
Stochastic Clearing Systems with

Markovian Inputs: Performance

Evaluation and Optimal Policies

by

Qishu Cai

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Management Sciences

Waterloo, Ontario, Canada, 2015

c© Qishu Cai 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis studies the stochastic clearing systems which are characterized by a non-

decreasing stochastic input process {Y (t), t ≥ 0}, where Y (t) is the cumulative quantity

entering the system in [0, t], and an output mechanism that intermittently and instanta-

neously clears the system. Examples of such systems can be found in shipment consoli-

dation, inventory backlog, lot sizing, shuttle bus dispatch, bulk service queues, and other

stochastic service and storage systems. In our model, the input process is governed by

an underlying discrete-time Markov chain such that, the distribution of the input in any

given period depends on the underlying state in that period. The outstanding inputs in

the system are recorded in strings to keep track of the ages, i.e., the time elapsed since

their arrival, of each input. The decision of when to clear the system depends on a “clear-

ing policy” which itself depends on the input quantities, ages, and the underlying state.

Clearing the system will incur a fixed cost and a variable cost depending on the quantities

cleared; a penalty is charged to the outstanding inputs in every period, and such penalty is

non-decreasing in both the quantities and the ages of the inputs. We model the system as

a tree structured Markov chain with Markovian input processes and evaluate the clearing

policies with respect to the expected total costs over a finite horizon, the expected total dis-

counted cost over an infinite horizon, as well as the expected average total cost per period

over an infinite horizon. Relying on theories of Markov Decision Processes and stochastic

dynamic programming, we then proceed to show some properties unique to the optimal

clearing policies, and prove that a state-dependent threshold policy can be optimal under

special conditions. We develop algorithms or heuristics to evaluate a given clearing policy

and find the optimal clearing policy. We also use Matrix Analytic Methods to evaluate a

given clearing policy and develop an efficient heuristic to find near-optimal clearing poli-

cies. Finally, we conduct extensive numerical analyses to verify the correctness, complexity,

and optimality gap of our algorithms and heuristics. Our numerical examples successfully

demonstrate the analytical results we proved.

iii



Acknowledgements

I would like to express gratitude to my PhD advisors, Dr. James H. Bookbinder and

Dr. Qi-Ming He, for their guidance and support over the course of my graduate studies.

Their passion and dedication to the field of operation research and management science

have been a tremendous influence on me. I would like to thank Dr. Tim Huh, who kindly

offered me valuable suggestions during the CORS conference in 2012, which then became

the inspiration for some key ideas in my PhD research. Lastly, I would like to show my

appreciation to the members of my PhD committee, Dr. Elizabeth Jewkes, Dr. Steve

Drekic, and Dr. Hossein Abouee Mehrizi, for their comments and suggestions on how to

improve my research and writing of this thesis.

iv



Dedication

This is dedicated to my parents who have sacrificed so much to give me the best

education possible and always encourage me to pursue my dreams.

v



Table of Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Model Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Shuttle Bus Dispatch Example . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Restaurant Delivery Example . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Less-Than-Truckload Carrier Example . . . . . . . . . . . . . . . . 6

1.1.5 Luxury Car Dealership Example . . . . . . . . . . . . . . . . . . . . 7

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Stochastic Clearing Systems . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Shipment Consolidation Problems . . . . . . . . . . . . . . . . . . . 10

1.2.3 Inventory Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 Other Related Problems and Theories . . . . . . . . . . . . . . . . . 17

1.2.5 Potential Research Problems . . . . . . . . . . . . . . . . . . . . . . 19

vi



1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Markov Decision Processes and Stochastic Dynamic Programming . 20

1.3.2 Markov Chain and Matrix Analytic Methods . . . . . . . . . . . . . 23

1.4 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Model Formulation 27

2.1 Problem Definition and Notation . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Decision Epochs, Planning Horizon, and Periods . . . . . . . . . . . 27

2.1.2 Input Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 System Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.4 Action Set, Decision Rules, and Clearing Policies . . . . . . . . . . 37

2.2 Two Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 System State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Pre-Clearing System State Process . . . . . . . . . . . . . . . . . . 46

2.2.3 Post-Clearing System State Process . . . . . . . . . . . . . . . . . . 48

2.3 Cost Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Delay Penalty Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 Clearing Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.3 Objective Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Expected Total Cost Model over Finite Horizon 56

3.1 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Optimality Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



3.3 Characterizing the Optimal Policies . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Effects of Initial System State . . . . . . . . . . . . . . . . . . . . . 66

3.3.2 Policy Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 State-Dependent Threshold Policies . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Special Delay Penalty Functions . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Characteristics of State-Dependent Threshold Policies . . . . . . . 78

3.5 Computing the Optimal Policy Parameters . . . . . . . . . . . . . . . . . . 80

3.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Expected Total Discounted Cost Model over Infinite Horizon 88

4.1 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Existence of Optimal Policies . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Characterizing the Optimal Policies . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Computing the Optimal Policy Parameters . . . . . . . . . . . . . . . . . . 101

4.4.1 Value Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.2 Policy Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Expected Average Cost Model over Infinite Horizon (MDP) 112

5.1 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.1 Markov Reward Process . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.2 Policy Evaluation Equations . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Optimality Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

viii



5.3 Computing the Optimal Policy Parameters . . . . . . . . . . . . . . . . . . 122

5.3.1 Value Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.2 Policy Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Expected Average Cost Model over Infinite Horizon (MAM) 129

6.1 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.1 Stationary Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.2 Clearing Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.3 Long-Run Performance Measures . . . . . . . . . . . . . . . . . . . 138

6.1.4 Expected Average Cost per Period . . . . . . . . . . . . . . . . . . 143

6.2 Computing the Optimal Policies . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.2 State-Independent Threshold Policies . . . . . . . . . . . . . . . . . 148

6.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Concluding Remarks 156

7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.1 Optimality of State-Dependent Threshold Clearing Policy . . . . . . 158

7.2.2 Other Forms of Cost Structures . . . . . . . . . . . . . . . . . . . . 159

7.2.3 Impact of Input Process . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.4 Partially-Observable or Unobservable Underlying States . . . . . . . 160

7.2.5 Continuous Time and/or Continuous Quantity Models . . . . . . . 161

ix



APPENDICES 162

A Linear Programming Formulation for Total Discounted Cost Model 163

B Linear Programming Formulation for Average Total Cost Model 166

C Complexity Studies 169

References 172

x



List of Tables

3.1 Summary of Expected Total Costs for Example 3.1.1 . . . . . . . . . . . . 60

3.2 Summary of Optimal Clearing Rule in Period 3 for Example 3.5.1 . . . . . 83

3.3 Summary of Optimal Clearing Rule in Period 2 for Example 3.5.1 . . . . . 84

3.4 Summary of Optimal Clearing Rule in Period 1 for Example 3.5.1 . . . . . 84

3.5 Summary of Optimal Clearing Rule in Period 3 for Example 3.5.2 . . . . . 85

3.6 Summary of Optimal Clearing Rule in Period 2 for Example 3.5.2 . . . . . 85

3.7 Summary of Optimal Clearing Rule in Period 1 for Example 3.5.2 . . . . . 86

4.1 Summary of Expected Total Discounted Costs for Example 4.1.1 . . . . . . 92

4.2 Summary of Optimal Clearing Rule for Example 4.4.1 . . . . . . . . . . . . 109

4.3 Summary of Optimal Clearing Rule in Period 1 for Example 4.4.2 . . . . . 110

5.1 Summary of Expected Average Costs for Example 5.1.1 . . . . . . . . . . . 118

5.2 Summary of Optimal Clearing Rule for Example 5.3.1 . . . . . . . . . . . . 126

5.3 Summary of Optimal Clearing Rule in Period 1 for Example 5.3.2 . . . . . 127

6.1 Summary of Expected Average Costs for Example 6.1.1 . . . . . . . . . . . 145

C.1 Complexity Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xi



C.2 BFT Procedure I Time Complexity Tests . . . . . . . . . . . . . . . . . . . 170

C.3 BFT Procedure I Memory Complexity Tests . . . . . . . . . . . . . . . . . 171

xii



List of Figures

2.1 A sample time line of the stochastic clearing process . . . . . . . . . . . . . 28

2.2 A sample tree of Φ with Q = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 A sample tree of Φ(rt) with Q = 2 . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Costs of Threshold Policies in Example 6.2.1 . . . . . . . . . . . . . . . . . 150

C.1 BFT Procedure I Complexity Tests . . . . . . . . . . . . . . . . . . . . . . 171

xiii



Chapter 1

Introduction

Stochastic clearing systems are a type of random input-output system with many practical

applications. These systems receive and accumulate inputs of random quantities over ran-

dom time intervals until certain predetermined criteria are met; then, there is a “clearing”

of some or all of these inputs instantaneously. Examples of stochastic clearing systems

include transit service for riders waiting at bus stops, delivery services, inventory manage-

ment systems, dam control systems, and bulk service queues. In each case, the clearing of

some or all inputs means “servicing” or “processing” previously arrived (waiting) inputs.

The main purpose of this type of system is to gain economies of scale by clearing

multiple inputs together. Because of the random nature of the input process, however, the

criterion for clearing must be selected carefully to achieve the desired result. Our objectives

in studying stochastic clearing systems focus on evaluating the performance of an existing

system, and optimizing the system control strategy.

1.1 Model Introduction

Stochastic clearing systems can be studied via a variety of stochastic models under different

modelling assumptions. There are several key components found across different models.

1



1.1.1 Model Overview

Similar to inventory systems, stochastic clearing systems can be reviewed and managed

periodically or continuously. In some practical applications, the system administrator

makes clearing decisions only at discrete time epochs, but in other cases, the system state

is constantly monitored and clearing takes place as soon as a clearing criterion is satisfied.

Therefore, we can model the input interarrival times as discrete or continuous random

variables.

Depending on the nature of the inputs and how they are accounted for, input quantities

can also be discrete or continuous. For example, passengers arriving at a bus stop obviously

constitute discrete input, but the flow of water into a dam is measured as a continuous

random variable. System inputs may be classified into distinctive types because they incur

different costs, need to be processed under different priorities, or require special treatment

in the system.

Together, the input interarrival times and quantities are modelled by a stochastic input

process. Some commonly used input processes include the Poisson process, compound

Poisson process, Markovian arrival process, and batch Markovian arrival process. In this

thesis, we focus primarily on the Markovian and batch Markovian arrival processes, in

which the interarrival times and input quantities may be correlated and affected by an

underlying state-of-the-world variable. These types of input processes are particularly

potent at capturing the correlations between different inputs and the variations of input

rate over time.

The next important modelling decision is how to record the accumulated input quanti-

ties. In the existing literature of stochastic clearing systems, the total cumulative quantity

is usually the only variable used to keep track of the system state. In that case, there is a

lack of information about the amount of time which an input has remained in the system,

hence a recently acquired input is perceived as equally “urgent” as another input that was

2



received a long time ago. It is easy to see the flaw in this assumption because in many

stochastic clearing systems, time spent in the system is an important factor in deciding

when an input must be cleared.

In our models, the quantities and times in the system are recorded separately for

individual inputs. This set of information will help us make better clearing decisions with

respect to the varying levels of urgency of different inputs. Note that the added dimensions

of the system state variable increase the time and memory complexities of our algorithms,

but the improved accuracy and effectiveness of our models can justify the added time and

cost of computation.

After deciding on how to keep track of the system state, we need to find a standard

way to represent the clearing criteria. Since the clearing decision is contingent upon time

and system state, we shall model the clearing decision as a function of time and system

state. If the clearing criterion is stationary over time, that function is independent of time.

We shall assume that clearing is instantaneous so that no input may be received during

the act of clearing.

In a conventional stochastic clearing system, once it is decided to clear the system, all

accumulated input quantities must be cleared and the system immediately becomes empty.

In our study, for the sake of better understanding the process, we shall allow some input

quantities to be left behind. Therefore, the output of the clearing function is in fact the

system state after clearing.

Lastly, we need to specify the measures that are going to be used to assess the per-

formance of a particular clearing policy. These measures are usually in terms of costs

associated with the process such as the cost of clearing the system and the cost of holding

inputs in the system. There may also be some other non-financial metrics such as the

average time an input stays in the system until clearing and the average quantity cleared

each time. In terms of cost, we can calculate the expected total cost of the system in the

3



short term, the expected discounted total cost if the process is stretched over an extended

period of time, or the expected average total cost per period in the long run.

In the following sections, we describe several examples of stochastic clearing systems

and demonstrate how they fit into our modelling framework.

1.1.2 Shuttle Bus Dispatch Example

The shuttle bus dispatch problem is one of the classical stochastic clearing problems. Ignall

and Kolesar [47] and Deb [26] were among the first to study this problem. Subsequently,

the shuttle bus disptach problem is categorized as the batch service queueing problem by

Papdaki and Powell [63, 64].

Consider a shuttle bus operation at an airport or train station; passengers arrive indi-

vidually or in groups to take the shuttle bus heading for a common destination. Usually, a

vehicle will depart immediately after it is filled with passengers, but quite often, the vehicle

will be dispatched even if it is not full. This is because sometimes it is highly unlikely to

get any other passengers within a reasonable amount of time, and the passengers on board

may get impatient if they are kept waiting for too long. Assuming there is an abundance of

vehicles and drivers, the important question to address is under what conditions a vehicle

should be dispatched.

The passenger arrival process can be effectively modelled by a batch Markovian arrival

process, not only because the passengers can arrive in groups, but also because there are

some correlations among arrivals. In an airport or train station, shuttle bus passengers

arrive on a landed plane or docked train. Since the planes and trains arrive periodically,

after each plane or train arrival, there is likely a burst of passenger arrivals. In addition

to that, the plane and train arrivals may not be evenly scheduled throughout the day. For

example, in many airports, there are more arrivals in the evenings than in the mornings.

Therefore, there may be some seasonality effects on the passenger arrival process. The

4



batch Markovian arrival process is proven to be effective for modelling this kind of situation.

In the shuttle bus operation, it is important to recognize the different needs of pas-

sengers. For instance, business travellers may require more urgent departure while leisure

travellers can afford to wait a bit longer; group travellers have more leverage than individ-

ual passengers in their demand for early departure; and walk-in customers are more likely

to leave with other services than prepaid customers. Keeping track of individual groups of

passengers and the passenger types thus become crucial in managing the dispatches. Note

that due to the capacity of the shuttle bus, the sizes of the passenger groups are limited,

thus reducing the complexity of our model.

1.1.3 Restaurant Delivery Example

Food delivery service is another example of a stochastic clearing system. The practice is

particularly prevalent in pizza restaurants and other fast food services, where small orders

of varying amounts need to be sent to the customers frequently. It is a common practice to

combine several nearby orders and send them by a single delivery person. In some cases,

the consolidation is necessary because there are not enough resources, i.e., manpower and

vehicles.

A batch Markovian arrival process is again a good choice for modelling the input process

because, firstly, each delivery order may vary in value or size depending on the content

of the order, and secondly, there is a strong seasonality effect throughout the day which

affects the frequency of orders. Capturing these effects helps ensure that our model is an

accurate rendering of the business.

The delivery waiting time is an important issue for food delivery services. It affects

the quality of the food as it directly correlates to freshness. It also affects the amount of

tips a delivery person can receive on an order. To promote the delivery business, some

restaurants even agree to waive the cost of the entire order if delivery takes longer than

5



the promised time. Therefore, the clearing policy determines when and how many orders

a delivery person must take on a trip, and it should maximize the service level with the

limited delivery resources.

1.1.4 Less-Than-Truckload Carrier Example

On a larger scale, stochastic clearing systems fall into the category of the shipment con-

solidation problems in transportation and logistics management. One example is the less-

than-truckload (LTL) carrier operation. When a company or an individual needs to ship

something over a long distance but does not have enough quantity to occupy an entire con-

tainer, they can hire an LTL carrier. Having received separate delivery orders of relatively

small sizes, the LTL carrier will try to combine shipments with common destinations into

a single larger load because a fixed cost is incurred upon dispatch, regardless of the content

of the load.

LTL carriers may also incur a holding cost for physically storing the shipments, and

delay penalties for not being able to deliver on time. Depending on the content of the

shipments and the waiting time, the LTL carrier needs to decide whether it is cost effective

to ship all orders on hand or continue to wait for more orders to come in. The delay penalty

may be specified as a predetermined amount in the delivery contract, or in the form of an

opportunity cost of lost future business due to unsatisfactory services.

In shipment consolidation, the size of a shipment can be given in terms of its weight

or volume. There may also be a transportation cost proportional to the quantity of the

consolidated load. Sometimes, there may even be a quantity discount for shipping more

quantity at a time. Although weight and volume are normally continuous measures, in

practice, many shippers choose to discretize them to appropriate units. In the shipment

consolidation problem, other service measures such as the average delay of delivery and

the average size of consolidated load are also important measures for both the shipper and

6



the LTL carrier.

1.1.5 Luxury Car Dealership Example

The last example of stochastic clearing systems we will discuss here is a car dealership, in

particular, a luxury car dealership. We are interested in this example because unlike the

previous examples, the clearing process here is often stretched over an extended period of

time, i.e., weeks or even months, so the associated costs may be accounted for as discounted

costs.

In a luxury car dealership, there is rarely any inventory except for the cars on display

because this type of products is highly customized and are sold on demand. If a buyer is

interested in a particular vehicle, he or she will place an order with the dealer and wait for

the dealer to procure the car from the manufacturer.

Note that the geographic location (often across continents), rarity (assembled upon

receiving the customized order), and high value of the product (can be as high as hundreds

of thousands of dollars) often results in large procurement, transportation and insurance

fees. Sometimes, the dealer will try to reduce these costs by procuring and shipping several

cars together. This is essentially an inventory backlog problem.

Studies have shown that the demand for luxury cars is highly dependent on the economic

environment, for example, the stock market performance. Therefore, that can be considered

as an underlying state-of-the-world which affects the input process. Although buyers are

usually willing to wait to get their desired cars, competitors may try to steal the customer

away by offering to deliver the car early. Also note that significant inventory holding costs

are charged to the dealer when a car is being transported to the dealership. Therefore, our

stochastic clearing model can be used to study this problem.

Now that we have described the general model components and practical examples, we

will review the literature on stochastic clearing systems and other related problems in the

7



next section.

1.2 Literature Review

Theories of stochastic clearing systems have long been studied by both mathematicians and

practitioners. We shall first review some of the prominent works in the general framework

of stochastic clearing problems, then look at some well-known applications in shipment

consolidation, inventory theory, and several other problems.

1.2.1 Stochastic Clearing Systems

Stochastic clearing systems were first systematically modelled and studied by Stidham in

[77]. A number of examples found in different areas such as queueing, inventory, stochas-

tic service, and storage system, were described. The model is characterized by a non-

decreasing stochastic input process and an instantaneous clearing that resets the system

into the empty state. In that paper, the process was considered as regenerative and an

explicit expression for the stationary distribution of the quantity in the system was derived.

An important observation was made on the stationary distribution not being uniform for

genuinely stochastic models, which suggests that the stochastic nature of the input process

directly affects the optimal clearing decsisions.

In his subsequent paper [78], Stidham generalized the clearing operations to allow

restoring the net quantity in the system to a level different than zero, i.e., not everything

must be cleared at once. The costs associated with the process are identified as the fixed

clearing cost and the variable holding cost. The limiting behavior of such a system was

determined by “averaging over cycle”, and formulas to compute the system parameters,

i.e., the average cost per period and average quantity cleared, were constructed.

A variation of stochastic clearing systems, called “semi-stationary clearing processes”,

8



was introduced by Serfozo and Stidham in [71]. Such systems still receive random input

quantities over time and clear them intermittently, but these systems are strictly stationary

over their random clearing epochs. Instead of the limiting probabilities, an asymptotic

distribution was used to study such models, and the asymptotic distribution of the system

state was proven to be uniform in some cases.

In [86], Whitt investigated a particular stochastic clearing problem, which is the uti-

lization in capacity expansion, i.e., the utilization at any time divided by the capacity.

Extending the results in [77], the stationary distribution of the clearing process is proven

to be stochastically less than or equal to the uniform distribution in the sense of second-

order stochastic dominance.

Inventory problems were touted as one of the main applications of stochastic clearing

system. The results of stochastic clearing systems were generalized in (s, S ) inventory

models by Stidham in [79]. Both the continuous-review and periodic-review versions of the

inventory model were discussed. Necessary and sufficient conditions on the cost function

and input process for optimality of the clearing parameters were identified.

Kim and Seila [52] showed that in the context of inventory systems, the optimal stochas-

tic clearing policy outperforms the deterministic economic ordering quantity (EOQ) policy

in certain scenarios. Their model has a more realistic cost structure which includes a clear-

ing cost that is proportional to the number of items cleared, and they model the input

process as a Brownian motion with positive drift. The optimal clearing level is shown to

be the unique level at which the marginal cost of accepting another item is equal to the

total average cost of operating the system.

The concepts of stochastic clearing systems were also applied to queueing systems. For

example, Boxma and colleagues studied the clearing models for M/G/1 queues in [14], in

which events called “disasters” occur at certain random times, causing an instantaneous

removal of the entire residual workload from the system. In such queueing systems, clear-

9



ings can be at scheduled times, at random times, and at crossing of some pre-specified

level. The stationary distribution of the workload process was derived.

In a similar line of research, Dudin and Karolik [30] considered BMAP/M/1 systems

with potential exposure to disasters. The recovery process after a disaster is assumed to

take place over a random time interval. Customers may or may not arrive during the

recovery period. Using the concepts of stochastic clearing systems, the embedded and

arbitrary time queue length distributions, as well as the average output rate and loss

probability, were calculated.

In the recent literature, more complicated system parameters were put into the stochas-

tic clearing framework. For example, in [51] Kella and colleagues considered a stochastic

input-output system with additional total clearings at certain random times determined

by its own evolution (and specified by a controller). Between two clearings, the stock level

process is a superposition of a Brownian motion with drift and a compound Poisson process

with positive jumps, reflected at zero. Cost functions for this system were introduced and

determined explicitly under several (classical and new) clearing policies.

For other applications and modelling approaches for stochastic clearing systems, please

refer to the following literature: [1, 2, 53, 74, 80, 87].

1.2.2 Shipment Consolidation Problems

Shipment consolidation is a logistics strategy whereby many small shipments are combined

into a few larger loads. The economies of scale thus achieved help improve the utilization

of logistics resources and reduce transportation costs. Such systems are one of the most

natural examples of stochastic clearing systems.

Although the main purpose of shipment consolidation is to minimize overall costs, it

should not be at the expense of unsatisfactory customer service. By associating appropri-

ate monetary values to the delays of orders, achieving an optimal balance between cost

10



reductions and maintaining good service become the ultimate goal of that strategy. The

shipment consolidation process can be categorized by private carriage and by common

carriage. These respectively refer to the dispatch of a consolidated load in a company’s

own truck, or in the vehicle of an outside for-hire trucking company.

The shipment consolidation process is governed by a set of decision rules known as the

“dispatch policies”. These rules determine the appropriate size of the accumulated load,

and/or the best time to release that load. Upon reaching the desired size or release time,

those orders waiting are then sent, and the next cycle of the consolidation process begins

anew.

Three classes of dispatch policies have been reported in the logistics literature. These

are respectively the quantity, time, and hybrid policies. When a quantity policy is imple-

mented, dispatch of a consolidated load is delayed until the total weight of those orders

is at least Q; a time policy leads to a dispatch every T periods. A hybrid, or time-and-

quantity-based, policy combines the effect of the previous two classes: there is still a desired

shipment quantity Q, but if that weight is not attained by time T , those orders on hand are

then dispatched. It is important to note that, in practice, there exist many other policies,

e.g., those whose thresholds for dispatch may depend on order delays.

Over the years, several different operations research methods have been employed to

study shipment consolidation problems. In [41], Higginson and Bookbinder used computer

simulation to study a consolidation system with a Poisson arrival process and empirically-

supported Gamma distribution of order weights. They examined the cost effectiveness of

the three commonly used dispatch strategies. Their simulation results were based on a

large range of the relevant parameters, long-run order arrival rates and maximum holding

times. Using these results, they computed the cost per load, cost per hundredweight, and

average order delay for each policy, and they made recommendations on how to choose the

appropriate policy under different situations.

11



Higginson and Bookbinder continued their study of shipment consolidation by using

the discrete-time Markovian decision process (MDP) approach for determining when to

release consolidated loads in [42]. They considered two minimization criteria: cost per

unit time, or cost per hundredweight per unit time. For private carriage, the optimal

policy is of the control-limit type; for common carriage, it may not be. These potential

differences in the structure of the optimal policy are true for either objective function. The

possibly contrasting optimal policies are interpreted in light of the costs encountered by an

industrial firm’s private fleet compared to the freight charges of a public trucking company.

In their third paper on shipment consolidation [13], Bookbinder and Higginson em-

ployed probabilistic modelling to choose the maximum holding time and desired dispatch

quantity. Practical decision rules for temporal consolidation for transportation by private

carriage were obtained. They expressed the final results visually and conducted sensitivity

analysis through a monograph (four linked graphs) relating decision variables, probability

and demand parameters, and objective-function values.

Çetinkaya and Bookbinder [16] applied renewal theory to two consolidation strategies

typically utilized in practice. For the case of a quantity policy, they obtained the optimal

target weight before dispatch, while for a time policy, they calculated the optimal length

of each consolidation cycle (maximum holding time for any order). These strategies were

analyzed for private carriage and then for common carriage.

In [17], Çetinkaya and colleagues investigated the impact of shipment consolidation

on the expected long-run average cost by simultaneously computing the optimal order

quantity for inventory replenishment at the vendor and the optimal dispatch quantity for

outbound shipments. They considered a case where demand follows a general stochastic

bulk arrival process, and provided easy-to-compute approximations which enable efficient

numerical solutions for the problem.

Mutlu and colleagues focused on the Time-and-Quantity (TQ)-based hybrid consoli-

12



dation policies in [58]. They developed an analytical model for computing the expected

long-run average cost of a consolidation system implementing a TQ-based policy. Their

analysis proved that the optimal TQ-based policy outperforms the optimal time-based

policy, and the optimal quantity-based policy is superior to the other two (i.e., optimal

time-based and TQ-based) policies in terms of cost. However, they also showed that the

TQ-based policies improve on the quantity-based policies significantly in terms of timely

delivery with only a slight increase in the cost.

Bookbinder and colleagues modelled the order arrival process by a discrete time batch

Markov arrival process (BMAP) in [12]. The weight of an order was assumed to be discrete

and may be correlated with the arrival time. A discrete time Markov chain for the accu-

mulated weight of orders in the system was introduced and analyzed. The distributions

of the accumulated weight at an arbitrary time, total accumulated weight in a consolida-

tion cycle, and excess of weight per shipment were obtained. By introducing an absorbing

Markov chain and a terminating Markovian arrival process, they found the distributions

of the consolidation cycle length, the waiting time of an arbitrary order, and the number

of orders that occur in a cycle. An efficient computational procedure was developed for

evaluating dispatch policies.

Most recently in [15], Cai and colleagues proposed to use a tree structured Markov

chain to record information about the consolidation process, specifically the quantities and

waiting times of individual orders. The effect on shipment consolidation of varying the

order-arrival process was demonstrated through numerical examples and proved mathe-

matically under some conditions. A heuristic algorithm was developed to determine a

favorable parameter of a special set of dispatch policies, and the algorithm was proved to

yield the overall optimal policy under certain conditions. The results in this paper are

presented in Chapter 6.

Other prominent publications on shipment consolidation include Chen et. al. [20], Dror

and Martman [29], Gupta and Bagchi [33], Higgionson [40], Popkenl [65], and Tyan et. al.

13



[81].

1.2.3 Inventory Theories

Another example of a stochastic clearing system is the inventory control problem. In

an inventory system, demands of random quantities are received at random time epochs

and satisfied with the stock on hand, or backlogged until more inventories are received.

Otherwise, the demand may be lost. Inventories are ordered in batches and received after

some lead time. The cost structure of an inventory problem includes the inventory holding

cost, backlog cost, and fixed and variable ordering costs.

Inventory control problems belong to the broader definition of stochastic clearing sys-

tems in two ways. First, if the inventory holding cost is too expensive for the system to

keep any stock on hand, then all demands must be backlogged and satisfied later. This

type of problem is called the inventory backlog problem, where the backlogged demands are

the inputs in the stochastic clearing system, and instantaneous inventory replenishment is

equivalent to the clearing of accumulated inputs.

More generally, we can treat any inventory replenishment as a clearing event, after

which the inventory level is reset to a desirable level. Then, any demand received after the

replenishment can be considered as an input to the system, and the total amount sold is

the accumulated input quantity. At the next replenishment event, the clearing cycle begins

anew. The inventory control problem is perhaps the most thoroughly studied stochastic

clearing system. Therefore, we must review the literature on optimal inventory control.

One of the well-known inventory theories is the optimality of (s, S ) policies under

certain conditions. Scarf introduced the concept of K-convexity in [70] and used it to prove

the preceeding result. In that paper, he modelled the inventory problem using stochastic

dynamic programming, and employed induction to prove the results. He also identified a

set of conditions under which the optimality result holds.

14



In [45], Iglehart extended the optimality of (s, S ) policies to the infinite horizon problem.

He gave bounds for the sequences {sn} and {Sn}, discussed their limiting behavior, and

established the existence of the limiting (s, S ) policy. He also obtained similar results for

the case of positive delivery lead time.

Veinott and Wagner developed a complete computational approach for finding optimal

(s, S ) inventory policies in [83]. The method was derived from renewal theory and station-

ary analysis. New upper and lower bounds on the optimal values of both s and S were

established. The special case of linear holding and penalty costs was treated in detail.

In [82], Veinott constructed a different proof of the optimality of (s, S ) policies un-

der different conditions than those in [70]. The bounds on the optimal parameter values

were established. Moreover, simple conditions were given which ensure that the optimal

parameter values in a given period equal their lower bounds.

Zheng [90] presented a simpler alternative proof for the optimality of (s, S ) policies in

the infinite horizon cases which does not rely on the proofs for the finite horizon. With

some novel arguments, he was also able to overcome the difficulties encountered in models

with unbounded one-step expected costs.

Following these earlier works on the optimal inventory policies, many other theories

have been developed for more complicated systems involving other supply chain decisions.

For example, (s, S ) policies are proven to be optimal in joint inventory-pricing control

problems in Chen and Simchi-Levi [21], Chen et. al. [22], and Huh and Janakiraman

[44]. Recent literature on inventory theory also studied systems with Markovian demand

processes.

Iglehart and Karlin [46] were among the first to consider an inventory model with a

stochastic demand process in which the distributions of demand in successive periods are

not identical but in general are correlated. They used a discrete-time and continuous-state

formulation with finite state space and linear ordering cost. Applying renewal theory and

15



stochastic dynamic programming, they proposed a policy which is determined by a set of

critical numbers corresponding to the different demand distributions.

In [76], Song and Zipkin introduced a model where the demand rate varies with an un-

derlying state-of-the-world variable. They derived some basic characteristics of the optimal

policies and developed algorithms for computing them. They were also able to show that

certain monotonicity patterns in the problem data can be reflected in the optimal policies.

Beyer and Sethi studied the inventory problem with Markovian demand with respect

to the long-run average cost optimality criterion in [8]. They used the vanishing discount

approach to establish a dynamic programming equation and the corresponding verification

theorem. From that, they were able to prove the existence of an optimal state-dependent

(s, S ) policy.

In the context of expected total cost, Sethi and Cheng studied an inventory problem

with Markovian demand in both the finite and infinite horizon cases [72]. They extended

the optimality results to the state-dependent (s, S ) policies, while also considering other re-

alistic model features such as no-ordering periods and storage and service level constraints.

Chen and Song [19] extended the results further to multi-echelon inventory problems

with Markov-modulated demand. They showed that for a linear ordering cost, the optimal

policy is an echelon base-stock policy with state-dependent order-up-to levels, and built

an algorithm to determine these levels. They extended their results to serial systems with

a fixed ordering cost at the last stage.

In their book on Markovian demand inventory models [7], Beyer and colleagues provided

a comprehensive summary of the results for this class of problems. The models they

reviewed include finite and infinite horizon models under total cost, total discounted cost,

and average cost objectives. In most of these problems, the optimal policies are proven to

be state-dependent (s, S ) policies.

Some of the well-known works on Markovian demand inventory models which Beyer

16



and colleagues summarized include: Bellman et. al. [3], Beyer and Sethi [9], Beyer et. al.

[10, 11], Cheng and Sethi [23, 24], Porteus [66], and Zheng and Federgruen [91].

1.2.4 Other Related Problems and Theories

Stochastic clearing systems are related to several other well-studied operations research

models. We shall look at their similarities and differences, and how some results from

these other problems can be extended to the stochastic clearing systems.

The first type of problem is the dynamic lot-size problem. This problem is usually faced

by a manufacturer who receives orders and plans to manufacture the products in batch

production runs. There are fixed setup costs to begin a run, variable production costs

for each item, and carrying costs for the work-in-progress and finished goods inventories.

Similar to the clearing systems, the goal is to make the production batches into appropriate

sizes so as to balance the production costs and inventory costs. However, in the lot-size

problem, the orders are produced gradually over a period of time that is proportional to

the size of the lot.

In their well-cited paper [84], Wagner and Whitin used a forward algorithm to solve

the dynamic lot-size problem. They famously showed that disjoint planning horizons,

which eliminate the necessity of having data for the full planning horizon, are possible. By

studying the lot-size problem with non-zero chance of going out of control, Porteus [67]

demonstrated that lower setup costs can benefit production systems by improving quality

control. There is thus an incentive to produce smaller lots, and have a smaller fraction of

defective units.

Fleischmann [32] studied the discrete lot-sizing and scheduling problem. Several prod-

ucts are to be scheduled on a single machine so as to meet known dynamic demand and

to minimize the sum of inventory and setup costs. A branch-and-bound procedure was

presented using Lagrangean relaxation for determining both lower bounds and feasible so-

17



lutions. The relaxed problems are solved by dynamic programming. Drexl and Kimms [28]

summarized the work in the field of lot sizing and scheduling, and identified two research

directions: continuous time models and multi-level lot sizing and scheduling. Other works

on the dynamic lot-size problem include [34], [49], and [89].

In mathematics, the theory of optimal stopping is concerned with the problem of choos-

ing a time to take a particular action, in order to maximize an expected reward or mini-

mize an expected cost. Optimal stopping problems can be found in the areas of statistics,

economics, and mathematical finance (related to the pricing of American options). The

optimal stopping problems can often be written in the form of a Bellman equation, and

are therefore often solved using dynamic programming. In a sense, the optimal stopping

problem is very similar to the stochastic clearing system, in which the stopping time is the

time at which the system is cleared.

There are generally two approaches for solving optimal stopping problems. When the

underlying process is described by its unconditional finite-dimensional distributions, mar-

tingale theory is used. In the discrete time case, if the planning horizon T is finite, the

problem can also be easily solved by dynamic programming. When the underlying process

is determined by a family of (conditional) transition functions leading to a Markovian fam-

ily of transition probabilities, theories of Markov processes can be utilized and the solution

is usually obtained by solving the associated free-boundary problems (Stefan problems).

Some of the important works on optimal stopping problems include Chow et. al. [25],

Jacka [48], Karatzas [50], and Shiryaev [75]. These publications are primarily in the context

of mathematical finance, and use advanced tools and methodologies such as Brownian

motion, Martingales, stochastic calculus, and diffusion processes. These methods are out

of the scope of our current research, but they can be explored and potentially applied to

the stochastic clearing problem in the future.

18



1.2.5 Potential Research Problems

As we can see from the previous literature review, stochastic clearing systems were first

studied as a generalized model when the modelling framework and cost structure were

set up in the 1970’s and 1980’s. Since then, the research has been focused on separate

application areas of stochastic clearing systems, such as shipment consolidation problems

and inventory control problems. Due to the varying nature of these application areas,

many different modifications of the basic model of stochastic clearing systems have been

constructed and analyzed. However, all of these models in the literature have assumed

that the holding cost of the accumulated inputs is charged at a constant rate, proportional

to the total quantity accumulated over time.

This common assumption about the holding cost structure is sufficient in areas such as

inventory control, where the time spent in the system by individual inputs has no effect on

the rate of the holding cost. Unfortunately, in other areas such as shipment consolidation

and shuttle bus dispatch, the longer an input stays in the system, the more expensive the

holding cost rate tends to become. For instance, this kind of situation exists in all four

motivating examples of stochastic clearing systems we described at the beginning of this

chapter.

If we look at that situation from the modelling perspective, we can easily see how

the current literature on stochastic clearing systems is ill equipped to reflect this delicate

situation. Let us consider two instances faced by the same clearing system. In the first

case, four units of input were received three periods ago, while another unit just arrived

only in the last period. In the second case, one unit was received three periods ago, and

four other units have just arrived in the last period. It is not hard to see that the first

situation is more urgent than the second as a higher proportion of the input has been held

back for a longer time. However, the traditional holding cost structure would not be able

to distinguish the two cases, because in any successive period before clearing, the total

19



accumulated quantity is five units in either case. Thus, we identify this deficiency of the

holding cost structure in the current literature as one of the main problems we want to

solve in our research here.

The other main research goal we would like to address is to incorporate a Markovian

input process into the general model of stochastic clearing systems. That this is important

because a Markovian input process can better model input processes which are affected by

some underlying states of the world or exhibit cycles and seasonality effects. Since Marko-

vian processes are also known to be able to approximate any stochastic input processes,

this would lend more generality to our model.

1.3 Methodology

In this section, we shall review some methodologies which will be used in our research.

1.3.1 Markov Decision Processes and Stochastic Dynamic Pro-

gramming

Markov decision processes, also referred to as stochastic dynamic programs or stochastic

control problems, are models for sequential decision making when outcomes are uncertain.

In the framework of stochastic clearing systems, the clearing decisions, i.e., clear the system

vs. continue to accumulate, must be made in each period.

The Markov decision process model consists of five major components: decision epochs,

states, actions, rewards/costs, and transition probabilities. At each decision epoch, an ac-

tion is decided based on the state of the system and a reward/cost is generated. Then the

system evolves according to the action chosen and the transition probabilities associated

with the current state and action. The process continues over a finite or infinite planning

20



horizon. Policies or strategies are prescriptions of which action to choose under any even-

tuality at every future decision epoch. The goal of the decision maker is to seek policies

which are optimal in some sense.

The general approaches in analyzing Markov decision processes include: (i) providing

the optimality conditions for easily implementable optimal policies, (ii) determining if there

are any special characteristics about the optimal policies, (iii) developing and enhancing

algorithms for computing the optimal policy parameters, and (iv) establishing convergence

of these algorithms.

Standard Markov decision processes are usually modelled in discrete time and discrete

state space. The discrete settings allow us to keep track of the system state and ensure that

the action sets are of manageable size. The special class of continuous-time and discrete-

state models is referred to as a semi-Markov decision process, for which the system state

evolves as a Markov chain only when certain events occur.

The planning horizon, i.e., consecutive decision epochs, can be either finite or infinite,

and depending on the length of that horizon, different objective functions can be used.

For example, in finite horizon problems, the decision maker is often trying to optimize the

expected total reward/cost. On the contrary, in infinite horizon problems, reward/cost

can be discounted, and in the long run, the expected average reward/cost may be a more

appropriate measure of the asymptotic behavior of the system.

In most studies of Markov decision processes, induction proofs are used to verify results

in a finite horizon. Then, these results are extended to the infinite horizon by analyzing

the limits of the finite horizon functions. For long-run average analysis, the stationary

distribution of the Markov chain which governs the system state transitions can be used

to compute long-run average measures.

There are two main methods to compute the optimal policies: value iteration and

policy iteration. The value iteration algorithm was first introduced by Bellman [4] and is

21



also known as backward induction. This type of algorithm relies on solving for the value

function of the process, i.e., a solution to the optimality equations, and then constructing

the optimal policy based on the value function. The policy iteration algorithm begins with

an arbitrary policy, then derives the optimal policy through successive evaluations and

improvements.

Note that the choice of action depends on the current state, but if that state is not

observable or is only partially observable, then the system becomes a partially observable

Markov decision process (POMDP), which is a generalization of a Markov decision process.

A POMDP models an agent decision process in which it is assumed that the system dy-

namics are determined by an MDP, but the agent cannot directly observe the underlying

state. Instead, he/she must maintain a probability distribution over the set of possible

states, based on a set of observations and observation probabilities, and the underlying

MDP.

The POMDP framework is general enough to model a variety of real-world sequential

decision processes. Applications include robot navigation problems, machine maintenance,

and planning under uncertainty in general. This framework originated in the operations

research community, and was later taken over by the artificial intelligence and automated

planning communities.

An exact solution to a POMDP yields the optimal action for each possible belief over

the world states. The optimal action maximizes (or minimizes) the expected reward (or

cost) of the agent over a possibly infinite horizon. The sequence of optimal actions is known

as the optimal policy of the agent for interacting with its environment.

In our research, we have consulted the following books on the topic of Markov decision

processes Bellman [4], Bertsekas [5], Bertsekas and Shreve [6], Derman [27], Hillier and

Liebman [43], and Puterman [68]. These books contain a vast array of literature and

summarize the key results and algorithms obtained over the years.

22



1.3.2 Markov Chain and Matrix Analytic Methods

In this section, we will review some modelling tools and solution techniques involving

the use of Markov chains, including the Markovian arrival processes and matrix-analytic

methods. These tools and techniques will help us model stochastic clearing systems with

greater generality, and solve the problem more accurately and efficiently.

Although the input process in a clearing system has traditionally been assumed to be

a Poisson process in the existing literature, we would like to model it with a more general

stochastic arrival process. A Markovian arrival process (MAP) seems to be a good choice.

The MAP was initially introduced by Neuts [59] as a versatile class of point processes on

the real line. A MAP is usually denoted by a pair of matrices (D0, D1), where elements

of D0 can be interpreted as the (event) rates without an arrival, and elements of D1 as

the rates with an arrival. One of the advantages of using MAPs for stochastic modelling

and analytical research is the fact that the relevant probability distributions, moment

and correlation formulas are given in forms which are computationally tractable. More

importantly, MAP is so versatile that it can closely approximate any stochastic counting

process.

According to He [37], a MAP is a generalization of the Poisson process. It not only

keeps many useful properties of the Poisson process, it partially preserves the memoryless

property by conditioning on the phase of an underlying Markov chain. MAP also includes

several other well-known point processes, such as renewal processes of phase type, Markov-

modulated Poisson processes, and certain semi-Markov point processes. Such generality

will allow us to model different arrival characteristics.

The batch Markovian arrival process (BMAP) and the marked Markovian arrival pro-

cess (MMAP) are direct generalizations of MAP. They are usually defined by splitting the

arrival rates in the D1 matrix of a MAP, and assigning different meanings to these rates.

In the context of stochastic clearing systems, we can assign these arrival rates to different

23



weight categories or even distinct combinations of inputs. BMAPs and MMAPs are crucial

components in our models that follow.

Through simple intuition, we can claim that the future state of a clearing process only

depends on its current state, the clearing decision, and future inputs. This is a memoryless

property, otherwise known as the Markov property. Thus, we can model the stochastic

clearing process by a Markov chain.

A Markov chain is defined for a discrete (or continuous) set of times. The state of the

Markov chain evolves over time and the future state depends only on the current state,

but not on the past. If a Markov chain is ergodic (i.e. aperiodic and positive recurrent),

then its limiting probabilities (a.k.a. stationary distribution) are unique and well defined.

Markov chains have many applications as statistical models of real-world processes.

Past works on shipment consolidation, such as [42] and [12], have used Markov chains to

model the clearing system, especially when the goal is to assess long-run performance. In

our current research, Markov chains will again be used to model the clearing process, albeit

the states of our Markov chain will be more elaborate and contain more information.

In stochastic modelling, we often encounter Markov chains of large dimension, for which

we have to solve for their stationary distributions. Consider a discrete time Markov chain

with transition probability matrix P . Even if P is sparse, but has very large dimension, it

can be challenging to solve for its stationary distribution π. However, if P has some special

block structures, we can use an algorithmic approach to compute π. Matrix Analytic

Methods (MAM) consititute a set of modelling/computational tools that “give one the

ability to construct and analyze, in a unified way and in an algorithmically tractable

manner, a wide class of stochastic models” [54].

In our research, we will attempt to utilize such methods to build efficient models and

algorithms. Several methods may be of particular interest to us. They include matrix

geometric solution, algorithms for the rate matrix R, fundamental periods, and Markov

24



chains with tree structures.

For more details on MAP, BMAP, MMAP and MAM, we will refer to Neuts [59, 60, 61,

62], Lucantoni [56], Yeung and Sengupta [88], He and Neuts [38], Latouche and Ramaswami

[54], He [35, 36, 37], and Latouche et. al. [55].

1.4 Thesis Layout

The remainder of the thesis is arranged as follows. In Chapter 2, we describe the general

model that is going to be used throughout the thesis. Modelling assumptions and cost

structures are given and two Markov chains are introduced to keep track of the process.

We begin our analysis of the model in the case of expected total cost over a finite

horizon in Chapter 3. We show some characteristics of the optimal policies, introduce a

threshold-based policy which can be optimal under certain conditions, and finally, build

an optimization algorithm.

We then consider an infinite horizon model, and show that the results from Chapter 3

can be extended in Chapter 4. Based on the special structure of our system state space,

we modify the value iteration algorithm and policy iteration algorithm for standard MDP

to help find the optimal clearing policies.

In Chapter 5, we change the model objective to expected average cost over an infinite

horizon and use the MDP approach to construct the optimality equations and build three

optimization algorithms.

For the same model studied in Chapter 5, we use the MAM approach to analyze it

in Chapter 6. Taking advantage of the special structure of the system state space, we

construct an efficient algorithm to evaluate a given policy in terms of expected average

cost and other performance measures. We also propose a search algorithm to compute

the optimal threshold-based policies, and an iterative policy construction algorithm for

25



building the optimal policies.

Lastly, a summary of the main results in this thesis is given in Chapter 7 and some

future research topics on stochastic clearing systems are described as well.

26



Chapter 2

Model Formulation

In this chapter, we introduce the general model that is used throughout the thesis. The def-

initions and notations of each model component are described in detail, and some examples

are given to demonstrate the exact model parameters under different circumstances.

2.1 Problem Definition and Notation

To model any stochastic clearing system, we need to (i) define the time interval and fre-

quency over which to analyze the clearing process, (ii) observe and model the process in

which random input quantities are received by the system, (iii) choose the amount of de-

tail we want to measure and record about the state of the system, and (iv) translate the

desired clearing criteria into a well-defined clearing policy. We examine each of the above

components in the following sections.

2.1.1 Decision Epochs, Planning Horizon, and Periods

For any stochastic clearing system, the clearing decisions are made at points of time referred

to as the decision epochs. The set of decision epochs to be considered is referred to as the

27



planning horizon, denoted by T . Since it is a representation of time, the planning horizon

is a subset of the nonnegative real line, i.e., T ∈ R≥0. We can classify T as either a discrete

set or a continuum, but in the scope of our research, we assume T to be discrete. This

is not very restrictive in practical examples of stochastic clearing systems, such as those

described in Section 1.1.

In discrete time problems, time is divided into periods. The appropriate length of a

period is chosen to suit specific problems. In all our models, we assume that clearing

decisions are made at the beginning of each period, so a decision epoch corresponds to the

beginning of a period. Figure 2.1 shows a sample time line of the clearing process.

Figure 2.1: A sample time line of the stochastic clearing process

The set of decision epochs is either finite or infinite, we write T ≡ {1, 2, . . . , N}, for

some integer N ≤ ∞, to include both cases. Individual elements of T will be denoted by t

and referred to as “time/period” t. We call the problem a finite horizon problem when T

is finite, and an infinite horizon problem otherwise. Our research will cover both the finite

and infinite horizon problems.

The convention for finite horizon problems requires an evaluation of the final system

state at the end of the planning horizon. Thus, we include an extra decision epoch N + 1,

at which point no decisions are made. In the context of stochastic clearing systems, all

accumulated inputs must be cleared at time N + 1. We frequently refer to this as an

N -period problem.

28



2.1.2 Input Processes

In a stochastic clearing system, inputs of random quantities are received by the system

and cleared at a later time. For discrete time models, we tally the total quantity received

in each period, and if such quantity is zero, we recognize that no input is received in the

period. Before an input is cleared from the system, we refer to it as an outstanding input

in the system.

In our research, we study input processes that are governed by some underlying states

of the world. Let I = {1, 2, . . . ,M} denote the collection of all such states, for which

we assume that M < ∞ to keep our models mathematically tractable. Let the random

variable it represent the underlying state at the beginning of period t. We assume that the

corresponding stochastic process {it, t = 1, 2, . . .} is an ergodic Markov chain with M ×M

transition matrix D.

Let qt be the random quantity of all inputs received during period t, and obviously, qt

is nonnegative, i.e., qt ∈ R≥0. Suppose that qt only depends on the underlying state it.

We can easily verify that the stochastic input process, {(qt, it), t = 1, 2, . . .}, is a Markovian

input process. The conditional input quantity, denoted by [qt|it = i], is a random variable

with conditional probability distribution

Fi(q) = Pr{qt ≤ q|it = i}. (2.1)

We further assume that the input quantity received in each period is nonnegative and

bounded, i.e., 0 ≤ qt ≤ Q <∞, ∀t. This is not a restrictive assumption from the practical

perspective since for most stochastic clearing systems, the input quantities are finite, and

often even relatively small.

The value of qt can be discrete or continuous depending on the specific problem. How-

ever, for some of the algorithms developed in the later chapters, it helps to have discrete

29



input quantities to keep our models mathematically tractable, and these models are re-

ferred to as discrete time and discrete quantity models. It is worth noting that in many

stochastic clearing systems, continuous input quantities are often rounded to discrete units

by the decision makers. For example, in some shipment consolidation examples, the input

quantities are measured as shipment weights and rounded to the nearest pound, kilogram,

or ton.

For discrete time and discrete quantity models, the above Markovian input process

can be modelled as a discrete time batch Markovian arrival process (BMAP) with matrix

representation (D0, D1, . . . , DQ), where D0, D1, . . . , DQ are M ×M nonnegative matrices.

Entry (i, j) in matrix Dq, denoted by [Dq]i,j, for q = 0, 1, . . . , Q, can be interpreted as

the probability that q units of input have been received in a period, and the underlying

process goes from state i at the beginning of the current period to state j at the beginning

of the next period, i.e.,

Pr{qt = q, it+1 = j|it = i} = [Dq]i,j. (2.2)

Consequently,

Pr{qt = q|it = i} =
∑
j∈I

[Dq]i,j = fi(q), (2.3)

where fi(q) is the probability mass function for [qt|it = i]. On the other hand, we have

Pr{qt = q|it = i, it+1 = j} =
[Dq]i,j∑Q
q=0[Dq]i,j

, (2.4)

and finally
Q∑
q=0

[Dq]i,j = [D]i,j, (2.5)

where [D]i,j is the transition probability from state i to state j in the underlying Markov

chain D = D0 +D1 + . . .+DQ.

30



Let θa be the stationary distribution of the underlying Markov chain. Then θa is the

unique solution to the linear system θaD = θa and θae = 1, where e is a column vector

of 1’s with the appropriate dimension. Define the quantity-receiving rate, i.e., the average

quantity received in each period in the steady state, as

λq,a = θa

(
Q∑
q=1

qDq

)
e, (2.6)

and let the input-receiving rate, i.e., the average rate of receiving any positive input quan-

tities in the steady state, be

λo,a = θa

(
Q∑
q=1

Dq

)
e. (2.7)

The following Markovian input processes can be modelled as special cases of BMAP.

(i) Compound Renewal Process:

(D0, D1, . . . , DQ) = (d0, d1, . . . , dQ), (2.8)

where 0 ≤ dq ≤ 1,∀q = 1, . . . , Q and
∑Q

q=0 dq = 1. This process has a single

underlying state in which the input quantities for each period are independent and

identically distributed (i.i.d.) random variables, and the process is a discrete analogue

of the compound Poisson process.

(ii) Markov Modulated Input Process:

Dq =


f1(q)

. . .

fM(q)

D, ∀q = 0, 1, . . . , Q, (2.9)

where fi(q) = Pr{qt = q|it = i} =
∑

j∈I [Dq]i,j, for i ∈ I. This is equivalent to the

typical Markovian input process introduced earlier.

31



(iii) Compound Markovian Arrival Process:

(D0, D1, . . . , DQ) = (D0, f̃(1)D′1, . . . , f̃(Q)D′1), (2.10)

where f̃(q) = Pr{qt = q|qt > 0},∀q = 1, . . . , Q and
∑Q

q=1 Dq = D′1. In this process,

the underlying states affect the probabilities that some positive input is received in

a period, but not the actual quantity of that input.

Example 2.1.1. Numerical examples of the above special cases of the BMAP input pro-

cesses are presented as follows

(i) Compound Renewal Process:

(D0, D1, D2, D3) = (0.25, 0.25, 0.25, 0.25)

(ii) Markov Modulated Input Process:

D0 =

0.1 0

0 0.6


0.9 0.1

0.1 0.9

 =

0.09 0.01

0.06 0.54


D1 =

0.3 0

0 0.3


0.9 0.1

0.1 0.9

 =

0.27 0.03

0.03 0.27


D2 =

0.6 0

0 0.1


0.9 0.1

0.1 0.9

 =

0.54 0.06

0.01 0.09



32



(iii) Compound Markovian Arrival Process:

D0 =

0.99 0

0.01 0


D1 = 0.2

0 0.01

0 0.99

 =

0 0.002

0 0.198


D2 = 0.3

0 0.01

0 0.99

 =

0 0.003

0 0.297


D3 = 0.5

0 0.01

0 0.99

 =

0 0.005

0 0.495



2.1.3 System Contents

Any model of stochastic clearing system must keep track of the total quantity of all out-

standing inputs. Our model extends the existing models by simultaneously recording the

ages of individual inputs, i.e., the time elapsed since each input was received. This piece

of additional information is useful if the inputs or clearing decisions are time sensitive.

For instance, in the shuttle bus clearing example described in Section 1.1, passengers may

leave via other modes of transportation if they have been waiting for too long, and the lost

revenue can be thought of as a penalty cost.

Therefore, the system state of our model includes both the quantities and the ages

of individual outstanding inputs, and this information can be recorded in a sequence (or

string) of numbers. Let Rl≥0 denote the set of all nonnegative number sequences of length

l and let R0
≥0 = ∅. Any such sequence x ∈ Rl≥0 can be written as x =

[
x[l], x[l−1], . . . , x[1]

]
.

Now let xt ∈
⋃∞
l=0Rl≥0 record the sequence of all outstanding inputs at the beginning

33



of period t. Since this state of the system is captured before any clearing decision is

made, we shall refer to it as the pre-clearing system content in period t. Suppose that

xt =
[
x[l], x[l−1], . . . , x[1]

]
. Then, for each j = 1, 2, . . . , l, we have 0 ≤ x[j] ≤ Q, and

x[j] is the j-th number starting from the right (or back) of the sequence representing the

outstanding input received in period (t− j); the subscript j denotes the age of this input

in period t. Note that xt = ∅ (or xt = [0, . . . , 0]) indicates that the system is currently

empty.

Analogous to xt, we can define the post-clearing system content as yt, where yt ∈⋃∞
l=0Rl≥0, i.e., the sequence of outstanding inputs remaining in the system immediately

after the clearing decision is carried out. The difference between xt and yt is the outstanding

input quantity that is cleared in period t, which we shall denote as wt.

The system content variables xt and yt are both affected by the underlying state of the

system, the input process, and the clearing decision. We can use either variable to keep

track of the system state depending on the specific needs, and we shall distinguish them

when necessary.

Under the context of our model, the system remains empty until the first positive input

is received. Therefore, it is important to note that for any sequence, consecutive entries

of zeros not “preceded” by a positive number, i.e., zeros to the left (or at the front) of the

sequence, can be truncated without affecting the meaning of the sequence. In other words,

any two sequences such as
[
0, . . . , 0, x[l], . . . , x[1]

]
and

[
x[l], . . . , x[1]

]
contain essentially the

same information and can be used interchangeably in our models. With that said, the set

of potential system contents is defined by

Φ = {∅} ∪
∞⋃
l=1

{
[
x[l], . . . , x[1]

]
: xl > 0}. (2.11)

34



Together with the underlying state, we define the set of potential system states as

Ω = Φ× I. (2.12)

Note: For discrete time and discrete quantity models, Φ can be arranged into a tree

structure. An element in the tree is called a node, and the root node in the tree represents

the empty system. For a particular state x on the tree, all of its successors, i.e., nodes

found on any downward path from x, can be reached after receiving a sequence of inputs

without clearing the system. Therefore, each downward path of the tree corresponds to a

sample path of the input accumulation process. Figure 2.2 is an example of the tree of Φ

with the maximum input quantity Q = 2. The dashed lines represent the existing subtrees

not shown in the figure.

Figure 2.2: A sample tree of Φ with Q = 2

Definition 2.1.1. For any pair of sequences x =
[
x[l], x[l−1], . . . , x[1]

]
and y =

[
y[k], y[k−1], . . . , y[1]

]
in Φ, we define the following operators for elements of Φ:

35



(i) sequence concatenation:

x⊕ y =
[
x[l], x[l−1], . . . , x[1], y[k], y[k−1], . . . , y[1]

]
=
[
z[l+k], z[l+k−1] . . . , z[1+k], z[k], z[k−1] . . . , z[1]

]
= z

(ii) sub-sequences:

xL(n) =
[
x[l], x[l−1], . . . , x[l−n+1]

]
and xR(n) =

[
x[n], x[n−1] . . . , x[1]

]
, if 1 ≤ n ≤ l

(iii) sequence scalar multiplication:

ax =

 ∅, if a = 0[
ax[l], . . . , ax[1]

]
, if a ∈ R \ {0}

(iv) sequence addition:

x+ y =


[
x[l], . . . , x[k+1], x[k] + y[k], . . . , x[1] + y[1]

]
, if l ≥ k[

y[k], . . . , y[l+1], x[l] + y[l], . . . , x[1] + y[1]

]
, if l < k

(v) sequence sum: |x| =
∑l

j=1 x[j]

(vi) sequence length: L(x) = l

Note: ⊕ is non-commutative, i.e., x⊕ y 6= y ⊕ x; ∅ ⊕ 0 = 0⊕ ∅ = ∅ are two special cases

of the concatenation operation; xL(n) and xR(n) are the left and right sub-sequences of x

of length n, respectively; and the sequence sum is in fact a norm of Φ.

According to the above definitions, we can easily verify that each Rl≥0, for l = 0, 1, . . .,

as well as Φ, are all vector spaces with the sequences of zeros or ∅ being the zero elements,

respectively. Moreover, Φ is a metric space if we use the sequence sum as the metric.

36



For the purpose of our research, we need to define a partial order on Φ, which we shall

call the sequence order.

Definition 2.1.2. For any pair of number sequences x, y ∈ Rl, x ≤ y if and only if

x[j] ≤ y[j], for all j = 1, 2, . . . , l.

The sequence order is essentially a number-by-number comparison of two sequences of

the same length. However, since two sequences may vary in length, we need to “attach”

zeros to the left of the shorter one to make the two sequences equal in length if necessary.

Thus, we can relax our definition to allow comparisons of any pair of sequences in Φ.

In addition, x � y means that for some x ∈ Rl and y ∈ Rk, we have at least one j,

1 ≤ j ≤ max{l, k}, such that x[j] > y[j].

2.1.4 Action Set, Decision Rules, and Clearing Policies

At each decision epoch, we must decide whether to continue accumulating inputs, clear

some outstanding inputs, or clear everything in the system. Let at denote the action taken

and At be the set of available actions at the beginning of period t. Since we can clear

any amount of outstanding inputs, the content of At depends on the pre-clearing system

content xt.

If not all outstanding inputs are cleared at once, we call the action a “partial clearing”.

When partial clearing is not allowed, and it is decided to clear, then the system must be

reset to the empty state. This kind of action is called “bang-bang control” in the context

of optimal control theory, in which case the optimal control switches from one extreme to

the other (i.e., clear nothing vs. clear everything). Therefore, in the case of bang-bang

control, where no partial clearing is allowed, we can let At = {0, 1} for all t ∈ T , such that

at = 0 means to continue to accumulate in period t and at = 1 means to clear the system

immediately.

37



According to [68], “a decision rule prescribes a procedure for action selection in each

state at a specific decision epoch”. Decision rules may vary depending on how they incor-

porate past information and how they select actions. We say a decision rule is deterministic

if it chooses an action with certainty, and randomized otherwise. We can also refer to a

decision rule as Markovian if it only depends on the current system state, and history

dependent if it depends on the past history of the system states and actions.

Following the notation introduced in [68], we can classify the decision rules as history

dependent and deterministic (HD) and Markovian and deterministic (MD). In the context

of stochastic clearing systems, we refer to the decision rule in period t as the clearing rule,

model it by function rt, and denote the set of all such clearing rules by Rt. Since the input

process is Markovian, we can prove that Markovian clearing rules are sufficient for the

purpose of our model. Hence, we focus attention on MD rules unless otherwise specified.

Each clearing rule specifies a set of “undesirable” system states in which the clearing

action must take place in period t. Some typical rules include: (i) clear system if the total

cumulative quantity reaches a certain level; (ii) clear system if the age of any outstanding

order exceeds a particular limit; (iii) a combination of the preceding; and (iv) clear the

system when it is in certain underlying states. In our models, the MD clearing rules are

modelled as functions rt : Ω → At. For bang-bang control, rt(x, i) = 0 means to continue

to accumulate in period t and rt(x, i) = 1 means to clear the system immediately.

Example 2.1.2. Here are some examples of those typical clearing rules

(i) Quantity threshold rule:

rt(xt, it) =

 0, if |xt| < 5

1, otherwise

38



(ii) Age threshold rule:

rt(xt, it) =

 0, if L(xt) < 4

1, otherwise

(iii) Underlying state rule:

rt(xt, it) =

 0, if |xt| < 5 and L(xt) < 4

1, otherwise

(iv) Hybrid rule:

rt(xt, it) =

 0, if it /∈ I∗ ⊂ I

1, otherwise

According our definition of the clearing process, for bang-bang control, we have

yt = xt · (1− rt(xt, it)) = xt · (1− at), (2.13)

and

wt = xt − yt = xt · rt(xt, it) = xt · at. (2.14)

Consequently, at the next decision epoch t+ 1

xt+1 = yt ⊕ qt =

 xt ⊕ qt, if at = 0

qt, otherwise
. (2.15)

A clearing policy specifies the clearing rules to be used at all decision epochs. It provides

the decision maker with a prescription for action selection in any system state or with

respect to system history. A policy π is a series of clearing rules, i.e., π = (r1, r2, . . . , rN),

where rt ∈ Rt, for all t = 1, 2, . . . , N . We let Π denote the set of all clearing policies such

39



that

Π = R1 ×R2 × . . .×RN . (2.16)

Note: We call a policy stationary if rt = r, for all t = 1, 2, . . . , N . A stationary policy

over an infinite horizon has the form π = (r, r, . . .). In many infinite horizon problems,

stationary policies are known to be effective and necessary to keep the policy tractable [68].

Therefore, we consider only stationary policies for infinite horizon problems. All definitions

and results obtained in this section can be extended to stationary policies for an infinite

horizon problem by simply dropping the subscript t.

One of the main objectives of our research is to find the optimal clearing policy for a

given optimality criteria, and we denote such policy as π∗. Note that for a set of optimality

criteria, the optimal clearing policy may not be unique because in certain state, it may be

optimal to either continue to accumulate or clear all inputs.

2.2 Two Markov Chains

In Section 2.1.3, we introduced two types of system content variables xt and yt. Together

with the underlying state of the world, the system state at the beginning of period t be-

fore clearing is given by the two-tuple of (xt, it), and we call {(xt, it), t = 1, 2, . . .} the

pre-clearing system state process. Similarly, we call {(yt, it), t = 1, 2, . . .} the post-clearing

system state process. In this section, we show that under bang-bang control clearing poli-

cies, both processes can be modelled as GI/M/1-type Markov chains with tree structure.

In the rest of this section, all clearing policies are assumed to be bang-bang control policies.

2.2.1 System State Spaces

By definition, the pre-clearing system state (xt, it) is affected by the clearing rule rt−1 in the

previous period. On the other hand, the post-clearing system state (yt, it) is determined

40



by rt. We can define the system state space for (xt, it) and (yt, it) in period t as follows.

Definition 2.2.1. Let

Λ(rt−1) =
⋃

q∈{0,...,Q}

{(x⊕ q, i) ∈ Ω : rt−1(x, i) = 0}, (2.17)

be the system state space of (xt, it), for t = 2, 3, . . .. Similarly, let

Ω(rt) = {(x, i) ∈ Ω : rt(x, i) = 0}, (2.18)

be the system state space of (yt, it), for t = 1, 2, . . ..

Note: If the clearing rules vary over time, we must remember that Λ(rt) corresponds to

xt+1 and Ω(rt) corresponds to yt. We do not need to define the system state space for (x1, i1)

because that is determined by the model parameters. If the clearing rules are stationary,

then by dropping the subscript t, only Λ(r) and Ω(r) are needed to represent the system

state spaces for {(xt, it), t = 1, 2, . . .} and {(yt, it), t = 1, 2, . . .}.

To determine which pre-clearing system contents can ever be attained in at least one

underlying state in period t, we express

Ψ(rt) =
⋃

q∈{0,...,Q}

{x⊕ q ∈ Φ :
∏
i∈I

rt−1(x, i) = 0}, (2.19)

and similarly

Φ(rt) = {x ∈ Φ :
∏
i∈I

rt(x, i) = 0}. (2.20)

Our models become more computationally efficient by adding “dummy” states to the

respective system state spaces. More specifically, we can collect the underlying states and

expand the system state spaces as

Λ(rt) ⊆ Ψ(rt) × I, (2.21)

41



and

Ω(rt) ⊆ Φ(rt) × I, (2.22)

for t = 1, 2, . . .. In this way, we can group the system states with the same system contents

together, and use Ψ(rt) or Φ(rt) as the “level” set to identify the system content without

needing to specify the underlying states. Using levels to group system states is a common

practice in stochastic modelling, especially for the models with Markov chains, to introduce

desirable structure into the system state space.

Now we shall discuss how particular properties of clearing rules affect the structure and

size of the system state spaces. First, let us call a clearing rule “logical” if it satisfies the

following condition.

Condition 2.2.1. (Logical Condition) At any decision epoch t ∈ T and underlying state

i ∈ I,

(i) rt(∅, i) = 0 with certainty;

(ii) for any x, y ∈ Φ, if rt(x, i) = 1, then rt(x⊕ y, i) = 1;

(iii) for any x ≤ y ∈ Φ, if rt(x, i) = 1, then rt(y, i) = 1.

Part (i) is almost always true for any clearing rule; part (ii) means that if we choose to

clear system content x, then for any other system contents x ⊕ y, which can be obtained

after further accumulation from x, we must also clear the system; and part (iii) is reasonable

because, for the same underlying state i, if we choose to clear system content x, then we

should clear any system content y that is “greater” than x.

The logical condition implies a special structure for each system state space.

Property 2.2.1. If the clearing rule rt in period t satisfies Condition 2.2.1, then Ψ(rt) and

Φ(rt) can each be mapped to a connected subtree of Φ.

42



Proof. Let us first prove that the tree for Ψ(rt) is actually a connected subtree for Φ. Part

(i) of Condition 2.2.1 implies that ∅, which is the root node for Φ, can always be the root

node for Ψ(rt). Part (ii) of Condition 2.2.1 suggests that starting from ∅ and proceeding

on any downward path of Φ, if a node x is not in Ψ(rt), then all successors of x, i.e, x⊕ y,

are not in Ψ(rt) either. In other words, there is a “cut-off” point on each downward path of

Φ, and the subtree can be built by excluding the nodes beyond those cut-off points. The

subtree for Φ(rt) can be built in a similar fashion.

For the clearing rule defined in Example 2.1.2.(iii) and Q = 2, the subtree corresponding

to Φ(rt) is illustrated in Figure 2.3.

Figure 2.3: A sample tree of Φ(rt) with Q = 2

Theoretically, the system state space may be infinitely large if none of the clearing crite-

ria can ever be attained. For example, some clearing processes can continue to accumulate

indefinitely or up to infinite quantities. However, in practice, a clearing policy needs to be

“feasible” so that the system is cleared in finite time, and the quantity cleared is often lim-

ited by a clearing capacity. For any period t, we define the maximum cumulative quantity

and the oldest input age allowed by rt, respectively, as follows:

Q̄(rt) = max
(x,i)∈Ω

{|x| : rt(x, i) = 0}, (2.23)

43



and

L̄(rt) = max
(x,i)∈Ω

{L(x) : rt(x, i) = 0}. (2.24)

Here is the condition for a clearing rule to be feasible.

Condition 2.2.2. (Feasibility Condition) For a given clearing rule rt in period t, both

Q̄(rt) and L̄(rt) are finite.

The feasibility condition has a direct impact on the size of the system state space for a

clearing rule.

Property 2.2.2. In any discrete time and discrete quantity model, if the clearing rule rt

in period t satisfies Condition 2.2.2, the sets Ψ(rt) and Φ(rt) are finite. However, the size

of the sets grows exponentially in the order of O(QL̄(rt)).

Proof. If L̄(rt) < ∞, then based on equation (2.24), all sequences x ∈ Ψ(rt) or y ∈ Φ(rt)

must have finite lengths. Each entry in a sequence is discrete and finite according to

our assumptions of discrete and finite input quantities. Since we can make all sequences

into equal length by attaching zeros to the left, the total number of such sequences grows

exponentially in the order of O(QL̄(rt)).

In practice, stochastic clearing systems are often employed when the maximum delay

allowed, i.e., L̄(rt), is relatively small. In some situations, input quantities and time periods

can be approximated and discretized with larger units to make the maximum input size Q

and L̄(rt) reasonably small without losing too much accuracy. Therefore, we argue that the

insight gained by capturing more information on the system contents is enough to justify

the exponential complexities of our models.

For discrete time and discrete quantity models, the finite tree structures of Ψ(rt) and

Φ(rt) allows us to use the Breadth-First-Traversal (BFT) procedures from graph theory to

44



construct and navigate them. The procedures for constructing Ψ(rt) and Φ(rt) differ slightly

and we describe them separately below.

BFT Procedure I: Constructing Ψ(rt)

Step 1 Initialize a list V , and store ∅ and numbers 1, 2, . . . , Q in V .

Step 2 Initialize a list U , and store numbers 1, 2, . . . , Q in U .

Step 3 If U is empty, go to Step 5; otherwise, read and delete the next entry from U

according to the First-In-First-Out (FIFO) rule and denote it as x.

Step 4 For any underlying state i ∈ I, if rt(x, i) = 0, enter y ⊕ q for each q = 0, 1, . . . , Q

into both lists V and U ; go back to Step 3.

Step 5 Output the sequences in V as Ψ(rt).

BFT Procedure II: Constructing Φ(rt)

Step 1 Initialize a list V , and store ∅ in V .

Step 2 Initialize a list U , and store numbers 1, 2, . . . , Q in U .

Step 3 If U is empty, go to Step 5; otherwise, read and delete the next entry from U

according to the First-In-First-Out (FIFO) rule and denote it as y.

Step 4 For any underlying state i ∈ I, if rt(y, i) = 0, enter y to V ; then for each

q = 0, 1, . . . , Q, enter x⊕ q into U ; go back to Step 3.

Step 5 Output the sequences in V as Φ(rt).

Time Complexity: Both procedures require constructing and traversing through the

45



entire tree only once. In Step II.4, the clearing rule rt is checked for each underlying state

i ∈ I. Therefore, according to Property 2.2.2, the time complexities of both procedures

have an order of growth of O(MQL̄(rt)).

Memory Complexity: Since the entire tree needs to be stored by both procedures and

each node contains a string of numbers, the memory complexities of both procedures have

an order of growth of O(L̄(rt)Q
L̄(rt)).

Please refer to Appendix C for a numerical example to verify the complexity estimates.

The two BFT procedures are used in many of our algorithms, but they can be easily

switched to the Depth-First-Traversal (DFT) procedures by using the Last-In-First-Out

(LIFO) rule when reading from the list U in Step 3. The DFT Procedures have the same

time and memory complexities as their counterparts.

2.2.2 Pre-Clearing System State Process

Recall that the underlying process {it, t = 1, 2, . . .} is an ergodic Markov chain, and the

input process {(qt, it), t = 1, 2, . . .} is also Markovian, i.e., qt+1 and it+1 depend only on it.

According to equations (2.13) and (2.15), for a bang-bang control clearing rule rt, we have

xt+1 = xt · (1− rt(xt, it))⊕ qt,

which only depends on (xt, it), qt, and rt. Obviously, {(xt, it), t = 1, 2, . . .} is a discrete

time Markov chain.

There are two types of transitions for the Markov chain {(xt, it), t = 1, 2, . . .}:

(i) (x, i) → (x ⊕ q, j): starting from any system state, no clearing is required at the

beginning of the current period, and quantity q is received during the period

(ii) (x, i)→ (q, j): starting from any system state, the system is cleared at the beginning

of the current period, and quantity q is received during the period

46



for all x ∈ Φ, i, j ∈ I and q = 0, . . . , Q.

The transitions for the Markov chain {(xt, it), t = 1, 2, . . .} may be time-dependent if π

is not stationary. The one-step transition probabilities between (xt, it) and (xt+1, it+1) are

determined by rt and can be written as:

P
(x,rt)
(x,i),(x′,j) =


a

(x,rt)
(x,i),(x⊕q,j), if x′ = x⊕ q

b
(x,rt)
(x,i),(∅⊕q,j), if x′ = q

0, otherwise

(2.25)

where

a
(x,rt)
(x,i),(x⊕q,j) = (1− rt(x, i))[Dq]i,j (2.26)

correspond to the transition probabilities in period t without clearing, and

b
(x,rt)
(x,i),(q,j) = rt(x, i)[Dq]i,j (2.27)

are the transition probabilities in period t with clearing, and

Q∑
q=0

(
a

(x,rt)
(x,i),(x⊕q,j) + b

(x,rt)
(x,i),(q,j)

)
= [D]i,j, (2.28)

for all t = 1, 2, . . . , N .

We can collect the underlying states and express the transition probabilities in matrix

form. More specifically, if x′ = x⊕ q, we have

P
(x,rt)
x,x′ = A

(x,rt)
x,x⊕q =


(1− rt(x, 1))

. . .

(1− rt(x,M))

Dq, (2.29)

47



else if x′ = q, we have

P
(x,rt)
x,x′ = B(x,rt)

x,q =


rt(x, 1)

. . .

rt(x,M)

Dq, (2.30)

otherwise,

P
(x,rt)
x,x′ = 0. (2.31)

Together, we have
Q∑
q=0

(
A

(x,rt)
x,x⊕q +B(x,rt)

x,q

)
= D. (2.32)

Note that P
(x,rt)
x,x′ are the block matrices in P (x,rt), which is the transition probability matrix

for the Markov chain {(xt, it), t = 1, 2, . . .}.

For each x ∈ Φ, the block matrices in Equations (2.29) and (2.30) can be formed by first

computing rt(x, i) for all i ∈ I, and then forming the diagonal matrices and multiplying

them by Dq for all q = 0, 1, . . . , Q. Therefore, forming P (x,rt) by blocks is more efficient

than constructing it by Equations (2.25) to (2.27).

2.2.3 Post-Clearing System State Process

Now, suppose we are interested in keeping track of the post-clearing system states. Ac-

cording to equations (2.13) and (2.15), for bang-bang control clearing rule rt+1, we have

yt+1 = xt+1 · (1− rt+1(xt+1, it+1)) = (yt ⊕ qt) · (1− rt+1(yt ⊕ qt, it+1)).

This shows that yt+1 depends only on yt⊕ qt, it+1, and rt+1, which then verifies the Marko-

vian property of {(yt, it), t = 1, 2, . . .}.

There are three types of transitions for the Markov chain {(yt, it), t = 1, 2, . . .}:

48



(i) (∅, i)→ (∅, j): starting from an empty system state, a positive quantity q is received

and the system is cleared at the beginning of next period; or no input is received so

no clearing is required at the beginning of next period;

(ii) (y, i) → (y ⊕ q, j): starting from any system state, quantity q is received in the

current period and no clearing is required at the beginning of next period;

(iii) (y, i)→ (∅, j): starting from a non-empty system state, q is the quantity received in

the current period and the system is cleared at the beginning of next period;

for all y ∈ Φ, i, j ∈ I and q = 0, . . . , Q.

The time-dependent one-step transition probabilities between (yt, it) and (yt+1, it+1) are

determined by rt+1 and can be written as:

P
(y,rt+1)
(y,i),(y′,j) =



a
(y,rt+1)
(∅,i),(∅,j) + b

(y,rt+1)
(∅,i),(∅,j), if y = y′ = ∅

a
(y,rt+1)
(y,i),(y⊕q,j), if y′ = y ⊕ q 6= ∅

b
(y,rt+1)
(y,i),(∅,j), if y 6= ∅ and y′ = ∅

0, otherwise

(2.33)

where

a
(y,rt+1)
(y,i),(y⊕q,j) = (1− rt+1(y ⊕ q, j))[Dq]i,j (2.34)

correspond to the transition probabilities without clearing, and

b
(y,rt+1)
(y,i),(∅,j) =

Q∑
q=0

rt+1(y ⊕ q, j)[Dq]i,j (2.35)

are the transition probabilities with clearing, and

Q∑
q=0

(
a

(y,rt+1)
(y,i),(y⊕q,j) + b

(y,rt+1)
(y,i),(∅,j)

)
= [D]i,j, (2.36)

for all t = 1, 2, . . . , N .

49



Expressing the transition probabilities in the matrix form, if y = y′ = ∅, we have

P
(y,rt+1)
∅,∅ = A

(y,rt+1)
∅,∅ +B

(y,rt+1)
∅,∅

= D0 +

Q∑
q=1

Dq


rt+1(q, 1)

. . .

rt+1(q,M)

 ,
(2.37)

else if y′ = y ⊕ q, we have

P
(y,rt+1)
y,y⊕q = A

(y,rt+1)
y,y⊕q = Dq


(1− rt+1(y ⊕ q, 1))

. . .

(1− rt+1(y ⊕ q,M))

 , (2.38)

else if y′ = ∅, we then have

P
(y,rt+1)
y,∅ = B

(y,rt+1)
y,∅ =

Q∑
q=0

Dq


rt+1(y ⊕ q, 1)

. . .

rt+1(y ⊕ q,M)

 , (2.39)

otherwise,

P
(y,rt+1)
y,y′ = 0. (2.40)

Together, we have
Q∑
q=0

(
A

(y,rt)
y,y⊕q +B

(y,rt)
y,∅

)
= D. (2.41)

Once again, we note that P
(y,rt)
y,y′ are the block matrices in P (y,rt), which is the transition

probability matrix for the Markov chain {(yt, it), t = 1, 2, . . .}.

In the context of a stationary policy for the infinite horizon problem, we can drop the

subscript t from all of the above definitions, and the transition probabilities in matrices

P (x,r) and P (y,r) are independent of time. Therefore, the Markov chains {(xt, it), t =

50



1, 2, . . .} and {(yt, it), t = 1, 2, . . .} are both time-homogeneous.

Theorem 2.2.3. For discrete-quantity problems, assume that D0e 6= e and D is ir-

reducible. Under a logical, feasible, and stationary policy π = (r, r, . . .), the processes

{(xt, it), t = 1, 2, . . .} and {(yt, it), t = 1, 2, . . .} are both ergodic Markov chains with finite

state space Λ(r) and Ω(r) with a tree structure, respectively.

Proof. First, since the clearing policy is stationary, the transitions of the Markov chain

{(xt, it), t = 1, 2, . . .} are all within the system state space Λ(r) and the transition proba-

bility matrix P (x,r) is time-independent. From the definitions of the input process and the

state transitions, if the policy satisfies Condition 2.2.1, it is easy to verify that the states

in Λ(r) communicate with one another and are positive recurrent. This is because after

each clearing, the system state is set to (∅, j) for some j ∈ I, and another clearing cycle

begins. Since {it, t = 1, 2, . . .} is irreducible, {(xt, it), t = 1, 2, . . .} is also irreducible. Prop-

erty 2.2.2 guarantees that Λ(r) is finite. Hence, {(xt, it), t = 1, 2, . . .} is positive recurrent.

Property 2.2.1 confirms the tree structures of the state spaces. The proof is essentially the

same for {(yt, it), t = 1, 2, . . .}.

Note: The definitions for the transition probabilities in Equations (2.25) to (2.28) and

Equations (2.33) to (2.36) are interchangeable, depending on which Markov chain we are

referring to.

2.3 Cost Structure

Three types of costs are relevant to our analysis of stochastic clearing systems: (i) delay

penalty cost, (ii) fixed clearing cost, and (iii) variable clearing cost.

51



2.3.1 Delay Penalty Cost

The delay penalty cost, also known as the disutility of waiting, or the holding cost in many

practical applications, is incurred during every period that an input remains in the system.

In earlier works on stochastic clearing systems, more specifically, in inventory theory and

shipment consolidation models, the delay penalty cost was charged at a constant rate over

time. In other words, the total delay penalty over the clearing cycle was assumed to be

linear with respect to the length of time that input was in the system. However, we argue

that it is more realistic for the penalty rate to actually “grow” as the delay is prolonged, i.e.,

as each input “ages”. Therefore, in our models, the total delay penalty cost in a clearing

cycle is non-decreasing with respect to the length of time each input was in the system.

This modification of the delay penalty cost function is among the major contributions of

our research.

Recording both the quantities and ages of individual outstanding inputs in the system

content variables xt and yt becomes necessary when the delay penalty rates vary over time

and the penalties for individual inputs are additive or super-additive. Even though the

delay penalties are usually only charged upon clearing, we assume that they are incurred

in each period throughout the clearing cycle and summed to the final amount. Therefore,

at each decision epoch t, we assume that the delay penalty cost is calculated by a function

Ht : Φ→ R, which is a function of the post-clearing system content variable yt.

The exact form of Ht may vary depending on the actual calculations of the delay

penalties. Some typical examples are shown below.

Example 2.3.1. Suppose that yt = {y[l], . . . , y[1]}

(a) Ht(yt) = 0.1|yt|2

(b) Ht(yt) = 0.1L(yt)
2

(c) Ht(yt) =
∑l

j=1 0.1
(
j · δ{[y[j]]>0}

)2

52



(d) Ht(yt) =
∑l

j=1 0.1
(
j · y[j]

)2

where δ{·} is the indicator function.

The penalty function in (a) is a polynomial in the total cumulative quantities; similarly,

(b) is polynomial in the maximum age of all outstanding inputs; on the other hand, the

function in (c) is the sum of polynomials of individual input ages; and lastly, part (d) is a

sum of products between input quantities, ages, and penalty rates.

2.3.2 Clearing Costs

Recall that wt is the content cleared in period t and there are two types of clearing costs:

fixed clearing cost and variable clearing cost. For an arbitrary period t, the fixed clearing

cost in the period is given by the function Kt : Φ→ R≥0, and generally has the form

Kt(wt) = k̂t · δ{|wt|>0}, (2.42)

where wt = xt− yt and k̂t is a constant in every decision epoch t ∈ T . This means that the

fixed clearing cost is only charged when a positive quantity is cleared, but that cost itself

may change over time.

The variable clearing cost function, Ct : Φ→ R, is usually calculated as a linear function

of the cleared quantities, but in some cases, quantity discounts can be obtained for larger

clearings. In later chapters, we show that this cost has little impact on the choice of optimal

clearing policy, unless there is a significant quantity discount or monetary discount over

time.

Example 2.3.2. Sample variable clearing cost functions

(a) Ct(wt) = ĉt · |wt|

53



(b) Ct(wt) = ĉt ·
|wt|
|wt|+ a

(c) Ct(wt) =


ĉN |wt|, if |wt| < W̄

ĉV W̄ , if W̄ ≤ |wt| ≤ Ŵ

ĉV |wt|, if Ŵ < |wt|

where ĉt,∀t ∈ T , ĉN , and ĉV are variable cost rates, and W̄ and Ŵ are quantity thresholds

to qualify for the discounted rate.

2.3.3 Objective Cost Functions

Minimizing the total costs associated with a stochastic clearing system is one of the main

objectives of our research. We use the variations of

Cπ,T,α<t1,t2>(x, i) (2.43)

where (x, i) is the initial system state, to denote different cost objectives that we are

interested in. The subscripts and superscripts in the above notation are used to distinguish

the different objectives we may have. For instance, the two numbers 1 ≤ t1 ≤ t2 ≤ N

indicate the time interval over which we are computing costs. 0 ≤ α ≤ 1 is the discount

factor, for which α = 0 means only the cost in the current period is captured, and α = 1

means no discount is applied. In that case, we can drop the subscript < t1, t2 >. The

clearing policy is given by π, and we can substitute π by r if the policy is stationary.

Superscript “T” signals that we are computing the total cost over the time interval, and

we can substitute it by “A” if we are interested in the average cost over the time interval

instead. Lastly, the domain of the above function is the system state space Ω, where

(x, i) ∈ Ω indicates the initial system state at the beginning of period t1.

Utilizing the above notation, the expected total cost over the planning horizon is defined

54



as

Cπ,T<1,N>(x, i)

= E
[∑N

t=1 (Ht(yt) +Kt(wt) + Ct(wt)) +KN+1(xN+1) + CN+1(xN+1)
∣∣(x1, i1) = (x, i)

]
.

(2.44)

Similarly, the expected total discounted cost over the planning horizon is calculated as

Cπ,T,α<1,N>(x, i)

= E
[∑N

t=1 α
t−1 (Ht(yt) +Kt(wt) + Ct(wt)) + αN(KN+1(xN+1) + CN+1(xN+1))

∣∣(x1, i1) = (x, i)
]
,

(2.45)

for some α < 1. Finally, the expected average total cost per period over over the planning

horizon can be computed as

Cπ,A<1,N>(x, i) =
Cπ,T<1,N>(x, i)

N
. (2.46)

For infinite horizon problems, we would take the limit of the above equations as N →∞.

55



Chapter 3

Expected Total Cost Model over

Finite Horizon

In this chapter, we study stochastic clearing problems over a finite planning horizon with

the expected total cost as our objective function. We first present an algorithm to compute

the expected total cost for any given clearing policy. Then we construct algorithms to find

the optimal clearing policies that minimize the expected total cost. Special structures and

characteristics of the optimal policies are identified under certain scenarios. The modelling

assumptions and notations used in this chapter are summarized below.

(i) The planning horizon is finite, i.e., T = {1, 2, . . . , N}, where N <∞.

(ii) The model is in discrete time and assumes discrete quantities, and the input process

is modelled as a BMAP.

(iii) The clearing policy is given as π = (r1, r2, . . . , rN).

(iv) The pre-clearing system state process {(xt, it), t = 1, 2, . . .} is the Markov chain of

interest here.

(v) The cost functions are given as Ht, Kt, and Ct, which may vary over time.

56



3.1 Policy Evaluation

For any given clearing policy, the expected total cost over the finite horizon can be com-

puted using backward induction. In order to use such a method, we need to specify the

“reward” functions for each action selected for each system state (x, i) ∈ Λ(rt) in period t.

We define the reward function as

uπt (x, i) = Ht(y) +Kt(x− y) + Ct(x− y), (3.1)

where the post-clearing system content y is determined by rt(x, i) in period t. If no partial

clearing is allowed, we can rewrite the reward function as

uπt (x, i) = Ht((1− rt(x, i))x) +Kt(rt(x, i)x) + Ct(rt(x, i)x), (3.2)

where rt(x, i) = 0 means continuing to accumulate and rt(x, i) = 1 means clearing the

system.

Subject to the clearing policy π, at any arbitrary decision epoch n, we define the

expected total cost starting from period n until the end of the planning horizon as

Cπ,T<n,N>(x, i)

= E
[∑N

t=n (Ht(yt) +Kt(xt − yt) + Ct(xt − yt)) +KN+1(xN+1) + CN+1(xN+1)
∣∣(xn, in) = (x, i)

]
= E

[∑N
t=n u

π
t (xt, it) +KN+1(xN+1) + CN+1(xN+1)

∣∣(xn, in) = (x, i)
]
,

(3.3)

for all n = 1, 2, . . . , N , and

Cπ,T<N+1,N>(x, i) = KN+1(x) + CN+1(x). (3.4)

For any given initial system state (x, i) in period n, the Markovian property of {(xt, it), t =

57



1, 2, . . .} allows us to write Cπ,T<n,N>(x, i) recursively as

Cπ,T<n,N>(x, i) = uπn(x, i) + E
[
Cπ,T<n+1,N>(x′, j)

∣∣(x, i)] , (3.5)

which can be computed as

Cπ,T<n,N>(x, i) = uπn(x, i) +
∑

(x′,j)∈Λ(rn)

P
(x,rn)
(x,i),(x′,j)C

π,T
<n+1,N>(x′, j), (3.6)

where the transition probabilities are given by Equations (2.25) to (2.28).

We now present an algorithm to compute the expected total cost over a finite horizon.

Algorithm I: Finite Horizon Policy Evaluation Algorithm

I.1 Construct Ψ(rN+1) using BFT Procedure I. For each (x, i) ∈ Ψ(rN+1)× I, compute

Cπ,T<N+1,N>(x, i) by Equation (3.4). Set n := N .

I.2 Construct Ψ(rn) using the BFT Procedure I. For each (x, i) ∈ Ψ(rn) × I, compute

Cπ,T<n,N>(x, i) by Equations (2.25), (3.2), and (3.6).

I.3 If n = 1, stop and report Cπ,T<1,N>(x, i); otherwise, set n := n − 1 and return to

Step I.2.

Time Complexity: The time complexity of BFT Procedure I has an order of growth of

O(MQL̄(rt)), for each t ∈ T . Step I.2 is repeated N times and in the n-th iteration, it

must scan through both Ψ(rn−1) × I and Ψ(rn) × I. This step has an order of growth of

O(M2QL̄(rt)) in a single iteration. Therefore, the total time complexity of Algorithm I is

O(M2NQL̄(rt)).

Memory Complexity: All sequences in Ψ(rn−1) and Ψ(rn) must be stored in iteration

n. However, the rewards and transition probabilities for each sequence do not need to be

58



stored. Therefore, the memory complexity is O(L̄(rt)Q
L̄(rt)).

Please refer to Appendix C for a numerical example to verify the complexity estimates.

We demonstrate Algorithm I through the next numerical example.

Example 3.1.1. Consider a stochastic clearing problem with the following parameters.

(i) The planning horizon has ten periods, i.e., N = 10.

(ii) The input process is described in Example 2.1.1.(ii).

(iii) The delay penalty cost functions Ht is described in Example 2.3.1.(d).

(iv) The fixed clearing cost is given as Kt(wt) = 10 · δ{|wt|>0}.

(v) The variable clearing cost is given as Ct(wt) = 0.5|wt|.

(vi) The clearing policy is given as

rt(xt, it) =

 0, if |xt| < 5 and L(xt) < 4

1, otherwise
, for t ≤ 5;

rt(xt, it) =

 0, if |xt| < 4 and L(xt) < 3

1, otherwise
, for 5 < t ≤ 10.

The expected total costs for this particular problem is computed using Algorithm I and

summarized in Table 3.1.

From the preceding numerical example, we can make the following observations. First,

we notice that the input process is a Markov Modulated Input Process, so the input arrival

rate may vary depending on the underlying state. Therefore, we can see that for every

sequence x in Table 3.1, Cπ,T<1,N>(x, 1) 6= Cπ,T<1,N>(x, 2). Thus, the initial underlying state

affects the expected total cost.

59



Cπ,T<1,N>(x, i) i = 1 i = 2

∅ 5.3235 3.4467
x = [1] 8.7308 6.6800
x = [2] 9.1352 7.0717
x = [1, 0] 9.4345 7.6600
x = [1, 1] 10.0845 8.3100
x = [1, 2] 10.5345 8.7600
x = [2, 0] 9.8845 8.1100
x = [2, 1] 10.5345 8.7600
x = [2, 2] 10.9845 9.2100
x = [1, 0, 0] 9.8235 7.9467
x = [1, 0, 1] 10.3235 8.4467
x = [1, 0, 2] 10.8235 8.9467
x = [1, 1, 0] 10.3235 8.4467
x = [1, 1, 1] 10.8235 8.9467
x = [1, 1, 2] 11.3235 9.4467
x = [1, 2, 0] 10.8235 8.9467
x = [1, 2, 1] 11.3235 9.4467
x = [1, 2, 2] 11.8235 9.9467
x = [2, 0, 0] 10.3235 8.4467
x = [2, 0, 1] 10.8235 8.9467
x = [2, 0, 2] 11.3235 9.4467
x = [2, 1, 0] 10.8235 8.9467
x = [2, 1, 1] 11.3235 9.4467
x = [2, 1, 2] 11.8235 9.9467
x = [2, 2, 0] 11.3235 9.4467
x = [2, 2, 1] 11.8235 9.9467
x = [2, 2, 2] 12.3235 10.4467

Table 3.1: Summary of Expected Total Costs for Example 3.1.1

Next, we see that the delay penalty function is the sum of products between input

quantities, ages, and penalty rates. Therefore, the input sequence of the initial system

content has a direct impact on the expected total cost if no dispatch is required immediately.

For example, when x = [1, 0] or x = [2], no dispatch is required. We then see that

Cπ,T<1,N>([1, 0], i) > Cπ,T<1,N>([2], i), for each i = 1, 2. These results mean that one unit of

input that has already stayed in the system for two periods will incur more cost than two

units of input that has just arrived in the last period.

On the other hand, for x = [1, 2, 2], x = [2, 1, 2], and x = [2, 2, 1], since dispatch is

60



required immediately for all three cases, the difference in the input sequences no longer

matters as the total accumulated quantities are the same. Therefore, Cπ,T<1,N>([1, 2, 2], i) =

Cπ,T<1,N>([2, 1, 2], i) = Cπ,T<1,N>([2, 2, 1], i), for each i = 1, 2. These observations generally hold

true and they can be used to characterize the optimal clearing policy.

3.2 Optimality Equations

One of our main goals in this chapter is to find an optimal deterministic clearing policy,

denoted by π∗ = (r∗1, r
∗
2, . . . , r

∗
N), that minimizes the expected total cost during the entire

planning horizon, if the initial system state is (x, i). Recall from Section 3.1, if such optimal

policy exists, then the minimum expected total cost Cπ
∗,T

<1,N>(x, i), defined by Equation (3.3),

must satisfy

Cπ
∗,T

<1,N>(x, i) ≤ Cπ,T<1,N>(x, i),∀π ∈ Π. (3.7)

We shall call the stochastic clearing problem over a finite sub-interval < n,N >

the last (N-n)-stage clearing problem, and denote the corresponding sub-policy by πn =

(rn, rn+1, . . . , rN) and the expected total cost function by Cπ,T<n,N>(x, i).

For any stochastic clearing system over a finite horizon, we can establish the existence

of an optimal clearing policy if the cost functions satisfy the following conditions.

Condition 3.2.1.

(i) Kt(w) = k̂t · δ{|w|>0} and k̂t ≥ k̂t+1 ≥ . . . ≥ k̂N+1 = 0,∀t ∈ T , i.e., the fixed clearing

cost is non-increasing over time and is reduced to zero at the end of the horizon.

(ii) Ct(w) = ĉt · |w|, i.e., the variable clearing cost is a linear function of the cleared

quantities.

(iii) Ht(x+ y) ≥ Ht(x) +Ht(y), for all x, y ∈ Φ and t ∈ T , i.e., Ht is superadditive in Φ.

61



(iv) Ht(x⊕ [0, . . . , 0]⊕ z) ≥ Ht(x⊕ z), for all x, y, z ∈ Φ and t ∈ T , i.e., delay penalties

are non-decreasing over time.

(v) Ht(x)−Ct(x) +Ct+1(x) ≥ 0, for all x ∈ Φ and t ∈ T , i.e., The variable clearing cost

reduction from delaying clearance does not exceed the corresponding delay penalty.

(vi) For any real number M > 0, there are only finitely many sequences x ∈ Φ such that

Ht(x)− Ct(x) + Ct+1(x) ≤M , for all t ∈ T .

(vii) Ht(x) ≥ Ht(∅) = 0, for all x ∈ Φ and t ∈ T .

Part (i) is required to ensure that there is no incentive to clear the system immediately

due to lower fixed clearing cost at the present moment than in the future. Part (ii) simplifies

the variable clearing cost function to a linear function for any non-zero quantities, so that

Ct(x+y) = Ct(x)+Ct(y) and Ct(x⊕y) = Ct(x)+Ct(y), for all x, y ∈ Φ. Part (iii) suggests

that the delay penalty function is superadditive which implies that the delay penalty gets

more expensive as more input quantities and input ages are accumulated. Part (iv) is an

essential part of our modelling assumption because it accounts for the ages of inputs in

each sequence. Part (v) ensures that if we delay the clearing of any input sequence for an

extra period, the variable cost savings cannot exceed the delay penalty incurred by that

sequence. In other words, the reduction of variable clearing cost does not provide sufficient

incentive for us to continue accumulating. In fact, the clearing decisions have very little

impact on the variable clearing costs because all inputs will eventually be cleared. Part

(vi) is necessary so that clearing is guaranteed eventually. The impact of this part will be

explained later. Lastly, part (vii) indicates that no delay penalty is incurred if the system

is empty.

Note: Condition 3.2.1 cannot guarantee that Ht(x) ≥ Ht(y) if x � y. In other words, if

the sequence cannot be ranked with the partial order given in Definition 2.1.2, then we

must compute and compare the actual delay penalties. This is mainly because both the

62



quantity and the age of each outstanding input contribute to the delay penalty at the same

time, hence their effects are “intertwined”. For instance, an input of 10 units which has

been delayed for 5 periods may lead to a higher penalty than an input of 20 units that has

only been delayed for 2 periods.

Condition 3.2.1 allows us to rewrite Equation (3.3) into more manageable forms for the

purpose of our analysis. First, we can drop the term KN+1(·) because of part (i). Recall

that xt+1 = yt ⊕ qt, so together with Condition 3.2.1.(ii), we have

Cπ,T<n,N>(x, i) = E

[
N∑
t=n

(Kt(wt) +Ht(yt)− Ct(yt) + Ct+1(yt ⊕ qt))
∣∣(xn, in) = (x, i)

]
+Cn(x),

(3.8)

where qt is the input quantity in period t. Because Cn(x) does not depend on π, we can

drop that term and modify the function in (3.8) to be

Cπ,T<n,N>(x, i) = E

[
N∑
t=n

(Kt(wt) +Ht(yt)− Ct(yt) + Ct+1(yt ⊕ qt))
∣∣(xn, in) = (x, i)

]
. (3.9)

Define a function Gt as

Gt(y, i) = Ht(y)− Ct(y) +

Q∑
q=0

Ct+1(y ⊕ q)fi(q)

= Ht(y)− Ct(y) + Ct+1(y) +

Q∑
q=0

M∑
j=1

Ct+1(q)[Dq]i,j.

(3.10)

Gt(y, i) is equivalent to the delay penalty for y in period t plus the expected increment in

variable clearing cost between y in period t and y ⊕ q in period t+ 1. Condition 3.2.1.(v)

ensures that Gt(y, i) ≥ 0, for all y ∈ Φ and t ∈ T . If we substitute (3.10) into (3.9), we

have

Cπ,T<n,N>(x, i) =
N∑
t=n

E
[
Kt(wt) +Gt(yt, it)

∣∣(xn, in) = (x, i)
]
. (3.11)

63



To further simplify our notations, let us define an operator

Eb(y, i) = E [b(y ⊕ q, j)|i]

=
M∑
j=1

Q∑
q=0

b(y ⊕ q, j)[Dq]i,j,
(3.12)

where b(y, i) : Φ × I → R. We can interpret Eb(y, i) as the expected value of function

b after the input is received in the period, given that at the beginning of the period the

system state is (y, i).

The clearing policy π is said to be optimal if the corresponding (N − n)-stage policies

satisfy the following optimality equations

Cπ,T<n,N>(x, i) = inf
y≤x

{
Kn(x− y) +Gn(y, i) + ECπ,T<n+1,N>(y, i)

}
, (3.13)

for t = 1, 2, . . . , N . At the end of the planning horizon, since k̂N+1 = 0 and CN+1 is already

accounted for by GN , we can modify Equation (3.4) to

Cπ,T<N+1,N>(x, i) = 0. (3.14)

A solution to the system of Equations (3.13) and boundary condition (3.14) is a sequence

of functions Cn : Λ(rt) → R, n = 1, 2, . . . , N + 1, with the property that CN+1 satisfies

Equation (3.14), CN satisfies the N -th equation with CN+1 substituted into the RHS of the

N -th equation and so forth. Hence, the solution can be obtained via backward induction.

Now, we define the value function for the problem over the time interval < n,N >,

with initial system state (xn, in) = (x, i), to be

Vn(x, i) = inf
π∈Π
Cπ,T<n,N>(x, i). (3.15)

Note that the existence of an optimal policy is not required to define the value function.

64



Of course, once the existence is established, the “inf” in (3.15) can be replaced by “min”.

Using the principle of optimality, we can write the following dynamic programming

equations for the value function

Vn(x, i) = inf
y≤x
{Kn(x− y) +Gn(y, i) + E[Vn+1(y ⊕ qn, in+1)|in = i]}

= inf
y≤x
{Kn(x− y) +Gn(y, i) + EVn+1(y, i)} , ∀n ∈ T,

VN+1(x, i) = 0.

(3.16)

If we let

Wn(y, i) = Gn(y, i) + EVn+1(y, i),∀n ∈ T, (3.17)

we can rewrite the dynamic programming Equations (3.16) as

Vn(x, i) = inf
y≤x
{Kn(x− y) +Wn(y, i)} ,∀n ∈ T,

VN+1(x, i) = 0.

(3.18)

3.3 Characterizing the Optimal Policies

In this section, we show some characteristics of the optimal clearing policies for the finite-

horizon clearing problems. All of the results obtained are very intuitive and they con-

firm some basic assumptions about the clearing processes. Since the system state process

{(xt, it), t = 1, 2, . . .} is a Markov chain, Markovian clearing rules are sufficient to deter-

mine the best action for the future. If the current system state is completely observable,

any optimal policy can determine the best action based on the system state. Thus, an

optimal clearing policy can be Markovian and deterministic (MD).

65



3.3.1 Effects of Initial System State

In finite horizon problems, the initial system state plays a significant role in determining

the expected total cost. For instance, if the planning horizon begins with some outstanding

inputs already in the system as opposed to an empty system, then we would expect the

total cost to be higher. The following lemmas use the dynamic programming equations

defined in Section 3.2 to show the effects of initial system state on the value function.

Lemma 3.3.1. Under Condition 3.2.1, for any pair of system states x, x′ ∈ Φ such that

x′ ≤ x, we have

Gt(x
′, i) ≤ Gt(x, i). (3.19)

for all i ∈ I and t ∈ T .

Proof. Since x′ ≤ x, let z = x− x′ ∈ Φ. We have

Gt(x, i)−Gt(x
′, i)

= − [Ct(x)− Ct(x′)] + [Ht(x)−Ht(x
′)] +

M∑
j=1

Q∑
q=0

[Ct+1(x⊕ q)− Ct+1(x′ ⊕ q)] [Dq]i,j

≥ −Ct(z) +Ht(z) + Ct+1(z) ≥ 0,

The first inequality follows from parts (ii) and (iii) of Condition 3.2.1, and the fact that

(z ⊕ 0) = (x ⊕ q) − (x′ ⊕ q) and |z ⊕ 0| = |z|. The second inequality is a direct result of

part (v).

Lemma 3.3.1 immediately suggests that Gt(∅, i) = infx∈Φ Gt(x, i) for all i ∈ I. The

following two lemmas compare the value functions for a pair of sequences of initial system

states.

Lemma 3.3.2. Under Condition 3.2.1, x′ ≤ x implies

Vt(x
′, i) ≤ Vt(x, i), (3.20)

66



and

0 ≤ Gt(x, i)−Gt(x
′, i) ≤ Wt(x, i)−Wt(x

′, i), (3.21)

for all x, y ∈ Φ, i ∈ I and t ∈ T .

Proof. We first observe that according to Condition 3.2.1 and Lemma 3.3.1, x′ ≤ x implies

that Kt(x
′) ≤ Kt(x) and Gt(x

′, i) ≤ Gt(x, i), for all t ∈ T and i ∈ I. We then proceed

with a proof by induction on t. Note that for any i ∈ I, VN+1(x′, i) = VN+1(x, i) = 0, then

WN(x, i)−WN(x′, i) = GN(x, i)−GN(x′, i) + EVN+1(x, i)− EVN+1(x′, i)

= GN(x, i)−GN(x′, i) ≥ 0.

More importantly, the above inequality suggests that WN(∅, i) = infx∈Φ WN(x, i). From

Equation (3.18) we have

VN(x′, i) = inf
y′≤x′
{KN(x′ − y′) +WN(y′, i)}

= min {KN(x′) +WN(∅, i), WN(x′, i)}

≤ min {KN(x) +WN(∅, i), WN(x, i)} = VN(x, i).

Now suppose that Equations (3.20) and (3.21) both hold for all t ≥ l + 1, we see that for

t = l, we have

EVt+1(x, i)− EVt+1(x′, i) = E [Vt+1(x⊕ qt, it+1)− Vt+1(x′ ⊕ qt, it+1)|it = i]

=
M∑
j=1

Q∑
q=0

[Vt+1(x⊕ q, j)− Vt+1(x′ ⊕ q, j)][Dq]i,j

≥ 0,

since x′ ≤ x implies x′ ⊕ q ≤ x⊕ q. Then we have

Wt(x, i)−Wt(x
′, i) = Gt(x, i)−Gt(x

′, i) + EVt+1(x, i)− EVt+1(x′, i)

≥ Gt(x, i)−Gt(x
′, i) ≥ 0.

67



Lastly, since Wt(∅, i) = infx∈Φ Wt(x, i), we must have

Vt(x
′, i) = inf

y′≤x′
{Kt(x

′ − y′) +Wt(y
′, i)}

= min {Kt(x
′) +Wt(∅, i), Wt(x

′, i)}

≤ min {Kt(x) +Wt(∅, i), Wt(x, i)} = Vt(x, i).

This completes our proof.

The proof of Lemma 3.3.2 is purely analytic. An alternative proof of inequality (3.20)

may be constructed using the following argument, which may be made rigorous. Suppose

the initial system state at the beginning of period t before clearance is (x′, i). If we mimic

the optimal clearing policy for each period l ≥ t as if the initial system state before dispatch

is (x, i), where x′ ≤ x, then this policy incurs expected total cost which is no greater than

Vt(x, i). On the other hand, this policy must incur expected total cost at least as large as

Vt(x
′, i). Combining these remarks proves inequality (3.20). The inequality (3.21) can be

justified in a similar way.

The following theorem is a direct result of Lemma 3.3.2.

Theorem 3.3.3. Under Condition 3.2.1, an optimal clearing policy exists and must be

a on-off control clearing policy, i.e., if a clearing is triggered then all accumulated inputs

must be cleared, such that

Vt(x, i) = min {Kt(x) +Wt(∅, i),Wt(x, i)} ,∀t ∈ T. (3.22)

Proof. From Lemma 3.3.2, we have already shown that

Vt(x, i) = inf
y≤x
{Kt(x− y) +Wt(y, i)} = min {Kt(x) +Wt(∅, i),Wt(x, i)} ,∀t ∈ T,

The existence of the value function Vt(x, i) over a finite planning horizon implies the ex-

istence of an optimal clearing policy; and Equation (3.22) suggests that such policy is a

68



on-off control policy.

Lemma 3.3.4. Under Condition 3.2.1, x′ ≤ x implies

Vt(x, i) ≤ Vt(x
′, i) + k̂t, (3.23)

and

Wt(x, i)−Wt(x
′, i) ≤ Gt(x, i)−Gt(x

′, i) + k̂t+1, (3.24)

for all x, y ∈ Φ, i ∈ I and t ∈ T .

Proof. According to Lemma 3.3.2, we have

Gt(x
′, i) ≤ Gt(x, i),

and

Wt(∅, i) ≤ Wt(x
′, i) ≤ Wt(x, i),∀t ∈ T,∀i ∈ I.

Therefore

Vt(x, i) = min {Kt(x) +Wt(∅, i), Wt(x, i)}

≤ min
{
k̂t +Wt(∅, i), k̂t +Wt(x, i)

}
= min {Wt(∅, i), Wt(x, i)}+ k̂t

= Wt(∅, i) + k̂t

≤ min {Kt(x
′) +Wt(∅, i), Wt(x

′, i)}+ k̂t = Vt(x
′, i) + k̂t,

for all i ∈ I and t ∈ T . We then prove Equation (3.24) by induction on t. Recall that

VN+1(x, i) = VN+1(x′, i) = 0 and k̂N+1 = 0, and so

WN(x, i)−WN(x′, i) = GN(x, i)−GN(x′, i) + EVN+1(x, i)− EVN+1(x′, i)

= GN(x′)−GN(x) + k̂N+1.

69



Now suppose that Equation (3.24) holds for all t ≥ l+ 1; we need to show that it holds for

t = l. Note that by the induction hypothesis, Lemma 3.3.1, and Equation (3.23), we have

x′ ⊕ q ≤ x⊕ q and

EVt+1(x, i)− EVt+1(x′, i) = E [Vt+1(x⊕ qt, it+1)− Vt+1(x′ ⊕ qt, it+1)|it = i]

=
M∑
j=1

Q∑
q=0

[Vt+1(x⊕ q, t)− Vt+1(x′ ⊕ q, t)][Dq]i,j

≤ k̂t+1.

Then we have

Wt(x, i)−Wt(x
′, i) ≤ Gt(x, i)−Gt(x

′, i) + k̂t+1.

This completes our proof.

The proof of Lemma 3.3.4 is purely analytic. As for the case of Lemma 3.3.2, we

construct an alternative proof of (3.23) which may be made rigorous. If the initial system

state at the beginning of period t before dispatch is (x, i). Suppose we clear everything

at the beginning of period t and start from an empty state, and after that we mimic the

optimal clearing policy as if the initial system state before dispatch is (x′, i). Consequently

due to Lemma 3.3.2, this policy incurs expected total cost not exceeding Vt(x
′, i) + k̂t. On

the other hand, this policy just described cannot be better than the optimal policy, thus

(3.23) must hold. A similar argument can be used to establish (3.24).

Lemma 3.3.4 gives an upper bound on the value function for different initial system

states. Essentially, it means that for any initial system state (x, i), the expected total cost

under the optimal policy must not exceed the expected total cost of clearing everything

first, and then starting from state (∅, i) under the same optimal policy.

So far, we have shown the optimal clearing decisions based on the partial order of Φ.

However, that partial order may not always apply. For instance, x and x⊕y do not always

follow the partial order, for all x, y ∈ Φ. The following lemma provides another decision

70



guideline for this scenario.

Proposition 3.3.5. Under Condition 3.2.1

(i) Gt(x⊕ z, i) ≤ Gt(x⊕ y ⊕ z, i).

(ii) Vt(x ⊕ z, i) ≤ Vt(x ⊕ y ⊕ z, i) and 0 ≤ Gt(x ⊕ y ⊕ z, i) − Gt(x ⊕ z, i) ≤ Wt(x ⊕ y ⊕

z, i)−Wt(x⊕ z, i).

(iii) Vt(x⊕ y ⊕ z, i) ≤ Vt(x⊕ z, i) + k̂t and Wt(x⊕ y ⊕ z, i)−Wt(x⊕ z, i) ≤ Gt(x⊕ y ⊕

z, i)−Gt(x⊕ z, i) + k̂t+1.

for all x, y, z ∈ Φ, i ∈ I, and t ∈ T .

Proof. We begin by proving the first half of part (i).

Gt(x⊕ y ⊕ z, i)−Gt(x⊕ z, i)

= − [Ct(x⊕ y ⊕ z)− Ct(x⊕ z)] + [Ht(x⊕ y ⊕ z)−Ht(x⊕ z)] +
M∑
j=1

Q∑
q=0

[Ct+1(x⊕ y ⊕ z ⊕ q)− Ct+1(x⊕ z ⊕ q)] [Dq]i,j

= −Ct(y) + Ct+1(y) +Ht(x⊕ y ⊕ z)−Ht(x⊕ z)

≥ −Ct(y) + Ct+1(y) +Ht(x⊕ [0, . . . , 0]⊕ z) +Ht(y ⊕ [0, . . . , 0])−Ht(x⊕ z)

≥ −Ct(y) + Ct+1(y) +Ht(y) +Ht(x⊕ [0, . . . , 0]⊕ z)−Ht(x⊕ z) ≥ 0.

The first equality comes directly from the definition of function Gt, the second equality

follows from part (ii) of Condition 3.2.1, and the inequalities result from parts (iv) and

(v). Base on part (i), part (ii) follows the same induction proof as for Lemma 3.3.2, and

part (iii) follows the same induction proof as that of Lemma 3.3.4. Details are omitted

here.

The next theorem guarantees that if Gt is non-increasing over time, then so is Vt. This

is intuitive because we are accounting for costs over fewer periods of time as we approach

the end of the planning horizon.

71



Theorem 3.3.6. Under Condition 3.2.1, if Gt(x, i) ≥ Gt+1(x, i), then we have

Wt(x, i) ≥ Wt+1(x, i) (3.25)

and

Vt(x, i) ≥ Vt+1(x, i) (3.26)

for all x ∈ Φ, i ∈ I and t ∈ T .

Proof. We prove Equations (3.25) and (3.26) simultaneously by induction. First, we have

WN−1(x, i)−WN(x, i) = GN−1(x, i)−GN(x, i) + EVN(x, i)− EVN+1(x, i)

≥ EVN(x, i) ≥ 0,

since VN+1(x, i) = 0. This leads directly to VN−1(x, i) ≥ VN(x, i) because WN−1(∅, i) ≥

WN(∅, i) and KN−1(x) ≥ KN(x). Now suppose for all t ≥ l + 1, Equations (3.25) and

(3.26) hold true. We have

Wt(x, i)−Wt+1(x, i) = Gt(x, i)−Gt+1(x, i) + EVt+1(x, i)− EVt+2(x, i)

= Gt(x, i)−Gt+1(x, i) + EVt+1(x, i)− EVt+2(x, i)

≥
M∑
j=1

Q∑
q=0

[Vt+1(x⊕ q, i)− Vt+2(x⊕ q, i)][Dq]i,j ≥ 0.

Finally, we have Vt(x, i) ≥ Vt+1(x, i), which completes our proof.

3.3.2 Policy Boundaries

In some system states, the optimal clearing decisions are very obvious based on system pa-

rameters. For example, if the delay penalty cost for carrying the input for one more period

exceeds the clearing costs, then it is obviously optimal to clear the system immediately.

Therefore, if we can accurately identify those system states, we can prescribe the optimal

72



clearing decisions for them directly.

Let us define a pair of nonnegative real numbers vt,i ≤ v̄t,i as

vt,i = Gt(∅, i) + k̂t − k̂t+1; (3.27)

and

v̄t,i = Gt(∅, i) + k̂t, (3.28)

for all i ∈ I and t ∈ T .

Lemma 3.3.7. Under Condition 3.2.1, for any system state (x, i) ∈ Ω, if Gt(x, i) < vt,i,

then Wt(∅, i) + k̂t > Wt(x, i); on the other hand, if Gt(x, i) > v̄t,i, then Wt(∅, i) + k̂t <

Wt(x, i).

Proof. From Condition 3.2.1, we have Gt(∅, i) ≤ Gt(x, i) for all (x, i) ∈ Ω. The first

inequality then follows from Lemma 3.3.4, such that

Wt(∅, i)−Wt(x, i) + k̂t ≥ Gt(∅, i)−Gt(x, i)− k̂t+1 + k̂t = vt,i −Gt(x, i) > 0,

whenever Gt(x, i) < vt,i. Similarly, by Lemma 3.3.2

Wt(∅, i)−Wt(x, i) + k̂t ≤ Gt(∅, i)−Gt(x, i) + k̂t = v̄t,i −Gt(x, i) < 0,

whenever Gt(x, i) > v̄t,i.

Lemma 3.3.7 provides two useful bounds for making better clearing decisions. The

result can be interpreted as, for any given system state (x, i) at the beginning of period t, if

Gt(x, i) < vt,i, it is optimal to continue to accumulate; on the other hand, if Gt(x, i) > v̄t,i,

then it is optimal to clear all accumulated quantities. The use of these bounds can be

further simplified by the following proposition.

73



Proposition 3.3.8. Suppose that Condition 3.2.1 holds. For any system state (x, i) ∈ Ω,

if Ht(x) − Ct(x) + Ct+1(x) < k̂t − k̂t+1, then the optimal action is not to clear x; on the

other hand, if Ht(x)− Ct(x) + Ct+1(x) > k̂t, then the optimal action is to clear x.

Proof. We only need to observe that because of parts (ii) and (iii) of Condition 3.2.1 and

the fact that Ct(∅) = Ht(∅) = 0,

Gt(x, i)−Gt(∅, i) = Ht(x)− Ct(x) + Ct+1(x).

The rest follows directly from Lemma 3.3.7.

Lemma 3.3.9. Under Condition 3.2.1, for every i ∈ I and t ∈ T , there are only finitely

many sequences which do not require clearing under the optimal policy.

Proof. The proof follows directly from Condition 3.2.1.(vi) and Proposition 3.3.8, because

there are only a finite number of sequences x ∈ Φ for whichHt(x)−Ct(x)+Ct+1(x) ≤ k̂t.

Lemma 3.3.9 guarantees clearing if the input sequence gets large enough with respect

to the partial order. Clearing will thus occur if the input sizes are great enough, or the

input ages are old enough.

Recall from Condition 2.2.1, a clearing policy is said to be logical if (i) it never clears

an empty system, (ii) clearing system content x implies it must clear any other system

with contents x ⊕ y, and (iii) clearing system content x implies it must clear any other

system of contents y such that x ≤ y. Also recall from Condition 2.2.2, a policy is feasible

if it guarantees clearing after finite accumulation and finite time. The following theorem

summarizes the characteristics of an MD optimal policy.

Theorem 3.3.10. Under Condition 3.2.1, an MD optimal policy is always logical and

feasible, i.e., it satisfies Condition 2.2.1 and 2.2.2, and for each period t ∈ T , the set Ψ(r∗t )

has a tree structure and finite size.

74



Proof. Condition 2.2.1.(i) is trivial to verify but necessary. Condition 2.2.1.(ii) is a direct

result from Proposition 3.3.5 since x ⊕ ∅ = x and x ⊕ ∅ ⊕ y = x ⊕ y. More specifically,

for any system state (x, i) at the beginning of period t, if the optimal action is to clear,

then x 6= ∅ and Wt(∅, i) + k̂t < Wt(x, i). At the same time, Wt(x, i) ≤ Wt(x ⊕ y, i) and

Kt(x⊕y) = k̂t because x⊕y 6= ∅. Together, we have Wt(∅, i)+ k̂t < Wt(x⊕y, i). Similarly,

Condition 2.2.1.(iii) follows from Lemma 3.3.2. Lemma 3.3.9 guarantees the feasibility of

the optimal policy. The finite tree structure of Ψ(r∗t ) is implied by Properties 2.2.1 and

2.2.2.

3.4 State-Dependent Threshold Policies

In the previous section, some features of the optimal policy were found, but the actual

representation of the optimal policy was still very cumbersome. In this section, we show

that, subject to some special conditions on the delay penalty function, the optimal policy

can actually be a state-dependent threshold policy. That policy is parameterized by a single

number, as opposed to the sets Λr∗t
for each period t ∈ T .

3.4.1 Special Delay Penalty Functions

We first introduce a class of delay penalty functions that depends entirely on the cumulative

quantities. This type of function is consistent with the “holding cost function” in the

existing literature of stochastic clearing systems.

Definition 3.4.1. For any sequence y = [y[l], . . . , y[1]] and t ∈ T , we say a delay penalty

function Ht is “purely quantity-dependent”, if

Ht(y) = HQ
t (|y|), (3.29)

where HQ
t is a non-decreasing function with respect to the cumulative quantities |y|.

75



Next, for any sequence y = [y[l], . . . , y[1]], we can make another binary sequence, denoted

by yA, to capture the ages of individual outstanding inputs, such that

yA = [δ{y[l]>0}, . . . , δ{y[1]>0}]. (3.30)

Similar to Definition 3.4.1, we can introduce another type of delay penalty function

that depends only on the input ages.

Definition 3.4.2. For any sequence y = [y[l], . . . , y[1]] and t ∈ T , we say a delay penalty

function Ht is “purely age-dependent”, if

Ht(y) = HA
t (yA), (3.31)

where HA
t is a function with respect to individual input ages, and

HA
t (xA) ≤ HA

t (yA) (3.32)

if and only if
l∑

j=1

jxA
[j] ≤

l∑
j=1

jyA
[j], (3.33)

where Equation (3.33) means that the total age in x is no greater than the total age in y.

Now, we observe that purely quantity-dependent or purely age-dependent delay penalty

functions have a special property.

Proposition 3.4.1. For any purely quantity-dependent or purely age-dependent delay

penalty function, Ht(x) ≤ Ht(y) implies Ht+1(x⊕ q) ≤ Ht+1(y⊕ q), for all t ∈ T , x, y ∈ Φ,

and 0 ≤ q ≤ Q.

Proof. For purely quantity-dependent penalty, the proof is straightforward, since |y| ≥ |x|

76



implies |y ⊕ q| ≥ |x⊕ q|. For purely age-dependent penalty, Ht(x) ≤ Ht(y) suggests that

l∑
j=1

jxA
[j] ≤

l∑
j=1

jyA
[j].

We must then have

l∑
j=1

(j + 1)xA
[j] + δ{q>0} ≤

l∑
j=1

(j + 1)yA
[j] + δ{q>0},

which then leads to Ht+1(x⊕ q) ≤ Ht+1(y ⊕ q).

For the remainder of this section, we focus on cost functions satisfying Condition 3.4.1.

Condition 3.4.1.

(i) The delay penalty function is either purely quantity-dependent or purely age-dependent.

(ii) Ct+1(x) − Ct(x) = 0 for all x ∈ Φ and t ∈ T , i.e., the variable clearing cost rate is

constant over the planning horizon.

Proposition 3.4.2. Under Conditions 3.2.1 and 3.4.1, if Ht(x) ≤ Ht(y) for some x ∈ Φ

and t ∈ T , then we must have, for all i, j ∈ I and q = 0, 1, . . . , Q:

(i) Gt(x, i) ≤ Gt(y, i) and Gt+1(x⊕ q, j) ≤ Gt+1(y ⊕ q, j).

(ii) Vt(x, i) ≤ Vt(y, i) and 0 ≤ Gt(y, i)−Gt(x, i) ≤ Wt(y, i)−Wt(x, i).

(iii) Vt(y, i) ≤ Vt(x, i) + k̂t and Wt(y, i)−Wt(x, i) ≤ Gt(y, i)−Gt(x, i) + k̂t+1.

77



Proof. According to Condition 3.4.1.(ii), Condition 3.2.1.(ii), and Equation (3.10), we have

0 ≤ Ht(y)−Ht(x)

= (Ht(y)−Ht(x)) + (Ct+1(y)− Ct(y))− (Ct+1(x)− Ct(x))

=

(
Ht(y)− Ct(y) +

Q∑
q=0

Ct+1(y ⊕ q)fi(q)

)
−

(
Ht(x)− Ct(x) +

Q∑
q=0

Ct+1(x⊕ q)fi(q)

)
= Gt(y, i)−Gt(x, i).

Similarly, since Ht is either purely quantity-dependent or purely age-dependent, Proposi-

tion 3.4.1 implies

0 ≤ Ht+1(y ⊕ q)−Ht+1(x⊕ q) = Gt+1(y ⊕ q, j)−Gt+1(x⊕ q, j),

which completes the proof of part (i). Parts (ii) and (iii) follow the same induction proofs

as those of Lemmas 3.3.2 and 3.3.4. Details are omitted here.

Proposition 3.4.2 is very useful because, instead of having to check the actual system

state against the sets Λr∗t
, it allows us to make optimal clearing decisions based on Ht.

This leads to a state-dependent threshold policy which can be optimal. We shall define

this type of threshold policy in the next section.

3.4.2 Characteristics of State-Dependent Threshold Policies

Definition 3.4.3. A state-dependent threshold clearing policy in a finite horizon is denoted

as πτ = (rτ1 , . . . , r
τ
N). For period t, the clearing rule rτt is determined by a set of parameters

{τt,1, . . . , τt,M}, for which we have

rτt (x, i) =

 0, if Ht(x) ≤ τt,i

1, otherwise
, (3.34)

78



for all (x, i) ∈ Ω.

The following theorem shows that under special conditions, the optimal clearing policy

can be a state-dependent threshold policy.

Theorem 3.4.3. If Conditions 3.2.1 and 3.4.1 are satisfied, then the optimal clearing

policy can be a state-dependent threshold clearing policy denoted as πτ
∗
. More specifically,

for each underlying state i ∈ I, there exists a non-empty sequence x∗t (i) such that

x∗t (i) = arg max
x∈Φ
{Ht(x) : Wt(x, i) ≤ Wt(∅, i) +Kt(x)}, (3.35)

and

τ ∗t (i) = Ht(x
∗
t (i)), (3.36)

for all i ∈ I and t ∈ T .

Proof. First, it is easy to see that Equation (3.35) implies that x∗t (i) is the sequence with

the highest delay penalty Ht among all sequences which are better not to be cleared in

period t, for underlying state i. The existence of such x∗t (i) is guaranteed by Lemma 3.3.9.

Then in any period t ∈ T and underlying state i, for any non-empty system content y

such that Ht(y) > Ht(x
∗
t (i)), Proposition 3.4.2 suggests that Gt(y, i) > Gt(x

∗
t (i), i) and

Wt(y, i) > Wt(x
∗
t (i), i). Consequently, Equation (3.35) shows that

Wt(y, i) > Wt(∅, i) +Kt(y),

which means clearing is preferred. On the other hand, for any non-empty system state (z, i)

such that Ht(z) ≤ Ht(x
∗
t (i)), we have Gt(z, i) ≤ Gt(x

∗
t (i), i) and Wt(z, i) ≤ Wt(x

∗
t (i), i),

this leads to

Wt(z, i) ≤ Wt(∅, i) +Kt(z),

which indicates that clearing is not necessary.

79



Theorem 3.4.3 confirms a well-known result in inventory ([70], [82], and [90]) and ship-

ment consolidation ([12], [13], and [16]) problems, which states that if the delay penalty

depends only on the cumulative quantities, the optimal policy can be a quantity threshold

policy. Details are given in the following corollary.

Corollary 3.4.4. If Condition 3.2.1 is satisfied and the delay penalty function is purely

quantity-dependent, then the optimal clearing policy can be a state-dependent quantity

threshold clearing policy denoted as πQ
∗
. More specifically, there exists a non-empty se-

quence x∗t (i) such that

x∗t (i) = arg max
x∈Φ
{|x| : Wt(x, i) ≤ Wt(∅, i) +Kt(x)}, (3.37)

and

Q∗t (i) = |x∗t (i)|, (3.38)

where |x| is the sequence sum of x defined in Definition 2.1.1, for all i ∈ I and t ∈ T .

Proof. For purely quantity-dependent delay penalty functions, Ht is a function of the

cumulative quantities, thus, Gt is also a function of the cumulative quantities. Therefore,

Ht(y) > Ht(x
∗
t (i)) if and only if |y| > |x∗t (i)|, which completes our proof.

3.5 Computing the Optimal Policy Parameters

For discrete-time and discrete-quantity stochastic clearing systems over a finite horizon,

Theorem 3.3.10 states that Ψ(r∗t ) has a finite tree structure. Therefore, in every decision

epoch t, we can assume that only a finite subset of system states is reached. More specif-

ically, Proposition 3.3.8 suggests that if xt = x such that Ht(x) − Ct(x) + Ct+1(x) > k̂t,

then it is optimal to clear the system immediately, i.e., add Kt(x) +Ct(x) to the expected

total cost and assume that the system continues from empty state (∅, i).

80



The following backward induction algorithm utilizes the tree structure to help construct

the optimal policy.

Algorithm II: Finite Horizon Optimal Policy Algorithm

II.1 If HN(x)− CN(x) + CN+1(x) > k̂N , let rN(x, i) = 1 ; otherwise, let rN(x, i) = 0.

Use BFT Procedure I to create Ψ(rN ).

II.2 For each (x, i) ∈ Ψ(rN ) × I, set V N+1(x, i) = 0. Initialize counter n = N .

II.3 If Hn−1(x)−Cn−1(x)+Cn(x) > k̂n−1, let rn−1(x, i) = 1 ; otherwise, let rn−1(x, i) =

0. Use BFT procedure I to create Ψ(rn−1).

II.4 For each x ∈ Ψ(rn−1), j ∈ I, and q = 0, 1, . . . , Q, create y = x ⊕ q and look up

V n+1(y, j). If not found, set V n+1(y, j) = Kn+1(y) + Cn+1(y) + V n+1(∅, j).

II.5 Compute Wn(x, i) and Wn(∅, i) by Equations (3.12) and (3.17). If Wn(x, i) >

Wn(∅, i) + Kn(x), record Vn(x, i) = Wn(∅, i) + Kn(x) and assign r∗n(x, i) = 1;

otherwise, record Vn(x, i) = Wn(x, i) and assign r∗n(x, i) = 0. Set n := n− 1.

II.6 If n = 0, stop and report r∗t (x, i) and Vt(x, i), for all (x, i) ∈ Λr∗t
and t ∈ T ;

otherwise, go back to Step 3.

If Conditions 3.2.1 and 3.4.1 are both satisfied, we can output τ ∗t (i) instead of r∗t for

every i ∈ I and t ∈ T .

Recall from Section 2.1.4, we can denote the oldest input age allowed by the optimal

policy in period t as L̄∗t . This age limit is very important because |Ψ(r∗t )| ≤ QL̄∗t , but

without knowing the elements in Ψ(r∗t ), we can hardly compute L̄∗t . Here we present a way

to estimate L̄∗t .

81



We see that

L̄∗t ≤ max
x∈Φ
{L(x) : Ht(x)− Ct(x) + Ct+1(x) ≤ k̂t}, (3.39)

for all t ∈ T . Therefore, if we assume integer input quantities and Ct+1(x) − Ct(x) is

negligible, we can estimate L̄∗t by a single number

L̃ = max
t∈T
{max{lt + 1 : Ht(1⊕ 0lt) ≤ k̂t}}, (3.40)

where 0lt is a sequence of zeros of length lt. The justification for such estimation follows

from Proposition 3.3.8 and the fact that 1⊕ 0lt is the longest possible integer sequence for

the delay penalty to not exceed the fixed clearing cost in period t. This estimate can be

used to analyze the complexities of Algorithm I.

Time Complexity: The time complexity of BFT Procedure I has an order of growth of

O(MQL̃). The bulk of the work of the algorithm is in Step III.4, where we need to look up

Vn+1(x⊕ q, j) for all x ∈ Ψ(r∗n), j ∈ I and q = 0, 1, . . . , Q. Therefore, the time complexity

of the algorithm is O(M2NQL̃) over N periods.

Memory Complexity: Since each sequence in Ψ(r∗t ) must be stored for all t ∈ T , and

any other information stored requires significantly less space, the memory requirement is

O(L̃NQL̃).

Please refer to Appendix C for a numerical example to verify the complexity estimates.

We demonstrate Algorithm II through the Example 3.5.1.

Example 3.5.1. Consider a stochastic clearing system with the following parameters.

(i) The planning horizon has three periods.

(ii) The input process is given as the BMAP in Example 2.1.1.(ii).

(iii) The delay penalty cost is given as in Example 2.3.1.(d).

(iv) The fixed clearing cost is Kt(wt) = (4− t) · δ{|wt|>0}.

82



(v) The variable clearing cost is Ct(wt) = 0.5(4− t)|wt|.

The optimal clearing policy and the corresponding value functions are summarized in

Tables 3.2 to 3.4.

Result Summary r∗3(x, 1) r∗3(x, 2) V3(x, 1) V3(x, 2)
∅ 0 0 0.5468 0.1823

x = [1] 0 0 1.0733 0.7088
x = [2] 1 1 2.1668 1.8023
x = [3] 1 1 2.1668 1.8023
x = [1, 0] 0 0 1.5593 1.1948
x = [1, 1] 0 0 2.0858 1.7213
x = [1, 2] 1 1 2.5718 2.2073
x = [2, 0] 1 1 2.1668 1.8023
x = [2, 1] 1 1 2.5718 2.2073
x = [1, 0, 0] 1 1 1.7618 1.3973
x = [1, 0, 1] 1 1 2.1668 1.8023
x = [1, 0, 2] 1 1 2.5718 2.2073
x = [1, 1, 0] 1 1 2.1668 1.8023
x = [1, 1, 1] 1 1 2.5718 2.2073
x = [1, 1, 2] 1 1 2.9768 2.6123
x = [1, 0, 0, 0] 1 1 1.7618 1.3973
x = [1, 0, 0, 1] 1 1 2.1668 1.8023

Table 3.2: Summary of Optimal Clearing Rule in Period 3 for Example 3.5.1

The cost functions given in Example 3.5.1 clearly satisfy Condition 3.2.1. The numerical

results of Example 3.5.1 show that the optimal clearing rules depend on the period t and

the underlying state i, and demonstrate the characteristics proven in Section 3.3.

In the next example, we show a stochastic clearing problem with an optimal state-

dependent threshold clearing policy.

Example 3.5.2. Consider a stochastic clearing system with the following parameters.

(i) The planning horizon has three periods.

(ii) The input process is given as the BMAP in Example 2.1.1.(ii).

83



x r∗2(x, 1) r∗2(x, 2) V2(x, 1) V2(x, 2)
∅ 0 0 1.6403 0.5387

x = [1] 0 0 2.4683 1.6704
x = [2] 1 1 4.3403 3.2387
x = [1, 0] 0 0 3.0528 2.3562
x = [1, 1] 0 0 3.6378 2.9412
x = [1, 2] 1 1 4.7903 3.6887
x = [2, 0] 1 1 4.3403 3.2387
x = [2, 1] 1 1 4.7903 3.6887
x = [1, 0, 0] 1 1 3.8903 2.7887
x = [1, 0, 1] 1 1 4.3403 3.2387
x = [1, 0, 2] 1 1 4.7903 3.6887
x = [1, 1, 0] 1 1 4.3403 3.2387
x = [1, 1, 1] 1 1 4.7903 3.6887
x = [1, 1, 2] 1 1 5.2403 4.1387
x = [1, 0, 0, 0] 1 1 3.8903 2.7887
x = [1, 0, 0, 1] 1 1 4.3403 3.2387

Table 3.3: Summary of Optimal Clearing Rule in Period 2 for Example 3.5.1

x r∗1(x, 1) r∗1(x, 2) V1(x, 1) V1(x, 2)
∅ 0 0 3.4076 1.2492

x = [1] 0 0 4.3768 2.9387
x = [2] 1 1 7.4076 5.2492
x = [1, 0] 0 0 5.2551 3.9238
x = [1, 1] 0 0 5.9051 4.5738
x = [1, 2] 1 1 7.9076 5.7492
x = [2, 0] 1 1 7.4076 5.2492
x = [2, 1] 1 1 7.9076 5.7492
x = [1, 0, 0] 1 1 6.9076 4.7492]
x = [1, 0, 1] 1 1 7.4076 5.2492
x = [1, 0, 2] 1 1 7.9076 5.7492
x = [1, 1, 0] 1 1 7.4076 5.2492
x = [1, 1, 1] 1 1 7.9076 5.7492
x = [1, 1, 2] 1 1 8.4076 6.2492
x = [1, 0, 0, 0] 1 1 6.9076 4.7492
x = [1, 0, 0, 1] 1 1 7.4076 5.2492

Table 3.4: Summary of Optimal Clearing Rule in Period 1 for Example 3.5.1

(iii) The delay penalty cost is given as in Example 2.3.1.(c).

(iv) The fixed clearing cost is Kt(wt) = (4− t) · δ{|wt|>0}.

84



(v) The variable clearing cost is Ct(wt) = 0.5|wt|.

The optimal clearing policy and the corresponding value functions are summarized in

Tables 3.5 to 3.7.

x r∗3(x, 1) r∗3(x, 2) V3(x, 1) V3(x, 2) H(x, 2)
∅ 0 0 0.5468 0.1823 0
[1] 0 0 1.3163 0.9518 0.5
[2] 0 0 1.6808 1.3163 0.5

[1,0] 1 1 1.7618 1.3973 2
[1,1] 1 1 2.1668 1.8023 2.5
[1,2] 1 1 2.5718 2.2073 2.5
[2,0] 1 1 2.1668 1.8023 2
[2,1] 1 1 2.5718 2.2073 2.5
[2,2] 1 1 2.9768 2.6123 2.5

Table 3.5: Summary of Optimal Clearing Rule in Period 3 for Example 3.5.2

x r∗2(x, 1) r∗2(x, 2) V2(x, 1) V2(x, 2) H(x, 2)
∅ 0 0 1.4216 0.5630 0
[1] 0 0 2.7828 2.0862 0.5
[2] 0 0 3.1878 2.4912 0.5

[1,0] 1 1 3.6716 2.8130 2
[1,1] 1 1 4.1216 3.2630 2.5
[1,2] 1 1 4.5716 3.7130 2.5
[2,0] 1 1 4.1216 3.2630 2
[2,1] 1 1 4.5716 3.7130 2.5
[2,2] 1 1 5.0216 4.1630 2.5

Table 3.6: Summary of Optimal Clearing Rule in Period 2 for Example 3.5.2

The cost functions given in Example 3.5.2 clearly satisfy both Conditions 3.2.1 and

3.4.1. The numerical results of Example 3.5.2 show that the optimal clearing rules can

be converted into state-dependent threshold rules defined in Section 3.4. In the preceding

example, it is found that the optimal threshold policy parameter is τ ∗t,i = 0.5, for 1 ≤ t ≤ 3

and i = 1, 2, . . ..

85



x r∗1(x, 1) r∗1(x, 2) V1(x, 1) V1(x, 2) H(x, 2)
∅ 0 0 2.8184 1.2921 0
[1] 0 0 4.7607 3.6238 0.5
[2] 0 0 5.2107 4.0738 0.5

[1,0] 1 1 6.3184 4.7921 2
[1,1] 1 1 6.8184 5.2921 2.5
[1,2] 1 1 7.3184 5.7921 2.5
[2,0] 1 1 6.8184 5.2921 2
[2,1] 1 1 7.3184 5.7921 2.5
[2,2] 1 1 7.8184 6.2921 2.5

Table 3.7: Summary of Optimal Clearing Rule in Period 1 for Example 3.5.2

3.6 Summary of Results

In conclusion, for the expected total cost problem over a finite horizon, we obtain the

following results in this chapter. First, we construct an algorithm to evaluate any given

clearing policy. Then, we show that an order of the optimal total cost over finite horizon is

induced by a partial order of the initial system state space. Using this order, we prove that

an optimal clearing policy exists and such optimal policy never allows for partial clearing,

i.e., if it is optimal to clear, we shall clear everything. The order of the total cost function

also gives us some useful bounds on the optimal clearing policy parameters.

Next, we demonstrate that if the cost structure satisfies some additional conditions,

then the optimal clearing policy can be a threshold policy which is parameterized by

simple threshold values. These threshold policies are much easier to compute, record,

and deploy, plus they can be calculated for relatively larger problem instances which we

otherwise would not be able to handle.

Lastly, we construct a backward induction algorithm to compute the optimal clearing

policy parameters for our model. Through some numerical examples, we show that our

analytical results hold and the optimal policy parameters do indeed have a tree structure.

Complexity analyses of the optimization algorithm reveal that the time and memory com-

plexities both grow at an exponential rate, but our model can still solve some real life

86



problems of moderate size.

After studying the problem over a finite horizon, one may naturally ask if the results

in this chapter can be carried over to the problem over an infinite horizon. The standard

approach to answer this question is by allowing the planning horizon to be of length T ,

and taking the limit as T →∞ of the formulas for the finite horizon problem. In the next

chapter, we will give this approach a try.

87



Chapter 4

Expected Total Discounted Cost

Model over Infinite Horizon

In this chapter, we study the stochastic clearing problems over an infinite planning horizon,

with the expected total discounted cost as our objective function. We first present an

algorithm to compute the expected total cost for any given clearing policy. Then we

extend the results of Section 3.3 to show some characteristics of the optimal policy. The

state-dependent threshold policy introduced in Section 3.4 is proven to be optimal for

special types of delay penalty functions. Lastly, we present three different methods to

compute the optimal policy parameters. The modelling assumptions and notations used

in this chapter are summarized below.

(i) The planning horizon is infinite, i.e., T = 1, 2, . . ..

(ii) The model is in discrete time and discrete quantities, and the input process is mod-

elled as a BMAP.

(iii) The clearing policy is given by a stationary policy π = (r, r, . . .); thus, π and r can

be used interchangeably.

88



(iv) The pre-clearing system state process {(xt, it), t = 1, 2, . . .} is the Markov chain of

interest here.

(v) The cost functions are given by H, K, and C, which are stationary over time. (We

can add the subscript t, if necessary, and extend the procedures below).

(vi) The costs incurred in period t are discounted by αt−1, where 0 ≤ α < 1 is the discount

factor.

4.1 Policy Evaluation

Analogous to Section 3.1, the expected total discounted cost over the infinite planning

horizon can be found as

Cr,T,α<1,∞>(x, i) = E
[∑∞

t=1 α
t−1 (H(yt) +K(wt) + C(wt))

∣∣(x1, i1) = (x, i)
]

= E
[∑∞

t=1 α
t−1ur(xt, it)

∣∣(x1, i1) = (x, i)
]

= ur(x, i) + α
∑

(x′,j)∈Λ(r)

P
(x,r)
(x,i),(x′,j)C

r,T,α
<1,∞>(x′, j),

(4.1)

where at = r(xt, it), P
(x,r)
(x,i),(x′,j) are given by Equations (2.25) to (2.28), and ur(x, i) as in

Equation (3.1).

Using the vector and matrix notation defined in Equations (2.29) and (2.30) to collect

the underlying states together and expand Λ(r) to Ψ(r) × I, we can rewrite Equation (4.1)

as

Cr,T,α<1,∞>(x) = ur(x) + α

Q∑
q=0

A
(x,r)
x,x⊕qC

r,T,α
<1,∞>(x⊕ q) +B(x,r)

x,q C
r,T,α
<1,∞>(q), (4.2)

where

Cr,T,α<1,∞>(x) =


Cr,T,α<1,∞>(x, 1)

...

Cr,T,α<1,∞>(x,M)

 , ur(x) =


ur(x, 1)

...

ur(x,M)

 , (4.3)

89



because we know that, for all x ∈ Ψ(r) and q = 0, 1, . . . , Q, matrices A
(x,r)
x,x⊕q and B

(x,r)
x,q are

the only non-zero blocks of the transition probability matrix P (x,r) for {(xt, it), t = 1, 2, . . .}.

If we generalize this further by collecting all sequences in Ψ(r), we can rewrite Equation

(4.2) as

Cr,T,α<1,∞> = ur + αP (x,r)Cr,T,α<1,∞>. (4.4)

Rearranging the terms, we get

(I − αP (x,r))Cr,T,α<1,∞> = ur. (4.5)

Proposition 4.1.1. For any stationary policy π, a unique solution exists for the system

of equations in (4.5).

Proof. From Equations (2.29) to (2.31), we see that

M∑
j=1

Q∑
q=0

(
a

(x,r)
(x,i),(x⊕q,j) + b

(x,r)
(x,i),(q,j)

)
=

M∑
j=1

Di,j = 1,∀(x, i) ∈ Λ(r).

In other words, the row sum of matrix P (x,r) is one. Using the standard definition of matrix

norm, we know that ||P (x,r)|| = 1. Since α < 1, the spectral radius of αP (x,r), denoted by

σ(αP (x,r)), is less than one because σ(αP (x,r)) ≤ ||αP (x,r)|| < 1. Therefore, matrix-inverse

theory indicates that (I − αP (x,r))−1 exists and satisfies

(I − αP (x,r))−1 = lim
N→∞

N∑
n=0

(αP (x,r))n.

We can thus solve Equation (4.5) as

Cr,T,α<1,∞> = (I − αP (x,r))−1ur.

This completes our proof.

90



We can compute the expected total discounted cost over the infinite horizon by Algo-

rithm III.

Algorithm III: Infinite Horizon Policy Evaluation Algorithm

III.1 Construct Ψ(r) using BFT Procedure I.

III.2 For each x ∈ Ψ(r) and q = 0, 1, . . . , Q, compute A
(x,r)
x,x⊕q and B

(x,r)
x,q by Equations

(2.29) and (2.30), and form the transition probability matrix P (x,r); also compute

ur(x) by Equations (3.1) and (4.3), and form the vector ur.

III.3 Solve Equation (4.5) by computing the inverse matrix (I−αP (x,r))−1, then output

Cr,T,α<1,∞>(x, i).

Time Complexity: BFT Procedure I has time complexity O(MQL̄(r)). The computation

time in Step III.2 scales by O(MQL̄(r)) because we only need to compute r(x⊕q, j) for each

x, q and j to form block matrices A and B. Finally, Step III.3 requires solving an inverse

matrix of size MQL̄(r) ×MQL̄(r) . Adopting a conservative method such as Gauss-Jordan

elimination would yield a time complexity of O(M3QL̄(r)). Overall, the time complexity of

Algorithm III is O(M3QL̄(r)).

Memory Complexity: The most memory is required to store the matrix P (x,r), which

has a size bounded by MQL̄(r) ×MQL̄(r) , therefore, the memory requirement complexity

is O(M2QL̄(r)).

Please refer to Appendix C for a numerical example to verify the complexity estimates.

We demonstrate Algorithm III through Example 4.1.1.

Example 4.1.1. Consider a stochastic clearing problem with the following parameters.

(i) The discount factor α = 0.95.

91



(ii) The input process is described in Example 2.1.1.(iii).

(iii) The delay penalty cost functions Ht is described in Example 2.3.1.(d).

(iv) The fixed clearing cost is given as K(wt) = 10 · δ{|wt|>0}.

(v) The variable clearing cost is given as C(wt) = 0.5|wt|.

(vi) The clearing policy is given as

r(xt, it) =

 0, if |xt| < 2 and L(xt) < 3

1, otherwise
.

The expected total discounted costs for the different problems are computed by Algorithm

III, and summarized in Table 4.1.

Cπ,T,α<1,∞>(x, i) i = 1 i = 2

∅ 3.4333 37.0888
x = [1] 7.6533 38.3517
x = [2] 8.4334 42.0888
x = [3] 8.9334 42.5888
x = [1, 0] 7.9334 38.9517
x = [1, 1] 8.4334 42.0888
x = [1, 2] 8.9334 42.5888
x = [1, 3] 9.4334 43.0888
x = [2, 0] 8.4334 42.0888
x = [2, 1] 8.9334 42.5888
x = [1, 0, 0] 7.9334 41.5888
x = [1, 0, 1] 8.4334 42.0888
x = [1, 0, 2] 8.9334 42.5888
x = [1, 0, 3] 9.4334 43.0888
x = [1, 1, 0] 8.4334 42.0888
x = [1, 1, 1] 8.9334 42.5888
x = [1, 1, 2] 9.4334 43.08883
x = [1, 0, 0, 0] 7.9334 41.5888
x = [1, 0, 0, 1] 8.4334 42.0888

Table 4.1: Summary of Expected Total Discounted Costs for Example 4.1.1

92



From the preceding numerical example, we can make the following observations. First,

we notice that the input process is a Compound Markovian Input Process, and the input

arrival rate in underlying state 1 is much larger than the rate in state 2. Therefore, we can

see that for every sequence x in Table 3.1, Cπ,T,α<1,∞>(x, 1) < Cπ,T,α<1,∞>(x, 2), and the difference

is significant. Thus, the initial underlying state affects the expected total discounted cost.

Next, for x = [1, 0, 1] and x = [1, 1, 0], since dispatch is required immediately for both

cases, the difference in the input sequences no longer matters as the total accumulated

quantities are the same. Therefore, Cπ,T,α<1,∞>([1, 0, 1], i) = Cπ,T,α<1,∞>([1, 1, 0], i), for each i = 1, 2.

These observations generally hold true and they can be used to characterize the optimal

clearing policy.

4.2 Existence of Optimal Policies

To find the optimal clearing policy, we first need to establish the optimality equations for

the infinite horizon problem. Recall from Section 4.1, we assumed that the optimal clearing

policy is a stationary policy of the form π∗ = (r∗, r∗, . . .), and the corresponding expected

total discounted cost, denoted by Cr
∗,T,α
<1,∞>(x, i) and defined in Equation (4.1), must satisfy

Cr
∗,T,α
<1,∞>(x, i) ≤ Cr,T,α<1,∞>(x, i),∀r ∈ R. (4.6)

Proven theorems on dynamic programming and Markov decision processes allow us to

extend the results from the finite horizon problem to an infinite horizon by extending the

length of the planning horizon N → ∞ ([7], [45], and [68]). Since the cost functions are

stationary over time, we can drop the subscript t from Equation (3.13) and express the

optimality equations for the infinite horizon problem as

Cr,T,α<1,∞>(x, i) = inf
y≤x

{
K(x− y) +G(y, i) + ECr,T,α<1,∞>(y, i)

}
. (4.7)

93



G(y, i) is still the relevant cost per period, given by

G(y, i) = H(y)− (1− α)C(y) +

Q∑
q=0

M∑
j=1

C(q)[Dq]i,j. (4.8)

Condition 4.2.1, whose interpretation for the cost functions is similar to that of Condi-

tion 3.2.1, is required to establish our infinite-horizon results.

Condition 4.2.1.

(i) K(w) = k̂ · δ{|w|>0}, i.e., the fixed clearing cost is stationary over time and zero if

nothing is cleared.

(ii) C(w) = ĉ · |w|, i.e., the variable clearing cost is a linear function of the cleared

quantities.

(iii) H(x+ y) ≥ H(x) +H(y), for all x, y ∈ Φ, i.e., H is superadditive in Φ.

(iv) H(x ⊕ [0, . . . , 0] ⊕ z) ≥ H(x ⊕ z), for all x, y, z ∈ Φ, i.e., delay penalties are non-

decreasing over time.

(v) H(x) − (1 − α)C(x) ≥ 0,∀x ∈ Φ, i.e., The variable clearing cost reduction from

delaying clearance cannot exceed the corresponding delay penalty.

(vi) For any real number M > 0, there are only finitely many sequences x ∈ Φ such that

H(x)− (1− α)C(x) ≤M .

(vii) Ht(x) ≥ Ht(∅) = 0, for all x ∈ Φ and t ∈ T .

To prove the existence of an optimal clearing policy, we need to show that there exists

a solution to Equation (4.7) for the value function of the infinite horizon problem. Our

method here is that of successive approximation of the infinite horizon problem by longer

and longer finite-horizon problems.

94



First, let us examine the “first-n-period truncation” of the infinite horizon problem.

Denote the expected total discounted cost for the truncated problem as

Cr,T,α<1,n>(x, i) = E[
n∑
t=1

αt−1ur(xt, it)], (4.9)

for all (x, i) ∈ Ω. Next, define the value function for the truncated problem as

Vn(x, i) = inf
r∈R
Cr,T,α<1,n>(x, i). (4.10)

Naturally, the value function for this n-stage finite horizon problem exists, and can be

computed recursively as

Vn(x, i) = min
y≤x
{K(x− y) +G(y, i) + αEVn−1(y, i)} ,

V0(x, i) = 0,

(4.11)

By definition, we have

Cr,T,α<1,∞>(x, i) = lim
n→∞

Cr,T,α<1,n>(x, i), (4.12)

for all (x, i) ∈ Ω. In Proposition 4.1.1, we have already proven that the limit on the RHS

exists. That is to say, the truncated problem converges to the infinite horizon problem.

According to Equation (4.6), if an optimal clearing rule r∗ exists, then we have

Cr
∗,T,α
<1,∞>(x, i) ≤ lim

n→∞
Cr,T,α<1,n>(x, i),∀r ∈ R. (4.13)

Now define the value function of the infinite horizon problem as

V (x, i) = lim
n→∞

inf
r∈R
Cr,T,α<1,n>(x, i). (4.14)

95



Since inf
r∈R
Cr,T,α<1,n>(x, i) = Vn(x, i), if we can prove that Vn(x, i) converges as well, then we

know that the value function for the infinite horizon problem exists, for which we have

V (x, i) = lim
n→∞

Vn(x, i) = lim
n→∞

Cr
∗,T,α
<1,n>(x, i) = Cr

∗,T,α
<1,∞>(x, i). (4.15)

Lemma 4.2.1. Under Condition 4.2.1, we have

Vn(x, i) ≤ Vn+1(x, i) (4.16)

for all (x, i) ∈ Ω and n = 0, 1, . . ..

Proof. The proof is by induction on n. Since V0(x, i) = 0 by definition, we then have

V1(x, i) = min
y≤x
{K(x− y) +G(y, i)} ≥ 0,

because Condition 4.2.1.(v) ensures G(y, i) ≥ 0. Assuming that inequality (4.16) holds for

all n ≤ l, we now must show that it also holds for l + 1. Note that

Vl+1(x, i)− Vl(x, i)

= min
y≤x
{K(x− y) +G(y, i) + αEVl(y, i)} −min

y≤x
{K(x− y) +G(y, i) + αEVl−1(y, i)}

≥ min
y≤x
{K(x− y) +G(y, i) + αEVl−1(y, i)} −min

y≤x
{K(x− y) +G(y, i) + αEVl−1(y, i)}

= 0.

This completes our proof.

Next, we shall establish an upper bound on Vn(x, i). One such possible bound is for

the case that the maximum input quantity is received in each period, and the system is

also cleared that often. A clearing cost of (k̂ + ĉQ) is thus incurred every period; no delay

96



penalty is ever charged since inputs are cleared at the earliest possible time. For this case,

sup
r∈R
Cr,T,α<1,n>(x, i) ≤ K(x) + C(x) +

n∑
t=2

αt−1(k̂ + ĉQ),

and if |x| <∞, we then have

lim
n→∞

sup
r∈R
Cr,T,α<1,n>(x, i) ≤ K(x) + C(x) +

α(k̂ + ĉQ)

1− α
<∞,

because 0 ≤ α < 1.

Theorem 4.2.2. Under Condition 4.2.1, the lim
n→∞

Vn(x, i) exists, and

V (x, i) = lim
n→∞

Vn(x, i), (4.17)

which is a solution to the optimality Equations (4.7), for all (x, i) ∈ Ω.

Proof. We first show that the limit exists. Lemma 4.2.1 and the existence of the upper

bound for Vn suggest that the sequence of functions Vn is point-wise non-decreasing in n

and bounded from above, i.e.,

0 = V0 ≤ V1 ≤ . . . ≤ Vn ≤ K(x) + C(x) +
α(k̂ + ĉQ)

1− α
.

Therefore, by the Monotone Convergence Theorem, Vn converges point-wisely to V . We

now show that this limit is a solution to Equation (4.7). First we have

Vn(x, i) ≤ Vn+1(x, i) = min
y≤x
{K(x− y) +G(y, i) + αEVn(y, i)} .

Thus, as n→∞, both sides of the above inequality converge, so that

V (x, i) ≤ min
y≤x
{K(x− y) +G(y, i) + αEV (y, i)} .

97



On the other hand,

Vn(x, i) ≥ Vn−1(x, i) = min
y≤x
{K(x− y) +G(y, i) + αEVn−2(y, i)} .

Passing to the limit in the preceding inequality yields

V (x, i) ≥ min
y≤x
{K(x− y) +G(y, i) + αEV (y, i)} .

This completes our proof.

4.3 Characterizing the Optimal Policies

The lemmas and propositions obtained in Sections 3.3 and 3.4 for the finite horizon problem

continue to hold for the infinite horizon problem. We summarize them with the following

lemmas and propositions.

Proposition 4.3.1. Under Condition 4.2.1, if x′ ≤ x

V (x′, i) ≤ V (x, i) ≤ V (x′, i) + k̂, (4.18)

and

V (x, i) = min {K(x) +G(∅, i) + αEV (∅, i), G(x, i) + αEV (x, i)} , (4.19)

for all i ∈ I and 0 ≤ q ≤ Q.

Proof. First, with z = x− x′, it is easy to observe that

G(x, i)−G(x′, i)

= − [C(x)− C(x′)] + [H(x)−H(x′)] + α

Q∑
q=0

M∑
j=1

[C(x⊕ q)− C(x′ ⊕ q)] [Dq]i,j

≥ H(z)− (1− α)C(z) ≥ 0.

98



Next we see that Vn, the value function for the first-n-period truncated problem, satisfies

Lemmas 3.3.2 and 3.3.4. Therefore, we must have

Vn(x′, i) ≤ Vn(x, i) ≤ Vn(x′, i) + k̂.

Passing to the limit in the inequalities completes the proof.

The following theorem is a direct result of Equation (4.19) in Proposition 4.3.1.

Theorem 4.3.2. Under Condition 4.2.1, the optimal clearing policy exists and must be

a on-off control clearing policy, i.e., if a clearing is triggered then all accumulated inputs

must be cleared, such that

V (x, i) = min {K(x) +W (∅, i),W (x, i)} , (4.20)

where W (x, i) = G(x, i) + αEV (x, i).

Applying the limit argument allows us to prove the other results listed below; hence we

omit the proofs here.

Proposition 4.3.3. Under Condition 4.2.1

V (x⊕ z, i) ≤ V (x⊕ y ⊕ z, i) ≤ V (x⊕ z, i) + k̂, (4.21)

for all x, y, z ∈ Φ, i ∈ I, and 0 ≤ q ≤ Q.

Proposition 4.3.4. Suppose that Condition 3.2.1 holds. For any system state (x, i) ∈ Ω,

if H(x)− (1− α)C(x) < (1− α)k̂, then the optimal action is not to clear x; on the other

hand, if H(x)− (1− α)C(x) > k̂, then the optimal action is to clear x.

Lemma 4.3.5. Under Condition 4.2.1, for every i ∈ I, there are only finitely many

sequences which do not require clearing under the optimal policy.

99



Theorem 4.3.6. Under Condition 4.2.1, an MD optimal policy is always logical and fea-

sible, i.e., it satisfies Condition 2.2.1 and 2.2.2, and the set Ψr∗t
has a tree structure and

finite size.

Proposition 4.3.7. Under Condition 4.2.1, if the delay penalty function is either purely

quantity-dependent or purely age-dependent, and if C(x) = 0, then H(x) ≤ H(y) implies

V (x, i) ≤ V (y, i) ≤ V (x, i) + k̂, (4.22)

for all x, y ∈ Φ, i ∈ I, t ∈ T , and 0 ≤ q ≤ Q.

Definition 4.3.1. A state-dependent threshold clearing policy in an infinite horizon is

denoted as πτ = (rτ , . . .). The clearing rule rτ is determined by a nonnegative vector τ ,

for which we have

rτ (x, i) =

 0, if H(x) ≤ τ(i)

1, otherwise
, (4.23)

for all (x, i) ∈ Ω.

Theorem 4.3.8. Under Condition 4.2.1, if the delay penalty function is either purely

quantity-dependent or purely age-dependent and C(x) = 0, then the optimal clearing policy

can be a state-dependent threshold clearing policy denoted by a nonnegative vector τ ∗. More

specifically, there exists a non-empty sequence x∗(i) such that

x∗(i) = arg max
x∈Φ
{G(x, i) : G(x, i) + EV (x, i) ≤ K(x) +G(∅, i) + EV (∅, i)}, (4.24)

and

τ ∗(i) = H(x∗(i)), (4.25)

for all i ∈ I.

Corollary 4.3.9. If Condition 4.2.1 is satisfied and the delay penalty function is purely

quantity-dependent, then the optimal clearing policy can be a state-dependent quantity

100



threshold clearing policy denoted by a nonnegative vector Q∗. More specifically, there exists

a non-empty sequence x∗(i) such that

x∗(i) = arg max
x∈Φ
{|x| : G(x, i) + EV (x, i) ≤ K(x) +G(∅, i) + EV (∅, i)}, (4.26)

and

Q∗(i) = |x∗(i)|, (4.27)

for all i ∈ I.

4.4 Computing the Optimal Policy Parameters

The infinite horizon stochastic clearing problem can be solved as an infinite horizon dis-

counted Markov decision process (MDP). We can use value iteration or policy iteration to

calculate its value function and optimal policy parameters.

Before constructing the computational algorithms, we shall divide the system state

space Ω into two subsets, ΩU and ΩC. These subsets are defined as

ΩU = {(x⊕ q, i) ∈ Ω : H(x)− C(x) + αC(x) ≤ k̂}, (4.28)

and

ΩC = Ω \ ΩU. (4.29)

ΩU and ΩC are mutually exclusive and collectively exhaustive. According to Proposi-

tion 4.3.4, it is always optimal to clear any state (x, i) ∈ ΩC, and if that is the initial

system state, we can simply add K(x) + C(x) to the total discounted cost and start from

(∅, i) instead. Therefore, our algorithms do not need to record anything for states in ΩC.

On the other hand, ΩU contains all remaining states for which the optimal decision is

unknown. Therefore, it is for those states in ΩU that our algorithm must determine the

101



best course of action. Lemma 4.3.5 has already confirmed that ΩU is finite.

Let B denote the set of bounded real-valued functions on ΩU. We shall define the norm

of u ∈ U by

||u|| = sup
(x,i)∈ΩU

|u(x, i)|. (4.30)

Since the set ΩU is discrete and finitely large, B is a Banach space, i.e., a complete normed

space.

Let us introduce an operator T : B → B as

T b(x, i) = min{G(x, i) + αEb(x, i), K(x) +G(∅, i) + αEb(∅, i)}. (4.31)

We can define another similar operator Tr : B → B as

Trb(x, i) = {K(yr) +G(yr, i) + αEb(yr, i)}, (4.32)

where r is a given clearing rule and yr = x(1− r(x, i)).

4.4.1 Value Iteration Algorithm

The following value iteration algorithm uses the tree structure and Proposition 4.3.4 to

help construct the optimal policy.

Algorithm IV: Discounted Cost Value Iteration Algorithm

IV.1 If H(x) − (1 − α)C(x) > k̂, let r(x, i) = 1 ; otherwise, let r(x, i) = 0. Use BFT

Procedure I to create ΩU.

IV.2 Set V [0](x, i) = 0, for all (x, i) ∈ ΩU. Choose an appropriate ε > 0 and set counter

t = 0.

102



IV.3 For each sequence (x, i) ∈ ΩU, j ∈ I, and q = 0, 1, . . . , Q, creates y = x ⊕ q and

look up V [t](y, j). If it cannot be found, set V [t](y, j) = K(y) + V [t](∅, j).

IV.4 Compute V [t+1](x, i) = T V [t](x, i) for all (x, i) ∈ ΩU.

IV.5 If ||V [t+1] − V [t]|| < ε(1−α)
2α

, go to Step 6; otherwise, increment t by 1 and go back

to Step 3.

IV.6 If G(x, i) + αEV [t+1](x, i) > K(x) + G(∅, i) + αEV [t+1](∅, i), set r∗(x, i) = 1;

otherwise, set r∗(x, i) = 0. Lastly, compute V by running Algorithm III with

respect to r∗.

The following proposition is essential to prove the convergence of Algorithm IV.

Proposition 4.4.1. T and Tr are both contraction mappings, i.e., ||T u−T v|| ≤ α||u−v||,

for all u, v ∈ B and some 0 ≤ α < 1.

Proof. Let vectors u, v ∈ B, and assume that T u(x, i) ≤ T v(x, i) for some fixed state

(x, i). With

y∗(x,i) ∈ arg min
y∈{∅,x}

{K(x− y) +G(y, i) + αEu(y, i)},

then

0 ≤ T v(x, i)− T u(x, i)

≤ K(x− y∗(x,i)) +G(y∗(x,i), i) + αEv(y∗(x,i), i)−K(x− y∗(x,i))−G(y∗(x,i), i)− αEu(y∗(x,i), i)

= αE(v(y∗(x,i), i)− u(y∗(x,i), i))

≤ αE||v − u|| = α||v − u||.

Repeating the same argument in the case that T u(x, i) ≥ T v(x, i), we get

|T u− T v| ≤ α||u− v||

103



for all (x, i) ∈ ΩU. Taking the supremum over (x, i) completes the proof for T . The proof

for Tr follows the same argument.

The convergence of Algorithm IV is demonstrated by our next result.

Theorem 4.4.2. For each pair (x, i) ∈ ΩU, the series of V [t](x, i) has the following prop-

erties

(i) V [t] converges in norm to V , which is the value function of the optimal policy;

(ii) The algorithm converges after finitely many iterations;

(iii) The stationary policy given by r is ε-optimal, i.e., ||V r − V || ≤ ε;

(iv) ||V [t+1] − V || < ε
2
;

where ε is the precision factor used in Algorithm IV as the termination condition.

Proof. Since Step 4 can be rewritten as Equation (4.31), and the operator T is a contraction

mapping on the Banach space B, the Banach Fixed-Point Theorem implies parts (i) and

(ii). Now suppose that the algorithm terminates at iteration t, outputting policy r and the

corresponding expected total discounted cost V r. Then

||V r − V || ≤ ||V r − V [t+1]||+ ||V [t+1] − V ||.

By definition, we know that V r = TrV r and TrV [t+1] = T V [t+1]. The first term on the RHS

of the above inequality can thus be written as

||V r − V [t+1]|| = ||TrV r − V [t+1]||

≤ ||TrV r − T V [t+1]||+ ||T V [t+1] − V [t+1]||

= ||TrV r − TrV [t+1]||+ ||T V [t+1] − T V [t]||

≤ α||V r − V [t+1]||+ α||V [t+1] − V [t]||,

104



since both operators T and Tr are contraction mappings on B. Rearranging the terms

yields

||V r − V [t+1]|| ≤ α

1− α
||V [t+1] − V [t]||.

Using a similar argument, we can obtain

||V [t+1] − V || ≤ α

1− α
||V [t+1] − V [t]||.

The termination condition, ||V [t+1] − V [t]|| < ε(1−α)
2α

, then ensures

||V [t+1] − V || < ε

2
,

and

||V r − V || ≤ ε.

This completes the proof.

Rate of Convergence: According Theorem 6.3.3 in [68], the convergence for the value

iteration algorithm is linear at rate α.

Time Complexity: Similar to the time complexity of Algorithm I, the size of ΩU can

be estimated by MQL̃, where L̃ is given by Equation (3.40). In Step IV.6, Algorithm III

is run with respect to ΩU, so its complexity is O(M3QL̃). If we do not need to report V

in Step IV.6, then this step has significantly lower complexity. The recursive steps IV.3

through IV.5 require traversing the entire set ΩU, accessing stored values V [t](x⊕ q, j) for

each (x, i) ∈ ΩU, j ∈ I, and q = 0, 1, . . . , Q, then computing V [t+1](x, i). In each iteration,

these steps have complexity of O(M2QL̃) because the tree structure of ΩU allows us to

store links between V [t](x, i) and V [t](x⊕ q, j) directly.

Memory Complexity: Using Algorithm III in Step 6 has memory complexity ofO(M2QL̃).

In all other steps, the sequence x, V [t](x, i) and V [t+1](x, i) are stored for all (x, i) ∈ ΩU

105



in each iteration t. Therefore, the combined memory complexity for the other steps is

O(ML̃QL̃).

Please refer to Appendix C for a numerical example to verify the complexity estimates.

4.4.2 Policy Iteration Algorithm

An alternative computation approach is through a modified policy iteration algorithm.

Algorithm V: Discounted Cost Policy Iteration Algorithm

V.1 If H(x) − (1 − α)C(x) > k̂, let r[0](x, i) = 1 ; otherwise, let r[0](x, i) = 0. Use

BFT Procedure I to create ΩU. Set counter t = 0.

V.2 (Policy Evaluation) Run Algorithm II with respect to r[t] to compute V [t](x, i),

for all (x, i) ∈ ΩU.

V.3 (Policy Improvement) For every (x, i) ∈ ΩU, set r[t+1](x, i) = 1 if G(x, i) +

αEV [t](x, i) > K(x) +G(∅, i) + αEV [t](∅, i); otherwise, set r[t+1](x, i) = 0.

V.4 If r[t+1] = r[t], stop and set r∗ = r[t+1]; otherwise increment t by 1 and return to

Step 2.

The key to proving convergence of Algorithm V is

Proposition 4.4.3. The successive values V [t] and V [t+1] generated by Algorithm V are

non-increasing, i.e., V [t] ≥ V [t+1].

Proof. Recall from Section 4.1 that Algorithm II computes V [t] by solving the following

equation

V [t] = ur
[t]

+ αP (x,r[t])V [t],

106



where the matrix P (x,r[t]) is generated by Equations (2.25) to (2.30). Therefore, Step 3 can

be expressed as

r[t+1] ∈ arg min
r∈R
{ur + αP (x,r)V [t]}.

Then we have

ur
[t+1]

+ αP (x,r[t+1])V [t] ≤ ur
[t]

+ αP (x,r[t])V [t] = V [t].

Rearranging terms we get

ur
[t+1] ≤ (I − αP (x,r[t+1]))V [t].

Pre-multiplying both sides by (I − αP (x,r[t+1]))−1 yields

V [t+1] = (I − αP (x,r[t+1]))−1ur
[t+1] ≤ V [t].

This completes the proof.

The following theorem demonstrates the convergence of Algorithm V.

Theorem 4.4.4. Algorithm V terminates in a finite number of iterations with a solution

of the optimality equation V [t] and an optimal policy r∗.

Proof. Because of the finite nature of both the system state space ΩU and the action set

A, there can only be finitely many MD policies. We have already shown that an optimal

policy can be an MD policy, and Proposition 4.4.3 suggests that V [t] is non-increasing.

Therefore, the algorithm must terminate after a finite number of iterations.

Rate of Convergence: According Theorem 6.4.6 in [68], the convergence for the policy

iteration algorithm is at least linear. Under special conditions specified in Theorem 6.4.8

in [68], the convergence rate can be quadratic.

Time Complexity: The tree structure of ΩU allows its size to be estimated by MQL̃,

where L̃ is given by Equation (3.40). In the policy evaluation step, Algorithm II is run with

107



respect to ΩU, so its complexity is O(M3QL̃). The complexity of the policy improvement

step is O(M2QL̃) because the tree structure of ΩU allows us to store links between V [t](x, i)

and V [t](x⊕ q, j) directly.

Memory Complexity: The policy evaluation step has memory complexity of O(M2QL̄)

because of Algorithm II. Whereas the policy improvement step has memory requirement

complexity of O(ML̃QL̃) because the sequence x, V [t](x, i) and V [t+1](x, i) are stored for

all (x, i) ∈ ΩU in each iteration t.

Please refer to Appendix C for a numerical example to verify the complexity estimates.

Note that the optimal clearing policy can also be found via a linear program of the corre-

sponding Markov Decision Process. We modify the existing LP formulation in [68] to solve

our version of stochastic clearing problem in Appendix A.

We now use Algorithms IV and V to solve the following stochastic clearing problem

separately, i.e., by value iteration and then by policy iteration. Results of the two methods

are found to be consistent (see Table 4.2).

Example 4.4.1. Consider a stochastic clearing system with the following parameters.

(i) The discount factor α = 0.95.

(ii) The input process is given as the BMAP in Example 2.1.1.(iii).

(iii) The delay penalty cost is given as in Example 2.3.1.(d).

(iv) The fixed clearing cost is K(wt) = 5 · δ{|wt|>0}.

(v) The variable clearing cost is C(wt) = 0.5|wt|.

The optimal clearing policy and the corresponding value functions are summarized in

Table 4.2. The cost functions given in Example 4.4.1 clearly satisfy Condition 4.2.1. The

numerical results of this example show that the optimal stationary clearing rules depend

108



Result Summary r∗(x, 1) r(x, 2) V (x, 1) V (x, 2)
∅ 0 0 4.0742 44.0103

x = [1] 0 0 9.2366 45.4745
x = [2] 1 1 10.0743 50.0103
x = [3] 1 1 10.5743 50.5103
x = [1, 0] 1 0 9.5743 46.2245
x = [1, 1] 1 1 10.0743 50.0103
x = [1, 2] 1 1 10.5743 50.5103
x = [1, 3] 1 1 11.0743 51.0103
x = [2, 0] 1 1 10.0743 50.0103
x = [2, 1] 1 1 10.5743 50.5103
x = [1, 0, 0] 1 1 9.5743 49.5103
x = [1, 0, 1] 1 1 10.0743 50.0103
x = [1, 0, 2] 1 1 10.5743 50.5103
x = [1, 0, 3] 1 1 11.0743 51.0103
x = [1, 1, 0] 1 1 10.0743 50.0103
x = [1, 1, 1] 1 1 10.5743 50.5103
x = [1, 1, 2] 1 1 11.0743 51.0103
x = [1, 0, 0, 0] 1 1 9.5743 49.5103
x = [1, 0, 0, 1] 1 1 10.0743 50.01034

Table 4.2: Summary of Optimal Clearing Rule for Example 4.4.1

on the underlying state i, and demonstrate the characteristics proven in Section 4.3. In

Example 4.4.2, we show a stochastic clearing problem with an optimal state-dependent

threshold clearing policy. In particular, note that for x = [0, 1, 0], it is optimal to clear

the system if the underlying state is 1 but it is optimal to continue to accumulate if the

underlying state is 2. This is intuitive because there is a much higher input arrival rate in

state 1 than state 2. Also note that for all the system content states that require clearing,

the expected total discounted costs differ by the variable clearing costs only.

Example 4.4.2. Consider a stochastic clearing system with the following parameters.

(i) The planning horizon has three periods.

(ii) The input process is given as the BMAP in Example 2.1.1.(ii).

(iii) The delay penalty cost is given as in Example 2.3.1.(c).

109



(iv) The fixed clearing cost is K(wt) = 5 · δ{|wt|>0}.

(v) The variable clearing cost is C(wt) = 0.

x r∗(x, 1) r∗(x, 2) V (x, 1) V (x, 2) H(x, 2)
∅ 0 0 0.5468 0.1823 0
[1] 0 0 1.3163 0.9518 0.5
[2] 0 0 1.6808 1.3163 0.5

[1,0] 1 1 1.7618 1.3973 2
[1,1] 1 1 2.1668 1.8023 2.5
[1,2] 1 1 2.5718 2.2073 2.5
[2,0] 1 1 2.1668 1.8023 2
[2,1] 1 1 2.5718 2.2073 2.5
[2,2] 1 1 2.9768 2.6123 2.5

Table 4.3: Summary of Optimal Clearing Rule in Period 1 for Example 4.4.2

The optimal clearing policy and the corresponding value functions are summarized in

Table 4.3. The cost functions given in Example 4.4.2 clearly satisfy both Conditions 4.2.1

and C(wt) = 0, and H is purely-age-dependent. The numerical results of this example

show that the optimal clearing rules can be converted into state-dependent threshold rules

defined in Section 4.3. The optimal threshold policy parameters are found as τ ∗(1) =

τ ∗(2) = 0.5.

4.5 Summary of Results

In this chapter, we first introduce an algorithm to compute the expected discounted cost

over an infinite horizon for any given clearing policy. We then use a limit argument to

extend the results for the expected total cost problem over a finite horizon to the expected

discounted cost problem over an infinite horizon. More specifically, the ordering of the

expected discounted cost is still induced by a partial order on the initial system state

space; and the optimal clearing policy is an on-off control policy for which partial clearing

is never allowed.

110



The above-mentioned characteristics of the optimal policy enable us to modify the

value/policy iteration algorithms to search for the optimal clearing policy parameters.

The modified algorithms are subsequently shown to have exponential complexities, but are

still capable of solving real-life problems of moderate sizes.

Although the expected total cost or total discounted cost is the preferred measure of

several applications of stochastic clearing systems, such as inventory control, the expected

average cost per period may be more appropriate for other applications such as shipment

consolidation. In the next two chapters, we will shift our focus to the expected average

cost per period objective function.

111



Chapter 5

Expected Average Cost Model over

Infinite Horizon (MDP)

In this chapter, we use the concept of Markov Reward Processes (MRP) to study the

stochastic clearing problem with expected average total cost per period as the optimality

objective. MRP is a variation of Markov Decision Processes (MDP), providing us with

several ways to find the optimal policy parameters even if the structure of the optimal

policy is unknown. The modelling assumptions and notations used in this chapter are

summarized below.

(i) The planning horizon is infinite, i.e., T = {1, 2, . . .}.

(ii) The model is in discrete time and discrete quantities, hence the input process is

modelled as a BMAP.

(iii) The clearing policy is given by a stationary policy π = (r, r, . . .), thus π and r can

be used interchangeably.

(iv) The pre-clearing system state process {(xt, it), t = 1, 2, . . .} is the Markov chain of

interest in this chapter.

112



(v) The cost functions are given by H, K, and C, which are stationary over time. (We

can add the subscript t, if necessary, and extend the procedures below).

Note that the modelling assumptions and notations used in this chapter are almost the

same as in Chapter 4. The only exception is that we disregard the discounting factor since

we are interested in the long-run average total cost.

5.1 Policy Evaluation

We have already used the concepts of Markov decision processes to study the optimal

clearing policies for total-cost and discounted-total-cost objectives in Chapters 3 and 4,

respectively. MDP can be applied to problems with expected average total cost objective

as well. In this case, we focus on the pre-clearing system state process {(xt, it), t = 1, 2, . . .}

and a stationary clearing policy π = (r, r, . . .).

5.1.1 Markov Reward Process

In the early chapters, we established that the stochastic clearing problem can be modelled

as an MDP with a Markov chain {(xt, it), t = 1, 2, . . .}, stationary clearing rule r, transition

probability matrix P (x,r) defined by Equations (2.25) to (2.27), and cost function ur(x, i)

defined by Equation (3.1). From [68], we know that we can refer to the stochastic process

{((xt, it), ur(xt, it)) , t = 1, 2, . . .} as a Markov reward process (MRP), where the reward is

in fact the cost associated with the clearing process. To simplify our notation, we shall use

P to represent P (x,r) in this chapter whenever it is possible.

We now apply the concepts of MRP to our model of stochastic clearing processes. The

expected average reward function for MRP is denoted by a vector gr for each clearing rule

113



r ∈ R, and defined as

gr(x, i) = lim
N→∞

1

N
E

[
N∑
t=1

ur(xt, it)

]
= lim

N→∞
Cr,A<1,N>(x, i), (5.1)

which is actually equal to the expected average total cost per period.

Our objective in this chapter is to seek a method for computing

g∗(x, i) = inf
r∈R

gr(x, i) (5.2)

and finding a policy r∗ ∈ R for which

gr
∗
(x, i) = g∗(x, i), (5.3)

for all (x, i) ∈ Ω. It turns out that this approach has some shortcomings because the limits

in Equation (5.1) may not always exist.

If P is stochastic and aperiodic, then it has already been proven in [68] that the limits

in Equation (5.1) exist and

gr = P ∗ur, (5.4)

where P ∗ is the limiting matrix, i.e., each row of P ∗ is identical and contains the steady

state probabilities of P . According to the theory of discrete time Markov chains, this

limiting matrix can be computed by

P ∗ = lim
N→∞

PN , (5.5)

if P is aperiodic, or calculated as the Cesaro limit

P ∗ = lim
N→∞

1

N

N∑
n=1

P n, (5.6)

114



if P is periodic, where P n is the n-step transition probability matrix of {(xt, it), t = 1, 2, . . .},

and computed as P to the power of n.

On the other hand, we can define another function g, known as the “gain” of the MRP,

by

g = P ∗ur. (5.7)

Note that gr and g are not exactly the same because gr may not exist at all. Hence, we

focus on computing g instead.

Since, according to Theorem 2.2.3, P is stochastic, irreducible, and aperiodic, g(x, i) is

thus proven to be a constant function (see [68]). Therefore, we can rewrite Equation (5.7)

in the matrix notation

ĝe = P ∗ur, (5.8)

where ĝ is the constant value of g.

The “bias” of MRP, denoted by function h, is given as

h(x, i) = E

[
∞∑
t=1

(ur(xt, it)− g(xt, it))

∣∣∣∣(xt, it) = (x, i)

]
. (5.9)

According to [68], we can write Equation (5.9) in the matrix form as

h = HPu
r, (5.10)

where HP is the deviation matrix defined by

HP = (I − P + P ∗)−1(I − P ∗). (5.11)

Note that HP is also known as the Drazin inverse of I − P .

Equations (5.10) and (5.11) gives us an alternative interpretation for the bias of MRP,

115



that is

h =
N∑
t=1

P t−1ur −Nĝe+
∞∑

t=N+1

(P t−1 − P ∗)ur, (5.12)

where the third term above converges to zero as N →∞. We can easily see that

N∑
t=1

P t−1ur = E

[
N∑
t=1

ur(xt, it)

]
= Cr,T<1,N>, (5.13)

which is the vector of expected total costs in the first N periods for any initial system

state. We thus have

Cr,T<1,N> = h+Nĝe+ o(1), (5.14)

where o(1) is a vector with elements approaching zero pointwise as N →∞. Therefore, h

can be thought as the “intercept” of the N -period expected total cost function and g can

be regarded as the “slope”. h captures the impact of the initial system state on the total

cost. ĝ represents the long-run growth rate of the costs once the system enters the steady

state, which is independent of the initial system state.

For any pair of system states (x, i) and (y, j), Equation (5.14) suggests that

h(x, i)− h(y, j) = lim
N→∞

[Cr,T<1,N>(x, i)− Cr,T<1,N>(y, j)]. (5.15)

Hence, h is also the asymptotic relative difference in expected total cost that results from

starting the process in state (x, i) instead of in state (y, j). [68] also refers to the vector h

as the relative value vector.

5.1.2 Policy Evaluation Equations

Although ĝ and h can be computed through direct evaluation of P ∗ and HP , that can be

inefficient in some cases. This is because the size of the state space for {(xt, it), t = 1, 2, . . .}

may be quite large, therefore making it difficult to compute P ∗ andHP without the presence

116



of any special structure. The following computational method may be more efficient to

some extent.

Theorem 5.1.1. Suppose that the pre-clearing system state Λ(r) is finite. The gain ĝ and

bias h of the MRP with irreducible transition probability matrix P and reward ur then

satisfy the equation

g + (I − P )h = ur. (5.16)

Proof. Since the Markov chain of P is stochastic and irreducible, g is constant across all

underlying states, and can be represented by ĝe. The rest of the proof follows directly

from Theorem 8.2.6 and Corollary 8.2.7 in [68].

Note that Equation (5.16) is actually a system of |Λ(r)| equations and |Λ(r)|+1 variables,

which means we have one “free” variable. Since h is the asymptotic relative difference

between two system states, we can actually set one of them to zero as the baseline for

comparison. In this way, we now have a system of |Λ(r)| equations with |Λ(r)| variables,

which can be solved by standard linear algebra methods such as Gaussian elimination.

We employ Algorithm VI to compute the expected average total cost per period over

the infinite horizon.

Algorithm VI: Infinite Horizon Average Cost Evaluation Algorithm

VI.1 Construct Ψ(r) using BFT Procedure I.

VI.2 For each x ∈ Ψ(r) and q = 0, 1, . . . , Q, obtain matrices A
(x,r)
x,x⊕q and B

(x,r)
x,q by

Equations (2.29) and (2.30), and form the transition probability matrix P ; also

compute ur(x) by Equations (3.1) and (4.3), and form the vector ur.

VI.3 Set h(∅, 1) = 0, and solve Equation (5.16) by Gaussian elimination.

117



Time Complexity: BFT Procedure I has time complexity O(MQL̄(r)). The computation

time in Step VI.2 scales by O(MQL̄(r)) because we only need to compute r(x⊕q, j) for each

x, q and j to form block matrices A and B. Finally, Step VI.3 requires solving a system

of equations of size MQL̄(r) . The Gaussian elimination method has a time complexity of

O(M3QL̄(r)). Overall, the time complexity of Algorithm VI is O(M3QL̄(r)).

Memory Complexity: The greatest memory is required to store the matrix P , whose

size is bounded by MQL̄(r) ×MQL̄(r) . Therefore, the memory requirement complexity is

O(M2QL̄(r)).

Example 5.1.1. Consider 12 different stochastic clearing problems with the following pa-

rameters.

(i) Three distinct input processes described in Example 2.1.1.

(ii) Four separate delay penalty cost functions H, as in Example 2.3.1.

(iii) The fixed clearing cost of the form K(wt) = 10 · δ{|wt|>0}.

(iv) The variable clearing cost is expressed as C(wt) = 0.5|wt|.

(v) The clearing policy is given as

r(xt, it) =

 0, if |xt| < 5 and L(xt) < 4

1, otherwise
.

The expected average costs for the various problems are computed by Algorithm VI and

summarized in Table 5.1.

H\BMAP Example 2.1.1.(i) Example 2.1.1.(ii) Example 2.1.1.(iii)
Example 2.3.1.(ii) 1.8364 1.3964 1.6622
Example 2.3.1.(iii) 1.8070 1.4051 1.6293
Example 2.3.1.(iv) 1.4761 1.1302 1.4120

Table 5.1: Summary of Expected Average Costs for Example 5.1.1

118



5.2 Optimality Equation

In this section, we set up the optimality equation for the expected average total cost model,

then prove the existence of an optimal clearing policy. Condition 5.2.1 on the cost functions

are required to establish our optimality results for the given model. Interpretation of these

conditions is similar to that of Condition 3.2.1.

Condition 5.2.1.

(i) K(w) = k̂ · δ{|w|>0}, i.e., the fixed clearing cost is stationary over time and zero if

nothing is cleared.

(ii) C(w) = ĉ · |w|, i.e., the variable clearing cost is a linear function of the cleared

quantities.

(iii) H(x+ y) ≥ H(x) +H(y), for all x, y ∈ Φ, i.e., H is superadditive in Φ.

(iv) H(x ⊕ [0, . . . , 0] ⊕ z) ≥ H(x ⊕ z), for all x, y, z ∈ Φ, i.e., delay penalties are non-

decreasing over time.

(v) For any real number M > 0, there are only finitely many sequences x ∈ Φ such that

H(x) ≤M .

Recall that for a given clearing policy r, the expected average cost per period over the

infinite horizon is given by

Cr,A<1,∞> = lim
N→∞

1

N
Cr,T<1,N> = g,

and the gain and bias satisfy

g + (I − P )h = ur.

The following lemma shows the optimal clearing decision for some system states.

119



Lemma 5.2.1. Under Condition 5.2.1, if H(xt) > k̂ in period t, it is optimal to clear the

system immediately.

Proof. Let us consider two identical clearing systems. At decision epoch t, we choose to

continue to accumulate in System 1, and use it as the benchmark. For System 2, let us

clear all outstanding inputs at t, then mimic the decisions of System 1 regardless of the

state of system 2. After the next clearing takes place in System 1 at some future decision

epoch n > t, both systems will become identical again. Now suppose H(xt) > k̂ for

System 1; Conditions 5.2.1.(iii) and (iv) imply that at any future decision epoch j > t,

H(xj) ≥ H(xt) > k̂. It is then easy to see that System 2 incurs lower cost than System

1 between period t and period n, but in any other period, both systems have the same

cost. Therefore, System 2 has a lower average total cost per period. This means whenever

H(xt) > k̂, we can choose to clear the system and start from an empty state to reduce

costs. This is similar to the idea of Lemma 3.3.4, but in the context of expected average

total cost per period.

Similar to the discussion of Section 4.4, Lemma 5.2.1 allows us to divide the system

state space Ω into two subsets, ΩU and ΩC. They are defined as

ΩU = {(x⊕ q, i) ∈ Ω : H(x) ≤ k̂}, (5.17)

and

ΩC = Ω \ ΩU. (5.18)

These subsets are mutually exclusive and collectively exhaustive. Again, let B denote the

set of bounded real-valued functions on ΩU.

Proposition 5.2.2. Under Condition 5.2.1, the state space of the MRP problem can be as

small as ΩU.

120



Proof. According to Lemma 5.2.1, for any system state (x, i) ∈ ΩC, the optimal clearing

decision is to clear everything and start again from the empty state. If any such state (x, i)

is given as the initial system state, Condition 5.2.1 ensures that no such state will ever be

reached again in the future. The one-time clearing cost becomes negligible in the average

cost calculation. Therefore, we only need to determine the optimal clearing decisions for

the other system states in ΩU.

According to [68], the optimality equation in an average reward MDP may be expressed

in matrix-vector notation as

0 = min
r∈R

{
ur − g + (P (x,r) − I)h

}
≡ B(g, h), (5.19)

where B is a mapping from R × B to B, and B is the the set of bounded real-valued

functions on ΩU.

However, if no partial clearing is allowed, recall from Equation (3.11) that we can write

ur(x, i) =

 G(x, i), if r(x, i) = 0;

K(x) +G(∅, i), otherwise.
(5.20)

Then we can simplify Equation (5.19) as

0 = min


G(x, i)− g(x, i)− h(x, i) +

Q∑
q=0

P
(x,r)
(x,i),(x⊕q,j)h(x⊕ q, j),

K(x) +G(∅, i)− g(x, i)− h(x, i) +

Q∑
q=0

P
(x,r)
(x,i),(q,j)h(q, j)


, (5.21)

for all (x, i) ∈ ΩU.

One of the most important results on the average reward of an MDP is presented here.

Theorem 5.2.3. (Theorem 8.4.1 in [68]) Since ΩU is finite, if there exists a scalar ĝ and

121



an h ∈ B for which B(ĝe, h) = 0, then

ĝe = g∗, (5.22)

which is the minimum expected average total cost per period.

5.3 Computing the Optimal Policy Parameters

The existence and uniqueness of such a ĝ and h have been proven in [68], and they are

marked as ĝ∗ and h∗. Now, we can use the concept of h-improving clearing rules to

construct the optimal clearing rule r∗ from ĝ∗ and an h∗.

According to [68], a decision rule rh is called h-improving if

rh ∈ arg min
r∈R
{ur + P (x,r)h}. (5.23)

Then for finite ΩU and a finite action set A, it has been proven that any stationary policy

derived from an h∗-improving clearing rule is average optimal (Theorem 8.4.5 in [68]).

This enables us to use value iteration, policy iteration, or linear programming to find the

optimal clearing policy. We shall explain each algorithm in detail in the next section.

5.3.1 Value Iteration Algorithm

The sequence of values generated by value iteration can be expressed as

v[t+1] = Tavgv
[t], (5.24)

122



where

Tavgv(x, i) ≡ min

 G(x, i) + Ev(x, i),

K(x) +G(∅, i) + Ev(∅, i)

 , (5.25)

for all (x, i) ∈ ΩU.

We shall use the tree structure of Φ and Lemma 5.2.1 to create ΩU, and then modify

the value iteration algorthm for MRP as follows.

Algorithm VII: Average Cost Value Iteration Algorithm

VII.1 If H(x) > k̂, let r(x, i) = 1 ; otherwise, let r(x, i) = 0. Use BFT Procedure I to

create ΩU.

VII.2 Set v[0](x, i) = 0, for all (x, i) ∈ ΩU. Choose an appropriate ε > 0 and set counter

t = 0.

VII.3 For each sequence (x, i) ∈ ΩU, j ∈ I, and q = 0, 1, . . . , Q, create y = x ⊕ q and

look up v[t](y, j). If it cannot be found, set v[t](y, j) = K(y) + v[t](∅, j).

VII.4 Compute v[t+1](x, i) = T v[t](x, i) for all (x, i) ∈ ΩU.

VII.5 If sp(v[t+1] − v[t]) < ε, go to Step 6; otherwise, increment t by 1 and go back to

Step 3.

VII.6 If G(x, i)+Ev[t+1](x, i) > K(x)+G(∅, i)+Ev[t+1](∅, i), set r∗(x, i) = 1; otherwise,

set r∗(x, i) = 0. Lastly, compute v∗ by running Algorithm VI with respect to r∗.

Note that we use the span seminorm sp(v) instead of the norm ||v|| to check the

termination condition in Step 5. More specifically, we have

sp(v) ≡ max
(x,i)∈ΩU

v(x, i)− min
(x,i)∈ΩU

v(x, i). (5.26)

123



This is necessary for ensuring the convergence of the algorithm and that r∗ is ε-optimal.

For more details, please refer to Theorems 8.5.2 to 8.5.6 in [68].

Rate of Convergence: According Theorem 8.5.4 in [68], the value iteration algorithm

converges after finitely many iterations.

Time Complexity: Similar to the time complexity of Algorithm I, the size of ΩU can be

estimated by MQL̃, where L̃ is given by Equation (3.40). In Step VII.6, Algorithm V is run

with respect to ΩU, so its complexity is O(M3QL̃). If we do not need to report v∗ in Step

VII.6, then this step will have significantly lower complexity. The recursive steps VII.3

through VII.5 require traversing the entire set ΩU; accessing stored values v[t](x⊕ q, j) for

each (x, i) ∈ ΩU, j ∈ I, and q = 0, 1, . . . , Q; then computing v[t+1](x, i). In each iteration,

these steps have complexity of O(M2QL̃) because the tree structure of ΩU allows us to

store links between v[t](x, i) and v[t](x⊕ q, j) directly.

Memory Complexity: Using Algorithm VI in Step VII.6 has memory complexity of

O(M2QL̃). In all other steps, x, v[t](x, i) and v[t+1](x, i) are stored for all (x, i) ∈ ΩU

in each iteration t. Therefore, the combined memory complexity for the other steps is

O(ML̃QL̃).

5.3.2 Policy Iteration Algorithm

An alternative computational approach is through a modified policy iteration algorithm.

Algorithm VIII: Discounted Cost Policy Iteration Algorithm

VIII.1 If H(x) > k̂, let r[0](x, i) = 1 ; otherwise, let r[0](x, i) = 0. Use BFT Procedure I

to create ΩU. Set counter t = 0.

VIII.2 (Policy Evaluation) Run Algorithm V with respect to r[t] to compute g[t](x, i) and

h[t](x, i), for all (x, i) ∈ ΩU.

124



VIII.3 (Policy Improvement) For every (x, i) ∈ ΩU, set r[t+1](x, i) = 1 if G(x, i) +

Eh[t](x, i) > K(x) +G(∅, i) + Eh[t](∅, i); otherwise, set r[t+1](x, i) = 0.

VIII.4 If r[t+1] = r[t], stop and set r∗ = r[t+1]; otherwise increment t by 1 and and return

to Step 2.

Rate of Convergence: Theorem 8.6.6 in [68] confirms that the policy iteration algorithm

converges after finitely many iterations.

Time Complexity: The tree structure of ΩU allows its size to be estimated by MQL̃,

where L̃ is given by Equation (3.40). In the policy evaluation step, Algorithm V is run with

respect to ΩU, so its complexity is O(M3QL̃). The complexity of the policy improvement

step is O(M2QL̃) because the tree structure of ΩU allows us to store links between h[t](x, i)

and h[t](x⊕ q, j) directly.

Memory Complexity: The policy evaluation step has memory complexity of O(M2QL̄)

because of Algorithm V. Whereas the policy improvement step has memory requirement

complexity of O(ML̃QL̃) because x, h[t](x, i), h[t+1](x, i) are stored for all (x, i) ∈ ΩU in

each iteration t.

Please refer to Appendix C for a numerical example to verify the complexity estimates.

Note that the optimal clearing policy can also be found via a linear program of the corre-

sponding Markov Decision Process. We modify the existing LP formulation in [68] to solve

our version of stochastic clearing problem in Appendix B.

We use Algorithms VII and VIII separately to solve the following stochastic clearing

problems. The results are consistent, hence assuring the correctness of the two methods.

Example 5.3.1. Consider a stochastic clearing system with the following parameters.

(i) The input process is the BMAP in Example 2.1.1.(iii).

125



(ii) The delay penalty cost is given as in Example 2.3.1.(d).

(iii) The fixed clearing cost is K(wt) = 5 · δ{|wt|>0}.

(iv) The variable clearing cost is C(wt) = 0.5|wt|.

Result Summary r∗(x, 1) r(x, 2)
∅ 0 0

x = [1] 0 0
x = [2] 1 1
x = [1, 0] 1 0
x = [1, 1] 1 0
x = [1, 2] 1 1
x = [2, 0] 1 1
x = [2, 1] 1 1
x = [1, 0, 0] 1 1
x = [1, 0, 1] 1 1
x = [1, 0, 2] 1 1
x = [1, 1, 0] 1 1
x = [1, 1, 1] 1 1
x = [1, 1, 2] 1 1
x = [1, 0, 0, 0] 1 1
x = [1, 0, 0, 1] 1 1

Table 5.2: Summary of Optimal Clearing Rule for Example 5.3.1

The optimal clearing policy and the corresponding value functions are summarized in

Table 5.2. The cost functions given in Example 5.3.1 clearly satisfy Condition 5.2.1. The

numerical results of this example show that the optimal stationary clearing rules depend

on the underlying state i, and demonstrate the characteristics proven in Section 6.2. In

the next example, we show a stochastic clearing problem with an optimal state-dependent

threshold clearing policy.

Example 5.3.2. Consider a stochastic clearing system with the following parameters.

(i) The input process is given as the BMAP in Example 2.1.1.(iii).

(ii) The delay penalty cost is as in Example 2.3.1.(c).

126



(iii) The fixed clearing cost is K(wt) = 5 · δ{|wt|>0}.

(iv) The variable clearing cost is C(wt) = 0.

x r∗(x, 1) r∗(x, 2) H(x, 2)
∅ 0 0 0
[1] 0 0 0.5
[2] 1 0 0.5

[1,0] 1 1 2
[1,1] 1 1 2.5
[1,2] 1 1 2.5
[2,0] 1 1 2
[2,1] 1 1 2.5
[2,2] 1 1 2.5

Table 5.3: Summary of Optimal Clearing Rule in Period 1 for Example 5.3.2

The optimal clearing policy and the corresponding value functions are summarized in

Table 5.3. The numerical results of Example 5.3.2 show that the optimal clearing rules can

be converted into state-dependent threshold rules similar to those defined in Section 4.3.

The optimal threshold policy parameters can be expressed as τ ∗(1) = τ ∗(2) = 0.5.

5.4 Summary of Results

Using the standard approaches for Markov decision processes (MDPs), we study the ex-

pected average cost per period problem over an infinite horizon in this chapter. Similar

to the previous two chapters, we first construct an algorithm to evaluate any given clear-

ing policy. Using the policy evaluation equations, we obtain the optimality equations and

then modify the value/policy iteration algorithms to search for the optimal clearing policy

parameters.

So far, we have evaluated a clearing policy only with respect to the cost objectives.

However, there are many other performance measures which can be used to assess the

effectiveness of a clearing policy. In the next chapter, we will use a different method

127



to compute the expected average cost per period, as well as to calculate several other

performance measures.

128



Chapter 6

Expected Average Cost Model over

Infinite Horizon (MAM)

In this chapter, we use the Matrix-Analytic Methods (MAM) to study the stochastic

clearing problem over an infinite planning horizon, with the expected average cost per

period as our objective function. MAM relies on special structures of the Markov chains

of the system states to efficiently compute the stationary distribution, expect average

cost, and other long-run performance measures. This approach is particularly effective in

evaluating a given clearing policy. The modelling assumptions and notation used in this

chapter are summarized below.

(i) The planning horizon is infinite, i.e., T = {1, 2, . . .}.

(ii) The model is in discrete time and discrete quantities, hence the input process is

modelled as a BMAP.

(iii) The clearing policy is given by a stationary policy π = (r, r, . . .), thus π and r can

be used interchangeably.

129



(iv) The post-clearing system state process {(yt, it), t = 1, 2, . . .} is the Markov chain of

interest in this chapter.

(v) The cost functions are given by H, K, and C, which are stationary over time, but

we can add the subscript t if necessary.

6.1 Policy Evaluation

Recall that in Theorem 2.2.3, we have already shown that the extended post-clearing system

state space Φ(r) × I has a finite tree structure under any logical, feasible, and stationary

clearing policy π = (r, r, . . .). After each transition, the system content y either becomes

y⊕ q, which is one of its “children” on the tree, or it returns to the root node ∅. Therefore,

we recongnize that the Markov chain {(yt, it), t = 1, 2, . . .} is in fact a GI/M/1 type Markov

chain with tree structure. Thess types of Markov chains have been studied using Matrix-

Analytic Methods, and efficient algorithms for computing the stationary distribution have

been built. In this section, we modify those algorithms to help analyze stochastic clearing

systems.

6.1.1 Stationary Distribution

Recall from Section 2.1.4 that, for a given stationary clearing rule r, the state space of

{(yt, it), t = 1, 2, . . .} is Ω(r), which is given by Equation (2.18). However, expanding the

state space into Φ(r)× I can be more efficient for computational purposes. Condition 2.2.1

guarantees that the extra dummy states are never reached if the system starts from an

empty state, hence they do not interfere with our analysis of the stationary system states.

By expanding the state space of the Markov chain, we can obtain block transition

probability matrices A
(y,r)
y,y⊕q and B

(y,r)
y,∅ from Equations (2.37) to (2.39), but to simplify the

130



notation in this section, we shall write

A
(y,r)
∅,∅ = D0, (6.1)

where D0 is the block matrix of zero input in the BMAP, followed by

A
(y,r)
y,y⊕q = A(y)q (6.2)

and

B
(y,r)
y,∅ = B(y), (6.3)

for all y ∈ Φ(r) and q = 0, 1, . . ..

Let θ = (θ(y, i), ∀(y, i) ∈ Ω(r)) be the steady-state distribution of the Markov chain

{(yt, it), t = 1, 2, . . .}. Then θ satisfies


θ(∅, j) =

M∑
i=1

θ(∅, i)a(y,r)
(∅,i),(∅,j) +

∑
(y,i)∈Ω(r)

θ(y)b
(y,r)
(y,i),(∅,j), ∀(∅, j) ∈ Ω(r)

θ(y ⊕ q, j) =
M∑
i=1

θ(y, i)a
(y,r)
(y,i),(y⊕q,j), ∀(y ⊕ q, j) ∈ Ω(r)

(6.4)

After expanding the state space of the Markov chain to Φ(r) × I, we can rewrite the

steady-state distribution as θ = (θ(y),∀y ∈ Φ(r)), where θ(y) = (θ(y, 1), θ(y, 2), . . . , θ(y,M)).

Using the matrix notation introduced in Equations (2.38) and (2.39), we can rewrite Equa-

tion (6.4) as 
θ(∅) = θ(∅)D0 +

∑
y∈Φ(r)

θ(y)B(y)

θ(y ⊕ q) = θ(y)A(y)q, ∀y ⊕ q ∈ Φ(r)

(6.5)

For any pair of sequences x =
[
x[l], . . . , x[1]

]
and y =

[
y[n], . . . , y[1]

]
, such that x ∈ Φ(r)

131



and x⊕ y ∈ Φ(r), let the n-step transition probabilities without clearing be

r(x,i),(x⊕y,j) =
∑
j1∈I

. . .
∑
jn−1∈I

a
(y,r)
(x,i),(x⊕yL(1),j1)a

(y,r)
(x⊕yL(1),j1),(x⊕yL(2),j2) . . . a

(y,r)
(x⊕yL(n−1),jn−1),(x⊕y,j)

(6.6)

where yL(n) is the left sub-sequence operator from Definition 2.1.1. In the matrix form,

we have

R̃∅,∅ = (I −D0)−1, (6.7)

since ∅ ⊕ 0 = ∅, and

R̃x,y = A(x)y[n]A(x⊕ yL(1))y[n−1]
. . . A(x⊕ yL(n− 1))y[1] , (6.8)

for all x ∈ Φ(r) and y ∈ Φ(r) but y 6= ∅.

In any arbitrary clearing cycle, the system content can only be y at most once, except

when y = ∅. Therefore, entry (i, j) in matrix R̃∅,∅R̃∅,y is in fact the expected time spent in

state (y, j) during the cycle, given that the cycle started from state (∅, i), for i, j ∈ I and

y ∈ Φ(r). These matrices are similar to the rate matrix R for the GI/M/1 type Markov

chains (see [37] and [60] for more details on the rate matrix R).

Let us introduce a more convenient notation for later use, namely

 R(∅) = I

R(y) = R̃∅,y,∀y ∈ Φ(r) and y 6= ∅.
(6.9)

Based on Equations (2.34), (2.35), (6.4), (6.6), and the definition of stationary distri-

bution of a Markov chain, the following results can be obtained.

Theorem 6.1.1. Under the assumptions given in Theorem 2.2.3, the stationary dis-

tribution of the Markov chain {(yt, it), t = 1, 2, . . .}, subjected to the stationary policy

132



π = (r, r, . . .), can be expressed as

θ(y, j) =
M∑
i=1

θ(∅, i)r(∅,i),(y,j),∀(y, j) ∈ Ω(r) and (y, j) 6= (∅, j), (6.10)

where θ(∅, j) is the unique solution to the linear system


θ(∅, j) = θ(∅, i)

a(y,r)
(∅,i),(∅,j) + b

(y,r)
(∅,i),(∅,j) +

∑
(y,m)∈Ω(r):(y,m) 6=(∅,j)

r(∅,i),(y,m)b
(y,r)
(y,m),(∅,j)

 ,∀j ∈ I

1 =
M∑
j=1

θ(∅, j)

1 +
∑

(y,m)∈Ω(r):(y,m)6=(∅,j)

r(∅,i),(y,m)


(6.11)

Proof. Let P (x,r) be the transition probability matrix for the Markov chain {(yt, it), t =

1, 2, . . .}. The components of P (x,r) are given in Equation (2.33). It can be easily verified

that, according to Equation (6.4), θ is a solution to the linear system θP (x,r) = θ and

θe = 1, which can be simplified into Equations (6.10) and (6.11). The uniqueness of the

solution is guaranteed by Theorem 2.2.3.

The following corollary follows directly from Theorem 6.1.1 by expanding the state

space and using the matrix notation defined earlier.

Corollary 6.1.2. Under the assumptions given in Theorem 2.2.3, the stationary dis-

tribution of the Markov chain {(yt, it), t = 1, 2, . . .}, subjected to the stationary policy

π = (r, r, . . .), can be expressed as

θ(y) = θ(∅)R(y), ∀y ∈ Φ(r), (6.12)

133



where θ(∅) satisfies the linear system


θ(∅) = θ(∅)

D0 +
∑
y∈Φ(r)

R(y)B(y)


1 = θ(∅)

∑
y∈Φ(r)

R(y)e

, (6.13)

if such a stationary distribution exists.

Since the input process is not affected by the shipment consolidation process, θ is

directly related to θa, which is the stationary distribution of the underlying Markov chain

of the input process according to Section 2.1.2.

Proposition 6.1.3. Under the assumptions stated in Theorem 2.2.3, we have

∑
y∈Φ(r)

θ(y) = θa. (6.14)

Proof. We begin the proof by showing that
∑

y∈Φ(r)
θ(y)D =

∑
y∈Φ(r)

θ(y). The left hand

134



side of the equation can be evaluated as

∑
y∈Φ(r)

θ(y)D

=
∑
y∈Φ(r)

θ(y)(

Q∑
q=0

A(y)q +B(y))

=
∑
y∈Φ(r)

θ(∅)R(y)(

Q∑
q=0

A(y)q +B(y))

= θ(∅)[
Q∑
q=0

A(∅)q +B(∅)] + θ(∅)
∑

y∈Φ(r):y 6=∅

R(y)[

Q∑
q=0

A(y)q +B(y)]

= θ(∅)
Q∑
q=1

A(∅)q +
∑

y∈Φ(r):y 6=∅

θ(y)

Q∑
q=0

A(y)q + θ(∅)

=
∑

y⊕q∈Φ(r):y⊕q 6=∅

θ(y ⊕ q) + θ(∅)

=
∑
y∈Φ(r)

θ(y).

The first equality follows from Equation (2.41), the second uses Equation (6.12), the forth

equality is a result of Equation (6.13), and finally, the fifth can be seen from the one-step

state transitions without clearing. Since θa is the unique stationary distribution of the

underlying Markov chain D and
(∑

y∈Φ(r)
θ(y)

)
e = 1, we must have

∑
y∈Φ(r)

θ(y) = θa.

This completes the proof.

Now let us construct an algorithm to compute the stationary distribution for {(yt, it), t =

1, 2, . . .} under a given policy. Since Φ(r) has a tree structure, we can modify BFT Proce-

dure II introduced in Section 2.1.4 to help us construct and navigate the state space of the

Markov chain.

Stationary Distribution Procedure

Step 1 Initialize a list V with {∅, I,D − D0} as the first entry; set counter n = 1 to

135



record the number of entries in V ; and denote the three components in the n-th

entry in V as V (n, 1), V (n, 2), and V (n, 3).

Step 2 Initialize a list U ; for each q = 1, . . . , Q, compute A(∅)q by Equation (2.38) and

store {n, q, A(∅)q} as separate entries in U .

Step 3 If U is empty, proceed to Step 5; otherwise, read and delete the next entry from

U according to the First-In-First-Out (FIFO) rule, store the three components

from the entry as ntemp, qtemp, and Atemp; and let xtemp = V (ntemp, 1)⊕ qtemp.

Step 4 If Atemp 6= 0, store {xtemp, V (ntemp, 2) ∗ Atemp, D} as a new entry in V and

increment n by one; update V (ntemp, 3) = V (ntemp, 3) − Atemp; and for each

q = 1, . . . , Q, compute A(xtemp)q by Equation (2.38) and store {n, q, A(xtemp)q}

as new entries in U ; then go back to Step 3.

Step 5 Solve the system of equations given in (6.13), where Φ(r) = {V (j, 1), j =

1, 2, . . . , n}, {R(y), y ∈ Φ(r)} = {V (j, 2), j = 1, 2, . . . , n}, and {B(y), y ∈ Φ(r)} =

{V (j, 3), j = 1, 2, . . . , n}; output the result as θ.

Time Complexity: Since Φ(r) has a tree structure, we can see that its size is limited

by QL̄(r) , where Q is the maximum input size and L̄ is the maximum input age allowed.

For each y ∈ Φ(r), the total computation time for matrices A(y)q, B(y), and R(y) scales

by O(QM). Therefore, it is easy to conclude that the time complexity of the Stationary

Distribution Procedure is O(MQL̄(r)).

Memory Complexity: The amount of memory required scales byO(M2QL̄(r)) because we

need to store theM×M matrices A(y)q, B(y), andR(y), for all y ∈ Φ(r) and q = 0, 1, . . . , Q.

136



6.1.2 Clearing Cycles

If we assume that a clearing cycle starts from an empty system and ends with the next

clearing event, the following proposition follows from renewal theory.

Lemma 6.1.4. The underlying state at the start of each clearing cycle is itself a Markov

chain. Let Pc and θc denote the corresponding transition probability matrix and stationary

distribution, respectively. Then we have

Pc = (I −D0)−1

 ∑
y∈Φ(r)

R(y)B(y)

 , (6.15)

where

θc = θcPc and θce = 1. (6.16)

Proof. According to Equations(6.7) and (6.8)

Pc = R̃∅,∅

 ∑
y∈Φ(r):y 6=∅

R̃∅,yB(y)

 = (I −D0)−1

 ∑
y∈Φ(r)

R(y)B(y)

 ,

which are the transition probabilities of a single cycle.

Note: Corrolary 6.1.2 requires the existence of the stationary distribution (θ,∀y ∈ Φ(r)).

However, due to the dummy states in Φ(r) × I, the corresponding Markov chain may not

be irreducible, so we cannot verify if θ exists. However, θc always exists because the

underlying Markov chain is irreducible. In fact, the following lemma will show that θc

gives us an alternative method for computing θ.

Let pc be the probability of clearing during an arbitrary period in the long run.

Lemma 6.1.5. Under the assumptions given in Theorem 2.2.3, we have

pc = θ(∅)(I −D0)e. (6.17)

137



and

θc =
θ(∅)

(∑
y∈Φ(r)

R(y)B(y)
)

pc

=
θ(∅)(I −D0)

pc

. (6.18)

Proof. Recall from Section 2.2.2 that there are two types of transitions into the empty

system state: (i) system remains empty if no input is received, i.e., ∅ ⊕ 0 → ∅; or (ii)

system is cleared, i.e., y ⊕ q → ∅. Therefore, θc corresponds to the probabilities of the

second type of transition, but conditioned on the event that the system has just been

cleared. By Equations (2.39) and (6.13), the probability of clearing can be expressed as

pc =
∑
y∈Φ(r)

θ(y)B(y)e = θ(∅)(I −D0)e.

This completes the proof.

6.1.3 Long-Run Performance Measures

The effectiveness of a clearing policy is not only measured by the relevant costs. In our

research, we are interested in the following performance measures as well.

Lc: the length of a clearing cycle, i.e., the time between two consecutive clearings.

Lidle: the inactive time in a clearing cycle, i.e., the number of consecutive periods with

no inputs right after the previous clearing.

Lactive: the time in a clearing cycle that the system is actively accumulating inputs.

Wc: the total cumulative quantities upon clearing.

Nc: the number of non-zero inputs upon clearing.

ATOT
c : the total age of non-zero inputs upon clearing.

AAVG
c : the average age of non-zero inputs upon clearing.

138



Note that all of the above performance measures are to be computed as long-run aver-

ages. We shall demonstrate immediately that these measures are independent of the initial

system state.

For infinite horizon problems, if no partial clearing is allowed, we can use the time of

clearing to divide the process into clearing cycles. In this way, the initial clearing cycle

begins with a given state (x, i), but all subsequent cycles begin from the empty state

immediately after a clearing. Recall from Theorem 2.2.3 that, if a given clearing policy

is logical and feasible, then the Markov chain {(yt, it), t = 1, 2, . . .} is positive recurrent.

This means the expected time to return to the empty state is finite, regardless of the initial

state. Over an infinite horizon, the effect of the first cycle is negligible if we are to take

averages over all cycles. Thus, we can ignore the first cycle and assume that all clearing

cycles start with an empty state.

The following proposition suggests that the repeated clearing cycles form a renewal

process with i.i.d. cycle lengths.

Proposition 6.1.6. (Theorem 3.4 in [12]) Under the assumptions given in Theorem 2.2.3,

Lidle has a discrete phase-type distribution with PH-representation (θc, D0); and Lc has a

discrete phase-type distribution with PH-representation ((θc, 0, ..., 0), P̃ (y,r)), where P̃ (y,r)

is obtained by removing blocks B(y),∀y ∈ Φ(r), from the transition probability matrix P (y,r).

The distributions of Lc and Lidle can be given explicitly as follows:

P{Lc = n} = θc

n−1∑
j=0

Dj
0

∑
y: y∈Φ(r), L(y)=n−j

R(y)B(y)

 e, for n = 1, 2, ...

P{Lidle=n} = θcD
n
0 (I −D0)e, for n = 0, 1, 2, ...

(6.19)

139



Simple expressions can be obtained for the expected values of Lc and Lidle:

E[Lc] =
1

pc

=
1

θ(∅)(I −D0)e

E[Lidle] =
θ(∅)e
pc

(6.20)

The expected value of Lactive is E[Lactive] = E[Lc]− E[Lidle].

Let W be the total accumulated weight in the system at the beginning of an arbitrary

period. Under the assumptions in Theorem 2.2.3, the distribution of W and the mean of

W can be expressed in terms of θ(∅) and {R(y), y ∈ Φ(r)} as follows:

P{W = w} = θ(∅)

 ∑
y∈Φ(r): |y|=w

R(y)

 e, for w = 0, 1, ..., Q̄;

E[W ] = θ(∅)

 ∑
y∈Φ(r)

|y|R(y)

 e. (6.21)

Recall that Wc, Nc, A
TOT
c , and AAVG

c are, respectively, the total cumulative quantity,

the number of non-zero inputs, the total age of non-zero inputs, and the average age of

non-zero inputs upon clearing. Under the assumptions in Theorem 2.2.3, their distributions

can be obtained by conditioning on the event that the system has just been cleared in the

period.

Before constructing the distribution functions of these performance measures, let us

first define

N (y) =
l∑

j=1

δ{y[j]>0} (6.22)

to compute the number of non-zero entries in sequence y, and another function

A(y) =
l∑

j=1

jδ{y[j]>0} (6.23)

to find the total age of the inputs in that sequence y.

140



Now we can write the distribution functions of Wc, Nc, A
TOT
c , and AAVG

c as follows.

P{Wc = w} =
θ(∅)
pc

∑
y∈Φ(r)

R(y)

 Q∑
q=0: |y|+q=w

Dq − A(y)q

 e, (6.24)

for w = 1, 2, ..., Q̄+Q.

P{Nc = n} =
θ(∅)
pc

∑
y∈Φ(r)

R(y)

 Q∑
q=0: N (y⊕q)=n

Dq − A(y)q

 e, (6.25)

for n = 1, 2, ..., L̄+ 1.

P{ATOT
c = l} =

θ(∅)
pc

∑
y∈Φ(r)

R(y)

 Q∑
q=0: A(y⊕q)=l

Dq − A(y)q

 e, (6.26)

for l = 0, 1, . . . , L̄.

P{AAVG
c ≤ l} =

θ(∅)
pc

∑
y∈Φ(r)

R(y)

 Q∑
q=0:

A(y⊕q)
N (y⊕q)≤l

Dq − A(y)q

 e, (6.27)

for 0 ≤ l ≤ L̄.

The distributions of ATOT
c and AAVG

c can be used to determine the service level of

the system in the long run (i.e., the probability of having undesirable average delay, or

the expected average delay per input). The means of Wc, Nc, A
TOT
D , and AAVG

D can be

computed by the following equations.

E[Wc] =
θ(∅)
pc

∑
y∈Φ(r)

R(y)

(
Q∑
q=0

(|y|+ q)(Dq − A(y)q)

)
e (6.28)

E[Nc] =
θ(∅)
pc

∑
y∈Φ(r)

R(y)

(
Q∑
q=0

N (y ⊕ q)(Dq − A(y)q)

)
e (6.29)

141



E[ATOT
c ] =

θ(∅)
pc

∑
y∈Φ(r)

R(y)

(
Q∑
q=0

A(y ⊕ q)(Dq − A(y)q)

)
e (6.30)

E[AAVG
c ] =

θ(∅)
pc

∑
y∈Φ(r)

R(y)

(
Q∑
q=0

A(y ⊕ q)
N (y ⊕ q)

(Dq − A(y)q)

)
e (6.31)

Similar to Proposition 6.1.3, the clearing process has no effect on the long-run quantity-

receiving rate and input-receiving rate, thus leading to the following results.

Proposition 6.1.7. For a given clearing policy, under the assumptions given in Theo-

rem 2.2.3, we have

E[Wc] = λq,aE[Lc] (6.32)

and

E[Nc] = λo,aE[Lc]. (6.33)

Proof. We begin with the first equation, for which λq,a = θa(
∑Q

q=0 qDq)e, E[Lc] = 1/pc,

and E[Wc] is given in Equation (6.28). Thus we find

E[Wc]

E[Lc]
= θ(∅)

∑
y∈Φ(r)

R(y)

(
Q∑
q=0

(|y|+ q)(Dq − A(y)q)

)
e

=
∑
y∈Φ(r)

θ(y)

(
Q∑
q=0

(|y|+ q)(Dq − A(y)q)

)
e

=
∑
y∈Φ(r)

θ(y)

(
Q∑
q=0

qDqe+ |y|De−
Q∑
q=0

|y ⊕ q|A(y)qe

)

= λq,a +
∑
y∈Φ(r)

|y|θ(y)De−
∑
y∈Φ(r)

Q∑
q=0

|y ⊕ q|θ(y)A(y)qe

= λq,a,

since De = e and θ(y)A(y)q = θ(y ⊕ q),∀y ⊕ q ∈ Φ(r). The proof for the second equation

is similar to the first. We just need to substitute N (y) for |y|.

142



Proposition 6.1.7 is quite intuitive because all quantities and inputs received must

eventually be cleared. The two equations can also be used to check the accuracy of the

stationary distribution computed.

6.1.4 Expected Average Cost per Period

Now we are ready to compute the expected average cost per period over an infinite horizon

for a given clearing policy. Note that the clearing costs are only charged once per cycle

as K(Wc) and C(Wc), where Wc is the total cumulative quantity upon clearing. It is easy

to see that, because of Proposition 6.1.6 and Equation (6.24), the cleared quantities in all

clearing cycles except the first one are i.i.d.. Therefore, renewal reward theory allows us

to compute the expected average clearing costs per period over an infinite horizon as

E[K(Wc)]

E[Lc]
= k̂θ(∅)(I −D0)e (6.34)

and

E[C(Wc)]

E[Lc]
= θ(∅)

∑
y∈Φ(r)

R(y)

Q∑
q=0

C(|y|+ q)(Dq − A(y)q)e. (6.35)

In contrast to the clearing costs, the delay penalty cost is charged every period to the

post-clearing system content. We can safely assume that when the system is empty, no

penalty is incurred. Therefore, we use θ to compute the expected average delay penalty

cost per period over an infinite horizon, which is given by

Cr,AH = θ(∅)
∑
y∈Φ(r)

R(y)H(y)e. (6.36)

Adding the three types of costs together, we get

Cr,A<1,∞>(x, i) = lim
N→∞

Cr,A<1,N>(x, i) =
E[K(Wc)] + E[C(Wc)]

E[Lc]
+ Cr,AH . (6.37)

143



The following algorithm summarizes the key steps in evaluating the long-run perfor-

mance measures and average costs of a given clearing policy.

Algorithm IX: Stationary Policy Evaluation Algorithm

IX.1 Construct Φ(r), {R(x), x ∈ Φ(r)}, and {B(x), x ∈ Φ(r)}, then compute the sta-

tionary distribution θ through the Stationary Distribution Procedure.

IX.2 For all y ∈ Ω(r), compute and store N (y) and A(y) according to Equations (6.22)

and (6.23), respectively.

IX.3 Calculate the distributions of various long-run performance measures using Equa-

tions (6.17), (6.19), (6.21), and (6.24) to (6.27). (This step is optional since the

full distributions are not always required)

IX.4 Calculate the means of various long-run performance measures using Equations

(6.20), (6.21), and (6.28) to (6.31).

IX.5 Calculate the long-run average costs according to Equations (6.34) to (6.37).

Time Complexity: Step IX.1 is essentially the Stationary Distribution Procedure, which

has the time complexity of O(MQL̄(r)). Step IX.2 has the time complexity of O(L̄(r)Q
L̄(r))

since for each y ∈ Φ(r), computing the functions N (y) and A(y) requires checking each

entry in the sequence. Computing the entire distributions in Step IX.3 is not required.

However, for a particular value, the density functions and distribution functions can be

computed in O(QL̄(r)) time. Lastly, Steps IX.4 and IX.5 both have time complexities of

O(QL̄(r)).

Compared to Algorithm V in Section 5.1.2, Algorithm IX has simpler time complexity

because it takes advantage of the GI/M/1 tree structure. This is the main advantage of

144



using MAM to evaluate a given clearing policy, especially when the number of underlying

states is large.

Memory Requirement Complexity: The bulk of the memory is required for Step IX.1.

This is the Stationary Distribution Procedure, and thus has the complexity of O(M2QL̄(r)).

We demonstrate Algorithm IX through the following numerical example.

Example 6.1.1. Consider nine different stochastic clearing problems with the following

parameters.

(i) Three different input processes described in Example 2.1.1.

(ii) Three different delay penalty cost functions H described in Example 2.3.1.(ii) to (iv).

(iii) The fixed clearing cost is given as K(wt) = 10 · δ{|wt|>0}.

(iv) The variable clearing cost is given as C(wt) = 0.5|wt|.

(v) The clearing policy is given as

r(xt, it) =

 0, if |xt| < 5 and L(xt) < 4

1, otherwise
.

The expected average costs for the different problems are computed by Algorithm IX and

summarized in the following table.

H\BMAP Example 2.1.1.(i) Example 2.1.1.(ii) Example 2.1.1.(iii)
Example 2.3.1.(b) 1.8909 1.3964 1.6622
Example 2.3.1.(c) 1.8954 1.4051 1.6328
Example 2.3.1.(d) 1.5471 1.1507 1.4898

Table 6.1: Summary of Expected Average Costs for Example 6.1.1

145



6.2 Computing the Optimal Policies

The general properties of the optimal clearing policy shown in Section 5.2 continue to hold

in the MAM approach. In this section, we identify a couple of additional properties and

then look at a special case of the problem.

6.2.1 General Properties

Recall that each downward path on the tree structure of Φ represents a sample path of the

input clearing process. Assuming that the process always starts with an empty system,

any stationary clearing rule r will determine the point where each sample path terminates

and the process goes back to the root node ∅. Thus, the policy can be translated into a set

of “cut-off” points on all sample paths of Φ for each underlying state i. In other words, the

clearing rule r can be mapped onto M different sub-trees of Φ, where M is the number of

underlying states. Each sub-tree contains the system contents that do not require clearing

while the system is in underlying state i.

Therefore, we can determine the optimal clearing policy by traversing through Φ and

finding the sets of cut-off points which minimize our objective function altogether. Of

course, the key is how to execute the search process. To design such a process to try to

find the optimal clearing policy, we start by showing some general properties of the optimal

clearing rule r∗.

First, let us make an observation that the optimal clearing rule r∗ is not always identical

for different underlying state i ∈ I, i.e., r∗ is a function of both the system content and

the underlying states. This is because the Markovian input process actually depends on

the underlying state of the system, so for the same system content but distinct underlying

states, the optimal clearing decision may differ because it must also take the future input

quantities iinto consideration.

146



For example, if the current underlying state signals possible large input quantities in

the immediate future, then it might be better to hold on to the outstanding inputs for

a little while and combine them with the large future inputs. On the other hand, if the

underlying state suggests low input probabilities for a while, it might be better to clear the

system to avoid prolonged delay of outstanding inputs. The nature of a Markovian input

process usually implies that the optimal clearing policy depends on the underlying state

at the beginning of each period.

Based on Lemma 5.2.1, we see that the optimal sub-trees have finite sizes. This is

because as we proceed down an arbitrary sample path of Φ, there are only finitely many

sequences x ∈ Φ such that H(x) ≤ k̂ according to Condition 5.2.1.(v).

Next, we show that the objective cost function can be simplified by removing cost items

that are not affected by the policy.

Lemma 6.2.1. Under Condition 5.2.1, the expected average variable clearing cost per

period does not depend on the clearing policy.

Proof. According to Equation (6.35), the expected variable clearing cost per period can

be computed as E[C(Wc)]
E[Lc]

. Since that variable clearing cost is assumed to be linear in the

cleared quantities by Condition 5.2.1.(ii), we have

E[C(Wc)]

E[Lc]
=
C(E[Wc])

E[Lc]
=
ĉE[Wc]

E[Lc]
.

Proposition 6.1.7 suggests that

E[Wc]

E[Lc]
= λq,a.

Therefore, E[C(Wc)]
E[Lc]

is independent of the clearing policy.

Lemma 6.2.1 essentially allows us to ignore the variable clearing cost when we are trying

to determine the optimal clearing policy. The next lemma indicates an upper bound for

the optimal expected average total cost per period.

147



Lemma 6.2.2. Under Condition 5.2.1, the minimal expected average total cost per period

is less than or equal to the fixed clearing cost, i.e.,

Cr
∗,A
<1,∞>(x, i) ≤ k̂. (6.38)

Proof. If we clear the system every period unless it is empty, then no delay penalty is ever

incurred. Since we can ignore the variable clearing cost, the expected average total cost

can be computed as

E[K(Wc)]

E[Lc]
=
k̂E[Nc]

E[Lc]
= λo,ak̂,

by Proposition 6.1.7. This cost is less than k̂ because we assume that there will be no

more than one input per period. The desired result is obtained since the optimal policy r∗

cannot do worse than that.

6.2.2 State-Independent Threshold Policies

In this section, first define a “state-independent threshold policy” that is similar to the

policy in Definition 4.3.1. We then prove that the optimal clearing policy can be determined

by a delay penalty threshold if there is only a single underlying state, i.e., M = 1 and the

input process is a compound renewal process.

Definition 6.2.1. For given τ > 0, clearing policy π = (rτ , rτ , . . .) is defined as

rτ (x, i) =

 0, if H(x) ≤ τ

1, otherwise
, (6.39)

for all (x, i) ∈ Ω.

Note that unlike Definition 4.3.1, τ here is a single threshold that is applied across all

underlying states.

148



We shall denote the corresponding expected average total cost per period as Cτ,A<1,∞>,

and let τ ∗ be the delay-penalty threshold that minimizes the expected average total cost

per period. To simplify our notation in the remainder of this section, we write

Cr,A<1,∞> = C(r),

for an arbitrary stationary clearing rule r, and

Cτ,A<1,∞> = C(τ).

for any delay-penalty threshold policy with parameter τ . We can separate the expected

average total cost per period into two components

Cr,A<1,∞> = CK(r) + CH(r),

where the first component is the expected clearing cost per period and the second compo-

nent is the expected delay penalty cost per period.

Lemma 6.2.3. Under Condition 5.2.1, if τ = k̂, then C(τ ∗) ≤ C(τ) ≤ k̂.

Proof. Assume that at the beginning of each clearing cycle, there is no accumulated input;

the clearing cost k̂ can be allocated to this period, and no cost is charged during the

subsequent inactive periods. By the definition of the delay-penalty threshold policy and

Lemma 5.2.1, the cost incurred in each subsequent active clearing period is less than or

equal to k̂. Then the cost incurred in each period is always capped by k̂, which leads to

the desired result.

It is intuitive that, as we raise τ , the delay penalty increases but the clearing cost

decreases. The optimal threshold will strive to balance the two types of costs. Therefore,

149



it is reasonable to conjecture that C(τ) is unimodal in τ for τ ≥ 0. The following numerical

examples support the conjecture.

Example 6.2.1. Suppose that k̂ = 15 and the delay penalty function is given as in Exam-

ple 2.3.1.(d). For the three different input processes of Example 2.1.1, we plot C(τ) over τ

for 0 ≤ τ ≤ k̂ in Figure 6.1.

Figure 6.1: Costs of Threshold Policies in Example 6.2.1

Note: The input process in Example 2.1.1.(i) is a compound renewal input process, where

there is only a single underlying state. In this case, the optimal delay-penalty threshold

policy is actually the overall optimal policy. Next, we give a mathematical proof of its

optimality.

Since there is only a single underlying state, we see that Ω and Φ are equivalent, and we

can write the clearing function as r(x). Consider two arbitrary stationary clearing policies

r and r′. These two policies are uniquely identifiable by their corresponding post-clearing

system state spaces Φ(r) and Φ(y,r′). Define

Φ+
r,r′ = {y ∈ Φ : r(y) = 1, r′(y) = 0} and Φ−r,r′ = {y ∈ Φ : r(y) = 0, r′(y) = 1}. (6.40)

150



It is easy to see that Φ+
r,r′ ∈ Φ \ Φ(r), Φ−r,r′ ∈ Φ(r), and

Φ(y,r′) = Φ(r) ∪ Φ+
r,r′ \ Φ−r,r′ . (6.41)

We shall call Φ+
r,r′ and Φ−r,r′ “state space modifications” from r to r′.

Now we are ready to determine the overall optimal policy under a compound renewal

input process and Condition 5.2.1.

Proposition 6.2.4. For any two clearing policies r and r′, we have

C(r)− C(r′) =

∑
x∈Φ+

r,r′

(C(r)−H(x))R(x) +
∑

z∈Φ−
r,r′

(H(z)− C(r))R(z)

∑
y∈Φ(r)

R(y) +
∑

x∈Φ+
r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)
, (6.42)

where Φ+
r,r′ and Φ−r,r′ are defined in Equation (6.40).

Proof. Since C(r) = CK(r) + CH(r), we will look at each component separately. First we

note that ∑
y∈Φ(y,r′)

R(y) =
∑
y∈Φ(r)

R(y) +
∑

x∈Φ+
r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)

According to Equations (6.15), (6.16), (6.20), and (6.34), we have

CK(r)− CK(r′) = k̂[θ(0)(1− d0)− θ′(0)(1− d0)]

= k̂(1− d0)

 1∑
y∈Φ(r)

R(y)
− 1∑

y∈Φ(r)

R(y) +
∑

x∈Φ+
r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)



=

CK(r)

 ∑
x∈Φ+

r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)


∑
y∈Φ(r)

R(y) +
∑

x∈Φ+
r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)
;

151



and from Equations (6.12), (6.13) and (6.36), we have

CH(r)− CH(r′)

=
∑
y∈Φ(r)

Dp(y)θ(y)−
∑

y∈Φ(y,r′)

Dp(y)θ′(y)

=

∑
y∈Φ(r)

Dp(y)R(y)

∑
y∈Φ(r)

R(y)
−

∑
y∈Φ(r)

Dp(y)R(y) +
∑

x∈Φ+
r,r′

H(x)R(x)−
∑

z∈Φ−
r,r′

H(z)R(z)

∑
y∈Φ(r)

R(y) +
∑

x∈Φ+
r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)

=

CH(r)

 ∑
x∈Φ+

r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)

+

 ∑
z∈Φ−

r,r′

H(z)R(z)−
∑

x∈Φ+
r,r′

H(x)R(x)


∑
y∈Φ(r)

R(y) +
∑

x∈Φ+
r,r′

R(x)−
∑

z∈Φ−
r,r′

R(z)
.

Summing the two components and rearranging the terms will lead to Equation (6.42).

Proposition 6.2.5. Under a compound renewal input process and Condition 5.2.1, C(τ)

is unimodal for 0 ≤ τ ≤ k̂ and τ ∗ = C(τ ∗).

Proof. If τ < C(τ) for some delay-penalty threshold policy parameterized by τ , let us

define another policy with τ ′ = τ + ε, where 0 < ε < C(τ)− τ . For notational convenience,

we shall use Φ(y,τ) and Φ(y,τ ′) to represent their corresponding post-clearing system state

spaces. Note that Φ(y,τ) ⊂ Φ(y,τ ′), so Φ−τ,τ ′ = ∅, and H(x) ≤ C(τ) for all x ∈ Φ+
τ,τ ′ ⊂ Φ(y,τ).

By Proposition 6.2.4, we have

C(τ)− C(rτ
′
) =

∑
x∈Φ+

τ,τ ′

[C(τ)−H(x)]R(x)

∑
y∈Φ(y,τ)

R(y) +
∑

x∈Φ+
τ,τ ′

R(x)
≥ 0.

Now let τ ′′ = τ − ε. Then Φ(τ ′′) ⊂ Φ(y,τ), Φ+
τ,τ ′′ = ∅, and H(z) ≤ C(τ) for all z ∈ Φ−τ,τ ′′ .

152



Again, by Proposition 6.2.4, we have

C(τ)− C(rτ
′′
) =

∑
z∈Φ−

τ,τ ′′

(H(z)− C(τ))R(z)

∑
y∈Φ(y,τ)

R(y)−
∑

z∈Φ−
τ,τ ′′

R(z)
≤ 0.

Thus, we have shown that C(τ) is non-increasing when τ < C(τ). Similar arguments can

be applied to show that C(τ) is non-decreasing when τ > C(τ). Hence the function C(τ) is

minimized at τ ∗ satisfying τ ∗ = C(τ ∗). This completes our proof.

In general, C(τ) may be minimized in an interval containing τ ∗, i.e., ∃[τ1, τ2] such that

τ ∗ ∈ [τ1, τ2] and C(τ) = C(τ ∗) = τ ∗, ∀τ ∈ [τ1, τ2]. See Example 6.2.1 for evidence.

Theorem 6.2.6. Under a compound renewal input process and Condition 5.2.1, the opti-

mal delay-penalty threshold policy parameterized by τ ∗ is the overall optimal policy in terms

of expected average total cost per period.

Proof. For the optimal delay-penalty threshold policy τ ∗ = C(τ ∗), we show that any state

space modification to Φ(τ∗) will result in higher expected cost. Let r be such a policy;

according to Equation (6.40), we can find the two sets Φ+
τ∗,r and Φ−τ∗,r. Note that H(x) ≥

C(τ ∗) for all x ∈ Φ+
τ∗,r and H(z) ≤ C(τ ∗) for all z ∈ Φ−τ∗,r. Then by Proposition 6.2.4, we

have

C(τ ∗)− C(r) =

∑
x∈Φ+

τ∗,r

(C(τ ∗)−Dp(x))R(x) +
∑

z∈Φ−
τ∗,r

(H(z)− C(τ ∗))R(z)

∑
y∈Φ(τ∗)

R(y) +
∑

x∈Φ+
τ∗,r

R(x)−
∑

z∈Ω−
τ∗,r

R(z)
≤ 0

This completes the proof.

Based on the unimodularity observation on C(τ), the following heuristic algorithm to

search for τ ∗ is introduced. Note that in many cases, it is safe to assume that 0 ≤ τ ∗ ≤ k̂,

153



because intuition suggests that delay penalty should not be allowed to exceed the fixed

clearing cost. However, in the following algorithm, we can always extend our search range

beyond k̂ to be accurate.

Heuristic A: Delay Penalty Threshold Heuristic

A.1 Initialize ϕ = 2− 1+
√

5
2

, a = 0, b = ϕk̂, c = k̂ and choose a precision factor ε;

A.2 If c− a < ε, STOP and RETURN τ ∗ = (c− a)/2;

A.3 If c− b > c− a, set η = b+ ϕ(c− b); else set η = b− ϕ(b− a);

A.4 Compute C(η) and C(b) according to Algorithm IX;

A.5 If C(η) < C(b) and c− b > b− a, set a = b, b = η, c = c; else if C(η) < C(b) and

c − b ≤ b − a, set a = a, b = η, c = b; else if C(η) ≥ C(b) and c − b > b − a, set

a = a, b = b, c = η; else, set a = η, b = b, c = c. Go back to Step A.2;

Note that Algorithm II is a golden ratio search algorithm over the range [0, k̂]. The

total number of iterations is O(log k̂
ε
). In each iteration, the bulk of the work lies in Step

A.4, which has time complexity of O(QL̄). Therefore, the overall time complexity of this

algorithm is O(QL̄ log k̂
ε
).

6.3 Summary of Results

Modelling the stochastic clearing process as a GI/M/1 type Markov chain with a tree struc-

ture allows us to compute the expected average cost per period over an infinite horizon

more efficiently. The stationary distribution of the system state can also be used to con-

struct formulas to compute other performance measures such as the average delay per unit

154



input, average quantity cleared per clearing cycle, and average number of inputs cleared

per clearing cycle.

By introducing some additional condition, we show that the optimal clearing policy

can again be a threshold policy, and we introduce a heuristic algorithm to compute the

optimal threshold level for expected average cost per period.

155



Chapter 7

Concluding Remarks

To conclude this thesis, we give a brief summary of the main results we have obtained

through our research, followed by a discussion of some future research directions on stochas-

tic clearing systems and other related systems.

7.1 Thesis Summary

In this thesis, we have studied stochastic clearing systems, which generalize a variety of

stochastic systems found in different applications. These include shipment consolidation,

inventory backlog, shuttle dispatch, and bulk service queues. We have conducted an exten-

sive literature review to identify the similar modelling approaches and solution techniques

in these areas. Through several accounts of practical applications, we have demonstrated

the importance of studying stochastic clearing systems.

From the modelling perspective, one of the main contributions of our research is mod-

elling the delay penalty cost as a function of both the quantity and age of individual inputs.

In the previous literature, such a function is modelled as a function only of cumulative input

quantity. That function has generally been linear, hence constant in time. Our approach

does add more complexity to the models, but it allows the decision maker to take the

156



input age (i.e., the time a unit of input has spent in the system before being cleared) into

consideration when deciding whether to continue accumulating inputs or clear the system.

As we have shown through our examples, the input age can have significant impact on the

performance and effectiveness of a clearing system, in terms of the service (i.e., the lead

time) to the customer that will receive the respective input.

The other special feature of our models is the Markovian input/arrival process. Note

that a Markov process has long been proven to be capable of approximating any input

or arrival process [37]. By assuming that the input arrival rate varies according to an

underlying state-of-the-world process, we can capture the potential correlations, burstiness,

and other special characteristics of the actual input process. Markovian input processes

are rarely considered in models of stochastic clearing systems, but they have already been

used in many inventory and shipment consolidation models. We generalized these models

in the context of stochastic clearing problems.

To accommodate the special model features, we record the system state as (x, i), where

x is a sequence of numbers and i is the underlying state. The resulting system state space

is very large, so to make our models mathematically tractable, we assume only discrete

time and discrete quantity. Working with such a complicated system state space has its

challenges, but it is a novel approach to represent the system state as a convolution of

multiple dimensions of information.

From the solution perspective, this thesis contains complete solutions to three different

stochastic clearing problems. These are the problems of expected total cost over a finite

horizon, expected total discounted cost over an infinite horizon, and expected average

total cost per period over an infinite horizon. For each of these problems, we have proven

some analytical results and made some observations through numerical examples about

the clearing policies and costs. These results and observations provide important insights

on how to optimize the clearing policy.

157



The two main objectives of our studies are evaluating the performance of any given

clearing policy, and finding the optimal clearing policy for a stochastic clearing system.

Therefore, we use both Markov Decision Process (MDP) and Matrix-Analytic Methods

(MAM) to construct multiple policy evaluation procedures and optimization algorithms

and heuristics. We estimate and verify the correctness and complexity of these procedures,

algorithms, and heuristics through numerical examples. MDP is effective in finding the

optimal clearing policy, while MAM is efficient in policy evaluation and in optimization

heuristics.

This thesis is completed with tables and figures of numerical examples and the MAT-

LAB codes for all the procedures, algorithms, and heuristics. Through these extensive

numerical analyses, we have made several observations and gained some insights on how

to effectively manage a stochastic clearing system under special circumstances.

7.2 Future Research

The results presented in this thesis are only the beginning of what we see as a series of

studies on stochastic clearing systems. There are several potential variations and improve-

ments to our current models; some important theoretical questions remain unanswered.

Below are a few of the research topics we intend to explore in the future.

7.2.1 Optimality of State-Dependent Threshold Clearing Policy

We have shown that, in the cases of expected total cost in a finite horizon and expected

total discounted cost over an infinite horizon, if the cost functions satisfy certain conditions,

then the optimal clearing policy can be a state-dependent threshold policy. However, in

the case of expected average total cost per period over an infinite horizon, we are only able

to speculate, through numerical examples, that the optimal policy can be of that form.

158



An analytical proof still eludes us. We hope to complete that proof in the future, and

to identify the necessary and sufficient conditions for the optimal policy to be a state-

dependent threshold policy.

7.2.2 Other Forms of Cost Structures

In this thesis, we have considered three types of costs associated with the stochastic clearing

process. These are the delay penalty cost, the fixed clearing cost, and the variable clearing

cost. In our analysis, we have made some restrictive assumptions or conditions on these

cost functions. For instance, most of our results require that the variable clearing cost is

a linear function of the total quantity cleared. However, in practice, the variable clearing

cost can be subjected to an incremental or all-unit quantity discount. We plan to study

the impact of such cost functions on the optimal clearing policy. A potential question here

is whether the quantity discount creates an incentive for the decision maker to accumulate

more inputs before clearing. That may depend on the customer disutility of waiting, i.e.,

on the delay penalty function.

In terms of that function, so far we have used only simple hypothetical functions to

account for both the input quantities and ages. However, there is a lack of empirical or

economic evidence to support a specific function that is increasing in an input’s age. We

hope to collect data or use intertemporal utility theory to find such functions that best fit

the way that delay penalties affect a customer in practice.

7.2.3 Impact of Input Process

Intuition tells us that the clearing process will be most effective if inputs arrive frequently

in relatively small sizes. Since we are modeling the input process with a MAP, which

is known to be able to approximate any arrival process to a high precision, we will test

159



this conjecture with our models. We can do so by comparing systems whose order-arrival

processes can be ranked under certain stochastic orders (see [73] and [57]).

Using the analytical results and the algorithms we have developed, we will also try

to prove the preceding conjecture formally. As well, we are interested in determining the

impact that stochastic orders of the input processes have on the parameters of the optimal

clearing policy. For instance, if the optimal policy is proven to be a state-dependent

threshold policy, how will the stochastic orders of the input processes affect the threshold

levels? Lastly, regarding state-dependent threshold policies, it remains to be seen if the

stochastic orders of the input quantities for different underlying states have any direct

correlation with the orders of the clearing thresholds for the respective underlying states.

7.2.4 Partially-Observable or Unobservable Underlying States

We have successfully argued that the input process may depend on the underlying state of

the world, and that the optimal clearing policy depends on this underlying state. However,

what happens if the underlying state cannot be observed directly or at all by the decision

maker? In that case, we can no longer rely on the state-dependent optimal clearing policy.

However, we do know that the underlying states still play a role in the clearing process.

In the field of Markov Decision Processes, such a process can be described as a “partially

observable MDP”; the underlying states are estimated through past states and a belief-

update function. If we can model that belief-update function, we can model the stochastic

clearing process as a partially observable MDP.

Another potential way to deal with thess problems is to use the stationary distribution

of the underlying process. In the long run, that stationary distribution of the underlying

process gives the probability to be in a particular state. If we perform a random sampling

of the stationary distribution at each decision epoch to “guess” the underlying state, we

may still be able to use the optimal state-dependent clearing policy to achieve relatively

160



good performance.

7.2.5 Continuous Time and/or Continuous Quantity Models

Lastly, we will try to build new stochastic clearing models in continuous time and/or

continuous quantity which are analogous to our discrete models. Although it may be

more difficult and require advanced tools in probability theory, matrix analytical methods,

stochastic calculus, etc., we can start off by improving upon the existing continuous models

in inventory theory and shipment consolidation.

161



APPENDICES

162



Appendix A

Linear Programming Formulation for

Total Discounted Cost Model

The problem of expected total discounted cost over an infinite horizon can also be formu-

lated and solved as a pair of primal and dual linear programs. First let us define a clearing

rule

r−(x, i) =

 0, if (x, i) ∈ ΩU

1, otherwise
(A.1)

and another clearing rule

r+(x, i) = 1,∀x ∈ Φ \ {∅}. (A.2)

The first rule is essentially following Proposition 4.3.4 to delay clearing as long as possible,

while the second rule immediately clears any outstanding inputs.

Since we have a finite discrete system state space ΩU, if no partial clearing is allowed,

we can use these two rules to formulate the following linear program and its dual problem.

Primal Linear Program

Maximize
∑

(x,i)∈ΩU

β(x, i)V (x, i) (A.3)

163



subject to

V (x, i)−
∑

(y,j)∈ΩU

αP
(x,r−)
(x,i),(y,j)V (y, j) ≤ ur

−
(x, i),∀(x, i) ∈ ΩU

V (x, i)−
∑

(y,j)∈ΩU

αP
(x,r+)
(x,i),(y,j)V (y, j) ≤ ur

+
(x, i),∀(x, i) ∈ ΩU

(A.4)

and primal variables V (x, i) are unconstrained.

Note that we can choose any set of positive scalars {β(x, i), ∀(x, i) ∈ ΩU}, such that∑
(x,i)∈ΩU

β(x, i) = 1. In fact, the set corresponds to the initial distribution of the system

state. For the sake of simplicity, we can set β(x, i) = 1
|ΩU|

uniformly. The transition prob-

abilities P
(x,r−)
(x,i),(y,j) and P

(x,r+)
(x,i),(y,j) are given by Equations (2.25) to (2.27), and the functions

ur
−

(x, i) and ur
+

(x, i) are defined by Equation (3.2).

Dual Linear Program

Minimize
∑

(x,i)∈ΩU

ur
−

(x, i)Z−(x, i) + ur
+

(x, i)Z+(x, i) (A.5)

subject to

∑
(y,j)∈ΩU

Z−(x, i)
[
1− αP (x,r−)

(x,i),(y,j)

]
+Z+(x, i)

[
1− αP (x,r+)

(x,i),(y,j)

]
= β(x, i),∀(x, i) ∈ ΩU (A.6)

and dual variables Z−(x, i) ≥ 0 and Z+(x, i) ≥ 0.

The dual variables Z−(x, i) and Z+(x, i), for all (x, i) ∈ ΩU , represents the two possible

actions to choose from when the system is in state (x, i). Thye directly correspond to the

clearing rule r. The dual problem contains more useful information. We usually choose

to solve it instead of the primal because the former involves fewer constraints. Suppose

we collect all states in ΩU and denote the solution to the dual LP by a vector Z which

contains both Z− and Z+. It is proven in [68] that, if Z is a basic feasible solution to the

164



dual LP, then we can create an MD policy by

r∗(x, i) =

 0, if Z−(x,i)
Z−(x,i)+Z+(x,i)

= 1

1, otherwise
(A.7)

The following theorem establishes the relationship between optimal policies and optimal

solutions of the dual LP.

Theorem A.0.1. (Theorem 6.9.4 in [68]) For the dual LP of the infinite horizon problem,

the following statements are equivalent

(i) There exists a bounded optimal basic feasible solution Z∗ to the dual LP.

(ii) Z∗ is an optimal solution to the dual LP, if and only if the corresponding policy r∗

is an optimal policy.

(iii) Z∗ is an optimal basic solution to the dual LP, if and only if the corresponding policy

r∗ is an optimal MD policy.

165



Appendix B

Linear Programming Formulation for

Average Total Cost Model

Recall from Section 4.4 that we can create two clearing policies as

r−(x, i) =

 0, if H(x) ≤ k̂

1, otherwise

and

r+(x, i) = 1,∀x ∈ Φ \ {∅}.

The first rule is essentially following Lemma 5.2.1 to delay clearing as long as possible,

while the second rule immediately clears any outstanding inputs.

Since we have a finite discrete system state space ΩU, if no partial clearing is allowed,

we can use these two rules to formulate the following linear program and its dual problem.

Primal Linear Program

Maximize
∑

(x,i)∈ΩU

β(x, i)V (x, i) (B.1)

166



subject to

g + h(x, i)−
∑

(y,j)∈ΩU

αP
(x,r−)
(x,i),(y,j)h(y, j) ≤ ur

−
(x, i),∀(x, i) ∈ ΩU

g + h(x, i)−
∑

(y,j)∈ΩU

αP
(x,r+)
(x,i),(y,j)h(y, j) ≤ ur

+
(x, i),∀(x, i) ∈ ΩU

(B.2)

with primal variables g and h(x, i) unconstrained.

Note that we can choose any set of positive scalars {β(x, i), ∀(x, i) ∈ ΩU}, such that∑
(x,i)∈ΩU

β(x, i) = 1. In fact, the set corresponds to the initial distribution of the system

state. For the sake of simplicity, we can set β(x, i) = 1
|ΩU|

uniformly. The transition prob-

abilities P
(x,r−)
(x,i),(y,j) and P

(x,r+)
(x,i),(y,j) are given by Equations (2.25) to (2.27), and the functions

ur
−

(x, i) and ur
+

(x, i) are defined by Equation (3.2).

Dual Linear Program

Minimize
∑

(x,i)∈ΩU

ur
−

(x, i)Z−(x, i) + ur
+

(x, i)Z+(x, i) (B.3)

subject to

∑
(y,j)∈ΩU

Z−(x, i)
[
1− αP (x,r−)

(x,i),(y,j)

]
+ Z+(x, i)

[
1− αP (x,r+)

(x,i),(y,j)

]
= β(x, i),∀(x, i) ∈ ΩU∑

(y,j)∈ΩU

Z−(x, i) + Z+(x, i) = 1

(B.4)

and dual variables Z−(x, i) ≥ 0 and Z+(x, i) ≥ 0.

Suppose we collect all states in ΩU and denote the solution to the dual LP by a vector

Z which contains both Z− and Z+. It is proven in [68] that, if Z∗ is a bounded basic

167



feasible solution to the dual LP, then we can create an optimal MD policy by

r∗(x, i) =


0, if Z−(x, i) > 0

1, if Z+(x, i) > 0

arbitrary, otherwise

(B.5)

168



Appendix C

Complexity Studies

In this appendix section, we present numerical examples to verify the time and memory

complexity estimates for all the procedures, algorithms, and heuristics we have constructed

in this thesis. Some procedures and algorithms have similar complexity and use the same

parameters, so we test them with the same numerical examples. We summarize the com-

plexity estimates in Table C.1.

Order of Growth Time Complexity Memory Complexity Convergence

BFT Procedures I and II O(MQL̄(rt)) O(L̄(rt)Q
L̄(rt)) NA

Algorithm I O(M2NQL̄(rt)) O(L̄(rt)Q
L̄(rt)) NA

Algorithm II O(M2NQL̃) O(L̃NQL̃) NA

Algorithm III O(M3QL̄(r)) O(M2QL̄(r)) NA

Algorithm IV O(M3QL̃) O(ML̃QL̃) linear

Algorithm V O(M3QL̃) O(ML̃QL̃) linear

Algorithm VI O(M3QL̄(r)) O(M2QL̄(r)) NA

Algorithm VII O(M3QL̃) O(ML̃QL̃) finite

Algorithm VIII O(M3QL̃) O(ML̃QL̃) finite

Stationary Distn Procedure O(MQL̄(r)) O(M2QL̄(r)) NA

Algorithm IX O(QL̄(r)) O(M2QL̄(r)) NA

Table C.1: Complexity Summary

Note that the complexity estimates may depend on the length of the planning horizon

N , the number of underlying states M , the maximum input quantity Q, and L̄(r), the

169



maximum input age allowed, or L̃, the upper bound of maximum input age allowed. The

major components in all of the complexity estimates are QL̄(r) or QL̃, which suggest expo-

nential order of growth. In comparison, N and M are usually relatively small in practice.

Therefore, in our numerical examples, we focus on testing different values of Q and L̄(r) or

QL̃.

Note that BFT Procedure I is used in all of Algorithms, and that procedure accounts

for the bulk of the work in all of these algorithms. Without loss of generality, let us assume

that the clearing policy is stationary and is given as

r(xt, it) =

 0, if L(xt) < L̄(r)

1, otherwise
.

The other parameters are given as follows. For the finite horizon problem, let N = 10.

The input process is given as

D0 =

0.3 0.2

0.2 0.3

 , D1 =
1

Q

0.25 0.25

0.25 0.25

 , . . . , DQ =
1

Q

0.25 0.25

0.25 0.25

 .

We record the run time (in seconds) and the size of Ψ(r) or Φ(r) for BFT Procedure I in

the following tables and plots. The numerical results provide sufficient evidence to support

our estimate of the time and memory complexities for the procedure. The complexities for

the policy evaluation algorithms scale proportionally to BFT Procedure I.

Run time(sec) L̄(r) = 1 L̄(r) = 2 L̄(r) = 3 L̄(r) = 4 L̄(r) = 5
Q = 1 3.8772e−4 7.6347e−4 9.3852e−4 0.0013 0.0024
Q = 2 2.2066e−4 5.0803e−4 0.0016 0.0049 0.0158
Q = 3 1.8588e−4 8.5299e−4 0.0039 0.0165 0.0888
Q = 4 2.1040e−4 0.0013 0.0075 0.0483 0.4518
Q = 5 2.6228e−4 0.0019 0.0137 0.1269 2.3030

Table C.2: BFT Procedure I Time Complexity Tests

170



|Ψ(r)| L̄(r) = 1 L̄(r) = 2 L̄(r) = 3 L̄(r) = 4 L̄(r) = 5
Q = 1 2 4 8 16 32
Q = 2 3 9 27 81 243
Q = 3 4 16 64 256 1024
Q = 4 5 25 125 625 3125
Q = 5 6 36 216 1296 7776

Table C.3: BFT Procedure I Memory Complexity Tests

Figure C.1: BFT Procedure I Complexity Tests

171



References

[1] J.R. Artalejo and A. Gomez-Corral. Analysis of a stochastic clearing system with

repeated attempts. Stochastic Models, 14(3):623–645, 1998.

[2] F. Barbera, H. Schneider, and P. Kelle. A condition based maintenance model with

exponential failures and fixed inspection intervals. Journal of the Operational Research

Society, 47(8):1037–1045, 1996.

[3] R. Bellman, I. Glicksberg, and O. Gross. On the optimal inventory equation. Man-

agement Science, 2(1):83–104, 1955.

[4] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, New

Jersey, 1957.

[5] D. Bertsekas. Dynamic Programming and Stochastic Control. Academic Press, New

York, New York, 1976.

[6] D. Bertsekas and S.E. Shreve. Stochastic Optimal Control: the Discrete Time Case.

Academic Press, New York, New York, 1976.

[7] D. Beyer, F. Cheng, S.P. Sethi, and M. Taksar. Markov Demand Inventory Models.

Springer US, New York, New York, 2010.

[8] D. Beyer and S.P. Sethi. Average cost optimality in inventory models with Markovian

demands. Journal of Optimization Theory and Applications, 92(3):497–526, 1997.

172



[9] D. Beyer and S.P. Sethi. The classical average-cost inventory models of Iglehart

and Veinott-Wagner revisited. Journal of Optimization Theory and Applications,

101(3):523–555, 1999.

[10] D. Beyer, S.P. Sethi, and R. Sridhar. Stochastic multiproduct inventory models with

limited storage. Journal of Optimization Theory and Applications, 111(3):553–588,

2001.

[11] D. Beyer, S.P. Sethi, and M. Taksar. Inventory models with Markovian demands and

cost functions of polynomial growth. Journal of Optimization Theory and Applica-

tions, 98(2):281–323, 1998.

[12] J.H. Bookbinder, Q. Cai, and Q.M. He. Shipment consolidation by private carrier:

the discrete time and discrete quantity case. Stochastic Models, 27(4):664–686, 2011.

[13] J.H. Bookbinder and J.K. Higginson. Probabilistic modeling of freight consolidation

by private carriage. Transportation Research, Part E, 38(5):305–318, 2002.

[14] O.J. Boxma, D. Perry, and W. Stadje. Clearing models for M/G/1 Queues. Queueing

Systems, 38(3):287–306, 2001.

[15] Q. Cai, Q.M. He, and J.H. Bookbinder. A tree-structured Markovian model of the

shipment consolidation process. Stochastic Models, 30(4):521–553, 2014.

[16] S. Çetinkaya and J.H. Bookbinder. Stochastic models for the dispatch of consolidated

shipments. Transportation Research, Part B, 37(8):747–768, 2003.

[17] S. Çetinkaya, E. Tekin, and C.Y. Lee. A stochastic model for joint inventory and

outbound shipment decisions. IIE Transactions, 40(3):324–340, 2008.

[18] Sila Çetinkaya. Applications of Supply Chain Management and E-Commerce Research,

chapter Coordination of inventory and shipment consolidation decisions: A review of

premises, models, and justification. Springer US, New York, New York, 2005.

173



[19] F. Chen and J.S. Song. Optimal policies for multiechelon inventory problems with

Markov-modulated demand. Operations Research, 49(2):226–234, 2001.

[20] F.Y. Chen, T. Wang, and T.Z. Xu. Integrated inventory replenishment and tempo-

ral shipment consolidation: A comparison of quantity-based and time-based models.

Annals of Operations Research, 135(1):197–210, 2005.

[21] X. Chen and D. Simchi-Levi. Coordinating inventory control and pricing strategies

with random demand and fixed ordering cost: The finite horizon case. Operations

Research, 52(6):887–896, 2003.

[22] Y. Chen, S. Ray, and Y. Song. Optimal pricing and inventory control policy in

periodic-review systems with fixed ordering cost and lost sales. Naval Research Logis-

tics, 53(2):117–136, 2006.

[23] F. Cheng and S.P. Sethi. A periodic review inventory model with demand influenced

by promotion decisions. Management Science, 45(11):1510–1523, 1999a.

[24] F. Cheng and S.P. Sethi. Optimality of state-dependent (s, S) policies in inventory

models with Markov-modulated demand and lost sales. Production and Operations

Management, 8(2):183–192, 1999b.

[25] Y.S. Chow, H. Robbins, and D. Siegmund. Great Expectations: the Theory of Optimal

Stopping. Houghton Mifflin, Boston, Massachusetts, 1971.

[26] R.K. Deb. Optimal dispatching of a finite capacity shuttle. Management Science,

24(13):13621372, 1978.

[27] C. Derman. Finite State Markovian Decision Processes. Academic Press, Orlando,

Florida, 1957.

[28] A. Drexl and A. Kimms. Lot sizing and scheduling - survey and extensions. European

Journal of Operational Research, 99(2):221–235, 1997.

174



[29] M. Dror and B.C. Hartman. Shipment consolidation: Who pays for it and how much?

Management Science, 53(1):78–87, 2007.

[30] A.N. Dudin and A.V. Karolik. BMAP/SM/1 queue with Markovian input of disasters

and non-instantaneous recovery. Performance Evaluation, 45(1):19–32, 2001.

[31] A. Federgruen and P. Zipkin. An efficient algorithm for computing optimal (s, S)

policies. Operations Research, 32(1):1268–1285, 1984.

[32] B. Fleischmann. The discrete lot-sizing and scheduling problem. European Journal of

Operational Research, 44(3):337–348, 1990.

[33] Y.P. Gupta and P.K. Bagchi. Inbound freight consolidation under just-in-time pro-

curement: Application of clearing models. Journal of Business Logistics, 8(2):74–94,

1987.

[34] J. Gutierrez, A. Sedeo-Noda, M. Colebrook, and J. Sicilia. A new characterization

for the dynamic lot size problem with bounded inventory. Computers and Operations

Research, 30(3):383395, 2003.

[35] Q.M. He. The classification of Markov chains of matrix GI/M/1 type with a tree

structure and its queueing applications. Journal of Applied Probability, 40(4):1087–

1102, 2003.

[36] Q.M. He. A fixed point approach to the classification of Markov chains with a tree

structure. Stochastic Models, 19(1):76–114, 2003.

[37] Q.M. He. Fundamentals of Matrix-Analytic Methods. Springer, New York, New York,

2014.

[38] Q.M. He and M.F. Neuts. Markov chains with marked transitions. Stochastic Processes

and their Applications, 74(1):37–52, 1998.

175



[39] M.D. Hickman. An analytic stochastic model for the transit vehicle holding problem.

Transportation Science, 35(3):215237, 2001.

[40] J.K. Higginson. Recurrent decision approaches to shipment-release timing in freight

consolidation. International Journal of Physical Distribution and Logistics Manage-

ment, 25(5):3–23, 1995.

[41] J.K. Higginson and J.H. Bookbinder. Policy recommendations for a shipment consol-

idation program. Journal of Business Logistics, 15(1):87–112, 1994.

[42] J.K. Higginson and J.H. Bookbinder. Markovian decision processes in shipment con-

solidation. Transportation Science, 29(3):242–255, 1995.

[43] F.S. Hillier and G.J. Lieberman. Introduction to Operations Research. McGraw-Hill

Education, New York, New York, 2015.

[44] W.T. Huh and G. Janakiraman. (s, S) optimality in joint inventory-pricing control:

An alternative approach. Operations Research, 56(3):783–790, 2008.

[45] D.L. Iglehart. Optimality of (s, S) policies in the infinite horizon dynamic inventory

problem. Management Science, 9(2):259–267, 1963.

[46] D.L. Iglehart and S. Karlin. Optimal Policy for Dynamic Inventory Process with

Nonstationary Stochastic Demands, chapter Studies in Applied Probability and Man-

agement Science. Stanford University Press, Stanford, California, 1962.

[47] E. Ignall and P. Kolesar. Optimal dispatching of an infinite-capacity shuttle: Control

at a single terminal. Operations Research, 22(5):10081024, 1974.

[48] S.D. Jacka. Optimal stopping and the American put. Mathematical Finance, 1(2):1–

14, 1991.

[49] E.P.C. Kao. A multi-product dynamic lot-size model with individual and joint set-up

costs. Operations Research, 27(2):279 – 289, 1979.

176



[50] I. Karatzas and S.E. Shreve. Methods of Mathematical Finance. Springer US, New

York, New York, 1998.

[51] O. Kella, D. Perry, and W. Stadje. A stochastic clearing model with a Brownian and

a compound Poisson component. Probability in the Engineering and Informational

Sciences, 17(1):1–22, 2003.

[52] K. Kim and A.F. Seila. A generalized cost model for stochastic clearing systems.

Computers & Operations Research, 20(1):67–82, 1993.

[53] W.K. Kruse. Technical note: Waiting time in a continuous review (s, S) inventory

system with constant lead times. Operations Research, 29(1):202–207, 1981.

[54] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochas-

tic Modeling. ASA and SIAM, Philadelphia, Pennsylvania, 1999.

[55] G. Latouche, M.A. Remiche, and P. Taylor. Transient Markov arrival processes. The

Annals of Applied Probability, 13(2):628–640, 2003.

[56] D.M. Lucantoni. New results on the single server queue with a batch Markovian arrival

process. Stochastic Models, 7(1):1–46, 1991.

[57] A. Marshall, I. Olkin, and B. Arnold. Inequalities: Theory of Majorization and Its

Applications. Springer, New York, New York, 2010.

[58] F. Mutlu, S. Çetinkaya, and J.H. Bookbinder. An analytical model for computing the

optimal time-and-quantity-based policy for consolidated shipments. IIE Transactions,

42(5):367–377, 2010.

[59] M.F. Neuts. A versatile Markovian point process. Journal of Applied Probability,

16(4):764–779, 1979.

[60] M.F. Neuts. Matrix-geometric solutions in stochastic models - an algorithmic ap-

proach. The John Hopkins University Press, Baltimore, Maryland, 1981.

177



[61] M.F. Neuts. Structured Stochastic Matrices of M/G/1 type and their Applications.

Marcel Dekker, New York, New York, 1989.

[62] M.F. Neuts. Models based on the Markovian arrival process. IEICE Trans. Commun,

75(2):1255–1265, 1992.

[63] K.P. Papadaki and W.B. Powell. Exploiting structure in adaptive dynamic program-

ming algorithms for a stochastic batch service problem. European Journal of Opera-

tional Research, 142(1):108127, 2002.

[64] K.P. Papadaki and W.B. Powell. An adaptive dynamic programming algorithm

for a stochastic multiproduct batch dispatch problem. Naval Research Logistics,

50(7):742769, 2003.

[65] D.A. Popken. An algorithm for the multiattribute, multicommodity flow problem with

freight consolidation and inventory costs. Operations Research, 42(2):274–286, 1994.

[66] E.L. Porteus. On the optimality of generalized (s, S) policies. Management Science,

17(7):411–426, 1971.

[67] E.L. Porteus. Optimal lot sizing, process quality improvement and setup cost reduc-

tion. Operations Research, 34(1):137–140, 1986.

[68] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons, Inc., Hoboken, New Jersey, 2005.

[69] S.M. Ross. Introduction to Probability Models. Elsevier, Kidlington, Oxford, 2010.

[70] H. Scarf. Mathematical Methods in the Social Sciences, chapter The optimality of

(S, s) policies in the dynamic inventory problem. Stanford University Press, Stanford,

California, 1960.

[71] R. Serfozo and S. Stidham. Semi-stationary clearing processes. Stochastic Processes

and their Applications, 6(2):165–178, 1978.

178



[72] S.P. Sethi and F. Cheng. Optimality of (s, S) policies in inventory models with Marko-

vian demand. Operations Research, 45(6):931–939, 1997.

[73] M. Shaked and J.G. Shanthikumar. Stochastic Orders. Springer, New York, New

York, 2007.

[74] J. G. Shanthikumar and U. Sumita. General shock models associated with correlated

renewal sequences. Journal of Applied Probability, 20(3):600–614, 1983.

[75] A.N. Shiryaev. Optimal Stopping Rules. Springer US, New York, New York, 2008.

[76] J.S. Song and P. Zipkin. Inventory control in a fluctuating demand environment.

Operations Research, 41(2):351–370, 1993.

[77] S. Stidham. Stochastic clearing systems. Stochastic Processes and their Applications,

2(1):85–113, 1974.

[78] S. Stidham. Cost models for stochastic clearing systems. Operations Research,

25(1):100–127, 1977.

[79] S. Stidham. Clearing systems and (s, S) inventory systems with nonlinear costs and

positive lead times. Operations Research, 34(2):276–280, 1986.

[80] J. Teghem. Control of the service process in a queueing system. European Journal of

Operational Research, 23(2):141–158, 1986.

[81] J.C. Tyan, F.K. Wang, and T.C. Du. An evaluation of freight consolidation policies

in global third party logistics. Omega, 31(1):55–62, 2003.

[82] A.F. Veinott. On the opimality of (s, S) inventory policies: New conditions and a new

proof. SIAM Journal on Applied Mathematics, 14(5):1067–1083, 1966.

[83] A.F. Veinott and H.M. Wagner. Computing optimal (s, S) inventory policies. Man-

agement Science, 11(5):525–552, 1965.

179



[84] H.M. Wagner and T.M. Whitin. Dynamic version of the economic lot size model.

Management Science, 5(1):89–96, 1958.

[85] H.J. Weiss. The computation of optimal control limits for a queue with batch services.

Management Sciences, 25(4):320328, 1979.

[86] W. Whitt. The stationary distribution of a stochastic clearing process. Operations

Research, 29(2):294–308, 1981.

[87] W.S. Yang, J.D. Kim, and K.C. Chae. Analysis of M/G/1 stochastic clearing systems.

Stochastic Analysis and Applications, 20(5):1083–1100, 2002.

[88] R.W. Yeung and B. Sengupta. Matrix product-form solutions for Markov chains with

a tree structure. Advances in Applied Probability, 26(4):965–987, 1994.

[89] W.I. Zangwill. A backlogging model and a multi-echelon model of a dynamic economic

lot size production systema network approach. Management Science, 15(9):506 – 527,

1969.

[90] Y.S. Zheng. A simple proof for optimality of (s, S) policies in infinite-horizon inventory

systems. Journal of Applied Probability, 28(4):802–810, 1991.

[91] Y.S. Zheng and A. Federgruen. Finding optimal (s, S) policies is about as simple as

evaluating a single policy. Operations Research, 39(4):654–665, 1991.

180


	List of Tables
	List of Figures
	Introduction
	Model Introduction
	Model Overview
	Shuttle Bus Dispatch Example
	Restaurant Delivery Example
	Less-Than-Truckload Carrier Example
	Luxury Car Dealership Example

	Literature Review
	Stochastic Clearing Systems
	Shipment Consolidation Problems
	Inventory Theories
	Other Related Problems and Theories
	Potential Research Problems

	Methodology
	Markov Decision Processes and Stochastic Dynamic Programming
	Markov Chain and Matrix Analytic Methods

	Thesis Layout

	Model Formulation
	Problem Definition and Notation
	Decision Epochs, Planning Horizon, and Periods
	Input Processes
	System Contents
	Action Set, Decision Rules, and Clearing Policies

	Two Markov Chains
	System State Spaces
	Pre-Clearing System State Process
	Post-Clearing System State Process

	Cost Structure
	Delay Penalty Cost
	Clearing Costs
	Objective Cost Functions


	Expected Total Cost Model over Finite Horizon
	Policy Evaluation
	Optimality Equations
	Characterizing the Optimal Policies
	Effects of Initial System State
	Policy Boundaries

	State-Dependent Threshold Policies
	Special Delay Penalty Functions
	Characteristics of State-Dependent Threshold Policies 

	Computing the Optimal Policy Parameters
	Summary of Results

	Expected Total Discounted Cost Model over Infinite Horizon
	Policy Evaluation
	Existence of Optimal Policies
	Characterizing the Optimal Policies
	Computing the Optimal Policy Parameters
	Value Iteration Algorithm
	Policy Iteration Algorithm

	Summary of Results

	Expected Average Cost Model over Infinite Horizon (MDP)
	Policy Evaluation
	Markov Reward Process
	Policy Evaluation Equations

	Optimality Equation
	Computing the Optimal Policy Parameters
	Value Iteration Algorithm
	Policy Iteration Algorithm

	Summary of Results

	Expected Average Cost Model over Infinite Horizon (MAM)
	Policy Evaluation
	Stationary Distribution
	Clearing Cycles
	Long-Run Performance Measures
	Expected Average Cost per Period

	Computing the Optimal Policies
	General Properties
	State-Independent Threshold Policies

	Summary of Results

	Concluding Remarks
	Thesis Summary
	Future Research
	Optimality of State-Dependent Threshold Clearing Policy
	Other Forms of Cost Structures
	Impact of Input Process
	Partially-Observable or Unobservable Underlying States
	Continuous Time and/or Continuous Quantity Models 


	APPENDICES
	Linear Programming Formulation for Total Discounted Cost Model
	Linear Programming Formulation for Average Total Cost Model
	Complexity Studies
	References

