View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Waterloo's Institutional Repository

Question Paraphrase Generation for
Question Answering System

by

Haocheng Qin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2015

(© Haocheng Qin 2015

https://core.ac.uk/display/144148573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

The queries to a practical Question Answering (QA) system range from keywords,
phrases, badly written questions, and occasionally grammatically perfect questions. Among
different kinds of question analysis approaches, the pattern matching works well in analyz-
ing such queries. It is costly to build this pattern matching module because tremendous
manual labor is needed to expand its coverage to so many variations in natural language
questions. This thesis proposes that the costly manual labor should be saved by the
technique of paraphrase generation which can automatically generate semantically similar
paraphrases of a natural language question. Previous approaches of paraphrase gener-
ation either require large scale of corpus and the dependency parser, or only deal with
the relation-entity type of simple question queries. By introducing a method of inferring
transformation operations between paraphrases, and a description of sentence structure,
this thesis develops a paraphrase generation method and its implementation in Chinese
with very limited amount of corpus. The evaluation results of this implementation show
its ability to aid humans to efficiently create a pattern matching module for QA systems
as it greatly outperforms the human editors in the coverage of natural language questions,
with an acceptable precision in generated paraphrases.

111

Acknowledgements

I would like to express the deepest appreciation to my supervisor, Professor Ming Li, for
his enthusiasm, his encouragement, and his inspirational and patient guidance. Without
his guidance and persistent help this thesis would not have been possible.

I would like to thank the readers of my thesis, Professor Chrysanne DiMarco and
Professor Grant Weddell, for being willing to spend time and efforts on reviewing my
work. Their advice is very important to me.

A thank you to Kun Xiong, Anqgi Cui and Guangyu Feng, who give me a lot of help
and advice in my work.

Also, thank my family and all my friend for always supporting me.

v

Dedication

This is dedicated to my parents who give me so much support in my life.

Table of Contents

[List of Tables|

[List of Figures|

(1 _Introduction|

2_Related Workl

[2.1 Question Analysis Techniques| . . .

[2.2 Paraphrase Generation Techniques|

[3 Approachl

[3.1 Objectives|
(3.2 Sentence Transtormationl
3.3 Sentence Structurel
[3.4 Paraphrase Generation|

[4 Implementation|

4.1 Overviewl.

viii

ix

12
12
13
15
15

[4.6 Paraphrase Representation|

[4.7 Paraphrase Rankingl

[4.8 Pattern Merge|o

) YCOTIINE| . . o v v o o v e e e e e e

b4 Performancel

0.9

vii

33
36
37
39
40
42

43
43
48
50
50
20

52

54

List of Tables

[4.1 Structure Extraction Examplelo 00000 23
[5.1 Types of Test Questions|, 35
[5.2 Simple Questions / Complicate Questions| 35
(.3 Paraphrases Numbers|. 37
b4 Precisionl. 37
B Recalll o 38
[5.6 Recall with Synonyms| oo 39
[5.7 Recall by Human| o 39
[5.8 Scaling Influencel o 42

viil

List of Figures

(3.1 Transformation Based On Edit Distancel 14
[3.2 Transformation Based On Our Assumpution| 14
[3.3 Paraphrase Generation Procedure Examplel. 16
[4.1 Corpus Processing Example] 19
[>.1 Number of Questions per Structure] L. 34
B2 Cluster Sizd 34
[.3 Lengths of Testcases|, 35
(.4 Precision-Scorel 40
[5.5 Time / Question Lengthl 41
[5.6 Time / Number of Generated Paraphrases| 41

X

Chapter 1

Introduction

If the bottleneck of a search engine is the amount of information, this is no longer true
for a question answering (QA) system where exactly one answer is expected. A modern
QA system fails to answer a question usually not because it did not have the answer but
because it did not understand the question. There are currently two ways to understand
a question:

e Keyword-based systems. These approaches usually are too aggressive with many
false positives. If you ask Siri [[] What does a cat eat? What does a dog eat? The
answer is a list of human restaurants [iPhone 6+, June 6, 2015].

e Template-based systems. These systems, such as Evi E], IBM’s Watson [17], or Wol-
fram Alpha E], strongly depend on the exhaustive enumeration of templates or pat-
terns. A slight ungrammatical variation: “Who is the Toronto’s mayor” spoils an
otherwise answerable question [evi.com, July 13, 2015].

We believe a general-purpose open domain QA system will need a combination of these
two approaches. This work focuses on the second approach using templates and patterns.
Our research aims at the following three application scenarios:

1. Natural language query to database query. Assuming we already know how to map
“What is the population of Canada?” to an SQL query to a knowledge database such

L Apple’s voice assistant, http://www.apple.com /ios/siri/
2Amazon’s voice assistant, http://www.evi.com
3A computational knowledge engine developed by Wolfram Research, https://www.wolframalpha.com

as FreeBase [§], can we also map “How many people live in Canada?” to the same SQL
query?

2. Search community QA databases. A community QA database contains hundreds of
millions of QA pairs created by humans. Such a database may contain an answer to
“What is the population of Canada”, but not for “What population Canada”.

3. Generalizing existing FAQs. While this is in principle similar to item 2, we list this
separately as the application scenario is different. Websites of millions of organizations
have FAQs attempting to answer some of the user questions. While this might be
acceptable for human readers, it is certainly too restrictive for automatic customer
service.

In all three applications, it is important to generate a list of paraphrases, grammatical
or not, with “similar meanings”. Before we proceed we answer two questions:

1. Do we need to generate paraphrases offline or measure “paraphrase distances” online?
There are several reasons in practical systems that such paraphrases need to be gener-
ated offline, a priori. A main pragmatic reason is actually the need for human program-
mers to write regular expression or context free grammar (CFG) [30] type of templates
for vertical QA domains. In this case, our system is designed to assist them to generate
all possible templates and patterns from one question. In the ideal world, if we could
generate all variations, then this automatically solves item 3 above.

2. Paraphrases are defined to be “phrases with similar meanings”. What do we mean by
“similar meanings”? The original Greek “mapappdoeis” means “additional manner
of expression” that has elegantly avoided the trouble of defining “similar meaning”. In
Feng et al. paper [10], it is proved that Information Distance [6] can be used to optimally
approximate the undefined concept of “similar meaning” or “semantic distance”. Thus,
when we talk about “similar meaning”, it can be interpreted as relatively short encoding
(length) between two respective paraphrases.

In most of QA systems, there is a “question analysis” module that converts user’s
natural language input to a logical query that is passed to the following modules for
retrieving answers. Usually, the goal of question analysis is to cover as many variations as
possible of user’s natural language questions.

There are several common methods to do question analysis. One is question classi-
fication and reformulation [I]. In this approach, the question is first classified based on

its type and topic. According to the type and topic, some key words are extracted as
query for further answer retrieval. Another popular method is semantic parsing [24, 2].
This method is mostly used for the vertical QA systems with structural knowledge base
such as a geographical system. It uses combination grammars [3] to parse the question
and map the parsing result to the query in a logical form such as lambda calculus [4] or
Dependency-Based Compositional Semantics (DCS) trees [24]. In addition, we have devel-
oped a method that is based on pattern match. In the question analysis of pattern-based
match, the input question will be matched to one or several patterns, which are usually
handwritten in CFG, and the patterns are paired with corresponding logical queries.

In a template or pattern-based approach, for each question, there are almost an infinite
number of paraphrases that express the similar meanings. In most cases, for human editors,
it is very inefficient to enumerate these paraphrases. Thus, practical QA systems based on
the handwritten templates or patterns usually have low coverage of the question variations.
In order to improve both the efficiency and the coverage of using pattern-based match to
build up question analysis module, it is vital to improve the efficiency of template or pattern
writing. More precisely, our system aims to reduce the manual work in writing patterns
by automatically generating the templates or patterns.

For keyword queries, question expansion is mostly about morphology variants and syn-
onyms. The paraphrases of a natural language question not only contain the variants of
words and phrases, but also different sentence structures. Though the question expan-
sion can make better coverage for the question analysis, it can barely generate sentential
paraphrases that with different sentence structures.

To generate paraphrases of sentences, many studies have been done using different
approaches [15], [40] 25, [5l, 38| 14], 39]. These approaches have provided different methods
to generate sentential paraphrases for different inputs in different applications. However,
they either focus only on factual questions that can extract relation and entities [15], or on
phrasal query extension [40], or need dependency tree parsing [25], or need very large scale
of parallel corpus [15], 25, [5]. When building the QA systems in non-English languages
that aim to handle more than factual questions, it is very difficult to obtain large scale
of parallel corpus. Furthermore, with the complexity of some languages such as Chinese,
there is no parser doing dependency tree parsing with high accuracy. So we need a method
for sentential paraphrase question generation which can generate as many variations as
possible, against limited corpus and limited dependency parsing.

In this work, we propose an inference method of transformation operations from a sen-
tence to its paraphrases, and a description of sentence structure. In addition, we introduce
a method to generate paraphrases, from given input question in natural language. This

method generates paraphrases by applying proper transformation operations on the input
sentence, based on its sentence structure. With the supervised parallel corpus which are
consist of paraphrase questions that either handwritten or extracted from the community-
based QA databases, this method can generate a ranked list of paraphrase patterns of
the input question, which can assist editors in pattern writing for pattern-based question
analysis module. The quality of paraphrase generation depends on the scale of corpus,
which can be improved by adding correct paraphrases from generation results. The eval-
uation shows that with limited scale of initial corpus in Chinese language, our method
can generate far great number of correct paraphrases than human editors, with acceptable
precision.

We partially solve the problem of generating sentential paraphrases for both English
and non-English questions with limited corpus. With this work, in pattern-based matching
system, the human editors no longer need to generalize and handwrite all the patterns.
Instead, they only need to select the generated paraphrase patterns from the input ques-
tions in natural language, with a little or no modification. Therefore, both the coverage of
patterns and the efficiency of pattern writing can be greatly improved, which will finally
make it easier to apply the pattern-based matching in question analysis to open domain
QA systems.

Chapter 2

Related Work

2.1 Question Analysis Techniques

Serving as an important part in QA systems, question analysis module greatly influences
the performance of the whole QA system. Many different approaches have been applied in
different QA systems.

Many early systems and some web-based systems [18] use the traditional way of question
analysis, which has two steps, question classification and question reformulation [IJ.

In order to provide constraints for the type of the answer and target to the relevant
data, knowing the type and topic of a question usefully helps in the question reformulation
and guides other modules of the QA system to retrieve and process the answer. With the
input question classified by its topic and type, the question analysis module can extract the
keywords from the question to form the query or use certain rules to generate the query.
Then the query will be passed to the answer retrieval part.

To classify the type and topic of the question, there are two ways in general. The
rule-based method is mostly used for question type classification. It depends on the rules
which define the features of different types of questions. E.g., Stoyanchev et al. [33]
have done a QA system that uses rule-based question classification. The other one is
the supervised learning method, which uses large scale of labelled corpus and supervised
learning classifiers, such as SVM [35], Naive Bayes [28], Decision Tree [19] and SNoW [13],
to train for the features and classify the type and topic of the question. E.g., Li et al. [22]
have used supervised learning in the similar tasks.

The method of question classification and reformulation analyzes questions syntacti-
cally, which means it is language independent. In such methods, except for few rules or
some type-annotated questions, not much manual work is needed, and unstructured data
like text documents and web pages can be used as knowledge sources. When the question
becomes complicated in sentence structure, the correctness of query generation, especially
when based on keywords extraction, is uncertain, even with the topic and type of question
classified correctly.

Instead of syntactical analysis, semantic parsing provides more powerful analysis for
complex questions. In semantic parsing, the question can be mapped to a query in logical
form, such as lambda calculus, which can use a formal system to express computation and
supports high-order functions, so it fits better with structural knowledge base.

In 2012, Luke S. Zettlemoyer and Michael Collins introduced an algorithm that parses
questions with Combinatory Categorial Grammars (CCG) and expresses the semantics in
lambda calculus [37]. For example, the question

“which states border texas”
is parsed as
Az.state(x) A next_to(z, tex).

In this approach, a lexicon is the core of a CCG which describes a word by capturing
its syntactic and semantic information jointly, as in the following:

Texas = NP : tex, and border = S\NP/NP : AxAy.next_to(y, x).

A CCG has a set of combinatory rules which describe how adjacent syntactic categories
in a string can be recursively combined, like

XY fY)Z: 9= X/Z:) x.f(g(x)),
and
Y\Z:g X\Y:f=X\Z: \x.f(g9(x)).

By learning a training set of sentences which are labeled with expressions in the lambda
calculus, the semantic parser can be built to parse natural language questions to lambda
calculus expressions.

Typically, a semantic parser using CCG needs to be trained from examples of questions
annotated with their target logical forms. Instead of spending such expensive cost, in 2013,
Percy Liang et al. develop a new semantic formalism, dependency-based compositional
semantics, that enables us to learn a semantic parser from question-answer pairs where the

intermediate logical form (a DCS tree or a lambda DCS [23]) is induced in an unsupervised
manner [24]. For example, the sentence

“people who have lived in Seattle”
can be parsed as a lambda DCS
“PlacesLived. Location.Seattle” .

In DCS, given a utterance, a set of lexical triggers is generated. Each lexical trigger is a
pair (s,p), that s is a word or a word sequence, and p is a predicate (e.g., s = California
and p = C'A). Based on the lexical triggers, a set of candidate DCS trees is recursively
constructed by combining the trees of its subspans. More detailed, trees are combined by
inserting relations and possibly other predicates between them. Similar to lambda calculus,
the DCS tree or the lambda DCS can be used as a query to retrieve answers from structural
knowledge base.

Semantic parsing is becoming more and more popular in recent research in natural
language processing. a semantic parser analyzes the question semantically, it can handle
questions with complicated sentence structures and automatically generate queries in logi-
cal form which can naturally compute the answer from a knowledge base. However, many
preconditions are needed in this powerful approach. A semantic dictionary is required to
annotate the words and the grammar rules are required to parse the question. These all
need significant of costly manual work. In order to utilize the generated logical queries, a
well-organized structural knowledge base is essential. Furthermore, semantic parsing is not
language independent, so this method is very difficult to adapt to some languages which
have the grammars too complicated to generalize correctly. Thus, in languages which have
very variable and complicate grammars, semantic parsing may not be able to parse the
questions with high degree of correctness.

In recent years, some question answering community websites appear. Users can post
questions online, and they can also answer the questions posted by other users. The
question answering system which uses the data from such websites as knowledge base is
call community QA-based(CQA) system. In the CQA system, having the question answer
pairs, the question analysis and answer retrieval are combined as a most similar question
search, which searches for an answered question that is relatively most similar to the input
question, and uses the answer of this question as the answer to the input. This approach
provides a ranked list of answered questions based on their similarity to the query. To
rank the similarity, there are many algorithms such as statistical similarity calculation with
vector space models [29], and semantic distance estimation using WordNet [30]. Though
the similarity analysis is relatively easy to implement, the approaches based on the most
similar question search require a large database with question-answer pairs to provide

7

enough coverage. For the worse cases, slight differences between questions may lead to
totally wrong answer, so that the similarity in questions cannot guarantee the correctness
of answers.

For our application which involves both structural and unstructured knowledge bases,
we introduce a question analysis approach based on pattern matching. In this approach,
we define the pattern as an expression in CFG grammar. A series of patterns with their
corresponding queries constitute the template files. Each item, including pattern and query,
look like the following:

AskWeather = What's|(What is) [the] weather [like] [< time >, < location >]

{query = weather(time, location)} (21)

In this approach, the input question is tagged by a dictionary-based tagger. Then from

the written templates, the pattern matcher finds the pattern that matches the generated

tag sequence of the input question, and constructs the query based on the matched pattern.

For example, the input “what’s the weather like in Waterloo today” is tagged as “what’s

the weather like < location >< time >", thus it matches to the category of “AskWeather”,
and the query “weather(today, Waterloo)” is generated.

The advantages of this approach are obvious. The tokens written in the patterns are all
syntactical, which means that no semantics information is needed for building this matcher,
so it is language-independent. The query generation is written by humans, so that it can
adapt to both structural knowledge base query and other kinds of queries for unstructured
data. More importantly, the patterns and query generating methods are readable and
editable, so it is relatively convenient for the human editors to edit and debug the module,
which ensures a quite high precision in analyzing the questions. In addition, for many QA
systems which deal with limited kinds/domains of questions, only a small set of patterns
is needed, and a good precision can be achieved, so it does not require much work in these
cases. The disadvantage of this approach is also obvious, when serving in open domain
QA systems, writing patterns to get good coverage requires a huge amount of work. This
is the problem we aim to solve in this thesis.

2.2 Paraphrase Generation Techniques

To make the question analysis module recognize and analyze more variants of input ques-
tions, there are two main approaches: query expansion and paraphrase generation. Both

approaches have been researched for a long time and many different studies have been
done.

The question expansion is mostly lexical and used for expanding the keyword queries.
To expand the keyword queries, previous approaches focused mostly on words and phrases
substitutions. Bilotti et al. [7] mention and compare the question expansion method that
applies a stemming algorithm at indexing time, and the method that expands query terms
with their morphological variants at retrieval time. With the idea of utilizing synonyms,
many QA systems [12] 0, B1] use WordNet [30] to expand the query terms. Also, Statistical
Machine Translation technology is used for question expansion. Riezler et al. [32] intro-
duce an algorithm that uses foreign languages as pivot to generate synonyms and phrasal
paraphrases. To synthesize the results of different methods, Zhao et al. [39] introduce a
method of filtering and selecting the patterns, paraphrases and collocation variants which
are generated by multiple methods.

Intuitively, the paraphrases of a question contain not only the variants of words and
phrases, but also different sentence structures. Though question expansion can improve
the coverage of the question analysis at the phrasal level, it can barely generate sentential
paraphrases that varies in sentence structure, which might lead to significantly greater
improvement. Since paraphrase generation techniques at the sentential level are more
likely to improve the question analysis, this is what we focus more on.

Most of the paraphrase generation techniques need a corpus. For collecting paraphrases
as a corpus, Dolan et al. [14] introduced and experimented with an unsupervised approach
to extract a parallel corpus from news articles. Except for extracting sentences with very
low edit distances, they assumed that the first two sentences in news articles are usually
the summarization of the whole news article, and similar news articles might be reporting
the same event. Thus, the summarization sentences of similar news articles, which can be
aligned with low cost, are potentially paraphrases. With this hypothesis, they extracted
and filtered the first two sentences from news articles which reported the same event, as
paraphrases.

Fader et al. [15] introduced an approach for generating paraphrases of factual questions
in structural knowledge-based QA system. The approach focuses on the factual questions
which can generate query in relation and entities. Using paraphrase question clusters with
noise as corpus, and initial annotated questions as seed, their method aligns the paraphrase
questions using existing sentence alignment tool, and learns the derivations of lexicon which
contains entities, relations and question patterns. For example, in the paraphrase pair
“What is the population of New York?” and “How big is NYC”, the pattern of the former
question is “what is the R of E”, where R is the relation population and E is the entity

new —york. With the alignment between these two questions, “population” aligns to “big”
and “New York” aligns to “NYC”, so “big” is mapped to relation population, “NYC” is
mapped to entity new — york, and the pattern of the latter question “How R is E” is
considered to be same as “what is the R of E”. Additionally, this method uses parameter
learning to eliminate the noise in corpus. However, in many question paraphrases, the
words and phrases have very little in common (e.g., “taking train how to use phone to book
ticket” <» “calling which number can buy train ticket”). The paraphrases are sometimes
too hard to align. Also there are many questions with complex sentence structure (e.g.,
“How many days of delay are permitted for me to pay the bill without fine”) which cannot
be described as simple relation and entities.

For applications with a structural knowledge base, Lin and Pantel [25] introduced an
unsupervised approach that discovers similarity among relations by analyzing similarity
of their contexts, and generates paraphrase questions by finding similar relations. This
method parses the sentence into a dependency tree, and transforms the dependency tree
to the path which can be expressed as the form of X relation Y. For example, for the
sentence “John found a solution to the problem”, the path between “John” and “problem”
is:

[N:subj:V] < find <+ [V:obj:N] — solution — [N:to:N]
(meaning “X finds solution to Y”).

It also supposes that in large scale of corpus, if the relations in paths share similar
constitution of X's and Y's, the relations are of same semantics. When the input question
is parsed as path, the similar relations to the relation in path can be generated, then
paraphrase questions as well. For example, the path “X; finds solution to Y;” may be
similar to “Xy solved Y5”, because there is a large overlap between all the Xys and Xjs,
and a large overlap between all the Y;s and Y3s. This approach requires a semantic parser
to extract the relations from the sentences, which is not very feasible for some non-English
languages like Chinese, as the grammar, word combination rules and word semantics in
different contexts are too flexible and complex for semantic parsing to be accurate enough.
Additionally, it needs very large scale of corpus to generalize the similarity of relations.

For more general usage, Barzilay et al. [] introduced an approach that is based on mul-
tiple sequence alignment and is also unsupervised. This approach considers the sentence
as slotted lattices with backbones and arguments. For example, “The surprise bombing in-
jured twenty people, five of them seriously” can match to the lattice “X (injured /wounded)
Y people, Z of them seriously” where X=“The surprise bombing”, Y=“twenty” and
Z="five”. Based on parallel corpora extracted from the news articles, this method first
clusters syntactically similar sentences, then generalizes the sentences in the clusters to

10

generate the slotted lattices which contain patterns that represent the sentence structures
and slots that for filling the variables. During this process, in the sentences, the com-
monly appeared parts (commonly appeared in same cluster) are called backbones, and
the varied parts are called arguments. When two syntactically similar sentences have the
argument contents in common, they are considered as paraphrases. By pairing sentences
which have similar arguments, in parallel corpora from news articles, the algorithm clusters
paraphrase sentence patterns which can be used to derive paraphrase sentences from the
input sentence. For example, “X (injured/wounded) Y people, Z of them seriously” is
paraphrased to “Y were (wounded/hurt) by X, among them Z were in serious condition”.
This approach depends on having many paraphrases in the corpus to correctly analyze the
slots in a sentence and pair the patterns. In fact, in many cases, the variations between
paraphrases (slots) are not in fixed positions or components, almost any components in
sentence can be varied to form a paraphrase.

When it comes to QA, sometimes the question queries in QA are just noun phrases.
For example, “The advantage of iPhone” and “Why do people like to use iPhone” almost
mean the same in QA. In 2011, Zhao et al. [40] introduced their approach for extending
incomplete, short, phrasal queries to multiple complete questions, with community-based
QA systems and previous user query logs. It associates user’s input queries with the
templates extracted from the finally selected questions, and generates questions from an
incomplete query by applying the query into the associated templates.

Compared to the approaches above, our approach focuses more on generating as many
variants as possible, for both factual and other complicated questions in English and non-
English, with a smaller-sized corpus. We do this by discovering the structure of question
sentences, and then the transformation operations between paraphrases.

11

Chapter 3

Approach

3.1 Objectives

Introduced in Chapter [2| we use pattern-based matching as an important method for
question analysis in QA systems. But this method requires very costly human labour
in writing pattern templates. For improving efficiency of writing pattern templates, we
propose an approach which generates paraphrases (in CFG patterns) of input questions,
so that human editors only need to write question instances in natural language, and get
the recommended paraphrasing patterns.

Thus, the main task is paraphrase generation. In this field, as mentioned in Chapter 2]
the current approaches mostly focus on English. As for applications in Chinese, there are
some difficulties to adapt those approaches:

1. There is not enough corpus in Chinese

2. There is no semantics parser for Chinese

3. Chinese grammar is too flexible for dependency tree parsing

In this work, we mainly focus on generating paraphrases for questions in Chinese, with

limited scale of corpus. The objective of this work is to generate more paraphrases that
increase the coverage in question analysis, with as few conflicts as possible.

12

3.2 Sentence Transformation

In order to generate paraphrases, we need to figure out how a sentence transforms to its
paraphrases.

The sentential paraphrases of a sentence contain more than phrasal substitutions, and
many paraphrases even cannot be aligned with each other. Instead, paraphrases are usually
in different sentence structures. E.g., “4L5E A (pork) Z(should) /&4 (How to) fi(cook) Ht.
Bt (better)” and “BFFH(Which) fi% (recipe) i(cook) B LR A (pork) TFAZ (delicious)”
are paraphrases, but they are in different sentence structures that cannot be well-aligned
word-by-word.

In order to generate paraphrases, it is important to discover the inference method
about how a sentence transforms to its paraphrases. Conventionally, the edit distance
(Levenshtein distance) [21I] which gives the minimum steps of elementary operations (add
and delete), is commonly used for transforming any sentence to another.

But in paraphrase generation, the cost of transformation is not a main concern, in-
stead, a description of the transformation need to represent the internal relation between
paraphrases, and easy to be adapted in different cases.

For example, considering these two paraphrases,

1. N4 (why)#kBA (Yao Ming) B4 (very) BI([auziliary]) i (famous)
2. WkBA(Yao Ming)# (is) K24 (because) ft 4 (what) H 44 (famous)) ([auziliary])

Figure[3.1shows the transformation operations are based on edit distance calculation to
transform sentence 1 to sentence 2, but intuitively, we consider that the transformation in
paraphrasing is not just adding and deleting words. Instead, we assume that one sentence
being a paraphrase of another sentence is because their sentence “templates” have same
meaning and two sentences share same contents in their sentence “templates”. In the
example above, the reason of those two sentence being paraphrases is that “< someone >
& (i)l 7 (because) f 4 (what) < adjective > HI([auwiliary])” has the similar meaning
to “Wft 4(why) < someone > H 4 (very) Hl([auziliary]) < adjective >", and they
share the same contents “BkBH(Yao Ming)” and “Hi 4% (famous)”. So, the transformation
procedure in our assumption is more like in Figure [3.2]

13

N

1k i
(Yao Ming)

R
e

ib]

(auxiliary)

4

(famous)

(is)

Koy

(because)

4
(What)

Figure 3.1: Transformation Based On Edit Distance

Ftt4 i3 i}
(Why) (very) (auxiliary)
2k 4
(Yao Ming) (famous)
= S 24 i
(is) (because) (What) (auxiliary)

Figure 3.2: Transformation Based On Our Assumpution

14

Inspired by such idea, we propose a method to infer the transformation from a sentence
to its paraphrases. The transformation has two steps:

1. Find the common parts between two sentences, and the remaining parts is called the
“templates” of sentences.

(Finding common parts is similar but different to Longest Common Subsequence
problem [27], in that it does not require one-on-one alignment, the common parts do
not have to be in order, and even “in common” does not mean the identical words.)

2. Keep the common parts, and fill them into the “templates” of the paraphrase sen-
tence.

So, for each paraphrase pair, we consider one is transformed to the other by such
operations (keep and fill). The detailed implementation will be introduced in Section [4.4]

3.3 Sentence Structure

In our approach, the structure of a sentence has a very important role, that the sentences
with same sentence structures can apply same transformation operations to generate their
paraphrases.

Unlike many approaches, we do not consider the sentence structure as a dependency
tree, which is too difficult to be extracted correctly in Chinese, or as relation-entities,
which cannot cover some complex sentences. Instead, we define the structure of sen-
tence as a tag sequence. In such sequence, each tag represents a word/phrase in the
sentence, and these tags can be either part-of-speech (POS) tags or functional tags such
as Why, How, Be, Let, Have.

For example, the structure of

Ft 4 (why) BEBA (Yao Ming) 8 4 (very) B ([auziliary]) Hi 44 (famous)

is tagged as

< Why >< People >< DegreeAdverb >< Auxiliary >< Adjective >

Represented by such tag sequences, the structures of sentences can be compared and
the sentences with same structure can be aligned as preparation for paraphrase generation.

3.4 Paraphrase Generation

With the sentence transformation operations and sentence structure defined, we propose
an approach to generate paraphrases for input sentences.

15

Given an input sentence g, if there is a sentence g5, which has the same sentence
structure with g, can transform to its paraphrase by operations op, then g, can also
generate a paraphrase by such transformation operations op. Figure |[3.3|shows an example
of the generation procedure.

- I # 2z % e
Qinpu (Beijing) (has) (how many) (quantifier) (restaurant)
structure {place> <have> <how many> {quantifer> <{noun>
. i # I A at
) (China) (has) (how many) (quantifier) (province)
[i By —3t H JL A
paraphrase (China) (auxiliary) (province) (in total) (has) (how many) (quantifier)
generate b i B —3t H JL e
(Beijing) (auxiliary) || (restaurant) || (in total) (has) (how many) (quantifier)

Figure 3.3: Paraphrase Generation Procedure Example

On the other hand, though ¢n,.: and ¢s have same sentence structure, so if they are
about very different topics, ginpu i less likely to apply op to generate correct paraphrases.
Thus, we propose that more similar g, and g5 are, more likely g, can apply op to
generate paraphrases.

For example:

For the input: Jt.7<(Beijing) BB (where) 5 (has) SZ(sell) %7 7] (sushi)

By the paraphrase pair 1: 2122 (Toronto) MF & (where) 45 (has) Z(sell) JZHF (lobster)
= f£(In) Z1& 2 (Toronto) %8 (want) Iz (eat) WHF(lobster)] LA(can) Z(go) MF(where)

16

It generates paraphrase: 1£(In) b3 (Beijing) 8 (want) IZ(eat) 7] (sushi) 7] LA(can)
%(go) WB(where)

By the paraphrase pair 2: 4% (New York) ¥F 2 (where) H (has) It (play) 1#% (skiing)
= A% (New York) f([auziliary]) 1855 (skiing) A (resort) A (has) BB (what)

It generates paraphrase: L3R (Beijing) BI([auziliary]) 77 (sushi) 22 (resort) A (has)
WFLE (what)

As “Z18Z (Toronto) M B (where) H (has) 3£ (sell) HF (lobster)” is more similar to “Jb
7 (Beijing) B & (where) A (has) =2(sell) % 7] (sushi)”, paraphrase “fE(In) JtJ%(Beijing)
18 (want) 17 (eat) 7 7] (sushi) 7] LA(can) Z(go) WF(where)” is more likely to be correct.

The next chapter will describe the implementation in detail.

17

Chapter 4

Implementation

4.1 Overview

Our approach has two parts: corpus processing and paraphrases generating.

The corpus processing part is done offline. With the corpus prepared, the offline pro-
cessing part analyzes the questions in corpus, extracts their structures, calculates and stores
the transformation operations from each question to its paraphrases. Figure shows an
example. The detailed algorithm is in Algorithm [1}

18

Corpus

£ 2% M8 ig JedF ATeL % up

(In, Toronto, want, eat, lobster, can go, where)

ZieZ MR A 3 kiF

(Toronto, where, has, sell, lobster)

MYy MHar) WS A E Ay
(New York, nearby, skiing, resort, at, where)
My WL F Bt WmE
(New York, where, has, play, skiing)

<{place> <where> <have> <{verb> <noun>
<{place><where><have><verb><noun> I T
\|/ N3 N
PRI Al 1E
<{place><adv. ><noun><noun><prep. ><where> Nearby R;o“ AiL
<{prep. ><place><want><verb><noun><modal><go><where> <place> | | <where> | | <have> | | <verb> | | <noun>
l [— 1
Structures _ :
HENE
At Want Eat Can Go
Transformation
Operations

Figure 4.1: Corpus Processing Example

19

Input:

e (U, a set of question clusters, that each cluster contains a set of paraphrase
questions.

e Tagger(q), a function that extracts the tag sequence of question .

e Transform(q,qz), a function that generates the transformation operations
from ¢; to ¢o.

Output:
o QuestionToPara, a map from the questions to all their paraphrases in corpus.

o TagSeqToQuestion, a map from the tag sequences to sets of questions, that
each set contains all the questions with same tag sequence.

e (QPairToOps, a map from the question pairs to their transformation operations

1 for each question cluster ¢; € C' do

2 for each question q; € ¢; do

3 t = Tagger(q;)

4 if t € TagSeqT oQuestion then

5 ‘ TagSeqToQuestion(t) = {}

6 end

7 TagSeqToQuestion(t) = TagSeqT oQuestion(t) U g;
8 QuestionToPara(q;) = {}

9 for each question q; € qc; that g, # q; do

10 QuestionToPara(q;) = QuestionToPara(q;) U g
11 QPuairToOps(q;, qx) = Trans form(q;, qx)

12 end

13 end

14 end

15 return QuestionToPara, TagSeqT oQuestion, Q) PairToOps

Algorithm 1: training procedure

Paraphrase generating part is online process. Given an input question, it generates a
set of ranked CFG expressions, by matching the input question to questions in corpus, and
applying corresponding transformation operations. Example is like in Section [3.4L The

20

detailed algorithm is shown below in Algorithm 2]

Input:

Qinput, a0 INput question.
Tagger(q), a function that extracts the tag sequence of question g.
QuestionToPara, a map from the questions to all their paraphrases in corpus.

TagSeqToQuestion, a map from the tag sequences to sets of questions, that
each set contains all the questions with same tag sequence.

QPairToOps, a map from the question pairs to their transformation operations
Gen(q, qs,0p), a function that generates a paraphrase of ¢ by applying op to g.
Score(qg, qs, qp), a function that gives a generated paraphrase a score.

Merge(Q), a function that merges a set of paraphrases into a set of CFG
expressions which is used as patterns in matching.

Output:

(g, a set of generated paraphrases
Sc, a map that maps generated paraphrases to their scores

Pt, a set of CFG expressions that represents all paraphrases in @

1 t = Tagger(qinput)
2 Qs = TagSeqToQuestion(t)

Qq = {}
for each qs, € Qs do

end

Pt =
return @y, Sc, Pt

Qp; = QuestionToPara(gs,)
for for each q,,, € Qp, do

opi; = QPairToOps(qs,, ;)
Qg;; = Gen(%nput; ds;, Opij)
SC(Qgij) = Score(qgij, Qs; 5 QPij)
Qg = QyUqy,;

end

Merge(Qy)
21

Algorithm 2: generating procedure

In following sections, Section [4.2| will introduce how the corpus is collected, Section {4.3
will explain T'agger(q), Section will explain Transform(qi,qs), Section and Sec-

tion [4.6| will explain Gen(q, gs, op), Section [4.7| will explain Score(q,, gs, ¢»), and Section
will explain Merge(Q).

4.2 Corpus Preparation

Our parallel corpus is a set of clusters, and each cluster contains a set of paraphrase
questions. Instead of collecting all kinds of sentences, we use only question sentences
(including phrasal QA queries) as corpus, so that it is possible for our approach to discover
the latent semantics in question sentences.

We construct such a corpus in two ways, handwritting and manual labelling.

One part of corpus is handwritten by human editors. We randomly select 260 questions
as seeds from our CQA |I|E| database, and handwrite paraphrases for each seed question
(1372 paraphrases in total, including 260 seed questions). This work is costly, but it can
provide many typical structure variants for the common question structures.

The other part of corpus is collected by manual annotating. As we need to collect a lot
of more paraphrase questions, and the handwritten ones are far from enough, we annotate
588 clusters of paraphrasing questions (2052 paraphrases in total) from CQA.

For better efficiency in collecting the second part of corpus, we first extract questions
which are possible to be paraphrases, from CQA, as candidates, then annotate the actual
paraphrases among them. In order to extract possible candidates, we suppose that if
two questions have some keywords in common and share very similar answers, they are
possibly asking for the same thing, i.e. they are paraphrases. With this assumption, we
use randomly selected entity names to search all the answers in CQA to get questions with
same keywords in answers, then cluster the questions which share at least one common
keyword in themself and two in their answers. Then, with such candidates extracted, we
use human editors to annotate the actual paraphrases as corpus.

Furthermore, the corpus can be expanded during application, with relatively low cost.
When paraphrases generated by the program, human editors can select or even modify
them then add them into corpus.

thttp://zhidao.baidu.com
2http:/ /wenwen.sogou.com

22

4.3 Sentence Structure Extraction

This part of work converts the question sentences into sequences of tags, which represent
the sentence structures in our approach. In general, the tagging process has 4 steps:

Segmentation — POS tagging — Functional tagging — Dependency parsing

For example:

Table 4.1: Structure Extraction Example

%182 (Toronto) M (where) B¢ (can) #. 2/ (find) i IZ ¥ (delicious) 74 (Chinese food)?
Segmentation | Toronto | where | can | find | delicious | Chinese food ?
POS tag noun pron. | verb | verb adj. noun -
Functional tag | place | where | modal | - - - -
Dependency - - - noun -
Final tag < place > < where > < modal > < verb > < noun >

1. 2. Segmentation & POS tagging: While in some languages such as Chinese, the words
are not naturally segmented in a sentence. Hence, when dealing with a Chinese
sentence, before any other processing, we need to do segmentation of the sentence
to segment a sequence of characters into a sequence of words. In our work, this
part is done by existing tools. At the same time, the tools give POS tags to each
segmented word. After this, some trivial trimming is done, such as removing useless
punctuation, words and prefix phrases.

3. Functional tagging: After the previous steps, all the words in sentences have gotten
POS tags. However, the POS tags are very general that the same tag sequence may
relate to many totally different sentence structures. So we construct a dictionary of
functional words which can get some words tagged with more details. Such refined
tag sequence can make the sentence structure carry more information. For example,
all the question words like “when”, “where”, and “why” should be tagged as different
to each other and different to other pronouns. Some verbs such as “is”, “have”, “let”,
“can”, “want” usually need to be distinguished from other notional verbs as well.

4. Dependency parsing: When each word is tagged with POS tags and functional tags,
the sentence structure of question has been represented by a sequence of tags. How-
ever, many questions with same or very similar sentence structures may have different
tag sequences, and the corpus is unable to cluster all questions into reasonable amount

23

of clusters, which means an input question may not be able to match enough ques-
tions with same structure. Considering this, we have to unify different tag sequences
by simplifying them, and still keep same structure questions alignable. Thus, by ob-
serving the generated tag sequences of questions, we generalized a small set of simple
rules to unify similar POS tags or combine some consecutive POS tags. Thus, some
similar tags are considered as one same tag, and some adjacent tags are combined
as a simple dependency tree, which can be tagged with the tag of its root node.
For example, the words like “the”, “a”, “this”, and the quantifier words, are tagged
same as adjectives when they are in front of nouns, since they share similar roles
in sentences. With the rules like “superlative 4+ adjective = adjective” and “adjec-
tive + noun = noun”, the phrase “fz(the most) &5 (beautiful) %t (aurora)” is
tagged as a noun, and “f(the most) 5% (beautiful)” in it is considered as the
children of “f%Jt(aurora)”. Thus, “BFE (Where) fE(can) & £(see) H(the most)
E W) (beautiful) E” and “BFE (Where) BE(can) 3K #(buy) E B (roses)” are in

same structure and alignable.

After all these processes, the sequence of tags is generated as the sentence structure of
a question. Therefore, each question has a structure, and each structure are related to a
bunch of questions. So we can consider a question as an instance of a structure.

With the structures extracted, the questions in corpus are not only clustered with their
paraphrases, but also clustered with all the questions that have the same structure.

4.4 Sentence Transformation Inference

In our model, the paraphrases are considered to be generated from the original sentences,
by applying a series of operations. Using the similar idea, some operations will be applied
to the input question to generate paraphrases. To implement this process, we need to
know the operations needed to convert instance of a structure to an instances of another
structure. More particularly, we need a method to infer the transformation operations
from one question to another.

Introduced in [3.2] the transformation from one question to its paraphrase is by oper-
ations of keeping common parts and filling them into new question “templates”. When
in inference, given a pair of paraphrase sentences, it searches for all the words/phrases
which appear in both two sentences, and uses a keep list to record the alignment of them,

24

then uses an insertion list and a deletion list to record the remaining parts in two sen-
tences, including the content-independent parts (“templates”) and some potential phrasal
substitutions which are not recognized.

In practice, while it is possible that two paraphrases have some different words/phrases
in non-essential components, the method still tries to align as many words as possible, even
they are not very similar or related, for remaining less unrecognized words that wrongly
considered as parts of structure “templates”.

For example, the questions “/& 2 (How to) P& (quickly) {EE(lose weight)” and “H
3 (efficient) B([auziliary]) AL (lose weight) 777 (method) H (has) WFLE(what)” are an-
notated as paraphrases in corpus. If the transformation is considered as keeping “B/IE(lose
weight)” and filling it into “H XX B (efficient) <718 (verb) > J7 ¥ (method) A (has) W
L8 (what)”, it may lead to mistakes in other cases. If “HR3# (quickly) /5 %X (efficient)” is con-
sidered kept and aligned, the “template” will be “<JEZ% (adjective) > BI([auxiliary))
<Bfi (verb) > J71%(method) A (has) WFLE(what)”, therefore the transformation is closer
to our intuition.

According to the ideas above, the steps of the inference are:

1. For each word in paraphrase, find the exact same word /phrase in original sentence and
align them

2. Check if there are one or more words in original sentence that are similar enough to
the remaining words in paraphrase. If so, align the most similar pair. In this step, the
similarity between words depends on the following factors:

a. The edit distance between words / The number of characters in words
b. Whether they have the same POS tag

c¢. Whether they are synonyms

d. Cosine distance between their word vectors (provided by Word2Vec [29])

3. According to the structures of the two sentences, if both two aligned words have children
in dependencies and their children have same POS tag, align their children

4. Construct the insertion and deletion list with remaining unaligned words in paraphrase
and original sentence.

Using this method, the transformations between paraphrases in the corpus can be
inferred and stored offline.

25

4.5 Paraphrase Generation

The process of generating paraphrases has been introduced in Section [2 In general, this
process based on using the structure of input question to collect material from corpus, and
then using this material to generate the paraphrases of input question.

The collecting part has three steps:

1. Given an input question sentence @y, use the method in Section to extract its
structure t¢.

2. Collect a set of questions @), such that all questions in), are in structure ¢.

3. For each question gs, in ()5, collect all its paraphrases (),, from corpus.

After Qs and {Q),} have been collected as material, each pair of (gs,, qpij) can be used
to generate one paraphrase for the input question. The general process has three steps:

1. Align gippu with g,

In this step, ¢input needs to be aligned with ¢5,. As they share same structure ¢, the
alignment is quite straight forward. For each tag in ¢, the corresponding word in g,
is aligned to the corresponding one in g,y If the tag in ¢ relates to a dependency
tree of words, the corresponding word/tree can be aligned hierarchically.

2. Get the transformation operations op;; between ¢,, and pi,

In this step, the transformation operations op;; is computed by the method in Sec-
tion and stored in Q PairToOps, during corpus processing part. The op;; contains
3 parts, a keep list, an insertion list, and a deletion list. The keep list records the
alignment of kept words from g, to Ui, » and the insertion list records the words and
their indexes in the “template” of Qpi, - These two lists will be used in the next step.

3. Apply OPij ON {input

With alignment from gs;, to Ginput, the transformation op;; between g, and Gp;, can
be applied on @npue, to generate its paraphrase. The algorithm is shown below in

Algorithm [3]

26

Input:
® (input, an Input question.
® ¢,,, a question in corpus that has the same structure of gi,pu:.
® G, A question in corpus which is a paraphrase of gs;,.
e Alignment, a map from the indexes in g,, to the indexes in gyt

e Keep, a map from the indexes in Opi, to the indexes in g, for all words kept
from gs; to gy, -

e [nsertion, a map from the indexes in Upi, to the corresponding words which
are in the “template” of Qp, -

Output:

® g, the generated paraphrase

Gg,, = DEW ArrayList(len(qpij))

2 for each idx in Keep.keys() do

(= I

‘ dg;, [idx] = Ginput[Alignment (K eep(idx))]
end
for each idzx in Insertion.keys() do
‘ Qg,, lidz] = Insertion(idx)
end
return Ay,

Algorithm 3: Transformation operations application

Because of the limited corpus, sometimes there is no question in the corpus that matches
input question in structure. In such cases, we temporarily crop the input question to its
longest substring (ginput! = Qinput|[i1, i2]) that can get matched in structure, for generating
paraphrases, and recover the results (@),/) back to the complete form (qgij = Qinput [0, 1] +
qg,,! + Qinput[i2, 1€n(Ginput)]). For example, the input sentence “f£(In) It 3% (Beijing) 1t
2 (what) #77 (place) H (has) 3E(sell) i X (pufferfish)” matches to nothing in corpus, but
“ft 4 (What) #77 (place) A (has) £ (sell) Vi K (pufferfish)” can match some sentences with

same structure in corpus and generate sentences like “F(I) Z(go) WB(where) §E(can) iz
#l|(eat) AKX (pufferfish)”. Thus, it completes “F(I) Z(go) WF(where) HE(can) IZ % (eat)

27

A K (pufferfish)” to “7E(In) 4LIR(Beijing)$(I) 2% (go) MB(where) E(can) MZ F|(eat) 0]
K (pufferfish)”, as a paraphrase to the original input.

4.6 Paraphrase Representation

In the paraphrase generated, each word contains both the word content itself, and its
tags, including POS tag and functional tag. If all this information are provided as the final
result, the paraphrase can be very confusing. Conversely, if it only keeps the word contents,
there may be some incorrect words involved, and the paraphrase can also be confusing. So
in order to make it readable, we need to represent each word with one thing, either the
word content, or one tag. The principle of the representation is, if the word is certainly
reasonable being in the sentence, represent it with itself, if not, represent it with its most
detailed tag.

For example, for the input “/& % (How to) fil{F(make) B (keys)”, it matches to “ /&
2 (How to) & (cook) ZLJE N (pork)”, with paraphrase “4LJ% Al (pork) HI([auxiliary]) &
Wi (cooking) J7 ¥ (method)”. Then the generated paraphrase will be “$A7 (keys) B([auziliary])
=i (cooking) J7¥%(method)”. Apparently, we cannot “cook keys”, instead, the correct
one should be “make/produce/manufacture keys”. Our approach is not able to learn the
match between “make/produce/manufacture” and “keys”. In this kind of cases, we repre-
sent “cooking” as just a “verb”, so that the generated paraphrase will look like “$H#L(Keys)
HI([auziliary]) <BhiA (verb) > J71%(method)”. Though it is not an accurate result, at least
it gets less confusing to the editors who can easily fill “ffl{E(make/produce/manufacture)”
into the slot “<Zf1iF(verd) >”

To implement this principle, the particular rules are:
1. For the following kinds of words, represent it with itself:

i. The words copied from input sentence
ii. The words with some certain POS tags
iii. The commonly appearing words
iv. The words which are very similar to one of the word in gnpu:

v. The words which have very low similarities to any of the words in ¢,
2. For all remaining words with functional tags, represent with their functional tags.

3. For all remaining words, represent with their POS tags.

28

4.7 Paraphrase Ranking

A lot of paraphrases can be generated from the previously mentioned procedures in Sec-
tion [4.5] but usually not all of them are correct. For here, the correctness means the
paraphrase is a question with same semantics to the original question and is a reasonable
question sentence in natural language which can be potentially ask by human users. In
this case, we rank all the generated paraphrases by their probabilities of being correct.

As we mentioned in Section [3.4] the semantics similarity between the words in input
question and the words associated to the variation operations influences the probability
of the input question being paraphrased by such operations. E.g., “Z {22 (Toronto) W
H (where) H (has) =Z(sell) ¥ (lobster)” may not able to apply the transformation op-
erations that from “4#%J(New York) W& (where) H (has) It(play) 1# Z (skiing)” to its
paraphrases, for generating paraphrase, as these two sentences are not that similar in se-
mantics. Specifically, we assume that more similar the question gi,p. and gs, are, more
likely the generated paraphrase g, is correct. Therefore, we give similarity scores to all
the generated paraphrases. The similarity score is calculated by following formula.

SCOT € similarity (qgij) = sentence_similarity(ginput, qs;)
Yot weight(P)T; (4.1)
=T, weight(P)

In above formula,

n = the number of tags in structure of ginpus

w(P;) = the weight of i POS tag in structure of ginpu

For word similarity calculation,

T, = the similarity of the i*" pair of alignment between Qinput and g, .

When the i¢™ to iy, " words in g, are aligned to the jo™ to ji,"™ words in ¢, (happens
in aligned dependency trees),

T: = maXiclig,iy,], j€lorjk,] word_similarity(¢input[?], gs,[J])

In above formula,

29

1 Wy = Wp
word_similarity(wa,wy) = ¢ 0.9 wa and wpg are synonyms (4.2)

1 .
W T Py otherwise

wy(wa, wp) = the cosine similarity between w4 and wg according to Word2Vec (4.3)

Also mentioned in Section 4.4} in the transformations, the words in insertion or deletion
lists may be semantic-irrelevant words, or part of “templates”, or unrecognized substitu-
tions. So these words may affect the reasonableness of generated paraphrases. Specifically,
if the newly inserted words in generated paraphrase Gg;, are reasonable to be in the sen-
tence, they should be either semantically-irrelevant words, or part of “templates”, or have
enough relevance with input sentence. In the first two cases, such words should have very
low relevance to the question ¢, and in the third case, these words should have high
relevance to the input sentence gippu-

For example, the generated question “JtJE(Beijing) f([auxiliary]) 7F 7 (sushi) 2
[l (resort) H (has) WF£E(what)” in Section is a negative example. The word “Z
bl (resort)” is newly inserted during generation, but it has relatively high relevance to
the word “VBE (skiing)” in ¢,,, and it has low relevance with any word in gpu, S0 We con-
sider it as a word that highly related to ¢, and pi,» which makes the generated question
a bad result. Thus, we use following formula to calculate the reasonableness scores.

Bag,of,words,similarity(Tqmput ’quij)

SCOT Creasonablencss = Max(Bag-of words similarity(Ty,, Tag,) 1) (4.4)

Tyipe = All words in gy, Which are not copied to gy, (4.5)

T,., = All words in g;, which are not copied to g, (4.6)

quij = All words in dg,, which are not copied from gjnpu (4.7)

Bag_of words_similarity(Ty, Ty) = w,(>_ all words in 77, all words in T3) (4.8)

Another way to calculate the reasonableness of a sentence is N-gram language model
[11]. Such model usually can be used to check whether a sequence of words is a reasonable
sentence, but in our approach, it is more important to calculate how reasonable the para-
phrase is generated from the input, instead of how reasonable the paraphrase itself is. So
mining the information from generation procedures should be a more accurate solution to
this.

30

In addition, we give a confidence score for each paraphrase, which implies how cer-
tainly the paraphrase is generated. The results like “<#b 5 (place) > BI([auziliary]) <%
1] (noun) > <318 (verb) > WL (what)” will be too general and confusing to the pattern
editors to use. In our method, the words copied from input sentence mean more certainty
than the newly inserted one, and the words represented as words themselves or functional
tags mean more certainty than the ones represented as POS tags. So the formula for
confidence score is:

> yweight(Py) R(w;)
SCOT €con fidence = i)?:o weight(P;) (49)
n = number of words in gy, (4.10)
weight(P;) = the weight of i* POS tag in dg,, (4.11)

1 if w; is copied from ginpu

0.8 if w; is not from ¢, but represented as itself
0.9 if w; is represented as its functional tag

0.5 if w; is represented as its POS tag

R(w;) =

Finally, the similarity score, reasonableness score and confidence score are generalized
as one score, by the formula below, for ranking all the generated paraphrases.

SCOT Epperall = Scoresimilarity : \/SCOTGTeasonableness : \/SCOTeconfidence (413)

In our experiment, the paraphrases with negative scores are removed.

4.8 Pattern Merge

Although ranked and filtered, the amount of generated paraphrases still have potential to
get reduced for better readability. In the pattern expressions in CFG that we use for the
pattern-based match, each expression can contain multiple patterns. Like the example in
Chapter 2] the expression “What’s|(What is) [the] weather [like] [< time >, < location >]”
contains 32 kinds of questions, such as “What’s the weather like < time >< location >,
“What is the weather < location >< time >", etc. Thus we can merge the generated
paraphrases into pattern expressions, to improve the readability.

First, all the identically duplicated paraphrases are removed. Then for each paraphrase,
we consider it as a pattern expression that contains a sequence of words, both essential

31

and “optional” ones. So we use some manually defined rules to recognize for the words
that are optional to appear in any kinds of question sentences, and label these words as
optional in expressions. For example, if we generate a paraphrase “what is the weather
like in Waterloo”, the words “the” and “like” are considered as optional, thus the pattern
can be like “what is [the] weather [like] in Waterloo”.

To merge the pattern expressions, we compare the expressions thought the generated
ranked list of patterns. If one expression can transform to another, by only adding or
deleting or substituting one word or a few consecutive words, they can be merged into one
expression. For example, the paraphrases “What is the population of Beijing” and “What
is the population of the city of Beijing” can be merge into “What is the population of [the
city of] Beijing”. With this rule, the correctness of expression is not decreased because no
other irrelevant paraphrase is concluded in the merged expression.

Considering that too complex expressions are very confusing to read, we set a limitation
that at most two paraphrases can merge as one expression.

32

Chapter 5

Evaluation

There are no standard methods to do evaluation for paraphrase generation. Most of related
existing works are evaluated manually, so is our work. In the field of Chinese QA, there is
no similar system that generates paraphrases to improve the coverage of question analysis
module. So instead of comparing with other approaches, we focus more on evaluating how
much assistance our method can provide to the pattern writing in question analysis.

Preparing for the experiment, we collect 3424 question sentences as corpus, which are
in 848 clusters of paraphrases, and each cluster has 4.038 questions in average. After
preprocessing the corpus, we cluster all questions in 2082 kinds of structures, and each
kind of structures has 1.645 question instances in average. Figure [5.1] and Figure [5.2] show
the distribution of structures and their corresponding paraphrases.

33

Num of Clusters

Num of structures

10000

450

400

350

300

250

200

150

100

1000

100

Num of Questions / Structures

1 2

~10 11~20 21~30 31~40 41~50
Num of questions in one structure

Figure 5.1: Number of Questions per Structure

Cluster size

Cluster size

Figure 5.2: Cluster Size

34

>8

>50

Our test cases are 150 question sentences randomly extracted from our CQA database.
The statistics of test cases are shown below in Figure [5.3] Table [5.1] and Table [5.2

Question Length
30

25

10
5 I I I
0
<4 4 5 6 7 8

Question length (words)

Percentage
=
w

Figure 5.3: Lengths of Testcases

Table 5.1: Types of Test Questions

Category | Phrase | Yes-no questions | WH-questions
Percentage 7.3 13.3 79.3

Table 5.2: Simple Questions / Complicate Questions

Category | Simple | Complicate
Percentage | 21.3 78.7

The evaluation has done in five main aspects.

1. The correctness (Precision) of generated paraphrases

2. The coverage (Recall) of generated paraphrases

35

3. The effectiveness of ranking algorithm
4. The performance of generation process

5. How does the scale of the corpus make the influence

5.1 Precision

As only the correct paraphrases can help in the question analysis, we need to evaluate the
correctness of the generated paraphrases.

For the requirement of our application, the generated paraphrases are used in pattern
matching. A possible question with incorrect grammar should still be able to get matched
in some cases, so covering this kind of cases is helpful to expand the coverage of question
analysis. On the other side, if sentence is apparently impossible to be a question, it won'’t
be matched in any case, which is useless and confusing to the pattern editors, but barely
harmful to the performance of question analysis. For the worst, the sentence with different
semantics might wrongly match another different question, which is harmful and can lead
to mistakes in question analysis.

Inspired by this, all the generated paraphrases can be classified as 3 types:

Type 1. Sentence that has same semantics to the input, and can be a possible question,
even it is not in proper grammar

Type 2. Sentence that is not grammatically correct and is not a possible question.

Type 3. Sentence that has reasonable but different semantics to the input

For example, for the input “IE#f(Correctly) 1% (use) F.5/I(electronic) ZF il (toothblush)
#([auzxiliary]) 771%(method)”,

o “/EFE(How to) 1EHf(correctly) 1 (use) FLB/(electronic) 7 kil (toothblush)” - Cor-
rect

o “IEMffi(Correctly) 1 F(use) i Bf(electronic) 7 Mill(toothblush) HJ([auziliary])
% (procedures) #H (have) {14 (what)” - Correct

o “7E(At) HBfi(electronic) ZF Hill(toothblush) 73 (method) 4{Al (how)” - Useless

36

o “Hi3f)(Electronic) ZF il (toothblush) H([auziliary]) #4b (benefit) #H (have) {4 (what)”
- Wrong

In addition, as we mentioned in Section , the words/phrases in generated paraphrases
sometimes are represented as functional tags or POS tags. Such tags need to be interpreted
to specific words/phrases, by human editors, in practical application. So if the tags in a
generated paraphrase can be interpreted to some words/phrases which make the paraphrase
sentence “correct”, the paraphrases will be labelled as “correct”.

In our approach, the generated paraphrases are concluded as expressions in CFG. So
the correctness of these expressions can be evaluated as 3 levels:

1. The expression is correct, that means, at least one of the possible paraphrases contained
in the expression are of Type 1, and none of them is of Type 3.

2. The expression is useless, that means, all the possible paraphrases contained in the
expression are of Type 2

3. The expression is wrong, that means, one or more of the possible paraphrases contained
in the expression are of Type 3

The results of correctness evaluation show as in Table 5.3 and Table [5.41

Table 5.3: Paraphrases Numbers

Number of paraphrases generated | 0 |1 ~5|6~10| 11 ~20 |21~ 30| > 30
Percentage of test cases 17.3 26 12.7 26 8.7 9.3

Table 5.4: Precision

Avg. Paraphrases | Avg. Patterns | Correct% | Useless% | Wrong%
Overall 17.97 14.67 51.79 37.07 11.13
For top 5 patterns - - 70.42 22.32 7.26
5.2 Recall

Except for the correctness, we also want the generated paraphrase to cover as many of
potential paraphrases as possible. Thus we define the recall of our approach as:

37

I |potential questions asked by human users N generated paraphrases|
recall =

5.1
|potential questions asked by human users| (5:1)

It is impossible to enumerate all the potential paraphrases and even the number of
them is unknown. In order to evaluate the recall, we approximate it by using handwrite
paraphrases as the samples of all potential paraphrases. Thus the definition of recall has
been modified as:

|handwritten paraphrases N generated paraphrases|

recall = (5.2)

|handwritten paraphrases|

In the experiment, the number of human written paraphrases of each test case is not
fixed, as for some questions, its not easy for human to come up many paraphrases. The
results of coverage evaluation show as below in Table [5.5]

Table 5.5: Recall

Avg. paraphrases | Avg. correct paraphrases by Recall (%)
by human automatic generation Overall | For top 5 Patterns
2.66 7.60 22.8 15.5

When the CFG expressions are used in pattern-based matching, with custom built
synonym dictionary, most of words can match their synonyms. So this can improve the
recall in actual use.

For example, for the input “#F IE(Straightening) 7 14 (teeth) % (need) % /%% (how
much)”, there is a paraphrase “}f1E(Straightening) 714 (teeth) BJ([auxiliary]) Y (price
level) #&(is) Z/D(what)” written by human. If our system has generated a paraphrases
as “BFIE(Straightening) 714 (teeth) #([auxiliary]) & (price) & (is) /> (what)”, and
“Uir 4% (price)” / “M fi (price level)” are defined as synonyms in dictionary, this generated
paraphrase can match the human written one.

In addition, there are some pre-processing in our pattern-based matching, so that the
differences in some words/phrases in questions can be ignored.

Re-evaluated with the synonyms and the pre-processing, the results are shown in Ta-

ble B.6l

38

Table 5.6: Recall with Synonyms

Recall (%),
Avg. paraphrases | Avg. correct paraphrases by with synonyms and pre-processing

by human automatic generation Overall For top b Patterns

2.66 7.60 35.6 24.6

In order to compare to human editors, we also evaluated what coverage human editors
can have. We invited 11 editors to handwrite paraphrases for half of our testcases (time
limit is 5 min per one testcase), and see how many of handwritten paraphrases we used
above for recall evaluation can be covered by these human editors. For this evaluation, the
formula of recall is:

|lhandwritten example paraphrases N paraphrases written by 11 human editors|

recall =
|handwritten example paraphrases|

(5.3)
This coverage can be considered as the baseline of recall. Table shows the results.

Table 5.7: Recall by Human

Avg. paraphrases | Avg. paraphrases by Recall (%)
by human in above | 11 human editors . With synonyms
Original :
and preprocessing
3.08 4.28 6.9 19.0

5.3 Scoring

In Section we mentioned that the generated paraphrases are given scores and ranked,
to approximately represent their different probabilities to be a proper paraphrase to the
input. In Section [5.1], we evaluated the precision of the generated paraphrases by labelling
them as “correct”, “useless”, and “wrong”. Ideally, if the paraphrases are scored correctly,
the paraphrases with high scores are more likely to be “correct” ones, in opposite, the
“useless” and “wrong” ones should have relatively lower scores.

The relation between paraphrases scores and their precision labels are shown in Fig-

ure 5.4l

39

Score-Precision Distribution
700

600
500
"
]
© 300
£
3
2 o wrong
o
5 W useless
= 300
=1
2 B correct
200
100 I
, . H _ BN

(0.0,01] (0.1,0.2] (0.2,0.3] (03, 04] (0.4, 05] (0.5,0.6] (06,0.7] (0.7, 0.8] (0.8, 09] (09, 1.0]
Scores

Figure 5.4: Precision-Score

5.4 Performance

On average, each test case takes 4.9031 seconds to generate all the paraphrases in our
current implementation. Figure and Figure below show the stats for the running
time of our implementation.

40

Time vs. Question length

NOow W s s
an & o & U
[]

Time (sec)
8
LN
L

i
Sl

=
o
L]

Sl

o
s D00 S0 ¢ o

6 12

Length of input question (Num of words)

Figure 5.5: Time / Question Length

Time vs. Num of generated paraphrases

45
40
°
35)
30
o
g— 25 . .
° .
ig 20 . o s
. L]
. .
15 r . N o .
10 L] . L] (1] L . L . .
. ® o0 oo o« * °
’ X 5:0 The e e
" @
0 .M!'
0 10 20 30 40 50 60 70 80 90

Num of generated paraphrases

Figure 5.6: Time / Number of Generated Paraphrases

41

[]
. ! .
Ltioi.ioi
8 10

14

100

In another aspect, the automatically generated patterns sometimes contain the tag
representations. As such tags have to be interpreted by manual work, too many tags in
one pattern will be both inefficient and confusing to human editors. For current approach,
each pattern has 0.669 tag representation, and for the top 5 patterns, only 0.510 tag
representation in each of them.

5.5 Scaling

As mentioned in Section the corpus can be expanded during application, by selecting
(with or without modification) the generated paraphrases as corpus. In such expansion,
the total amount of questions in corpus will be increased, but it won’t bring new sentence
structure into corpus (when the transformation operation from ¢s to ¢, applied on ginput,
the structure of generated paraphrase g, is same as the one of g,, that no new structure
generated), so the amount of unique structures in corpus remains the same. Thus, we
need to evaluate how the expansion of corpus improves the precision and recall. Without
long-term application, its very hard to get enough expansion. So we scale down the initial
corpus with the total structure amount unchanged, in order to simulate different scales of
corpus.

Table 5.8 below shows the results.

Table 5.8: Scaling Influence

Corpus | Avg. Overall(%) Top 5 patterns(%) | Avg.
Scale | Patterns | Correct | Recall | Correct | Recall | Time
60% 2.6 60.7 9.3 64.3 7.3 0.9

80% 2.9 59.6 10.8 64.8 9.0 0.9

100% 14.8 51.8 35.6 70.4 24.6 4.9

42

Chapter 6

Discussion

6.1 Precision

The main purpose of this work is to assist human editors building up the pattern-based
matching system more efficiently, so in the actual application, all the generated para-
phrases/patterns will be reviewed and the human editors suppose to pick the correct ones
and discard the useless or wrong ones. In this case, there is not a very high requirement
for the precision of generated patterns. Instead, some useless patterns are acceptable as
long as there are not too many useless or wrong patterns which confuse the editors.

The evaluation results shows that more than half of generated patterns are correct,
which means our method can generate more than seven (14.67 x 51.79% = 7.60) correct
patterns per input, on average. And about half (%&%} = 46.34%) of these seven
patterns are ranked in top five. Thus, we consider such results helpful to the editors with
not too much confusion.

13

Reviewing those generated paraphrases which are annotated as “useless” or “wrong”,

we find 5 main reasons that lead to those “mistakes”.

1. Error in POS tagging / dependency parsing:

For example, while the input

“XFE(this) B ([auxiliary]) BLE (configuration) BE(can) It(play) 14 (what) HAL(PC)
I (games)”

should generate a paraphrase like

43

“H (Has) 14 (what) BHL(PC) I (games) & A (suitable) 7E (in) 2 (this) B ([auziliary])
B & (configuration) It (play)”,

instead, the actual generated one is

X (this) F([auxiliary]) B (has) ft 4 (what) BAL(PC) iF# (games) i& A (suitable)
7E(in) BZE (configuration) I (play)”.

The mistake happens in the dependency parsing on “iX ¥ (this) HI([auziliary])
B & (configuration)”. In this phrase, “X#(this) F([auziliary])” describes “FC
H (configuration)”, that the phrase should have been considered as a whole.

. Tag sequence (without enough correct dependency information) does not equal to
sentence structure in all time, that sometimes two sentences with same tag sequence
have totally different sentence structures. In such cases, though ¢ has same tag
sequence as input, it should not be extracted and aligned. This kind of situation
happens a lot:

For example, the input

“US AL (Lose weight) 5% (most) B 2K (effective) ([auziliary]) 771% (method)”
matches to ¢,

“HH3E (Improve) 1E12 7] (memory)”,

since they share same tag sequence of “< verb > < noun >” (“&(most) H %X (effective)
#([auziliary]) 77 % (method)” is considered as a whole noun phrase that aligns to

“I212. 77 (memory)™).

Apparently, they are in totally different structure, that ‘1242 7] (memory)” is the ob-
ject of “ 458 (Improve)”, but “JAE(Lose weight) 5 (most) 4% (effective) Y ([auxiliary])
J7 1% (method)” means “the most effective method to lose weight”. So in this case,
they should not be matched and aligned.

. Though two sentences have same sentence structures, the transformation operations
which work for one shouldn’t be applied to the other one. This is mainly because some
transformation operations are more related to the specific word semantics, instead
of sentence structure. By our observation, this is the major reason of generating
“useless” or “wrong” paraphrases. Our ranking algorithm suppose to prevent these
cases from appearing in top ranks, but sometime the word similarity calculation tools
used in ranking are just not that precise.

For example, the input

“Ht IE (Straightening) 4 (teeth) F([auxiliary]) & (price) & (is) Z/>(what)”

44

matches to g,
I (Ant) B ([auziliary]) B&(leg) F([auxiliary]) %1 B (amount) £ (is) 2/ (what)”.
With paraphrase Ui,

“BE 8 (Ant) —f% (usually) A (has) JL>(how many) i (legs)”,
it generates
“Hf IE (Straightening) —#%(usually) (has) JL>(how many) 74 (teeth)”

This is obviously an incorrect result. Between ¢, and Gy, » the transformation from
“BR(leg) WI([auziliary]) £ H (amount) &&(is) % />(what)” to “H(has) JL*(how
many) i (legs)” is related to both the word “ £ H (amount)” and the sentence struc-
ture. So such transformation should not be applied on gi,put, since gippur does not
have same topic (asking amount of something) with gs.

. In representation, due to the incorrectness of the word similarity calculation tools or
other reasons, the words are not represented properly:

For example, the input

“E 4 (How to) EH (look up) %5 G (civil servant) % it (exam) W([auziliary]) 15
& (information)”

with a O,
24277 (memory) AF (not good) [EFF(how) BE(can) 43 (improve)”
generates a paraphrase

“N 5 B (civil servant) 15 (exam) B ([auziliary]) 88 (information) A (not good)
/B (how) BE(can) FEF (look up)”

The result does not make sense unless the word “fNif-(not good)” changes to some-
thing like “4N/F 2 (unknown)”. In this case, our approach is not expected to generate
words like “ B (unknown)”, but representing the word as “ ANiF (not good)” is
still wrong here. Instead, there should be represented as “<negative adjective>".

. When a same-structure question (gs) cannot be found for some questions in corpus,
their substring are extracted for paraphrase generation, but the paraphrases of their
substring are not correct when get completed in full. This also happens a lot:

For example, for the input
“DIAEZAR (Dietic tea) Z(need) /EFE (how to) #EHL(go with) Hx(most) & (reasonable)”,

45

its substring

“PIAEZR (Dietic tea) (need) /EFf(how to) F&HL(go with)”

matches to ¢

“TBRIN (Pork) % (need) /B2 (how to) fifl(cook)”.

Then it generates

“UHAE 2% (Dietic tea) H([auziliary]) < noun >". (Phrases like “F& AL /7 1% (mix
method)” could be filled in < noun >)

which can be completed as

“WIAEA (Dietic tea) B([auziliary]) < noun > #x(most) &3 (reasonable)”

The result is an “useless” one. The paraphrasing between “ {i %% (Dietic tea)
F(need) /EFF(how to) F&HL(go with)” and “ VW E %R (Dietic tea) HI([auwiliary])
< nmoun >" is correct, but when in whole sentence of “U#fEZ%(Dietic tea) 2% (need)
EFE(how to) F&HC(go with) f(most) A H (reasonable)”, the such paraphrasing can
not lead to a correct result.

Besides, the evaluation shows that for 17.3% of inputs, it generates nothing, and for
9.3% of inputs, the amount of generated patterns might be too large for human editors to
use.

By analyzing the test cases, we find that for all those 17.3% of inputs which generate
nothing, they cannot be matched to any same-structure question in corpus. There are
three main reasons causing that.

1. Error in POS tagging:
For example, the input
“—7& (one) 5 (high-school) #J#E (physics) 7 (problem)”
which cannot matches any ¢, from corpus, is tagged as:
“< adverb > < noun >"

which is wrong. If “< adverb >” can be correctly tagged as “< quantifier >” it
should be able to correctly match a ¢,

“—(some) I HI(good) E ™ (domestic) MV(MV)”.

46

2. Some structures are similar and should be alignable, but in our implementation they
are considered as “different”:

For example, for the input
“BX(Dry out) 3k & (hair) B (before) 7] LA(can) 1% (make up)”,
there is a question in corpus that has a similar but different structure
“H(Right after giving birth) H(in) AJ LA(can) fZ(eat) JE3 (leek)”.
They should be able to align, but in our evaluation, the input cannot find any g¢;
since there is no “same” structure appeared in corpus.
3. There is not any similar structure in corpus:
For example, for the input
%M (Law) #(and) 23T (accounting) (1) R1% (should) 1% (choose) AF—1~(which)”,
the most similar structure appeared in corpus is
“H1 5 (Earthquake) B (during) FA1(we) Ni% (should) f#(do) £ (some) ft 4 (what)”
which is totally different.

For these cases, there just has nothing as ¢, in corpus.

From these observations, there is still considerable work to do to improve the precision in
the future. With our current approach, there are three aspects of potential improvements:

1. Enlarge the scale of corpus. More questions in corpus can cover more structures of
input questions, and generate more paraphrases. With more possible paraphrases
generated, we can rise the scoring threshold to get higher precision, with maintaining
a reasonable amount of generated patterns.

2. Use better tools for segmentation, POS tagging and word similarity calculation, to
reduce the mistakes that caused by these tools.

3. Improve the dependency parsing. The dependency parsing in our current implemen-
tation is quite sketchy, with only some simple combination rules. Such dependency
parsing has caused a lot of mistakes. If we can do better of this, or use other better
methods to represent and align the structures of sentences, the precision could get
improved greatly.

47

Still, the major problem in current approach won’t be solved by the methods above.
As we find that the paraphrasing is related to both sentence structure and word semantics,
a machine learning model should be useful to learn such relations and provide higher
precision. In learning model, the current inferred transformation operations constraint the
diversity of generated paraphrases as it considers the sentence structure as a whole, instead
of more fine-grained sub-patterns. For example, the paraphrases pair

“/TI A (Pork) /B4 (how to) f#l(cook)”
“15 (Please) 1§ (tell) F(me) ZLEEA (pork) B ([auziliary]) % (recipe)”

has contained two kinds of information:

1. < food > /B (how to) fil(cook) < < food > HI([auxiliary]) i (recipe)

2. 15 (Please) & 1fF(tell) F(me) <a question sentence> < <a question sentence>

Such information isn’t reflected in our current transformation operations, and current
definition of sentence structure does not support this kind of information. If we can refine
the transformation operations as separate ones like above, and represent the sentence
structures in fine-grained sub-patterns, more diverse paraphrases should be generated.

6.2 Recall

Since the generated patterns are used to cover the natural language questions, it is more
important to evaluate how much of questions that potentially asked by human, can be
covered by the generated patterns. So the recall evaluation mainly reflects the improvement
of coverage brought by our work.

The evaluation results show that the generated paraphrases can cover 22.8%/35.6%
(without/with synonyms or preprocessing) of our example questions. This is not a very
high coverage. But with the baseline comparison evaluation done by human editors, we
find it even a much harder task for human, that for each testcase, human editor can
generate only 4.28 paraphrases in 5 minutes on average, and these paraphrase can cover
only 6.9%/19.0% (without/with synonyms or preprocessing) of human written examples.
So at least our system can outperform and assist the human editors by giving a much
better coverage.

In average there are more than seven correct patterns generated per input, but these
patterns can only cover a very small part of human written questions. Several reasons
cause this.

48

1. Many correctly generated patterns are in similar structure. For example,

“BIR1>(Which) i (brand) 1A RN (laptop) HLELF (better)”

o “BB>(Which) ff# (brand) B ([auxiliary]) LA (laptop) HLEREF (better)”
o “ft 4 (What) fifi#(brand) H([auziliary]) ZiCAH K (1aptop) I (good)”

o “BF~(Which) fké (brand) BI([auziliary]) ZICAFEN (laptop) #F(good)”

are four generated paraphrases for one input, but they are so similar, even with same
structure. So, in fact, there are less than seven “unique” structures covered by those
seven correct patterns.

2. In many cases, a long phrase is considered a whole, which stay unchanged in all
generated paraphrases. This restricts the diversity, and coverage of generated results.
For example, in

o “H(Has) INiE (bad track) f([auziliary]) fE L (hard disk) & (recover) J5 (after)
R (data) 18(still) 7E(be there)”
o “BfH(Fuyang) #J([auxiliary]) & (broadband) B % (plan) FrfE(standard)”

the phrases “H(Has) Ni&(bad track) F([auziliary]) B & (hard disk)” and “F
T (broadband) %% (plan) #Rif(standard)” are all considered as unchanged wholes.

3. For more common cases, the low recall is just simply because none of the generated
paraphrase is of same structure with human written examples, which means there is
no question that both covers such structure, and paraphrases with any ¢, in corpus.

The top 5 ranked patterns has a recall of 15.5%, that first half of correct patterns
provide about two-third (%ggz = 67.98%) of coverage. It means that high ranked patterns
not only have better precision but also are more likely to be useful in covering.

With the synonyms involved, the recall has improved to 35.6%. This improvement
(22.8% — 35.6%) indicates that the phrasal substitution provides relatively less help in

coverage, compare to structure variations.

To generate more diverse paraphrases which provide better coverage to potential user
questions and improve the recall, obtaining larger corpus should be the main task. Besides,
currently many generated patterns are similar to each other, so merging such cases can
also make the results less confusing. Also, the idea mentioned in Section which based
on machine learning should be helpful in generating more variations in paraphrases, as well
as solving the problem that some long phrases stay unchanged.

49

6.3 Scoring

From the results, we can see that the score of each paraphrase works well for ranking. Basi-
cally, paraphrases with higher scores do have higher precision, so such correlation between
scores and precision does make the correct paraphrases appear in higher ranks. But as the
scores distribution shows, the majority of generated paraphrases are with relatively low
score, where the correlation between score and precision is not that significant. Thus, with
this scoring strategy, the high-ranked patterns are usually correct with better confidence,
while the remaining parts might not be properly ranked.

Currently, the parameters in formulas that we used for scoring are estimated based
on observation. In the future, involving some machine learning methods like Learning to
Rank [26] may help giving more reasonable scores for ranking.

6.4 Performance

On average, the generation of one input question takes nearly 5 seconds, which is quite
acceptable as an offline assistance for human editors. For the cases which can generate
larger amount of paraphrases, the running time increases linearly.

6.5 Scaling

The scaling experiment has evaluated the precision, recall, and performance with reduced
corpus. By evaluation results, we can estimate how the precision, recall and performance
will change after the corpus accumulates during the application.

With the accumulation of corpus, the average amount of generated paraphrases in-
creases greatly, and such increase helps to produce better coverage (with paraphrases
amount increases by 5.7 times, the recall increases by 3.8 times). As for the precision,
larger the scale of corpus is, more useless and wrong paraphrases are generated, that the
precision is slightly decreased by the increase of corpus. When with more corpus and more
generated paraphrases, our ranking strategy works better to rank and gather the correct
paraphrases into the top ranks, that the precision of top 5 ranked patterns is slightly raised
in larger scale of corpus. Unfortunately, the increased amount of generated paraphrases
also linearly lowers the performance.

20

Thus, we guess that if the corpus can be accumulated during use, more patterns/praphrases
can be generated, the coverage can get better. At the same time, to maintain an acceptable
precision and performance, better scoring algorithm and some pruning work may help.

ol

Chapter 7

Conclusion

Our previous work has built up a pattern-based matching module for question analysis in
the QA system. This module uses handwritten patterns to match and analyze user’s input
questions. So far the patterns are all written by human editors, and such work is not only
too costly, inefficient but also having low coverage with errors.

In this thesis, we intend to use paraphrase generation techniques to assist human editors
to create patterns for the pattern-based matching module, that with input questions in nat-
ural language, human editors only need to select from the generated paraphrases/patterns
as patterns for matching. This is expected to make the pattern writing more efficiently and
provide a better coverage to cover potential questions, even some ungrammatical queries,
in the QA system.

Despite the limited corpus and the lack of dependency parser, we propose an approach
of generating paraphrases in Chinese. In this approach, we introduce a method for inferring
the transformation operations from a question to its paraphrases. This method infers the
transformation operations by extracting common parts in paraphrases pair from original
question and filling the common parts into the structure “templates” of the paraphrase.
We also introduce a representation of sentence structure. This representation represents
the structure of a sentence as a sequence of tags, that the tags are either POS tags or
more detailed “functional” tags, and each of them sequentially relates to a word or a
phrase in the sentence. In addition, with some simple tag combination rules, we merge
some consecutive tags into a dependency tree for easier comparison and alignment between
structures. Thus, the sentences with same structure can align with each other. Based on
the transformation operation inference method and the sentence structure representation,
our approach of paraphrase generation takes a question as input, extracts all the questions

o2

with same structure to the input question from corpus, and applies the transformation
operations, which inferred from the extracted questions to their paraphrases, on the input
question to generate its paraphrases.

We implement the approach of paraphrase generation we propose. The corpus contains
both handwritten paraphrases and paraphrases extracted from CQA database. Except for
generating paraphrasing based on the our approach, we also rank the generated paraphrases
by scoring each of them on the semantics similarity between input question and extracted
same structure question, and the reasonableness and certainty of the paraphrase. Thus, the
paraphrases that are more likely to be correct are ranked in front of the others. Besides, for
the use of pattern-based matching, some of the words in the paraphrases are represented
as their tags to reduce the error, and the generated paraphrases are reformulated into
patterns to improve the coverage and readability.

In evaluation, with 3424 questions in corpus, we generate 14.67 patterns (merged from
17.97 paraphrases) for each of the 150 test input questions on average. 51.79% of the
generated patterns are correct. To simulate potential question asked by users, we handwrite
399 paraphrases examples for the 150 test input questions, and our generated patterns can
cover 35.6% of them which simulate potential user questions, while human editors can only
cover 19.0%. We evaluate the performance of our implementation, that the generation
takes 4.9 seconds for each input question on average, which is quite acceptable for an
offline assistant. The ranking method used in implementation is also evaluated as effective
that the correctness of generated paraphrases has a significant positive correlation to their
scores. As the corpus can be expanded during application, we scale down the corpus,
then from the evaluation results we estimate that the expanded corpus should benefit the
coverage and ranking accuracy.

The evaluation results indicate that compared to human editors, our approach can
provide a much better coverage to human asked questions by generating paraphrases with
acceptable precision. Therefore, Our approach is effective to assist human editors to build
up the pattern-based matching module more efficiently. Meanwhile, the case analysis shows
that the accurate paraphrasing is still a very difficult task. The structural and syntacti-
cal variations in paraphrasing are complex and flexible. Neither the sentence structure
representation nor the transformation operation inference we propose is able to represent
the true nature of paraphrasing. So we think that based on large scale of corpus, some
machine learning approaches with fine-grained representation of sentence structures and
transformation operations might learn more of the mechanism in paraphrasing.

23

References

1]

Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. The Question Answering
Systems: A Survey. International Journal of Research and Reviews in Information
Sciences, 2(3):211-221, 2012.

Yoav Artzi, Nicholas FitzGerald, and Luke S Zettlemoyer. Semantic Parsing with
Combinatory Categorial Grammars. ACL (Tutorial Abstracts), 3, 2013.

Jason Baldridge. Lexically specified derivational control in combinatory categorial
grammar. 2002.

Henk P Barendregt and Erik Barendsen. Introduction to lambda calculus. Nieuw
archief voor wisenkunde, 4(2):337-372, 1984.

Regina Barzilay and Lillian Lee. Learning to paraphrase: an unsupervised approach
using multiple-sequence alignment. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human Lan-
guage Technology-Volume 1, pages 16-23. Association for Computational Linguistics,
2003.

Charles H Bennett, Péter Gacs, Ming Li, Paul MB Vitanyi, and Wojciech H Zurek.
Information distance. Information Theory, IEEE Transactions on, 44(4):1407-1423,
1998.

Matthew W Bilotti, Boris Katz, and Jimmy Lin. What works better for question
answering: Stemming or morphological query expansion. In Proceedings of the Infor-
mation Retrieval for Question Answering (IR4QA) Workshop at SIGIR, volume 2004,
pages 1-3, 2004.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In

o4

[10]

[11]

[12]

[15]

[16]

Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data, pages 1247-1250. ACM, 2008.

Igor A Bolshakov and Alexander Gelbukh. Synonymous paraphrasing using wordnet
and internet. In Natural Language Processing and Information Systems, pages 312—
323. Springer, 2004.

Eric Brill, Susan Dumais, and Michele Banko. An analysis of the AskMSR question-
answering system. In Proceedings of the ACL-02 Conference on Empirical Methods
in Natural Language Processing-Volume 10, pages 257-264. Association for Computa-
tional Linguistics, 2002.

Peter F' Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and
Jenifer C Lai. Class-based n-gram models of natural language. Computational Lin-
guistics, 18(4):467-479, 1992.

Davide Buscaldi, Paolo Rosso, and Emilio Sanchis Arnal. A wordnet-based query
expansion method for geographical information retrieval. In Working Notes for the

CLEF Workshop, 2005.

Andrew Carlson, Chad Cumby, Jeff Rosen, and Dan Roth. The SNoW learning
architecture. Technical report, UIUCDCS, 1999.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of the
20th International Conference on Computational Linguistics, page 350. Association
for Computational Linguistics, 2004.

Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni. Paraphrase-Driven Learning
for Open Question Answering. In ACL (1), pages 1608-1618. Citeseer, 2013.

Guangyu Feng, Kun Xiong, Yang Tang, Anqgi Cui, Jing Bai, Hang Li, Qiang Yang,
and Ming Li. Question Classification by Approximating Semantics. In Proceedings of
the 2/th International Conference on World Wide Web Companion, pages 407-417.
International World Wide Web Conferences Steering Committee, 2015.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager,
et al. Building Watson: An overview of the DeepQA project. Al Magazine, 31(3):59—
79, 2010.

95

[18] Poonam Gupta and Vishal Gupta. A survey of text question answering techniques.
International Journal of Computer Applications, 53(4):1-8, 2012.

[19] Ron Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree
Hybrid. In KDD, pages 202-207. Citeseer, 1996.

[20] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. In-
ducing probabilistic CCG grammars from logical form with higher-order unification.
In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 1223-1233. Association for Computational Linguistics, 2010.

[21] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet Physics Doklady, volume 10, pages 707-710, 1966.

[22] Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics-Volume 1, pages 1-7. Association
for Computational Linguistics, 2002.

[23] Percy Liang. Lambda Dependency-based Compositional Semantics. arXiv preprint
arXiw:1309.4408, 2013.

[24] Percy Liang, Michael I Jordan, and Dan Klein. Learning dependency-based composi-
tional semantics. Computational Linguistics, 39(2):389-446, 2013.

[25] Dekang Lin and Patrick Pantel. Discovery of inference rules for question-answering.
Natural Language Engineering, 7(04):343-360, 2001.

[26] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3):225-331, 2009.

[27] David Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM (JACM), 25(2):322-336, 1978.

[28] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for Naive
Bayes text classification. In AAAI-98 Workshop on Learning for Text Categorization,
volume 752, pages 41-48. Citeseer, 1998.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[30] George A Miller. WordNet: a lexical database for English. Communications of the
ACM, 38(11):39-41, 1995.

o6

[31]

[38]

[39]

[40]

Santosh Kumar Ray, Shailendra Singh, and Bhagwati P Joshi. Exploring Multiple On-
tologies and WordNet Framework to Expand Query for Question Answering System.
In Proceedings of the First International Conference on Intelligent Human Computer
Interaction, pages 296-305. Springer, 2009.

Stefan Riezler, Alexander Vasserman, loannis Tsochantaridis, Vibhu Mittal, and
Yi Liu. Statistical machine translation for query expansion in answer retrieval. In An-
nual Meeting-Association For Computational Linguistics, volume 45, page 464, 2007.

Svetlana Stoyanchev, Young Chol Song, and William Lahti. Exact phrases in in-
formation retrieval for question answering. In Coling 2008: Proceedings of the 2nd
Workshop on Information Retrieval for Question Answering, pages 9—-16. Association
for Computational Linguistics, 2008.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems, pages 3104—
3112, 2014.

Johan AK Suykens and Joos Vandewalle. Least squares support vector machine clas-
sifiers. Neural Processing Letters, 9(3):293-300, 1999.

Jeffrey D Ullman. Introduction to automata theory, languages, and computation.
Addison Wesley Publishing Company, USA., ISBN, 10:020102988X, 1979.

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars. arXiv preprint
arXw:1207.1420, 2012.

Yu Zhang, Wei-Nan Zhang, Ke Lu, Rongrong Ji, Fanglin Wang, and Ting Liu. Phrasal
paraphrase based question reformulation for archived question retrieval. PloS One,
8(6):e64601, 2013.

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. Application-driven statistical para-
phrase generation. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 2-Volume 2, pages 834-842. Association for Computational
Linguistics, 2009.

Shiqi Zhao, Haifeng Wang, Chao Li, Ting Liu, and Yi Guan. Automatically Generat-
ing Questions from Queries for Community-based Question Answering. In IJCNLP,
pages 929-937. Citeseer, 2011.

57

	List of Tables
	List of Figures
	Introduction
	Related Work
	Question Analysis Techniques
	Paraphrase Generation Techniques

	Approach
	Objectives
	Sentence Transformation
	Sentence Structure
	Paraphrase Generation

	Implementation
	Overview
	Corpus Preparation
	Sentence Structure Extraction
	Sentence Transformation Inference
	Paraphrase Generation
	Paraphrase Representation
	Paraphrase Ranking
	Pattern Merge

	Evaluation
	Precision
	Recall
	Scoring
	Performance
	Scaling

	Discussion
	Precision
	Recall
	Scoring
	Performance
	Scaling

	Conclusion
	References

