
Finding a Second Hamiltonian Cycle
in Barnette Graphs

by

Arash Haddadan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2015

c© Arash Haddadan 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We study the following two problems: (1) finding a second room-partitioning of an oik,
and (2) finding a second Hamiltonian cycle in cubic graphs. The existence of solution for
both problems is guaranteed by a parity argument.

For the first problem we prove that deciding whether a 2-oik has a room-partitioning
is NP-hard, even if the 2-oik corresponds to a planar triangulation.

For the problem of finding a second Hamiltonian cycle, we state the following conjecture:
for every cubic planar bipartite graph finding a second Hamiltonian cycle can be found in
time linear in the number of vertices via a standard pivoting algorithm. We fail to settle
the conjecture, but we prove it for cubic planar bipartite WH(6)-minor free graphs.

iii

Acknowledgements

First and foremost, I thank my supervisor Laura Sanità for her incredible guidance
and mentorship. This work could not be completed without her support. I would also
like to express my gratitude towards University of Waterloo for their financial support. I
thank Bruce Richter and Penny Haxell for spending time to read this thesis and for their
insightful comments. Finally, I thank my family and friends for their support and kindness
during all these years.

iv

Table of Contents

List of Figures vii

Introduction 1

0.0.1 Second room-partitioning of d-oiks 1

0.0.2 Second Hamiltonian cycle in cubic graphs 3

0.0.3 Organization of the thesis . 4

1 Finding a second room-partitioning of an oik 5

1.1 Preliminaries . 5

1.1.1 d-oiks and the exchange algorithm 5

1.1.2 Related Works . 7

1.1.3 Related complexity classes . 8

1.2 Second perfect matching in Eulerian graphs 10

1.2.1 Exchange algorithm on Eulerian graphs 10

1.2.2 Bipartite Eulerian graphs . 11

1.3 Room-partitionings of planar triangulations 13

2 Finding a second Hamiltonian cycle 18

2.1 The lollipop algorithm . 18

2.2 Related works . 23

2.2.1 Second Hamiltonian cycle in regular graphs 23

v

2.2.2 Hamiltonicity of cubic graphs . 24

2.3 Complexity . 27

2.3.1 The complexity of finding a second Hamiltonian cycle in cubic graphs 27

2.3.2 An exponential lower bound for the lollipop algorithm 27

2.3.3 The complexity of deciding Hamiltonicity of Barnette graphs 30

3 The lollipop algorithm on planar bipartite graphs 31

3.1 Why bipartite graphs? . 31

3.2 Why planar bipartite graphs? . 34

3.3 The lollipop algorithm on cubic planar bipartite WH(6)-minor free graphs 36

3.3.1 Useful lemmas . 36

3.3.2 Proof of Theorem 3.3.2 . 45

3.3.3 Proofs of observations . 60

3.4 An infinite family of graphs of class A . 70

4 Conclusion 73

Bibliography 74

vi

List of Figures

1 Graph WH(6). 4

1.1 Changing 3D-edge h = (a, b, c) into a 3-face 16

2.1 A (w, e)-lollipop: the solid thin lines are the edge set of a (w, e)-lollipop H
of G, where G is the graph with all the edges depicted in the figure. Note
that the embedding of H resembles an upside-down lollipop. 19

2.2 The iterations of the lollipop algorithm for the cube graph, with Hamiltonian
cycle H0, and vertex 1 and edge e = (1, 8) as depicted above. 21

2.3 The add remove walk for the input in Figure 2.2. 22

2.4 The green edges correspond to the edge set of a Hamiltonian cycle that
yields the permeating subtrees in the planar triangulation shown by red and
blue edges. 26

2.5 Graph G1 . 28

2.6 The iterations of the lollipop algorithm for input (G1, H0, w, e) 28

2.7 Graph B . 29

2.8 Graph G2 . 29

3.1 The iterations of the lollipop algorithm for input (G1, H0, w, e). Notice that
base(H1) = base(H6). However, H1 and H6 are not compatible. 35

3.2 A lollipop . 37

3.3 An example for the two possible cases in Lemma 3.3.6: Dashed edges corre-
spond to paths in the graph. In each of the subcases, blue edges correspond
to the edge set of C ′, red edges correspond to the edge set of P ′, and green
edges correspond to the five disjoint paths that connect P ′ to C ′. 38

vii

3.4 The picture for the proof of Lemma 3.3.7. 39

3.5 Dashed lines correspond to paths and u = base(Hi) = base(Hj). The edge
set of Hi is colored blue. Red edges correspond to the paths that must exist
in Hj, for Hi and Hj not to be compatible. 41

3.6 The three cases in the proof of Lemma 3.3.13. 43

3.7 The picture in the proof of Lemma 3.3.14. 44

3.8 The cases in the proof of Lemma 3.3.15. 44

3.9 The picture in the proof of Lemma 3.3.16. 45

3.10 The base case, where j = i+ 2 . 46

3.11 Case 1: In all the figures in this section dashed edges correspond to paths
in the graph. 48

3.12 If Claim 3.3.17 holds: The red edges in (a) and (b) correspond to the edge
set of Hi and Hi+4, respectively. 49

3.13 . 50

3.14 If Claim 3.3.20 holds: The red edges in (a) and (b) correspond to the edge
set of Hi and Hi+2, respectively. 51

3.15 Case 3. 53

3.16 If Claim 3.3.23 holds, G has a subgraph as depicted: the red edges in (a)
and (b) are the edge set of Hi and Hi+1. 54

3.17 If Claim 3.3.26 holds: the red edges in (a) and (b) are the edge set of Hi

and Hi+4, respectively. 55

3.18 If Claim 3.3.29 holds, G has a subgraph as depicted: the red edges in (a)
and (b) are the edge set of Hi and Hi+1. 56

3.19 Case 4. 57

3.20 If Claim 3.3.32 holds, G has a subgraph as depicted: the red edges in (a)
and (b) are the edge set of Hi and Hj, respectively. 58

3.21 If Claim 3.3.37 holds: the red edges in (a) and (b) are the edge set of Hi

and Hj. 60

3.22 Figures for the proof of Observation 3.3.18 61

3.23 Different cases in the proof of Observation 3.3.39 63

viii

3.24 Different cases in the proof of Observation 3.3.24 64

3.25 Different cases in the proof of Observation 3.3.25 64

3.26 Different cases in proof of the Observation 3.3.28 66

3.27 Observation 3.3.36: P1 and P3 are matched inside. 69

3.28 Graph G1. 71

3.29 Graph G3. 71

ix

Introduction

This thesis is concerned with problems where we are given one solution and the existence
of another solution is guaranteed by a simple parity argument. In this case, the second
solution can be algorithmically obtained via some sort of exchange algorithm. However,
these algorithms are often not efficient; i.e. there are instances for which they require a
number of steps exponential in the size of the instance.

The two problems we study in this thesis are (1) the problem of finding a second room-
partitioning of a d-oik, and (2) the problem of finding a second Hamiltonian cycle in a
cubic graph.

0.0.1 Second room-partitioning of d-oiks

Consider a planar triangulation G on set V of vertices, and let R be the set of faces
(triangles) of G. It is an easy observation that every edge of a triangulation is in exactly
two triangles. Hence, object (V,R) consists of a set V of vertices and a set R of triangles
(called rooms), where each room is a subset of size 3 of V . Moreover, (V,R) has the
following property: every subset of size 2 of V , is either in 0 or 2 rooms in R. If the
2-subset corresponds to an edge of the triangulation, it appears in exactly two rooms,
otherwise it appears in no room. A room-partitioning of (V,R) is a subset of rooms of R
that partitions the vertices in V . A theorem of Edmonds [14] shows that room-partitionings
come in pairs.

What Edmonds shows is indeed more general. He uses the concept of d-dimensional
Euler complexes or d-oiks, that was introduced independently by Todd [39], as follows.

Definition 1.1.1. A d-dimensional Euler complex C = (V,R), or a d-oik, for d ≥ 1, is
given by a set V of vertices of C, and a set R ⊆ {A ⊆ V : |A| = d+ 1}, called the set of
rooms of C, satisfying the following property: every B ⊆ V , |B| = d, appears in an even
number of rooms.

1

For a planar triangulation G, it is easy to see that (V (G), F (G)) is a 2-oik, where V (G)
and F (G) are the vertex set and the face set of G, respectively.

A room-partitioning of d-oik C = (V,R) is P ⊆ R, such that each vertex v ∈ V appears
in exactly one room in P . Edmonds proves that every d-oik has an even number of room-
partitionings. The proof is simple, and yields an algorithm for finding a second room-
partitioning given a first one, known as the pivoting algorithm or the exchange algorithm.

Interesting examples of room-partitionings of d-oiks are perfect matchings in Eulerian
graphs. A graph is Eulerian if all its vertices have even degree. For an Eulerian graph
G = (V,E), it is easy to see that C = (V,E) is in fact a 1-oik. Perfect matchings of
G correspond to room-partitionings of C. Hence, the exchange algorithm can solve the
problem of finding a second perfect matching in Eulerian graphs, given a first one. Edmonds
and Sanità [16] constructed an infinite family of Eulerian graphs for which the exchange
algorithm takes an exponential number of steps in the number of vertices of the graph
before termination. However, in his Ph.D. thesis, Merschen [30] shows that if the Eulerian
graph is bipartite, then the exchange algorithm computes a second perfect matching in
time linear in the number of vertices of the graph.

Another example of d-oiks is the one we started off with: planar triangulations. A
room-partitioning of a planar triangulation is a set of faces that partitions the vertices.
Again, one could apply the exchange algorithm to find a second room-partitioning of a
planar triangulation, given one, but the algorithm might have a running time exponential
in the number of vertices in the triangulation. There is a possibility that this problem is
intractable in the following sense: if there is an efficient algorithm for finding a second room-
partitioning of planar triangulations, then there exists an efficient algorithm for finding a
Nash equilibrium in bimatrix games.

The problem of finding a perfect matching of a given graph is easy by the means of
Edmonds’s well-known blossom algorithm [13]. Hence, one does not need to rely on an
exchange algorithm for finding a second perfect matching in Eulerian graphs. For the case
of planar triangulations, we show that a similar thing is unlikely to happen. In particular,
we prove that the problem of deciding whether a planar triangulation has a (first) room-
partitioning is NP-complete.

Theorem 1.3.2. Determining whether a planar triangulation has a room-partitioning is
NP-complete.

2

0.0.2 Second Hamiltonian cycle in cubic graphs

Consider the following problem: given a cubic graph G and a Hamiltonian cycle H of G
containing an edge e, is there another Hamiltonian cycle that contains e?

A classical result of Smith [40] shows that the answer to this question is always yes.
However, his proof is not constructive. Thomason [37] later found a short and constructive
proof for finding a second Hamiltonian cycle through a given edge in a cubic graph. The
algorithm proposed by Thomason, called the lollipop algorithm, is based on a basic parity
argument, and iterates by exchanging edges with simple rules.

In his seminal paper of 1992, Papadimitriou [32] reviewed Thomason’s proof to illustrate
the complexity class PPA (for Polynomial Parity Argument). Although no exponential
lower bounds were known on the number of iterations required by the lollipop algorithm
to find a second Hamiltonian cycle, Papadimitriou conjectured that this problem is in fact
hard to solve, and that the lollipop algorithm is not efficient. A year later, Krawczyk [28]
constructed an infinite family of cubic graphs with 8n + 2 vertices, for which the lollipop
algorithm takes at least 2n iterations. Krawczyk’s graphs are cubic and planar.

Barnette’s conjecture [3] states that all 3-connected cubic planar bipartite graphs (Bar-
nette graphs) have a Hamiltonian cycle. Hamiltonicity of these graphs is intensively studied
in the context of graph theory. The conjecture remains open after more than four decades.
The complexity of finding a (first) Hamiltonian cycle in Barnette graphs is also open.
About the complexity of finding a second Hamiltonian cycle, we propose the following
conjecture.

Conjecture 3.2.2. Given a Hamiltonian cycle H in a cubic planar bipartite graph G and
edge e in H, the lollipop algorithm finds a second Hamiltonian cycle through e in time
linear in the number of vertices of G.

A corollary of Conjecture 3.2.2 would be that the lollipop algorithm is an efficient
algorithm for finding a second Hamiltonian cycle in a Barnette graph. We fail to settle
Conjecture 3.2.2, however, we prove that the lollipop algorithm terminates in time linear in
the number of vertices in cubic planar bipartite WH(6)-minor free graphs. Graph WH(6)
consists of a cycle of five vertices together with a vertex connected to all the vertices in the
cycle (See Figure 0.0.2.). A graph G has a WH(6)-minor if one could obtain from G a graph
isomorphic to WH(6) by doing minor operations (edge deletion and edge contraction).
Precisely, we prove the following theorem.

Theorem 3.3.1. Given a Hamiltonian cycle H in a cubic planar bipartite WH(6)-minor
free graph G, and edge e in H, the lollipop algorithm finds a second Hamiltonian cycle
through e in time linear in the number of vertices of G.

3

Figure 1: Graph WH(6).

0.0.3 Organization of the thesis

The organization of the thesis is as follows. We begin in Chapter 1 with recalling basic
properties of d-oiks. We will see the proof that room-partitionings in d-oiks come in pairs.
Next, we will review related works. In particular, we discuss the problem of finding a Nash
equilibrium in bimatrix games, and the problem of finding a second room-partitioning with
opposite sign. Then, we review the suitable complexity classes when dealing with these
types of problems. Section 1.2 is dedicated to the problem of finding a second perfect
matching in Eulerian graphs. A detailed description of the exchange algorithm for solving
this problem is provided in this section. Later in this section, we focus on bipartite Eulerian
graphs, and see how pairing the edges guarantees polynomiality of the exchange algorithm
in these graphs. Section 1.3 elucidates the problem of finding a room-partitioning of a
planar triangulation. We prove that deciding whether a planar triangulation has a room-
partitioning is NP-complete.

Chapter 2 focuses on the problem of finding a second Hamiltonian cycle in cubic graphs.
We start in Section 2.1 by proving Smith’s theorem using a similar parity technique we
used for room-partitionings of oiks. We will describe the algorithm, and fix notations that
we will need later. Then, we will briefly review related works in Section 2.2. As in the
first chapter, we discuss complexity classes that seem to capture the complexity of the
problem. In the same section, we will see Krawczyk’s construction that shows that the
lollipop algorithm has exponential running time in cubic planar graphs.

Chapter 3 contains the motivation for proposing Conjecture 3.2.2 and the proof of
Theorem 3.3.1. This latter proof is divided into three subsections.

Finally, in Chapter 4 we will close the thesis with a brief conclusion and future chal-
lenges.

4

Chapter 1

Finding a second room-partitioning
of an oik

In this chapter we study Eulerian complexes, or oiks.

1.1 Preliminaries

The main motivation to study oiks is to generalize the parity argument for showing the ex-
itence of an even number of room-partitionings. A famous example of this parity argument
is given by the Lemke-Howson algorithm for computing a Nash equilibrium in bimatrix
games. Before getting into this relationship, let us introduce oiks in more detail.

1.1.1 d-oiks and the exchange algorithm

We start by recalling the definition of an oik.

Definition 1.1.1 (Oik). A d-dimensional Euler complex C = (V,R), or a d-oik, for d ≥ 1,
is given by a set V of vertices of C, and a set R ⊆ {A ⊆ V : |A| = d + 1}, called the
set of rooms of C, satisfying the following property: every B ⊆ V , |B| = d, appears in an
even number of rooms.

Definition 1.1.2. A room-partitioning of a d-oik (V,R) is a set P ⊆ R, such that each
vertex v ∈ V , appears in exactly one room in P .

5

Example 1.1.3. Let G = (V,E) be an Eulerian graph. Then C = (V,E) is a 1-oik. A
room-partitioning of C corresponds to a perfect matching of G.

A special case of d-oiks are simplicial pseudo manifolds.

Definition 1.1.4. A rank-d simplicial pseudo manifold, for d ≥ 1, is a pair (V,R), where
V is a set of vertices, and R is a collection of subsets of V with size d+ 1, called the set of
rooms, such that every B ⊆ V , |B| = d, appears in either zero or two rooms.

For convenience, we would refer to a rank-d simplicial pseudo manifold as a d-manifold.

Example 1.1.5. Let G = (V,E) be a planar triangulation, and let F be the set of faces
of G. Then, (V, F) is a 2-manifold.

The heart of the exchange algorithm is a parity argument that we will later see many
times in this thesis.

Theorem 1.1.6 (Edmonds [14]). A d-oik has an even number of room-partitionings.

Before proving the theorem, we need a definition.

Definition 1.1.7. For a d-oik C = (V,R) and w ∈ V , a w-almost room-partitioning of C
is a set P ⊆ R, such that (1) w is not in any room of P , (2) there is a vertex v ∈ V \ {w}
that is in exactly two rooms of P , called the duplicate vertex of P , and (3) every vertex in
V \ {v, w} appears in exactly one room of P .

Proof of Theorem 1.1.6. Let C = (V,R) be a d-oik. Choose w ∈ V arbitrarily. Now we
will construct a graph Gw

C , whose vertex set is given by all w-almost room-partitionings of
C and the set of all room-partitionings of C. Two vertices P1 and P2 of Gw

C are connected
by an edge if they can be obtained from each other by replacing one room with another,
i.e. by swapping two rooms. We call Gw

C the exchange graph.

It is easy to see that each vertex in Gw
C that corresponds to a w-almost room-partitioning

has an even degree. To see this, consider a w-almost room-partitioning P , with duplicate
vertex v. Let r1, r2 be the rooms in P that contain v. A neighbour of P in Gw

C is a w-almost
room-partitioning of C or a room-partitioning of C, that is obtained from P by removing
one room in P , and adding another room in R \ P to P . Thus, the room that we remove
must be either r1 or r2. Otherwise, by adding any other room we would end up with two
duplicate vertices. Now consider P \r1. By the property of d-oiks, there is an even number
of rooms that have r1 \ {v} in common. Hence, there is an odd number of them different

6

from r1. A similar argument holds for P \ r2. Therefore, all w-almost room-partitionings
have even degree in Gw

C .

In addition, it is easy to see that a room-partitioning P has odd degree in Gw
C . This

is because one has to remove the room that contains w, namely r ∈ P . Since there is an
even number of rooms that have r \ w in common, the number of vertices in Gw

C that are
neighbours of P is odd.

The statement of the theorem then follows by the following simple observation: A graph
has an even number of odd degree vertices!

The parity argument in the proof of Theorem 1.1.6 will come forward many times later
in this chapter and in the next chapter. Theorem 1.1.6 has many corollaries. Consider the
following computational problem.

Definition 1.1.8 (Finding a second room-partitioning of an oik). Given a d-oik C and
room-partitioning P of C, find a room-partitioning of C that is different from P .

Recall the exchange graph in the proof of Theorem 1.1.6. In case our d-oik is in fact a
d-manifold, all vertices in the exchange graph have degree at most two. Thus, components
of the exchange graph are cycles and paths. Moreover, a room-partitioning corresponds to
a leaf in a path. Trivially, there is another leaf (room-partitioning) at the other end of the
path. Edmonds’s exchange algorithm basically moves along this path to obtain another
room-partitioning.

For finding a second room-partitioning of a d-oik (V,R), we can pair the rooms as
follows. By definition, for each d-subset B of V , there is an even number of rooms that
contain B. Thus, we can pair them up for each d-subset. Now, consider the exchange
graph for some w ∈ V . Recall that at vertex P of the exchange graph that corresponds
to a w-almost room-partitioning, we have two choices for dropping a room, namely r1 and
r2. However, for adding we could have plenty of choices. We can restrict ourselves to the
rooms paired with the d-subsets P \ r1 and P \ r2, respectively. A similar thing can be
done for vertices in the exchange graph that correspond to room-partitionings of C. We
will describe the exchange algorithm for 1-oiks in more detail in Section 1.2.1.

1.1.2 Related Works

The parity argument mentioned in the proof of Theorem 1.1.6 is a central idea in many
existential proofs. The most well-known one is probably the existence of a Nash equilibrium

7

in non-degenerate bimatrix games. A classical result of 1951 by Nash shows that a Nash
equilibrium always exists in bimatrix games. A bimatrix game is specified by two matrices
A and B of the same dimension. Two players a and b simultaneously choose a row index
i and a column index j, respectively. Player a receives payoff Aij and player b receives
payoff Bij. Each player aims to maximize his expected payoff with respect to a probability
distribution over the set of possible choices, which is called a mixed strategy. A Nash-
equilibrium is a pair of mixed strategies such that no player can change his strategy in
order to increase his expected payoff while his opponent mixed strategy is fixed.

Finding such equilibrium is a long standing open problem, and after many decades there
are no constructive solutions that output a Nash equilibrium in time polynomial in the
size of the input. A well-known algorithm for computing a Nash equilibrium in bimatrix
games is the Lemke-Howson algorithm [29]. The algorithm is based on the same parity
argument as in the proof of Theorem 1.1.6. In particular, Lemke and Howson show that
finding a Nash equilibrium could be solved by finding a second completely labelled vertex
in a labelled polytope. One could show that these completely labelled vertices come in
pairs.

Edmonds and Sanità [15] describe a common generalization for room-partitionings of
oiks and Nash equilibria in bimatrix games. In particular, they proved that non-degenerate
bimatrix games could be described via two manifolds on the same set of vertices, where
Nash equilibria correspond to room-partitionings obtained by selecting one room from each
manifold.

Végh and von Stengel [41] introduce an abstract framework of complementary pivoting
with direction, that also brings Nash equilibria in bimatrix games and room-partitionings
of oiks under one common general framework. They extend a concept of sign defined
by Shapley [34] to this common framework (and hence to room-partitionings) to show
that room-partitioning of different signs come in pairs. They show that the exchange
algorithm computes a room-partitioning with opposite sign for their notion of sign. While
the exchange algorithm in general has an exponential worst-case running time, they provide
a different algorithm that efficiently finds a perfect matching of opposite sign in Eulerian
graphs (Theorem 12 in [41]).

1.1.3 Related complexity classes

TFNP (for Total Function Nondeterministic Polynomial) is the class of all search problems
where a solution is always guaranteed to exist. A consequence of Nash’s theorem is that
the problem of finding a Nash equilibrium in non-degenerate bimatrix games (2-Nash) is

8

in TFNP. By an easy argument one can show that there is no NP-complete problem in
TFNP unless NP=co-NP. Moreover, it seems difficult to find a polynomial-time algorithm
for computing a Nash equilibrium for bimatrix games. This, together with the nature of the
Lemke-Howson algorithm for solving 2-Nash, was the motivation to introduce a complexity
class that captures the complexity of 2-Nash. To this end, Papadimitriou [32] introduced
the complexity class PPAD (for Polynomial Parity Argument on a Directed graph). The
definition of PPAD, unlike other classes like NP is based on the following artificial problem.

Definition 1.1.9 (End of the line [8]). An instance of End of the line is a pair (M, 0n) with
the following properties. M is a polynomial-time Turing machine that encodes a directed
graph G with vertex set {0, 1}n, such that every vertex has in-degree and out-degree at
most one, in the following sense: for v ∈ {0, 1}n, M outputs M(v) in time polynomial in
n. M(v) consists of a unique ingoing neighbour of v and a unique outgoing neighbour of v,
if they exist. Moreover, in G, vertex 0n (standard leaf) has out-degree one and in-degree
zero. The problem asks to find a leaf of G, different from 0n.

It is easy to see that End of the line is in fact in TFNP. The proof is by the exact same
argument as the one in the proof of Theorem 1.1.6: a graph has an even number of odd
degree vertices!

But how hard is End of the line? The directed graph G has an exponential number of
vertices, thus, one could not compute the whole graph in polynomial time. However, since
M is a polynomial-time Turing machine, we could always find the outgoing and ingoing
neighbours of a vertex in polynomial-time. Therefore, a natural way for solving End of the
line is to move along the path that contains the standard leaf until we find another leaf.
However, this has exponential worst case.

We are now ready to define PPAD.

Definition 1.1.10 (PPAD). A problem A is in the complexity class PPAD if there is a
polynomial-time reduction from A to End of the line.

It is known that P ⊆ PPAD ⊆ NP. A distinction between PPAD and P or NP would
immediately imply that P 6= NP. In 2006, Chen and Deng [6] proved that 2-Nash is PPAD-
complete. It is widely believed that PPAD-complete problems are hard to solve efficiently
(see [21] for a well-written survey about PPAD and the complexity of computing a Nash
equilibrium). Notice that the Lemke-Howson algorithm is not efficient for 2-Nash. Savani
and von Stengel [33] find an infinite family of bimatrix games for which the Lemke-Howson
algorithm requires a number of steps exponential in the dimension of the game, before
terminating.

9

Another complexity class concerned with parity argument is PPA (for Polynomial Parity
Argument). PPA is defined similarly to PPAD, with a similar canonical problem.

Definition 1.1.11 (End of the line without direction). An instance of End of the line
without direction is a pair (M, 0n) with the following properties. M is a polynomial-time
Turing machine that generates a graph G with vertex set {0, 1}n, such that every vertex
has degree at most two, in the following sense: for v ∈ {0, 1}n, M outputs M(v) in time
polynomial in n. M(v) consists of at most 2 neighbours of v. Moreover, in G, vertex 0n

has only one neighbour. The problem asks to find a leaf of G, different from 0n.

Definition 1.1.12 (PPA). A problem A is in the complexity class PPA if there is a
polynomial-time reduction from A to End of the line without direction.

It is known that P ⊆ PPAD ⊆ PPA ⊆ NP. Any distinction between PPA and PPAD
would prove P 6= NP. In the second chapter, we will study the problem of finding a second
Hamiltonian cycle in cubic graphs. We try to talk about potential differences of these two
classes in that context.

It is not a difficult task to show that finding a second room-partitioning of an oik falls
in the complexity class PPA by the means of the exchange algorithm.

1.2 Second perfect matching in Eulerian graphs

The main idea in this section is to show polynomiality of the exchange algorithm on
bipartite Eulerian graphs, proved in [30], since some of these ideas will be later used in
Chapter 2. First, we need to formally describe the algorithm.

1.2.1 Exchange algorithm on Eulerian graphs

Recall the problem of finding a second room-partitioning of an oik, and the interesting
special case of room-partitionings of 1-oiks, which correspond to perfect matchings in
Eulerian graphs. In particular, observe the following corollary of Theorem 1.1.6 .

Corollary 1.2.1. Every Eulerian graph has an even number of perfect matchings.

The exchange algorithm applied in this setting outputs another perfect matching in
Eulerian graphs. Since the graph has even degree at each vertex, we can pair up the edges

10

incident to any vertex. Hence, we construct a pairing function. Let us formally define
pairing functions. For a vertex v in a graph G, we let δ(v) denote the set of edges of G
incident to v.

Definition 1.2.2. For an Eulerian graph G = (V,E), a pairing function for G is F :
(V × E) → E, such that: (i) F is defined for all pairs (v, e), where v ∈ V and e ∈ δ(v),
and (ii) for v ∈ V and e ∈ δ(v), F(v, e) = e′ with e′ 6= e, and F(v, e′) = e.

A pairing function for an Eulerian graph can be easily obtained e.g. by following an
Eulerian tour in the graph.

Algorithm 1 Exchange algorithm on Eulerian graphs

Input : Eulerian graph G = (V,E), a perfect matching M of G and a pairing function F
for G.

Output: A perfect matching M ′ 6= M of G.
Choose w ∈ V
e←M ∩ δ(w)
M ←M \ {e}
exposed← endpoint of e that is not w
while (1 = 1) do

e′ ← F(exposed, e)
M ←M ∪ {e′}
duplicate← endpoint of e′ that is not exposed
if duplicate = w then

M ′ ←M
return M ′ and terminate

end
e← (δ(duplicate) ∩M) \ {e′}
M ←M \ {e}
exposed← endpoint of e that is not duplicate

end

Termination of Algorithm 1.2.1 is guaranteed by the same parity argument as in the
proof of Theorem 1.1.6.

1.2.2 Bipartite Eulerian graphs

Recall that the exchange algorithm is not efficient for general Eulerian graphs as shown by
Edmonds and Sanità [15]. Would it be efficient if we restrict the graph a bit more? As we

11

will see in the following theorem, the answer is yes for bipartite Eulerian graphs.

Theorem 1.2.3 (Merschen [30]). Let G = (V,E) be a bipartite Eulerian graph, and M
be any perfect matching of G. For any pairing function F : (V × E) → E, the exchange
algorithm terminates in at most O(|V |) iterations.

Before proving Theorem 1.2.3 let us define the add-remove walk for an execution of the
exchange algorithm.

Definition 1.2.4. For Eulerian graph G = (V,E), perfect matching M of G, pairing
function F of G, and vertex w ∈ V , we define the add-remove walk W (G,M,F , w) as
follows.

W (G,M,F , w) = (w = a0, f0, r0, e1, a1, f1, r1, e2, . . . , an−1, fn−1, rn−1, en, an = w), (1.1)

where in the execution of Algorithm 1.2.1 on input (G,M,F) and chosen vertex w, for
i = {1, . . . , n}, ai is the duplicate vertex in iteration i and ei is the edge that is added in
iteration i and for j ∈ {0, . . . , n− 1}, rj is the exposed vertex in iteration j, and fj is the
edge that was removed in iteration j.

Proof of Theorem 1.2.3. Consider W (G,M,F , w) (shortly W) as in (1.1). Notice that
since the graph is bipartite, A = {ai : i ∈ {0, . . . , n−1}} and R = {ri : i ∈ {0, . . . , n−1}}
are in two different parts of the bipartition of G, and hence disjoint sets. This also means
that W always arrives to visit vertices in A by adding an edge, and vertices in R by
removing an edge.

Label the vertices in W with y0, . . . , y2n. Let j ∈ {0, . . . , 2n} be the smallest j, such
that there exists i ∈ {0, . . . , j − 1} for which yi = yj. The existence of j is guaranteed by
the fact that y2n = w.

If yj = w, then we are done. Because the algorithm would terminate at iteration j
2
,

and vertices y1, . . . , yj−1 are distinct. Hence, j ≤ |V (G)|+ 1.

Now let us show that it is impossible to have yj = rk, for some k. This would imply
that at iteration k the algorithm removes an edge incident to rk = yi. However, notice
that in the set of edges that the algorithm maintains there is only one edge incident to rk,
and that is (yi, yi+1). On the other hand, the algorithm removes (rk, ak) to visit rk again.
This implies yi+1 = yj−1 = ak, which is a contradiction to the choice of j.

Thus, we may assume that yj = ak, where k = j
2
. Also, let k′ = i

2
. We have ak′ = ak.

The following claim concludes the proof.

12

Claim 1.2.5. Let i, j ∈ {0, . . . , n} such that i < j and ai = aj. For ` ∈ {j + 1, . . . , j + i},
we have aj+` = ai−`.

Proof. We proceed by induction on i. If i = 1, in iteration j + 1, the algorithm removes
edge e1 and then since F(r0, f0) = e1 (the algorithm added e1 in iteration 1), we have
F(r0, e1) = f0. Thus, the algorithm adds f0 to reach a0 = aj+1 = w. Clearly, the claim
holds in this case.

Now for i > 1, the algorithm removes edge ei and then since F(ri−1, fi−1) = ei (the
algorithm added ei in iteration i), we have F(ri−1, ei) = fi−1. Thus, the algorithm adds
fi−1 to reach ai−1 = aj+1. Applying the induction hypothesis on i−1, for ` ∈ {j+1, . . . , j+
1 + i− 1}, we have aj+1+` = ai−1−`.

The conditions in Claim 1.2.5 holds for i = k′ and j = k. Hence, Claim 1.2.5 concludes
the proof, because it would imply that ak+k′ = ak′−k′ = a0 = w. Hence, the algorithm
would terminate after k + k′ iterations. As before we know that a0, . . . , ak−1 are distinct
vertices. By the claim, ak+1, . . . , ak+k′ are also distinct vertices. Thus, k+k′ ≤ 2|V (G)|.

1.3 Room-partitionings of planar triangulations

Finding a second perfect matching in Eulerian graphs can be efficiently done by using
Edmonds’s blossom algorithm for finding a perfect matching in a graph. We only need
to drop one edge in the initial perfect matching, and apply blossom algorithm, trying out
all possible edges in the initial matching one by one until a perfect matching is found.
In this section, we want to show that a similar thing is unlikely to happen for finding a
second room-partitioning of planar triangulations. We show that determining whether a
planar triangulation has a room-partitioning is NP-complete. Consequently, in some sense,
if one wishes to give a polynomial-time algorithm for finding a second room-partitioning
of a planar triangulation, she is obliged to use more information from the given initial
room-partitioning.

We will use a reduction to the planar 3-dimensional matching (planar 3D matching)
problem, which is a restriction of the 3-dimensional matching (3D matching) problem. Let
us first define the problem.

Suppose we are given three disjoint sets A,B, and C, with |A| = |B| = |C|, and
set H ⊆ {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}, called 3D-edges. Then, the 3D matching
problem asks whether there exists a subset J ⊆ H, such that (1) for distinct 3D-edges

13

(a, b, c), (a′, b′, c′) ∈ J , a 6= a′, b 6= b′ and c 6= c′, and (2) J covers all the elements in A, B,
and C. If such J exists, we call it a 3D-matching for the instance given by A,B,C, and
H.

We can associate a bipartite graph G = (V,E) with an instance of 3D matching, such
that for every element in A, B, and C, and each 3D-edge in H, we have a vertex in G. A
vertex corresponding to (a, b, c) ∈ H, is connected with an edge to vertices corresponding
to a, b, and c.

An instance of planar 3D matching is similar to an instance for 3D matching with the
restriction that the bipartite graph corresponding to the instance is planar.

Dyer and Frieze [12] showed that planar 3D matching is NP-hard. We will reduce this
problem to the problem of finding a room-partitioning of a planar triangulation.

First we have the following straightforward observation.

Observation 1.3.1. Let G = (V,E) be the graph depicted below. Every room-partitioning
of (V, F), where F is the set of faces of G, uses room {v1, v2, v3}.

Proof. We will show that (V, F), admits exactly two room-partitionings:

P1 = {{v1, v2, v3}, {u1, u2, u3}, {w1, w2, w3}},

and
P2 = {{v1, v2, v3}, {u2, u3, w3}, {u1, w1, w2}}.

This would prove the observation, since both P1 and P2 have {v1, v2, v3} as a room.

14

It is easy to see that P1 and P2 are indeed room-partitionings of (V, F). Thus, it suffices
to prove there are no more room-partitionings of (V, F). Assume P ′ 6= P1 and P ′ 6= P2 is a
room-partitioning of (V, F). There are three possibilities for a room-partitioning to cover
w1.

Case 1. {u1, w1, w3} ∈ P ′. However, this cannot happen, since all the four rooms that
cover w2 contain at least one vertex that is already covered by {u1, w1, w3}.

Case 2. {w1, w2, w3} ∈ P ′. Among the four rooms that cover u3, the only one that
can possibly be in P ′ is {u1, u2, u3}, since all other rooms contain a vertex that is already
covered by {w1, w2, w3}. However, if {w1, w2, w3} ∈ P ′ and {u1, u2, u3} ∈ P ′, we would
clearly have {v1, v2, v3} ∈ P ′, which is a contradiction with P ′ 6= P1.

Case 3. {u1, w1, w2} ∈ P ′. Among the four rooms that cover u3, the only one that
can possibly be in P ′ is {u2, u3, w3}, since all other rooms contain a vertex that is already
covered by {u1, w1, w2}. However, if {u1, w1, w2} ∈ P ′ and {u2, u3, w3} ∈ P ′, we would
clearly have {v1, v2, v3} ∈ P ′, which is a contradiction with P ′ 6= P2.

Theorem 1.3.2. Determining whether a planar triangulation has a room-partitioning is
NP-complete.

Proof. Let disjoint sets A,B, and C and H ⊆ {(a, b, c) : a ∈ A, b ∈ B, c ∈ C} be an
instance I of planar 3D matching. We show that instance I is a yes-instance if and only if
a certain planar triangulation has a room-partitioning.

Let BI = (V,E), be the bipartite graph corresponding to instance I. Fix a planar
embedding of BI . For each vertex v ∈ V corresponding to a 3D-edge (a, b, c), we have
three neighbours corresponding to elements a ∈ A, b ∈ B, and c ∈ C. Remove vertex v
and change the 3D-edge into a 3-face as shown in Figure 1.1. After doing this operation
on all vertices that correspond to 3D-edges, we obtain a planar graph G. Planarity of G is
because the operation mentioned above clearly preserves planarity.

For each 3D-edge h ∈ H, there is a 3-face in G, whose vertices correspond to the
elements in h. Choose an arbitrary 3-face f of G, that corresponds to a 3D-edge and
consider the embedding of G on the plane that has f as its outer face. Now we add edges
to G while preserving planarity. We call the final graph G′. It is well-known that an
edge-maximal planar graph is a planar triangulation, i.e. every face is a 3-face. Remember
that each vertex of G′ corresponds to an element of A ∪B ∪ C.

Note that G′ has at most 3n − 2 edges, where n = |A| + |B| + |C|, and by Euler’s
formula it has 2n faces, making it possible to enumerate all the faces in polynomial time.

15

Figure 1.1: Changing 3D-edge h = (a, b, c) into a 3-face

Consider a 3-face f of G′. Let u1, u2, and u3 be the elements in A ∪ B ∪ C, that
correspond to the vertices in face f . If {u1, u2, u3} /∈ H, we call f a bad triangle of G′.
By adding the gadget in Observation 1.3.1 inside every bad triangle of G′ we obtain a new
graph GI .

Notice that for each 3D-edge (a, b, c) ∈ H, there is a 3-face f in GI that contains
vertices corresponding to a, b, and c. The bad triangles in G′ correspond to triangles in
GI , but they are not 3-faces. We call the subgraph of GI induced by these triangles and
the gadget added inside, a non-matching triangle of GI .

Notice that GI is a planar triangulation.

Claim 1.3.3. GI has a room-partitioning if and only if I is a yes-instance.

Proof. Suppose I is a yes-instance. Let J ⊆ H, be a 3D-matching for I. For each 3D-edge
j in J , let fj be the 3-face in GI . Let F = {fj : j ∈ J}. Notice that F partitions all
the elements in A ∪ B ∪ C. Also, clearly, F does not cover any vertex v /∈ A ∪ B ∪ C.
Hence, for each non-matching triangle of GI , it suffices to add a pair of 3-faces suggested
by Observation 1.3.1.

For the other direction, assume that P is a room-partitioning of GI . For element a ∈ A,
let fa be the 3-face (room) in P that covers a. We claim that the vertices in fa correspond
to elements of a 3-edge h ∈ H. If not, first of all observe that we cannot have that all the
vertices in fa correspond to elements in A ∪ B ∪ C, as in construction of GI , we added
a gadget inside each such face. Hence, it must be that fa contains some vertices that do
not correspond to elements in A ∪ B ∪ C. However, this is also a contradiction, since by
Observation 1.3.1 all the vertices in GI that do not correspond to elements in A ∪ B ∪ C
must be covered by rooms that only contain vertices that do not correspond to elements
in A ∪B ∪ C, while fa contains a ∈ A.

16

Claim 1.3.3 completes the proof.

17

Chapter 2

Finding a second Hamiltonian cycle

A Hamiltonian cycle of a graph is a sequence of vertices of the graph, where the first
and last vertices in the sequence are the same, and all other vertices in the sequence are
distinct. The sequence includes all the vertices in the graph and all consecutive vertices
in the sequence are adjacent. Finding a Hamiltonian cycle was amongst the first problems
proven to be NP-hard. However, in this chapter we will address another problem: we will
consider the problem of finding a second Hamiltonian cycle in cubic graphs. For cubic
graphs, the existence of a second Hamiltonian cycle is guaranteed if one Hamiltonian cycle
of the graph is given.

We will start the chapter by proving the existence of a second Hamiltonian cycle in cubic
graphs. Then, we review related works. In particular, we briefly review Hamiltonicity of
general regular graphs. Next, we review the literature related to finding Hamiltonian cycles
in cubic graphs, and the conjecture of Barnette. In Section 2.3 we study the complexity of
the problem.

2.1 The lollipop algorithm

The goal of this section is to introduce the lollipop algorithm. We will introduce the pre-
requisites we need later in the chapter when analyzing the algorithm. To this end, we will
first see Thomason’s proof for Smith’s theorem about the existence of a second Hamilto-
nian cycle in cubic graphs. After proving Smith’s theorem, we will explicitly introduce the
lollipop algorithm that is implicitly stated in Thomason’s proof.

18

Thomason’s proof of Smith’s theorem

We will prove the following theorem.

Theorem 2.1.1 (Smith [40]). For a cubic graph G and edge e of G, there is an even
number of Hamiltonian cycles through e.

Let us first define a lollipop in a cubic graph.

Definition 2.1.2. Given a cubic graph G = (V,E), vertex w ∈ V , and edge e ∈ δ(w), a
(w, e)-lollipop of G is a connected spanning subgraph H of G, such that (i) for exactly one
vertex u ∈ V \ {w} we have degH(u) = 3, (ii) degH(w) = 1, (iii) for all v ∈ V \ {u,w} we
have degH(v) = 2, and (iv) e ∈ E(H).

Figure 2.1: A (w, e)-lollipop: the solid thin lines are the edge set of a (w, e)-lollipop H of
G, where G is the graph with all the edges depicted in the figure. Note that the embedding
of H resembles an upside-down lollipop.

We will drop (w, e) in the definition of a (w, e)-lollipop when it is clear from the context.

We call the degree 3 vertex in a (w, e)-lollipop H the base of the lollipop, or base(H).
Note that a (w, e)-lollipop consists of a path and a cycle. For (w, e)-lollipop H of G, P (H)
is the wu-path in H, where u = base(H), and C(H) is the unique cycle in H.

Proof of Theorem 2.1.1 [37]. Fix an endpoint w of e. Consider a graph X defined as
follows. Each vertex of X is either a (w, e)-lollipop of G, or a Hamiltonian cycle containing
edge e.

19

Now consider a lollipop H. Since u = base(H) has degree 3 in H, there are two
edges (u, x) and (u, y), incident to u in C(H). Notice that H − (u, x) is a Hamiltonian
path. Let (x, z) be the third edge incident to x, such that (x, z) /∈ E(H). Observe that
H − (u, x) + (x, z) is a (w, e)-lollipop if z 6= w, and is a Hamiltonian cycle containing e if
z = w. A similar argument can be stated for (u, y) as well.

The argument above shows that H − (u, x) + (x, z) and H − (u, y) + (y, t), where (y, t)
is the edge incident to y, (y, t) /∈ E(H), correspond to vertices of X. Graph X has an edge
from H to H − (u, x) + (x, z) and H − (u, y) + (y, t).

Consider a Hamiltonian cycle H containing edge e. Since w has degree two in H, there
is an edge (w, v) = f 6= e in H incident to w. Let g be the third edge incident to v, such
that g /∈ E(H). Notice that H − f + g is either a (w, e)-lollipop or a Hamiltonian cycle of
G containing e. Graph X has an edge between H and H − f + g.

It is easy to see that the relation defined by the edges of X is symmetric. Therefore
every vertex of X has degree at most 2. In particular, a vertex in X has degree one if and
only if it corresponds to a Hamiltonian cycle containing e. Recall that a graph has an even
number of odd degree vertices. This concludes the proof.

The algorithm

Graph X in the proof of Theorem 2.1.1 is called the exchange graph for input (G,w, e). The
exchange graph consists of paths and cycles. Every leaf in X correspond to a Hamiltonian
cycle containing a specific edge e. Moreover, the proof shows how to move from one vertex
in X to its neighbouring vertices. Now the problem of finding a second Hamiltonian cycle
through a specific edge e, basically boils down to finding a second leaf in X.

Given one leaf of X, a natural way to find another leaf is to move along the path, until
we reach another endpoint. Since all vertices in X have degree at most two, there is no
chance of cycling, so we will eventually arrive at another leaf. Let us formalize this.

Tuple (G,H0, w, e) is a valid input for the lollipop algorithm if (1) G = (V,E) is a cubic
graph, (2) H0 is a Hamiltonian cycle of G, (3) w ∈ V , and (4) e ∈ δ(w) ∩ E(H0).

For the remainder of this section, we let tuple (G,H0, w, e) be a valid input for the
lollipop algorithm. For this input the algorithm works as follows. At iteration i ≥ 0, the
algorithm finds (w, e)-lollipop Hi+1, from Hi.

If i = 0, let f0 be the unique edge in δ(w) ∩ E(H0) \ {e}, and r0 be the endpoint of f0
different from w, and let e1 = δ(r0) \ E(H0). Then H1 = H0 − f0 + e1. If the endpoint of
e1 that is not r0 is w, we terminate and output H1, otherwise we go to the next iteration.

20

If i ≥ 1, let Hi = Hi−1− fi−1 + ei, where fi−1 is the edge incident to base(Hi−1), that is
in C(Hi−1) and is different from ei−1, and ei /∈ E(Hi−1) is the edge incident to the endpoint
of fi−1 that is not base(Hi−1), namely ri−1. Label the endpoint of ei that is not ri−1 by ai.
Terminate and output Hi, if ai = w, otherwise we move to the next iteration. Figure 2.2
illustrates the iterations of the lollipop algorithm for a given instance.

(a) H0 (b) H1 (c) H2 (d) H3

Figure 2.2: The iterations of the lollipop algorithm for the cube graph, with Hamiltonian
cycle H0, and vertex 1 and edge e = (1, 8) as depicted above.

Algorithm 2.1 summarizes this section.

Algorithm 2 Lollipop algorithm for cubic graphs

Input : Valid input (G,H,w, e)
Output: A Hamiltonian cycle of G different from H
e′ ← (E(H) ∩ δ(w)) \ {e}
H ← H − e′
degree1← endpoint of e′ that is not w
while (1 = 1) do

e′′ ← (δ(degree1) \ {e′}) \ E(H)
H ← H + e′′

base← endpoint of e′′ that is not degree1
if base = w then

return H and terminate
end
e′ ← (E(C(H)) ∩ δ(base)) \ {e′′}
H ← H − e′
degree1← endpoint of e′ that is not base

end

21

The add-remove walk for instance (G,H0, w, e)

We define the add-remove walk to simplify notation when proving our theorem about the
lollipop algorithm later on. Suppose that the execution of the lollipop algorithm on a valid
input (G,H0, w, e) terminates at iteration n.

Definition 2.1.3. The add-remove walk for input (G,H0, w, e) is

W (G,H0, w, e) = (w = a0, f0, r0, e1, a1, f1, r1, e2, . . . , an−1, fn−1, rn−1, en, an = w).

Notice that for i = 0, . . . , n− 1, edges fi and ei+1 have a common endpoint ri, and for
i = 1, . . . , n− 1, edges ei and fi have a common endpoint ai. Hence W (G,H0, w, e) is walk
in graph G. Figure 2.3 shows the add-remove walk for the input illustrated in Figure 2.2.

Figure 2.3: The add remove walk for the input in Figure 2.2.

In the execution of the lollipop algorithm for a valid input (G,H0, w, e), we say that
an edge e′ is added in iteration i, if e′ = ei+1. We say that e′ is removed in iteration i,
if e′ = fi. Moreover, we say that edge e′ is touched in iteration i, if it is either added or
removed in iteration i. Finally, for a vertex v we say that the algorithm arrives at v in
iteration i, if v = ai+1 or v = ri.

For a subgraph J of G, we say that the algorithm enters J in iteration i, if the algorithm
does not arrive at a vertex v ∈ V (J) in iteration i− 1, but it arrives at a vertex v ∈ V (J)
in iteration i. In particular, we say that the algorithm enters J through v in iteration i.
Similarly, we say that the algorithm leaves J in iteration i, if the algorithm arrives at a
vertex in J in iteration i − 1 and arrives at a vertex not in J in iteration i. Also, we say
that the algorithm leaves J through v in iteration i.

We are particularly interested in the portion of the add-remove walk between a pair of
lollipops, or between a Hamiltonian cycle and a lollipop.

Definition 2.1.4. For any i, j ∈ {0, . . . , n} where j ≥ i, the add-remove walk between Hi

and Hj for input (G,H0, w, e), is

W (G,H0, w, e)Hi,Hj
= (ai, fi, ri, ei+1, ai+1, fi+1, ri+1, . . . , aj−1, fj−1, rj−1, ej, aj).

22

We will abbreviate W (G,H0, w, e) by W and W (G,H0, w, e)Hi,Hj
by WHi,Hj

when the
context is clear.

2.2 Related works

The problem of finding a Hamiltonian cycle in graphs is one of the most fundamental
problems in graph theory and computer science. For regular graphs, the existence of
a second Hamiltonian cycle is also well-studied. In addition, in Hamiltonian cycles are
intensively studied in the context of Traveling Salesman Problem (TSP). We will review
some related results in this section.

2.2.1 Second Hamiltonian cycle in regular graphs

Generalizing Theorem 2.1.1

Suppose that H0 is a given Hamiltonian cycle of a graph G, where all vertices have odd
degrees. Now consider the exchange graph X for input (G,H0, w, e), where w ∈ V (G) and
e ∈ E(H0) ∩ δ(w).

Similar to the proof of Theorem 2.1.1 in Section 2, in X the vertices that correspond to
Hamiltonian cycles have odd degrees, while the vertices that correspond to (w, e)-lollipops
have even degrees. By a simple parity argument, one can derive the following theorem.

Theorem 2.2.1 (Thomason [37]). Every graph G where all vertices have odd degree, has
an even number of Hamiltonian cycles containing a given edge e.

Sheehan’s conjecture

Theorem 2.2.1 raised a question about the existence of a second Hamiltonian cycles in k-
regular graphs. In particular, the question concerns the existence of uniquely Hamiltonian
graphs. A graph is uniquely Hamiltonian if it contains exactly one Hamiltonian cycle. In
1975, Sheehan [35] proposed the following conjecture.

Conjecture 2.2.2. There are no uniquely Hamiltonian 4-regular graphs.

Suppose Sheehan’s conjecture holds. Then, consider a k-regular graph G for some even
number k ≥ 4. If G has one Hamiltonian cycle C, then G has a second Hamiltonian cycle.

23

The proof is by induction on k. The base case follows from Sheehan’s conjecture. For the
induction step notice that G− C is a (k − 2)-regular graph. By Petersen’s Theorem [10],
G − C has a 2-factor F . Now G − F + C is (k − 2)-regular and Hamiltonian, hence by
induction it has a second Hamiltonian cycle C ′ that is also a second Hamiltonian cycle for
G.

Therefore, Sheehan’s conjecture together with Theorem 2.2.1, would imply that no
k-regular graph with k ≥ 3 is uniquely Hamiltonian. The conjecture remains open after
about four decades. Thomassen [38] proved that no k-regular graph with k ≥ 72 is uniquely
Hamiltonian. The proof relies on the probabilistic method. Later, this result was improved
to k ≥ 23 [25].

2.2.2 Hamiltonicity of cubic graphs

In 1884, Tait [36] conjectured that all 3-connected cubic planar graphs are Hamiltonian.
His motivation was to find a proof for the four-color theorem. After 60 years, his conjecture
was disproved by Tutte [40]. Tutte then proposed his own conjecture, that all 3-connected
cubic bipartite graphs are Hamiltonian. The conjecture of Tutte was later disproved by
Horton [4]. Barnette’s conjecture is a combination of Tait and Tutte conjectures, asserting
that all 3-connected cubic planar bipartite graphs (Barnette graphs) are Hamiltonian.
Barnette’s conjecture is still open after 50 years.

Barnette’s conjecture

Holton, Manvel, and McKay [9] proved that Barnette’s conjecture holds for graphs with at
most 64 vertices. Their proof uses computers combined with smart combinatorial ideas for
pruning the search space. Later, they announced they have a proof for up to 84 vertices
[26]. Goodey [23] proved that if all the faces of a Barnette graph are 4-faces or 6-faces,
then the graph is Hamiltonian.

Another approach for proving the conjecture is proving its equivalence with more re-
strictive statements. An example would be Theorem 2.2.3.

Theorem 2.2.3 (Kelmans [27]). Barnette’s conjecture holds if and only if for every face
f of a Barnette graph G, and edge e and e′ on f , there is a Hamiltonian cycle that uses e
and avoids e′.

Alt et al. [2] use the planar dual graph of a Barnette graph, which in fact is an
Eulerian triangulation, to give a sufficient condition for the existence of Hamiltonian cycles
in Barnette graphs.

24

Theorem 2.2.4 (Alt et al. [2]). Suppose G∗ is an Eulerian triangulation. If the vertices
of G∗ can be properly colored with colors red, green, and blue, such that every cycle whose
vertices are not colored with blue, contains a vertex of degree 4, then the planar dual G of
G∗ is Hamiltonian

They use a lemma from [19] that translates Hamiltonian cycles of cubic planar graphs
into special subgraphs in planar triangulations, called permeating subtrees.

Definition 2.2.5. Let G be a planar triangulation. Subgraph H of G is a permeating
subtree of G, if (i) H is an induced subgraph, (ii) H is a tree, and (iii) each face of G is
incident to a vertex of H.

Theorem 2.2.6 (Florek [19]). Let G be a cubic planar graph, and G∗ be the planar dual
of G. Then G is Hamiltonian if and only if G∗ has two disjoint permeating subtrees that
partition V (G∗).

Proof sketch. Fix a planar embedding of G. Suppose that G is Hamiltonian. Let C be a
Hamiltonian cycle of G. Cycle C partitions the plane into two regions. Let F1 be the faces
that are inside the cycle and F2 be the faces outside C. F1 and F2 correspond to a set of
vertices V1 and V2 in G∗, respectively. Notice that F1 ∪ F2 = F , hence V1 ∪ V2 = V (G∗).
Then G∗[F1] and G∗[F2] are two disjoint permeating subtrees that partition V (G∗).

Now suppose G∗ has two permeating subtrees that partition the vertices of G∗, namely
T1 and T2. Contract the vertices in T1 and T2 to a single vertex to obtain G′. There
is one-to-one correspondence between the faces in G′ and G∗. Graph G′ consists of two
vertices with many multiple edges, but no loops. The planar dual of G′ is a cycle. This
cycle corresponds to a Hamiltonian cycle for G.

Figure 2.4 shows an example that illustrates the correspondence between permeating
subtrees and a Hamiltonian cycle, as in Theorem 2.2.6.

Short TSP tours in cubic graphs

Since not all cubic graphs are Hamiltonian, problems related to finding Hamiltonian cycles
in cubic graphs are also well-studied. A natural one is the Traveling Salesman Problem
(TSP). A TSP tour in a graph G is a connected spanning Eulerian multi-subgraph of G.
Here by multi-subgraph we mean that a TSP tour can use each edge in G multiple times.

Boyd et al. [5] find a TSP tour of a cubic graph G with at most 4
3
|V (G)|−2 edges. This

was improved by Correa et al. [7] to (4
3
− ε)|V (G)| − 2 edges, where ε ≥ 1

61236
. This result

25

Figure 2.4: The green edges correspond to the edge set of a Hamiltonian cycle that yields
the permeating subtrees in the planar triangulation shown by red and blue edges.

is particularly interesting since it is conjectured that the integrality gap of the sub-tour
elimination linear programming relaxation for TSP is 4

3
[20]. The result of Correa et al.

shows that the integrality gap is in fact strictly below 4
3

in cubic graphs. Their approach
also yields the following theorem.

Theorem 2.2.7 ([7]). Let G be a Barnette graph. Then G has a TSP tour of length at
most 1.28|V (G)|.

Their proof uses the fact that the faces of a Barnette graph can be properly colored
with 3 colors. They obtain three different 2-factors of a Barnette graph G, by considering
the edge set of all the faces colored by a specific color. In the next step, they devise an
efficient algorithm that performs local swapping operations on the cycles in each of the
2-factors. Their algorithm outputs a TSP tour, for each of the different 2-factors. By an
averaging argument, they show that the minimum of the three has length at most 23n−22

18
,

where n = |V (G)|.

This yields another approach to prove Barnette’s conjecture. Barnette’s conjecture
holds if all Barnette graphs have a TSP tour of length |V (G)|.

26

2.3 Complexity

2.3.1 The complexity of finding a second Hamiltonian cycle in
cubic graphs

Recall the definition of PPA and PPAD (Definitions 1.1.12 and 1.1.10). By the argument
in the proof of Theorem 2.1, we have that the problem of Finding a Second Hamiltonian
Cycle in a Cubic graph (FSHCC) is in PPA. It is not known whether the problem is in
PPAD or not.

Generally speaking, it is not known whether PPA6=PPAD or not. In [32] Papadimitriou
explains the possible contrast between these two classes. The following problem will give
an idea of this contrast.

Suppose we are given a valid input (G,H0, w, e) of FSHCC. Consider a vertex x in the
exchange graph X (for input (G,H0, w, e)), that is on the path P containing the vertex of
X corresponding to H0 (standard leaf). Is there a polynomial-time algorithm to determine
which direction from x on P would lead to the standard leaf?

For the problems in PPAD, the answer to the above question is indeed yes. However,
for FSHCC, it is not yet known whether such a direction is possible to set up. In fact,
the problems in PPAD have an algebraic and combinatorial nature, where FSHCC seems
more geometric. Thus, it might be that FSHCC is PPA-complete.

2.3.2 An exponential lower bound for the lollipop algorithm

Papadimitriou [32] conjectured that no efficient algorithm for finding a second Hamiltonian
cycle exists unless PPA=P. He thought it was unlikely that the lollipop algorithm would
solve the problem of finding a second Hamiltonian cycle through a given edge efficiently.
This was proved by Krawczyk [28], who came up with a construction showing that the
number of steps required by the lollipop algorithm is exponential in the number of vertices,
in cubic graphs.

Consider the graph G1 shown in Figure 2.5.

It would take 12 iterations for the lollipop algorithm to find a second Hamiltonian
cycle, if it starts with the Hamiltonian cycle H0 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1), w = 1, and
e = (1, 10) (See Figure 2.6.). Now consider the add-remove walk W (G1, H0, w, e) or shortly
W1. In W1, edge (6, 5) is touched 4 times. First it is removed in iteration 1, then it is added

27

Figure 2.5: Graph G1

(a) H0 (b) H1 (c) H2 (d) H3 (e) H4

(f) H5 (g) H6 (h) H7 (i) H8 (j) H9

(k) H10 (l) H11 (m) H12

Figure 2.6: The iterations of the lollipop algorithm for input (G1, H0, w, e)

in iteration 2, again removed in iteration 5, and finally added again in iteration 8. Hence,
the algorithm arrives at vertex 6 four times through edge (6, 5). Label 6 with u1 and edge
(6, 5) with h1. Moreover, label vertices 7, 5, and 4 with x1, y1, and z1, respectively. The idea
of the construction is to build a graph Gi, such that the algorithm for input (Gi, H

′
i, w, e),

where H ′i is a Hamiltonian cycle of Gi (H ′1 = H0), arrives at vertex ui through hi, at least
2i times, for i ≥ 1.

To this end, we define a graph B that is obtained from G1 by removing vertex w. We
label the vertices as depicted in Figure 2.7. Graph B would help us construct the desired
graph. First, the main property of B is stated in the following observation.

Observation 2.3.1. For t, t′ ∈ {x′, y′, z′}, there is exactly one Hamiltonian path in B starting
from t and ending at t′.

Graph Gi is obtained from Gi−1 for i > 1 as follows. Delete vertex ui from the graph

28

Figure 2.7: Graph B

Gi−1 to get Gi−1 − ui. Add graph B, and connect x′, y′, and z′ of B to xi−1, yi−1, and zi−1
of Gi−1−ui, respectively. The graph obtained by this operation is called Gi. Label vertices
x′′, y′′, and z′′ with xi, yi, and zi, respectively. Also label the vertex that is the common
neighbour of xi, yi, and zi with ui. Finally let hi = (ui, yi). The construction of G2 from
G1 is shown in Figure 2.8.

In addition, H ′i is obtained from H ′i−1 as follows. Remove ui−1 from H ′i−1. Suppose that
in H ′i−1, ui−1 is adjacent to t, t′ ∈ {xi−1, yi−1, zi−1}. To define H ′i, connect both t and t′ to
the unique vertex of B adjacent to them, namely s, s′ ∈ {x′, y′, z′}. By Observation 2.3.1,
there is a unique Hamiltonian path from s to s′ in B. Extend H ′i to a Hamiltonian cycle
for Gi by adding the Hamiltonian ss′-path in B. In Figure 2.8, H ′2 is shown by dashed
edges.

Figure 2.8: Graph G2

Krawczyk’s main result is the following theorem.

Theorem 2.3.2 ([28]). In the execution of the lollipop algorithm with input (Gi, H
′
i, w, e),

the algorithm arrives at vertex ui at least 2i times through edge hi.

29

This immediately implies that the lollipop algorithm has an exponential worst case
running time.

The proof of Theorem 2.3.2 is by induction, and in two steps: (1) edge (yi−1, y
′) of Gi

appears in Wi = W (Gi, H
′
i, w, e) at least 2i−1 times, and (2) for each time edge (yi−1, y

′)
appears in Wi , edge hi appears twice in Wi. Step (1) holds because the algorithm would
act similarly if we contract the rightmost isomorph of B in Gi. Hence, since by induction
hi−1 appears 2i−1 in Wi−1, we have that (yi−1, y

′) appears 2i−1 times in Wi. Step (2) follows
directly from Observation 2.3.1. Because we can consider two cases of adding and removing
(yi−1, y

′). Then we can follow the steps of the algorithm and see that hi is in fact touched
twice.

2.3.3 The complexity of deciding Hamiltonicity of Barnette graphs

Deciding whether a graph admits a Hamiltonian cycle is one of the most well-known NP-
complete problems. Takanori, Takao, and Nobuji [1] proved that deciding Hamiltonicity is
NP-complete even for cubic planar bipartite graphs. However, the complexity of deciding
whether there exists a Hamiltonian cycle for Barnette graphs (HBG) is still unknown.

If the conjecture holds, then the problem would fall into the complexity class TFNP
(See Section 1.1.3.), and then it would be unlikely that HBG is NP-complete [31]. More
precisely, the following theorem holds.

Theorem 2.3.3. If Barnette’s conjecture holds, then HBG is not NP-complete, unless
NP=co-NP.

Feder and Subi [18] proved that if the conjecture is false, then HBG is NP-complete.

30

Chapter 3

The lollipop algorithm on planar
bipartite graphs

Theorem 2.3.2 gives an infinite class of cubic graphs for which the lollipop algorithm is not
efficient. Our goal is to find a subclass of cubic graphs, for which the lollipop algorithm is
efficient.

3.1 Why bipartite graphs?

In Section 2.3.1, we presented Krawczyk’s graphs where it takes exponential time to obtain
a second Hamiltonian cycle using the lollipop algorithm. It is easy to see that Krawczyk’s
graphs are in fact planar. Looking closely at edges added and removed by the lollipop
algorithm on Krawczyk’s graphs gives us the feeling that the odd cycles are central for
exponentiality of the algorithm on these instances.

Another motivation to consider the lollipop algorithm on cubic bipartite graphs is due
to its possible similarities with how the exchange algorithm for finding a second perfect
matching behaves on bipartite Eulerian graphs, as illustrated in Theorem 1.2.3. Recall that
Theorem 1.2.3 proves that the exchange algorithm terminates after a number of iterations
that is linear in number of vertices. In fact, in that context, the pairing function in Eulerian
graphs establishes this linear running time performance. Hence, we seek for an analogue
of pairing functions in the context of cubic bipartite graphs and the lollipop algorithm.

To this end, we introduce some definitions. Let H1, . . . , Hn−1 be the (w, e)-lollipops
considered by the lollipop algorithm for a valid input (G,H0, w, e).

31

Definition 3.1.1. Lollipops Hi and Hj are same based, for i, j ∈ {1, . . . , n−1}, and i 6= j,
if base(Hi) = base(Hj).

Definition 3.1.2. Two same based lollipops Hi and Hj are compatible if

δ(base(Hi)) ∩ C(Hi) = δ(base(Hj)) ∩ C(Hj).

Compatibility establishes our analogy with the exchange algorithm in Theorem 1.2.3.

To start, let us prove the following easy lemma, that shows what might be different
when dealing with bipartite graphs. From now on, suppose (G,H0, w, e) is a valid input
for the lollipop algorithm, and G is a cubic bipartite graph. Recall

W (G,H0, w, e) = (w = a0, f0, r0, e1, a1, f1, r1, e2, . . . , an−1, fn−1, rn−1, en, an = w).

We denote W (G,H0, w, e) shortly by W .

Lemma 3.1.3. Suppose A and R are the parts of a bipartition of G, such that w ∈ A.
Then ai ∈ A, and ri ∈ R for i ∈ {0, . . . , n− 1}.

Proof. By induction on i. For i = 0, by definition a0 = w ∈ A, and since w and r0 are
connected via edge f0, we have r0 ∈ R. For the induction step, consider ai. The induction
hypothesis implies that ri−1 is in R, since ei = (ri−1, ai) we have ai ∈ A. Similar to the
base case we have ri ∈ R.

An immediate corollary of Lemma 3.1.3 is the following.

Corollary 3.1.4. There is no i ∈ {0, . . . , n} and j ∈ {0, . . . , n− 1} such that ai = rj.

The following theorem is our analogue of Theorem 1.2.3.

Theorem 3.1.5. Suppose that H1, . . . , Hn−1 are the lollipops considered by the lollipop
algorithm for input (G,H0, w, e). If all same based lollipops among H1, . . . , Hn−1 are
compatible, then the lollipop algorithm terminates in at most 2|V (G)| iterations for in-
put (G,H0, w, e).

Proof. Relabel the vertices in W by y0, . . . , y2n, respecting the order. All we need to do
is showing that n ≤ 2|V (G)|. Suppose n > |V (G)|. By the pigeonhole principle, there is
a vertex of G that is repeated in y0, . . . , y2n. Let j ∈ {1, . . . , 2n} be the smallest possible
index for which there exists i ∈ {0, . . . , j − 1} such that yi = yj.

32

Now suppose yi ∈ A. We show that yi = w. If not, then by Corollary 3.1.4, there are
i′ < j′, i′, j′ ∈ {1, . . . , n − 1}, such that yi = ai′ and yj = aj′ . But this implies that in
iteration j′ − 1 of the algorithm, the algorithm added edge ej′ to arrive at aj′ . If ej′ = fi′ ,
then yi+1 = yj−1 which is a contradiction to the choice of j. Also notice that since aj′ is
different from w, it has degree two in Hi′ , . . . , Hj′−1. Hence, the two edges in δ(aj′) \ {fi′}
are already in Hj′−1, and cannot be added by the algorithm.

On the other hand, if yi = yj = w, then it must be the case that i = 0 and j =
2n. Moreover, y1, . . . , y2n−1 are distinct vertices. Hence n − 1 ≤ |V (G)| − 1, which is a
contradiction.

We are left with yi ∈ R. We prove the following claim.

Claim 3.1.6. Suppose j is any index in {1, . . . , n−1}, for which there is i ∈ {0, . . . , j−1},
such that ri = rj. The add-remove walk after j-th iteration is as follows.

(rj = ri, fi, ai, ei, . . . , e1, r0, f0, a0). (3.1)

Proof. We proceed by induction on i. The base is that r0 = rj for some j ∈ {1, . . . , n− 1}.
In iteration j the algorithm adds an edge that is incident to r0 = rj, and the only candidate
edge to add is f0. This would be the last step of the algorithm, since by adding f0 the
algorithm arrives at w. In this case the add-remove walk after iteration j is

(r0, f0, a0 = w), (3.2)

as desired.

Now suppose that i > 0. Thus, we have ri = rj for some j ∈ {1, . . . , n−1}. At iteration
j of the algorithm, edge fj is removed and similar to the base case edge fi is added. Hence,
the algorithm arrives at ai. Now consider lollipops Hi and Hj+1. Since base(Hi) = ai and
base(Hj+1) = ai, Hi and Hj+1 are compatible, hence the algorithm removes ei to go back
to ri−1, which in fact corresponds to rj+1 in the add-remove walk. Thus, we can apply
induction to show that the add-remove walk after iteration j + 1 is

(ri−1, fi−1, ai−1, ei−1, . . . , e1, r0, f0, a0). (3.3)

This concludes the proof.

Now let j be the smallest index in {1, . . . , n−1} for which there exists i ∈ {0, . . . , j−1},
such that ri = rj. By Claim 3.1.6, the add-remove walk is

(a0, f0, r0, e1, . . . , fj, rj = ri, fi, ai, ei, . . . , e1, r0, f0, a0).

Notice that by the choice of j, a0, r0, . . . , rj−1 are distinct vertices of G. Hence, i < j ≤
|V (G)|. But notice that the algorithm has j + i iterations and i+ j ≤ 2|V (G)|.

33

3.2 Why planar bipartite graphs?

Theorem 3.1.5 provides a tool to analyze the lollipop algorithm. The connection between
the exchange algorithm for bipartite Eulerian graphs and the lollipop algorithm for cubic
bipartite graphs that satisfies the condition stated in Theorem 3.1.5 is now clear. However,
not all cubic bipartite graphs satisfy the statement in Theorem 3.1.5. A counterexample
is illustrated in Figure 3.1.

Notice that the graph depicted in Figure 3.1 is not planar. In fact, we believe that
obtaining two same based lollipops that are not compatible requires some sort of twist in
the graph, which motivates us to assert the following conjecture.

Conjecture 3.2.1. Let H1, . . . , Hn−1 be the lollipops considered when executing the lollipop
algorithm on a valid input (G,H0, w, e). If G is planar and bipartite, then all same based
lollipops in H1, . . . , Hn−1 are compatible.

Then, by Theorem 3.1.5, this implies the following.

Conjecture 3.2.2. Given a Hamiltonian cycle H in a cubic planar bipartite graph G and
edge e in H, the lollipop algorithm finds a second Hamiltonian cycle through e in time
linear in |V (G)|.

Another motivation towards proving Conjecture 3.2.2 would be in the context of Bar-
nette’s conjecture. After five decades the conjecture remains (wide) open. The complexity
of finding a Hamiltonian cycle in a 3-connected cubic planar bipartite graph is still not
known. A corollary of Conjecture 3.2.2 would be that finding a second Hamiltonian cycle
in a Barnette graph can be efficiently solved. It would also mean that the exchange graph
has polynomially long paths. Hence, if one manages to find a lollipop on a path of the
exchange graph, after polynomially many pivotings we would arrive at a Hamiltonian cycle.

Barnette’s conjecture has motivated the study of Hamiltonicity in cubic bipartite graphs,
and some observations in this context might be useful in proving Conjecture 3.2.2. In par-
ticular, recall from Section 2.2.2 the definition of permeating subtrees (Definition 2.2.5).
By Theorem 2.2.6 the problem of finding a second Hamiltonian cycle in a cubic planar
graph could be now described as finding a second pair of permeating subtrees in a planar
triangulation. An analogue of the lollipop algorithm for these instances would consider
almost-permeating subtrees as “intermediate vertices”. In this case, it might be easier to
attack Conjecture 3.2.2.

34

(a) H0 (b) H1 (c) H2

(d) H3 (e) H4 (f) H5 (g) H6

Figure 3.1: The iterations of the lollipop algorithm for input (G1, H0, w, e). Notice that
base(H1) = base(H6). However, H1 and H6 are not compatible.

35

3.3 The lollipop algorithm on cubic planar bipartite

WH(6)-minor free graphs

This section is dedicated to the proof of Theorem 3.3.1. Let us first recall this theorem.

Theorem 3.3.1. Given a Hamiltonian cycle H in a cubic planar bipartite WH(6)-minor
free graph G, and edge e in H, the lollipop algorithm finds a second Hamiltonian cycle
through e in time linear in |V (G)|.

To avoid repeating all the adjectives we will refer to all cubic planar bipartite WH(6)-
minor free graphs as class A.

In order to prove Theorem 3.3.1, we will prove the following theorem.

Theorem 3.3.2. Let G ∈ A. Let (G,H0, w, e) be a valid input for the lollipop algorithm,
and let H1, . . . , Hn−1 be the (w, e)-lollipops considered by the algorithm. Then any two
same based lollipops in {H1, . . . , Hn−1} are compatible.

Theorem 3.3.1 is an immediate corollary of Theorems 3.1.5 and 3.3.2.

In order to prove Theorem 3.3.2 we will consider plenty of cases. However, before that
we will prove some useful lemmas.

3.3.1 Useful lemmas

Let us begin this section with introducing some notation.

Let G be a graph, and P be a path in G. For two vertices u, v in P , P (u, v) is the
uv-path in P .

For the remainder of this section let (G = (V,E), H0, w, e) be a valid input for the
lollipop algorithm, where G is a cubic graph. Since (w, e) is fixed for the whole section, we
will refer to a (w, e)-lollipop of G by a lollipop.

For a lollipop H, a jump of H is an edge j ∈ E \ E(H), such that j has one endpoint
in C(H) and one in P (H). A chord of H is an edge j ∈ E \E(H) that has both endpoints
in C(H). We call

jump(H) := {j : j is a jump of H},
and

chord(H) := {j : j is a chord of H}.

In Figure 3.2 the bold solid line is a chord of H and the dashed lines are jumps of H.

36

Figure 3.2: A lollipop

Lemma 3.3.3. For any lollipop H, if G is WH(6)-minor free, then |jump(H)| ≤ 3.

Proof. For the sake of contradiction let e1, e2, e3, e4 ∈ jump(H). Suppose that u =
base(H). Let u1, u2, u3, and u4 be the endpoints of e1, e2, e3, and e4 in C(H), respec-
tively. Note that by cubicness of G, u, u1, . . . , u4 are distinct. Contracting P (H)− u into
a single vertex yields a WH(6) minor, a contradiction.

Lemma 3.3.4. For any lollipop H, if C(H) is an even cycle, then |jump(H)| is odd.

Proof. Let

E ′ = {e ∈ E \ E(H) : e has at least one endpoint in C(H)}.

The edges in E ′ cover the vertices in C(H)\{base(H)}. Also notice that E ′ = chord(H)∪
jump(H). Each chord e of C(H) covers exactly two vertices in C(H), and each jump
covers exactly one vertex in C(H). Thus, the total number of jumps is

|V (C(H))| − 1− 2|chord(H)|,

which is an odd number.

If a graph is planar and WH(6)-minor free, there are many patterns on the edges that
are forbidden.

Definition 3.3.5. For a lollipop H, let

S = {v ∈ C(H) : v is an endpoint of an edge in jump(H)}.

Then ` ∈ chord(H) with endpoints s and s′ is

37

• a short chord of H, if at least one of the two ss′-paths in C(H) contains exactly one
vertex in S ∪ {base(H)},

• a non-crossing chord of H, if at least one of the two ss′-paths in C(H) contains no
vertex in S ∪ {base(H)}.

Lemma 3.3.6. For any lollipop H, if G is WH(6)-minor free and |jump(H)| ≥ 3, then
H has no short chords.

Proof. By Lemma 3.3.3, since G is WH(6)-minor free, we have |jump(H)| ≤ 3. Thus,
we have |jump(H)| = 3. Let e1, e2, and e3 be the three edges in jump(H). Let pi be the
endpoint of ei in P (H), and ci be its endpoint in C(H), for i = 1, 2, 3. LetA = {c1, c2, c3, u},
where u = base(H).

For the sake of contradiction, suppose there is a short chord ` of H with endpoints s
and s′. By definition, at least one of the ss′-paths, namely Pss′ in C(H) contains exactly
one vertex x ∈ A. We consider the following two cases.

(a) Case 1. (b) Case 2.

Figure 3.3: An example for the two possible cases in Lemma 3.3.6: Dashed edges correspond
to paths in the graph. In each of the subcases, blue edges correspond to the edge set of C ′,
red edges correspond to the edge set of P ′, and green edges correspond to the five disjoint
paths that connect P ′ to C ′.

Case 1 (x = u). Consider C ′ = C(H) − Pss′ + ` and P ′ = P (H). Notice that C ′

is a cycle. Then e1, e2, e3, Pss′(s, u), and Pss′(u, s
′), are five disjoint paths from C ′ to P ′,

contradicting that G is WH(6)-minor free (See Figure 3.3a.).

Case 2 (x ∈ {c1, c2, c3}). Without loss of generality suppose x = c3. Consider cycle
C ′ = C(H)− Pss′ + `, and the connected subgraph P ′ = (P (H) + e3)− u. There are five

38

disjoint paths e1, e2, e4, Pss′(s, c3) and Pss′(c3, s
′), where e4 = δ(u) \ E(C(H)). This is a

contradiction to the fact that G is WH(6)-minor free (See Figure 3.3b.).

Let f be a jump of a lollipop H, and v be its endpoint in P (H). Jump f of H is the
lowest jump of H, if no vertex other than v in P (H)(v, base(H)) is incident to an edge
in jump(H), and f is the highest jump of H if no vertex other than v in P (H)(v, w) is
incident to an edge in jump(H).

In Figure 3.3a, e2 is the highest jump and e3 is the lowest jump of the lollipop in this
figure.

Lemma 3.3.7. Let H be a lollipop with base(H) = u and lowest jump f . Let c and p be
the endpoints of f in C(H) and P (H), respectively. If G is planar, then there is a cu-path
P in C(H) such that there is no edge in jump(H) with one endpoint being an internal
vertex of P .

Figure 3.4: The picture for the proof of Lemma 3.3.7.

Proof. Suppose for contradiction that there is no such path P . Let c′ and c′′ be internal
vertices of the two cu-path in C(H) that are incident to jumps f ′ and f ′′, respectively. Let
p′ and p′′ be the endpoints on f ′ and f ′′ in P (H). Without loss of generality, suppose p′ is
a vertex of P (H)(p′′, p).

Now it is easy to see that G has a subdivision of K3,3. The bipartition of the subdivision
is A = {c′, c′′, p′′} and B = {p′, u, c} (Figure 3.4).

In the following lemmas, we will try to analyze the behavior of the lollipop algorithm
on some specific parts of a graph.

39

Definition 3.3.8. A path P in G is matched inside if for every edge e′ ∈ E(G) \ E(P) if
the following hold: e′ is incident to an internal vertex of P , then its other endpoint is also
an internal vertex of P .

The following lemma shows that if the algorithm enters a matched inside path P in an
iteration i through vertex v, it will leave P through vertex v, unless P is a single edge.

Lemma 3.3.9. Let P = (u0, . . . , uk) be a matched inside path with k ≥ 2 in G, such that
w /∈ V (P). Let f = (u0, u1) and g = (uk−1, uk). If at some iteration the algorithm arrives
at vertex u1 by removing edge f , then the algorithm will add back f , before touching g.

Proof. The algorithm will ultimately arrive at w, and w /∈ V (P). However, since f is
removed at some iteration i, it implies that the algorithm will enter path P . By the
property of P , the only way to leave P after iteration i is through u0 or uk. In order to
leave through u0, one has to add f , as desired.

On the other hand, for leaving P through uk, one has to remove g. But notice that
G− f − g is disconnected, so g would never be removed before f is added back.

Suppose thatH1, . . . , Hn−1 are the lollipops considered by the algorithm for (G,H0, w, e).

Lemma 3.3.10. Let Hi and Hj be same based lollipops, for some i < j, where i, j ∈
{1, . . . , n− 1}. If |E(Hj) ∩ jump(Hi)| < 2, then Hi and Hj are compatible.

Proof. Suppose Hi and Hj are not compatible. Let f and f ′ be the edges incident to
base(Hi) in C(Hi), and g be the edge incident to base(Hi) in P (Hi). Let x, y, and z, be
the endpoints of f, f ′ and g different from base(Hi), respectively. Since Hi and Hj are not
compatible, either f or f ′ are in P (Hj). Without loss of generality we can assume that f
is in P (Hj).

Hence, there is a wx-path in Hj disjoint from y and z. This means there is an edge ` in
Hj from a vertex in P (Hi)−z to a vertex in C(Hi)−y, which is a jump of Hi. Furthermore,
in Hj, f

′ and g are in cycle C(Hj). Thus, there is an edge in Hj that is in jump(Hi), and
is different from `. Therefore, E(Hj) contains at least two edges in jump(Hi).

Figure 3.5 illustrates the proof of Lemma 3.3.10.

Lemma 3.3.11. Let Hi and Hj be same based lollipops, for some i < j, where i, j ∈
{1, . . . , n−1}. Moreover, suppose that any two same based lollipops in {Hi+1, . . . , Hj−1} are
compatible. If there are same based lollipops Hi′ and Hj′, with i′ < j′ and i′, j′ ∈ {i, . . . , j},
such that (E(Hj′) \ E(Hi′)) ∩ jump(Hi) = ∅, then Hi and Hj are compatible.

40

Figure 3.5: Dashed lines correspond to paths and u = base(Hi) = base(Hj). The edge set
of Hi is colored blue. Red edges correspond to the paths that must exist in Hj, for Hi and
Hj not to be compatible.

Proof. We can assume without loss of generality that no lollipops in {Hi+1, . . . , Hj−1} has
the same base as Hi. Let j − i = m, and j′ − i′ = k. If k = m, we have Hi = Hi′ , and
Hj = Hj′ , and by Lemma 3.3.10, Hi and Hj are compatible.

Thus, we may assume k < m. We may also assume that either i′ = i or j′ = j. However,
if i′ = i and j′ 6= j, then base(Hi) = base(Hi′) = base(Hj′), which is a contradiction.
Similarly, we can assume j′ 6= j. We will show that E(Hj)\E(Hi) = E(Hj′)\E(Hi′). This
will conclude the proof since E(Hj′) \ E(Hi′) contains no edge in jump(Hi). By Lemma
3.3.10, Hi and Hj are compatible.

Let W = WHi,Hi′
(G,H0, w, e). We proceed by induction on the length of W . Since

k < m, W has length at least 2.

For the base case, suppose W has length 2. This means that i′ = i+1. In particular, in
iteration i the algorithm removes edge fi, and adds edge ei′ to obtain Hi′ . Since Hi′ and Hj′

are compatible by assumption, the algorithm removes ei′ and adds fi in iteration j′ to obtain
lollipop Hj. In other words Hj = Hj′ − ei′ + fi. Hence, E(Hj) \E(Hi) = E(Hj′) \E(Hi′).

Now suppose W has length 2` for some integer ` > 1. We have i′ = i+`. Lollipop Hi′ is
obtained from lollipop Hi′−1 by removing edge fi′−1 and adding edge ei′ . Since Hi′ and Hj′

are compatible, the algorithm removes ei′ and adds fi′−1 in iteration j′ to obtain lollipop
Hj′+1. Observe that base(Hi′−1) = base(Hj′+1). Notice that W ′ = WHi,Hi′−1

(G,H0, w, e)
has length 2(` − 1). Thus, by the induction hypothesis, E(Hj) \ E(Hi) = E(Hj′+1) \
E(Hi′−1) = E(Hj′) \ E(Hi′).

The following lemma is an immediate corollary of Lemmas 3.3.10 and 3.3.11.

41

Lemma 3.3.12. Let Hi and Hj be same based lollipops, for some i < j, where i, j ∈
{1, . . . , n − 1}. Let P = (u0, u1, . . . , uk) be a path in G with |V (P)| ≥ 3. If the following
properties hold, then Hi and Hj are compatible.

1. P is matched inside;

2. path P completely lies in P (Hi) or C(Hi);

3. during the execution of the lollipop algorithm when going from iteration i to j, f =
(u0, u1) is removed to arrive at vertex u1;

4. all same based lollipops in {Hi+1, . . . , Hj−1} are compatible.

Proof. Let i′ ∈ {i, . . . , j} be the iteration in which the algorithm removes f to arrive at
u1. We have base(Hi′) = u0. By Lemma 3.3.9, in some iteration j′ ∈ {i′ + 1, . . . , j} the
algorithm adds f to obtain lollipop Hj′ . In addition, base(Hj′) = u0. Lollipops Hj′ and Hi′

are same based. We have E(Hj′)\E(Hi′) ⊆ E(P) and E(P) contains no edge in jump(Hi)
from properties (1) and (2). The result follows from Theorem 3.3.11.

The following lemmas would help us to analyze the algorithm easier. For the following
lemmas (Lemmas 3.3.13, 3.3.14, 3.3.15, 3.3.16) suppose that G is WH(6)-minor free. Also
let H be a lollipop with base(H) = u and with exactly three jumps, namely f, g, and h.
Let c, c′, and c′′ be the endpoints of f, g, and h in C(H), respectively. Also let p, p′, p′′

be the endpoints of f, g, and h in P (H), respectively. The four vertices u, c, c′, and c′′

partition C(H) to a uc′′-path P1, a c′′c-path P2, a cc′-path P3, and a c′u-path P4.

Lemma 3.3.13. If (1) f is the highest jump of H, (2) g is the lowest jump of H, and (3)
each uc-path in C(H) contains exactly one of c′ and c′′ as internal vertices, then P (H)(p′, u)
is matched inside.

Proof. Suppose not. Let m be an edge with exactly one endpoint s being an internal vertex
of P (H)(p′, u). Consider these cases for the other endpoint of m, namely s′.

Case 1 (s′ in P (H)(p′, p′′)). Consider cycle C ′ = h+P (H)(p′′, s′)+m+P (H)(s, u)+P1

and path P ′ = f +P3 + g. Paths P2, P4, P (H)(s, p′), P (H)(p′, s′), and P (H)(p′′, p) are five
disjoint paths from P ′ to C ′. However, G is WH(6)-minor free. This is a contradiction
(Figure 3.6a).

Case 2 (s′ in P (H)(p′′, p)). Consider cycle C ′ = h + P (H)(p′′, u) + P1, and path
P ′ = P (H)(s′, p) + f +P3. Paths P2, P4, g,m, and P (H)(p′′, s′) are five disjoint paths from
P ′ to C ′, which is a contradiction as G is WH(6)-minor free (Figure 3.6b).

42

Case 3 (s′ in P (H)(p, w)). Consider cycle C ′ = h + P (H)(p′′, u) + P1, and path
P ′ = P (H)(p, s′) + f +P3. Paths P2, P4, g,m, and P (H)(p, p′′) are five disjoint paths from
P ′ to C ′. This is a contradiction since G is WH(6)-minor free (Figure 3.6c).

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.6: The three cases in the proof of Lemma 3.3.13.

Lemma 3.3.14. If g is the highest jump of H and h is the lowest jump of H, then there
is no edge in E \ E(H) with one endpoint in P (H)(u, p′′) and one in P (H)(p′′, p).

Proof. Suppose for contradiction that there is an edge ` = (s, s′) ∈ E \ E(H) with s in
P (H)(u, p′′) and s′ in P (H)(p′′, p). Then consider cycle C ′ = g + P4 + P (H)(u, s) + ` +
P (H)(s′, p′) and path P ′ = h + P2. Now f, P1, P3, P (H)(p′′, s′), and P (H)(p′′, s) are five
disjoint paths from P ′ to C ′. This is a contradiction to the fact that G is WH(6)-minor
free (See Figure 3.7.).

Recall the definition of non-crossing chords in Definition 3.3.5.

Lemma 3.3.15. Lollipop H has at most one chord that is not non-crossing.

Proof. Assume for contradiction that H has at least two chords that are not non-crossing,
namely ` = (s, s′) and `′ = (t, t′). By Lemma 3.3.6, ` and `′ are not short chords. Hence,
without loss of generality we can assume that s is in P1 and s′ is in P3. We have to consider
the following cases.

Case 1 (t in P1 and t′ in P3). We consider two subcases: (i) if h is the lowest jump,
consider cycle C ′ = P1 + h+ P (H)(p′′, u) and path P ′ = g + P3. Observe that P2, P4, `, `

′,

43

Figure 3.7: The picture in the proof of Lemma 3.3.14.

and P (H)(p′′, p′) are five disjoint paths from P ′ to C ′ (Figure 3.8a), and (ii) if h is not the
lowest jump, consider cycle C ′ = P1 + h + P (H)(p′′, u), path P ′ = P3. Then P2, P4, `, `

′,
and `′′, where `′′ is the lowest jump of H, are five disjoint paths from P ′ to C ′ (Figure
3.8b). In both cases we reach a contradiction.

(a) Case 1i (b) Case 1ii (c) Case 2

Figure 3.8: The cases in the proof of Lemma 3.3.15.

Case 2 (t in P2 and t′ in P4). Without loss of generality suppose that f is the highest
jump of H. Consider cycle C ′ = P2(c, t)+`′+P4(t

′, c′)+P3, and path P (H)(p, u)+P1. Then
f, g, `, P4(t

′, u), and P2(t, c
′′) are five disjoint paths from P ′ to C ′, which is a contradiction

(Figure 3.8c).

44

Lemma 3.3.16. If H has one chord ` = (s, s′) that is not non-crossing, then each of the
six paths created by u, c, c′, c′′, s, s′ on C(H) are matched inside.

Proof. Suppose without loss of generality that s is in P1. By Lemma 3.3.6, s′ is in P3. First
notice that P2 and P4 are matched inside. This immediately follows by Lemma 3.3.6 and
3.3.15. Thus, we need to show that P1(u, s), P1(s, c

′′), P3(c, s
′), and P3(s

′, c′) are matched
inside.

Suppose for contradiction that P1(u, s) is not matched inside. The proof for the other
paths is similar. So suppose there is an edge `′ = (t, t′) ∈ E \ E(H) with one endpoint t
in internal vertices of P1(u, s) and one endpoint t′ not in P1(u, s). By Lemma 3.3.6, t′ is
not in P2 or P4. Also by Lemma 3.3.15, t′ is not in P3. Thus, we may assume that t′ is in
P1(s, c

′′). Let `′′ be the edge incident to u in P (H).

Consider cycle C ′ = P1(u, s)+`+P3(s
′, c′)+P4, and connected subgraph P ′ = (P (H)−

u) + f + P2 + P1(c
′′, t′). Observe that P1(s, t

′), `′, P3(s
′, c), g, and `′′ are five disjoint paths

from P ′ to C ′. This is a contradiction (Figure 3.9).

Figure 3.9: The picture in the proof of Lemma 3.3.16.

3.3.2 Proof of Theorem 3.3.2

Let us recall the theorem once again.

Theorem 3.3.2. Let G ∈ A. Let (G,H0, w, e) be a valid input for the lollipop algorithm,
let H1, . . . , Hn−1 be the (w, e)-lollipops considered by the algorithm. Then any two same
based lollipops in {H1, . . . , Hn−1} are compatible.

45

Let Hi and Hj be same based lollipops, for some i < j, where i, j ∈ {1, . . . , n− 1}. We
will proceed by induction on m = j − i.

The base case is m = 2, since it is impossible to obtain two same based lollipops
in one iteration of the lollipop algorithm. Let base(Hi) = base(Hj) = u. In this case,
W ′ = WHi,Hj

(G,H0, w, e) has four edges. The edges are fi, ei+1, fj−1, ej in this order. The
algorithm removes fi, fj−1 and adds ei+1, ej. Notice that ej = fi. Otherwise, the algorithm
adds edge ei+1 incident to u. But, ei+1 was already an edge in Hi+1. Now since ej = fi, it
must be the case that ei+1 and fj−1 are parallel edges.

If ei+1 ∈ jump(Hi), then let y be its endpoint on P (Hi). Since ei+1 and fj−1 are
parallel edges, we have fj−1 ∈ jump(Hi) as well. This means that y has degree one in
P (Hi). Hence y = w. However, this is a contradiction, for the algorithm would terminate
upon arriving at w.

Now observe that C(Hj) = C(Hi) − fj−1 + ei+1. This implies that Hi and Hj are
compatible (See Figure 3.10.).

(a) Hi (b) Hi+2

Figure 3.10: The base case, where j = i+ 2

For the inductive step, we will consider many cases. First notice that the induction
hypothesis is that for same based lollipops Hi′ and Hj′ , where j′ > i′, i′, j′ ∈ {1, . . . , n−1},
if j′ − i′ < m, then Hi′ and Hj′ are compatible. The induction hypothesis provides the
ingredients for applying Lemmas 3.3.11 and 3.3.12.

Let f and g be the edges incident to u = base(Hi) in C(Hi), and h be the edge incident
to u in P (Hi). Let x, y, and z be the endpoints of f, g, and h that are different from u,
respectively. Without loss of generality, suppose the algorithm adds edge f in iteration
i− 1.

Suppose for the sake of contradiction that Hi and Hj are not compatible. More-
over, assume that the lollipops that the algorithm considers from iteration i to j − 2

46

are Hi+1, . . . , Hj−1. Without loss of generality, we can assume that u is not the base of
any lollipop Hk, k ∈ {i+ 1, . . . , j − 1}. Let W = WHi,Hj

(G,H0, w, e).

By Lemma 3.3.10, we have |jump(Hi)| ≥ 2. In addition, by Lemma 3.3.4, we have
|jump(Hi)| ≥ 3. Finally, by Lemma 3.3.3 we have |jump(Hi)| ≤ 3. Thus, jump(Hi)
consists of three edges e1, e2, and e3.

Let p1, p2, and p3 be the endpoints of e1, e2, and e3 in P (Hi), respectively. Also let c1, c2,
and c3, be the endpoints of e1, e2, and e3 in C(Hi), respectively. Without loss of generality,
suppose c1, c2, c3, happen in this order, when walking from x to y on C(Hi)− u. The four
vertices u, c1, c2, and c3 partition C(H) into a uc1-path P1, a c1c2-path P2, a c2c3-path P3,
and a c3u-path P4 (See Figure 3.11.).

By Lemma 3.3.7, since G is planar, e2 cannot be the lowest jump of Hi. Depending on
the position of p1, p2, and p3 on P (Hi) we consider the following cases.

Case 1. (e2 is the highest jump, e3 is the lowest jump of Hi)

Let Q1, Q2, Q3, and Q4 be the up3-path, p3p1-path, p1p2-path, and p2w-path on P (Hi),
respectively (Figure 3.11). Consider the cycle C = Q1 +P4 + e3. Since G is bipartite, C is
an even cycle. We have w /∈ V (C). Thus, the edges in E \E(Hi) that have both endpoints
in V (C) form a matching of G. Hence, an even number of vertices in C are incident to
such edges. In addition, u is not incident to any of the edges in E \ E(Hi). Therefore,
there is an edge k with endpoint s in V (C) \ {u, p3, c3} and endpoint s′ not in V (C).

Notice that by Lemma 3.3.13, Q1 is matched inside. Hence, the only possibility is that
s is in P4. By Lemma 3.3.6, k is not a short chord of Hi. This means that s′ is in P2.

Consider the following claim.

Claim 3.3.17. Paths P1, Q2, P4(c3, s), and P2(s
′, c2) are single edges.

Before proving Claim 3.3.17, let us see how it would lead us to conclude Case 1.

Observe that W is a closed walk that starts from u and ends at u. Recall that the
algorithm removes edge g in iteration i. By Claim 3.3.17, g = P1.

Following the steps of the algorithm, after removing g = P1 the algorithm alternately
adds and removes e1, Q2, e3, P4(c3, s), k, P2(s

′, c2), and finally adds e2 to arrive at vertex p2
and lollipop Hi+4 (Figure 3.12b).

This means that the algorithm enters Q3 + Q4 in iteration i + 3. However, since the
algorithm arrives at u in iteration j − 1, it has to leave Q3 +Q4 before iteration j.

We now need to make a quick observation.

47

Figure 3.11: Case 1: In all the figures in this section dashed edges correspond to paths in
the graph.

Observation 3.3.18. There is no edge in E \ E(Hi) that is different from e1 and e2, with
one endpoint in Q3 +Q4 and one not in Q3 +Q4.

The proof of Observation 3.3.18 is deferred to Section 3.3.3.

By Observation 3.3.18, the only way W can leave Q3 + Q4 is either through p1 or p2.
Since p1 and p2 are in the same part of the bipartition as w, by Lemma 3.1.3, the algorithm
leaves Q3 +Q4 by removing e1 or e2.

In the latter case, let Hk′ , for some i + 4 < k′ < j, be the lollipop considered by the
algorithm before removing e2. Note that base(Hk′) = p2, and in fact Hi+4 and Hk′ are
same based lollipops. Since the algorithm does not leave Q3 +Q4 between iterations i+ 4
and k′, E(Hi+4) \ E(Hk′) ∩ jump(Hi) = ∅. This, plus the induction hypothesis allows us
to conclude that Hi and Hj are compatible using Lemma 3.3.11. This is a contradiction
to the original assumption.

On the other hand, if the algorithm leaves Q3 +Q4 by removing e1, then the algorithm
adds g = P1 to return to u. However, in this case C(Hj) = g + P4(u, s) + m + P2(s

′, c1),
which contains both f and g. Hence, Hi and Hj are compatible.

It remains to prove Claim 3.3.17. Before that we have to make the following observation.
To preserve the coherence of the proof, we will prove this observation later in Section 3.3.3.

Observation 3.3.19. The following properties hold:

1. P1 is matched inside;

48

(a) Hi (b) Hi+4

Figure 3.12: If Claim 3.3.17 holds: The red edges in (a) and (b) correspond to the edge
set of Hi and Hi+4, respectively.

2. Q2 is matched inside;

3. P4(c3, s) is matched inside; and

4. P2(s
′, c2) is matched inside.

Now to prove Claim 3.3.17 we just need to show for each

P ∈ {P1, Q2, P4(c3, s), P2(s
′, c2)},

such that P = (u0, u1, . . . , ut), the algorithm removes edge (u0, u1) to arrive at u1. This
completes the proof of Claim 3.3.17, because: (1) P is matched inside, (2) P completely
lies in P (Hi) or in C(Hi), (3) edge (u0, u1) is removed to arrive at u1 between iterations i
and j, and (4) by induction hypothesis any two same based lollipops in {Hi+1, . . . , Hj−1}
are compatible. Then if |V (P)| ≥ 3, properties (1)-(4) provide the ingredients of Lemma
3.3.12, proving that Hi and Hj are compatible. This is a contradiction to the original
assumption.

Proof of Claim 3.3.17. Let P ∈ {P1, Q2, P4(c3, s), P2(s
′, c2)}, and P = (u0, u1, . . . , ut).

If P = P1, then u0 = u and the algorithm removes g = (u0, u1) in iteration i to arrive
at u1. So P1 is an edge.

If P = Q2, then u0 = p1. Considering that P1 is an edge, the algorithm removes (u0, u1)
in iteration i+ 1 to arrive at u1. Thus, Q2 is an edge.

49

Taking the fact that Q2 is an edge into account, if P = P4(c3, s), the algorithm removes
(u0, u1), where u0 = c3, to arrive at u1 in iteration i+ 2. Hence, P4(c3, s) is an edge.

Finally, if P = P2(s
′, c2), the algorithm removes P4(c3, s) and adds k. Then the algo-

rithm removes edge (u0, u1), where u0 = s′, in iteration i+ 3. This implies that P4(c3, s) is
an edge.

Case 2. (e2 is the highest jump, e1 is the lowest jump of Hi)

Let Q1, Q2, Q3, and Q4 be the up1-path, p1p3-path, p3p2-path, and the p2w-path in P (Hi)
(See Figure 3.13a).

(a) Case 2 (b) Edge k on Hi

Figure 3.13

In cycle C = P1 + e1 + Q1 there is a vertex s /∈ {p1, c1, u} that is incident to an edge
k ∈ E \E(Hi), such that the other endpoint s′ of k is not in V (C). Otherwise C is an odd
cycle, which is a contradiction to bipartiteness of G.

Vertex s is either in P1 or in Q1. However, by Lemma 3.3.13, Q1 is matched inside.
Thus, s is in P1. Moreover, by Lemma 3.3.6, s′ is in P3 (Figure 3.13b).

We prove the following claim later.

Claim 3.3.20. Paths P1(u, s), P3(s
′, c2), and P4 are single edges.

50

If Claim 3.3.20 holds the rest of the proof works as follows. The algorithm removes
g = P1(u, s) and then alternately adds and removes k, P3(s

′, c2), e2. After adding e2 we
obtain lollipop Hi+2. Observe that base(Hi+2) = p2 (Figure 3.14b). Hence, at this iteration
the algorithm enters Q3 + Q4. Similar to Case 1, we have to show that the only way W

(a) Hi (b) Hi+2

Figure 3.14: If Claim 3.3.20 holds: The red edges in (a) and (b) correspond to the edge
set of Hi and Hi+2, respectively.

can leave Q3 +Q4 is by adding e3 or removing e2.

Observation 3.3.21. There is no edge in E \ E(Hi) that is different from e2 and e3, with
one endpoint in Q3 +Q4, and one not in Q3 +Q4.

We prove Observation 3.3.21 in Section 3.3.3. By Observation 3.3.21, the algorithm
leaves Q3 + Q4 either by removing e2 or by adding e3. In the first case, let Hk′ , for some
i + 2 < k′ < j, be the lollipop before removing e2. We have base(Hk′) = p2. Note that
Hi+2 and Hk′ are same based lollipops. Moreover, by Lemma 3.3.21, (E(Hk′) \E(Hi+2))∩
jump(Hi) = ∅. Therefore, by Lemma 3.3.11, Hi and Hj are compatible.

Otherwise, if the algorithm leaves Q3 + Q4 by adding e3, in the next iteration the
algorithm removes edge P4 to arrive at u. In this case W is an odd closed walk, since the
algorithm leaves u by removing an edge, then alternately adds and removes edges, until
finally removes an edge to arrive at u. This is a contradiction to bipartiteness of G.

Again in order to prove Claim 3.3.20 we need to show that the paths P1(u, s), P3(s
′, c2),

and P4 are matched inside. The proof of this observation is provided in Section 3.3.3.

Observation 3.3.22. We have the following properties:

51

1. P1(u, s) is matched inside;

2. P3(s
′, c2) is matched inside; and

3. P4 is matched inside.

Similar to Case 1, we just show that for each P ∈ {P1(u, s), P3(s
′, c2), P4}, where

P = (u0, . . . , ut), for some t, the algorithm removes edge (u0, u1) to arrive at u1 between
iterations i and j in the algorithm.

Proof of Claim 3.3.20. If P = P1(u, s), then u0 = u and g = (u0, u1). Hence, P1(u, s) is an
edge. If P = P3(s

′, c2), since P1(u, s) is an edge, the algorithm removes P1(u, s) to leave
vertex u. Then it adds edge k, and then removes (u0, u1), where u0 = s′, to arrive at u1.
Thus, P3(s

′, c2) is an edge.

Finally, suppose P = P4. We know that P1(u, s) and P3(s
′, c2) are single edges. So the

algorithm leaves u by removing P1(u, s), adding k, removing P3(s
′, c2), and adding e2 to

obtain lollipop Hi+2. At this iteration, the algorithm enters Q3 + Q4. Observation 3.3.21
ensures that W leaves Q3 +Q4 by adding e3 or removing e2. The latter case would imply
that Hi and Hj are compatible, which is a contradiction. So the algorithm adds e3, and
removes edge (u0, u1), where u0 = c3. Therefore, P4 is an edge.

Case 3. (e1 is the highest jump, e3 is the lowest jump of Hi)

Let Q1, Q2, Q3, and Q4 be the up3-path, p3p2-path, p2p1-path, and p1w-path on P (Hi),
respectively (Figure 3.15). Consider the cycle C = Q1 + P4 + e3. Since G is bipartite, C
has an even number of vertices. Furthermore, w is not in C, hence there is an even number
of vertices in C that are incident to edges in E \E(Hi) with both endpoints in C, but u is
not incident to an edge in E \E(Hi). Thus, there is an edge k = (s, s′) ∈ E \E(Hi), such
that s ∈ V (C) \ {u, p3, c3} and s′ /∈ V (C).

Vertex s′ is either in Q1 or in P4. Notice that if s′ is in Q1, then by Lemma 3.3.14, s′

cannot be in Q2. We consider the following cases.

Case 3i. s in Q1 and s′ in Q3.

In this case, we have the following claim.

Claim 3.3.23. Paths P1, Q1(s, p3), and P4 are single edges.

52

Figure 3.15: Case 3.

Let us first show how to conclude Case 3i using Claim 3.3.23. The algorithm removes
g = P1 in iteration i, and then adds edge e1, to obtain lollipop Hi+1. Observe that
base(Hi+1) = p1 (Figure 3.16b). In iteration i + 1, the algorithm will remove an edge in
Q3(p1, s

′) +Q4. Hence, the algorithm enters Q3(p1, s
′) +Q4.

Observation 3.3.24. There is no edge in E \ E(Hi), that is different from e1 and k, with
one endpoint in Q3(p1, s

′) +Q4, and one not in Q3(p1, s
′) +Q4.

We prove this observation later in Section 3.3.3. By Observation 3.3.24, the only way
to leave Q3(p1, s

′) + Q4 is either by adding k or by removing e1. The latter will give us a
contradiction, since in this case the algorithm adds g = P1 back. Then C(Hj) = C(Hi),
and hence Hi and Hj are compatible, contradicting the original assumption.

Thus, we may assume that the algorithm adds edge k. Then, the algorithm alternately
removes and adds Q1(s, p3), e3, P4 to arrive at u in iteration j − 1. But since W leaves u
in the i-th iteration by removing an edge (P1) and arrives at u in iteration j − 1 by again
removing an edge (P4), W is an odd closed walk. This is a contradiction to bipartiteness
of G.

For proving Claim 3.3.23 we need the following observation.

Observation 3.3.25. The following properties hold:

1. P1 is matched inside;

2. Q1(s, p3) is matched inside; and

53

(a) Hi (b) Hi+1

Figure 3.16: If Claim 3.3.23 holds, G has a subgraph as depicted: the red edges in (a) and
(b) are the edge set of Hi and Hi+1.

3. P4 is matched inside.

The proof of Observation 3.3.23 is provided in Section 3.3.3. The proof of Claim
3.3.23 is now similar to the other cases. The only thing one needs to show is that for
P ∈ {P1, Q1(s, p3), P4}, where P = (u0, . . . , ut) for some integer t ≥ 1, the algorithm
removes edge (u0, u1) to arrive at vertex u1, between iterations i and j.

Case 3ii. s in Q1 and s′ in Q4.

We have the following claim in this case.

Claim 3.3.26. Paths P1, Q3, P3, and Q1(p3, s) are single edges.

If Claim 3.3.26 holds, then after iteration i, the algorithm alternately removes and
adds P1 = g, e1, Q3, e2, P3, e3, Q3(p3, s), and k. The lollipop obtained after adding k is
Hi+4. Notice that base(Hi+4) = s′.

Now we have to make a quick observation.

Observation 3.3.27. Let ` ∈ E \ E(Hi), and ` 6= k, e1. If ` has one endpoint in Q4, the
other endpoint of ` is also in Q4.

We will prove Observation 3.3.27 in the next section.

Consider W . Since W ends at u, the algorithm has to leave path Q4 before iteration
j. By Observation 3.3.27, the only possibilities are by removing e1 or by removing k. The

54

(a) Hi (b) Hi+4

Figure 3.17: If Claim 3.3.26 holds: the red edges in (a) and (b) are the edge set of Hi and
Hi+4, respectively.

latter case results in a contradiction. In particular, let Hk′ , i+ 4 < k′ < j, be the lollipop
right before removing k and leaving Q4. Since base(Hk′) = s′, Hi+4 and Hk′ are same
based. Moreover, E(Hk′) \ E(Hi+4) ∩ jump(Hi) = ∅. This implies that Hi and Hj are
compatible by Lemma 3.3.11. This is a contradiction.

On the other hand, if the algorithm removes e1, then it adds P1 = g back to obtain
lollipop Hj. In this case, again both f and g are in C(Hj). Therefore, Hi and Hj are
compatible, which is a contradiction.

Proving Claim 3.3.26 is straightforward after next observation.

Observation 3.3.28. We have the following properties:

1. P1 is matched inside;

2. Q3 is matched inside;

3. P3 is matched inside; and

4. Q1(p3, s) is matched inside.

We will prove this observation in Section 3.3.3.

Case 3iii. s in P4 and s′ in P2.

In this case, we will use the following claim.

55

Claim 3.3.29. Paths P1, Q1, and P3 are matched inside.

Claim 3.3.29 implies that the algorithm removes g = P1 and adds e1 to obtain lollipop
Hi+1. In iteration i the algorithm enters Q3 + Q4. However, the algorithm has to leave
this Q3 +Q4 in some subsequent iteration.

(a) Hi (b) Hi+4

Figure 3.18: If Claim 3.3.29 holds, G has a subgraph as depicted: the red edges in (a) and
(b) are the edge set of Hi and Hi+1.

Observation 3.3.30. Let ` ∈ E \ E(Hi), and ` 6= e1, e2. If ` has one endpoint in Q3 + Q4,
the other endpoint of ` is also in Q3 +Q4.

We prove Observation 3.3.30 in Section 3.3.3. Observation 3.3.30 implies that the only
way that the algorithm can leave Q3 +Q4 is either to remove e1 or to add e2. In the first
case, the algorithm adds P1 = g back after removing e1. Notice that then C(Hj) = C(Hi).
Hence, Hi and Hj are compatible which is a contradiction.

In the second case, the algorithm adds e2, removes P3, adds e3, and removes Q1 to
arrive at u. But W cannot go back to u by deleting an edge, since G is bipartite.

Claim 3.3.29 can be proved similar to the other cases, using the following observation.

Observation 3.3.31. The following properties hold:

1. P1 is matched inside;

2. Q1 is matched inside; and

3. P3 is matched inside.

We defer the proof of Observation 3.3.31 to Section 3.3.3.

56

Case 4. (e3 is the highest jump, e1 is the lowest jump of Hi)

Let Q1, Q2, Q3, and Q4, be the up1-path, p1p2-path, p2p3-path, and the p3w-path in P (Hi).
This case is shown in Figure 3.19.

Figure 3.19: Case 4.

Consider C = Q1 + P1 + e1. There must be an edge k ∈ E \ E(Hi) with one endpoint
s /∈ {p1, c1, u} in C, and one endpoint s′ not in C.

Observe that s is either in P1 or in Q1. If s is in Q1, then by Lemma 3.3.14, s′ cannot
be in Q2. Also if s in P1, then by Lemma 3.3.6, s′ is in P3.

Case 4i. s in Q1 and s′ in Q3.

We start by proposing the following claim.

Claim 3.3.32. Paths P1, Q1(p1, s), Q3(s
′, p2), and P2 are matched inside.

Assuming that Claim 3.3.32 holds, the algorithm alternately removes and adds g =
P1, e1, Q1(p1, s), k, Q3(s

′, p2), e2, P2, g = P1, to obtain Hj. Clearly since C(Hj) contains
both g and f , Hi and Hj are compatible (See Figure 3.20). This contradicts our to the
original assumption. Proof of Claim 3.3.32 goes similar as discussed in Case 1 after the
following observation.

Observation 3.3.33. The following properties hold:

57

(a) Hi (b) Hj

Figure 3.20: If Claim 3.3.32 holds, G has a subgraph as depicted: the red edges in (a) and
(b) are the edge set of Hi and Hj, respectively.

1. P1 is matched inside;

2. Q1(p1, s) is matched inside;

3. Q3(s
′, p2) is matched inside; and

4. P2 is matched inside.

We prove Observation 3.3.33 in the next section.

Case 4ii. s in Q1 and s′ in Q4.

As in the other cases, we start with a claim.

Claim 3.3.34. Paths P1, Q1(p1, s), P3, and Q2 are single edges.

Using Claim 3.3.34, the algorithm removes g = P1 and adds e1 to obtain lollipop Hi+1.
Notice that base(Hi+1) = p1. Then, the algorithm removes Q1(p1, s) and adds k to arrive
at vertex s′. Let us make a quick observation.

Observation 3.3.35. Let ` ∈ E \ E(Hi), and ` 6= k, e3. If ` has one endpoint in Q4, the
other endpoint of ` is also in Q4.

We defer the proof of Observation 3.3.35 to the next section.

Since the algorithm arrives at u in iteration j − 1, it has to leave Q4 at some iteration
between iterations i+2 and j−1. By Observation 3.3.35, the only way is either by removing

58

k, or by adding e3. In the first case, let Hk′ , i + 2 < k′ < j be the lollipop in iteration
k′ before removing k. Notice that base(Hk′) = base(Hi+2) = s′. However, by Observation
3.3.35 we have

(E(Hk′) \ E(Hi+2)) ∩ jump(Hi) = ∅.

Therefore, by Lemma 3.3.11, Hi and Hj are compatible, which is a contradiction.

Thus, we may assume that the algorithm adds e3. After adding e3, the algorithm
removes P3. In the next iteration the algorithm adds e2 and removes Q2. At this point
the algorithm arrives at p1. Recall that p1 was base(Hi+1). The algorithm leaves p1 by
removing an edge in iteration i + 1, and arrives to p1 again by removing an edge in some
iteration after i+1. Hence, W has an odd closed walk as a subgraph. This is a contradiction
to bipartiteness of G.

The proof of Claim 3.3.34 is similar to the other cases using the following observation.

Observation 3.3.36. The following properties hold:

1. P1 is matched inside;

2. Q1(p1, s) is matched inside;

3. P3 is matched inside; and

4. Q2 is matched inside.

We prove Observation 3.3.36 in Section 3.3.3.

Case 4iii. s in P1 and s′ in P3.

We start by the following claim,

Claim 3.3.37. Paths P1(u, s), P3(s
′, c2), Q2, and P1(c1, s) are single edges.

If Claim 3.3.37 holds (Figure 3.21), the lollipop algorithm alternately removes and adds
g = P1(u, s), k, P3(s

′, c2), e2, Q2, e1, P1(c1, s), g = P1(u, s) to obtain Hj. Notice that g and f
are in C(Hj). Therefore Hi and Hj are compatible. This is a contradiction to the original
assumption.

The proof of Claim 3.3.37 is an immediate consequence of the following observation.

Observation 3.3.38. The following properties hold:

59

(a) Hi (b) Hj

Figure 3.21: If Claim 3.3.37 holds: the red edges in (a) and (b) are the edge set of Hi and
Hj.

1. P1(u, s) is matched inside;

2. P3(s
′, c2) is matched inside;

3. Q2 is matched inside; and

4. P1(c1, s) is matched inside.

We will prove Observation 3.3.38 later in Section 3.3.3. This finishes the proof.

3.3.3 Proofs of observations

This section is dedicated to the proofs of the observations in the proof of Theorem 3.3.2.

Observations in Case 1

In Observations 3.3.18, 3.3.19 there is an edge k with one endpoint s in the internal vertices
of P4, and one endpoint s′, in the internal vertices of P2. Notice that by Lemma 3.3.13,
Q1 is matched inside.

Observation 3.3.18. There is no edge in E \ E(Hi), that is different from e1 and e2, with
one endpoint in Q3 +Q4, and one not in Q3 +Q4.

Proof. For contradiction let ` ∈ E \E(Hi) be an edge with endpoints t not in Q3 +Q4 and
t′ in Q3 +Q4. Hence t is in Q2.

60

(a) t′ in Q3 (b) t′ in Q4

Figure 3.22: Figures for the proof of Observation 3.3.18

If t′ is in Q3, let C ′ = e2 + P2 + e1 + Q3, and P ′ = Q2(t, p3) + Q1 + P4. Observe
that P1, k, P3, `, and Q2(t, p1) are five disjoint paths from C ′ to P ′. Also if t′ in Q4, then
P1, k, P3, Q2(t, p1), and `+Q4(t

′, p2) are five disjoint paths from C ′ to P ′, contradiction to
G ∈ A (See Figures 3.22a and 3.22b).

Observation 3.3.19. The following properties hold:

1. P1 is matched inside;

2. Q2 is matched inside;

3. P4(c3, s) is matched inside; and

4. P2(s
′, c2) is matched inside.

Proof.

1. By Lemma 3.3.16.

2. Immediately from Lemma 3.3.13 and Observation 3.3.18.

3. By Lemma 3.3.16.

4. By Lemma 3.3.16.

61

Observations in Case 2

In this case, the graph Hi (together with its jumps) is isomorphic to the one in Case 1.

Observation 3.3.21. There is no edge in E \ E(Hi), that is different from e2 and e3, with
one endpoint in Q3 +Q4, and one not in Q3 +Q4.

Proof. Similar to Observation 3.3.18

Observation 3.3.22. We have the following properties:

1. P1(u, s) is matched inside;

2. P3(s
′, c2) is matched inside; and

3. P4 is matched inside.

Proof. By Lemma 3.3.16.

Observations in Case 3

In Case 3, e1 is the highest jump of Hi and e3 is the lowest jump. Hence, by Lemma 3.3.14,
there is no edge k ∈ E \ E(Hi) with one endpoint in Q1 and one in Q2.

The following observation holds for all the subcases of Case 3.

Observation 3.3.39. If ` ∈ E \E(Hi), ` 6= e1, has one endpoint t in Q3 +Q4, then its other
endpoint t′ is not in Q2.

Proof. Suppose there is such an edge ` for contradiction. Let C ′ = Q2 + e3 + P3 + e2.
If t is in Q3, then let P ′ = P1 + e1 + Q3(p1, t). Then `,Q3(p2, t), Q1, P4, and P1 are five
disjoint paths from P ′ to C ′. If instead t is in Q4, let P ′ = P1 + e1 +Q4(p1, t). In this case
`,Q3, Q1, P4, and P2 are five disjoint paths from P ′ to C ′. Thus, in both cases G would
have a WH(6)-minor, which is a contradiction (See Figure 3.23.).

62

(a) if t is in Q3 (b) If t is in Q4

Figure 3.23: Different cases in the proof of Observation 3.3.39

Case 3i

Recall from the previous section that in Observations 3.3.24 and 3.3.25 we assume there is
an edge k ∈ E \ E(Hi) with one endpoint s in Q1 and one endpoint s′ in Q3.

Observation 3.3.24. There is no edge in E \ E(Hi), that is different from e1 and k, with
one endpoint in Q3(p1, s

′) +Q4, and one endpoint not in Q3(p1, s
′) +Q4.

Proof. Suppose for contradiction that there is ` ∈ E \E(Hi), ` 6= e1, k, with one endpoint
t in Q3(p1, s

′) + Q4, and one endpoint t′ not in Q3(p1, s
′) + Q4. By Observation 3.3.39, it

must be the case that either t′ is in Q1 or in Q3(p2, s
′).

If t′ is in Q1 and t is in Q3(p1, s
′), then let C ′ = Q1 + P4 + e3 and P ′ = P2 + e1 + Q3.

In this case `, k,Q2, P1, and P3 are five disjoint paths from P ′ to C ′. Hence, G /∈ A, which
is a contradiction (Figure 3.24a).

If t′ is in Q1 and t is in Q4, similar to the other case we can find a WH(6)-minor since
t is in Q1 (see Figure 3.24b.).

Thus, we may assume that t′ is in Q3(p2, s
′). Now, if t is in Q3(p1, s

′), we can consider
cycle C ′ = P (Hi)(s, s

′) + m, and connected subgraph P ′ = Q3(t, p1) + e1 + P2 + P3 + P4.
Then e2, e3, Q1(s, u), `, and Q3(s

′, t) are five disjoint paths from P ′ to C ′ (Figure 3.24c).
Similarly, if t is in Q4 (Figure 3.24d), there is a WH(6)-minor in G, which is a contradiction.

Observation 3.3.25. The following properties hold:

1. P1 is matched inside;

63

(a) (b) (c) (d)

Figure 3.24: Different cases in the proof of Observation 3.3.24

2. Q1(s, p3) is matched inside; and

3. P4 is matched inside.

(a) (b) (c)

Figure 3.25: Different cases in the proof of Observation 3.3.25

Proof.

1. Suppose for contradiction that there is an `, with endpoints t in P1 and t′ in P3.
Consider C ′ = e1 + P1 +Q1(u, s) +m+Q(s

′, p1), and P ′ = Q2 + e3 + P3. One could
easily check that P2, P4, `, Q1(s, p3), and Q3(p2, s

′) are five disjoint paths from P ′ to
C ′. Contradiction to G ∈ A (Figure 3.25a).

64

2. Assume otherwise. The only possibility is to have an edge with one endpoint t in
Q1(s, p3), and one t′ in Q1(u, s). In this case, consider cycle C ′ = m + P (Hi)(s, s

′),
P ′ = P4 +P3 +P2 + e1. Observe that e2, e3, `, Q3(s

′, p1), and Q1(s, t
′) are five disjoint

paths from P ′ to C ′. This is a contradiction, since G ∈ A. This case is illustrated in
Figure 3.25b.

3. If not, let ` = (t, t′), where t is in P2 and t′ in P4. Consider C ′ = e3 + Q1 + P4, and
P ′ = Q3(s

′, p2) + e2 + P2. Now k,Q2, P1, P3, and ` are five disjoint paths from P ′ to
C ′. This implies that G has a WH(6)-minor, which is a contradiction (See Figure
3.25c.).

Case 3ii

For the proof of Observations 3.3.27 and 3.3.28 we suppose there is an edge k ∈ E \E(Hi)
with one endpoint s in Q1 and one endpoint s′ in Q4.

Observation 3.3.27. Let ` ∈ E \ E(Hi), and ` 6= k, e1. If ` has one endpoint in Q4, the
other endpoint of ` is also in Q4.

Proof. Similar to Observation 3.3.24.

Observation 3.3.28. We have the following properties:

1. P1 is matched inside;

2. Q3 is matched inside;

3. P3 is matched inside; and

4. Q1(p3, s) is matched inside.

Proof.

1. Similar to Observation 3.3.25.

65

(a) (b)

Figure 3.26: Different cases in proof of the Observation 3.3.28

2. Assume not. Then there is an edge ` ∈ E \ E(Hi), with one endpoint t in Q3 and
another endpoint t′ not in Q3. Notice that by Observation 3.3.39, t′ cannot be in Q2.
Furthermore, since we reached a contradiction in Case 2i, we can assume that t′ is
not in Q1 either. Thus, it must be that t′ is in Q4.

We consider two separate cases. If t′ is in Q4(s
′, p1), then let C ′ = m+Q4(s

′, t′)+ `+
Q3(t, p2) +Q2 +Q1(p3, s) and P ′ = e1 +P2 +P3 +P4. Then Q1(u, s), e3, e2, Q3(p1, t),
and Q4(p1, t

′) are five disjoint paths from C ′ to P ′. Similarly, if t′ is in Q4(w, s
′),

then Q1(u, s), e3, e2, Q3(p1, t), and Q4(p1, s
′) are five disjoint paths from C ′ to P ′ (See

Figure 3.26.).

3. Similar to Observation 3.3.25.

4. Similar to Observation 3.3.25.

Case 3iii

Recall that Observations 3.3.30 and 3.3.31 were stated in Case 3iii. Thus, we may assume
for the proof of the two observations that there is an edge k ∈ E \E(Hi) with one endpoint
s in P4 and one endpoint s′ in P2.

Observation 3.3.30. Let ` ∈ E \ E(Hi), and ` 6= e1, e2. If ` has one endpoint in Q3 + Q4,
the other endpoint of ` is also in Q3 +Q4.

66

Proof. By Observation 3.3.39, there is no edge ` ∈ E \E(Hi) with one endpoint in Q2 and
one endpoint in Q3 +Q4.

Observation 3.3.31. We have the following properties:

1. P1 is matched inside;

2. Q1 is matched inside; and

3. P3 is matched inside.

Proof.

1. By Lemma 3.3.16.

2. By Lemma 3.3.14, there is no edge in E \E(Hi) from Q1 to Q2. By Case 3i and Case
3ii, there is no edge in E \ E(Hi) from Q1 to Q3 and Q4, respectively. This means
that Q1 is matched inside.

3. By Lemma 3.3.16.

Observations in Case 4

In this case, the subgraph of G that consists of Hi and its jumps is isomorphic to the one
in the previous case. Hence, we are able to use arguments similar to the ones in Case 3.

The following observation holds for all the subcases of Case 4.

Observation 3.3.40. If ` ∈ E \E(Hi), ` 6= e3, has one endpoint t in Q3 +Q4, then its other
endpoint t′ is not in Q2.

Proof. Same as Observation 3.3.39.

67

Case 4i

In this case, there is an edge k ∈ E \E(Hi) that has one endpoint s in Q1 and one endpoint
s′ in Q3. Suppose without loss of generality that among all edges in E \ E(Hi) with one
endpoint in Q1 and one in Q3, k is the one whose endpoint in Q3 is closest to p2.

Observation 3.3.33. We have the following properties:

1. P1 is matched inside;

2. Q1(p1, s) is matched inside;

3. Q3(s
′, p2) is matched inside; and

4. P2 is matched inside.

Proof.

1. Similar to the proof in Observation 3.3.25 for showing that P4 is matched inside.

2. Similar to the proof in Observation 3.3.25 for showing that Q1(p1, s) is matched
inside.

3. Suppose not. Then there is an edge ` ∈ E\E(Hi) with one endpoint t inQ3(s
′, p2) and

another endpoint t′ not in Q3(s
′, p2). By choice of k, t′ cannot be in Q1. Moreover,

by Observation 3.3.40, t′ cannot be in Q2. Hence, t′ is either in Q3(s
′, p3) or in Q4.

The argument here is similar to the one used for Observation 3.3.24 in Case 3i
(isomorphic to this case), where we showed that there is no edge in E \ E(Hi) with
one endpoint in Q3(s

′, p3) +Q4 and one in Q3(s
′, p2).

4. Similar to the proof in Observation 3.3.25 for showing that P1 is matched inside.

Case 4ii

In this case, there is an edge k ∈ E\E(Hi) with one endpoint s in Q1 and another endpoint
t′ in Q4. The graph Hi together with its jumps and edge k is isomorphic to the one in Case
3ii.

68

Observation 3.3.35. Let ` ∈ E \ E(Hi), and ` 6= k, e3. If ` has one endpoint in Q4, the
other endpoint of ` is also in Q4.

Proof. Same as Observation 3.3.27.

Observation 3.3.36. We have the following properties:

1. P1 is matched inside;

2. Q1(p1, s) is matched inside;

3. P3 is matched inside; and

4. Q2 is matched inside.

Figure 3.27: Observation 3.3.36: P1 and P3 are matched inside.

Proof.

1. Suppose not. Then there is ` = (t, t′) ∈ chord(Hi), with t in P1 and t′ in P3.
Now consider the connected subgraph P ′ = P3 + e2 + P (Hi)(p2, s

′), and cycle C ′ =
e1 +Q1 + P1. Observe that Q2, k, `, P2, and P4 are five disjoint paths from P ′ to C ′.
This is a contradiction to the fact that G is WH(6)-minor free.

2. Identical to the proof in Observation 3.3.28 for showing Q1(p3, s) is matched inside.

3. Immediately from the fact that P1 is matched inside.

4. Let ` ∈ E \E(Hi) be an edge with endpoint t in internal vertices of Q2 and endpoint
t′ not in Q2. By Lemma 3.3.14, t′ is not in Q1. By Observation 3.3.40, t′ is not in
Q3 +Q4.

69

Case 4iii

In this case there is an edge k = (s, s′) ∈ E \E(Hi), such that s is in P1 and s′ is in P3.

Observation 3.3.38. The following properties hold:

1. P1(u, s) is matched inside;

2. P3(s
′, c2) is matched inside;

3. Q2 is matched inside; and

4. P1(c1, s) is matched inside.

Proof.

1. By Lemma 3.3.16.

2. By Lemma 3.3.16.

3. Suppose otherwise. Hence, there is an edge ` = (t, t′) ∈ E \ E(Hi), such that t is in
Q2 and t′ in not in Q2. Now by Observation 3.3.40, t′ is not in Q3 + Q4. Moreover,
by Lemma 3.3.14, t′ cannot be in Q1.

4. By Lemma 3.3.16.

3.4 An infinite family of graphs of class A

Although the class A of graphs mentioned in Theorem 3.3.2 looks very specific we show it
contains infinitely many graphs. To do this, we propose a constructive procedure.

Let G1 be the cube and label two adjacent vertices of G1 with v1 and w1. In Figure
3.28, graph G1 is shown. Graph G1 is cubic, planar, bipartite and WH(6)-minor free.

We recursively construct graph Gi from graph Gi−1 for i > 1. Consider a graph H
isomorphic to G1, and let v and w be the vertices of H corresponding to v1, and w1 in
G1. Moreover, consider a planar embedding of H where v and w are on the outer face
(Embedding shown in Figure 3.28.). Let w′ be the other neighbor of v on the outer face.

70

Figure 3.28: Graph G1.

In Gi−1 remove the edge (vi−1, wi−1). Also, remove the edge (v, w′) in H. Add an edge
between the vertices wi−1 and w′, namely ei, and between vi−1 and v, namely fi. We call
the resulting graph Gi. Label vertex v of Gi with vi and w with wi. Finally, label the edge
(vi, wi) with gi. See Figure 3.29 for G3.

Figure 3.29: Graph G3.

It is easy to see that Gi is cubic, planar and bipartite for i ≥ 1. We will prove the
following theorem to show that Gi is WH(6)-minor free.

Theorem 3.4.1. Gi is WH(6)-minor free for i ≥ 1.

Proof. We will proceed by induction on i. The base case G1 is clearly WH(6)-minor free.
Suppose that Gi−1 is WH(6)-minor free, for i > 1. We will prove that Gi is also WH(6)-
minor free.

Suppose for contradiction that Gi has a WH(6)-minor. This means that there are
connected subgraphs H and C of Gi, such that C is a cycle, and H and C are vertex
disjoint. Moreover, there are five subgraphs Pj, j ∈ {1, . . . , 5} of Gi, such that (1) Pj is
internally vertex disjoint from C, H, and Pk, where k ∈ {1, . . . , 5} \ {j}, (2) Pj is a path,
(3) Pj has one endpoint in C and one in H for j ∈ {1, . . . , 5}, and (4) for j, k ∈ {1, . . . , 5},
if j 6= k, then Pj and Pk have distinct endpoints in C.

71

Notice that by construction of Gi, Gi − ei − fi has two connected components. Label
the one isomorphic to Gi−1 − gi−1 with J1, and the other component that is ismorphic to
G1 with one edge removed with J2.

Since Gi−1 and G1 are WH(6)-minor free, the subgraphs H and C are not completely
lying in J1 or J2. Hence, either C or H contains ei or fi.

Note that, since C is a cycle, if ei is an edge in C, then it must be the case that also fi
is an edge of C. This implies that H, Pj for j ∈ {1, . . . , 5} completely lie in J1. Contract
J2 in Gi to get a minor Hi of Gi. It is easy to see that Hi is isomorphic to Gi−1. Moreover,
Hi has a subgraph C ′ that is obtained from C by contracting the part of C that lies in
J2. Clearly C ′, H, and Pj, for j ∈ {1, . . . , 5} constitute a WH(6)-minor in Hi, which is a
contradiction.

Thus, we may assume that C completely lies in J1. If H contains both ei and fi, then
contracting J1 would give a WH(6)-minor in Gi−1, which is a contradiction.

Suppose without loss of generality that ei ∈ E(H) and fi /∈ E(H). Now if no Pj, for
j ∈ {1, . . . , 5} contains the edge fi, the graph obtained by deleting J2 from Gi would have
a WH(6)-minor, but this graph is a subgraph of Gi−1 which is a contradiction. However,
even if fi is in Pj for some j ∈ {1, . . . , 5}, we could delete J2 from Gi. Then if P ′j is the
part of Pj in J1, we can let Pj = P ′j + gi−1 and let H ′ = H ∩ J1. Then C,H ′, and Pj for
j ∈ {1, . . . , 5} constitute a WH(6)-minor.

Finally, we need to show that Gi is Hamiltonian for i ≥ 1.

Lemma 3.4.2. Gi has a Hamiltonian cycle through gi for i ≥ 1.

Proof. Proceed by induction on i. Clearly G1 has a Hamiltonian cycle through g1. For
i ≥ 1, suppose Gi−1 has a Hamiltonian cycle H through gi−1. Remove gi−1 from H and
extend it to obtain a Hamiltonian cycle for Gi through gi.

72

Chapter 4

Conclusion

We provide an infinite class of cubic graphs for which the number of steps required by the
lollipop algorithm is a polynomial in the number of vertices of the graph. A corollary of
this is that the problem of finding a second Hamiltonian cycle in cubic graphs (FSHCC)
can be efficiently solved by the lollipop algorithm. However, finding a first Hamiltonian
cycle for a graph in class A does not seem to be intractable. In the case of Barnette graphs,
the complexity of finding the first Hamiltonian cycle is not known, therefore, it would be
interesting to find out the complexity of FSHCC in Barnette graphs.

The main open question of this thesis would be to settle Conjecture 3.2.2. It might be
that analyzing how the algorithm behaves over the dual graphs, i.e. Eulerian triangulations,
give more tools in proving Conjecture 3.2.2.

In fact, for dual graphs of cubic planar graphs, the lollipop algorithm moves along the
triangles in a similar way as the exchange algorithm for finding a second room-partitioning
does on 2-manifolds. Is it possible to prove that FSHCC is in PPAD if the graph is planar?

For general cubic bipartite graphs, we do not know any cubic bipartite graphs for which
the lollipop algorithm requires a number of steps exponential in the size of the graph. Recall
that Krawczyk’s graph is not bipartite. Is it possible to use the graph in Figure 3.1 to
create a bipartite exponential example?

Another interesting question would be to analyze the power of the lollipop algorithm.
Disser and Skutella [11] proposed a classification of algorithms by the complexity of the
problems they can implicitly solve.

Definition 4.0.3. An algorithm given by a Turing machine T implicitly solves problem P ,
if for a given instance I of P , there is a efficient algorithm that computes an input I for T ,

73

and a bit b in the complete configuration of T (a binary string that represents machine’s
state, the content of the tape, and position of machine’s head with respect to the content),
such that instance I is a yes-instance if and only if bit b is flipped at some point during
the execution of T with input I.

An algorithm is NP-mighty, if it can implicitly solve an NP-complete problem. In [11],
the authors show that the Simplex method (with Dantzig’s original pivot rule) is NP-
mighty. This result was later improved to show that the Simplex method (with Dantzig’s
pivot rule) is PSPACE-mighty [17]. Similarly, it is proved that the Lemke-Howson algo-
rithm solves a PSPACE-complete problem [22]. Is the lollipop algorithm NP-mighty? Is
it PSPACE-mighty? A proof for NP-mightiness would require a counting gadget, like the
one in Krawczyk’s graph. What about special cases of exchange algorithm? Could NP-
mightiness justify the exponential behavior of the exchange algorithm for finding a second
perfect matching in Eulerian graphs, given the problem itself can be solved in polynomial
time by the blossom algorithm?

Finding a second room-partitioning of a planar triangulation, however, seems to be
much harder. Is it PPAD-complete?

Since 1990, complexity class PPA has resisted “natural” complete problems. Grigni
[24], showed that Sperner’s lemma for non-orientable 3-manifolds is complete for PPA.
However, this problem has a Turing machine embedded in the input. A more natural
problem seems to be the one of finding a second Hamiltonian cycle in odd-degree graphs.

74

Bibliography

[1] S. N. A. Takanori, N. Takao. NP-completeness of the hamiltonian cycle problem of
bipartite graphs. Journal of Information Processing, 3, 1980.

[2] H. Alt, M. Payne, J. Schmidt, and D. Wood. Thoughts on Barnette’s Conjecture.
CoRR, abs/1312.3783, 2013.

[3] D. W. Barnette. Conjecture 5. W. J. Tutte (Ed.) Recent Progress in Combinatorics,
Proceedings of the 3rd Waterloo conference on Combinatorics, 3:343, 1969.

[4] J.-A. Bondy and U. S. R. Murty. Graph theory. Graduate texts in mathematics.
Springer, New York, London, 2007. OHX.

[5] S. Boyd, R. Sitters, S. van der Ster, and L. Stougie. TSP on cubic and subcubic
graphs. Integer Programming and Combinatoral Optimization, 6655:65–77, 2011.

[6] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of computing two-player
Nash equilibria. J. ACM, 56(3):14:1–14:57, May 2009.

[7] J. R. Correa, O. Larré, and J. A. Soto. TSP tours in cubic graphs: Beyond 4/3.
CoRR, abs/1310.1896, 2013.

[8] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of comput-
ing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

[9] B. M. D.Holton, B. Manvel. Hamiltonian cycles in cubic 3-connected bipartite planar
graphs. Journal of Combinatorial Theory, Series B, 38:279–297, 1985.

[10] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

75

[11] Y. Disser and M. Skutella. In defense of the simplex algorithm’s worst-case behavior.
CoRR, abs/1311.5935, 2013.

[12] M. Dyer and A. Frieze. Planar 3DM is NP-complete. Journal of Algorithms, 7(2):174
– 184, 1986.

[13] J. Edmonds. Paths, trees, and flowers. In I. Gessel and G.-C. Rota, editors, Clas-
sic Papers in Combinatorics, Modern Birkhuser Classics, pages 361–379. Birkhuser
Boston, 1987.

[14] J. Edmonds. Euler complexes. Research Trends in Combinatorial Optimization eds.
W. Cook, L. Lovász, J. Vygen, Springer, Berlin, pages 65–68, 2009.

[15] J. Edmonds and L. Sanità. On finding another room-partitioning of the vertices. In
Electronic Notes in Discrete Mathematics, volume 36, pages 1257–1264, 2010.

[16] J. Edmonds and L. Sanità. Exponentiality of the exchange algorithm for finding
another room-partitioning. Discrete Applied Mathematics, 164, Part 1:86 – 91, 2014.
Combinatorial Optimization.

[17] J. Fearnley and R. Savani. The Complexity of the Simplex Method. In Proc. of the
ACM Symposium on Theory of Computing (STOC), pages 201–208, 2015.

[18] T. Feder and C. S. Subi. On barnette’s conjecture. Electronic Colloquium on Compu-
tational Complexity (ECCC), (015), 2006.

[19] J. Florek. On Barnettes Conjecture and property. Electronic Notes in Discrete Math-
ematics, 43:375 – 377, 2013.

[20] M. Goemans. Worst-case comparison of valid inequalities for the tsp. Mathematical
Programming, 69(1-3):335–349, 1995.

[21] P. W. Goldberg. A survey of PPAD-completeness for computing Nash equilibria.
CoRR, abs/1103.2709, 2011.

[22] P. W. Goldberg, C. H. Papadimitriou, and R. Savani. The complexity of the homotopy
method, equilibrium selection, and Lemke-Howson solutions. ACM Transactions on
Economics and Computation, 1(2):Article 9, 25 pages, 2013. Preliminary conference
version appeared at FOCS 2011.

[23] P. R. Goodey. Hamiltonian circuits on polytopes with even sides. Israel Journal of
Mathematics, 22:52–56, 1975.

76

[24] M. Grigni. A Sperner lemma complete for {PPA}. Information Processing Letters,
77(5–6):255 – 259, 2001.

[25] P. Haxell, B. Seamone, and J. Verstraete. Independent dominating sets and hamilto-
nian cycles. Journal of Graph Theory, 54(3):233–244, 2007.

[26] A. Hertel. A survey and strengthening of Barnette’s conjecutre. Unpublished
manuscript, 2005.

[27] A. K. Kelmans. Constructions of cubic bipartite 3-connected graphs without hamil-
tonian cycles. Americal Mathematical Society Translations, 158(Series 2):127–140,
1994.

[28] A. Krawczyk. The complexity of finding a second Hamiltonian cycle in cubic graphs.
J. Comput. System Sci., 58:641–647, 1999.

[29] C. E. Lemke and J. T. Howson. Equilibrium points of bimatrix games. Journal of
Society for Industrial and Applied Mathematics, 12:413–423, 1964.

[30] J. Merschen. Nash Equilibria, Gale Strings, and Perfect Matchings. PhD thesis,
London School of Economics, 2012.

[31] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007.

[32] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. System Sci., 48(498-532), 1994.

[33] R. Savani and B. von Stengel. Hard-to-solve bimatrix games. ECONOMETRICA,
74(2):397–429, 2006.

[34] L. Shapley. A note on the Lemke-Howson algorithm. In M. Balinski, editor, Pivot-
ing and Extension, volume 1 of Mathematical Programming Studies, pages 175–189.
Springer Berlin Heidelberg, 1974.

[35] J. Sheehan. The mutiplicity of hamiltonian circuits in a graph. M. Fiedler (Ed.)
Recent Advances in Graph Theory, Academia, Prague, pages 447–480, 1975.

[36] P. G. Tait. Listing’s topologie. Philosophical Magazine, 17(30-46), 1884.

[37] A. G. Thomason. Hamiltonian cycles and uniquely edge colourable graphs. Ann.
Discrete. Math., 3:259–268, 1978.

77

[38] C. Thomassen. Independent dominating sets and a second hamiltonian cycle in regular
graphs. Journal of Combinatorial Theory, Series B, 72(1):104 – 109, 1998.

[39] M. J. Todd. A generalized complementary pivoting algorithm. Mathematical Pro-
gramming, 6(1):243–263, 1974.

[40] W. T. Tutte. On Hamiltonian circuits. J. London Math. Soc., 21:98–101, 1946.

[41] L. Végh and B. von Stengel. Oriented Euler complexes and signed perfect matchings.
Mathematical Programming, 150(1):153–178, 2015.

78

	List of Figures
	Introduction
	Second room-partitioning of d-oiks
	Second Hamiltonian cycle in cubic graphs
	Organization of the thesis

	Finding a second room-partitioning of an oik
	Preliminaries
	d-oiks and the exchange algorithm
	Related Works
	Related complexity classes

	Second perfect matching in Eulerian graphs
	Exchange algorithm on Eulerian graphs
	Bipartite Eulerian graphs

	Room-partitionings of planar triangulations

	Finding a second Hamiltonian cycle
	The lollipop algorithm
	Related works
	Second Hamiltonian cycle in regular graphs
	Hamiltonicity of cubic graphs

	Complexity
	The complexity of finding a second Hamiltonian cycle in cubic graphs
	An exponential lower bound for the lollipop algorithm
	The complexity of deciding Hamiltonicity of Barnette graphs

	The lollipop algorithm on planar bipartite graphs
	Why bipartite graphs?
	Why planar bipartite graphs?
	The lollipop algorithm on cubic planar bipartite WH(6)-minor free graphs
	Useful lemmas
	Proof of Theorem 3.3.2
	Proofs of observations

	An infinite family of graphs of class A

	Conclusion
	Bibliography

