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Abstract

Anemia is a prevalent medical condition that seriously affects millions of
people all over the world. In many regions, not only its initial detection, but
also its monitoring are hindered by the limited access to laboratory facilities.
This situation has motivated the development of a wide range of optical de-
vices and procedures to assist physicians in these tasks. Although noticeable
progress has been achieved in this area, the search for reliable, low-cost and
risk-free solutions still continues, and the strengthening of the knowledge
base about this disorder and its effects is essential for the success of these
initiatives. In this paper, we contribute to these efforts by closely examining
the sensitivity of human skin hyperspectral responses (within and outside the
visible region of the light spectrum) to reduced hemoglobin concentrations
associated with increasing anemia severity levels. This investigation, which
involves skin specimens with distinct biophysical and morphological charac-
teristics, is supported by controlled in silico experiments performed using a
predictive light transport model and measured data reported in the biomed-
ical literature. We also propose a noninvasive procedure to be employed in
the monitoring of this condition at the point-of-care.
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Chapter 1

Introduction

Although recent advances in optical technologies are enabling remarkable

improvements in the prevention and timely treatment of a wide range of dis-

eases, there are still many challenges ahead, notably involving primary health

care for populations that rely on low-resources diagnosis settings. Among

these challenges, one can highlight the development of cost-effective pro-

cedures and devices for the screening and monitoring of pervasive medical

conditions such as anemia, which can compromise the health of individuals

of all ages, races, and ethnicities [77]. According to the World Health Or-

ganization (WHO), approximately one quarter of the human population is

affected by anemia, and this medical condition represents a public health
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problem in both industrialised and non-industrialised countries [49, 20].

Anemia is a blood disorder usually associated with a decrease in the

number of red blood cells (RBCs) [69] encapsulating hemoglobin proteins

[69]. The two functional forms of the hemoglobin (Hb) proteins, namely

oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) [6], correspond to the

oxygenated and deoxygenated states of hemoglobin molecules, respectively,

which play a pivotal role in the maintenance of an individual’s normal physi-

ological status. While a O2Hb molecule contain iron atoms in a ferrous state

that allows them to bind with oxygen, a HHb molecule contains iron atoms

in a ferric (oxidized) state that prevents this binding.

There are three main types of this disorder, namely iron-deficiency anemia

(IDA), pernicious anemia and hemolytic anemia [77, 69]. These are elicited

by different factors that can alter the production of healthy RBCs by the bone

marrow. This complex biochemical process requires proteins, iron, vitamin

B12, folate and small amounts of other minerals and vitamins. For example,

IDA, the most common type of anemia, results from a low supply of iron.

According to the WHO, it is one of the main factors contributing to the

global burden of diseases [49, 20]. In the case of pernicious anemia, it is

primarily caused by an insufficient absorption of vitamin B12. Hemolytic
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anemia, on the other hand, may take place when a significant number of

RBCs are destroyed and removed from the bloodstream through hemolysis

before the normal end of their lifespan, and the bone marrow cannot produce

enough new RBCs to replace them. This type of anemia can be acquired or

inherited. It is also worth mentioning that there are types of anemia, such

as “aplastic anemia”, associated with a lower than normal presence of other

blood formed elements such as white blood cells and platelets. The study of

these types of anemia, however, is beyond the scope of this work.

The investigation presented here focuses on the most common types of

anemia, which can seriously impair the blood’s capability of transporting

oxygen from respiratory organs (lungs) to the rest of the body [48]. This,

in turn, not only compromises an individual’s overall health, but it may also

lead to life-threatening situations [77, 69]. Although the Hb concentration

in the blood alone cannot be used to diagnose anemia, it can provide useful

information for determining its severity level [77]. Accordingly, several opti-

cal devices and image-based procedures have been proposed for the low-cost

estimation of Hb concentration. These devices and procedures can be loosely

divided into two groups: invasive and noninvasive.

Devices belonging to the invasive group tend to provide more accurate
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results since they perform in vitro measurements on actual blood samples

[60, 13]. However, they may still be subjected to errors during the collection

and chemical analysis of the samples [42, 14]. In addition, the extraction of

blood samples may bring some discomfort and, like any invasive procedure,

can incur additional risks for a patient.

Devices and image-based procedures belonging to the noninvasive group,

on the other hand, perform in vivo estimations that rely on the spectral

responses of human skin to variations in Hb concentration [17, 23, 40, 83,

74]. Hence, their predictive capabilities depend on the correctness of the

algorithms employed to derive biophysical parameters from reflectance mea-

surements. Since these algorithms usually involve the inversion of models

used to simulate the complex interactions of light with various skin tissues

and constituent materials, their estimations may be biased by several factors.

These include, for example, inacurracies in the models [7], shortcomings of

the formulations used in their inversion [67] and, in the case of image-based

procedures, issues related to metamerism, the phenomenon whereby colors of

specimens match under specified observation conditions despite differences

in the specimens’ spectral reflectances [34, 54].

In general, the fidelity of the devices and procedures belonging to ei-
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ther group is assessed through statistical analyses of compound estimated

data. These analyses, in turn, provide qualitative trends with respect to

global data, which may obscure possible quantitative limitations of these

devices while handling individual cases [81]. Furthermore, in certain in-

stances (e.g., involving spectrophotometry-based monitoring technology such

as pulse oximeters [42]), data is collected and analyzed off-line to determine

Hb concentrations using proprietary software tools whose underlying algo-

rithms are normally not disclosed for evaluation purposes.

As outlined above, many relevant alternatives exist to assist the diagnosis

of anemia, albeit no single device or procedure is superior in all cases. In

order to enhance these technologies and propose new effective solutions for

the screening and monitoring of this medical condition, we believe that it is

necessary to examine their related theoretical and practical constraints from

different perspectives. Accordingly, in this thesis, we aim to contribute to

these efforts by investigating these constraints using a bottom-up approach.

More specifically, we initially assess the sensitivity of human skin hyperspec-

tral responses to fluctuations in dermal Hb concentration associated with

increasing anemia severity levels. These responses are sampled within and

outside the visible domain, and at distinct cutaneous sites. We then demon-
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strate that, although possible variations on skin appearance attributes (e.g.,

yellowness) can be interpreted as a sign of anemia onset in some patients [77],

such visual inspections can be hindered by several physiological (e.g., skin

pigmentation) and technical factors (e.g., spectral power distribution of the

illuminants). Alternatively, our findings indicate that it is possible to moni-

tor distinct levels of severity of this medical condition using relatively simple

noninvasive spectral measurements that are not masked by these factors.

Computer simulations [73, 67, 8, 50], or in silico experiments [71], are rou-

tinely being employed to accelerate the different cycles of biomedical research

involving optical processes that cannot be fully studied through traditional

laboratory procedures due to logistic limitations. Among these limitations,

one can highlight the difficulties of performing in vivo measurements, notably

requiring a wide variety of human tissues which may not be available in the

first place, as well as the large number of biophysical variables and measure-

ment parameters that need to be controlled during actual experiments. In

order to overcome these limitations, the investigation presented in this thesis

is also supported by controlled in silico experiments. These are performed

using a recently developed hyperspectral light transport model for human

skin, henceforth referred to as HyLIoS (Hyperspectral Light Impingement
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on Skin) [16].

The remainder of this thesis is organized as follows. In the next chapter,

we describe our in silico experimental framework, including the biophysical

data used to characterize the skin specimens considered in our simulations,

and introduce the sensitivity measure employed in this investigation. In

Chapter 3, we present our results and discuss their practical implications

regarding the noninvasive monitoring of anemia. Finally, in Chapter 4, we

close the thesis and outline directions for future research in this area.
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Chapter 2

Methodology

In this chapter, we will talk about the model we are using for this study as

well as the different parameters we are considering for skin specimens. We

will show the methods and procedures we used in order to draw our results.

2.1 Simulation Framework Overview

HyLIoS, capable of predictively simulating both the spectral and spatial dis-

tributions of light interacting with the skin tissues, takes into account the

detailed layered structure of these tissues and the particle nature of their main

light attenuation agents, namely the melanosomes, the organelles encapsu-

lating melanin in an aggregated form [55]. In fact, it employs a first princi-
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ples simulation approach that incorporates all main light absorbers (keratin,

DNA, uranic acid, melanins, hemoglobins, beta-carotene, bilirubin, lipids and

water) and scatterers (cells, collagen fibers, melanosomes and melanosome

complexes) acting within the skin tissues in the ultraviolet (250-400 nm),

visible (400-700 nm) and near-infrared (700-2500 nm) domains.

Within the HyLIoS algorithmic ray optics formulation, a ray interacting

with a given skin specimen can be associated with any selected wavelength

within the spectral regions of interest. Hence, HyLIoS can provide reflectance

readings with different spectral resolutions. For consistency, however, we

considered a spectral resolution of 5 nm in all modeled curves depicted in this

work. In terms of illumination and collection geometries, the HyLIoS model

can provide bidirectional reflectance quantities by recording the direction

of the outgoing rays using a virtual gonioreflectometer [41]. In addition,

one can obtain directional-hemispherical reflectance quantities by integrating

the outgoing rays with respect to the collection hemisphere using a virtual

spectrophotometer [10].

To enable the full reproduction of our investigation results, we made

HyLIoS available online [52] via a model distribution system [9] along with

the supporting biophysical data (e.g., refractive indices and extinction co-
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efficients) used in our in silico experiments. This framework enables re-

searchers to specify experimental conditions (e.g., angle of incidence and

spectral range) and specimen characterization parameters (e.g., pigments

and water content) using a web interface, and receive customized simulation

results.

2.2 Experimental Sets and Specimen Char-

acterization Data

Usually the assessment of changes in skin appearance attributes is performed

considering nonpalmoplantar areas normally exposed to light such as the

face and the back of the hand. However, the noninvasive measurement of

blood related properties is usually at hypopigmented sites less affected by

the presence of melanin such as the palmar fingertips (Figure 2.1).

Although the reasons for the choice of measurement site may be com-

mon knowledge among practitioners in this area, however, to the best of our

knowledge, it has not been explicitly stated in the literature. In fact, this

has been one of the main catalysts for this investigation.

Accordingly, our investigation involved two sets of in silico experiments.
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Figure 2.1: Photographs depicting the dorsal and palmar surfaces of the
index finger (in a position below heart level) of a lightly pigmented (left)
and a darkly (right) pigmented subject. The camera was placed above the
specimens and the ambient (non-directional) illumination was provided by
fluorescent lamps.

In the first set, we employed HyLIoS to generate directional-hemispherical re-

flectance curves depicting the spectral effects of reduced Hb concentrations in

nonpalmoplantar areas characterized by average pigmentation and morpho-

logical parameters such as the dorsal surface of the fingers. In order to expand

our scope of observations, these simulations were performed considering skin

specimens with different levels of pigmentation, henceforth referred to lightly

pigmented (LP) and darkly pigmented (DP). These levels of pigmentation

are mostly determined by the presence of the main absorbers acting in the

visible domain, namely the melanins (in colloidal and aggregated forms) and

the functional hemoglobins, whose absorption spectra is depicted in Figure

2.2. In the second set, we repeat the simulations for the hypopigmented ar-

eas, more specifically the palmar fingertips of the LP and DP specimens. In

11



these simulations, we took into account the particular characteristics of these

cutaneous sites, namely the increased epidermal thickness [75], the reduced

presence of melanin proteins (more than fivefold lower than in nonpalmoplan-

tar epidermis [78]) and the increased blood fractional volume [18] (especially

when the fingertip is in a position below heart level [68]).

Both sets of in silico experiments were performed with respect to ul-

traviolet (UV), visible and near-infraed (NIR) regions of the light spectrum

where skin spectral responses to variations on Hb concentration have a higher

probability to be detected, more specifically, in the 250-850 nm range [4, 16].

Unless otherwise stated, the resulting reflectance data was obtained consid-

ering an angle of incidence of 10◦. The specific parameters employed in the

characterization of the skin tissues considered in the first and second sets of

in silico experiments are provided in Tables 2.1 and 2.2, respectively, while

characterization parameters employed in both sets of experiments are pro-

vided in Table 2.3. In order to account for melanosome degradation in the

upper epidermal layers [53], the axes of the melanosomes located in the stra-

tum spinosum and stratum granulosum were set to be, respectively, 50% and

25% of the values considered for the melanosomes in the stratum basale of the

LP and and DP specimens depicted in Tables 2.1 and 2.2. We remark that

12



the values assigned to the specific and general parameters listed in Tables

2.1 to 2.3 were selected based on actual biophysical ranges provided in the

scientific literature, and their respective reference sources are also included

in these tables. Similarly, the reductions in Hb concentration associated with

the anemia severity levels considered in this investigation were also selected

according to values provided in the scientific literature as depicted in Tables

2.4 and 2.5.
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Figure 2.2: Absorption spectra of key absorbers found in the skin tissues,
namely melanins and functional hemoglobins, whose contents were subjected
to variations during this investigation. Top: extinction coefficient (ε) curves
for the melanins [36]. Bottom: molar extinction coefficient (εm) curves for
the functional hemoglobins [57]. Note that the contents of keratin, DNA,
uranic acid, beta-carotene, bilirubin, disfunctional hemoglobins lipids and
water were also accounted for in this investigation.
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Parameter LP DP Source
Stratum Corneum Thickness (cm) 0.0004 0.0002 [21, 4]
Stratum Granulosum Thickness (cm) 0.0046 0.0015 [75]
Stratum Spinosum Thickness (cm) 0.0046 0.0015 [75]
Stratum Basale Thickness (cm) 0.0046 0.0015 [75]
Papillary Dermis Thickness (cm) 0.02 0.023 [3]
Reticular Dermis Thickness (cm) 0.125 0.2 [3]
Stratum Granulosum Melanosome Content (%) 0.0 5.0 [39, 44]
Stratum Spinosum Melanosome Content (%) 0.0 5.0 [39, 44]
Stratum Basale Melanosome Content (%) 1.0 5.0 [39, 44]
Stratum Granulosum Colloidal Melanin Content (%) 0.9 5.0 [2, 39, 56]
Stratum Spinosum Colloidal Melanin Content (%) 0.9 5.0 [2, 39, 56]
Stratum Basale Colloidal Melanin Content (%) 0.9 5.0 [2, 39, 56]
Stratum Basale Melanosome Dimensions (µm× µm) 0.41× 0.17 0.69× 0.28 [55]
Melanosome Eumelanin Concentration (mg/mL) 32.0 50.0 [66, 29]
Melanosome Pheomelanin Concentration (mg/mL) 2.0 4.0 [66, 29]
Papillary Dermis Blood Content (%) 0.5 0.5 [35, 18]
Reticular Dermis Blood Content (%) 0.2 0.2 [35, 18]

Table 2.1: HyLIoS parameters employed in the characterization of the skin tissues found in the dorsal surface
of the fingers belonging to the two specimens, lightly (LP) and darkly (DP) pigmented, considered in this
investigation.
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Parameter LP DP Source
Stratum Corneum Thickness (cm) 0.0004 0.0002 [21, 4]
Stratum Granulosum Thickness (cm) 0.0123 0.006 [75]
Stratum Spinosum Thickness (cm) 0.0123 0.006 [75]
Stratum Basale Thickness (cm) 0.0123 0.006 [75]
Papillary Dermis Thickness (cm) 0.02 0.023 [3]
Reticular Dermis Thickness (cm) 0.125 0.2 [3]
Stratum Granulosum Melanosome Content (%) 0.0 0.25 [78, 39, 44]
Stratum Spinosum Melanosome Content (%) 0.0 0.25 [78, 39, 44]
Stratum Basale Melanosome Content (%) 0.15 0.25 [78, 39, 44]
Stratum Granulosum Colloidal Melanin Content (%) 0.06 0.25 [78, 39, 56]
Stratum Spinosum Colloidal Melanin Content (%) 0.06 0.25 [78, 39, 56]
Stratum Basale Colloidal Melanin Content (%) 0.06 0.25 [78, 39, 56]
Stratum Basale Melanosome Dimensions (µm× µm) 0.41× 0.17 0.69× 0.28 [55]
Melanosome Eumelanin Concentration (mg/mL) 32.0 50.0 [66, 29]
Melanosome Pheomelanin Concentration (mg/mL) 2.0 4.0 [66, 29]
Papillary Dermis Blood Content (%) 5.0 5.0 [68, 18, 35]
Reticular Dermis Blood Content (%) 0.5 0.5 [68, 18, 35]

Table 2.2: Datasets of specific parameters employed in the characterization the skin tissues found in the
palmar fingertip of the two specimens, lightly (LP) and darkly (DP) pigmented, considered in this investi-
gation.
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Parameter Value Source
Surface Fold Aspect Ratio 0.1 [64, 47]
Oxygenated Blood Fraction (%) 75.0 [5]
Stratum Corneum Refractive Index 1.55 [65, 22]
Epidermis Refractive Index 1.4 [65, 67]
Papillary Dermis Refractive Index 1.39 [65, 37]
Reticular Dermis Refractive Index 1.41 [65, 37]
Melanin Refractive Index 1.7 [11]
MetHb concentration in Whole Blood (mg/mL) 1.5 [59]
CarboxyHb concentration in Whole Blood (mg/mL) 1.5 [19]
SulfHb concentration in Whole Blood (mg/mL) 0.0 [79]
Whole Blood Bilirubin Concentration (mg/mL) 0.003 [85]
Stratum Corneum Beta-carotene Concentration (mg/mL) 2.1E-4 [43]
Epidermis Beta-carotene Concentration (mg/mL) 2.1E-4 [43]
Blood Beta-carotene Concentration (mg/mL) 7.0E-5 [43]
Stratum Corneum Water Content (%) 35.0 [1, 51]
Epidermis Water Content (%) 60.0 [1, 72]
Papillary Dermis Water Content (%) 75.0 [1, 72]
Reticular Dermis Water Content (%) 75.0 [1, 72]
Stratum Corneum Lipid Content (%) 20.0 [76]
Epidermis Lipid Content (%) 15.1 [62, 15, 1]
Papillary Dermis Lipid Content (%) 17.33 [62, 15, 1]
Reticular Dermis Lipid Content (%) 17.33 [62, 15, 1]
Stratum Corneum Keratin Content (%) 65.0 [26, 61, 27]
Stratum Corneum Urocanic Acid Density (mol/L) 0.01 [82]
Skin DNA Density (mg/mL) 0.185 [70, 1, 25]

Table 2.3: Dataset of general parameters employed in the characterization of
the skin tissues found in the dorsal surface and palmar fingertip of the fingers
of both specimens considered in this investigation. The refractive indices for
the skin layers were measured at 1300 nm as reported in the listed sources.
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Severity Level Hb Reduction (%) Hb Concentration (g/L)
Baseline - 147.0.0
Mild 20 117.6
Moderate 40 88.2
Severe 60 58.8

Table 2.4: Anemia severity levels for adult individuals (15 years of age and
above). The corresponding reductions in hemoglobin (Hb) concentration
considered in this investigation were selected according to values provided in
the literature [45, 24, 77].

Severity Level Hb Reduction (%) Hb Concentration (g/L)
Baseline - 125.0
Mild 20 100.0
Moderate 40 75.0
Severe 60 50.0

Table 2.5: Anemia severity levels for children (below 15 years of age) and
pregnant women. The corresponding reductions in hemoglobin (Hb) con-
centration considered in this investigation were selected according to values
provided in the literature [45, 24, 77].
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2.3 Sensitivity Measure

In order to assess the spectral variation patterns resulting from our in silico

experiments more systematically, we performed a differential sensitivity anal-

ysis [28] on the corresponding modeled reflectance curves across selected spec-

tral ranges (UV (250-400 nm), Visible-B (400-500 nm), Visible-G (500-600 nm),

Visible-R (600-700 nm) and NIR (700-850 nm)). This analysis involves the

computation of a sensitivity index that provides the ratio of the change in

output to the change in a quantity while the other quantities are kept fixed.

A ratio equal to 1.0 indicates complete sensitivity (or maximum impact),

while a ratio less than 0.01 indicates that the output is insensitive to changes

in the selected quantity [30]. Accordingly, we computed the mean sensitiv-

ity index (MSI) for the spectral regions of interest to assess the mean ratio

of change in reflectance with respect to the change in the selected quantity,

namely dermal Hb concentration, associated with the three anemia severity

levels (Table 2.4) under study. This index is expressed as

MSI =
1

N

N∑
i=1

|ρn(λi)− ρa(λi)|
max{ρn(λi), ρa(λi)}

, (2.1)
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where ρn and ρa correspond to the reflectances associated with the nonanemic

(baseline) and anemic cases, respectively, computed for a given skin specimen,

and N is the total number of wavelengths sampled with a 5 nm resolution

within a selected spectral region.
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Figure 2.3: Generation of the maximum sensitivity index (MSI) curves for each skin specimen. The input
parameters to HyLIoS are specimen parameters (e.g., melanin content, haemoglobin content), measurement
parameters (e.g., angle of incidence, wavelength associated with the incident light rays) and biophysical
data (e.g., absorption coefficients, refractive indices). HyLIoS then generates a reflectance curve which is
used to calculate the sensitivity index across different wavelength ranges, namely, UV, Visible Blue, Visible
Green, Visible Red and Infrared regions of the spectrum.
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2.4 Skin Swatches

In this investigation, we have also generated skin swatches to demonstrate

that the use of visual inspections to detect the onset of anemia and monitor

its progression can be hindered by physiological and technical factors. These

swatches were rendered using the modeled reflectance data obtained for the

LP and DP specimens using HyLIoS, and considering three distinct CIE

standard illuminants, whose respective relative spectral power distributions

are provided in Figure 2.4. The resulting swatch color is obtained from

the convolution of the illuminant spectral power distribution spectrum, the

modeled skin reflectance data, and the broad spectral response of the human

photoreceptors [31]. This last step was performed employing a standard XYZ

to sRGB conversion procedure [7, 63].
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Figure 2.4: Relative spectral power distributions of three CIE standard illu-
minants, namely D65, D50 and A, considered in our investigation. While the
first two correspond to average daylight with correlated color temperatures
of 6504 K and 5503 K respectively, the third one corresponds to a gas-filled
tungsten lamp operating at a correlated color temperature of 2856 K [33,
54].
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Figure 2.5: Diagram depicting the light propagation process leading to the
perceived color of human skin. Top: Incident light hits the skin surface and
some of it is reflected back which is then perceived by the photoreceptors
located in the human eye. Bottom: Skin swatches are obtained from the
convolution of the illuminant spectral power distribution (φ(λ)) and the re-
flectance data generated from HyLIoS (ρ(λ)), which are then transformed
into RGB values for display using standard conversion parameters (r̄, ḡ, b̄)
[30].
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Chapter 3

In-Silico Experiment Results

3.1 Palmar Areas

The results of our first set of in silico experiments involving the dorsal surface

of the fingers of the LP and DP specimens are presented in Figure 3.1. As

expected, these results show that reductions in Hb concentration associated

with increasing anemia severity levels have a more noticeable magnifying

effect on the reflectance of the LP specimen. This spectral responses less

affected by the light attenuation properties of melanin (in colloidal and ag-

gregated forms) than its DP specimen’s counterpart.

As indicated by the MSI values presented in Figure 3.2, the impact of
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the HB concentration reduction is markedly stronger in the visible region,

particularly in the 500-600 nm range, for the LP specimen with respect to

three severity levels. This observation can be explained by the fact that,

although the UV absorption profile of the hemoglobins (O2Hb and HHb) are

high (Figure 2.2), eumelamin and pheomelanin, albeit in small amounts, have

a dominant attenuation role in this spectral region [4, 16]. In the NIR region,

on the other hand, not only the hemoglobin absorption profile is relatively

low, but light attenuation is also affected by the presence of water and lipids

[4, 16].

For the DP specimen, the impact is minor across all selected spectral

regions with respect to the mild and moderate levels. It becomes somewhat

significant, notably in the visible-G (500-600 nm) range (Figure 3.2), only

when the anemia condition reaches the severe level. In this case, the substan-

tial reduction of Hb concentration can slightly counterpose the strong light

attenuation performed by the relative large amounts of melanin present in

the epidermal tissues. In addition, as further illustrated by the skin swatches

depicted in Figure 3.3, while one can notice changes in skin colorimetric

parameters, namely lightness and hue (toward a “pale” and a “yellowish”

appearance, respectively), following a reduction in Hb concentration in the
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LP specimen, such variations, particularly with respect to hue, are not as

discernible in the DP specimen.

3.2 Nonpalmoplantar Areas

The results of our second set of in silico experiments involving the palmar

fingertips of the LP and DP specimens are presented in Figure 3.4. They

show that reductions in Hb concentration associated with increasing ane-

mia severity levels have noticeable effects on the spectral responses of both

pigmented specimens considered in this investigation. We remark that the

palmar fingertips are hypopigmented areas [78] regardless of the native level

of pigmentation of an individual (e.g., Figure 2.1), and are characterized by

a higher blood volume content in the dermal tissues [18]. Hence, the spectral

responses of these cutaneous sites are less affected by the small presence of

melanin proteins. Furthermore, as indicated by the MSI values presented

in Figure 3.5, the impact of variations in Hb concentration also increases

monotonically with the increasing anemia severity levels, and it is markedly

stronger in the visible-G (500-600 nm) range for both specimens.

Although the effects resulting from reduced Hb concentrations are clearly
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detectable for both specimens through spectrophotometric measurements,

the same degree of detection confidence cannot be obtained through the

visual inspection of the specimens’ skin appearance attributes. More specif-

ically, as illustrated by the skin swatches depicted in Figure 3.6, the same

observations reported earlier for the dorsal surface of the finger swatches ap-

ply to the palmar fingertip ones, i.e., while we can notice changes in skin

lightness and hue following a reduction in Hb concentration in the LP spec-

imen, hue variations, are not as discernible in the DP specimen.
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Figure 3.1: Modeled skin reflectance curves for the dorsal surface of the
fingers of the lightly (top) and the darkly (bottom) pigmented specimen
showing the spectral responses elicited by distinct dermal Hb concentrations
associated with increasing anemia severity levels, namely baseline (nonane-
mic level, 147.0 g/L), mild (117.6 g/L), moderate (88.2 g/L) and severe (58.8
g/L). The modeled curves were obtained considering the data provided in
Tables 2.1, 2.3 and 2.4.
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Figure 3.2: Mean sensitivity index (MSI) values computed for the mod-
eled anemic skin reflectance curves (mild, moderate and severe) obtained for
the dorsal surface of the fingers of the lightly (top) and the darkly (bot-
tom) pigmented specimen (Figure 3.1). The MSI values were computed
for each anemic skin reflectance curve (across selected UV (250-400 nm),
Visible-B (400-500 nm), Visible-G (500-600 nm), Visible-R (600-700 nm),
and NIR (700-850 nm) ranges) with respect to the baseline curve (nonanemic
level) associated with the respective specimen.
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Figure 3.3: Skin swatches depicting skin tone variations on the dorsal surface
of the fingers of the lightly (top) and the darkly (bottom) pigmented spec-
imens. These variations, which were obtained by reducing the dermal Hb
concentration (from left to right, 147.0 g/L, 117.6 g/L, 88.2 g/L and 58.8
g/L), illustrate the visual effects of increasing anemia severity levels, namely
baseline (nonanemic level), mild, moderate and severe, respectively (Table
2.4). The swatches were rendered considering a D50 illuminant (Figure 2.4)
and using the corresponding skin spectral responses provided by the HyLIoS
model (Figure 3.1).
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Figure 3.4: Modeled skin reflectance curves for the palmar fingertips of the
lightly (top) and the darkly (bottom) pigmented specimen sshowing the spec-
tral responses elicited by distinct dermal Hb concentrations associated with
increasing anemia severity levels, namely baseline (nonanemic level, 147.0
g/L), mild (117.6 g/L), moderate (88.2 g/L) and severe (58.8 g/L). The
modeled curves were obtained considering the data provided in Tables 2.2,
2.3 and 2.4.
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Figure 3.5: Mean sensitivity index (MSI) values computed for the modeled
anemic skin reflectance curves (mild, moderate and severe) obtained for the
palmar fingertips of the lightly (top) and the darkly (bottom) pigmented
specimens (Figure 3.4). The MSI values were computed for each anemic skin
reflectance curve (across selected UV (250-400 nm), Visible-B (400-500 nm),
Visible-G (500-600 nm), Visible-R (600-700 nm), and NIR (700-850 nm)
ranges) with respect to the baseline curve (nonanemic level) associated with
the respective specimen.

33



Figure 3.6: Skin swatches depicting skin tone variations on the palmar fin-
gertips of the lightly (top) and the darkly (bottom) pigmented specimens.
These variations, which were obtained by reducing the dermal Hb concen-
tration (from left to right, 147.0 g/L, 117.6 g/L, 88.2 g/L and 58.8 g/L),
illustrate the visual effects of increasing anemia severity levels, namely base-
line (nonanemic level), mild, moderate and severe, respectively (Table 2.4).
The swatches were rendered considering a D50 illuminant (Figure 2.4) and us-
ing the corresponding skin spectral responses provided by the HyLIoS model
(Figure 3.4).
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Chapter 4

Monitoring Procedure

The difficulties imposed by different levels of pigmentation on the visual in-

spection of skin specimens can be exacerbated by other factors such as the

intensity and spectral power distribution of the light sources employed during

their screening. For example, as illustrated in the palmar fingertip swatches

of the LP specimen presented in Figure 4.1, an anemic-like appearance can be

elicited by different combinations of these factors. More precisely, although

the spectral response used in the generation of these swatches corresponds

to the nonanemic (baseline) case, some of them have appearance attributes

similar to those of the swatches associated with different anemia severity

levels presented in Figure 3.6, which may lead to misinterpretations of an
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Figure 4.1: Skin swatches illustrating skin tone variations on the fingertip
of the lightly pigmented specimen (with a baseline Hb concentration equal
to 147.0 g/L) resulting from employing distinct light sources (Figure 2.4),
namely D65 (top row), D50 (middle row) and A (bottom row), whose default
intensity value (left column) was increased by 15% (middle column) and 30%
(right column). The swatches were rendered using skin spectral responses
provided by the HyLIoS model [16], which, in turn, were obtained using the
data provided in Tables 2.2 and 2.3.

individual’s actual health status. The possibility of occurrence of such situ-

ations, which are usually associated with metamerism problems [34, 33], can

also be verified when we compare some of the “nonanemic” swatches of the

DP specimen presented in Figure 4.2 with the “anemic” swatches presented

in Figure 3.6 for this specimen.

Several symptoms (e.g., tiredness and faintness) and signs (e.g., pale or

yellowish skin mentioned earlier) provide clues to physicians about the pos-

sible onset of anemia in a patient [69]. In order to verify this possibility and

deliver a diagnosis with a higher degree of certainty, physicians usually re-
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Figure 4.2: Skin swatches illustrating skin tone variations on the fingertip
of the darkly pigmented specimen (with a baseline Hb concentration equal
to 147.0 g/L) resulting from employing distinct light sources (Figure 2.4),
namely D65 (top row), D50 (middle row) and A (bottom row), whose default
intensity value (left column) was increased by 15% (middle column) and 30%
(right column). The swatches were rendered using skin spectral responses
provided by the HyLIoS model [16], which, in turn, were obtained using the
data provided in Tables 2.2 and 2.3.

quire a blood exam. This is used to determine, among other factors, whether

or not the patient’s Hb concentration is below the level considered normal

for people within the same age group and with similar physiological charac-

teristics. Once it has been established that the patient is anemic and the

recommended treatment starts, the condition should be monitored to evalu-

ate whether or not the patient’s Hb concentration is returning to the normal

level. Again, clinical assessment procedures, such as visual inspections and

blood exams can be employed [69]. We remark, however, that while the

former may lead to incorrect interpretations as illustrated before, the latter
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may be not readily available at the point of care on a regular basis.

The results of our second set of in silico experiments suggest that the

monitoring of anemia can be assisted by an index, henceforth referred to AMI

(Anemia Monitoring Index), which can be obtained through a noninvasive

spectrophometric measurement performed at the patient’s palmar fingertip.

As depicted in Figures 3.4 and 3.5, variations on Hb concentration have

a detectable impact on the palmar fingertip reflectance of specimens with

distinct levels of native skin pigmentation, more prominently in the visible-

G spectral region. Moreover, this impact is uniform in this region, i.e., as

the Hb concentration decreases, the reflectance increases across the entire

500-600 nm range. This suggests that a single sample wavelength within

this range can be used to monitor these variations. Considering that the

monitoring of an anemic patient may need to take place within an extended

period of time, it is necessary to mitigate the chances of its results being

affected by other physiologic factors.

In order to address this issue, a number of guidelines should be used in the

selection of a suitable monitoring point. First, it should be a wavelength at

which O2Hb and HHb have the same extinction coefficient values (isosbestic

point [84]) to avoid influences from changes in the blood oxygenation levels.
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We note that there are several isosbestic points (500, 530, 545, 570 and 584

nm [32]) in the spectral region of interest (Figure 2.2). Second, it should be

located away from the spectral region where water and lipids have a strong

impact on light absorption [4, 16] to avoid masking effects, for example, from

transepidermal water loss [12]. Third, it should be also located away from

the absorption spectra of other chromophores associated with the onset of

medical conditions with similar effects on a patient’s visual appearance at-

tributes. As a characteristic example of the latter, one can mention bilirubin

[58], whose excess in the blood stream is associated with hyperbilirubinemia,

or jaundice, which can also result in possible variations on skin appearance

attributes (e.g., yellowness) of a patient. Taking these guidelines into consid-

eration, two isosbestic wavelengths, namely 545 and 570 nm, emerge as the

most suitable candidates for being the monitoring point. It is also necessary

to consider that even though the presence of melanin proteins in the pal-

mar fingertip epidermis is fairly low, it cannot be completely discarded [78].

Hence, since the corresponding extinction coefficient values for the melanins

are lower at the 570 nm than at 545 nm (Figure 2.2), we selected the former.

A relatively simple anemia monitoring procedure could be then employed

using a single reflectance measurement at 570 nm. Preferably, the patient’s
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finger should be in a position below heart level to maximize the blood frac-

tional volume [68], with the patient’s forearm resting passively to minimize

shear rate fluctuations on the blood flow that could affect its optical prop-

erties [80]. Moreover, since this measurement might need to be repeated

a number of times during the treatment, it would be advisable to select a

specific measurement site (e.g., at the center of the tactile elevations) for con-

sistency. Although the adoption of this protocol would contribute to make

the procedure more effective, one may still need to account for the possibil-

ity of small changes in the measurement conditions. For example, one can

expect small angular variations with respect to the angle of incidence due to

slight curvature of the palmar fingertip. In order to examine the robustness

of the proposed procedure with respect to such fluctuations, we computed the

reflectance at 570 nm for the LP and DP specimens considering three angles

of incidence, namely 0◦, 10◦ (the default value employed in our in silico ex-

periments) and 20◦. Furthermore, since the anemia severity levels may vary

with age and, in the case of female patients, pregnancy [77], we performed

these computations with respect to a broader scope of Hb concentrations by

including all values depicted in Tables 2.4 and 2.5.

As expected, the resulting reflectance values presented in Table 4.1 for
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all three angles of incidence depict a ”vertical” increase with respect to Hb

concentration reduction, which becomes more prominent as the condition

worsens. Moreover, for each specific Hb concentration value, they also show

a slight ”horizontal” increase with respect to the angle of incidence. In some

instances, however, the same value was recorded for two angles of incidence.

This can be attributed to the stochastic nature of our simulations. More

importantly, the observed ”horizontal” reflectance variations with the angle

of incidence are smaller than the ”vertical” reflectance variations associated

with significant changes in the Hb concentration.

It is worth noting that even well designed and carefully calibrated spec-

trophotometers can yield results from the same specimen that differ from

one measurement to the next [38, 7]. These differences, or uncertainties, are

caused by variations in the components of the instrument, fluctuations in

environmental conditions and changes in the specimen handling procedure.

A spectrophotometer is considered to be of high precision if the spectral

measurements have an uncertainty of approximately ±0.001 [38, 46]. Hence,

the ”horizontal” reflectance variations depicted in our simulations have a

magnitude comparable to the uncertainty of actual spectral measurements.
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LP DP
Hb Concentration (g/L) 0◦ 10◦ 20◦ 0◦ 10◦ 20◦

147.0 0.290 0.290 0.289 0.241 0.241 0.240
125.0 0.301 0.301 0.300 0.248 0.247 0.246
117.6 0.306 0.306 0.303 0.251 0.251 0.249
100.0 0.318 0.317 0.316 0.258 0.258 0.258
88.2 0.329 0.328 0.327 0.266 0.265 0.264
75.0 0.342 0.342 0.341 0.275 0.273 0.273
58.8 0.365 0.364 0.364 0.289 0.288 0.288
50.0 0.381 0.381 0.379 0.301 0.300 0.298

Table 4.1: Reflectance values at 570 nm computed for the palmar fingertip of the lightly pigmented (LP)
and the darkly pigmented (DP) specimens considering distinct hemoglobin (Hb) concentrations and three
angles of incidence, namely 0◦, 10◦ (the default value used in this investigation) and 20◦. Each reflectance
value was computed using 106 sample rays and depicted using a four-digit chopping arithmetic.
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In summary, our findings suggest that once the onset of anemia has been

established, this blood disorder can be reliably monitored using a relative sim-

ple procedure. At the time of the onset confirmation, the patient’s AMI would

measured and recorded. Afterwords, during the treatment, the patient’s ane-

mic level could be monitored by performing subsequent AMI measurements,

and comparing their values with previously recorded ones. Clearly, a more

accurate assessment can be obtained through blood exams performed using

traditional laboratory procedures. However, considering that the proposed

AMI would be obtained through a reflectance measurement performed at

single wavelength, we believe that it would require a simpler and more cost-

effective device than a standard spectrophotometer, making its use attractive

for low-resources diagnosis settings with limited access to laboratory facil-

ities. We also remark that such a measurement would be noninvasive and

performed at a wavelength within the visible (non-harmful) region of the

light spectrum.
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Chapter 5

Conclusion

Arguably anemia is among the most widespread of blood disorders that can

lead to serious health impairment and, if not properly treated, fatal sit-

uations. Not surprisingly, the physiological changes associated with this

condition, particularly the reduction of Hb concentration, have been object

of extensive research aimed at their quantification and interpretation. The

biomedical procedures employed in these tasks vary from a simple visual in-

spection of a patient’s appearance to a wide range of laboratory exams of

blood samples. With the recent advances in optics and photonics, a wide

range of invasive and noninvasive devices are being proposed to assist these

tasks. In the later case, the reliability of the results depends on the correct
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assessment of the skin spectral responses to these changes. However, the in

vivo investigation of these responses is often hindered by practical difficulties

such as the the control of a large number of biophysical variables.

In this thesis, we employed a first principles light transport model of

light and skin interactions to examine these responses with respect to differ-

ent spectral, observational and physiological conditions. The results of our

controlled in silico experiments demonstrate that the influence of melanin

pigmentation on the effective detection of these responses can be substan-

tially mitigated by selecting a cutaneous site, such as the palmar fingertip,

with suitable characteristics, namely hypopigmentation and increased der-

mal blood content. Furthermore, our findings also indicate that significant

variations in the anemia severity levels associated with Hb concentration re-

ductions can be monitored by measuring the patient’s skin reflectance at

a selected spectral sampling point (570 nm) neither affected by blood oxy-

genation variations nor by changes in the presence of other relevant absorbers

(e.g., bilirubin and water) in the skin tissues. Based on these observations,

we proposed the use of such reflectance (AMI) measurements as the inte-

gral component of a procedure to assist the monitoring of anemic patients in

regions not served by comprehensive health care resources on a regular basis.
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As future work, we intend to address the actual implementation of the

proposed anemia monitoring procedure. Accordingly, we plan to investigate

the feasibility of different alternatives for performing the AMI measurements

at the point-of-care. These include the enhancement of existing devices to

incorporate AMI measurements, and the design of a new portable instrument

specifically dedicated to providing this index with a high accuracy to cost

ratio.
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We note that there are several isosbestic points (500, 530, 545, 570 and 584

nm [32]) in the spectral region of interest (Figure 2.2). Second, it should be

located away from the spectral region where water and lipids have a strong

impact on light absorption [4, 16] to avoid masking effects, for example, from

transepidermal water loss [12]. Third, it should be also located away from

the absorption spectra of other chromophores associated with the onset of

medical conditions with similar effects on a patient’s visual appearance at-

tributes. As a characteristic example of the latter, one can mention bilirubin

[58], whose excess in the blood stream is associated with hyperbilirubinemia,

or jaundice, which can also result in possible variations on skin appearance

attributes (e.g., yellowness) of a patient. Taking these guidelines into consid-

eration, two isosbestic wavelengths, namely 545 and 570 nm, emerge as the

most suitable candidates for being the monitoring point. It is also necessary

to consider that even though the presence of melanin proteins in the pal-

mar fingertip epidermis is fairly low, it cannot be completely discarded [78].

Hence, since the corresponding extinction coefficient values for the melanins

are lower at the 570 nm than at 545 nm (Figure 2.2), we selected the former.

A relatively simple anemia monitoring procedure could be then employed

using a single reflectance measurement at 570 nm. Preferably, the patient’s

39



finger should be in a position below heart level to maximize the blood frac-

tional volume [68], with the patient’s forearm resting passively to minimize

shear rate fluctuations on the blood flow that could affect its optical prop-

erties [80]. Moreover, since this measurement might need to be repeated

a number of times during the treatment, it would be advisable to select a

specific measurement site (e.g., at the center of the tactile elevations) for con-

sistency. Although the adoption of this protocol would contribute to make

the procedure more effective, one may still need to account for the possibil-

ity of small changes in the measurement conditions. For example, one can

expect small angular variations with respect to the angle of incidence due to

slight curvature of the palmar fingertip. In order to examine the robustness

of the proposed procedure with respect to such fluctuations, we computed the

reflectance at 570 nm for the LP and DP specimens considering three angles

of incidence, namely 0◦, 10◦ (the default value employed in our in silico ex-

periments) and 20◦. Furthermore, since the anemia severity levels may vary

with age and, in the case of female patients, pregnancy [77], we performed

these computations with respect to a broader scope of Hb concentrations by

including all values depicted in Tables 2.4 and 2.5.

As expected, the resulting reflectance values presented in Table 4.1 for
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all three angles of incidence depict a ”vertical” increase with respect to Hb

concentration reduction, which becomes more prominent as the condition

worsens. Moreover, for each specific Hb concentration value, they also show

a slight ”horizontal” increase with respect to the angle of incidence. In some

instances, however, the same value was recorded for two angles of incidence.

This can be attributed to the stochastic nature of our simulations. More

importantly, the observed ”horizontal” reflectance variations with the angle

of incidence are smaller than the ”vertical” reflectance variations associated

with significant changes in the Hb concentration.

It is worth noting that even well designed and carefully calibrated spec-

trophotometers can yield results from the same specimen that differ from

one measurement to the next [38, 7]. These differences, or uncertainties, are

caused by variations in the components of the instrument, fluctuations in

environmental conditions and changes in the specimen handling procedure.

A spectrophotometer is considered to be of high precision if the spectral

measurements have an uncertainty of approximately ±0.001 [38, 46]. Hence,

the ”horizontal” reflectance variations depicted in our simulations have a

magnitude comparable to the uncertainty of actual spectral measurements.
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In summary, our findings suggest that once the onset of anemia has been

established, this blood disorder can be reliably monitored using a relative sim-

ple procedure. At the time of the onset confirmation, the patient’s AMI would

measured and recorded. Afterwords, during the treatment, the patient’s ane-

mic level could be monitored by performing subsequent AMI measurements,

and comparing their values with previously recorded ones. Clearly, a more

accurate assessment can be obtained through blood exams performed using

traditional laboratory procedures. However, considering that the proposed

AMI would be obtained through a reflectance measurement performed at

single wavelength, we believe that it would require a simpler and more cost-

effective device than a standard spectrophotometer, making its use attractive

for low-resources diagnosis settings with limited access to laboratory facil-

ities. We also remark that such a measurement would be noninvasive and

performed at a wavelength within the visible (non-harmful) region of the

light spectrum.
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Chapter 5

Conclusion

Arguably anemia is among the most widespread of blood disorders that can

lead to serious health impairment and, if not properly treated, fatal sit-

uations. Not surprisingly, the physiological changes associated with this

condition, particularly the reduction of Hb concentration, have been object

of extensive research aimed at their quantification and interpretation. The

biomedical procedures employed in these tasks vary from a simple visual in-

spection of a patient’s appearance to a wide range of laboratory exams of

blood samples. With the recent advances in optics and photonics, a wide

range of invasive and noninvasive devices are being proposed to assist these

tasks. In the later case, the reliability of the results depends on the correct
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assessment of the skin spectral responses to these changes. However, the in

vivo investigation of these responses is often hindered by practical difficulties

such as the the control of a large number of biophysical variables.

In this thesis, we employed a first principles light transport model of

light and skin interactions to examine these responses with respect to differ-

ent spectral, observational and physiological conditions. The results of our

controlled in silico experiments demonstrate that the influence of melanin

pigmentation on the effective detection of these responses can be substan-

tially mitigated by selecting a cutaneous site, such as the palmar fingertip,

with suitable characteristics, namely hypopigmentation and increased der-

mal blood content. Furthermore, our findings also indicate that significant

variations in the anemia severity levels associated with Hb concentration re-

ductions can be monitored by measuring the patient’s skin reflectance at

a selected spectral sampling point (570 nm) neither affected by blood oxy-

genation variations nor by changes in the presence of other relevant absorbers

(e.g., bilirubin and water) in the skin tissues. Based on these observations,

we proposed the use of such reflectance (AMI) measurements as the inte-

gral component of a procedure to assist the monitoring of anemic patients in

regions not served by comprehensive health care resources on a regular basis.
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As future work, we intend to address the actual implementation of the

proposed anemia monitoring procedure. Accordingly, we plan to investigate

the feasibility of different alternatives for performing the AMI measurements

at the point-of-care. These include the enhancement of existing devices to

incorporate AMI measurements, and the design of a new portable instrument

specifically dedicated to providing this index with a high accuracy to cost

ratio.
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