
Combinatorial aspects of braids
with applications to cryptography

by

Max Bennett

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2015

c© Max Bennett 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis is a collection of different results on braids, and draws connections between
them. We first introduce braids by showcasing a number of equivalent ways of describing
what a braid is, and how those representations are related. Then, while uncovering
enumerative properties of the positive braid monoid, we consider algorithms to compute the
lcm of a set of braids. This leads to more than one elegant solution to the word problem.
We explore some efficient algorithms which solve the word problem for braids, and then
also explore the conjugacy problem and the cryptosystems that rely on the hardness of it
in their proofs of security.

iii

Acknowledgements

I would first of all like to thank my supervisor Ian Goulden for giving me the freedom
to study something that I found interesting and enjoyable. I would also like to thank my
readers Alfred Menezes and David Wagner for taking the time to read my thesis.

I also couldn’t have done this without the wonderful friends I have made over my two
years in Waterloo, both inside and outside of school. Thank you for that.

iv

Dedication

To Jordana and Annie.

v

Table of Contents

List of Figures viii

List of Algorithms ix

1 Introduction 1

1.1 A brief history of braids in mathematics 1

1.2 Outline . 3

2 Representations of braids 4

2.1 Geometric braids . 4

2.2 Artin generators and the classical representation 8

2.3 The braid monoid . 17

2.4 Birman, Ko and Lee’s representation. 19

2.5 Pure braids. 22

2.6 The punctured disc. 24

3 Enumeration 27

3.1 Divisibility in the braid monoid. 27

3.2 Least common multiples via subword reversing. 32

3.3 How to count positive braids. 42

vi

4 Isotopy Problem 46

4.1 Invariants and algorithms. 46

4.2 Artin’s algorithm. 48

4.3 Subword reversing. 50

4.4 The greedy normal form. 51

4.5 The left-normal form for the braid group. 64

5 Braid group cryptography 66

5.1 Security definitions. 67

5.2 Conjugacy problems. 69

5.3 Cryptosystems based on braid groups. 69

5.4 Attacks on braid group cryptography. 75

APPENDICES 78

A Computer programs for using braids. 79

A.1 Manual for braid-progs.py. 79

References 81

vii

List of Figures

2.1 Visualizations of braids. 5

2.2 The product of braids b1 and b2. 6

2.3 The commutative product of b and ε is simply b. 6

2.4 The mirror image of a braid is its inverse. 7

2.5 Associativity of the braid product. 7

2.6 A braid. 8

2.7 The important braids σi and σ−1
i . 9

2.11 A ∆-move on a braid. 11

2.15 A ∆-move can be broken up into smaller moves. 15

2.20 A braid diagram of the generator σ2,5. 20

2.27 The braid σ1σ3σ2σ1 and its associated permutation. 22

2.28 The pure braid Ai,j. 23

2.32 Geometric braids and the mapping class group of D−n 26

3.4 A consistency check on 3.1. 28

3.5 A diagram of ∆2,5 in B6. 29

3.28 The reversing diagram for u−1v and u−1v′. 39

4.2 Equivalent braids imply equal permutations, but the converse is false. . . . 47

4.4 An example of a 1-pure braid. 49

4.15 The permutation braid br((1743)(26)(5)). 54

viii

List of Algorithms

4.3 Näıve algorithm. 48

4.5 Artin’s algorithm . 49

4.6 Subword reversing for positive braids. 50

4.8 Subword reversing for general braids. 51

4.29 Computing the greedy normal form. 63

5.2 Diffie-Hellman key exchange protocol. 67

5.8 Anshel-Anshel-Fisher-Goldfeld key-exchange 70

5.11 Ko et al.’s key-exchange protocol. 72

5.13 Ko et al.’s encryption protocol. 73

5.15 Sibert, Dehornoy, and Girault’s authentication scheme. 75

5.16 Garside’s solution to the conjugacy problem. 76

ix

Chapter 1

Introduction

Almost everybody from around the world and from all time periods is familiar with braids

in some capacity. Both men and women have been interweaving their hair into braids for

both cultural and utilitarian reasons for thousands of years. Braids have a place in culture

and fashion, but also mathematics.

1.1 A brief history of braids in mathematics

Despite the many mathematical properties that braids exhibit, braids were not formally

considered by mathematicians [53] until the 18-th century, along with the dawn of knot

theory. In 1771 Vandermonde [60] wrote in “Remarques sur les problèmes de situation”:

Whatever the twists and turns of a system of threads in space, one can always

obtain an expression for the calculation of its dimensions, but this expression

will be of little use in practice. The craftsman who fashions a braid, a net, or

some knots will be concerned, not with questions of measurement, but with

those of position: what he sees there is the manner in which the threads are

interlaced.

1

CHAPTER 1. INTRODUCTION

Vandermonde is insightful with this observation. Over two centuries later, we are still

only concerned with the position of the crossings in a braid and not with the exact position

of the strands. Around the same time as Vandermonde there is evidence of Gauss having

interest in braids [53] although Gauss thought of braids as a way of coding a knot.

The first time mathematics saw braids in a formal sense was in 1900 when Hurwitz

described an action (now called the Hurwitz action) that a braid would have on finite

sequences of a free group. The first major investigation of braids, however was by Emil

Artin in 1925 [7] when he published a paper in German called Theorie der Zöpfe (Theory

of Braids). It described braids in great detail and introduced the important braid σi, and

the well studied braid relations. In 1947 he published a paper in English called Theory

of Braids [8] where he disregards a lot of the proofs in [7] because of the nature of braid

projections and diagrams - the basis of those proofs. In [8], he gives more rigorous proofs

using a well defined coordinate system, not that different than a configuration space. Not

long after in 1950, Artin published a more streamlined note in English called The Theory

of Braids [6] (note the definite article “the” in the title) that gave a very concise and easy

to understand overview of braids. These three similarly entitled articles are why many refer

to the generators of the braid group as Artin generators.

Artin [6] introduced the idea of joining the ends of a braid together to obtain a link -

much like the way Gauss thought of braids. He realized that two “connected braids” are the

same if and only if they are conjugate in the braid group. He did not know if the conjugacy

problem was solvable yet.

In 1965, Garside studied braids for his PhD thesis, and published his findings in a

paper called The Braid Group and Other Groups [34] in 1969. Here he showed that the

conjugacy problem for the braid group is solvable, and offers an algorithm. Much later,

Patrick Dehornoy and Luis Paris [29] generalized braid groups into what they called Garside

groups, to honour Garside for his contribution to the field. Patrick Dehornoy has made

a massive contribution to the field of braids, with dozens of articles, notes and books on

braids, ranging from the word problem to ordering braids to cryptographic applications.

2

CHAPTER 1. INTRODUCTION

1.2 Outline

The structure of this thesis is as follows. First, in Chapter 2 we will introduce different

ways one may think about braids. We will see that there are geometric, topological, and

most importantly, algebraic methods for studying braids. In Chapter 3 we will consider

an interesting combinatorial problem regarding braids: how does one enumerate them? In

this chapter we will uncover seemingly unrelated yet interesting properties of braids which

will be used in the subsequent chapters. In Chapter 4 we will cover a few of the best, and

most used algorithms for comparing braids: given two braids, it is nontrivial to determine

whether or not they are the same braid with respect to isotopy. These algorithms do this.

In Chapter 5, we take a look at some applications to cryptography. Braids play a role in

cryptography thanks to the conjugacy problem on braids, introduced by Artin in 1925. It

turns out that the conjugacy problem is not a hard enough problem to base cryptosystems

on.

The Appendix has a list of computer programs that a reader may find useful if they

want a fast way to compare braids and compute lcms.

3

Chapter 2

Representations of braids

2.1 Geometric braids

The most intuitive way to think about a braid mathematically is to do so geometrically.

Take two finite parallel lines of the same length in R3, L1 and L2, each with equidistant

points P1, . . . Pn and Q1, . . . , Qn placed on them respectively. For precision, we can define

L1 to be the line that connects (1, 0, 0) to (1, 0, n) and L2 connects (0, 0, 0) to (0, 0, n), with

Pi = (1, 0, i) and Qi = (0, 0, i). This detail is usually ignored however, as the important

part is that L1 and L2 are parallel and that the Pi’s and Qi’s are distinct and in order.

A geometric braid on n strands is a collection of n disjoint continuous curves (called

strands) that connect the points P1, . . . , Pn to Q1, . . . , Qn. We will discuss this in more

detail later, but a braid which connects Pi to Qi for i = 1, . . . , n is called a pure braid; in

general we do not require this property in regular braids, most braids induce a permutation

on the points. Two braids b1 and b2 are equivalent when they are isotopic to one another,

and when this is the case we write b1 ≡ b2. We think of equivalent braids as being the same.

For a braid on n strands we can express each strand i by a function βi : [0, 1] → R3

so that βi(0) = (1, 0, i) and βi(1) = (0, 0, j), when the braid connects Pi to Qj. To ensure

that no strand has a knot in it, we require that each strand is strictly decreasing in the

4

CHAPTER 2. REPRESENTATIONS OF BRAIDS

x-coordinate. That is, when 0 ≤ t1 < t2 ≤ 1, then proj1(βi(t1)) > proj1(βi(t2)).1

We visualize braids by drawing a diagram. The most obvious way to do this is to

draw the braid as a 3-dimensional rendering (see figure 2.1a) using a software package

such as KnotPlot [54] but this can be rather cumbersome, and may overlook some of the

discrete properties of braids (not to mention the difficulty of typsetting). The open source

mathematical programming package Sage [57] can also be used to visualize braids. Instead,

we draw braids with a braid diagram2.

(a) Braids can be represented
by a 3 dimensional rendering
using KnotPlot.

(b) A more streamlined dia-
gram of the same braid, ig-
noring the lines L1 and L2.
This is how most of the braid
diagrams will look in this the-
sis.

Figure 2.1: Visualizations of braids.

As is the case with technical drawings of knots, the two dimensional projection of a

braid suffers from a rather obvious dilemma: how do you draw two strings crossing over

one another? The answer is also obvious, but worth noting. Although the strands are

each continuous, we denote a strand going underneath another by introducing a break

immediately before it passes underneath, and continuing immediately after.

1Here, proj1 is the function (x, y, z) 7→ x, and in general proji : (x1, . . . , xk) 7→ xi.
2It is worth noting that in the literature, instead of drawing braids from top to bottom, they are

sometimes drawn from left to right.

5

CHAPTER 2. REPRESENTATIONS OF BRAIDS

The braid in figure 2.1b is composed of straight lines. When a braid has this property

we say that it is polygonal. For simplicity, we always assume we are working with polygonal

braids, or braids which are obviously isotopic to polygonal braids.

Now that we have some elementary tools to talk about braids, we can begin to describe

how braids interact with one another, and thus how we define a product. Given two braids

b1 and b2, place b1 over b2 so that the bottom line of b1 (L2) replaces the top line of b2 (L1).

We then identify the overlapping points and remove the line. We call this product b1b2 or

b1 ∗ b2.

b1

∗

b2

≡

b1b2

≡

b1b2

Figure 2.2: The product of braids b1 and b2.

The braid product is called a product for a good reason. Define the pure braid ε to be

that which connects the points Pi to Qi without any intertwining of the strands. It is clear

that for any braid b, b ∗ ε ≡ b ≡ ε ∗ b. That is, ε is the identity braid.

bε

≡

b

≡

εb

Figure 2.3: The commutative product of b and ε is simply b.

Every braid has an inverse: for each braid b, there exists a braid called b−1, which

satisfies b ∗ b−1 ≡ b−1b = ε. Finding the inverse of a braid is simple: if one places a mirror

at the bottom of b the braid that appears as the reflection is its inverse.

6

CHAPTER 2. REPRESENTATIONS OF BRAIDS

b

b−1

Figure 2.4: The mirror image of a braid is its inverse.

At this point the reader may have already guessed that the braid product is associative.

As mentioned earlier, the position of the lines L1 and L2 are usually allowed to move

throughout space (provided they are parallel and oriented in the same direction) which

makes associativity trivial. However, if we require the lines to be fixed, then there still

exists an isotopy between (b1 ∗ b2) ∗ b3 and b1 ∗ (b2 ∗ b3). It is obtained by compressing b3

and expanding b1, as in figure 2.5.

b1

b2

b3

(b1 ∗ b2) ∗ b3

≡

b1

b2

b3

b1 ∗ (b2 ∗ b3)

Figure 2.5: Associativity of the braid product.

It follows of course that braids which have the same number of strands form a group

under the braid product. Let us refer to this infinite group of geometric braids on n strands

as Bn. This is still loosely defined since we do not have a formal system of describing a

braid other than diagrams or explicit formulas for each strand - each element of the braid

group Bn is an equivalence class of isotopic diagrams. Just as Artin was, we are forced to

make a choice between describing an ambient isotopy explicitly (which is very difficult), or

we opt to rely on intuition and diagrams (which is subject to mistakes). Furthermore, as

7

CHAPTER 2. REPRESENTATIONS OF BRAIDS

Vandermonde wrote, there is a fair amount of extraneous information involved when we

write out such explicit formulas. For basic proofs however, one may refer to intuition and

a series of diagrams and animations to justify a desired result. For basic results this will

suffice, but for more complicated results we will need algebra.

2.2 Artin generators and the classical representation

Notice that in any braid diagram, there are only two types of crossings: The right side

passes over the left (call this positive) and where left side passes over the the right: (call

this negative)

and

It is helpful to comb through a braid so that there is only one crossing occurring per

horizontal segment at a time. This makes it easier to transform the geometric object into a

product of smaller braids. For example, take the braid in figure 2.1b. Working our way

down from the top, it is plain to see that it is isotopic to the braid in figure 2.6.

Figure 2.6: A braid.

All we did here was shift the first crossing on the left upwards so that the two crossings at

the top of the braid are no longer adjacent to one another. We also performed a similar

action on the bottom of the braid.

8

CHAPTER 2. REPRESENTATIONS OF BRAIDS

1 2

.

i+ 1i n− 1 n

σi

1 2

.

i i+ 1 n− 1 n

σ−1
i

Figure 2.7: The important braids σi and σ−1
i

If we have n strands in our braid, then there are only n− 1 places where there can be a

crossing. Thus, if one strand passes over any other, it must cross one at a time, passing

over adjacent strands one after another. Denote the crossing of the strand at position i

and i+ 1 by σi when the crossing is positive, and σ−1
i otherwise. In the braid in figure 2.6,

working our way from the top down, we see the crossings σ1, σ3, σ
−1
2 , σ1, σ3 in that order. It

makes sense to call this braid b = σ1σ3σ
−1
2 σ1σ3, since it is the product of those braids in

that order.

When we combed through the braid in figure 2.1b, at the top and bottom we had σ1

and σ3 occurring simultaneously, but we opted to place σ1 before σ3 to obtain b. There was

no reason for this: it is straightforward to see that our braid b is isotopic to σ3σ1σ
−1
2 σ1σ3.

Of course, it seems as though this naming scheme for braids is not well defined. This

motivates the following definition.1

Definition 2.8 (the braid relations). Fix n. For i, j ∈ {1, . . . , n− 1},

σiσj ≡ σjσi if |i− j| ≥ 2 (R1)

σiσi+1σi ≡ σi+1σiσi+1 (R2)

σiσ
−1
i ≡ σ−1

i σi ≡ ε (R3)

1The braid relations are referred to so often that they warrant their own counter, i.e. R1 in place of 2.9.
The reader will do themselves a favor by memorizing these three relations and their corresponding label to
avoid having to refer to this page.

9

CHAPTER 2. REPRESENTATIONS OF BRAIDS

are called the braid relations.

The first equation is straightforward: if two crossings share no strands, then they

commute. The third equation is also trivial: a negative crossing undoes a positive crossing

and vice-versa. The second equation needs some explanation.

≡

The diagram above shows the relation σ1σ2σ1 ≡ σ2σ1σ2. It can be understood as the braid

σ1 passing underneath the third strand and becoming σ2. Of course, these three relations

hold, but it is yet to be proven that these are the only braid relations that are required to

form the braid group. We would like to show that the group

Bn =

〈
σ1, . . . , σn

∣∣∣∣∣ σiσj ≡ σjσi |i− j| ≥ 2

σiσjσi ≡ σjσiσj |i− j| = 1

〉
is isomorphic to Bn. The generating set Σn = {σ1, . . . , σn} is called the set of Artin

generators after Artin’s work [7], wherein the author loosely proves by means of braid

diagrams (which he calls projections) that each braid can be described by this finite set of

generators. He also proves that the braid relations are the only relations that the braid

group has. Since the proofs in [7] are intuitive, and in some cases “not even convincing”

(as the author put it) Artin used the theory of the punctured disc 22 years later in [8] to

formally prove the results in [7].1 Due to its straightforwardness, the classical representation

is often favoured in the literature.

We now prove the result Artin [7] showed in 1925, that the braid relations are the only

relations that make up Bn. Instead of relying on diagrams or a punctured disc, we will

1The classical representation which uses Artin generators is often referred to as the Artin representation.
In other literature the Artin representation refers to the n-puntured disc (see Section 2.6), since Artin
discovered both of these representations. In this thesis I will refer to the former as the classical representation
and the later as the n-punctured disc to avoid confusion.

10

CHAPTER 2. REPRESENTATIONS OF BRAIDS

A

C

B

7→

A

C

B

Figure 2.11: A ∆-move on a braid.

prove it in the concrete manner that Kassel et al. do in Section 1.2.2 of [42].

Theorem 2.9. The geometric braid group Bn is isomorphic to the classical braid group Bn.

To prove this, first we must introduce a move which preserves isotopy, called a ∆-move.

We then show that two braids are isotopic if and only if one can be transformed into another

by a finite series of ∆-moves. It then suffices to show that the braid relations are the

outcome of ∆-moves.

Definition 2.10 (∆-move). Let c be a strand in a braid which connects the points

A to C in a straight line with proj1(A) > proj1(C). Introduce a new point B with

proj1(A) > proj1(B) > proj1(C). A move which replaces the segment AC with ABC by

dragging the midpoint of AC towards B, all the while keeping the rest of the braid intact

is called ∆(ABC). The pullback of ∆(ABC), which replaces the segments AB and BC

with AC, is denoted ∆−1(ABC). The moves ∆ and ∆−1 are called ∆-moves.

Keep in mind that ∆ is not a function, but rather a type of isotopy. The move ∆

does not keep track of which strands it slides above or below and is thus not well defined.

However, the pullback ∆−1(ABC) happens to be well defined and could be considered a

function.

11

CHAPTER 2. REPRESENTATIONS OF BRAIDS

We first ensure that both braids are polygonal. That is, each is expressed only by straight

lines. Any good polygonal approximation algorithm will suffice to find such polygonal

braids.

Lemma 2.12. If two polygonal braids are isotopic, then the isotopy can be described by a

series of ∆-moves.

Proof. Let b1 and b2 be isotopic polygonal braids and f : I → Bn be an isotopy such that

f(0) = b1 and f(1) = b2. Furthermore, by the same reasoning that tells us that any braid

is isotopic to a polygonal braid, assume that f(i) is polygonal for all i ∈ I.

A polygonal braid is made up of a multitude of vertices. We also require that the

number of vertices on each strands is the same. If one strand has fewer vertices than

another, simply add the necessary number of vertices between two adjacent vertices.

We will prove the result for a single strand: call it c when it is on f(0) and d when it is

on f(1). Let the vertices along c be denoted c0, c1, . . . , ck and d0 = c0, d1, . . . , dk = ck on d

for some k ∈ Z. Each ci gets moved to di in the isotopy. Instead of moving each vertex at

the same time, it is possible to describe this same isotopy via ∆-moves.

The ∆-moves are as follows: (reading the composition of ∆-moves from right to left)

∆−1(ckck−1dk−1) ◦ · · · ◦∆(c2d2d1) ◦∆−1(c2d1c1) ◦∆(c1d1c0)

Example 2.13. If the list of ∆-moves in the proof of Lemma 2.12 was not illuminating,

consider the following polygonal strands which are isotopic.

12

CHAPTER 2. REPRESENTATIONS OF BRAIDS

c0

c1

c2

c3

c4

c

d0

d1

d2

d3

d4

d

Typically, their isotopy is be described by moving each vertex of c to the corresponding

vertex d in a continuous fashion. We will do something slightly different. For simplicity, the

points d0, . . . , d4 have been superimposed onto the line of c so we can see how the isotopy

can be described in ∆-moves on those points. The first few ∆ moves are ∆(c1, d1, c0),

∆(c2d1c1) and ∆(c2d2d1).

c0

c1

c2

c3

c4

d1

d2

d3

7→

c0

c1

c2

c3

c4

d1

d2

d3

7→

c0

c1

c2

c3

c4

d1

d2

d3

We continue to make ∆-moves all the way until ∆−1(c4c3d3). The two strands are isotopic

via ∆-moves.

Braid diagrams do not always describe the braid precisely. When there are three or

more strands that cross over one another at the same point in the projection, there is

ambiguity. Take for example the braid diagram below.

13

CHAPTER 2. REPRESENTATIONS OF BRAIDS

It is impossible to determine from the braid diagram itself whether the first strand passes

over the third or vice versa. This is why we have the notion of a generic braid. A generic

braid has the property that whenever one strand passes over another, there is no other

strand underneath. Every geometric braid is isotopic to a generic braid, simply by nudging

one of the crossings to a place where there are no other crossings. Furthermore, any

∆-move can be made so that no non-generic braids are introduced. For the remainder of

the following lemmas and proofs, we will always assume our braids are generic.

Lemma 2.14. The ∆-moves can be described by the braid relations.

Proof. First we show that one can split up a ∆-move so that it consists only of ∆-moves

which interfere with (or, creates crossings with) exactly two or three strands. Consider a

move ∆(ABC) which interferes with more than three strands. Take a point A′ on AB, C ′

on BC and B′ on AC so that proj1(A′) > proj1(B′) > proj1(C ′). Notice that

∆(ABC) = ∆(A′BC ′) ◦∆−1(A′B′C ′) ◦∆(AA′B′) ◦∆(B′C ′C),

as in figure 2.15. Since each ∆-move can be split up into smaller moves, we can reduce the

proof to dealing with ∆-moves that interfere with either one strand, or two strands that

cross inside the triangle ABC. If a ∆-move interferes with three or more strands, break it

up into smaller moves and consider them separately.

14

CHAPTER 2. REPRESENTATIONS OF BRAIDS

A

B

C

C ′
B′

A′

∆(AA′B′)

∆(B′C ′C)

∆−1(A′B′C ′)

∆(A′BC ′)

Figure 2.15: A ∆-move can be broken up into smaller moves.

Case 1. The ∆-move interferes with one strand, call it c.

If c passes through AC then ∆(ABC) does not alter any of the crossings, although it affects

the position of the crossing. relation R1 may or may not be used here, depending on the

position of other crossings.

C

B

A

7→

C

B

A

Otherwise c passes through AB and BC, and relation R3 is used.

C

B

A

7→

C

B

A

Case 2. The ∆-move interferes with two strands which cross inside ABC.

Let c1 and c2 be the two strands. We can further reduce our work by only considering

15

CHAPTER 2. REPRESENTATIONS OF BRAIDS

triangles ABC such that both c1 and c2 cross through AC. If they do not, break ABC into

smaller triangles until they do. There are hence six outcomes of this, all variations of the

following ∆-move,

C

B

A

7→

C

B

A

which is exactly the case of relation R2. Other cases also involve relation R3 as well as

relation R2. For simplicity and to conserve space, instead of covering all cases by diagram,

we will describe them in terms of their Artin generators. Start with

σ1σ2σ
−1
1 7→ σ−1

2 σ1σ2.

This follows because σ1σ2σ
−1
1 ≡ (σ−1

2 σ2)σ1σ2σ
−1
1 ≡ σ−1

2 (σ1σ2σ1)σ−1
1 ≡ σ−1

2 σ1σ2. The other

cases have similar proofs. We end the proof with a table of all six cases.

σ1σ2σ1 ≡ σ2σ1σ2

σ1σ2σ
−1
1 ≡ σ−1

2 σ1σ2

σ1σ
−1
2 σ−1

1 ≡ σ−1
2 σ−1

1 σ2

σ−1
1 σ2σ1 ≡ σ2σ1σ

−1
2

σ−1
1 σ−1

2 σ1 ≡ σ2σ
−1
1 σ−1

2

σ−1
1 σ−1

2 σ−1
1 ≡ σ−1

2 σ−1
1 σ−1

2

Proof of 2.9. The proof follows immediately from Lemmas 2.12 and 2.14: every geometric

braid can be parsed into a product of σi’s, and the braids in Bn satisfy the braid relations

and only the braid relations. Therefore the two groups Bn and Bn are isomorphic.

Now that 2.9 is established we identify the two groups and simply write Bn when we

are talking about the braid group. Typically, we think of braids in terms of their Artin

representation, and refer to the geometric version for a consistency check.

Keep in mind that n refers to how many strands are included in the braid, even though

there are only n− 1 generators in Bn. Typographical errors and inconsistencies between

16

CHAPTER 2. REPRESENTATIONS OF BRAIDS

literature are easily corrected since there is a natural injection from Bn into Bm for any

1 < n < m. So any equivalence of braids in Bn holds in Bm as well. Furthermore, some

authors introduce the notion of the stable braid group B or B∞ which is the limit of Bn as

n→∞. This allows us to talk about a property of a particular braid without concern for

how many strands or generators it has. We can have n generators or n strands, whichever

fits the context best.

A quick note on the symbols = and ≡.

There is a subtle difference between = and ≡. When two braids are equal, it means they are

equal in every way. No matter what the context — they can be geometric braids, or members

of the classical braid group Bn. If b = σ−1
3 σ1σ

−1
2 σ3, and b′ = b, then b′ = σ−1

3 σ1σ
−1
2 σ3. If

b′′ = σ1σ2σ
−1
3 σ−1

2 , then b′′ ≡ b but b′′ 6= b.

The symbol ≡ means equality in the braid group, and = means equality in terms of the

word used to represent them in the braid group.

2.3 The braid monoid

A monoid is a set of elements with an associative binary operation and an identity element.

A monoid in which every element has an inverse is a group. Indeed a group is a monoid,

but a monoid is not always a group.

Consider the set of braids with crossings oriented in the same direction. Adopting the

same operation (concatenation) as the braid group, one can clearly see that the operation

is associative, and that the product of two “positive braids” is also positive.

17

CHAPTER 2. REPRESENTATIONS OF BRAIDS

Definition 2.16 (braid monoid). The monoid on generators Σn = {σ1, . . . , σn−1} with

relations R1 and R2 is called the braid monoid. We write

B+
n =

〈
σ1, . . . , σn−1

∣∣∣∣∣ σiσj ≡+ σjσi |i− j| ≥ 2

σiσjσi ≡+ σjσiσj |i− j| = 1

〉+

to denote the braid monoid. When two positive braids b1 and b2 are equivalent in the braid

monoid, we write b1 ≡+ b2.

The braid monoid naturally inherits many properties of the braid group, but has some

properties that the braid group does not have. One such property is that it is homogeneous,

which is to say that if two positive braids are equivalent, then they have the same number

of generators: b1 ≡+ b2 ⇒ |b1| = |b2|. Homogeneity is important since length is the main

ingredient for enumeration, as we will see in Chapter 3.

Some of the most important properties are yet to come. We will see in later sections

that the braid monoid is cancellative, (that is, if bb1 ≡+ bb2 then b1 ≡+ b2) and that every

braid b in Bn has the property that b ≡ b1b
−1
2 , where b1 and b2 are positive braids. This

fact is important for a number of reasons. For one, the algorithm which computes the

form of b1 and b2 gives us an algorithm for deciding when two braids (positive or not) are

equivalent to one another, which we will discuss in Chapter 4. It also gives us an algorithm

to compute the lcm of two braids in Chapter 3. Most importantly, however, it tells us that

the natural map B+
n → Bn is injective. In other words the distinction between ≡ and ≡+

is immaterial when comparing positive braids. Examples of familiar monoids which have a

natural injective homomorphism into a group are (N,+)→ (Z,+), and (Z, ·)→ (Q, ·). We

can state that 3 = 3 regardless of which group or monoid we are talking about.

We will end this section with the statement of a theorem often referred to as Ore’s

Condition [18], which is in reference to semigroups: monoids without (necessarily) an

identity element. Instead we will state it in terms of a monoid, since that is how it is

relevant to us. We do not yet have the machinery to demonstrate that the braid monoid

satisfies the condition, but we will develop this in Chapter 3.

18

CHAPTER 2. REPRESENTATIONS OF BRAIDS

Definition 2.17 (cancellative). A monoid M is said to be left-cancellative (resp. right-

cancellative) if for all elements a, b, c ∈ M , ab ≡ ac implies b ≡ c (ac ≡ bc ⇒ a ≡ b,

resp.).

Definition 2.18 (common multiple). Let M be a monoid with elements a, b. A common

multiple of a and b exists when there exists a′ and b′ such that aa′ ≡ bb′. The braid aa′ (or

bb′) is called a common multiple of a and b.

Theorem 2.19 (Ore’s Condition [18]). Let M be a left-cancellative monoid such that any

two elements admit a common right multiple. Then there exists a group G which is unique

up to isomorphism such that

1. there exists an injective homomorphism I : M → G,

2. for every element g ∈ G there exists a, b ∈M such that g = I(a)I(b)−1.

The proof of Ore’s Condition will be omitted but can be found in [18]. The proof follows

the same steps a second or third year undergraduate algebra class would follow to give the

construction of Q from N.

2.4 Birman, Ko and Lee’s representation.

Birman, Ko, and Lee [9] introduced a different representation of braids. Just like in the

classical representation, each generator represents two strands crossing. Instead of adjacent

strands like the Artin generators, these new generators represent arbitrary strands crossing

over one another. As such, each generator has two subscripts. The crossing of strands s

and t is denoted σs,t, see figure 2.20 for a diagram. Since these generators are still braids,

they can be expressed as a product of Artin generators. Hence when 1 ≤ s < t ≤ n,

σs,t = (σt−1σt−2 · · ·σs+1)σs(σ
−1
s+1σ

−1
s · · ·σ−1

t−1).

19

CHAPTER 2. REPRESENTATIONS OF BRAIDS

≡

Figure 2.20: A braid diagram of the generator σ2,5.

When s > t, we define σs,t = σt,s and write the smaller subscript first whenever

convenient. The new representation has generators Σ′n = {σs,t : 1 ≤ s < t ≤ n} with

relations

σq,rσs,t ≡ σs,tσq,r if (t− r)(t− q)(s− r)(s− q) 6= 0 (2.21)

σs,tσr,s ≡ σr,tσs,t ≡ σr,sσr,t if 1 ≤ r < s < t ≤ n. (2.22)

relation 2.21 is similar to relation R1 — if two crossings share no strands, then they

commute. relation 2.22 considers the case when two crossings share a strand. We will cover

one of the cases with an informal isotopy.

Theorem 2.23. The group Bn is isomorphic to the group with generators Σ′n and rela-

tions 2.21 and 2.22.

Proof. We start with the classical representation of the braid group, and add the new

generators, and their relations.

Bn =

〈
Σn

∣∣∣∣∣ σiσj ≡ σjσi |i− j| ≥ 2

σiσjσi ≡ σjσiσj |i− j| = 1

〉

=

〈
Σn ∪ Σ′n

∣∣∣∣∣∣∣∣∣∣
σs,t = (σt−1σt−2 · · ·σs+1)σs(σ

−1
s+1σ

−1
s · · ·σ−1

t−1) 1 ≤ s < t ≤ n

σiσj ≡ σjσi |i− j| ≥ 2

σiσjσi ≡ σjσiσj |i− j| = 1

relations 2.21 and 2.22

〉
.

20

CHAPTER 2. REPRESENTATIONS OF BRAIDS

But since σi = σi,i+1, we can replace all instances of σi with σi,i+1:

Bn =

〈
Σ′n

∣∣∣∣∣∣∣∣∣∣
σs,t = (σt−1,t · · ·σs+1,s+2)σs,s+1(σ−1

s+1,s+2 · · ·σ−1
t−1,t) 1 ≤ s < t ≤ n

σi,i+1σj,j+1 ≡ σj,j+1σi,i+1 |i− j| ≥ 2

σi,i+1σj,j+1σi,i+1 ≡ σj,j+1σi,i+1σj,j+1 |i− j| = 1

relations 2.21 and 2.22

〉
.

All that remains is to show that the relations

σs,t = (σt−1,t · · ·σs+1,s+2)σs,s+1(σ−1
s+1,s+2 · · ·σ−1

t−1,t) 1 ≤ s < t ≤ n (2.24)

σi,i+1σj,j+1 ≡ σj,j+1σi,i+1 |i− j| ≥ 2 (2.25)

σi,i+1σj,j+1σi,i+1 ≡ σj,j+1σi,i+1σj,j+1 |i− j| = 1 (2.26)

follow from relations 2.21 and 2.22. relation 2.25 follows from relation 2.21 immediately,

since |i− j| ≥ 2 implies (j + 1− i)(j + 1− i+ 1)(j − i)(j − i+ 1) > 0.

For relation 2.26, write s = i, t = j = i+ 1 and r = j + 1, and use relation 2.22 twice to

obtain

σs,t(σs,rσt,r) ≡ σs,tσs,rσt,r

σs,t(σt,rσs,t) ≡ (σs,tσs,r)σt,r

σs,tσt,rσs,t ≡ (σt,rσs,t)σt,r

σi,i+1σj,j+1σi,i+1 ≡ σj,j+1σi,i+1σj,j+1,

as desired. Finally we consider relation 2.24. If t = s+ 1 the result is trivial, so consider

the case when t > s+ 1. Suppose the result holds when t = s+ k for k > 2. It follows then

that σs,t+1 ≡ σt,t+1σs,tσ
−1
t,t+1. If we let r = t+ 1 then relation 2.22 gives us

σs,r ≡ σs,r(σt,rσ
−1
t,r)

≡ (σt,rσs,t)σ
−1
t,r

≡ σt,r(σt−1,t · · ·σs+1,s+2σs,s+1σ
−1
s+1,s+2 · · ·σ−1

t−1,t)σ
−1
t,r ,

21

CHAPTER 2. REPRESENTATIONS OF BRAIDS

as desired. Since relations 2.24 to 2.26 can be obtained from relations 2.21 and 2.22, we get

that

Bn =

〈
Σn

∣∣∣∣∣ σiσj ≡ σjσi |i− j| ≥ 2

σiσjσi ≡ σjσiσj |i− j| = 1

〉
=

〈
Σ′n

∣∣∣∣∣ σq,rσs,t ≡ σs,tσq,r if (t− r)(t− q)(s− r)(s− q) > 0

σs,tσr,s ≡ σr,tσs,t ≡ σr,sσr,t if 1 ≤ r < s < t ≤ n.

〉
.

2.5 Pure braids.

There is a natural homomorphism π from the braid group to the symmetric group found

by following the strands of a braid. The image π(b) is called the permutation of b. For

reasons that will become clear later, (and are completely superfluous to this section), the

permutation π(σi) is defined in a backwards kind of way: π(σi) = (i+ 1, i), and in general

π(b) can be found by following each strand from the bottom of the braid to the top.

7→ (143)(2)

Figure 2.27: The braid σ1σ3σ2σ1 and its associated permutation.

An important part of this map is its kernel. This subgroup of Bn has a special name:

the pure braid group on n strands, denoted Pn. The fact that σi is not pure means that Pn

does not decompose into the same Artin generators as Bn.

22

CHAPTER 2. REPRESENTATIONS OF BRAIDS

1 2 i i+ 1 j − 1 j j + 1 n· · · · · · · · ·

Figure 2.28: The pure braid Ai,j.

Theorem 2.29. The pure braid group Pn is generated by the set {Ai,j : 1 ≤ i < j ≤ n},
where Ai,j is the pure braid in figure 2.28 subject to the following relations

A−1
r,sAi,jAr,s ≡

Ai,j when 1 ≤ r < s < i < j ≤ n or 1 ≤ i < r < s < j ≤ n

Ar,jAi,jA
−1
r,j when 1 ≤ r < s = i < j ≤ n

(Ai,jAs,j)Ai,j(Ai,jAs,j)
−1 when 1 ≤ r = i < s < j ≤ n

(Ar,jAs,jA
−1
r,jA

−1
s,j)Ai,j(Ar,jAs,jA

−1
r,jA

−1
s,j)
−1 when 1 ≤ r < i < s < j ≤ n.

It is worth noting that Ai,j ≡ (σj−1σj−2 . . . σi+1)σ2
i (σj−1σj−2 . . . σi+1)−1.

It is possible to prove this by using the Reidemeister-Schreier rewriting process as in

Appendix I of [41], but we will prove this using a short exact sequence as in [10]. That is to

say, three groups A,B and C along with homomorphisms f0, . . . , f3 such that the image of

fi is equal to the the kernel of fi+1 and

{1} f0−→ A
f1−→ B

f2−→ C
f3−→ {1}.

Here {1} is the trivial group. The role of f0 and f3 are to ensure that f1 is one-to-one and

that f2 is onto. By the First Isomorphism Theorem and the fact that ker(f2) = im(f1),

we have the nice property that C ∼= B/A. We say that the short exact sequence is split if

B ∼= C ⊕ A as well. We will use the Splitting Lemma which states

23

CHAPTER 2. REPRESENTATIONS OF BRAIDS

Lemma 2.30. Given a short exact sequence {1} f0−→ A
f1−→ B

f2−→ C
f3−→ {1}, the following

are equivalent:

• there exists an f1 : B → A such that f1f1 is the identity map on B

• there exists an f2 : C → B such that f2f2 is the identity map on B

• the short exact sequence is split.

We will use this lemma without proof. A curious reader can find a proof in [15] if they

desire.

Proof of 2.29. Let Fn be the free group generated by {Ai,n}n−1
i=1 . The split short exact

sequence we use is

{1} −→ Fn
f1−→ Pn

f2−→ Pn−1 −→ {1}.

The homomorphism f1 is the inclusion map since Fn ⊂ Pn, and f2 is a special homomorphism

which removes the n-th strand from a pure braid, and leaves the rest of the braid intact.

Clearly, a candidate for f2 exists: the inclusion map ι : Pn−1 → Pn has the property that

f2 ◦ f2(p) = p for all p ∈ Pn−1 From this we deduce that Pn
∼= Pn−1 ⊕ Fn.

From here a basic induction argument works to make the step from Pn−1 to Pn
∼=

Pn−1 ⊕ Fn, with all of the relations following. The idea is that the elements from Fn do not

introduce any new relations except those that bump the index up to n.

2.6 The punctured disc.

We saw before that algebra makes a great substitute for geometry when studying braids. In

this chapter, we introduce a topological way to study braids. This theory was introduced by

Artin [8] and was studied thoroughly by Birman [14] in 1975. Although we do not use the

punctured disc again in this thesis, this is a well studied representation of the braid group.

24

CHAPTER 2. REPRESENTATIONS OF BRAIDS

Let n ≥ 1 be fixed, and Dn be the disc centered at ((n+ 2)/2, 0) with diameter n+ 2.

Let D−n = Dn \ {(1, 0), (2, 0), . . . , (n, 0)}, that is, D−n is an n-times punctured disc. Since

we may wish to refer to each of these points, let Pi = (i, 0).

It is helpful to refer to D−n in a more general way so we can use topology. We will

continue to use D−n as our model, but the theory we apply will use the fact that D−n is a

closed, connected, orientable surface with genus g = 0, b = 1 boundary components, and

n puncture points. By a fundamental theorem due to Möbius, D−n is homeomorphic to a

surface referred to by S0,1,n. For simplicity, we refer to S0,1,n as simply S. The boundary of

S is denoted δS.

Definition 2.31 (mapping class group). Let Homeo+(S, δS) be the group of orientation

preserving homeomorphisms of S. The mapping class group of S, denoted M =M0,1,n is

the unique group of isotopy classes of elements of Homeo+(S, δS), where each isotopy fixes

the boundary δS. Also, M0,1,n̂ is the group of isotopy classes which fix the order of the

points P1, . . . , Pn.

Other than the fact that we have a disc with n points missing and that we sometimes

consider braids with n strands, it is not immediately obvious how these two are connected. So,

we imagine a braid constrained to the inside of a cylinder equal to Dn× [0, 1]. Furthermore,

let us require that the strands are connected to the points P1, . . . , Pn on the top and bottom

of the cylinder.

The basic result of this section is that Bn is isomorphic to M0,1,n. The isomorphism is

visualized in figure 2.32. The easy direction of the isomorphism is from M to Bn. We start

by taking a homeomorphism fromM and sweep it through the cylinder Dn× [0, 1] starting

from the top to the bottom. Each of the punctured points leaves a trace which corresponds

to a strand. Since there are n punctured points, then there are n strands which do not

intersect and therefore a braid is in the cylinder.

The harder direction of the isomorphism is from Bn →M0,1,n. We can imagine a similar

picture — placing a braid b ∈ Bn in a cylinder with top D−n , and i-th strand beginning

at Pi. The idea is that we sweep the top disc and keep track of where the strand moves

25

CHAPTER 2. REPRESENTATIONS OF BRAIDS

Figure 2.32: Geometric braids and the mapping class group of D−n .

throughout the disc. By the bottom of the cylinder the strands are back in the same place

where they began. The image under this isomorphism is the element that follows the points

Pi along the braid as it was swept through the cylinder.

Of course, complete proofs exist but will be omitted since the required topology is

beyond the scope of this thesis. The idea of the proof (as Birman and Brendle give in [10])

is to first show that Pn
∼=M0,1,n̂, and then compare the short exact sequences

{1} → Pn → Bn → Sn → {1} and {1} →M0,1,n̂ →M0,1,n → Sn → {1}

where Sn is the symmetric group. Since the first and last two groups are isomorphic, by

a well known result known as the Five-Lemma, the middle groups (Bn and M0,1,n) are

isomorphic as well.

A much closer inspection of M0,1,n and its connection to the braid group can be found

in [42], where the authors further demonstrate that the braid group can be viewed as a

configuration space as well.

26

Chapter 3

Enumeration

We have seen so far that braids have a home in both algebra and topology. In this chapter

we will explore some of the combinatorial aspects of braids. Albenque and Nadeau [2]

show that there is a very nice way to count the number of positive braids with respect to

the number of Artin generators used to represent them. Their result operates under the

assumption that positive braids admit common multiples and that the braid monoid is

cancellative. We will therefore need to use Dehornoy’s work on subword reversing diagrams

[24, 25, 26, 27] to prove the preliminary results. We will see later that subword reversing

plays a large role in other aspects of braids, particularly in solving the braid isotopy problem.

3.1 Divisibility in the braid monoid.

In this section we will explore the notion of divisibility and multiplicity in the braid monoid

and see that it has the structure of a lattice. First we will cover a few basic theorems so

that the definitions can be well defined. These theorems can be found in [26], but were first

published by Garside [34]. Notice that if two positive braids are equivalent in B+
n then they

are also equivalent in Bn. The converse has not been proven yet (this is Ore’s Condtion),

but will be in Section 3.2. This implies that the following theorems could be restated in

terms of positive braids in Bn and ≡ as opposed to B+
n and ≡+.

27

CHAPTER 3. ENUMERATION

Proposition 3.1. For i ≤ j < k the following equations hold in B+
n :

σj(σkσk−1 · · ·σi+1σi) ≡+ (σkσk−1 · · ·σi+1σi)σj+1 (3.2)

σj+1(σiσi+1 · · · σk) ≡+ (σiσi+1 · · ·σk)σj. (3.3)

Proof. By applying the braid relation R1 numerous times, it is straightforward to see that

σjσkσk−1 · · ·σi+1σi ≡+ σkσk−1 · · ·σjσj+1σj · · ·σi+1σi

and applying relation R2, we get

σkσk−1 · · ·σjσj+1σj · · ·σi+1σi ≡+ σkσk−1 · · ·σj+1σjσj+1 · · ·σi+1σi.

We can apply relation R1 again to obtain

σkσk−1 · · ·σj+1σjσj+1 · · ·σi+1σi ≡+ σkσk−1 · · · σi+1σiσj+1.

A symmetric argument holds for equation 3.3.

Pictorially, the proof above can be seen by arranging a braid in which the rightmost

strand passes above all other strands, with a single crossing before it. The idea of the proof

is that we push the crossing over the strand that passes under all the other strands.

≡+ ≡+

Figure 3.4: A consistency check on 3.1.

28

CHAPTER 3. ENUMERATION

The braid σnσn−1 . . . σ1 takes the right-most strand and passes it over the other n

strands. This braid has nice properties, like the result of 3.1. As such, we denote this

braid by the symbol δn = σnσn−1 · · ·σ1. Indeed, 3.1 can be restated as σkδn ≡+ δnσk+1. A

similar braid is δi,j = σjσj−1 · · ·σi for integers 1 ≤ i ≤ j ≤ n.

The braid on n + 1 strands obtained by twisting the first m + 1 ≤ n + 1 strands by

180 degrees is called ∆m. This braid is equal to ∆m = δ1δ2 · · · δm. A similar braid is

∆i,j = δi,iδi,i+1 · · · δi,j, which is the same braid, except here we only rotate the strands i

through j + 1. For example, figure 3.5 shows what ∆2,5 = σ2σ3σ2σ4σ3σ2σ5σ4σ3σ2 looks like

in B6.

Figure 3.5: A diagram of ∆2,5 in B6.

The braid ∆m is an important braid with many properties, and is often called the

fundamental braid. Later, we will see how these properties are important when it comes to

divisibility.

Lemma 3.6. For n ≥ 1,

∆n ≡+ σ1σ2 · · ·σn∆n−1. (3.7)

Proof. We will apply induction on n. When n = 1 or 2 the result is trivial, so let n ≥ 3.

29

CHAPTER 3. ENUMERATION

By induction hypothesis, and the fact that ∆n−2 only has elements σ1 through σn−2,

∆n ≡+ ∆n−1δn

≡+ σ1 · · ·σn−1∆n−2δn

≡+ σ1 · · ·σn−1∆n−2σnδn−1

≡+ σ1 · · ·σn∆n−2δn−1

≡+ σ1 · · ·σn∆n−1

as desired.

Proposition 3.8. For 1 ≤ i ≤ n,

σi∆n ≡+ ∆nσn−i+1.

Proof. Again, we perform induction on n. When n = 1, the result is trivial. Suppose n ≥ 2.

If i < n, then by the induction hypothesis and equation 3.2, we get

σi∆n ≡+ σi∆n−1δn ≡+ ∆n−1σn−iδn ≡+ ∆n−1δnσn−i+1 ≡+ ∆nσn−i+1.

When i = n, by 3.1, equation 3.3, and lemma 3.6, we get

σn∆n ≡+ σnσ1 · · ·σn∆n−1 ≡+ σ1 · · ·σnσn−1∆n−1 ≡+ σ1 · · · σn∆n−1σ1 ≡+ ∆nσ1

as desired.

Lemma 3.9. For 1 ≤ i ≤ n, there exists a braid bi,n such that σibi,n ≡+ ∆n.

Proof. Again, we perform induction on n. The result is trivial for n = 1 and 2, so

assume n > 2. If i < n then by the induction hypothesis, we get a braid bi,n−1 such that

σibi,n−1 ≡+ ∆n−1. Let bi,n = bi,n−1δn. It follows that

σibi,n ≡+ σibi,n−1δn ≡+ ∆n−1δn ≡+ ∆n

30

CHAPTER 3. ENUMERATION

as desired. Now suppose that i = n. Notice that the braid ∆2,n contains generators σi

where 2 ≤ i ≤ n. As such, by equation 3.2,

∆n−1σnσn−1 · · ·σ1 ≡+ σnσn−1 · · ·σ1∆2,n

since as each element σi of ∆n−1 passes through σnσn−1 · · ·σ1, it turns into σi+1. Thus, let

bn,n = σn−1 · · ·σ1∆2,n, since

σnbn,n ≡+ σnσn−1 · · ·σ1∆2,n ≡+ ∆n−1σnσn−1 · · · σ1 ≡+ ∆n,

as desired.

Definition 3.10 (Divisibility, multiple). We briefly introduced this notion in Section 2.3

but will remind the reader. In the context of monoids, and therefore positive braids, we say

that a word a left-divides (resp. right-divides) b if there exists a c such that b ≡+ ac (resp.

b ≡+ ca). When this is the case, we say that b is a right-multiple of a and write a 4 b.

For example, the braid b = σ1σ2σ3 trivially divides b′ = σ1σ2σ3σ4. However, b 4 b′′ =

σ2σ1σ2σ3 as well since b′′ ≡+ σ1σ2σ3σ1. Being a prefix is sufficient for divisibility, but

certainly not necessary.

Lemma 3.11. Let b be a braid in B+
n of length at most `. Then ∆`

n is a right-multiple of b.

Proof. Let b1 be a braid of length `. We will apply induction on `. Lemma 3.9 covers the

case when ` = 1. For ` ≥ 2, suppose that b1 6= ε so that b1 = b′1σi, so that |b′1| = ` − 1.

By the induction hypothesis, there exists a word b′2 such that b′1b
′
2 = ∆`−1

n . Let ϕn be the

function that takes σi and replaces it with σn−i. By 3.8, it follows that b′2∆n ≡ ∆nϕ(b′2).

Set b2 = bi,nϕn(b′2), where bi,n is as in Lemma 3.9. It follows that

b1b2 ≡+ b′1σ1bi,nϕn(b′2) ≡+ b′1∆nϕn(b′2) ≡+ b′1b
′
2∆n ≡+ ∆`−1

n ∆n ≡+ ∆`
n.

We are now equipped to discuss common multiples.

31

CHAPTER 3. ENUMERATION

Theorem 3.12. Any two positive braids admit a common right-multiple.

Proof. Let b1 and b2 be braids and ` ≥ max{|b1|, |b2|}. Then by Lemma 3.11, both b1 and

b2 left-divide ∆`
n.

It is worth noting that a symmetric argument works for the existence of a common

left-multiple.

Definition 3.13 (Least common right-multiple). A least common right-multiple of a finite

set of braids A, denoted lcm(A) is a braid b in which every element a ∈ A left-divides b, and

any other braid b′ which also has this property is either equivalent to b or a right-multiple

of b.

The notion of an lcm can be generalized to any monoid. There is also a symmetric

definition for a left-lcm, but by convention, unless otherwise stated, we always talk about

least common right-multiples. Whether or not an lcm for a given set is unique or not is

unclear at this point. Answering this question is the goal of Section 3.2, and 3.32 answers

it in the positive and gives an algorithm to compute it.

3.2 Least common multiples via subword reversing.

The goal of this section is to first prove that the lcm of two braids exists, and then come

up with an algorithm that can compute it. In doing so, we will think of braids in a slightly

different sense than we have previously. We will be manipulating braids with respect to their

classical representation except that this time, instead of thinking of them as equivalence

classes of products of Artin generators, we think of them as a word over the alphabet

Σn = {σ1, . . . , σn−1}. Since we will often be referring to this set with n fixed, define Σ = Σn

and Σ± = {σ1, σ
−1
1 , . . . , σn−1, σ

−1
n−1}. The manipulations that we introduce respect the braid

equivalences, however we distinguish braids which may be equivalent but have different

presentations. However, we may wish to talk about braid words as braids, so we may go

back and forth from talking about braids as words in Σ∗, to talking about equivalences

32

CHAPTER 3. ENUMERATION

between the braids that the words represent. This is where the distinction of ≡ and = is of

utmost importance.

Definition 3.14 (complement). Define C : Σ× Σ→ Σ∗ as:

C(σi, σj) =

σj if |i− j| ≥ 2

σjσi if |i− j| = 1

ε if i = j.

Let R be the set of all relations in B+
n as defined by relation R1 and relation R2 so

R = {(σiσj, σjσi), (σkσk+1σk, σk+1σkσk+1) : 1 ≤ i < j − 1 < n, 1 ≤ k < n− 1},

and B+
n = 〈Σ : a ≡+ b, (a, b) ∈ R〉+. By construction of C, we can write

R = {(σiC(σj, σi), σjC(σi, σj)) : 1 ≤ i ≤ j ≤ n− 1}. (3.15)

It follows that for all σi and σj that σ−1
i σj ≡ C(σi, σj)C(σj, σi)

−1 as braids in Bn. The

function C is called a complement on the monoid B+
n . Complements are not unique to

B+
n , and can be defined in any monoid where equation 3.15 holds. The idea is that the

complement gives us an easy way to take inverse generators from the left hand side of a

product to the right hand side in Bn.

Definition 3.16 (reversing). Let b = xσ−1
i σjy, with x, y ∈ Σ±∗. We say that b is reversible

in one step to b1 if

b1 = xC(σi, σj)C(σj, σi)
−1y.

We write by1 b1. Notice that b ≡ b1 as braids in Bn.

Furthermore, for p ≥ 1, we say that b is reversible to bp in p steps if there exist

braids b1, . . . , bp such that b y1 b1 y1 b2 y1 . . . y1 bp. When this is the case we write

byp bp, and sometimes omit the reference to p and simply say b is reversible to bp. We call

(b, b1, . . . , bp) the reversing sequence.

33

CHAPTER 3. ENUMERATION

Example 3.17. The word σ1σ
−1
3 σ2 reverses to σ1C(σ3, σ2)C(σ2, σ3)−1 = σ1σ2σ3σ

−1
2 σ−1

3 . In

one move we were able to move all the inverse relations to the end of the word.

The idea of this function is to push the negative elements to the right hand side of

a word that represents a braid. Geometrically, one may imagine sorting the crossings so

that all of the negatively oriented crossings are at the bottom of the braid. As such, it is

possible to iterate the function C until there are no more subwords of the form σ−1
i σj . The

theme of the next few lemmas is the form of words that are not reversible any further. Is it

possible that every braid is reversible to a braid of the form b1b
−1
2 with b1, b2 ∈ Σ? This

question is not actually trivial — at this point it is still unclear whether or not the process

of repeatedly reversing a braid word terminates.

Definition 3.18 (extended complement). Given a complement C on a monoid M with

generating set M , define the extended complement to be a function C∗ : M∗ ×M∗ →M∗

such that C∗(u, v) = v′ if and only if there exists a word u′ such that u−1v reverses to

v′u′−1.

Certainly C∗|M×M = C, but the rest of the domain is still unclear. To tackle this

problem we can use commutative diagrams.

Definition 3.19 (reversing diagram). We can use a diagram as a way of visualizing a

reversing sequence of words, and is subject to the rules outlined below. This type of diagram

is called a reversing diagram.

Let w = σε1
i1
· · ·σεk

ik
be a braid word. We begin a reversing diagram by drawing a series

of connected arrows indexed by the letters of w. Starting with σε1
i1

, if ε1 = 1, then the

first arrow is horizontal, pointing to the right, and if ε1 = −1, then the arrow is vertical,

pointing downward. In both cases, the arrow is labelled by σi1 , omitting ε1 in the label. We

do this for the rest of the σ
εj
ij

’s, connecting the arrows, obtaining a staircase shape provided

that the εj’s vary.

We proceed to fill in the diagram in the following way. We choose any northwest corner

where two arrows meet tail to tail - call this an inside corner. We fill in the diagram using

34

CHAPTER 3. ENUMERATION

the following rules.

σi

σj

σi

σj

C(σi, σj)

C(σj, σi)7→ when i 6= j

σi

σj

σi

σj

ε
7→ when i = j.

Note that the new arrows introduced by C(σi, σj) and C(σj, σi) may be equal to σjσi and

σiσj, respectively i.e. when |i− j| = 1. In this case that portion of the diagram gets two

arrows, one for each letter.

We continue to fill out the diagram in every corner possible. We treat the dotted lines

labeled by ε as if they do not exist. The diagram is commutative by definition of C, when

following an arrow in the opposite direction, that counts as an inverse braid.

Example 3.20. Using a reversing diagram, we will reverse the braid

σ−1
1 σ3σ2σ

−1
1 σ4σ

−1
4 σ1σ2.

This reversing diagram is finite, and we will soon learn that all reversing diagrams are

too. Begin with the set of labelled arrows along the north west corners, and fill in each

corner one at a time, noticing that some corners introduce multiple arrows. By counting

the number of boxes and dotted lines, we can see that

σ−1
1 σ3σ2σ

−1
1 σ4σ

−1
4 σ1σ2 y10 σ3σ2σ1σ4σ1(σ4σ1σ2)−1.

35

CHAPTER 3. ENUMERATION

σ1

σ3 σ2

σ1

σ4

σ4

σ1 σ2

σ3 σ2 σ1 σ4

σ4

σ4
σ1

σ2

σ1

σ2

σ1

σ1

σ1 σ2

σ4 σ4

σ2 σ1

σ2

σ1

Since each inside corner defines a unique outside corner, the diagram is not determined

by the order in which we fill in the corners. Reversing diagrams offer a way of visualizing

reversing moves but begs the original question: for any given word, is there a reversing

sequence that ends in a word of the form uv−1 with u, v ∈ Σ∗? That is, is there a maximal

finite diagram for any given braid word w? This requires a little more work to answer.

Lemma 3.21. Given an extended complement on M and two words u, v ∈M∗, the words

C∗(u, v) and C∗(v, u) exist if and only if the reversing diagram of u−1v is finite, in which

case uC∗(u, v) ≡+ vC∗(v, u).

When this is the case, C∗(u, v) is the positive word obtained by following the arrows

along the base of the diagram to the outside corner, and C∗(v, u) is obtained by following

the arrows from the end of the diagram (where the last arrow points) down to the outside

corner.

Proof. Suppose the diagram is finite. Then by definition of C∗, we have that C∗(u, v) ≡+ v′

if and only if u−1v reverses to v′u−1. Setting v′ to equal the bottom row of arrows and u′

36

CHAPTER 3. ENUMERATION

be the right-most column of arrows yields the result, since u−1v is reversible to any path in

the diagram.

Conversely, if C∗(u, v) and C∗(v, u) exist, then it follows by definition of the extended

complement that u−1v y C∗(u, v)C∗(v, u)−1.

Definition 3.22 (complete complement). A complement C on a monoid M with generating

set M is called complete when it has the following property for all u, u′, v, v′ in M∗ in which

C∗(u, v) exists:

u ≡+ u′ and v ≡+ v′ in M imply C∗(u, v) ≡+ C∗(u′, v′).

Lemma 3.23. If C is a complete complement on the monoid M then the following are

equivalent for all u, v ∈M∗:

1. u ≡+ v in M

2. C∗(u, v) = C∗(v, u) = ε

3. u−1v y ε

Proof. If u ≡+ v then since εε y ε, and by completeness it follows that u−1u y ε and

hence C∗(u, u) = ε. The fact that u−1v y ε implies u ≡∗ v completes the equivalence.

If we can show that the complement defined for B+
n is complete, the above lemma will

help us solve the braid isotopy problem.

Lemma 3.24 (completeness conditions). Let C be a complement on M . If

1. for all r, s ∈M , |C(r, s)| = |C(s, r)|,

2. for all r, s, t ∈M ,

C∗(u, sC(s, t)) ≡+ C∗(r, tC(t, s)) and C∗(sC(s, t), r) ≡+ C∗(tC(t, s), r), (3.25)

where the left hand side exists if and only if the right hand side exists,

37

CHAPTER 3. ENUMERATION

then C is complete.

An important detail is that since r, s, t ∈M , the second condition states that C∗ agrees

with the ≡+ relation on the smallest level: when one argument is a letter and the other

argument is one of the monoid relations in R (where R is the set of relations such that

M = 〈M : R〉). In equation 3.15 we saw that the braid relations are all instances of

rC(r, s) ≡ sC(s, r) where r, s ∈M .

Proof. The goal is to show that C is complete, which means we need to show that for

all u, v, u′, v′ ∈ M such that u ≡+ u′ and v ≡+ v′, we have C∗(u, v) ≡+ C∗(u′, v′) and

C∗(v, u) ≡+ C∗(v′, u′).

By the first condition, length is preserved in C, so we can apply induction on the length

of uC∗(u, v). Our induction hypothesis is for |uC∗(u, v)| = |vC∗(v, u)| = k < m, we have

if u ≡ u′ and v ≡ v′ then C∗(u, v) ≡+ C∗(u′, v′) and C∗(v, u) ≡+ C∗(v′, u′) (3.26)

When k = 0 or k = 1, (3.26) is trivial. Since u and v play symmetric roles, for the induction

step if we can prove for k = m

if v ≡ v′ then C∗(u, v) ≡+ C∗(u, v′) and C∗(v, u) ≡+ C∗(v′, u) (3.27)

then a symmetric argument would complete the induction step. As such we will assume

(3.26) for k < m, and try to prove (3.27) for |uC∗(u, v)| = |vC∗(v, u)| = k = m.

Notice that for any two elements v ≡ v′ ∈M , there exists a finite sequence of derivations

starting from v and at each step replacing a single instance of sC(s, t) with tC(t, s) and

ending in v′. If a result holds for all instances of v1sC(s, t)v2 ≡ v1tC(t, s)v2, where

v1, v2 ∈M then it holds for v ≡ v′. Therefore we can reduce the induction step to

if v = v1sC(s, t)v2, and v′ = v1tC(t, s)v2 then

C∗(u, v) ≡+ C∗(u, v′) and C∗(v, u) ≡+ C∗(v′, u)

38

CHAPTER 3. ENUMERATION

All that remains is to do is to compare the reversing diagrams of u−1v and u−1v′. Our

assumption that |uC∗(u, v)| = m means that C∗(u, v) exists and is finite, so it is a good idea

to start there. From here we can see that there exists r ∈M and u1, . . . , u5, v3, . . . , v7 ∈M

u

v1 s C(s, t) v2

u1

r

v4 v6

u3

u2

v3 v5 v7

u5

u4

u

v1 t C(t, s) v2

u1

r

v′4 v′6
u′3

u′2

v3 v′5 v′7

u′5

u′4

Figure 3.28: The reversing diagram for u−1v and u−1v′.

such that u−1v1 y v3u
−1
1 r−1, and so on according to the reversing diagram. Note that it

is possible that some of these are ε. If we compare this to the reversing diagram of uv′−1,

the only difference is that instead of sC(s, t) across the top, we get tC(t, s); the left-most

corner is exactly the same in both diagrams. Now, since r−1sC(s, t) y v4u
−1
2 , it follows

that r−1tC(t, s) y v′4, u
′−1
2 with u2 ≡+ u′2 and v4 ≡+ v′4. By the induction hypothesis, a

similar argument holds for every corner since C is compatible with equivalence for all u, v

with |uC∗(u, v)| < m. So

v3v5v7 ≡ v3v
′
5v
′
7 and u4u5 ≡+ u′4u

′
5.

All that remains is to notice that C∗(u, v) = v3v5v7 ≡+ v3v
′
5v
′
7 = C∗(u, v′) and C∗(v, u) =

u4u5 ≡+ u′4u
′
5 = C∗(v′, u).

Theorem 3.29. The braid complement C is complete.

Proof. The proof is mostly clerical, as all of the work was done in Lemma 3.24. First,

condition 1 is met by definition of C. Condition 2 is a relatively simple check. The letters

39

CHAPTER 3. ENUMERATION

u, v, w must be in Σn, so let u = σi, v = σj , w = σk. We need to verify equation 3.25 for all

values i, j, k ∈ {1, . . . , n− 1}. Of course, if the value holds for a particular value of i, j and

k then it also holds for i+ 1, j + 1 and k + 1. So all that matters is the distance between

i, j and k.

If i = j or j = k or i = k, the relations of 3.25 are satisfied trivially. Furthermore,

suppose for example that i = 1, j = 2, k = 4 and 3.25 is satisfied. Then the result also

holds for i, j and k + 1. We can further reduce our cases to when the values |i− j|, |i− k|
and |j − k| are equal to 1 or 2. It suffices to check that all of the values

{i, j, k} ∈ {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}}

satisfy equation 3.25.

We will prove one case, since the other cases are similar. Let u = σ2, v = σ1 and w = σ4;

we will check

C∗(σ2, σ1C(σ1, σ4)) ≡+ C∗(σ2, σ4C(σ4, σ1)) and

C∗(σ1C(σ1, σ4), σ2) ≡+ C∗(σ4C(σ4, σ1), σ2).

We have that C(σ1, σ4) = σ4, C(σ4, σ1) = σ1 so

C∗(σ2, σ1σ4) = σ1σ2σ4 ≡+σ4σ1σ2 = C∗(σ2, σ4σ1) and

C∗(σ1σ4, σ2) = σ2σ1 = C∗(σ4σ1, 2)

as desired.

For a complete proof of 3.29 see Appendix A.1.

Corollary 3.30. The braid monoid is left-cancellative.

Proof. Let su ≡+ sv. Since C∗ is a complete complement, it follows that u−1s−1sv y ε

and so u−1v y ε and hence u ≡+ v.

40

CHAPTER 3. ENUMERATION

The fact that the braid monoid is cancellative is especially important. Not only does it

allow us to count positive braids, but we can also now apply 2.19 (Ore’s Condition). That

is, the natural embedding of the positive braid monoid into the braid group is injective.

It follows that the distinction between ≡ and ≡+ is immaterial when comparing positive

braids. For positive braids b1, b2, we have b1 ≡+ b2 if and only if b1 ≡ b2. From this point

forward we will drop the + notation with the new ability to speak of equivalence without

being tied to the context of the braid monoid. If two positive braids are equivalent in the

braid group, they are equivalent in the braid monoid as well.

Theorem 3.31. The image C∗(u, v) is always defined for any braids u, v ∈ S∗.

Proof. By 3.12, there exist words u′ and v′ such that uu′ ≡+ vv′, and by Lemma 3.23

u′−1u−1vv′ y ε and hence is finite. The reversing diagram of u−1v is inherently inside the

reversing diagram of u′−1u−1vv′ so it is also finite.

Theorem 3.32. Any two braids admit a unique least common multiple.

Proof. The function C∗ : B+
n ×B+

n → B+
n has the following properties for all u, v, u′ and v′

in B+
n :

uC∗(u, v) ≡ vC∗(v, u) (3.33)

and if uv′ ≡ vu′ then there exists a w such that

u′ ≡ C∗(v, u)w and v′ ≡ C∗(u, v)w, (3.34)

and so we conclude that w is a multiple of u′ and v′.

Let b1 and b2 be in B+
n , and let b3 = b1C

∗(b1, b2) ≡ b2C
∗(b2, b1), by equation 3.33.

That is, b3 is a common multiple of b1 and b2. We will show that b3 is the unique (up to

equivalence) least common multiple.

Let b′3 be any common multiple of b1 and b2. Then there exist b′1 and b′2 such that

b′3 ≡ b1b
′
2 ≡ b2b

′
1. By equation 3.34, there exists a braid w such that

b′1 ≡ C∗(b2, b1)w and b′2 ≡ C∗(b1b2)w.

41

CHAPTER 3. ENUMERATION

It follows that b′3 ≡ b1b
′
2 ≡ b1C

∗(b1b2)w = b3w, so b′3 is a multiple of w. Thus lcm(b1, b2) ≡
b1C

∗(b1, b2) ≡ b2C
∗(b2, b1).

For uniqueness, note that divisibility is antisymmetric in the braid monoid — if x ≡ yz

and y ≡ xz′ then simply measuring the length of each side implies that x ≡ y. Hence if

there exists another lcm b′3, then b3 4 b′3, b′3 4 b3 and hence b3 ≡ b′3.

3.3 How to count positive braids.

We need only one more definition to start counting braids.

Definition 3.35 (clique). Given a monoid with generator set M = {s1, . . . , sn}, a clique

is a subset of M that admits a common right-multiple.

Since any set of braids admits a common right-multiple, any subset of {σ1, . . . σn} is a

clique.

The following lemma, which is the main result for this section, makes use of the set

Z〈M〉, where M is a monoid. Here Z〈M〉 is the set of (possibly) infinite formal linear

combinations of elements of M , with coefficients in Z. The product of two such linear

combinations is calculated as follows:∑
m∈M

amm ·
∑
m∈M

bmm =
∑
m∈M

cmm,

where cm =
∑

xy=m axby. Here xy is the monoid product of x and y.

Lemma 3.36 (Albenque & Nadeau [2]). Let M be a left-cancellative monoid with generator

set S and identity element ε, and has the property that any set that admits a common

right-multiple also admits a least common right-multiple (lcm). Let Q be the set of all

cliques of M . Then the following equation holds in Z〈M〉:(∑
Q∈Q

(−1)|Q| lcm(Q)

)
·

(∑
m∈M

m

)
= ε. (3.37)

42

CHAPTER 3. ENUMERATION

Proof. In the interest of simpler notation, for any set A ⊂ M , write mA = lcm(A). For

m ∈M , let Q(m) ⊆ Q be the subsets Q of S in which every s ∈ Q left-divides m.

Since every subset of Q has a least common multiple, it follows that lcm(A) 4 lcm(B)

if and only if A ⊆ B for A,B ∈ Q. Therefore for any m ∈ M there exists a unique set

Qm ⊆ S such that Q(m) = P(Qm) (the power-set of Qm).

Define an arbitrary order < on S. Define a function s : M \ε→ S by s(m) = max<{Qm}.

Fix m ∈ M , and define a sign-reversing involution on Q(m): Φm(Q) = Q4s(m), the

symmetric difference of Q and s(m). This is a sign-reversing involution since Φm affects

the parity of |Q|, and Φ2
m(Q) = Q; therefore for m 6= ε∑

Q∈Qm

(−1)|Q| = 0. (3.38)

Notice that by construction of Q(m), if Q ∈ Q(m) then mQ 4 m, which happens exactly

when there exists an m′ such that mQm
′ = m. Thus, when we fix m, equation 3.38 is

equivalent to ∑
(Q,m′)∈Q×M
mQm′=m

(−1)|Q| =

0 if m 6= ε

1 if m = ε.

Returning to the left hand side of equation 3.37, we can write

(∑
Q∈Q

(−1)|Q|mQ

)
·

(∑
m′∈M

m′

)
=
∑
m′∈M

 ∑
(Q,m′)∈Q×M
mQm′=m

(−1)|Q|

m′ = ε

as desired.

43

CHAPTER 3. ENUMERATION

Corollary 3.39 (Albenque [1]). The generating function for the positive braid monoid B+
n

is

Bn(x) =
∑
b∈B+

n

x|b| =
1∑

Q∈Q(−1)|Q|x|mQ|
,

where Q is the clique set for B+
n .

Proof. We will prove the result for homogeneous monoids first, and the result will apply

to the braid monoid. Assume that M is a homogeneous monoid, that is, if m1 ≡ m2 then

|m1| = |m2|. Then the following is a ring homomorphism from Z〈M〉 to Z[x]:∑
m∈M

cmm 7→
∑
m∈M

cmx
|m|.

Applying this to both sides of Lemma 3.36 gives us(∑
Q∈Q

(−1)|Q|x|mQ|

)
·

(∑
m∈M

x|m|

)
= 1.

This applies to the braid monoid because B+
n is homogeneous, every set of braids admits

an lcm, and B+
n is cancellative.

The generating function is certainly not in a closed form, but is still easy to calculate.

Define the set Qi,j = {σi, . . . , σj−1} for i < j. Given any Q ∈ Q, we can write Q as a disjoint

union of Qi,j’s. One can use an inductive argument using the subword reversing algorithm

to determine that lcm(Qi,j) = ∆i,j. From there, it is easy to see that for Q = ∪(i,j)∈ΓQi,j,

mQ = lcm(Q) =
∏

(i,j)∈Γ

∆i,j,

which is the braid product of ∆i,j over the counting set Γ.

44

CHAPTER 3. ENUMERATION

Example 3.40. We apply 3.39 to determine the generating function for B+
4 .

Recall that the generators for B+
4 are {σ1, σ2, σ3}. It follows that the clique set for B+

4

is equal to

Q = {Qi}7
i=0 = {∅, {σ1}, {σ2}, {σ3}, {σ1, σ2}, {σ2, σ3}, {σ1, σ3}, {σ1, σ2, σ3}}.

The lcm, and all of the relevant information for each of these cliques in order is:

lcm(Q0) = ε

|Q0| = 0, |ε| = 0

lcm(Q1) = σ1

|Q1| = 1, |σ1| = 1

lcm(Q2) = σ2

|Q2| = 1, |σ2| = 1

lcm(Q3) = σ3

|Q3| = 1, |σ3| = 1

lcm(Q4) = ∆2

|Q4| = 2, |ε| = 3

lcm(Q5) = ∆2,3

|Q5| = 2, |σ1| = 3

lcm(Q6) = σ1σ3

|Q6| = 2, |σ2| = 2

lcm(Q7) = ∆3

|Q7| = 3, |σ3| = 6

It follows that the generating function for B+
4 is

B4(x) =
1

1− 3x+ 2x3 + x2 − x6
.

45

Chapter 4

Isotopy Problem

In Chapter 2 we covered some of the many different ways one can represent a braid. In

each representation it was clear that there are many different ways to represent the same

braid. Given two equivalent braids, it is often easy to prove that they are equivalent (a list

of relations that transforms one to the other will suffice), but proving that two braids are

not equivalent can take some more work. This is called the isotopy problem.

4.1 Invariants and algorithms.

There are a number of quick tests which tell you that two braids are not the same. For

example, braids have a natural homomorphism π onto the symmetric group, with kernel

equal to the pure braid group Pn, as discussed in Section 2.5. The image of b under π is

called the permutation of b. This homomorphism can be an easy way to tell if two braids

are not equal and is easy to compute. The problem with an invariant is that just because

the image of two braids might be equal does not imply that the braids are equivalent.

Definition 4.1 ((complete) isotopy invariant). A map ϕ from the braid group Bn to some

set X such that if ϕ(b) 6= ϕ(b′) then b 6≡ b′ is called an isotopy invariant. A complete isotopy

invariant is an invariant with the extra property that if ϕ(b) = ϕ(b′) then b ≡ b′.

46

CHAPTER 4. ISOTOPY PROBLEM

≡ 6≡

Figure 4.2: Equivalent braids imply equal permutations, but the converse is false.

Finding a complete isotopy invariant is a solution to the braid isotopy problem. When

braids are expressed as a word, a complete isotopy invariant is called a solution to the braid

word problem. As we will see more than once in this chapter, one does not require the set

X in a complete isotopy invariant to be entirely different from the preimage Bn. In fact,

we may find a subset of Bn which suffices to serve as X, i.e., if we can find a one-to-one

function f from Bn → Bn such that b ≡ f(b), we call f(b) a normal form of b with respect

to f and is indeed a solution to the isotopy problem.

To solve the braid isotopy problem, we do not require a complete isotopy invariant or a

normal form. Sometimes all we seek is an algorithm. It should be fairly obvious that the

braid isotopy problem for positive braids is decidable, since the equivalence class of each

positive braid is finite (as opposed to the always infinite equivalence class for each braid

b ≡ bσ1σ
−1
1). Consider Algorithm 4.3, which takes as input two braids written in terms

of their Artin generators and returns as output whether or not they are equivalent. For

brevity, let R be a function from B+
n → P(B+

n) (the power-set of B+
n) which takes as input

a braid and returns the finite set of all braids which are obtained by applying exactly one

braid relation to it wherever possible.

The algorithm will end since the for loop will end when either b2 ∈ X, or R(x) = X

for each x ∈ X, in which case X is the entire equivalence class of b1b
−1
2 . If ε ∈ X then the

algorithm ends with a positive result, since b1b
−1
2 ≡ ε implies b1 ≡ b2. Otherwise, there is

no finite sequence of relations that take b1b
−1
2 to ε so b1 6≡ b2.

The ability to recognize braid equivalence is important to us because of cryptographic

applications of braid theory. The involvement in a cryptosystem requires us to be able to

efficiently recognize whether or not braids are equivalent; Algorithm 4.3 is not efficient.

47

CHAPTER 4. ISOTOPY PROBLEM

input : b1, b2

X = {b1}
for x ∈ X do

X := X ∪R(x)
if b2 ∈ X then

return “b1 ≡ b2”
end

end
return “b1 6≡ b2”

Algorithm 4.3: Näıve algorithm.

4.2 Artin’s algorithm.

Artin offers a solution to the braid isotopy problem, albeit a little clumsy and inefficient,

and computer implementation is unclear. That said, it is a good example of writing braids

in a normal form, and an appropriate one to start with as it was the first algorithm in

history to solve the braid isotopy problem.

Consider a pure braid b ∈ Pn, which connects the points Pi to Qi by curves Ci for

i = 1, . . . , n+ 1. Let b1 be the braid obtained by removing C1 from b and replacing it with

the curve D1, which connects P1 to Q1 by a straight line that does not interfere with any

other strands. Define c1 = bb−1
1 . Then c1 has the special property that if you remove the

curve C1 from c1 and replace it with D1 then you are left with b1b
−1
1 = ε. This type of braid

is called a 1-pure braid. A similar definition exists for an i-pure braid.

Disregarding the fact that C1 is still in the braid c1, performing the same isotopy which

takes b1b
−1
1 to ε (which can is easily found by undoing opposite crossings from the centre

outwards), and stretching c1 as much as necessary - we will find that C1 is usually tangled

up in the otherwise identical (that is to say equal to ε) braid. This braid c1 is called a

1-pure braid, since by removing the first strand C1 and replacing it with D1, we obtain the

identity. Now, notice that bb−1
1 ≡ c1 so b ≡ c1b1. That is to say, any braid is isotopic to the

product of a 1-pure braid c1, and a braid b1 with its first strand not interfering with the

rest of the braid. In other words, we may think of b1 as a braid in Bn−1 but a new strand

48

CHAPTER 4. ISOTOPY PROBLEM

Figure 4.4: An example of a 1-pure braid.

is introduced on the left so that it is in fact in Bn. It follows that any pure braid on n+ 1

strands has unique decomposition b = c1c2 . . . cn+1, where each ci is i-pure. It should be

clear that in the decomposition of ε, each ci = ε.

Let ϕ be the function that takes as input a braid b ∈ Bn and gives as output the 1-pure

braid c1 and the braid b1 ∈ Bn−1. Consider Algorithm 4.5 more of a proof of concept, or

input : b1, b2

b = b1b
−1
2

if b is not pure then
return “b1 6≡ b2”

end
for i = 1, . . . , n do

ϕ(b) = (bi, ci)
if ci 6= ε then

return “b1 6≡ b2”
end
b := bi

end
return “b1 ≡ b2”

Algorithm 4.5: Artin’s algorithm

an exercise than one to be implemented in a computer program. Instead of improving this

algorithm or studying its complexity, it is wise to move on to more efficient algorithms that

49

CHAPTER 4. ISOTOPY PROBLEM

may actually have the prospect of being used in a cryptographic application.

4.3 Subword reversing.

In Section 3.2 we defined the extended complement C∗ : Σ∗n × Σ∗n → Σ∗n which calculates

the least common multiple of two braids. In this section we will show that C∗ can be used

to solve the word problem on braids.

Recall that the function C∗(u, v) is always defined for positive words u, v (see 3.31), and

that u ≡ v if and only if C∗(u, v) = C∗(v, u) = ε, if and only if u−1v y ε (see Lemma 3.23).

As such, the braid isotopy problem can be directly solved for positive braids.

input : positive braid words b1, b2

if C∗(b1, b2) = ε and C∗(b2, b1) = ε then
return “b1 ≡ b2”

else
return “b1 6≡ b2”

end

Algorithm 4.6: Subword reversing for positive braids.

Subword reversing can be used to solve the isotopy problem for general braids too. We

just have to reverse the word twice.

Lemma 4.7. Any braid word b is reversible in a finite number of steps to uv−1 for positive

braids u, v.

Proof. We can decompose b into a composition of positive braids u1, v1, . . . , uk, vk such that

b = u−1
1 v1u

−1
2 v2 · · ·u−1

k vk. If k = 1 then the result follows from 3.31. Suppose that the

result holds for k − 1. Then by u′v′−1u−1
k vk. But (ukv

′)−1vk y u′′v−1 for positive words

u′′ and v. Let u = u′u′′, so that by u′u′′v−1 = uv−1, as desired.

50

CHAPTER 4. ISOTOPY PROBLEM

The idea of Algorithm 4.8 is that b1 ≡ b2 if and only if b = b1b
−1
2 ≡ ε. We reverse b to

uv−1 and note that b ≡ ε if and only if u ≡ v if and only if u−1v y ε. Subword reversing is

the first efficient algorithm we have seen so far.

input : braid words b1, b2

reverse b1b
−1
2 y uv−1 with u, v positive

if C∗(u, v) = ε and C∗(v, u) = ε then
return “b1 ≡ b2”

else
return “b1 6≡ b2”

end

Algorithm 4.8: Subword reversing for general braids.

4.4 The greedy normal form.

We have seen that the equivalence classes for braids are infinite, so the motivation to have

a unique representative for that equivalence class is strong. In this section we will use

the theory of Garside [34] to determine a canonical form for a braid, and refer to [31] to

analyze the algorithms. Although the foundation of this work is due to Garside, we follow

the notation and proofs of Dehornoy [26] for consistency.

We know how to compute the lcm of a set of braids, but we have not yet defined its

dual - the greatest common divisor for B+
n .

Definition 4.9 (greatest common divisor). Let b1 and b2 be positive braids. Then c ≡
gcd(b1, b2) if and only if c left divides1 b1 and b2, and any other c′ with this property also

has the property that c′ 4 c.

Notice that we do not have an algorithm to compute the gcd like we do for the lcm.

The following proof will give us insight on how to compute it.

1Recall that we omit the “left” part of left divide and stick to left division. If we wanted to we could
define the above as “left gcd” and symmetrically define a “right gcd.”

51

CHAPTER 4. ISOTOPY PROBLEM

Lemma 4.10. The gcd of any two positive braids exists and is unique.

Proof. Set X to be the finite set of positive braids that divide b1 and b2, and set c = lcmX.

The set X exists and is finite since ε ∈ X and if a 4 b then |a| ≤ |b|. By definition of lcm,

c ∈ X, and all x ∈ X divide c.

The idea is that we take all divisors of b and c and compute their lcm. For large braids

(in terms of length) this can be difficult to compute.

Definition 4.11 (greedy normal form). Let b be any positive braid and define the head of

b to be H(b) = gcd(∆n, b). We say that a sequence of positive braids (b1, b2, . . . , bk) is a

normal sequence if bi = H(bibi+1 · · · bk) for i = 1, . . . , k − 1. We say that a positive braid

b ∈ B+
n is in greedy normal form if b = b1b2 · · · bk and (b1, b2, . . . , bk) is normal.

Theorem 4.12. The greedy normal form of a positive braid is unique: b1 ≡ b2 if and only

if they are both equivalent to a unique braid in greedy normal form.

Partial proof. We will show that any positive braid has a normal form. Simply compute

braids b1, b2 such that b ≡ b1b2 where b1 = gcd(∆n, b), and repeat on b2. These braids can

be computed using the extended complement function from Section 4.3.

Keep doing this until we are left with a divisor of ∆n. This terminates by the cancellative

nature of B+
n , and since gcd(b,∆n) always exists.

What remains to be shown is uniqueness. Notice that uniqueness up to equivalence

will not suffice. We need a unique braid word, which would come from a unique head of a

positive braid. For this, we need to understand the theory of permutation braids and simple

braids.

A greedy normal form gives us a distinguished representative for the equivalence classes

of positive braids. We will see that this is not only a solution to the braid isotopy problem,

but gives us a new way to store a braid in a computer. Having an efficient way of computing

a normal form will change the way we work with braids.

52

CHAPTER 4. ISOTOPY PROBLEM

Our work here is far from done. In addition to finishing the above proof, if we want to

effectively use the greedy normal form as a solution to the braid isotopy problem or use it

in any computer environment, an efficient algorithm for computing the greedy normal form

is of utmost importance. Since we currently have no efficient way of computing the gcd of

a set of braids, our current algorithm is not efficient.

The existence of this normal form is a classical result appearing first in Garside’s 1969

paper, [34] although his method is unconcerned with efficiency. Different algorithms for

finding this canonical form can also be found in [30, 31], but we will stick with the methods

used by Dehornoy [26].

In Section 3.1 we defined a braid δi,j = σj−1σj−2 · · ·σi and proved a number of propo-

sitions involving it. Here we will introduce βi,j = σiσi+1 · · ·σj−1 and assume a few of the

symmetrical results of δi,j. In particular, notice that βi,jσk ≡ σk+1βi,j whenever i ≤ k ≤ j.

Braids have a close relationship with the symmetric group. We have seen mappings

from the braid group to Sn but not the other way around. Consider this one.

Definition 4.13 (permutation braid). Let f be a permutation in Sn. We can recursively

define a positive braid from f with the following function. Let br(1) = ε and

br(f) = βf(k),k br(g),

where k = max{s ∈ {1, . . . , n} : s 6= f(s)} (the largest number moved by f) and g ∈ Sn is

defined as

g(i) =

f(i) when i < k and f(i) < f(k)

f(i)− 1 when i < k and f(i) > f(k)

i when i ≥ k.

The idea is that we connect the f(k)-th strand to the k-th strand starting with k = n

and working down. If a positive braid b is in the set {br(f) : f ∈ Sn} then we call b a

permutation braid. Since we are concerned with uniqueness, we need equality: b ≡ br(f),

does not imply b is a permutation braid.

Example 4.14. Take f = (1743)(26)(5) ∈ S7. The corresponding permutation braid in

53

CHAPTER 4. ISOTOPY PROBLEM

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Figure 4.15: The permutation braid br((1743)(26)(5)).

B+
7 is β47β26β35β24β13β12 with intermediate permutations (1625431)(7), (153)(24)(6)(7),

(1426)(5)(6)(7), (13)(2)(4)(5)(6)(7) and (12)(3)(4)(5)(6)(7).

It should be fairly clear that the permutation that corresponds to a braid as in Section 2.5

is closely related to permutation braids. Indeed π(br(s)) = s for all s ∈ Sn. Recall the

important braid ∆n. The permutation π(∆n) = ωn ∈ Sn is the permutation such that for

all 1 ≤ i ≤ n− 1, ωn(i) = n− i. It also happens that br(ωn) = ∆n. In general br(π(b)) 6= b.

Permutation braids have a number of very nice properties. The first thing to notice is

that every two strands cross exactly once. Many more properties are to come.

Definition 4.16 (simple braid). Let f be a permutation on n and define the inversion

number of f to be Inv(f) = |{(i, j) : 1 ≤ i < j ≤ n, f(i) > f(j)}|. We say that a positive

braid is simple if its length is equal to the inversion number of its permutation. That is b is

simple if and only if |b| = Inv(π(b)).

Although defined differently, simple braids are actually exactly the permutation braids.

It turns out that it is extremely useful to be able to use the defining property of simple

54

CHAPTER 4. ISOTOPY PROBLEM

braids when talking about permutation braids. To prove this, we need more of the theory

Dehornoy provides in [26].

Lemma 4.17. Let b1 and b2 be positive braids such that b1b2 is simple. Then b1 and b2 are

simple too.

Proof. We start by making the claim that for all positive braids b1 and b2, the inequality

Inv(π(b1b2)) ≤ |b1|+ Inv(π(b2)). (4.18)

holds. This follows inductively from the fact that

Inv(sif) =

Inv(f) + 1 if f−1(i) < f−1(i+ 1)

Inv(f)− 1 if f−1(i) > f−1(i+ 1)
(4.19)

for all si ∈ Sn. To see this, notice that si will change the inversion number by ±1. If

f−1(i) < f−1(i+ 1) then (sif)−1(i) > (sif)−1(i+ 1) so the inversion number is increased

by one. A similar argument holds for when the inversion number is decreased by one.

Finally, to see that equation 4.18 is all we need, notice that if b2 is not simple then

Inv(π(b2)) < |b2| and then Inv(π(b1b2))| < |b1|+ |b2|, contradicting that b1b2 is simple. So

b2 is simple, and a symmetric argument holds for b1.

The above lemma has a clear catch-line: simple braids decompose into smaller simple

braids. The next lemma’s catch-line is less clear but it is a step in the opposite direction:

how can we construct a simple braid from a permutation braid? It will be used as a technical

tool for the proof that simple braids are exactly the permutation braids.

Lemma 4.20. Let f ∈ Sn such that br(f) is simple. Then for all 1 ≤ i ≤ n− 1 we have

either

1. f−1(i) < f−1(i+ 1) and σi br(f) = br(sif) is simple or

2. f−1(i) > f−1(i+ 1) and σi br(f) is not simple.

55

CHAPTER 4. ISOTOPY PROBLEM

Proof. Most of the theorem is worked out from equation 4.19. In case 1, since br(f) is simple,

then |σi br(f)| = Inv(sif). In case 2, |σi br(f)| = Inv(f) + 1, and Inv(sif) = Inv(f) − 1.

The only thing that remains to show is that in the first case, σi br(f) = br(sif). For this

we do induction on k, the largest number moved by f .

If k = 1, then f is the identity and the result is trivial. So assume k > 1. By definition

of k, f(k) < k, and br(f) = σf(k),k br(g) where g is defined in 4.13. Now, set f ′ = sif , and

g′ the associated braid as per 4.13.

The rest of the proof can be split up into five cases, based i.

1. When i < f(k)− 1. Then the largest number moved by f ′ is k as well. So g′ = sig,

and br(sig) = σi br(g) by the induction hypothesis. Now, since i < f(k)− 1 we get

that σiσf(k),k ≡ σf(k),kσi, hence

br(f ′) = σf(k),k br(g′) = σf(k),kσi br(g) = σiσf(k),k br(g) = σi br(f).

2. When i = f(k)− 1. Now, the largest number moved by f ′ is still k but

sif(k) = (f(k)− 1, f(k))f(k) = f(k)− 1

and g′ = g. Hence

br(f ′) = σf(k)−1,k br(g′) = σiσf(k),k br(g) = σi br(f).

3. When i = f(k) we violate the hypothesis that f−1(i) < f−1(i+ 1).

4. When f(k) ≤ i ≤ k − 1, the largest number moved by f ′ is k, and f(k) = f ′(k), and

g′ = si−1g. Hence

br(f ′) = σf(k),k br(g′) = σf(k),kσi−1 br(g) = σiσf(k),k br(g) = σi br(f).

5. When i ≥ k, then the largest number moved by f ′ is i + 1, and f ′(i + 1) = i, and

g′ = f . It follows immediately that br(f ′) = si br(f).

56

CHAPTER 4. ISOTOPY PROBLEM

We are finally equipped to show that simple braids are exactly the permutation braids.

Theorem 4.21. A braid is simple if and only if it is a permutation braid.

Proof. Assume that b is simple. We will show by induction on the length of b that

b = br(π(b)). If |b| = 0 or 1, the result is trivial. So suppose that all simple braids b′

with 2 ≤ |b′| < k are permutation braids. Let b be any simple braid of length k so that

b = σib
′ and π(b) = siπ(b′). Since simple braids decompose into simple braids, b′ must be

simple and therefore a permutation braid by the induction hypothesis. By Lemma 4.20,

b = σi br(π(b′)) = br(siπ(b′)) br(π(b)) so b is a permutation braid.

Now assume that b is a permutation braid, and that π(b) = f . We will do induction

on Inv(f). When Inv(f) = 0, f = id which is simple. Suppose Inv(f) ≥ 0, then there

exists an i such that f−1(i) > f−1(i + 1). Let g = sif so that Inv(g) < Inv(f). Also

notice that sig = sisif = f . By the induction hypothesis, g is simple, and by Lemma 4.20,

br(f) = σi br(g) is simple.

Now that we know permutation braids enjoy all the nice properties of simple braids, we

get the following theorem.

Theorem 4.22. The permutation braids of Sn are exactly the left and right divisors of ∆n.

Proof. If f = ωn = (n, n − 1, . . . , 1), then br(ωn) = ∆n which of course is a divisor of

itself. Assume that f 6= ωn. Then there must exist an i such that f−1(i) < f−1(i + 1)

so that Inv(sif) > Inv(f), hence since f is simple σi0 br(f) = br(si0f) is simple also.

So long as si0f 6= ωn, we can find another si1 such that Inv(si1si0f) > Inv(si0f) and

σi1σi0 br(f) = br(si1si0f), until we can do so no more, in which case

σit · · ·σi0 br(f) = br(sit · · · si0f) = br(ωn) = ∆n.

Hence br(f) right divides ∆n, and a symmetric argument shows that br(f) left divides ∆n.

57

CHAPTER 4. ISOTOPY PROBLEM

Conversely, since ∆n is a permutation braid, if b1b2 ≡ ∆n then both b1 and b2 are simple

by Lemma 4.17.

We are finally at the point where we can show that the head of a braid is unique - and

hence prove that the greedy normal form is unique.

Lemma 4.23. The head of any positive braid b is the unique maximal simple braid which

divides b. That is, if b′ is simple and b′ 4 b, then b′ 4 H(b).

Proof. Since H(b) = gcd(∆n, b), H(b) 4 ∆n and hence H(b) is simple. Suppose that there

were another braid b′ such that b′ was a divisor of ∆n and H(b) 4 b′. Then H(b) ≡ b′

by definition of gcd. Furthermore, H(b) ≡ b′ means that H(b) = b′ since they are both

simple and simple braids are defined by their permutation, which satisfies the uniqueness

property.

The greedy normal form is called such because we continue to “divide off” the largest

divisor of ∆n we can. We are finally able to return to our unfinished proof.

Proof of 4.12, continued. We have already shown that given a positive braid b, one can

repeatedly find a sequence of positive braids (b1, . . . , bk) such that bi = gcd(bi · · · bk) and

b ≡ b1 · · · bk. Uniqueness follows from Lemma 4.23.

An important fact to remember is that the equivalence class for a permutation braid

can be large. A permutation braid has a distinguished element and is uniquely defined by

its mapping under π.

Computing the greedy normal form.

Just because the definition is greedy does not mean that our algorithm for computing it

has to be greedy in the same sense. We will not simply take a braid as input, and then

compute the head of the braid and so on. We will take the more streamlined approach that

Dehornoy presents in [24, 26], and one which is more flexible when computing products. It

58

CHAPTER 4. ISOTOPY PROBLEM

turns out that normal sequences enjoy a number of useful properties which make it easier

to compute the greedy normal form.

Recall the extended complement function C∗. We will use C∗ in the following lemmas,

and will simplify the notation by writing it in the style of a binary operation. So instead of

writing C∗(a, b) = c we write a \ b = c.

Recall that C∗ already solved the braid isotopy problem, so one might ask why we

are using it to solve the braid isotopy problem again? There are two reasons. First, we

will only be using C∗ on simple braids, and the final algorithm does not actually need to

use C∗ (although we will opt to do so for efficiency sake). Second, the ability to have a

normal form of a braid is different than a truth value regarding equivalence. We will use a

normal form in Chapter 5 to send braids over a network to scramble their factors. Having

a distinguished member for the equivalence class of braids has a multitude of virtues.

Recall that the complement function is easy to compute and has the property that if

a \ b = c then ac ≡ lcm(a, b). This is why it is called the complement function - it is the

complement of the lcm. The following facts will prove to be very useful in the upcoming

lemmas.

Lemma 4.24. The following facts hold for all positive braids a, b and c:

1. a 4 b if and only if b \ a = ε,

2. a \ (bc) = (a \ b)((b \ a) \ c) and (bc) \ a = c \ (b \ a),

3. and a 4 bc if and only if b \ a 4 c.

Proof. We will prove each of the facts separately.

1. Notice that if a 4 b then lcm(a, b) ≡ b. It follows that b \ a = ε. A reverse argument

holds for the converse.

2. The first statement follows immediately from the following reversing diagram.

59

CHAPTER 4. ISOTOPY PROBLEM

a

a \ b

b

b \ a

(b \ a) \ c

c

c \ (b \ a)

The bottom row of the reversing diagram is of course equal to a \ (bc). A similar

argument holds for (bc) \ a = c \ (b \ a).

3. This proof is straightforward after one notices that a 4 bc if and only if lcm(a, b) 4 bc.

Then,

a 4 bc⇔ lcm(a, b) 4 bc

⇔ b(b \ a) 4 bc

⇔ b \ a 4 c.

The last line is valid because of the cancellative property of B+
n . �

Lemma 4.25 (Local characterization). Let (b1, . . . , bk) be a sequence of simple braids. The

sequence is normal if and only if for each 1 ≤ i ≤ k − 1, the sequence (xi, xi+1) is normal.

Proof. First notice that (x, y) is a normal sequence if and only if for all simple braids

z ∈ B+
n , z 4 xy implies that z 4 x. Now, by definition of the head of a braid, we have

that for any sequence of simple braids (b1, . . . , bk), bi 4 H(bibi+1) 4 H(bibi+1 · · · bk) for

1 ≤ i ≤ k − 1.

Assume that (b1, . . . , bk) is a normal sequence of simple braids. It follows that since

bi = H(bi · · · bk), we get that bi = H(bibi+1).

Conversely, suppose that for all 1 ≤ i ≤ k − 1, the pair (bi, bi+1) is a normal sequence.

We will show by induction on k that b1 = H(b1 · · · bk). Clearly if (b1, b2) is normal then

b1 = H(b1b2) so the base case is taken care of already.

60

CHAPTER 4. ISOTOPY PROBLEM

Now suppose for all 1 < i < k that bi = H(bi · · · bk). We will show that b1 = H(b1 · · · bk).

Clearly b1 4 b1 · · · bk. Suppose that there exists a simple braid a such that a 4 b1 · · · bk, we

want to show that a 4 b1 so that b1 = gcd(∆n, b1 · · · bk).

From Lemma 4.24, we get a 4 b1 · · · bk if and only if b1 · · · bk \ a = ε. Now we can use

Lemma 4.24 again to obtain the expression

b2 · · · bk \ (b1 \ a) = (b1 \ b1b2 · · · bk) \ (b1 \ a)

= b1b2 · · · bk \ a

= ε,

which is the case if and only if b1 \a 4 b2 · · · bk. Since (b2, · · · , bk) is normal by the induction

hypothesis, and b1 \ a is a simple braid, b1 \ a 4 b2. This happens if and only if a 4 b1b2,

and since (b1, b2) is normal, a 4 b1.

We can now think of a normal sequence of braids as a chain of normal pairs. We can depict

this in a diagram by representing each braid bi by an arrow, and drawing a link between

the arrows of bi and bi+1 if and only if (bi, bi+1) is normal. A normal sequence can therefore

be thought of as a diagram with a link between each arrow. This will provide a useful

visualization for upcoming proofs.

b1 b2 b3

This lemma is the first of a few to touch on the fact that the greedy normal form can

be decomposed into smaller steps. When it comes to computing it, we will find that the

correct decomposition will make computation much easier.

Lemma 4.26. Let b1 and b2 be simple braids. Then there exist simple braids b′1 and b′2

such that b′1b
′
2 ≡ b1b2 and (b′1, b

′
2) is normal.

Proof. The existence of b′1 is clear, just let b′1 = H(b1b2). All that remains to show is that

b′2 = b′1 \ b1b2 is simple as well. Since b1 4 b′1, write b1a ≡ b′1. Now we have that b1ab
′
2 ≡ b1b2.

61

CHAPTER 4. ISOTOPY PROBLEM

Since B+
n is cancellative, we have ab′2 ≡ b2, and since b2 is simple, b′2 must be simple as well

by Lemma 4.17.

By drawing arrows vertically, we can depict the above lemma as the following commuta-

tive diagram.

b1

b2

b′1

b′2

Dehornoy describes the following move as a domino move. We will see that if we have a

normal sequence, and add another simple braid to the left, the above move will make a

new normal sequence.

Lemma 4.27. Suppose that the following diagram of simple braids commutes and that

(b1, b2) and (b′1, a1) are normal.

b1

b′1

a0 a1

b2

b′2

a2

Then (b′1, b
′
2) is normal as well.

In this domino move a can be drawn between the arrows of b′1 and b′2.

Proof. All we need to show is that b′1 = H(b′1b
′
2). So suppose that a simple braid c divides

b′1b
′
2, we will see that c 4 b′1. Trivially, c 4 b′1b

′
2a2, so by the commutativity of the diagram,

c 4 a0b1b2. Using the tools of Lemma 4.24, we get a0 \ c 4 b1b2. Since a0 and c are both

simple, a0 \ c is simple as well. So since a0 \ c 4 b1b2 and (b1, b2) is normal, a0 \ c 4 b1.

62

CHAPTER 4. ISOTOPY PROBLEM

Using the same tools again we get that c 4 a0b1 and therefore also b′1a1. Since by the

hypothesis (b′1, a1) is normal, c 4 b′1.

The domino move is the key to computing the greedy normal form. Because normal

sequences have this property, we can compute the greedy normal form of the product of

simple braids very efficiently. Braids already decompose into simple braids: σi is simple.

Theorem 4.28. Let b = b1 · · · bk ∈ B+
n with (b1, . . . , bk) normal and, a ∈ B+

n simple.

Then there exists a normal sequence (b′1, b
′
2, · · · , b′k, ak) such that ab ≡ b′1 · · · b′kak where

a = a0, a1, · · · , ak are the simple braids as per the commutative diagram below.

b1

b′1

a0 a1

b2

b′2

a2 · · ·

bk

b′k

ak−1 ak

The idea here is to start with an L-shaped diagram of a0b1 · · · bk. Then fill in the corner

to obtain a1 and b′1, and so on. We repeat until we are left with b′1b
′
2 · · · b′kak, with the

possibility that ak = ε. There is nothing to prove - (b′1, · · · , b′k, ak) is normal by the previous

lemmas. We finally have the machinery to construct an algorithm. One may object that we

input : positive braid word b of length `
set S = (b[`])
for i = `− 1, `− 2, · · · , 1 do

perform domino moves on b[i] ∪ S to obtain S ′

set S = S ′

end
return S

Algorithm 4.29: Computing the greedy normal form.

do not have an explicit algorithm for computing individual domino moves, this is because

63

CHAPTER 4. ISOTOPY PROBLEM

we do not have algorithms for computing gcds. When the index of the braid group n is low

there are a small enough number of simple braids ((n!)2 of them) that computing the head

of each product of two simple braids can be stored in a small amount of memory.

Epstein et al. [31] provide an algorithm for computing gcds of permutation braids by

using the properties of a lattice. They describe a finite state automaton which uses a sort

and merge algorithm to find the right candidate. They are able to do this in O(n log n)

time.

Theorem 4.30. For a fixed n, Algorithm 4.29 computes in O(`2) time. For variable n, the

time is O(`2n log n).

Proof. Since there are a total of (n!)2 pairs of simple words in B+
n , when n is fixed computing

each individual domino move takes constant time. A full sequence of domino moves at each

step can be no longer than `. We do ` sequences of domino moves, so we get a total of

O(`2). When n is variable, we use the merge and sort algorithm of [31] to compute the

domino moves. See [57] for an implementation.

4.5 The left-normal form for the braid group.

In Chapter 3 we used Lemma 3.9 to show that for every positive braid b ∈ B+
n , there exists

another braid b′ ∈ B+
n such that bb′ ≡ ∆`

n. We can use the same lemma to obtain a similar

result.

Proposition 4.31. For every braid b ∈ Bn, there exists an integer p ≥ 0 and positive braid

b′ such that b ≡ ∆−pn b′.

Proof. For each i, let ui be the positive braid from Lemma 3.9 such that σiui ≡ ∆n. Now,

let wi = ui∆n. Even though wi is positive, wi ≡ σ−1
i ∆2

n.

Let k be the number of inverse Artin generators σ−1
i in b. Let b′ be the positive braid

obtained by replacing each σ−1
i with wi. Then since ∆2

n commutes with all σi, it follows

that ∆2k
n b ≡ b′. Hence b ≡ ∆−2k

n b′ as desired.

64

CHAPTER 4. ISOTOPY PROBLEM

Now we can obtain the greedy normal form for b′ so that b ≡ ∆2k
n b1, . . . , bt with (b1 . . . , bt)

a normal sequence. The left-normal form for the braid group is almost this.

Definition 4.32 (left-normal form). Let b ∈ Bn. We say that the braid b′ = ∆−kn b1 · · · bt is

the left-normal form of b if b ≡ b′, k is minimal and (b1, . . . , bt) is normal. The integer t is

called the complexity of b.

The minimality of k is the only extra step we might have to take, since 4.31 showed us

how to put the braid in an “almost” left-normal form. The idea is that if b1 = ∆n, then

remove b1 from the normal sequence, and reduce k by one, and try again. This ensures that

the left-normal form is compatible with the greedy normal form.

65

Chapter 5

Braid group cryptography

Cryptography is the mathematics behind sending secret messages. Given recent events, the

importance of cryptography in the average citizen’s life hardly needs an explanation. The

role of cryptography is becoming more and more clear to the public as questions regarding

privacy continue to break news stories.

There are many types of cryptosystems. A commonly used one is public key encryption.

In this scenario, there is a sender, Alice, and a receiver, Bob, who would like to communicate

privately through a public channel. Bob has a pair of keys, one of which is private (Kpriv)

and he doesn’t share with anyone, and the other is public (Kpub), which anyone who would

like to send him a message (or any adversaries for that matter) can see. When Alice

sends Bob a message, she does so by encrypting it with the public key, which can only be

decrypted with Bob’s private key. She sends the encrypted message through the public

channel for Bob to decrypt.

Another method of exchanging secret messages is called private key encryption, in which

both Alice and Bob share the same private key that nobody else is aware of. There is no

public key. In this encryption scheme, Alice and Bob agree on a shared private key which

is able to both encrypt and decrypt a message. When they have done this they are free

to send private messages to one another through a public forum, e.g. The Internet. The

trouble with private key encryption schemes is the method in which the two parties agree

66

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

on a private key - the key exchange. The canonical protocol is called Diffie-Helman key

exchange.

Example 5.1. The Diffie-Hellman key exchange protocol is a widely used protocol with

many variations. It is based on the hardness of the discrete logarithm problem: given

gx (mod p) for a prime p and x, g ∈ Zp, compute x. Knowing how to solve the discrete

logarithm problem certainly breaks the cryptosystem.

Public Key : Alice and Bob agree on a prime p, and g ∈ Zp

Alice Sends : chooses x ∈ Zp, sends gx

Bob Sends : chooses y ∈ Zp, sends gy

Shared Key : (gy)x = (gx)y

Cryptosystem 5.2: Diffie-Hellman key exchange protocol.

5.1 Security definitions.

The basis to any cryptosystem is a computationally difficult mathematical problem. Ex-

amples of these are factoring numbers of the form n = pq, where p and q are large prime

numbers, or the discrete logarithm problem: given an equation gx = h in a group where g

is a generator, determine x.

The notion of a secure cryptosystem has many different forms. For example, a public

key cryptosystem may be able to prevent an adversary from recovering Kpriv, but at the

same time the same adversary could somehow decrypt messages without the key. This is

why we have distinct definitions of security.

Definitions of security have two components - the goal of an eavesdropper (who we

appropriately name Eve), and her capabilities. We always assume that Eve has access to

a universal Turing machine, and that she is pressed for time. That is, the only type of

algorithms the adversary can use are those which terminate in polynomial time with respect

67

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

to the length of the message or key. We go about proving these security definitions by

showing that if Eve can reach her goals with the given capabilities of the security definition,

then the method in which she does this (i.e. a polynomial time algorithm) can be used as a

black box to solve a mathematical problem for which there is no known polynomial time

solution. We thus show that the cryptosystem is at least as hard to break as a problem

which is known to be difficult.

Note that this does not prove that the cryptosystem will never be able to be broken.

Cryptosystems are often so closely based on well known problems that a solution to the

underlying problem immediately breaks the cryptosystem. Sometimes there are flaws in the

protocol or implementation which can also allow an adversary to break the cryptosystem

without even coming close to solving the underlying problem.

Definition 5.3 (kp). A cryptosystem is key-private when the adversary is unable to

recover the private keys used.

We similarly define the capabilities an adversary might have. These vary by the type of

cryptosystem in question, but a typical one is a chosen plaintext attack.

Definition 5.4 (cpa). We say that an adversary performs chosen plaintext attack on

a public-key cryptosystem when they have the ability to encrypt any message of their

choosing.

A cryptosystem meets a security definition when we outline both the goal and the

capability of the adversary, and almost always involves a computationally difficult problem.

Sometimes these problems can be contrived. The Diffie-Hellman protocol for example is

certainly broken by the discrete logarithm problem, but instead we usually associate the

hardness of the Diffie-Hellman protocol with a simpler problem: The Diffie-Hellman problem:

given g, gx, and gy, compute gxy. This problem is in fact equivalent to Diffie-Hellman being

key-private.

68

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

5.2 Conjugacy problems.

Braids offer a new type of problem that can be used in a cryptosystem: given braids b1 and

b2, is there a third braid c such that b1 ≡ cb2c
−1? When the question is answered positively,

b1 and b2 are said to be conjugated by c, their conjugator. We can state this in a more

formal way.

Problem 5.5 (conjugacy decision problem). Given two braids b1 and b2, determine whether

or not there exists a braid c such that b1 ≡ cb2c
−1: are b1 and b2 conjugate?

The first appearance of the conjugacy decision problem was in Artin’s paper [8]. Artin

gives an algorithm for solving the braid isotopy problem, as outlined in algorithm 4.5. He

introduces a new type of problem that, at the time, had not been solved. He asks the

reader to imagine a braid being wound around an axis so the ends meet to form a “closed

braid”. Given two braids b1 and b2, their closures are isotopic if and only if b1 ≡ cb2c
−1, for

some other braid c. He also notices that a solution to this problem could be applied to the

problem of identifying knots and links.

Since then, there have been a few variations of the conjugacy decision problem, which

are used as underlying problems for different cryptosystems.

Problem 5.6 (conjugacy search problem). Given two conjugate braids b1 and b2, find a

conjugating braid c, i.e. find a braid c such that b1 ≡ c−1b2c.

Problem 5.7 (multiple simultaneous conjugacy search problem). Take m pairs of elements

(b1, k1), . . . , (bm, km) in B2
n in which each pair is conjugated by the same braid. Find the

conjugator c ∈ Bn such that bi ≡ c−1kic for all i = 1, . . . ,m.

5.3 Cryptosystems based on braid groups.

Braids can be represented in a computer in many different ways. The most straightforward

way is to define a finite list of nonzero integers. Each integer i represents σi when i > 0

69

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

and σ−1
−i when i < 0. The existence of the left-normal form tells us that we can also store

braids as a finite list starting with an integer, followed by elements of the symmetric group.

We must be careful when we are relying on the conjugacy problem for braids. For

example, if the public braid is x = σ2σ4σ3, and we are afraid that an eavesdropper obtains

the conjugator c = σ1σ2σ3, then we should not send over a public channel cxc−1 =

σ1σ2σ3σ2σ4σ3σ
−1
3 σ−1

2 σ−1
1 . It takes little effort to see that the conjugator is σ1σ2σ3. Instead

we should send the braid in some kind of normal form. For instance, if we sent the

left-normal form of cxc−1:

y = σ−1
1 σ−1

2 σ−1
3 σ−1

4 σ−1
1 σ−1

2 σ−1
3 σ−1

1 σ−1
2 σ−1

1 σ1σ2σ1σ3σ2σ4σ3σ2σ1σ1σ2σ3σ4

along with x, it is much more difficult to recover c. Of course, y ≡ cxc−1. From this point

forward, unless otherwise stated, every braid sent over a public channel is done so in its

normal form.

Anshel-Anshel-Fisher-Goldfeld key-exchange.

The Anshel-Anshel-Goldfeld cryptosystem is a theoretical cryptosystem devised in 1999

in [3] by the cryptologists the cryptosystem is named after. In 2001, Fisher [4] joined the

original authors to implement the theoretical cryptosystem into one based on the braid

group.

Public Key : set of braids {k1, k2, . . . km} ⊂ Bn

Private Keys : Alice: a ∈ 〈k1, · · · , km〉, Bob: b ∈ 〈k1, · · · , km〉

Bob Sends : (bk1b
−1, . . . , bkmb

−1)
Alice Sends : (ak1a

−1, . . . , akma
−1)

Shared Key : aba−1b−1

Cryptosystem 5.8: Anshel-Anshel-Fisher-Goldfeld key-exchange

70

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

At this point, one should notice that using the normal form of a braid is important. If

an adversary knows ki, and Bob sends bkib
−1, then it is not at all difficult to discover b.

Proposition 5.9. Alice and Bob from the Anshel-Anshel-Fisher-Goldfeld key-exchange can

both obtain aba−1b−1 efficiently.

Proof. Alice knows a and receives (bk1b
−1, . . . , bkmb

−1) from Bob. Since a ∈ 〈k1, . . . , km〉,
she knows that a = x1, . . . xt where xi ∈ {k1, . . . , km}. Therefore she knows that

ba−1b ≡ bx1b
−1 · · · bxtb−1

and that

a(bx1b
−1 · · · bxtb−1) = aba−1b−1.

Since computing the left-normal form is easy, calculating aba−1b−1 is as well. A symmetric

argument holds showing that Bob can compute the shared key efficiently as well.

Proposition 5.10. Obtaining the private keys a and b in the Anshel-Anshel-Fisher-Goldfeld

key-exchange relies on the hardness of multiple simultaneous conjugacy search problem.

Proof. The proof of this is trivial - the cryptosystem is designed to imitate the multiple

simultaneous conjugacy search problem. That is, a is the conjugator of ak1a
−1, . . . , akma

−1

and b is the conjugator of bk1b
−1, . . . , bkmb

−1. There is nothing else to show.

Ko et al.’s key-exchange.

The braid group is noncommutative in general, but some elements do commute with

one another. Furthermore, there are large subgroups of Bn which commute with other

subgroups - precisely subgroups that do not share any strands. Using this fact, Ko et al. [44]

construct a new key-exchange protocol based on the celebrated Diffie-Helman key-exchange

protocol. The scheme uses a one-way function f that has the property that images are

easily computable but preimages are not.

71

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

Let n be a positive integer greater than 4, and consider the two subgroups of Bn:

LBn, the subgroup generated by {σ1, . . . , σb(n−1)/2c} and RBn, the subgroup generated by

{σd(n−1)/2e, . . . , σn−1}. That is to say that LBn is the set of braids on n strands which only

weaves the left half of the strands, and RBn only weaves the right half strands. This has the

nice property that the elements in LBn commute with the elements in RBn. The one-way

function that Ko et al. propose is

f : LBn ×Bn → Bn ×Bn

where

f(b, c) = (bcb−1, c).

A similar function exists with domain RBn × Bn. This is a one-way function because

computing bcb−1 is straightforward, but given bcb−1 and c, computing b involves solving

the conjugacy search problem.

Public Key : x ∈ Bn

Private Keys : Alice: a ∈ LBn, Bob: b ∈ RBn

Alice Sends : axa−1

Bob Sends : bxb−1

Shared Key : abxb−1a−1 ≡ baxa−1b−1

Cryptosystem 5.11: Ko et al.’s key-exchange protocol.

Just like Diffie-Hellman, this cryptosystem introduces a new problem which is hard, so

that a proof of security can be given.

Problem 5.12 (Diffie-Hellman like conjugacy search problem). Given a braid x ∈ Bn and

axa−1 and bxb−1 with a ∈ LBn and b ∈ RBn (but any other information about a and b is

unknown), find the braid abx(ab)−1 or bax(ba)−1.

Ko et al.’s key-exchange protocol being kp is immediately equivalent to the Diffie-

Hellman like conjugacy search problem. This means that an efficient solution to the

72

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

conjugacy problem would break the cryptosystem.

Ko et al.’s public key encryption scheme.

Ko et al. [44] introduce an encryption scheme that uses a hash function H. This is a

type of function which is one-way, and collision resistant: when a 6= b, the probability of

H(a) = H(b) is negligible. Furthermore, it is computationally infeasible to find elements a

and b with H(a) = H(b). Although they don’t offer any hash functions to use, Dehornoy

[22] recommends using the Dynnikov formulas which are based on the n-punctured disc (see

Chapter 5 of [26]). Collision resistance follows from the fact that it is an isotopy invariant

(the probability of a collision is null, not just negligible). There are no known algorithms

for computing the preimage of the Dynnikov formula of a braid.

The Dynnikov coordinates of a braid is an orderd 2n-tuple of integers. Since messages

are typically encoded as binary strings, it will be useful if our hash function maps to

{0, 1}∗ as well. This way, we can perform the binary XOR (exclusive-or) involution

⊕ : {0, 1}k × {0, 1}k → {0, 1}k defined by

(ai)
k
i=1 ⊕ (bi)

k
i=1 = (ai + bi (mod 2))ki=1.

Key Generation : Bob chooses random braids x ∈ B`+r, and a ∈ LBn

Public Key : (x, y), where y = axa−1

Private Keys : a

Encryption : Alice chooses b ∈ RBn, sends (c, d) = (bxb−1, H(byb−1)⊕m)
Decryption : Bob computes m = H(aca−1)⊕ d

Cryptosystem 5.13: Ko et al.’s encryption protocol.

73

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

When Bob computes H(aca−1)⊕ d, he is indeed calculating m since

H(aca−1)⊕ d = H(abxb−1a−1)⊕H(byb−1)⊕m

= H(abxb−1a−1)⊕H(baxa−1b−1)⊕m

= m

since a ∈ LBn and b ∈ RBn implies ab = ba and hence H(abxb−1a−1) = H(baxa−1b−1).

Just like their authentication scheme, Ko et al.’s encryption scheme relies on the

Diffie-Hellman like conjugacy search problem for its security.

Sibert, Dehornoy, and Girault’s authentication scheme.

A different kind of cryptosystem is an authentication scheme, where somebody can ask

somebody else to prove their identity. This is usually in the form of a challenge and response

- where the party requesting proof of identity poses a challenge in which only the person in

question can answer, e.g. requesting a password.

The following authentication scheme, introduced by Sibert, Dehornoy, and Girault [56]

exploits a computationally difficult problem which seemingly has nothing to do with the

conjugacy problem.

Problem 5.14 (root extraction). Given an exponent e ≥ 2 and a braid be (in normal form),

compute b.

74

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

Key Generation : Alice chooses a ∈ Bn and computes b = s2

Public Key : b

Private Keys : a

Authentication :for i = 1 to k do
Alice chooses r ∈ Bn, sends x = rbr−1

Bob sends ε ∈ {0, 1}
if ε = 0 then

Alice sends y = r, Bob checks x = yby−1

else if ε = 1 then
Alice sends y = rsr−1, Bob checks x = y2

end

end

Cryptosystem 5.15: Sibert, Dehornoy, and Girault’s authentication scheme.

The idea of the authentication scheme is for Bob to verify Alice’s identity by randomly

choosing 0 or 1 and requesting the answer to a problem only effectively solvable when the

secret key is known.

It should be clear that an impostor (Eve) could reproduce the case when ε = 0 and

ε = 1 if she knew the outcome of ε beforehand. If Eve knew ahead of time that ε = 0 then

she can simply choose any r ∈ Bn and send x = rbr−1 as the scheme would. On the other

hand, if Eve knew that ε = 1 ahead of time, she could prepare by first choosing y ∈ Bn,

and then sending x = y2. The problem is that if she guesses incorrectly the outcome of ε

then she cannot correctly verify Bob’s question. This is why the scheme waits for Alice to

send x before Bob chooses ε, and that the process is repeated k times.

5.4 Attacks on braid group cryptography.

Garside [34] showed that the conjugacy problem is solvable by introducing a finite subset

of the infinite conjugacy class of braids, called summit sets. The basic idea is as follows.

75

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

For a braid b ∈ Bn, let C(b) be the finite conjugacy class of b, that is, C(b) = {cbc−1 :

c ∈ Bn}. Garside showed that there exists a set called SS(b) ⊂ C(b) which he calls the

summit set of b, which has the following properties:

1. The summit set of b relies only on C(b): b is conjugate to c if and only if SS(b) = SS(c).

There is no guarantee that b ∈ SS(b).

2. For each b ∈ Bn, there is an efficient algorithm which computes a unique representative

b̃ ∈ SS(b). (This is related but not equal to the left-normal form of b)

3. There is an algorithm (not necessarily efficient) which can construct SS(b) from the

representative b̃.

Input : braids b and c
Compute b̃ and c̃
while constructing SS(b) from b̃ do

if c̃ ∈ SS(b) then
return b and c are conjugate

end

end
return b and c are not conjugate

Algorithm 5.16: Garside’s solution to the conjugacy problem.

Garside’s algorithm is inefficient, which means that it poses no threat to the cryptosystems

which rely on the hardness of the conjugacy decision problem. Since Garside however,

there have been a number of improvements which do pose a threat to those cryptosystems.

El-Rifai and Morton [30] construct a subset of SS(b), which they call the super summit

set of b, or SSS(b). The super summit set is calculated by a series of special conjugations

called cyclings and decyclings which are easy to compute.

The super summit sets are still exponential in size with respect to n [33] and computing

them requires a factor of n!, but in doing so gives an extra solution. The method they use

to construct the super summit set actually allows one to find the conjugator when the two

76

CHAPTER 5. BRAID GROUP CRYPTOGRAPHY

braids are conjugate. Hence the conjugacy search problem and multiple conjugacy search

problem are solvable.

In 2003, Franco and González-Meneses [32] improved on super summit sets by construct-

ing a subset USS(b) ⊆ SSS(b). The complexity of their algorithm (the size of USS(b))

is unknown, but by using probabilistic methods, Birman, Gebhart and Gonzáles-Meneses

were able to show that the algorithm is efficient in practice. See [11, 12, 13] for details on

this.

Also in 2003, Lee and Park [47] were able to efficiently solve an instance of the Diffie-

Hellman like conjugacy search problem under certain parameters. Then they showed that

those parameters are likely to be met while using Ko et al.’s encryption protocol. Still in

2003, Cheon and Jun [17] showed how to solve the Diffie-Hellman like conjugacy search

problem in polynomial time with respect to the length ` of the key and the braid index n.

There still has been no efficient solution to the root extraction problem on braids,

although Styšnev in [58] proves that the problem is decidable in Bn, and Sibert [55] does so

for the general case of Garside groups. Furthermore, Groch, Hofheinz and Steinwandt [40]

provide a heuristic algorithm which does not solve the root problem, but attacks the Sibert,

Dehornoy, and Girault authentication scheme directly.

The hope for braid group cryptography is not lost. In 1991 Paterson [51] showed that

there is an NP-complete problem involving braids, the Minimal Length Problem: given a

braid b ∈ Bn, find a braid b′ ≡ b such that |b| is minimal. No cryptosystems have come

of this problem yet. Beyond this, Dehornoy [28] suggests considering operations in the

braid group other than the group product. Garber [33] suggests a number of other difficult

problems for the braid group as well.

77

APPENDICES

78

Appendix A

Computer programs for using braids.

The computer program which was used to compute some of the examples in this the-

sis can be found at https://www.dropbox.com/s/xtbifemvixkg976/braid-progs.py or

goo.gl/kOejeU for short. Sage has some built-in ability to perform actions on braids

as well - the documentation found here http://doc.sagemath.org/html/en/reference/

groups/sage/groups/braid.html is particularly useful.

For this thesis, braids were typeset using the tangles.sty package, but in more

complicated diagrams (figure 2.28 for example) TikZ was used. For three dimensional

renderings of braids, KnotPlot is very robust. Visit http://www.knotplot.com to download

a free trial and consult the manual.

A.1 Manual for braid-progs.py.

This program can be run in either Python or Sage. To open in a system with only

Python installed, one types into a console python -i /path/to/braid-progs.py. If

Sage is installed on a machine, one can copy and paste the plain text into a compute

cell in Sage Notebook and press evaluate. In a Sage terminal session, enter &attach

/path/to/braid-progs.py. Braids are entered as a list of positive or negative integers.

79

https://www.dropbox.com/s/xtbifemvixkg976/braid-progs.py
http://goo.gl/kOejeU
http://doc.sagemath.org/html/en/reference/groups/sage/groups/braid.html
http://doc.sagemath.org/html/en/reference/groups/sage/groups/braid.html
http://www.knotplot.com

APPENDIX A. COMPUTER PROGRAMS FOR USING BRAIDS.

Each nonzero integer i represents σi or σ−1
−i when i < 0. For example, to encode b = σ1σ

−1
2 σ3,

one writes

b = [1,−2, 3]

and we are free to perform the following actions on b, including the braid product, which

is simply concatenation since these are strings. In Python, to concatenate strings, the

addition symbol + works.

inverse(b)

Computes the inverse of a braid b.

Dynnikov(b,n)

Computes the Dynnikov coordinates of b in Bn as per Chapter 5 of [26]. Note that n is

required.

braidRecDynnikov(b1,b2,n)

An efficient algorithm which uses the Dynnikov formulas to solve the word problem. Returns

1 if b1 ≡ b2 in Bn and 0 otherwise. Again n is required.

complement(s1,s2)

Computes the complement of σ1 and σ2.

subwordReversing(b)

Given a braid b, it will compute the south-east path of the reversing diagram of b as per

Section 4.3.

extendedComplement(u,v)

Calculates C∗(u, v) as per 3.18.

braidLCM(b1,b2)

Uses subword reversing to compute lcm(b1, b2).

proveTheorem()

Proves 3.29.

80

References

[1] M. Albenque. “Bijective combinatorics of positive braids”. In: Electronic Notes in

Discrete Mathematics 29.0 (2007), pp. 225–229.

[2] M. Albenque and P. Nadeau. “Growth function for a class of monoids”. In: 21st

International Conference on Formal Power Series and Algebraic Combinatorics

(FPSAC 2009). Discrete Math. Theor. Comput. Sci. Proc., AK. Assoc. Discrete Math.

Theor. Comput. Sci., Nancy, 2009, pp. 25–38.

[3] I. Anshel, M. Anshel, and D. Goldfeld. “An algebraic method for public-key cryptog-

raphy”. In: Mathematical Research Letters 6 (1999), pp. 287–292.

[4] I. Anshel et al. “New key agreement protocols in braid group cryptography”. In:

Topics in cryptology—CT-RSA 2001 (San Francisco, CA). Vol. 2020. Lecture Notes

in Comput. Sci. Springer, Berlin, 2001, pp. 13–27. doi: 10.1007/3-540-45353-9_2.

url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/3-540-45353-9_2.

[5] E. Artin. “Braids and permutations”. In: Ann. of Math. (2) 48 (1947), pp. 643–649.

issn: 0003-486X.

[6] E. Artin. “The theory of braids”. In: American Scientist 38 (1950), pp. 112–119.

[7] E. Artin. “Theorie der Zöpfe”. In: Abh. Math. Sem. Univ. Hamburg 4.1 (1925),

pp. 47–72. issn: 0025-5858. doi: 10.1007/BF02950718. url: http://dx.doi.org.

proxy.lib.uwaterloo.ca/10.1007/BF02950718.

[8] E. Artin. “Theory of braids”. In: Ann. of Math. (2) 48 (1947), pp. 101–126. issn:

0003-486X.

81

http://dx.doi.org/10.1007/3-540-45353-9_2
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/3-540-45353-9_2
http://dx.doi.org/10.1007/BF02950718
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/BF02950718
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/BF02950718

REFERENCES

[9] J. Birman, K. H. Ko, and S. J. Lee. “A new approach to the word and conjugacy

problems in the braid groups”. In: Adv. Math. 139.2 (1998), pp. 322–353. issn: 0001-

8708. doi: 10.1006/aima.1998.1761. url: http://dx.doi.org.proxy.lib.

uwaterloo.ca/10.1006/aima.1998.1761.

[10] J. S. Birman and T. E. Brendle. “Chapter 2 - Braids: A Survey”. In: ed. by W.

M. Thistlethwaite. Handbook of Knot Theory. Amsterdam: Elsevier Science, 2005,

pp. 19–103. isbn: 9780444514523.

[11] J. S. Birman, V. Gebhardt, and J. González-Meneses. “Conjugacy in Garside groups.

I. Cyclings, powers and rigidity”. In: Groups Geom. Dyn. 1.3 (2007), pp. 221–279.

issn: 1661-7207. doi: 10.4171/GGD/12. url: http://dx.doi.org.proxy.lib.

uwaterloo.ca/10.4171/GGD/12.

[12] J. S. Birman, V. Gebhardt, and J. González-Meneses. “Conjugacy in Garside groups.

II. Structure of the ultra summit set”. In: Groups Geom. Dyn. 2.1 (2008), pp. 13–61.

issn: 1661-7207. doi: 10.4171/GGD/30. url: http://dx.doi.org.proxy.lib.

uwaterloo.ca/10.4171/GGD/30.

[13] J. S. Birman, V. Gebhardt, and J. González-Meneses. “Conjugacy in Garside groups.

III. Periodic braids”. In: J. Algebra 316.2 (2007), pp. 746–776. issn: 0021-8693. doi:

10.1016/j.jalgebra.2007.02.002. url: http://dx.doi.org.proxy.lib.

uwaterloo.ca/10.1016/j.jalgebra.2007.02.002.

[14] J. Birman. Braids, Links, and Mapping Class Groups. Annals of mathematics studies.

University of Tokyo Press, 1975. isbn: 9780691081496. url: https://books.google.

com/books?id=thv7L4AQ3J4C.

[15] F. Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Struc-

tures. Cambridge Studies in Philosophy. Cambridge University Press, 1994. isbn:

9780521441797. url: https://books.google.com/books?id=5i2v9q0m5XAC.

[16] G. Bredon. Topology and Geometry. Graduate Texts in Mathematics. Springer, 1993.

isbn: 9780387979267. url: https://books.google.com/books?id=G74V6UzL_PUC.

82

http://dx.doi.org/10.1006/aima.1998.1761
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1006/aima.1998.1761
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1006/aima.1998.1761
http://dx.doi.org/10.4171/GGD/12
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.4171/GGD/12
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.4171/GGD/12
http://dx.doi.org/10.4171/GGD/30
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.4171/GGD/30
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.4171/GGD/30
http://dx.doi.org/10.1016/j.jalgebra.2007.02.002
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1016/j.jalgebra.2007.02.002
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1016/j.jalgebra.2007.02.002
https://books.google.com/books?id=thv7L4AQ3J4C
https://books.google.com/books?id=thv7L4AQ3J4C
https://books.google.com/books?id=5i2v9q0m5XAC
https://books.google.com/books?id=G74V6UzL_PUC

REFERENCES

[17] J. H. Cheon and B. Jun. “A polynomial time algorithm for the braid Diffie-Hellman

conjugacy problem”. In: Advances in cryptology—CRYPTO 2003. Vol. 2729. Lecture

Notes in Comput. Sci. Springer, Berlin, 2003, pp. 212–225. doi: 10.1007/978-3-540-

45146-4_13. url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/978-

3-540-45146-4_13.

[18] P. M. Cohn. Algebra. Vol. 2. Second. John Wiley & Sons, Ltd., Chichester, 1989,

pp. xvi+428. isbn: 0-471-92234-X.

[19] A. Datta et al. Key Exchange Protocols: Security Definition, Proof Method and

Applications. Cryptology ePrint Archive, Report 2006/056. http://eprint.iacr.

org/. 2006.

[20] P. Dehornoy et al. Ordering Braids. Mathematical surveys and monographs. American

Mathematical Society, 2008. isbn: 9780821844311. url: https://books.google.

com/books?id=53krngEACAAJ.

[21] P. Dehornoy. “A Fast Method for Comparing Braids”. In: Advances in Mathematics

125.2 (1997), pp. 200–235.

[22] P. Dehornoy. “Braid-based cryptography”. In: Contemp. Math 360 (2004), pp. 5–33.

[23] P. Dehornoy. “Combinatorics of normal sequences of braids”. In: Journal of Combi-

natorial Theory, Series A 114.3 (2007), pp. 389–409.

[24] P. Dehornoy. “Efficient solutions to the braid isotopy problem”. In: Discrete Applied

Mathematics 156.16 (2008), pp. 3091–3112.

[25] P. Dehornoy. “Monoids of O-type, subword reversing, and ordered groups”. In: J.

Group Theory 17.3 (2014), pp. 465–524. issn: 1433-5883. doi: 10.1515/jgt-2013-

0049. url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1515/jgt-2013-

0049.

[26] P. Dehornoy. Notes on the Braid Isotopy Problem [Lecture Notes]. Available at:

http://www.math.unicaen.fr/~dehornoy/Surveys/Dhu.pdf. 2010.

83

http://dx.doi.org/10.1007/978-3-540-45146-4_13
http://dx.doi.org/10.1007/978-3-540-45146-4_13
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/978-3-540-45146-4_13
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/978-3-540-45146-4_13
http://eprint.iacr.org/
http://eprint.iacr.org/
https://books.google.com/books?id=53krngEACAAJ
https://books.google.com/books?id=53krngEACAAJ
http://dx.doi.org/10.1515/jgt-2013-0049
http://dx.doi.org/10.1515/jgt-2013-0049
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1515/jgt-2013-0049
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1515/jgt-2013-0049
http://www.math.unicaen.fr/~dehornoy/Surveys/Dhu.pdf

REFERENCES

[27] P. Dehornoy. “The subword reversing method”. In: Internat. J. Algebra Comput.

21.1-2 (2011), pp. 71–118. issn: 0218-1967. doi: 10.1142/S0218196711006091. url:

http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1142/S0218196711006091.

[28] P. Dehornoy. “Using shifted conjugacy in braid-based cryptography”. In: Algebraic

methods in cryptography. Vol. 418. Contemp. Math. Amer. Math. Soc., Providence,

RI, 2006, pp. 65–73. doi: 10.1090/conm/418/07946. url: http://dx.doi.org.

proxy.lib.uwaterloo.ca/10.1090/conm/418/07946.

[29] P. Dehornoy and L. Paris. “Gaussian groups and Garside groups, two generalisations

of Artin groups”. In: Proc. London Math. Soc. (3) 79.3 (1999), pp. 569–604. issn:

0024-6115. doi: 10.1112/S0024611599012071. url: http://dx.doi.org.proxy.

lib.uwaterloo.ca/10.1112/S0024611599012071.

[30] E. A. El-Rifai and H. R. Morton. “Algorithms for positive braids”. In: Quart. J. Math.

Oxford Ser. (2) 45.180 (1994), pp. 479–497. issn: 0033-5606. doi: 10.1093/qmath/

45.4.479. url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1093/qmath/

45.4.479.

[31] D. Epstein. Word Processing in Groups. Ak Peters Series. Taylor & Francis, 1992.

isbn: 9780867202441. url: https://books.google.com/books?id=DQ84QlTr-EgC.

[32] N. Franco and J. González-Meneses. “Conjugacy problem for braid groups and Garside

groups”. In: Journal of Algebra 266.1 (2003), pp. 112–132.

[33] D. Garber. “Braid group cryptography”. In: Braids. Vol. 19. Lect. Notes Ser. Inst.

Math. Sci. Natl. Univ. Singap. World Sci. Publ., Hackensack, NJ, 2010, pp. 329–

403. doi: 10.1142/9789814291415_0006. url: http://dx.doi.org.proxy.lib.

uwaterloo.ca/10.1142/9789814291415_0006.

[34] F. A. Garside. “The braid group and other groups”. In: Quart. J. Math. Oxford Ser.

(2) 20 (1969), pp. 235–254. issn: 0033-5606.

[35] V. Gebhardt. “A new approach to the conjugacy problem in Garside groups”. In:

Journal of Algebra 292.1 (2005), pp. 282–302.

84

http://dx.doi.org/10.1142/S0218196711006091
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1142/S0218196711006091
http://dx.doi.org/10.1090/conm/418/07946
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1090/conm/418/07946
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1090/conm/418/07946
http://dx.doi.org/10.1112/S0024611599012071
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1112/S0024611599012071
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1112/S0024611599012071
http://dx.doi.org/10.1093/qmath/45.4.479
http://dx.doi.org/10.1093/qmath/45.4.479
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1093/qmath/45.4.479
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1093/qmath/45.4.479
https://books.google.com/books?id=DQ84QlTr-EgC
http://dx.doi.org/10.1142/9789814291415_0006
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1142/9789814291415_0006
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1142/9789814291415_0006

REFERENCES

[36] V. Gebhardt and J. González-Meneses. “Generating random braids”. In: Journal of

Combinatorial Theory, Series A 120.1 (2013), pp. 111–128.

[37] V. Gebhardt and S. Tawn. “Normal forms of random braids”. In: Journal of Algebra

408.0 (2014), pp. 115–137.

[38] J. González-Meneses. “The nth root of a braid is unique up to conjugacy”. In: Algebr.

Geom. Topol. 3 (2003), 1103–1118 (electronic). issn: 1472-2747. doi: 10.2140/agt.

2003.3.1103. url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.2140/agt.

2003.3.1103.

[39] J. González-Meneses and E. Ventura. “Twisted conjugacy in braid groups”. In: Israel J.

Math. 201.1 (2014), pp. 455–476. issn: 0021-2172. doi: 10.1007/s11856-014-0032-4.

url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/s11856-014-0032-

4.

[40] A. Groch, D. Hofheinz, and R. Steinwandt. “A practical attack on the root problem in

braid groups”. In: Algebraic methods in cryptography. Vol. 418. Contemp. Math. Amer.

Math. Soc., Providence, RI, 2006, pp. 121–131. doi: 10.1090/conm/418/07950. url:

http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1090/conm/418/07950.

[41] V. Hansen. Braids and Coverings: Selected Topics. London Mathematical Society

Student Texts. Cambridge University Press, 1989. isbn: 9780521387576. url: https:

//books.google.com/books?id=t5bO59aVJVcC.

[42] C. Kassel, O. Dodane, and V. Turaev. Braid Groups. Graduate Texts in Mathematics.

Springer, 2008. isbn: 9780387685489. url: https://books.google.ca/books?id=

y6Cox3XjdroC.

[43] K. H. Ko, J. W. Lee, and T. Thomas. “Towards generating secure keys for braid

cryptography”. In: Des. Codes Cryptogr. 45.3 (2007), pp. 317–333. issn: 0925-1022.

doi: 10.1007/s10623- 007- 9123- 0. url: http://dx.doi.org.proxy.lib.

uwaterloo.ca/10.1007/s10623-007-9123-0.

85

http://dx.doi.org/10.2140/agt.2003.3.1103
http://dx.doi.org/10.2140/agt.2003.3.1103
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.2140/agt.2003.3.1103
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.2140/agt.2003.3.1103
http://dx.doi.org/10.1007/s11856-014-0032-4
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/s11856-014-0032-4
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/s11856-014-0032-4
http://dx.doi.org/10.1090/conm/418/07950
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1090/conm/418/07950
https://books.google.com/books?id=t5bO59aVJVcC
https://books.google.com/books?id=t5bO59aVJVcC
https://books.google.ca/books?id=y6Cox3XjdroC
https://books.google.ca/books?id=y6Cox3XjdroC
http://dx.doi.org/10.1007/s10623-007-9123-0
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/s10623-007-9123-0
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/s10623-007-9123-0

REFERENCES

[44] K. H. Ko et al. “New public-key cryptosystem using braid groups”. In: Advances in

cryptology—CRYPTO 2000 (Santa Barbara, CA). Vol. 1880. Lecture Notes in Comput.

Sci. Springer, Berlin, 2000, pp. 166–183. doi: 10.1007/3-540-44598-6_10. url:

http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/3-540-44598-6_10.

[45] K. H. Ko et al. New Signature Scheme Using Conjugacy Problem. Cryptology ePrint

Archive, Report 2002/168. http://eprint.iacr.org/. 2002.

[46] C. Krattenthaler. “THE THEORY OF HEAPS AND THE CARTIER–FOATA

MONOID”. In: Appendix of the electronic edition of “Problemes combinatoires de

commutation et réarrangements (2006).

[47] E. Lee and J. H. Park. “Cryptanalysis of the public-key encryption based on braid

groups”. In: Advances in cryptology—EUROCRYPT 2003. Vol. 2656. Lecture Notes in

Comput. Sci. Springer, Berlin, 2003, pp. 477–490. doi: 10.1007/3-540-39200-9_30.

url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/3-540-39200-

9_30.

[48] A. Malyutin. “Fast Algorithms for Identification and Comparison of Braids”. English.

In: Journal of Mathematical Sciences 119.1 (2004), pp. 101–111. issn: 1072-3374. doi:

10.1023/B:JOTH.0000008747.72654.14. url: http://dx.doi.org/10.1023/B%

3AJOTH.0000008747.72654.14.

[49] V. Manturov. Knot Theory. CRC Press, 2004. isbn: 9780203402849. url: https:

//books.google.com/books?id=lRLwUP8LLLcC.

[50] N. Mosina and A. Ushakov. “Mean-set attack: cryptanalysis of Sibert et al. authenti-

cation protocol”. In: J. Math. Cryptol. 4.2 (2010), pp. 149–174. issn: 1862-2976. doi:

10.1515/JMC.2010.006. url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.

1515/JMC.2010.006.

[51] M. S. Paterson and A. A. Razborov. “The set of minimal braids is co-NP-complete”.

In: J. Algorithms 12.3 (1991), pp. 393–408. issn: 0196-6774. doi: 10.1016/0196-

6774(91)90011-M. url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1016/

0196-6774(91)90011-M.

86

http://dx.doi.org/10.1007/3-540-44598-6_10
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/3-540-44598-6_10
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-39200-9_30
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/3-540-39200-9_30
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/3-540-39200-9_30
http://dx.doi.org/10.1023/B:JOTH.0000008747.72654.14
http://dx.doi.org/10.1023/B%3AJOTH.0000008747.72654.14
http://dx.doi.org/10.1023/B%3AJOTH.0000008747.72654.14
https://books.google.com/books?id=lRLwUP8LLLcC
https://books.google.com/books?id=lRLwUP8LLLcC
http://dx.doi.org/10.1515/JMC.2010.006
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1515/JMC.2010.006
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1515/JMC.2010.006
http://dx.doi.org/10.1016/0196-6774(91)90011-M
http://dx.doi.org/10.1016/0196-6774(91)90011-M
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1016/0196-6774(91)90011-M
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1016/0196-6774(91)90011-M

REFERENCES

[52] V. Prasolov and A. Sossinsky. Knots, Links, Braids, and 3-manifolds: An Introduction

to the New Invariants in Low-dimensional Topology. Translations of mathematical

monographs. American Mathematical Society, 1997. isbn: 9780821808986. url: https:

//books.google.com/books?id=znCLtJKnZXQC.

[53] J. H. Przytycki. “Classical roots of knot theory”. In: Chaos Solitons Fractals 9.4-5

(1998). Knot theory and its applications, pp. 531–545. issn: 0960-0779. doi: 10.1016/

S0960-0779(97)00107-0. url: http://dx.doi.org.proxy.lib.uwaterloo.ca/

10.1016/S0960-0779(97)00107-0.

[54] R. G. Scharein. “Interactive Topological Drawing”. PhD thesis. Department of Com-

puter Science, The University of British Columbia, 1998.

[55] H. Sibert. “Extraction of roots in Garside groups”. In: Comm. Algebra 30.6 (2002),

pp. 2915–2927. issn: 0092-7872. doi: 10.1081/AGB-120003997. url: http://dx.

doi.org.proxy.lib.uwaterloo.ca/10.1081/AGB-120003997.

[56] H. Sibert, P. Dehornoy, and M. Girault. “Entity authentication schemes using braid

word reduction”. In: Discrete Appl. Math. 154.2 (2006), pp. 420–436. issn: 0166-218X.

doi: 10.1016/j.dam.2005.03.015. url: http://dx.doi.org/10.1016/j.dam.

2005.03.015.

[57] W. Stein et al. Sage Mathematics Software (Version 6.7). The Sage Development

Team. 2015. url: http://www.sagemath.org.

[58] V. B. Styšnev. “Taking the root in the braid group”. In: Izv. Akad. Nauk SSSR Ser.

Mat. 42.5 (1978), pp. 1120–1131, 1183. issn: 0373-2436.

[59] J.-L. Thiffeault. “Braidlab: A Software Package for Braids and Loops”. In: arXiv

preprint arXiv:1410.0849 (2014).

[60] A. T. Vandermonde. “Remarques sur les probl‘emes de situation”. In: Memoires de

l’Académie Royale des Sciences (1771), pp. 566–574.

[61] V. V. Vershinin. “Braids, their Properties and Generalizations”. In: vol. Volume 4.

Handbook of Algebra. North-Holland, 2009, pp. 427–465. isbn: 1570-7954.

87

https://books.google.com/books?id=znCLtJKnZXQC
https://books.google.com/books?id=znCLtJKnZXQC
http://dx.doi.org/10.1016/S0960-0779(97)00107-0
http://dx.doi.org/10.1016/S0960-0779(97)00107-0
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1016/S0960-0779(97)00107-0
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1016/S0960-0779(97)00107-0
http://dx.doi.org/10.1081/AGB-120003997
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1081/AGB-120003997
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1081/AGB-120003997
http://dx.doi.org/10.1016/j.dam.2005.03.015
http://dx.doi.org/10.1016/j.dam.2005.03.015
http://dx.doi.org/10.1016/j.dam.2005.03.015
http://www.sagemath.org

REFERENCES

[62] G. X. Viennot. “Heaps of pieces. I. Basic definitions and combinatorial lemmas”. In:

Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985). Vol. 1234. Lec-

ture Notes in Math. Springer, Berlin, 1986, pp. 321–350. doi: 10.1007/BFb0072524.

url: http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/BFb0072524.

[63] P. Xu. “Growth of the positive braid semigroups”. In: Journal of Pure and Applied

Algebra 80.2 (1992), pp. 197–215.

88

http://dx.doi.org/10.1007/BFb0072524
http://dx.doi.org.proxy.lib.uwaterloo.ca/10.1007/BFb0072524

	List of Figures
	List of Algorithms
	Introduction
	A brief history of braids in mathematics
	Outline

	Representations of braids
	Geometric braids
	Artin generators and the classical representation
	The braid monoid
	Birman, Ko and Lee's representation.
	Pure braids.
	The punctured disc.

	Enumeration
	Divisibility in the braid monoid.
	Least common multiples via subword reversing.
	How to count positive braids.

	Isotopy Problem
	Invariants and algorithms.
	Artin's algorithm.
	Subword reversing.
	The greedy normal form.
	The left-normal form for the braid group.

	Braid group cryptography
	Security definitions.
	Conjugacy problems.
	Cryptosystems based on braid groups.
	Attacks on braid group cryptography.

	APPENDICES
	Computer programs for using braids.
	Manual for braid-progs.py.

	References

