number of neighbors
of state i. So, as the length of the observed path increases, yi increases, and the variance
in the estimate decreases. In the Sections 3.2.4 and 3.2.5, we assumed that the intruder
has been observing the patrolling path long enough to have perfectly modeled the Markov
chain.

65

If the intruder has been observing the patrolling path for some time To, then it will use
the estimated transition matrix denoted by P̂To to decide the vertex and time of attack.
If we are looking for patrolling policies that are hard to learn, we would want to design
policies such that for a given To, the variance (5.2) is maximized. However, this might not
reduce the expected reward of the intruder as illustrated by the following example.

Example 5.1.1. Consider a complete unweighted graph of n vertices and two different
Markov chains defined on that graph. Chain 1 is completely random and has transition
probabilities pij = 1/n for all i, j. Chain 2 is deterministic and will have transition prob-
abilities as either 1 or 0. It can be seen from the equation (5.2) that an intruder learning
chain 2 will have a much higher confidence in its estimate after time To as compared to an
intruder learning chain 1. However, that does not imply that the intruder attacking chain
1 will make wrong choices of the time and vertex of attack. In fact, if To = 0, the intruder
will model the chain 1 perfectly using MAP estimate and hence can make the best decisions.
On the other hand, the estimate of chain 2 will be far off from the actual chain and the
intruder might not make the best possible choice for the time of attack.

The example shows that designing a chain that is hard to learn does not necessarily
imply that the performance of the intruder will initially suffer. The final goal of the
patrolling problem is to minimize the intruder’s reward that it can obtain by intelligently
attacking the environment. Given a time To, the intruder will launch attacks using the
learned model P̂To , and the expected reward will be given by f(P̂To). We would like to
design a policy that minimizes this reward. The problem discussed in this thesis is a specific
case of this proposed problem with To approaching infinity.

5.1.2 Multiple Robots

Another possible direction for future work is the design of patrolling policies for multiple
robots in adversarial environments. Given a graph and R agents to patrol it, one has to
decide how to assign the graph to the agents and then to define a patrolling policy for each
agent on its specified graph. The following two approaches are discussed in [37].

Shared Graph Policy: The graph is shared by all the agents i.e. all the agents patrol
the whole graph. The agents can either follow their independent patrolling paths, or they
can cooperate and define a combined strategy to patrol the graph.

66

Partitioned Graph Policy: The graph is partitioned into R partitions and each
partition is assigned to one agent. In [37] the authors discuss these strategies and present
some graph partitioning algorithms such as K-means clustering algorithm and Multilevel
graph partitioning. By partitioning, we get R single agent problems and we can define the
patrolling policy for each agent on its graph.

For a given length of attack l, as the graph size decreases, the maximum probability
of successful attacks intuitively decreases. Similarly, if more robots are patrolling a graph,
the chances of a successful attack should reduce. However, the following example suggests
that as the number of robots increases, partitioning will become better than sharing in
terms of minimizing the maximum probability of successful attacks.

Example 5.1.2. Consider the case when number of robots is such that length of attack
l is greater than the tour length of the partitions but less than the tour length of the full
graph. Then the probability of successful attacks in case of partitions is zero, whereas if
the maximum probability of successful attacks on a graph is non zero with a single agent,
it will remain non zero with multiple agents independently patrolling the graph.

However, wait for the perfect time of attack for an intruder can be very large in case of
shared strategy as compared to the partitioned one. To launch a best possible attack on
the vertex j of an environment with multiple patrolling agents, the intruder has to

1. Compute the matrices Sk for k ∈ {1, . . . , R}. the matrix Sk corresponds to the
success matrix calculated using the transition matrix for robot k.

2. Find the row numbers i(k), k ∈ {1 . . . R} corresponding to the maximum elements in
the jth columns of the matrices.

3. Wait till the agent k is at i(k), ∀k ∈ {1 . . . R}.

Waiting time: The amount of time an intruder has to wait after deciding to attack
a vertex until it can launch the best possible attack is called the waiting time. In case of
partitioned graphs, the total number of vertices in the graph reduce and hence the waiting
time for the intruder decreases. In the case of shared graphs, the intruder has to wait for
all of the R agents to reach some specific vertices before it can launch the best possible
attack. The shared graph by R agents will have |V |R possible states of the agents, and
the intruder will have to wait till the stochastic system reaches one of those |V |R states.
Hence the waiting time of the intruder increases exponentially with the number of robots

67

in case of shared graph strategy.

Hence, there is a trade off between the maximum probability of successful attacks and
the wait time of the intruder to launch the best attack as we go from partitioned graphs
to shared graphs. Th study of this trade off and designing optimal policies for multiple
robots is an interesting topic for future work.

5.2 Future Directions for Event Detection and Con-

firmation Problem

We discussed the Event Detection and Confirmation Problem for two robots in Section 4.5
and we gave a generalization for multiple robots based on the observations made in the two
robots case. However, theoretically analyzing the multiple robot scenario for this problem
is an open problem. For k robots following each other on the same path, the number of lag
variables is k−1. The expression for the probability of confirming true events as a function
of lag variables becomes challenging to evaluate as the number of robots increases.

Another possible direction for future work is to solve Event Detection and Confirmation
Problem in adversarial settings. The events can actively try to evade being confirmed by
choosing the vertices intelligently. Randomizing the patrolling path can be effective in this
case as well and similar techniques to the ones we used in Chapter 3 might be employed
to study the problem.

68

References

[1] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero. Cooperative perimeter surveillance
with a team of mobile robots under communication constraints. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 5067–5072, Chicago,
USA, 2013.

[2] P. Agharkar, R. Patel, and F. Bullo. Robotic surveillance and Markov chains with
minimal first passage time. In IEEE Conference on Decision and Control, pages 6603–
6608, Los Angeles, CA, USA, December 2014.

[3] N. Agmon, Sarit Kraus, and G.A Kaminka. Multi-robot perimeter patrol in adversarial
settings. In IEEE International Conference on Robotics and Automation, pages 2339–
2345, Pasadena, CA, USA, May 2008.

[4] T. Alam, M. Edwards, L. Bobadilla, and D. Shell. Distributed multi-robot area pa-
trolling in adversarial environments. In International Workshop on Robotic Sensor
Networks, Seattle, WA, USA, 2015.

[5] S. Alamdari, E. Fata, and S. L. Smith. Persistent monitoring in discrete environments:
Minimizing the maximum weighted latency between observations. The International
Journal of Robotics Research, 33(1):138–154, 2014.

[6] T. W. Anderson and L. A. Goodman. Statistical inference about Markov chains. The
Annals of Mathematical Statistics, 28(1):89–110, 03 1957.

[7] A.B. Asghar and S.L. Smith. Robot monitoring for the detection and confirmation of
stochastic events. In IEEE Conference on Decision and Control, pages 408–413, Los
Angeles, CA, USA, Dec 2014.

[8] M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, and L. Schenato. Distributed perimeter
patrolling and tracking for camera networks. In IEEE Conference on Decision and
Control, pages 2093–2098, Atlanta, GA, USA, 2010. IEEE.

69

[9] Z. Benenson, E. Blaß, and F. C. Freiling. Attacker models for wireless sensor networks
(angreifermodelle für drahtlose sensornetze). it - Information Technology, 52(6):320–
324, 2010.

[10] D.P. Bertsekas. Nonlinear programming. Athena Scientific optimization and compu-
tation series. Athena Scientific, 1999.

[11] A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics. Springer,
2008.

[12] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a graph. SIAM
Review, 46(4):667–689, 2004.

[13] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S.L. Smith. Dynamic vehicle routing
for robotic systems. Proceedings of the IEEE, 99(9):1482–1504, Sept 2011.

[14] Z. Burda, J. Duda, J. M. Luck, and B. Waclaw. Localization of the maximal entropy
random walk. Physical Review Letters, 102:160602, Apr 2009.

[15] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and related
problems. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’08, pages 661–670, San Francisco, CA, USA, 2008. Society
for Industrial and Applied Mathematics.

[16] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages
302–308, Beijing, China, September 2004.

[17] E. Cinlar. Introduction to Stochastic Processes. Dover Books on Mathematics Series.
Dover Publications, Incorporated, 2013.

[18] F. Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and Applied
Mathematics, 1990.

[19] J. Cortes. Discontinuous dynamical systems. IEEE Control Systems, 28(3):36–73,
2008.

[20] M.H. DeGroot. Optimal Statistical Decisions. Wiley Classics Library. Wiley, 2004.

[21] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

70

[22] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto
the L1-ball for learning in high dimensions. In International Conference on Machine
Learning, pages 272–279, Helsinki, Finland, 2008.

[23] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research
Logistics, 34(3):307–318, 1987.

[24] J. Grace and J. Baillieul. Stochastic strategies for autonomous robotic surveillance. In
IEEE Conference on Decision and Control and European Control Conference, pages
2200–2205, Seville, Spain, Dec 2005.

[25] G. Grimmett and D. Stirzaker. Probability and Random Processes. Probability and
Random Processes. OUP Oxford, 2001.

[26] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Springer, 1976.

[27] L. Kleinrock. Queueing Systems. Volume I: Theory. John Wiley, 1975.

[28] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithmics and Combinatorics. Springer, 4 edition, 2007.

[29] G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–416,
2009.

[30] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[31] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer New York, 2006.

[32] F. Pasqualetti, A. Franchi, and F. Bullo. On cooperative patrolling: Optimal tra-
jectories, complexity analysis, and approximation algorithms. IEEE Transactions on
Robotics, 28(3):592–606, June 2012.

[33] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and dynamic vehicle
routing problem with time windows and customer impatience. ACM/Springer Journal
of Mobile Networks and Applications, 14(3):350–364, 2009.

[34] D. Portugal and R. P. Rocha. Multi-robot patrolling algorithms: examining perfor-
mance and scalability. Advanced Robotics, 27(5):325–336, 2013.

[35] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, 40(4):455–
472, 2006.

71

[36] S.M. Ross. Stochastic processes, volume 2. John Wiley & Sons New York, 1996.

[37] T. Sak, J. Wainer, and S. K. Goldenstein. Probabilistic multiagent patrolling. In Pro-
ceedings of the 19th Brazilian Symposium on Artificial Intelligence: Advances in Ar-
tificial Intelligence, SBIA ’08, pages 124–133, Savador, Brazil, 2008. Springer-Verlag.

[38] M.W.P. Savelsbergh. Local search in routing problems with time windows. Annals of
Operations research, 4(1):285–305, 1985.

[39] S. L. Smith, M. Schwager, and D. Rus. Persistent robotic tasks: Monitoring and
sweeping in changing environments. IEEE Transactions on Robotics, 28(2):410–426,
2012.

[40] K. Srivastava, D.M. Stipanovic, and M.W. Spong. On a stochastic robotic surveil-
lance problem. In IEEE Conference on Decision and Control and Chinese Control
Conference, pages 8567–8574, Shanghai, China, Dec 2009.

[41] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. The orienteering problem:
A survey. European Journal of Operational Research, 209(1):1 – 10, 2011.

[42] J. Yu, S. Karaman, and D. Rus. Persistent monitoring of events with stochastic
arrivals at multiple stations. pages 5758–5765, May 2014.

72

	List of Tables
	List of Figures
	Introduction
	Patrolling in Adversarial Settings
	Robot Monitoring for Detection and Confirmation of Stochastic Events
	Contributions
	Organization

	Preliminaries
	Probability and Random Processes
	Random Variables
	Some Distribution Functions
	Poisson Process

	Markov Chains
	Graphs
	Orienteering Problem

	Patrolling in Adversarial Settings
	Problem Statement
	Intruder Attack Models
	Success Matrix
	Attack Model 1: Naïve Attacks
	Attack Model 2: Deterministic Intruder
	Attack Model 3: Intelligent Intruder with Assigned Locations
	Attack Model 4: Intelligent Intruder

	Patrolling Policy
	Deterministic Patrolling Policy for Intelligent Intruder with Assigned Locations

	Numerical Optimization of the Objective Function
	Gradient Projection Algorithm
	Gradient Free methods

	Experimental Results

	Robot Monitoring for Detection and Confirmation of Stochastic Events
	Problem Statement
	Complexity of the Problem
	Off-line Version
	Hardness of Off-line Problem

	Analysis of a Periodic Policy for a Single Vertex
	Confirmation Avoiding Interval for True Events
	Probability of Correctly Classifying True Events

	Single Robot Policy Based on TSP
	Probability of Correct Classification for the Tour
	Policy based on a TSP tour

	Multiple Robots
	Specializing Robot Capabilities
	Optimal Spacing Between Two Robots on a Common Path

	Application Example

	Conclusions and Future Work
	Future Directions for Patrolling in Adversarial Settings
	Real Time Learning of Markov Chains
	Multiple Robots

	Future Directions for Event Detection and Confirmation Problem

	References

