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Abstract

Entanglement and nonlocality play a fundamental role in quantum computing. To
understand the interplay between these phenomena, researchers have considered the model
of local operations and classical communication, or LOCC for short, which is a restricted
subset of all possible operations that can be performed on a multipartite quantum system.
The task of distinguishing states from a set that is known a priori to all parties is one of
the most basic problems among those used to test the power of LOCC protocols, and it has
direct applications to quantum data hiding, secret sharing and quantum channel capacity.

The focus of this thesis is on state distinguishability problems for classes of quantum
operations that are more powerful than LOCC, yet more restricted than global operations,
namely the classes of separable and positive-partial-transpose (PPT) measurements. We
build a framework based on convex optimization (on cone programming, in particular)
to study such problems. Compared to previous approaches to the problem, the method
described in this thesis provides precise numerical bounds and quantitative analytic results.
By combining the duality theory of cone programming with the channel-state duality, we
also establish a novel connection between the state distinguishability problem and the study
of positive linear maps, which is a topic of independent interest in quantum information
theory.

We apply our framework to several questions that were left open in previous works
regarding the distinguishability of maximally entangled states and unextendable product
sets. First, we exhibit sets of k < n orthogonal maximally entangled states in Cn ⊗ Cn

that are not perfectly distinguishable by LOCC. As a consequence of this, we show a
gap between the power of PPT and separable measurements for the task of distinguishing
sets consisting only of maximally entangled states. Furthermore, we prove tight bounds
on the entanglement cost that is necessary to distinguish any sets of Bell states, thus
showing that quantum teleportation is optimal for this task. Finally, we provide an easily
checkable characterization of when an unextendable product set is perfectly discriminated
by separable measurements, along with the first known example of an unextendable product
set that cannot be perfectly discriminated by separable measurements.
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Chapter 1

Introduction

1.1 Motivation

A central subject of study in quantum information theory is the interplay between entan-
glement and nonlocality. An important tool to study this relationship is the paradigm
of local quantum operations and classical communication (LOCC, for short). This is a
subset of all global quantum operations, with a fairly intuitive physical description. In a
two-party LOCC protocol, Alice and Bob can perform quantum operations only on their
local subsystems and the communication must be classical. This restricted paradigm has
played a crucial role in the understanding of the role of entanglement in quantum infor-
mation. It has also provided a framework for the description of basic quantum tasks such
as quantum key distribution and entanglement distillation. Furthermore, LOCC proto-
cols are operationally well-motivated, in the sense that classical communication is easy to
implement.

The LOCC paradigm does not have a proper classical counterpart. It is worth noticing
that its definition does not impose any restriction on the amount of classical communication
that is allowed between the parties, and therefore it should not be confused with other
setups studied in theoretical computer science where such constraints are instead imposed,
such as communication complexity, or information complexity.

A fundamental problem that has been studied to understand the limitations of LOCC
protocols is the problem of distinguishing quantum states. The setup of the problem is
pretty simple in the bipartite case. The two parties are given a single copy of a quantum
state chosen with some probability from a collection of states and their goal is to identify
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which state was given, with the assumption that the parties have full a priori knowledge
of the collection.

When restricted to classical states, this is an easy task, different strings of bits are
always completely distinguishable. In the quantum case, if the states are orthogonal and
global operations are permitted, then it is always possible to determine the state with
certainty. On the contrary, when the states are not orthogonal, quantum mechanics does
not allow perfect discrimination [NC11]. The problem of distinguishing quantum states by
global operations dates back to the ’70s [Hel69], and since then it has been given different
names: quantum state distinguishability, quantum state discrimination, quantum detection,
quantum hypothesis testing.

Even when the states are orthogonal, things get interesting in the quantum setting
once we impose restrictions on the measurements that can be performed on the unknown
state. Say the two parties to whom the state is given, Alice and Bob, have their quantum
labs very far apart from each other’s and, say, their research budget pays only for an
infrastructure to communicate with each other on a classical network. In other words, say
that only LOCC measurements are allowed on the state. Then Alice and Bob cannot in
general discover the state they have been given, even if the states are orthogonal.

The problem of distinguishing among a known set of orthogonal quantum states by
LOCC protocols has been studied by several researchers in the last 15 years1 [BDM+99,
WSHV00, GKR+01, HSSH03, Fan04, GKRS04, Nat05, Wat05, YDY11, YDY12]. It is
referred to as the local state distinguishability problem (or local state discrimination) and
it has some direct applications to other problems in quantum information theory, such as
secret sharing [CGL99, Got00], data hiding [TDL01, DLT02], and the study of quantum
channel capacity (see [Wat05, YDY11] and references therein).

Local state distinguishability problems offer insights into how useful entanglement is
in quantum information processing tasks. The reason why investigating these problems is
helpful comes from the fact that the role of entanglement in such tasks is twofold. On the
one hand, many LOCC protocols, such as the ones based on teleportation, are fueled by
entanglement shared by the parties, and therefore entanglement turns out to be a helpful
resource for distinguishability. On the other hand, if the states to be distinguished are
themselves entangled, local measurements on only a part of the states do not always suffice
to reveal all the information hidden in the remaining part. The dual role of entanglement
has led us towards the choice of the sets to analyze in this work, which ended up belonging
to two antipodal categories: sets consisting only of orthogonal maximally entangled states
and sets consisting only of product states.

1The reader may want to browse through the References section of this thesis for a more complete list.
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The set of measurements that can be implemented through LOCC has an apparently
complex mathematical structure—no tractable characterization of this set is known, rep-
resenting a clear obstacle to a better understanding of the limitations of LOCC measure-
ments. For example, given a collection of operators describing a measurement on a bipar-
tite system, the problem of determining whether or not this collection describes an LOCC
measurement, or is closely approximated by an LOCC measurement, is not known to be
a computationally decidable problem. For this reason, the state discrimination problem
described above is sometimes considered for more tractable classes of measurements that
approximate, in some sense, the set of LOCC measurements, and that are mathematically
and computationally more tractable than the LOCC set. Among these classes, the set of
separable and positive-partial-transpose (PPT) measurements are the subject of study of
this thesis. Since these classes contain LOCC, any bound on their power is reflected into
a bound on the power of LOCC.

The key observation of this dissertation is that the set of PPT operators and the
set of separable operators both form closed convex cones and many problems concerning
them, including state distinguishability, can be phrased in terms of cone programming,
which is a convex optimization framework that generalizes semidefinite programming. In
general, we do not have a classical polynomial-time algorithm to solve cone programs
and, in fact, optimizing over separable operators is an NP-hard task. Nevertheless, cone
programming, like semidefinite programming, comes with a rich duality theory, which can
be exploited in order to derive analytical bounds for the problems we are seeking to solve.
From the numerical point of view, we exploit the fact that the particular cone programs
we are interested in can be approximated by efficiently solvable hierarchies of semidefinite
programs [DPS02].

1.2 Summary of the results

We prove the following specific results:

• We obtain an exact formula for the optimal probability of correctly discriminating any
set of either three or four Bell states via separable measurements, when the parties
are given a partially entangled pair of qubits as a resource. In particular, it is proved
that this ancillary pair of qubits must be maximally entangled in order for three Bell
states to be perfectly discriminated by separable (or LOCC) measurements, which
answers an open question of [YDY14].
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• We build up on a construction by Yu, Duan, and Ying [YDY12], and we show the
first example of a set with less than n orthogonal maximally entangled states in
Cn ⊗ Cn that are not perfectly distinguishable by LOCC. One takeaway from this
is that the dimension of the local subsystems does not play any special role in the
nonlocality exhibited by LOCC-indistinguishable sets of maximally entangled states.
The same example serves to exhibit a gap between the power of separable and PPT
measurements for the task of distinguishing maximally entangled states.

• We provide an easily checkable characterization of when an unextendable product
set is perfectly discriminated by separable measurements, and we use this character-
ization to present an example of an unextendable product set in C4 ⊗C4 that is not
perfectly discriminated by separable measurements. This resolves an open question
raised in [DFXY09].

• We show that every unextendable product set together with one extra pure state
orthogonal to every member of the unextendable product set is not perfectly dis-
criminated by separable measurements.

1.3 Overview

We assume that the reader is familiar with basic concepts of quantum computation and the
main target is a researcher in quantum information or a graduate student who has taken
an introductory course to quantum based on Nielsen and Chuang [NC11]. Familiarity with
more advanced concepts of quantum information theory (based on [Wat15], for example)
would certainly help, but it is not necessary. The same can be said about notions of convex
optimization, the syllabus of an introductory graduate-level course in convex optimization
covers more than is necessary to grasp the material of this thesis. In Chapter 2 basic
notions of quantum information and convex optimization are reviewed.

Chapter 3 reviews background material on bipartite state discrimination, including a
comparison between previous approaches to the problem and ours.

In Chapter 4, we lay out a general cone programming framework for bipartite state
discrimination and we instantiate it for the particular cases of separable and PPT mea-
surement.

In Chapters 5 and 6, we apply the framework described in Chapter 4 to study the
distinguishability of sets of maximally entangled states, and unextendable product sets,
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respectively. These two chapters are independent from each other and they can be read in
any order.

In the last chapter we draw conclusions and ask some open questions that may be of
interest for future work.

The thesis is based on the following papers:

• A. Cosentino. PPT-indistinguishable states via semidefinite programming.
Physical Review A, 2013. [Cos13]

• A. Cosentino and V. Russo. Small sets of locally indistinguishable orthogo-
nal maximally entangled states. Quantum Information & Computation, 2014.
[CR14]

• S. Bandyopadhyay, A. Cosentino, N. Johnston, V. Russo, J. Watrous, and N. Yu.
Limitations on separable measurements by convex optimization. IEEE
Transactions on Information Theory, 2015. [BCJ+15]
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Chapter 2

Preliminaries

In this chapter we summarize basic concepts of quantum information theory that will be
used in the rest of the thesis. Along the way, we will also pin down the notation that
we use throughout this thesis, although for most part, we use notation that is standard
in quantum information theory. In particular, we will follow the same terminology and
conventions adopted in [Wat15]. This should not serve as in introduction to quantum
information. For such an introduction we refer the reader to a standard textbook [NC11].

The last section introduces the basic concepts of convex optimization that are necessary
for analyzing problems in quantum information theory. For a more extended treatment of
semidefinite programming and cone programming, we refer the reader to [WSV00, TW12]
and the references therein.

Contents
2.1 Basic notions of quantum information theory . . . . . . . . . 7

2.1.1 Vector spaces, linear operators, and linear mappings . . . . . . . 7

2.1.2 Pauli operators and Bell states . . . . . . . . . . . . . . . . . . . 10

2.1.3 The Choi isomorphism . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Quantum measurements . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 LOCC measurements . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Separable measurements . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 PPT measurements . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . 16
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2.1 Basic notions of quantum information theory

2.1.1 Vector spaces, linear operators, and linear mappings

All vector spaces considered here are assumed to be complex Euclidean spaces (or, equiv-
alently, finite-dimensional complex Hilbert spaces) and are denoted by scripted capital
letters from the end of the English alphabet, such as X ,Y ,Z. Elements of a complex
Euclidean space are denoted by lower-case letters from the end of the English alphabet,
such as u, v, w, z. For a complex Euclidean spaces of dimension n, elements of the space
can be represented as vectors in Cn. The standard basis of such a space is denoted using
the Dirac notation as {|0〉, . . . , |n− 1〉}.

The inner product of two vectors u, v ∈ Cn is defined as

〈u, v〉 =
∑

i∈{1,...,n}

u(i)v(i). (2.1)

We write L(X ,Y) to denote the space of linear operators from a space X to a space Y ,
and we write L(X ) as shorthand for L(X ,X ). Throughout the thesis, linear operators will
be denoted with capital letters from the beginning and the end of the English alphabet,
such as A,B,C,X, Y, Z.

For every operator A ∈ L(X ,Y), the operator A∗ ∈ L(Y ,X ) denotes the adjoint of A,
that is, the unique operator that satisfies the equation

〈v, Au〉 = 〈A∗v, u〉, (2.2)

for all u ∈ X and v ∈ Y . In the matrix representation of linear operators, A∗ is the
conjugate transpose of the matrix corresponding to A.

For any space X , we consider the following important sets of operators acting on X :

Hermitian operators – Herm(X ) : operators X ∈ L(X ) such that X∗ = X.

Positive semidefinite operators – Pos(X ) : operators X ∈ L(X ) for which it holds that
X = Y ∗Y for some operator Y ∈ L(X ).

Density operators – D(X ) : positive semidefinite operators having trace equal to 1. To
denote density operators, we will use letters from the Greek alphabet, such as ρ, σ, ξ.
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The eigenvalues of an Hermitian operator are all real numbers. Positive semidefinite oper-
ators are Hermitian by definition, and they can be described as those Hermitian operators
that have only nonnegative eigenvalues. To recap, we have the following chain of contain-
ments:

D(X ) ⊂ Pos(X ) ⊂ Herm(X ) ⊂ L(X ). (2.3)

The identity operator acting on a given space X is denoted by 1X , or just as 1 when X
is implicit. For Hermitian operators A,B ∈ Herm(X ) the notations A ≥ B and B ≤ A
indicate that A−B is positive semidefinite.

Other important operators are linear isometries, which are all operators X ∈ L(X ,Y)
such that X∗X = 1X . The set of linear isometries from X to Y is denoted by U(X ,Y).
Linear isometries in L(X ) are called unitary operators and their set is denoted by U(X ).

We denote the standard Hilbert-Schmidt inner product of two operators X and Y as

〈X, Y 〉 = Tr(X∗Y ). (2.4)

The trace norm of an operator A ∈ L(X ,Y) is defined as

‖A‖1 = Tr(
√
A∗A), (2.5)

where
√
X denotes the square root of a positive semidefinite operator X, that is, the unique

positive semidefinite operator Y such that Y 2 = X.

A quantum state is represented by a density operator ρ ∈ D(X ), for some complex
Euclidean space X . A state ρ ∈ D(X ) is said to be pure if and only if it has rank equal to
1, or equivalently, if there exists a unit vector u ∈ X such that

ρ = uu∗.

Along with linear operators, we will consider linear mappings of the form

Φ : L(X )→ L(Y),

for complex Euclidean spaces X and Y . The adjoint of a mapping Φ is defined to be the
unique mapping

Φ∗ : L(Y)→ L(X ),

which satisfies the equation
〈Φ(X), Y 〉 = 〈X,Φ∗(Y )〉, (2.6)

for every X ∈ L(X ) and Y ∈ L(Y). Some important sets of linear mappings that we will
consider in this thesis are the following:

8



Hermiticity preserving – mappings of the form Φ : L(X )→ L(Y) such that

Φ(X) ∈ Herm(Y),

for any X ∈ Herm(X ).

Positive – mappings of the form Φ : L(X ) → L(Y) such that Φ(X) ∈ Pos(Y), for any
X ∈ Pos(X ).

Completely positive – mappings of the form Φ : L(X )→ L(Y), such that

Φ⊗ 1L(Z)(X) ∈ Pos(Y ⊗ Z),

for every complex Euclidean space Z, and any X ∈ Pos(X ⊗ Z).

Trace-preserving – mappings of the form Φ : L(X )→ L(Y) such that

Tr(Φ(X)) = Tr(X),

for all X ∈ L(X ).

Transformations of a quantum system from one state to another are described by quantum
channel, which are completely positive, trace-preserving linear mappings.

Given the tensor product X1⊗ . . .⊗Xn of n complex Euclidean spaces X1, . . . ,Xn, and
a partition

(k1, . . . , ki : ki+1, . . . , kn)

of the set {1, . . . , n}, we use the notation

(Xk1 ⊗ . . .⊗Xki : Xki+1
⊗ . . .⊗Xkn)

to denote a bipartition of the entire space.

It is convenient for the analysis of states in a bipartition (X : Y) to make use of the
correspondence between operators and vectors given by the linear function

vec : L(Y ,X )→ X ⊗ Y (2.7)

defined by the action
vec(|k〉〈j |) = |k〉|j〉 (2.8)

on standard basis vectors, and by linearity to all L(Y ,X ).

9



Definition 2.1. Suppose that X and Y are complex Euclidean spaces with n = dim(X )
and m = dim(Y), and assume n ≥ m. A unit vector u ∈ X ⊗Y , representing a pure state,
is said to be maximally entangled provided that

TrX (uu∗) =
1Y

m
. (2.9)

This condition is equivalent to

u =
1√
m

vec(A) (2.10)

for A ∈ U(Y ,X ) being a linear isometry.

2.1.2 Pauli operators and Bell states

One particularly important set of linear operators in L(C2) is the set of Pauli operators

σ0 = 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.11)

The operators σ1, σ2, σ3 are often referred as Pauli-X, -Y , -Z, respectively. The Pauli
operators are Hermitian, unitary operators, and moreover, they are orthogonal under the
inner product, thus forming an orthogonal basis for L(C2).

Through the vector-operator correspondence of Eq. 2.7, the Pauli operators define an
important class of maximally entangled states, famously known as Bell states :

ψk =
1

2
vec(σk) vec(σk)

∗, (2.12)

for k ∈ {0, 1, 2, 3}. More explicitly, the Bell states can be written down as follows:

|ψ0〉 =
1√
2
|0〉|0〉+

1√
2
|1〉|1〉,

|ψ1〉 =
1√
2
|0〉|1〉+

1√
2
|1〉|0〉,

|ψ2〉 =
1√
2
|0〉|1〉 − 1√

2
|1〉|0〉,

|ψ3〉 =
1√
2
|0〉|0〉 − 1√

2
|1〉|1〉.

(2.13)

10



In higher dimensions, one can consider a generalization of the Pauli operators. For any
positive integer n, let us the define an n-th primitive root of unity as

ωn = exp(2πi/n). (2.14)

The generalizations of Pauli-X and Pauli-Z in U(Cn) are defined as follows:

Xn =
∑
j∈Zn

|j + 1〉〈j |, (2.15)

and
Zn =

∑
j∈Zn

ωjn|j〉〈j |. (2.16)

Now we can define the set of generalized Pauli operators in U(Cn) as the set{
W

(n)
a,b = Xa

nZ
b
n : a, b ∈ Zn

}
. (2.17)

Starting from these operators we define the generalized Bell basis through the vector-
operator bijection: {

ψ
(n)
a,b =

1√
n

vec
(
W

(n)
a,b

)
vec
(
W

(n)
a,b

)∗
: a, b ∈ Zn

}
. (2.18)

2.1.3 The Choi isomorphism

To a quantum mapping Φ : L(X ) → L(Y), we associate an operator J(Φ) ∈ L(Y ⊗ X )
defined as follows:

J(Φ) = (Φ⊗ 1L(X ))(vec(1X ) vec(1X )∗). (2.19)

If we assume that X has dimension n, we can alternatively write this as

J(Φ) =
∑

1≤i,j≤n

Φ(|i〉〈j |)⊗ |i〉〈j |. (2.20)

The operator J(Φ) is called the Choi representation of Φ. It is often the case that properties
of the Choi representation reveal useful information on the mapping. For instance, positive
semidefinite operators correspond to Choi representations of completely positive mappings.
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2.2 Quantum measurements

When we analyze state distinguishability problems, all the physical operations performed
by the involved parties can be formally phrased in terms of quantum measurements. A
quantum measurement is defined as a function

µ : {1, . . . , N} → Pos(X ), (2.21)

for some choice of a positive integer N > 0 and a complex Euclidean space X , satisfying
the constraint

N∑
k=1

µ(k) = 1X . (2.22)

The values {1, . . . , N} are the measurement outcomes of µ, and the operator µ(k) is the
measurement operator of µ associated with the outcome k. The set of all measurements
over X with N outcomes is denoted by Meas(N,X ) and it is a subset of all functions of
the same kind of µ, that is,

Meas(N,X ) ⊂ Pos(X ){1,...,N}. (2.23)

Given a measurement µ : {1, . . . , N} → Pos(X ), it is useful to associate a mapping
Φµ : L(X )→ L(CN) to it, defined as follows:

Φµ(X) =
N∑
k=1

〈µ(k), X〉|k〉〈k|, (2.24)

for any X ∈ L(X ). The mapping Φµ is a quantum channel and, in fact, it is a quantum-
to-classical channel.

In order to capture the limitation of some physical processes, we can define more re-
stricted classes of measurements, which will be the object of study of this thesis. In the
definitions that follow it will be assumed that the measurements always act on a bipartite
space X ⊗ Y , where X and Y denote the complex Euclidean spaces underlying Alice’s
and Bob’s systems, respectively. Although all the notions considered in this section could
be extended to a more general scenario where more than two parties are involved in the
measurement, here and in the rest of the thesis we restrict our attention to the bipartite
case.
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2.2.1 LOCC measurements

We refer the reader to the references [Man13, Wat15] for the precise definition of an LOCC
channel. To a measurement µ : {1, . . . , N} → Pos(X ⊗ Y) on a bipartite system, we
associate the quantum-to-classical channel

Φµ(X) =
N∑
k=1

〈µ(k), X〉|k〉〈k| ⊗ |k〉〈k|, (2.25)

and we say that µ is an LOCC measurement if the channel Φµ can be implemented by an
LOCC protocol between Alice and Bob.

Notice that we can define different classes of LOCC, according to the number (finite
or infinite) of rounds that compose the protocols. For the scope of this thesis, the only
important thing to notice is that all the LOCC variants are contained in the class of
separable measurement (defined in the next section).

We denote the set of all N -outcome LOCC bipartite measurements on the bipartition
(X : Y) by MeasLOCC(N,X : Y).

2.2.2 Separable measurements

The class of separable measurements represents a commonly studied approximation of the
set of LOCC measurements. A positive semidefinite operator P ∈ Pos(X ⊗ Y) is said to
be separable if it is possible to write

P =
M∑
k=1

Qk ⊗Rk, (2.26)

for some choice of a positive integer M and positive semidefinite operators

Q1, . . . , QM ∈ Pos(X ) and R1, . . . , RM ∈ Pos(Y). (2.27)

Definition 2.2. Let X A,X B,YA, and YB be complex Euclidean spaces. A completely
positive mapping

Φ : L(X A ⊗X B)→ L(YA ⊗ YB)

is said to be a separable channel if it is a trace-preserving mappings and it is possible to
write

Φ =
M∑
k=1

ΨA
k ⊗ΨB

k , (2.28)
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for some choice of a positive integer M and collections of completely positive mappings

ΨA
1 , . . . ,Ψ

A
M : L(X A)→ L(YA) and ΨB

1 , . . . ,Ψ
B
M : L(X B)→ L(YB). (2.29)

Definition 2.3. Let X and Y be complex Euclidean spaces and N > 0 be a positive
integer. A measurement

µ : {1, . . . , N} → Pos(X ⊗ Y) (2.30)

is said to be a separable measurement if the corresponding quantum-to-classical channel
Φµ, defined as in Eq. (2.25), is a separable channel.

We denote the set of all N -outcome separable measurements on the bipartition (X : Y)
by MeasSep(N,X : Y). Separable measurements can be alternatively characterized as
those measurements whose measurement operators are separable, as it is formalized by the
following proposition.

Proposition 2.4. Let X and Y be complex Euclidean spaces, and let N > 0. A measure-
ment µ ∈ MeasSep(N,X : Y) is separable if and only if each µ(k) is a separable operator,
that is, µ(k) ∈ Sep(X : Y), for each k ∈ {1, . . . , N}.

We refer the reader to [Wat15] for a proof of Proposition 2.4, as well as for a proof that
every LOCC measurement is necessarily a separable measurement. From this latter fact it
follows that any limitation proved to hold for every separable measurement must also hold
for every LOCC measurement.

2.2.3 PPT measurements

Another class that represents a relaxation of the set of LOCC measurements is the class
of PPT measurements. Let TX : L(X ⊗ Y) → L(X ⊗ Y) be the linear mapping repre-
senting partial transposition with respect to the standard basis {|0〉, . . . , |n − 1〉} of X .
Equivalently,

TX (X) = (T⊗1L(Y))(X), (2.31)

for any operator X ∈ L(X ⊗ Y), where T : L(X )→ L(X ) is the transpose mapping.

When proving facts about PPT operators, we will use the fact that the transpose
mapping is its own adjoint and inverse, that is,

〈T(X), Y 〉 = 〈X,T(Y )〉, for any X, Y ∈ L(X ), (2.32)
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and
T(T(X)) = X, for any X ∈ L(X ). (2.33)

A positive semidefinite operator P ∈ Pos(X ⊗Y) is a PPT operator (short for positive
partial transpose) if it holds that

TX (P ) ∈ Pos(X ⊗ Y). (2.34)

We denote the set of all PPT operators in Pos(X ⊗ Y) as

PPT(X : Y) = {P ∈ Pos(X ⊗ Y) : TX (P ) ∈ Pos(X ⊗ Y)}. (2.35)

Notice that transpose and partial transpose are basis dependent, but the notion of PPT is
not. Also, in the definition of PPT(X : Y), it is irrelevant which of the two subspaces the
partial transpose acts on. In fact, since the transpose is a positive mapping, we have that

TY(P ) ∈ Pos(X ⊗ Y)⇒ T(TY(P )) = TX (P ) ∈ Pos(X ⊗ Y). (2.36)

A measurement is PPT if all its operators are PPT, as formally specified by the following
definition.

Definition 2.5. A measurement µ : {1, . . . , N} → Pos(X ⊗ Y) is called PPT if it is
represented by a collection of PPT measurement operators, that is,

µ(k) ∈ PPT(X : Y), (2.37)

for all k ∈ {1, . . . , N}.

We denote the set of all N -outcome PPT measurements on the bipartition (X : Y) by
MeasPPT(N,X : Y).

Every separable operator is a PPT operator, so every separable measurement (and
therefore every LOCC measurement) is a PPT measurement as well.

Proposition 2.6. Any separable operator P ∈ Sep(X : Y) is also a PPT operator over
the same bipartition, that is, P ∈ PPT(X : Y).

Proof. Suppose that P ∈ Sep(X : Y). Then it holds that

P =
M∑
k=1

Qk ⊗ Sk, (2.38)
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for some choice of a positive integer M > 0 and collections of operators

Q1, . . . , QM ∈ Pos(X ) and R1, . . . , RM ∈ Pos(Y). (2.39)

As the transpose mapping is positive, we have

(T⊗1L(Y))(S) =
M∑
k=1

T(Pk)⊗Qk ∈ Pos(X ⊗ Y), (2.40)

and therefore S ∈ PPT(X : Y).

For a positive semidefinite operator, the condition of remaining positive semidefinite
under the operation of partial transpose is therefore a necessary condition for separability.
It is also sufficient in C2⊗C3 and C2⊗C3 [Per96, HHH96], but it is not in higher dimension,
where there are entangled PPT operators.

The Choi operator of the transpose mapping T : L(Cn) → L(Cn) is the swap operator
Wn ∈ U(Cn ⊗ Cn), defined on the standard basis as

Wn =
n−1∑
i,j=0

|i〉〈j | ⊗ |j〉〈i|. (2.41)

The swap operator is not positive semidefinite and therefore the transpose mapping is not
completely positive.

The primary appeal of the set of PPT measurements is its mathematical simplicity. In
particular, the PPT condition is represented by linear and positive semidefinite constraints,
which allows for an optimization over the collection of PPT measurements to be represented
by a semidefinite program.

The reader may find useful the Venn diagram of Figure 2.1, which pictures inclusion
relationships between the main classes of mesaurements considered in the thesis. Notice
that all inclusion in the diagram are known to be strict.

2.3 Convex optimization

All the results of this thesis are based on a mathematical framework called cone program-
ming, which generalizes semidefinite programming. There has been an extensive range of
applications of semidefinite programming to quantum information theory, but this is not
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Figure 2.1: Inclusion relationships between the classes of measurements studied in the
thesis.

the case for the more general cone programming framework. The success of semidefinite
programming in quantum information comes from the fact that many quantum primitives
(states, channels, global measurements) can be represented within the cone of positive
semidefinite operators with the addition of simple linear constraints. Problems in which
one optimizes over the cone of separable operators, such as the problem of discriminating
states by separable measurements considered in this thesis, do not have a characterization
in the framework of semidefinite programming and for such problems the full expressivity
of the general cone programming framework is required. In this section we review basic
definitions in convex analysis and convex optimization.

Let V be an arbitrary vector space over the real or complex number. A subset K of V
is a cone if u ∈ K implies that λu ∈ K, for all scalar λ ≥ 0. A cone K is convex if u, v ∈ K
implies that u + v ∈ K. A cone program (also known as a conic program) expresses the
maximization of a linear function over the intersection of an affine subspace and a closed
convex cone in a finite-dimensional real inner product space [BV04].

When describing a cone program, it is sometimes convenient to compose small closed
convex cones in a bigger one, and in order to do that, one can make use of the following
fact.

Fact 2.7. The direct sum K ⊕K′ of two closed convex cones K and K ′ is a closed convex
cone.

Linear programming (LP) and semidefinite programming (SDP) are special cases of
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cone programming: in linear programming, the closed convex cone over which the op-
timization occurs is the positive orthant in Rn, while in semidefinite programming the
optimization is over the cone Pos(Cn) of positive semidefinite operators on Cn. In the case
of semidefinite programming, the finite-dimensional real inner product space is the real
vector space Herm(Cn) of Hermitian operators on Cn, equipped with the Hilbert-Schmidt
inner product.

Linear programming

Let n,m be positive integers, c ∈ Rn and b ∈ Rm be vectors of real numbers, and A ∈ Rn×m

be a matrix with real entries. Then a linear program is defined by the triple (c, b, A) and
by the following pair of optimization problems.

Primal linear program

maximize: 〈c, x〉
subject to: Ax = b,

x ≥ 0, x ∈ Rn.

Dual linear program

minimize: 〈b, y〉
subject to: ATy ≥ c,

y ∈ Rm.

Semidefinite programming

Let X and Y be complex Euclidean spaces, A ∈ Herm(X ) and B ∈ Herm(Y) be Hermitian
operators, and Φ : L(X ) → L(Y) be a Hermiticity preserving mapping. A semidefinite
program is defined by the triple (A,B,Φ) and by the following pair of optimization prob-
lems.

Primal semidefinite program

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ Pos(X ).

Dual semidefinite program

minimize: 〈B, Y 〉
subject to: Φ∗(Y ) ≥ A,

Y ∈ Herm(Y).

Cone programming

For the purposes of the present thesis, it is sufficient to consider only cone programs
defined over spaces of Hermitian operators (with the Hilbert-Schmidt inner product). In
particular, let Z and W be complex Euclidean spaces and let K ⊆ Herm(Z) be a closed,
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convex cone. For any choice of a linear map Φ : Herm(Z) → Herm(W) and Hermitian
operators A ∈ Herm(Z) and B ∈ Herm(W), one has a cone program defined by (A,B,Φ)
and represented by the following pair of optimization problems.

Primal cone program

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ K.

Dual cone program

minimize: 〈B, Y 〉
subject to: Φ∗(Y )− A ∈ K∗,

Y ∈ Herm(W).

Here, K∗ denotes the dual cone to K, defined as

K∗ = {Y ∈ Herm(Z) : 〈X, Y 〉 ≥ 0 for all X ∈ K}, (2.42)

and Φ∗ : Herm(W)→ Herm(Z) is the adjoint mapping to Φ.

Notice that the above programs are often presented in different (although equivalent)
ways in most convex optimization textbooks. In fact, the way the programs are presented
in this thesis differs from the so-called standard form. This choice is due to the fact that the
standard form is less suitable for programs that describe quantum information problems.

In order to see how semidefinite programming is a special case of cone programming,
let us observe the following elementary fact that comes from the definition of positive
semidefinite operators.

Fact 2.8. The cone of positive semidefinite operators is self-dual, that is,

Pos(X ) = (Pos(X ))∗, (2.43)

for any complex Euclidean space X .

In light of this, we have that K = K∗ = Pos(X ) and we can write the constraint from
the cone programming dual problem as Φ∗(Y )− A ∈ Pos(X ), that is, Φ∗(Y ) ≥ A.

Most of the definitions we introduce in the rest of the section holds for all linear,
semidefinite, and more general cone programs. For a cone program defined by (A,B,Φ),
one defines the feasible sets A and B of the primal and dual problems as

A =
{
X ∈ K : Φ(X) = B

}
and B =

{
Y ∈ Herm(W) : Φ∗(Y )− A ∈ K∗

}
. (2.44)

One says that the associated cone program is primal feasible if A 6= ∅, and is dual feasible
if B 6= ∅. The function X 7→ 〈A,X〉 from Herm(Z) to R is called the primal objective
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function, and the function Y 7→ 〈B, Y 〉 from Herm(W) to R is called the dual objective
function. The optimal values associated with the primal and dual problems are defined as

α = sup
{
〈A,X〉 : X ∈ A

}
and β = inf

{
〈B, Y 〉 : Y ∈ B

}
, (2.45)

respectively. (It is conventional to interpret that α = −∞ when A = ∅ and β = ∞ when
B = ∅.) The property of weak duality, which holds for all cone programs, is that the primal
optimum can never exceed the dual optimum.

Proposition 2.9 (Weak duality for cone programs). For any choice of complex Euclidean
spaces Z and W, a closed, convex cone K ⊆ Herm(Z), Hermitian operators A ∈ Herm(Z)
and B ∈ Herm(W), and a linear map Φ : Herm(Z)→ Herm(W), it holds that α ≤ β, for
α and β as defined in (2.45).

Proof. The proposition is trivial in case A = ∅ (which implies that α = −∞) or B = ∅
(which implies that β = ∞), so we will restrict our attention to the case that both A
and B are nonempty. For any choice of X ∈ A and Y ∈ B, one must have X ∈ K and
Φ∗(Y )− A ∈ K∗, and therefore 〈Φ∗(Y )− A,X〉 ≥ 0. It follows that

〈A,X〉 = 〈Φ∗(Y ), X〉 − 〈Φ∗(Y )− A,X〉 ≤ 〈Y,Φ(X)〉 = 〈B, Y 〉. (2.46)

Taking the supremum over all X ∈ A and the infimum over all Y ∈ B establishes that
α ≤ β.

Weak duality implies that every dual feasible operator Y ∈ B provides an upper bound
of 〈B, Y 〉 on the value 〈A,X〉 that is achievable over all choices of a primal feasible operator
X ∈ A, and likewise every primal feasible operator X ∈ A provides a lower bound of 〈A,X〉
on the value 〈B, Y 〉 that is achievable over all choices of a dual feasible solution Y ∈ B. In
other words, it holds that 〈A,X〉 ≤ α ≤ β ≤ 〈B, Y 〉, for every X ∈ A and Y ∈ B.

Some cone programs also satisfy the property of strong duality, which holds when the
optimal values of the primal program and of the dual program are equal, and the optimal
value of the dual program is attained. We abstain from a formal treatment of the conditions
that guarantee strong duality. Even though all cone programs described in the following
chapters satisfy strong duality, none of our results depend on that.
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Chapter 3

Bipartite state discrimination

This chapter introduces the problem of discriminating quantum states from a known set.
A scenario describing the problem is first presented for the case where the unknown state is
given to a single individual, and then generalized to a different scenario where the unknown
state is distributed to two parties. In this thesis we will focus on the bipartite case, leaving
for future work an extension of the results to the multipartite case.

After the problem description, this chapter reviews relevant background work, including
prior results on the local distinguishability of two classes of pure states that will be the
object of study in the following chapters: maximally entangled states and product states.
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3.1 Problem description

Global state discrimination

An instance of the state discrimination problem is defined by a complex Euclidean space
X , a positive integer N , and by an ensemble E of N states, that is,

E =
{

(p1, ρ1), . . . , (pN , ρN)
}
, (3.1)

where (p1, . . . , pN) is a probability vector and ρ1, . . . , ρN ∈ D(X ) are density operators
representing quantum states. We denote the set of all ensemble of this kind by Ens(N,X ).

The problem is formally described by the following scenario, which involves two indi-
viduals, Alice and Charlie (the reader who misses Bob can be reassured that he will join
us soon). Charlie picks an index

k ∈ {1, . . . , N},

according to the probability distribution (p1, . . . , pN), prepares a quantum register X with
the state ρk ∈ D(X ), and sends it to Alice, whose task is to identify the index k by
performing a measurement on the register X.

For Alice performing a measurement

µ : {1, . . . , N} → Pos(X ), (3.2)

the probability that she correctly distinguishes E is given by the expression

opt(E , µ) =
N∑
k=1

pk〈µ(k), ρk〉. (3.3)

Since µ is a measurement and ρ1, . . . , ρN are density operators, it is clear that

0 ≤ 〈µ(k), ρk〉 ≤ 1, (3.4)

for each k ∈ {1, . . . , N}. Moreover, since p is a probability vector, we have that

0 ≤ opt(E , µ) ≤ 1. (3.5)
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We denote by opt(E) the maximum probability of distinguishing E for any possible mea-
surement, that is,

opt(E) = max
µ∈Meas(N,X )

opt(E , µ). (3.6)

We say that E is distinguishable with probability at least p if we have opt(E) ≥ p. Whenever
E is distinguishable with probability 1, we say that E is perfectly distinguishable or that
Alice can distinguish E with certainty.

The probability distribution with which the states are selected is not important if we
are only interested in perfect distinguishability. In fact, from the bounds in Eq. (3.4) and
a standard convexity argument, for any probability vector p = (p1, . . . , pN), it holds that

N∑
k=1

pk〈µ(k), ρk〉 = 1 (3.7)

if and only if
〈µ(k), ρk〉 = 1, (3.8)

for each k ∈ supp(p). For this reason, whenever we are only interested in a qualitative
result (whether perfect distinguishability holds or not), we will take p to be the uniform
distribution, that is, p = (1/N, . . . , 1/N). In such cases, we will simply denote the ensemble
by the list of its states, that is,

E = {ρ1, . . . , ρN}. (3.9)

We will often be interested in the distinguishability of pure-state ensembles, where each
density operator is a rank-one projector, that is, for each k ∈ {1, . . . , N}, ρk = uku

∗
k, for

a list of unit vectors {u1, . . . , uN} ∈ X . In such case, by a further abuse of notation, we
simply denote the ensemble by a list of its vectors:

E = {u1, . . . , uN}. (3.10)

If the states are mutually orthogonal, that is,

〈ρi, ρj〉 = 0, (3.11)

for all i, j ∈ {1, . . . , N} with i 6= j, there is a measurement that perfectly distinguishes
them. Consider the spectral decomposition of each state:

ρk =

rk∑
i=1

λixk,ix
∗
k,i, (3.12)
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with λ1, . . . , λrk being positive real numbers and {xk,1, . . . , xk,rk} ⊂ X being an orthonormal
set. Alice can then construct the quantum measurement that perfectly distinguishes the
states, by defining the following measurement operators:

µ(k) =

rk∑
i=1

xk,ix
∗
k,i, (3.13)

for each k = 1, . . . , N − 1, and

µ(N) = 1X −
N−1∑
k=1

µ(k). (3.14)

It is clear that µ is a valid measurement and that

〈µ(k), ρk〉 = 1, (3.15)

for all k ∈ {1, . . . , N}.
Global distinguishability of non-orthogonal states is a prolific topic on its own and a

treatment of it is outside the scope of this thesis. For an exposition of results regarding
global state discrimination, the reader is referred to numerous surveys on the topic [Che00,
BHH04].

Bipartite state discrimination

This dissertation focuses on a modification of the above scenario in which we have three
individuals involved: Alice, Bob, and Charlie. In this new scenario, the states to be
distinguished lie on the tensor product of two complex Euclidean spaces, which we label
by X and Y and which are held respectively by Alice and Bob. In other words, the ensemble
consists of N bipartite states represented by the density matrices ρ1, . . . , ρN ∈ D(X ⊗ Y).

Charlie picks an index k ∈ {1, . . . , N} and prepares the corresponding state ρk ∈
D(X ⊗Y) on a pair of quantum registers (X,Y) that belong to Alice and Bob, in the sense
that the underlying space is X ⊗Y . Their task is to identify the index k chosen by Charlie,
by means of an LOCC measurement on (X,Y).

We will denote by optLOCC(E) the maximum success probability for Alice and Bob to
distinguish an ensemble E ∈ Ens(N,X ⊗Y) by means of any LOCC measurement, that is,

optLOCC(E) = max
µ∈MeasLOCC(N,X :Y)

opt(E , µ). (3.16)
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As it was discussed in Section 2.2, the set of LOCC measurements has a complex math-
ematical structure. For this reason, the state discrimination problem has been analyzed
for more tractable classes of measurements that approximate, in some sense, the LOCC
measurements. Among these, the classes of separable and PPT measurements are the most
studied, because of their nice mathematical and computational properties.

We denote by optSep(E) and optPPT(E) the optimal probability of distinguishing an
ensemble E ∈ Ens(N,X ⊗ Y) by separable and PPT measurements, respectively:

optSep(E) = max
µ∈MeasSep(N,X :Y)

opt(E , µ), (3.17)

and
optPPT(E) = max

µ∈MeasPPT(N,X :Y)
opt(E , µ). (3.18)

In lights of the containments pictured by the diagram in Figure 2.1, we have the fol-
lowing chain of inequalities:

optLOCC(E) ≤ optSep(E) ≤ optPPT(E) ≤ opt(E), (3.19)

for any ensemble E .

Interestingly, for each of these inequalities, there exists a set of states that makes the
inequality strict. For example, an ensemble for which the first inequality is strict was
given by [BDM+99]. One example that illustrates the difference between the power of
separable and PPT measurements was given in [Ter01] (more details on the set of states
corresponding to this example are given in Chapter 6 of this thesis.) Finally, there are
many examples of states that can be perfectly distinguished by global measurements, but
are not perfectly distinguishable by PPT measurement. The section that immediately
follows the present one reviews one of such examples.

One contribution of this thesis is that it presents new discrimination tasks for which
PPT measurements perform strictly better than separable measuerements. Characteristic
to our examples is the fact that the sets for which we show the separation are composed
either fully of maximally entangled states, or fully of product states.

In most of our examples and in most prior works on bipartite state discrimination, the
states are taken to be pure and orthogonal, so that a global measurement can trivially
discriminate them with certainty, that is, opt(E) = 1. In such cases, a separation between
opt(E) and, say, optLOCC(E) is obtained by showing that the set of states is not perfectly
distinguishable by LOCC measurements.
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3.2 Discriminating between pairs of states

A case of particular interest is when there are two states to be distinguished, chosen with
equal probability. This is equivalent to the quantum data hiding challenge in which a
secret bit b ∈ {0, 1} is required to be hidden into a bipartite state σb ∈ D(X ⊗ Y). In
the language of the previous section, we say that quantum data hiding is possible if there
exists an ensemble

E =

{(
1

2
, σ0

)
,

(
1

2
, σ1

)}
(3.20)

such that two conditions are simultaneously satisfied:

(a) opt(E) = 1, and

(b) optLOCC(E) ≤ 1/2 + ε,

for some “small” values of ε. The exact bounds on ε define the strength of the hiding
scheme and, of course, depend on the dimensions of Alice’s and Bob’s spaces.

The condition (a) above is equivalent to requiring the two states to be orthogonal1.
A consequence of this is that at least one of them must be a mixed, since a result by
Walgate, et al. [WSHV00] shows that any two orthogonal bipartite pure states can be
perfectly distinguished by LOCC.

The problem of discriminating between two quantum states is also interesting for its
connection with operator norms. In particular, a connection between the trace norm and
the optimal probability of distinguishing two states by means of global measurements is
estabilished by the following theorem.

Theorem 3.1 (Holevo-Helstrom). Given a complex Euclidean space X and two density
operators σ0, σ1 ∈ D(X ), it holds that

opt({σ0, σ1}) =
1

2
+

1

4
‖σ0 − σ1‖1. (3.21)

By reversing the logic direction of this theorem, one can define operator norms starting
from different set of measurements. This approach was taken in [MWW09], where the
so-called LOCC-norm was defined so that the following holds:

optLOCC({σ0, σ1}) =
1

2
+

1

4
‖σ0 − σ1‖LOCC. (3.22)

1We could be more general here and define another parameter δ ≈ 0 so to weaken Condition (a) to be
opt(E) ≥ 1− δ. This would not affect the discussion that follows, except for making the presentation less
clean.
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Similarly, one may define norms ‖·‖PPT and ‖·‖Sep that correspond to distinguishability
by PPT and separable measurements, respectively. (For a recent result concerning these
norms, see [AL15].)

Example 3.2 (Werner hiding pairs). One typical quantum data hiding scheme [TDL01,
DLT02] encodes the hidden classical bit in a Werner hiding pair. For any positive integer
n ≥ 2, let Wn ∈ U(Cn ⊗Cn) be the swap operator defined in Eq. (2.41). A Werner hiding
pair in Cn ⊗ Cn is defined by two states

σ
(n)
0 =

1⊗ 1 +Wn

n(n+ 1)
and σ

(n)
1 =

1⊗ 1−Wn

n(n− 1)
. (3.23)

Notice that σ
(n)
0 and σ

(n)
1 are also the normalized projections on the symmetric and anti-

symmetric subspace, respectively. From the orthogonality of the two states, we have

opt(E (n)) = 1, (3.24)

for any n, or equivalently
‖σ(n)

0 − σ
(n)
1 ‖1 = 2. (3.25)

In the next chapter we show that

optPPT(E (n)) ≤ 1

2
+

1

n+ 1
, (3.26)

and therefore this is an example of a set of states that makes the rightmost inequality in
Eq. (3.19) strict. Since there is an LOCC measurement that achieves the bound [DLT02],
we also have

optLOCC(E (n)) = optSep(E (n)) = optPPT(E (n)) =
1

2
+

1

n+ 1
, (3.27)

or equivalently

‖σ(n)
0 − σ

(n)
1 ‖LOCC = ‖σ(n)

0 − σ
(n)
1 ‖Sep = ‖σ(n)

0 − σ
(n)
1 ‖PPT =

4

n+ 1
. (3.28)

3.3 Discrimination of maximally entangled states

When investigating some problem, a typical computer science approach is to bring the op-
erating parameters of the problem to one extreme. In order to get a better understanding
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of the role played by entanglement in bipartite state distinguishability problems, one can
restrict their attention to the case in which the sets to be distinguished consist only of
orthogonal maximally entangled pure states. Considering states that are maximally en-
tangled, as opposed to partially entangled, is useful to reduce the number of variables that
need to be taken into account, and it helps to have neater problem statements. It makes
the problem easier to handle mathematically (recall that maximally entangled states are in
a one-to-one correspondence with unitary operators) and, at the same time, it constitutes
an edge case that is interesting from the physical point of view. The reason to consider
maximally entangled states can be summarized into one question: why bother with more
complicated cases when we do not even know how to deal with that?

In this section, some known results on the distinguishability of maximally entangled
states by LOCC, separable, and PPT measurements are reviewed, whereas new results are
presented in Chapter 5.

The simplest example of a set of LOCC-indistinguishable maximally entangled states
is the standard 2-qubit Bell basis (Eq. (2.13)). It turns out that the maximum probability
of distinguishing these 4 states, for any LOCC measurement, is 1/2 [GKR+01]. In fact,
a similar bound holds more in general: if we are given an equally probable ensemble
of N orthogonal maximally entangled states in Cn ⊗ Cn, the maximum probability of
distinguishing them by LOCC is n/N [GKRS04]. This bound holds even for the wider
classes of separable [DFXY09] and PPT measurements [YDY12]. In Chapter 5 this result
is re-proved using our cone programming framework.

The assumption on the sets consisting entirely of maximally entangled states is partic-
ularly significant when we inquire the question of how the size of LOCC-indistinguishable
sets relates to the local dimension of each of Alice’s and Bob’s subsystems. In fact, if we
allow states that are not maximally entangled to be in the set, we can construct indistin-
guishable sets with a fixed size in any dimension we like. Indeed, whenever we find a set
of indistinguishable maximally entangled states for certain local dimensions, those states
remain indistinguishable when embedded in any larger local dimensions. Nonetheless they
are no longer maximally entangled with respect to the new larger local dimensions.

Whereas this shows that any set of N > n orthogonal maximally entangled states can
never be locally distinguished with certainty, it leaves open the question whether there
exist sets of N ≤ n indistinguishable orthogonal maximally entangled states in Cn ⊗ Cn.
An answer to this question for the particular case of n = 3 = N was given by Nathanson
[Nat05], who showed that any three orthogonal maximally entangled states in C3⊗C3 can
be perfectly distinguished by LOCC. In a followup work [Nat13], Nathanson proved that 3
maximally entangled states in Cn⊗Cn, for any n ≥ 3, are always perfectly distinguishable
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by PPT.

Several results aimed at filling the landscape for the case 3 < N ≤ n. For the weaker
model of one-way LOCC protocols, Bandyopadhyay et al. [BGK11] showed some explicit
examples of indistinguishable sets of states with the size of the sets being equal to the
dimension of the subsystems, i.e., N = n. The states they use for those examples lie on
systems whose local dimension is n = 4, 5, 6. Later in Chapter 5, we go back to these
examples and give numerical evidence that the same sets of states cannot be distinguished
with certainty even if we allow the parties to perform PPT measurements.

Recently, Yu et al. [YDY12] presented the first example of N maximally entangled
states in CN ⊗ CN that cannot be perfectly distinguished by any PPT measurement, and
therefore by any general LOCC protocols. Their particular example is composed by the
following N = 4 states in C4 ⊗ C4:

|φ1〉 =
1

2
|0〉|0〉+

1

2
|1〉|1〉+

1

2
|2〉|2〉+

1

2
|3〉|3〉,

|φ2〉 =
1

2
|0〉|3〉+

1

2
|1〉|2〉+

1

2
|2〉|1〉+

1

2
|3〉|0〉,

|φ3〉 =
1

2
|0〉|3〉+

1

2
|1〉|2〉 − 1

2
|2〉|1〉 − 1

2
|3〉|0〉,

|φ4〉 =
1

2
|0〉|1〉+

1

2
|1〉|0〉 − 1

2
|2〉|3〉 − 1

2
|3〉|2〉.

(3.29)

Later in Chapter 5 we turn their result into a quantitative one, by showing that PPT
measurements can only succeed with probability at most 7/8 and that 3/4 is a tight bound
on the probability of distinguishing these states by separable (and LOCC) measurements.

Yet another tile in the landscape of maximally entangled states distinguishability is a
result by Fan [Fan04], for which any N generalized Bell states in Cn⊗Cn can be perfectly
distinguished by LOCC whenever n is prime and(

N

2

)
≤ n.

Table 3.1 recaps all above-mentioned results about the distinguishability of maximally
entangled states by LOCC and PPT measurements, and compares them with the results
obtained in this thesis (highlighted in gray).
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PPT LOCC References

N = 2 — all dist. [WSHV00]

N = 3 = n — all dist. [Nat05]

N = 4 = n some indist. — [YDY12]

N = n > 4 some indist. — [Cos13]

4 < N < n some indist. — [CR14, BCJ+15]

N > n all indist. — [YDY12, DFXY09, GKRS04]

Table 3.1: Distinguishability of maximally entangled states. (“some indist.”: there ex-
ist sets of states that are indistinguishable for the dimension and the class of measure-
ments of the corresponding cell; “all dist./indist.”: all sets of states are distinguish-
able/indistinguishable; “—”: the distinguishability can be inferred by the rest of the row.)

3.4 Discrimination of product sets

Indistinguishability by LOCC is not a prerogative of entangled states. The famous domino
state set of [BDM+99], for example, is a collection of orthogonal product states that cannot
be perfectly discriminated by LOCC protocols. The local dimension of the domino states
is 3, and one takes N = 9, p1 = · · · = p9 = 1/9, and

|φ1〉 = |1〉|1〉,

|φ2〉 = |0〉
(
|0〉+|1〉√

2

)
, |φ3〉 = |2〉

(
|1〉+|2〉√

2

)
,

|φ4〉 =
(
|1〉+|2〉√

2

)
|0〉, |φ5〉 =

(
|0〉+|1〉√

2

)
|2〉,

|φ6〉 = |0〉
(
|0〉−|1〉√

2

)
, |φ7〉 = |2〉

(
|1〉−|2〉√

2

)
,

|φ8〉 =
(
|1〉−|2〉√

2

)
|0〉, |φ9〉 =

(
|0〉−|1〉√

2

)
|2〉.

(3.30)

A rather complicated argument demonstrates that this collection cannot be discriminated
by LOCC with probability greater than 1− ε for some choice of a positive real number ε.
(A simplified proof appears in [CLMO13], where this fact is proved for ε = 1.9× 10−8.)
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3.5 Entanglement cost of state discrimination

As explained in the introduction, three Bell states given with uniform probabilities can be
discriminated by separable measurements with success probability at most 2/3, while four
Bell states can be discriminated with success probability at most 1/2. These bounds can
be obtained by a fairly trivial selection of LOCC measurements, and can be shown to hold
even for PPT measurements.

On the other hand, if the parties are given a maximally entangled bit as a resource, then
they can perform a teleportation protocol to send each other their respective parts of the
Bell pair they have been asked to identify. The set of Bell states constitutes an example of a
set that is distinguishable only if we are willing to consume some entanglement (given as an
additional resource) or, in other words, we say that the entanglement cost of distinguishing
the Bell states with certainty must be bigger than zero.

The entanglement cost of quantum operations and measurements, within the paradigm
of LOCC, has been considered previously. For instance, [Coh08] studied the entanglement
cost of perfectly discriminating elements of unextendable product sets by LOCC measure-
ments. Interestingly, his work presents some protocol where entanglement is used more
efficiently than in standard teleportation protocols. In later work, [BBKW09] and [BRW10]
considered the entanglement cost of measurements and established lower bounds on the
amount of entanglement necessary for distinguishing complete orthonormal bases of two
qubits.

Our work on the entanglement cost of Bell states was inspired by a question left open
by Yu, Duan, and Ying, who considered the entanglement cost of state discrimination
problems by PPT and separable measurements [YDY14].

3.6 Previous approaches

In the results roundup of the previous sections, we summarized “positive” results, in which
it is shown that a certain probability of success can be obtained by some measurement, as
well as “negative” results, for which an upper bound on the probability of success is shown
for any measurement in a certain class.

To prove the first kind of results, one needs to show a protocol (for LOCC), or a
collection of measurement operators (for PPT and separable) that achieves the given prob-
ability. Some protocols/measurements might be complicated to devise, others are based
on the composition of simple primitives. For instance, when Alice and Bob are supplied
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with entangled bits as resource, they can a perform a teleportation protocol on a part of
the states they are asked to distinguish (an example of such a protocol is shown in Chapter
5 for the task of distinguishing three and four Bell states).

To show that the states are not distinguishable, many techniques have been devised.
One possible approach is the one pursued by Walgate and Hardy [WH02], which is based
on a cases analysis in which all possible measurements are eliminated.

Another method, considered in [GKR+01, GKRS04], is to reduce the distinguishability
problem to a question on the amount of entanglement that can be distilled from a certain
mixed state. Say you want to prove that the four Bell states from Eq. (2.13) are not
perfectly distinguishable by any LOCC protocols. Suppose that the unknown Bell state is
shared among two parties, Alice and Bob, whose spaces are denoted by X1 and Y1. Let
X2 and Y2 two other spaces of the same dimensions held by two more parties, Charlie and
Dan. Consider the state

ρ ∈ D ((X1 ⊗ Y1)⊗ (X2 ⊗ Y2)) (3.31)

defined as

ρ =
1

4

∑
i∈{0,1,2,3}

ψi ⊗ ψi. (3.32)

By contradiction, assume that {ψ0, . . . , ψ3} ⊂ D(X1⊗Y1) are distinguishable by an LOCC
protocol between Alice and Bob. Then they could communicate the outcome classically to
Charlie and Dan, who would use this information to create a shared entangled bit between
each other. This is not possible, since ρ can also be written (because of the symmetry
among Bell states) as

ρ =
1

4

∑
i∈{0,1,2,3}

ψi ⊗ ψi ∈ D ((X1 ⊗X2)⊗ (Y1 ⊗ Y2)) , (3.33)

and therefore it contradicts the fact that ρ is separable in the cut between Alice and Charlie
on one side, and Bob and Dan on the other side, that is,

ρ ∈ Sep(X1 ⊗X2 : Y1 ⊗ Y2). (3.34)

A similar argument shows that no three Bell states, and more in general, no set of n +
1 orthogonal maximally entangled states in Cn ⊗ Cn, can be perfectly distinguished by
LOCC2. This method is referred in the literature as GKRSS method, by the initials of the
authors of [GKR+01].

2Later in Section 5.1, we will show a proof of this fact by using the convex programming framework
introduced in this thesis.
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In [HSSH03], a modification of the GKRSS method is presented, called HSSH method.
In the GKRSS method, the local distinguishability problem is reduced to analyzing the
entanglement contained in a mixed states constructed starting from the states that are to
be distinguished. The idea is to compare the entanglement in the mixed state before and
after the distinguishability protocol has run its course. In HSSH the problem is reduced
to comparing the entanglement measures in pure states instead. For some instances of
the problem, the HSSH method turns out to be more powerful, due to the fact that
entanglement measures for pure states are better understood. In fact, through the HSSH
method, the problem reduces to understanding entanglement transformations between pure
states, for which necessary and sufficient conditions were derived by Nielsen [Nie99], and
Jonathan and Plenio [JP99]. An application of the method by [HSSH03] is the discovery
of the first set of n indistinguishable states in Cn ⊗ Cn.

The original proof in [TDL01] that the Werner states form a hiding pair (Example 3.2
above) also exploits the theory of entanglement, but makes use of an extra observation,
that is, the fact that the operators that constitute an LOCC measurement must be PPT.
The mathematical properties of PPT measurements were also exploited in the recent proofs
by [YDY12, YDY14], which triggered the work of this thesis.
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Chapter 4

A cone programming framework for
local state distinguishability

Due to the intrinsic complexity of LOCC protocols, it is hard to come up with techniques
for their analysis. This is true in particular for the analysis of the local state discrimination
problem. All the proof techniques that have been proposed so far for this problem have
their own limitations: they are mathematically cumbersome, or they bound the power only
of limited subclasses of LOCC (one-way LOCC, for instance), or they can be applied only
to very specific set of states.

In this chapter we provide a more general framework based on convex optimization
to prove bounds on LOCC protocols for the task of bipartite state discrimination. We
build on the idea described in Chapter 2 that LOCC measurements can be approximated
by more tractable classes of measurements, in particular the sets of separable and PPT
measurements. It turns out that we can describe these sets conveniently using convex
cones, and therefore, many problems in which we optimize over them can be cast into the
cone programming paradigm.

Contents
4.1 General cone program . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Bipartite measurements . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 PPT measurements . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Separable measurements . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Symmetric extensions . . . . . . . . . . . . . . . . . . . . . . . . 47
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4.3 An example: Werner hiding pair . . . . . . . . . . . . . . . . . 51

4.4 A discussion on computational aspects . . . . . . . . . . . . . 53

4.5 Unambiguous state discrimination . . . . . . . . . . . . . . . . 55

4.1 General cone program

The global state discrimination problem was one of the first applications of semidefinite
programming to the theory of quantum information [EMV03]. Let us recall the parameters
that define an instance of the problem: a complex Euclidean space X , a positive integer
N , and an ensemble E of N states, that is,

E =
{

(p1, ρ1), . . . , (pN , ρN)
}
, (4.1)

where ρ1, . . . , ρN ∈ D(X ) and (p1, . . . , pN) is a probability vector. We can construct a
family of semidefinite programs parametrized by X and N , such that one program takes
E ∈ Ens(X , N) as input and its optimal value corresponds to the maximum probability for
any global measurement to distinguish the states in E :

Primal (Global measurements)

maximize:
N∑
k=1

pk〈ρk, µ(k)〉,

subject to:
N∑
k=1

µ(k) = 1X

µ : {1, . . . , N} → Pos(X )

(4.2)

The variables of the program µ(1), . . . , µ(N) form a collection of linear operators and the
linear constraints of the program impose that such collection forms a valid measurements.
In particular, the constraints demand that each operator belongs to the cone of semidefinite
operators and that all the operators sum to identity, as in the definition of quantum
measurement from Section 2.2.

The key observation of this dissertation is that we can generalize the above semidefinite
program to a family of cone programs, whenever the set of measurements over which we are
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optimizing forms a convex cone. In effect, this generalization turns out to be helpful only
when the set of measurements is characterized by the further property that a measurement
belongs to the set if all its measurement operators to belong to a particular convex cone.

More formally, say we are given a complex Euclidean space X and consider the problem
of distinguishing the ensemble E from Eq. (4.1) by any measurement in some class

K ⊂ Meas(N,X ). (4.3)

Further, suppose that the following characterization of K holds.

Property 4.1. A measurement µ : {1, . . . , N} → Pos(X ) belongs to the set K if and only
if there exists a convex cone C ⊂ Pos(X ) such that each measurement operator belongs to
C, that is, µ(k) ∈ C, for each k ∈ {1, . . . , N}.

If this property is satisfied, the optimal probability of distinguishing E by any measure-
ment in K is thus given by the optimal solution of the following cone program:

Primal (General cone program)

maximize:
N∑
k=1

pk〈ρk, µ(k)〉,

subject to:
N∑
k=1

µ(k) = 1X

µ : {1, . . . , N} → C

(4.4)

If one is to formally specify this problem according to the general form for cone programs
presented in Section 2.3, the function µ may be represented as a block matrix of the form

X =

µ(1) · · · ·
...

. . .
...

· · · · µ(N)

 ∈ Herm(X ⊕ · · · ⊕ X ) (4.5)

with the off-diagonal blocks being left unspecified. The cone denoted by K in Section 2.3
is taken to be the cone of operators of this form for which each µ(k) belongs to the cone C.

The operators A and B and the mapping Φ are chosen in the natural way:

A =

p1ρ1 · · · 0
...

. . .
...

0 · · · pNρN

 , B = 1X , (4.6)
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and Φ : L(X ⊕ · · · ⊕ X )→ L(X ) is defined as

Φ

X1 · · · ·
...

. . .
...

· · · · XN

 ≡ X1 + · · ·+XN , (4.7)

for any X1, . . . , XN ∈ L(X ).

By setting Y = CN , one can easily verify that the mapping Φ∗ : L(X ) → L(Y ⊗ X ),
defined as

Φ∗(H) ≡ 1Y ⊗H, (4.8)

satisfies Equation (2.6) and therefore is the adjoint of Φ: for any H ∈ L(X ). Also, let
C∗ ⊂ Herm(X ) denote the dual cone of C. With these definitions in hand, one can write
the dual of the Program (4.4) as follows:

Dual (General cone program)

minimize: Tr(H)

subject to: H − pkρk ∈ C∗ (for each k = 1, . . . , N)

H ∈ Herm(X ).

(4.9)

Throughout the thesis we will use the property of weak duality of cone programs (Propo-
sition 2.9) to upper bound the optimal value of the primal program (4.4). The cone pro-
grams considered in this thesis also possess the property of strong duality. This property
depends on the specific cone C, and we will discuss it whenever we consider a specific C,
although it should be noted that strong duality is not needed for any of our results.

In the rest of this chapter, we will see different instantiations of the general program for
a variety of measurements classes. We started this section by presenting the semidefinite
program (4.2) for the problem of state distinguishability by global measurement. The cone
C corresponding to that program is the cone of semidefinite operators, that is, C = Pos(X ).
Due to Fact 2.8, we have that C∗ = C, and thus we can write the following program dual
to Program (4.2):

Dual (Global measurements)

minimize: Tr(H)

subject to: H − pkρk ∈ Pos(X ) (for each k = 1, . . . , N)

H ∈ Herm(X ).

(4.10)
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4.2 Bipartite measurements

The above generalization of the optimal measurement cone program turns out to be par-
ticularly helpful for the analysis of the bipartite state discrimination problem, which is the
main focus of this thesis.

Recall that, as input of the problem, we are given two complex Euclidean spaces X and
Y , one for each party, a positive integer N , and an ensemble of states that are distributed
among the spaces of the two parties, that is,

E =
{

(p1, ρ1), . . . , (pN , ρN)
}
, (4.11)

with ρ1, . . . , ρN ∈ D(X ⊗ Y).

Ideally, we would like to solve the following problem:

Primal (LOCC measurements)

maximize:
N∑
k=1

pk〈ρk, µ(k)〉,

subject to: µ ∈ MeasLOCC(N,X : Y).

(4.12)

Phrasing this problem as a cone program is not interesting as such. It is technically
possible, as we can write the constraints of the program in terms of membership of the
variables to a convex cone1 along with some additional linear constraints. However we
would not be able to exploit the advantages that come from such formulation, due to the
fact that the set of LOCC measurements does not possess nice mathematical properties.
For instance, we do not have a characterization of LOCC measurements on the same lines of
Property 4.1, and consequently we cannot cast the problem in the general form of Program
(4.4).

As indicated in Chapter 3, the LOCC set can be approximated by other sets of mea-
surements that are easier to be manipulated mathematically. It turns out that both the
sets of PPT and separable measurements are suitable for the cone programming frame-
work described above. In fact, they both form closed convex cones, for both these sets
it is relatively easy to characterize the dual set, and moreover, an equivalent of Property

1The exposition of Section 2.3 limited the definition of cone programs to optimization problems in which
the underlying cone is topologically closed. It is known that the set of LOCC operations is not closed, but
one could consider the closure of the set [CLM+14] and yet the discussion here would still apply.
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4.1 holds. For example, Proposition 2.4 characterizes a separable measurement over the
bipartition (X : Y) as a collection of operators belonging to the cone Sep(X : Y). This
property allows us to characterize the maximum probability of distinguishing the ensemble
in Eq. (4.11) by any separable measurement as a cone program of the same form as the
one in (4.4), where instead of X , the underlying space of the operators is X ⊗Y , and C(X )
is replaced by the cone of separable operators Sep(X : Y).

In the rest of this section, we study the different programs that derive from the Pro-
gram (4.4) when we instantiate C with some particular cones corresponding to different
classes of bipartite measurements. In particular, we will mainly look at the programs
derived from the cones of separable operators, PPT operators, and operators with k-
symmetric extensions. For each of these programs, we will show the dual program and try
to make any possible simplification. Moreover, we will point it out whenever a program can
be expressed by using only semidefinite constraints, as it was the case for the Program (4.2)
from above.

4.2.1 PPT measurements

We start with the cone of PPT operators and we describe a semidefinite program that
computes optPPT(E), when given as input an ensemble E ∈ Ens(N,X : Y). Using tools
of convex optimization to solve problems concerning the PPT cone is not a novel idea.
Two other applications of convex programming to the realm of PPT operations are the
semidefinite program shown by Rains to compute the maximum fidelity obtained by a
PPT distillation protocol [Rai01] and the hierarchy of semidefinite programs proposed as
separability criteria by Doherty, Parrilo, and Spedalieri [DPS02, DPS04].

Recall from Definition 2.5 that a measurement µ : {1, . . . , N} → Pos(X ⊗ Y) is in
MeasPPT(N,X : Y) if and only if

µ(k) ∈ PPT(X : Y), (4.13)

for each k ∈ {1, . . . , N}. From the definition of PPT(X : Y), we can write the cone
program in the following form:
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Primal (PPT measurements)

maximize:
N∑
k=1

pk〈ρk, µ(k)〉,

subject to:
N∑
k=1

µ(k) = 1X⊗Y

µ : {1, . . . , N} → Pos(X ⊗ Y),

TX (µ(k)) ∈ Pos(X ⊗ Y) (for each k = 1, . . . , N).

(4.14)

An immediate observation is that the cone program above is in fact a semidefinite program.
To see this formally, let us introduce N variables Q1, . . . , QN ∈ Herm(X ⊗Y) and, for each
k ∈ {1, . . . , N}, let

Qk = TX (µ(k)). (4.15)

One can write the above program as a semidefinite program in the standard form of Sec-
tion 2.3, where

X =

µ(1) · · · ·
...

. . .
...

· · · · µ(N)

⊕
Q1 · · · ·

...
. . .

...
· · · · QN

 (4.16)

is the variable over which we optimize,

A =

p1ρ1 · · · ·
...

. . .
...

· · · · pNρN

⊕
0 · · · ·

...
. . .

...
· · · · 0

 , (4.17)

and

B =


1X⊗Y · · · · ·
· 0 · · · ·
...

...
. . .

...
· · · · · 0

 . (4.18)

are the known inputs of the problem, and the map Φ : is defined as

Φ(X) ≡


µ(1) + · · ·+ µ(N) · · · · ·

· TX (µ(1))−Q1 · · · ·
...

...
. . .

...
· · · · · TX (µ(N))−QN

 , (4.19)
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for any operator X in the form of Eq. (4.16).

Once the program is in the standard form, one can easily derive its dual. The variable
of the dual program is an Hermitian operator defined as follows:

Y =


H · · · · ·
· −R1 · · · ·
...

...
. . .

...
· · · · · −RN

 , (4.20)

for Hermitian operators Y,R1, . . . , RN ∈ Herm(X ⊗ Y). The adjoint of Φ is the mapping

Φ∗(Y ) ≡

H − TX (R1) · · · ·
...

. . .
...

· · · · H − TX (RN)

⊕
R1 · · · ·

...
. . .

...
· · · · RN

 , (4.21)

for any operator Y in the form of Eq. (4.20). It is easy to verify that the map Φ∗ satisfies
Eq. (2.6). From the fact the the partial transpose is its own adjoint and inverse, we have
that

〈A,B〉 = 〈TX (A),TX (B)〉, (4.22)

for any operators A,B ∈ L(X ⊗ Y), which implies

〈µ(k),TX (Rk)〉 = 〈TX (µ(k)), Rk〉, (4.23)

for any k ∈ {1, . . . , N}, and therefore

〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉. (4.24)

By rearranging everything in a more explicit form, we get the following dual program:

Dual (PPT measurements)

minimize: Tr(H)

subject to: H − pkρk ≥ TX (Rk) (for each k = 1, . . . , N),

R1, . . . , RN ∈ Pos(X ⊗ Y),

H ∈ Herm(X ⊗ Y).

(4.25)
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Decomposable operator

An equivalent way of deriving the above dual program is by defining the cone

PPT∗(X : Y) = {S + TX (R) : S,R ∈ Pos(X ⊗ Y)}, (4.26)

which satisfies (2.42) and therefore is the dual cone of PPT(X : Y). The program above
corresponds to an instance of the generic dual program (4.9), where C∗ is replaced by
PPT∗(X : Y).

The operators in PPT∗(X : Y) can also be characterized as representations of so-called
decomposable maps from L(Y) to L(X ), via the Choi isomorphism (see Section 2.1.3)

Definition 4.2. A decomposable map Φ : L(Y) → L(X ) is a linear map that can be
represented as the sum of a completely positive map and a completely co-positive map,
that is, there exist two completely positive maps Ψ,Ξ : L(Y)→ L(X ), such that

Φ = Ψ + T ◦Ξ, (4.27)

where T denotes the transpose map.

Exploiting symmetries

Whenever the ensemble of states we wish to distinguish exhibits some symmetry, we can
simplify the semidefinite program (PPPT) to a linear program. One particular case where
this kind of symmetry emerges is when we consider ensembles of so-called lattice states.
Let

ψi = |ψi〉〈ψi| ∈ D(C2 ⊗ C2),

for i ∈ {0, 1, 2, 3}, be the density operators corresponding to the standard Bell states, as
defined in Eq. (2.13). Let v ∈ Zt4 be a t-dimensional vector and let |ψv〉 ∈ C2t ⊗ C2t be
the maximally entangled state given by the tensor product of Bell states indexed by the
vector v = (v1, . . . , vt), that is,

|ψv〉 = |ψv1〉 ⊗ . . .⊗ |ψvt〉.

In the literature, operators diagonal in the basis {ψv = |ψv〉〈ψv | : v ∈ Zt4} are called lattice
operators, or lattice states if they are also density operators [Pia06].
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The equations and the proposition that follow, regarding properties of the Bell states,
will be used in the main proof of this section and can be proved by direct inspection.

TX (ψ0) =
1

2
1− ψ2, TX (ψ1) =

1

2
1− ψ3,

TX (ψ2) =
1

2
1− ψ0, TX (ψ3) =

1

2
1− ψ1.

(4.28)

Proposition 4.3. Let {σ0, σ1, σ2, σ3} ⊂ Herm(C2) be the set of Pauli operators in defined
in Eq. (2.11). It holds that the Bell states from Eq. (2.13) are invariant under the group
of local symmetries

G =
{
σi ⊗ σi : i ∈ {0, 1, 2, 3}

}
, (4.29)

that is, ψi = UψiU
∗ for any U ∈ G and any i ∈ {0, 1, 2, 3}.

It turns out that in the case the set to distinguish contains only lattice states, the
semidefinite program (PPPT) simplifies remarkably, as it is established by the following
theorem.

Theorem 4.4. If the set to be distinguished consists only of lattice states, then the prob-
ability of successfully distinguishing them by PPT measurements can be expressed as the
optimal value of a linear program.

Proof. We will prove that for any feasible solution of the semidefinite program (PPPT),
there is another feasible solution consisting only of lattice operators for which the objective
function takes the same value.

Let ∆ : L(C2 ⊗ C2)→ L(C2 ⊗ C2) be the channel defined as follows:

∆(X) =
1

|G|
∑
U∈G

UXU∗, (4.30)

where G is the group of local unitaries defined in Proposition 4.3. The channel ∆(X) acts
on X as a completely dephasing channel in the Bell basis. Let X (t) = Y(t) = C2t for some
positive integer t > 1. Say the states we want to distinguish,

ρ1, . . . , ρN ∈ D(X (t) ⊗ Y(t)), (4.31)

are lattice states. Let Φ = ∆⊗t be the t-fold tensor product of the map ∆, that is,

Φ(X1 ⊗ · · · ⊗Xt) = ∆(X1)⊗ · · · ⊗∆(Xt), (4.32)
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for any choice of linear operators X1, . . . , Xt ∈ L(X ⊗ Y). Assume that a measurement

µ : {1, . . . , N} → PPT(X : Y)

is a feasible solution of the program (PPPT) for the states ρ1, . . . , ρN . In the rest of the
proof we want to show that a new measurement µ′ constructed by applying Φ to each
measurement operator of µ is also a feasible solution of the program (PPPT), for the same
set of states. Since Φ is a dephasing channel in the lattice basis, this would imply the
statement of the theorem.

First, let us observe that the value of the objective function for the solution µ′ is the
same as the value for the original solution µ. The channel Φ is its own adjoint and therefore
we have

〈µ(k), ρk〉 = 〈µ(k),Φ(ρk)〉 = 〈Φ(µ(k)), ρk〉,
for any k = 1, . . . , N .

Next, we show that µ′ is a PPT measurement. From the fact that Φ is unital (in fact
it is a mixed unitary channel), we have

Φ(µ(1)) + . . .+ Φ(µ(N)) = 1, (4.33)

and from the fact that Φ is positive, we have

Φ(µ(k)) ∈ Pos(X (t) ⊗ Y(t)) (4.34)

and
Φ(TX (µ(k))) ∈ Pos(X (t) ⊗ Y(t)), (4.35)

for any k ∈ {1, . . . , N}. The first fact implies that µ′ is indeed valid measurement. The
second fact is close to what we want in order to show that µ′ is a PPT measurement. To
complete the proof, we wish to show that the partial transpose mapping commutes with
the channel Φ. First we observe how the partial transposition modifies the action of local
operators. Given linear operators A ∈ L(X ), B ∈ L(Y) and X ∈ L(X ⊗ Y), we have

TX [(A⊗B)X(A⊗B)∗] = (A⊗B) TX (X)(A⊗B)∗. (4.36)

Now, for the Pauli matrices, we have σj = σj for j ∈ {0, 1, 3} and σ2 = −σ2. Therefore

∆(TX (X)) = TX (∆(X)), for any X ∈ L(X ⊗ Y). (4.37)

This property trivially extends by tensor product to Φ and therefore Eq. (4.35) implies

TX (Φ(µ(k))) ≥ 0, (4.38)

for any k ∈ {1, . . . , N}, which concludes the proof.
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The advantage of the linear programming formulation is in the computational efficiency
of the algorithms that solve the program. However, for sake of uniformity, in the analytic
proofs that will follow, we will always stick to the more general semidefinite programming
formulation, even when we consider distinguishability of lattice states.

4.2.2 Separable measurements

We have yet to fully exploit the expressive power of the cone programming language. In
this section we do so by showing a connection between convex optimization and the cone of
separable operators, which would not be possible if the only tool at hand was semidefinite
programming. Surprisingly, there are only few examples in the literature ([GSU13] being
one of those) where this connection has been made use of.

As it is stated by Proposition 2.4, a measurement µ : {1, . . . , N} → Pos(X ⊗ Y) is
separable when

µ(k) ∈ Sep(X : Y), (4.39)

for each k ∈ {1, . . . , N}. We can write the maximum probability of distinguishing an
ensemble E by separable measurements, optSep(E), as the optimal value of the following
cone program:

Primal (PSep)

maximize:
N∑
k=1

pk〈ρk, µ(k)〉,

subject to:
N∑
k=1

µ(k) = 1X⊗Y ,

µ : {1, . . . , N} → Sep(X : Y).

(4.40)

An important observation about this program is that, unlike it was the case for the PPT-
distinguishability program, its constraints cannot be formulated as semidefinite constraints.
In Section 4.4 we will see how this has implications in the computational complexity of the
problem.

We denote the cone dual to Sep(X : Y) by Sep∗(X : Y), and defer its definition to the
next paragraph, after we write the Program dual of (4.40):
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Dual (DSep)

minimize: Tr(H)

subject to: H − pkρk ∈ Sep∗(X : Y) (for each k = 1, . . . , N),

H ∈ Herm(X ⊗ Y).

(4.41)

Block-positive operators

The cone Sep∗(X : Y), which is commonly known as the set of block-positive operators, is

Sep∗(X : Y) =
{
H ∈ Herm(X ⊗ Y) : 〈P,H〉 ≥ 0 for every P ∈ Sep(X : Y)

}
. (4.42)

There are several equivalent characterizations of this set. For instance, one has

Sep∗(X : Y) =
{
H ∈ Herm(X ⊗ Y) :

(1X ⊗ y∗)H(1X ⊗ y) ∈ Pos(X ) for every y ∈ Y
}
. (4.43)

Alternatively, block-positive operators can be characterized as Choi representations of pos-
itive linear maps. That is, for any linear map Φ : L(Y)→ L(X ) mapping arbitrary linear
operators on Y to linear operators on X , the following two properties are equivalent:

(a) For every positive semidefinite operator Y ∈ Pos(Y), it holds that Φ(Y ) ∈ Pos(X ).

(b) The Choi operator J(Φ) of the mapping Φ, defined as in Eq. (2.19), satisfies

J(Φ) ∈ Sep∗(X : Y). (4.44)

In order to prove the equivalence, observe the following equation:

(1X ⊗ y∗)J(Φ)(1X ⊗ y) = Φ(yyT), (4.45)

which holds for every vector y ∈ Y . Since the operator yyT is positive semidefinite, we have
that (a) implies (b). To see the converse, recall that every positive semidefinite operator
can be written as a positive linear combination of rank-1 positive semidefinite operators.
Therefore, from the property (b), it holds that

(1X ⊗ yT)J(Φ)(1X ⊗ y) = Φ(yy∗) ∈ Pos(X ), (4.46)

for every vector y ∈ Y , and thus by linearity Φ is a positive mapping.
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Dual to the fact that there are non-separable positive semidefinite operators is the fact
that there are block-positive operators, which are not positive semidefinite. Such operators
are called entanglement witnesses and represent (via the Choi representation) linear maps
that are positive, but not completely positive.

One example of entanglement witness is the swap operator defined in (2.41), which
is the Choi representation of the transpose map. We will see many other example of
entanglement witnesses in later sections; for a more exhaustive review, see [CS14].

The Venn diagram in Figure 4.1 depicts the containments of sets that are dual to the
sets of measurements operators we have considered so far (a set with one shade of gray is
dual to the set with the same shade of gray from Figure 2.1).

?

Sep*

PPT*

Pos

?

Positive

Decomposable

Completely
positive

Figure 4.1: Sets of operators that are dual to the sets of Figure 2.1 (on the left) and the
corresponding sets of linear mappings via the Choi isomorphism (on the right).

4.2.3 Symmetric extensions

For any given ensemble of states E , the cone program (4.40) for separable measurements
outputs a better (although not always strictly better) approximation of optLOCC(E), com-
pared to the output of the semidefinite program (4.14) for PPT measurements. The draw-
back is in the computational complexity: on the one extreme, we have polynomial time
algorithms to solve the PPT semidefinite program, and on the other extreme, we can prove
that optimizing over a set of separable operator is an NP-hard problem (more details in
Section 4.4).
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Building up on an idea by Doherty, Parrilo, and Spedalieri [DPS02, DPS04], we are
able to interpolate between these two extremes and construct a hierarchy of semidefinite
programs characterized by the following trade-off: whenever we climb up a level of the
hierarchy, the size of the program increases, however the outputs of the program gives an
approximation closer to optSep(E).

In order to formally describe the hierarchy of semidefinite programs that approximates
optSep(E), we first need to introduce the concept of symmetric extension of a positive
operator. Before doing so, we define the set of permutation operators. Let s and d be
positive integers and let X1, . . . ,Xs be s isomorphic copies of some complex Euclidean
space of dimension d, that is, for any k ∈ {1, . . . , s}, Xk ' Cd. Given a permutation
π ∈ Sym(s), we define a permutation operator

Wπ ∈ U(X1 ⊗ · · · ⊗ Xs) (4.47)

to be the unitary operator that acts as follows:

Wπ(u1 ⊗ · · · ⊗ us) = uπ(1) ⊗ · · · ⊗ uπ(s), (4.48)

for any choice of vectors u1, . . . , us ∈ Cd. We are now ready to give the definition of
symmetric extension of a positive semidefinite operator.

Definition 4.5. Suppose we are given complex Euclidean spaces X and Y , and an operator
P ∈ Pos(X ⊗ Y). Moreover, let s be a positive integer and let Y2, . . . ,Ys be s − 1 copies
of the space Y . An operator

X ∈ Pos(X ⊗ Y ⊗ Y2 ⊗ · · · ⊗ Ys) (4.49)

is called an s-symmetric extension of P if the following two properties hold:

(a) TrY2⊗···⊗Ys(X) = P ;

(b) (1X ⊗Wπ)X(1X ⊗W ∗
π ) = X, for every π ∈ Sym(s).

Any separable operator possesses s-symmetric extensions, for any s ≥ 1. This is easy to
see from the definition of separable operator: given P ∈ Sep(X : Y), there exists a positive
integer M , positive semidefinite operators Q1, . . . , QM ∈ Pos(X ) and density matrices
ρ1, . . . , ρM ∈ D(Y) such that

P =
M∑
k=1

Qk ⊗ ρk. (4.50)

48



Then, for any s ≥ 1,

X =
M∑
k=1

Qk ⊗ ρ⊗sk (4.51)

is an s-symmetric extension of P .

Interestingly, the converse is also true, that is, for any entangled operator

P ∈ Pos(X : Y) \ Sep(X : Y), (4.52)

there must exist a value s > 1 for which P does not have a s-symmetric extension. For a
proof of this fact, which is more involved, we refer the reader to the original paper [DPS02].

It is worthwhile to consider two additional constraints we can add to the definition of
symmetric extension. First, one can restrict the search to those extensions in which the
symmetric part is supported by the symmetric subspace, which is defined as the set of all
vectors in Y ⊗Y2 ⊗ · · · ⊗ Ys that are invariant under the action of Wπ, for every choice of
π ∈ Sym(s). We denote the symmetric subspace by

Y > Y2 > · · ·> Ys = {y ∈ Y ⊗ Y2 ⊗ · · · ⊗ Ys : y = Wπy for every π ∈ Sym(s)}, (4.53)

and the projection on this subspace by ΠY>Y2>···>Ys .

Definition 4.6. Suppose we are given complex Euclidean spaces X and Y , and an operator
P ∈ Pos(X ⊗ Y). Moreover, let s be a positive integer and let Y2, . . . ,Ys be copies of the
space Y . An operator

X ∈ Pos(X ⊗ Y ⊗ Y2 ⊗ · · · ⊗ Ys) (4.54)

is called an s-symmetric bosonic extension of P if the following two properties hold:

(a) TrY2⊗···⊗Ys(X) = P ;

(b) (1X ⊗ ΠY>Y2>···>Ys)X(1X ⊗ ΠY>Y2>···>Ys) = X.

For some fixed s, there are operators that have symmetric extensions, but do not have
bosonic symmetric extension [ML09]. However, in the limiting case, both the hierarchies
converge to the set of separable operators.

A further observation is that we want the semidefinite program at the first level of the
symmetric-extension hierarchy to be at least as powerful as the program (PPPT). In order
to do so, we add a third condition to Definition 4.6:
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(c) TX (X) ∈ Pos(X ⊗ Y ⊗ Y2 ⊗ · · · ⊗ Ys), and

TYj⊗Yj+1⊗···⊗Ys(X) ∈ Pos(X ⊗ Y ⊗ Y2 ⊗ · · · ⊗ Ys), for all j ∈ {2, . . . , s}.

An operator X for which this property holds is called a PPT symmetric extension of P .

Finally, we can put all the constraints together in a hierarchy of semidefinite pro-
grams in which, at the s-th level, we optimize over measurements whose operators possess
s-symmetric bosonic PPT extensions. The following is the semidefinite program corre-
sponding to the level s = 2 of the hierarchy (the programs corresponding to higher levels
of the hierarchy can be easily inferred from this one).

Primal (PSym)

maximize:
N∑
k=1

pk〈ρk, µ(k)〉,

subject to:
N∑
k=1

µ(k) = 1X⊗Y ,

TrY2(Xk) = µ(k),

(1X ⊗ ΠY>Y2)Xk(1X ⊗ ΠY>Y2) = Xk,

TX (Xk) ∈ Pos(X ⊗ Y ⊗ Y2),

TY2(Xk) ∈ Pos(X ⊗ Y ⊗ Y2),


(for each k = 1, . . . , N),

X1, . . . , XN ∈ Pos(X ⊗ Y ⊗ Y2).

(4.55)

The dual program can be derived by moving to the standard form and by observing that
the partial transpose is its own adjoint.
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Dual (DSym)

minimize: Tr(H),

subject to: H −Qk ≥ pkρk,

Qk ⊗ 1Y2 + (1X ⊗ ΠY>Y2)Rk(1X ⊗ ΠY>Y2)−Rk

− TX (Sk)− TY(Zk) ∈ Pos(X ⊗ Y ⊗ Y2),

 (for each k = 1, . . . , N),

H,Q1, . . . , QN ∈ Herm(X ⊗ Y),

R1, . . . , RN ∈ Herm(X ⊗ Y ⊗ Y2)

S1, . . . , SN , Z1, . . . , ZN ∈ Pos(X ⊗ Y ⊗ Y2).

(4.56)

Figure 4.2 depicts the hierarchy of measurements that have s-symmetric extensions and
the relationships between the same hierarchy and the classes of global (Pos) and separable
measurements (Sep).

Pos

2-symm

s-symm

Sep

Figure 4.2: Symmetric extension hierarchy.

4.3 An example: Werner hiding pair

In order to demonstrate an analytic method to use the cone programming framework
presented above, we apply it here to a simple example. We reprove the result from Example
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Sep*

Pos

dual
2-symm

dual
s-symm

Figure 4.3: Dual of the symmetric extension hierarchy of Figure 4.2.

3.2, that is, a tight bound on the LOCC-distinguishability of a pair of quantum hiding
states. For any positive integer n ≤ 2, consider the equiprobable ensemble E (n) of the two
extremal Werner states σ

(n)
0 , σ

(n)
1 ∈ D(Cn ⊗ Cn) defined in Eq. (3.23). Here we prove that

optPPT(E (n)) ≤ 1

2
+

1

n+ 1
, (4.57)

for any n ≥ 2. For this particular case, the semidefinite program (PPPT) is sufficient to
prove a tight bound on the distinguishability of the states. This is not always the case, as
we will see in the next chapter.

Let the integer n be fixed and let X and Y be copies of Cn. First, we instantiate
Program (4.25) for the ensemble E (n):

minimize: Tr(H)

subject to: H − 1

2
σ
(n)
0 ∈ PPT∗(X : Y),

H − 1

2
σ
(n)
1 ∈ PPT∗(X : Y),

H ∈ Herm(X ⊗ Y).

(4.58)

Next, we define the Hermitian operator H ∈ Herm(X ⊗ Y) as

H =
1

2
σ
(n)
0 +

1

n+ 1
σ
(n)
1 , (4.59)
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and observe that the trace is equal to the bound we seek to prove, that is,

Tr(H) =
1

2
+

1

n+ 1
. (4.60)

It is left to be checked that H is a feasible solution of the dual program. By the definition
of the cone PPT∗(X ⊗Y), we need to show that there exist positive semidefinite operators
R0, R1 ∈ Pos(X ⊗ Y) such that

H − 1

2
σ
(n)
0 ≥ TX (R0) (4.61)

and

H − 1

2
σ
(n)
1 ≥ TX (R1). (4.62)

Let

u =
1√
n

n−1∑
i=0

|i〉|i〉 (4.63)

be the canonical maximally entangled state in X ⊗ Y and let

R0 = 0 and R1 =
1

n+ 1
uu∗. (4.64)

We have

H − 1

2
σ
(n)
0 =

1

n+ 1
σ
(n)
1 ≥ 0 = TX (R0), (4.65)

and

H − 1

2
σ
(n)
1 =

1

2
σ
(n)
0 −

n− 1

2(n+ 1)
σ
(n)
1 =

1

n(n+ 1)
Wn = TX (R1), (4.66)

where Wn ∈ U(X ⊗ Y) in the last equation is the swap operator defined in (2.41).

4.4 A discussion on computational aspects

The proof approach we outlined for the Werner hiding pair (and that we are going to pursue
all over in the following chapters) may leave an uneasy feeling to the reader, even though
it is mathematically legitimate. We started by defining the operator H in Eq. (4.59) whose
trace was exactly equal to the bound we wanted to prove, and then we proved that H is
indeed a feasible solution of the dual problem. A posteriori our strategy did work out just
fine, but how did we know that H was a good candidate for the solution we were seeking?
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For simple problems such as the one above, one could come up with some insights after
trying a few candidates that look promising and eventually tweak the solution until things
work out. For more complicated instances this is not always a good strategy, and most
often we are not blessed by magic insights. What comes to rescue in difficult situations is a
numerical approach: we can get a good candidate solution by running an actual computer
implementation of one of the programs described above. The output of the program often
gives insights on a potential solution, which can be then verified analytically, as we did
above for the Werner hiding pair example. When running a particular instance of a convex
optimization problem, attention should be paid to the time and the memory space that
computer solvers need, which is the topic of discussion of the rest of this section.

Optimizing over separable operators (and therefore over separable measurements) is
NP-hard [Gha10], which simply means that solving the cone program (PSep) is not feasi-
ble. However, there do exist algorithms that solve semidefinite programs efficiently. This
very fact motivated us (and [DPS04] before us) to introduce the hierarchy of semidefinite
programs in Section 4.2.3. More precisely, let the dimensions of Alice’s and Bob’s sub-
spaces be dim(X ) = n and dim(Y) = m, respectively. Then the ellipsoid method [GLS93]
solves the program corresponding to the s-th level of the symmetric extension hierarchy in
a running time that is polynomial in N (the number of states), n, ms, and the maximum
bit-length of the entries of the density matrices specifying the input states2. Notice that
the value of s needed in order to reach a good approximation of the separable problem
can grow larger than a constant (and in fact larger than mo(1)), which is why this does
not contradict the above-mentioned NP-hardness of the problem (or more precisely, any
complexity theory hypothesis).

One way to make the algorithm more efficient in terms of memory used is to observe
that ultimately we are really optimizing only over operators in the space

X ⊗ Y1 > · · ·> Ys, (4.67)

which has dimension

d = n

(
s+m− 1

m− 1

)
, (4.68)

that is, much smaller than nms.

Let us see how this works for the case s = 2, the other cases being a straightforward
generalization. Let A ∈ U(Y ⊗Y2,Y >Y2) be the linear isometry such that AA∗ = ΠY>Y2 ,

2Actual software implementations of semidefinite programming solvers may use other methods that are
not guaranteed to run as efficiently in theory, but that behave very well in practice, the interior point
method being one of those.
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where ΠY>Y2 is the projection on the symmetric subspace Y > Y2. Then we can replace
the two sets of constraints

TrY2(Xk) = µ(k),

(1X ⊗ ΠY>Y2)Xk(1X ⊗ ΠY>Y2) = Xk

(4.69)

in the Program (4.55), with a set of constraints of the form

TrY2((1X ⊗ A)Xk(1X ⊗ A∗)) = µ(k), (4.70)

where the only variables of the program are now of the form

Xk ∈ Pos(Cd). (4.71)

A MATLAB function that checks for separable/PPT distinguishability has been devel-
oped as part of N. Johnston’s QETLAB toolbox [JCR15]. See Appendix A for more details
on the implementation, as well as a tutorial on how to use the function.

4.5 Unambiguous state discrimination

In the previous sections, we analyzed the problem of distinguishing quantum states using
measurements that minimize the probability of error. Here we consider a strategy in which
Alice and Bob can give an inconclusive, yet never incorrect answer. Such measurement
strategies are called unambiguous.

If there are N states to be distinguished, an unambiguous measurement

µ : {1, . . . , N + 1} → Pos(X ⊗ Y)

consists of N + 1 operators, where the outcome of the operator µ(N + 1) corresponds to
the inconclusive answer.

The cone programming approach has already been used to study unambiguous discrimi-
nation by global measurement [Eld03], but never, as far as we know, to study unambiguous
local discrimination. In fact, we believe that unambiguous LOCC discrimination in general
has not been thoroughly investigated yet.

The optimal value of the following cone program is equal to the success probability
of unambiguously distinguishing an ensemble of states {ρ1, . . . , ρk} using measurements
whose operators belong to a convex cone C ⊂ Pos(X ⊗ Y). Again, we assume that the
states are drawn with a uniform probability.
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Primal problem

maximize:
N∑
k=1

pk〈µ(k), ρk〉

subject to:
N+1∑
k=1

µ(k) = 1X⊗Y , (4.72)

µ : {1, . . . , N + 1} → C,
〈µ(i), ρj〉 = 0, 1 ≤ i, j ≤ N, i 6= j.

The dual program can be derived by routine calculation.

Dual problem

minimize: Tr(H)

subject to: H − pkρk +
∑

1≤i≤N
i 6=k

yi,kρi ∈ C∗, k = 1, . . . , N , (4.73)

H ∈ Herm(X ⊗ Y),

yi,j ∈ R, 1 ≤ i, j ≤ N, i 6= j.

In the next chapter we will see an application of this program to the problem of unam-
biguous PPT-distinguishability. In particular, we will analyze a set of states where the un-
ambiguous PPT-distinsuishability is strictly lower than the regular PPT-distinguishability
calculated by the program of Section 4.2.1.
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Chapter 5

Distinguishability of maximally
entangled states

In this chapter we finally bring the cone programming framework into action, in order to
answer some questions about the distinguishability of maximally entangled states. As it
was discussed in Section 3.3, sets of maximally entangled states constitute an important
testbed for gaging the power of different classes of measurements.

As a warm-up, we first reprove a bound by [YDY12] on the distinguishability of any
set of maximally entangled states. Next, we answer an open question regarding the entan-
glement cost of Bell states that was raised in [YDY14]. In the second part we study the
set of states (3.29) introduced in [YDY12].
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5.1 General bound for maximally entangled states

We show that no PPT measurement can perfectly distinguish more than n maximally
entangled states in X ⊗Y , where X = Y = Cn. This result appears in [YDY12] and it gen-
eralizes a bound by Nathanson, which is valid against LOCC and separable measurements
[Nat05]. The following lemma is central to the proof.

Lemma 5.1. Let A ∈ U(Y ,X ) be a unitary operator. It holds that

1X ⊗ 1Y − vec(A) vec(A)∗ ∈ PPT∗(X : Y). (5.1)

Proof. Let Wn ∈ U(X ,Y) be the swap operator from Eq. (2.41). Consider the operator

U = (A⊗ 1Y)Wn(AT ⊗ 1Y). (5.2)

Since A and Wn are unitary operators, so is U . Notice that U is also Hermitian, and
therefore its eigenvalues are either 1 or −1. This implies that

1X ⊗ 1Y − U ∈ Pos(X ⊗ Y) (5.3)

is positive semidefinite. Moreover we have that

TX (1X ⊗ 1Y − U) = 1X ⊗ 1Y − (A⊗ 1Y) vec(1) vec(1)∗(A∗ ⊗ 1Y)

= 1X ⊗ 1Y − vec(A) vec(A)∗,
(5.4)

and therefore
1X ⊗ 1Y − vec(A) vec(A)∗ ∈ PPT∗(X : Y). (5.5)

Now, suppose that u1, . . . , uN ∈ X ⊗ Y are vectors representing maximally entangled
pure states. An upper-bound on the probability to distinguish these N states, assuming a
uniform selection, is obtained from the dual problem (4.25) by considering

H =
1X ⊗ 1Y

nN
. (5.6)

It holds that H is a feasible solution to the dual problem: since the states are maximally
entangled, for each k ∈ {1, . . . , N} one may write

uk =
1√
n

vec(Ak), (5.7)
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for some choice of an isometry Ak ∈ U(Y ,X ), and therefore

H − 1

N
uku

∗
k =

1

nN
(1X ⊗ 1Y − vec(Ak) vec(Ak)

∗) ∈ PPT∗(X : Y) (5.8)

by Lemma 5.1. Finally, the value

Tr(H) =
n

N
(5.9)

is an upper bound on the probability of distinguishing the states and it is smaller than 1
whenever the number of states N is bigger than the dimension n of each subspace.

Remark 5.2. The statement of Lemma 5.1 may become very familiar to the reader,
once it is translated in the language of linear mappings via the Choi isomorphism. It is
straightforward to see that the operator in Eq. (5.1) is the Choi operator of a mapping
ΦA : L(Y)→ L(X ) defined as

ΦA(X) = Tr(X)1− AXA∗, (5.10)

for any X ∈ L(Y), which in turn is the composition of a unitary mapping

X → AXA∗ (5.11)

and the mapping
Φ(X) = Tr(X)1−X, (5.12)

which is the well-known reduction map introduced in [HH99] (it is the mapping at the basis
of the reduction criterion for entanglement detection). In brief, we related the fact that
PPT measurements can distinguish no more than n maximally entangled states in Cn⊗Cn

with the fact that the reduction map from L(Cn)→ L(Cn) is a decomposable map.

5.2 Entanglement cost of distinguishing Bell states

In this section, we study state discrimination problems for sets of three or four Bell states,
by LOCC, separable, and PPT measurements, with the assistance of an entangled pair of
qubits. In particular, we will assume that Alice and Bob aim to discriminate a set of Bell
states given that they share the additional resource state

|τε〉 =

√
1 + ε

2
|0〉|0〉+

√
1− ε

2
|1〉|1〉, (5.13)
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for some choice of ε ∈ [0, 1]. The parameter ε quantifies the amount of entanglement in
the state |τε〉. Up to local unitaries, this family of states represents every pure state of two
qubits.

Using the cone programming method discussed in the previous chapter, we obtain exact
expressions for the optimal probability with which any set of three or four Bell states can
be discriminated with the assistance of the state (5.13) by separable measurements (which
match the probabilities obtained by LOCC measurements in all cases).

5.2.1 Discriminating three Bell states

Notice that the state |τ1〉 = |0〉|0〉 is a product state and it does not aid the two parties in
discriminating any set of Bell states, so the probability of success for ε = 1 is still at most
2/3 for a set of three Bell states. If ε = 0, then Alice and Bob can use teleportation to
perfectly discriminate all four Bell states perfectly by LOCC measurements, and therefore
the same is true for any three Bell states. It was proved in [YDY14] that PPT measurements
can perfectly discriminate any set of three Bell states using the resource state (5.13) if and
only if ε ≤ 1/3.

Here we show that a maximally entangled state (ε = 0) is required to perfectly discrim-
inate any set of three Bell states using separable measurements, and more generally we
obtain an expression for the optimal probability of a correct discrimination for all values
of ε. Because the permutations of Bell states induced by local unitaries is transitive, there
is no loss of generality in fixing the three Bell states to be discriminated to be |ψ1〉, |ψ2〉,
and |ψ3〉 (as defined in (2.13)).

Theorem 5.3. Let X1 = X2 = Y1 = Y2 = C2, define X = X1 ⊗X2 and Y = Y1 ⊗ Y2, and
let ε ∈ [0, 1] be chosen arbitrarily. For any separable measurement µ ∈ MeasSep(3,X : Y),
the success probability of correctly discriminating the states corresponding to the set{

|ψ1〉 ⊗ |τε〉, |ψ2〉 ⊗ |τε〉, |ψ3〉 ⊗ |τε〉
}
⊂ (X1 ⊗ Y1)⊗ (X2 ⊗ Y2), (5.14)

assuming a uniform distribution p1 = p2 = p3 = 1/3, is at most

1

3

(
2 +
√

1− ε2
)
. (5.15)

To prove this theorem, we require the following lemma. The lemma introduces a family
of positive maps that, to our knowledge, has not previously appeared in the literature.
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Lemma 5.4. Define a linear mapping Ξt : L(C2 ⊕ C2)→ L(C2 ⊕ C2) as

Ξt

(
A B
C D

)
=

(
Ψt(D) + Φ(D) Ψt(B) + Φ(C)

Ψt(C) + Φ(B) Ψt(A) + Φ(A)

)
(5.16)

for every t ∈ (0,∞) and A,B,C,D ∈ L(C2), where Ψt : L(C2)→ L(C2) is defined as

Ψt

(
α β
γ δ

)
=

(
tα β
γ t−1δ

)
(5.17)

and Φ : L(C2)→ L(C2) is defined as

Φ

(
α β
γ δ

)
=

(
δ −β
−γ α

)
, (5.18)

for every α, β, γ, δ ∈ C. It holds that Ξt is a positive map for all t ∈ (0,∞).

Proof. It will first be proved that Ξ1 is positive. For every vector

u =

(
α
β

)
(5.19)

in C2, define a matrix

Mu =

(
α β

−β α

)
. (5.20)

Straightforward computations reveal that

M∗
uMv = uv∗ + Φ(vu∗) and M∗

uMu = ‖u‖21 (5.21)

for all u, v ∈ C2. It follows that

Ξ1

(
uu∗ uv∗

vu∗ vv∗

)
=

(
vv∗ + Φ(vv∗) uv∗ + Φ(vu∗)
vu∗ + Φ(uv∗) uu∗ + Φ(uu∗)

)
=

(
‖v‖21 M∗

uMv

M∗
vMu ‖u‖21

)
, (5.22)

which is positive semidefinite by virtue of the fact that ‖M∗
uMv‖ ≤ ‖Mu‖‖Mv‖ = ‖u‖‖v‖.

As every element of Pos(C2⊕C2) can be written as a positive linear combination of matrices
of the form (

uu∗ uv∗

vu∗ vv∗

)
, (5.23)
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ranging over all vectors u, v ∈ C2, it follows that Ξ1 is a positive map.

For the general case, observe first that the mapping Ψs may be expressed using the
Hadamard (or entry-wise) product as

Ψs

(
α β
γ δ

)
=

(
sα β
γ s−1δ

)
=

(
s 1
1 s−1

)
◦
(
α β
γ δ

)
(5.24)

for every positive real number s ∈ (0,∞). The matrix(
s 1
1 s−1

)
(5.25)

is positive semidefinite, from which it follows (by the Schur product theorem) that Ψs is
a completely positive map. (See, for instance, Theorem 3.7 of [Pau02].) Also note that
Φ = ΨsΦΨs for every s ∈ (0,∞), which implies that

Ξt =
(
1L(C2) ⊗Ψs

)
Ξ1

(
1L(C2) ⊗Ψs

)
(5.26)

for s =
√
t. This shows that Ξt is a composition of positive maps for every positive real

number t, and is therefore positive.

Proof of Theorem 5.3. For the cases that ε = 0 and ε = 1, the theorem is known, as was
discussed previously, so it will be assumed that ε ∈ (0, 1). Define a Hermitian operator

Hε =
1

3

[
1X1⊗Y1 ⊗ τε

2
+
√

1− ε2 ψ4 ⊗ TX2(ψ4)

]
, (5.27)

where τε = |τε〉〈τε|, ψ4 = |ψ4〉〈ψ4|, and TX2 denotes partial transposition with respect to
the standard basis of X2. It holds that

Tr(Hε) =
1

3

(
2 +
√

1− ε2
)
, (5.28)

so to complete the proof it suffices to prove that Hε is a feasible solution to the dual
problem (4.41) for the cone program corresponding to the state discrimination problem
being considered.

In order to be more precise about the task at hand, it is helpful to define a unitary
operator W , mapping X1⊗X2⊗Y1⊗Y2 to X1⊗Y1⊗X2⊗Y2, that corresponds to swapping
the second and third subsystems:

W (x1 ⊗ x2 ⊗ y1 ⊗ y2) = x1 ⊗ y1 ⊗ x2 ⊗ y2, (5.29)
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for all vectors x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2. We are concerned with the separability
of measurement operators with respect to the bipartition between X1 ⊗ X2 and Y1 ⊗ Y2,
so the dual feasibility of Hε requires that the operators defined as

Qk,ε = W ∗
(
Hε −

1

3
φk ⊗ τε

)
W ∈ Herm(X ⊗ Y) (5.30)

be contained in Sep∗(X : Y) for k = 1, 2, 3.

Let Λk,ε : L(Y) → L(X ) be the unique linear map whose Choi representation satisfies
J(Λk,ε) = Qk,ε for each k = 1, 2, 3. As discussed in Section 4.2.2, the block positivity of
Qk,ε is equivalent to the positivity of Λk,ε. Consider first the case k = 1 and let

t =

√
1 + ε

1− ε
. (5.31)

A calculation reveals that

Λ1,ε(Y ) =

√
1− ε2

3
(σ3 ⊗ 1X2) Ξt(Y ) (σ3 ⊗ 1X2) , (5.32)

where Ξt : L(Y)→ L(X ) is the map defined in Lemma 5.4 and σ3 denotes one of the Pauli
operators (see Eq. (2.11) for an explicit definition). As ε ∈ (0, 1), it holds that t ∈ (0,∞),
and therefore Lemma 5.4 implies that Ξt(Y ) ∈ Pos(X ) for every Y ∈ Pos(Y ). As we are
simply conjugating Ξt(Y ) by a unitary and scaling it by a positive real factor, we also have
that Λ1,ε(Y ) ∈ Pos(X ), for any Y ∈ Pos(Y ), which in turn implies that Q1,ε ∈ Sep∗(X : Y).

For the case of k = 2 and k = 3, first define U, V ∈ U(C2) as follows:

U =

(
1 0
0 i

)
and V =

1√
2

(
1 i
i 1

)
. (5.33)

These operators transform ψ1 = |ψ1〉〈ψ1| into ψ2 = |ψ2〉〈ψ2| and ψ3 = |ψ3〉〈ψ3|, respec-
tively, and leave ψ4 unchanged, in the following sense:

(U∗ ⊗ U∗)ψ1(U ⊗ U) = ψ2,

(V ∗ ⊗ V ∗)ψ1(V ⊗ V ) = ψ3,

(U∗ ⊗ U∗)ψ4(U ⊗ U) = ψ4,

(V ∗ ⊗ V ∗)ψ4(V ⊗ V ) = ψ4.

(5.34)

Therefore the following equations hold:

Q2,ε = (U∗ ⊗ 1⊗ U∗ ⊗ 1)Q1,ε (U ⊗ 1⊗ U ⊗ 1) ,

Q3,ε = (V ∗ ⊗ 1⊗ V ∗ ⊗ 1)Q1,ε (V ⊗ 1⊗ V ⊗ 1) .
(5.35)

It follows that Q2,ε ∈ Sep∗(X : Y) and Q3,ε ∈ Sep∗(X : Y), which completes the proof.
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5.2.2 Discriminating four Bell states

It is known that, for the perfect LOCC discrimination of all four Bell states using an
auxiliary entangled state |τε〉 as above, one requires that ε = 0 (i.e., a maximally entangled
pair of qubits is required). This fact follows from the method of [HSSH03], for instance.
Here we prove a more precise bound on the optimal probability of a correct discrimination,
for every choice of ε ∈ [0, 1], along similar lines to the bound on three Bell states provided
by Theorem 5.3. In the present case, in which all four Bell states are considered, the result
is somewhat easier: one obtains an upper bound for PPT measurements that matches a
bound that can be obtained by an LOCC measurement, implying that LOCC, separable,
and PPT measurements are equivalent for this discrimination problem.

Theorem 5.5. Let X1 = X2 = Y1 = Y2 = C2, define X = X1 ⊗X2 and Y = Y1 ⊗ Y2, and
let ε ∈ [0, 1]. For any PPT measurement µ ∈ MeasPPT(4,X : Y), the success probability of
discriminating the states in the set

{|ψ1〉 ⊗ |τε〉, |ψ2〉 ⊗ |τε〉, |ψ3〉 ⊗ |τε〉, |ψ4〉 ⊗ |τε〉} ⊂ (X1 ⊗ Y1)⊗ (X2 ⊗ Y2), (5.36)

assuming a uniform distribution p1 = p2 = p3 = p4 = 1/4, is at most

1

2

(
1 +
√

1− ε2
)
. (5.37)

Proof. Consider the following operator:

Hε =
1

8

[
1X1⊗Y1 ⊗ τε +

√
1− ε2 1X1⊗Y1 ⊗ TX2(ψ4)

]
∈ Herm(X1 ⊗ Y1 ⊗X2 ⊗ Y2). (5.38)

It holds that

Tr(Hε) =
1

2

(
1 +
√

1− ε2
)
, (5.39)

so to complete the proof it suffices to prove that Hε is dual feasible for the Program (4.25).
Dual feasibility will follow from the condition (which is sufficient but not necessary for
feasibility)

(TX1 ⊗TX2)
(
Hε −

1

4
ψk ⊗ τε

)
∈ Pos(X1 ⊗ Y1 ⊗X2 ⊗ Y2), (5.40)

for k = 1, 2, 3, 4. One may observe that

TX2(τε) +

√
1− ε2

2
ψ4 =

1

2


1 + ε 0 0 0

0
√
1−ε2
2

√
1−ε2
2

0

0
√
1−ε2
2

√
1−ε2
2

0

0 0 0 1− ε

 (5.41)
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is positive semidefinite, from which it follows that

(TX1 ⊗TX2)
(
Hε −

1

4
ψ1 ⊗ τε

)
=

1

4
ψ4 ⊗ TX2(τε) +

√
1− ε2

8
1X1⊗Y1 ⊗ ψ4 (5.42)

is also positive semidefinite. A similar calculation holds for k = 2, 3, 4, which completes
the proof.

Remark 5.6. The upper bounds obtained in Theorem 5.3 and Theorem 5.5 are optimal,
as they are achievable by an LOCC measurement. Those bounds can be obtained by using
the resource state |τε〉 to teleport the given Bell state from one player to the other, followed
by an optimal local measurement to discriminate the resulting states.

5.3 Yu-Duan-Ying states

In this section we prove a tight bound of 3/4 on the maximum success probability for any
LOCC measurement to discriminate the set of states (3.29) exhibited by Yu, Duan, and
Ying [YDY12], assuming a uniform selection of states. The fact that this bound can be
achieved by an LOCC measurement is trivial: if Alice and Bob measure their parts of the
states with respect to the standard basis, they can easily discriminate |φ1〉, |φ2〉, and |φ4〉,
erring only in the case that they receive |φ3〉. The fact that this bound is optimal will be
proved by exhibiting a feasible solution H to the dual problem (4.41) instantiated with the
state discrimination problem at hand, such that

Tr(H) =
3

4
. (5.43)

With respect to the vector-operator correspondence, the states (3.29) are given by
tensor products of the Pauli operators (2.11) as follows:

|φ1〉 =
1

2
vec(U1), |φ2〉 =

1

2
vec(U2),

|φ3〉 =
1

2
vec(U3), |φ4〉 =

1

2
vec(U4),

(5.44)
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for

U1 = σ0 ⊗ σ0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , U2 = σ1 ⊗ σ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

U3 = iσ2 ⊗ σ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , U4 = σ3 ⊗ σ1 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

(5.45)

Bound for separable measurements

A feasible solution of the dual problem (4.41) is based on a construction of block posi-
tive operators that correspond, via the Choi isomorphism, to the family of positive maps
introduced by Breuer and Hall [Bre06, Hal06].

Proposition 5.7 (Breuer–Hall). Let X = Y = Cn and let U, V ∈ U(Y ,X ) be unitary
operators such that UTV ∈ U(Y) is skew-symmetric: (V TU)T = −V TU . It holds that

1X ⊗ 1Y − vec(U) vec(U)∗ − TX (vec(V ) vec(V )∗) ∈ Sep∗(X : Y). (5.46)

Proof. For every unit vector y ∈ Y , one has

(1X ⊗ y∗)(1X ⊗ 1Y − vec(U) vec(U)∗ − TX (vec(V ) vec(V )∗))(1X ⊗ y)

= 1X − UyyTU∗ − V yy∗V T. (5.47)

As it holds that V TU is skew-symmetric, we have〈
V y, Uy

〉
= y∗V TUy =

〈
yyT, V TU

〉
= 0, (5.48)

as the last inner product is between a symmetric and a skew-symmetric operator. Because
U and V are unitary, it follows that UyyTU∗ + V yy∗V T is a rank two orthogonal projec-
tion, so the operator represented by (5.47) is also a projection and is therefore positive
semidefinite.

Remark 5.8. The assumption of Proposition 5.7 requires n to be even, as skew-symmetric
unitary operators exist only in even dimensions.
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Now, for the ensemble
E = {|φ1〉, |φ2〉, |φ3〉, |φ4〉}, (5.49)

one has that the following operator is a feasible solution to the dual problem (4.41):

H =
1

16
(1X ⊗ 1Y − TX (vec(V ) vec(V )∗)) (5.50)

for

V = iσ2 ⊗ σ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (5.51)

Due to Proposition 5.7, the feasibility of H follows from the condition

(V TUk)
T = −V TUk, (5.52)

which can be checked by inspecting each of the four cases. It is easy to calculate that
Tr(H) = 3/4, and so the required bound has been obtained.

Bound for PPT measurements

Interestingly, when it comes to distinguishing the Yu–Duan–Ying states, PPT measure-
ments can do better than separable (and LOCC) measurement, yet without achieving
perfect distinguishability. As far as we know, this is the first example of a set consisting
only of maximally entangled states for which such a gap holds. In this section we exhibit
a tight bound of 7/8 on the probability of distinguishing the Yu–Duan–Ying ensemble by
PPT measurements.

Theorem 5.9. For E being the ensemble in Eq. (5.49), it holds that optPPT(E) ≤ 7/8.

Proof. We show that there exists a solution of the dual program (DPPT) which achieves
the bound. It is easy to check that the following operator satisfies the constraints in of the
program and its trace is equal to 7/8:

Y =
1

16
1⊗ 1− 1

8
(ψ2 ⊗ ψ1) .
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We will check the constraint Y ≥ TA(ρ1) and the reader can check the remaining con-
straints with a similar calculation. By the equations in (4.28), we have

TA(ρ1) = TA(ψ0 ⊗ ψ0) =

(
1

2
1− ψ2

)
⊗
(

1

2
1− ψ2

)
=

1

4
1⊗ 1− 1

2

∑
i∈{0,1,3}

(ψi ⊗ ψ2 + ψ2 ⊗ ψi),

and

Y − 1

4
TA(ρ1) =

1

8
(ψ0 ⊗ ψ2 + ψ1 ⊗ ψ2 + ψ3 ⊗ ψ2 + ψ2 ⊗ ψ0 + ψ2 ⊗ ψ3) ≥ 0.

Theorem 5.10. For E being the ensemble in Eq. (5.49), it holds that optPPT(E) ≥ 7/8.

Proof. It is enough to show a feasible solution of the primal program (PPPT) that achieves
the bound. Let Q ∈ Pos(C4 ⊗ C4) and R, S ∈ Pos(C2 ⊗ C2) be the following operators:

Q =
1

4
1⊗ (ψ1 + ψ2), R =

7

8
ψ0 +

1

8
ψ3, S =

1

8
ψ0 +

7

8
ψ3.

Then the following operators define a PPT measurement that achieves a success probability
of 7/8:

µ(1) = Q+ (
2

3
ψ0 +

1

3
1)⊗R,

µ(2) = Q+ (
1

3
ψ0 + ψ1)⊗ S +

1

3
(ψ2 + ψ3)⊗R,

µ(3) = Q+ (
1

3
ψ0 + ψ2)⊗ S +

1

3
(ψ1 + ψ3)⊗R,

µ(4) = Q+ (
1

3
ψ0 + ψ3)⊗ S +

1

3
(ψ1 + ψ2)⊗R.

It is easy to check that these operators define a valid measurement, that is
∑4

k=1 µ(k) = 1.
Using the equations in (4.28), we can verify that those operators are also PPT. Again, we
check this for µ(1).

TA(µ(1)) = (ψ1 + ψ2 + ψ4)⊗ (
1

3
ψ1 +

1

2
ψ2 +

1

3
ψ4) +

1

4
ψ3 ⊗ (ψ2 + ψ3) ≥ 0.

Finally, we have that 〈µ(k), ρk〉 = 7/8, for each k ∈ {1, . . . , 4}.
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To recap, for E being the ensemble of Yu–Duan–Ying states selected uniformly at
random, we have

optLOCC(E) = optSep(E) =
3

4
<

7

8
= optPPT(E) < opt(E) = 1. (5.53)

5.3.1 Generalization to higher dimension

Here we generalize the Yu–Duan–Ying states in order to construct sets of N orthogonal
maximally entangled states in CN ⊗ CN that are distinguishable by separable operators
only with probability 3/4, for any N ≥ 4 that is power of 2.

Let t ≥ 2 be a positive integer and, for any choice of k ∈ {1, . . . , 2t}, we recursively
define the unitary operator

U
(t)
k =

{
σ0 ⊗ U (t−1)

k if 1 ≤ k ≤ 2t−1,

σ1 ⊗ U (t−1)
k−2t−1 if 2t−1 + 1 ≤ k ≤ 2t.

(5.54)

The base of the recursion, U
(2)
1 , . . . , U

(2)
4 , is given by the operators defined in Eq. (5.72).

In a paper by the author [CR14], it was shown that the set{
vec(U

(t)
k ) vec(U

(t)
k )∗ : k = 1, . . . , 2t

}
(5.55)

can be distinguished with probability at most 7/8 by PPT measurements, for any value of
t ≥ 2, when the states are drawn with uniform probability, p1, . . . , p2t = 1/2t. In the rest of
this section, we show that the maximum success probability for any separable measurement
to distinguish the same set of states under the same assumption is 3/4 instead.

As in the theme of this thesis, we will exhibit a feasible solution of the dual cone
program (4.41) for which the value of the objective function equals 3/4. However, we first
prove a rather general lemma, which shows how to compose a separable operator with a
block positive operator, in order to construct another block positive operator in higher
dimensions.

Lemma 5.11. Let X1,X2,Y1, and Y1 be complex Euclidean spaces. We denote by W ∈
U(X1 ⊗ X2 ⊗ Y1 ⊗ Y2,X1 ⊗ Y1 ⊗ X2 ⊗ Y2) the linear isometry that swaps the second and
the third subsystems, which is defined by the following equation:

W (x1 ⊗ x2 ⊗ y1 ⊗ y2) = x1 ⊗ y1 ⊗ x2 ⊗ y2, (5.56)
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holding for all vectors x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2. Let S ∈ Sep(X1 : Y1) be a
separable operator and Q ∈ Sep∗(X2 : Y2) be a block positive operator. Then the following
holds:

W ∗(S ⊗Q)W ∈ Sep∗(X1 ⊗X2 : Y1 ⊗ Y2). (5.57)

Proof. By the definition of block-positivity, the claim of the lemma is equivalent to the
following condition:

(1X1⊗X2 ⊗ y∗)W ∗(S ⊗Q)W (1X1⊗X2 ⊗ y) ∈ Pos(X1 ⊗X2), (5.58)

for every y ∈ Y1 ⊗ Y2.

For an arbitrary y ∈ Y1 ⊗ Y2, consider its Schmidt decomposition, that is, a positive
integer r and orthogonal sets {w1, . . . , wr} ⊂ Y1 and {z1, . . . , zr} ⊂ Y2 such that

y =
r∑
i=1

wi ⊗ zi. (5.59)

It holds that

(1⊗ y∗)W ∗(S ⊗Q)W (1⊗ y)

=

(
r∑
i=1

1X1⊗X2 ⊗ w∗i ⊗ z∗i

)
W ∗(S ⊗Q)W

(
r∑
i=1

1X1⊗X2 ⊗ wi ⊗ zi

)

=

(
r∑
i=1

1X1 ⊗ w∗i ⊗ 1X2 ⊗ z∗i

)
(S ⊗Q)

(
r∑
i=1

1X1 ⊗ wi ⊗ 1X2 ⊗ zi

)

=
r∑

i,j=1

(1X1 ⊗ w∗i )S(1X1 ⊗ wj)⊗ (1X2 ⊗ z∗i )Q(1X2 ⊗ zj).

(5.60)

The separable operator S ∈ Sep(X1 : Y1) can be expressed as

S =
m∑
j=1

aja
∗
j ⊗ bjb∗j , (5.61)

for vectors a1, . . . , am ∈ X1 and b1, . . . , bm ∈ Y1. By convexity, it is enough to argue about
the operator

(1⊗ y∗)W ∗(aa∗ ⊗ bb∗ ⊗Q)W (1⊗ y), (5.62)

70



for any vectors a ∈ X1 and b ∈ Y1. From Eq. (5.60), we have that

(1⊗ y∗)W ∗(aa∗ ⊗ bb∗ ⊗Q)W (1⊗ y)

=
r∑

i,j=1

(aa∗ ⊗ w∗i bb∗wj)⊗ (1X2 ⊗ z∗i )Q(1X2 ⊗ zj)

= aa∗ ⊗

(
1X2 ⊗

r∑
i=1

w∗i az
∗
i

)
Q

(
1X2 ⊗

r∑
i=1

a∗wizi

)
= aa∗ ⊗ (1X2 ⊗ z∗)Q(1X2 ⊗ z),

(5.63)

where we have defined the vector z ∈ Y2 to be such that z =
∑r

i=1 a
∗wizi. From the fact

the Q ∈ Sep∗(X2 : Y2), it holds that

(1X2 ⊗ z∗)Q(1X2 ⊗ z) ∈ Pos(X2),

and therefore we have that

(1X1⊗X2 ⊗ y∗)W ∗(S ⊗Q)W (1X1⊗X2 ⊗ y) ∈ Sep(X1 ⊗X2) (5.64)

is positive semidefinite.

Now we are ready to show a feasible solution of the dual problem (4.41) for the set of
states (5.55). For any t ≥ 2, we denote with X (t) and Y(t) two isomorphic copies of the
complex Euclidean space C2t , so that the states in (5.55) lie in X (t) ⊗ Y(t).

Consider the operator

S =
1

2
vec(σ0 + σ1) vec(σ0 + σ1)

∗ ∈ Pos(X (1) ⊗ Y(1)). (5.65)

Let W ∈ U(X (t) ⊗Y(t),X (1) ⊗Y(1) ⊗X (t−1) ⊗Y(t−1)) be the linear isometry defined in the
statement of Lemma 5.11, acting on the specified spaces. The solution of the dual problem
may be recursively defined as follows:

H(t) = W ∗(S ⊗H(t−1))W, (5.66)

for any t ≥ 2. The base of the recursion H(2) is the operator defined in Eq. (5.50). In the
rest of the section we prove, by induction, that the cone program constraint

H(t) − 1

2t
vec(U

(t)
k ) vec(U

(t)
k )∗ ∈ Sep∗(X (t) : Y(t)) (5.67)
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is satisfied for any k ∈ {1, . . . , 2t}.

Let us consider an arbitrary 1 ≤ k ≤ 2t−1 (the case 2t−1 ≤ k ≤ 2t follows from a similar
argument). Eq. (5.54) implies that

vec(U
(t)
k ) vec(U

(t)
k )∗ = W ∗(vec(σ0) vec(σ0)

∗ ⊗ vec(U
(t−1)
k ) vec(U

(t−1)
k )∗)W

≤ W ∗(vec(σ0 + σ1) vec(σ0 + σ1)
∗ ⊗ vec(U

(t−1)
k ) vec(U

(t−1)
k )∗)W,

(5.68)

and therefore that

H(t) − 1

2t
vec(U

(t)
k ) vec(U

(t)
k )∗ = W ∗(S ⊗H(t−1))W − 1

2t
vec(U

(t)
k ) vec(U

(t)
k )∗ (5.69)

≥ W ∗(S ⊗ (H(t−1) − 1

2t−1
vec(U

(t−1)
k ) vec(U

(t−1)
k )∗)W.

(5.70)

The Peres-Horodecki criterion, along with the fact that

TX (S) = S ∈ Pos(X1 ⊗ Y1),

implies that S ∈ Sep(X1 : Y1). From Lemma 5.11 and the induction hypothesis, we have
that

W ∗(S ⊗ (H(t−1) − 1

2t−1
vec(U

(t−1)
k ) vec(U

(t−1)
k )∗)W ∈ Sep∗(X (t) : Y(t)), (5.71)

and therefore the constraint (5.67) is satisfied. Moreover, we have that Tr(Q) = 1 and
therefore

Tr(H(t)) = Tr(H(2)) =
3

4

Small sets of locally indistinguishable orthogonal maximally entangled states

The main corollary of the proof above is that there exist LOCC-indistinguishable sets of
k < n maximally entangled states in Cn ⊗ Cn. Asymptotically, our construction allows
for the cardinality k of the indistinguishable sets to be as small as Cn, where C is a
constant less than 1. In particular, we have that 3/4 ≤ C < 1. It is possible that this
constant can be improved by using a different construction than the Yu–Duan–Ying states.
A further improvement would be to exhibit indistinguishable sets of maximally entangled
states with cardinality o(n). One among the smallest indistinguishable sets that come out
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of the above construction consists of the states in C8 ⊗ C8 corresponding the following 7
unitary operators:

U1 = σ0 ⊗ σ0 ⊗ σ0,
U2 = σ0 ⊗ σ1 ⊗ σ1,
U3 = σ0 ⊗ σ2 ⊗ σ1,
U4 = σ0 ⊗ σ3 ⊗ σ1,
U5 = σ0 ⊗ σ0 ⊗ σ0,
U6 = σ0 ⊗ σ1 ⊗ σ1,
U7 = σ0 ⊗ σ2 ⊗ σ1.

(5.72)

Remark 5.12. In a very recent result1, Li et al. [LWFZ15] build up on our proof from
[CR14] and show that indistinguishable sets of N orthogonal maximally entangled states
in CN ⊗ CN exists for all N and not just when N is a power of 2.

Entanglement Discrimination Catalysis

It is worth noting that the “Entanglement Discrimination Catalysis” phenomenon, ob-
served in [YDY12] for the set (3.29), also applies to the set of states in the above example
and to any set derived from our construction. If Alice and Bob are provided with a max-
imally entangled state as a resource, then they are able to distinguish the states in these
sets and, when the protocol ends, they are still left with an untouched maximally entan-
gled state. When t = 2, the catalyst is used to teleport the first qubit from one party
to the other, say from Alice to Bob. Bob can then measure the first two qubits in the
standard Bell basis and identify which of the four states was prepared. Since the third and
fourth qubits are not being acted on, they can be used in a new round of the protocol.
For the case t > 2, let us recall the recursive construction of the states from (5.54). Dis-
tinguishing between the two cases of the recursion is equivalent to distinguishing between
two Bell states. And the base case is exactly the case t = 2 described above, with only one
maximally entangled state involved in the catalysis.

PPT vs. separable in the perfect discrimination of maximally entangled states

Michael Nathanson (personal communication) raised the question whether there always
exists a separable measurement that perfectly distinguishes maximally entangled states

1A similar result (obtained via a different approach) appears also in a preprint by Yu and Oh [YO15].
Notice that this has not been published yet, neither I have verified it myself yet.
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that are known to be perfectly distinguishable by PPT. The construction that generalize
Yu–Duan–Ying states in high dimension provides a negative answer to Michael’s question.
It turns out that if we take only 7 out of the 8 states coming from the construction for
t = 3 (for example, the ones corresponding to the operators in Eq. (5.72)), they are distin-
guishable by separable measurement with probability at most 6/7, but they are perfectly
distinguishable by PPT. Unfortunately we do not have a nice-looking closed form for the
PPT measurement operators that achieve perfect distinguishability, but know, by running
a semidefinite programming solver, that such operators exist.

5.3.2 Unambiguous discrimination

Interestingly, the optimal probability of unambiguously distinguish the set of Yu–Duan-
Ying states with PPT measurements is 3/4, which should be compared with the success
probability of 7/8 that can be achieved with a minimum-error strategy (see Theorem 5.10).
Using a semidefinite program solver, we were also able to verify that this bound is actually
tight.

Theorem 5.13. The maximum success probability of unambiguously distinguishing the
ensemble in Eq. (5.49) with PPT measurements is equal to 3/4.

Proof. We show a feasible solution of the dual problem (4.73) for which the value of the
objective function is 3/4. Let

Y =
1

16
[(1− ψ1)⊗ (1− 2ψ4) + ψ1 ⊗ (−ψ1 + 3ψ2 + 3ψ3 + ψ4)]. (5.73)

and
Q1 = [(1− ψ3)⊗ ψ3 + ψ3 ⊗ (ψ2 + ψ3)]/4,

Q2 = [(ψ1 + ψ2)⊗ ψ2 + ψ4 ⊗ (1− ψ2)]/4,

Q3 = [(ψ2 + ψ4)⊗ ψ2 + ψ1 ⊗ (1− ψ2)]/4,

Q4 = [(ψ1 + ψ4)⊗ ψ2 + ψ2 ⊗ (1− ψ2)]/4,

Q5 = (ψ3 ⊗ ψ2)/4.

(5.74)

We can use the equations in (4.28) to verify that the constraints of the program (4.73) are
satisfied:

Y − 1

4
ρj +

∑
1≤i≤k
i 6=j

ρi = TA(Qj), j = 1, . . . , 4 and Y ≥ TA(Q5), (5.75)

Finally, we have Tr(Y ) = 3/4.
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Chapter 6

Distinguishability of unextendable
product sets

In this chapter, we study the state discrimination problem for collections of states formed
by unextendable product sets. An orthonormal collection of product vectors

A = {uk ⊗ vk : k = 1, . . . , N} ⊂ X ⊗ Y , (6.1)

for complex Euclidean spaces X = Cn and Y = Cm, is said to be an unextendable product
set if it is impossible to find a nonzero product vector u ⊗ v ∈ X ⊗ Y that is orthogonal
to every element of A [BDM+99]. That is, A is an unextendable product set if, for every
choice of vectors u ∈ X and v ∈ Y satisfying either 〈u, uk〉 = 0 or 〈v, vk〉 = 0 for each
k ∈ {1, . . . , N}, one has that either u = 0 or v = 0 (or both).

The first section establishes a simple criterion for the states formed by any unextendable
product set to be perfectly discriminated by separable measurements, and the second
subsection proves that any set of states formed by taking the union of an unextendable
product set A ⊂ X ⊗ Y together with any pure state z ∈ X ⊗ Y orthogonal to every
element of A cannot be perfectly discriminated by a separable measurement. (It is evident
that PPT measurements allow a perfect discrimination in both cases.)

Contents
6.1 A criterion for perfect separable discrimination of unextend-

able product sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Impossibility to distinguish an unextendable product set plus
one more pure state . . . . . . . . . . . . . . . . . . . . . . . . . 80
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6.1 A criterion for perfect separable discrimination of

unextendable product sets

Here we provide a simple criterion for when an unextendable product set can be perfectly
discriminated by separable measurements, and we use this criterion to show that there
is an unextendable product set A ⊂ X ⊗ Y that is not perfectly discriminated by any
separable measurement when X = Y = C4. It is known that no unextendable product set
A ⊂ X ⊗ Y spanning a proper subspace of X ⊗ Y can be perfectly discriminated by an
LOCC measurement [BDM+99], while every unextendable product set can be discriminated
perfectly by a PPT measurement. It is also known that every unextendable product
set A ⊂ X ⊗ Y can be perfectly discriminated by separable measurements in the case
X = Y = C3 [DMS+03].

The following notation will be used throughout this section. For X = Cn, Y = Cm,
and A = {uk ⊗ vk : k = 1, . . . , N} ⊂ X ⊗ Y being an unextendable product set, we will
write

Ak = A\{uk ⊗ vk}, (6.2)

and define a set of rank-one product projections

Pk =
{
xx∗ ⊗ yy∗ : x ∈ X , y ∈ Y , ‖x‖ = ‖y‖ = 1, and x⊗ y ⊥ Ak

}
(6.3)

for each k = 1, . . . , N . One may interpret each element xx∗ ⊗ yy∗ of Pk as corresponding
to a product vector x ⊗ y that could replace uk ⊗ vk in A, yielding a (not necessarily
unextendable) orthonormal product set.

The following theorem states that the sets P1, . . . ,PN defined above determine whether
or not an unextendable product set can be perfectly discriminated by separable measure-
ments.

Theorem 6.1. Let X = Cn and Y = Cm be complex Euclidean spaces and let

A = {uk ⊗ vk : k = 1, . . . , N} ⊂ X ⊗ Y (6.4)

be an unextendable product set. The following two statements are equivalent:

1. There exists a separable measurement µ ∈ MeasSep(N,X : Y) that perfectly discrimi-
nates the states represented by A (for any choice of nonzero probabilities p1, . . . , pN).

2. For P1, . . . ,PN as defined in (6.3), one has that the identity operator 1X ⊗1Y can be
written as a nonnegative linear combination of projections in the set P1 ∪ · · · ∪ PN .
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Proof. Assume first that statement 2 holds, so that one may write

1X ⊗ 1Y =
N∑
k=1

Mk∑
j=1

λk,j xk,jx
∗
k,j ⊗ yk,jy∗k,j (6.5)

for some choice of positive integers M1, . . . ,MN , nonnegative real numbers {λk,j}, and
product vectors {xk,j ⊗ yk,j} satisfying

xk,jx
∗
k,j ⊗ yk,jy∗k,j ∈ Pk (6.6)

for each k ∈ {1, . . . , N} and j ∈ {1, . . . ,Mk}. Define

µ(k) =

Mk∑
j=1

λk,j xk,jx
∗
k,j ⊗ yk,jy∗k,j (6.7)

for each k ∈ {1, . . . , N}. It is clear that µ is a separable measurement, and by the definition
of the sets P1, . . . ,PN it necessarily holds that

〈µ(k), u`u
∗
` ⊗ v`v∗` 〉 = 0, (6.8)

when k 6= `. This implies that µ perfectly discriminates the states represented by A, and
therefore implies that statement 1 holds.

Now assume that statement 1 holds: there exists a separable measurement

µ ∈ MeasSep(N,X : Y)

that perfectly discriminates the states represented by A. As each measurement operator
µ(k) is separable, it is possible to write

µ(k) =

Mk∑
j=1

λk,j xk,jx
∗
k,j ⊗ yk,jy∗k,j (6.9)

for some choice of nonnegative integers {Mk}, positive real numbers {λk,j}, and unit vectors
{xk,j : j = 1, . . . ,Mk} ⊂ X and {yk,j : j = 1, . . . ,Mk} ⊂ Y . The assumption that
this measurement perfectly discriminates A implies that xk,j ⊗ yk,j ⊥ Ak, and therefore
xk,jx

∗
k,j ⊗ yk,jy

∗
k,j ∈ Pk, for each k = 1, . . . , N and j = 1, . . . ,Mk. As we have that

µ(1) + · · ·+ µ(N) = 1X ⊗ 1Y , it follows that statement 2 holds.
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It is not immediately clear that Theorem 6.1 is useful for determining whether or not
any particular unextendable product set can be discriminated by separable measurements,
but indeed it is. What makes this so is the fact that each set Pk is necessarily finite, as
the following proposition establishes.

Proposition 6.2. Let X and Y be complex Euclidean spaces, let

A = {uk ⊗ vk : k = 1, . . . , N} ⊂ X ⊗ Y

be an unextendable product set, and let P1, . . . ,PN be as defined in (6.3). The sets
P1, . . . ,PN are finite.

Proof. Assume toward contradiction that Pk is infinite for some choice of k ∈ {1, . . . , N}.
There are finitely many subsets S ⊆ {1, . . . , k−1, k+1, . . . , N}, so there must exist at least
one such subset S with the property that there are infinitely many pairwise nonparallel
product vectors of the form x ⊗ y such that x ⊥ uj for every j ∈ S and y ⊥ vj for every
j 6∈ S. This implies that both the subspace of X orthogonal to {uj : j ∈ S} and the
subspace of Y orthogonal to {vj : j 6∈ S} have dimension at least 1, and at least one of
them has dimension at least 2. It follows that there must exist a unit product vector x⊗ y
with three properties: (i) x ⊥ uj for every j ∈ S, (ii) y ⊥ vj for every j 6∈ S, and (iii)
x⊗ y ⊥ uk⊗ vk. This contradicts the fact that A is unextendable, and therefore completes
the proof.

Given Proposition 6.2, it becomes straightforward to make use of Theorem 6.1 compu-
tationally. The sets P1, . . . ,PN can be computed by iterating over all

S ⊆ {1, . . . , k − 1, k + 1, . . . , N}

and finding the (at most one) product state orthogonal to {uj : j ∈ S} on X and {vj : j /∈
S} on Y . Then, the second statement in Theorem 6.1 can be checked through the use of
linear programming (and even by hand in some cases).

Example 6.3 (Feng’s unextendable product set). We now present an example of an unex-
tendable product set in X ⊗Y , for X = Y = C4, that cannot be perfectly discriminated by
separable measurements. In particular, let A be the unextendable product set consisting
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of 8 states that were found in [Fen06]:

|φ1〉 = |0〉|0〉,
|φ2〉 = |1〉 (|0〉 − |2〉+ |3〉) /

√
3,

|φ3〉 = |2〉 (|0〉+ |1〉 − |3〉) /
√

3,
|φ4〉 = |3〉|3〉,
|φ5〉 = (|1〉+ |2〉+ |3〉) (|0〉 − |1〉+ |2〉) /3,
|φ6〉 = (|0〉 − |2〉+ |3〉) |2〉/

√
3,

|φ7〉 = (|0〉+ |1〉 − |3〉) |1〉/
√

3,
|φ8〉 = (|0〉 − |1〉+ |2〉) (|0〉+ |1〉+ |2〉) /3.

(6.10)

For each k = 1, . . . , 8, there are exactly 6 product states contained in Pk for each choice
of k, which we represent by product vectors |φk,j〉 for j = 1, . . . , 6. To be explicit, these
states are as follows (where we have omitted normalization factors for brevity):

|φ1,1〉 = |0〉|0〉,
|φ1,2〉 = (|0〉+ |1〉 − |3〉) (|0〉+ |2〉),
|φ1,3〉 = (|0〉 − |1〉) (|0〉+ |1〉 − |3〉),

|φ1,4〉 = (|0〉 − |1〉+ |2〉) (|0〉 − |1〉+ |2〉),
|φ1,5〉 = (|0〉+ |2〉) (|0〉 − |2〉+ |3〉),
|φ1,6〉 = (|0〉 − |2〉+ |3〉) (|0〉 − |1〉),

|φ2,1〉 = |1〉 (|0〉 − |2〉+ |3〉),
|φ2,2〉 = (|0〉+ |1〉 − |3〉) |2〉,
|φ2,3〉 = (|0〉+ |1〉) |3〉,

|φ2,4〉 = (|0〉 − |1〉+ |2〉) (|1〉 − 2|2〉+ |3〉),
|φ2,5〉 = (|1〉+ |2〉+ |3〉) (|0〉 − |1〉 − 2|2〉),
|φ2,6〉 = (|1〉 − |3〉) |0〉,

|φ3,1〉 = |2〉 (|0〉+ |1〉 − |3〉),
|φ3,2〉 = (|0〉 − |2〉+ |3〉) |1〉,
|φ3,3〉 = (|2〉 − |3〉) |0〉,

|φ3,4〉 = (|1〉+ |2〉+ |3〉) (|0〉+ 2|1〉+ |2〉),
|φ3,5〉 = (|0〉 − |1〉+ |2〉) (2|1〉 − |2〉 − |3〉),
|φ3,6〉 = (|0〉 − |2〉) |3〉,

|φ4,1〉 = |3〉|3〉,
|φ4,2〉 = (|0〉+ |1〉 − |2〉) (|2〉+ |3〉),
|φ4,3〉 = (|1〉+ |3〉) (|0〉+ |1〉 − |3〉),

|φ4,4〉 = (|2〉+ |3〉) (|0〉 − |2〉+ |3〉),
|φ4,5〉 = (|1〉+ |2〉+ |3〉) (|1〉+ |2〉+ |3〉),
|φ4,6〉 = (|0〉 − |2〉+ |3〉) (|1〉+ |3〉),

|φ5,1〉 = (|1〉+ |2〉+ |3〉) (|0〉 − |1〉+ |2〉),
|φ5,2〉 = |1〉 (2|0〉+ |2〉 − |3〉),
|φ5,3〉 = |3〉|0〉,

|φ5,4〉 = (|0〉 − |2〉 − 2|3〉) |2〉,
|φ5,5〉 = |2〉 (2|0〉 − |1〉+ |3〉),
|φ5,6〉 = (|0〉+ |1〉+ 2|3〉) |1〉,

|φ6,1〉 = (|0〉 − |2〉+ |3〉) |2〉,
|φ6,2〉 = |3〉 (|0〉 − |2〉),
|φ6,3〉 = |0〉 (|2〉 − |3〉),

|φ6,4〉 = (|0〉 − |1〉 − 2|2〉) (|1〉+ |2〉+ |3〉),
|φ6,5〉 = |2〉 (|0〉 − |2〉+ |3〉),
|φ6,6〉 = (|1〉 − 2|2〉+ |3〉) (|0〉 − |1〉+ |2〉),
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|φ7,1〉 = (|0〉+ |1〉 − |3〉) |1〉,
|φ7,2〉 = |0〉 (|1〉 − |3〉),
|φ7,3〉 = |1〉 (|0〉+ |1〉 − |3〉),

|φ7,4〉 = (|0〉+ 2|1〉+ |2〉) (|1〉+ |2〉+ |3〉),
|φ7,5〉 = (2|1〉 − |2〉 − |3〉) (|0〉 − |1〉+ |2〉),
|φ7,6〉 = |3〉 (|0〉+ |1〉),

|φ8,1〉 = (|0〉 − |1〉+ |2〉) (|0〉+ |1〉+ |2〉),
|φ8,2〉 = |1〉 (|0〉 − |2〉 − 2|3〉),
|φ8,3〉 = (2|0〉 − |1〉+ |3〉) |1〉,

|φ8,4〉 = |0〉|3〉,
|φ8,5〉 = (2|0〉+ |2〉 − |3〉) |2〉,
|φ8,6〉 = |2〉 (|0〉+ |1〉+ 2|3〉).

One may verify by a computer that 1 ⊗ 1 is not contained in the convex cone generated
by {

|φk,j〉〈φk,j | : k = 1, . . . , 8, j = 1, . . . , 6
}
. (6.11)

(In fact, 1⊗1 is not in the linear span of the set (6.11).) Theorem 6.1 therefore implies that
this unextendable product set is not perfectly discriminated by separable measurements.

The computational procedure described above was implemented in MATLAB as part
of the QETLAB Toolbox ([JCR15], UPBSepDistinguishable function).

6.2 Impossibility to distinguish an unextendable

product set plus one more pure state

Next, we prove an upper bound on the probability to correctly discriminate any unextend-
able product set, together with one extra pure state orthogonal to the members of the
unextendable product set, by a separable measurement. Central to the proof of this state-
ment is a family of positive linear maps previously studied in the literature [Ter01, BGR05].

Before proving this fact, we note that it is fairly straightforward to obtain a qualitative
result along similar lines: if a separable measurement were able to perfectly discriminate a
particular product set from any state orthogonal to this product set, there would necessarily
be a separable measurement operator orthogonal to the space spanned by the product
set, implying that some nonzero product state must be orthogonal to the product set
(and therefore the product set must be extendable). Related results based on this sort
of argument may be found in [Ban11]. An advantage of the method described here is
that one obtains precise bounds on the optimal discrimination probability, as opposed to
a statement that a perfect discrimination is not possible.

The following lemma is required for the proof of the theorem below.
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Lemma 6.4 (Terhal). For given complex Euclidean spaces X = Cn and Y = Cm, and any
unextendable product set

A = {uk ⊗ vk : k = 1, . . . , N} ⊂ X ⊗ Y , (6.12)

there exists a positive real number λA > 0 such that

(1X ⊗ y∗)

(
N∑
k=1

uku
∗
k ⊗ vkv∗k

)
(1X ⊗ y)− λA‖y‖21X ∈ Pos(X ), (6.13)

for every y ∈ Y.

A proof of the lemma, as well as a constructive procedure to calculate a bound on λA, can
be found in [Ter01].

Theorem 6.5. Let X = Cn and Y = Cm be complex Euclidean spaces, let

A = {uk ⊗ vk : k = 1, . . . , N} ⊂ X ⊗ Y (6.14)

be an unextendable product set, and let

z ∈ X ⊗ Y (6.15)

be a unit vector orthogonal to A. We have that

optSep(A ∪ {z}) ≤ 1− λA
(N + 1)δ

, (6.16)

where λA is a positive real number satisfying the requirements of Lemma 6.4 and

δ = ‖TrX (zz∗)‖.

Proof. Consider the following Hermitian operator:

H =
1

N + 1

(
N∑
k=1

uku
∗
k ⊗ vkv∗k +

(
1− λA

δ

)
zz∗

)
. (6.17)

We want to show that H is a feasible solution of the dual problem (4.41) for the state
discrimination problem under consideration. It is clear that

H − 1

N + 1
uku

∗
k ⊗ vkv∗k ∈ Pos(X ⊗ Y) ⊂ Sep∗(X : Y) (6.18)
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for k = 1, . . . , N . The remaining constraint left to be checked is the following:

H − 1

N + 1
zz∗ =

1

N + 1

(
N∑
k=1

uku
∗
k ⊗ vkv∗k −

λA
δ
zz∗

)
∈ Sep∗(X : Y). (6.19)

Using the fact that

δ‖y‖21X − (1X ⊗ y∗) zz∗ (1X ⊗ y) ∈ Pos(X ), (6.20)

for any y ∈ Y , together with Lemma 6.4, one has that

(1⊗ y)∗
(

N∑
k=1

uku
∗
k ⊗ vkv∗k −

λA
δ
zz∗

)
(1⊗ y) ∈ Pos(X ) (6.21)

and therefore the constraint (6.19) is satisfied. Finally, it holds that

Tr(H) = 1− λA
(N + 1)δ

, (6.22)

which completes the proof.

Example 6.6 (Tiles set). Theorem 6.5 allow us to find specific bounds for the probability of
correctly discriminating certain sets of states. For instance, here we consider the following
unextendable product set A ⊂ X ⊗ Y for X = Y = C3, commonly known as the tiles set :

|φ1〉 = |0〉
(
|0〉−|1〉√

2

)
, |φ2〉 = |2〉

(
|1〉−|2〉√

2

)
, |φ3〉 =

(
|0〉−|1〉√

2

)
|2〉, |φ4〉 =

(
|1〉−|2〉√

2

)
|0〉,

|φ5〉 = 1
3

(|0〉+ |1〉+ |2〉) (|0〉+ |1〉+ |2〉) .
(6.23)

For a pure state orthogonal to this set, one may take

|ψ〉 =
1

2
(|0〉|0〉+ |0〉|1〉 − |0〉|2〉 − |1〉|2〉) . (6.24)

Using the procedure described in [Ter01], one obtains

λA ≥
1

9

(
1−

√
5

6

)2

. (6.25)
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Therefore, if we assume that each state is selected with probability 1/6, the maximum prob-
ability of correctly discriminating the set {|φ1〉, . . . , |φ5〉, |ψ〉} by a separable measurement
is at most

optSep(A) ≤ 1− 1

54

(
1−

√
5
6

)2
cos
(
π
8

)2 < 1− 1.647× 10−4. (6.26)

This bound is not tight, as numerical optimization (see Appendix A) shows that

optSep(A) < 0.9861. (6.27)
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Chapter 7

Conclusions and open problems

In this thesis we have used techniques from convex optimization to study the limitations
of LOCC, separable, and PPT measurements for the task of distinguishing sets of bipar-
tite states. Compared to previous approaches, our techniques turned out to be effective
in providing precise bounds on the maximum probability of locally distinguishing some
interesting sets of maximally entangled states and unextendable product sets.

Several specific questions regarding the local distinguishability of sets of bipartite states
remain unsolved.

In Chapter 5 we proved a tight bound on the entanglement cost of discriminating sets
of Bell states by means of LOCC protocols. One could ask the following more general
question.

Question 7.1. How much entanglement does it cost to distinguish maximally entangled
states in Cn ⊗ Cn?

Ghosh et al. [GKRS04] have shown that orthogonal maximally entangled states, which
are in canonical form, can always be discriminated, by means of LOCC protocols, if two
copies of each of the states are provided. One could ask if two copies are always sufficient.
In fact, this question is open even for separable and PPT measurement.

Question 7.2. Are two copies sufficient to discriminate any set of orthogonal pure states
by PPT measurements?

In Chapter 5 we have given an ensemble consisting only of orthogonal maximally entan-
gled states for the task of distinguish which, PPT measurements are strictly more powerful
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than separable measurements. One could inquire into a similar separation between LOCC
and separable measurements.

Question 7.3. Does there exist an ensemble E fully composed of orthogonal maximally
entangled states for which the following strict inequality holds?

optLOCC(E) < optSep(E). (7.1)

The techniques presented in the paper are not intrinsically limited to the setting of
bipartite pure states, and applications of these techniques to the multipartite setting are
topics for possible future work.

Global distinguishability of random states was studied by A. Montanaro [Mon07]. More
precisely, he put a lower bound on the probability of distinguishing (by global measure-
ments) an ensembles of n random quantum states in Cd, in the asymptotic regime where
n/d approaches a constant. A similar question on the distinguishability of random states by
PPT and separable measurements could be investigated by using the convex optimization
approach developed in the thesis.

Apart from quantum states, one could also study the LOCC distinguishability of quan-
tum operations [MPW10]. It is a topic that has not been studied as throughly as in the case
of states, but once again, one could approach it through the lens of convex optimization.

A more speculative project, yet very exciting, is to give a somewhat useful charac-
terization of the set dual to the set of LOCC measurement and its corresponding set of
linear mappings (both labeled by a question mark in the diagrams of Figure 4.1). As we
do not have a nice characterization of the LOCC set itself, we suppose this is a difficult
project. One direction to approach this problem can be to consider smaller sets that are
contained in the LOCC set, such as one-way LOCC, where the communication is only in
one direction, say from Alice to Bob, or LOCC-r , in which the communication is limited
to r rounds. Let us fantasize we had a characterization of the set dual to the set of LOCC
measurement and let us denote it as Meas∗LOCC(N,X : Y). Then we could plug it in the
following cone program and proceed as we did for all the cone programs analyzed on this
thesis.
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Dual (LOCC measurements)

minimize: Tr(H)

subject to:

H − p1ρ1 . . .

H − pNρN

 ∈ Meas∗LOCC(N,X : Y),

H ∈ Herm(X ⊗ Y).

(7.2)

Finally, apart from [GSU13], I am not aware of any results where cone programming is
explicitly used in quantum computing for any cones different than the cone of semidefinite
operators. I hope this work helps toward the rise of more applications of cone programming
in quantum information theory.
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Appendix A

Local distinguishability in Matlab

Setup

Requirements

• MATLAB1;

• CVX >= 2.1 [GB14];

• QETLAB >= 0.7 [JCR15];

List of functions

• Distinguishability (by N. Johnston) — given an ensemble E , computes opt(E);

• LocalDistinguishability — given an ensemble E , computes optPPT(E) or optSym(E);

• UPBSepDistinguishable (by N. Johnston) – an implementation of the criterion de-
scribed in Sec. 6.1;

1Unfortunately at the time of writing this, the package CVX only runs on Matlab. I solemnly promise
that I will port all the code to GNU Octave once the Octave port of CVX will be completed.
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Examples

The code for the following examples can be found in the repository [Cos15].

Yu–Duan–Ying states

states = 1/2*[vec(kron(Pauli(0),Pauli(0)))’; ...

vec(kron(Pauli(1),Pauli(1)))’; ...

vec(kron(Pauli(2),Pauli(1)))’; ...

vec(kron(Pauli(3),Pauli(1)))’]’;

disp(Distinguishability(states));

disp(LocalDistinguishability(states, ’copies’, 1));

disp(LocalDistinguishability(states));

1

0.8750

0.7500

Tiles set plus extra orthogonal state (Example 6.6)

extra_state = 1/2*[1 1 -1 0 0 -1 0 0 0];

set = [UPB(’Tiles’) extra_state’];

disp(LocalDistinguishability(UPB(’Tiles’)))

disp(LocalDistinguishability(states, ’copies’, 1));

disp(LocalDistinguishability(states));

1.0000

1.0000

0.9860
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Bell state discrimination

bells_m = [Bell(1) Bell(2) Bell(3) Bell(4)]’;

disp(Distinguishability(bells_m));

disp(LocalDistinguishability(bells_m, ’copies’, 1));

1

0.5000

Entanglement cost (Section 5.2)

eps = 1/2; % takes a value between 0 and 1

eps_state = [sqrt((1+eps)/2) 0 0 sqrt((1-eps)/2)]’;

4 Bell states

d = 4;

n = 4;

bells_m = zeros(d^2, n);

for k=1:n

% makes sure we are considering the right partition

bells_m(:, k) = Swap(kron(Bell(k), eps_state), [2 3], [2 2 2 2]);

end

disp(Distinguishability(bells_m));

disp(LocalDistinguishability(bells_m, ’copies’, 1));

1

0.9330
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3 Bell states

n = 3;

disp(Distinguishability(bells_m(:, 1:n)));

disp(LocalDistinguishability(bells_m(:, 1:n), ’copies’, 1));

disp(LocalDistinguishability(bells_m(:, 1:n), ’copies’, 2));

1

0.9916

0.9586

Generalized Bell states (Examples from [GKRS04])

In the code that follows, the function GenPauli(a,b,n) generates the matrix corresponding
to the operator Wa,b ∈ U(Cn) defined in Eq. (2.17).

5 maximally entangled states in C5 ⊗ C5

n = 5;

gen_bells = [vec(GenPauli(0,0,n)), ...

vec(GenPauli(1,1,n)), ...

vec(GenPauli(1,2,n)), ...

vec(GenPauli(3,1,n)), ...

vec(GenPauli(3,2,n))];

disp(Distinguishability(gen_bells));

disp(LocalDistinguishability(gen_bells, ’copies’, 1));

1

0.9898
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6 maximally entangled states in C6 ⊗ C6

n = 6;

gen_bells = [vec(GenPauli(0,0,n)), ...

vec(GenPauli(1,1,n)), ...

vec(GenPauli(0,2,n)), ...

vec(GenPauli(0,3,n)), ...

vec(GenPauli(0,4,n)), ...

vec(GenPauli(3,0,n))];

disp(Distinguishability(gen_bells));

disp(LocalDistinguishability(gen_bells, ’copies’, 1));

1

0.9905
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