
A Primer on Cryptographic
Multilinear Maps and Code

Obfuscation

by

Kenwrick Mayo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2015

c© Kenwrick Mayo 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The construction of cryptographic multilinear maps and a general-purpose code ob-
fuscator were two long-standing open problems in cryptography. It has been clear for a
number of years that constructions of these two primitives would yield many interesting
applications. This thesis describes the Coron-Lepoint-Tibouchi candidate construction for
multilinear maps, as well as new candidates for code obfuscation. We give an overview of
current multilinear and obfuscation research, and present some relevant applications. We
also provide some examples and warnings regarding the inefficiency of the new construc-
tions. The presentation is self-contained and should be accessible to the novice reader.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Alfred Menezes for his excellent advice, careful
reading, and words of encouragement.

I would also like to thank my readers David Jao and Doug Stinson for their scrutiny.

Finally, I would like to thank my fiance for her unwavering support.

iv

Table of Contents

1 Introduction 1

1.1 Multilinear Maps . 1

1.2 Code Obfuscation . 3

1.3 Applications . 4

2 Cryptographic Multilinear Maps 6

2.1 CLT Construction . 7

2.1.1 Motivation and Intuition . 7

2.1.2 Construction of CLT . 13

2.2 Graded Encoding Schemes . 17

2.2.1 Definitions . 18

2.2.2 Asymmetric Graded Encoding Schemes 20

2.3 Cryptanalysis of CLT . 22

2.3.1 Security Assumptions . 22

2.3.2 Setting Parameters . 23

2.3.3 Public Key Validation . 29

2.3.4 Zero-izing Attacks . 31

2.3.5 Defending Against Zero-izing Attacks 34

v

3 Code Obfuscation 35

3.1 Background . 37

3.1.1 Circuits . 37

3.1.2 Branching Programs . 39

3.1.3 VBB and iO . 41

3.1.4 Fully Homomorphic Encryption . 43

3.2 The Garg et al. Indistinguishability Obfuscator 44

3.2.1 Obfuscation for NC1 . 44

3.2.2 Extending to Circuits in P . 54

3.3 Efficiency of Obfuscation . 57

3.3.1 Avoiding Barrington’s Theorem . 58

3.3.2 Avoiding Branching Programs . 59

4 Applications 61

4.1 Broadcast Encryption . 62

4.1.1 Boneh-Silverberg Broadcast Encryption 63

4.1.2 Bilinear Broadcast Encryption . 64

4.1.3 Multilinear Broadcast Encryption 65

4.2 NIKE . 68

4.2.1 PRGs and Punctured PRFs . 69

4.2.2 Boneh and Zhandry’s NIKE . 70

4.3 RSA-FDH . 73

5 Conclusions 79

5.1 State of the Art . 79

5.2 Future Directions . 81

References 83

vi

Chapter 1

Introduction

This thesis provides a broad overview of the new multilinear map and code obfuscation
candidates. It is meant to be readable by any cryptographer interested in the power of
these new tools. No background knowledge of multilinear maps or code obfuscation is
assumed. This thesis is divided into three main chapters which can, for the most part, be
read independently of each other.

1.1 Multilinear Maps

Multilinear maps (MLMs) are generalizations of bilinear pairings. The first constructive
use of bilinear pairings in cryptography came in 2000 when Joux used them to construct a
one-round three party Diffie-Hellman key exchange [38].

A one-round two-party Diffie-Hellman key exchange is easy using traditional assump-
tions about the discrete log problem: In order to establish a shared secret over an unsecured
channel, Alice and Bob first agree publicly on a generator g for a finite cyclic group in which
the discrete log problem is hard.

Alice chooses a secret integer a, and Bob chooses a secret integer b. They broadcast ga

and gb respectively:

1

A B
ga

gb

(gb)a (ga)b

Alice computes (gb)a = gab, and Bob computes (ga)b = gab, thus establishing a shared
secret.

Joux generalized this construction to accommodate three parties. Indeed, if we have a
function e : G×G→ GT such that e(ga, gb) = e(g, g)ab, where the discrete log is hard in G
and GT (such a function is known as a cryptographic bilinear pairing), then Alice, given
gb and gc can compute e(gb, gc)a = (e(g, g)bc)a = e(g, g)abc. Similarly, Bob can compute
e(ga, gc)b = (e(g, g)ac)b = e(g, g)abc, and Carol can compute e(ga, gb)c = e(g, g)abc so that
the shared secret is e(g, g)abc.

A B

C

ga

gb

ga

gc

gb

gc

In fact, it is easy to see that Joux’s construction generalizes. Given e : Gn−1 → GT
such that e(gm1 , . . . , gmn−1) = e(g, . . . , g)m1...mn−1 , party i can compute the shared secret
as e(gm1 , . . . , gmi−1 , gmi+1 , . . . , gmn)mi . A function with this property is called multilinear.
It was not until 2013 that Garg, Gentry and Halevi (GGH) used ideal lattices to produce
the first candidate construction of a multilinear map [29].

Current multilinear map constructions do not achieve the ideal notion of multilinear.
They can only be considered approximate multilinear maps, because they are “noisy”.
Only a limited number of multilinear operations can be performed before the noise grows
too large. These “approximate” mutilinear maps are known as Graded Encoding Schemes
(GES). Despite this limitation, the GGH multilinear map candidate has spawned many
new applications of multilinear maps. Examples include attribute-based encryption [33],
programmable hash functions [28], and low-overhead broadcast encryption [12].

2

Chapter 2 details a construction of a multilinear map over the integers by Coron,
Lepoint and Tibouchi (CLT) [22]. Additionally, Chapter 2 discusses the GES model for
multilinear maps, and the security and efficiency of the CLT construction.

1.2 Code Obfuscation

The new application of multilinear maps that has generated the most excitement among
cryptographers is indistinguishability obfuscation (iO) for general circuits. Using multilin-
ear maps and fully homomorphic encryption, Garg et al. were able to construct a candidate
indistinguishability obfuscator for all polynomial size circuits [31].

Indistinguishability obfuscation is a relaxation of virtual black box (VBB) obfuscation.
Briefly, a VBB obfuscator O is an algorithm that takes as input a program P , and outputs
a functionally equivalent program P ′ = O(P) such that P ′ reveals nothing of P besides
what can be learned from having oracle access to P . For example, one could hard code a
secret k in P and then publish P ′. This gives others the ability to compute the program
P without learning k.

Unfortunately, due to the existence of so-called “un-obfuscatable” functions, VBB is
an impossible standard to achieve [3]. iO is a concession to this impossibility result. An
indistinguishability obfuscator iO is an algorithm that takes a program P and outputs
a functionally equivalent program P ′ such that for all pairs of equal-length equivalent
programs P0 and P1, P ′0 = iO(P0) and P ′1 = iO(P1) are indistinguishable. Unlike a
VBB obfuscator, P ′0 may leak information about P0, as long as P ′1 also reveals the same
information about P0 (since otherwise, one could use this difference to distinguish between
P ′1 and P ′0).

iO is surprisingly powerful. At first glance, it may seem difficult to reliably hide a
secret k using iO because of the potential for iO(P) to directly reveal k. However, as long
as one can prove the existence of a functionally equivalent circuit that does not reveal k,
the indistinguishability property guarantees that iO(P) also does not reveal k.

For example, Garg et al. consider the application of restricted-use software. Suppose
that a software company has written a program P for which they would like to publish a
demo D. D ought to be a restricted version of P that is unable to access certain features.
Typically, the easiest way to implement D would be to write a wrapper L for P that
specifically limits P ’s functionality. Since L is completely outside P , it is easy to write,
and requires no modification to the code of P .

3

Unfortunately, L(P) is easy to reverse engineer. Publishing L(P) hides none of the code
for P , and so savvy users could access forbidden features. Clearly, publishing VBB(L(P))
solves this problem. It is also true that publishing iO(L(P)) prevents reverse engineering.
This is because in principle, there exists a (suitably padded) program D that is functionally
equivalent to L(P) and has the same size as L(P), but contains no code that implements
forbidden features at all. Indeed, the software company could spend a lot of resources
altering their code for P to produce D. The indistinguishability property means that iO(D)
is indistinguishable from iO(L(P)). But nothing in iO(D) implements forbidden features.
If one could access forbidden features in iO(L(P)), then it would be easy to distinguish
between iO(L(P)) and iO(D), because iO(D) by definition is unable to perform forbidden
operations. The mere existence of D guarantees that iO(L(P)) hides restricted features
just as well as iO(D) which hides them perfectly.

Chapter 3 presents the candidate iO construction of Garg et al. including all the nec-
essary background. We will see exactly how multilinear maps can be leveraged to achieve
iO. Chapter 3 also serves as a warning to the reader regarding the efficiency of iO. Indeed,
we demonstrate that current iO constructions are hopelessly impractical, and stress that
iO and its applications remain of purely theoretical interest.

1.3 Applications

The candidate iO algorithm from Garg et al. has given cryptographers unprecedented
power. Applications of iO include but are not limited to functional encryption, signature
schemes with fast signing time, deniable encryption, replacing random oracles with concrete
hash functions, non-interactive key exchange (NIKE), and broadcast encryption.

Chapter 4 focuses on three applications of multilinear maps and code obfuscation:
broadcast encryption, NIKE, and replacing the random oracle in RSA Full Domain Hash
(RSA-FDH).

A broadcast encryption scheme lets a sender broadcast a message to a set G of iden-
tities, while only allowing a subset S ⊂ G of them to decrypt the message. The set S
should be specifiable at encryption time, and is therefore allowed to change for different
encryptions. Broadcast encryption schemes exist without the use of multilinear maps, but
using a multilinear map allows compression of the asymptotic public key size. We will
see a broadcast encryption scheme where the public key size depends only logarithmically
on the size of G, as opposed to the linear dependency that existing broadcast encryption
schemes require [12]. Unfortunately, while the number of “group” elements in a public key

4

is drastically reduced using a multilinear map, the size of those group elements is much
larger. The result is a scheme that has larger public keys than a broadcast scheme based
on bilinear pairings for all sets of users G with |G| less than about 109 billion.

As an example of an application that only requires indistinguishability obfuscation and
not virtual black box obfuscation, we present Boneh and Zhandry’s NIKE [14]. Just as
the use of multilinear maps yields a NIKE, so too does the use of an indistinguishability
obfuscator. Since multilinear map constructions do not achieve the ideal notion of multi-
linear maps, NIKEs based only on multilinear maps require the use of a trusted third party
(TTP). We will see how the additional structure of iO enables a NIKE with no TTP.

Finally we discuss the Hohenberger, Sahai, Waters (HSW) version of RSA Full Domain
Hash (RSA-FDH) [37]. They make a small alteration to the traditional RSA-FDH signature
scheme in order to remove the random oracle assumption that was believed to be necessary
for the security proof. If N is an RSA modulus, (e, d) is an RSA public-private key pair,
and H : {0, 1}∗ → ZN is a full domain hash function modeled as a random oracle, then an
RSA-FDH signature on a message m ∈ ZN is σ = H(M)d mod N . HSW replace H with
a clever choice of obfuscated program.

Intuitively, obfuscated programs behave as oracles to their underlying functions, which
is why it is still possible to prove security of the HSW signature scheme. Chapter 4 details
exactly how the drawback of indistinguishability obfuscation (as compared to VBB) is
avoided. We note that using iO to replace the random oracle model merely replaces the
“untrusted” random oracle model with an even less well-studied generic model.

5

Chapter 2

Cryptographic Multilinear Maps

In 2003, Boneh and Silverberg published [10], establishing the utility of so-called cryp-
tographic multilinear maps. Boneh and Silverberg described several applications for the
hypothetical primitive, ranging from one-round, multi-party Diffie-Hellman key exchange
to broadcast encryption. They also pointed out that constructing such a multilinear map
was likely to be significantly more difficult than constructing a bilinear map. In fact, Boneh
and Silverberg concluded that multilinear maps “might have to either come from outside
the realm of algebraic geometry, or occur as unnatural computable maps”. That is, for
geometric reasons, it is unlikely that multilinear maps can be constructed in the same way
as bilinear maps.

The problem of constructing a cryptographic multilinear map remained an open prob-
lem until Eurocrypt 2013, where Garg, Gentry and Halevi (GGH) presented their construc-
tion of an “approximate multilinear map” based on ideal lattices [30]. These new multi-
linear maps use a noise component for security, and therefore, as in fully homomorphic
encryption, are limited to a fixed number of arithmetic operations before the noise grows
too large. Approximate multilinear maps are referred to as Graded Encoding Schemes.

Following the GGH paper, there was a flurry of activity in the field. Several new
applications of Graded Encoding Schemes were proposed, and Coron, Lepoint and Tebouchi
(CLT) presented an approximate multilinear map construction that works over the integers,
rather than ideal lattices [23]. Their construction is also an example of a Graded Encoding
Scheme.

This chapter will explore the development of the CLT multilinear map, highlighting the
new ideas that enabled its creation. The complete construction of the CLT multilinear map
will be presented in the context of a one-round multi-party Diffie-Hellman key exchange,

6

and the Graded Encoding Scheme generalization will be examined. Finally, there will be
some discussion of parameter selection, efficiency, and attacks. Of particular interest is the
“zero-izing” attack described in [19], which seems to eliminate the original verion of CLT
as a viable multilinear map for certain applications.

2.1 CLT Construction

In this section, the CLT multilinear map construction is presented in detail. For exposi-
tory purposes, this construction will be presented in the context of a one-round multi-party
Diffie-Hellman key exchange. While the CLT multilinear map construction is neither the
original multilinear map, nor a state-of-the-art construction, it is more intuitive due to
being set over the integers. Furthermore, CLT will be a useful reference point when con-
sidering abstractions and applications.

For comparison purposes, it will be useful to recall the Boneh-Silverberg definition of
a multilinear map:

Definition 2.1.1 (Multilinear Map). Let G and GT be groups of the same prime order.
An n-multilinear map is a function e : Gn → GT such that

1. ∀xi ∈ G and ai ∈ Z, e(xa11 , . . . , x
an
n) = e(x1, . . . , xn)a1...an .

2. If g ∈ G is a generator for G, then e(g, . . . , g) is a generator for GT .

2.1.1 Motivation and Intuition

The CLT multilinear map construction is somewhat complicated. It has several components
whose purpose may not immediately be clear. As such, it is helpful to start from scratch
and examine the reasoning behind each design decision.

First, recall the one-round multi-party key exchange using ideal MLMs:

After a user chooses a secret integer a0, she performs three steps:

1. Conceal the secret by computing and broadcasting ga0 .

2. Compute the public data as e(ga1 , . . . , gan).

3. Combine the secret key with the public data by computing e(ga1 , . . . , gan)a0 .

7

Here e is a map that satisfies the multilinear property (Definition 2.1.1). The secret
parameters are the ai’s. The public parameters are e, {gai} and g.

In the first step, a0 7→ ga0 can be thought of as an encoding of a0 in the group G.
The important property of this encoding function is that it is one-way. Users need to
be able to broadcast ga0 without revealing a0. Exponentiation in G is a convenient, well
understood one-way function (as long as the discrete log is a hard problem in G), but
could be replaced in this scheme by any other one-way function. It has proven difficult
to construct a map e that satisfies the multilinear property when the encoding function is
exponentiation. Perhaps a good choice of encoding function can make constructing e much
easier. In particular, the simplest multilinear function is just multiplication. One might
wonder if the encoding function can be chosen so that we can set e to be

e(x1, . . . , xn) =
n∏
i=1

xi.

It may be easier to take something that is already multilinear and make it secure than it
is to take something that is already secure and make it multilinear.

Randomized Encoding Function

The CLT scheme replaces a0 7→ ga0 with a randomized encoding function. Consider the
encoding function

f : Z→ Z

given by
f(m) = m+ r

where r is an integer of a fixed size chosen uniformly at random. The multi-party key
exchange protocol becomes:

1. Conceal the secret by computing f(a0) = a0 + r0.

2. Compute the public data as e(a1 + r1, . . . , an + rn) =
∏n

i=1(ri + ai) = R +
∏n

i=1 ai.

3. Combine the secret key with the public data by computing e(f(a1), . . . , f(an)) · a0 =
R′ +

∏n
i=0 ai.

The secret parameters are the ai’s and ri’s. The public parameters are the f(ai)’s.

8

This setup has a problem. The noise R′ will be different for each user. There must be
a way to extract the deterministic signal (namely

∏n
i=0 ai) from

a0

n∏
i=1

f(ai).

However, an attacker should not be able to extract a signal from

n∏
i=0

f(ai).

In fact, the extraction function should only work for exactly a product of n public keys
and one private key, and no other partial or extraneous product.

Therefore there must be a way for the extraction function to determine how many
public and private key factors its input has. This is analogous in the Boneh-Silverberg
definition to needing G and GT to be different and distinguishable.

Distinguishing inputs from outputs

This can be accomplished by modifying the simple encoding function given above. Instead
of f(m) = m+ r, consider

f : Zp → Zp
for some prime p, given by

f(m) =
r +m

z
mod p

where r is again random, and z is a fixed integer. The multi-party key exchange protocol
becomes:

1. Conceal the secret by computing f(a0) = r0+a0
z

mod p.

2. Compute the public data as e(f(a1), . . . , f(an)) =
∏n

i=1
ri+ai
z

=
R+

∏n
i=1 ai
zn

mod p.

3. Combine the secret key with the public data by computing

e(f(a1), . . . , f(an)) · a0 =
R′ +

∏n
i=0 ai

zn
mod p.

9

The secret parameters are the ai’s and the ri’s. z must also be kept secret, but doing so
presents some challenges. The secrecy of z will be discussed shortly. The public parameters
are p and the f(ai)’s.

The exponent of the denominator indicates the number of public keys that have been
multiplied together. This facilitates the design of an extraction function that only works
for a product of a specific number of public keys. All that is left to do is specify the
extraction function.

Extracting Deterministic Information

In order to cancel the randomness, another modification of the encoding function is neces-
sary. Consider f : Zg → Zp given by

f(m) =
rg +m

z
mod p,

where g is a fixed prime much smaller than p, r is random and small relative to p, and z
is a fixed integer. Let

pzt = zng−1 mod p,

where n+ 1 is the number of parties. Call this the zero testing parameter. Denote

fk(m) =
rg +m

zk
mod p.

We say that fk(m) is a level-k encoding of m. When m = 0,

fn(m) · pzt = r

which is small relative to p. However, if m 6= 0, then

fn(m) · pzt = r + g−1m mod p

is similar in size to p. This enables users to test if two level-n encodings are encodings of
the same element. That is, if m = m′, then

fn(m)− fn(m′) =
r1g +m

zn
− r2g +m′

zn
=
Rg

zn
mod p

which is a level-n encoding of 0, whence(
Rg

zn
mod p

)
· pzt = R

10

which is small relative to p. Similarly, if m 6= m′, then

fn(m)− fn(m′) =
Rg + (m−m′)

zn
mod p

so that
(fn(m)− fn(m′)) · pzt = R + g−1(m−m′) mod p

which is of similar size to p.

In particular, m = m′ if and only if fn(m) · pzt and fn(m′) · pzt share the first several
most significant bits. These shared bits will play the role of the shared secret.

So, the final Diffie-Hellman procedure is as follows:

1. Conceal the secret by computing f(a0) = r0g+a0
z

mod p.

2. Compute the public data as e(f(a1), . . . , f(an)) =
∏n

i=1
rig+ai
z

mod p =
Rg+

∏n
i=1 ai

zn

mod p.

3. Combine the secret key with the public data by computing

a0 · e(f(a1), . . . , f(an)) =
R′g +

∏n
i=0 ai

zn
mod p.

4. Extract the shared secret by computing the ν most significant bits of pzt
R′g+

∏n
i=0 ai

zn

mod p.

ν is a parameter that will be specified based on the security level and the multilinearity
level (see Section 2.3.2).

The secret parameters are the ai’s and the ri’s. The public parameters are the f(ai)’s,
p, ν, and pzt. z and g are also be kept secret (see Remark 2.1.2).

Secrecy of z

At the end of step 3, each user will have computed a different level-n encoding of the
product of all the secret keys. Since each of these encodings is an encoding of the same
message, the zero testing parameter pzt allows each user to extract the same most significant
bits, as described above. So, anyone who can compute a level-n encoding of

∏n
i=0 ai can

compute the shared secret.

11

This means that the parameter z must be secret. Otherwise, an attacker can compute
a level-(n+ 1) encoding of

∏n
i=0 ai, namely

n∏
i=0

rig + ai
z

mod p =
R′g +

∏n
i=0 ai

zn+1
mod p.

If an attacker knows z, they can multiply their level-(n+ 1) encoding by z to get a level-n
encoding, and thus compute the shared secret.

Composite Modulus

Due to a technique called rational reconstruction, the modulus p must also be secret.
Rational reconstruction is an algorithm based on the Euclidean algorithm that allows one
to efficiently recover a and b from a

b
mod p and p provided a and b are sufficiently small.

If an attacker knows p, they can compute the ratio modulo p of two public keys:

r0g + a0

r1g + a1

mod p

and, since r0g + a0 and r1g + a1 are necessarily small relative to p, they can use rational
reconstruction to recover r0g + a0 and r1g + a1. From here, all the attacker needs to do to
recover z is compute

r0g + a0

z
(r0g + a0)−1 mod p = z−1 mod p.

The fact that p needs to be kept secret causes a problem. Users need to be able to
compute products modulo p, which is very difficult without knowledge of p. This problem
can be solved by using a composite modulus and the Chinese Remainder Theorem. The
full solution is described in the next section.

Remark 2.1.2 (TTP requirement). The fact that z needs to be secret causes a much
more fundamental problem. In order to use this scheme for agreeing on a shared secret,
users must have already agreed on a shared secret z! Currently, the best “solution” to this
problem is to use a trusted third party to generate the protocol parameters. Because of the
reliance on a TTP, CLT multilinear maps do not yield a true Diffie-Hellman key exchange.

12

2.1.2 Construction of CLT

The previous section introduced the main ideas that enable the construction of a crypto-
graphic multilinear map. However, there are several issues that remain in the described
construction. This section will provide a detailed description of the full CLT construction,
including the modifications that need to be made in order to keep z and p secret while still
maintaining some level of functionality.

A one-round multi-party key exchange has four steps:

1. Instance Generation

2. Secret Key Generation

3. Public Key Generation and Broadcast

4. Shared Secret Computation

For example, in a standard Diffie-Hellman protocol, instance generation is selecting a
group and generator g, secret key generation is selecting a random integer a, public key
generation and broadcast is computing and broadcasting ga, and shared secret computation
is computing (gb)a.

A CLT Diffie-Hellman key exchange uses the same steps, and it is therefore convenient
to examine each of them individually.

Preliminaries

Throughout this section, all integers expressed as reductions modulo x0 are considered to
be in the range (−x0/2, x0/2), instead of the usual [0, x0). This is necessary for the proof
of Lemma 2.1.6.

Definition 2.1.3 (level-k encoding). Let {pi} and {gi} be two sets of n primes where pi
is η bits and gi is α bits. Let x0 =

∏n
i=1 pi. A message is a vector m ∈ Zg1 × · · · × Zgn . A

level-k encoding of a message m is an integer c ∈ Zx0 such that:

c ≡ rigi +mi

zk
mod pi

for all i from 1 to n where ri is a ρ-bit random number, mi ∈ Zgi , and z ∈ Z∗x0 is fixed.

13

Notice that the modulus x0 can be made public without exposing encodings to rational
reconstruction, since the value of c mod pi is kept secret. Obviously, for this to be effective,
the individual pi’s must remain secret.

Definition 2.1.4. Let H be an n× n integer matrix. Then

‖H‖∞ = max
1≤i≤n

n∑
j=1

|Hij|.

Instance Generation

Given a security level λ and a multilinearity level κ, a trusted third party (TTP) does the
following:

• Using λ and κ, selects appropriate values for n, η, α, and ρ.

• Randomly selects n η-bit primes {pi}ni=1.

• Randomly selects n α-bit primes {gi}ni=1.

• Computes x0 =
∏n

i=1 pi.

• Randomly selects z ∈ Z∗x0 .

The pi’s, gi’s, and z will all be kept secret by the TTP. The TTP then publishes the
following information:

• x0, n, η, α.

• Y , a randomly chosen level-1 encoding of the all-ones vector 1.

• pzt, an n-dimensional vector with (pzt)j =
∑n

i=1 hij(z
κg−1
i mod pi)

x0
pi

mod x0. The
hij’s are the entries of an invertible n× n integer matrix H that satisfies:

– ‖H‖∞ ≤ 2β

– ‖(H−1)T‖∞ ≤ 2β

for a suitable choice of β.

•
{
x′j
}`
j=1

, where each x′j is a level-0 encoding of a random message.

14

• n level-1 encodings of the all-zeros vector 0, {Πj}.

• τ level-1 encodings of 0, {xj}.

Appropriate values for n, η, α, β, ρ, ` and τ will be discussed in Section 2.3.2.

Remark 2.1.5 (Secret gi’s). To the best of my knowledge, there is currently no attack that
results from letting the gi’s be public. Cheon et al. allude to this possibility in Section 2.1
of [19]. However, in the original lattice based Graded Encoding Scheme by GGH, it was
critical that the analog of the gi’s be kept secret (see Section 6.3.3 of [29] for details). It is
reasonable to keep the gi’s secret in the CLT GES, for fear of a similar attack.

Secret Key Generation

A user’s secret key is a level-0 encoding of some message m. User k’s secret key is some
integer ck such that

ck ≡ rigi +mi mod pi

for all i from 1 to n, where ri is a ρ-bit random integer. Users need to be able to generate
secret keys without having access to the secret parameters pi and gi. This is the reason for
publishing {x′j}`j=1. Recall that each x′j is a level-0 encoding of a random message aj:

x′j ≡ r′ijgi + aij mod pi

for all i. Then any linear combination of the x′j’s is also a level-0 encoding of some message.
In particular, a user generates a secret key by randomly selecting b ∈ {0, 1}`, and computing

ck =
∑̀
j=1

bjx
′
j mod x0

≡ gi
∑̀
j=1

bjr
′
ij +

∑̀
j=1

bjaij mod pi

which is a level-0 encoding of
∑`

j=1 bjaj. Notice that each noise component in each ck is
roughly a log2(`) + ρ bit integer. This fact is useful when computing bounds of the noise
of a product of public keys. See Section 2.3.2 for further details.

CLT use a modified leftover hash lemma to prove that the distribution of the messages
encoded by these subset sums of level-0 encodings is statistically close to uniform.

15

Public Key Generation and Broadcast

If a user’s secret key is a level-0 encoding of m, then their public key is a level-1 encoding
of m. Again, it is difficult to generate such an encoding without knowing the parameters of
the scheme. Recall that Y is a public level-1 encoding of 1. If ck is a level-0 encoding of m,
then Y ck is a level-1 encoding of m · 1 (where the multiplication is taken componentwise).

However, Y ck is not a good public key, since an attacker can divide Y ck by Y to
recover ck. The public key really ought to be a level-1 encoding of m selected randomly
from all possible level-1 encodings of m. To achieve this, the protocol provides a way to
“re-randomize” level-1 encodings. The re-randomization procedure takes a level-1 encoding
of a message m and returns a different, random level-1 encoding of m.

Notice that adding any level-1 encoding of 0 to Y ck yields another level-1 encoding of
m. Recall that the TTP published two sets of level-1 encodings of 0, namely {Πj} and
{xj}. Similar to the secret key generation, a user can re-randomize Y ck by adding a subset
sum of the xi’s:

c′k = Y ck +
τ∑
j=1

bjxj mod x0

where again b is a random vector in {0, 1}τ . Unlike in the secret key generation, this is
not enough to ensure that c′k is independent from Y ck. CLT’s proof of (near) independence
requires that the user computes

c′k = Y ck +
τ∑
j=1

bjxj +
n∑
j=1

b′jΠj mod x0.

Here, each b′j is a random µ-bit integer. There are also some technical conditions on the
structure of {xj} and {Πj} that are necessary for their proof to follow; for details, see
[22]. Using these conditions, CLT calculate that each noise component of c′k is less than
`22ρ+α + τn2ρ+1 + n22µ+ρ+1. Again, this will be useful when selecting parameter sizes in
Section 2.3.2.

Shared Secret Computation

Recall that the TTP published the n-dimensional vector pzt with

(pzt)j =
n∑
i=1

hij(z
κg−1
i mod pi)

x0

pi
mod x0.

Here the hij’s are the entries of an invertible n× n integer matrix H such that:

16

• ‖H‖∞ ≤ 2β

• ‖(H−1)T‖∞ ≤ 2β.

pzt is called the zero-testing parameter. It can be used to check if a level-κ encoding is an
encoding of the message 0 or not. Specifically, the following lemma holds:

Lemma 2.1.6 (Zero-Testing). Let ρf be an integer such that ρf + λ + α + 2β ≤ η − 8,
and let ν = η − β − ρf − λ− 3 ≥ α + β + 5. Let c be a level-κ encoding of a message m,
so that c ≡ rigi+mi

zκ
mod pi for all 1 ≤ i ≤ n. Assume ‖r‖∞ ≤ 2ρf . If m = 0 then ‖cpzt

mod x0‖∞ < x02−ν−λ−2. Conversely, if m 6= 0 then ‖cpzt‖∞ ≥ x02−ν+2.

In particular, if c1 and c2 are different level-κ encodings of the same message m, then
c1 − c2 is a level-κ encoding of 0, so by Lemma 2.1.6,

‖(c1 − c2)pzt mod x0‖∞ < x02−ν−λ−2,

whence for all j,
|(c1 − c2) · (pzt)j mod x0| < x02−ν−λ−2.

Thus,
|c1(pzt)j mod x0 − c2(pzt)j mod x0| < x02−ν−λ−2.

In other words, c1(pzt)j mod x0 and c2(pzt)j mod x0 have the same ν most significant
bits. Then in order for several parties to compute a shared secret, it suffices for them to
each compute a level-κ encoding of the same message.

Each public key c′k is a level-1 encoding of some message mk. Each corresponding secret
key ck is a level-0 encoding of the same message mk. So if there are κ + 1 users, user k
computes the product

sk = ck
∏
i 6=k

c′i mod x0,

which is a level-κ encoding of
∏κ+1

i=1 mi. Then the ν most significant bits of each component
of skpzt mod x0 are the same for all k.

2.2 Graded Encoding Schemes

Multilinear maps were defined by Boneh and Silverberg in terms of groups. In particular,
they considered two groups, an input group G and a target group GT . They define the

17

multilinear map as a transformation between several copies of the input group and one
copy of the target group that is multilinear with respect to the two group operations. This
is a natural extension of the setting used in bilinear maps. Before there were candidates
for instantiating multilinear maps, applications for cryptographic multilinear maps were
designed with this definition in mind.

Unfortunately, the CLT setting is not an instantiation of this definition. Many theo-
retical protocols that used the traditional definition of a multilinear map do not work in
the CLT setting. Even a simple Diffie-Hellman key exchange is substantially different in
the CLT setting as evidenced by the requirement for a TTP.

In fact, none of the recent multilinear map candidates actually satisfy the definition of
a multilinear map. Instead, they are all examples of so called “Graded Encoding Schemes”
(GES). This section focuses on the abstract notion of a Graded Encoding scheme, and the
differences between Graded Encoding Schemes and true multilinear maps.

2.2.1 Definitions

Definition 2.2.1 (κ-Graded Encoding System [GGH]). A κ-Graded Encoding System is
a ring R and a family of sets S = {Sαk ⊂ {0, 1}∗|α ∈ R, 0 ≤ k ≤ κ} such that

1. for every fixed level k, the sets {Sαk |α ∈ R} are disjoint;

2. there are binary operations + and − on {0, 1}∗ such that for all α1, α2 ∈ R, all k,
and every u1 ∈ Sα1

k , u2 ∈ Sα2
k , we have u1 + u2 ∈ Sα1+α2

k and u1 − u2 ∈ Sα1−α2
k ;

3. there is an associative binary operation × on {0, 1}∗ such that for every α1, α2 ∈ R,
every k1, k2 with 0 ≤ k1 + k2 ≤ κ, and every u1 ∈ Sα1

k1
, u2 ∈ Sα2

k2
, we have u1 × u2 ∈

Sα1·α2
k1+k2

.

Remark 2.2.2 (CLT is a Graded Encoding System). It is not hard to see that a fixed
CLT parameter set yields a Graded Encoding System. Let R = Zg1 × · · · × Zgn . Identify
{0, 1}log2 x0 with Zx0 . Then for any m ∈ R, let Sm

k be the set of level-k encodings of m.

The first property in the definition requires each encoding to be an encoding of exactly
one message. In CLT, this is the case, because every integer modulo pi can be expressed
uniquely in the form rigi+mi

zk
mod pi due to the Euclidean Algorithm.

The second and third properties correspond to the additive and multiplicative homo-
morphism of the CLT encodings. If m1,m2 ∈ R, and u1 ∈ Sm1

k , u2 ∈ Sm2
k , then

u1 + u2 ≡
ri,1gi +mi,1

zk
+
ri,2gi +mi,2

zk
≡ (ri,1 + ri,2)gi + (mi,1 +mi,2)

zk
mod pi ∈ Sm1+m2

k .

18

Similarly, if u1 ∈ Sm1
k1
, u2 ∈ Sm2

k2
, then

u1 × u2 ≡
ri,1gi +mi,1

zk1
× ri,2gi +mi,2

zk2
=
r′igi +mi,1mi,2

zk1+k2
mod pi ∈ Sm1m2

k1+k2
.

In addition to the above definition, it is necessary to specify how users are able to
interact with encodings. For example, a graded encoding system where adding encodings
is an inefficient operation might not be useful. The multilinear map literature refers to
Graded Encoding Schemes (GES) as Graded Encoding Systems where a certain set of
procedures are efficient:

• Instance Generation: InstGen(λ, κ) outputs params, the parameters for a κ-Graded
Encoding System, and pzt, a zero-testing parameter for level-κ.

• Sampler: samp(params) outputs a ∈ Sα0 , where α is nearly uniformly random.

• Encoding: enc(params, i, a) for i ≤ κ and a ∈ Sα0 , outputs u ∈ Sαi .

• Re-Randomization: reRand(params, i, u) for i ≤ κ and u ∈ Sαi , outputs u′ ∈ Sαi
such that u′ is distributed nearly uniformly in Sαi .

• Addition, Negation: The addition and negation operations of the Graded Encoding
System.

• Multiplication: The multiplication operation of the Graded Encoding System.

• Zero-test: isZero(params, pzt, u) outputs 1 if u ∈ S0
κ and 0 otherwise.

• Extraction: ext(params, pzt, u) outputs a λ-bit nearly uniform random string. The
output of ext should be the same for all u that are level-κ encodings of the same
message.

Remark 2.2.3 (Procedures for different applications). Graded Encoding Schemes were
originally designed to satisfy the use-case of a Diffie-Hellman key exchange, where users
are required to generate their own public and private keys. Any application which does
not require users to generate their own encodings does not need the samp or reRand
procedures. Given that samp and reRand can be expensive in practice, it is important
to note when they are unnecessary. It also may be the case in the future that a Graded
Encoding Scheme is invented where sampling and re-randomization are not feasible. Such
a GES could potentially still be useful.

19

Remark 2.2.4 (Comparison with multilinear maps). The collection of sets {Sα1 |α ∈ R}
in a Graded Encoding System corresponds to the input group G of a multilinear map.
Similarly, the collection of sets {Sακ |α ∈ R} corresponds to the target group GT in a
multilinear map. Notice that a Graded Encoding System has some additional structure
with no analog in multilinear maps, namely the sets Sαj for 1 < j < κ. These intermediate
sets facilitate pairing fewer than κ input elements. A traditional multilinear map has no
way to compute a meaningful pairing of fewer than κ elements. A single instance of a
Graded Encoding System can therefore yield k-linear maps for all k ≤ κ, where one would
otherwise need κ separate multilinear maps.

This can have an impact on tasks such as multiplication. Graded Encoding Schemes
have the nice property that an encoding of a product is equal to the product of encodings
of its factors. Multilinear maps have a similar property, namely that an encoding of a
product is equal to the pairing of encodings of its factors. The difference is that the
product operation in Graded Encoding Schemes can be computed incrementally as a binary
operation, while the pairing operation in the multilinear map setting must pair each of the
factors simultaneously.

2.2.2 Asymmetric Graded Encoding Schemes

Cryptographic bilinear maps are often asymmetrical. The difference between an asymmet-
rical bilinear map and a symmetrical one is that the asymmetric map has two distinct
input groups G1 and G2. This generalization can be applied to multilinear maps as well:

Definition 2.2.5 (Asymmetric Multilinear Map). Let G1, . . . ,Gn, and GT be groups of
the same prime order where the discrete log problem is hard. An n-multilinear map is a
function e : G1 × · · · ×Gn → GT such that

1. ∀xi ∈ Gi and ai ∈ Z, e(xa11 , . . . , x
an
n) = e(x1, . . . , xn)a1...an ;

2. if each gi ∈ Gi is a generator for Gi, then e(g1, . . . , gn) is a generator for GT .

An asymmetric version of a multilinear map is useful for applications that want to
further restrict the ways in which the elements can be paired. For example, an asymmetric
multilinear map does not allow an attacker to pair a group element with itself.

Graded Encoding Schemes can also be modified to support asymmetric behaviour by
indexing the sets S with vectors rather than integers:

20

Definition 2.2.6 (T -Graded Encoding System [29]). Let T ∈ Nt for some integer t > 0,
and let R be a ring. A vector v ∈ Nt is below T if vi ≤ Ti for all i ≤ t. A T -Graded
Encoding System for R is a family of sets S = {Sαv ⊂ {0, 1}∗|α ∈ R, and v is below T}
such that

1. for every fixed level v below T , the sets {Sαv |α ∈ R} are disjoint;

2. there are binary operations + and − on {0, 1}∗ such that for all α1, α2 ∈ R, all v
below T , and every u1 ∈ Sα1

v , u2 ∈ Sα2
v , we have u1+u2 ∈ Sα1+α2

v and u1−u2 ∈ Sα1−α2
v ;

3. there is an associative binary operation × on {0, 1}∗ such that for every α1, α2 ∈ R,
every v1 and v2 below T with v1 + v2 below T , and every u1 ∈ Sα1

v1
, u2 ∈ Sα2

v2
, we

have u1 × u2 ∈ Sα1·α2
v1+v2

, where v1 + v2 is vector addition in Nt.

A T -Graded Encoding Scheme is a T -Graded Encoding System equipped with the same
efficient procedures as the symmetric case.

Example 2.2.7 (CLT as a T -Graded Encoding System). To use CLT as a T -Graded
Encoding System, instead of only generating a single secret mask z, one chooses t secret
masks {zi}ti=1. Then for any vector I that is below T , a level-I encoding of a message m
is an integer c such that

c ≡ rigi +mi

zI11 · · · · · zItt
mod pi

for all i. For example, a level-(1, 2, 0, . . . , 0) encoding of m is an integer c such that

c ≡ rigi +mi

z1 · z2
2

mod pi

for all i.

The zero testing parameter now must be defined relative to the vector T instead of
relative to the integer κ:

(pzt)j =
n∑
i=1

hij(z
T1
1 · · · · · zTtt g−1

i mod pi)
x0

pi
mod x0.

We will see in Chapter 3 that asymmetric Graded Encoding Schemes are used exten-
sively in new code obfuscation techniques to ensure that only very specific products can
be zero tested.

21

2.3 Cryptanalysis of CLT

The CLT scheme was given with no reduction to a well-studied hard problem such as ap-
proximate GCD or Learning With Errors (LWE). Indeed, the existence of such a reduction
seems unlikely [29]. Instead, the authors give a new hard problem called the Graded De-
cisional Diffie-Hellman problem, and present a preliminary cryptanalysis of their scheme,
outlining several possible avenues of attack, and demonstrating that each of the attacks
takes time exponential in the security parameter λ. These initial attacks are used as
motivation for parameter choices in Section 2.3.2.

The first external cryptanalysis of CLT, [41] found an attack that exploits the scheme’s
lack of public key validation. This attack is presented briefly in Section 2.3.3, and a
heuristic method for performing public key validation is given.

Later, a more sophisticated attack based on generating high-level encodings of 0 was
found by Cheon et al. [19]. Given level-1 encodings of 0, Cheon’s attack is able to find
all the secret parameters of CLT, breaking CLT for any application that publishes level-1
encodings of 0 (multi-party Diffie-Hellman for example). There have been several attempts
to fix CLT’s vulnerability to this so called “zero-izing” attack, some of which have failed.
The state-of-the-art version of CLT [25] seems to avoid the Cheon attack. The zero-
izing attack and the ensuing countermeasures are documented in Sections 2.3.4 and 2.3.5
respectively.

2.3.1 Security Assumptions

The main security assumption needed for multi-party key exchange using CLT is a variant
of the traditional decisional Diffie-Hellman problem called the Graded Decisional Diffie-
Hellman (GDDH) problem. The GDDH assumption is that given a multilinearity κ, and
a security parameter λ, no polynomial time adversary A has non-negligible advantage in
the following security game:

1. The challenger generates the parameters for a GES, including the zero-tester pzt and
all the encodings necessary for sampling and re-randomization.

2. For 1 ≤ i ≤ κ+ 1, the challenger sets ai = samp(params).

3. The challenger then sets ui = reRand(params, 1, enc(params, 1, ai)) so that ui is a
random level-1 encoding of the same message encoded by ai.

22

4. The challenger selects a random level-0 encoding r = samp(params).

5. The challenger selects b ∈R {0, 1}, and gives A the ui and

vb =

{
reRand(params, κ, enc(params, κ,

∏κ+1
i=1 ai)), b = 1,

reRand(params, κ, enc(params, κ, r)), b = 0.
.

6. A returns b′ ∈ {0, 1}.

A’s advantage is |P (b′ = 1 | b = 1)− P (b′ = 1 | b = 0)|.

2.3.2 Setting Parameters

The instance generation procedure for a multilinear Diffie-Hellman key exchange needs to
be able to choose concrete values for numerous parameters based on the security level λ,
and the desired multilinearity level κ. Parameter sizes are chosen either to ensure the
correctness of the scheme, or to avoid attacks.

Correctness

The following list of parameters must satisfy the given bounds in order for the correctness
of the scheme to follow:

` is the number of public level-0 encodings
{
x′j
}

published by the TTP. A condition
to proving that a message encoded by a subset-sum of the xj’s is uniformly distributed
among possible messages is that

` ≥ nα + 2λ.

τ is the number of public level-1 encodings {xj} of 0 published by the TTP. In order to
prove that re-randomization produces a uniformly random encoding of the same message,
it is necessary that

τ ≥ n(ρ+ log2(2n)) + 2λ.

µ is the bit size of the coefficients of the Πj’s used in the re-randomization process.
Again, in order for re-randomization to behave uniformly, it is necessary that

µ ≥ α + ρ+ λ.

23

Finally, recall that η is the bit-size of the primes pi. A condition of Lemma 2.1.6, which
guarantees the functionality of the zero-testing parameter, is that

η ≥ ρf + α + 2β + λ+ 8.

Lemma 2.1.6 also requires that ν, the number of most significant bits to extract from the
product of a level-κ encoding and the zero tester, satisfy

ν = η − β − ρf − λ− 3.

ρf is the maximum of any noise component in an encoding that is to be zero-tested.
For a Diffie-Hellman key exchange, ρf can be chosen to be the number of bits in a noise
component of a product of κ public keys and a single private key. Note that for any
two level-1 encodings c1 ≡ ri,1gi+mi,1

z
mod pi and c2 ≡ ri,2gi+mi,2

z
mod pi, if ri,1 and ri,2 are

bounded by 2ρ, then

ri,1gi +mi,1

z
· ri,2gi +mi,2

z
=

(ri,1ri,2gi + ri,1mi,2 + ri,2mi,1)gi +mi,1mi,2

z2
,

so the size of the randomness in the product increases by ρ+α bits for each multiplication.

Recall from Section 2.1.2 that the noise component in a public key is bounded by
`22ρ+α + τn2ρ+1 + n22µ+ρ+1. Since µ ≥ α + ρ+ λ, we have

`22ρ+α + τn2ρ+1 + n22µ+ρ+1 ≤ 4n22µ+ρ,

which is 2 + 2 log2(n) + µ + ρ bits. Then the noise in a product of κ public keys is at
most κ(2 + 2 log2(n) + µ+ ρ+ α)− α bits. Again, recall from Section 2.1.2 that the noise
component in a secret key is bounded by `2ρ, so that multiplying a product of κ public
keys by a secret key yields an encoding whose noise is bounded by

κ(2 + 2 log2(n) + µ+ ρ+ α)− α + log2(`) + ρ+ α + 1

= κ(2 + 2 log2(n) + µ+ ρ+ α) + log2(`) + ρ+ 1

bits.

Remark 2.3.1 (Selecting ρf for other applications). In CLT Diffie-Hellman, the particular
level-1 encodings that get multiplied to generate the shared secret have a complicated
bound on their noise. This is because the level-1 encodings are generated by adding subset
sums of other level-1 encodings. There are applications of the CLT GES where it is easier

24

to generate level-1 encodings. In essentially any application that does not require re-
randomization or public sampling, the noise in a level-1 encoding will be bounded simply
by 2ρ. Then a level-κ encoding that is a product of level-1 encodings will have noise ρf
bounded by (κ− 1)(ρ+ α) + ρ = κρ+ (κ− 1)α bits. Crucially, ρf depends linearly on κ,
regardless of the application. This is a major obstacle to practical application of the CLT
GES.

Security

α is the bit-length of the gi’s. CLT take α = λ so that the order of the group Zg1×· · ·×Zgn
has no small prime factors. This is ostensibly necessary to prove that the security of a multi-
party Diffie-Hellman key exchange that arises from a Graded Encoding Scheme reduces to
the intractability of the GDDH problem. There is currently no known attack that exploits
small gi’s.

ρ is the bit-length of the randomness used in the published level-0 encodings, and
published level-1 encodings of 0. ρ must be large enough to withstand the following gcd
attack:

Given two level-1 encodings of 0

c1 ≡
ri,1gi
z

mod pi and c2 ≡
ri,2gi
z

mod pi,

compute

u =
c1

c2

mod x0.

Then for all i,

u ≡ ri,1
ri,2

mod pi,

whence
gcd(uri,2 − ri,1, x0) = pi.

Then, for all possible ri,1 and ri,2, compute gcd(uri,2 − ri,1, x0). The complexity of this
attack if the gcd is computed naively is O(22ρ). This batch gcd computation can be done
in time O(ρ22ρ) [22]. Lee and Seo propose a different attack with complexity O(2

ρ
2) [42].

CLT claim that this attack has large overhead, so they take ρ = λ [25].

β is the bit-length of the random hi’s that appear in the zero testing parameter. The
same gcd attack works on the zero-testing parameter. Instead of computing u = c1

c2
,

25

compute u = (pzt)1
(pzt)2

≡ hi,1
hi,2

mod pi, and compute gcd(hi,2u− hi,1, x0) for all possible hi,1,hi,2.

To avoid this attack, set β = λ.

n is the number of prime factors in the modulus x0. CLT calculate that a traditional
orthogonal-lattice attack on a set of level-0 encodings of 0 takes time 2Ω(n

η
). Roughly, given

a set of integers {xj}, such that xj ≡ rijgi mod pi, find a short lattice vector u orthogonal
to x mod x0. Then ux ≡ 0 mod pi, so urigi ≡ 0 mod pi. Since u is short enough, this
holds over Z, and hence rigi can be computed easily. Then gcd(xj − rijgi, x0) = pi, and as
established earlier, the attacker can recover z. Thus we must have n = Ω(η · λ).

Remark 2.3.2 (Incorrect parameter setting for n). CLT mistakenly use the parameter
setting n = ω(η log2 λ) instead of n = Ω(η · λ). Their analysis cites [44] which also makes
this error. This incorrect parameter setting persists in CLT’s most recent multilinear map
construction [25] which was designed to avoid attacks from Cheon et al. [19]. Note that
[19] uses the correct parameter setting for n.

Finally, this error is also present in Apon et al.’s implementation of obfuscation [27].
All of [22], [25], and [27] provide running times and storage sizes for their implementations.
Due to the incorrect choice for n in these implementations, their efficiency estimates are
somewhat optimistic.

Efficiency

The CLT paper is entitled “Practical Multilinear Maps over the Integers”, and provides
some timing data for their implementation of a CLT Diffie-Hellman key exchange. The
reader must be careful not to misinterpret their meaning of “Practical”. After the authors
of [22] make a few optimizations, they are able to achieve a public key size of 2.6 Gigabytes
and a setup time of 7.5 hours for a low security level and a small number of parties (while
also choosing an insufficiently large value for n). See Example 2.3.4 for specifics.

A good way to understand the efficiency of the CLT scheme is to examine concrete
parameter sets.

Example 2.3.3 (CLT parameter set). For λ = 128 and κ = 10, we have the following
selection of CLT parameters:

• α = ρ = β = 128.

• ρf = κλ+ (κ− 1)λ = 2432. Note that this is using the smaller estimate of ρf based
on level-1 encodings having noise bounded by 2ρ (cf. Remark 2.3.1).

26

• η = ρf + 4λ+ 8 = 2952.

• n = η · λ = 377, 856.

• x0 will be an nη ≈ 1.1 billion bit integer.

• ` = nα + 2λ ≈ 48.3 million.

• τ = n(ρ+ log2(n) + 1) + 2λ ≈ 55.7 million.

The TTP publishes ` level-0 encodings, τ + n level-1 encodings of 0, and one level-1
encoding of 1 . These are all integers modulo x0. They also publish pzt, which is comprised
of n integers modulo x0. So in total, the TTP publishes about 104.7 million 1.1 billion bit
integers, which is roughly 14.4 petabytes of data.

An individual user’s public key is a single level-1 encoding, and is therefore about 137
megabytes.

Remark 2.3.4 (Bitlength of x0 depends quadratically on κ and λ). The biggest culprits
of these large numbers are the quadratic dependency of nη on κ, the cubic dependency
on λ, and the large number of encodings that must be published in order to enable public
sampling and re-randomization. The quadratic dependency of nη on κ is a fundamental
consequence of the design:

nη = η2 · λ = (ρf + 4λ+ 8)2 · λ = ((2κ− 1)λ+ 4λ+ 8)2 · λ = O(4κ2λ3).

It arises because in order for the zero-tester to function, no amount of multiplications can
cause the numerator of the encodings to roll over any of the moduli pi. To compensate for
this, the pi must be made large enough so that after the desired number of multiplications,
the numerators of encodings will still be smaller than pi. Basically, the noise grows with
each multiplication, and eventually overwhelms the signal, so the noise must be very small
compared to pi initially. But the noise cannot be too small, because then there are easy
attacks, as discussed above. The result is that η has a linear dependency on κ, and hence
nη has a quadratic dependency.

Some applications require very large multilinearity, and for those applications, the
noise-growth problem is an overwhelming obstacle to practical implementation.

27

Heuristic Optimizations

CLT offer some heuristic optimizations to improve the size of the public parameters. The
TTP can simply publish fewer encodings. The cost of doing so is that the proofs that the
sampling procedure and the re-randomization procedure produce encodings of sufficiently
random messages no longer hold. CLT set ` = 2λ instead of ` = nα + 2λ, and instead
of storing τ = n(ρ + log2(n) + 1) + 2λ re-randomization encodings, they store

√
n level-0

encodings, and
√
n level-1 encodings of 1. These can be combined by users running the

re-randomization algorithm to create n2 re-randomization encodings of 0 at level-1.

The final adjustment they suggest is using a zero-testing integer rather than a zero-
testing vector:

pzt =
n∑
i=1

hi(z
kg−1
i mod pi)

x0

pi
mod x0.

It is still the case that if c is a level-κ encoding of 0 then cpzt is small. However, it is no
longer the case that if cpzt is small, and c is a level-κ encoding, then c is a level-κ encoding
of 0. This means that in a CLT Diffie-Hellman key exchange, there are multiple messages
whose level-κ encodings will extract to the shared secret. According to CLT, this is not a
problem [22].

Making these changes, the public key is only 2λ+ 2
√
n+ 2 integers modulo x0, which

with the parameter set in Example 2.3.3 is roughly 872 encodings rather than 104.7 million.
872 1.1 billion bit integers is about 121 gigabytes of data instead of 14.4 petabytes. Note
that the alteration to the zero-testing parameter has a relatively small effect on the size of
the public parameters compared to the alteration to the number of published encodings.
However, having a zero-testing integer instead of a zero-testing vector means that users
computing their shared secret only need to do one multiplication of two nη bit numbers,
instead of n multiplications. This is a fairly significant speed improvement considering how
large n is, and how expensive it is to multiply nη-bit integers.

Example 2.3.5 (CLT proof of concept parameter set). In [22], CLT implement their
multilinear map and provide some timing data for their implementation. By using their
heuristic optimizations, they were able to use the following parameter set:

• λ = 80

• κ = 6 (7 parties)

• n = 26115 (This choice of n is too small; see Remark 2.3.2)

28

• η = 2438.

According to [22], this parameter set resulted in a public key size of 2.6 Gigabytes, a setup
time of 27295 seconds, a publish time of 17.8 seconds, and a key generation time of 20.2
seconds (16-core Intel Xeon CPU E7-8837 at 2.67GHz). However, recall that there is a

lattice attack that runs in time 2Ω(n
η

), which for this parameter set is 210.7 � 280. The
hidden constant in the attack running time must be larger than 270 before this parameter
set achieves 80-bit security.

2.3.3 Public Key Validation

The first external cryptanalysis of the CLT scheme was done by Lee and Seo [42]. Most of
their paper focuses on improving the gcd attack mentioned in Section 2.3.2. However, the
paper also contains an interesting attack on the CLT Diffie-Hellman protocol in the case
where users fail to validate public keys they receive. It is an attack by a dishonest user
who generates an invalid public key, and uses the resulting shared secret computation to
learn bits of another user’s private key. It applies in particular to the version of CLT that
uses a zero-testing integer rather than a zero-testing vector.

Checking the validity of public keys is therefore necessary for security. However, so
far, no one has provided a way to do so. This section describes the Lee-Seo attack, and
describes a heuristic method for validating public keys in a CLT Diffie-Hellman protocol.

Malicious User Attack

An outline of the Lee-Seo attack follows.

Suppose there are N users, and the adversary wants to recover the private key of user
1. Let the public keys be c′i and the private keys be ci. Instead of publishing c′N , the
adversary publishes c′′N = c′N +2kX mod x0 where k is some small integer less than ν, and
X is a level-1 encoding of 0. Note that the shared secret sk that user 1 computes is the ν
most significant bits of (

c1c
′′
N

∏
c′j

)
· pzt mod x0

=
(
c1c
′
N

∏
c′j

)
· pzt +

(
c12kX

∏
c′j

)
· pzt mod x0. (?)

29

The adversary can compute the ν most significant bits of the first term of (?) as the ν
most significant bits of (

c′1cN
∏

c′j

)
· pzt mod x0.

The adversary’s goal is to compute(
c1X

∏
c′j

)
· pzt mod x0

so that they can divide by (
X
∏

c′j

)
· pzt mod x0

to recover c1. The ν most significant bits of
(
c1X

∏
c′j
)
· pzt mod x0 are 0 since this is a

level-N encoding of zero, which means that the ν most significant bits of the second term
of (?) has at most k non-zero trailing bits. Then there are only k bits of sk that remain
unknown to the adversary.

Suppose that the adversary obtains some (m, t = MACsk(m)) pairs from user 1. Here
MAC is a symmetric-key message authentication scheme. The adversary can use these
(m, t) pairs to check guesses for sk. Since k is small, the adversary will succeed and
therefore learn the ν most significant bits of

(
c12kX

∏
c′j
)
· pzt mod x0, the k trailing bits

of which are the k most significant bits of
(
c1X

∏
c′j
)
· pzt mod x0.

The get the next k bits, perform the same attack, but set the adversary’s public key to
c′N + 22kX mod x0 (it will be necessary to collect new (m, t) pairs for checking guesses of
the new sk). Repeating this method yields the first 2ν bits of

(
c1X

∏
c′j
)
· pzt mod x0. A

slightly different method can be used to recover the remaining bits. See [42] for details.

A Heuristic Public Key Validation Technique

Recall that a valid public key is an integer c ∈ Zx0 of the form

c ≡ rigi +mi

z
mod pi

for all i, where mi ∈ Zgi and ri is small relative to pi.

Notice that for any c ∈ Zx0 and for all i,

c =
ai
z

mod pi

30

for some ai ∈ Zpi . For any integer ai, by the division algorithm there exist unique Ri and
mi ∈ Zgi such that ai = Rigi+mi. Since gi is small relative to pi, there are unique Ri ∈ Zpi
and mi ∈ Zgi such that

c ≡ Rigi +mi

z
mod pi

for all i. That is, every c ∈ Zx0 can be written in the form of a level-1 encoding in exactly
one way. Then the only way such an integer can fail to be a valid public key is for one
of the resulting Ri’s to be larger than the acceptable bound. This reduces the problem of
public key validation to the problem of checking whether the Ri’s corresponding to a given
public key c are too large.

One technique that could be used is the following: Given an integer c, consider bcκ−1

where b is a level-1 encoding of 0. If c is a valid level-1 encoding of some message, then bcκ−1

is a valid level-κ encoding of 0, and hence returns “true” when zero-tested. Conversely,
suppose that c is an invalid level-1 encoding. Then it is expected that bcκ−1pzt mod x0

will exceed x02−ν bits. Note that this is not guaranteed, due to the heuristic component
of the “single-integer” zero-tester. To increase confidence in this test, one could perform
it with multiple different random b’s, and adjust the relative encoding levels of the c’s and
b’s.

The only part of the invalid encoding an attacker controls in the Lee-Seo attack is the
extra bit-length of the randomness (otherwise, the encodings are chosen randomly). But it
is unlikely that this validation fails with high probability on a particular length of invalid
encoding, especially since the validator can adjust the length by adjusting the relative
levels of c and b.

2.3.4 Zero-izing Attacks

The next major cryptanalysis of CLT came from Cheon et al. [19] who describe an attack
on CLT that exploits published level-1 encodings of 0 to recover all the secret parameters.
This attack breaks the CLT scheme described in Section 2.1 completely for applications
where level-1 encodings of 0 are published (Diffie-Hellman for example). Applications that
do not need re-randomization (and hence do not publish level-1 encodings of 0) such as
obfuscation and broadcast encryption (cf. Chapters 3 and 4, respectively) may not be
affected. However, it is conceivable that level-1 encodings of 0 are attainable from the
public information provided in these applications.

Furthermore, the Cheon et al. attack has since been extended by Gentry et al. [36] to
work given many level-1 encodings whose product is an encoding of 0, instead of many

31

level-1 encodings of exactly 0. Such a set of encodings is called orthogonal. In order
to truly have confidence that applications not publishing low-level encodings of 0 remain
resistant to the Cheon et al. attack and subsequent extensions, it would be necessary to
prove that no set of orthogonal encodings is computable from the public information in
the application. This will be discussed further in Chapters 3 and 4.

The remainder of this section describes the zero-izing attack of Cheon et al. See [36]
for details on the extension to orthogonal encodings.

Preliminaries

The attack works by expressing the process of zero-testing several level-κ encodings of 0
in terms of matrix multiplication. Since for any level-κ encoding u of 0, upzt is small, the
resulting matrix equation will be satisfied over Q instead of just modulo x0. This enables
eigenvalue computation, and it happens that the eigenvalues of the matrix reveal the secret
parameters.

Let c be any level-0 encoding, with c ≡ ci mod pi for all i ≤ n. Recall that {x′j}
is a set of ` public level-0 encodings, {xk} is a set of τ public level-1 encodings of 0,
and Y is a public level-1 encoding of 1. Write Y ≡ yigi+1

z
mod pi, x

′
j ≡ x′i,j mod pi, and

xk ≡ ri,kgi
z

mod pi for all i. Then for all j ≤ `, k ≤ τ ,

cx′jxkY
κ−1 mod x0

is a level-κ encoding of 0. Note that this can be computed entirely from public parameters.
For a fixed c, the attacker can compute

ωj,k = cx′jxkY
κ−1(pzt)1 mod x0

= cx′jxkY
κ−1

n∑
i=1

hi,1(zκg−1
i mod pi)

x0

pi
mod x0.

Since for all i,

cx′jxkY
κ−1 =

cix
′
i,jri,kgi(yigi + 1)κ−1

zk
+Qipi

32

for some Qi, we have

ωj,k =
n∑
i=1

hi,1
(
cix
′
i,jri,k(yigi + 1)κ−1 mod pi

) x0

pi
+

n∑
i=1

Q′ix0 mod x0

=
n∑
i=1

hi,1cix
′
i,jri,k(yigi + 1)κ−1x0

pi
mod x0

=
n∑
i=1

h′icix
′
i,jri,k mod x0,

where h′i = hi,1(yigi + 1)κ−1 x0
pi

.

Since cx′jxkY
κ−1 is a level-κ encoding of 0, cx′jxkY

κ−1(pzt)1 is much smaller than x0

(indeed, pzt is chosen specifically so that this is the case). So the equation above is true
over Z instead of just Zx0 . Then

ωj,k =
n∑
i=1

h′icix
′
i,jri,k.

For a fixed c, and fixed n-subsets of {x′j} and {xk}, J and K respectively, this equation
can be expressed as matrix multiplication. Consider the n× n matrix W J,K

c whose (j, k)th

entry is ωJj ,Kk :

W J,K
c = X ′HCR,

where X ′i,j = x′i,Jj , H is the diagonal matrix with entries h′i, C is the diagonal matrix with
entries ci, and Ri,k = ri,Kk . For a fixed c, an attacker can compute many such matrices by
varying J and K. Note that H is constant for all choices of c, J , and K. Also, X ′ and R
depend only on J and K, and not on c.

Attack Procedure

The attacker sets c = x′1, and chooses J and K such that W J,K
c is invertible (this can

be done in time O(κω+3λ2ω+6); for details, see [19]). Then W J,K
d is also invertible for all

d, since if W J,K
c = X ′HCR, then X ′ and R are invertible, so W J,K

d = X ′HDR is also
invertible.

The attacker sets d = x′2, and computes

W J,K
c (W J,K

d)−1 = X ′HCRR−1D−1H−1(X ′)−1

= X ′CD−1(X ′)−1.

33

Then the eigenvalues of W J,K
c (W J,K

d)−1 are equal to the entries of CD−1. The eigenvalues

can be computed in polynomial time, revealing
x′i,1
x′i,2

to the attacker. Write
x′i,1
x′i,2

in reduced

form as
x′′i,1
x′′i,2

. The attacker can easily recover x′′i,1 and x′′i,2 from their ratios. Now

x′1
x′2
≡
x′′i,1
x′′i,2

mod pi,

so
x′′i,2x

′
1 − x′2x′′i,1 ≡ 0 mod pi.

Since the attacker knows x′′i,1, x′′i,2, x′1, and x′2, she can compute

gcd(x′′i,2x
′
1 − x′2x′′i,1, x0)

to recover pi for all i.

Recall from Section 2.1.1 that given the factorization of x0, one can use rational recon-
struction to compute the remaining secret parameters of the CLT GES.

2.3.5 Defending Against Zero-izing Attacks

The Cheon et al. attack is a complete break of the CLT GES as described in Section 2.2.
Following the publication of this attack, there were two independent attempts to repair
the CLT multilinear map by Garg, Gentry, Halevi and Zhandry [34], and Boneh, Wu, and
Zimmerman [13]. In [24], Coron, Lepoint and Tibouchi demonstrate that these candidate
fixes fail to prevent Cheon et al.’s attack. Similarly, Brakerski et al. show that repairs of
the original GGH multilinear map are also ineffective [16]. In [25], Coron, Leopint and
Tibouchi give their own fix of CLT that so far has resisted further zero-ization attempts.
The fixed version of CLT is known as CLT15.

The new CLT multilinear map avoids zero-ization using a new modulus N for pzt. So
pzt is reduced modulo N instead of modulo x0. This ensures that for an encoding c, the
components of c · pzt mod N depend nonlinearly on the CRT components of c mod x0.
The zero-ization attack relies heavily on these two objects having a linear relationship,
and so the attack does not apply to new CLT.

For the complete construction, see [25].

34

Chapter 3

Code Obfuscation

For expository purposes, Graded Encoding Schemes have up to this point been described
in the context of multi-party key exchanges. There are a variety of other ways to perform
a multi-party key exchange (though, none in only one round), most of which are vastly
more practical than using multilinear encodings. The reason there is interest in GESs is
not the multi-party key exchanges they induce, but the new applications they enable that
have otherwise been unattainable. Chief among these applications is the subject of this
chapter: general-purpose code obfuscation.

Roughly speaking, a virtual black box (VBB) obfuscator O is a program that takes as
input a program P , and outputs a program O(P) equivalent to P that “reveals nothing”
about P except what could be learned with oracle access to P .

Such a thing would be very useful. For example, suppose for a given secret s, Ps is
the program that returns 1 if given s as input and 0 otherwise (the function this program
computes is known as a point function). A user Alice who knows s can easily generate Ps
(she can simply hardcode a check that the input is equal to s). If for some reason Alice
wanted Bob to be able to run Ps, she cannot necessarily publish Ps, as it may be possible
to recover s from the implementation of Ps. However, if Alice has access to an obfuscator
O, she can publish O(Ps) because by definition, O(Ps) provides no information about P
besides what could be learned from having oracle access to P . Then in order to learn s
from O(Ps), one would have to guess s.

As a second example, suppose that for some reason, we do not trust traditional public
key cryptography based on RSAP or ECDLP, and that we would really prefer to use
symmetric key cryptography. Unfortunately for us, it seems difficult to achieve many of
the nice key management properties of public key crypto with only existing symmetric

35

encryption schemes. General program obfuscation gives a way to convert a symmetric key
encryption scheme into a public key encryption scheme as follows.

Let Es and Ds be the encryption and decryption algorithms respectively for a symmetric
scheme S. Consider the public key scheme P where a user i’s secret key is a random key ki
from the keyspace of S, and their public key is P = O(Es(ki, ·)). Here P is the obfuscation
of the program that takes in a plaintext m, and outputs Es(ki,m). To encrypt a message m
for user i, evaluate user i’s public key P on the input m to compute c = P (m) = Es(ki,m).
Then user i can decrypt in the obvious way, by running Ds(ki, c).

Since P is obfuscated, it reveals nothing about the circuit Es(ki,m). In particular, an
eavesdropper is unable to learn any information about ki or m besides what it could learn
from having access to an encryption oracle, which it has access to by the definition of a
public key scheme.

Example 3.0.6 (Elementary VBB obfuscator). There is a trivial exponential-size VBB
obfuscator due to Bernstein, Hülsing, Lange and Niederhagen [6]: Given a pseudorandom
generator (see Section 4.2.1) PRG: {0, 1}λ → {0, 1}2λ, to obfuscate a boolean function
f : {0, 1}λ → {0, 1}, store in a table PRG(x) for all x where f(x) = 1. Additionally, pad
the table to size 2λ with random entries from {0, 1}2λ. With high probability, none of the
random entries have a preimage under PRG, and therefore the fake entries in the table do
not correspond to any input x ∈ {0, 1}λ. The obfuscation of f is the sorted table which
has size λ2λ+1 bits. To evaluate f(x), simply compute PRG(x), and check if it is in the
table. If it is, f(x) = 1, otherwise, f(x) = 0.

Until the advent of cryptographic multilinear maps, no polynomial size general-purpose
obfuscator was known to exist. It had been possible before to obfuscate small classes of
programs (for example, it is easy to obfuscate point functions using cryptographic hash
functions), but there was no way to obfuscate an arbitrary function. In fact, it had been
proven that a general-purpose code obfuscator was impossible due to the existence of so-
called “un-obfuscatable” functions [3].

In 2013, Garg, Gentry, Halevi, Raykova, Sahai and Waters published a candidate
general-purpose obfuscator [32]. Their construction avoids the impossibility result by con-
sidering a slightly weaker notion of obfuscation called indistinguishability obfuscation (iO).
This chapter contains a description of the Garg et al. candidate, some background infor-
mation about the tools used in this construction, and some information on subsequent
improvements in obfuscation constructions.

Note that while the Garg et al. construction is polynomial time and size, the exponential-
size Bernstein et al. obfuscator is much more efficient in practice. Using the trivial method,

36

obfuscating a function and storing the obfuscation take exponential time and space, but
evaluating the obfuscated function requires only a table lookup. Furthermore, due to
large constants in the Garg et al. construction, the trivial method can produce smaller
obfuscations in many practical situations (cf. Example 3.3.2).

3.1 Background

The Garg et al. iO candidate employs the following general strategy:

It first converts P from a circuit into an equivalent matrix multiplication problem called
a branching program. The goal of obfuscation is to ensure that the only thing that can
be computed with knowledge of these matrices is the complete product, which could be
computed with oracle access to P . Since multilinear encodings are in fact multilinear,
encoding all the entries of the matrices produces a set of matrices whose product is an
encoded version of the original solution. Encoding the matrices not only obscures their
structure, but ensures that the intermediate matrices can only be meaningfully combined
in the intended way.

This section discusses circuits and branching programs which are essential to the Garg
et al. construction. This section also contains a discussion of the difference between iO
and VBB.

3.1.1 Circuits

In order to create an obfuscator that works for any program, a general framework for
describing programs is necessary. The Garg et al. obfuscation construction is based on
obfuscating programs expressed as circuits:

Definition 3.1.1 (Boolean Circuit). Let B be a basis of boolean functions. A boolean
circuit with n inputs and m outputs is a finite, directed, acyclic graph such that:

i vertices of in-degree 0 are labeled as “input”, or are labeled by a constant boolean
value;

ii vertices of out-degree 0 are labeled as “outputs”;

iii every other vertex is labeled by a function from B such that the in-degree of each vertex
is equal to the number of arguments its label takes; and

37

iv the number of vertices labeled as “input” and “output” is n and m respectively.

The vertices of a boolean circuit are referred to as gates. The size of a circuit is the
number of gates in the circuit, and the depth of a circuit is the length of the longest path
from an input vertex to an output vertex. The fan-in of a circuit is the maximum in-degree
of any vertex.

A circuit is evaluated by assigning input values to the input nodes, and assigning to
each out-neighbour of a vertex the result of the labeled function evaluated on the values of
the in-neighbours. The output of a circuit evaluation is the values assigned to the nodes
labeled “output”.

For fixed integers n and m, and any function f : {0, 1}n → {0, 1}m, there is a boolean
circuit whose evaluation on any input x is equal to f(x).

Circuit Complexity

Algorithm complexity is often studied with respect to the asymptotic behaviour of the
algorithm relative to the input size of the problem. A circuit, however, has a fixed input
size. Circuit complexity is therefore studied in terms of families of circuits {Cλ}. A
circuit family solves a particular problem (describes a “formal language”). Each Cλ solves
instances of the problem where the input size is λ.

A circuit class {Cλ} is a set of circuit families. Each Cλ is a set of circuits that solve a
problem in the class for input size λ.

The goal of general-purpose obfuscation is to be able to obfuscate the circuit class P :
the set of all boolean circuit families {Cλ} with fan-in 2 and such that the size of Cλ is a
polynomial function of λ (indeed, every language in P is recognized by a polynomial sized
circuit with fan-in 2).

Garg et al. achieve obfuscation for all such circuits by first creating an obfuscation
algorithm for a smaller class of circuits, and then leveraging this algorithm along with fully
homomorphic encryption to get an obfuscation algorithm for all circuits. The small class
of circuits is called NC1.

NC1 is, roughly speaking, the set of circuit families with fan-in 2 and a single output
such that the depth of C ∈ Cλ is O(log λ), and the size of C is a polynomial function of
λ. In other words, NC1 is the class of decision problems solvable in parallel logarithmic
time by a polynomial number of processors. Obfuscating all circuits in NC1 is all that is
necessary to extend obfuscation to P , including circuits with multiple output bits.

38

Universal Circuits

The task of obfuscating a circuit can be reduced to the task of obfuscating the input to a
different circuit by using what are known as universal circuits.

Definition 3.1.2 (Universal Circuit). Let {Cλ} be a circuit class. A family of circuits
{Uλ} where each Uλ takes as input a circuit description α for a circuit C ∈ Cλ and an input
m is called a universal circuit family for {Cλ} if for all Uλ, C and m, Uλ(α,m) = C(m).

Intuitively it is easier to ensure that no bits of (α,m) are revealed than it is to ensure
that no information about C is revealed. The universal circuit Uλ is simply a way to
evaluate C given only α.

3.1.2 Branching Programs

Branching programs are another model of computation. They are more convenient than
circuits, because evaluating a branching program amounts to performing a series of matrix
multiplications, whereas circuit evaluation is more difficult to express as a multilinear
operation.

Definition 3.1.3. Let A0 and A1 be two distinct permutation matrices. An oblivious
matrix branching program of length n and input size m is a sequence

BP = ((inp(i), Ai,0, Ai,1))ni=1

where the Ai,b are permutation matrices, and inp : [n] → [m] is the input-bit selection
function. On an m-bit string input x, a matrix branching program evaluates to 0 if∏n

i=1Ai,xinp(i) = A0, 1 if this product is A1, and is undefined otherwise.

Such a branching program is called oblivious because the function inp does not depend
on the input x.

At each step i, the evaluator examines inp(i), and chooses one of two fixed matrices
Ai,0 or Ai,1 for that step based on the value of the input bit xinp(i). Then, the product of all
chosen matrices is computed, and the evaluator returns 1 or 0 depending on the product.
Note that it is possible for a step i to examine the same input bit as a different step j,
so that the same bit of x can be examined multiple times during the evaluation of the
branching program.

39

Note that if one were to encode all the entries of the matrices in a branching program
with a GES and otherwise evaluate it normally, the result would be an encoding of A0,
or an encoding of A1, by the multilinearity of matrix multiplication and GES. Multilinear
maps do not interfere with the structure of a branching program, and it is this fact that
enables obfuscation of NC1 circuits.

The width of a branching program is the size of the Ai,j’s. Evaluating a length n
branching program takes n − 1 matrix multiplications. In order for the evaluation of a
branching program to be feasible, the length and the width must be polynomial in the
input size. We will see shortly that this is the reason for restricting to NC1 circuits when
designing obfuscation.

Barrington’s Theorem

In order to obfuscate circuits, it is useful to convert them to branching programs. As it
happens, it is possible to efficiently convert NC1 circuits into polynomial length branching
programs, due to a beautiful theorem of Barrington.

Theorem 3.1.4 (Barrington’s Theorem [4]). For any circuit C of depth d with one output
bit, there exists an oblivious matrix branching program B of width 5 and length at most
4d such that B and C compute the same function.

Hence, all circuits of depth O(log λ) can be expressed as matrix branching programs
of polynomial length and fixed width. Furthermore, the proof of Barrington’s Theorem is
constructive, and gives an efficient algorithm for finding B given C.

Example 3.1.5 (Converting a NOT gate to a branching program). Suppose that

M = (inp, A0 = I, A1, {Ai,b | i ≤ n, b ∈ {0, 1}})

is a length-n branching program computing the circuit C. Construct a length-n branching
program M ′ that computes the circuit ¬C by taking A′inp(1),0 = A−1

1 · Ainp(1),0, A′inp(1),1 =

A−1
1 · Ainp(1),1, and A′i,b = Ai,b for all i 6= inp(1).

If

M(x) =
n∏
i=1

Ainp(i),xinp(i) ,

then

M ′(x) =
n∏
i=1

A′inp(i),xinp(i) = A−1
1 ·

n∏
i=1

Ainp(i),xinp(i) .

40

So if M(x) = I then M ′(x) = A−1
1 ; and if M(x) = A1 then M ′(x) = I. Hence

M ′ =
(
inp, I, A−1

1 , {A′i,b}
)

computes ¬C.

Example 3.1.6 (Converting an AND gate to a branching program). Let C and D be
circuits. Construct a branching program for the circuit C ∧D as follows:

Let AC and AD be 5-cycles (in S5) whose commutator AC · AD · A−1
C · A

−1
D is also a

5-cycle.

For all branching programs in this example, assume that A0 = I. LetMC be a branching
program computing C with A1 = AC , and let M−1

C be a branching program computing
C with A1 = A−1

C . Similarly, let MD and M−1
D be branching programs computing D with

A1 = AD and A1 = A−1
D respectively.

Finally, let M be the branching program MCMDM
−1
C M−1

D (where branching programs
are appended to one another in the obvious way). If C(x) = 0, then MC(x) = I, so
M(x) = I ·MD(x) · I ·M−1

D (x). But MD(x) ·M−1
D (x) = I since if D(x) = 0, they’re both I,

and if D(x) = 1, MD(x) = AD, and M−1
D (x) = A−1

D . So M(x) = I. Similarly, if D(x) = 0,
M(x) = I.

When C(x) = D(x) = 1, M(x) = AC ·AD ·A−1
C ·A

−1
D , which by assumption is a 5-cycle,

and hence a permutation matrix in S5. So M is a branching program computing C ∧ D
with A0 = I and A1 = AC · AD · A−1

C · A
−1
D .

Since any circuit can be expressed in terms of NAND gates, Examples 3.1.4 and 3.1.5
can be used recursively to generate a branching program for the whole circuit. Each AND
gate conversion spawns four new branching programs, which is where the exponential
increase in depth comes from. It is this exponential factor that restricts obfuscation using
this technique to NC1. A circuit with linear depth would have a corresponding branching
program with exponential length, and hence require an exponential number of matrix
products to evaluate. The resulting obfuscation scheme, which relies on computing this
matrix product, could not then be considered efficient.

3.1.3 VBB and iO

In light of the unobfuscatable functions presented by Barak et al. in [3], one might wonder
how Garg et al. can claim to have a general purpose obfuscator. The answer is that they

41

use a slightly weaker notion of obfuscation. Whereas Barak et al. disprove the existence of
a virtual black box obfuscator, Garg et al. provide a construction for an indistinguishability
obfuscator.

Definition 3.1.7. A Virtual-Black-Box (VBB) Obfuscator is a probabilistic polynomial-
time algorithm O such that:

i For every circuit C, O(C) describes a circuit that computes the same function as C.

ii The size and running time of O(C) are at most polynomially larger than C.

iii For any PPT A, there exists a PPT simulator S such that for all C,

|Pr(A(O(C)) = 1)− Pr(SC(1|C|) = 1)|

is negligible.

A program obfuscated with a virtual black box obfuscator reveals no more informa-
tion about the obfuscated program than can be learned from having oracle access to the
function that the program computes. The obfuscated program is essentially a black box
representation of the underlying function. It turns out this is impossible to achieve be-
cause there exist functions {fλ} for which there is a predicate easily computable from any
circuit that computes fλ, but not from oracle access to fλ [3]. That is, there are functions
whose implementations necessarily leak information that would be unobtainable merely
from having oracle access to the function.

On the other hand, a program obfuscated with an indistinguishability obfuscator should
merely be indistinguishable from any other equivalent program that is also obfuscated with
the indistinguishability obfuscator (provided the two equivalent programs are equal in size).
That is, given two programs that compute the same function and given their obfuscations,
it should be infeasible to tell which obfuscated program corresponds to which unobfuscated
program.

Definition 3.1.8. An Indistinguishability Obfuscator (iO) is a PPT algorithm such that

i For all circuits C and all inputs x,

iO(C)(x) = C(x).

ii The size and running time of iO(C) are at most polynomially larger than C.

42

iii For any PPT distinguisher D, for all pairs of circuits C0, C1 with C0(x) = C1(x) for
all x and |C0| = |C1|,

|Pr(D(iO(C0)) = 1)− Pr(D(iO(C1)) = 1)|

is negligible.

An “unobfuscatable” function f can be still be obfuscated by an indistinguishability
obfuscator. This is because the aforementioned predicate easily computable from any
circuit that computes f does not allow for distinguishing between different circuits that
compute f (since the predicate is the same for all such circuits).

iO is strictly weaker than VBB because it is possible for iO(P) to leak information about
P as long as iO(P ′) leaks the same information for all P ′ equivalent to P . Otherwise, one
could distinguish between the two obfuscations based on what information was leaked.
Since it is possible for iO(P) to leak information about P , it is not obvious that iO is even
useful. We will see in Chapter 4 that the best way to make use of iO is to prove there
exists a circuit iO(P ′) indistinguishable from iO(P) that cannot possibly reveal particular
information (usually because P ′ does not actually contain the information in question).

Finally, it is important to note that if there is an algorithm Q that is the “best”
obfuscator (hides the most information about its input circuit) for a circuit C, then iO(C ′)
is indistinguishable from iO(Q(C)), where C ′ is the circuit C padded to the length of Q(C).
In this sense, iO is the “best possible” notion of obfuscation.

3.1.4 Fully Homomorphic Encryption

Definition 3.1.9 (Fully Homomorphic Encryption). A fully homomorphic encryption
scheme (FHE) is a set of polynomial time algorithms (Encrypt,Decrypt,KeyGen,Evaluate).

• KeyGen takes as input the security parameter λ, and outputs a secret key sk and
a public key pk.

• Encrypt takes as input pk and a plaintext m, and outputs a ciphertext c.

• Decrypt takes as input sk and a ciphertext c, and outputs the corresponding plain-
text m.

• Evaluate takes as input pk, a circuit C, and a set of ciphertexts {ci} and outputs
an encryption of C(c1, . . . , cn).

43

Furthermore, the algorithms satisfy the following properties:

• Correctness: Decrypt(sk,Encrypt(pk,m)) = m.

• Correctness of Evaluation: For all circuits C, If ci = Encrypt(pk,mi), then
Decrypt(sk,Evaluate(pk, C(c1, . . . , cn))) = C(m1, . . . ,mn).

• Compactness: Decrypt can be expressed as a circuit of size polynomial in λ.

Obfuscation requires an IND-CPA secure FHE scheme. The IND-CPA security defi-
nition in the FHE setting differs slightly from the traditional public key definition. Here,
the adversary is allowed not only to encrypt a polynomial number of messages, but also
to run Evaluate polynomially many times on any set of polynomial-time circuits with
polynomially many inputs.

The Garg et al. obfuscation algorithm uses fully homomorphic encryption to extend
indistinguishability obfuscation from circuits in NC1 to circuits in P . Crucially, they
use the fact that fully homomorphic encryption schemes exist with a special form of the
compactness property, namely that their decryption algorithm can be expressed as a circuit
in NC1. For example, the FHE schemes described in [17] have log-depth decryption circuits
(see Section 5.2.1 of [17]).

3.2 The Garg et al. Indistinguishability Obfuscator

Garg et al. construct an obfuscation algorithm iO for all circuits in P by first construct-
ing an obfuscation algorithm iONC1 for all circuits in NC1, and then using iONC1 as a
subroutine for iO. This section provides an overview of both these components.

3.2.1 Obfuscation for NC1

Obfuscating an NC1 circuit begins by using Barrington’s Theorem to convert the circuit
into an equivalent oblivious matrix branching program (see Section 3.1.2). The goal of
obfuscation is to allow third party evaluation of the branching program while concealing
all the matrices and preventing all computations on these matrices that do not correspond
to a valid evaluation of the branching program. The two most important tools used to
achieve this goal are GESs and branching program randomization.

44

Graded Encoding Schemes for Obfuscation

Let M = (A0, A1, {Ai,b}, inp) be a length-n oblivious matrix branching program. Use
an Asymmetric GES to encode the entries of Ai,b at level ei (recall that ei is the ith

characteristic vector). Call the encoded matrices A′i,b. Similarly, encode the entries of A0

and A1 at level-1 to get A′0 and A′1. By the multilinearity of matrix multiplication and
Asymmetric GESs,

∏n
i=1A

′
i,bi

is a matrix whose entries are level-1 encodings of the entries
of
∏n

i=1Ai,bi . Then any user with access to a level-1 zero-testing parameter can check
equality between A′0 and

∏n
i=1 A

′
i,bi

by zero-testing the matrix
∏n

i=1 A
′
i,bi
− A′0.

The use of a GES is thought to ensure that computing a non-multilinear function of
the matrices results in meaningless output. Intuitively, while the Graded Encoding Scheme
preserves the multilinear structure of the matrices, and thus preserves the functionality of
the branching program, it is not expected to preserve any other behaviour. Computing
a non-multilinear function of encoded matrices therefore should not help an attacker to
compute a non-multilinear function of the plaintext matrices. The obfuscation literature
generally assumes that the underlying GES does a good job of preserving exactly the
multilinear structure of its inputs and nothing else.

The other benefit of an Asymmetric Graded Encoding Scheme is the leveled structure
that ensures the only encodings that can be zero-tested are those at the right level. Given
{A′i,b}ni=1, the only way to produce a zero-testable product is by taking a product that
considers each matrix exactly once:

∏n
i=1A

′
i,bi

. If say, A′n,bn is excluded from the product,
the result will be an encoding at level (1, 1, . . . , 1, 0), which is not zero-testable. Similarly,
if A′n,bn is included twice, the result will be an encoding at level (1, 1, 1, . . . , 2) which is also
not zero-testable. So not only does a GES make non-multilinear attacks hard, but it also
restricts the type of multilinear attacks that are possible.

Remark 3.2.1 (GES fails to conceal matrices). While use of a GES appears to make non-
multilinear attacks difficult, and a large class of multilinear attacks infeasible, it does not
achieve all the goals of obfuscation. Crucially, a GES does a bad job of actually concealing
the matrices. Consider the setting where an attacker wishes to discover the Ai,b’s given
only the A′i,bs, A

′
0, A′1, and all the relevant parameters needed to evaluate the encoded

branching program. Since the Ai,b’s are permutation matrices, an adversary can employ
the following attack:

Choose any fixed n-dimensional {0, 1} vector b. For each i < n, compute the sum si
of the entries of the first column of A′i,bi . This sum is a level-ei encoding of 1 since Ai,bi
is a permutation matrix. Then S =

∏n−1
i=1 si is a level-(1, 1, . . . , 1, 0) encoding of 1. The

attacker can then compute SA′n,bn , which is a matrix of level-1 encodings of the entries of

45

An,bn . Zero-testing the entries of SA′n,bn therefore completely reveals An,bn , since An,bn is a
(0, 1)-matrix.

Remark 3.2.2 (GES fails to enforce order). A GES prevents the computation of products
that do not include exactly one of the A′i,b’s for each i, but does not prevent an attacker from

computing the product out of order. Indeed,
∏n

i=1A
′
i,bi

and
∏1

i=nA
′
i,bi

are both matrices
of level-1 encodings, and hence zero-testable, but only the former is a legitimate product
in the obfuscation setting.

Kilian’s Randomization

In light of Remarks 3.2.1 and 3.2.2, a supplemental obfuscation technique is necessary.
Obfuscation algorithms employ what’s known as Kilian’s randomization.

In 1988, Kilian constructed an oblivious circuit evaluation protocol based on oblivious
transfer [39]. Roughly, the goal of oblivious circuit evaluation is for two parties, Alice and
Bob, to evaluate a circuit on a joint input without Alice or Bob revealing their input to
the other.

Oblivious circuit evaluation is similar to obfuscation. Suppose Alice is the “obfuscator”,
and Bob is the “evaluator”. Let the circuit they are trying to evaluate be a universal
circuit U . U takes as input C and m, where C is a description of the circuit Alice wishes
to obfuscate, and m is the input on which Bob would like to evaluate C. U outputs C(m).
An oblivious circuit evaluation protocol where Alice’s “input” is C, and Bob’s “input” is
m would allow Bob to evaluate U(C,m) = C(m) without learning Alice’s input C. In fact
oblivious circuit evaluation can be relaxed for the purposes of obfuscation, because in the
obfuscation setting it is unimportant to prevent Alice from learning Bob’s input.

Kilian’s oblivious circuit evaluation protocol first converts U into an equivalent width-5
length-n matrix branching program M = (A0, A1, {Ai,b}, inp). For each 1 < i < n, let Ri

be a random permutation in S5. Let R0 = Rn = I. Then the randomized matrix branching
program is

MR = {A0, A1, {Ãi,b = Ri−1Ai,bR
−1
i }ni=1, inp}.

Note that
n∏
i=1

Ãi,bi = A1,b1R
−1
1 ·R1A2,b2R

−1
2 · · · · ·Rn−1An,bn =

n∏
i=1

Ai,bi

so that MR computes the same function as M .

In Kilian’s protocol, the randomized matrices corresponding to Alice’s input (that is,
matrices {Ãk,Cinp(k)} where inp(k) corresponds to a bit from C rather than m) are fixed and

46

given to Bob. Note that if Bob is given Ãi,0, he is not given Ãi,1, and that since the matrices
have been randomized, Bob cannot tell which bit a given matrix corresponds to even with
access to the Ai,b’s. Indeed, for a fixed input (C,m), Kilian shows how to simulate the
randomized matrices knowing only the product, and not the plaintext matrices. Kilian’s
randomization therefore does a much better job of concealing the plaintext matrices than
a GES does.

Furthermore, Kilian’s randomization enforces the correct order on the computation of
all multilinear forms. For example, computing

∏1
i=n Ãi,bi does not allow the attacker to

also compute
∏1

i=nAi,bi because multiplying the Ãi,bi ’s out of order will fail to cancel the
Ri factors.

To summarize, Kilian’s randomization in combination with an Asymmetric GES con-
ceals the matrices of the branching program, makes attacks that do not involve computing
multilinear forms difficult, and prevents an attacker from computing any multilinear form
that does not respect the order or multilinear structure of the branching program.

The resulting obfuscation procedure is as follows:

Given a circuit C in NC1 to obfuscate, find a universal circuit U for circuits of size |C|
that takes as input a circuit description C ′ of length ` and a circuit input m of length `′ and
outputs the evaluation C ′(m) of the given circuit on the requested input. Suppose for ease
of description that the first ` bits of the input to U correspond to C ′ and the next `′ bits of
the input to U correspond to m. Use Barrington’s Theorem to convert U into an equivalent
oblivious matrix branching program of width 5 and length n: M = (A0 = I, A1, {Ai,b}, inp).

Choose a large prime q that is smaller than the order of the message space of the GES
(for CLT, q <

∏
gi). For each 1 < i < n choose a random 5 by 5 invertible matrix Ri with

entries in Zq and compute their inverses (note that unlike in Killian’s randomization, the
Ri’s are not restricted to being permutation matrices). The randomized matrix branching
program is MR = {A0, A1, {Ãi,b = Ri−1Ai,bR

−1
i }ni=1, inp}.

Next, use a GES to encode the entries of each Ãi,b at level ei to getA′i,b = Encode(Ãi,b, ei).
If C ′ is the circuit description of C that can be input to U , then the obfuscation of C is
comprised of:

• {A′i,C′
inp(i)
| inp(i) ≤ `}, the fixed set of matrices that are selected by the bits of C ′,

• {A′i,b | inp(i) > ` and b ∈ {0, 1}}, the set of matrices that are operated on by the
bits of m,

• a level-1 encoding of A1,

47

• all public parameters of the GES (including a zero-testing parameter at level-1).

Note that only one of the matrices in each step of the branching program that corresponds
to an input bit from C ′ is published, whereas both matrices are published for steps that
correspond to an input bit from m.

To evaluate the obfuscated branching program on an input m, for each step i, choose
the matrix A′i,C′

inp(i)
if inp(i) ≤ ` and choose the matrix A′i,minp(i)−` if inp(i) > `. Compute

the product P of the chosen matrices in order from i = 1 to n. Finally, zero-test the matrix
P − A1. If P − A1 is the all-zeros matrix as confirmed by the zero-test, then C(m) = 1.
Otherwise, C(m) = 0.

Partial Evaluation and Mixed Input attacks

There are still two classes of forbidden multilinear forms an attacker can compute from a
branching program obfuscated in the manner above.

First, consider a randomized branching program

MR = {A0, A1, {Ãi,b = Ri−1Ai,bR
−1
i }ni=1, inp}.

An attacker can choose two different inputs (y, y′) to this branching program, and evaluate
the first j steps of the branching program on each input. This yields PyR

−1
j and Py′R

−1
j .

Since the random mask is the same for both inputs, the attacker can learn whether or
not the intermediate results of the branching program on y and y′ are the same by simply
comparing PyR

−1
j to Py′R

−1
j . This is called a partial evaluation attack.

Remark 3.2.3 (Partial evaluation attacks on encoded branching programs). Discussion of
partial evaluation attacks in [31] is limited to partial evaluation attacks against branching
programs that have been randomized, but not encoded. A partial evaluation attack is more
difficult to mount against a branching program that has been randomized and encoded
than one that has only been randomized. This is because checking equality of two encoded
matrices requires zero-testing. Checking equality of two partial evaluations P1 and P2

amounts to zero-testing P1 − P2. However, P1 and P2 are encoded below the zero-testing
parameter (otherwise they would be complete evaluations), rendering them impossible to
directly zero-test.

Instead the encoded matrix P1 − P2 must have its level raised to the zero-testing level
via multiplication by an appropriate level encoding. Concretely, if P1 and P2 are level-∑j

i=1 ei encodings, we can check if P1 = P2 by finding a level-
∑n

i=j+1 ei encoding c of a

48

non-zero element m ∈ Zq, and zero-testing (P1 − P2) · c which is a matrix whose entries
are level-1 encodings. To generate c, choose a random entry from each A′i,0 for j < i ≤ n,
and compute their product. Since the A′i,0’s are encodings of uniformly random matrices,
m is non-zero with high probability.

An attacker can also compute an illegal multilinear form by disregarding input con-
sistency as she evaluates the branching program. At each step, the branching program
examines a particular bit of the input. Often, two different steps will examine the same
input bit. Suppose step i and j both examine the same input bit (that is, inp(i) = inp(j)),
but the attacker chooses the matrices A′i,0, and A′j,1 instead of A′i,0 and A′j,0 or A′i,1 and A′j,1.
Then the resulting product will compute a multilinear form encoded at level 1 that does
not correspond to any honest evaluation of the branching program. This attack therefore
reveals some of the branching program’s non-oracle behaviour. This is known as a mixed
input attack.

Preventing Partial Evaluation

Garg et al.’s strategy for defeating partial evaluation is to introduce randomization that is
only cancelled on the ends of the branching program, in contrast to Kilian’s randomization,
which is cancelled by intermediate computations. Specifically, each 5 by 5 matrix Ai,b of
the original branching program is replaced by a 2m+ 5 by 2m+ 5 matrix Di,b for some m:

Di,b =

[
di,b 0
0 Ai,b

]
where each di,b is a random 2m by 2m diagonal matrix with entries in Zq. Garg et al.
precautionarily take m = 2n+5, though they mention that they are unaware of any attack
that arises if m = 1.

Then
∏n

i=1D
′
i,minp(i)

is an encoding of

R0 ·
[
dm 0
0

∏n
i=1Ai,minp(i)

]
·R−1

n .

Before, R0 and Rn were chosen to be the identity. Here, choose them randomly as with
the other Ri’s. In order to allow users to cancel R0 and Rn, choose two random 5-vectors
s and t. Include in the obfuscation encodings ŝ, t̂ of two “bookend” (2m + 5)-vectors
s∗ = (0, rs, s) · R−1

0 and t∗ = Rn · (rt,0, t)T . Here, rs and rt are random m-vectors. Let

49

s∗ and t∗ be encoded at levels e1 and en+2 respectively (and consequently, encode D̃i,b at
level ei+1 instead of ei). Finally, include a level-1 encoding of p′ = 〈s, t〉.

To evaluate the obfuscated circuit on the input m, compute ŝ ·
∏n

i=1D
′
i,minp(i)

· t̂ which

is an encoding of [
0 0
0 s ·

∏n
i=1Ai,minp(i) · t

]
.

If Am =
∏n

i=1Ai,minp(i) is the identity, then s ·Am · t = 〈s, t〉, which can be compared to p′

via the zero-testing parameter.

Remark 3.2.4 (Intuition for the partial evaluation defense). Suppose an attacker wishes
to perform a partial evaluation attack on two inputs m and m′. He computes encodings of
Ri · Pm · R−1

j and Ri · Pm′ · R−1
j . Without the above defense mechanism, he could simply

compare the two encodings by using the strategy outlined in Remark 3.2.3. If the Di,b’s are
used, then the random diagonal entries will with high probability prevent any comparison
between Ri · Pm ·R−1

j and Ri · Pm′ ·R−1
j .

To see this, consider

Ri ·
[
dm 0
0 Am

]
·R−1

j =

[
Ri,1 Ri,2

Ri,3 Ri,4

]
·
[
dm 0
0 Am

]
·
[
Rj,1 Rj,2

Rj,3 Rj,4

]

=

[
Ri,1dmRj,1 +Ri,2AmRj,3 Ri,1dmRj,2 +Ri,2AmRj,4

Ri,3dmRj,1 +Ri,4AmRj,3 Ri,3dmRj,2 +Ri,4AmRj,4

]
.

In particular, every entry depends on dm, so as long as m and m′ use different matrices
at some point during the computation (that is, as long as inp examines a bit where m
and m′ differ during one of the steps included in the partial evaluation), dm 6= dm′ , so
even if the bottom 5 by 5 corners of Pm and Pm′ match, it would be impossible to tell by
examining the partial computations.

Remark 3.2.5 (Partial evaluations on similar inputs). The goal of a partial evaluation
attack is to determine whether two different inputs produce the same intermediate result
at some point in the circuit. By examining inp, it is easy to construct two inputs m and m′

such that this is the case. Any pair of inputs that agree on bits inp(1), inp(2), . . . , inp(k)
will yield the same result in a partial evaluation of the first k steps in the branching pro-
gram, regardless of the technique used to prevent partial evaluation attacks. Since learning
that the partial evaluations on two different inputs are the same is not necessarily informa-
tion accessible from an oracle to the obfuscated function, this is a breach of VBB security.
However, it is not a breach of iO security.

50

In the indistinguishability setting, the goal of an attacker is to distinguish between the
obfuscations of two functionally equivalent input assignments to a universal branching pro-
gram. That is, two different inputs to the universal circuit that produce the same function.
A user cannot hope to distinguish between two input assignments by only examining inp,
since the universal branching program is oblivious. inp does not depend on the input, so
it cannot help distinguish between two different inputs.

Preventing Mixed Inputs

There are many ways to defend obfuscation against mixed input attacks. Garg et al.’s
original method is presented here.

Start by selecting random scalars αi,b ∈ Zq. Instead of randomizing and encoding the
Di,b’s, randomize and encode the matrices[

di,b 0
0 αi,bAi,b

]
.

If αm =
∏n

i=1 αi,minp(i) , then attempting to evaluate the resulting branching program on
input m as before yields s ·αmAm ·t, which is αm 〈s, t〉 if Am is the identity. Unfortunately,
it is not possible to compare this to 〈s, t〉 with the zero-testing parameter, and it is not
possible to supply encodings of every possible αm 〈s, t〉 in the public parameters.

Instead, a “dummy” branching program is supplied in the public parameters. The
dummy branching program consists of the matrices[

d′i,b 0
0 α′i,bI

]
.

It is randomized and encoded just as the “primal” branching program. Note that since
all the Ai,b’s have been replaced by the identity matrix, the dummy program computes
the constant function 1. Here, the d′i,b’s are chosen randomly as they are in the primal
program, but the α′i,b’s are chosen so that the output of the dummy program matches the
output of the primal program on legal input assignments where the primal program would
output 1.

Specifically, for each j ≤ |m| and each b ∈ {0, 1}, choose random α′i,b’s such that∏
inp(i)=j

αi,b =
∏

inp(i)=j

α′i,b.

51

This restriction ensures that for legal input assignments, αm = α′m. Indeed if m is a
legal input assignment, then

αm =

|m|∏
j=1

∏
inp(i)=j

αi,mi =

|m|∏
j=1

∏
inp(i)=j

α′i,mj = α′m.

However, if an attacker tries to use a mixed input assignment m, it is no longer guaranteed
that ∏

inp(i)=j

αi,mi =
∏

inp(i)=j

α′i,mi ,

because the α′i,b’s were selected only to ensure equality in the case where either all the mi’s
are 1 or all the mi’s are 0.

Complete Garg et al. Obfuscation Algorithm

Combining all these components yields the complete obfuscation algorithm:

Given a circuit family Cλ,

1. Find a universal circuit Uλ for the family Cλ. Use Barrington’s algorithm to convert
Uλ into an equivalent oblivious matrix branching program M = (I, A1, {Ai,b}, inp).
Also create a dummy branching program M ′ = (I, A1, {I}, inp) (note that both
instances of inp are the same function).

2. Generate a GES with a zero-testing parameter at level-1n+2, where n is the length
of M . Let params be the public parameters of the GES.

3. Choose a prime q such that messages in Zq can be encoded by the GES. Choose
four random 5-vectors with entries in Zq: s, t, s′, t′ along with four random m-
vectors rs,rt,r

′
s, and r′t for some fixed integer m. Also, choose two sets of random

(2m+5)×(2m+5) invertible matrices: {Ri}ni=0 and {R′i}ni=0. Choose two sets of 2m-
vectors with entries in Zq to be the random diagonal entries: {di,b}ni=1 and {d′i,b}ni=1.
Finally, choose random scalars αi,b ∈ Zq and α′i,b ∈ Zq such that

∏
inp(i)=j αi,b =∏

inp(i)=j α
′
i,b for all j and b ∈ {0, 1}.

4. Compute the randomized branching program and randomized dummy program: MR =
(I, A1, {Ãi,b}, inp) and M ′

R = (I, A1, {Ã′i,b}, inp) where

Ãi,b = Ri−1 ·
[
di,b 0
0 αi,bAi,b

]
·R−1

i

52

and

Ã′i,b = R′i−1 ·
[
d′i,b 0
0 α′i,bI

]
·R′i

−1
.

5. Use the GES to generate level-e1 encodings ŝ, ŝ′ of s∗ = (0, rs, s) · R−1
0 and s∗′ =

(0, r′s, s
′) · R′0 respectively. Similarly, generate level-en+2 encodings t̂, t̂′ of t∗ =

Rn · (rt, 0, t) and t∗′ = R′n · (r′t, 0, t′) respectively.

6. Encode the entries of each matrix Ãi,b and Ã′i,b at level ei+1. Call the encoded matrices

Âi,b and Â′i,b.

7. Let IC be the set of steps in the universal branching program that examine an input
bit corresponding to part of the circuit description C. Then the obfuscation of C is
comprised of

{(i, Âi,Cinp(i)) | i ∈ IC}, {(i, Â′i,Cinp(i)) | i ∈ IC},

{(i, Âi,b) | i 6∈ IC , b ∈ {0, 1}}, {(i, Â′i,b) | i 6∈ IC , b ∈ {0, 1}},

ŝ, t̂, ŝ′, t̂′, params, inp.

To evaluate an obfuscation of C on the input j, let J = (C, j) so that U(J) = U(C, j) =
C(j). Then use params to zero-test the matrix

(̂s ·
n∏
i=1

Âi,Jinp(i) · t̂)− (̂s′ ·
n∏
i=1

Â′i,Jinp(i) · t̂
′).

If the zero-test returns true, then the primal and dummy produce the same result on
the input j, and since the dummy program always computes I, the primal program also
computes I. Therefore, C(j) = 0. Otherwise, C(j) = 1.

Remark 3.2.6 (Zero-izing attacks on obfuscation). The Garg et al. indistinguishability
obfuscator does not require evaluators to be able to generate their own encodings. All
they need to evaluate obfuscated code is the zero testing parameter and the modulus of
the multilinear map. As such, publishing level-0 encodings to enable random sampling
is unnecessary, as is publishing level-1 encodings of 0 for re-randomization. This means
that the zero-ization attacks from Chapter 2 do not apply in an obvious way to multilinear
maps used in obfuscation.

Recall that these attacks depend on the attacker being able to construct low-level
encodings of zero. In the multi-party Diffie Hellman procedure, low-level encodings of

53

zero are published as part of the public parameters. In the obfuscation setting, no such
encodings are published, and it is not clear how to construct them from the public data.
Indeed, each matrix in the published branching program is an encoding of a matrix with
entries randomized over Zq. Therefore, with high probability, none of the public matrices
contain encodings of 0.

Researchers therefore remain hopeful that multilinear maps in the obfuscation setting
are unaffected by the zero-ization attacks

3.2.2 Extending to Circuits in P

The paradigm of obfuscating circuits by converting them to equivalent branching programs
is limited to obfuscating log depth circuits because the conversion process has an exponen-
tial dependency on the depth of the input circuit. Therefore, obfuscating larger circuits
requires a different strategy. Garg et al. leverage Fully Homomorphic Encryption (FHE)
and their NC1 indistinguishability obfuscator to achieve obfuscation for P .

Assume the existence of an efficient FHE scheme with a decryption algorithm in NC1.
Also assume the existence of an indistinguishability obfuscator iONC1 for NC1 circuits. To
obfuscate a circuit C from a circuit family {Cλ}, where {Uλ} is a universal circuit family
for {Cλ}, one does the following:

1. Generate two FHE key pairs, (PK1, SK1) and (PK2, SK2).

2. Encrypt a description of C for input to Uλ under both public keys:

g1 = Encrypt(PK1, C), g2 = Encrypt(PK2, C).

3. Use iONC1 to obfuscate the program P1. P1 is the program that on input (m, e1, e2, φ)
first checks to see if φ proves that e1 and e2 are the homomorphic evaluations of Uλ
on the input C and m under the keys PK1 and PK2 respectively. If so, P1 returns
the decryption of e1 under SK1.

4. The obfuscation is (g1, g2, PK1, PK2, P = iONC1(P1)).

To evaluate on an input m,

1. Compute e1 = Eval(PK1, Uλ(g1,m)) and e2 = Eval(PK2, Uλ(g2,m)).

54

2. Compute a low-depth proof φ that e1 and e2 were computed correctly.

3. Evaluate P (m, e1, e2, φ).

Since the encryption scheme is fully homomorphic and g1 is an encryption of C, e1 =
Encrypt(PK1, Uλ(C,m)) = Encrypt(PK1, C(m)), so the correct evaluation of the circuit
is the decryption of e1. Similarly for e2.

Remark 3.2.7 (Two secret keys). This extension algorithm looks bizarre because C gets
encrypted by two different keys, but only one of the encryptions is actually published in
obfuscated form. Why then is it necessary to include a second encryption in the public
parameters?

The two key structure is a way to sidestep the drawback of indistinguishability obfusca-
tion. The indistinguishability property of iO does not guarantee that iO(P1) conceals SK1.
However, iO(P2) where P2 that is the same as P1 except that it outputs the decryption
of e2 under SK2 certainly conceals SK1. P2 contains no information about SK1, and P1

contains no information about SK2. But P1 and P2 are functionally equivalent circuits,
so iO(P1) is indistinguishable from iO(P2). Since iO(P1) is indistinguishable from iO(P2),
and iO(P2) reveals nothing about SK1, iO(P1) also reveals nothing about SK1.

Step 2 is done by keeping track of the value of each wire when evaluating the circuit
corresponding to Eval(PK1, Uλ(g1,m)). The program P1 can check the validity of φ by
checking the validity of each gate in the circuit Eval(PK1, Uλ(g1,m)) (since φ tells P1 all
the values of the intermediate wires). Crucially, this validation step is an NC1 operation
because checking correctness of a single gate is a constant depth circuit operation. Since
the decryption algorithm of the FHE scheme is also assumed to be in NC1, the program
P1 is in NC1, and is therefore obfuscatable by iONC1 .

Example 3.2.8 (Low-depth proof). Consider an AND circuit with two inputs and one
output. There are three wires in this circuit, so the proof φ will be a 3-bit string. The
verification circuit will have an input gate for each bit of the proof (3 input gates in this
case). For each gate gi in the input circuit, the verification circuit will have a gate Gi that
computes the boolean statement gi(a, b) = c where a, b, and c are the bits of the proof
that correspond to the input wires (a, b) and the output wire (c) of gi.

For the AND circuit example, the verification circuit will have one equality test gate
that will check whether φ1 AND φ2 = φ3. Each gate in the verification circuit gets its
input directly from an input gate corresponding to a particular wire in the input circuit.
No gate in the verification circuit ever gets its input from another gate in the verification

55

circuit. This means that each of the gates can be verified in constant depth independently
of each other. All that is left for the verification circuit to do after it checks all the gates
is check that all the outputs in the gate verification step are 1. This can be done in log
depth, hence the verification circuit is in NC1.

Security

Garg et al. prove their scheme is secure assuming the FHE scheme is IND-CPA, and that
iONC1 is an indistinguishability obfuscator. They use the following sequence of hybrids to
show that an obfuscation of C0 is indistinguishable from an obfuscation of C1 if C0 and C1

are functionally equivalent circuits:

1. g1 = Encrypt(PK1, C0), g2 = Encrypt(PK2, C0), and P = iONC1(P1). This is an
honest obfuscation of C0.

2. g1 = Encrypt(PK1, C0), g2 = Encrypt(PK2, C1), and P = iONC1(P1). Due to the
IND-CPA property of the FHE scheme, this hybrid is indistinguishable from the first
one. This follows because P1 contains no information about SK2, and therefore P
contains no information that might be used to distinguish between Encrypt(PK2, C0)
and Encrypt(PK2, C1). Note that the security of the FHE scheme is not enough to
prove that game 2 is indistinguishable from game 5, because it might be the case that
P does provide useful information for distinguishing between Encrypt(PK1, C0) and
Encrypt(PK1, C1).

3. g1 = Encrypt(PK1, C0), g2 = Encrypt(PK2, C1), and P = iONC1(P2). Here, P2 is
the same program as P1, except that it outputs the decryption of e2 under SK2. Note
that P1 and P2 compute the same function, because they both reject all inputs for
which they would not return Decrypt(Encrypt(U(C,m))). This hybrid is indistin-
guishable from the second by the indistinguishability of iONC1(P1) and iONC1(P2).

4. g1 = Encrypt(PK1, C1), g2 = Encrypt(PK2, C1), and P = iONC1(P2). Due to the
IND-CPA property of the FHE scheme, this hybrid is indistinguishable from the third
one.

5. g1 = Encrypt(PK1, C1), g2 = Encrypt(PK2, C1), and P = iONC1(P1). This is an
honest obfuscation of C1.

For more details, see Section 5.2 of [31].

56

3.3 Efficiency of Obfuscation

The Garg et al. indistinguishability obfuscator is hopelessly impractical. An obfuscation
of a circuit with size s at security level λ has size O(λ3s10.92). To get a concrete idea of
how large this is, consider the following example:

Example 3.3.1 (Obfuscation size for FHE decryption circuit). Let the security level λ be
128 bits. A rudimentary lower bound on the depth of the circuit P1 from Section 3.2.2 is
7. To see this, notice that P1 is at least as deep as the underlying NC1 FHE decryption
algorithm. This decryption algorithm has depth logarithmic in λ (by the definition of
NC1), and log2 λ = 7.

Obfuscating P1 requires finding a universal circuit U to which P1 could be input. There
is a construction of a universal circuit whose depth is not asymptotically larger than the
depth of the input circuit [20]. That is, if P1 has depth d and size λ, then a universal
circuit Uλ,d for circuits of size λ and depth d can be constructed such that the size of Uλ,d
is polynomial in λ, and the depth of Uλ,d is O(d). However, for shallow circuits (such as
d = 7), there is a large constant factor increase in depth.

If this step is ignored, and P1 is instead converted directly to a branching program
using Barrington’s algorithm, the resulting branching program has length n ≈ 47 = 16384.

Therefore, even with very generous assumptions about the length of the branching
program to be obfuscated, the multilinear map needs to be given with multilinearity level
16384. Using appropriate CLT parameter sizes gives a modulus x0 with size ≈ 246 bits.
The total obfuscation is about 65536 (2m+ 5)× (2m+ 5) = (4n+ 15)× (4n+ 15) encoded
matrices, which is roughly 248 encodings. The total size of the obfuscation of P1 is therefore
about 294 bits.

Example 3.3.2 (Obfuscation size for depth λ3 circuit). Suppose that for security level λ,
we wish to obfuscate a circuit Cλ of input size λ, depth λ3, and size λ5. Clearly this circuit
is not in NC1, so we will use the bootstrapping method from Section 3.2.2.

Using the depth-universal circuit construction from [20] gives a universal circuit Uλ of
depth O(λ3) and size O(5λ18 log λ). The circuit Φλ for checking a low-depth proof that
Uλ was computed correctly has one input for each wire of Uλ, and depth on the order of
the log of the number of inputs. So Φλ has depth O(18 log λ). The program P1 requires
running Φλ, and then a FHE decryption circuit, which has depth O(log λ). In total, P1 has
depth d = O(19 log λ). Note that computing iONC1(P1) requires first finding a universal
circuit UP for P1. Recall that UP can be constructed so that the depth of UP is a constant

57

factor times the depth of P1. For the sake of simplicity, we will assume that the hidden
constant is 1, so that the depth of UP is 19 log λ.

Converting UP into a branching program by Barrington’s Theorem yields a branching
program of length n = 419 log λ = λ38. The multilinearity required by the GES is therefore
λ38. The size of a single encoding for a GES with multilinearity λ38 is O(λ79). The
obfuscated program will consist of 4n (2m+5)×(2m+5) matrices of encodings. Garg et al.
suggest taking m = 2n+5 [31]. This gives a total of 4n ·(4n+15)2 = O(64n3) = O(64λ114)
encodings.

The obfuscation size is therefore O(64λ193). For λ = 128, we get an obfuscation size of
21357 bits. Note that this is much larger than the trivial VBB obfuscator of Bernstein et
al. (see Example 3.0.6) which has size 2136 bits for this particular circuit.

Suffice it to say that some dramatic improvements are necessary.

3.3.1 Avoiding Barrington’s Theorem

The first route researchers have taken towards practical obfuscation is to avoid Barrington’s
algorithm for converting circuits to branching programs. Barrington’s algorithm outputs
a branching program of length 4d where d is the depth of the circuit to be converted. As
seen in Example 3.3.1, this exponential dependency is a problem even for small circuits.

Barrington’s algorithm can be avoided because programs can be represented by multiple
branching programs. Instead of using Barrington’s branching program to express a circuit,
which is of length n = 4d, one might like to find a shorter equivalent branching program
to obfuscate. The first such method is due to Ananth et al. [1].

Instead of obfuscating an oblivious matrix branching program as in Definition 3.1.2,
they obfuscate a “relaxed” branching program where the output is discerned by checking
a particular entry of the branching program matrix product instead of checking whether
the whole matrix is the identity. The relaxed branching program is much shorter, but no
longer uses constant size matrices. This tradeoff between length and width produces a net
efficiency gain because increasing the length increases the necessary level of multilinearity,
but increasing the width does not. Since the high level of multilinearity is the main source
of inefficiency, it is helpful to reduce the multilinearity even at the cost of increasing other
parameters.

Furthermore, the width of branching programs in the Garg et al. obfuscator is increased
to 4n+ 15 anyway as part of the defence against partial evaluation attacks.

58

Any NC1 circuit of size s can be “balanced” to have depth at most ≈ 1.82 log2 s [43].
Using Barrington’s algorithm to convert the formula to a branching program results in a
branching program of length at most n = 41.82 log2 s = s3.64 and width 5. Then s3.64 levels
of multilinearity are needed resulting in a CLT modulus of size O(4λ3s7.28). Ignoring the
increase in width, the obfuscation consists of 2s3.64 encoded 5 by 5 matrices, so the total
size of the obfuscation isO(λ3s10.92). Evaluating the obfuscated circuit requires multiplying
2s3.64 5× 5 matrices.

If we consider the matrices of the branching program to be (4n+15)×(4n+15) instead
(see Section 3.2.1), we get a total obfuscation size of O(λ3s18.2).

Ananth et al. manage to convert a balanced circuit of size s (and depth d ≈ 1.82 log2 s)
instead to a relaxed branching program of length s = 4d/3.64 ≈ 1.46d and width 2s. In this
case, only s levels of multilinearity are necessary, giving a CLT modulus of size O(4λ2s2).
The obfuscation consists of 2s encoded 2s×2s matrices, so the total size of the obfuscation
is O(32λ2s5). Evaluating the obfuscated circuit requires multiplying 2s 2s × 2s matrices.
Note that there is still an exponential dependency on the depth, but the base is significantly
smaller.

Example 3.3.3 (Obfuscation size without Barrington). Examples of FHE schemes with
decryption algorithms in NC1 have decryption algorithms of size Õ(λ) and depth O(log2 λ)
[17]. Therefore, a lower bound on the size of P1 is λ. To obfuscate P1 for λ = 128, Ananth’s
obfuscation algorithm requires multilinearity of at least 128 (instead of 16384 as in Example
3.3.1). This makes a CLT encoding about 7.46 billion bits, or 932 MB.

Evaluating the obfuscated program requires 128 multiplications of 30 × 30 matrices,
where each entry is 932 MB. This is an improvement, but actually evaluating the program
still requires ≈ 258 operations (assuming integer multiplication of n-bit integers is done
in O(n log n log log n) and matrix multiplication of 30 × 30 matrices is done in ≈ 302.373

multiplications).

3.3.2 Avoiding Branching Programs

Branching programs provide a nice structure for obfuscation, but there are two large ef-
ficiency problems. First, in both the Garg et al. and the Ananth et al. algorithms, a
branching program derived from a circuit has length exponential in the circuit depth (4d

for the former, and 1.46d for the latter). This means not only that the level of multilinearity
depends exponentially on the depth, but that the time it takes to evaluate the obfuscated
circuit depends exponentially on the depth. Second, branching programs are fundamen-
tally limited to computing decision problems. Obfuscating a circuit with multiple bits of

59

output using a branching program therefore requires one branching program per output
bit.

Zimmerman describes an obfuscation algorithm that avoids branching programs com-
pletely [45]. Zimmerman’s method eliminates the exponential dependency of evaluation
time on the depth, and allows obfuscation of circuits with multiple output bits. Note that
exponential multilinearity is still necessary.

Zimmerman’s construction operates directly on keyed arithmetic circuits where the goal
is to obfuscate the key, but not necessarily the structure of the circuit. Any circuit can be
converted to a keyed circuit by using a universal circuit. Using this limitation allows for
the gates of the circuit to be published so that the circuit can be evaluated without needing
to be converted to a branching program. Multilinear encodings are used to encode the key,
and enforce honest evaluation of the circuit on that key. For the complete construction,
see [45].

The result is an obfuscation scheme where evaluation only takes O(d2s2 + n2) multi-
linear map operations where d is the circuit depth, s is the size, and n is the input size.
Unfortunately, each gate of the circuit needs to be encoded at a separate level, and there
are in general, exponentially many levels involved, which means the degree of multilinearity
needed is therefore still exponential in d.

60

Chapter 4

Applications

Cryptographic multilinear maps and code obfuscation can be used to achieve a myriad of
cryptographic goals. This chapter will be the subject of three such applications: broadcast
encryption, non-interactive key exchange (NIKE), and RSA-FDH.

The goal of broadcast encryption (BE) is for a sender to be able to broadcast a message
to a large set U of users, but only have a subset S, specified on sending, of them be able
to decrypt. It should be the case that even if all the users outside S collude, they should
not be able to discover the broadcast. A broadcast encryption scheme has a number
of performance metrics including public key size, ciphertext size, and private key size.
Ideally, key sizes and ciphertext size should not depend on the size of S. There is a simple
broadcast encryption scheme where the public keys and ciphertexts grow linearly with
the size of S, while the private keys are small. We will see how to use multilinear maps
and code obfuscation to improve on this asymptotically [12]. We stress that these results
are only an asymptotic improvement, and that currently, for realistic parameter sizes,
existing broadcast encryption algorithms perform significantly better than their multilinear
counterparts.

In Chapter 2, we saw that a one-round multi-party key exchange can be implemented
using multilinear maps. However, this scheme requires a trusted third party (TTP) to
generate keys. Furthermore, the TTP is trivially able to learn any user’s private key. Boneh
and Zhandry showed how to use indistinguishability obfuscation (instead of just multilinear
maps) to create a non-interactive multi-party key exchange that does not require a trusted
third party [14]. While it is clear that relying on iO instead of multilinear maps has a huge
impact on performance, this remains an interesting result because of the avoidance of the
TTP, and possible avoidance of the zero-izing attacks on the CLT multilinear map.

61

The security of RSA-FDH is easily proven in the random oracle model [5]. However,
cryptographers have been unable to find a concrete hash function that behaves as a random
oracle. In 2014, Hohenberger, Sahai and Waters showed how to use indistinguishability
obfuscation to create user-specific hash functions for which it is possible to prove the
security of RSA-FDH without the random oracle model [37]. Since the hash functions are
user specific, and are included as part of a public key, this is not true RSA-FDH in the
sense that it would not be possible to simply substitute this new iO hash function for the
old hash function in an implementation of RSA-FDH. Nevertheless, this application is an
excellent example of the power that indistinguishability obfuscation could one day bring
to the world of cryptography.

4.1 Broadcast Encryption

Definition 4.1.1 (Broadcast Encryption). Let G be a set of identities. A (multi-sender)
broadcast encryption (BE) scheme consists of three efficient algorithms:

• KeyGen(G, λ) takes the identity set and a security parameter λ. KeyGen outputs
a secret key ski and a public key pki for each i ∈ G.

• Encrypt(S) takes S ⊂ G and outputs the encryption c of a random key k for use in
a predetermined symmetric encryption scheme, and a header h.

• Decrypt(S, h, c, ski) outputs k if i ∈ S and c = Encrypt(S).

In a multi-sender broadcast encryption scheme, KeyGen is run by a trusted third party
who distributes the key pairs (ski, pki) to each identity in G. Any identity in G should be
able to establish a symmetric scheme key k among any subset S ⊂ G. It should be the case
that even if every user outside of S colludes, they are not able to discover k. In a single-
sender broadcast encryption scheme, only the central entity known as the “broadcaster”
can encrypt messages.

The three main efficiency metrics used by broadcast encryption schemes are the cipher-
text size, the public key size, and the private key size. Ideally, none of these should depend
on the size of S, but finding a scheme where that is true has proven difficult.

62

4.1.1 Boneh-Silverberg Broadcast Encryption

Example 4.1.2 (Elementary broadcast encryption scheme). Consider the following broad-
cast encryption scheme: Each user in G has a public-private key pair for some public key
encryption scheme. An entity i that wishes to broadcast to a subset of users S encrypts
a random key k for a symmetric scheme |S| times, once using each public key of the users
in S. While the size of each private key in this scheme does not depend on S, the size of
the ciphertext grows linearly with the size of S. Similarly, the public parameters also grow
linearly with the number of users. In light of this simple algorithm, the goal of broadcast
encryption design is to reduce the size of the ciphertext overhead and the public parameters
while keeping the private keys small.

Boneh and Silverberg showed that we can get a single-sender broadcast scheme from
multilinear maps with no ciphertext overhead, where the private key is a single group
element [10]. It goes as follows:

Let e : GN → GT be an ideal cryptographic multilinear map (see Definition 2.1.1).

1. KeyGen: Fix a function F : {0, 1}m → GN . Choose a random seed a ∈ {0, 1}m,
and set F (a) = (g1, . . . , gN). Finally, let g ∈R G be a random generator. Choose a
random α. The sender’s secret key is α, and user i’s secret key is ski = gαi .

2. Let

φS(i) =

{
gi, if i ∈ S,
g, otherwise.

Encrypt(S) = e(φS(1), . . . , φS(N))α.

3. Decrypt(S, gαi) = e(φS(1), . . . , φS(i− 1), gαi , φS(i+ 1), . . . , φS(N)).

Note that in this case, publishing c = Encrypt(S) is unnecessary (and would in fact be
equivalent to publishing the secret key k). Indeed, Decrypt only needs access to S, and ski
and not c or h. As such, the header in this scheme has size 0, and the “ciphertexts” are
the size of one element of GT . Furthermore, each private key is also only one element of G.
Finally, the public parameters are F and a. For security purposes, Boneh and Silverberg
take m (the bit-length of a) to be super-linear in log λ so that neither F nor a depend on
N [10]

Remark 4.1.3 (Boneh-Silverberg broadcast encryption scheme with CLT). This scheme
can be instantiated using CLT encodings. In the CLT analog, the gi’s should be level-1

63

encodings of messages mi, and g should be a level-1 encoding of 1. Finally, the sender’s
secret key K should be a level-0 encoding of α, and each user’s secret key should be a
level-1 encoding of mi · α. A user’s secret key should not be K · gi (even though this is a
valid level-1 encoding of mi · α) because this would allow every user to easily compute K.
A user’s secret must be some other level-1 encoding of mi · α.

The problem with instantiating this scheme using CLT is that it needs multilinearity
equal to the number of users. As we’ve seen, the size of each encoding is quadratic in the
multilinearity necessary. So despite the fact that private keys are a single encoding, the
size of this encoding scales linearly with the number of users. Similarly, the ciphertext is
an encoding, and thus scales quadratically with the number of users. So in fact, this is
much worse than the trivial scheme from Example 4.1.2.

4.1.2 Bilinear Broadcast Encryption

Before there were multilinear maps, Boneh, Gentry, and Waters (BGW) devised a multi-
sender broadcast scheme that uses bilinear maps, where the ciphertext and private key
sizes are constant in the number of users [8].

Let e : G2
1 → GT be a cryptographic bilinear pairing. Let G be a set of identities with

size N . For simplicity, we assume that G = {1, 2, . . . , N}.

1. KeyGen(G, λ): Select a random generator g of G and random integers α,γ. Denote
gi = gα

i
for 1 ≤ i ≤ 2N . Identity i’s public key is gi, and their private key is

gγi . Additionally, g, gγ, and gi for i 6= N + 1 are published as part of the public
parameters.

2. Encrypt(S): Pick a random t. Let h = (gt, (gγ ·
∏

j∈S gN+1−j)
t). The key K shared

among users in S is K = e(gN+1, g)t. The sender can compute this by computing
e(gN , g1)t.

3. Decrypt(S, h, ski): If h = (C0, C1), compute

K =
e(gi, C1)

e(gγi ·
∏

j∈S,j 6=i gN+1−j+i, C0)
.

The private keys are each a single group element, and the ciphertext overhead is only
two group elements. Unfortunately, the public key still scales linearly with the number of
users.

64

4.1.3 Multilinear Broadcast Encryption

Boneh, Waters, Zhandry (BWZ) make a small modification of the bilinear broadcast scheme
to reduce the public key size [12]. Their basic idea is to use the same scheme, but use
asymmetric multilinear maps to compress the public key.

Let G be a set of identities with |G| = N = 2n − 1. Let ei be the i’th characteristic
vector in Zn. Finally, let e be an asymmetric multilinear map with base-level encodings at
level-ei, and a zero-test parameter at level-2 (the all-2’s vector). Let p be a large prime for
which elements of Zp can be encoded under the asymmetric multilinear map.

1. KeyGen(G, λ): For fixed random α, γ ∈ Zp, let Xi be a level-ei encoding of α2i for
i < n, and let Xn be a level-1 encoding of α2n+1. Also, let Y be a level-1 encoding
of γ, and W be a level-2 encoding of α2n . The public key consists of the public
parameters to e, W , Xi for i ≤ n, and Y . Identity i’s private key ski is a level-1
encoding of αi · γ.

2. Encrypt(S): Sample a random level-0 encoding c. Suppose that c is an encoding of
t. Let

h = (c1, c · (Y +
∑
i∈S

Z2n−i))

where c1 is a level-1 encoding of t, and Zj is a level-1 encoding of αj. The key K
shared among users in S will be K = W · c, which is a level-2 encoding of t · α2n .

Zj can easily be computed from the Xi’s as follows. Let j1j2 . . . jn be the binary
representation of j. Let

X ′i =

{
Xi, ji = 1,

Vi, ji = 0,

where Vi is a level-ei encoding of 1. Then

Zj =
n∏
i=1

X ′i

is a level-1 encoding of
n∏
i=1

αji·2
i

= α
∑n
i=1 ji·2i = αj

as required.

65

3. Decrypt(S, h, ski): If h = (C0, C1), compute

K = (Zi · C1)−

(
(ski +

∑
j∈S,j 6=i

Z2n−j+i) · C0

)
.

Correctness

To prove correctness, it suffices to show that the output of Decrypt(S, h, ski) is a level-2
encoding of t ·α2n . To get the canonical information from this key (as K will be a different
encoding of t · α2n for each user), each user must apply the zero-testing process.

Now, Zi · C1 is a level-2 encoding of αi · t ·
(
γ +

∑
j∈S α

2n−j
)

, and(
(ski +

∑
j∈S,j 6=i

Z2n−j+i) · C0

)

is a level-2 encoding of t ·
(
αi · γ +

∑
j∈S,j 6=i α

2n−j+i
)

. So the output of Decrypt is a level-2

encoding of

t ·
∑
j∈S

α2n−j+i − t ·
∑

i∈S,j 6=i

α2n−j+i = t · α2n

as required.

Efficiency

Compared to the bilinear scheme, the ciphertext overhead is still two “group elements”
(though, the group is different), and the private keys are still one group element. However,
the number of group elements that need to be published in the public parameters is now
only logarithmically dependent on N instead of linearly. This comes at the cost of an
extra computational step. The real cost however is the use of a multilinear map. While
the public parameters may be very few group elements, those group elements are much
larger than they were in the bilinear case.

Example 4.1.4 (Comparison with bilinear broadcast encryption). If the size of the identity
set G is N = 2n− 1, the BWZ broadcast scheme requires a log2N -linear map. Recall from

66

Section 2.3.2 that the public parameters of such a multilinear map (when sampling and re-
randomization are required) consist of approximately 2λ+ 2λ

√
2 log2N · encodings. There

are log2N additional public encodings in the BWZ scheme, making for a total of

log2N + 2λ+ 2λ
√

2 log2N

encodings. Each encoding is O(4λ3 · (log2N)2) bits.

For λ = 128, we therefore have that the total size of the public parameters in the BWZ
scheme is

8, 388, 608 · ((log2N)3 + 256(log2N)2 + 256(log2N)2
√

2 log2N) bits.

The bilinear broadcast scheme on the other hand has N public keys, each of which is
a single group element. For security level λ = 128, a group element in a bilinear pairing
should be 256 bits. The public key size is therefore about 256 ·N bits.

Therefore, with the current state of multilinear maps, the public parameters of the
bilinear broadcast scheme are smaller than those of the multilinear scheme for all sets of
identities less than about 109 billion.

Additionally, since encodings are O(4λ3 · (log2N)2) bits, compared to 2λ bits in the
bilinear scheme, encryption and decryption time now depend on N . In particular, mul-
tiplying two 128-bit secure encodings takes at least 32, 768 · (log2N)2 times longer than
multiplying two elliptic curve points.

Remark 4.1.5 (Computing Xi). Computing Xi in general requires knowledge of the mul-
tilinear map secrets. Without the secrets, one would try and compute Xi by first sampling
a random encoding to select α (note that this sampling procedure would not actually reveal
α), and then by squaring this encoding an appropriate number of times. Unfortunately
current multilinear maps are bounded in the number of multiplications they can perform.

It is easy to convert the BWZ multilinear scheme into a single-sender system. Instead
of having a TTP generate the multilinear map parameters, simply have them be generated
by the sender. Also, do not publish any sampling or re-randomization encodings in the
public parameters. This way, only the sender who knows the multilinear map secrets will
be able to generate encodings, and thus only the entity that knows the multilinear map
secrets can generate valid headers. Doing this also reduces the size of the public parameters
by eliminating the need to publish sampling and re-randomization encodings.

67

4.2 NIKE

The remaining sections discuss applications of iO. When working with VBB obfuscation,
the benefit that obfuscation provides is usually pretty clear. For example, when converting
a symmetric key encryption scheme to a public key encryption scheme, VBB(Encrypt(k,m))
acts as a black box encryption oracle. An attacker can learn nothing of k from hav-
ing an encryption oracle, and it is therefore safe to publish the black box obfuscation
of Encrypt(k,m). However, it is not obvious that an indistinguishability obfuscator can
be used in the same way. Indistinguishability obfuscations can leak information about
the plaintext circuit, as long the obfuscation of every other functionally equivalent circuit
of the same size reveals the same information. Then perhaps it is not safe to publish
C = iO(Encrypt(k,m)) because C, and all other obfuscations of circuits that compute the
function Encrypt(k,m), might leak information about k.

The overall strategy when trying to obfuscate a circuit P with iO is to use the indistin-
guishability property, along with additional assumptions to show that there exists a circuit
C such that

1. iO(C) is indistinguishable from iO(P); and

2. C reveals nothing about P .

Note that it is enough for C merely to exist. It need never be computed. As long as
there exists a circuit whose obfuscation is both indistinguishable from iO(P) and reveals
nothing about P , iO(P) will reveal nothing of P .

C is often what’s called a punctured version of P . What this means is that C is equal to
P on all but polynomially many inputs, where C appears random instead. Once an attacker
commits to an input m, P can be punctured at m to get Cm such that Cm(n) = P (n) for
all n 6= m, and Cm(m) is random. The result is that Cm contains all the same information
as P , except the information the attacker is interested in. If it can be proven that iO(Cm)
is indistinguishable from iO(P) (which requires more than just the iO indistinguishability
property since Cm and P compute different circuits), then that will be enough to prove
that iO(P) reveals “nothing” about P , since it will be indistinguishable from a different
obfuscation that provably “reveals nothing” about P .

This section focuses on a particular example of this general technique, and demonstrates
how the preceding strategy is formalized.

68

4.2.1 PRGs and Punctured PRFs

The Boneh-Zhandry NIKE makes use of three cryptographic primitives: pseudorandom
generators (PRG), punctured pseudorandom functions (punctured PRF), and iO. A PRG
is a function that “extends” a random input to a longer pseudorandom output. A punctured
PRF is a PRF where knowledge of the punctured key enables the computation of the PRF
at all but a polynomial set of points.

Definition 4.2.1. A pseudorandom generator PRG is a function PRG : {0, 1}n → {0, 1}m
where m > n such that no polynomial time distinguisher D has non-negligible advantage
in the following security game:

1. The challenger chooses s ∈R {0, 1}n and b ∈R {0, 1}.

2. D is given rb =

{
PRG(s), b = 0,

r ∈R {0, 1}m, b = 1.

3. D returns b′ ∈ {0, 1}.

D’s advantage is |P (b′ = 1 | b = 1)− P (b′ = 0 | b = 1)|.

Definition 4.2.2. Let R denote a random function from {0, 1}n to {0, 1}m. A PRF is a
function PRF : {0, 1}k × {0, 1}n → {0, 1}m where for K ∈R {0, 1}k, no polynomial time
attacker can distinguish between PRF (K, ·) and R(·) with polynomially many queries to
the oracle functions.

Definition 4.2.3. A puncturable PRF is a PRF together with a function Puncture that
takes a PRF key K and a polynomial-size set S ⊂ {0, 1}n. Puncture outputs a punctured
PRF PRFS and a punctured PRF key KS such that PRFS(KS, x) = PRF (K, x) for all
x 6∈ S, and no polynomial time adversary A has non-negligible advantage in the following
security game:

1. A chooses a set S ⊂ {0, 1}n, and asks the challenger for a PRF punctured at S.

2. The challenger chooses K ∈R {0, 1}k, and computes

PuncturePRF (K,S) = (PRFS, KS).

PRFS and KS are given to A.

69

3. The challenger chooses b ∈R {0, 1}.

4. A makes polynomially many queries to an oracle PRF (K, ·).

5. A asks the challenger for polynomially many

rb =

{
PRF (K, x), b = 0,

r ∈R {0, 1}m, b = 1,

such that x ∈ S, and x was not queried in step 4.

6. A returns b′ ∈ {0, 1}.

A’s advantage is |P (b′ = 1 | b = 1)− P (b′ = 0 | b = 1)|.

As shown by Boneh and Waters, puncturable PRFs can be easily constructed [11].

4.2.2 Boneh and Zhandry’s NIKE

Let G be a set of identities (users), an arbitrary subset S of which may wish to compute
a shared secret. To do so, each party i ∈ S chooses a secret key ki for a puncturable
pseudorandom function PRF and a secret random seed si ∈ {0, 1}λ for a pseudorandom
generator PRG : {0, 1}λ → {0, 1}2λ, and computes xi = PRG(si). Finally, a public random
x0 ∈ {0, 1}2λ is agreed upon. Consider the program PKi created by party i:

• Inputs: j ∈ G, s ∈ {0, 1}λ, x1, . . . , x|G| ∈ {0, 1}2λ

• Constants: ki

1. If xj 6= PRG(s) return null.

2. Output PRFki(x1, . . . , x|G|).

User i’s public key consists of xi and iO(PKi). A user i in S can compute the shared
secret by first computing for each j ∈ G

x̂j =

{
xj, j ∈ S,
x0, j 6∈ S.

70

Next they compute iO(PKi∗)(i, si, x̂1, . . . , x̂|G|) = PRFki∗ (x̂1, . . . , x̂|G|) where i∗ is the
smallest element of S.

The only way for an attacker to provide iO(PKi∗) with input that does not abort is to
come up with a seed and corresponding pseudorandom number. But any seed they choose
that is not equal to one of the si for i ∈ S will alter the input to PRFki∗ , and hence fail to
compute the shared secret.

Definition 4.2.4 (Static security). The static security game for a NIKE is as follows:

A PPT adversary A selects a subset S of G. For each i ∈ S, choose a random seed
si ∈ {0, 1}λ. Compute xi = PRG(si) and iO(PKi∗). Finally, choose b ∈ {0, 1} at random
and compute

zb =

{
PRFki∗ (x̂1, . . . , x̂|G|), b = 0,

r, b = 1,

where r is chosen randomly. The adversary is given the xi’s, iO(PKi∗), zb, and x0. The
adversary returns b′ ∈ {0, 1}, and its advantage is |P (b′ = 1 | b = 1)− P (b′ = 1 | b = 0)|.

Theorem 4.2.5 (Boneh-Zhandry). If PRG is a secure pseudorandom generator, PRF is a
secure puncturable pseudorandom function, and iO is an indistinguishability obfuscator,
then the Boneh-Zhandry NIKE is a statically secure NIKE.

Proof. Let Game 0 be the static NIKE security game. For each j ≤ |G| let Game 0j

be the same as Game 0, but for all i ≤ j, instead of computing xi = PRG(si), the
challenger chooses xi at random from {0, 1}2λ. Also, let Game 1 be Game 0|G|. If
advj(A) is the advantage of A in Game 0j, and PRG is a secure pseudorandom generator,
advj(A) ≈ advj+1(A).

To see this, construct a PRG distinguisher D:

1. Run A to get S.

2. The PRG challenger fixes a b ∈ {0, 1} and D is given

rb =

{
PRG(s), b = 0,

R, b = 1,

where R is chosen randomly. D’s task is to find b.

3. For i > j + 1, select random si ∈ {0, 1}λ and compute xi = PRG(si). Let xj+1 = rb.
Finally, let the remaining xi’s be chosen randomly.

71

4. Send z0, iO(PKi∗) and the xi’s to A.

5. If A returns 0, return 0; otherwise, return 1.

D’s advantage is |P (D → 0 | b = 0) − P (D → 0 | b = 1)|. But if b = 0, this
is exactly Game 0j, and if b = 1, this is exactly Game 0j+1, so D’s advantage is
|advj(A)−advj+1(A)|. But since PRG is a secure pseudorandom generator, D’s advantage
is negligible, hence advj(A) ≈ advj+1(A). In particular, Game 0 is indistinguishable from
Game 1.

Let Game 2 be the same as Game 1, except instead of obfuscating PKi∗ , the chal-
lenger obfuscates PK ′i∗ which is the same program as PKi∗ , except that it computes PRFi∗
using the key punctured at (x̂1, . . . , x̂|G|). If iO is an indistinguishability obfuscator, then
the advantage of A in Game 1 is negligibly close to the advantage of A in Game 2.

To see this, construct an iO distinguisher DiO as follows:

1. Run A to get S.

2. For each i ∈ S, choose xi randomly. Compute C0 = PKi∗ and C1 = PK ′i∗ . Send C0

and C1 to the iO challenger.

3. The iO challenger returns iO(Cb) for some randomly chosen b ∈ {0, 1}. DiO’s goal is
to find b.

4. Compute z0 = PRFi∗(x̂1, . . . , x̂|G|). Give A iO(Cb), the xi’s, and z0.

5. If A returns 0, return 0, otherwise return 1.

Note that PKi∗ and PK ′i∗ are functionally equivalent on all inputs except possibly
at (x̂1, . . . , x̂|G|). However, with high probability, none of the xi’s have PRG pre-images
(since they were all chosen randomly from a set of size 22λ, and there are only 2λ possible
preimages). In particular, with overwhelming probability, both PKi∗ and PK ′i∗ return
null on the only input they could possibly be different. Therefore, they compute the same
function, and so by the security of iO, iO(PKi∗) and iO(PK ′i∗) are indistinguishable.

So DiO has negligible advantage. But the advantage of DiO is |P (DiO → 0 | b =
0)−P (DiO → 0 | b = 1)|. If b = 0, we are in Game 1, and if b = 1, we are in Game 2. So
the advantage of D is |adv1(A)− adv2(A)|, which is negligible. Hence adv1(A) ≈ adv2(A)

But no PPT adversary A can have significant advantage in Game 2 as long as PRF ′i∗ is
a secure puncturable PRF. Suppose there exists an A with significant advantage in Game
2. Construct a punctured PRF adversary Ap as follows:

72

1. Run A to get S.

2. For each i ∈ S, choose xi at random. Ask the Ap challenger for a PRF punctured at
(x̂1, . . . , x̂|G|). Call it PRF ′i∗ .

3. Since there is only one element of the punctured set S (namely x̂1, . . . , x̂|G|), Ap does
not need an oracle to make PRF queries (PRFi∗ can find PRF (K, x) for all x 6∈ S).
Furthermore, since S has size 1, Ap has only one choice for which seed to submit to
the challenger for distinguishing.

4. The Ap challenger chooses a random b ∈ {0, 1} and gives

zb =

{
PRFi∗(x̂1, . . . , x̂|G|), b = 0,

r, b = 1,

where r is chosen randomly. Ap’s task is to find b.

5. Compute iO(PK ′i∗) using PRF ′i∗ . Send the xi’s, iO(PK ′i∗), and zb to A.

6. If A outputs 0, output 0. Otherwise return 1.

Since Ap has negligible advantage, A must also have negligible advantage in Game 2.
Therefore A also has negligible advantage in Game 0, and so no PPT A exists that wins
the static NIKE game with significant advantage. Hence this construction is a statically
secure NIKE.

4.3 RSA-FDH

RSA Full Domain Hash (RSA-FDH) is a simple RSA-based signature scheme that can
easily be proven secure in the random oracle model.

Example 4.3.1 (RSA-FDH). Let N be an RSA modulus, and let (e, d) be an RSA public-
private key pair. Let h : {0, 1}∗ → ZN be a random function with image ZN . To sign a
message M ∈ {0, 1}∗, compute σ = h(M)d mod N . To verify a signature σ on a message
M , check if h(M) = σe mod N .

Assuming the RSA problem (RSAP) is hard, this scheme can be proven to be exis-
tentially unforgeable under adaptive chosen message attacks. Intuitively, if h is random,
forging a signature on a message M ′ amounts to computing eth roots of random elements

73

of ZN . The fact that h(M ′) is random renders the adaptive power of an adversary use-
less. It does not matter which message they choose to forge, because the randomness of h
guarantees h(M ′) is independent of all other information the adversary has learned. Hence
they can gain no advantage by carefully selecting M ′.

The use of the random oracle model to prove security is contentious. There are contrived
signature schemes that can be proven secure in the random oracle model but fall to simple
practical attacks [18]. For this reason, there is a desire for a signature scheme that is
provably secure without the random oracle model. Ideally we would want to find a function
h that behaves like a random oracle, so that implementations of RSA-FDH could simply
substitute instances of the old hash function for the new one. Hohenberger, Sahai, and
Waters (HSW) claim to have accomplished this using iO [37]. (Although we shall see that
they have only come very close: the hash function they construct depends on the RSA
public key. Therefore, each user needs their own hash function to publish as part of their
public key.)

This section presents HSW’s selectively secure signature scheme. They make some
further modifications to arrive at an adaptively secure signature scheme. For the adaptive
security construction, see [37].

Definition 4.3.2 (HSW Signature Scheme). The HSW signature scheme is a set of three
polynomial-time algorithms:

• KeyGen: Choose an RSA modulus and key pair N , (e, d). Choose a collision resistant
hash function h : {0, 1}∗ → ZN . Finally, choose a puncturable PRF (see Section 4.2.1)
F : {0, 1}k × ZN → ZN and a key K ∈R {0, 1}k for F .

Let FDH(M) be the circuit that first computes m = h(M), and returns F (K,m)e

mod N . Suppose also that FDH is padded appropriately (see proof for details). Let
the hash function H be iO(FDH).

• Sign: A signature on the message M is computed as σ = F (K,M); note that σ =
H(M)d mod N .

• Verify: Given (M,σ,H,N, e), check if σe ≡ H(M) mod N .

Theorem 4.3.3 (HSW). If iO is iO-secure, F is a secure puncturable PRF, and RSAP is
computationally infeasible, then the HSW signature scheme is selectively secure.

Proof. This theorem is proven in a sequence of three games. The first game comparison
uses the iO security property. The second game comparison uses the puncturable PRF

74

security property. Finally, the last game is proven impossible to win using the hardness of
RSAP. Game 0 is simply the selective security game for this signature scheme:

Definition 4.3.4 (Selective Security). A signature scheme is selectively secure if no PPT
adversary A has non-negligible advantage in the following security game:

1. A selects a message M∗ to attempt to forge a signature σ∗ on.

2. The challenger executes the KeyGen algorithm, and returns to A an RSA modulus
N , an RSA public key e, and a hash function H.

3. A makes polynomially many queries to a signing oracle to acquire signatures for
messages M 6= M∗.

4. A outputs σ∗.

A’s advantage is P (Verify(σ∗,M∗) = 1).

Game 1 is the same as Game 0, except that instead of responding to A with H, the
challenger gives H∗ to A, where H∗ is a “punctured” version of H:

For a fixed M∗, the challenger first computes m∗ = h(M∗), a PRF key K∗ = K(m∗)
punctured at m∗, and Z∗ = F (K,m∗)e mod N . Let FDH∗(M) be the circuit that first
computes m = h(M), and then checks if m is equal to the hard-coded value m∗. If so,
FDH∗ returns the hard-coded value of Z∗. Otherwise, it returns F (K∗,m)e mod N .

Then H∗ = iO(FDH∗). Note that FDH and FDH∗ compute the same circuit, so H and
H∗ are indistinguishable, by the iO-security property.

Let adv0(A) and adv1(A) be the advantage of A in games 0 and 1 respectively. If iO is
iO-secure, and FDH is padded to have the same length as FDH∗, then adv0(A) ≈ adv1(A).
To see this, use A to construct an iO distinguisher D as follows:

1. Run A to get M∗.

2. Run KeyGen honestly to get N , (e, d), F , and K. Compute m∗ = h(M∗). Compute
K∗ = K(m∗) as the PRF key K punctured at m∗. Finally, compute z∗ = F (K,m∗)e

mod N .

3. Let C0 = FDH and let C1 = FDH∗ (where FDH is padded to the length of FDH∗).
Send C0 and C1 to the iO challenger.

75

4. The iO challenger randomly selects b ∈R {0, 1}, and returns H ′ = iO(Cb).

5. Give A the input (N, e,H ′).

6. Respond to A’s signature query on M 6= M∗ with F (K,m).

7. If A outputs a valid signature σ∗ on m∗, D outputs 1, otherwise it outputs 0.

D’s advantage is |P (D → 1 | b = 0) − P (D → 1 | b = 1)|. But if b = 0, we are in Game
0, and if b = 1, we are in Game 1. Therefore, D’s advantage is |adv0(A) − adv1(A)|.
But D’s advantage is negligible, since no iO distinguisher can have significant advantage.
Hence adv0(A) ≈ adv1(A).

Game 2 is the same as Game 1, except that instead of responding to A with H∗, the
challenger gives Ĥ to A, where Ĥ randomly selects the hash at the point M∗ instead of
computing it honestly:

For a fixed M∗, the challenger computes m∗ = h(M∗), a PRF key K∗ = K({m∗})
punctured at m∗, and selects t ∈R ZN . The challenger computes Ẑ = te mod N . Let

ˆFDH(M) be the circuit that first computes m = h(M), and then checks if m is equal to
the hard-coded value m∗. If so, ˆFDH returns the hard-coded value of Ẑ. Otherwise, it
returns F (K∗,m)e mod N .

Then Ĥ = iO(ˆFDH). Note that ˆFDH and FDH∗ do not compute the same function,
but their obfuscations will nevertheless be indistinguishable because of the punctured PRF
security of F . Intuitively, the plaintext circuit ˆFDH reveals “nothing” about how to forge
a signature on the fixed message M∗. Since iO(FDH) is indistinguishable from iO(ˆFDH),
iO(FDH) must also reveal “nothing” about how to forge a signature on M∗.

To see that Game 1 and Game 2 are indistinguishable, construct an F -adversary AF
as follows:

1. Run A to get M∗. Send m∗ to the PRF challenger.

2. The PRF challenger selects b ∈R {0, 1} and K, and returns K∗ = K({m∗}) and

tb =

{
F (K,m∗), b = 0,

t ∈R ZN , b = 1.

AF ’s goal is to determine b.

76

3. Select N , (e, d), and construct H ′ = iO(FDH′). Here, FDH′(M) is the circuit that
computes m = h(M), and then checks if m is equal to the hard-coded value m∗. If
so, it returns teb mod N . Otherwise, it returns F (K∗,m)e mod N . Give N , e, and
H ′ to A.

4. Respond to A’s signature queries on M 6= M∗ by computing F (K∗,M)e mod N .

5. AF outputs 1 if A outputs a valid signature on m∗, and 0 otherwise.

We have adv(AF) = |P (AF → 1 | b = 1) − P (AF → 1 | b = 0)|. If b = 0 then
tb = F (K,m∗), and so FDH′ = FDH∗; thus we are in Game 1. If b = 1 then tb = t, and
so FDH′ = ˆFDH; so we are in Game 2. Therefore, adv(AF) = |adv1(A)− adv2(A)|. But
the advantage of AF is negligible by the assumption that F is a secure puncturable PRF.
Therefore adv1(A) ≈ adv2(A).

Finally we prove that if RSAP is hard, then adv2(A) is negligible. Construct an RSAP
solver AR as follows:

1. AR is given (N, e) and z∗ ∈R ZN where z∗ ≡ te mod N .

2. AR runs A to obtain M∗.

3. AR selects K and K∗ = K({m∗}). It computes Ĥ = iO(ˆFDH) (using z∗ as the
return value for the case when m = m∗).

4. AR gives N , e, and Ĥ to A.

5. AR answers A’s signature queries on M 6= M∗ by computing F (K,h(M))e mod N .

6. A outputs a signature σ∗ on M∗, and AR outputs σ∗.

Since Ĥ(M∗) = z∗, and since σ∗ is a valid signature on M∗, we have (σ∗)e ≡ z∗ mod N
and hence t = σ∗. Thus AR successfully computes e’th roots mod N with advantage
adv2(A). Since the RSAP is assumed to be hard, the advantage of any such AR must be
negligible, and therefore, adv2(A) is also negligible.

But if adv2(A) is negligible, and adv2(A) ≈ adv1(A) ≈ adv0(A), then adv0(A) is also
negligible. Hence the signature scheme is selectively secure.

77

Remark 4.3.5 (Random oracle model versus generic MLM model). Theorem 4.3 is an
interesting theoretical result. However, introducing iO in order to avoid the random oracle
model obviously incurs a huge practical cost. Furthermore, in order to prefer the iO-based
signature scheme to normal RSA-FDH from a security perspective, one would have to
trust the random oracle model less than one trusts the assumptions that iO are built on.
Ignoring the fact that random oracle based signature schemes have endured much more
study than iO and multilinear map assumptions, proofs about iO schemes have thus far
all been in generic multilinear map models of one form or another. For example, the Garg
et al. NC1 obfuscation algorithm is proven secure in the “generic coloured matrix” model,
where roughly, they prove their scheme is secure as long as the attacker is restricted to
attacks that involve multiplying the matrices of the branching program [31].

Ultimately, this scheme replaces the random oracle model with a different, less studied
generic model at debilitating efficiency costs.

78

Chapter 5

Conclusions

Multilinear maps and indistinguishability obfuscation are powerful theoretical tools. They
enable otherwise difficult cryptographic protocols such as one-round multi-party key ex-
change and existentially unforgeable signature schemes outside of the random oracle model.

5.1 State of the Art

There are essentially three multilinear map constructions: Graph-based multilinear maps
[35], ideal lattice multilinear maps [29], and multilinear maps over the integers [22, 25].

1. Graph-based multilinear maps are very susceptible to zero-izing attacks. In the
graph-based multilinear map construction, any two encodings of zero at the same
level S can be used to learn the plaintext of any other encodings that happens to be
at the right level (namely, a level that admits multiplication with level-S encodings).
This is in contrast to the zero-izing attacks on the other multilinear map constructions
that require many low-level encodings of zero (or at least, many different sets of
encodings whose product is a top-level encoding of zero). See Section 4.1 of [35] for
more details.

2. The original multilinear maps over ideal lattices have always suffered from “weak dis-
crete log” attacks that render the decision-linear and subgroup membership problems
easy in the ideal lattice setting [29].

79

3. The CLT13 multilinear map over the integers [22] originally appeared to avoid these
weak discrete log attacks. However, the zero-izing attacks of Cheon et al. have
shown that CLT13 is totally broken when low-level encodings of zero are available.
For some time after the Cheon et al. discovery there were no known zero-ization
attacks against specific applications of CLT13 where low-level encodings of zero were
unavailable. Specifically, the Garg et al. obfuscation candidate appeared to avoid
these attacks. Recently however, both obfuscation based on branching programs,
and direct obfuscation of circuits were shown to be vulnerable to extensions of the
Cheon et al. attack in certain circumstances [21].

There were two independent attempts to fix CLT13, both of which failed to do so.
However, multilinear maps over the integers have been tentatively restored by CLT15
[25]. CLT15 appears to avoid all zero-ization attacks, including the newest ones from
[21]. There are currently no serious known attacks on CLT15. It is currently the
only construction that is not vulnerable to some form of zero-ization.

If κ is the multilinearity required, and λ is the security parameter, encodings in CLT15
have size O(κ2λ3). Zero-testing and multiplication are both equivalent in complexity
to multiplying two O(κ2λ3) bit integers (when using the CLT15 efficiency heuristics).
CLT15 is the most efficient construction available.

There are several viable obfuscation constructions that all give varying degrees of obfus-
cation. Currently, Zimmerman’s direct obfuscation of circuits is the most efficient construc-
tion [45]. Circuits of size s, depth d, and input size n require multilinearity O(2dn + n2),
but the obfuscation consists of only O(d2s2 +n2) encodings, and the evaluation takes only
O(d2s2 + n2) multiplications of encodings. This is in contrast to the original obfuscation
method using Barrington’s Theorem that required multilinearity, obfuscation size, and
evaluation time of O(4dn+ n2).

Zimmerman’s construction also achieves VBB with a “generic multilinear map” as-
sumption, which is thus far the strongest form of security that has been proven for any
obfuscation construction. It was shown recently that Zimmerman’s construction fails to
obfuscate certain simple circuits (such as point functions) when instantiated with CLT13
[21]. This attack illustrates a way in which the underlying GES can fail to satisfy “generic
multilinear map” assumptions. Direct obfuscation remains intact when instantiated with
CLT15.

Also noteworthy is the Koppula, Bishop, Waters (KBW) candidate for Turing Machine
iO [40]. The purpose of this construction is to avoid the overhead involved in converting a
program to a circuit. Indeed, circuits are not the most natural way to express programs.

80

Since circuits are acyclic graphs, there is no way to compactly express common program-
ming constructs such as loops. In particular, the KBW construction has an obfuscation
that grows with the Turing Machine size, rather than with the worst case running time
(worst case running time is equivalent to circuit depth). However, this construction relies
heavily on a circuit obfuscator. In particular, it requires obfuscating the encryption algo-
rithm of some public key encryption scheme. This task is not currently feasible, so for the
time being, iO for Turing Machines remains difficult.

5.2 Future Directions

There are two major problems with obfuscation and multilinear maps. First, they are
both hopelessly impractical, with very large constants severely impacting size and speed.
Second, they are both founded on new security assumptions which have undergone minimal
scrutiny.

The impracticality of multilinear maps stems from the noise necessary for current con-
structions. Since the noise grows with each multiplication, and there is a limit on how
much noise an encoding can have before it is no longer zero-testable, parameter sizes must
increase as the number of multiplications desired increases. Most interesting applications
of multilinear maps (obfuscation for example) require many multiplications, and therefore
very large encodings. Improving multilinear maps to the point of usability will require
reducing the size relative to the noise. Ideally, there should be no noise at all, and the size
of each encoding should be independent of the number of multiplications necessary. An
ideal multilinear map would enable realistic implementations of everything from NIKE to
iO.

Obfuscation has an additional efficiency problem: the multilinearity required depends
exponentially on the depth of the input circuit. Whereas it is possible to imagine using
multilinear maps for very small multilinearity, obfuscation is not even remotely practical.
Obfuscating a meaningful program necessarily requires a high degree of multilinearity.
Reducing the dependency of encoding size on multilinearity would ameliorate this issue.
Absent this, we would like to find an obfuscation algorithm whose multilinearity depends
only polynomially on the depth of its input circuit.

Another direction to consider is the obfuscation of specific circuit families. While
general-purpose obfuscation for all circuits is completely impractical, it may be easier to
obfuscate specific circuits. There are many such circuit families we already know how to
obfuscate efficiently (point-functions for example).

81

Very little has been proven about multilinear maps and obfuscation, and there have
been only a few cryptanalytic attempts. The devastating zero-ization attacks on CLT13
certainly do not inspire confidence in multilinear maps as a whole. While CLT15 remains
intact, much more cryptanalysis is necessary before we can be confident that the various
security assumptions hold in the CLT15 setting. In this direction, Badrinarayanan et al.
[2] have recently designed obfuscators for “evasive” functions (functions for which it is
difficult to find a single input that maps to 0) that, in a certain generic multilinear model,
provably does not allow encodings of 0 to be constructed at any level.

Security of obfuscation has thus far been proven only in generic multilinear map models
that assume the security of the underlying multilinear map. These generic models mostly
do not account for the ability of an adversary to perform zero-ization attacks. Furthermore,
a number of researchers have proven VBB security in these generic multilinear map models.
Given that VBB is impossible in the standard model, the usefulness of these generic models
is questionable. The next step for obfuscation security is a model that manages to take into
account known attacks on multilinear maps, while also being less generic so as to sidestep
the VBB discrepancy.

Obfuscation and multilinear maps are very powerful new cryptographic tools, and mak-
ing practical versions of them would be a huge breakthrough. The construction of an ideal
multilinear map would mostly eliminate efficiency concerns. The construction of such a
map is therefore the central open problem related to cryptographic multilinear maps.

82

References

[1] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing ob-
fuscation: Avoiding Barrington’s theorem. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages 646–658, New
York, NY, USA, 2014. ACM.

[2] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: The case of evasive circuits. Cryptology ePrint Archive, Report 2015/167,
2015. http://eprint.iacr.org/.

[3] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 1–18. Springer Berlin Heidelberg, 2001.

[4] D A Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. In Proceedings of the Eighteenth Annual ACM Sym-
posium on Theory of Computing, STOC ’86, pages 1–5, New York, NY, USA, 1986.
ACM.

[5] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, CCS ’93, pages 62–73, New York, NY, USA, 1993.
ACM.

[6] Daniel J. Bernstein, Andreas Hülsing, Tanja Lange, and Ruben Niederhagen. Bad
directions in cryptographic hash functions. In Ernest Foo and Douglas Stebila, editors,
Information Security and Privacy, volume 9144 of Lecture Notes in Computer Science,
pages 488–508. Springer International Publishing, 2015.

83

http://eprint.iacr.org/

[7] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer Berlin Heidelberg, 2001.

[8] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. In Victor Shoup, editor, Advances in Cryp-
tology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
258–275. Springer Berlin Heidelberg, 2005.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, volume 2248 of
Lecture Notes in Computer Science, pages 514–532. Springer Berlin Heidelberg, 2001.

[10] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71–90, 2003.

[11] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology —
ASIACRYPT 2013, volume 8270 of Lecture Notes in Computer Science, pages 280–
300. Springer Berlin Heidelberg, 2013.

[12] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption
from multilinear maps. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, volume 8616 of Lecture Notes in Computer Science,
pages 206–223. Springer Berlin Heidelberg, 2014.

[13] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014. http:

//eprint.iacr.org/.

[14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/642, 2013. http://eprint.iacr.org/.

[15] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, volume 8616 of Lecture Notes in
Computer Science, pages 480–499. Springer Berlin Heidelberg, 2014.

84

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[16] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrde Lepoint, Amit Sahai, and Mehdi
Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint
Archive, Report 2015/845, 2015. http://eprint.iacr.org/.

[17] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS ’12, pages 309–325, New York, NY,
USA, 2012. ACM.

[18] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, July 2004.

[19] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology — EUROCRYPT 2015, volume 9056
of Lecture Notes in Computer Science, pages 3–12. Springer Berlin Heidelberg, 2015.

[20] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM Journal on
Computing, 14(4):833–839, 1985.

[21] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In Rosario Gen-
naro and Matthew Robshaw, editors, Advances in Cryptology — CRYPTO 2015,
volume 9215 of Lecture Notes in Computer Science, pages 247–266. Springer Berlin
Heidelberg, 2015.

[22] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. Cryptology ePrint Archive, Report 2013/183, 2013.

[23] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology — CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science,
pages 476–493. Springer Berlin Heidelberg, 2013.

[24] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of two
candidate fixes of multilinear maps over the integers. Cryptology ePrint Archive,
Report 2014/975, 2014. http://eprint.iacr.org/.

[25] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps
over the integers. Cryptology ePrint Archive, Report 2015/162, 2015.

85

http://eprint.iacr.org/
http://eprint.iacr.org/

[26] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps
over the integers. In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology — CRYPTO 2015, volume 9215 of Lecture Notes in Computer Science,
pages 267–286. Springer Berlin Heidelberg, 2015.

[27] Jonathan Katz Alex J. Malozemoff Daniel Apon, Yan Huang. Implementing cryp-
tographic program obfuscation. Cryptology ePrint Archive, Report 2014/779, 2014.
http://eprint.iacr.org/.

[28] Eduarda S.V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology — CRYPTO 2013, volume 8042 of Lecture
Notes in Computer Science, pages 513–530. Springer Berlin Heidelberg, 2013.

[29] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. Cryptology ePrint Archive, Report 2012/610, 2012.

[30] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
— EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–
17. Springer Berlin Heidelberg, 2013.

[31] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. Cryptology ePrint Archive, Report 2013/451, 2013.

[32] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science
(FOCS), pages 40–49, Oct 2013.

[33] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology — CRYPTO 2013, volume 8043 of Lecture
Notes in Computer Science, pages 479–499. Springer Berlin Heidelberg, 2013.

[34] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014.
http://eprint.iacr.org/.

86

http://eprint.iacr.org/
http://eprint.iacr.org/

[35] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and JesperBuus Nielsen, editors, Theory of Cryptog-
raphy, volume 9015 of Lecture Notes in Computer Science, pages 498–527. Springer
Berlin Heidelberg, 2015.

[36] Craig Gentry, Shai Halevi, Hemanta K. Maji, and Amit Sahai. Zeroizing without
zeroes: Cryptanalyzing multilinear maps without encodings of zero. Cryptology ePrint
Archive, Report 2014/929, 2014.

[37] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle:
Full domain hash from indistinguishability obfuscation. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology — EUROCRYPT 2014, volume
8441 of Lecture Notes in Computer Science, pages 201–220. Springer Berlin Heidelberg,
2014.

[38] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Proceedings of
the 4th International Symposium on Algorithmic Number Theory, ANTS-IV, pages
385–394, London, UK, UK, 2000. Springer-Verlag.

[39] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 20–31, New
York, NY, USA, 1988. ACM.

[40] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15, pages 419–
428, New York, NY, USA, 2015. ACM.

[41] Hyung Tae Lee and Jae Hong Seo. Security analysis of multilinear maps over the
integers. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology —
CRYPTO 2014, volume 8616 of Lecture Notes in Computer Science, pages 224–240.
Springer Berlin Heidelberg, 2014.

[42] Hyung Tae Lee and Jae Hong Seo. Security analysis of multilinear maps over the
integers. Cryptology ePrint Archive, Report 2014/574, 2014.

[43] Franco P. Preparata and D.E. Muller. Efficient parallel evaluation of boolean expres-
sions. IEEE Transactions on Computers, C-25(5):548–549, May 1976.

[44] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Henri Gilbert, editor, Advances in Cryptology

87

— EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 24–
43. Springer Berlin Heidelberg, 2010.

[45] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology — EUROCRYPT 2015, volume 9057 of
Lecture Notes in Computer Science, pages 439–467. Springer Berlin Heidelberg, 2015.

88

	Introduction
	Multilinear Maps
	Code Obfuscation
	Applications

	Cryptographic Multilinear Maps
	CLT Construction
	Motivation and Intuition
	Construction of CLT

	Graded Encoding Schemes
	Definitions
	Asymmetric Graded Encoding Schemes

	Cryptanalysis of CLT
	Security Assumptions
	Setting Parameters
	Public Key Validation
	Zero-izing Attacks
	Defending Against Zero-izing Attacks

	Code Obfuscation
	Background
	Circuits
	Branching Programs
	VBBand iO
	Fully Homomorphic Encryption

	The Garg et al. Indistinguishability Obfuscator
	Obfuscation for NC1
	Extending to Circuits in P

	Efficiency of Obfuscation
	Avoiding Barrington's Theorem
	Avoiding Branching Programs

	Applications
	Broadcast Encryption
	Boneh-Silverberg Broadcast Encryption
	Bilinear Broadcast Encryption
	Multilinear Broadcast Encryption

	NIKE
	PRGs and Punctured PRFs
	Boneh and Zhandry's NIKE

	RSA-FDH

	Conclusions
	State of the Art
	Future Directions

	References

