
Creating a Concurrent In-Memory B-Tree
Optimized for NUMA Systems

by

Marlon McKenzie

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Marlon McKenzie 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The size of main memory is becoming larger. With the number of Central Processing
Unit (CPU) cores ever increasing in modern systems, with each of them being able to access
memory, the organization of memory becomes more important. In multicore systems, there
are two main architectures for memory organization with respect to the cores - Symmetric
Multi-Processor (SMP) and Non-Uniform Memory Architecture (NUMA).

Prior work has focused on the improvement of the performance of B-Trees in highly
concurrent and distributed environments, as well as in memory, for shared-memory mul-
tiprocessors. However, little focus has been given to the performance of main memory
B-Trees for NUMA systems. This work focuses on improving the performance of B-Trees
contained in main memory of NUMA systems by introducing modifications that consider
its storage in the physically distributed main memory of the NUMA system. The work in
this thesis makes the following contributions to the development of a distributed B-Tree,
specifically in a NUMA environment, modified from a B-Tree originally designed for high
concurrency:

• It introduces replication of internal nodes of the tree and shows how this can improve
its overall performance in a NUMA environment.

• It introduces NUMA-aware locking procedures with the aim of managing contention
and exploiting locality of lock requests with reference to previous client operation
request locations.

• It introduces changes in the granularity of locking, starting from the original locking
of every node to the locking of certain levels of nodes, showing the tradeoff between
the granularity of locking and the performance of the tree based on the workload.

• It considers the combination of the different techniques, with the aim of finding
the combination which performs well overall for varying read-heavy workloads and
number of client threads.

Keywords: B-Tree, in-memory, NUMA, distributed computing, concurrency control,
locking, lock-free, replication

iii

Acknowledgements

I would like to thank my supervisors, Professor Wojciech Golab and Professor Mahesh
Tripunitara for their guidance in selection of a suitable topic and how to proceed with
experiments to support the topic.

iv

Dedication

This is dedicated to my parents, Roland and Marilyn McKenzie, who have always
supported me in all my endeavours, and my brother Ronald McKenzie, who, although
mostly reserved verbally, always managed to give some form of encouragement through
good and bad times.

v

Table of Contents

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

2 Literature Review 7
2.1 Concurrent Operations in B-Trees . 8

2.1.1 Locking Techniques . 8
2.1.2 Lock-Free Techniques . 10

2.2 NUMA-Aware Techniques . 13
2.2.1 Locking . 13
2.2.2 Data Access . 17

2.3 Distributed B-Trees . 17
2.3.1 Node Replication and Placement 17
2.3.2 Multiversioning . 21

2.4 In-Memory Indexes . 23
2.5 Contributions . 26

vi

3 The Problem and Solution Implementation 27
3.1 The Problem . 27
3.2 The Original Code . 28

3.2.1 The Node and Segment . 28
3.2.2 The Latch Mechanism . 30
3.2.3 The Buffer Pool Manager . 32

3.3 Solution Implementation . 32
3.3.1 Latch Manager and Buffer Pool Manager Spinlock Removal 33
3.3.2 NUMA-aware Locking . 34
3.3.3 Node Replication . 34
3.3.4 Granular Locking . 39
3.3.5 Lock-Free Reads . 40
3.3.6 Combination of Techniques . 47

4 Experimental Results 48
4.1 The Test Environment . 48
4.2 Comparing Performance: Throughput . 50
4.3 Choosing the Page and Segment Size . 50
4.4 Operation Throughput for Separate Techniques 54
4.5 Retries for Lock-Free Reads with Increasing Update Proportions in the

Workoad . 57
4.6 Operation Throughput for Techniques in Combination with Replication . . 59

5 Conclusions & Future Work 63
5.1 Future Work . 64

References 66

vii

List of Tables

3.1 Latch Compatibility Matrix for the Original Code 31

viii

List of Figures

1.1 Examples of the layout of CPUs and main memory modules for SMP and
NUMA systems . 3

3.1 Layout of a Node . 28

4.1 Diagram of the NUMA Node Topology of the Test System 49
4.2 Throughput vs Page Size for Segment Sizes of 32 kB, 256 kB, Tree Size of

1,000,000 keys, 4 Client Threads, 100 % Reads 53
4.3 Operation Throughput vs Number of Clients, Initial Number of Keys =

1,000,000 , 100% Reads, 0% Updates . 54
4.4 Operation Throughput vs Number of Clients, Initial Number of Keys =

1,000,000 , 75% Reads, 25 % Updates . 55
4.5 Average Number of Retries per Read Operation for Varying Workload Ratios 58
4.6 Operation Throughput vs Number of Clients, Other Techniques with Repli-

cation, Initial Number of Keys = 1,000,000 , 100% Reads, 0% Updates . . . 59
4.7 Comparison of Throughput, Workload = 75% Reads, 25% Updates, 4 - 32

Client Threads, Local Insert Only vs Updating of All Replicas Immediately 61
4.8 Operation Throughput vs Number of Clients, Other Techniques with Repli-

cation, Initial Number of Keys = 1,000,000 , 75% Reads, 25% Updates . . . 62

ix

List of Algorithms

1 Pseudocode for replicatedLoadPageRead 37
2 Pseudocode for replicatedFindKey . 38
3 Pseudocode for loadPage with the Granular Locking Mechanism 41
4 Pseudocode for loadPageInternal with the Granular Locking Mechanism 42
5 Pseudocode for loadPageLockFreeRead 44
5 Pseudocode for loadPageLockFreeRead (continued) 45
6 Pseudocode for findKey for the Lock-Free Read Mechanism 46
7 Pseudocode for insertKey for the Lock-Free Read Mechanism 46

x

Chapter 1

Introduction

Modern computer systems now incorporate multiple processing cores, allowing for increas-
ing parallelism of operations. The size of main memory in modern systems is becoming
larger and less expensive, with servers coming with hundreds of Gigabytes of memory.
The larger size of main memory in these systems allows for storage and modification of
data sets entirely in main memory, instead of entirely on disk as was previously the only
way of storing the data set. Previously, the storage of data sets on slow magnetic disks
resulted in the need for data structures that took this slow disk access time into account
in its design. One of the focuses of data structures in relation to the shift in its location
to main memory is to optimize it for use in main memory. One approach is to design
entirely new data structures to organize the use of the data efficiently in main memory,
but this is a difficult task. The other approach is to modify existing data structures for
main memory use. The B-Tree has been used in many data stores for on-disk storage of
data, and this thesis focuses on optimizing it for use in the main memory of a system with
varying memory architectures.

A B-tree is a data structure that organizes data in a way that allows for search and up-
date (insertions and deletions) operations in worse-case logarithmic time. It was originally
created for single core systems with a memory hierarchy that includes a magnetic hard
disk. The B-Tree tries to minimize the number of hard disk accesses, since such accesses
are much slower than accesses to main memory. In a B-Tree, records are organized into
collections of key/value pairs, called nodes, that are normally the size of a disk block. Each
node can have pointers to an associated value, or to child nodes, at a new, lower level. A
node that has child nodes is called an internal node. A node at the lowest level that has no
child nodes is called a leaf node, and all search operations that arrive at a leaf node also
terminate at that node. The root node is an internal node that has no parent, and is the

1

first node accessed when an operation is started. Within each node, key/value pairs are
arranged in ascending order of keys. For internal nodes, keys also serve as separators for
child nodes containing ranges of key/value pairs which are not contained within the node.
The child node associated with a separator key contains key/value pairs within the range
of the previous adjacent key separator key and the associated key. All operations begin
with a search operation for a key. A search operation starts from the root node, with a
search of the stored key list for the key specified. If the key is found and its associated
value is not a child node pointer, its value is returned, otherwise, the search then follows a
pointer to a child node that is associated with the first key that is greater than or equal to
the current key being searched for. The same procedure done for the root is now done for
the child node, and the process continues until the key is found or the key has not been
found and the search has reached a leaf node. Inserts and updates are performed similarly
to the search operation, except that for inserts, the key might not be found, and is inserted
into the correct place of the node that should have it. To maintain a balanced height of
nodes, a minimum and maximum number of keys per node is enforced, with merges and
splits of nodes done when this key number range is violated. Variations of the B-Tree
such as the B+-Tree [17] and the B*-Tree [6] add more restrictions for efficiency, such as
restricting values to be found only in the leaves, adding extra pointers to certain nodes to
aid in the search for keys, and restricting the allowed key space vacancy to be smaller. For
more information on the basics of B-Tree structure and operations, the reader is referred
to [17] and [18].

When the B-Tree data structure was created, single core, single memory architectures
were the systems of the time. Modern systems now incorporate Central Processing Units
(CPUs) which have multiple cores and/or processors within one system, and multiple
memory modules. With this came the decision of how to interconnect the CPUs to handle
cache coherency between the processing units, and how to organize the memory modules
with respect to the CPUs. The aim of the organization is to allow for increase in perfor-
mance through parallelism of execution, while minimizing delays due to communication
between CPUs and memory modules. Two main architectures followed from the organiza-
tion decisions, Symmetric Multi-Processor (SMP) and Non-Uniform Memory Architecture
(NUMA).

Fig. 1.1a shows an example of the layout of CPUs and main memory for a SMP system.
SMP systems normally consist of a group of identical CPUs, each connected to each other
via a common system bus and shared main memory. With this kind of architecture, true
concurrent processing can be achieved for as many CPUs that the system has, and memory
access times are about the same for each processor. However, since the main memory is
a single, shared resource, it can become a bottleneck when being accessed frequently by

2

Shared System Bus

(a) Example SMP Architecture

Interconnect

Path

NUMA Node 1 NUMA Node 2

(b) Example NUMA Architecture

Figure 1.1: Examples of the layout of CPUs and main memory modules for SMP and
NUMA systems

many different CPUs. The work described in this thesis does not focus on this type of
architecture.

Fig. 1.1b shows an example of the layout of the CPUs and main memory for a NUMA
system. NUMA systems also consist of a group of CPUs connected to each other and to
main memory. However, the connection between processors may not necessarily resemble a
single, common bus line. Also, memory modules may be organized such that they may be
closer, or local, to one or more CPUs, but need to be accessed across the interconnection
network (remotely) by other CPUs. Note that this is different from a Shared Nothing (SN)
architecture system, where there is no sharing of storage (for example, memory modules
and disk storage) between nodes. In the NUMA architecture, where the data is placed,
relative to a CPU that the requesting thread is run on, becomes important. Local memory
accesses are memory accesses which can be satisfied entirely by any cache or main memory
module directly connected to the CPU on which the executing thread is run. Remote
memory accesses require accesses from a main memory module associated with another
CPU. Local memory accesses would be satisfied more quickly than remote memory accesses,
since remote accesses would require transferring the required main memory data from the
remote memory module across the interconnect, and into the cache of the local CPU for
the executing thread. Synchronization mechanisms also become an issue, since the state to
be kept for a lock can be in any of caches, but need to be used by all cores at some point
in execution of operations. This would require this state to be moved to other memory
modules and caches, resulting in largers access delays. Local lock accesses would be faster
than remote lock accesses, for the same underlying reason of local versus remote memory
accesses.

3

The Operating System creates an abstraction of the physical memory modules as one
large virtual memory, with a virtual address space, which is what is used by processes.
Each memory allocation request has the potential to be satisfied by one or more of the
physical memory modules, based on which CPU the thread is executing on at the time
and the amount of main memory space available in each memory module. Allocation of
memory and memory binding in Linux by default follows a “first touch” policy – page faults
which occur for code running on a CPU are satisfied by the memory module attached to
that CPU, so the first CPU to access that page will have that page allocated in its local
memory module. Also, each socket’s CPU may have many cores and many levels of cache,
used to store most frequently used data and instructions. Since there can be many copies
of the same page in different caches, a coherence protocol has to be established between
all caches, which can introduce interconnect traffic due to coherence messages crossing the
interconnect. Interconnect traffic also occurs when operations initiated on one CPU have
to access main memory data contained in memory modules associated with other CPUs,
since this data has to be pulled into the cache hierarchy of the local processor from the
memory of the containing processing unit. Given a required remote memory reference,
the higher the interconnect traffic, the less bandwidth there is available to satisfy the
request. Less bandwidth for a remote request causes the remote reference access to be
slower. Algorithms which consider data locality in memory and more efficient cache usage
are an intuitive step to improving the performance of the B-Tree.

Many works consider the use and optimization of B-Trees for use in-memory [59, 16, 42,
10, 43, 53], by considering the cache line size and temporal/spatial locality of memory data
in SMP systems. These techniques, while applicable to a NUMA system, do not consider
physical distance of memory modules with respect to the CPU executing the operations,
and may incur heavy interconnect traffic when the number of clients per socket is large.

Other works have looked at replication in a multicomputer environment [19, 65, 39,
44, 4], where separate processors communicate by message passing across a network. The
focus was mainly on smart replication with minimal extra memory usage, that is, knowing
just how many nodes to replicate and where to replicate them, while still retaining good
performance. In the NUMA system environment, these techniques still apply. However,
it is slightly different since all of the memory is still in the same memory address space
and the CPUs are all in the same system. Many of the memory abstractions used in the
implementations for the multicomputer environment are not required, and the cost, in
terms of time, of replica creation and retrieval is much less. If the total memory of the
system is very large, there is less need for sophisticated replica placement algorithms, since
all of the nodes can be replicated without worry of running out of memory.

Other efforts focused on producing NUMA-aware locking techniques for use in con-

4

current data structures [57, 50, 21, 14], and NUMA-aware organization of data among
worker threads [48] for concurrent data structures. Works which focused on the former
techniques assume that many different threads would compete for the lock. The works
which focused on NUMA-aware data organization, considered reorganization of operations
or the data structure itself for quicker access by requesting threads. The techniques from
both categories do not consider how their integration affects the performance of specific
data structure operations, such as B-Tree operations).

This thesis considers the replication concepts that were introduced in previous work,
and combines it with previous work done on locking mechanisms for B-Trees and in NUMA
environments, and techniques for improving throughput of B-Trees in memory. The aim
was to find the combination of techniques that delivers the best improvement in throughput
of the B-Tree, contained entirely in memory in a NUMA environment, for varying types
of read-heavy workloads and number of clients per socket. The contributions of this thesis
are:

• It introduces basic replication of internal nodes of the tree and shows how this can
improve operation throughput of nodes in a NUMA system.

• It introduces NUMA-aware locking procedures with the aim of managing contention
and exploiting locality of lock requests with reference to previous client operation
request locations.

• It explores changes in the granularity of locking, starting from the original locking of
every node to the locking of certain levels of nodes, investigating the tradeoff between
the granularity of locking and the performance of the tree based on the workload.

• It introduces Lock-Free Read Operations and shows how they can improve overall
throughput even in the presence of a relatively large number of write operations.

• It considers a combination of the different techniques, with the aim of finding the
combination which performs well overall for varying read-heavy workloads and num-
ber of clients.

In the body of the thesis, the challenges of introducing replication and modification
of the locking used in B-Trees are addressed, and the results of these modifications are
discussed.

• Chapter 2 discusses previous work done on efficient node replication, B-Tree locking
mechanisms and NUMA-aware locking mechanisms.

5

• Chapter 3 first describes the functionality of the original B-Tree code used. It then
describes the modifications done for this work — node replication, use of NUMA-
aware locks and use of locking granularity in a NUMA system.

• Chapter 4 describes the results of experiments run with a various combinations of
the modifications made.

• Chapter 5 states the conclusions from the the experiments and indicate areas for
further work and improvement.

6

Chapter 2

Literature Review

Due to the trade-offs between storage speed, cost and size, computers have used storage
hierarchies to reduce the average access time of data. Faster memories of smaller sizes
were used higher up in the hierarchy, while slower, more expensive storage was used for
larger, more long term storage lower down. In this model of storage, complete data sets
were previously only able to be stored on hard disks. Hard disks store data on circular
platters with a magnetic coating. Data is read or written in blocks by a read/write head
attached to a mechanical arm. A location to be read or written is found by determining
the proper position on a platter by rotating it and moving the read/write head over the
location required, and the location is determined based on instructions provided to the
storage device. This physical movement required to read or write data to the hard drive
made data access from it very slow when compared to main memory, often the bottleneck
for operations on the dataset.

The B-Tree data structure, first discussed by Bayer and McCreight in [5] was origi-
nally created for use in single processor, single memory systems, where the aim was to
store data such that inserts and updates would require minimal disk accesses. The data
structure became the basis of many storage systems, such as relational databases. B-Trees
are still being actively used in systems today. However, the underlying architecture has
seen changes in the form of the number of processing units and memory modules they
provide. Althought these changes increased the overall performance of the systems, it was
quickly realized that such systems would require a different approach to algorithm design
in order to fully harness the power. Many data structures, if modified appropriately for
these new architectures, should see better overall performance than allowed by the original
implementation.

7

The aim of this work is to improve the performance of the B-Tree data structure in
such NUMA systems. The improvement is an increase in throughput of operations (where
“Throughput” means the number of search and update operations which can be carried
out per second). The improvement is achieved by reducing remote memory references by
improving locality of the data, and by increasing concurrency of operations within the
b-tree by considering Lock-Free and architecture aware techniques.

To improve performance of the B-Tree in a NUMA environment, two areas of the data
structure will be considered — (1) location of key/value data relative to the running
thread and (2) the locking mechanisms used to both protect the structure of the B-Tree
and the data it contains. In this section we shall look at work which has been done
on B-Trees to accommodate concurrent and distributed operations. There are two main
categories of work which shall be considered - locking techniques for concurrent operations
and replication/smart node placement techniques for distributed environments.

2.1 Concurrent Operations in B-Trees

Concurrent operations help obtain maximum throughput of operations for all clients of
the B-Tree. Since uncontrolled concurrent update operations by different clients can cause
the internal state of the B-Tree or its contents to enter different, and sometimes incorrect
states (as seen by retrieval operations), care has to be taken by the data structure to ensure
that the correct outcome is achieved at the end of all such update operations. To ensure
correctness, update operations are serialized at some point for each operation to allow it
to complete or rollback its modifications. This serialization has historically been achieved
through locks, but more recently lock-free techniques have also been considered.

2.1.1 Locking Techniques

A lock is a synchronization structure that is used to limit the access of clients to a common
resource. It may have rules for limiting such access based on the type of access of the client
(reading versus updating) and the number of access types allowed (mutual-exclusion versus
some number of concurrent clients). As stated by Graefe in [30, 65], in the case of a B-
Tree, maintenance of consistency through lock-based protection can be split into two main
categories, protection of the datastructure itself and protection of the data stored by the
datastructure. Data structure protection is normally required for only a short time, and is
provided by latches. This “lightweight” protection requires mutual exclusion with minimal

8

overhead, and is normally implemented by the simplest of locks, such as spin locks. Data
structure content protection protects the key/value pairs from concurrent client transaction
operations, for which concurrent reads are allowed, and are provided by more complex locks,
such as Reader/Writer locks. Various studies have analyzed the relative performance of the
different types of locks. One of the most comprehensive studies is by David et al. in [20].
The results of the study suggested the use of simplest type locks where they are suitable
for protection, and in NUMA systems, keeping the lock variable information local for as
long as possible. Locks applied on the B-Tree alone do not solve all concurrency problems.
Concurrency of operations can cause observable inconsistencies when different nodes are
being modified by different operations, and one node (from a retrieval operation) requires
another node (modified by an update operation) in its traversal. Concurrent operations
can also cause issues with following child pointers, if these pointers no longer point to valid
information. To ensure that the transition to the child node is successful, Latch Coupling
is used. Latch Coupling involves the holding of the latch on the parent node until a valid
pointer on the desired child node is obtained.

Another issue is with splits/merges of nodes when and update operation violates the
capacity rule for the number of keys allowed in a node. A split may necessitate one or
more new nodes to be created and introduced into the tree and a merge may require one or
more nodes to be removed from the tree. Any operation which arrives at nodes which are
being split may have originally found that the key being searched for was in the node but
is no longer there when searching through the node. Lehman and Yao in [47] suggested
their modification to a B-Tree, called a Blink Tree, which uses the concept of high fence
keys and a new right node pointer, to be used with new nodes that are created when the
current node is being split. All new nodes that are created are always created to the right
of the older node. In this way, if an operation has found that it has reached a node that
it original thought had the desired key but now doesn’t, it should be able to follow one or
more right node pointers (in the case of multiple, adjacent node splits) to find the desired
node with the key.

Key Range and Granularity of Locking

Apart from locking a single key-value pair, locks in the B-Tree can also be used to lock
a set, or range, of key-value pairs in the tree. Such key range or value range locking is a
form of logical locking, as stated by Graefe in [30], which attempts to lock a range of keys
and/or values, based on some common ground, such as being in the same subtree of the
associated separator key. It is a form of predicate locking, as described by [24, 41], which
describes logical locking of a group of objects that satisfy some predicate, the predicate

9

being the common ground, such as being of the same subtree. When applied to the logical
contents of the B-Tree, a lock can protect from as little as one key up to a broad range
of key and value pairs, including the gaps across nodes. Key range locking including gaps
can come in the form of locking the range of key-value pairs in the child node from the key
after the previous key in the node being searched up to and including the current key in
the node being searched, or the current key in the node being searched up to the key in the
child node before the next key in the current node. This type of locking can improve the
performance of the tree, depending on the workload. In the case of read only workloads,
it would require fewer locks to be acquired before obtaining the required value. Workloads
with conflicting operations which require the same locks would see worse performance,
since there is a higher probability that the lock being acquired may be already acquired
for some other operation on a key or value of the same group.

2.1.2 Lock-Free Techniques

One technique that has been suggested to improve concurrency is to use Lock-Free tech-
niques to reduce or remove the use of locking in datastructures used for retrieval. As
described by Fraser in [26], a Lock-Free system is one which is guaranteed to have system-
wide progress (that is, progress in at least one thread of execution). In addition, the term
Lock-Free is also used to describe algorithms which do not use mutually exclusive, blocking
algorithms to achieve deadlock freedom. Since locks are not used, other techniques must
be used to achieve synchronization of the different threads operating on the datastructure.

One method is the use of the Compare-And-Swap (CAS) primitive to make atomic
changes to datastructures. The idea is to make sure that a change to or read from a pointer
is done atomically, to ensure that a thread executing that operation sees a consistent
view of the change — either its value before modification or after. Any inconsistencies
found from the use of this operation would cause the operation to retry or fail, depending
on the requirements of the datastructure. Some works also provide an extension of the
original CAS primitive for their purposes [26, 27]. Another technique involves Software
Transactional Memory (STM) which has various implementations, including those of Shavit
and Tuoitou [61], Fraser [26], Fraser and Harris [27], and Herlihy and Moss [35, 36]. STM
creates an abstraction which groups related operations, giving each thread of operation the
impression of having its own private memory space. Since the thread is given the memory
abstraction of its own non-shared memory, it does not have to perform explicit locking.
For any activity that requires updates, a commit of all the operations of the transaction
is validated and done at the end of the transaction by the STM implementation. In the
case of an operation A being blocked due to a conflicting operation B, the technique of

10

Recursive Helping is used to allow operation A to progress. In Recursive Helping [26],
operation A recursively calls operation B to ensure that the task of B is done, since one
call will succeed while the other will detect that the operation is already being completed
and return without duplicating the modification. Some works use flag variables [8] to
represent the current state of the node, simulating a lock but without the overhead of
blocking the executing thread and switching to another, if the state represents a conflict
with the operation being executed by the thread.

With these techniques, various Lock-Free datastructures have been created [11, 64, 26,
62, 64, 23, 13, 12, 25, 31, 34, 60]. Some works focus on providing a datastructures using
Lock-Free primitives. Bender et. al. in [8] supplies extra information with the operation
status so that operations which encounter any indication of the operation can help the
operation to complete and eventually progress to its own completion. Other works [33] use
the technique of reading, copying, updating and replacing [55] to make modifications on a
copy of the data before swapping it with the oudated version.

Lehman and Yao in [47] describe their B-link Tree, which was a modification of the
B-Tree to improve concurrent operation performance through changes of the locking pro-
cedure. Searches were changed to be done without locks, while Updates (Insertions) were
changed to only perform exclusive locking of the node that is to be modified when the
update is performed. To find a key which was moved from node to an adjacent node when
a concurrent insert on the same node was being performed, the node was modified to have
two features, a fence key and a right node pointer. The right pointer is set to point to
the newly created node from a split of a node. On each level, every node from left to
right has a right pointer to its adjacent node, created from a split, and so the level itself
forms a linked list of nodes. The fence key represented the highest key value contained
in the node, and was checked and updated if necessary by every insert operation done on
the node. Search operations consult the upper fence key as soon as the node is obtained.
A search operation originally chooses a child node based on the separator key as in the
original B-Tree, but if a concurrent split caused the higher half of values to be placed in
the adjacent node, the fence key of the old node would be updated to be the equal to the
highest value in the lower half of keys. The search operation would follow one or more
right pointers until it found a node with a fence key greter than or equal to the key being
searched for, and would search that node for the key. Splits of nodes would create two new
fence keys, and the new fence key of the old node is inserted as the new separator key into
the parent node, recursively up to the root as necessary for each split that is necessary.
They did not explicilty consider deletes or merges in their work.

Fraser in [26] gives an implementation of a Binary Search Tree (BST) using an exten-
sion of CAS for replacement operations and an implementation of Red-Black Tree using

11

an implementation of STM called FSTM. His extension, Multi-Word Compare-And-Swap
(MCAS) provides the same functionality as CAS, but for multiple memory locations, which
is important for relocation of objects within a datastructure, which require a removal from
one pointer and an insertion into another, all done atomically to ensure consistent views
among concurrent threads. To ensure that searches for contained keys always return cor-
rect results in the presences of node relocations (due to deletion of other nodes), Fraser
based his design of the tree on the Threaded B-Tree, as proposed by Perlis and Thornton
in [56]. The Threaded B-Tree uses thread links in the place of empty subtrees, where
thread links are pointers which go to the immediate parent and/or successor of the node.
If the node is a leaf node, the successor is considered to be the root. Fraser also gives
an implementation of a Red-Black tree using FSTM, which creates a transaction for each
operation, restarting the operation if the commit done at the end of the operation fails.

Ellen et al. in [23] also describe an implementation of a non-blocking, linearizable
Binary Search Tree that uses only the basic CAS mechanism, along with reads and writes.
To allow for the single word CAS to be used, their tree is leaf oriented, requiring that
only one pointer operation to make the structural change to the new tree. An additional
flag variable per node handles peculiarities with concurrent conflicting operations. When
a node is to be deleted, its state is changed to mark so none of its pointers can be changed
by other operations. The node for which the pointer is to be changed is marked with
a flag representative of the operation (iflag for insertion, dflag for deletion) to prevent
a concurrent conflicting operation from changing that same node’s pointers concurrently
and creating an inconsistent state. When the pointer is being changed, its state is changed
to ichild or dchild respectively. When the operation completes, the node is marked with
uiflag, udflag, and then clean to allow any operation after. Also, in addition to the state,
the same node variable holds a pointer to an info record, which contains information about
the operation being done, so that other concurrent, conflicting operations can help that
operation to complete to ensure eventual progress.

Sewal et al. in [60] consider making a B+-Tree “Latch-Free” by considering a group of
queries at a time, and redistributing the work accordingly, so that conflicting operations
are handled by the reorganization and execution of the operations, without the need for
explicit locking. Reads, which do not conflict with each other, are organized to be done
first and in parallel. Updates are organized are partitioned among threads so that each
thread works on a specific set of tree nodes, and to ensure that serializability is still kept
for the group of operations. The modifications are done at each level from the leaves up
to the root, which is modified by only one thread. Locking for modifications is implicitly
done by the fact that one thread is allowed to modify only its share of nodes, giving it
“ownership over those nodes”.

12

Bronson et al. in [12] describe an implementation of a Binary Search Tree using op-
timistic concurrency control techniques, based on an implementation of an External AVL
Tree. To track changes occuring in a node, each node has a version number, which consists
of 64 bits, of which one bit indicates that an update of the node is occuring and other
bits indicate growth and shrinking of a subtree under a node due to it moving positions
and whether or not the node is still contained in the tree. Traversals for all operations use
hand-over-hand version reads, where the current node and child’s version number are read
in, the child version’s number is validated as unchanged, and the parent’s version number
is validated as unchanged afterwards, to view the traversal of the link from the parent to
the child as valid. Updates lock the parent of the node to be modified, adding a child if
no node for the key is present, or updating the value for the key if it is present. Deletes
use the routing node feature of external B-Trees only when the node to be deleted has
two children, so that traversals can still continue through to children of the removed node.
Nodes with one or no children are immediately unlinked.

Braginsky and Petrank in [11] implement a Lock-Free, balanced B+-Tree using the
basic CAS operation and a method for ensuring a contiguous run of memory for a node,
called chunking. The chunk consists of a linked-list of array entries, for which they impose
a minimum and maximum number of entries, as well as additional pointers for use with
splitting and merging when the minimum or maximum size constraint is violated. Since
key and value changes must be atomic, only CAS operations are used. The chunk, and
hence the node size is chosen to be a factor of the cache size, to take advantage of cache
prefetching. Operations take place in the same way for all operations, except that the
choice of a node to merge with is given by the structure of the tree, and is a call on the
tree itself, and operations can help others to complete (Recursive helping), if the operation
being helped is preventing the current operation from completing.

2.2 NUMA-Aware Techniques

2.2.1 Locking

A basic lock is represented by a value in a memory location. Locks assume that all clients
which use the lock have access to the location. In SMP, there is a single memory module,
and memory distance/access time is symmetric from all processing cores across a shared
bus. Most works initially were concerned about keeping good performance in the cases of
both low and high contention. Various categories of locks have been created, from those
based simply on spinning [3], to those based on queues [54, 51], and those based on reducing

13

request frequencies by some appropriate amount [2]. However, in NUMA systems, each
socket has its own local memory module, and an interconnect exists between the cores
to allow for access of any remote memory module from any core. The operating system
creates an abstraction of these memory modules as a single, contiguous memory pool, but
actual access time is dependent on the executing code’s location and the location of the
required memory address. If the memory address is in the memory of the local NUMA
node, access is quick, since it requires no messaging across the interconnect. However, if
the memory address is in a remote memory module, then messages must be sent across
the interconnect to pull the information into the local memory module. Updates cause
invalidation messages to be sent to all remote locations which contain the information
in the cache. As stated by David et al. in [20], in such an environment, local memory
accesses minimize memory access time. Locks however, may be used by code on any of the
processing cores, so remote memory access cannot be avoided, only kept to a minimum.

Radovic and Hagersten in [57] describe a NUMA-aware Hierarchical Backoff lock. The
lock aimed to reduce remote accesses by “handing over” locks to local threads waiting to
acquire them before remote threads, and to reduce contention at lock handover time. The
lock itself is represented as an integer value in a shared memory location, initialized to a
value, FREE, indicating that the lock is not held. Acquisition of the lock has the thread
write its NUMA node id to the shared lock location. Threads which have been denied
the lock are given a backoff time to wait until retrying its request. To account for node
locality, threads which read the same node id as their own are given a smaller backoff
time in comparison to those which do not, to give the local threads a higher chance of
obtaining the lock. To account for threads which may not have the same node id but may
be on the same chip (and still considered neighbours), the address of the lock is copied to
a local node specific storage area and neighbours instead spin on that before attempting to
access the globally shared lock variable. Starvation is also taken into account by having a
threshold number of lock denials and reducing backoff time and writing values to the local
node specific storage of other nodes to increase their backoffs.

Luchango et al. in [50] describe a Hierarchical version of the CLH lock [51], which
extends the original algorithm to be NUMA-aware. To facilitate NUMA-awareness, they
extended the concept of the thread waiting queue to be of two parts, one global queue over-
all, and local queues for each cluster (NUMA node). Thread nodes contained in the global
queue wait to acquire the lock directly. The head thread of the global queue, when de-
queued, is allowed to enter the critical section. The head thread of the local queue becomes
cluster master, and is responsible for splicing the members of its local queue into the global
queue. To support the distribution of queues, the node (qNode) word member variable was
modified to contain two other components in addition to the successor_must_wait boolean

14

flag – a cluster_id and tail_when_spliced flag. When spinning on the predecessor’s mem-
ber status a thread can tell whether it is in the local or global queue based on what flag it is
spinning on. It first waits to become cluster master (at which point its tail_when_spliced
flag becomes true), then it waits for acquisition of the lock (at which point the original
algorithm’s variable, successor_must_wait, is false). A thread releases the lock by setting
its successor_must_wait flag value to false. The algorithm gives preference to handing off
the lock to local threads as much as possible, since a local cluster master attempts to splice
in its entire local queue onto the global queue. Starvation was not explicitly considered,
but was implicitly assumed not to be a problem since any local queue for a cluster will
eventually be spliced into the global queue.

Dave Dice et al. in [21] improve upon the idea provided by [50] by the use of the
Flat Combining technique in [32] in combination with the MCS queue lock of [54]. Their
technique mostly agress with the HCLH algorithm in terms of using a queue based lock
as the basis and having local (FCQueue) and global (GlobalQueue) queues, which uses the
notion of clustering nodes and having a cluster id. However, they identified two problems
in the HCLH algorithm – relatively small local queues and more potential memory access
traffic generated from accessing information from predecessors. To deal with the first
problem, they included in the acquiring algorithm the notion of a combiner thread, which
has the job of creating a local MCS queue out of potential nodes of threads which want to
access the lock (kept in a publication list) and splicing this list into the global MCS queue.
To deal with the second problem, they used an MCS queue instead of the CLH queue
for the basis of their work, since threads spin on their local flag values instead of their
predecessor’s flag values. In acquiring the lock, the thread first tries to become a combiner
by trying to acquire the local FCLock. If the thread does succeed in becoming a combiner,
it performs the previously described logic of creation of the local MCS queue, reactivates
itself in the publication list, releases the FCLock and restarts the lock acquire operation.
If it fails (another thread is a combiner), it first spins on requestReady. If requestReady is
true, it continues spinning, adding itself to the publication list if it was removed. When
requestReady becomes false, the thread goes on to spinning on isOwner for the actual lock
acquisition, waiting for it to be set by its predecessor thread. isOwner being set as true
for a thread indicates that the thread has acquired the lock. A thread releases the lock
by setting the isOwner flag of the next node in the global list (for the successor thread)
to false. A check for if the node could potentially be the tail is done to prevent the extra
potential remote access from setting the global tail to null in the original MCS algorithm.

Dice et al. in [22] describe Lock Cohorting, their technique of building a NUMA-aware
lock from more basic locks. The idea is to have one Global, NUMA-oblivious lock and a set
of NUMA-aware locks, one for each NUMA node. The lock has three states, Locked, Global

15

Release, Local Release. To obtain the lock, a thread first checks the state of the local lock
variable. If it is Locked, then it will wait to obtain the local lock using the technique of the
local lock type. If it is Local Release, then it knows that a local thread had the lock before,
the global lock is still Locked, and it only acquires the local lock variable. If it is Global
Release it must try to acquire the local then the global lock, to continue. When releasing
the lock, a thread checks to see if there are other threads blocked on the local lock. If
there are, it does a local release, else, it does a global release. Starvation is addressed using
a threshold count and forcing a thread to do a global release for other nodes to have a
chance, when the number of local threads have already acquired the lock, is equal to the
threshold count.

Calciu et al. in [14] build upon the Cohort lock by making a reader/writer variant.
They aim to expand Cohort Locks to conform to the multiple reader/single writer access
model of a regular reader/writer lock, but also increasing throughput for NUMA architec-
tures using the cohorting mechanism and increasing the average response time by clustering
writer requests from the same node whenever possible, which would in turn allow reader
requests to be batched as well, happening in preference to writers. Readers update local
read indicator count variables to access the lock while Writers check these variables on all
nodes to determine if the lock can be accessed exclusively. Writers preferentially hand off
the exclusive lock to other writers on the same node using the same technique of Lock Co-
horting. Neutral Preference, Reader Preference and Writer Preference versions of the lock
are described. The Neutral Preference performs similarly to the PThread Reader/Writer
lock, by allowing multiple simultaneous readers but having exclusive writers. The other
preferences build on this to provide faster lock acquisition for readers or writers. The
Reader Preference allows for readers to more quickly obtain the lock by avoiding locking
the shared global Cohort lock but being able to check it locally. The writers always try to
acquire the global Cohort lock directly. If there are readers present, the writer unlocks the
global cohort lock and waits for the readers to finish, then tries to reacquire it. Starvation
of Writer threads is avoided by only allowing a maximum (threshold) number of Reader
thread acquisitions before allowing Writers to acquire the lock. The Writer Preference al-
lows for writers to have preference over the readers by making readers increment the reader
counter before checking the cohort lock status, and immediately decrementing the reader
counter if the global cohort lock is locked and waiting for writers to finish. Starvation is
also prevented using a similar barrier strategy to the reader preference case.

16

2.2.2 Data Access

Besides the lock structure, other aspects of the data structure can be modified to improve
the performance of the data structure in a NUMA system.

Li et al. in [48] improve the performance of datastructures in a NUMA system by
organizing the accesses to data among threads to reduce interconnect bottlenecks due to
overuse of some of the connections by shuffling the data among threads which produce
and consume common data. For N threads distributed evenly among cores on S sockets,
the data for each thread is broken into N partitions. By considering each thread’s thread
number (ti) and socket number (si), the accesses to data by each thread are organized so
that each thread obtains all of the partitions it needs to complete its operation, while the
overall set of operations utilize each interconnect connection path almost uniformly.

2.3 Distributed B-Trees

The need for very large amounts of storage and processing power has become too much
for single machine processing to handle. Distributed and parallel computing has become
a very important paradigm in satisfying such needs. The distribution can be on the level
of multiple cores in different machines or multiple cores within the same machine. The
distribution of resources for storage requires the data being stored to be distributed as
well. However, this has resulted in new issues as it relates to the relationship between the
logical and physical representation of data, and the placement of data to support retrieval
and storage requirements of clients. With distribution there can also be a choice of where
operation requests will be directed to and a protocol for communicating with all machines
which are participating in the storage of the data. When the fundamental components of
communication protocol and storage are being considered, performance becomes impor-
tant. Due to distribution, the physical components of the storage can be varying distances
apart, being as close as separate memory modules in the same machine as in the NUMA
architectures, and as far apart as separate storage devices (disks and/or memory) in sepa-
rate machines, geographically far from other. One of the normal requirements of a client of
the datastore is that the data requested or being stored be done so as quickly as possible.

2.3.1 Node Replication and Placement

One of the ways to obtain better operation performance is to keep the data being operated
on as close to the client as possible. Since clients can be located anywhere in relation to

17

the data this would require a copy of the data to be stored locally at every possible access
point for the datastore. Unreliability of the network can cause the communication between
storage nodes to fail, resulting in unavailability of the required data. Replication of the
data can help to combat this, since having multiple copies of the data can maximize the
chances of the data being available to a client upon request from any of the access point
to the datastore. However, the replication of data comes with other problems. Once such
problem is that such replication of data may be contrary to original resource management
requirements – one wants to add more resources to improve performance, but in an efficient
manner, and if efficient use of storage space (a resource) is a requirement, then this duplica-
tion of the information stored actually works against the requirement. There must therefore
be a tradeoff between this improvement in operation performance and increase in storage
space usage. Another problem is that with duplication of the data comes the requirement
to maintain consistency of the data stored among the many copies that exist when updates
occur. The level of consistency required is dictated also by client requirements and can
be very strong (all updates must be reflected in all copies before the operation returns to
the client), or varying levels of weak (clients can read varying data depending on where it
was retrieved from). Other classifications of consistency consider the time it takes for all
copies to receive updates from an updated copy (Eventual Consistency) and the sequence
in which consecutive conflicting operations occur (Sequential Consistency, Serializability
and Linearizability [37]). Many methods of measuresurement and benchmarks have also
been developed to try to quantify the various levels of consistency [9, 58, 29]. Also, repli-
cation used to combat network partition has a problem – the data accessible due to the
partition may not always be the most updated version. How up-to-date this information
being retrieved from the partition is depends on the consistency model used, and there are
principles such as Brewer’s Consistency-Availiability-Partition (CAP) principle [28] and
Abadi’s modification of the principle, called Partition - Availiability/Consistency, Else -
Latency/Consistency (PACELC) [1] which elaborate on the tradeoffs of performance in the
presence/absence of this network unreliability. Good replication algorithms therefore take
all of these tradeoffs into account, as well as the client requirements in order to provide
an acceptable level of performance from the perspective of the client, while still making
efficient use of resources.

Wang in [65] describes how replication can improve the performance of the implemen-
tations of the memory models of coherent shared memory and multi-version memory. The
concept of the replication factor is introduced and used to describe the number of copies of
a node to be made on a processor. Number of copies of each node are chosen based on the
height of the node in the tree, with the guiding reasoning being the higher the node is in
the tree, the more chance it has to be accessed (as a path to lower nodes in the tree) and

18

the higher its copy count should be, with the minimum being one copy, and the maximum
being the number of processors that can access the tree. By this reasoning, the number of
copies of the root was set to be equal to the total number of accessing processors, and the
replication factor of all leaves was set to be one. The number of copies of each internal
node was determined to be the minimum of the total number of copies of the root and the
number of copies of the nodes in the level above the node multiplied by a constant factor,
called the Replication Factor.

Johnson and Colbrook in [39, 40] describe the dB-Tree, which uses a Blink Tree as a
base and replication to improve its performance. The focus of the replication is on the
inner nodes in relation to the leaf nodes that are contained in the memory associated with
the processor, so that for every leaf node in that processor’s memory, there is a complete
path from the root node to that leaf node in that processor’s memory. This would ensure
that a read operation to a key contained on a specific processor would not have to leave
that processor once it has arrived at it. The distribution of leaves are tracked by extents,
which are the group of leaves contained by a processor. The group of leaves for an extent
is selected so that the leaves are neighbours in the logical structure of the tree. Using the
collection of processor extents, the number of leaves are balanced as evenly as possible
among the processors. If one processor has too many leaves in its extent, excess leaves
from that processor are sent to another processor with an extent of neighbouring leaves,
which can accept more leaves for its extent.

Krishna and Johnson in [44] also describe the use of replication and load balancing to
manage the performance of a Blink-Tree in a Distributed environment. Nodes are identified
with a logical pointer that is unique among all processors. The internal nodes are replicated
based on a strategy called “Path to Root”. For every leaf node contained on a processor, all
of the nodes along the path to that node have a local copy on that processor. One copy of
a node serves as the primary copy, and it initiates all update synchronization messages to
the other copies when an update operation occurs. Leaf nodes are not replicated, but are
allowed to migrate to more lightly used processors to reduce the load. Nodes are grouped
on each processor with their siblings as much as possible to reduce communication among
nodes. Nodes also contain pointers to all their siblings, parents and children, which are
used for regular traversal on one node, or to redirect the traversal to another node, if the
leaf node being searched for is not contained on the current node.

Cosway in [19] also suggested improvements to a distributed Blink Tree using static
and dynamic techniques for replication. The observations for static replication were that
the frequency of access of nodes was dependent on the level of the node in the tree,
withe root node always being accessed, and all other nodes in increasingly lower levels
being accessed less frequently due to the route taken by the operation being focused on

19

a specific node of the level. From this two rules were developed, one for basic replication
of frequently accessed nodes (with access above a certain threshold), and another for load
balancing capacity, with the capacity being probabilistically defined based on the number
of processing cores, the number of copies required per node and the number of nodes on
the level. The latter rule aimed to find the number of copies required for an acceptable
capacity, based on space requirements. A hybrid of the two rules was used to determine
how many node replicas to create. Each replica was placed uniformly at random on one of
the processors that did not already contain a copy of the node. The dynamic version built
on top of the static replication by giving the nodes the ability to keep track of their access
frequencies and to request replication if necessary. Each node was made to keep track
of access counts and previous access time. On every access, the time difference between
the current access time and the last access was found. If the time difference was greater
than a threshold time, the access count was incremented, else it was decremented. After a
certain observed time, if the frequency count was above a threshold, the node would send
a replication request and number (based on the hybrid technique of the static replication
technique) to the processor holding the master copy. Each processor has a fixed size cache
for replicas, and uses cache replacement algorithms for replicas if it is full, sending the
evicted replica back to the processor holding the original copy.

Asaduzzaman and Bochmann in [4] describe the construction of a replicated B-Tree
with a focus on high throughput and elimination of bottlenecks, when operations on the
tree can be initiated from any of the participating storage processors. Similar to Krishna
and Johnson in [44], they realized the need for replication of nodes to increase operation
throughput. A similar decision to replicate internal nodes was made, by distributing leaf
nodes among participating processors, and replicating only the internal nodes on the path
to each leaf node on the processor. The tracking of the replication was done differently.
Each node had an associated Routing Table and a Backward Pointer table. The Routing
table maintained information for each processor known to contain nodes for each child
node range in the tree. The Backward Pointer table maintained a pointer back to all
processors which are known to contain a local version of the same node. It was noted
that the replication of internal became a bottleneck for strongly consistent updates as the
number of participating processors increased. To address this, the consistency require-
ments were relaxed, and synchronizing updates were treated as separate, atomic updates,
which were performed after the update on the local processor was completed. Optimistic
concurrency control in the form of a version number, checked before and after operations
and incremented after update operations, maximized concurrency.

20

2.3.2 Multiversioning

When replication is used in a distributed datastore, multiple physical copies of the same
logical data may exist and the issue of consistency arises. Different clients may have
different consistency requirements, and may be tolerant to having slightly stale versions
of the data, but have strict constraints on operation response time. With these types
of constraints the technique of management and serving of multiple versions of the data
becomes acceptable.

Lomet and Salzberg in [49] describe their use of multiversioning in a B-Tree, which they
called the Time-Split B-Tree. The idea was to split the content stored by the tree into a
current version, which was stored on multiple-write secondary storage (such as a regular
hard disk), and to push historical versions of the data onto another, possibly write-once,
secondary storage device (such as an optical disk). The versioning was done on the key
level, with each key having a timestamp indicating its insertion time, and with updates
to the same key represented as inserting a new version of the key into the node with
a more current timestamp. The splitting of the node was always done on the mutable
storage holding the current version of the data before pushing the historical content to the
archiving device. This was done to allow for the current versions of nodes to accept current
changes (by keeping it on the multiple-write storage) and to make the most efficient use of
the archival storage device (which could possibly be write-once), by writing a full node of
past key value content to it. A choice between splitting by time or by key could be done
for all nodes, with the choice being made by minimizing a cost function which includes
total space and version space requirements. Split by a key value works as in the regular
B-Tree case, with keys lower than the split key being put into the left node and all keys
larger than or equal to the split key being put into the new right node. Split based on a
time would put all versions of a key with a timestamp less than the split value into the
historical node (for archiving) and the most current versions of keys, as well as versions
greater than the split value into the current node (and kept on the multiple-write disk).

Weihl and Wang in [66] discussed an implementation of multiversion memory for B-
Trees (their change being based on the Blink Tree), as well as a general transformation of
current dictionary based algorithms to support the multiversion memory, in a distributed
environment. Each node of storage was assigned a counter, the version number, which
starts at an initial version and is incremeted for each update operation performed. The
tree itself has a copy of the most current data for each node, and a fixed-size cache of
previous versions for various different nodes. Readers perform the following steps in order
– read_pin and read_unpin. read_pin searches the cache for a copy of the requested node,
creating a locally cached version if necessary. The reader then sets this cached copy to

21

pinned to prevent it from being removed from the local cache, and reads the information.
read_unpinned sets the node as unpinned. Readers can (and must) request any cached
version, including the current version. Writers perform the following operations which
correspond to the relevant reader operations – write_pin and write_unpin. write_pin
performs the same operation as read_pin, except that it changes the local copy to be
the current one and attempts to acquire the lock on the node’s mutex. write_unpin, in
addition to what is done for read_pin, writes the updated copy back to the base copy (with
all necessary communication for notification of updates), and unlocks the mutex.

Becker et al. in [7] describe a general algorithm to convert a single-version B-Tree
to a multiversion B-Tree for which the resulting regular operations (insert, delete and
search) are asymptotically comparable to the single-version operations in terms of time
and space. The tree itself is partitioned into differerent version ranges, which are each
their own tree, with their own root. Search operations are directed by both a key and a
required version, while update operations are restricted to only the most current version
of the tree. Versioning is done at the key/value entry level, where a record would be
represented by the key, insertion version number, deletion version number and the value
(data for a leaf node and a pointer to a child node if an internal node). To handle structural
changes caused by updates (splits and merges), two satisifactory conditions were defined,
both based on the number of entries a Node block could hold, after the space occupied by
its accounting structure is considered (defined as the block capacity b) – Weak versioning
and Strong versioning. These two conditions guaranteed a minimum/maximum number
of entries contained in a node and a minimum number of operations which would occur
until the next structural change. Node overflow is always initially handled by a current
version split. If this initial split results in a violation of any of the two conditions, another
restructuring operation restores the conditions. In the case of an underflow, merging with
another sibling is done, and in the case of an overflow, a key split is done.

Twigg et al. in [63] describe their Stratified B-Tree as a replacement of the Copy-on-
Write (CoW) versioned tree. The aim of the Stratified B-Tree with the aim of reducing the
space usage of the entire structure by reducing query performance. The tree is represented
as a collection of arrays of (key-version-value) tuples, arranged into levels. Arrays hold
keys with an assigned range of version numbers, and arrays at one level are roughly twice
as large as those at the level below it. All arrays at a certain level contain disjoint sets of
versions, and merges are used to correct overlaps. Any array that is too large for its level
may have parts promoted to higher levels. Array density is the condition which manages
storage within the array. Every version contained in an array must have a subset of all keys
contained in that array. Manipulation of the fraction allows for adjustment of space and
performance characteristics of the tree. Inserts are buffered in memory and then flushed

22

to an array of the lowest level. Deletes are handled like updates, except that tombstone
elements are used, which are removed when merges occur. Lookups query a Bloom Filter
on each array with the required version and then look into those arrays which satisfy the
filter.

2.4 In-Memory Indexes

The size of main memory contained in machines have been increasing steadily over the
years, and there are now machines with total main memory size comparable to the size of
secondary storage drives. Because of this, more of the data that is needed to be accessed can
be kept in main memory, with less need to access long-term storage drives for current data
and instead using them for periodic checkpointing. As a result, various datastructures that
have existed before the modern shift have been revised and updated and new datastructures
have been proposed for use with the data now being accessed and maintained mainly in
memory.

Rao and Ross in [59] describe their efforts to make the B+-Tree more efficient in memory
and cache, in their CSB+-Tree. They realized from previous work that B-Trees performed
very well in memory when the size of the node is equal to the size of the cache line, but
a lot of the space of a node was still used for keeping track of the structure of the tree
with child pointers, rather that keeping track of data. To reduce this overhead, adjacent
sibling nodes on each level were grouped and stored in a contiguous segment of memory,
and the starting address of the group was stored as a child pointer in the parent node.
Traversal operations proceeded as before, with the required node address being calculated
as an offset from the starting address of the group known to contain the child node. Storing
only one pointer to the start of the group allows nodes to have more space for data and
enables the use of a cache line for data, instead of structure overhead. Updates tried to
use adjacent, non-used nodes for splits/merges. Splits causing the number of nodes in a
group to be greater than allowed in the leaf level caused reallocation of a new group of size
larger than the previous by one node, the copying of all of the information of the previous
group into the new one, and updating of the parent pointer if necessary. Similar splits in
internal nodes cause allocation of another group, redistribution of contained nodes between
the groups and updating of the corresponding child pointers.

Chen et al. in [16] describe their Fractal-Prefetching B+-Tree, which aimed to optimize
the performance for the tree for both disk I/O and cache operations, by building upon the
their prefetching techniques for nodes and pages[15], used to improve search and range-scan
operation performance. The prefetching technique uses a node size that is a multiple of

23

the cache line size, with all cache lines associated with a node being prefetched before the
node is accessed. Range scans are performed by finding the node for the starting key using
the regular search operation and the other nodes, prefetched sufficiently before needed,
are found by following sibling pointers maintained between nodes which are parents of leaf
nodes. To further include optimizations for disk operations, the tree is considered in two
parts. The tree is organized into a “tree of trees”, organized according to disk optimization
first or cache optimization first. Disk-First organization arranges the tree first according to
the regular disk page size, then within each page, the keys are organized into an internal,
cache-optimized tree. Cache-First organization optimizes the structure of the tree for the
cache, then groups an integral number of nodes into a disk page for storage on the disk.
Nodes are selected for a group to enhance locality, by grouping neighbouring leaf and
parent nodes as much as possible.

Kim et al. in [42] considers the optimization of Binary Trees in memory by taking into
account processors which include Single Instruction Multiple Data (SIMD) instructions,
as well as the other memory characteristics (page size, cache line size and cache sharing).
Hierarchical blocking is used to choose node size of nodes as well as their locations, relative
to the size of the SIMD data register and the size of cache lines, so that groups of nodes can
be pulled into the cache and executed on by SIMD when needed. Nodes are clustered so
that a group would contain siblings and parent nodes for multiple levels to minimize cache
misses. Key compression is used to handle variable length keys, by compressing longer
keys to be of a fixed size. This translated to bounds on the minimum number of nodes
(and levels of nodes) which would be contained in a cache line, and a reduction in cache
misses due to longer keys and variable numbers of keys contained in each node.

Boehm et al. in [10] consider the use of prefix trees for in-memory storage and retrieval
of data. They presented a generalized prefix tree, used for storage of arbitrary data of
fixed and variable length keys. The keys are used in terms of byte representation. To
ensure that the tree was balanced, the maximum length of a key used was fixed, and
the prefix length used was a factor of the the maximum prefix length, ensuring that all
of the leaves of the tree were at the same level. Variable length keys with a length less
that the maximum were padded with zeroes. They identify two problems with the regular
prefix tree that pose problems for in-memory usage – large tree height based on the prefix
length, and potential for large memory consumption due to full tree expansion when more
keys than the key space currently provides are inserted. To deal with these problems, a
few optimizations were introduced. The bypass jumper array technique was introduced to
deal with potentially large tree height by skipping leading zero prefixes in the key (and
bypassing the associated level search) by counting how many leading zeroes were present.
All the childnodes with zero prefixes were preallocted and associated with the array. Keys

24

smaller than the maximum key length were padded with zeros at the beginning to make
the maximum length. The dynamic trie expansion technique was introduced to reduce
memory usage by trees that are sparsely populated as well as the time taken to retrieve
the data, by allowing nodes of inner levels to point to actual data, provided that there is
only one data node associated with the prefix at the time. Padding for keys smaller than
the maximum is done at the end for this technique to preserve order. Optimization of
memory usage was also considered with techniques such as preallocation of node arrays,
reducing pointers to offsets and using a node size aligned to the size of a cache line.

Kissinger et al. in [43] describe their KISS-Tree, which was an adaptation of the
generalized prefix-tree for in-memory indexing, with the aim of minimizing memory accesses
for operations and memory consumption by the Tree structure and data. The tree consists
of three levels, and operations use a key size of 32 bits, with each level of the tree indexed
using a different fragment of the key with a different length. The first level, called the
Virtual Level, uses the first 16 bits of the key to directly access thee nodes of the second
level, for which the nodes are stored in order of their content. The second level uses node
sizes which are equal to the memory page size, and uses the virtual memory assignment
by the operating system to only allow consumption of memory when a page is accessed for
writing. Since this level uses the next 10 bits of the key, each node contains 210 entries.
With an expected page size of 4 KB, this allows for 4 Byte pointers to the third level.
This pointer is broken into a bucket offset (6 bits) and the block number (26 bits) from
the selected node for the third level. Each node in the third level uses the remaining 6
bits to access a bitmap of used buckets in the node, allowing for consumption of only the
memory of occupied buckets. Updates are done using the Read-Copy-Update [55] pattern
when the required bucket at the third level is found.

Mao et al. in [53] address in-memory indexing with cache awareness by combining the
strengths of the Trie and B+-Tree datastructures into one hybrid tree, which they called
MassTree. They noted that long keys with shared prefixes were better served with a Trie,
while the B+-Tree was better for short keys and concurrency control. The result was the
outer tree being a Trie, which used a prefix size of 8 bytes, with each node being a B+-
Tree. Inside of the node, keys are stored as close to the root of the B+-Tree as possible,
with all nodes at a level m (having length above the last 8 bytes of the previous Trie node
= n) having a shared prefix of length 8h + n, where h is the height of the outer Trie.
Locking in MassTree is done at the level of the node by using a version number. The
version number contains bits used for indicating the node is locked, splitting, inserting,
whether the node is the root or a border node, and separate version counters for splits
and inserts. Reads do not lock the node, but instead read the version number before and
after reading the required key from the node. If the version is different or the split/insert

25

bit is set, the read operation is retried. Updates first atomically set the locked bit to stop
other writers from concurrently updating, then required bit (insert or delete) to indicate
what type of operation is being performed and to inform readers of the need to restart. If
a split is required during the update operation, that bit is set and unset accordingly for
the duration of the split. When the update operation is finished, the insert or delete bit is
cleared and the corresponding counter is incremented.

2.5 Contributions

This work considers the use of the B-Tree datastructure completely in main memory of a
NUMA system, and suggests three modifications to the B-Tree for this environment – node
replication, changing of the granularity of locking (the level up to which normal locking
is allowed), and optimistic concurrency control techniques for Read operations (Lock-Free
Reads). The modifications for node replication are adapted from the work done on dis-
tributed B-Trees [65, 39, 44, 4] for the NUMA environment, with physically distinct NUMA
nodes being treated as the distinct servers in a distributed system. However, in the case
of a NUMA system, all NUMA nodes have access to the same address space and so can
access each other’s data directly. The modifications for NUMA-aware locking replaces
the default locking of the tree (PThread Reader/Writer locks) with an implementation of
the NUMA-aware Reader/Writer lock as described in [14]. It also considers the use of
replicated latch managers (in the case of node replication) for each NUMA node, and com-
pares them with the original and NUMA-aware Reader/Writer lock implementations. The
modifications for varying lock granularity consider changing the minimum node height for
which the corresponding lock will be used (henceforth called Lock Granularity). The work
focuses on the combination of this technique with replication to reduce lock contention,
and to benefit from NUMA node workload distribution decisions. The modifications for
Lock-Free reads use a version number locking technique similar to that used in [53, 23, 12].
However, instead of having many different operation bits or version numbers, it uses a
simpler odd/even version number counter technique to determine when it is safe to read
and when a modification to the node is occuring. “Modification” groups all operations
which results in physical changes to nodes, and are represented odd version numbers. A
node that is safe to read has an even version number. Also, since the tree uses logical node
pointers in the form of page numbers, any inconsistencies found by an operation resulted
in only that node being re-read, instead of restarting the entire operation from the root
node.

26

Chapter 3

The Problem and Solution
Implementation

3.1 The Problem

As explained in Chapter 2, much work has been done on top of the basic B-Tree data
structure to improve its operations during period of increased concurrency and in dis-
tributed environments using the techniques of replication and multiversioning. However,
NUMA-based architectures have not received as much attention, and although the tech-
niques described before are applicable, many of them have steps which have too much
overhead or are unnecessary, since the entire storage environment is physically contained
in one address space. Also, with the size of main memory rapidly increasing, many of the
datastores can now be kept in main memory, and only flushed to disk for checkpointing and
fault tolerance. The work described by this thesis looks at improving the overall operation
throughput of a B-Tree stored completely in the memory of such NUMA environments, by
considering various combinations and variations of the locking, distribution and versioning
techniques described before. The B-Tree was chosen for analysis and modification due to
its usage in various different datastores for physical storage, but the techniques described
here can also be extended to include any dictionary type datastore, where there is sepa-
rate storage of various segments of the range of data in dictionary and for which locking
techniques are used.

27

3.2 The Original Code

The code base upon which modifications were based is developed by Karl Malbrain, ac-
cessible from https://github.com/malbrain/Btree-source-code and described in the
arXiv paper [52]. The tree is an implementation of a Blink Tree, in C, that combines the
original B-link tree description described by Lehman and Yao in [47], but instead uses the
techniques based upon the methods described in [38] to maintain the logarithmic time of
operations by keeping the tree balanced and the deletion methods described in [46], since
the original description of the B-link tree does not describe the process of deletion explic-
itly. This section describes the techniques used in the original code to provide the highly
concurrent foundation upon whichour performance improvements build.

3.2.1 The Node and Segment

Fig. 3.1 shows the layout of the node used for key storage in the tree. The node contains
a header for page accounting information. The rest of the page is used for the storage of
keys (BtKey) and slots (BtSlot), which keys are stored in ascending order, by key. The
node allows for storage of variable-length keys from 1 byte up to 255 bytes. The Tree is
a user-specified subset of nodes stored in a contiguous area of memory, called a segment.
The size of a node is specified as the size of a page, and the size of a segment of nodes
is specified by the number of nodes contained in a segment. Both the page size and the
size of the segment is specified by the user when the tree is created. All segments are
represented as a memory-mapped locations in a file created to represent the tree when the
tree is created.

BtPage

BtSlot

BtKey

Figure 3.1: Layout of a Node

The accounting information (BtPage) stored at the beginning of the node includes the
key count (cnt), the number of active (not deleted) keys (act), the level of the node in

28

https://github.com/malbrain/Btree-source-code

the Tree (lvl), whether or not it contains deleted keys (dirty), and a right link to a
potentially new node created during a split of the node (right). A slot (BtSlot) may
hold logical child page number pointer if the node is an internal, or an unsigned integer if
the node is a leaf node (the number can represent any useful data). The node stores slots
(BtSlot) from the memory right after the header information towards the end of the page.
Actual key information (BtKey) is stored from the end of the node, going towards the start
of the page. The BtKey stores the fields len and key, defined as follows:

• len stores the length of the key

• key stores the supplied key as an array of characters of size len

The BtSlot stores the fields off, dead, tod and id, which are used as follows:

• off is used in a macro calculation to get the required BtKey information to get the
length and data of the key.

• dead is a flag to indicate that this key has been deleted

• tod is a timestamp

• id is the logical child page number pointer associated with the separator key for an
internal node, or the value being stored for the associated key for a leaf node

A node does not have an explicit fence key stored in the header. Instead, the fence key
is deduced from the associated key for the largest slot value contained in the node, and
whether or not the node contains a right pointer (indicating that it was split). When the
area used for storing BtSlot structures grows to the point that it overlaps with the area
used for storing BtKey structures, the node is declared full and is split in half, with the
lower half of the keys remaining in the node currently being split and the upper half of the
keys moving to the new node that is created to the right of the current node. The fence
key of the old node is changed to reflect the maximum of keys within that node, and a
new fence key is posted in the new node and parent node (replacing the old one) as well.
Root splitting is a special case of the splitting of a node where a new root with a few keys
is created and the height of the tree increases. A node is merged with its right sibling if
there are no more active keys in the node after a delete operation. The contents of the
right sibling node are moved into the node, the right node’s deleted bit is set, and the right
node’s right pointer is set to point to the node to the left of it. After all of the pointers
to this node have been removed, the node is returned to the free list of nodes previously
allocated, which is stored in the Latch Manager (BtLatchMgr).

29

3.2.2 The Latch Mechanism

The locks used in the original implementation (BtLatch) are a wrapper for the implemen-
tation of Reader/Writer locks contained in the pthread library pthread_rw_lock_t. The
locking granularity used within the tree for reads and updates is at the level of one lock
used per page. The method of locking used is latch-coupling, similar to the S (Shared)-U
(Update)-X (Exclusive) latching mechanism specified by Jaluta et al. in [38]. Malbrain
identified the following issues with the locking methods specified in [38]:

• Tree traversal during Updates use hand-over-hand locking of update locks, which are
incompatible with all other update lock attempts. When descending to the required
node, the parent and the child node are both held under these update locks, which
prevents other concurrent operations from happening on the parent as well as the
child.

• Exclusive locks (X) are used on the child node when it is being split, which also is
not compatible with any other lock types. This prevents any concurrent access to
that node by readers, even if the key/value data required by the reader is unaffected
by the split operation.

To avoid these issues, Malbrain [52] instead defined the following other combinations of
lock types:

• The AccessIntent/NodeDelete lock is used for draining current and preventing
new readers/writers from accessing a node that has now become empty.

• The Readlock/WriteLock lock is used just as in the case of the regular reader and
writer locks.

• The ParentModification lock is used to lock the parent node to place its fence key
value into the parent as the new key delimiter which directs operation traversal to
that child node.

The pairs of locks were represented as one reader/writer lock with different acquiring modes
(for example, the lock for AccessIntent/NodeDelete would have AccessIntent as acquiring
the lock in Read mode and NodeDelete as acquiring the lock in Write mode). The resulting
three locks were grouped into one logical unit, a BtLatchSet, which operations used for
sychronization when operating on a node.

30

Table 3.1: Latch Compatibility Matrix for the Original Code, from [52]

Latch Requested
AI ND RL WL PM

La
tc
h
H
el
d AccessIntent (AI) Y N Y Y Y

NodeDelete (ND) N N Y Y Y
ReadLock (RL) Y Y Y N Y
WriteLock (WL) Y Y N N Y

ParentModification (PM) Y Y Y Y N

The compatibility of each lock when another is being requested is shown in Table 3.1.
Note that a NodeDelete lock is only granted if there is no AccessIntent locks on

the node, and when there are no pointers to that node in the tree. When performing a
dictionary operation, when descending to each child node, a ReadLock on the parent node
is coupled with an AccessIntent lock on the child. The ReadLock on the parent prevents
it from being deleted while a concurrent insert may be happening (which may require a
split and hence, a fence key update in the parent node). The AccessIntent lock also
prevents deletion of the child node, and does not block provided there is not a NodeDelete
lock on the node. Once the AccessIntent lock is obtained on the child node, it is then
latch-coupled with a ReadLock on the child node, and the descent continues. For update
operations, when the operation has arrived at the child node which is to be modified, the
lock is changed to a WriteLock and the modification of the node is started.

The ParentModification lock is used to allow at most one insert operation at a time
to perform updating of parent separator keys associated with the current child node being
split. When an update causes the split of a node, a ParentModification lock is set to
indicate that a fence key update for the node’s parent must be done. This lock does not
block any of the other lock groups from being acquired on the same node, so it still allows
other concurrent operations to continue while updating the parent. An update to the
parent is treated as an insert of the fence key to that parent node’s level, so the required
locking mechanism to have a safe insert into the parent is handled by that new insert
operation. The newly created node also has a WriteLock and ParentLock acquired, to
allow for modification of a potentially new parent for the new sibling, and the WriteLock
of both nodes are kept until the keys are split evenly between the two child nodes and then
released. The ParentModification locks are released after the insertion of the fence keys
into the parent nodes.

The distribution of the BtLatchSets is done from a central point, the Latch Manager
(BtLatchMgr), which occupies one page. A number of pages (the number is calculated using

31

the size of the page and the size of a BtLatchSet is used by the Latch Manager as memory
to be used for allocating BtLatchSets to nodes. The Latch Manager contains fields for
latch distribution accounting – total latch pages available for distribution (nlatchpage),
latch pages deployed (latchdeployed), a hash table for caching currently used latches
which are pinned (table), a list consisting of the next available page, and pages which
were freed after consolidation and are available for reuse (alloc), and a small spinlatch
for guarding modifications to this node page allocation list (lock). Each entry of the hash
table has an associated spinlock for reads and modifications and an associated slot entry
used to index the actual latch set page to retrieve the latch set used by the node page.
When a latch is requested for a page, the modulus of the page number and the number is
used as an index into the hash table of latches, with the retrieved entry being locked. If
the entry was assigned to the page before, or is a new assignment, it is returned. If there
are no such entries to return, the code waits for one of the latch sets to become unpinned,
stores an entry in the Latch Manager’s hash table for it and returns it. When operation
is done with the page, it unpins the page, allowing use by other node pages. Both the
BtLatchMgr and the pages used for allocating BtLatchSets are memory-mapped to the
B-Tree file.

3.2.3 The Buffer Pool Manager

Management of the Nodes in the B-Tree is handled similarly to [59], in that the entire
collection of B-Tree nodes is further collected into segments of a fixed number of pages
(BtPool), for which a hash table of the segments is managed by the manager of the B-Tree
(BtMgr). The contiguous segment pages are mapped directly to the associated B-Tree file,
and has a user defined size, which by default is the size of a disk page, but can be assigned
to any size seen fit by the user of the tree. Pinning and eviction logic similar to what is
used for the latch sets are used with the segments. A page within a segment is obtained
by using an offset, calculated from the page number, added to the starting address of the
mapping. The number of segments that are managed is specified upon B-Tree creation,
with a maximum of 65,536, the total number of simultaneous file mappings allowed by the
Windows and Linux operating systems.

3.3 Solution Implementation

The improvements to the B-Tree code focus on two aspects of the tree structure – location
of the nodes and protection of the data and the structure. The modifications to the B-Tree

32

focus on Reads and Inserts only, since the focus of this work is on read-heavy workloads, but
can be extended to Deletes as well, and such modifications will be discussed in Chapter 5. I
added 7815 lines of code to the original code to implement all of the modifications discussed
below.

3.3.1 Latch Manager and Buffer Pool Manager Spinlock Re-
moval

The experiments involving varying number of client threads initially showed a drastic drop
in throughput performance, even with just a relatively small increase in the number of
threads (up to about 8 client threads). This indicated that there was some contention
elsewhere in the code besides the group of latches allocated to a node, and the contention
was most likely due to locking. The Latch and Buffer Pool Managers were the only other
place in the code that used locks, specifically the hash table for referenced segments in the
Buffer Pool Manager, and the hash table for the allocated latch sets in the Latch Manager.
Both hash tables used spinlocks to protect each hash slot and hash chains for items which
mapped to the same hash slot, if the hash table size was smaller than the total number of
unique requests. The spinlock was used in write (exclusive) mode when updating a hash
chain for a previously unhandled request, otherwise it was used in read mode. There was
also a limit on the total number of concurrent available segment references and latch sets
which the respective managers were responsible for at any point in time. The managers
used a caching scheme to maintain (or “pin” in the code) the most recently referenced
segments and latch sets in the table. Mapped memory for evicted segments was written
back to the Tree file, and evicted latch sets were re-initialized for use with the new node.
Contention for the lock on a slot would occur if at least one of the requests for the same
segment or latch set caused a hash chain update. To overcome this bottleneck, the following
modifications were introduced:

1. The size of hash tables that were used to hold the references to the Segments and
Latches was set to be equal to the total number of Segments and Latches which
were created, so that every segment and latch set would have its own location in the
respective table. This reduced the size of the hash chains for each slot to be at most
one element.

2. All of the Segments and Latches that would be needed were pinned upon creation,
before any request operation. This allowed future requests to be served by the the
hash table without the need to update hash chains.

33

3. Locks for all of the hash table slot were removed.

This improved the performance of the Tree and was used for all experimental results
obtained.

3.3.2 NUMA-aware Locking

Each Node in the original implementation is granted a grouping of latches (BtLatchSet)
from the latch manager (BtLatchMgr), used for sychronizing reads and updates. Each latch
used in the grouping uses the PThread library implementation of the Reader/Writer Lock
(pthread_rwlock_t) as the underlying implementation of the latch. Although Reader/Writer
locks allow for increased concurrency of readers, the implementation is oblivious to the
physical main memory layout. Since the environment being considered is one with a NUMA
architecture, an implementation of locks that takes advantage of the physical main mem-
ory layout of the architecture could provide improvements in overall operation through-
put. As stated in Section 2.2.1, more recent techniques focus on local acquisitions of the
lock and hand-off to other threads of the same node. Since the original implementation
used was a Reader/Writer Lock, a NUMA-aware version of the Reader/Writer lock was
used as a replacement [14]. The implementation of the lock used was adapted from Azu-
Labs (https://github.com/azu-labs/rw-numa-locks.git), with modifications to work
in the environment used and to remove node-identification system calls, which are time
consuming.

3.3.3 Node Replication

The physical main memory and processor layout of a NUMA system can result in opera-
tions accessing data contained in a memory module of a remote processor’s NUMA node.
These remote memory accesses require the requested memory data to be transported across
interconnect links into the cache hierarchy of the requesting processor. This architecture is
similar in layout to a distributed system consisting of a set of physically separate servers,
so techniques which are used to improve the performance in a distributed system are also
applicable to a NUMA system. One technique used to improve turnaround time for opera-
tions is keeping a copy of the required data near to the location of the processor executing
the operation. The replication of information in a distributed systems can be adapted for
use within the NUMA system, but without the need for global identifiers, since all system
memory is available from a single address space provided by the Operating System. Since

34

https://github.com/azu-labs/rw-numa-locks.git

the node is the smallest unit used to store and access data in the Tree, it was selected
as the unit to be replicated, as done in the distributed B-Tree works described previously
[65, 39, 44, 4]. This implementation created a copy of the entire B-Tree within the main
memory module of all NUMA nodes. When an executing thread calls a B-Tree operation,
the B-Tree reads each node from the copy of the Tree that is contained within the main
memory module of the NUMA node that the operation is being executed on.

Custom Segment and Page Memory Allocator

To replicate B-Tree nodes and segments for each NUMA node in the system, all B-Tree
node/segment creation requests from a NUMA node were satisfied by allocating mem-
ory from the node where the request originated using the Linux numa library (numa.h’s
numa_alloc_onnode()). Almost immediately, this resulted in the inability to satisfy the
large number of requests being made for memory. This is because internally, every call
to numa_alloc_onnode() creates a new anonymous memory map, bound to the NUMA
node specified. In Linux, there is a cap on the number of such mappings which can be held
by a process at one time, stored in /proc/sys/vm/max_map_count. To get around this, a
custom memory allocator for segments and pages was created to handle those allocation
requests. Internally, it created one large memory map for the total number of expected
segments and another one for the total number of expected pages. The allocation requests
for each were tracked internally using allocation lists for each. This lowered the number of
mapping requests by the B-Tree from an unbounded number to just two.

Key Lookup and Insertion

Section 2.3 describes how replication of B-Tree nodes on each physical server in the Dis-
tributed System decreased the time required to execute read operations and update op-
erations. This work adapts the B-Tree node replication technique, but instead, treating
each NUMA node as the physical server. Newly created B-Tree nodes and segments(from
split operations) were replicated on every NUMA node. The file mapping from the original
code was not kept, since the main consideration of this thesis was the B-Tree performance
in main memory, and not persistence or fault tolerance. The Latch Manager was also
replicated for each NUMA node, so that the latch sets allocated for nodes of a local B-Tree
were also obtained from the local memory module containing the B-Tree nodes. Replica-
tion of nodes, segments and latch sets allowed for operations on a local node to have all
its memory reference requests be satisfied from the local memory module. This eliminated
remote memory accesses for nodes, segments and latch sets. The algorithms for the Read

35

and Update Operations were modified in three places, the code to load the correct page
for the key, the code that splits a page when it is full, and the code that updates/reads
the key from the page as necessary. The pseudocode for traversing the B-Tree is shown
in Algorithm 1. The find key pseudocode is shown in Algorithm 2. The pseudocode for
Inserts is similar to the pseudocode for finding the key, except that all copies of the B-Tree
are handled during Tree traversal, key insertion and node splitting.

36

Algorithm 1 Pseudocode for replicatedLoadPageRead
Input: key (Byte Array), value (Integer), page_set_pointer (Structure), node_lvl (Integer),

lock_mode (Structure)
Output: slot for key returned (Integer), page_set_pointer set appropriately

1: current_page_no := ROOT_PAGE_NO
2: previous_page_no := current_page := current_segment := current_page_lock := keyslot := ∅
3: lvl :=∞
4: while true do
5: current_segment := segmentFromLocalPool(current_page_no)
6: current_page := pageFromSegment(current_segment, current_page_no)
7: if lvl =∞ then
8: lvl := current_page.lvl
9: end if

10: lock(current_page_lock,ACCESS_INTENT)
11: if previous_page_no 6= ∅ then
12: unlock(previous_page_lock, READ_LOCK)
13: end if
14: if lvl = node_lvl then
15: lock(previous_page_lock, lock_mode)
16: else
17: lock(previous_page_lock, READ_LOCK)
18: end if
19: lock(current_page_lock,READ_LOCK)
20: unlock(current_page_lock,ACCESS_INTENT)
21: keyslot := scanForSlot(current_page, key)
22: previous_page_no := current_page_no
23: previous_page_lock := current_page_lock
24: if lvl = node_lvl then
25: if keyslot 6=∞ then
26: page_set_pointer.page := current_page
27: page_set_pointer.segment := current_segment
28: page_set_pointer.lock := current_page_lock
29: return keyslot
30: else[Page was being split while keyscan was done]
31: current_page_no := getRightPageNumber(current_page)
32: end if
33: else
34: current_page_no := getChildPageNumberFromSlot(current_page, keyslot)
35: lvl := lvl − 1
36: end if
37: end while

37

Algorithm 2 Pseudocode for replicatedFindKey
Input: key (Byte Array), node_lvl (Integer)
Output: value associated with key (Integer) or ∅ if key not found

1: keyslot := page := segment := ∅
2: page_set_pointer := memory allocated for structure
3: keyslot:= replicatedLoadPageRead(key, page_set_pointer, node_lvl, READ_LOCK)
4: if keyslot 6= ∅ then
5: bt_slot := getBtSlotFromPage(keyslot, page_set_pointer.page)
6: return bt_slot.value
7: else
8: return ∅
9: end if

The functions that are not in bold existed in the original code, and are used for obtaining
node and key information from the tree.

• pageFromSegment takes as paramaters a page number (logical page pointer) and a
pointer to the segment containing the page, and returns a pointer to a page.

• lockForPage takes the page number as a parameter, and returns the latchset struc-
ture to be used with the page

• scanForSlot takes a pointer to a page and a key as parameters and returns slot
number for the BtSlot/BtKey pair associated with the key

• getChildPageNumberFromSlot takes as a page pointer and slot as parameters and
returns the logical child node pointer (associated with the key used to obtain the
slot) from the BtSlot at at the specified slot

The original algorithm of findKey was modified with the functions in bold. The function
in bold, contained the modifications to support the replication of nodes. The rest of the
code was similar to what is done in the non-replicated case. The two modified functions
were implemented as follows:

• replicatedLoadPageRead contains similar logic to the original version of loadPage,
except that it loads the local version of the page that contains the key that is being
searched for, or the local verson of the page that would have contained the key if it
existed. It loads the version of the page contained in the local version of the pool,
loaded by segmentFromLocalPool, using the node_id supplied by the caller.

38

• segmentFromLocalPool contains the same logic from the original code for mapping
the page number of the node to the segment that contains it. However, the manager
of the tree keeps local, identical copies of the segment pool on each node, at a known
address. The node_id is supplied to the call to indicate which pool of segments to
check for the the required segment. Since only local segments from the local memory
module are read in this function, the operation execution remains local to the node
where the operation was started.

The code for replicatedLoadPageUpdate is similar to replicatedLoadPageRead, ex-
cept that all segments with the required page (allSegments) and all copies of the required
page (replicatedLoadPageUpdate) are obtained during traversal. replicatedInsertKey
updates all pages with the inserted key and required splits before the operation returns.
This results in strong consistency for key inserts and updates. This consistency model was
chosen since the original code implicitly had the same consistency model (updates are seen
immediately by subsequent operations). Different consistency models can be considered
based on client needs. This was not considered in this thesis, but could be Future Work.

Handling Inserts

Node replication introduces a new problem with the contents of the tree when updates
are included — consistency of changed nodes. Many previous works talk about how con-
sistency can be addressed in a distributed environment, and many of these techniques
can be adapted to fit the NUMA environment. This thesis considers two versions of the
update operation — obtaining of all required nodes and locks (with the correct mode of
Read/Write) as the tree is traversed, and insertion of keys only into the local copy of the
node. The former version guarantees strong consistency among replicas after the operation
is completed, but its execution time depends on the number of replicas and is very slow.
The latter provides very fast updates but produces inconsistent versions of B-Tree nodes in
the tree, which need to be handled separately from the operations being performed on the
B-Tree by clients. Finding a technique that handles eventual consistency in the NUMA
environment was not the main focus of this work, and is instead discussed in the Future
Work section of Chapter 5.

3.3.4 Granular Locking

The original implementation of the Tree assigns a latch set to each Node page to pro-
tect operations performed on it. Allocating a latch set for each page allows for maximum

39

concurrency when there are conflicting operations which need to read the same path of
ancestor nodes to get to the required node. However, the locking of a node can be con-
sidered overhead for the operation, since it does not contribute towards the result of the
operation. The more locks required during the operation, the more overhead experienced
(and time wasted) during the operation. Read-heavy and read-only workloads mostly read
from the required nodes, and can potentially reduce locking overhead by using a subset of
the locks during each operation. The use of a subset of the total number of locks on the
path to the node required is what is referred to as “more Granular Locking” in this work.
The approach to granular locking used here is to associate latches to Node pages up to a
certain level in the tree, measured from the root. For all Node pages below this level, the
latch that was granted to the last level is reused. The pseudocode for the loading the page
for the required operation using this mechanism is shown in Algorithm 3 and Algorithm 4.

The minimum latch grant level is stored within the manager of the tree. When searching
for the correct page and slot in loadPage, the code checks to see if the level of the page
that was retrieved is at a level where a new latch grant request will be allowed. If the
level is above the level that is allowed, then the regular locking procedure is done. If
the level goes below, then loadPageInternal is called. loadPageInternal differs from
the original loadPage code, in that it performs the hand-over-hand locking once outside
of the loop, and does no further locking when pages at the current level and lower are
accessed. The update versions of the two code calls are identical, except for the fact that
in loadPageInternal, the final lock mode used is a write lock, since at some point, the
required page will require that lock. The aim of the loadPageInternal call is to minimize
the number of lock acquisitions for the reused lock (to 1 acquisition).

3.3.5 Lock-Free Reads

Another technique that was considered for the B-Tree was lock-free traversal. Lock-free
techniques could be implemented for all operations, or a subset of operations. Depending
on the operations being considered, the performance could be better or worse, and the
code would become much more complex. The choice of B-Tree operations to modify was
made based on the workload type that was expected, the operations that were being
considered, and how conflicting operations would be handled. The main workload type
being considered was read-heavy (at most 25% updates). Since reads were expected to be
most common, they were modified to use the Lock-Free techniques. Also, since Lock-Free
techniques would result in operation restarts when inconsistencies were discovered upon
descent and access of nodes, a read-heavy workload would have fewer restarts than an
update-heavy one, since there are fewer updates happening in the workload. For update

40

Algorithm 3 Pseudocode for loadPage with the Granular Locking Mechanism
Input: key (Byte Array), page_set_pointer (Structure), node_lvl (Integer), lock_mode (Integer)
Output: slot for key returned (Integer), page_set_pointer set appropriately

1: current_page_no := ROOT_PAGE_NO
2: current_page := current_page_lock := previous_page := current_segment := keyslot := ∅
3: lvl :=∞
4: while true do
5: current_segment := segmentFromPool(current_page_no, node_id)
6: current_page := pageFromSegment(current_segment, current_page_no)
7: if lvl =∞ then
8: lvl := current_page.lvl
9: end if

10: if current_page.lvl ≤ LOCK_GRANT_LEV EL then
11: return loadPageInternal(key, current_page, previous_page, current_segment,

current_page_lock)
12: end if
13: current_page_lock := lockForPage(current_page_no)
14: lock(current_page_lock, ACCESS_INTENT)
15: if previous_page exists then
16: unlock(previous_page_lock, READ_LOCK)
17: end if
18: if lvl = node_lvl then
19: lock(current_page_lock, lock_mode)
20: else
21: lock(current_page_lock, READ_LOCK)
22: end if
23: unlock(current_page_lock, ACCESS_INTENT)
24: keyslot := scanForSlot(current_page, key)
25: previous_page_no := current_page_no
26: previous_page_lock := current_page_lock
27: if lvl = node_lvl then
28: if keyslot 6=∞ then
29: page_set_pointer.page := current_page
30: page_set_pointer.segment := current_segment
31: page_set_pointer.lock := current_page_lock
32: return keyslot
33: else[page was being split while keyscan was done]
34: current_page_no := getRightPageNumber(current_page)
35: end if
36: else
37: current_page_no := getChildPageNumberFromSlot(current_page, keyslot)
38: lvl := lvl − 1
39: end if
40: end while

41

Algorithm 4 Pseudocode for loadPageInternal with the Granular Locking Mechanism
Input: key (Integer), page_set_pointer (Pointer), node_lvl (Integer), lock_mode (Integer),

currentpage (Pointer), current_segment (Pointer), current_page_lock (Pointer), previous_page
(Pointer), previous_segment (Pointer),previous_page_lock (Pointer)

Output: slot for key returned (Integer), page_set_pointer set appropriately
1: keyslot := ∅
2: lvl := LOCK_GRANT_LEVEL
3: lock(current_page_lock, ACCESS_INTENT)
4: if previous_page exists then
5: unlock(previous_page_lock, READ_LOCK)
6: end if
7: lock(current_page_lock, lock_mode)
8: unlock(current_page_lock, ACCESS_INTENT)
9: while true do

10: current_segment := segmentFromPool(current_page_no, node_id)
11: current_page := pageFromSegment(current_segment, current_page_no)
12: if lvl =∞ then
13: lvl := current_page.lvl
14: end if
15: keyslot := scanForSlot(current_page, key)
16: previous_page_no := current_page_no
17: previous_page_lock := current_page_lock
18: if lvl = node_lvl then
19: if keyslot 6=∞ then
20: page_set_pointer.page := current_page
21: page_set_pointer.segment := current_segment
22: page_set_pointer.lock := current_page_lock
23: return keyslot
24: else[page was being split while keyscan was done]
25: current_page_no := getRightPageNumber(current_page)
26: end if
27: else
28: current_page_no := getChildPageNumberFromSlot(current_page, keyslot)
29: lvl := lvl − 1
30: end if
31: end while

42

operations, only inserts and updates were considered. This simplified the complexity of
descent through the tree using Lock-Free techniques, because in this case there would not
be a chance of trying to read from the wrong node or a node concurrently being modified.
The second consideration was how to deal with conflicting operation types while using
Lock-Free techniques. Read/Write conflicts were handled by making a version number
change visible to the read operation just before and after some data contained in the Node
is modified. A reader would not block a writer if they happened at the same time, but
could detect conflicts based on the state change initiated by the writer and restart. A
write/write conflict would also need a state change to mark the node for modifications,
that would be detectable by future writers upon access. This marked state would make
the Node inaccessible for updates until the write operation that marked it has finish. This,
however, is locking, with blocked writers restarting in a loop instead of being suspended
and awakened. When these factors were considered, it was determined that the use of
Lock-Free techniques in the read operation case only was preferred. The pseudocode for
Read operations is shown in Algorithm 5 and Algorithm 6. All version numbers were were
implemented using the atomic_uint_fast64_t type of the <stdatomic.h> header. The
access member functions to the integer type included memory barriers to ensure proper
in-order execution of accesses to the version number. Version number access was guaranted
to always be atomic on the test system through the internal use of memory barriers for
memory access, and due to its size (in bits) allowing its modification in a single memory
access. Version number access was also guarantted to be lock free on the test system by
verifying that the library specific macro ATOMIC_LONG_LOCK_FREE was set to 2 (indicating
lock-free access to the variable’s memory always) before Tree creation.

43

Algorithm 5 Pseudocode for loadPageLockFreeRead
Input: key (Byte Array), value (Integer), page_set_pointer (Structure), node_lvl (Integer),

lock_mode (Integer), previous_version_ptr (Atomic Integer Pointer)
Output: slot for key returned (Integer), page_set_pointer set appropriately

1: page_set_pointer.page_no := ROOT_PAGE_NO
2: keyslot := ∅
3: lvl :=∞
4: while true do
5: page_set_pointer.lock := lockForPage(page_set_pointer.page_no)
6: page_set_pointer.segment := segmentFromPool(page_set_pointer.page_no)
7: page_set_pointer.page := pageFromSegment(page_set_pointer.segment,

page_set_pointer.page_no)
8: previous_version := page_set_pointer.page.version
9: if previous_version is odd then

10: continue
11: end if
12: keyslot := scanForSlot(page_set_pointer.page, key)
13: if lvl = node_lvl then
14: if keyslot 6=∞ then
15: if (page_set_pointer.page.version is even) AND

(previous_version = page_set_pointer.page.version) then
16: return keyslot
17: else
18: previous_version := page_set_pointer.page.version
19: continue
20: end if
21: else
22: page_no := page_set_pointer.page_no
23: page_set_pointer.page_no := getRightPageNumber(page_set_pointer.page)
24: if (page_set_pointer.page.version is odd) OR

(previous_version 6= page_set_pointer.page.version) then
25: page_set_pointer.page_no := page_no
26: continue
27: end if
28: end if

44

Algorithm 5 Pseudocode for loadPageLockFreeRead (continued)
29: else
30: page_no := page_set_pointer.page_no
31: page_set_pointer.page_no := getChildPageNumberFromSlot(page_set_pointer.page,

keyslot)
32: if (page_set_pointer.page.version is odd) OR

(previous_version 6= page_set_pointer.page.version) then
33: page_set_pointer.page_no := page_no
34: continue
35: end if
36: lvl := lvl − 1
37: end if
38: end while

Note that the variable previous_version is a local thread integer variable, of which
the address is passed to the loadPage function for updating within the function. The
structure representing the accounting information for pages (BtPage) was updated to hold
an integer (version) which is read and updated atomically. Updates still use the locking
functionality of the original code. Update operations load pages using the regular hand-
over-hand locking technique, and always start with an even number for the version number
of the node. The version number is updated once just before the modification, indicating to
readers that an update operation is taking place. The version number is then incremented
after the update operation is complete, to indicate to readers that the Node is in a consistent
state for reading. If the page needs to be split before the insert (splitPage(), not shown
here), then before the original page is modified to contain the lower keys, its version is
incremented (now odd). A copy of that page is made having the keys greater than the
middle value with a new version number of zero. Reads can only access this through the
right pointer and inserts would not be able to access it until its fence key and logical pointer
is inserted into the parent. Fence key updates to the parent(s) are done using the same
insert mechanism as regular keys, but instead at the level of the parent. Splitting of the
root is done similarly to splitting of a page, and is performed as a check within splitPage.
Reading of pages is contained in a loop which is only broken if the version number for the
node has not changed and is not odd. Since the tree uses logical pointers (page number)
instead of actual pointers, and memory that is allocated for nodes is never deleted in
an update, there is no case of accessing an invalid memory location for a node. Version
number coupling, similar to the latch coupling discussed in Section 2.1.1, was therefore
not implemented. Deletes were not considered in this implementation (they would require
version number coupling). Handling Deletes is discussed in the Future Work section of
Chapter 5.

45

Algorithm 6 Pseudocode for findKey for the Lock-Free Read Mechanism
Input: key (Byte Array), node_lvl (Integer)
Output: value associated with key (Integer) or ∅ if key not found

1: keyslot := page := segment := ∅
2: page_set_pointer := memory allocated for structure
3: keyslot := page := segment := ∅
4: previous_version_ptr :=∅
5: while true do
6: keyslot := loadPageLockFreeRead(key, page_set_pointer, node_lvl,

previous_version_ptr)
7: if keyslot 6= ∅ then
8: if (previous_version is even) AND

(previous_version = page_set_pointer.version) then
9: bt_slot := getBtSlotFromPage(keyslot, page_set_pointer.page)

10: return bt_slot.value
11: else
12: continue
13: end if
14: else
15: return ∅
16: end if
17: end while

Algorithm 7 Pseudocode for insertKey for the Lock-Free Read Mechanism
Input: key (Byte Array), value (Integer), node_lvl (Integer)
Output: true if key inserted, else false

1: keyslot := page := segment := ∅
2: page_set_pointer := memory allocated for structure
3: keyslot := page := segment := ∅
4: previous_version_ptr :=∅
5: status := false
6: (keyslot, page, segment) := loadPage(key, previous_version)
7: keyslot := loadPage(key, page_set_pointer, node_lvl,)
8: if keyslot 6= ∅ then
9: if page_set_pointer.page is full then

10: splitPage(page_set_pointer)
11: end if
12: Atomically increment page_set_pointer.version
13: bt_slot := getBtSlotFromPage(keyslot, page_set_pointer.page)
14: bt_slot.value := value
15: status := true
16: Atomically increment page_set_pointer.version
17: end if
18: return status

46

3.3.6 Combination of Techniques

In addition to the techniques described before, this work also considers combination of a
subset of the techniques. Replication is orthogonal to all of the locking techniques, so it can
be applied in combination with all of the locking techniques discussed. Some of the locking
techniques are also applicable in combination with each other. The locking combinations
considered are as follows:

• NUMA-aware reader/writer locks and the Granular Locking Technique

• Lock-Free Read Operations andWrite operations with PThread Reader/Writer locks(Granular
Locking and/or

• Lock-Free Read operations and Write operations with NUMA-aware Reader/Writer
locks)

• Replication with each of the three combinations described aboe

The aim of trying these combinations of techniques was to find the combination of tech-
niques which performed the best for various type of read-heavy workloads (at most 25%
updates in the workload), varying number of clients, and varying tree sizes. When the
number of clients was varied, the clients were distributed among the NUMA nodes as
evenly as possible.

47

Chapter 4

Experimental Results

4.1 The Test Environment

A machine with a NUMA architecture layout as shown in Fig. 4.1 was used to test the
optimizations described in Chapter 3. Each NUMA node contained an Intel Xeon E5-4620
CPU with turbo boost enabled (base frequency of 2.2GHz and maximum turbo frequency
of 2.6GHz) and a 64GB memory module. Each Xeon CPU had:

• 8 cores, with 2 threads per core

• Cache line size of 64B

• Private L1 Instruction and Data Caches for each core, each of size 32 kB

• Private L2 Cache for each core of size 256 kB

• Shared L3 Cache for all the cores of size 16MB

48

NUMA Node 1 NUMA Node 2

NUMA Node 4 NUMA Node 3

Figure 4.1: Diagram of the NUMA Node Topology of the Test System

49

4.2 Comparing Performance: Throughput

To evaluate the performance of the Tree with the modifications specified in Chapter 3 a
metric had to be considered. Since the aim of introducing the techniques was to improve
the overall performance of concurrent operations on the tree for read-heavy workloads,
the throughput of operations performed on the tree for such a workload was chosen as
the performance metric. Each required modification was added to the object code for the
B-Tree through the use of #DEFINE symbols. A driver program was built to perform Insert
and Update operations from each of the NUMA nodes in the system. The number of
clients, number of operations per client and the workload ratio (read/write ratio) were all
options provided to the driver. When the driver is started, the driver tries to place all
of the client threads as evenly as possible among the NUMA nodes, provides each with
a list of read and update operations to execute, and lets them run. Each client thread
measures the time it takes to execute all of the operations and then calculates and outputs
its operation throughput to a file on the disk. The driver was run three times and the
average of all of the runs for each client thread file was taken as the throughput of that
client for the particular run options. The average throughput of all threads was then added
together to get the overall throughput of all of the client threads for the run.

4.3 Choosing the Page and Segment Size

When creating the tree, the following parameters can be set:

• Page Size (in bits) - This controls the size of a Node, the space used for the
Latch Manager, and the space used for Latch Sets that are granted for a loadPage()
request. It can be specified as at least 12 bits (4,096B) and at most 20 bits (1MB)

• Number of Pages per Segment (in bits) - This controls how much of a contiguous
run of the file mapping (and memory) used for Node pages are returned as a group
for a Segment.

• Number of Segments - This controls the number of Segments and indirectly, the
number of pages, that can be mapped in-memory at any given time. This has an
upper limit of 65,530 (the maximum number of memory mappings on the system
being used).

• Hash Size - This controls the size of the hash table used to monitor all allocations
of Segments.

50

Since the throughput of operations on the tree was the main concern, all parts of
the code which could serve as a contention bottleneck were considered, which brought
three things to the immediate attention – the size of the hash table used to manage the
Segments, the size of the hash table used to manage the Latch Manager hash entries for
granted latches, and the number of Latch Sets which were being managed. Each request
to find a Segment or a Latch Set uses a Spinlatch granted from a hash kept by the Buffer
Pool Manager in the case of Segments, and the Latch Manager in the case of Latch Sets.
The more entries there are, the less contention per Spinlatch. The size of the Buffer Pool
manager hash table is set to be the Hash Size stated above, and to minimize contention,
value of this was set to be at least the total number of segments required. To calculate
the number of Segments required, the following equation was used, knowing that 4 byte
integers were used as the keys, and an 8 byte integer was stored as the value associated
with each key (either a child page number if page is internal, or an associated value in the
page if a leaf):

of Pages =
 Total # of keys⌊

Page Size−sizeof(BtPage)
(sizeof(key)+sizeof(value))

⌋

of Segments =
⌈

of pages
of pages per segment

⌉

The size of the Latch Manager hash table, and therefore, the number of available
Spinlatches for use when updating Latch Set related information in the hash table, is
controlled by the size of the page selected. The available spinlatches are obtained from
the remaining space in a page, after the Latch Manager Structure space usage has been
accounted for:

of Spinlatches = # of Pages

The number of Latch Sets available for association with Node pages is determined by
the size of a page as well:

of Latch Pages =

BT_latchtable⌊
Page Size

sizeof(Latch Set)

⌋
 + 1

of Latch Sets = # of Latch Pages× Page Size

In the original code BT_latchtable is a constant, defined as 128, and was the number
of slots desired in the hash table for the Latches.

51

When considering the number of Spinlatches used for the Latch Manager and the
number of Latch Sets available for use by Node pages, to decrease contention, the Page
Size should be as large as possible.

Considering Socket Layout

The way that data is laid out in and accessed from memory also affects the Tree’s per-
formance. As seen in Fig. 4.1, each node has 64GB of main memory, and a CPU with 8
cores, each with private L1 and L2 caches, and all cores sharing an L3 cache. The best
performance would use the caches and main memory most efficiently. Since each core has
its own private L1 and L2 cache, any access and modifications that can be contained within
the TLB or cache without a miss or the need for invalidation of other caches would speed
up operations. Each page access also requires first finding the segment it belongs to, then
its position in the segment. With this in mind, page sizes from the minimum up to at
most the size of the L2 cache were considered. The segment size for these varying page
sizes was set to the size of the L1 data cache and the L2 cache respectively. With the page
size and segment size set and using the original code, a tree of 1,000,000 keys was created
using 4 different threads, each pinned to a unique NUMA node, to insert a subset of the
total number keys. After the tree was created, 4 other client threads were used to perform
a set number of read operations concurrently on the Tree, each pinned to a unique NUMA
node and calculating the overall throughput of operations. The results for a Segment size
of 32 kB and 256 kB are shown in Fig. 4.2.

A page size of 128 kB and a segment size of 256 kB gave the highest throughput results.
This setting for page size and segment size was used for the remaining experiments.

52

550 k

555 k

560 k

565 k

570 k

575 k

580 k

585 k

590 k

 4096 8192 16384 32768 65536 131072 262144

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Page Size (Bytes)

Segment Size = 32 kB
Segment Size = 256 kB

Figure 4.2: Throughput vs Page Size for Segment Sizes of 32 kB, 256 kB, Tree Size of
1,000,000 keys, 4 Client Threads, 100 % Reads

53

4.4 Operation Throughput for Separate Techniques

The first performance comparison was done for each of the techniques separately, relative
to the performance of the original B-Tree. Fig. 4.3 and Fig. 4.4 show the results for varying
number of client threads (4 - 32) and read-heavy workload ratios (100% Reads/0% Updates,
75% Reads/25% Updates). For a Read-Only workload, Lock-Free Reads, NUMA-aware

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 0 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

of Client Threads

Original Code
Replication

Lock-Free Reads
NUMA Reader/Writer Locks

Granular Locking (Root Level)

Figure 4.3: Operation Throughput vs Number of Clients, Initial Number of Keys =
1,000,000 , 100% Reads, 0% Updates

Reader/Writer Locks and Replication all perform better than the original code. All of
the mentioned techniques have throughput increases relative to the original code when
the number of client threads is increased (23×, 9×, 8× for Lock-Free Reads, NUMA-aware
Reader/Writer Locks and Replication with 32 client threads respectively). Lock-Free Reads
give the best performance, with an almost linear throughput increase with the number of
client threads. readers only read the integer representation of the version number, without
updating any state. Once this version number is within a cache line, there is no need for
coherence messages to be sent to other local and remote caches since it is never written to.

54

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 3.5x106

 0 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

of Client Threads

Original Code
Lock-Free Reads

NUMA Reader/Writer Locks
Granular Locking (Root Level)

Lock-Free Reads + NUMA Reader/Writer Locks

Figure 4.4: Operation Throughput vs Number of Clients, Initial Number of Keys =
1,000,000 , 75% Reads, 25 % Updates

55

NUMA-aware Reader/Writer locks tries to keep lock acquiring among the local threads,
and as long as the local lock is being acquired among the local threads, the state of that
lock, and the global lock remains unchanged as well, and causes no coherence messaging to
other caches. Replication also only requests Latches from its local latch manager, and so
only makes modifications to local data, however, there still can be invalidation messages
between private caches of the cores on the same NUMA node. However, everytime the
number of client threads requested for driver creation increases by 4, the number of client
threads created per NUMA node only increases by 1, due to the driver’s even distribution
of the client threads among the NUMA nodes. Contention for the locks from the local
Latch Manager in the Replicated Tree is much less than the contention for locks from the
shared Latch Manager in the Tree from the Original Code. Both Replication and NUMA-
aware Reader/Writer Locks have throughput increases which become less pronounced with
increasing number of client threads. This is due to the locks having internal state updates
(writes) to represent the locked state, even though the lock is being acquired in Reader
mode. Granular Locking performs very poorly, because in addition to the larger amount
of contention of the original code, contention is further being increased due to a decrease
in the number of latches being used for locking by the nodes. Only the latch on the
root is used for the locking purposes, and this greatly increases contention, since there
are ∑tree height

i=1 fanouti (fanout = Number of Child Pointers) nodes, in addition to the root,
using the same latch, instead of one latch per node in the Original Code.

The results for the workload of 75% Reads, 25% Updates are similar to the Read-only
case in terms of relative performance of the modifications when compared to the original
code case, except that the improvement in throughput is lower (3× for Lock-Free Reads and
5× for NUMA-aware Reader/Writer Locks). Updates with Replication will be considered
separately, since the consistency between the multiple copies of updated nodes has to be
addressed as well. For Lock-Free Reads, although read operations use the Lock-Free version
number technique, update operations still use the regular PThread Reader/Writer locks.
Since there are more updaters in this workload, there are more stalls for other concurrent
updaters which access Nodes that are being modified. The readers access the version integer
to determine the state of the node, which is only changed by updaters. Read operations
will only re-read a node if the node’s version number is odd or not equal to what was read
initially. readers are not blocked, and do not have to wait to be unblocked when the lock is
released. They instead just wait until the node is safe to read by repeatedly checking that
its version number is even and unchanged. NUMA-aware Reader/Writer locks perform
better than the Lock-Free Read case. The NUMA-aware Reader/Writer lock shares the
lock with other threads local to the same NUMA node as the current lock owner causing
fewer remote reads for the lock state. Version numbers are stored in the nodes for the

56

Lock-Free Read operations. There may be many remote references for a version number
of a node, if the requesting thread is executing on an NUMA node that is different from
the one which contains the node. Granular Locking performs badly once again for the
same reasons as for the Read case, except that there is more stalling of operations due
to exclusive Write locking of the PThread Reader/Writer lock for updates to Nodes. The
combination of Lock-Free Reads and NUMA-aware Reader/Writer locks for updaters gave
the best performance (7× more operations than the Original Code), since it combines the
benefits of Lock Freedom in the readers and the NUMA-aware locking for updaters.

4.5 Retries for Lock-Free Reads with Increasing Up-
date Proportions in the Workoad

One issue with Lock-Free Reads is the necessity of re-reading a Node or restarting the
traversal operation if the version number checks on the node before and after do not
match, or if the version number of the node is odd (indicating an Update is in progress).
As the ratio of updates in the workload increases, it is expected that Reads will have to
re-read Nodes or restart Tree traversal more frequently. Fig. 4.5 shows the results for a
tree with initial number of keys = 1,000,000 and 4 client threads.

The number of retries increases almost linearly with the Update proportion in the
workload ratio, and an increase in the number of threads causes a large increase in the
number of retries for the same increase in workload ratio. However, considering the results
are for an intial tree size of 1,000,000 keys with a read-heavy workload of 75 % Reads,
25 % Updates and 10,000 operations (7,500Reads, 2,500Updates), the number of retries
per read operation is less than 5 (1% of the 7,500 read operations).

57

 0

 5

 10

 15

 20

 25

 0 25 50 75 100

R
e
tr

ie
s

p
e
r

R
e
a
d
 O

p
e
ra

ti
o
n

Write Operation Ratio (%)

16 client threads
32 client threads

Figure 4.5: Average Number of Retries per Read Operation for Varying Workload Ratios

58

4.6 Operation Throughput for Techniques in Combi-
nation with Replication

The modification techniques described and assessed before can also be combined to provide
further improvments in throughput. Replication is independent of the other techniques, so
it can be combination with all of the other techniques. Lock-Free Reads can be combined
with NUMA-aware Reader/Writer locks, and Granularity changes can be combined with
all lock-based modifications. The results for a workloads of 100% Reads and 0% Updates
are shown in Fig. 4.6.

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 0 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

of Client Threads

Original Code
Replication

Replication + Lock-Free Reads
Replication + NUMA Reader/Writer Locks

Replication + Granular Locking (Root Level)

Figure 4.6: Operation Throughput vs Number of Clients, Other Techniques with Replica-
tion, Initial Number of Keys = 1,000,000 , 100% Reads, 0% Updates

The combinations of the various other techniques with replication provide improvement
over just replication alone (similar to the results of Fig. 4.3), and improvement over the
techniques without replication (about 200,000 more operations per second). Contention
for locks is now only among the clients associated with the replica of a Node. For NUMA-

59

aware Reader/Writer Locks, the need for a separate global lock now becomes unnecessary,
since the locks will only be requested from the same NUMA node. However, when there
are many readers waiting to acquire the lock, the state of the lock is not updated. The
lock is instead passed to a subsequent Updater, without a change of state, which would
require a memory update. This avoidance of a memory update improves the performance
of the NUMA-aware Reader/Writer Lock over the PThread Reader/Writer Lock, used by
the Replication technique alone. NUMA-aware Reader/Writer Locks give less improvment
than Lock-Free Reads due to the threshold reader count number forcing a local and global
lock release after a certain number of readers have acquired the lock on the NUMA node.
Lock-Free Reads still provide the benefit of version reads without memory updates for
readers, but adding Replication eliminates remote memory reads, which occured in the
non-replicated version. Lock-Free Reads therefore perform the best for this workload.
Adjustment of the locking granularity to be at the root level now becomes comparable to
the other schemes, because it benefits from the local repository of locks, and due to the
driver evenly distributing the client threads among NUMA nodes, the contention in each
local tree stays very low (up to 8 client threads per node when the total number of clients
= 32 threads). However, when the thread count increases per node, this technique starts
to perform slightly worse than the others, as seen from the number of client threads greater
than 24.

Updates become a lot more complicated with replicated Tree nodes, since an Updater
has to make its changes to all versions of the Tree node on each NUMA node. There can
be various forms of the update operation, based on the number of copies updated before
returning, and the state of the node that other operations see before, during and after the
update has completed. The more copies which need to be updated before the operation
returns, the longer the operation would take. When considering the number of copies to
update, there are two extremes, all or one. Fig. 4.7 shows the throughput results for only
local Tree node updates and for updating all Tree node copies for a workload of 75% Reads
and 25% Updates.

There is a large difference between the two versions of the update operation, with the
local insert performing 83× more operations per second than strongly consistent inserts
with 32 client threads. However, local inserts gives no consistency guarantees, for opera-
tions originating from any NUMA node. The alternative gives the strongest consistency
but is also the slowest, with the Original Code even providing an order of magnitude more
of throughput in operations. Between these two extremes, there is a level of eventual con-
sistency that can give better throughput results but result in some stale reads. Finding
such an update model was not considered in this work and is discussed in the Future Work
section of Section 5.1. For all further experiments involving replication and updates, the

60

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 1.8x106

 2x106

 0 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

of Client Threads

Original Code
Strongly Consistent Inserts (All Replicas)

Local Insert Only

Figure 4.7: Comparison of Throughput, Workload = 75% Reads, 25% Updates, 4 - 32
Client Threads, Local Insert Only vs Updating of All Replicas Immediately

61

local update model is used. Deriving similar results for the alternatives can be obtained
by altering the results by the percentage difference between the techniques.

The results for a workload of 75% Reads, 25% Updates for the local insert model and
the various combination of techniques with replication is shown in Fig. 4.8.

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 3.5x106

 4x106

 0 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

of Client Threads

Replication
Replication + Lock-Free Reads

Replication + NUMA Reader/Writer Locks
Replication + Granular Locking (Root Level)

Replication + Lock-Free Reads + NUMA Reader/Writer Locks
Original Code

Figure 4.8: Operation Throughput vs Number of Clients, Other Techniques with Replica-
tion, Initial Number of Keys = 1,000,000 , 75% Reads, 25% Updates

62

Chapter 5

Conclusions & Future Work

This thesis explores the problem of creating an in-memory B-Tree optimized for a NUMA
System, by considering four techniques — Lock-Free Reads, NUMA-aware Reader/Writer
Locks, Granularity changes in locking (at each level) and Node/Lock Replication. NUMA-
aware Reader/Writer/ Locks have been introduced previously by Calciu et al. in [14].
Node/Lock Replication for B-Trees has been considered by various works for distributed
systems [39, 40, 44, 19, 4], but this thesis introduces its use in a NUMA system. Varying
the granularity of locking also has been considered by previous works [30, 24, 41], but
thesis considers it by itself and in combination of replication for B-Trees used in NUMA
systems. Lock-Free techniques have been considered for various datastructures [11, 64, 26,
62, 64, 23, 13, 12, 25, 31, 34, 60], but this thesis introduces a version of the technique that
uses odd/even versioning of B-Tree nodes to detect concurrent updates. The aim of the
work presented was to find the combination of techniques that provides the best overall
operation throughput improvement for read-only and read-heavy workload types over a
NUMA oblivious B-Tree implementation.

In order to measure the throughput of operations in a NUMA system, a driver program
was developed to evenly distribute a specified number of client threads among NUMA
sockets, and provide an operation workload for each client. Different versions of the B-
Tree were created and used by the driver program by specifying the symbol(s) of the
modification(s) required for the testing.

When the separate techniques were compared with the original code, all provided im-
provement in throughput for Read-only workloads (23×, 9×, 8× for Lock-Free Reads,
NUMA-aware Reader/Writer Locks and Replication with 32 client threads respectively).
The type of Granular locking introduced in this work performed poorly, due to the in-

63

crease in contention for a smaller pool of locks. For Read-heavy workloads (75% Reads,
25% Updates) with Replicated nodes, performance was very poor with respect to the orig-
inal code if strong consistency of the data contained in the tree was enforced, but could
be much better if the consistency constraints were relaxed, with the best being Updates
being performed locally only.

Combinations of the techniques with Replication provide similar improvement to the
techniques applied separately for Read-Only workloads and an improvment over the cor-
responding technique without replication in all cases (about 200,000 more operations per
second). However, the performance with Updates involved is dependent on the consistency
model that is required, and if strong consistency is required, the Replicated technique com-
binations implemented in this work perform much more poorly than the non-replicated
counterparts. Granular locking performed well when replication was introduced, since
the increase in threads per each socket B-Tree replica is much less when the clients are
distributed evenly among the sockets.

A user of the B-Tree would select modifications based on the type of workloads that
are expected, and the freshness of data that is required from operations. For Read-heavy
workloads that have a fairly large number of Updates in a small period of time, Replication
may be avoided, and the use of Lock-Freedom in Reads combined with NUMA-aware
Reader/Writer locks for Updates would give good throughput performance. Replication
can be used to provide improvements in throughput performance in the Read-only case,
but would not be recommended due to implementation complexity and poor performance
of updates.

5.1 Future Work

In this thesis, improvement of the throughput of operations of the B-Tree datastructure
contained in-memory in a NUMA system for read-heavy workloads was considered, by
the use of three techniques — Replication, use of NUMA-aware Reader/Writer Locks and
the use of Optimistic Concurrency Control in Reads, through atomic access of a version
number per page of the B-Tree. While it was shown that combinations of these techniques
improve the performance for various read-heavy type workloads, most techniques could be
improved or extended for even better operation throughput performance.

The replication introduced into the B-Tree made copies of each Segment Pool, Page, and
Latch Set on each node. There was no focus on space constraints, because the assumption
was the system would have a large amount of memory, to hold the replicas. If this is not

64

the case, then there is room for improvment by considering replication of the components
to improve throughput performance, while keeping to space constraints [65, 39, 44, 19, 4].
Deletes also need to be considered for the replicated environment.

Also, replication introduces issues with consistency among the copies of the Pages
and the Segments of the tree. Strongly consistent updates were shown to perform poorly
compared to updates focused only on the local node. Work can be done to improve updates
as it relates to consistency requirements of the clients as well as keeping the overhead of
sending the updates to other replicas low for the original client operation.

The Lock-Free technique used for Readers involved the atomic reading of a Node version
number before and after accessing information from the Node. This technique can be
extended for use with Writers as well [11, 64, 26, 62, 64, 23, 13, 12, 25]. Also, deletes in
the original version of the tree do not physically delete the pages, but instead reuse them
for new split requests. To support deletes, the version number can be reset when the node
has been selected for deletion.

65

References

[1] Daniel J. Abadi. Consistency tradeoffs in modern distributed database system design.
Computer-IEEE Computer Magazine, 45(2):37, 2012.

[2] A. Agarwal and M. Cherian. Adaptive Backoff Synchronization Techniques. In Pro-
ceedings of the 16th Annual International Symposium on Computer Architecture, ISCA
’89, pages 396–406, New York, NY, USA, 1989. ACM.

[3] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, January 1990.

[4] Shah Asaduzzaman and G. V. Bochmann. Distributed B-tree with weak
consistency. unpublished report, see http://www. site. uottawa. ca/∼
bochmann/Curriculum/Pub/2010, 2010.

[5] R. Bayer and E. McCreight. Organization and Maintenance of Large Ordered Indices.
In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on Data
Description, Access and Control, SIGFIDET ’70, pages 107–141, New York, NY, USA,
1970. ACM.

[6] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta Informatica,
9(1):1–21, March 1977.

[7] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Wid-
mayer. An Asymptotically Optimal Multiversion B-tree. The VLDB Journal,
5(4):264–275, December 1996.

[8] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C. Kuszmaul.
Concurrent Cache-oblivious B-trees. In Proceedings of the Seventeenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’05, pages 228–237,
New York, NY, USA, 2005. ACM.

66

[9] Philip A. Bernstein and Sudipto Das. Rethinking eventual consistency. In Proceedings
of the 2013 international conference on Management of data, pages 923–928. ACM,
2013.

[10] Matthias Boehm, Benjamin Schlegel, Peter Benjamin Volk, Ulrike Fischer, Dirk
Habich, and Wolfgang Lehner. Efficient In-Memory Indexing with Generalized Prefix
Trees. In BTW, pages 227–246, 2011.

[11] Anastasia Braginsky and Erez Petrank. A lock-free B+ tree. In Proceedings of the
twenty-fourth annual ACM symposium on Parallelism in algorithms and architectures,
pages 58–67. ACM, 2012.

[12] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In ACM Sigplan Notices, volume 45, pages 257–268.
ACM, 2010.

[13] Trevor Brown, Faith Ellen, and Eric Ruppert. A General Technique for Non-blocking
Trees. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’14, pages 329–342, Orlando, Florida, USA,
2014. ACM.

[14] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir
Shavit. NUMA-aware reader-writer locks. In ACM SIGPLAN Notices, volume 48,
pages 157–166. ACM, 2013.

[15] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Improving Index Performance
Through Prefetching. In Proceedings of the 2001 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’01, pages 235–246, New York, NY, USA,
2001. ACM.

[16] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. Fractal
Prefetching B+-Trees: Optimizing Both Cache and Disk Performance. In Proceed-
ings of the 2002 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’02, pages 157–168, New York, NY, USA, 2002. ACM.

[17] Douglas Comer. Ubiquitous B-tree. ACM Computing Surveys (CSUR), 11(2):121–137,
1979.

[18] Thomas H. Cormen, editor. Introduction to algorithms. MIT Press, Cambridge, Mass,
3rd ed edition, 2009.

67

[19] Paul Richard Cosway. Replication control in distributed B-trees. PhD thesis, Citeseer,
1995.

[20] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. pages 33–48. ACM
Press, 2013.

[21] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining NUMA Locks. In
Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’11, pages 65–74. ACM, 2011.

[22] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: a general technique
for designing NUMA locks. In ACM SIGPLAN Notices, volume 47, pages 247–256.
ACM, 2012.

[23] Faith Ellen, Fatourou Panagiota, Eric Ruppert, and Franck van Breugel. Non-blocking
Binary Search Trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, PODC ’10, pages 131–140, Zurich, Switzer-
land, 2010. ACM.

[24] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of Consis-
tency and Predicate Locks in a Database System. Commun. ACM, 19(11):624–633,
November 1976.

[25] Mikhail Fomitchev and Eric Ruppert. Lock-free Linked Lists and Skip Lists. In
Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’04, pages 50–59, St. John’s, Newfoundland, Canada, 2004. ACM.

[26] Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, 2004.

[27] Keir Fraser and Tim Harris. Concurrent Programming Without Locks. ACM Trans.
Comput. Syst., 25(2), May 2007.

[28] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. SIGACT News, 33(2):51–59, June 2002.

[29] Wojciech Golab, Muntasir Raihan Rahman, Alvin AuYoung, Kimberly Keeton, and
Indranil Gupta. Client-centric Benchmarking of Eventual Consistency for Cloud Stor-
age Systems. 2014.

[30] Goetz Graefe. A survey of B-tree locking techniques. ACM Transactions on Database
Systems (TODS), 35(3):16, 2010.

68

[31] Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In
Proceedings of the 15th International Conference on Distributed Computing, DISC ’01,
pages 300–314, London, UK, UK, 2001. Springer-Verlag.

[32] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Combining and the
Synchronization-parallelism Tradeoff. In Proceedings of the Twenty-second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages
355–364, New York, NY, USA, 2010. ACM.

[33] Maurice Herlihy. A Methodology for Implementing Highly Concurrent Data Objects.
SIGOPS Oper. Syst. Rev., 26(2):12–, April 1992.

[34] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A Simple Optimistic
Skiplist Algorithm. In Proceedings of the 14th International Conference on Structural
Information and Communication Complexity, SIROCCO’07, pages 124–138, Berlin,
Heidelberg, 2007. Springer-Verlag.

[35] Maurice P. Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In ISCA ’93 Proceedings of the 20th annual international
symposium on computer architecture. ACM, 1993.

[36] Maurice P. Herlihy, Victor Luchangco, Mark Moir, III Scherer, and N. William. Soft-
ware Transactional Memory for Dynamic-sized Data Structures. In Proceedings of the
Twenty-second Annual Symposium on Principles of Distributed Computing, PODC
’03, pages 92–101, Boston, Massachusetts, 2003. ACM.

[37] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[38] Ibrahim Jaluta, Seppo Sippu, and Eljas Soisalon-Soininen. Concurrency Control and
Recovery for Balanced B-link Trees. The VLDB Journal, 14(2):257–277, April 2005.

[39] Theodore Johnson and Adrian Colbrook. A distributed data-balanced dictionary based
on the B-link tree. In Parallel Processing Symposium, 1992. Proceedings., Sixth In-
ternational, pages 319–324, Beverly Hills, CA, March 1992. IEEE.

[40] Theodore Johnson and Adrian Colbrook. A distributed, replicated, data-balanced
search structure. International Journal of High Speed Computing, 6(4):475–500, 1994.

69

[41] J. R. Jordan, J. Banerjee, and R. B. Batman. Precision Locks. In Proceedings of the
1981 ACM SIGMOD International Conference on Management of Data, SIGMOD
’81, pages 143–147, New York, NY, USA, 1981. ACM.

[42] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D. Nguyen,
Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey. FAST: fast
architecture sensitive tree search on modern CPUs and GPUs. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pages 339–
350. ACM, 2010.

[43] Thomas Kissinger, Benjamin Schlegel, Dirk Habich, and Wolfgang Lehner. KISS-Tree:
Smart latch-free in-memory indexing on modern architectures. In Proceedings of the
Eighth International Workshop on Data Management on New Hardware, pages 16–23.
ACM, 2012.

[44] Padmashree Krishna and Theodore Johnson. Implementing Distributed Search Struc-
tures. Technical report, 1994.

[45] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981.

[46] Vladimir Lanin and Dennis Shasha. A Symmetric Concurrent B-tree Algorithm. In
Proceedings of 1986 ACM Fall Joint Computer Conference, ACM ’86, pages 380–389,
Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[47] Philip L. Lehman and s. Bing Yao. Efficient Locking for Concurrent Operations on
B-trees. ACM Trans. Database Syst., 6(4):650–670, December 1981.

[48] Yinan Li, Ippokratis Pandis, Rene Mueller, Vijayshankar Raman, and Guy M.
Lohman. NUMA-aware algorithms: the case of data shuffling. In CIDR, 2013.

[49] David Lomet and Betty Salzberg. Access Methods for Multiversion Data. In Proceed-
ings of the 1989 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’89, pages 315–324, New York, NY, USA, 1989. ACM.

[50] Victor Luchangco, Dan Nussbaum, and Nir Shavit. A hierarchical CLH queue lock,
2006.

[51] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent multipro-
cessors. In Parallel Processing Symposium, 1994. Proceedings., Eighth International,
pages 165–171, April 1994.

70

[52] Karl Malbrain. A Blink Tree method and latch protocol for synchronous node deletion
in a high concurrency environment. Technical report, 2010.

[53] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for fast
multicore key-value storage. In Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196. ACM, 2012.

[54] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchro-
nization on Shared-memory Multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65,
February 1991.

[55] McKenney Paul and Sarma Dipankar. Read Copy Update. In Ottawa Linux Sympo-
sium, pages 338–369, 2002.

[56] A. J. Perlis and Charles Thornton. Symbol Manipulation by Threaded Lists. Commun.
ACM, 3(4):195–204, April 1960.

[57] Zoran Radovic and Erik Hagersten. Hierarchical Backoff Locks for Nonuniform Com-
munication Architectures. In HPCA ’03 Proceedings of the 9th International Sympo-
sium on High-Performance Computer Architecture, 2003.

[58] Muntasir Raihan Rahman, Wojciech Golab, Alvin AuYoung, Kimberly Keeton, and
Jay J. Wylie. Toward a principled framework for benchmarking consistency. In Pro-
ceedings of the Eighth USENIX conference on Hot Topics in System Dependability,
pages 8–8. USENIX Association, 2012.

[59] Jun Rao and Kenneth A. Ross. Making B+- Trees Cache Conscious in Main Memory.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’00, pages 475–486, New York, NY, USA, 2000. ACM.

[60] Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Satish, and Pradeep Dubey.
PALM: Parallel architecture-friendly latch-free modifications to B+ trees on many-
core processors. Proc. VLDB Endowment, 4(11):795–806, 2011.

[61] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

[62] Afroza Sultana, Helen A. Cameron, and Peter CJ Graham. Concurrent B-trees with
Lock-free Techniques. 2011.

71

[63] Andy Twigg, Andrew Byde, Grzegorz Milos, Tim Moreton, John Wilkes, and Tom
Wilkie. Stratified B-trees and versioning dictionaries. arXiv:1103.4282 [cs], March
2011. arXiv: 1103.4282.

[64] John D. Valois. Lock-free Linked Lists Using Compare-and-swap. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
’95, pages 214–222, New York, NY, USA, 1995. ACM.

[65] Paul Wang. An in-depth analysis of concurrent B-tree algorithms. Technical report,
DTIC Document, 1991.

[66] W.W. Weihl and P. Wang. Multi-version memory: software cache management for
concurrent B-trees. In Proceedings of the Second IEEE Symposium on Parallel and
Distributed Processing, 1990, pages 650–655, December 1990.

72

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Literature Review
	Concurrent Operations in B-Trees
	Locking Techniques
	Lock-Free Techniques

	numa-Aware Techniques
	Locking
	Data Access

	Distributed B-Trees
	Node Replication and Placement
	Multiversioning

	In-Memory Indexes
	Contributions

	The Problem and Solution Implementation
	The Problem
	The Original Code
	The Node and Segment
	The Latch Mechanism
	The Buffer Pool Manager

	Solution Implementation
	Latch Manager and Buffer Pool Manager Spinlock Removal
	numa-aware Locking
	Node Replication
	Granular Locking
	Lock-Free Reads
	Combination of Techniques

	Experimental Results
	The Test Environment
	Comparing Performance: Throughput
	Choosing the Page and Segment Size
	Operation Throughput for Separate Techniques
	Retries for Lock-Free Reads with Increasing Update Proportions in the Workoad
	Operation Throughput for Techniques in Combination with Replication

	Conclusions & Future Work
	Future Work

	References

