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Abstract

This thesis deals with determining appropriate width parameters of control flow graphs
so that certain computationally hard problems of practical interest become efficiently solv-
able. A well-known result of Thorup states that the treewidth of control flow graphs arising
from structured (goto-free) programs is at most six. However, since a control flow graph
is inherently directed, it is very likely that using a digraph width measure would give
better algorithms for problems where directional properties of edges are important. One
such problem, parity game, is closely related to the µ-calculus model checking problem
in software verification and is known to be tractable on graphs of bounded DAG-width,
Kelly-width or entanglement.

Motivated by this, we show that the DAG-width of control flow graphs arising from
structured programs is at most three and give a linear-time algorithm to compute the
corresponding DAG decomposition. Using similar techniques, we show that Kelly-width
of control flow graphs is also bounded by three. Additionally, we also show that control
flow graphs can have unbounded entanglement. In light of these results, we revisit the
complexity of the µ-calculus model checking problem on these special graph classes and
show that we can obtain better running times for control flow graphs.
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Chapter 1

Introduction

1.1 Motivation

Software design, like all other human activities, is prone to errors and it is possible that
the final product does not meet the initial specifications. This is especially important
for safety-critical systems such as medical devices or avionics where consequences of an
incorrect behaviour can be catastrophic. In order to address such concerns, the most widely
accepted approach is to perform a formal verification of the system under consideration.
In the formal approach, a system is modeled via a mathematical structure (such as a
directed graph) and a specification is a list of mathematical properties which must hold in
the structure if the system meets the required expectations. As an example of a property,
consider a simple program that uses locks for synchronization. The following must hold:

On all program paths, a lock l0 acquired at some point is eventually released.

A property is usually specified as a logical formula. However, the choice of the logic used
depends on the amount of expressivity needed. As expected, simpler formulas are easier to
verify whereas verifying certain complicated formulas can be computationally hard. The
modal µ-calculus, a formalism introduced by Kozen [22], is known to encompass many
traditional logics of programs and can express a wide range of properties [15].

This problem of deciding whether a computer system is correct with respect to its
specification corresponds to an instance of the more general µ-calculus model checking
problem. Formally, the µ-calculus model checking problem is the following: given a prop-
erty π as a µ-calculus formula and a model M of the system under verification, the goal is
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to check whether or not the model M satisfies the property π. The model M of the sys-
tem is usually a directed graph, e.g the so-called Kripke structure [23], where the vertices
are labeled with appropriate propositions of the property π. For example, in the context
of software systems, the control-flow graph of the program is the Kripke structure. In a
control-flow graph (defined formally in Section 2.1), the vertices represent the basic blocks
in the program and the edges represent the flow of control between them.

Since model checking is an important aspect of formal verification, it is desirable to have
an efficient algorithm that could model check properties on transition systems of practical
interest. Unfortunately, such an algorithm has not been found yet. The problem is known
to be in NP ∩ co-NP [16], but a polynomial-time algorithm is not known so far. The
best known result for a system of size n is O(m · ndd/2e+1) [12], where m is the size of the
formula and d is its so-called alternation depth. It follows that if the alternation depth d is
bounded by a small constant, the problem can be solved in polynomial time. Most model
checking tools take advantage of this fact and therefore can model check properties of
small alternation depth, which is usually the case in practice [7]. However, model checking
more complicated properties is still a problem. An alternative approach is to efficiently
solve the µ-calculus model checking problem on special graph classes and show that these
classes cover cases of practical interest. There are algorithms in the literature that solve
the model checking problem on graphs of bounded treewidth [17, 24], DAG-width [10, 17],
Kelly-width [10] and entanglement [6]. (Formal definitions of these parameters will be
given later.) In this thesis, we work towards the latter goal. More precisely, we show that
control-flow graphs have bounded DAG-width and Kelly-width, thereby enabling us to use
the DAG-width and Kelly-width based algorithms from [10,17] for model checking software
programs.

Among special graph classes, graphs of treewidth at most k have garnered consider-
able interest in algorithmic graph theory. Originally introduced as a graph theoretic tool
in the seminal “graph minors” paper series of Robertson and Seymour [27], it quickly
spawned a rich field of algorithmic research. Treewidth gives a notion of graph decompo-
sition along which recursive algorithms can be built. By using dynamic programming [8]
over the so-called tree decomposition, it is possible to solve many computationally hard
problems efficiently when restricted to graphs of treewidth at most k. Using such tech-
niques, Obdržálek [24] showed that the µ-calculus model checking problem on graphs of
treewidth at most k is solvable in time O(n · (km)2 · d2((k+1)m)2). Note that the running
time is linear in n, the size of the system. What makes this result interesting is Thorup’s
proof [30] that the treewidth of control flow graphs arising from structured (goto-free)
programs is at most 6. His proof comes with an associated tree decomposition (which is
otherwise hard to find [3]). This allows us to use Obdržálek’s algorithm for model checking
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software programs. However, despite the fact that the running time is linear in the size
of the system, the algorithm is far from being practical due to the factor coming from
d2((k+1)m)2 . That is, with k = 6, verifying a formula of length m = 1 will have a running
time of O(n·d98). Fearnley and Schewe’s [17] improved result for bounded treewidth graphs
brings the running time down to O(n · 711 · (d+ 1)23), but it still seems impractical.

Since treewidth is a metric for undirected graphs and control-flow graphs are directed,
it was natural to look for graph width measures that consider the orientation of edges.
Such measures (see [26] and Section 2.4 for a brief survey) can come in handy for solving
problems where the directional properties of edges are important. Among such width
measures, DAG-width [5] and Kelly-width [19] have attained reasonable success. Similar
to treewidth, both these width measures give a notion of a graph decomposition on top
of which efficient algorithms can be built. However, unlike tree decompositions where the
decomposition structure is a tree, directed decompositions can have more than a linear
number of edges. Since the running time of the algorithms also depends on the size of the
decomposition, it is desirable that the corresponding directed decompositions have a linear
number of edges. Fearnley and Schewe [17] showed that the µ-calculus model checking
problem is efficiently solvable on graphs of bounded DAG-width. Bojanczyk et al. [10]
gave fixed parameter tractability results by showing that the µ-calculus model checking
problem can be solved in O(f(k + m) · nc) time on classes of bounded DAG-width and
Kelly-width, for some computable function f and some constant c. As usual, m is the size
of the formula and k is the width parameter. Note that both these algorithms expect the
corresponding directed decompositions as part of the input.

1.2 Contribution

Recall that explaining the structure of control flow graphs via treewidth is overly pessimistic
since it ignores the directional properties of edges. In this thesis we study the width of
control flow graphs for some directed width measures.

To this end, we show that the DAG-width of control flow graphs arising from structured
(goto-free) programs is at most 3 and give a linear-time algorithm to find an associated
DAG decomposition of small size. Using similar techniques, the Kelly-width of control
flow graphs also turns out to be at most 3. The corresponding Kelly decomposition can be
computed in linear time as well. Having found directed decompositions of a small width
and a linear number of edges, we can obtain better running times for algorithms using
these digraph width measures. For example, the DAG-width based algorithm from [17]

3



for model checking with a single sub-formula runs in time O(n2 · 35 · (d + 1)11). This is
competitive with and probably more practical than the previous algorithms.

From a graph-theoretic perspective, it is desirable for a digraph width measure to be
small on many interesting instances. The above result makes a case for both DAG-width
and Kelly-width by demonstrating an application area where they are useful.

1.3 Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews notation and some
background material. We will also briefly review treewidth and the proof of Thorup’s
result [30]. Chapter 3 discusses DAG-width in detail and presents the proof of the DAG-
width bound as well as the algorithm to find the associated DAG decomposition. We also
present a few other general results pertaining to edge contraction and subdivision motivated
by the fact that control flow graphs are usually simplified by contracting vertices that have
one incoming and one outgoing edge. Chapter 4 discusses some other width parameters
and their respective bounds for control flow graphs. Finally, we conclude in Chapter 5 by
discussing some applications of our results and open problems.
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Chapter 2

Background

In this chapter we establish the necessary background required for our main results. We
start by defining control flow graphs and fixing some notation. We also list a few prop-
erties of control flow graphs that we will use in later chapters. Next we review Thorup’s
proof of the treewidth bound in Section 2.2, followed by a brief introduction to cops and
robber games in Section 2.3 and some digraph width measures in Section 2.4. Finally in
Section 2.5, we conclude this chapter by presenting details of the µ-calculus model checking
problem on control flow graphs.

2.1 Control Flow Graphs

Informally speaking, a control flow graph of a program P is a directed graph where the
vertices represent statements in the program and the edges represent the flow of control
between them. In order to formally define control flow graphs, we will first need to define
a program P formally. We assume that the programs we consider are goto-free, otherwise
the corresponding control flow graph can be any digraph and so it will not have any special
width properties.

Since we want our representation of a program to be independent of the choice of the
programming language, we use a toy language Structured, an abstraction of the basic
constructs supported by modern programming languages with the exception of unrestricted
gotos. More complex constructs such as functions or switch statements can be emulated
using these basic constructs and therefore we will not discuss them here for the sake of
clarity. This is consistent with the approach adopted by Thorup [30].
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Definition 1 (Structured Programs). A program P in Structured starts with the key-
word start, is followed by a composite program statement S and finally ends with the
keyword stop. The statement S here is defined recursively as follows:

S := S ; S |
loop S end-loop |
if B then S else S endif |
if B then S endif |
s

B := B and B |
B or B |
b | ¬b

Note that we have used s to represent atomic program statements and b to represent
atomic Boolean expressions. By atomic we mean that these statements and expressions
cannot be broken down further as per the rules mentioned above. A composite program
statement S consists of more than one atomic statement. We have a few special atomic
statements which mean the following:

• break results in a flow of control to the end-loop keyword of the nearest surrounding
loop. Note that break always exits to the nearest surrounding loop; we do not allow
labelled breaks in Structured (but see Section 3.4 for generalizations).

• continue results in a flow of control to the loop keyword of the nearest surrounding
loop.

• return results in a flow of control to the end of the program, i.e to stop.

In Figure 2.1, we show an example of a complete program (binary search) written using
the constructs in Structured.

Given a structured program P , we can think of the constructs (start, end, loop,

end-loop, if, then, else, endif, and, or) and the atomic statements s and b as
program points, since any branching occurs only at these points. Having said that, we can
index these program points from 1 . . . n in the order of their appearance in the program P .
For example, start gets the index 1 and stop gets the index n, where n is the number of
program points. All other program points get indices between 1 and n. See Figure 2.1.
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start

if p5 then

stop

T

start1

loop3

endif8

endif14

endif21

else19

end-loop23

stop25

;

;

;

;

;

low ← 1, high← n

if4 low > high then6
break

mid← low + (high−low)
2

if10 key = a[mid] then12

if15 key < a[mid] then17

return false

return true

high← mid− 1

low ← mid+ 1

2

5

7

9

13

18

20

24

16

endif

if p11 thenT

endif

if p16 thenT

p9

p18

else

endif

p20

p7

p13

p24

p2

11

loop

end-loop

continue22

p22

F

F

F

Figure 2.1: A sample program in Structured with the resulting control flow graph.
Atomic statements are highlighted in gray.
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Definition 2. The control flow graph of a program P is a directed graph G = (V,E), where
a vertex vi ∈ V represents a program point pi ∈ P as defined above and an edge (vi, vj) ∈ E
represents the flow of control from pi to pj under some execution of the program P . The
vertices v1 = start and vn = stop correspond to the first and last statements of the
program, respectively.

We use cfg(S) as a short-cut for the subgraph of G formed by the vertices corresponding
to the program points in statement S.

In order to define control flow graphs more precisely, we will need to clarify what
exactly we mean by “flow of control”, or in other words, how exactly do we add the edges?
We note that the potential immediate successors of a program point pi are as follows.
The corresponding vertex vi in the control flow graph G can have at most the following
immediate successors.

• out, the succeeding program point. This is typically pi+1. The only exception occurs
if pi+1 = else, in which case out is the endif corresponding to the if-then-else

construct.

• If pi is an atomic statement s, it can have three other immediate successors.

– exit, the end-loop corresponding to the nearest surrounding loop. This happens
when pi is a break statement.

– entry, the loop corresponding to the nearest surrounding loop. This happens
when pi is a continue statement.

– stop, the end of program. This happens when pi is the return statement.

• If pi is a boolean expression b, it has two immediate successors.

– true, the program point when b evaluates to true and

– false, the program point when b evaluates to false.

Finally we introduce the following convention. For every loop construct loop S end-loop

in the control flow graph G, we will add an edge from loop to end-loop. This is to clearly
indicate the loop boundary and will be useful later. Note that adding extra edges does not
affect our results concerning width parameters since if they hold for a bigger graph, they
will automatically hold for its subgraphs.
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For the sake of having fewer vertices in G, some representations of control flow graphs
further remove a vertex v with in-degree and out-degree 1 by contracting the edge (u, v) ∈
E. For example, in Figure 2.1 we could suppress the vertices such as p2 or p7. (In Sec-
tion 3.3.1, we show that this does not affect our results.) For more details on control flow
graph construction and related concepts, we refer our readers to [1,2]. However, we borrow
the following definition which will be used to gain some more insight into the structure of
control flow graphs.

Definition 3 (Dominators). Let G be a control flow graph and u, v ∈ V . We say that u
dominates v, if every directed path from start to v must go through u. Similarly, we say
that u post-dominates v, if every directed path from v to stop must go through u.

For reasons that will be clear in the later chapters, we are particularly interested in
program points that result in directed cycles. As we will see later, these only occur at loops.
Since we study loops a lot, it makes sense to define them by means of the vertex-pairs that
correspond to them.

Definition 4 (Loop Element). We refer to a loop construct as a loop element L charac-
terized by an entry point Lentry (which is the vertex corresponding to loop) and the exit
point Lexit (which is the vertex corresponding to end-loop). See Figure 2.2.

Recall that from Definition 1, for every loop element L in Structured, the only way
to enter program points inside the loop is through Lentry. Moreover, the only way to exit
from program points inside the loop is to Lexit or to the stop vertex. With this observation,
we now note the following definitions and properties for loop elements.

• We define inside(L) to be the set of vertices dominated by Lentry and not dominated
by Lexit. Quite naturally, we define outside(L) to be the set of vertices (V \inside(L)).
Note that Lentry ∈ inside(L) but Lexit ∈ outside(L). Moreover, if we ignore edges to
stop, Lexit post-dominates vertices in inside(L).

• For the purpose of simplification, we assume G to be enclosed in a hypothetical loop
element Lφ. This is purely notational and we do not add extra vertices or edges to
G. We have inside(Lφ) = V and outside(Lφ) = ∅.

• We say that a loop element Li is nested under L, iff Lentry
i ∈ inside(L). Two distinct

loop elements are either nested or have disjoint insides.
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• We can now associate each vertex of G with a loop element as follows. We say that
a vertex v ∈ V belongs to L if and only if L is the nearest loop element such that
Lentry dominates v. More precisely, v ∈ belongs(L) if and only if v ∈ inside(L), and
there exists no Li nested under L with v ∈ inside(Li).

• Every v ∈ V belongs to exactly one loop element. start and stop (as well as any
vertices outside all loops of the program) belong to Lφ.

• Finally, we say that a loop element Li is nested directly under L, iff Lentry
i ∈ belongs(L).

In other words, Li is nested under L and there exists no Lj nested under L such that
Li is nested under Lj.

For ease of understanding, we illustrate the above concepts with examples in Figure 2.2.

Recall that based on the order in which the statements appear in the program P , we
defined a total order on the program points pi ∈ P . This immediately implies a total
order �P on the vertices of the control flow graph G. Note that start is minimal in this
ordering, whereas stop is maximal. Moreover, for a loop element L, v ∈ inside(L) if and
only if Lentry �P v ≺P Lexit. We say that an edge (u, v) ∈ E is a forward edge if u ≺P v;
otherwise we call it a backward edge.

From our definition of control flow graphs (Definition 2), it follows that for every edge
(u, v) in a control flow graph G, the only case where v ≺P u is when v is the entry point
of the nearest surrounding loop. Therefore, we have the following:

Lemma 1. The backward edges are exactly those that lead from a vertex in belongs(L) to
Lentry, for some loop element L.

Corollary 1. Let C be a directed simple cycle for which all the vertices are in inside(L)
and at least one vertex is in belongs(L), for some loop element L. Then Lentry ∈ C.

Proof. Let v be a vertex in the cycle C such that v ∈ belongs(L).

Since C is a directed cycle, it must contain back edges. One of these must lead from a
program point after v (possibly itself) to a program point before v (possibly itself). Hence
we have u,w with u �P v �P w such that (w, u) is a backward edge.

Since (w, u) is a backward edge, it follows from Lemma 1 that w ∈ belongs(Lx) and
u = Lentry

x for some loop element Lx. Now as all the vertices of the cycle C are in inside(L),
there are two cases, either Lx = L or Lx is a loop element nested under L.

10



Lentry

Lexit

cfg(S)

stop

continue

break

return

start

Lentry

Lexit

stop

Lentry
i

Lentry
j

Lexit
i

Lexit
j

S1

S3

S2

S4

(a) (b)

Figure 2.2: Loop elements. (a) The abstract structure. Dashed edges must start in
belongs(L), cfg(S) stands for control flow graph of statement S. (b) A control flow graph
with loops Li, Lj nested under L. The vertices enclosed in dash-dotted red, blue and green
regions are inside(L), inside(Li) and inside(Lj) respectively. The red, blue and green ver-
tices are in belongs(L), belongs(Li) and belongs(Lj) respectively. The vertices in black are
in belongs(Lφ).
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Note that since u �P v �P w and u,w ∈ belongs(Lx), it follows that v ∈ inside(Lx).
However, v ∈ belongs(L) which cannot hold if Lx is nested under L.

Therefore, Lx = L must hold and hence u = Lentry ∈ C.

With this background, we will now discuss treewidth and then revisit Thorup’s proof
that control flow graphs have treewidth at most 6.

2.2 Treewidth of Control Flow Graphs

The treewidth, introduced in [27], is a graph theoretic concept which measures tree-likeness
of an undirected graph. It uses a notion of graph decomposition defined as follows:

Definition 5 (Tree Decomposition). Let G = (V,E) be an undirected graph. A tree
decomposition of G consists of a tree T and an assignment of bags Xi ⊆ V to each node i
of T such that:

• ⋃
Xi = V .

• For every k in the path from i to j, where i, j, k ∈ V (T ), Xi ∩Xj ⊆ Xk.

• If (v, w) is an edge of G, then there exists a bag Xi, i ∈ V (T ) that contains both v
and w.

The width of the decomposition is defined as maxi∈V (T ) |Xi| − 1. The treewidth of the
graph is the minimum width over its all possible tree decompositions. Treewidth is often
alternatively characterized in terms of an ordering of vertices of G defined as follows.

Definition 6 (Elimination Ordering). An elimination ordering of an undirected graph
G = (V,E) is a linear ordering on the vertices V . Given an elimination ordering π =
(v1, ..., vn), we define Gi−1 to be the graph obtained by ‘eliminating’ vi from Gi. That is,
define Gn = G. To obtain Gi−1 from Gi remove vi from Gi and add new edges (if needed)
so that all the neighbors of vi form a clique in Gi−1. These newly added edges are called
fill edges.

The width of an elimination ordering is defined as the maximum over all i ∈ {1, . . . , n}
of the degree of vi in Gi. The treewidth of G is the minimum width over all possible
elimination orderings [14].

A third way to define treewidth via k-complex listings was used by Thorup [30].
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Definition 7. A (≤ k)-complex listing is an ordering of the vertices V of G such that
for every vertex v ∈ V , there is a set S(v) of at most k vertices preceding v in the listing,
whose removal separates v from all the vertices preceding v in the listing.

In other words, if (v1, ..., vn) is a (≤ k)-complex listing of the vertices V , then there is
no (undirected) path in G[V \ S(vi)] from vi to vj with j < i.

Note that if we add fill edges to G by eliminating vertices as per a (≤ k)-complex listing
of the vertices of G, all the newly added edges for a vertex vi are between the vertices in
S(vi). Since the size of S(vi) is at most k, we have the following:

Observation 1 ( [30]). A (≤ k)-complex listing is the same as an elimination order of
width k. The separator set for vi consists of the neighbors of vi in Gi.

In the following section, we revisit Thorup’s proof where he gives a (≤ k)-complex
listing for control flow graphs with k = 6. Readers more familiar with elimination orders
are encouraged to remember that the vertex order created is exactly the same, though the
proof of correctness does not directly transfer.

2.2.1 Thorup’s approach

In his proof [30], Thorup claims that the following order of recursively visiting the program
points of a structured program (Definition 1) corresponds to a (≤ 6)-complex listing π.

Note that a program P in Structured is of the form start S stop. We first insert
{start , stop} into π and then recursively visit S. There are the following cases:

1. S is an atomic statement s, or an atomic boolean expression b, ¬b.
- Let v be the corresponding vertex in G. Append v to π.

2. S is of the form: S ′ ; S ′′

- Append the vertex for {; } to π and then recursively visit S ′ and S ′′.

3. S is of the form: loop S ′ end-loop
- Let the corresponding loop element be L. Append {Lentry, Lexit} to π, and then
visit S ′ recursively.

4. S is a composite boolean expression of the form: B op B′ where op ∈ {and, or}.
- Append the vertex for op to π and then visit B, B′.
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5. S is of the form: if B then S ′ else S ′′ endif
- Append the vertices for {if, endif, then, else} to π and recurse on B, S ′ and S ′′.

6. S is of the form: if B then S ′ endif
- Append the vertices for {if, endif, then} to π and recurse on B and S ′.

Claim 1. The listing π computed above is (≤ 6)-complex.

Proof. In order to show that the listing π is (≤ 6)-complex, it suffices to show that all the
vertices get a separator of size at most 6. That is, for every vertex vi we would like to find
a set S(vi) of at most 6 vertices preceding vi in π, such that after removing S(vi) from G,
there is no path from vi to vj, with j < i.

Recall that the potential neighbors of a statement S are:

- the preceding statement or construct : in

- and the immediate successors: out, entry, exit, stop.

Likewise, the potential neighbors of an boolean expression B are:

- the preceding statement or construct : in

- and the immediate successors: true evaluation and false evaluation.

Note that the sequence of visiting statements described before ensures that all the
neighbors of a statement S or a boolean expression B are visited before we visit words in
S or B. Therefore, by removing all the neighbors of S, that is, {in, out, exit, entry, stop},
we can separate the first visited statement in S from all its predecessors in π. The idea is
to apply this recursively and hence compute the separator sets for vertices in the listing π.

It is important to note that the {in, out, exit, entry, stop} may assume different values
at each recursive call. For example, entry and exit always get the values Lentry and Lexit

respectively where L is the nearest loop element surrounding the statement which is being
visited currently. The stop always corresponds to the stop vertex. This will be more clear
with the case-by-case analysis below.

Recall that we begin with start S stop. The words start and stop will get the
separator sets {φ} and {start} respectively. We will now recurse on S with in′ = start,
out′= stop. Since there is no loop enclosing S, entry′= {φ} and exit′= {φ}.
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For a statement of the form S = S ′ ; S ′′, the word ‘;’ is visited first and therefore will
get the separator set {in, out, exit, entry, stop}. We will now recurse on S ′ with in′ = in
and out′ = ‘;’. Similarly for S ′′, we recurse with in′ = ‘;’ and out′ = out.

Proceeding similarly for loop S ′ end-loop, the word loop will get the separator set
{in, out, exit, entry, stop}. Here entry and exit correspond to the nearest loop surrounding
the current loop (if there is any). For end-loop, we have the separator set {loop, out,
exit, entry, stop}. Finally, we recurse on S ′ with in′ = loop and out′ = end-loop.

For conditionals of the form if B then S ′ else S ′′ endif, the if will be visited first
and hence gets the separator set {in, out, exit, entry, stop}. Proceeding similarly, endif
will get the separator {if, out, exit, entry, stop}, then will get the separator set {if,
endif, exit, entry, stop} and else will get the separator set {if, endif, then, exit, entry,
stop}. Finally, we will recurse on B with in′ = if and true = then, false = else; recurse
on S ′ with in′ = then and out′ = endif; and recurse on S ′′ with in′ = else and out′ =
endif.

The atomic statements will get the separator set {in, out, exit, entry, stop}. An atomic
boolean expression will get the separator set {in, true, false}.

For a boolean expression, B or B′, ‘or’ will get the separator set {in, true, false}. We
then recurse on B with in′ = in, true′ = true and false′ = or; and on B′ with in′ = or,
true′ = true and false′ = false. The case for ‘and’ is similar.

To see that Q = {if, endif, then, exit, entry, stop} is a separator set for else, consider
any path in G[V \ Q] from the vertex vi of ‘else’ to an earlier vertex vj. We know that
the path contains no break, continue or return, else it would contain exit, entry or stop.
Also it must be entirely within B or S ′′, else it would contain if, endif or then. But all
the statements inside B or S ′′ occur later in the order, contradicting that vj comes earlier.
The same reasoning can be applied to all other cases to show that the selected sets are
indeed separators.

Note that the above algorithm will repeat until we hit an atomic statement or expres-
sion, and hence will compute the separator set of every vertex in the listing. We can see
that in all these cases, the maximum size of the separator sets is 6.

From the above result, it follows that treewidth of control flow graphs cannot exceed
6. Thorup also showed that this bound is tight by constructing a control flow graph that
has treewidth exactly 6 [30]. Once we have the (≤ 6)-complex listing (which is also an
elimination ordering), the associated tree decomposition can be computed in linear time [9].
Since graphs of treewidth at most k have O(k · |V |) edges, we have the following.

Corollary 2. Every control flow graph G = (V,E) has O(|V |) edges.
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2.3 Cops and Robber Game

The cops and robber game on a graphG is a two-player pursuit evasion game in which k cops
attempt to catch a robber. Most graph width measures have an equivalent characterization
via a variant of the cops and robber game.

On a graph G = (V,E), the cops and robber game is played as per the following general
rules. Some variants of the game impose additional constraints on movement of the cops
and the robber.

• The cop player controls k cops, which can occupy any k vertices in the graph. We
denote this set as X where X ∈ [V ]≤k. The robber player controls the robber which
can occupy any vertex r.

• A play in the game is a (finite or infinite) sequence (X0, r0), (X1, r1), . . . , (Xi, ri) of
positions taken by the cops and robbers. X0 = ∅, i.e., the robber starts the game by
choosing an initial position.

• In a transition in the play from (Xi, ri) to (Xi+1, ri+1), the cop player moves the cops
not in (Xi∩Xi+1) to (Xi+1 \Xi). In the variants that we are interested in, this move
happens by a helicopter, that is, there are no restrictions on Xi+1 relative to Xi. We
say that the robber is visible if the cops can see the robber at all times and therefore
can plan out their next move based on the current position of the robber. In other
words, Xi+1 = f(Xi, ri) for some computable function f .

The robber can see the helicopter landing and moves at a great speed along a cop-free
path to another vertex ri+1. More specifically, there must be a path from ri to ri+1

in the graph G \ (Xi ∩Xi+1). This path must be a directed path if G is a digraph.
Note that some variants of the game may impose additional constraints on this path.

• The play is winning for the cop player if it terminates with (Xm, rm) such that
rm ∈ Xm. If the play is infinite, the robber player wins.

Definition 8. (Reachable vertices) Let Reach(S, r) be the set of all vertices v such that
there exists a path from r to v in G[V \S]. We define Reach(Xi, ri) to be the set of vertices
reachable by the robber after the ith move, that is when the cops occupy Xi and the robber
occupies ri.

Additionally, we will use Reach(Xi ∩ Xi+1, ri) to denote the set of vertices reachable
from ri, the current position of the robber, while the cops make their move from Xi to Xi+1.
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Width measure Constraints
Treewidth Robber visible (undirected case)
DAG-width Robber visible
Kelly-width Robber invisible but lazy (only moves when a cop

relocates to his current position)
Directed treewidth Robber visible but must stay in the same strongly

connected component
Entanglement Robber visible but can only move to a successor.

Cops can only move to current position of the robber.

Table 2.1: Various graph width parameters and their cops and robber characterization.
Note that the digraph width measures (except the treewidth) must respect the edge orien-
tations.

Definition 9. (Monotone strategies)

• A strategy for the cop player is called cop-monotone if in a play consistent with that
strategy, the cops never visit a vertex twice. More precisely, if v ∈ Xi and v ∈ Xk

then v ∈ Xj, for all i ≤ j ≤ k.

• A strategy for the cop player is called robber-monotone if in a play consistent with the
strategy, the set of vertices reachable by the robber is non-increasing. More precisely,
Reach(Xj, rj) ⊆ Reach(Xi, ri), for all i ≤ j.

Table 2.1 reviews some variants of the cops and robber game and lists the width param-
eter (most of which will be defined later) that correspond to it. For example, an undirected
graph G has treewidth k if and only if k + 1 cops can search G and successfully catch the
robber [28]. Note that the cops can see the robber at all times. Moreover, Dendris et
al. [14] showed that treewidth can be alternatively characterized by a variant of the cops
and robber game where the robber is invisible but lazy, that is, only moves when a cop
relocates to his current position. They showed that this variant also needs k + 1 cops and
a winning strategy for this variant of the game corresponds to an elimination ordering of
width k.

2.4 History of Digraph Width Measures

Since treewidth is a measure for undirected graphs, it was natural to think of graph width
measures that also take into account the orientation of edges. The objective was to find
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a measure which is general enough and, like treewidth, has nice algorithmic and graph
theoretic properties. Motivated by this, several digraph width measures were proposed. In
this section, we briefly discuss some of them that we will consider for our results. For the
sake of locality, we defer the exact definitions to later chapters.

The first such measure, the directed treewidth, was proposed by Johnson, Robertson,
Seymour, and Thomas [20] in 2001. The idea was to use a directed tree as the decomposition
structure and partition the vertices of the underlying graph into bags (subject to certain
conditions). The objective was to attain better running times for computationally hard
problems on graphs of small directed treewidth. However, except for a few initial results,
directed treewidth was not very successful. This was probably because the directed tree-
decompositions are not intuitively related to the graphs they decompose and therefore,
designing algorithms using these decompositions is complicated and error-prone. Moreover,
unlike the game for undirected graphs, the cops and robber characterization for directed
treewidth is not very clean. Specifically, a winning strategy against k cops only implies
that there is a directed tree decomposition of width 3k + 1.

In order to solve the problems associated with directed treewidth, Obdržálek [25] and
Berwanger et al. [4] independently came up with a new connectivity measure for directed
graphs, even giving it the same name DAG-width. The idea was to define a measure that
tells how close a given digraph is to being a directed acyclic graph (DAG) (Section 3.1 gives
a precise definition). The ulterior objective was to use the associated DAG-decompositions
to efficiently solve computationally hard problems that are easy on DAGs. Moreover,
DAG-width has a very clean characterization in terms of the cops and robber game on
digraphs, which is a generalization of the game for treewidth to directed graphs. From
this, it follows that the DAG-width is always upper bounded by treewidth plus one, since
we can just ignore the edge directions and use the winning strategy from the game for
treewidth. As expected, DAG-width has been quite successful and there are quite a few
papers that present efficient algorithms using DAG-width [5, 10,17,26].

However, one common problem in all such algorithms comes from the fact that a DAG-
decomposition can have up to |V |k+2 edges. To address this problem, Hunter and Kreutzer
proposed the notion of Kelly-width [19] that generalizes the concept of elimination orderings
to directed graphs (see also Section 4.1). They characterize Kelly-width in terms of a
variant of the cops and robber game called the inert-robber game in which the cops cannot
see the robber and the robber can only move if there is a cop approaching its current
position. In the case of undirected graphs, both the inert and the usual cops and robber
game need the same number of cops [14]. However for the case of directed graphs, such a
relationship has not been found yet, and consequently the corresponding width measures,
Kelly-width and DAG-width, are uncomparable as of yet. In [19], the authors conjecture
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that Kelly-width and DAG-width lie within constant factors of one another.

One final width measure that is worth mentioning is entanglement [6] (see also Sec-
tion 4.2), which captures the extent to which the directed cycles of a graph are entangled.
Since there is no notion of graph decomposition associated with entanglement, the usabil-
ity for dynamic-programming style algorithms is fairly limited. However, it is known to
be closely connected to the µ-calculus model checking problem and therefore it may be
worthwhile to study the entanglement of control flow graphs.

2.5 Software Model Checking

Recall that the main goal of this thesis is to characterize control flow graphs with ap-
propriate width parameters such that certain computationally hard problems of practical
interest become easier to solve on control flow graphs. One such application that we briefly
discussed in Section 1.1 is the µ-calculus model checking problem. The problem is known
to be in NP ∩ co-NP but a polynomial-time algorithm is not known so far. However, it is
well known [29] that the µ-calculus model checking problem is polynomial-time reducible
to the problem of finding a winner in parity games. Motivated by this, parity games were
extensively studied and efficient algorithms were found for graphs of bounded widths. It
follows that, using these algorithms combined with the bounded width property of control
flow graphs, we may be able to efficiently solve the software model checking problem since
it is essentially the µ-calculus model checking problem on control flow graphs.

In this section we will review the needed background to understand these algorithms for
graphs of bounded widths. We will briefly discuss the modal µ-calculus, parity games and
review how to convert the µ-calculus model checking to the problem of finding a winner
in parity games. Finally, we conclude the chapter with a review of the treewidth-based
algorithm for software model checking.

Note that the concepts presented in this section are not really needed for the main
results in this thesis and are mostly for the sake of completeness. However, these concepts
may be helpful in understanding the algorithmic applications of the main results.

2.5.1 Parity Game

A parity game G consists of a directed graph G = (V,E), called the game graph, a partition
of V into sets V0 and V1 = V \ V0; and a parity function λ : V → N (called priority) that
assigns a natural number to each vertex of G.
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The game G is played between two players P0 and P1 who move a shared token along
the edges of the graph G. The vertices V0 ⊂ V and V1 = V \ V0 are assumed to be owned
by P0 and P1 respectively. If the token is currently on a vertex in Vi (for i = 0, 1), then
player Pi gets to move the token, and moves it to a successor of his choice. This results
in a possibly infinite sequence of vertices called play. If the play is finite, the player who
is unable to move loses the game. If the play is infinite, P0 wins the game if the largest
occurring priority is even, otherwise P1 wins.

A solution for the parity game G is a partitioning of V into V w
0 and V w

1 , which are
respectively the vertices from which P0 and P1 have a winning strategy. Clearly, V w

0 and
V w
1 should be disjoint.

2.5.2 Modal µ-calculus

The modal µ-calculus (see [29] for a good introduction) is a fixed-point logic comprising a
set of formulas defined by the following syntax:

φ ::= X | P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | [·]φ | 〈·〉φ | νXφ | µXφ

Typically, a formula φ is evaluated on a directed graph (such as a state machine), where
the vertices represent the states and the edges represent a transition between these states.
We say that the formula φ holds at a state s if it evaluates to true at s. The symbols above
mean the following.

• X is a propositional variable.

• P is an atomic proposition.

• ¬, ∧, ∨ are usual boolean operators.

• [·], 〈·〉 are the operators from modal logic. [·]φ means the formula φ holds on all
paths starting at state s whereas 〈·〉 means that there is at least one path starting
at s where φ holds.

• ν and µ are the maximal and minimal fixed point operators. Precise mathematical
understanding of these operators requires some background on fixed point theory
which is beyond the scope of this thesis. We refer interested readers to [11] for more
details. Intuitively, these operators can be thought of as formalisms that allow the
formula to be applied recursively. For example, if we want to say that the proposition
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s0

s1 s2

s3

P holds

Q holds

[·](P ∨ 〈·〉Q) holds

〈·〉Q holds

Figure 2.3: A simple example. The goal is to check if the model above satisfies the formula
[·](P ∨ 〈·〉Q) at s0, given that the atomic propositions P and Q hold at the states s1 and
s3 respectively.

P holds on all paths starting at state s, we will use [·]P . However, if we wanted to
say that P holds on all paths starting at state s in all computations, we will need to
use φ(X) = νX (P ∧ [·]X). That is, the maximal fixed point operator ν causes φ(X)
to unfold an infinite number of times. On the other hand, with the minimal fixed
point operator µ, φ(X) can only unfold a finite number of times. The combination of
these two operators allows us to express a wide range of properties but at the cost of
increased complexity. The alternation depth of a formula is the number of syntactic
alternations between ν and µ. Recall that all known algorithms for model checking
a µ-calculus formula are exponential in the alternation depth.

Given a formula φ, we say that a µ-calculus formula ψ is a subformula of φ if we can
obtain ψ from φ by recursively decomposing as per the above syntax. For example, the
formula νX (P ∧ [·]X) has five subformulas: νX (P ∧ [·]X), (P ∧ [·]X), P , [·]X and X.
The size of a formula is the number of its subformulas.

2.5.3 µ-calculus Model Checking to Parity Games

A model M = (S, T ) of a system is a digraph with the set of states S as vertices and the
transitions T as edges. The µ-calculus model checking problem consists of testing whether
a given modal-µ-calculus formula φ applies to M (Figure 2.3 shows a simple example). As
mentioned earlier, given M and φ, there exists a way to construct a parity game instance
G = (G, λ, V0, V1) such that φ applies if and only if the parity game can be solved. See
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e.g. [29] for more details and some examples1. We note the following relevant points of this
transformation:

R.1 Let Sub(φ) be the set of all subformulas of φ and m = |Sub(φ)| be the size of the
formula φ. For every ψ ∈ Sub(φ) and s ∈ S we create a vertex (s, ψ) in G. Therefore,
|V (G)| = m · |S|.

R.2 For every s ∈ S, let Vs ⊆ V (G) be the set of vertices defined as {(s, ψ) | ψ ∈ Sub(φ)}.
Clearly, |Vs| = m. It holds that for any s, t ∈ S, there is an edge between any two
vertices u ∈ Vs and v ∈ Vt of G only if (s, t) ∈ T .

R.3 The highest priority d in G is equal to the alternation depth of the formula φ plus
two. That is, for a µ-calculus formula with no fixed-point operators, the number of
priorities is 2.

We will now use the treewidth-based algorithm for parity games by Fearnley and
Schewe [17] for solving the model checking problem on control flow graphs. The run-
ning time of their algorithm is O(|V | · (k + 1)k+5 · (d+ 1)3k+5), where k is the treewidth of
the parity game graph G and d is the alternation depth.

For our case, let M be the model of the system (that is, a control flow graph), on
which we want to check a formula φ. Using Thorup’s result [30] we first obtain a tree
decomposition (T , X) of M with width at most 6. This means that each bag of the tree
decomposition contains at most 7 vertices. Using the translation above, we can obtain the
parity game graph G for the model M and the formula φ. Note that using rule R.2 of this
translation above, we can now obtain a tree decomposition (T ′, X ′) for the parity game
graph G from (T , X) by replacing every s ∈ Xi by Vs, for all the bags Xi ∈ X. Note that
the width of T ′ will be 7 ·m− 1.

At this point, we have the tree decomposition of the parity game graph G corresponding
to the model M and the formula φ. We can now use Fearnley and Schewe’s algorithm,
with k = 7 · m − 1. Note that even for smallest possible values d = 2 and m = 1, we
have a running time of O(|V | · 711 · 323) = O(|V | · 1020); which seems quite impractical. To
this end, we observe that using a digraph width parameter such as DAG-width could give
us better results if we can find a small bound on them for control flow graphs. We work
towards this goal in the subsequent chapters.

1Alternatively, see pages 20-23: Obdržálek, Jan. Algorithmic analysis of parity games. PhD thesis,
University of Edinburgh, 2006
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Chapter 3

DAG-width of Control Flow Graphs

In the previous chapter, we discussed control flow graphs and briefly introduced the concept
of DAG-width. We also know that the treewidth of control flow graphs is at most 6 and
that the DAG-width of a digraph is always bounded by its treewidth plus one. It trivially
follows that the DAG-width of control flow graphs is also bounded and is at most 7.
However, since we ignore the directions of the edges, it is quite likely that this bound is
not tight and we can do better. Since algorithms tailored to small DAG-width are typically
exponential in the DAG-width, a smaller bound is likely to improve the running times of
such algorithms for control flow graphs.

In this chapter, we address the problem of finding a tight bound on the DAG-width
of control flow graphs. We start by reviewing the cops and robber characterization of
DAG-width. Then we present our cops and robber strategy for control flow graphs with
at most three cops, thereby showing that the DAG-width of control flow graphs is at most
3. We show that this bound is tight by giving an example of a control flow graph that
has DAG-width exactly 3. In Section 3.2.2, we give an algorithm to compute the DAG
decomposition of control flow graphs and argue its correctness. Finally in Section 3.3, we
discuss and prove some general properties of DAG-width which can be useful in general
and were needed for the proof of our main result.

3.1 Cops and Robber Characterization

The cops and robber game corresponding to DAG-width is a natural generalization of the
equivalent game for treewidth to directed graphs. The cops can see the robber, who can
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only move along a cop-free path in order to evade capture. The following result is central
to our proof:

Theorem 1. [5, Lemma 15 and Theorem 16] A digraph G has DAG-width k if and only
if the cop player has a cop-monotone winning strategy in the k-cops and robber game on
G.

Recall that a play is a sequence (X0, r0), (X1, r1), . . . , (Xi, ri) of positions taken by the
cops Xi and the robber ri. Note that a (k-cop) strategy for the cop player is a function
f : [V ]≤k × V → [V ]≤k. Put differently, the cops can see the robber when deciding where
to move. A play is consistent with the strategy f if Xi+1 = f(Xi, r) for all i.

It is also important to note that for the game corresponding to DAG-width, a cop-
monotone strategy is also robber monotone and vice-versa [5, Lemma 15].

Therefore, in order to prove that DAG-width of a graph G is at most k, it suffices to
find a cop-monotone winning strategy for the cop player in the k-cops and robber game on
G. In order to get a sense of DAG-width via the cops and robber game, we present a few
examples below.

Example 1 (DAG-width examples).

1. The DAG-width of a directed acyclic graph is 1.

It is not hard to see that a single cop can catch the robber by placing himself at
the current position of the robber. Since there are no cycles, the robber must move
forward and will get stuck at a sink where the cop will catch him in the next iteration.

2. The DAG-width of a directed cycle is 2.

In this case two cops can catch the robber by fixing one cop at some vertex of the
cycle and by repeatedly placing the other cop at the current position of the robber.

3. The DAG-width of a clique of size k is k.

For a directed graph G, a set of k vertices C forms a clique if for every pair of vertices
u, v in C, both the edges (u, v) and (v, u) exist in G. Since there is a direct path
from every vertex to every other vertex in C, the cops need to guard all k vertices of
the clique C.

In the next section, we present a 3-cop strategy for control flow graphs and argue its
correctness. We will later (in Section 3.2.2) give a second proof, not using the k-cops
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and robber game, of the DAG-width of control-flow graphs. As such, the proof presented
below is not required for our main result, but is a useful tool for gaining insight into the
structure of control-flow graphs, and also provides a way of proving a lower bound on the
DAG-width.

3.1.1 Cops and Robber on Control Flow Graphs

Let G = (V,E) be the control flow graph of a structured program P . Recall that we
characterize a loop element L by its entry and exit points and refer to it by the pair
(Lentry, Lexit).

We now present the following strategy f for the cop player in the cops and robber game
on G with three cops.

1. We will throughout the game maintain that at this point X(1) occupies Lentry, X(2)
occupies Lexit, and r ∈ inside(L), for some loop element L.

(In the first round L := Lφ, where Lφ is the hypothetical loop element that encloses
G. Regardless of the initial position of the robber, r ∈ inside(Lφ). The cops X(1)
and X(2) are not used in the initial step.)

2. Now we move the cops:

(a) If r ∈ belongs(L), move X(3) to r.

(b) Else, since r ∈ inside(L), we must have r ∈ inside(Li) for some loop Li directly
nested under L. Move X(3) to Lexit

i .

3. Now the robber moves, say to r′. Note that r′ ∈ (inside(L) ∪ {stop}) since r ∈
inside(L) and X(1) and X(2) block all paths from there to (outside(L) \ {stop}).

4. One of four cases is possible:

(a) r′ = X(3). Then we have now caught the robber and we are done.

(b) r′ = stop. Move X(3) to stop and we will catch the robber in next move since
the robber cannot leave stop.

(c) r′ ∈ inside(Li), i.e., the robber stayed inside the same loop Li, that it was before
in Step 2(b). Go to step 5.
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if (2)

Lentry (1)

if (10) if (6)

Lentry1 (5)

Lexit1 (8)Lexit2 (12)

continue

continue

start (0)

Lentry2 (9)

next (11) next (7)

Lexit (3)

stop (4)

Figure 3.1: An example control flow graph. See Figure 3.2 for an example run of our cops
and robber strategy on this graph.

(d) r′ ∈ (inside(L) \ inside(Li)), i.e. either 2(a) applied or the robber left the inside
of the loop Li that it was in. Go back to step 2. Note that this also covers the
case when the robber moved to the inside of some other loop Lj directly nested
under L.

5. We reach this case only if the robber r′ is inside Li, and X(3) had moved to Lexit
i in

the step before. Thus cop X(3) now blocks movements of r′ to (outside(Li)\{stop}).
We must do one more round before being able to recurse:

(a) Move X(1) to Lentry
i .

(b) The robber moves, say to r′′. By the above, r′′ ∈ (inside(Li) ∪ stop).

(c) If r′′ = Lentry
i , we have caught the robber. If r′′ = stop, we can catch the robber

in the next move.

(d) In all remaining cases, r′′ ∈ inside(Li). Go back to step 1 with L := Li, X(2)
as X(3) and X(3) as X(2).

As an example in Figure 3.2, we show a possible sequence of transitions when the strat-
egy f above is applied on a control flow graph (which is shown in all detail in Figure 3.3a.)
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Figure 3.2: Strategy f applied on the graph in Figure 3.1.
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We refer to the vertices by their indices and the labels on the transitions represent the
corresponding steps of the strategy f above. We assume that the initial position of the
robber is vertex 0, and he plays a lazy strategy, that is, he stays where he is unless a cop
comes there, otherwise, he moves to the closest cop-free vertex. Note that in Figure 3.2,
when the robber was at vertex 2, he could have moved to vertex 5 instead of going to
vertex 9. However, since that case is symmetric to the robber moving to vertex 9, we do
not show the corresponding transitions.

It should be intuitive that we make progress if we reach Step (5), since we have moved
to a loop that is nested more deeply. It is much less obvious why we make progress if
we reach 4(d). To prove this, we introduce the notion of a distance function dist(v, Lexit),
which measures roughly the length of the longest path from v to Lexit, except that we do
not count vertices that are inside loops nested under L. Formally:

Definition 10. Let L be a loop element of G and v ∈ inside(L). Define dist(v, Lexit) =
maxP (|P ∩ belongs(L)|), where P is a directed simple path from v to Lexit that uses only
vertices in inside(L) and does not use Lentry.

Lemma 2. When the robber moves from r to r′ in step (3), then dist(r′, Lexit) ≤ dist(r, Lexit).
The inequality is strict if r ∈ belongs(L) and r′ 6= r.

Proof. Let P be the directed path from r to r′ along which the robber moves. Notice that
Lentry 6∈ P since X(1) is on Lentry. Let P ′ be the path that achieves the maximum in
dist(r′, Lexit); by definition P ′ does not contain Lentry.

P ∪ P ′ may contain directed cycles, but if C is such a cycle then no vertices of C
are in belongs(L) by Corollary 1. Let Ps be what remains of P ∪ P ′ after removing all
directed cycles. Then Ps∩belongs(L) = (P ∪P ′)∩belongs(L). Since Ps is a simple directed
path from r to Lexit that does not use Lentry, therefore dist(r, Lexit) ≥ |Ps ∩ belongs(L)| ≥
|P ′ ∩ belongs(L)| = dist(r′, Lexit) as desired. If r′ 6= r, then P ′ cannot possibly include r
while Ps does. So if we additionally have r ∈ belongs(L), then the inequality is strict.

Lemma 3. The strategy f is winning.

Proof. Clearly the claim holds if the robber ever moves to stop, so assume this is not the
case. Recall that at all times the strategy maintains a loop L such that two of the cops
are at Lentry and Lexit. We provide a proof by induction on the number of loops that are
nested within L.

So assume first that no loops are nested inside L. Then inside(L) = belongs(L), and
by Lemma 2 the distance of the robber to Lexit steadily decreases since X(3) always moves
onto the robber, forcing it to relocate. Eventually the robber must get caught.
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For the induction step, assume that there are loops nested inside L. If we ever reach
step (5) in the strategy, then the enclosing loop L is changed to Li, which is inside L and
hence has fewer loops inside and we are done by induction. But we must reach step (5)
eventually (or catch the robber directly), because with every execution of (3) the robber
gets closer to Lexit:

• If r ∈ belongs(L), then this follows directly from Lemma 2 since X(3) moves onto r
and forces it to move.

• If r ∈ inside(Li), and we did not reach step (5), then r must have left Li using Lexit
i .

This must have happened while the cop X(3) landed at Lexit
i , otherwise the robber

could not have left. Since dist(r, Lexit) = dist(Lexit
i , Lexit) due to our choice of the

distance-function and Lexit
i ∈ belongs(L) (Li was directly nested under L), we can

view the robber as if he were initially at Lexit
i (which keeps the distance the same)

and then moves to the new position r′. Note that since the cop X(3) occupies Lexit
i ,

r′ 6= Lexit
i and by Lemma 2, the distance to Lexit strictly decreases.

Lemma 4. The strategy f is cop-monotone.

Proof. We must show that the cops do not re-visit a previously visited vertex at any step
of the strategy f . We note that since stop is a sink in G and the cops move to stop only
if the robber was already there, it will never be visited again. Now the only steps which
we need to verify are (2) and (5a).

Observe that while we continue in step (2), the cops X(1) and X(2) always stay at
Lentry and Lexit respectively, and X(3) always stays at a vertex in belongs(L). (This holds
because Li was chosen to be nested directly under L in Case (2b), so Lexit

i ∈ belongs(L).)
Also notice that dist(X(3), Lexit) = dist(r, Lexit) for as long as we stay in step (2), because
vertices in inside(Li) do not count towards the distance. In the previous proof we saw
that the distance of the robber to Lexit strictly decreases while we continue in step (2). So
dist(X(3), Lexit) also strictly decreases while we stay in step (2), and so X(3) never re-visits
a vertex.

During step (5), the cops move to Lentry
i and Lexit

i and from then on will only be at
vertices in inside(Li) ∪ {Lexit

i }. Previously cops were only in belongs(L) or in outside(L).
These two sets intersect only in Lexit

i , which is occupied throughout the transition by
X(3) (later renamed to X(2)). Hence no cop can re-visit a vertex and the strategy f is
cop-monotone.
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if (2)

Lentry (1)

if (10) if (6)

Lentry1 (5)

Lexit1 (8)Lexit2 (12)

continue

continue

start (0)

Lentry2 (9)

next (11) next (7)

Lexit (3)

stop (4)

Ee Ex

Em Er

(a) A control flow graph G

2, 1, 3

0

1, 3

9, 12 5, 8

10, 9, 12 6, 5, 8

11, 9, 12 7, 5, 8

8, 1, 3

4

3

12, 1, 3

(b) DAG Decomposition of G

Figure 3.3: The robber player has a winning strategy on G against two cops

With this, we have shown that the DAG-width is at most 3. This is tight.

Lemma 5. There exists a control-flow graph that has DAG-width at least 3.

Proof. Consider the graph in Fig. 3.3a. By Theorem 1, it suffices to show that the robber
player has a winning strategy against two cops. We use the following strategy:

1. Start on vertex 5. We maintain the invariant that at this point the robber is at 5 or
6, and there is at most one cop on vertices {5, 6, 7}. This holds initially when the
cops have not been placed yet.

2. If (after the next helicopter-landing) there will still be at most one cop in {5, 6, 7},
then move such that afterwards the robber is again at 5 or 6. (Then return to step
(1).) The robber can always get to one of {5, 6} as follows: If no cop comes to where
the robber is now, then stay stationary. If one does, then get to the other position
using cycle 5 → 6 → 7 → 5; this cannot be blocked since the one cop in {5, 6, 7} is
moving to the robber’s positions and so no cop in {5, 6, 7} is stationary.
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3. If (after the next helicopter-landing) both cops will be in {5, 6, 7}, then “flee” to
vertex 9 along the directed path {5 or 6} → 8 → 1 → 2 → 9. This is feasible
because there are only two cases. Either both the cops are about to land on the
vertices {5, 6, 7} or one of the cops is already in {5, 6, 7} and the other one is about
to land on some other vertex in {5, 6, 7}. In both these cases, the vertices on the
path 8→ 1→ 2→ 9 are free and the robber can make his move.

4. Repeat the above steps with positions {9, 10}, cycle {9, 10, 11} and escape path
{9 or 10} → 12→ 1→ 2→ 5 symmetrically.

Thus the robber can evade capture forever by toggling between the two loop elements
L1 and L2 and hence has a winning strategy. It is worth mentioning that the edge (6, 8)
(and symmetrically (10, 12)) is important to our construction because without that just
one cop can block both the exit (8) and the cycle (5, 6, 7) by placing himself at the entry
(5), while the other cop will catch the robber in the blocked cycle.

In summary:

Theorem 2. The DAG-width of control-flow graphs is at most 3 and this is tight for some
control-flow graphs.

3.2 Constructing a DAG Decomposition

In the previous section, we showed that the DAG-width of a control-flow graph G is at
most 3 using a winning strategy for the cops and robber game with three cops. In this
section we show how to construct an associated DAG decomposition. One way to do
that is to translate the winning strategy f into a DAG decomposition by the algorithm
from [5, Theorem 16]. However, as we will discuss later, the algorithm is more complicated
than it needs to be for control flow graphs and might create significantly more edges than
needed. Therefore, we present an alternative method that directly computes the DAG
decomposition from control flow graphs in linear time. First we need to define a DAG
decomposition precisely.

Note that for a directed acyclic graph (DAG) D, we use u �D v to denote that there
is a directed path from u to v in D.

Definition 11 (DAG Decomposition). Let G = (V,E) be a directed graph. A DAG de-
composition of G consists of a DAG D and an assignment of bags Xi ⊆ V to every node
i of D such that:
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1. (Vertices covered)
⋃
Xi = V .

2. (Connectivity) For any i �D k �D j we have Xi ∩Xj ⊆ Xk.

3. (Edges covered)

(a) For any source j in D, any u ∈ Xj, and any edge (u, v) in G, there exists a
successor-bag Xk of Xj with v ∈ Xk.

(b) For every arc (i, j) in D, any u ∈ (Xj \ Xi), and any edge (u, v) in G, there
exists a successor-bag Xk of Xj with v ∈ Xk.

Here a successor-bag of Xj is a bag Xk with j �D k.

Note that for the ease of understanding we have rephrased the edge-covering condition
of the original in [5]. In Section 3.3, we show that both these conditions are equivalent.

A more intuitive way to think of the edge-covering is via the notion of introduced vertices
defined below.

Definition 12 (Introduced vertices). Let (D,X) be a DAG decomposition of a digraph G.
We say that a vertex v ∈ V (G) is introduced in the bag Xj if v ∈ Xj and either j is a
source or there exists an arc (i, j) in D such that v does not belong to Xi.

With this, the edge-covering condition simply states that if v is introduced in some bag
Xj of D, then all its immediate successors must be present in some successor-bag Xs of
Xj. We say that the edge (v, w) is covered in the successor-bag Xs if Xs contains the other
end-point w. For example, in Figure 3.4 the vertex b is introduced in X1 and the edges
(b, a), (b, c), and (b, d) are covered in X1, X2 and X3 respectively.

For ease of understanding, we now mention a few examples of DAG decompositions
and note some important well-known results below.

• A directed acyclic graph G = (V,E) is a valid DAG decomposition of itself, that is,
D = G and Xv = {v} for all v ∈ V .

It is not hard to see that conditions 1− 3 mentioned above apply.

• For a directed circular graph G = (V,E) (a graph containing a single directed cycle),
the DAG D = G(V,E \ (p, q)) is a valid DAG decomposition if we set Xv = {v, p}.
Here (p, q) is an arbitrarily chosen edge from the directed cycle and v ∈ V .

The idea is to break the cycle by taking off an edge and adding the tail of that edge
to all the bags. Conditions 1− 3 are easy to verify.
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Figure 3.4: A sample graph and its DAG decomposition on the right.

• If G has a tree decomposition of width k, then it has a DAG decomposition of width
k + 1.

Recall that an undirected graph has treewidth k if and only if k + 1 cops can catch
the robber on G. Since the cops and robber game for DAG-width is a generalization
of the game for treewidth with directed edges, the winning strategy with k + 1 cops
also works in the game for DAG-width.

• Computing a DAG decomposition of optimal width for an arbitrary graph is NP-
hard [5, Theorem 25]

This follows from the NP-hardness of finding optimal tree decompositions. Consider
an undirected graph G and make it directed by replacing every edge (u, v) by the

directed edges u → v and u ← v. Recall that a DAG decomposition of
−→
G implies

a winning strategy for the cops and robber game on
−→
G , which also works for the

undirected G. However, using this winning strategy for the cops and robber game
on G, we can find a tree decomposition of G, which is known to be NP-hard.

3.2.1 Winning Strategy implies DAG Decomposition

Given a digraph G = (V,E) and a winning strategy f : [V ]≤k × V → [V ]≤k of the directed
k-cops and robber game, the objective is to construct a DAG decomposition (D,X ) where
D is a DAG and X := (Xd)d∈V (D) is the set of bags of D. We review the algorithm of
Berwanger et al. [5, Theorem 16] below. Recall that Reach(X ∩X ′, r) is the set of vertices
reachable from r, the current position of the robber, while the cops make their move from
X to X ′.
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Algorithm 1 (By Berwanger et al. [5]).

1. Construct a digraph D′ with the node set [V ]≤k×V and an arc from (X, r) to (X ′, r′)
if X ′ = f(X, r) and r′ ∈ Reach(X ∩X ′, r).
In other words, the nodes (X, r) in D′ correspond to the game position with cops
on X and the robber on r and an arc indicates a round in play where the cops and
robber have moved to X ′ and r′ respectively.

2. Since the first move is to place no cops and the robber can start at any vertex r ∈ V ,
we select D to be the sub-digraph of D′ induced by the set of vertices reachable from
a node (φ, r) for all r ∈ V .

3. At this point we have the DAG D and we need to fill the bags X := (Xd)d∈V (D) of
D. For a node d = (X, r) ∈ V (D), we set Xd = f(X, r). In other words, at any node
d = (X, r) of D, the bag Xd will contain the vertices which the cops will occupy in
the next round from their current positions X.

In their proof of correctness, Berwanger et al. showed that the above method indeed
computes a valid DAG decomposition of width k. However, it is not hard to see that D
can have |V |k+1 nodes and the set of vertices reachable by the robber Reach(X ∩ X ′, r),
can be Θ(V ), therefore step 1 can add Θ(|V |k+2) arcs.

For our winning strategy f for control flow graphs, we have k = 3 and therefore the
resulting DAG decomposition will have Θ(|V |5) arcs. It is possible that using some clever
analysis of strategy f , we may be able to bring down the number of arcs. However, in
the following we show that using Berwanger’s algorithm above, we cannot do any better
than Θ(|V |2) arcs. Later in Section 3.2.2, we give an algorithm that creates a DAG
decomposition of control flow graphs with at most Θ(|V |) arcs.

In order to show that Berwanger’s algorithm creates more arcs in the DAG decompo-
sition than needed, consider the graph G = (V,E) from Figure 3.5. Since G is a DAG, we
know that it is a valid DAG decomposition of itself. Clearly the number of edges in G is
Θ(|V |). Now recall that the winning strategy on G with just one cop is to always place
him at the current position of the robber. Since the cop’s position always depends on the
robber’s current position, using Algorithm 1 above, we will construct a digraph D with
V (D) = V . However, when the robber is at a vertex i of G, he can go to any vertex in
{i+ 1, . . . , n}. Therefore, for each node i ∈ V (D) Berwanger’s algorithm creates (|V | − i)
arcs in D and hence the total number of arcs will be

∑
i∈1..|V |(|V | − i) = Θ(|V |2). There-

fore, the DAG decomposition computed by Algorithm 1 will have Θ(|V |2) edges, although
there exists a DAG decomposition with Θ(|V |) edges.
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Figure 3.5: A digraph G and its DAG decomposition D computed by Algorithm 1. Note
that the digraph G has Θ(|V |) edges but the DAG decomposition D has Θ(|V |2) edges.

3.2.2 Computing the DAG Decomposition Directly

Let G = (V,E) be a control-flow graph. We present the following algorithm to construct
a DAG decomposition (D,X) of G.

Algorithm 2 (Construct the DAG).

1. Start with D = G. That is V (D) = V and E(D) = E.

2. Remove all backward arcs. Thus, let Ee be all backward edges of G; recall that each
of them connects from a node v ∈ belongs(L) to Lentry, for some loop element L.
Remove all arcs corresponding to edges in Ee from D.

3. Remove all arcs leading to a loop-exit. Thus, let Ex be all edges (u, v) in G such
that u ∈ belongs(L) and v = Lexit for some loop element L. Recall that these arcs
are attributed to break statements. Remove all arcs corresponding to edges in Ex
from D.

4. Re-route all arcs leading to a loop-entry. Thus, let Em be all edges (u, v) in G such
that u ∈ outside(L) \ Lexit and v = Lentry for some loop element L. For each such
edge, remove the corresponding edge in D and replace it by an arc (u, Lexit). Let Am
be those re-routed arcs. Note that now indegD(Lentry) = 0 since we also removed all
backward edges.
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5. Reverse all arcs surrounding a loop. Thus, let Er be the edges in G of the form
(Lentry, Lexit) for some loop element L. For each edge, reverse the corresponding arc
in D. Let Ar be the resulting arcs.

Note that there is a bijective mapping D from the vertices in G to the nodes in D. For
ease of representation, assume that v1, v2, .., vn are the vertices of G and 1, 2, .., n are the
corresponding nodes in D. We now fill the bags Xi:

For every vertex vi ∈ V , set Xi := {vi, Lentry, Lexit}, where L is the loop
element such that vi ∈ belongs(L).

A sample decomposition computed by Algorithm 2 above is shown in Figure 3.3b.
Clearly the construction can be done in linear time and digraph D has O(|E|) = O(|V |)
edges (Corollary 2). We note the following.

Observation 2. For every arc (i, j) ∈ E(D), Xj \Xi ⊆ {vj}.

Proof. Note that for an arc (i, j) ∈ E(D), there are two cases:

1. If belongs(vi) = belongs(vj), then Xi ∩Xj = {Lentry, Lexit} and the result follows.

2. If belongs(vi) 6= belongs(vj), then vi must be Lexit and vj must be Lentry for some
loop element L (by the above steps 4 and 5). In this case, clearly Xi ∩ Xj = Lexit

and Xj = {Lentry, Lexit}. Therefore Xj \Xi = {Lentry} = {vj} follows.

To prove correctness, we show the following:

Lemma 6. The DAG decomposition (D,X) computed by Algorithm 2 satisfies the proper-
ties of a DAG decomposition.

Proof. We need to argue that D is a DAG and satisfies the conditions (1-3) of Definition 11.

1. D is a DAG. We claim that G − Ee is acyclic. For if it contained a directed
cycle C, then let L be a loop element with C ⊆ inside(L), but C 6⊆ inside(Li) for
any loop element Li nested under L. Therefore C contains a vertex of belongs(L).
By Corollary 1 then Lentry belongs to C, so C contains a backward edge. This is
impossible since we delete the backward edges.
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Adding arcs Am cannot create a cycle since each such arc is a shortcut for the 2-edge
path from outside L to Lentry to Lexit. In G − Ee − Ex there is no directed path
from Lentry to Lexit, since such a path would reside inside L, and the last edge of it
belongs to Ex. In consequence adding arcs Ar cannot create a cycle either. Hence D
is acyclic.

Moreover, note that any directed path in D that begins in inside(L) can never reach
outside(L) \ stop since we have deleted/reversed all the edges to Lexit in D, that is,
the edges in Ex and Er.

2. Vertices Covered. By definition, each vi is contained in its bag Xi.

3. Connectivity. Let i �D k �D j be three nodes in D. Recall that their three bags
are {vi, Lentry

i , Lexiti }, {vk, Lentry
k , Lexitk } and {vj, Lentry

j , Lexitj }, where Li, Lj, Lk are the
loop elements to which vi, vj, vk belong. There is nothing to show unless Xi∩Xj 6= ∅,
which severely restricts the possibilities:

(a) Assume first that Li = Lj = L. Thus vi and vj belong to the same loop
element. Now since k  j is a directed path in D, vk must belong to the same
loop element as vj.

So the claim holds since Xi ∩Xj = {Lentry, Lexit} ⊆ Xk.

(b) If Li 6= Lj, then the intersection can be non-empty only if vi = Lexit
j (recall that

i �D j). But then Xi ∩ Xj = {Lexit
j }, and the path from i to j must go from

D(Lexitj ) to D(Lentry
j ) to j. It follows that vk also belongs to Lj and so Lexit

j ∈ Xk

and the condition holds.

4. Edges Covered. We only show the second condition; the first one is similar and
easier since start is the only source. Let (i, j) be an arc in D. By Observation 2, vj
is the only possible vertex in Xj \Xi. Let e = (vj, vl) be an edge of G and let L be
the loop element such that vj ∈ belongs(L). We have the following cases:

(a) If e ∈ (Ee ∪ Ex ∪ Er), then vl ∈ {Lentry, Lexit} and Xj = {vj, Lentry, Lexit} itself
can serve as the required successor-bag.

(b) If e ∈ Em, then vl = Lentry, vj ∈ outside(L). We re-routed (vj, L
entry) as arc

(j,D(Lexit)) and later added an arc (D(Lexit),D(Lentry)), so l is a successor of j
and Xl can serve as the required successor-bag.

(c) Finally, if e ∈ E \ (Ee ∪ Ex ∪ Er ∪ Em), then (j, l) is an arc in D and Xl is the
required successor-bag.
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From Lemma 6 above, our main result for this chapter follows.

Theorem 3. Every control-flow graph G = (V,E) has a DAG decomposition of width 3
with O(|V |) vertices and edges. It can be found in linear time.

3.3 Properties of DAG-width

Recall that in our definition for DAG-width via DAG decomposition (Definition 11), we
gave a characterization of the edge-covering condition that differs from the one in the
original definition given by Berwanger et al. [5]. This alternative characterization was
particularly useful in proving the correctness of our results (Lemma 6). In this section we
aim to show that our edge-covering condition is equivalent to the one given by Berwanger
et al. We first review their concepts.

Definition 13 (Guarding). Let G = (V,E) be a digraph and W,V ′ ⊆ V . We say that W
guards V ′ if, for all (u, v) ∈ E, if u ∈ V ′ then v ∈ V ′ ∪W .

The original edge-covering condition was the following:

(D3) For all edges (d, d′) ∈ E(D), Xd ∩Xd′ guards X�d′ \Xd, where X�d′
stands for

⋃
d′�Dd′′

Xd′′ . For any source d, X�d is guarded by ∅.

For easier comparison we re-state here our edge-covering condition:

(3a) For any edge (i, j) in E(D), any vertex u ∈ Xj \Xi, and any edge (u, v)
in G, there exists a successor-bag Xk of Xj that contains v.

(3b) For source j in D, any vertex u ∈ Xj, and any edge (u, v) in G, there
exists a successor-bag Xk of Xj that contains v.

We will only show that the first half of (D3) is equivalent to (3a); one can similarly
show that the second half of (D3) is equivalent to (3b). We first re-phrase (D3) partially
by switching to our notation, and partially by inserting the definition of guarding; clearly
(D3’) is equivalent to the first half of (D3).

(D3’) For any edge (i, j) in E(D), any vertex u ∈ X�j \ Xi and any edge
(u, v) in G, we have v ∈ (X�j \Xi) ∪ (Xi ∩Xj).
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Now, note that (X�j\Xi)∪(Xi∩Xj) = X�j. The forward direction is easy to verify. For
the other direction when v ∈ X�j, we have two cases. If v 6∈ Xi, then v ∈ (X�j \Xi) holds.
Otherwise, if v ∈ Xi then v ∈ Xj by the connectivity condition. Hence, v ∈ (Xi ∩ Xj)
holds.

So we can simplify (D3’) again to the following equivalent:

(D3”) For any edge (i, j) in E(D), any vertex u ∈ X�j \ Xi and any edge
(u, v) in G, we have v ∈ X�j.

At the other end, we can also simplify (3a), since we now have the shortcut X�j for
vertices in a successor-bag of Xj.

(3a’) For any edge (i, j) in E(D), any vertex u ∈ Xj \ Xi, and any edge
(u, v) in G, we have v ∈ X�j.

Thus (D3”) and (3a’) state nearly the same thing, except that for (D3”) the claim must hold
for significantly more vertices u. As such, (D3”)⇒(3a’) is trivial since Xj \Xi ⊆ X�j \Xi.

For the other direction, we need to work a little harder. Assume (3a’) holds. To show
(D3”), fix one such choice of edge (i, j) in E(D) and (u, v) in E(G) with u ∈ X�j \ Xi.
We show that v ∈ X�j using induction on the number of successors of j in D. If there are
none, then X�j = Xj and (D3”) holds since (3a’) does. Likewise (D3”) holds if u ∈ Xj \Xi

since (3a’) holds. This leaves the case where u ∈ X�j \Xj. Thus u belongs to some strict
successor bag of Xj, and hence there exists an arc (j, k) with u ∈ X�k\Xi. Node k has fewer
successors than j, and so by induction (D3”) holds for edge (j, k). We know u ∈ (X�k \Xi)
and u 6∈ Xj \ Xi, so u ∈ (X�k \ Xj). So applying (D3”) we know v ∈ X�k ⊆ X�j and
hence (D3”) also holds for edge (i, j).

We will now present a couple of results pertaining to edge contraction and subdivision,
and their effect on DAG-width. Recall that contracting an edge e = (u, v) is equivalent to
deleting e, replacing the vertices u and v by a new vertex x and then making x adjacent to
neighbors of both u and v preserving the directions. Subdividing an edge (u, v) is adding
a vertex of degree 2 between u and v.

3.3.1 DAG-width Under Contraction and Subdivision

Recall that for a control flow graph, it is customary to contract vertices that have in-degree
and out-degree 1 into a neighbour. Our main result, Theorem 3, hence is useless unless we
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Figure 3.6: The DAG-width of G increases from k to k + 1 after contraction.

can argue that such contractions (and conversely, subdivisions of edges) do not increase the
DAG-width. It is very easy to see that the treewidth does not increase when contracting or
subdividing edges, but for DAG-width this does not obviously hold, and to our knowledge
this question has not been considered in the literature.

In this section, we aim to address these questions. In contrast to treewidth, we show
that the DAG-width may increase under contraction of an arbitrary edge (u, v). However,
when v has in-degree 1, we show that the DAG-width does not increase, and how to
compute quickly the DAG decomposition of G with (u, v) contracted. Likewise, we also
show how to quickly compute a DAG decomposition of the same width when an edge is
subdivided.

Theorem 4. The DAG-width of a digraph G = (V,E) may increase under contraction of
an arbitrary edge.

Proof. It suffices to find a digraph for which the DAG-width goes up on contraction. We
use the digraph G in Fig 3.6a. Note that the vertices v and w are part of a k-clique. Recall
that for a directed graph G, a set of k vertices C is a k-clique if for every pair of vertices
u, v in C, both the edges (u, v) and (v, u) exist in G.

The vertex u is connected to every vertex in the k-clique by a bi-directional edge, except
for v. The edge (u, v) connects u to v.

We will first show that the DAG-width of G is k. Since G contains a clique of size k as
a subgraph, the DAG-width of G is at least k. To show that the DAG-width is exactly k,
we present the following strategy for the cops and robber game on G with k cops:

• Fix k− 1 cops at all vertices of the k-clique, except v. We have one free cop, say Xk.
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• Move Xk to u. Note that the robber is now restricted to {v, x}; from where it can
never come back to u.

• Move Xk to v and then to x. Since x is a sink, cop Xk will catch the robber.

From Theorem 1, it follows that the DAG-width of G is k. After contracting (u, x),
vertex u is now connected to every other vertex in the clique by a bi-directional edge and
hence, there exists a clique of size k + 1. Therefore, the DAG-width of G increases to
k + 1.

We will now show that the DAG-width does not increase when contracting a vertex of
in-degree 1.

Theorem 5. The DAG-width of a digraph G = (V,E) does not increase on contracting an
edge (u, v) ∈ E such that v has in-degree 1.

Proof. Let G′ be the graph obtained by contracting (u, v), where v has in-degree 1. It
suffices to show that given a DAG decomposition D of G, we can construct a DAG decom-
position of G′ without increasing the size of the bags.

Note that as a result of contracting the edge (u, v), the vertex u will have new neighbours
in G′. Therefore, the goal is to modify the original DAG decomposition D such that these
newly added edges are also covered. We achieve this in two steps. First, we will construct
a DAG decomposition D′ by adding the vertex u to certain bags of D such that it is a
valid DAG decomposition of G′. Next, we fix the width of D′ by removing v from all the
bags that contain it to get the DAG decomposition D′′. We will start by constructing D′

as follows.

For every bag Xl of D that contains v but does not contain u :

If there is a successor bag Xi of Xl that contains both v and u, add u to
Xl. Otherwise, leave Xl unchanged.

Note that the only way bags in D′ may have changed is by adding u to the bags that
already contained v. Therefore, it is possible that the width of D′ is one more than that of
D. However, in the final step, we remove v from all the bags of D′ containing it to obtain
the DAG decomposition D′′, so that the width of D′′ is at most the one of D.

Now, we will show that D′ as computed above is a valid DAG decomposition of G′.
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Figure 3.7: An example illustrating our construction. In (a), we will add u to all the bags
Xl shaded in gray, l ∈ {a, b, c, d}. The bag Xl in (b) will remain unchanged.

Correctness Note that in our construction above, we only modify the contents of the
bags in the DAG decomposition D and do not add or remove any bag. Therefore, the
DAGs D and D′ are exactly the same: just the contents of the bags have changed. We will
refer to a bag Xi of D as X ′i in D′. Note that as usual we will use i � j to indicate that
there is a path from i to j in D′ (which was also there in D).

For all bags X ′l in D′ which were modified in our construction, that is X ′l 6= Xl , we
note that the following properties hold true. These will be used later in the proof.

P.1 X ′l = Xl ∪ {u}.
This follows directly from our construction.

P.2 There exists a successor j of l such that u was introduced in Xj and v ∈ Xj.

Recall that we added u to Xl only if u 6∈ Xl, v ∈ Xl and there existed a bag Xi,
l ≺ i such that u, v ∈ Xi. It follows that there must exist a bag Xj where u first
appears in the path from l to i. It is easy to see that Xj must contain v due to the
connectivity condition on D.

P.3 If u is introduced in X ′l , then v was introduced in Xl.

Since u is introduced in X ′l , there exists an immediate predecessor k of l such that
X ′k does not contain u. Moreover, since X ′l 6= Xl, we have v ∈ Xl and a successor
Xi with u, v ∈ Xi. If v were in Xk, then Xi would be a successor of Xk and hence

42



we would have also added u to Xk. But this contradicts the fact that X ′k did not
contain u. Therefore, we must have v 6∈ Xk, implying that v was introduced in Xl

since v ∈ Xl and (k, l) ∈ E(D).

We will now verify that the vertex-covering, edge-covering and connectivity conditions
are satisfied on D′. Recall that since we contract the edge (u, v), there are new edges (u,w)
in G′ for every edge (v, w) in G.

• Vertex covering condition. The vertex covering condition is trivially satisfied since
we did not remove any vertex from the bags of D.

• Edge covering condition. We need to verify this condition only for the vertex u as all
the other vertices of G′ are introduced in the same bag in D′ as they were in D, and
so the edges are covered in D′ because they were covered in D.

Let X ′p be a bag in which u is introduced. There are two subcases:

1. First consider an edge (u, x) with x 6= w.

(a) If X ′p = Xp, then (u, x) is covered in D′ since it was covered in D.

(b) If X ′p 6= Xp, then by P.2 there exists a successor j of p such that u was
introduced in Xj. Since (u, x) existed in G, x must be present in some
successor-bag of Xj. Since p � j, this same successor-bag now covers the
edge (u, x) in D′.

2. Now, consider the edge (u,w). We claim that there exists some successor bag X ′s
of X ′p where v is introduced. This holds by P.3 if X ′p 6= Xp, so assume X ′p = Xp.
We have two cases:

(a) v ∈ Xp. Let X ′j be an immediate predecessor of X ′p with u 6∈ X ′j; this exists
since u is introduced in X ′p. Then v 6∈ Xj, since otherwise the addition-rule
would have applied to bags Xj and Xp and we would have added u to Xj.
So v 6∈ Xj, and hence v is introduced in X ′p.

(b) v 6∈ Xp. Since u is introduced in X ′p = Xp, the edge-covering condition for
(u, v) implies that there exists Xt, p � t with v ∈ Xt. So v 6∈ X ′p, v ∈ X ′t,
and somewhere along the path from p to t is a bag X ′s where v is introduced.

So in both the cases above, we found a successor-bag Xs of Xp (p � s) where
v was introduced. As (v, w) was an edge in G, w must be present in some
successor-bag Xt of Xs. Bag Xt now covers the new edge (u,w) in D′ since
p � s � t.
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• Connectivity condition. We want to verify that for all p � q � r, X ′p ∩ X ′r ⊆ X ′q
holds.

From the connectivity condition on D, we already have Xp ∩Xr ⊆ Xq. Recall that
the only way we modify D is by adding u to some bags containing v. That is,
X ′i ⊆ Xi ∪ {u} for all bags Xi. Hence X ′p ∩X ′r ⊆ (Xp ∩Xr) ∪ {u} ⊆ Xq ∪ {u}.
There are two cases:

1. If u 6∈ X ′p ∩X ′r, then X ′p ∩X ′r = Xp ∩Xr ⊆ X ′q follows.

2. If u ∈ X ′p ∩ X ′r, then u ∈ X ′p, u ∈ X ′r and it suffices to show that u ∈ X ′q.
Assume for contradiction that u 6∈ X ′q but u ∈ X ′p and u ∈ X ′r. We have the
following subcases:

(a) u 6∈ Xr. By u ∈ X ′r we have v ∈ Xr and some successor-bag Xs of Xr that
contains both u and v. Since Xs is also a successor-bag of Xq, this implies
v 6∈ Xq (otherwise we would have added u to Xq, but u 6∈ X ′q). So we have
u, v 6∈ Xq and u, v ∈ Xs. By the connectivity condition and p � q � s, we
must have u, v 6∈ Xp. This makes u ∈ X ′p impossible.

(b) u ∈ Xr. Let Xn be the first bag on the path from Xq to Xr that contains u.
Since u 6∈ Xq, vertex u is introduced in Xn. By the edge covering condition,
some successor-bag Xs of Xn contains v. Since u ∈ Xr and u 6∈ Xq, by the
connectivity condition u 6∈ Xp. However u ∈ X ′p, therefore v ∈ Xp. Since
p � q � n � s and v ∈ Xp, v ∈ Xs, we have v ∈ Xq and v ∈ Xn. Now
v ∈ Xq and Xq has the successor-bag Xn containing both u and v, so we
would have added u to Xq. This contradicts u 6∈ X ′q.

From above it follows that D′ is a valid DAG decomposition for G′. Finally, since vertex
v doesn not exist in G′, the DAG decomposition D′′ obtained by removing the vertex v
from all bags containing it in D′ is a valid DAG decomposition of G′ and has the desired
width.

Theorem 6. The DAG-width of a digraph G = (V,E) does not increase when subdividing
an edge.

Proof. This follows trivially from the cops and robber characterization of DAG-width, but
here we give a constructive proof to show that the size of the DAG decomposition stays
the same. There are three possible ways of directing the two new edges when we subdivide
the edge (u → w) by adding a vertex v of degree 2. (We are only considering those
directions where the inverse operation, that is, removing v by contracting one of the two
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newly added edges, results in the original edge (u → w).) We will show that, given a
DAG-decomposition (D,X) of G, we can transform it to get a DAG-decomposition of G′

in each of the three cases. (See also Figure 3.8.)

1. u ← v → w. In this case, we first find some bag Xi in which u is introduced. Find
a predecessor h of i which is a source in D (since D is acyclic such a predecessor
always exists). Now create a new bag Xk = {v} and connect Xk to Xh by adding an
arc (k, h). Note that k will now replace h as a source in D. Also note that it was
important for h to be a source in D because otherwise adding the edge (k, h) may
introduce new vertices in Xh. The vertex-covering and the connectivity conditions
are easy to verify. For the edge-covering condition, note that v is the only vertex
introduced in Xh, so we just need to verify that its outgoing edges are covered.
Clearly the edge (v, u) is covered in the successor-bag Xi. Moreover, since (u,w)
was an edge in G it must be covered in some successor-bag Xj, i � j. This same
successor bag will now cover the edge (v, w) at k since k ≺ i.

2. u→ v ← w. Find all the bags Xi in which either u or w is introduced. Create a new
bag Xk = {v} and connect it with every such Xi by adding the arcs (i, k). Note that
k will be a sink in the DAG-decomposition. The vertex-covering, edge-covering, and
connectivity conditions are easy to verify.

3. u→ v → w. We note that for the special case whenG is a DAG (width 1), subdivision
also results in a DAG which is a valid DAG-decomposition of itself. For the general
case, we will need to do some more work.

(a) Create a new bag Xk = {v, w}.
(b) For every bag Xi in which u was introduced, there are two cases:

i. If Xi contains w, connect Xi to Xk by the arc (i, k).

ii. If Xi does not contain w, then find all the successor-bags Xj in which w
was introduced. Connect all these bags to Xk by the respective arcs (j, k).

It is easy to see that the vertex-covering condition is satisfied. For the edge-covering
condition, we note that the only vertex introduced in Xk is v. Since w ∈ Xk, the
edge (v, w) is covered in the newly added bag Xk. Also, in the bags Xi where u is
introduced, the edge (u, v) is covered in Xk: either via the arc i→ k added in 3(b)i,
or via some successor bag Xj with i � j and j → k. Recall that such a Xj must
exist by the edge-covering condition applied on the original edge (u,w) at Xi.
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For the connectivity condition, we note that for any p �D q �D k, Xp ∩Xk ⊆ {w}.
The case Xp ∩Xk = ∅ is trivial. For the case Xp ∩Xk = {w}, we note that by our
construction, q �D k if and only if there exists a node r �D q such that w ∈ Xr.
Now since p �D q �D r and both Xp and Xr contain {w}, Xq must contain {w} as
well. Hence we have, Xp ∩Xk = {w} ⊆ Xq.

3.4 DAG-width of programs with labelled breaks

Recall that in Section 2.1, we assumed the control flow graphs to be derived from struc-
tured programs (Definition 1). There, we did not consider goto statements and assumed
that break statements can only lead to the nearest surrounding loop. However, some pro-
gramming languages such as Java and Ada offer an additional construct called a labelled
break. Such statements typically have a syntax ‘break label ’, where label is a unique name
assigned to some loop that encloses this statement. Unlike traditional break statements
which only lead to the exit of nearest surrounding loop, labelled break statements can
lead to the exit points of any parent loop. For example, let L4 be a loop element nested
under L2 which in turn is nested under L1. The traditional break statement at a vertex
v4 ∈ belongs(L4) results in an edge to Lexit4 whereas a labelled break could also result in
edges to Lexit2 and Lexit1 . (See the dotted edges in Figure 3.10).

Gustedt et al. [18] showed that Java programs have unbounded treewidth in the presence
of labelled breaks. Burgstaller et al. [13] gave a similar result for Ada programs. In this
section, we show that DAG-width of programs with labelled break statements is also
unbounded. We construct a control flow graph Gk for which the robber always has a
winning strategy against k cops, thereby showing that the DAG-width of Gk is at least
k + 1. Here k is an input to our construction. Note that our construction is inspired
by [6, proof of Proposition 8]. We will start by proving a claim that will be useful later.

Let T and T ′ be two complete binary trees of height k. Now, consider the graph
G(2, k) = T ∪ T ′. That is, G(2, k) is a forest comprising the trees T and T ′. Now we make
it directed by orienting the edges in T to be away from the root and those in T ′ to be
towards the root (See Figure 3.9). For the sake of clarity, we refer to the vertices in T by
v and those in T ′ by v′. Observe that every vertex v in T has a corresponding double v′ in
T ′.

We observe that the following holds for the k-cops and robber game on G(2, k).
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Figure 3.9: The digraph G(2, k) with k = 2. We say that the path v1  v5 is cop-free if
none of the vertices in v1  v5 or v′5  v′1 is occupied by a cop.

Claim 2. Let u be a leaf in T . Then, there always exists an ancestor v of u that has a path
to a leaf w of T such that all the vertices in the path from v to w and their corresponding
doubles in T ′ are not occupied by any of the k cops.

Proof. Observe that the leaf u has k+ 1 ancestors in T including itself. Therefore, we can
find k + 1 vertex disjoint paths from the ancestors of u to some leaf w of T . We say that
a path from an ancestor v of u to some leaf w is blocked if any of the vertices in v  w or
w′  v′ is occupied by the cops, otherwise we call it cop-free.

Since we only have k cops and all the paths are vertex disjoint, each cop can block at
most one such path. However, we have k + 1 such paths and therefore one of them must
be cop-free.

Theorem 7. If labelled breaks are allowed, then for all k > 0, there exists a control flow
graph Gk that has DAG-width at least k + 1.

Proof. In our construction for Gk, we have k+ 1 levels of nested loop elements. Assuming
the top level to be 0, we have 2i loop elements at level i. These are combined together
by conditionals such that two loop elements at level i are directly nested under each loop
element at level i−1 as shown in Figure 3.10(a). L1 is the topmost loop element. For every
loop element Li we have a vertex vi such that vi ∈ belongs(Li). For all the loop elements
at the leaf level, we have a chain of if statements that have outgoing edges to exit points
of each of the ancestor loop elements. For example, in Figure 3.10(a), we have edges from
inside(L4) to each of Lexit

4 , Lexit
2 and Lexit

1 .
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We now simplify Gk as follows.

1. Contract the if-chain at the leaf level to a single vertex vi (shaded vertices in Fig-
ure 3.10(a)).

2. Contract the edges (Lentry
i , if) for all loop elements Li (dash-dotted edges in Fig-

ure 3.10(a)).

3. Finally, remove Lexit
1 from Gk as we do not need it for our proof.

Note that all the edges (u, v) that we contracted had in-degree(u) = 1, and therefore by
Theorem 5, contracting them cannot increase the DAG-width. A simplified graph G′k with
k = 2 is shown in Figure 3.10(b).

Therefore, in order to show that Gk has DAG-width at least k + 1, it suffices to show
that the robber has a winning strategy against k cops on G′k. Now, the digraph G′k can be
thought of as being obtained from G(2, k) by adding some extra vertices and edges. Recall
that G(2, k) is the digraph obtained by taking union of two complete binary trees T and
T ′, and orienting the edges in T to be away from the root and those in T ′ to be towards
the root. Now in G′k, every Lentry

i in the upper tree T has the corresponding double vi in
T ′. Additionally, every leaf u′ in T ′ has a directed edge to every Lexiti that is an ancestor of
u′. Recall that these edges are due to labelled break statements. As a consequence, there
is a directed path of length at most 2 from a leaf to any ancestor of T ′.

It is not hard to see that Claim 2 also holds for G′k since every leaf in T and T ′ still
has k + 1 ancestors (including itself) that have vertex-disjoint paths to a leaf.

The robber uses the following strategy against k cops. Initially, he picks an arbitrary
leaf in T ′.

1. At this point, the robber maintains the invariant that he is at a leaf u′ of the tree
T ′. That is, ri = u′.

2. The cops decide to move to Xi+1.

3. The robber selects an ancestor v of u such that the paths v  w and w′  v′ are
cop-free with respect to Xi+1, the next move of the cops. This holds by Claim 2.

4. The robber now moves along the path u′ → Lexitx → v′ → v  w → w′ such that
ri+1 = w′.
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Figure 3.10: (a) A control flow graph Gk with k = 2 and (b) its simplified version G′k. The
edges Lentry

i → Lexit
i are not shown for clarity. We simplify Gk by combining the if-chain

(shaded in gray), contracting the dash-dotted edges and finally removing Lexit
1 . Note that

G′k can be interpreted as a concatenation of two complete binary trees T and T ′ of height
k, plus some extra edges and vertices.
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Here, Lexitx is an ancestor of u′ that immediately precedes v′. Recall that by our
construction, the edge (u′ → Lexitx ) always exists. Also note that all the vertices in
this path do not contain a cop by our choice of v.

5. Go back to step 1 with i = i+ 1 and u′ = w′.

The robber can keep repeating the above steps and can evade capture forever.
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Chapter 4

Other Digraph Width Parameters

In this chapter we will discuss some other digraph width measures and determine whether
or not they are bounded for control flow graphs. The width measures we consider in this
chapter are Kelly-width and entanglement. The choice of these measures is motivated
by efficient algorithms for the µ-calculus model checking problem on graphs of bounded
Kelly-width [10] and of bounded entanglement [6].

4.1 Kelly-width

The Kelly-width generalizes the concept of an elimination ordering (Definition 6) to di-
rected graphs.

Definition 14 (Directed Elimination Ordering). An elimination ordering of a directed
graph G = (V,E) is a linear ordering on its vertices V . Given an elimination ordering
π = (v1, ..., vn), we define Gi−1 to be the graph obtained by ‘eliminating’ vi from Gi. That
is, let Gn be G and let Gi−1 be the digraph obtained from Gi by removing vi from Gi and
adding new edges (u, v) (if needed) for all u, v ∈ V (Gi), u 6= v such that (u, vi) ∈ E(Gi)
and (vi, v) ∈ E(Gi). The newly added edges are called fill edges.

The graph G′ = (V,E∪F ) is called the fill-in graph of G with respect to the elimination
ordering π. Here F is the set of all the fill edges that were added during the elimination.

The width of the elimination is defined as the maximum over all i of the out-degree
of vi in Gi. The Kelly-width of G is one more than minimum width across all possible
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elimination orderings. The extra plus one comes from the fact that the number of cops
needed to search the graph will be one more than the width of the elimination.

As an example, consider G to be a directed acyclic graph with vertices v1, v2, . . . , vn
and edges (vi, vj) for all j > i. It is not hard to see that the ordering π = (v1, v2, . . . , vn) is
an elimination ordering of vertices in G with width zero. It follows that the Kelly-width
of G is 1. In fact, Kelly-width of any directed acyclic graph is 1. This will be more clear
with the cops and robber characterization of Kelly-width presented in the next section.

4.1.1 Inert Robber Game and Kelly-width

Kelly-width is related to a variant of cops and robber game called the inert robber game
in which the robber is invisible but can only move when he sees a cop approach his current
position. A play in the (k-cop) inert robber game on a directed graph G = (V,E) is a
sequence

(X0, R0), (X1, R1), ..., (Xm, Rm)

where Xi ⊆ V, |Xi| ≤ k is the set of positions for k cops whereas Ri is the set of
potential robber locations. Initially, X0 = ∅ and R0 = V . If the cops catch the robber at
the end of the play, then Rm = ∅. Since the robber can move only if the cop approaches
its current position, we have:

Ri+1 =

Ri ∪
⋃

v∈Ri∩Xi+1

Reach(Xi ∩Xi+1, v)


Recall that Reach(Xi ∩ Xi+1, v) is the set of vertices reachable form v in the digraph

G \Xi ∩Xi+1. Also recall that a strategy is called robber-monotone if in a play consistent
with the strategy, the set of potential robber locations is non-increasing. In other words
Rj ⊆ Ri for all i < j.

We note the following result:

Theorem 8. [19, Theorem 5] A digraph G has Kelly-width k if and only if k cops have
a robber-monotone winning strategy in an inert robber game on G.

Note that unlike the case of DAG-width, cop-monotonicity does not imply robber-
monotonicity in the cops and robber game for Kelly-width. That is, it is possible that a
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c e

b d

a

Figure 4.1: A digraph G with Kelly-width 3 and DAG-width 4. The shaded region denotes
the clique C1 = {b, d, e}. Note that G has Kelly-width and DAG-width at least 3 as it
contains a clique of size 3.

robber-monotone winning strategy in the game for Kelly-width is not cop-monotone. In
fact, we will later see that the winning strategy for the inert cops and robber game on a
control flow graph is robber-monotone but not cop-monotone.

In Figure 4.1, we show a digraph for which DAG-width and Kelly-width are different.
Note that G has two cliques of size 3: C1 = (b, d, e) and C2 = (c, d, e). One can see that
three cops can catch a lazy invisible robber in G by successively placing themselves at
(b, d, e) → (c, d, e) → (c, d, b) → (c, a, b). However, a robber that is not lazy always has a
winning strategy against three cops, even if he is visible. He can start at any vertex in the
clique C1 and stay there as long as at least one of the three cops is outside C1. If the third
cop approaches a vertex in C1, the robber will flee to vertex ‘a’ as every vertex in C1 is
connected to ‘a’ by a directed edge. Now, the robber will stay there until some cop leaves
C1. When this happens, the robber will come back to a vertex in C1, and will keep doing
this forever.

4.1.2 Kelly-width of Control Flow Graphs

The bound on Kelly-width of control flow graphs follows by adapting the cops and robber
strategy from Section 3.1.1. There, we gave a winning strategy for catching a visible robber
with three cops. Note that in the game for Kelly-width, the cops cannot see the robber.
The idea now is to search the entire graph while making sure that the set of potential
locations for the robber is non-increasing. We present the following modified strategy fk :

1. Start with L = Lφ, the outermost loop element.
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2. Move cop X(2) to Lexit.

3. Move cop X(1) to Lentry.

4. Move X(3) to every vertex in belongs(L) in a depth-first order.

5. For every loop element Li directly nested inside L, go to step 2 with L := Li.

6. Move to stop vertex.

Lemma 7. The strategy fk is winning.

Proof. In step 4, the cop X(3) searches every vertex in belongs(L). Therefore, if the robber
was present on one of the vertices in belongs(L), he must flee to inside(Li), for some Li
nested under L, or to stop in order to avoid capture. This holds because belongs(L)\Lentry

does not contains a cycle (Corollary 1) and every time X(3) visits the vertex r occupied
by the robber, dist(r, Lexit) decreases (Lemma 2).

Note that the cops will try steps 2 through 5 for every loop element Lj directly nested
inside L, even if the robber was not within inside(Lj). However, this does not change
anything since the robber is lazy and must continue to stay within inside(Li), the loop
element it may have moved to in step 4 when the cops were searching L.

Nothing happens until the cops go to step 2 with L = Li. Since Lexit
i ∈ belongs(L),

the cops have already checked for the robber at Lexit
i and placing a cop here simply forces

the robber to stay within inside(Li) ∪ {stop}. Clearly, the robber is now restricted to a
smaller set of vertices and will eventually be caught. If at any point the robber moved to
the stop vertex, step 6 will ensure that he is caught.

Lemma 8. The strategy fk is robber monotone.

Proof. Note that since the robber is lazy, the set of potential robber locations R changes
only when a cop moves to robber’s current position. In step 2, it is guaranteed that the
robber is not at Lexit. This holds initially since then L = Lφ, and holds when we return to
step 2, since by then we have checked all the vertices in belongs(L′) where L′ is the loop
element to which Lexit belongs. Therefore, placing a cop at Lexit in step 2 cannot change
anything. For step 4, due to the monotonicity of our distance function, the robber will be
restricted to a smaller set of vertices if he was present in belongs(L) to begin with.

Finally for step 3, we note that if the robber was at Lentry, he must move to another
vertex in inside(L), thereby reducing the set of potential robber locations by one.

55



if (2)

Lentry (1)

if (10) if (6)

Lentry1 (5)

Lexit1 (8)Lexit2 (12)

continue

continue

start (0)

Lentry2 (9)

next (11) next (7)

Lexit (3)

stop (4)

Figure 4.2: A lazy invisible robber has a winning strategy against two cops on this digraph.
Note that at all times, the robber is at one of the shaded vertices.

However, it is important to note that the strategy is not cop-monotone, since the cops
visit every Lexit twice.

The associated Kelly decomposition can be computed in linear time from the winning
strategy fk above using [19, Theorem 5 and Theorem 9]. From their proof, it also follows
that the decomposition will have a linear size for control flow graphs.

It is not hard to see that the proof for the lower bound on the number of cops in the
visible robber game (Lemma 5) carries over to the inert robber game. That is, the robber
has a winning strategy against two cops on the digraph G in Figure 4.2. Recall that he does
so by starting at one of the vertices in {5, 6}. That is, ri ∈ {5, 6}. If ri ∈ Xi+1 6= {5, 6},
then the robber keeps toggling between the vertices {5} and {6}, thereby maintaining the
invariant ri ∈ {5, 6}. If Xi+1 = {5, 6}, then he moves to the vertices {9, 10} which are
symmetric to {5, 6}.

Using this fact and the Lemmas 7 and 8, we have the following result.

Theorem 9. The Kelly-width of control flow graphs is at most 3 and this is tight for some
control flow graphs.
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4.2 Entanglement

Entanglement [6], as the name suggests, aims to measure the extent to which cycles of a
directed graph are interwined. Like other digraph width measures, the entanglement of a
digraph G = (V,E) is defined via a variant of the cops and robber game on G with the
following rules.

1. Initially, the robber selects any arbitrary vertex r0 ∈ V and all cops are outside G.

2. In any move, the cops can stay where they are or one cop moves to the current
position r ∈ V of the robber. Cops are not allowed to move to a position other than
r.

3. The robber, in turn, must move to an immediate successor r′ of r which is not
occupied by the cops. That is, (r, r′) ∈ E and there is no cop at r′. It is important
to note that the robber cannot stay at his current position, he must always move to
an immediate successor.

4. The game terminates if the cops catch the robber or the robber is unable to move.
Note that the cops can see the robber at all times and as in the previous versions,
the robber knows exactly which vertices the cops will move to before he decides his
own move.

The entanglement of the graph G is the minimal number k such that k cops can catch
a robber on G in accordance with the rules mentioned above.

For example, if the digraph G is acyclic, the entanglement of G is zero. This holds
because the robber must move at all times. As G is acyclic, he will eventually end up at
a sink of G and hence cannot move any further.

If G contains directed cycles, then the entanglement of G is at least one. For a slightly
more complicated example, consider a digraph with strongly connected components such
that in each of these components, there is a critical vertex vc whose removal makes the
component acyclic. It is not hard to see that the entanglement of such a digraph is also
one. Since all the cycles in that component must contain vc, the robber will have to go
there if he stays in that component. The cops can then simply place themselves at vc,
forcing the robber to move to another component in order to evade capture. However, he
will eventually be caught at a terminal component.
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Lemma 9. The entanglement of a digraph G = (V,E) does not increase on contracting
an edge (u, v) ∈ E for which u has out-degree 1.

Proof. This follows from the cops and robber characterization of entanglement. Recall
that the cops can either move to the current position of the robber or stay at their current
positions. Therefore, it strategically makes sense for the cops to place themselves at a
vertex only if they are going to stay there and block some path(s) for the robber in the
future rounds.

Now, let fk be the winning strategy with k cops. Consider the case when one of the
cops moved to u at the end of the ith round. Note that this can happen only if the robber
was at u in the previous round, and he moved to its only successor v. Therefore, ri = v
and u ∈ Xi. For the next round, the cops have three choices:

1. Do not move a cop.

2. Move the cop from some other vertex w to v.

3. Move the cop at u to v.

Let P1, P2 and P3 be respectively the set of directed paths that are blocked by the cops,
in each of the three cases above. Since every directed path that goes through u must also
go through v, we have P1 ⊆ P3. In case 2, since there is no cop at w anymore, we have
P2 ⊆ P3. It is easy to see that in all the cases, it is advantageous for the cops to switch
from u from v, and hence they could have avoided moving to u in the first place.

Therefore, the winning strategy fk would also have worked on G with the following
modification:

The cops do not move in the round when they were supposed to move to u.
In the next round, the same cop which was supposed to move to u moves to v.

It is easy to verify that this modified strategy also works for G with the edge (u, v)
contracted into a single vertex v.
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4.2.1 Entanglement of Control Flow Graphs

Berwanger et al. [6, Corollary 22] showed that parity games and hence the µ-calculus model
checking problem can be solved in polynomial time on graphs of bounded entanglement.
Therefore, if we could show that control flow graphs have bounded entanglement, we
would obtain a polynomial-time algorithm for the µ-calculus model checking problem on
control flow graphs. However, it turns out that control-flow graphs can have an unbounded
entanglement. In this section, we will construct such a control flow graph.

We refer to the control flow graph in Figure 4.3(a). Recall that we used a similar
construction in Section 3.4 to show unbounded DAG-width for programs with labelled
breaks. Note that both these constructions are inspired from [6, Proposition 8].

Theorem 10. For any k ≥ 0, there exists a control flow graph Gk that has entanglement
at least k + 1.

Proof. In our construction for the control flow graph Gk, we have a hierarchy of k+1 levels
of nested loop elements combined using ‘if’ statements as follows (see also Figure 4.3(a)).

Assuming the root is at level 0, the ith level has 2i loop elements. A loop element L
at level i is directly nested under a loop element Lp at level i − 1, via an ‘if’ statement
immediately following Lentry

p . We refer to these if statements by if . Note that the edges
(Lentry, if) do not exist for the loop elements at the lowermost level k. Now for every loop
element L, we have ‘if’ statements immediately preceding Lexit. We refer to these by if ′

and give them an outgoing edge to Lentry.

We will now transform the control flow graph Gk to G′k (see Figure 4.3(b)) by contract-
ing certain edges of Gk as follows.

1. For every loop element L not at level k, remove the vertex if following Lentry by
contracting the edge (Lentry, if).

2. For every loop element L, remove the vertex if ′ following Lexit by contracting the
edge (Lexit, if ′), if it exists.

In Figure 4.3(a), these edges are shown enclosed by the dotted region. Since all the
edges we contracted had out-degree 1, it follows from Lemma 9 that the entanglement of
Gk is at least as much as that of G′k.

Recall from Section 3.4 that we used G(2, k) (Figure 3.9) to denote the digraph obtained
by taking the union of two complete binary trees T and T ′, and orienting the edges in T to
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Figure 4.3: (a) A control flow graph G. The Lentry → Lexit edges are not shown for clarity.
We combine certain consecutive vertices of G together to obtain G′ shown in (b). Note that
G′ can be interpreted as a concatenation of two complete binary trees T and T ′ of height
k, plus some extra edges. The edges of T and T ′ are oriented downwards and upwards
respectively. In this figure, k = 2.
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be away from the root and those in T ′ to be towards the root. The digraph G′k constructed
above can be thought of as being obtained from G(2, k) by adding some extra vertices and
edges. We will refer to the vertices Lentry

j in the upper tree T by uj, and the vertices Lexit
j

in the lower tree T ′ by u′j. Therefore, every vertex v in T gets a double v′ in T ′. Since we
still have the edges (if ′, Lexit

j ) for a loop element Lj at the very last level, we will refer to
these remaining vertices for if ′ by u′′j . Note that these vertices u′′ connect the leaves u of
T and u′ of T ′. We will call them connectors.

We will show that the robber always has a winning strategy against k cops on G′k.
In [6, Proposition 8], the authors very briefly showed that the entanglement of a digraph
similar to our G′k above is at least k + 1. Here we build on their ideas and give a slightly
different proof.

By Claim 2 we have that for every leaf u in T , there always exists an ancestor v of u
that has a path to a leaf w of T such that all the vertices in the path from v to w and
their corresponding doubles in T ′ are not occupied by the cops. Additionally in G′k, we
have extra vertices u′′ connecting the leaves u and u′ of T and T ′ respectively. However,
adding extra vertices could only increase the number of cops needed and hence the claim
also holds for G′k. Therefore, for every leaf u of T we have an ancestor v such that the
path v  w → w′′ → w′  v′ is cop-free. Call this path Pv.

Starting at an arbitrary connector u′′ in G′k, the robber uses the following strategy:

1. At this point, the robber maintains the invariant that the path from the current
chosen connector ri = u′′ to u′1 (the root of T ′) does not contain a cop. Clearly, this
holds initially, and we will argue it later for when we return here. Call this path Qu.

2. Choose the lowest ancestor v of u such that the path Pv = v  w  v′ is cop-free
with respect to Xi+1, the cops’ next move. As argued before, such a path always
exists. We have two cases:

(a) If v = u, then the robber moves along the edge u′′ → u. Note that u′′ 6∈ Xi+1,
otherwise the robber would not have chosen v = u in the first place. He then
moves down the edge u→ u′′ and goes back to step 1. The robber has not yet
walked along the path Qu, so no cop have moved there and the invariant holds.

(b) If v 6= u, then the path v  v′ must go through the subtree of v that does not
contain u.

Assume for contradiction that the path goes through a node x in the subtree of
v that contains u. Clearly, the sub-path x  v′ is also cop-free. However, this
contradicts the claim that v was the lowest such ancestor. Continue at step 3.
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3. Let x′ be an ancestor of u′′ along the path Qu, that has the backward edge (x′, v)
(such edges are dash-dotted in Figure 4.3(b)). The robber now moves along u′′  
x′ → v  w → w′′. That is, partly along Qu (u′′  x′) and then the rest along Pv.
Clearly, both these paths do not contain a cop.

4. Go back to step 1 with u′′ = w′′. Observe that Qw (the path from w′′ to v′1) is cop-free
since it consists of those parts of Pv and Qu that the robber didn’t walk along. This
was cop-free before, and no cop can have moved here since cops can only move to
where the robber was.
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Chapter 5

Conclusion and Open Problems

Motivated by applications in software verification, the original goal of this thesis was
to obtain better algorithms for the µ-calculus model checking problem on control flow
graphs. Since there are algorithms in the literature that solve the µ-calculus model checking
problem on some special graph classes such as graphs of bounded DAG-width, Kelly-width
and entanglement, the idea was to see if these graph classes include the class of control
flow graphs. This serves two purposes: (a) it can potentially give a better algorithm for
the µ-calculus model checking problem, and (b) it adds a subclass of significant practical
interest to these graph classes.

Towards this goal, in Chapter 3, we showed that the DAG-width of control flow graphs
is at most 3 and gave a linear-time algorithm to compute a DAG decomposition with a
linear number of edges. In Section 4.1, we showed that Kelly-width of control flow graphs
is also bounded by 3. Finally, in Section 4.2, we showed that control flow graphs can have
unbounded entanglement.

The results for DAG-width and Kelly-width look promising for solving the µ-calculus
problem on a control flow graph G = (V,E). Recall from Section 2.5.3 that the traditional
approach of solving the µ-calculus problem on any of these graph classes is by translating
it to the problem of finding a winner in parity games. For the case of DAG-width, we can
use the algorithm by Fearnley and Schewe [17]. This runs in O(|V | ·M · kk+2 · (d+ 1)3k+2)
time where k is the DAG-width of the resulting parity game graph G′, d is the alternation
depth and M is the number of edges in the DAG decomposition. Using our main result
(Theorem 3), we can obtain a DAG decomposition (D,X) of G of width 3 and M ∈ O(|V |).
Recall from Section 2.5.3 (Rule R.1) that the game graph G′ will have m vertices for each
vertex in the control flow graph G. Here, m is the number of sub-formulas of the formula
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we wanted to verify on G. We can then obtain a DAG decomposition of G′ from (D,X)
by replacing every v ∈ Xi with all the m vertices for v. Note that this will have width
3 ·m and M ∈ O(|V |). Recall that even for the smallest possible values m = 1 and d = 2,
the treewidth based algorithm runs in O(|V | · 711 · 323) = O(|V | · 1020) time. For the same
values, the DAG-width based algorithm runs in O(|V |2 · 35 · 311) = O(|V |2 · 107), which is
better unless |V | ≥ 1013.

However, the algorithm above still has a major drawback. The exponent of (d + 1)
grows quite rapidly with increase in m, the length of the formula, and as such verifying
bigger formulas still seems quite impractical. A natural question to consider is whether
we really need all the 3 ·m vertices in a single bag of the DAG decomposition for G′. We
believe that this could be done with fewer vertices. Another natural open problem is hence
to develop even faster algorithms for parity games on digraphs that come from control
flow graphs. Our simple DAG decomposition that is directly derived from the control flow
graph might be helpful here. In [10], the authors approach the µ-calculus model checking
problem on graphs of bounded DAG-width and Kelly-width using dynamic programming
techniques along with some techniques from logic. They show that the µ-calculus model
checking problem can be solved in O(f(k+m) ·nc)) time on graphs of bounded DAG-width
and Kelly-width. Here, f is some computable function and c is some constant. However,
their proof is not constructive and the running time may have large constant factors.
Nonetheless, a natural extension is to apply their techniques on our DAG decomposition
for control flow graphs to see if it can attain better running times this way.

We conclude with some problems of more theoretical interest. In Theorem 5, we gave
an algorithm to transform the DAG decomposition of a digraph G to a DAG decomposition
for G′, where G′ is obtained from G by contracting an edge (u, v), such that v has in-degree
1. However, we could not find a similar algorithm for the case when u has out-degree 1.
Future work could focus on this and using these results to solve the more general problem
of computing near optimal DAG decompositions when contracting an edge (u, v) where v
has in-degree k or u has out-degree k.

Another interesting problem is the path avoiding forbidden pairs (PAFP) by Kolman
and Pangrác [21]. Given a digraph G = (V,E), two fixed vertices s, t ∈ V , and a set F of
pairs of vertices (called forbidden pairs), the goal is to find a directed path from s to t that
contains at most one vertex from each pair in F . The problem is known to be NP-hard
even when G is DAG. However, Kolman and Pangrác studied it under some special cases
and gave a polynomial time algorithm for the case when G is a DAG and the forbidden
pairs exhibit a special structure called the hierarchical structure. We believe that it can be
worthwhile to study this problem on graphs of bounded DAG-width. More specifically, is
there a polynomial time algorithm for the PAFP problem when G has bounded DAG-width
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and the forbidden pairs exhibit the hierarchical structure?
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