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Abstract 

Microelectronic market imposes tight requirements upon thin film properties, including specific 

growth rate, surface roughness and thickness of the film. In the thin film deposition process, the 

microscopic events determine the configuration of the thin film surface while manipulating 

variables at the macroscopic level, such as bulk precursor mole fraction and substrate 

temperature, are essential to product quality. Despite the extensive body of research on control 

and optimization in this process, there is still a significant discrepancy between the expected 

performance and the actual yield that can be accomplished employing existing methodologies. 

This gap is mainly related to the complexities associated with the multiscale nature of the thin 

film deposition process, lack of practical online in-situ sensors at the fine-scale level, and 

uncertainties in the mechanisms and parameters of the system. The main goal of this research is 

developing robust control and optimization strategies for this process while uncertainty analysis 

is performed using power series expansion (PSE). The deposition process is a batch process 

where the measurements are available at the end of the batch; accordingly, optimization and 

control approaches that do not need to access online fine-scale measurements are required. In 

this research, offline optimization is performed to obtain the optimal temperature profile that 

results in specific product quality characteristics in the presence of model-plant mismatch. To 

provide a computationally tractable optimization, the sensitivities in PSEs are numerically 

evaluated using reduced-order lattices in the KMC models. A comparison between bounded and 

distributional parametric uncertainties has illustrated that inaccurate assumption for uncertainty 

description can lead to economic losses in the process. To accelerate the sensitivity analysis of 

the process, an algorithm has been presented to determine the upper and lower bounds on the 

outputs through distributions of the microscopic events. In this approach, the sensitivities in the 

series expansions of events are analytically evaluated. Current multiscale models are not 

available in closed-form and are computationally prohibitive for online applications. Thus, 

closed-form models have been developed in this research to predict the control objectives 

efficiently for online control applications in the presence of model-plant mismatch. The robust 

performance is quantified by estimates of the distributions of the controlled variables employing 

PSEs. Since these models can efficiently predict the controlled outputs, they can either be used 

as an estimator for feedback control purposes in the lack of sensors, or as a basis to design a 

nonlinear model predictive control (NMPC) framework. Although the recently introduced optical 
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in-situ sensors have motivated the development of feedback control in the thin film deposition 

process, their application is still limited in practice. Thus, a multivariable robust estimator has 

been developed to estimate the surface roughness and growth rate based on the substrate 

temperature and bulk precursor mole fraction. To ensure that the control objective is met in the 

presence of model-plant mismatch, the robust estimator is designed such that it predicts the 

upper bound on the process output. The estimator is coupled with traditional feedback controllers 

to provide a robust feedback control in the lack of online measurements. In addition, a robust 

NMPC application for the thin film deposition process was developed. The NMPC makes use of 

closed-from models, which has been identified offline to predict the controlled outputs at a 

predefined specific probability. The shrinking horizon NMPC minimizes the final roughness, 

while satisfying the constraints on the control actions and film thickness at the end of the 

deposition process. Since the identification is performed for a fixed confidence level, hard 

constraints are defined for thin film properties. To improve the robust performance of NMPC 

using soft constraints, a closed-form model has been developed to estimate the first and second-

order statistical moments of the thin film properties under uncertainty in the multiscale model 

parameters. Employing this model, the surface roughness and film thickness can be estimated at 

a desired probability limit during the deposition. Thus, an NMPC framework is devised that 

successfully minimizes the surface roughness at the end of the batch, while the film thickness 

meets a minimum specification at a desired probability. Therefore, the methods developed in this 

research enable accurate online control of the key properties of a multiscale system in the 

presence of model-plant mismatch. 
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Chapter 1  
Introduction 

Nanotechnology, biotechnology, and micro-engineering are mostly characterized by coupled 

chemical and physical phenomena occurring over different temporal and spatial scales. In these 

applications, controlling the events that evolve at the microscopic scale is essential to product 

quality. Efficient operations, however, require manipulated variables at the macroscopic scale for 

real-time feedback control (Braatz et al., 2006b). Therefore, multiscale modeling and analysis 

has emerged to improve the predicting capabilities in these systems by linking various length and 

time scales (Vlachos, 2012).  

Microelectronics is a field where multiscale simulation, design and control has many 

applications. Due to the wide range of applications of thin film semiconductors, improving 

manufacturing efficiency while minimizing the costs is required (Baumann et al., 2001; Datta 

and Landolt, 2000). In industrial practice, these processes are currently operated empirically, 

without a deep knowledge of the underlying dynamics. Therefore, the development of efficient 

control methodologies for thin film deposition is needed to satisfy the increasingly stringent 

requirements in the semiconductor industry. However, three main obstacles hinder the progress 

in this field: i) development of fundamental mathematical models describing the system for 

optimization and control, ii ) lack of practical in-situ sensors that provide real-time measurements 

for online control, and iii ) uncertainties in the deposition process that are not captured by the 

prevalent, nominal models (Raimondeau and Vlachos, 2002). 

The microelectronic devices are composed of deposited, patterned, successive layers of silicon, 

insulators and metals (Datta and Landolt, 2000). Thin film deposition from the gas phase is the 

key process in microelectronic fabrication where the atoms of the precursor deposit on the 

substrate to create a thin solid film (Dollet, 2004). The electrical and mechanical properties of 

electronic devices depend on thin film microstructure. Spatial uniformity, thickness, 

composition, the amount of internal defects, and also interfacial roughness and slope are referred 

to as critical thin film properties (Freund and Suresh, 2004). While uniformity and composition 

are macroscopic properties that can be modeled based on continuum hypothesis, accurate control 

of the thin film microstructure requires a comprehensive hierarchical model that can integrate a 

wide range of length and time scales (Armaou et al., 2001). To control the film properties, the 

thin film deposition process, and its interaction with the surroundings, need to be considered 
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(Braatz et al., 2004). Thin film microstructure is determined through the surface microscopic 

events that are strongly dependent on macroscopic phenomena; thus, multiscale modeling tools 

are required to provide efficient control and optimization frameworks. The evolution of the 

growth process on a substrate can be modeled based on a multiscale approach, coupling a 

deterministic continuum model representing the macroscopic scale events and a stochastic 

lattice-based KMC model, which describes the microscopic surface morphology (Lam and 

Vlachos, 2001). Although multiscale modeling is an attractive alternative tool compared to the 

application of molecular modeling techniques for the entire process domain, this approach often 

requires computationally intensive simulations. This results in profound limitations towards the 

development of real-time model-based control strategies for these systems. 

Measuring the microscopic properties of the thin film during the fabrication process is not 

trivial since it is infeasible to have direct access to the surface. Although the recently introduced 

optical in-situ sensors have triggered research on feedback control of the thin film deposition 

process, their application is still limited in practice (Buzea and Robbie, 2005). The main 

limitation of these optical devices is that they are not capable of providing the measurement as 

frequent as it is required for online applications (Nayar et al., 1993). Hence, real-time estimators 

are needed to estimate the controlled outputs at a time scale comparable to the real thin film 

growth process while online measurements are not available. Although KMC models have been 

adopted for estimation and control in a few cases, the unavailability of a closed-form model 

constrains their applications in model-based control and optimization approaches (Lou and 

Christofides, 2003a). 

From the modeling point of view, the evolution of the thin film encompasses microscopic 

processes that are subject to model parameter uncertainty (Braatz et al., 2006b). The microscopic 

model includes parameters that have to be either measured or inferred through fine-scale 

experimental data (Raimondeau et al., 2003). The estimation of these parameters is not 

straightforward and most of the values are not known with absolute certainty due to the limited 

and noisy measurements (Ulissi et al., 2011). The performance of model-based control and 

optimization approaches is directly affected by the accuracy of the model; not accounting for 

uncertainties can lead to significant losses in performance (Nagy and Braatz, 2003a). Therefore, 

quantifying the influence of parameter uncertainties on the process states and outputs is essential 

to improve productivity in industrial applications. Despite the efforts made for parameter 
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optimization, model-plant mismatch has mostly been overlooked in control and optimization of 

thin film deposition processes, mainly due to the computational costs of uncertainty analysis in 

multiscale process systems (Prasad and Vlachos, 2008; Raimondeau et al., 2003). The common 

approach for uncertainty propagation is the application of a sampling-based technique on the 

process model. In a thin film deposition process, however, the current multiscale models are 

computationally prohibitive to assess product variability using the traditional sampling-based 

methods. Analytical techniques such as power series expansion (PSE) and polynomial chaos 

expansion (PCE) provide a practical approach to this problem since the complex multiscale 

model can be approximated with a mathematical expansion. 

1.1. Objectives and contributions 

Currently, the common form of process control applied in the semiconductor industry is a run-

to-run control scheme where the post process ex-situ measurement data are used to update the 

recipe for the next run. The recipe for the batch run specifies the set points for inputs and states 

to produce the desired device characteristics. The data obtained from each batch are employed to 

adjust the recipe to reduce variability in the manufactured devices. In this approach, the control 

actions are adjusted after the deposition process and the operating conditions cannot be modified 

during the process. Recent advances in computational power and in-situ sensors motivate the 

development of efficient methodologies for the design and online control of these processes. 

Despite the extensive body of research on multiscale system analysis and design, there are still 

many unresolved issues leading to a significant gap between the real world and the current 

methodologies. Model-plant mismatch is an important aspect in model-based control and 

optimization frameworks. To provide a robust online control and optimization framework, the 

effect of model parameter uncertainty in performance objectives has to be considered. 

Based on the above, the goal of this research is to make the control of multiscale processes 

more realistic by addressing model parameter uncertainty in control and optimization 

applications. Therefore, assuming that the multiscale model captures the underlying structure 

appropriately, the structural uncertainty is not considered in this study. The specific objectives of 

the current study are outlined as follows: 

• Perform an uncertainty analysis to evaluate the effect of model parameter uncertainties 

on thin film properties employing PSE. The PSE method is used to predict the deviation 
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of the performance objective from the nominal performance in thin film deposition 

process in the presence of model parameter uncertainty. The evolution of the epitaxial 

growth process on a substrate is simulated using a multiscale approach, coupling a 

continuum gas phase model and a KMC model that describes the evolution of the 

surface of the thin film. 

• Develop an algorithm for open-loop optimization of thin film deposition process under 

uncertainty. The deposition process is considered as a batch process where open-loop 

optimization can be performed offline. Systematic algorithms are presented to determine 

probabilistic bounds on thin film properties for optimization purposes.  

• Develop a robust estimator under model parameter uncertainty to evaluate the controlled 

outputs efficiently for online control applications in the lack of sensors. A real-time 

multivariable estimator is developed based on the offline identification of models using 

input-output data collected from the multiscale model.  

• Develop a closed-form model for robust model predictive control (MPC) framework. 

Offline identification is performed to identify the parameters of the closed-form model 

that can predict the controlled outputs in the presence of model parameter uncertainty. 

This model can either be used as an estimator for feedback control purposes in the lack 

of sensor or as a basis for the design of a robust NMPC algorithm that controls the thin 

film deposition process. 

To design a robust optimization or control framework, it is essential to take model parameter 

uncertainty into account. Specifically, when the performance objective of the system is highly 

sensitive to unpredictable or sudden changes in the system’s physical parameters, this model 

inaccuracy or mismatch can significantly lead to loss in performance. Hence, this research 

provides insight regarding the qualitative and quantitative effects of parameter uncertainty in 

multiscale process systems. Moreover, the methods developed in this research enable accurate 

online control of the key properties of a multiscale system in the presence of model-plant 

mismatch. 

1.2. Outline of the thesis 

The remainder of this thesis is organized as follows: 
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• Chapter 2 reviews the literature pertaining to multiscale analysis and design. The 

importance of developing these models to bridge microscopic and macroscopic domains 

is indicated. The challenges associated with the multiscale modeling and control and the 

proposed approaches to tackle these issues are described at the end of this chapter. 

• Chapter 3 provides the detailed mathematical model of the thin film deposition process 

which has been considered as a case study of the multiscale process system in this 

research. The mathematical formulation describing the macroscopic modeling of the gas 

phase and the microscopic modeling of the thin film surface are presented. Moreover, 

the dependence of the accuracy and fluctuations in the results on the lattice size in the 

KMC simulation is illustrated in this chapter. 

• Chapter 4 presents a comparison between worst-case and distributional uncertainty 

analysis in a thin film deposition process in the presence of time-invariant model 

parameter uncertainties. The worst-case deviation in the film properties is obtained 

under bounded parameter uncertainties while the probabilistic bounds are estimated 

under distributional uncertainties. This work has been published in ADCHEM 

(International Symposium on Advanced Control of Chemical Processes) (Rasoulian and 

Ricardez-Sandoval, 2015a). Moreover, a systematic framework is explored to obtain the 

probabilistic bounds on the outputs in the presence of time-varying parameter 

uncertainties. These bounds are employed to determine the optimal temperature profile 

that maximizes the final thickness of the thin film under end-point product constraints 

and uncertainty in the model parameters. This work has been published in Chemical 

Engineering Science (Rasoulian and Ricardez-Sandoval, 2014). 

• Chapter 5 presents an algorithm to develop a multivariate robust estimator that predicts 

the controlled outputs in a thin film deposition process for online applications. In the 

estimator, the issue of computationally intensive KMC simulations is circumvented by 

developing low-order models that are identified offline based on data collected from the 

thin film deposition multiscale model described in Chapter 3. The estimator predicts the 

surface roughness and growth rate based on the substrate temperature and the bulk 

precursor mole fraction during the deposition process. To provide robust estimates, the 

estimator is designed to evaluate upper and lower bounds on the outputs under model 

parameter uncertainties. To assess the uncertainty propagation into the system’s outputs, 
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the PSE method is employed in the presence of distributional parametric uncertainties. 

The estimator has been coupled with traditional feedback controllers to evaluate the 

performance of the system in the lack of online measurements and under uncertainty in 

the multiscale model parameters. Although the performance of the estimator is 

illustrated in the presence of parameter uncertainties that are normally distributed around 

their nominal values, the algorithm presented in this chapter is applicable regardless of 

the probability distribution assigned to the uncertain parameters. The framework 

presented in this chapter has been published in Journal of Process Control (Rasoulian 

and Ricardez-Sandoval, 2015b). 

• Chapter 6 presents nonlinear model predictive control (NMPC) applied to a thin film 

deposition process in the presence of model-plant mismatch while ensuring constraints 

on the control actions and thin film properties. A closed-form model is identified offline 

to predict the surface roughness and film thickness during the deposition process at a 

predefined specific probability. The resulting closed-form models are used as the 

internal models in a robust NMPC framework that aims to minimize the final surface 

roughness while satisfying constraints on the temperature trajectory and film thickness 

at the end of the deposition process. In this approach, conservative control actions are 

predicted by the NMPC algorithm. This work has been published in Chemical 

Engineering Science (Rasoulian and Ricardez-Sandoval, 2015c). To improve the robust 

performance using probabilistic constraints, closed-form models are extended to 

estimate the statistical moments of the thin film properties. The parameters of the 

closed-form model are determined offline based on the PSE method applied on the 

multiscale model. To evaluate the model, a shrinking horizon NMPC framework is 

designed to minimize the surface roughness at the end of the batch by manipulating 

substrate temperature in the presence of uncertainty in the multiscale model parameters. 

However, probabilistic constraints are assigned on film thickness obtained at the end of 

the batch to reduce the conservatism of the MPC framework (Rasoulian and Ricardez-

Sandoval, 2015c). The model developed in this work enables the reformulation of the 

stochastic NMPC as a computationally tractable deterministic NMPC framework. This 

work has been submitted to Chemical Engineering Science. 

• Chapter 7 provides the conclusions and recommendations derived from this research. 
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Chapter 2  
Background and Literature Review 

Modeling tools for processes occurring at specific time and length scales have been extensively 

explored in the literature. Recent emerging applications in material, medicine and biology, 

however, require the controllability of events at the molecular scale using process variables that 

can be adjusted at macroscopic scales (Vlachos, 2005). Efficient multiscale modeling techniques 

have been introduced by connecting the various models to represent phenomena occurring over 

different length and time scales (Crose et al., 2015; Kwon, 2015). Thin film deposition is an 

industrially relevant process that can be decomposed into phenomena occurring at various scales 

and multiscale modeling analysis are required to describe this process (Baumann et al., 2001). 

Thin film manufacturing through deposition of advanced materials is widely applied in the 

semiconductor industry. Strong dependence of the electrical properties of the devices on the 

microstructure of the film has motivated research on modeling and control of the thin film 

deposition process (Jensen et al., 1998; Rodgers and Jensen, 1998). Despite the extensive body 

of research, there are still many unresolved issues leading to a significant gap between the 

expected and the actual performance achieved by the current control methodologies (Christofides 

and Armaou, 2006). This gap is mainly related to the complexities associated with the multiscale 

nature of the thin film deposition process, lack of practical and reliable online in-situ sensors at 

the micro-scale level, and uncertainties in the mechanisms and parameters of the system 

(Ricardez-Sandoval, 2011). 

The aim of this chapter is to review the research efforts that have been conducted on multiscale 

modeling and control. The next section presents an overview of the multiscale modeling 

analysis. The current challenges in multiscale modeling analysis are discussed in Section 2.2. As 

it was described in the Introduction, the uncertainty analysis is the focus of the present research 

project. Despite the importance of this subject, model-plant mismatch has mostly been ignored in 

multiscale optimization and control approaches. Therefore, in Section 2.2, a thorough discussion 

on the different approaches for uncertainty analysis of continuum models is also presented. 

Section 2.3 reviews the challenges in optimization and control of multiscale process systems and 

the proposed approaches in the literature to address these issues. Due to the relevance to this 

work, the approaches proposed for thin film deposition process are discussed in detail. A 

summary of this chapter is provided in Section 2.4. 
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2.1. Multiscale modeling 

Chemical process systems are typically modeled under the continuum hypothesis employing 

momentum, energy and mass conservation laws. However, there exist processes where the 

detailed modeling requires capturing phenomena that occurs over multiple interacting scales 

(Braatz et al., 2004). In microelectronic processes, macroscopic phenomena such as heat and 

mass transfer of the gas phase can be adequately modeled using continuum modeling, whereas 

the fine-scale is driven by physicochemical events that occur at time and spatial scales that 

cannot be modeled using the laws of classical mechanics (Braatz et al., 2006a). At fine-scale, 

discrete models including Molecular Dynamic (MD) or KMC are required to describe the 

behaviour of individual entities such as atoms and molecules. While discrete models provide 

more insight on the fundamental behaviour of systems, they are computationally intensive and 

cannot be used to simulate the entire process domain (Nieminen, 2002). To address this issue, 

multiscale modeling and analysis has emerged as an attractive tool to improve the predicting 

capabilities in these systems (Vlachos, 2012). The fundamental goal of multiscale modeling is to 

develop a mathematical framework that bridges various scales ranging from atomistic to 

macroscopic. 

A typical approach in multiscale modeling is evaluating the required information at a finer 

scale and passing it to a coarser scale in the model. For instance, ab initio calculations of reaction 

rate constants as functions of pressure and temperature requires no further knowledge from the 

reactor scale. This unidirectional information passing is usually effective when the time and 

length scales are well separated and there is no overlap between them. Accordingly, the model 

does not provide any feedback from the coarse-scale to fine-scale and this approach is referred to 

as serial or sequential multiscale approach (Vlachos, 2005). However, when there is a strong 

coupling between various scales, integration and simulation is more challenging. When 

processes exhibit well separated length scales between phenomena, different models can be used 

at each scale. This type of multiscale modeling, which is based on domain decomposition, is 

termed as multiscale integration hybrid (MIH) approach. To bridge different domains, an 

interfacial region can be adopted in which both models are solved and exchange the information. 

This region is referred to as the overlapping subdomain or the handshaking region and is shown 

in Figure 2-1. The size of this region needs to be properly adjusted since both models are solved 

at this interface region. On the one hand, the interface has to be small enough in order to reduce 
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the computational costs of the microscopic scale and, on the other hand, sufficiently large for 

letting the macroscopic model to appropriately relax over the domain.  

 

Figure 2-1. Schematic of the overlapping region in the MIH scheme. 

In the MIH scheme, a solution strategy is performed involving simultaneous advancement of 

both fine and coarse-scale simulations. Two scales are solved independently and the quantities 

that are required at the overlapping subdomain are evaluated. In spatially homogeneous systems 

where there are no spatial gradients at the interface region, the information is exchanged at 

specific (coupling) time intervals. Following this idea, the fine-scale model has to evolve 

multiple time steps for every macro time step of the upper scale model. This simultaneous time 

evolution continues up until the final simulation time is reached. Processes that involve 

interfacial regions with spatial gradients are also common in engineering such as flow along a 

tubular reactor or growth on a large wafer with non-uniformities across the substrate (Albo et al., 

2006). The gap-tooth technique has been proposed for coupling the coarse and fine-scale in the 

heterogeneous systems (Gear et al., 2003). As shown in Figure 2-2, this method applies a coarse 

mesh over large scales while at each node of the coarse mesh, fine-scale simulations using 

discrete models are performed on a finer mesh. Thus, multiple fine-scale models are 

simultaneously solved in this approach and the properties computed from these simulations are 

averaged and used to update the coarser mesh.  

 

Figure 2-2. Schematic of multigrid-type simulation (adopted from (Vlachos, 2005)). 

As it will be discussed in detail in Chapter 3, the evolution of the thin film studied in this work 

is modeled using nonlinear partial differential equations (PDEs) embedded with lattice-based 
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KMC simulations to capture the multiscale essence of the process (Lam and Vlachos, 2001). 

Traditionally, Monte Carlo simulations are used to evaluate the system properties at equilibrium; 

nevertheless, if the rates of the events occurring in the process can be estimated, they can also be 

used to study the transient evolution of the system from one state to another. While continuum 

modeling is a well-established area, the implementation of stochastic KMC methods to describe 

the evolution of phenomenological events occurring at the fine scales in non-equilibrium systems 

has been recently developed. Therefore, master equation and KMC technique are reviewed in 

detail next. 

Master equation & KMC. Due to the stochastic nature of the processes taking place at the 

fine-scale, the probability that the system is in a particular configuration or state can be described 

using the so-called master equation (Kampen, 1992): 

'G(y,#)'# = ∑ b(Hd → H)G(Hd, �) − ∑ b(ZdZd H → H′)G(H, �), (2-1) 

where H and H′ denote two successive states of the system, G(H, �) is the probability that the 

system is in state H at time �, and b(H → Hd) is the probability per unit time that the system will 

undergo the transition from state H to state Hd. The master equation is a system of first-order 

ordinary differential equations (ODEs) where each equation represents the probability of an 

individual state in the system at a certain time. While the solution of the master equation can be 

obtained using traditional numerical methods for solving ODEs, the challenge of finding a 

solution lies on the number of states that need to be evaluated. For systems with even a relatively 

small size, the master equation cannot be solved since the number of possible states is 

prohibitively large, e.g., a surface lattice consisting of 100 sites with a maximum height of one 

has 2�== number of configurations. This imposes a limitation towards the direct application of the 

master equation to obtain an estimate of the system states.  

A lattice-based KMC can be used as a representative of the microstructure and the KMC 

method provides a numerical solution to the underlying master equation (Gillespie, 2001). In this 

method, the states of the system are defined by occupancy of lattice sites (Dooling and 

Broadbelt, 2001). In contrast to MD where every vibrational change is tracked, this method 

assumes that the system consists of diffusive jumps from one state to another (Gilmer et al., 

2000). That is, the entire system will be moved from one state to another as opposed to moving 

atoms to new states as it is performed in MD simulations. Hence, the KMC simulations are not 
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employed to determine the exact position of atoms but to evaluate the statistical properties of the 

microscopic system (Voter, 2007). These state-to-state transitions allow KMC to reach longer 

time scales, typically in order of seconds. The transition rates in the KMC simulations are 

independent from previous states and identify the probability per unit time that the system 

proceed from one state to another. Stochastic realizations that describe the evolution of a system 

can be obtained through KMC simulations since this method reconstructs the probability 

distributions of the system states and their corresponding statistics. 

The theoretical foundation of KMC shows that the KMC method can provide a stochastic 

representation of the master equation if the following conditions are satisfied (Fichthorn and 

Weinberg, 1991): 

• Dynamical hierarchy of transition probabilities that satisfies the detailed balance criterion 

is created. 

• The events taking place in the system are independent. 

• Time increments can be estimated precisely. 

In the KMC algorithm, the microscopic rates of all possible processes are evaluated from the 

current state of the system. Based on the current probabilities of occurrence of those processes, a 

process is selected using a random number taken from a uniform distribution. Once the event has 

been executed in the system, the time is incremented employing a second random number taken 

from an exponential distribution. Updating the transition probabilities and modifying the 

configuration appropriately is essential for the next step execution (Reese et al., 2001). The 

generic flowchart of the KMC algorithm is presented in Figure 2-3 (Chatterjee and Vlachos, 

2007). The implementation of the KMC method for the thin film deposition process is presented 

in detail in Chapter 3.  

Molecular simulations based on KMC models are useful to link microscopic interactions to 

macroscopic descriptions; however, they are stochastic, nonlinear and typically high 

dimensional. In response, methodologies have been proposed to construct low-order 

approximations of the master equation (Gallivan and Murray, 2004, 2003). The model reduction 

in these approaches is performed by grouping microscopic configurations with similar overall 

statistics that evolve in a fixed ratio, and removing the states that are unlikely to occur. The low-

order model describes the evolution of these probabilities in time which are further used to 
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update the surface properties. The main disadvantage of that approach is that the resulting model 

is constrained to a specific set of inputs and a particular range of time scales.  

 

Figure 2-3. Flowchart for KMC algorithm (adopted from (Chatterjee and Vlachos, 2007)). 

2.2. Challenges in multiscale modeling 

The advances in computer science and optical sensors have resulted into a considerable 

progress in multiscale modeling research during the past decade. However, this field is still in its 

elementary stages and presents a variety of challenges (Braatz et al., 2006b; Ricardez-Sandoval, 

2011). Specifically, coupling between the macro-scale and fine-scale models is challenging since 

models at different scales are of different nature and their communication is not straightforward. 

In spatially homogeneous systems, the temporal mismatch between the continuum and non-

continuum codes can make the coupling of the models numerically instable (Rusli et al., 2004). 

To address this issue, filtering approaches have been proposed to reduce the fluctuations of the 

data passed from the stochastic micro-scale code to the continuum code (Drews et al., 2004b; 

Lou and Christofides, 2003a). In another approach, a robust feedback-feedforward controller is 

designed to maintain the fluctuations bounded between the KMC and finite difference codes 

(Rusli et al., 2006). In heterogeneous systems, KMC simulations provide the steady-state 

conditions at the interface of the coarse and fine-scale models. However, due to fluctuations in 
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the KMC solutions, the identification of steady-state is not trivial and filters are required to 

suppress the noise in the data passing to the coarse-scale (Majumder and Broadbelt, 2006). In 

this section, the challenges in the modeling and analysis of the multiscale systems are briefly 

outlined. 

2.2.1. Computational intensity 

Simulation of microscopic models typically requires high computational costs compared to 

continuum models. There are two aspects in the KMC method that makes it computationally 

intensive: i) relatively short simulation time steps (in the order of microseconds), and ii ) 

execution of only one event at each step of the algorithm (Schulze, 2008). High computational 

costs of KMC simulations have motivated significant research efforts to accelerate this method 

(Chatterjee and Vlachos, 2007). To address this issue in lattice-based KMC method, reduced-

order lattices can be applied in the KMC simulation with periodic boundary conditions at the 

edges as a representative of the process. This modeling approach enables capturing of the 

statistical properties of a large scale stochastic process using a limited lattice size in the KMC 

simulation (Makov and Payne, 1995). Spatial coarse-grained Monte Carlo is another approach 

that has been proposed to overcome the computational requirements of this method. This 

approach enables the simulation of larger length and time scales at reasonable computational 

costs by grouping the lattice sites into coarse cells (Katsoulakis et al., 2003). This scheme 

assumes that local equilibrium is acquired within a coarse cell (Drews et al., 2004a). 

One of the drawbacks in the conventional KMC method is that it executes only one event at a 

time. This characteristic drastically limits the computational efficiency of the KMC simulation 

(Gillespie, 2001). To tackle this issue, temporal coarse graining has been proposed for coarse-

grained lattices which is referred to as u-leaping method (Vlachos, 2008). Acceleration in this 

method is achieved by executing multiple processes at once on a coarse-grained lattice and 

advance the time by a coarse amount u under the u-leap condition. In this approach, the sites with 

the same transition probability are grouped into the same class and u-leaping is applied to the 

classes without violating the leap condition. This condition restricts u to small values such that 

the change in the population for all chemical processes is small. The main assumption of this 

approach is that the transition probabilities are fixed and independent from each other. 
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2.2.2. Sensitivity analysis 

Parameter sensitivity analysis is a valuable tool to identify parameters that play a significant 

role in system responses that have to be optimized or determined more accurately through 

experimental data (Saltelli et al., 2005). In optimal experimental design approaches, density 

functional theory calculations usually provide the prior estimates of the parameters and the 

parameter estimations are improved using data obtained from experiments (Braatz et al., 2006b). 

Application of conventional sensitivity analyses on multiscale systems, however, is not 

straightforward since most of the fine-scale models are not available in closed-form (Gunawan et 

al., 2005). That is, explicit expressions to evaluate the rate of change of the outputs of the system 

with respect to the model parameters are not available. This motivates the application of a black 

box approach such as brute force sensitivity analysis using finite differences. Although the 

application of finite differences method is straightforward, it is computationally demanding 

especially for multiscale systems. Efficient gradient estimation methods have been proposed in 

the literature for sensitivity analysis of these processes (McGill et al., 2012). In molecular 

simulations, alternative approximation methods are employed to map the key parameters to the 

simulation outputs (Rusli et al., 2007). That is, in the parameter optimization algorithm, the 

computationally intractable molecular simulations are replaced with a PSE that relates the output 

to the parameters (Braatz et al., 2006b).  

Another issue in multiscale parameter sensitivity analysis is the inherent noise due to the 

discrete microscopic simulations. Hence, employing finite difference approaches requires 

relatively large perturbations to isolate the response from the intrinsic noise provided that the 

average of multiple runs is applied. A sensitivity analysis study of the model parameters 

involved in copper electro-deposition was conducted using finite differences (Drews et al., 

2003). Condor, a high throughput computing environment, was utilized to perform this 

computationally intensive investigation. It has been demonstrated that the outputs of the system 

are sensitive to 7 out of 22 parameters studied in that work. Owing to high number of states or 

parameters associated with multiscale systems, clustering is an attractive method to obtain a 

reduced set of parameters for the system (Raimondeau et al., 2003). Moreover, experimental 

design studies has gained attention for parameter optimization at molecular scales (Prasad and 

Vlachos, 2008). In this approach, the multiscale model can be reduced using clustering or 
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principal component analysis to provide a computationally tractable identification algorithm 

(Subramanian et al., 2011). 

Developing low-order models for optimization and control of multiscale systems can be 

performed using sensitivity analysis techniques. Moreover, many uncertainty analysis 

approaches take advantage of sensitivity analysis to propagate the uncertainties into the states 

and outputs of the system. 

2.2.3. Uncertainty analysis 

In model-based control and optimization frameworks, the process performance depends on the 

accuracy of the model used to describe the real process. In process modeling analysis, the 

discrepancy between the process and the model seems to be the rule rather than an exception. 

Uncertainties can be classified as structured and parametric uncertainties. Structured uncertainty 

arises due to incomplete knowledge about chemical and physical processes, inadequate 

numerical schemes and resolutions. Parametric uncertainty, on the other hand, is the result of 

inaccuracies in model parameters, initial conditions and boundary conditions. In the current 

work, it is assumed that the multiscale model used for the thin film deposition process captures 

the underlying structure appropriately; thus, structural uncertainty is not considered in the 

present study. Parametric uncertainty, however, can potentially occur and hence will be 

extensively studied here in the context of multiscale modeling analysis. To quantify the effect of 

parametric uncertainty on the system performance, uncertainty analysis is required. There are 

two fundamental steps for uncertainty quantification in process systems: i) characterization of 

parameter uncertainties, and ii ) propagation of uncertainties through the process model. 

Parameter uncertainty can be characterized using data collected from the actual process; 

however, when access to plant data is not available, the uncertainty description is typically 

assumed to be bounded or takes the form of a probability distribution function (PDF) centered at 

a nominal value. Therefore, despite the importance of uncertainty characterization, in robustness 

analysis the form of the parameter uncertainty is often considered as a prior knowledge 

(Halemane and Grossmann, 1983; Rooney and Biegler, 1999).  

To guarantee closed-loop performance under bounded parameter uncertainty, robust 

formulations have been proposed based on the worst-case deviation in the process performance 

(Braatz et al., 1994; Ma et al., 1999; Ma and Braatz, 2001). In a semiconductor manufacturing 
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process, this method has been applied to obtain the optimal rapid thermal annealing program that 

minimizes the junction depth while maintaining a satisfactory sheet resistance (Gunawan et al., 

2004). This approach has been applied in this research to determine the optimal temperature 

profile using the worst-case deviation in the thin film properties. This method and its application 

on the deposition process will be explicitly discussed in Chapter 4. 

For distributional uncertainties, the classical Monte Carlo method is the common approach 

used to produce the PDFs of the states and outputs of the system under uncertainty. Monte Carlo 

is a sampling-based technique that takes advantage of a large number of sample points chosen 

randomly from the prior distribution of parameters and a model to propagate the uncertainties 

into the model outputs. Despite the efficient sampling method proposed to reduce high 

computational costs, this method is not suitable for real-time robust applications (Birge and 

Louveaux, 2011; Niederreiter, 1978). In addition to high computational costs especially for 

complex systems, this method does not provide a mathematical representation of the process. 

Distributional uncertainty analysis of complex dynamic processes such as multiscale systems 

using Monte Carlo technique is computationally prohibitive. Alternatively, for efficiency, the 

original complex model can be approximated employing either PSE or PCE (Xiu, 2010). Taking 

advantage of a prior knowledge about the distribution of the uncertain parameters, a 

distributional uncertainty analysis of the states and outputs can be performed using PSE or PCE. 

Uncertainty analysis using these expansions has initiated significant advances in the robust 

optimal control of batch processes (Mandur and Budman, 2014; Nagy and Braatz, 2004). It has 

been shown that, while first-order expansions provide acceptable accuracy, higher order 

expansions can improve the accuracy in the predictions (Bahakim et al., 2014; Nagy and Braatz, 

2007). The key advantage of the PSE approach is that it is not necessary to have the analytical 

expression for the function since it only requires the function sensitivities with respect to the 

uncertain parameters. Following this approach; the issue of absence of closed-form models can 

then be addressed by deriving a low-order model.  

An alternative tool for distributional uncertainty analysis is the PCE (Ghanem and Spanos, 

2003; Wiener, 1938). Uncertainty analysis using this method has initiated significant advances in 

the robust optimal control of batch processes (Mandur and Budman, 2014; Nagy and Braatz, 

2004). The PCE technique is appropriate for highly nonlinear processes or when a large 

variability in the uncertain parameters is expected (Najm, 2009). 
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2.3. Challenges in control of multiscale processes 

The majority of cutting-edge semiconductors are manufactured through batch processes in the 

microelectronics industry (Gorman and Shapiro, 2011). The objective of a generic process unit 

operation is improving manufacturing efficiency while minimizing plant costs. In batch 

processes, systematic methodologies are needed to optimize product quality specifications under 

tight operational constraints (Christofides et al., 2007). The film microstructure, however, is 

determined by the surface microscopic events that strongly depend on the macroscopic behaviour 

of this process. As such, highly efficient control and optimization frameworks are needed to 

achieve specific thin film’s characteristics by manipulating the macroscopic variables of the 

process (Ulissi et al., 2013). As an illustrative example, an integrated circuit entails several layers 

of thin films and the device performance depends on the sharpness of these patterned thin films, 

the interface between layers and the microstructure configuration of the films (Datta and Landolt, 

2000). Moreover, thin film deposition is sensitive to unmeasured disturbances, contaminants and 

deposition on the reactor walls which affect product reproducibility. Thus, advanced control 

strategies are required to improve product quality specifications (Braatz et al., 2006a). In 

essence, the basis of an advanced control framework is a closed-form model that represents the 

complex dynamics of the process under study. Particularly, in a MPC framework, which is the 

most prominent advanced control strategy, a system model is required to predict the control 

actions which optimize the performance index in the presence of constraints (Allgöwer et al., 

2004; García et al., 1989; Qin and Badgwell, 2003). There are, in essence, three major obstacles 

that limits the performance of a control scheme in the thin film deposition process: i) the lack of 

practical in-situ sensors that provide real-time, micro-scale measurements for online applications, 

ii ) the lack of a closed-form expression for mode-based control and optimization purposes, and 

iii ) model-plant mismatch. 

2.3.1. Lack of sensor 

Thin film deposition has a wide range of applications in the microelectronic industry, optics 

and photovoltaics. Real-time measurements at the surface of the thin film, however, are not 

practical and usually offline measurements techniques are employed only at the end of the batch 

process (Renaud et al., 2003). Implementation of feedback control approaches to design high-

quality nanostructures in a high-throughput manufacturing setting is impractical without real-
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time measurements (Su et al., 2008). In a methodology, the combination of online gas phase 

composition measurements with offline roughness measurements has been applied for feedback 

control of surface roughness (Ni et al., 2004). Recently, the development of modern 

measurement techniques has enabled to obtain the required data in real-time. The available in-

situ thickness and deposition rate monitoring sensors has been extensively reviewed (Buzea and 

Robbie, 2005). Spectroscopic ellipsometry, and grazing incidence small range X-ray scattering 

are introduced to assess the microstructure of the thin films (Pickering, 2001). Particularly, 

spectroscopic ellipsometry is a non-intrusive, sensitive tool that can provide the measurements in 

real-time (Liu et al., 1999). The major limitation of this sensor is that it provides an indirect 

measurement technique where model-based estimators are needed to infer the film properties 

from the data provided (Grover and Xiong, 2009; Xiong et al., 2006). While these sensors 

present novel techniques for monitoring and control purposes, they are not able to provide 

measurement at a frequency that is required for online control applications. Hence, real-time 

estimators are needed to estimate the controlled outputs at a time scale comparable to the real 

thin film deposition process while online measurements are not available. Efficient estimation 

strategies are explored based on the reduction of the KMC model to control the thin film 

properties that cannot be measured directly (Gallivan, 2005). A methodology for real-time 

estimation of thin film properties during the growth process has been proposed based on lattice-

based KMC simulations, an adaptive filter and a measurement error compensator (Lou and 

Christofides, 2003a, 2003b). In that methodology, although state-of-the-art sensors are required 

to improve the estimations, frequent measurements are not available for an efficient online 

control (Lou and Christofides, 2004). To provide a computationally tractable approach, reduced-

order lattices are employed in the KMC simulations. 

2.3.2. Lack of closed-form model 

Multiscale models are not available in closed-form and are computationally prohibitive for 

online applications. In KMC simulations, the lattice size determines the accuracy of the results 

and the simulation time. Although employing reduced-order lattices in the KMC simulations are 

computationally efficient, the results obtained from these simulations are noisy compared to 

high-order lattices. Computationally efficient estimators have been developed using the average 

of responses from multiple reduced-order lattices in the KMC simulations. The proposed 
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estimator has been coupled with a proportional integral (PI) controller to control the surface 

roughness manipulating the substrate temperature (Lou and Christofides, 2003a). That control 

methodology has also been extended to multivariable feedback control of surface roughness and 

growth rate (Lou and Christofides, 2003b). To illustrate the effectiveness of the 

estimator/controller structure proposed in (Lou and Christofides, 2003a), that technique has been 

employed for closed-loop control in GaAs thin film deposition (Lou and Christofides, 2004). A 

KMC-based MPC scheme for film deposition has also been proposed in the literature 

(Christofides et al., 2008). 

While it is possible to employ KMC models for estimation and control in a few cases, these 

models are typically unavailable in closed-form and evolve by successively advancing the state 

of the system by small incremental time steps (Ni and Christofides, 2005a). There are deposition 

processes for which closed-form process models describing the surface morphology of thin films 

can be identified in the form of stochastic PDEs. For instance, the surface height evolution in 

one-dimensional thin film growth process can be described by Edward-Wilkinson equation (Hu 

et al., 2008; Lou and Christofides, 2006; Zhang et al., 2010). In these approaches, the 

construction and validation of the stochastic PDE models are conducted through a set of 

snapshots obtained from the KMC simulations that cover the complete operating region (Ni and 

Christofides, 2005a). Taking advantage of these stochastic PDEs, methodologies have been 

developed for multivariable predictive control of the deposition process (Hu et al., 2009; Ni and 

Christofides, 2005b).  

Although multiscale models embedded with KMC simulations are computationally intensive, 

these detailed models can be employed to derive low-order models that are practical for model-

based control techniques (Varshney and Armaou, 2008a). The input-output behaviour of a 

coupled KMC and finite difference code is employed to develop a low-order model for copper 

electrodeposition process (Rusli et al., 2006). For control purposes, reduction of multiscale 

systems is performed through proper orthogonal decomposition (Raimondeau and Vlachos, 

2000; Varshney and Armaou, 2008b). In (Varshney and Armaou, 2006a), the feedback control of 

thin film microstructure has been achieved via offline identification of a low-order model for a 

finite set of coarse observable variables. Moreover, a computationally efficient methodology has 

been proposed to maximize film uniformity and minimize the roughness in a thin film deposition 

process (Varshney and Armaou, 2005). To efficiently solve a dynamic optimization problem in 
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GaN film epitaxy process, model reduction techniques have been linked with the vector 

parameterization scheme (Varshney and Armaou, 2006b). It has been shown that an optimal 

change in the precursor concentration reduces considerably the thickness non-uniformity in a 

GaN thin film. The low-order model developed through reduction of the master equation has 

been used to estimate the optimal time-varying temperature profile offline (Gallivan, 2003; Oguz 

and Gallivan, 2008). In another approach, computationally efficient solution methodologies are 

developed for optimal operation of spatially distributed multiscale processes (Behrens and 

Armaou, 2010). 

To address the issue of absence of closed-form dynamics, coarse time-steppers have been 

proposed which enables the integration of macroscopic system level tasks to multiscale systems 

without driving the required equations in the closed-form expression. The key assumption in this 

method is that the macroscopic models are available in closed-form for low moments of 

microscopically evolving distribution. While mapping from microscopic to macroscopic scale 

(restriction) is unique, mapping from macroscopic to microscopic scale (lifting) is not. This 

equation-free methodology provides a mean to employ well-established controller design 

techniques, such as linear feedback control to multiscale process systems (Armaou et al., 2004; 

Siettos et al., 2003). 

2.3.3. Model-plant mismatch 

The performance of model-based control and optimization techniques can be deteriorated due 

to inappropriate or unrealistic assumptions applied in the model development and model 

uncertainty. Specifically, when the performance objective is highly sensitive to changes in the 

physical parameters of the system, model-plant mismatch can lead to significant loss in the 

performance. Although multiscale processes mostly encompass fine-scale features that cannot be 

known with absolute certainty, model-plant mismatch has mostly been overlooked in the 

proposed multiscale modeling approaches in the literature. To design a robust control or 

optimization framework, it is therefore essential to take model parameter uncertainty into 

account. As a result, multiscale system tools are required to account for uncertain mechanisms 

and uncertainty in the model parameters.  

In thin film deposition, Lou and Christofides have shown that the coupled estimator/controller 

proposed to control surface roughness is robust in the presence of uncertainty in one of the KMC 
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parameters (Lou and Christofides, 2003a). This result was only validated using simulations, i.e. a 

formal uncertainty quantification analysis was not performed in that study. Nagy and Allgöwer 

have designed a robust shrinking horizon NMPC scheme that aims to minimize the end-point 

surface roughness and its variance using a second-order PSE technique (Nagy and Allgöwer, 

2007). The deposition model considered in that work is a low-order state-space model developed 

through reduction of the chemical master equation, which describes the temporal evolution of the 

surface (Gallivan and Murray, 2004). Therefore, the effect of macro-scale was not accounted for 

in that model. Moreover, that study assumed that state-of-the-art sensors are available to provide 

accurate measurements for the NMPC algorithm. Therefore, even though model-plant mismatch 

is an important aspect of process control and optimization, it is still an open problem in 

multiscale system design. 

2.4. Summary 

This chapter presented an overview of the recent developments in multiscale process systems 

analysis. The multiscale modeling approaches proposed in the literature to capture coupled 

phenomena over different length and time scales have been discussed. Since the focus of the 

current work is on thin film deposition process, the related works published on control and 

optimization of this process are reviewed in this chapter. Model parameter uncertainty, lack of 

closed-form model between manipulated variables and controlled outputs, computationally 

intensive KMC simulations and sporadic sensor data are among the main challenges in this area. 

Despite the extensive studies on multiscale systems, the effect of model-plant mismatch in 

control and optimization applications has mostly been ignored. The current study aims to fill this 

gap by incorporating model parameter uncertainty into multiscale modeling analysis. The next 

chapter presents the detailed modeling of the thin film deposition process which is considered as 

a representative multiscale process in this study.  
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Chapter 3  
Thin Film Deposition Process 

Thin film deposition is an industrially relevant process which comprises phenomena that evolve 

at different time and length scales (Gilmer et al., 1998). The evolution of the film morphology 

entails microscopic processes such as adsorption of the precursor atoms on the surface or 

migration of adsorbed atoms on the film surface. While the microstructure of the surface evolves 

at the fine-scale level, the film deposition process takes place inside a chamber of macroscopic 

dimensions at specific operating conditions. The simulation of the entire process requires the 

coupling of micro-scale events, i.e., the surface evolution, with macroscopic phenomena, i.e., the 

operating conditions in the chamber. Thin film deposition is considered as a simple yet effective 

representative of a multiscale process system and is used as the case study to evaluate the 

methods proposed in the current research. 

In this chapter, a multiscale model of the thin film deposition is presented and described in 

detail in Section 3.1. As it is shown below, conventional momentum, energy and mass balances 

are used to describe the changes in the operating conditions inside the chamber whereas a lattice-

based KMC model is used to simulate the evolution of the thin film on the surface. Section 3.2 

provides the required formulations to determine the thin film properties. The coupling between 

the continuum model and the KMC simulation, as well as the solution strategy followed to 

simulate the thin film multiscale model, are explicitly described in Section 3.3.  

3.1. Thin film deposition modeling 

For many technological applications, high quality films are produced by the process of vapor 

deposition (Armaou and Christofides, 1999; Baumann et al., 2001; Granneman, 1993) (Armaou 

and Christofides, 1999). In a typical vapor deposition chamber, the gas flow in the chamber 

develops a uniform boundary layer of gas adjacent to the surface of the deposition. This uniform 

boundary layer of width l is shown in Figure 3-1. The precursor atoms diffuse from the bulk 

through this boundary layer to create a thin solid film. In the present study, an epitaxial thin film 

growth process in the stagnation point flow chamber is considered (Gadgil, 1993). A schematic 

of this chamber is depicted in Figure 3-2, which employs a gas distributer to provide a uniform 

distribution in the chamber (Dollet, 2004). To handle the disparate length and time scales, 

continuum momentum, energy and mass conservation balances are employed to describe the 
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boundary layer of gas whereas the evolution of the surface microstructure is captured through 

KMC simulations (Lam and Vlachos, 2001). 

 

 

Figure 3-1. Schematic of the boundary layer on the substrate. 

 

 

Figure 3-2. Schematic of stagnation point flow vapor deposition chamber. 

Creating an axially uniform high velocity flow in the inlet of the chamber is a prerequisite to 

set up a stagnation point flow system. This condition also avoids the development of velocity, 

temperature and concentration gradients along the radial direction inside the chamber. Hence, 

only the gradients in the axial direction are considered in the analysis. This characteristic reduced 

the spatial dimensions of the PDEs used to describe the momentum, energy and mass balances.  

Chamber scale model: modeling the macro-scale. At the macroscopic level, continuum 

descriptions of fluid flow, heat transfer and mass transfer can be employed as follows (Sharma 

and Sirignano, 1969; Song et al., 1991): 
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||} ~|5|�� = |�5|�� + , |�5|�� + �� ���� − ~|5|���� , (3-1) 

|�|} = ��� |
��|�� + , |�|� , (3-2) 

|R|} = ��� |
�R|�� + , |R|� . (3-3) 

The boundary conditions for the bulk (� → ∞) are as follows: 

� = �WXYZ , 
(3-4) 

|5|� = 1 , 
e = � . 

Likewise, the boundary conditions on the surface (� → 0) are as follows: 

� = �[X+5C\4 , 
(3-5) , = 0 , 

|5|� = 0 , 
|R|� = ��(�����)��C����  . (3-6) 

In Eqs.(3-1)-(3-6), , denotes the dimensionless stream function, � is the dimensionless distance 

to the surface, s is the density of the mixture. � is the temperature and Pr is the Prandtl number. 

e and Sc are respectively the mole fraction and Schmidt number of the precursor. The parameters 

qW and sW are the viscosity and the density of the bulk, respectively; � represents the bulk 

precursor mole fraction; ! is the hydrodynamic strain rate and u = 2!� is the dimensionless time. 

PC and P' are the rates of adsorption and desorption, respectively. As it will be described later in 

this chapter, the coupling between the microscopic processes occurring at the surface and the gas 

phase scale processes is accounted for in the boundary condition indicated in Eq.(3-6). 

Surface structure model: modeling the micro-scale. In the KMC algorithm, the microscopic 

rates of all possible processes or events are calculated from the current state of the system. Based 

on the current probabilities of occurrence of those processes, a process is selected using a 

random number taken from a uniform distribution. Once the event has been executed in the 

system, the time is incremented through another random number. Updating the transition 

probabilities and modifying the configuration appropriately is essential for next step execution. 
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The temporal and spatial changes occurring at the surface are dominated by the microscopic 

processes. In this work, three microscopic processes contribute towards the development of the 

thin film: i) adsorption of atoms from the gas phase to the surface, ii ) desorption of atoms from 

the surface to the gas phase, and iii ) migration of atoms to an adjacent site on the surface. The 

surface of a simple cubic lattice is used to describe the thin film deposition process. In the 

present multiscale model, the KMC lattice at any time � is represented as a matrix, S, where each 

element in this matrix represents the number of atom located on each site within the surface 

lattice, i.e., 

S(�) ≜ �ℎ(9, :): 9, : = 1…B� , (3-7) 

where B denotes the lattice size and ℎ(9, :) is the number of atoms at site (9, :). In the present 

analysis, the surface of a simple cubic lattice is used to describe the thin film growth. To reduce 

the computational costs, the method has been implemented for a limited-size lattice assuming 

periodic boundary conditions at the edges. Another assumption is solid-on-solid (SOS) 

approximation, based on which, overhangs and vacancies are not allowed and atoms are located 

directly on top of other atoms on the surface. The interactions among the surface atoms have 

been considered between only first nearest neighbors. Moreover, the present model assumes that 

all the surface sites are available for adsorption. As shown in Figure 3-3, the adsorbed atoms can 

be either desorbed to the gas phase or migrate to an adjacent lattice site depending on the energy 

barriers and the number of neighbors surrounding that atom. 

 

Figure 3-3. Schematic of a thin film growth process on a substrate. 

In the adsorption process, an incident atom from the gas phase comes into contact with the film 

and is eventually incorporated in the surface. The rate of an adsorption event can be determined 

from the kinetic theory of ideal gases : 
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FI = ���R����√�¡(��¢£�£ , (3-8) 

where T= is the sticking coefficient, F is the total pressure of gas phase, ef+$g is the mole fraction 

of precursor on the surface, "#$# is the concentration of sites on the surface, A is the precursor 

molecular weight, P is the gas constant and � is the substrate temperature. Macroscopic scale 

affects the film growth on the surface through FI since estimates for ef+$g are obtained from the 

solution of the gas phase mass transfer equation. To execute an adsorption event, a site needs to 

be randomly picked among the sites of the entire lattice and eventually an atom will be added to 

that site as shown in Figure 3-4. 

  

Figure 3-4. Execution of an adsorption event on the lattice by picking a site and adding an atom on top of that 

lattice site. 

The first nearest neighbors assumption results in five classes of surface atoms, which can have 

from one (only a vertical bond) neighbor, up to five (all surface bonds and a vertical bond) 

neighbors. In the present analysis, desorption and migration events are considered to be site-

dependent. Therefore, atoms in each class have the same probability of desorption and migration 

since they have the same number of nearest neighbors. 

In the desorption process, an atom overcomes the energy barrier of the surface and returns to 

the gas phase as shown in Figure 3-5. The rate of desorption depends on the local configuration 

on the surface and the activation energy. The rate of desorption of a surface atom with n first 

nearest neighbors is as follows: 

FJ(x) = r=¤�¥¦§¨,								x = 1,…5 , (3-9) 

where & denotes the energy associated with a single bond on the surface and r= is the frequency 

of events, which is determined as follows: 
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r= = <'=¤�¦�§¨ , (3-10) 

where &' is the energy associated with desorption and <'= is an event-frequency constant. To 

implement this event, a desorption class has to be picked among the five classes available. Then, 

a site from that specific class is selected randomly. Once the site for desorption event is selected, 

the atom at the top of that site is removed from the surface. 

  

Figure 3-5. Execution of a desorption event on the lattice by picking an atom and removing it from top of the 

site. 

In the migration process, an atom overcomes the energy barrier of the site and jumps to one of 

the neighboring sites randomly as shown in Figure 3-6. The surface migration process is 

modeled as desorption followed by re-adsorption. The rate of a migration event on the surface is 

estimated from the following expression: 

FK(x) = r=©¤�¥¦§¨,					x = 1,…5 . (3-11) 

The pre-factor © is associated with the energy difference that an atom on the surface has to 

overcome in jumping from a lattice site to an adjacent one and is given by: 

© = ¤¦�ª¦«§¨  , (3-12) 

where &( is the energy associated with migration. To implement a migration event, one of the 

five classes needs to be selected. Then, a lattice site will be picked randomly for the execution of 

this event. The atom located at the top of that site is moved (migrates) to one of its four nearest 

neighbors. The selection of nearest neighbor site is also performed randomly (Gilmer and 

Bennema, 1972).  
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Figure 3-6. Execution of a migration event on the lattice via diffusing an atom to the neighbor site. 

The execution of a KMC event, i.e., adsorption, desorption or migration, is accomplished based 

on the total probabilities of the events. Since the adsorption event is assumed to be site 

independent, the total rate of adsorption is calculated as follows: 

bC = FIB� , (3-13) 

where FI is calculated from Eq.(3-8). Likewise, the total rates of desorption and migration are 

estimated as follows: 

b' = ∑ ¬2FJ(9)�2�  , (3-14) 

b( = ∑ ¬2FK(9)�2�  , (3-15) 

where ¬2 is the number of surface atoms with 9 nearest neighbors. FJ(9) and FK(9) are defined in 

Eq.(3-9) and Eq.(3-11), respectively.  

These rates are used to select an event through Monte Carlo sampling method. That is, a 

random number generated from a uniform distribution, p, is used to select the next event to be 

executed on the surface according to the following rules: 

0 < p < bC (bC +b' +b()⁄ 	→ !%¯°0±�9°x 

bC (bC +b' +b()⁄ < p < (bC +b') (bC +b' +b()⁄ 	→ %¤¯°0±�9°x 

(bC +b') (bC +b' +b()⁄ < p < 1	 → A9²0!�9°x 

Then, a second random number is needed to pick the site within the lattice where the event will 

be executed. Upon successful event execution, the time, which was needed to execute the Monte 

Carlo event on the surface, is incremented using the following expression: 

%� = �³´µ¶�·¶�·¶« , (3-16) 

where t is a uniform random number from a (0,1) interval and %� is the time increment in the 

KMC model. The evolution of the thin film growth process including the gas phase model and 

KMC simulation is performed using MIH algorithm shown in Figure 3-7. 
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Figure 3-7. Flowchart of the MIH algorithm. 

3.2. Surface roughness, film thickness and growth rate 

In this study, the quantitative evaluation of the thin film microstructure is assessed using 

surface roughness. In thin film fabrication, surface roughness is a key factor that determines the 

electrical and mechanical properties of microelectronic devices. Surface roughness can be 

determined based on the number of broken bonds on the surface (Raimondeau and Vlachos, 

2000): 

0 = 1 + ∑ (¸¹º»¼,½�¹º,½¸·¸¹ºª¼,½�¹º,½¸·¸¹º,½»¼�¹º,½¸·¸¹º,½ª¼�¹º,½¸)º,½ �¾�  , (3-17) 

where ℎ2,¿ is the number of atoms deposited at the lattice site (9, :). Thin film deposition process 

is a batch operation where a desired film thickness specification is required to avoid an under-
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grown thin film at the end of the deposition process. Thickness of the thin film at any time 

during the deposition can be calculated from average of the surface height using the following 

expression: 

1 = �¾�∑ ℎ2,¿2,¿  . (3-18) 

Another critical characteristic of the thin film process that needs to be controlled is the growth 

rate. A specific growth rate is needed during the deposition to meet manufacturing productivity 

targets. Growth rate can be determined as follows: 

/0 = ∑ ∆¹º,½º,½¾�∆k  , (3-19) 

where ∆ℎ2,¿ = ℎ2,¿(k + ∆k) − ℎ2,¿(k) is the change in the surface height at site (9, :) during ∆k. ∆k 
is a specific time interval at which growth rate is estimated. 

3.3. Implementation strategy and coupling 

In this simulation, the KMC lattice is represented as a matrix where each element represents the 

number of atoms located on each site within the surface lattice (e.g., in Figure 3-8, there are 3 

atoms at site (2,2)). As shown in Figure 3-8, besides this matrix, two additional shadow data 

structures are required to maintain important information about the number of neighbors of sites. 

The first data structure is a matrix of the same size that stores the number of neighbors of each 

surface atom. For example, if site (9, :) has one neighbor, this shadow matrix stores 1 at site (9, :). 
The second shadow data structure is an array of 5 elements; the kth element in that array stores 

the number of surface atoms that have k neighbors (e.g., the first element represents the number 

of coordinates with one neighbor). Local algorithms have been implemented to accelerate the 

process of updating these three data structures in every step of KMC. Local algorithms optimize 

the search process using available information about the executed event and the site on which the 

event is executed. This approach is more efficient in comparison with the global algorithm where 

it is necessary to screen the entire lattice at every KMC step. 
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À1 1 11 3 11 2 1Á À5 5 55 1 55 2 5Á Â1 1 0 0 7Ä 

(a) (b) (c) (d) 

Figure 3-8. (a) Surface configuration, (b) Each element of this matrix indicates the number of atoms on the 

corresponding site, (c) Each element represents the number of neighbors of the corresponding surface 

atom, (d) The kth element of this array stores the number of surface atoms that have k neighbors.  

To simplify the analysis, the accumulation terms in the heat and flow transfer equations in the 

gas phase model shown in Eqs.(3-1)-(3-2) are neglected. This reduces those two PDEs into 

ODEs that can be solved along the � direction using a finite difference scheme. The 

concentration of the precursor in the gas phase, however, fluctuates in time due to changes in the 

microstructure of the surface. Therefore, the mass transfer equation is a PDE that is solved using 

the method of lines. The spatial domain � is discretized resulting in a set of time-dependent 

ODEs that are solved at every coupling time instance.  

The transport phenomena in the gas phase influence the deposition on the surface via the local 

supply of mass to the surface whereas the microscopic phenomena on the surface affect the 

overall mass transfer taking place above the surface. That is, the amount of precursor available to 

deposit on the surface depends on the macroscopic properties of the system. Conversely, the 

consumption of the precursor on the surface affects the mass flux above the surface. Hence, the 

macroscopic model and the KMC model depend on each other and are connected through the 

boundary condition indicated in Eq.(3-6). The parameter of the adsorption rate at the 

microscopic scale, i.e., the precursor mole fraction on the surface ef+$g, is provided from the 

mass transfer balance shown in Eq.(3-3). In addition, the mass transfer boundary condition at the 

surface depends on the microscopic processes. As shown in Eq.(3-6), PC and P' correspond to 

adsorption and desorption events; the difference between these values can be obtained as 

follows: 
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PC − P' = ¾��¾�	�C¾�∆E , (3-20) 

where jE is the coupling time instance between the macroscopic and the microscopic 

simulations. BC is the number of adsorbed atoms during ∆E and B' is the number of desorbed 

atoms in the same time interval. The values of the parameters used in this study are depicted in 

Table 3-1. 

Table 3-1. Model parameters and their corresponding values and units. 

Parameter Value 

! 5	 1 s⁄  

"#$# 1.6611 × 10�� 	sites.mol m�⁄  

& 17000	 cal mol⁄  

&' 17000	 cal mol⁄  

&( 10200	 cal mol⁄  

<'= 1 × 10Ì 	1 s⁄  

A 0.028	 kg mol⁄  

F 1 × 10�	Pa 
T= 0.1 
Sc 0.75 
� 2 × 10�� 
qWsW	 9 × 10��	kg�/(m�. s) 
sW s⁄  1	

 

In the KMC simulations, the size of the lattice significantly affects the accuracy of the results 

and the simulation time. Extensive studies have been conducted to investigate the effects of 

lattice size on the surface roughness adopting the lattice-based KMC models (Huang et al., 2011, 

2010). The accuracy of the results relies on the lattice size used to simulate the evolution of the 

thin film. Since KMC is a stochastic realization of the so-called master equation shown in 

Eq.(2-1), large lattice sizes produce results that converge to the solution of the master equation. 

Nevertheless, the simulation of large lattice sizes is computationally expensive and there is a 

trade-off between accuracy in the system predictions and computational cost. In Figure 3-9, the 

evolution of the surface roughness at � = 800	K is demonstrated from KMC simulations using 

150 × 150 and 100 × 100 lattices. The accuracy of the results is not significantly improved 
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employing a 150 × 150 surface lattice. The computational time required to simulate the growth 

process are also indicated in Table 3-2 for different lattice sizes in the KMC simulation. The 

KMC simulation using a 100 × 100 lattice provides a good approximation of the process with 

relatively low computational costs. Accordingly, in the current study, a 100 × 100 surface lattice 

is used to represent the actual thin film deposition process. It is important to note that, to average 

the results obtained from multiple simulations, the KMC simulations are executed in parallel.   

 

Figure 3-9. Surface roughness trajectories obtained from different simulations using 150 × 150 and 100 × 100 
lattices. 

Table 3-2. Computational cost of various lattice sizes employed in the KMC simulation. 

Lattice size Computational Time (s) 

N = 150 2,448 

N = 100 747 

N = 30 47 

Average of six N = 30 135 

 

Figure 3-10 shows the evolution of the surface roughness at � = 800	K from three independent 

simulations employing a 100 × 100 lattice for the KMC simulation. Due to the stochastic nature 

of the method used to describe the evolution of the surface, i.e., KMC, the results obtained from 

the simulations are slightly different. The roughness evolution from three independent 30 × 30 
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lattices is depicted in Figure 3-11. When compared to Figure 3-10, the variability or noise in the 

surface roughness in a 30 × 30 lattice-based simulation is significantly larger. As the lattice size 

decreases, the fluctuation in the surface roughness among different runs increases.  

 

Figure 3-10. Surface roughness trajectories from three independent simulations using a 100 × 100 lattice in the 

KMC simulations. 

 

Figure 3-11. Surface roughness trajectories from three independent simulations using a 30 × 30 lattice in the 

KMC simulations. 

Figure 3-12 shows the growth rate obtained from the corresponding simulations which 

illustrates the small variability in the responses. The film thicknesses estimated from different 

simulations is shown in Figure 3-13. The variability in the film thickness is so small that is not 
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visible in this figure and the final 500 ms of the figure is magnified to provide a better 

observation of its variability. 

  

Figure 3-12. Growth rate trajectories from three independent simulations using a 100 × 100 lattice in the KMC 

simulations. 

 

Figure 3-13. Film thickness trajectories from three independent simulations using a 100 × 100 lattice in the KMC 

simulations.  

To implement an online scheme for the surface roughness, the size of the lattice has to be 

selected in such a way that the computational time needed to obtain an estimate of the surface 

properties be comparable to the real-time process. In these simulations, when the lattice size is 

reduced to B = 30, it captures the evolution of the responses with reasonable computational 

efficiency. As depicted in Figure 3-14, the result obtained from reduced-order lattice simulation 
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contains significant fluctuations in comparison to the simulation which uses a 100 × 100 lattice; 

however, the overall transient evolution of the surface is captured by the 30 × 30 surface lattice. 

To circumvent the issue of fluctuations, similar to the approach presented in (Lou and 

Christofides, 2003a), the responses obtained from multiple independent KMC simulations using 

reduced-order lattices can be averaged. Figure 3-14 shows that the roughness estimated from 

averaging six 30 × 30 lattices provides a suitable representation of the actual process, i.e., a 

100 × 100 KMC-lattice model. According to Figure 3-14 and Table 3-2, averaging six 30 × 30 
lattices provides accurate results at low computational costs. 

 

Figure 3-14. Surface roughness trajectories obtained from different simulations using 100 × 100, 30 × 30 lattices 

and average of six 30 × 30 lattices. 

3.4. Summary 

As a common practice, a multiscale model is adopted to simulate the thin film deposition 

process that augments PDEs, describing the macro-scale phenomena, with a high-order lattice-

based KMC model, which aims to capture the evolution of the thin film microstructure. It is 

important to note that, the multiscale model and the KMC parameters used in this work, have 

been originally employed by Vlachos (Vlachos, 1999). That paper provides an extensive 

sensitivity analysis to investigate the effect of microscopic and macroscopic parameters on the 

growth process. Moreover, Lou and Christofides have applied this model to propose an estimator 

for feedback control of the process (Lou and Christofides, 2003a, 2003b). The dependence of the 

open-loop simulation results and the computational time on the lattice size has been illustrated in 



37 
 

this chapter. Although increasing the lattice size leads to convergence of the results to the so-

called chemical master equation, the computational load will be prohibitive for online 

applications. Reduced-order lattices, on the other hand, capture the evolution of the process yet 

contain considerable stochastic fluctuations. 
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Chapter 4  
Open-loop Robust Optimization in a Thin Film Deposition Process* 

Model-based optimization and control approaches rely on the accuracy and efficiency of the 

process model used in the analysis to predict the outputs. While the model presented in Chapter 3 

provides a fair representation of the deposition process, the evolution of the thin film 

encompasses phenomena that are subject to model parameter uncertainty that can significantly 

affect the performance objectives for this process. The film microstructure is directly shaped by 

the stochastic microscopic events taking place on the surface. At this level, the surface can be 

affected by changes in the rates of these microscopic events as a consequence of parameter 

uncertainty. The effect of model parameter uncertainty can result in suboptimal operational 

conditions that can lead to loss in performance. Although recently introduced optical in-situ 

sensors motivate the feedback control of this process, their application is still limited in practice. 

In the industry, most of the measurements are available at the end of the thin film deposition 

process; accordingly, optimization and control approaches that do not have an access to online 

fine-scale measurements need to be developed. The thin film deposition is a batch process where 

open-loop optimization can be performed offline, based on certain product quality specifications. 

Thus, the focus of this work is to determine a robust optimal control trajectory in the absence of 

sensor. The aim of this chapter is to explore and propose a systematic framework to analyze 

model parameter uncertainty for robust optimization in multiscale process models. Such an 

analysis is challenging due to i) the lack of a closed formulation between the process 

optimization objective and the model parameters and ii ) the computational costs incurred in the 

KMC simulation. To overcome these challenges, PSE is employed for uncertainty propagation. 

In this chapter, worst-case and distributional uncertainty analyses are compared in the thin film 

deposition process (Rasoulian and Ricardez-Sandoval, 2015a). The parameters are assumed to be 

constant unknown values during the deposition that can change randomly from batch to batch. 

Model parameters with this description are considered as time-invariant parameters while the 

true value is not known. Due to embedded KMC simulations, the sensitivity analysis required for 

PSEs is computationally intensive and this method is appropriate for open-loop optimization. In 

the second part of this chapter, to circumvent sensitivity analysis of the KMC simulations, the 

                                                 
* This chapter has been written based on the following published papers: (Rasoulian and Ricardez-Sandoval, 

2015a, 2014) 
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uncertainty is propagated into rates of microscopic events, then probabilistic bounds on the 

outputs are computed through KMC simulations. An algorithm is presented to determine the 

probabilistic bounds on the thin film properties while the model parameter uncertainties are time-

varying. This type of uncertainty description is often assigned to those model parameters that 

have high frequency contents so that their value changes during the operation of the process. The 

potential application of these methods is illustrated through an optimization problem that aims to 

specify the robust optimal substrate temperature profile that maximizes the endpoint thin film 

thickness in the presence of uncertainty. 

The remainder of the chapter is organized as follows: Section 4.1 presents the PSE method in 

detail. Worst-case and distributional uncertainty analysis of the thin film deposition process is 

presented in Section 4.2. In Section 4.3, an algorithm is presented to determine the probabilistic 

bounds on thin film properties using the distribution of rate of microscopic events. 

4.1. Uncertainty analysis using PSE 

PSE takes advantage of an expansion to describe the performance of the process around the 

nominal control trajectory. In this method, the uncertainty is quantified using a series expansion 

that approximates the nonlinear complex behaviour of the system. The key advantage of this 

approach is that it is not necessary to have the analytical expression for the process since it only 

requires the sensitivities with respect to the uncertain parameters. Following this approach, the 

issue of absence of closed-form models can be addressed by deriving a low-order model. 

Although the order of the series expansion depends on the process nonlinearity and variability in 

the uncertain parameters, first or second-order expansions are usually sufficient for engineering 

applications since the expansion needs to be accurate in a narrow neighbourhood around the 

nominal values (Nagy and Braatz, 2004).  

In uncertainty analysis, the perturbed model parameter vector, ? ∈ ℝ3w can be defined as 

follows: 

? = ?@ + l?, (4-1) 

where ?@ is the nominal model parameter vector and l? is the perturbation about ?@. The objective 

is to analyse the deviation in the output from the nominal output, i.e., 
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l` = ` − h̀, (4-2) 

where ̀h is the output when the system is operated with the nominal model parameter ?@ and ̀  is 

the output when parameter vector ? is used. Employing PSE, the deviation from the nominal 

output, l`, is computed as follows: 

l` = >�(�)l? + �� l?�>�(�)l? +⋯, (4-3) 

where >�(�) = (%`(�) %?⁄ )?@ ∈ ℝ3w and >�(�) = (%�`(�) %?�⁄ )?@ ∈ ℝ3w×3w are respectively the 

Jacobian and Hessian evaluated around ?@ at a specific time, �.  
4.1.1. Worst-case deviation under bounded uncertainties  

Analytical techniques have been proposed to characterize the worst-case deviation of the 

control performance under bounded model parameter uncertainty in continuum models (Ma et 

al., 1999; Ma and Braatz, 2003, 2001). In the worst-case robustness analysis, the worst-case 

deviation in the output is evaluated under bounded uncertainties in the model parameters, i.e., 

? = �?|?Y ≤ ? ≤ ?X�, (4-4) 

where ?Y and ?X represent the lower and upper limits on the vector of uncertain parameters. The 

effect of parameter uncertainty on the output of the system can be estimated from the following 

optimization problem: 

max?×Ø?Ø?Ù|l`|. (4-5) 

Using first-order PSE, the worst-case variability in the process output, l`, is calculated as 

follows: 

l g̀.\ = max?×Ø?Ø?Ù|>�l?|. (4-6) 

More accurate estimates of the worst-case variability can be obtained by adding more terms 

into the expansion and can be formulated in terms of the skewed structured singular value (SSV) 

or q analysis (Braatz et al., 1994). For the second-order PSE, l g̀.\ can be obtained as follows: 

l g̀.\ = max?×Ø?Ø?Ù|>�l? + l?�>�l?| ⇔max�∆(Û)ÜÝ Þ, (4-7) 

where, 
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Û = ß à à ÞáÞ>� à Þ>�ââã>� + >� a?� âã>�â + >�âä. (4-8) 

The 0 in Û denotes a zero matrix of consistent dimensions; á = 0.5(?X − ?Y) and â = 0.5(?X +?Y). ∆= %9!²(∆+, ∆+, l\) is the perturbation block in the q analysis. l\ is a complex scalar while 

∆+ consists of real scalars. Upper and lower bounds on `	can be calculated using the worst-case 

deviation from the nominal output in the positive and negative directions, respectively, i.e., 

`X- = h̀ + l g̀.\ , `Y$g = h̀ − l g̀.\. 
4.1.2. Probabilistic bounds under distributional uncertainty 

 The probabilistic parameter description relaxes the restriction imposed by the bounded 

uncertainty description and assumes that the uncertainty in the parameter can be described by a 

PDF. These types of uncertainties are usually described as a distribution around the point 

estimate with a specific variability. The parameter uncertainty can be characterized using the 

data collected from the actual process; however, when access to plant data is not available, the 

uncertainty is typically assumed to be normally distributed around the parameter’s nominal 

values. Moreover, the available algorithms for parameter estimation from the experimental data 

mostly result in a normal distribution (Nagy and Braatz, 2007). Therefore, the uncertainties in 

the parameters can be described by a multivariate normal distribution around the nominal 

parameter estimates as follows: 

ℰ? = å?|l?�]?−1l? ≤ χxæ2 (i)ç, (4-9) 

where ]? ∈ ℝ3w×3w denotes the positive definite covariance matrix, χ3w�  is a chi-squared 

distribution with xo degrees of freedom and i is the confidence level. PSE presents an analytical 

approach to approximate the PDFs of the controlled objectives when it is impractical to evaluate 

them using the primary model. The distributional uncertainty in the controlled outputs can be 

quantified at low computational costs based on the expansions that describe the outputs as a 

function of the uncertain parameters. Assuming that the process can be accurately described 

using a first-order PSE, the normal distribution of the output can be obtained from (Beck and 

Arnold, 1977): 
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,-.'.(`) = �
è�¡>¼]?>¼̈ exp	~�(_�_h)

�
�>¼]?>¼̈�. (4-10) 

For second and higher order PSEs, however, the distribution cannot be estimated analytically 

and random Monte Carlo realizations from the PDFs of the parameters are needed to propagate 

the uncertainty (Nagy and Braatz, 2007). Once the output distribution is obtained either 

analytically or through the Monte Carlo sampling method, the probabilistic upper and lower 

bounds can be estimated at a specific probability as follows: 

`W = )��(ℙO|`) = �`: )(`)�, (4-11) 

where ê ∈ �ë°ì, í±� and )��(ℙO|`) represents the inverse of cumulative distribution function 

(CDF) evaluated at a predefined probability, ℙO. 
4.2. Worst-case and distributional robustness analysis in a thin film deposition 

process 

The microelectronic market imposes stringent requirements upon thin film properties including 

specific thickness and surface roughness. Surface roughness is referred to as an important film 

quality variable that controls the electrical and mechanical properties of micro-electronic 

devices. The thin film deposition process is a batch operation where a desired minimum film 

thickness is required to avoid an under-grown thin film at the end of the deposition process. 

Moreover, growth rate is an important factor which determines the manufacturing productivity. 

To show the effect of parameter uncertainties on these properties of the thin film, the PSE is used 

next to obtain the PDF of the outputs. 

4.2.1. Uncertainty propagation using PSE 

The uncertainties in the process are assumed in the energy associated with a single bond, and 

the bulk precursor mole fraction, i.e. ?� = Â&,�Ä. In the case of parametric uncertainty, the 

parameters & and � are described as follows: 

& = &î(1 + ïð), � = �@(1 + ï�), (4-12) 

where the nominal values (&î and �@) are given in Table 3-1 and the uncertainties are: 
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−0.2 ≤ ïð ≤ 0.2, −0.2 ≤ ï� ≤ 0.2. (4-13) 

For a fair comparison between the worst-case scenario and probabilistic bounds, the covariance 

matrix in the multivariate normal distribution is constructed such that 99.7% of the uncertain 

parameters are within the bounded uncertainties (three standard deviations rule); therefore, 

]? = ñ(0.2&î 3⁄ )� 00 (0.2�@ 3⁄ )�ò (4-14) 

To determine the order of the PSE, an iterative approach is implemented. The commonly used 

algorithm starts with the first-order PSE and evaluates the approximation error using the brute-

force Monte Carlo method. The algorithm iteratively increases the order of the PSE up until the 

error reaches an acceptable value. This approach has also been previously suggested to determine 

the order of the PCE (Nagy and Braatz, 2010, 2007). Once the algorithm converged, the resulting 

PSE order will be used for approximating the PDF of the event rates. The order of the PSE 

depends on the nonlinearity of the function and the variability of the uncertain parameter. For 

first-order PSEs, the PDF can be evaluated analytically while, for higher order PSEs, the Monte 

Carlo sampling method is applied to the PSE model obtained from Eq.(4-3).  

To investigate the effect of probabilistic uncertainty and determine the order of the PSE for 

each output, 1000 sample points have been generated randomly from a normal PDF with the 

covariance matrix shown in Eq.(4-14). Then, applying Monte Carlo method on the multiscale 

model presented in Chapter 3 at � = 800	K, the PDF of each output has been obtained at � = 20	s. 
The PDFs are also estimated using PSEs while the sensitivities in the expansions have been 

calculated using finite differences from the average of the outputs obtained through multiple 

multiscale models employing reduced-order lattices in the KMC simulations. Figure 4-1 shows 

the PDF obtained using the Monte Carlo method applied to the full multiscale model along with 

the PDFs estimated using PSEs. As shown in this figure, a first-order PSE is not sufficient to 

describe the variability in the surface roughness. However, a second-order PSE has successfully 

captured the nonlinearity observed in this PDF.   
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Figure 4-1. Roughness PDFs at � = 800	K obtained using the multiscale model, first and second-order PSEs at 

� = 20	s. 
To determine the order of the PSE for growth rate and thickness, first-order PSEs have been 

applied. As shown in Figure 4-2 and Figure 4-3, first-order PSEs has successfully captured the 

variability in these outputs of the system. 

 

Figure 4-2. Growth rate PDFs at � = 800	K obtained using the multiscale model, first-order PSE at � = 20	s. 
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Figure 4-3. Thickness PDFs at � = 800	K obtained using the multiscale model, first-order PSE at � = 20	s. 
4.2.2. Robust optimization based on worst-case and probabilistic analysis 

The key manipulated variable for this process is the substrate temperature since it affects the 

outputs of the system significantly. In this optimization problem, while the thickness of the thin 

film needs to be maximized for a finite batch time, the surface roughness has to be minimized to 

assemble high-performance electronic devices. These are two conflicting objectives since thick 

films can be obtained at low temperatures whereas smooth film surfaces can only be realized at 

relatively high temperatures. Moreover, uncertainties lead to product quality variability resulting 

in a potential loss in profits. Thus, the optimization problem aims to determine the substrate 

temperature time-dependent profile that optimizes the process performance under uncertainty:  
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max�(#) 		 1Y$g(�5) 

(4-15) 

Subject to: 

Multiscale model presented in Chapter 3 

ℎ� = �(23 − �(�) ≤ 0 
ℎ� = �(�) − �(CR ≤ 0 
ℎ� = 0X-ó�5ô − 0(CR ≤ 0 
ℎ� = /0(23 − /0Y$g(�5) ≤ 0 
ℎ� = %0X-(�5)%� − ℜ ≤ 0 
ℎ� = %/0Y$g(�5)%� − ℜ ≤ 0 
� = ö0, �5÷;	∀< = 1,2, … , ú 

where the constraints ℎ� and ℎ� ensure that the temperature profile remains within the feasible 

operating region for the deposition process. Constraints ℎ� and ℎ� specify the maximum allowed 

surface roughness at the end of the batch, 0(CR to satisfy market demands and the minimum 

growth rate, /0(23 to ensure process productivity, respectively. ℎ� and ℎ� ensure minimum 

variability of these properties at the end of the batch. The superscripts low and up correspond to 

the end-point properties evaluated via the lower and upper bounds, respectively. At every 

evaluation of the optimization, 	1Y$gó�5ô, 0X-(�5)	and /0Y$gó�5ô are determined using either 

probabilistic or worst-case scenario approaches. To overcome the infinite-dimensional nonlinear 

optimization problem, the batch time �5 is discretized into K equally spaced time intervals while 

the temperature at each time interval, �(<) is kept piecewise constant between successive 

intervals and is considered as one of the decision variables in the optimization problem.  

Problem (4-15) has been solved under the assumption of bounded parametric uncertainty and 

distributional uncertainty in & and �, respectively. As shown in 4.2.1, a second-order PSE has 

been employed to describe the effect of uncertainties on the surface roughness whereas first-

order PSEs were sufficient to propagate uncertainties in thickness and growth rate. To estimate 

upper and lower bounds, three different approaches were considered while solving optimization 

problem defined in Eq.(4-15): i) worst-case deviation in the outputs using description (4-12), ii)  
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probabilistic bounds on outputs at 99.7% confidence interval (ℙO = 3û in (4-11)) and iii)  

probabilistic bounds at 68% confidence interval (ℙO = û in (4-11)) using description (4-14). In 

the case of the worst-case scenario, the roughness at the end of the batch is estimated using SSV 

analysis as shown in Section 4.1.1 while the worst-case deviations in thickness and growth rate 

can be calculated analytically since they are described using first-order PSEs. On the other hand, 

to propagate the uncertainty in surface roughness in the probabilistic-based approaches, Monte 

Carlo sampling is applied to the second-order PSE as explained in Section 4.1.2 whereas the 

bounds on thickness and growth rate are obtained analytically using first-order PSEs. 

The batch time was divided into ten equally spaced time intervals. For better comparison of the 

results, the initial temperature was fixed at 800 K. Figure 4-4 shows the optimal temperature 

profiles obtained from problem (4-15) using the three approaches. These profiles correspond to 

specifications in 0(CR and /0(23 of 7 mL and 13 mL/s, respectively. �(23 and �(CR were set to 

600 and 1200 K, respectively. As shown in this figure, the optimal temperature profile demands 

low temperatures at earlier stages of the deposition process to maximize the thickness by high 

adsorption rates. However, close to end of the batch process, high substrate temperatures are 

needed to promote migration on the surface and meet the constraints on surface roughness. The 

profile obtained using 99.7% confidence interval in probabilistic approach is slightly different 

from the profile obtained using the worst-case scenario approach. However, the temperature 

profile based on 68% confidence interval is the most optimistic, since this approach estimates 

less conservative bounds on surface roughness. Note that other reasonable product specification 

constraints result in similar conclusions to that presented here. 

Figure 4-5 shows the bounds evaluated for surface roughness using the optimal temperature 

profiles shown in Figure 4-4. As depicted in this figure, the bounds obtained by the worst-case 

scenario approach using the SSV analysis are more conservative compared to the bounds 

obtained using the probabilistic-based approach. The worst-case bounds are computed using the 

worst-case deviation from the nominal outputs. Moreover, this figure also shows 100 random 

open-loop variations of the surface roughness under bounded uncertainty (4-12) using the 

temperature profile obtained from the worst-case scenario. As shown in this figure, the 

roughness during the batch is bounded within upper and lower bounds estimated based on the 

worst-case deviation. The final film thicknesses employing these temperature profiles are given 
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in Table 4-1. As expected, the worst-case scenario approach returned the most conservative film 

thickness at the end of the batch. 

 

Figure 4-4. Robust optimal temperature profiles using different approaches. 

 

Figure 4-5. Upper and lower bounds on surface roughness using different approaches and open-loop simulations 

using the temperature profile obtained for worst-case performance.  

Figure 4-6 shows the final properties obtained under bounded parametric uncertainty using the 

temperature profiles obtained from these three approaches. As shown in this figure, regardless of 

a few violations using the temperature profile estimated by the probabilistic approach with 68% 

confidence interval, the three estimated optimal temperature profiles satisfy the constraints 

imposed on the optimization problem (4-15). That is, the final roughness of the thin film is 

mostly less than 7 mL in reality, even if the most optimistic temperature profile estimated by the 
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probabilistic approach with 68% confidence interval is being used. In essence, the measurable 

benefits in using the worst-case scenario will be limited since it results in an overly conservative 

temperature profile that may eventually lead to economic losses. In practice, the probabilistic 

approach with 68% confidence interval not only achieves an acceptable roughness, but also 

results in larger thickness and larger growth rate. This is a direct consequence of the optimistic 

temperature profile identified from the present approach. 

Table 4-1. Optimal end-point thickness from different approaches. 

Approach Thickness (1000 mL) 

Worst-case scenario 1.4595 

Probabilistic at 99.7% 1.4759 

Probabilistic at 68.0% 1.7293 

 

 

Figure 4-6. Variation of final properties due to bounded parameter uncertainties, obtained from open-loop 

simulations applying various temperature profiles. 

4.3. Probabilistic bounds in thin film deposition process through uncertainty 

propagation in the rate of microscopic events 

Due to issues associated with the sensitivity analysis of outputs with respect to the uncertain 

parameters, the uncertainty propagation is performed for the rate of the microscopic events. The 

main reason for uncertainty quantification of the states is the availability of a closed-form 



50 
 

formulation between these rates and the uncertain parameters. Therefore, PSEs are employed to 

avoid the high computational load corresponding with simulation of the primary model for 

multiple realizations of the uncertain parameters. Estimation of the distribution of these rates 

using the PSE-based approach is not sufficient for execution of KMC events. Accordingly, once 

the distributions are obtained, specific values can be selected based on a predefined confidence 

level. The detailed description of the proposed framework to address the uncertainty analysis for 

multiscale systems is described next. 

4.3.1. Uncertainty propagation into event rates using PSE 

Define the vector of uncertain parameters ? = �æ�, … , æü, … , æý� ∈ ℝý, ?@ as the vector of 

nominal model parameters and the microscopic rates vector a = �b�, … ,b2, …bþ� ∈ ℝþ, the 

algorithm to obtain the distributional uncertainty of rates of microscopic events at any time 

during the process can be outlined as follows: 

1. Specify the prior PDF of each uncertain parameters, ,-.'(æü). 
æü = �æü|æü ∈ ,-.'.(æü)�. (4-16) 

2. Evaluate the sensitivities of rate of each of the microscopic events with respect to the 

uncertain parameters using the multiscale model at a specific time �. The order of the 

required sensitivities relies on the order of PSE. For instance, the first and second-order 

sensitivities are as follows: 

>�(�) = ~|a|?�??@ , >�(�) = ~|�a|?� �??@ . (4-17) 

3. Estimate the PDF of b2 using the following truncated PSE: 

b2 = b@2 + >�ó? − ?@ô + 12 ó? − ?@ô�>�ó? − ?@ô +⋯, (4-18) 

where b@2 is the nominal microscopic event rate. The PDF of b2 can be obtained by solving 

(4-18) for different Monte Carlo realizations in ? that comply with the prior distribution 

assigned to each of the uncertain parameters. For first-order PSEs, the PDF of the rate can be 

evaluated analytically while, for higher order PSEs, the distribution is estimated by applying 

the Monte Carlo sampling method to the PSE model obtained from Eq.(4-18).  

4. Estimate the upper and lower bounds on b2 at a predefined confidence level, i. 
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b2W = )��(ℙO|b2) = �b2: )(b2)�, (4-19) 

where ê ∈ �ë°ì, í±� and the function )��(ℙO|b2) represents the inverse of CDF evaluated at a 

predefined probability, ℙO. Setting ℙO in Eq.(4-19) to i 2⁄  and 1 − i 2⁄  yields respectively 

the lower bound, b2Y$g, and the upper bound, b2X-, for the i th event rate, b2. 
In order to investigate the performance of PSE, the PDF of rate of adsorption obtained using 

the primary model and the PSE are compared. The uncertainty analysis was performed with 

respect to the bulk mole fraction, � which according to the multiscale model presented in 

Chapter 3 is the boundary condition of the mass transfer equation shown in Eq.(3-4). This 

parameter has a significant effect on the total rate of adsorption (bC) and therefore on the overall 

multiscale model. To that end, after a finite time interval in the open-loop simulation, the PDF of 

the total adsorption rate were obtained from Monte Carlo simulations using the primary model 

and the PSE. As it was previously mentioned, the Monte Carlo method requires a large number 

of samples from the uncertain parameter distribution. Particularly for this system, more than 500 

data points have to be generated to obtain a representative distribution for the total rate of 

adsorption while using the primary multiscale model. To study the effect of uncertainty in the 

bulk mole fraction, random numbers are generated from a normal distribution, �(2 × 10��, 2 ×
10��). Employing these data points, the uncertainty is propagated into the total adsorption rate 

using the multiscale model presented in Chapter 3 at � = 800	K. The PDF obtained at � = 10	s is 

presented in Figure 4-7. The variability is also assessed using a first-order PSE and the fitted 

normal distribution is shown in Figure 4-7. As shown in this figure, the distribution obtained 

from the PSE accurately describes the variability in the total rate of adsorption due to the 

uncertainty in �. The required computational times are indicated in Table 4-2. As shown in that 

table, the Monte Carlo method is at least two orders of magnitude more intensive than the PSE, 

which indicates the key benefit of the present approach. Using the distribution obtained for total 

rate of adsorption, then upper and lower bounds for the adsorption rate at the current time �, i.e., 

bCY$g(�),bCX-(�), can be estimated at a given confidence level. The corresponding values at 

i = 1% are shown in Table 4-2. 
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Figure 4-7. PDF of the total adsorption rate from Monte Carlo applied to multiscale model using 500 points and the 

PDF obtained using first-order PSE. 

Table 4-2. The probabilistic bounds of the total rate of adsorption from different approaches at � = 10	s and the 

corresponding computational costs. 

Approach �����(	/
) ����(	/
) Computational Time (s) 

Monte Carlo using the primary model 1.41 × 10� 2.33 × 10� 34,980 

First-order PSE 1.38 × 10� 2.34 × 10� 390 

 

The first-order PSE is not sufficient for uncertainty analysis in other parameters of the system, 

e.g., & and &(. As shown in Eqs.(3-9) and (3-11), the energy associated with a single bond and 

migration affect the microstructure through nonlinear Arrhenius-type expressions of desorption 

and migration rates. In this case, higher order PSEs are needed due to the existence of 

nonlinearity between the uncertain parameters and the microscopic events. Therefore, second-

order PSE is applied to study the uncertainty propagation in total rate of desorption and 

migration due to variability in these parameters. To study the effect of variability, the uncertainty 

considered for � was similar to that described above, i.e., �(2 × 10��, 2 × 10��) whereas & and 

&( were assumed to follow normal distributions around their nominal values, Â&î, &î(Ä =Â17000, 10200Ä, with the standard deviation of 500	 cal mol⁄ 	. The PDFs obtained using PSE for 

the rate of microscopic events at different times are shown in Figure 4-8. 
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Figure 4-8. PDFs obtained from PSE during deposition. 

4.3.2. Computation of the probabilistic-based bounds 

The algorithm described above to obtain the bounds for each of the microscopic events at a 

specific confidence level, α, produces a time-dependent hyper-rectangle box  formed by the 

extreme values of each microscopic event, b2W, considered in the KMC simulation, i.e., 

(�) = �ö�(�), …¿(�), … ,�(�)÷:¿(�) = öb�W(�),… ,b2W(�), … ,bþW(�)÷�, (4-20) 

where the block vector (�) of length 2I includes all the possible combinations between the 

upper and lower bounds of the I total rate of microscopic events at time �. Each element of , 

e.g. ¿, is a vector of length I that includes a particular combination between the upper and lower 

limits of the I microscopic events. Similarly, the surface describing the microstructure of the 

system at any time � is defined as follows: 

S(�,) = �S�(�,�),… , S¿ó�,¿ô, … , S�ó�,�ô, 	S3$((�,3$()�, (4-21) 

where S¿(�,¿) is a KMC lattice that represents the morphology of the surface as shown in 

Eq.(3-7) at time � due to the combination in the upper and lower limits specified on the 

microscopic events by the vector ¿. Similarly, S3$((�,3$() represents a surface describing 

the evolution at time � of the film using the nominal values in the I microscopic events and is 

defined as follows: 
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3$((�) = Âb�3$((�), … ,b23$((�),… ,bþ3$((�)Ä,  

where b23$((�) represents the nominal (expected) value of the i th event rate at time �.  
Based on the above, J+1 parallel lattice-based KMC models need to be simulated 

simultaneously to compute the lower and the upper bounds on the fine-scale properties of the 

system. Each simulation describes the microstructure of the surface due to a particular 

combination in the event rates. Accordingly, lower and upper bounds on the outputs of the thin 

film deposition process at a given time t can be obtained as follows:  

h̀X-(�) = max�h �h(�), 
(4-22) h̀Y$g(�) = min�h �h(�), 

�h(�) = Â h̀�(�), … , h̀¿(�), … , h̀�(�), h̀3$((�)Ä, 
where h̀¿(�) represents an output predicted from the KMC model that is calculated using 

properties of the microstructure of the surface S¿(�,¿). The output �h(�) can represent the 

roughness, growth rate or thickness of the film at a given time �, i.e., 0(�), /0(�) and 1(�), 
respectively.  

In general, the number of parallel KMC simulations depends on the number of microscopic 

events. Specifically for the thin film deposition process described in Chapter 3, J = 23 since there 

are three different microscopic processes occurring on the surface, i.e., adsorption, desorption 

and migration. Nevertheless, the sensitivities are time-varying and correspondingly the lower and 

upper bounds on microscopic events will change during the deposition process. When the 

parameter uncertainties are time-varying, propagating the uncertainty using fixed upper and 

lower bounds on microscopic events results in overly conservative bounds for the outputs. To 

alleviate this problem, S3$((�,3$() is used as the reference (nominal) surface using the 

nominal values of events rates. This lattice is used to update other KMC simulations, every 

sampling time instance, Δ�. That is, assuming that the uncertain parameter is changing every ∆� 
according to its PDF, ,-.'.(æü), all the KMC lattices to be used for the next sampling interval, i.e., 

S(� + ∆�,¿) are initialized with S3$((�,3$() to compute the lower and upper bounds of 

outputs for the next sampling time interval. This procedure continues up until the final 

integration time is reached. Figure 4-9 summarizes the algorithm proposed in this work to 

determine the probabilistic-based bounds for the thin film deposition process. 
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Figure 4-9. Flowchart of the algorithm used to approximate the upper and lower bounds of the outputs. 

  Start 

Specify uncertainty distribution for each 

uncertain parameter, ,-.'(æü) 

Specify the required confidence levels for 

total rates of microscopic events, i 

Evaluate the sensitivity of rate of 

microscopic events, >�, >�, … 

Fit a PDF to each rate using Monte Carlo 

applied to PSE obtained from Eq.(4-18)	
 

Find the corresponding rate of 

microscopic event for the low and high 

confidence level to generate the uncertainty 

box, (�)  

KMC simulation for ∆� KMC simulation for ∆� KMC simulation for ∆� 

 S(� + ∆�,3$()  S(� + ∆�,�)  S(� + ∆�,�) 

 �h(� + ∆�) Final integration time reached? 

Stop h̀Y$g(� + ∆�) h̀X-(� + ∆�) 

3$((�) 

Y

N

�(�) 
…

…

�(�) 



56 
 

The major limitation of the proposed algorithm is its computational cost for control and 

optimization applications. To accelerate the simulations, reduced-order lattices are employed in 

the KMC simulations which give rise to other challenges. The new issues arise due to higher 

fluctuations encountered with smaller lattice sizes as shown in Figure 3-14. To eliminate the 

fluctuations presented due to reduced-order lattices, the probabilistic bounds are estimated based 

on averaging the estimates obtained from multiple independent simulations. 

4.3.3. Robust optimization based on the probabilistic bounds 

In this section, problem (4-15) is solved assuming ?� = Â�, &, &(Ä is the set of uncertain 

parameters that are normally distributed around their nominal values listed in Table 3-1 with 

specific standard deviations. � is assumed as a time-invariant uncertain parameter with a 

standard deviation of 2 × 10��	whereas & and &( are assumed to change during operation every 

∆� = 1	s with standard deviations of 500	 cal mol⁄ . The bounds on the rates of microscopic event 

are calculated at 99% confidence level. The batch time is discretized into 10 stages of ∆� = 10	s; 
the substrate temperature at the initial time of the batch is kept constant at � = 800	K. In this 

optimization, 0(CR and /0(23 are set to 5.25 mL and 10.5 mL/s whereas �(23 and �(CR are 600 

and 1100 K, respectively.  

The optimal substrate temperature profiles for the endpoint optimization problem using only 

nominal values in the parameters, as well as the robust approach under parametric uncertainty 

are shown in Figure 4-10. Figure 4-11 shows the bounds obtained using the optimal robust 

temperature trajectory profile. The corresponding open-loop variations of the surface roughness 

while using the robust temperature profile are also shown in that figure, i.e., random realizations 

in the uncertain parameters ? that follow their description given above were simulated using the 

robust temperature profile. As shown in this figure, open-loop simulations are bounded with the 

upper and lower bounds obtained for roughness; the remaining constraints were also validated in 

the same fashion and are not shown here for brevity. 
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Figure 4-10. Optimal temperature profile obtained using the nominal parameters and robust approach. 

 

Figure 4-11. The upper and lower bounds estimated for surface roughness and open-loop simulations using the 

robust optimal temperature profile obtained under parametric uncertainty. 

Figure 4-12 shows the corresponding open-loop variations of the final surface roughness and 

growth rate applying 100 Monte Carlo simulations using both the nominal temperature profile 

and the robust optimal temperature profile. As shown in this figure, open-loop simulations 

employing the robust temperature profile remained within the feasible operational limits 

specified for this process. On the other hand, the open-loop variations of the final surface 

roughness applying Monte Carlo simulations using the nominal temperature profile shows that 

the surface roughness at the end of the batch process does not meet the specification considered 

for this variable (0(CR) most of the time, which results in a loss in performance. 
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Figure 4-12. Final properties due to parameter uncertainties, obtained from the open-loop simulations applying 

various temperature profiles. The dots are for the robust temperature profile whereas the x-marks are for the nominal 

temperature profile; the dashed lines indicate the constraint on the final surface roughness and growth rate. 

4.4. Summary 

The main contribution of this research is to employ higher order PSEs for uncertainty analysis 

of multiscale systems. Although series expansions have been employed in the literature for 

sensitivity analysis of multiscale systems, PSEs have been employed in this part of the research 

for robust optimization of multiscale systems under uncertainty. The uncertainty analysis of the 

thin film deposition is performed applying worst-case and probabilistic-based approaches. The 

optimal temperature profile that maximizes the final thickness of the thin film under end-point 

product constraints and uncertainty in the model parameters was determined. The results show 

that employing the SSV analysis or probabilistic-based approach based on the prior assumption 

on type of the uncertainty affects the optimization results. Thus, inaccurate uncertainty 

description assumptions can lead to a loss in performance and therefore economic losses in the 

process. 

A systematic framework was explored to analyze the time-varying model uncertainty 

propagation based on the PSE. The uncertainty in the parameters of the KMC simulations and in 

the boundary condition of the mass transfer equation is propagated into total rates of microscopic 

events using PSEs. That is, having the prior distribution of the uncertain parameters and 

estimating the sensitivities, the PDF of microscopic events are determined using the PSE. 
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Subsequently, upper and lower bounds on the outputs are estimated using the outputs 

distributions. The computational feasibility for robust optimization has been achieved using 

average of multiple multiscale models that apply reduced-order lattices in the KMC ion. This 

method has been used to obtain the optimal substrate temperature trajectory that maximized the 

endpoint thin film thickness while meeting constraints on the roughness and growth rate in the 

presence of uncertainty in the multiscale model’s parameters. The proposed approach has been 

evaluated through simulations that show that the system’s outputs remained within their 

corresponding feasible operational limits under uncertainty.  

The implementation of the framework used in this chapter for online applications is still 

challenging and even prohibitive due to the computational costs associated with the simulations 

of the KMC model. The issue of computationally intensive KMC simulations is addressed in the 

next chapter by developing low-order models for online applications. 
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Chapter 5  
Robust Estimation and Control of Surface Roughness and Growth Rate† 

The production of high quality thin films is not feasible without a precise control framework. 

However, measurements are not available at a frequency that is required for effective control. 

Therefore, real-time estimators are required to estimate the desired thin film properties for 

control and optimization approaches. The controllability of the thin film growth process has been 

extensively studied in the literature. Most of the advanced microstructure controllers proposed in 

the literature for thin film deposition require measurements at fine scale, while in practice, thin 

film depositions are typically operated in open-loop. Moreover, model parameter uncertainty has 

been usually neglected in those methodologies. Thus, control approaches that can operate 

regardless of the measurements under model-plant mismatch are essential for the efficient 

operation of these processes. Methodologies for real-time estimation and control of thin film 

deposition process have been proposed based on multiple reduced-order lattices in KMC 

simulations (Lou and Christofides, 2003b). The implementation of KMC simulations for online 

applications is still challenging and even prohibitive due to the computational costs. The issue of 

computationally intensive KMC simulations is circumvented by developing low-order models 

that are identified offline based on data obtained from the multiscale model. This approach 

significantly reduces the simulation time over KMC and makes the online control and 

optimization feasible. 

This chapter presents the development of an estimator to evaluate the surface roughness and 

growth rate based on the substrate temperature and the bulk precursor mole fraction during the 

growth process. Section 5.1 shows the open-loop responses in the deposition process and 

investigates the potential interactions between the manipulated variables and controlled outputs. 

Section 5.2 presents an algorithm to construct the multivariable robust estimator. In Section 5.3, 

the performance of the estimator is evaluated by coupling the estimator with PI controllers to 

simultaneously control the surface roughness and the growth rate under different scenarios. The 

outcomes obtained from this implementation are summarized at the end of this chapter. 

                                                 
† This chapter has been written based on: (Rasoulian and Ricardez-Sandoval, 2015b). 
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5.1. Interaction between the manipulated variables and controlled outputs 

In order to design a multiple-input-multiple-output control scheme for the thin film deposition 

process, the effect of manipulated variables on the controlled outputs must be analyzed first. For 

this analysis, the multiscale model presented in Chapter 3 has been employed to mimic the actual 

process behavior. Eqs.(3-8)-(3-15) reveal the significant role of substrate temperature on the 

microscopic events that affect the surface microstructure, in thin film deposition, particularly 

roughness. Eq.(3-8) shows that the precursor mole fraction influences the deposition rate and 

accordingly the surface roughness and growth rate. Thus, the effect of bulk precursor mole 

fraction and substrate temperature on the surface roughness and growth rate, and their potential 

interactions, are studied through open-loop simulations. Figure 5-1 shows the surface roughness 

and growth rate when the bulk mole fraction is remained constant at 2 × 10�� whereas the 

substrate temperature is changed from 1000 to 1100 K at � = 50	s. As illustrated in this figure, 

the growth rate shows an instantaneous decrease from approximately 17.3 to 16.5 mL/s, i.e., with 

a gain of -0.008 mL/(s.K). The surface roughness follows a typical step response to overdamped 

processes with a gain of -0.0125 mL/K, i.e., the roughness is decreased from 3.75 to 2.5 mL. 

Therefore, although the temperature affects both surface roughness and growth rate, the surface 

roughness is more sensitive to variations in temperature. In Figure 5-2, the roughness and growth 

rate profiles are shown when the bulk mole fraction is changed from 2 × 10�� to 3 × 10�� at 

� = 50	s while the temperature remained constant at 1000 K. As shown in this figure, the growth 

rate is instantaneously increased from approximately 17.3 to 26 mL/s with a gain of 8.7 × 10� 
mL/s while the surface roughness follows a response typically observed for overdamped 

processes to step changes with a gain of 5.5 × 10� mL, i.e., the roughness increased from 3.75 to 

4.3 mL. Although the bulk precursor mole fraction affects both surface roughness and growth 

rate, growth rate is more sensitive to variations in this process variable. Therefore, the precursor 

mole fraction and temperature simultaneously affect the desired outputs and this interaction 

needs to be considered in multivariable estimation and control scheme.   
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Figure 5-1. Surface roughness and growth rate for a step change in the substrate temperature from 1000 to 1100 K 

while � = 2 × 10��. 

 

Figure 5-2. Surface roughness and growth rate for a step change in the bulk precursor mole fraction from 2 × 10�� to 

3 × 10��	while � = 1000	K. 

5.2. Real-time robust estimation of roughness and growth rate 

In Section 4.3, some uncertainties were considered to be changing in time and an algorithm was 

proposed to estimate upper and lower bounds on the outputs under uncertainties. The 
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distributional uncertainty quantification was performed for the rates of the microscopic events 

using PSEs; upper and lower bounds of the outputs were then obtained using the PSE-based 

bounds on the rate of these events (Rasoulian and Ricardez-Sandoval, 2014). The main reason 

for uncertainty quantification of the states was the availability of a closed-form formulation 

between these rates and the uncertain parameters. Therefore, PSEs were employed to avoid the 

high computational load corresponding with simulation of the primary model for multiple 

realizations of the uncertain parameters. In the current research, however, the uncertainty is 

directly propagated into the outputs of the system where the closed-form model is not available. 

This approach provides the distribution of the outputs instead of only determining upper and 

lower bounds for the system’s outputs. Uncertainty quantification is studied in this work 

employing PSEs to assess the variability resulted in the outputs of the system due to model 

parameter uncertainty. 

5.2.1. Model construction  

In this section, an algorithm is presented to develop a robust estimator that can mimic the 

multiscale process efficiently for online control and optimization purposes in the presence of 

model parameter uncertainty. As a result of the input/output interactions illustrated in Section 

5.1, multivariable identification is considered. Offline system identification is performed to 

determine the parameters of a reduced-order model that describes the surface roughness and 

growth rate as a function of substrate temperature and bulk precursor mole fraction. The 

identified closed-form model is incorporated in an estimator that predicts the controlled outputs 

for online application. The algorithm comprises the following steps: 

1. Space discretization: Discretize the operational region of temperature into equally spaced 

intervals ∆�, and the bulk precursor mole fraction region into equally spaced intervals ∆�. 

�2 = ��(23 + 9∆�|�(23 ≤ �2 ≤ �(CR, 9 = 0, 1, … , (�(CR − �(23) ∆�⁄ �, 
(5-1) �¿ = ��(23 + :∆�|�(23 ≤ �¿ ≤ �(CR, : = 0, 1, … , (�(CR −�(23) ∆�⁄ �, 

where �(23 and �(CR are respectively the minimum and maximum operating temperature 

while �(23 and �(CR are the minimum and maximum applicable bulk precursor mole 

fraction, respectively. The purpose of the discretization is to derive a finite-dimensional 

identification problem. Decreasing the discretization resolution reduces the computational 

costs but it also diminishes the model’s ability to make accurate predictions whereas 
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increasing the number of discretization points improves the accuracy in the model predictions 

at the expense of higher computational costs. 

2. Batch time discretization: Divide the batch time horizon � ∈ Â�=, �5Ä into equally spaced time 

intervals, ∆�, with discrete time steps �Z = �= + <∆�; < = 0,1, … , ú.  

3. Uncertainties description: Define the vector of uncertain parameters ? = �æ�, … , æü , … , æý� ∈ℝý, ?@ as the vector of nominal model parameters, h̀ as the output of the process using the 

nominal parameter vector, ?@, and ̀  as its value for the perturbed vector, ?. Specify the prior 

PDF of each uncertain parameter, ,-.'(æü). 
æü = �æü|æü ∈ ,-.'.(æü)�. (5-2) 

Although this method takes advantage of the prior knowledge about the distribution of the 

uncertain parameters, the algorithm presented here is applicable regardless of the PDF 

assigned to the uncertain parameters.  

4. Sensitivity evaluation: Evaluate the nominal outputs and sensitivities of the outputs with 

respect to the uncertain parameters for each pair of �2 and �¿, at each discrete batch time, �Z, 
during the growth process. The sensitivities have to be estimated based on the average of 

multiple multiscale simulation runs using high-order lattices in the KMC models. The order 

of the sensitivities relies on the accuracy required by the PSE to approximate the outputs’ 

PDFs of the primary multiscale model. 

5. Output’s PDF approximation: Estimate the PDF of ` at each sampling time instance during 

the deposition for each pair of �2 and �¿ using the following truncated PSE: 

`2,¿,Z = h̀2,¿,Z + >�,2,¿,Zó? − ?@ô + �� ó? − ?@ô�>�,2,¿,Zó? − ?@ô +⋯, (5-3) 

where >�,2,¿,Z = (%` %?⁄ )?@ ∈ ℝý and >�,2,¿,Z = (%�` %?�⁄ )?@ ∈ ℝý×ý are respectively the 

Jacobian and Hessian evaluated at �2, �¿ and sampling time instance, �Z around the nominal 

values of the uncertain parameters (?@).  
6. Calculation of output’s bounds: Estimate the upper and lower bounds on ` at a predefined 

confidence level, i, during the entire batch time for each pair of �2 and �¿, ̀ 2,¿,Z��ð 
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`2,¿,Z��ð = )2,¿,Z�� óℙO¸`2,¿,Zô = �`2,¿,Z: )2,¿,Zó`2,¿,Zô� (5-4) 

where the function )��(ℙO|`) represents the inverse of CDF evaluated at a predefined 

probability, ℙO. Setting ℙO in Eq.(5-4) to i 2⁄  and 1 − i 2⁄  yields respectively the lower 

bound and the upper bound on the output. Accordingly, ` can be the upper or lower bound of 

any output of the process, i.e. surface roughness or growth rate. 

7. Model selection: Select an appropriate model that can describe the evolution of the process 

outputs with respect to time. According to the trajectories depicted in Figure 5-1 and Figure 

5-2 and the discussions provided in Section 5.1, the surface roughness can be interpreted as 

an overdamped process model whereas growth rate can be modeled as a steady-state gain 

process. Therefore, the following models are considered to describe the surface roughness 

and growth rate during the batch time for each pair of �2 and �¿: 
0ó�2, �¿, �ô = ��,2,¿�2�¿��,º,½ ñ1 − ¤� £��,º,½ò, (5-5) 

/0ó�2, �¿ô = ��,2,¿�2�¿, (5-6) 

where �Y,2,¿(ë = 1,… ,4) are the low-order model parameters that can be identified through the 

least-squares approach. 

8. Model identification: Estimate the parameters of Eqs.(5-5)-(5-6) for the dataset obtained for 

each pair of �2 and �¿ (i.e. �Y,2,¿)	through minimization of the following least-squares 

function: 

�ó��,�ô = ∑ (`2,¿,Z��ð − 2̀,¿,Z-+4')��Z= , (5-7) 

where ̀ 2,¿,Z��ð and ̀ 2,¿,Z-+4' are respectively the bound on the process output obtained using the 

PSE-based approach and model prediction of the output at kth sampling time instance and �2 
and �¿. The identified �Y,2,¿(ë = 1,… ,4) represent the parameters of the models presented in 

Eqs.(5-5)-(5-6) for each pair of �2 and �¿. That is, there exists one model for each pair of 

temperature and bulk mole fraction considered in the Space discretization step.  

9. Approximation of the low-order model parameters: The aim of this step is to use the model 

parameters estimated from offline identification at each discrete point (i.e. �Y,2,¿) to determine 

a polynomial function that can be used to estimate these parameters at any temperature or 

bulk mole fraction that is within the operational region, i.e., �̅Y(ë = 1,… ,4). Regression can be 
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used to correlate the estimated parameters, �̅Y(ë = 1,… ,4), to the independent variables � and 

�: 

�̅Y = ê=,Y + ∑ ê',Y�'(�,�)J'� , (5-8) 

where �' represents a polynomial function of temperature and bulk precursor mole fraction; 

ê=,Y and ê',Y are the polynomial coefficients calculated using regression analysis and D is the 

number of independent terms considered in the analysis. These polynomial correlations can 

be used in closed-form models to predict the surface roughness and growth rate for online 

applications. 

10. Online robust estimator: Once these polynomial correlations are obtained offline, they can be 

used for online estimation of roughness and growth rate. According to Eq.(5-6), measuring 

the temperature and bulk mole fraction is sufficient to estimate growth rate. On the other 

hand, surface roughness at any sampling time during the growth process depends not only on 

temperature and bulk precursor mole fraction but also on the roughness at a previous time 

instance; thus, 

0Z = 0Z�� + ¯²x ñ�̅������ ñ1 − ¤�£����ò − 0Z��ò �ó�̅������ − 0+45ô ñ¤�£�ª¼ª£������ − ¤�£�ª£������ ò�, (5-9) 

where 0Z is the estimated roughness at sampling time instance, �Z, while 0Z�� is the estimated 

roughness at previous sampling time instance, �Z��. It is important to note that, 0Z�� is 

obtained from the estimator. 0+45 and �+45 respectively denote the reference roughness and the 

reference time when the substrate temperature changes to the current temperature. ¯²x is the 

sign function while �̅�, 	�̅� and �̅� are the model parameters evaluated using the temperature 

and bulk mole fraction at time, �Z. 
5.2.2. Application to thin film deposition process 

To determine the order of the required PSEs for distributional uncertainty propagation, a 

comparison has been made between the PDFs obtained via uncertainty propagation in surface 

roughness using the primary multiscale model and PSEs. In this case, ?� = Â&, &' , &(Ä is 

considered as the vector of uncertain parameter. It is assumed that the uncertainties are normally 

distributed around their nominal values listed in Table 3-1 with a standard deviation of 500 

cal mol⁄ . The standard deviation for the uncertain parameters is set based on the sensitivity of the 

model outputs to these parameters. Note that the PSE technique is applicable regardless of the 
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variability in the model parameters. Therefore, 1000 sample points were generated randomly for 

the vector of uncertain parameters from their corresponding prior PDFs. The roughness PDF at 

� = 20	s is obtained through the Monte Carlo technique employing these sample points in the 

multiscale model described in Chapter 3 at � = 800	K and � = 2 × 10��. This PDF is plotted in 

Figure 5-3 with the PDFs obtained using first and second-order PSE approximations. The normal 

distribution resulted from the first-order PSE can be estimated analytically whereas, for the 

second-order PSE, the Monte Carlo sampling method is applied (Nagy and Braatz, 2007). As 

illustrated in this figure, although first-order PSE can adequately describe the distribution of 

surface roughness, second-order PSE has captured the tails of the PDF more accurately.  

 

Figure 5-3. Roughness PDFs at � = 800	K and � = 2 × 10�� obtained using the multiscale model, first and second-

order PSEs at	� = 20	s. 
The computational times for these approaches are depicted in Table 5-1. As shown in this table, 

the implementation of the Monte Carlo sampling technique for uncertainty propagation in the 

outputs using the multiscale model has a high computational cost compared to PSE-based 

approaches. Upper and lower bounds obtained at 68.2% confidence interval are also shown in 

Table 5-1. Comparing the bounds estimated using PSE-based approaches with those obtained 

from the multiscale model reveals that, although the bounds evaluated using first-order PSE are 

acceptable, the second-order PSE provides higher accuracy. As shown in Table 5-1, the error of 

the first-order PSE model is larger than 1% (i.e., 1.7% and 1.024%) whereas the errors in the 

second-order PSE are smaller than 1% (i.e., 0.2% and 0.7%). This confidence interval 

corresponds to the upper and lower bounds that lie within one standard deviation from the mean 
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value. It is important to note that these bounds can be calculated using any other value for the 

confidence interval. 

Table 5-1. The probabilistic bounds of the surface roughness at 68.2% confidence interval from different 

approaches and the corresponding computational costs. 

Approach ����(>) ���(>) Computational Time  

Monte Carlo using the multiscale model 10.81 14.71 28 hr 

First-order PSE 10.62 (1.7%) 14.56 (1.02%) 16.6 min 

Monte Carlo using the second-order PSE 10.83 (0.2%) 14.82 (0.7%) 38 min 

 

Figure 5-4 shows the roughness PDFs obtained at a different operating point, i.e., � = 1100	K 

and � = 4 × 10��. Likewise, the second-order PSE is able to capture the tails of the output 

distribution more accurately. Although more accurate output distributions may be obtained using 

high-order expansions, the order of the PSE is mostly determined by the accuracy of the 

approximation required while performing the robustness analysis. 

 

Figure 5-4. Roughness PDFs at � = 1100	K and � = 4 × 10�� obtained using the multiscale model, first and second-

order PSEs at � = 20	s. 
To investigate the effect of this set of uncertain parameters on growth rate, the distribution of 

growth rate is estimated using the Monte Carlo sampling method applied on 1000 sample points 

randomly generated from the corresponding PDFs of the uncertain parameters. Uncertainty is 

propagated into the growth rate employing the multiscale model, first and second-order PSE 
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approximations at � = 800	K and � = 2 × 10��. As shown in Figure 5-5, the variability in 

growth rate as a result of uncertainty is small and growth rate is not significantly sensitive to this 

set of uncertainties. 

 

Figure 5-5. Growth rate PDFs at � = 800	K and � = 2 × 10�� obtained using the multiscale model, first and second-

order PSEs at � = 20	s. 
To develop the proposed robust estimator for the thin film deposition presented in Chapter 3, it 

is assumed that the substrate temperature can change from 600 K to 1400 K, �2(9 = 1,… ,9), 
whereas precursor bulk mole fraction can vary from 1 × 10�� to 7 × 10��, �¿(: = 1,… ,7). For 

this application, using more discrete points does not improve the accuracy of the estimations. To 

discretize the batch time, �5 = 100	s, 101 discretization points were used. As shown in Figure 5-3 

and Figure 5-4, surface roughness is quite sensitive to these uncertain parameters. Despite that 

high-order PSEs provide more accurate distributions of roughness, the first-order PSE is applied 

here since it was accurate enough for control purposes. Therefore, first-order sensitivities of 

roughness with respect to the uncertain parameters are generated offline for each pair of 

temperature and bulk mole fraction along the batch time. Due to normally distributed 

uncertainties assumption in the parameters and using a first-order PSE, the uncertainty in the 

surface roughness will be normally distributed and its mean and variance can be calculated 

analytically (Nagy and Braatz, 2007). The mean and the variance of the corresponding normal 

distributions are used to obtain the lower and upper bounds on roughness at i = 0.5%. This data 

is used in Model identification step in the previous algorithm to estimate the model parameters 

for each pair of �2 and �¿. The regression results for the upper bound on roughness at � = 600	K 
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and � = 700	K are presented in Appendix A. To provide a general model for the whole 

operational region (step 9 in the previous algorithm), the operational substrate temperature 

region is divided into three regions and the parameters in Eq.(5-5) are estimated assuming that 

these parameters are functions of substrate temperature and bulk mole fraction as follows: 

�̅Y = ê=,Y + ê�,Y� + ê�,Y�� + ê�,Y�� + ê�,Y��� + ê�,Y����. (5-10) 

Figure 5-6 shows the model fittings obtained from regression for these parameters, which are 

used to estimate the upper bound on surface roughness when the operating temperature is 

between 1100 K and 1400 K. It is important to note that, for brevity, the regression results for 

other regions of temperature are provided in the Appendix A. Moreover, the narrow confidence 

bounds obtained for each regression is included in Appendix A demonstrating that the regression 

models are statistically significant. Although other polynomial functions or nonlinear functions 

can be used, the estimations obtained by the function shown in Eq.(5-10) are sufficiently 

accurate for online control purposes.  

To examine the performance of the estimator, upper and lower bounds obtained for the surface 

roughness from the robust estimator are shown in Figure 5-7. In this case, the bulk precursor 

mole fraction is maintained constant at 3 × 10�� whereas the substrate temperature is changed 

according to the profile shown in this figure. To show the effect of uncertainties, a set of 30 

realizations were generated from the distributions of uncertain parameters and used in the 

multiscale model to calculate the surface roughness. As shown in Figure 5-7, these open-loop 

simulations are bounded within the lower and the upper bounds obtained by the robust estimator. 

It is important to note that, in the presence of model-plant mismatch, estimating the upper bound 

on roughness from the multiscale model is not applicable in online applications. That is, 

calculating the bounds employing PSE takes couple of hours while the closed-form models 

developed in this work predict the bounds in milliseconds. 
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Figure 5-6. Polynomial models used to determine �̅�, �̅� and �̅� to estimate the upper bound on surface roughness 

while 1100	K < � < 1400	K. 
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Figure 5-7. (a) Surface roughness due to parameter uncertainties, obtained by Monte Carlo simulation using 30 

open-loop simulations (solid lines), the upper and lower bounds on surface roughness by robust estimator (dashed 

lines), (b) Substrate temperature profile. 

To develop an estimator for growth rate, as shown in Figure 5-5, the uncertain parameters 

considered in the present analysis have no significant effect on this output of the process. 

Therefore, a nominal estimator was designed for growth rate from the data collected using open-

loop multiscale simulations at each pair of �2 and �¿. The input and output measurements along 

with the model proposed in Eq.(5-6) are used in least-squares minimization to obtain ��,2,¿ for 

each discrete point in the operational domain. Then, the following model is obtained for growth 

rate through regression: 
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/0 = (5.34 × 10� − 99.1� + 4.92 × 10��� + 7.5	 × 10���� − 2.1 × 10����)��, (5-11) 

where the term in the brackets is the polynomial function used to approximate �̅� for any 

temperature and bulk mole fraction in the specified operating region. 

To show the performance of the nominal estimator for growth rate, the bulk precursor mole 

fraction is maintained constant at 3 × 10�� whereas the substrate temperature is changed 

according to the profile shown in Figure 5-7(b). The estimated profile and the growth rate 

obtained from the multiscale model under uncertainty in the parameters are shown in Figure 5-8. 

As shown in this figure, the estimator predicts the growth rate obtained from the multiscale 

model. 

 

Figure 5-8. Comparison between the growth rate obtained by multiscale model and growth rate estimated using the 

estimator. 

5.3. Control of surface roughness and growth rate 

In this section, the multivariable control of surface roughness and growth rate is studied 

adopting the estimator proposed in Section 5.2 coupled with PI controllers. The control scheme 

block diagram is shown in Figure 5-9 and thin film deposition is modeled based on the 

multiscale model developed in Chapter 3 using a 100 × 100 lattice in the KMC simulation.  

To justify the need for a robust estimator in the control applications and to demonstrate the 

effectiveness of the proposed estimator, three different case studies are investigated: 

1. The nominal estimator is applied to control the nominal thin film deposition process.  
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2. The nominal estimator is employed to control the deposition process under model 

parameter uncertainty. 

3. The robust estimator is applied to control the deposition process under model parameter 

uncertainty. 

 

Figure 5-9. Block diagram of multivariable control of thin film growth process. 

In the first case study, a nominal estimator would suffice to estimate the controlled outputs 

assuming that all the parameters of the process are perfectly known. To design the nominal 

estimator, step 4-6 in the algorithm proposed to design the estimator in Section 5.2.1 is modified 

as follows: instead of estimating bounds on the controlled outputs, the responses from multiple 

open-loop simulations are averaged for roughness and growth rate using the nominal model 

parameters shown in Table 3-1. According to the results shown in Figure 5-1 and Figure 5-2, the 

surface roughness is paired with substrate temperature whereas growth rate is paired with the 

bulk precursor mole fraction. The set point of the surface roughness in these simulations is 2 mL 

while the proportional gain in its PI controller is set to 1.7 K/mL and its integral gain is set to 1 

K/(mL.s). The set point for the growth rate is set to 40 mL/s while the proportional gain and the 

integral gain in the growth rate PI controller are 1.4 × 10�Ì mL-1 and 8 × 10��= (mL.s)-1, 

respectively. As shown in Figure 5-9, the controller uses the estimate of the outputs obtained 

from the estimator to determine the control actions including temperature and precursor mole 

fraction. The controlled surface roughness and growth rate from the deposition process, their 

corresponding estimations and also their control actions are illustrated in Figure 5-10. As shown 

in this figure, the estimator is able to follow the multiscale process resulting in a successful 

regulation of the surface roughness and growth rate around their desired set points. 
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Figure 5-10. (a) Surface roughness and growth rate trajectories from the nominal process (solid line), the roughness 

and growth rate estimations from the nominal estimator (dashed line), (b) Substrate temperature and bulk precursor 

mole fraction trajectories.   

In the second case study, to make the study more realistic, the performance of the nominal 

estimator is investigated when there is uncertainty in the model parameters of the system. To 

incorporate uncertainty in the process, it is assumed that ?� = Â&, &' , &(Ä is the vector of 

uncertain parameters that are normally distributed around their nominal values with a standard 

deviation of 500 cal/mol. Since growth rate is not sensitive to these uncertain parameters, the 

results are only shown for surface roughness. In thin film manufacturing, the surface roughness 

has to be less than a certain value since higher roughness can deteriorate the conductivity of the 

semiconductor. As shown in Figure 5-11, the surface roughness is sensitive to these uncertainties 

and the estimated roughness is smaller than the surface roughness obtained from the multiscale 
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model. Accordingly, underestimating the surface roughness by the nominal estimator has 

hindered the performance of the control framework. This result motivates the development of a 

robust estimator for this process. 

  

Figure 5-11. Surface roughness trajectory from process under uncertainty (solid line), the roughness estimation from 

the nominal estimator (dashed line) and the substrate temperature.  

Based on the above, in the third case study, the algorithm presented in the previous section is 

implemented to design a robust estimator. To ensure the control objective at the end of the batch, 

the robust estimator is designed such that it predicts the upper bound on surface roughness. As 

shown in Figure 5-12, the estimated roughness is larger than the roughness obtained from 

multiple multiscale simulations. Therefore, the robust estimator is able to ensure that the surface 

roughness at the end of the batch is always below its set point limit under uncertainty in the 

system parameters, which is a desirable feature given the robust approach pursued in this work. 

The multiscale simulations shown in Figure 5-12 were generated under multiple realizations in 

the uncertain parameters that follow the PDF descriptions defined for these parameters.  

To further investigate the performance of the robust estimator, the set points for surface 

roughness and growth rate were changed to 2.5 mL and 50 mL/s, respectively. As shown in 

Figure 5-13, the coupled robust estimator and PI controllers have successfully regulated the 

process outputs around their corresponding set points in the presence of uncertainty in the 

multiscale model parameters. 
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Figure 5-12. Surface roughness trajectories from process under uncertainty (solid lines), the roughness estimation 

from the robust estimator (dashed lines). 

Figure 5-13. (a) Surface roughness and growth rate trajectories from the process under uncertainty (solid line), the 

roughness and growth rate estimations from the robust estimator (dashed line), (b) Substrate temperature and bulk 

precursor mole fraction trajectories. 

5.4. Summary 

Although the cutting-edge sensors that are able to perform measurements online at the fine-

scale level can improve monitoring and control, in practice, most of the industrial thin film 

deposition processes are still operated in open-loop. Motivated by this, a methodology to design 

a robust multivariable estimator has been presented in this chapter to assess the surface 

roughness and growth rate efficiently under uncertainty in a thin film deposition process. To that 

end, the uncertainty in the outputs of the system is quantified through the PSEs while the 
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coefficients of these expansions are identified offline based on the output data collected from the 

multiscale model. Uncertainty in a few of the multiscale model parameters has been added to 

account for plant-model mismatch. To demonstrate the performance of the estimator in 

multivariable process control applications, the proposed estimator is coupled with PI controllers. 

To provide a robust control of surface roughness, the robust estimator predicts the upper bound 

on this controlled output. As shown in the simulation results, the predicted surface roughness at 

the end of the batch bounds the multiple realizations from the multiscale model under parameter 

uncertainties and prevents a loss in performance. Although the developed low-order model is 

used to design a robust estimator, it is also applicable for robust optimization purposes, or as a 

basis for the design of an MPC algorithm. 
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Chapter 6  
Robust NMPC for a Thin Film Deposition Process‡ 

The economics in the microelectronics industry highly depend on the operating policies 

adopted in the plant. Non-optimal strategies may result in undesired plant performance leading to 

economic loss or environmental and safety hazards. Model-plant mismatch, actuator constraints 

and sporadic sensor data can potentially drive the process far from the optimum. Unlike 

conventional feedback controllers, the main advantage of the MPC framework is the ability to 

cope with the safety, operational or economic constraints in the presence of model-plant 

mismatch (Mayne et al., 2000). MPC provides an effective control framework employing the 

system model to predict the control actions which optimize a performance index in the presence 

of constraints (Allgöwer et al., 2004; García et al., 1989; Qin and Badgwell, 2003). Therefore, in 

practice, a closed-form model is essential for efficient and accurate forecasting of the process 

behavior (Morari and H. Lee, 1999). To guarantee closed-loop performance under deterministic 

parameter uncertainty, robust formulations have been proposed in the literature based on the 

worst-case deviation in product quality (Gunawan et al., 2004; Ma et al., 1999; Ma and Braatz, 

2001). Robust MPC addresses optimal control problems with hard constraints that must be 

satisfied for all realizations of the parameter uncertainty. Such a control design, however, can 

become overly conservative when the realizations in the uncertain parameters that produce the 

worst-case scenario have a low frequency of occurrence (Nagy and Braatz, 2004). Therefore, 

distributional uncertainty analysis have been proposed where the restriction imposed by the 

bounded uncertainty description is relaxed using probabilistic-based uncertainties (Nagy and 

Braatz, 2003a, 2003b; Ricardez-Sandoval, 2012). In addition to probabilistic descriptions for the 

uncertain parameters, the MPC formulation can be solved with probabilistic constraints (Mesbah 

et al., 2014; Nagy, 2009). Adopting a chance constrained approach, stochastic MPC allows an 

acceptable level of risk where the constraints are satisfied with a specific probability of 

occurrence (Cannon et al., 2011; Li et al., 2008; Schwarm and Nikolaou, 1999). 

Although the advent of multiscale modeling has significantly improved the prediction 

capabilities in the thin film deposition process, this type of models are not appropriate for 

advanced control strategies. Multiscale models are not available in closed-form and are 
                                                 
‡ This chapter has been written based on (Rasoulian and Ricardez-Sandoval, 2015c) and S. Rasoulian, L.A. 

Ricardez-Sandoval, Stochastic nonlinear model predictive control applied to a thin film deposition process under 
uncertainty, Submitted to the Chemical Engineering Science,  CES-D-15-01118. 
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computationally prohibitive for online applications. Particularly, in an MPC framework, which 

has been the most prominent advanced control strategy, an online optimization-based technique 

is adopted where extensive online calculations are required. Nevertheless, the detailed multiscale 

models can be employed to derive low-order models that are practical for an MPC framework. In 

this chapter, the development of closed-form models is presented that can predict the control 

objectives in the presence of model-plant mismatch. These models will be efficient for online 

applications, while being able to capture the multiscale nature of the thin film deposition process 

under uncertainty. Although PSE can be employed to analyse the distributional uncertainties in 

the controlled outputs under model parameter uncertainties, the evaluation of the sensitivities is 

not straightforward. Sensitivities change in time and online estimation of these sensitivities 

through the multiscale model is not practical. Thus, offline identification is performed to identify 

the parameters of the closed-form model. 

This chapter presents an algorithm to develop a closed-from model that is identified offline to 

predict the controlled outputs at a predefined specific probability for a robust NMPC application. 

The identification is performed for a fixed confidence level and hard constraints are imposed in 

the robust MPC framework. In another approach, to improve the robust performance using 

probabilistic constraints, closed-form models are developed to estimate the first and second-order 

statistical moments of the thin film properties under uncertainty in the multiscale model 

parameters. Since, the closed-form models enable the prediction of outputs at any probability 

limit, the probabilistic (soft) constraints in the stochastic MPC framework can be reformulated as 

deterministic constraints. In Section 6.1, a PSE-based framework is presented to identify a 

closed-form model that can predict the controlled outputs based on the substrate temperature at a 

predefined probability in the presence of model parameter uncertainties. The model is employed 

in an NMPC framework to minimize the final surface roughness while satisfying the hard 

constraints on the temperature profile and final film thickness. Section 6.2 provides the algorithm 

used in this work to develop a closed-form model that predicts the statistical moments of the 

controlled outputs as a function of the control actions during the deposition process. This model 

enables the reformulation of the stochastic NMPC as a computationally tractable NMPC 

framework. The performance of the stochastic NMPC is evaluated under different scenarios. 
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6.1. Robust NMPC with hard constraints for thin film deposition process 

As mentioned previously, PSE is applied in this work as a practical tool for uncertainty analysis 

since it only requires the computation of the sensitivities of the controlled outputs with respect to 

the uncertain parameters. An approach to circumvent the inherent noise included in the 

multiscale model due to the KMC simulations is averaging the estimates obtained from multiple 

simulations which increases the computational costs (Drews et al., 2003). Since this approach is 

not practical for online applications, in the current work, the required sensitivities in the 

expansions are assessed offline by central finite differences through average of multiple 

multiscale simulations describing the thin film deposition process. Subsequently, closed-form 

models that can efficiently predict the probabilistic bounds on the controlled outputs under 

model parameter uncertainty are developed for online control applications. The algorithm 

developed to identify the closed-form model from a multiscale process system is described next. 

6.1.1. Model construction procedure 

Specify the vector of uncertain parameters ? = �æ�, … , æü , … , æý� ∈ ℝý, ?@ as the vector of 

nominal model parameters; h̀ as the process output obtained from the nominal parameter vector, 

?@, and ̀  as the output for the perturbed vector, ?. From a control point of view, the purpose of 

this study is to manipulate the thin film properties using the substrate temperature. The PSE-

based algorithm to estimate the controlled outputs as a function of the substrate temperature at 

any time during the process under model parameter uncertainty can be outlined as follows: 

1. Space discretization: Discretize the operational region of substrate temperature into equally 

spaced intervals ∆�, i.e., 

�2 = ��(23 + 9∆�|�(23 ≤ �2 ≤ �(CR, 9 = 0, 1, … , (�(CR − �(23) ∆�⁄ �, (6-1) 

where �(23 and �(CR are respectively the minimum and maximum operating substrate 

temperatures. 

2. Batch time discretization: Divide the batch time horizon � ∈ Â�=, �5Ä into equally spaced time 

intervals, ∆�, as follows: 

�Z = ��= + <∆�¸�= ≤ �Z ≤ �5 , < = 0, 1, … , ú�, ú = (�5 − �=) ∆�⁄ . (6-2) 
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3. Uncertainties description: Define the prior PDF of each uncertain parameter, ,-.'(æü), as 

follows: 

æü = �æü|æü ∈ ,-.'.(æü)�. (6-3) 

The prevalent assumption in distributional uncertainty analysis is that uncertainty is 

distributed around the nominal parameter with a specific variability. When the nominal value 

changes during the process, the variance can also change proportional to the nominal value. 

4. Sensitivity evaluation: For every �2, evaluate the nominal outputs and sensitivities of the 

outputs with respect to the uncertain parameters at each discrete batch time, �Z, during the 

growth process around the nominal parameters (?@).  
5. Output’s PDF approximation: Evaluate the PDF of ` at each sampling time instance during 

the growth process for each temperature using the following truncated PSE: 

`2,Z = h̀2,Z + >�,2,Zó? − ?@ô + �� ó? − ?@ô�>�,2,Zó? − ?@ô +⋯, (6-4) 

where >�,2,Z = (%` %?⁄ )?@ ∈ ℝý and >�,2,Z = (%�` %?�⁄ )?@ ∈ ℝý×ý are respectively the Jacobian 

and Hessian at each temperature �2 evaluated at the time instance, �Z, and consist of the 

sensitivities estimated from the previous step.  

6. Calculation of output’s bounds: Evaluate the upper (lower) bound on the process output at a 

specific confidence level, i, during the entire batch time for each �2,  2��ð ∈ ℝ�. Thus,  2��ð 
represents the upper or lower bound of any output of the process and each element of this 

vector is calculated as follows: 

`2,Z��ð = )2,Z��óℙO¸`2,Zô = �`2,Z: )2,Zó`2,Zô�, (6-5) 

where the function )2,Z��óℙO¸`2,Zô represents the inverse of the CDF at time instance, �Z and 

temperature, �2 evaluated at a predefined probability, ℙO. Setting ℙO in Eq.(6-5) to i 2⁄  and 

1 − i 2⁄  yields respectively the lower and the upper bound for the output, ̀ . The bounds on 

the controlled outputs can be directly determined at each sampling time during the growth 

process by evaluating the sensitivities through multiple multiscale models and applying 

Monte Carlo sampling on the PSEs. However, that approach is not efficient for online 

applications and motivates identification of closed-form models that can predict these bounds 

at a time-scale that is practical for online applications. 
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7. Model selection: Select a model that can describe the time evolution of the process output. In 

the current study, the thin film properties of interest are the film thickness and surface 

roughness. According to the trajectories depicted in Figure 3-10 and Figure 3-13, the surface 

roughness can be described as an overdamped process model whereas thickness is linear with 

respect to time. Therefore, the models considered to describe the surface roughness and film 

thickness during the batch time for each �2 are as follows: 

0(�2, �) = ��,2�2 ñ1 − ¤� £!�,ºò, (6-6) 

1(�2 , �) = ��,2�2�, (6-7) 

where �Y,2(ë = 1,… ,3) are the parameters of the closed-form model that can be identified via 

least-squares. 

8. Model identification: Estimate the parameters of Eqs.(6-6)-(6-7)for the data set obtained for 

each �2 through minimization of the following least-squares function: 

Λ(#2) = ∑ (`2,Z��ð − 2̀,Z-+4')��Z= , (6-8) 

where ̀ 2,Z��ð and ̀ 2,Z-+4' are respectively the bound on the process output calculated using the 

PSE-based approach and the model prediction from the closed-form models shown in 

Eqs.(6-6)-(6-7) at the kth sampling time instance and �2. The identified #2� = Â�1,9, �2,9, �3,9Ä 
represent the set of parameters of the models presented in Eqs.(6-6)-(6-7) for each discrete 

temperature �2, i.e., there exist one set of model parameters for each temperature considered 

in the Space discretization step.  

9. Approximation of the closed-form model parameters: For model-based process control 

applications, it is required to estimate the parameters at any temperature within the specified 

operating region. Therefore, a polynomial function is required to correlate the estimated 

parameters to the independent variable � using the model parameters estimated for each 

discrete temperature in the previous step, i.e., 

�̅Y = ê=,Y + ∑ ê',Y�'(�)J'� , (6-9) 

where �'(�) represents a temperature-dependent polynomial function while ê=,Y and ê',Y are 

the coefficients of the polynomial calculated through regression; D is the number of 

independent terms considered in the analysis. Once these polynomial correlations are 
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obtained offline, they can be used to predict the surface roughness and film thickness in 

online applications. 

10. Closed-form model: As shown in Eq.(6-6), surface roughness at any sampling time during 

the deposition process depends on temperature and the roughness at a previous time step. 

Thus, 

0Z = 0Z�� + ¯²x(l) ��̅�� − 0+45�̅�� �l,	 
where, 0= = 1	mL 

l = �̅��(¤�£�ª¼ª£���!�� − ¤�£�ª£���!�� ), 

(6-10) 

where 0Z is the estimated roughness at sampling time instance, �Z, while 0Z�� is the estimated 

roughness at sampling time instance, �Z��. In the present analysis, 0Z�� is evaluated from the 

closed-form model since it is assumed there is no measurement available for surface 

roughness during the process. 0+45 and �+45 respectively denote the reference roughness and 

the time when the substrate temperature changes to the current temperature. ¯²x is the sign 

function while �̅� and �̅� are the model parameters evaluated based on the temperature at 

time, �Z, obtained from the polynomial function shown in Eq.(6-9). Following Eq.(6-7), 

thickness depends on temperature and the thickness evaluated at the previous time instance; 

thus, this output can be calculated as follows: 

1Z = 1Z�� + �̅��(�Z − �Z��),    1= = 0	mL,  (6-11) 

where �̅� is the model parameter estimated from Eq.(6-9) using the substrate temperature at 

time, �Z.  
The models developed in this section can be used to design a robust estimator for an effective 

feedback control wherever the measurements are not available and they can also be used for 

model-based control applications, e.g., to design an NMPC algorithm. Moreover, this approach is 

applicable in analyzing the effects of measurement noise. 

6.1.2. Application of robust NMPC to the thin film deposition process 

To determine the order of the series expansions for uncertainty analysis of surface roughness 

and film thickness, a comparison has been made between the PDFs obtained by uncertainty 
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propagation in these outputs applying the primary multiscale model and PSEs. Monte Carlo 

technique adopting the primary multiscale model is a trivial method with no truncation error 

caused by the PSE. However, due to high computational cost, this approach is applied as an 

index to validate the accuracy of the PSE method. In this case, ?� = Â&, �Ä is the vector of 

uncertain parameters that are normally distributed with mean ?@� = Â17000	 cal mol⁄ , 800	KÄ, and a 

standard deviation of 2% of their mean values. The uncertainty analysis through the Monte Carlo 

method was performed employing 500 sample points generated randomly for the vector of 

uncertain parameters from their prior normal distribution functions and uncertainty is propagated 

into surface roughness using the model described in Chapter 3. This PDF is shown in Figure 6-1 

with the PDFs obtained using first and second-order PSE approximations. As shown in this 

figure, while first-order PSE can adequately describe the distribution of surface roughness, 

second-order PSE captures the tails of the PDF more accurately. 

 

Figure 6-1. Roughness PDFs at � = 800	K obtained through the multiscale model, first and second-order PSEs at 

� = 20	s. 
Likewise, the PDF obtained for film thickness employing 500 data points in the multiscale 

model at � = 800	K is presented in Figure 6-2. The variability is also assessed using a first-order 

PSE and the fitted normal distribution is shown in this figure. As illustrated in this figure, 

thickness is not significantly sensitive to the uncertainties in & and �, i.e., these uncertainties 

resulted in small variability in the film thickness (+/-2%) whereas large variability was observed 

in surface roughness due to these uncertainties (+/-50%). 
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Figure 6-2. Thickness PDFs at � = 800	K obtained through the multiscale model and first-order PSE at � = 20	s. 
To develop a closed-form model for the deposition process presented in Chapter 3, the 

operational region for the substrate temperature is considered from 600 to 1400 K and is 

discretized into 9 equally spaced temperatures, �2(9 = 1,… ,9). For this application, finer 

discretization did not improve the accuracy of the estimations. The batch time, �5 = 100	s, is 

discretized into 101 points, �Z(< = 0,… ,100). As mentioned above, ?� = Â&, �Ä is the set of 

uncertain parameters that are normally distributed around their nominal values with the standard 

deviations of 2% of their corresponding nominal values. Therefore, since the substrate 

temperature is the control action and is time varying, the variability will be considered as 2% of 

the control action predicted by the controller. As shown in Figure 6-1, second-order PSE is 

accurate enough to capture the variability in the surface roughness; thus, first and second-order 

sensitivities of roughness with respect to the uncertain parameters are generated offline for each 

temperature �2 	during the batch time. Then, uncertainty is propagated in surface roughness using 

the Monte Carlo sampling method applied to the second-order PSE to obtain the lower and upper 

bounds on roughness using a confidence level:	i = 0.5%. The data collected for each 

temperature, �2, is then employed to identify the parameters of the model shown in Eq.(6-9) 

using the least-squares formulation shown in Eq.(6-8). This results in a set of model parameters, 

each corresponding to a particular temperature. To approximate the parameters of the closed-

form model presented in Eq.(6-10), the operational substrate temperature region is divided into 

two regions. The parameters of the closed-form model shown in Eq.(6-10) are estimated 

assuming that they are functions of the substrate temperature as follows: 
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�̅Y = ê=,Y + ê�,Y� + ê�,Y�� + ê�,Y��. (6-12) 

The corresponding polynomial functions obtained from regression for �̅� and �̅� to estimate the 

upper and lower bounds on roughness for the two temperature regions are shown in Figure 6-3 

and Figure 6-4, respectively. Although other polynomials or nonlinear functions can also be 

adopted, the estimations obtained by the function shown in Eq.(6-12) are sufficiently accurate for 

online control of the surface roughness as it will be shown in the next section.  

 

Figure 6-3. Polynomial models used to determine �̅� and �̅� to estimate the upper bound on surface roughness. 
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Figure 6-4. Polynomial models used to determine �̅� and �̅� to estimate the lower bound on surface roughness. 

 

Figure 6-5. Polynomial model used to determine �̅� to estimate the film thickness. 

As shown in Figure 6-2, thickness is not sensitive to the uncertainties considered in this work 

and accordingly a nominal model is sufficient to estimate the film thickness. To provide a 

closed-form model for thickness, the nominal thickness is calculated for each temperature, �2, at 

each sampling time, �Z. Subsequently, steps 3 to 6 in the algorithm presented in Section 6.1.1 are 

not required and identification is performed using the nominal thickness to obtain the parameters 

of the model at each temperature, �2. Using these data points in regression analysis, a model is 
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identified as a function of the substrate temperature. The model obtained to determine the 

parameter of the film thickness in Eq.(6-11), �̅�, is shown in Figure 6-5. 

To show the accuracy of the closed-form model in prediction of surface roughness, upper and 

lower bounds obtained for the surface roughness are shown in Figure 6-6. The substrate 

temperature profile used in this validation step is also shown in this figure. The dashed lines 

correspond to the bounds evaluated using the closed-form model presented in Section 6.1.1 and 

the solid lines are obtained by calculating the bounds using the PSE-based approach. The 

sensitivities are estimated by averaging the solutions from three multiscale model applying 

100 × 100 lattices in the KMC simulations. The bounds are estimated properly using the closed-

form model in 140 ms whereas the other approach took approximately 7 hrs on a Core i7-2600 

with 8GB of RAM. This demonstrates the benefit of the approach proposed in this work to 

address the online control of the thin film deposition process while explicitly considering model 

parameter uncertainty. 

Figure 6-6. (a) The upper and lower bounds on surface roughness, and (b) Substrate temperature profile. 

6.1.3. NMPC applied in a thin film deposition process 

The development of advanced sensors has provided the potential of feedback control for smart 

operation of the deposition processes in the semiconductor industry. Despite the application of 

spectroscopic ellipsometry for thickness and composition control, precise control of the 

microscopic properties such as roughness is not still practical since these sensors cannot provide 

frequent measurements needed for online applications (Xiong and Grover, 2012). In the current 

work, it is assumed that thickness can be measured in practice while measurements are not 
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available for the surface roughness during the process. Whenever a measurement is available for 

the film thickness, the predictions of this film property are corrected. Employing the proposed 

closed-form models, model-based control approaches can be readily applied to improve the 

closed-loop performance in the thin film deposition process. Particularly, an NMPC technique 

can be designed to simultaneously address performance considerations and process constraints, 

e.g., actuator constraints, while using nonlinear dynamic models. To illustrate the benefits of the 

approach presented in this study, the closed-form model developed in the previous section is 

used as the internal model in an NMPC algorithm as shown in Figure 6-7. Moreover, due to lack 

of roughness measurements, the closed-form model is considered as an estimator for this 

property of the thin film. The thin film deposition process is assumed to be the multiscale model 

presented in Chapter 3 using a 100 × 100 lattice in the KMC simulations.  

 

 

Figure 6-7. Block diagram of an NMPC structure coupled with the estimator. 

In the present study, the NMPC algorithm was set-up such that it minimizes the final surface 

roughness while complying with a minimum film thickness constraint requirement at the end of 

the batch. In addition, temperature constraints are included to ensure the feasible operation of 

this process. Hence, the optimal control problem solved at every sampling time interval in the 

NMPC framework is as follows: 
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min�(¿) 0(�5) 

(6-13) 

Subject to: 

Closed-form model, Eqs. (6-10)-(6-11)  

ℎ� = 1ó�5ô − 1(23 ≥ 0 
ℎ�(:) = �(23 − �(:) ≤ 0 
ℎ�(:) = �(:) − �(CR ≤ 0 
ℎ�(:) = ℛ(23 − %�(:)%� ≤ 0 
ℎ�(:) = %�(:)%� − ℛ(CR ≤ 0 
: = 1,2, … , & 

where �(23, �(CR, ℛ(23 and ℛ(CR are respectively the minimum and maximum allowed 

temperature and temperature ramp rates during the batch process. The end-point constraint ℎ� 
ensures that the minimum thickness is satisfied at the end of the batch time whereas constraints 

ℎ� − ℎ� ensure that the temperature profile remains within the feasible operating region for the 

deposition process.  

Thin film deposition is a batch process and according to problem (6-13), the objective is to 

minimize the surface roughness at the end of the batch. Therefore, a shrinking horizon approach 

is implemented to calculate the control actions from the NMPC algorithm. The optimal set of 

substrate temperatures is obtained from the solution of the optimization problem of Eq.(6-13) 

and only the first value of the temperature trajectory is implemented on the thin film deposition 

process until the next sampling time when the NMPC problem is solved to obtain the updated 

temperature trajectory. The batch time is discretized into 20 equal intervals considering the 

temperatures at each sampling time interval as the decision variables. Moreover, the temperature 

profile is described as a constant piecewise trajectory between successive time intervals. In this 

study, ℛ(CR and ℛ(23 were set to 25 K/s while �(23 and �(CR were set to 600 and 1400 K, 

respectively. For closed-loop simulations, it is assumed that the measurements for thickness are 

available at every iteration of the NMPC algorithm which is 5 s in these simulations. 
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The overall performance of the NMPC algorithm depends on the accuracy of the model 

describing the process. Therefore, to show the efficiency of the control approach and the 

importance of the robust model, three different scenarios are presented and compared in this 

study: 

1. Nominal models are employed for surface roughness and film thickness and control action is 

applied to the nominal thin film deposition process. 

2. The nominal models are used to control the deposition process under model parameter 

uncertainty. 

3. The robust model for surface roughness and nominal model for film thickness are applied to 

control the deposition process under model parameter uncertainty. 

In the first scenario, the nominal model is used to predict the controlled outputs, assuming that 

the nominal closed-form model provides an accurate representation of the process. In the NMPC 

algorithm the nominal surface roughness is minimized while the nominal minimum allowed 

thickness is constrained to be at least 1700 mL at the end of the deposition process. The surface 

roughness predicted from the estimator is shown in Figure 6-8 along with the roughness 

trajectory obtained from the multiscale thin film process. As shown in this figure, the roughness 

estimator has followed the process accurately. The corresponding temperature profile is also 

shown in this figure. 

 Figure 6-8. (a) Surface roughness trajectory from the nominal process (solid line), the roughness estimation from 

the nominal estimator (dashed line), and (b) Substrate temperature trajectory applying the nominal NMPC. 

To assess the effect of the thickness measurements, the open-loop optimal control of the 

process is also performed and the results are compared to the nominal NMPC. Figure 6-9 shows 
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the final properties of the thin film from 20 simulations using the open-loop optimal control and 

NMPC. As shown in this figure, when the optimal open-loop control is used, the constraint on 

film thickness is violated in 35% of cases. In contrast, when the nominal NMPC approach is 

employed, the thickness constraint is always satisfied. 

 

Figure 6-9. Surface roughness and thickness at the end of the batch for 20 simulations obtained from the open-loop 

optimal control and nominal NMPC. The dashed line corresponds to the constraint on final thickness. 

To illustrate the importance of the robust estimator, in the second scenario, the nominal model 

is incorporated in the NMPC algorithm in the presence of model-plant mismatch. To incorporate 

uncertainty in the process, it is assumed that ?� = Â&, �Ä is the vector of uncertain parameters that 

are normally distributed around their nominal values with standard deviations of 2% of their 

nominal values. Since & is a time-invariant parameter of the system, to assess the performance of 

the estimator, Monte Carlo simulations were performed with 20 random parameters generated 

from the corresponding normal distribution. Substrate temperature, on the other hand, is the 

control action and changes during the process. Therefore, to account for the model-plant 

mismatch, the applied temperature on the multiscale model is selected randomly from the normal 

distribution around the control actions determined by the NMPC. These trajectories are shown in 

Figure 6-10 with the roughness estimated from the nominal estimator. As shown in this figure, 

the trajectories obtained from the process deviate significantly from the nominal surface 

roughness estimator.  
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Figure 6-10. Surface roughness trajectories from 20 simulations using the process under model parameter 

uncertainty (solid line), the roughness estimation from the nominal estimator (dashed line). 

To assess the performance of the nominal NMPC under model-plant mismatch, the final 

properties of the thin films obtained under uncertainty are compared to the properties obtained 

from the nominal multiscale model. As shown in Figure 6-11, the variance in surface roughness 

and thickness is two orders of magnitude larger under uncertainty and the nominal NMPC cannot 

meet the end-point constraint on the film thickness. These results show the importance of 

developing robust strategies for this process that can account for process variability under model 

parameter uncertainty. 

 

Figure 6-11. Surface roughness and thickness at the end of the batch for 20 simulations obtained from the nominal 

process and under model-plant mismatch applying the nominal NMPC. 
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To provide a robust control strategy under model parameter uncertainty, in the third scenario, 

the roughness model in the NMPC is implemented such that it predicts the upper bound on the 

surface roughness. The roughness trajectories obtained from 20 multiscale simulations under 

model parameter uncertainty are shown in Figure 6-12; the surface roughness calculated from the 

robust estimator is shown as a dashed line. As shown in this figure, the estimated roughness 

bounds surface roughness trajectories obtained from the process under uncertainty. The substrate 

temperature profile is also shown in this figure. 

The performance of the robust NMPC and nominal NMPC are compared under model-plant 

mismatch based on the end-point properties obtained from 20 simulations using the multiscale 

model. As shown in Figure 6-13, the robust NMPC has improved the control performance since 

the constraint on the film thickness is met for all the simulations whereas violations to that end-

point constraint were obtained using the nominal NMPC. 

Figure 6-12. (a) Surface roughness trajectories from 20 simulations using the process under model parameter 

uncertainty (solid lines), the roughness estimation from the robust estimator (dashed line), (b) Substrate temperature 

trajectory applying the robust estimator. 
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Figure 6-13. Surface roughness and thickness at the end of the batch for 20 simulations obtained from the nominal 

and robust NMPC under model-plant mismatch. 

6.2. Stochastic NMPC with soft constraints applied to thin film deposition 

In Section 6.1, to ensure the robust performance, hard constraints were imposed on the MPC 

framework. The internal model used in the MPC algorithm is a closed-form model that was 

identified offline to represent the dynamic behaviour of system under uncertainty in the model 

parameters. The identification of this model was performed such that it predicts bounds on the 

outputs for a narrow confidence level, which must be specified a priori. To that end, new offline 

identification is required in that approach to be able to estimate the outputs at a different 

confidence level.  

In this section, a systematic framework is presented that enables the identification of a closed-

form model to estimate the first and second-order statistical moments of the thin film properties. 

The parameters of the closed-form model are determined offline through PSEs developed for the 

multiscale model under uncertainty in the model parameters. The conservatism imposed by the 

hard constraints is reduced by imposing probabilistic (soft) constraints in the MPC. The closed-

form model identified from the algorithm proposed in this work enables the prediction of outputs 

at any probability of satisfaction. Moreover, employing this model the probabilistic constraints in 

the stochastic MPC framework can be reformulated as deterministic constraints, thus allowing 
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the implementation of this control framework for the thin film deposition process under 

uncertainty in the model parameters.  

6.2.1. Statistical moments of the outputs using PSE  

An advantage of the PSE is that it can be employed directly to assess the statistical moments of 

the outputs. When a multivariate normal distribution with the covariance matrix, ]? can represent 

the uncertain parameters: 

,-.'(?) = ��(�¡)']? exp (− �� ó? − ?@ô�]?ó? − ?@ô). (6-14) 

PSE can be used to estimate the mean and the variance of the output. For a first-order PSE, the 

expected value, m_, and the variance of the output, _̂ can be determined as follows: 

m_ = h̀, (6-15) 

_̂ = >�]?>��. (6-16) 

First-order PSE relates the output to the uncertain parameters linearly; thus, the PDF of the 

output can be estimated analytically. Accordingly, the PDF of the output will take the form of a 

normal distribution with mean and variance obtained from Eqs.(6-15)-(6-16), respectively. 

Applying a second-order PSE, the expected value and variance of the output `, can be obtained 

as follows (Nagy, 2009; Nagy and Allgöwer, 2007): 

m_ = h̀ + �� tr(>�]?), (6-17) 

_̂ = >�]?>�� + �� Âtr(>�]?)Ä�, (6-18) 

where tr(. ) is the trace of matrix. For higher order PSEs, a similar approach can be applied to 

analytically determine the expected value and the variance of output. 

To analyse the effect of distributional parameter uncertainties on the thin film deposition 

process, the uncertainty propagation into surface roughness and film thickness is assessed using 

PSE. The Monte Carlo method applied to the multiscale model is used as an index to determine 

the order of the truncated PSE. For the present deposition model, ?� = Â&, &(, �Ä is the vector of 

uncertain parameters that are normally distributed around their nominal values listed in Table 3-1 

with the following covariance matrix:  
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]? = *7.2 × 10� 2.6 × 10� 02.6 × 10� 2.6 × 10� 00 0 10���+ (6-19) 

For the Monte Carlo method, 1,000 sample points are randomly generated for the vector of 

uncertain parameters from the prior multivariate normal distribution. The PDF of the surface 

roughness is obtained by using these realizations in the multiscale model at � = 1000	K. The 

PDF obtained at � = 20	s is shown in Figure 6-14 along with the PDFs estimated using first and 

second-order PSE approximations. The normal distribution resulted from the first-order PSE is 

estimated analytically using Eqs.(6-15)-(6-16) whereas for the second-order PSE, the Monte 

Carlo method is applied to the series expansion. As shown in this figure, the uncertainty 

propagation in surface roughness using the full multiscale model has resulted in a PDF that 

follows a lognormal distribution. The first-order PSE cannot describe the nonlinearity of this 

PDF while the second-order PSE has captured the distribution more accurately.  

 

Figure 6-14. Roughness PDFs obtained using the multiscale model, first and second-order PSEs. 

The statistical moments of surface roughness obtained from Eqs.(6-15)-(6-18) and the required 

computational times are listed in Table 6-1. Comparing the moments estimated from PSEs with 

those evaluated using Monte Carlo method applied to the multiscale model implies that the 

second-order PSE provides more accurate results. As shown in this table, the relative errors of 

the mean and the variance of the first-order PSE are respectively 0.8% and 8%, whereas the 

relative errors of the second-order PSE are respectively 0.2% and 4%. The computational times 

listed in Table 6-1 indicate that both first and second-order PSEs are computationally efficient 
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compared to the Monte Carlo method applied to the full multiscale model. However, due to the 

second-order sensitivities required in higher order PSE, first-order PSE is more computationally 

efficient than second-order PSE. 

Table 6-1. The statistical moments of the surface roughness from different approaches and the corresponding 

computational costs. 

Approach Mean (mL) Variance (mL2) Computational Time (hr) 

Monte Carlo applied to the 

multiscale model 
3.7824 0.4669 29.4 

First-order PSE 3.7517 (0.8%) 0.4288 (8%) 0.6 

Monte Carlo applied to the second-

order PSE 
3.7720 (0.2%) 0.4482 (4%) 1.9 

 

Figure 6-15 shows the PDF obtained for film thickness at � = 20	s employing 1,000 realizations 

in the uncertain parameters and propagating those through the multiscale model at � = 1000	K. 

The PDF is also approximated using a first-order PSE; the fitted normal distribution shown in 

this figure has successfully captured the variability in the film thickness. As shown in Table 6-2, 

using first-order PSE, the mean and the variance of thickness are assessed with respectively 

0.02% and 0.6% errors. Thus, first-order PSE estimates the moments of thickness with negligible 

errors at low computational costs. Similar results were observed for the surface roughness and 

thickness at other operating conditions and are not shown here for brevity. 

 

Figure 6-15. Thickness PDFs at � = 1000	K obtained using the multiscale model and first-order PSE at � = 20	s. 



100 
 

Table 6-2. The statistical moments of the film thickness from different approaches and the corresponding 

computational costs. 

Approach Mean (mL) Variance (mL2) Computational Time (hr) 

Monte Carlo applied to the 

multiscale model 
348.4 304.4 

29.4 

First-order PSE 348.5 (0.02%) 302.6 (0.6%) 0.6 

 

 

 

Figure 6-16. The evolution of roughness moments during the deposition process at � = 1000	K from Monte Carlo 

applied to the multiscale model and second-order PSE (a) Mean, (b) Variance. 

The variation in the mean and variance in these output variables during the deposition process 

has also been investigated using both the Monte Carlo method applied to the full multiscale 

model and PSE. For the Monte Carlo approach, 1,000 sample points are applied to generate the 
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PDF of the surface roughness during the deposition process and then the moments of those 

distributions with respect to time have been recorded. The moments were also estimated using 

the second-order PSE shown in Eqs.(6-17)-(6-18). The sensitivities needed in the PSE were 

obtained using the average from multiple multiscale models. As shown in Figure 6-16(a), using 

the second-order PSE, the roughness mean is estimated accurately during the deposition process. 

The variance of surface roughness has also been estimated with a small deviation from that 

obtained from the Monte Carlo method. The largest deviation between two trajectories for 

roughness variance is about 0.12 mL2 which is observed at � = 26	s. Considering the mean value 

at this point (3.78 mL), this deviation results in 8% error in estimation. Although this error may 

be negligible for control applications, a more accurate estimation for variance of surface 

roughness can be obtained using higher order PSEs. 

The changes in mean and variance of thickness obtained from the Monte Carlo applied to the 

full multiscale model and a first-order PSE are depicted in Figure 6-17. As shown in this figure, 

the PSE has estimated the mean accurately while the variance estimated using the PSE method 

follows the variance obtained from Monte Carlo approach with a small discrepancy. The 

deviation observed at the end of the deposition is about 580 mL2; considering the mean value at 

this point (1732 mL) the deviation in variance results in 1.4% error in estimation of thickness 

PDF. Therefore, the error observed in variance estimation for thickness through the PSE method 

is negligible. 

The computational time required to estimate the variances shown in Figure 6-16 and Figure 

6-17 using the Monte Carlo approach was about 150 hrs. However, the PSE method needed 10 

hrs to assess the variances using the average of multiple multiscale simulations for the 

computation of the sensitivities. While the PSE method presents a more computationally 

efficient approach for uncertainty analysis compared to the Monte Carlo method, this method is 

still impractical for real-time applications in multiscale systems. Therefore, in the next section, a 

PSE-based algorithm is presented to develop a closed-form model that predicts the statistical 

moments of the outputs as a function of substrate temperature at minimum computational cost 

for online applications. 
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Figure 6-17. The evolution of thickness moments during deposition at � = 1000	K from Monte Carlo applied to the 

multiscale model and second-order PSE (a) Mean, (b) Variance. 

6.2.2. Stochastic NMPC formulation 

In this study, it is assumed that thickness, which is a macroscopic characteristic of the thin film, 

can be measured online while measurements for the surface roughness are not available during 

the deposition process. Microelectronic market imposes tight requirements upon thin film 

properties including specific thickness and surface roughness. To assemble high-performance 

electronic devices, optimal control strategies that can accommodate actuator and economic 

constraints in the presence of model-plant mismatch are required. Therefore, an MPC framework 

is designed to minimize the surface roughness at the end of the batch by manipulating substrate 

temperature in the presence of uncertainty in the multiscale model parameters. Thus, the control 
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objective is to minimize the surface roughness at the end of the batch while the film thickness 

meets a minimum specification at a desired probability. 

The closed-loop optimal control formulation to be solved at every sampling instant in a 

shrinking horizon stochastic MPC with probabilistic constraint is as follows: 

min;(#) 0(�5) 

(6-20) 

Subject to: 

Multiscale model presented in Chapter 3 

�(�) = �+45(�) + ;(�)(1(�) − 1+45(�)) 
ℙOö1(23 − 1ó�5ô ≤ 0÷ ≥ � 

�(23 ≤ �(�) ≤ �(CR 
ℛ(23 ≤ %�(�)%� ≤ ℛ(CR 

In the above formulation, the performance objective is the surface roughness at the end of the 

batch, i.e. 0(�5). As shown in Figure 6-14, in the presence of distributional parameter 

uncertainty, a distribution can be determined for roughness. Therefore, in the optimization 

formulation, the performance index is the roughness determined at a specific probability limit. In 

the feedback law, similar to the approach presented in (Nagy and Braatz, 2004), 1(�) is the 

measured thickness, 1+45(�) is the thickness reference vector obtained using the nominal open-

loop optimal substrate temperature trajectory �+45(�), and ;(�) is the time-varying gain vector of 

the feedback controller. 1(23 is the minimum allowed thickness at the end of the batch which 

will be specified by market considerations. To reduce conservatism, the probabilistic form of this 

constraint is considered in the present MPC formulation where ℙO denotes probability and � is 

the desired probability of satisfaction of the constraint. Moreover, �(23, �(CR, ℛ(23 and ℛ(CR 
represent respectively the minimum and maximum allowed temperatures and temperature ramp 

rates during the batch process.  

To identify an optimal temperature profile in problem (6-13), the PDFs of thickness and 

roughness at the end of the batch are required. Theses PDFs can be obtained through either by 

Monte Carlo method applied to the full multiscale model or employing the PSEs that describe 

roughness and thickness as a function of the uncertain parameters during the deposition process. 
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As discussed in the previous section, even though the PSE method is less intensive than the 

Monte Carlo method, this approach is still computationally intractable for online applications. 

Therefore, it is desired to reformulate the probabilistic constraint and performance objective 

function to deterministic expressions that can be immediately evaluated. To achieve this goal, a 

low-order model that can efficiently assess the statistical moments of surface roughness and film 

thickness is employed in this work. The algorithm to identify such a model is presented in the 

next section. 

6.2.3. Closed-form model identification 

Online identification of a closed-form model during the deposition process is computationally 

challenging. Thus, an algorithm has been developed in this work to obtain the parameters of the 

closed-form model offline. This PSE-based algorithm estimates the parameters of the model that 

predicts the statistical moments of surface roughness and film thickness. This model predicts the 

statistical moments efficiently as a function of the substrate temperature at any sampling instant 

during the process under model parameter uncertainty. The algorithm is outlined as follows: 

1. Space discretization: Discretize the operational region of substrate temperature, �, into 

equally spaced intervals, ∆�, to construct a finite-dimensional identification problem.  

�2 = ��(23 + 9∆�|�(23 ≤ �2 ≤ �(CR, 9 = 0, 1, … , (�(CR − �(23) ∆�⁄ �. (6-21) 

It is important to note that the discretization resolution determines the offline computational 

costs.  

2. Temporal discretization: Divide the batch time horizon into equally spaced time intervals, ∆�, 
as follows: 

�Z = ��= + <∆�¸�= ≤ �Z ≤ �5 , < = 0, 1, … , ó�5 − �=ô ∆�⁄ �. (6-22) 

3. Uncertainties description: Define the multivariate normal distribution of uncertain 

parameters based on Eq.(6-14).  

4. Sensitivity evaluation: Evaluate the nominal outputs and sensitivities of the outputs with 

respect to the uncertain parameters for each �2 at each discrete batch time, �Z, during the 

deposition process. According to Figure 6-14 and Figure 6-15, to capture the uncertainty 

propagation in surface roughness, a second-order PSE is required while film thickness can be 

accurately approximated using a first-order PSE. Therefore, first and second-order 
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sensitivities of roughness and first-order sensitivities of film thickness with respect to the 

uncertain parameters need to be estimated for the present deposition process. 

5. Approximation of the statistical moments: Using the PSEs, evaluate the statistical moments 

of the output ̀ at each sampling time instance �Z, during the process for each discrete point in 

the temperature domain �2. To assess the mean and the variance of surface roughness, 

Eqs.(6-17)-(6-18) are employed whereas for the film thickness Eqs.(6-15)-(6-16) are used. 

6. Model selection: Select a model that can describe the time evolution of the statistical 

moments of each output, i.e. the surface roughness and thickness. According to the 

trajectories shown in Figure 6-16, the evolution of the surface roughness and its variance 

during the deposition process can be described as an overdamped process model. Therefore, 

the models considered to describe the expected value and the variance of roughness during 

the batch time for each �2 can be described as follows: 

m+(�2 , �) = ��,2�2 ñ1 − ¤� £!�,ºò, (6-23) 

+̂(�2, �) = ��,2�2 ñ1 − ¤� £!,,ºò. (6-24) 

Based on the trajectories depicted in Figure 6-17, the expected value of thickness is linear 

with respect to time while its variance has an exponent form. Therefore, the models 

considered to describe the mean and the variance of thickness during the deposition process 

for each discrete point in the temperature domain are as follows: 

m*(�2, �) = ��,2�2�, (6-25) 

*̂(�2, �) = ��,2�2�-.,º, (6-26) 

where �Y,2(ë = 1,… ,7) represent the model parameters for each �2 that can be identified using 

least-squares. 

7. Model identification: Estimate the parameters of Eqs.(6-23)-(6-26) for the data set obtained 

for each discrete point in the Space discretization step through minimization of the following 

least-squares function: 
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Λ(#2) = ∑ óq2,Z��ð − q2,Z-+4'ô��Z= , (6-27) 

where q2,Z��ð and q2,Z-+4' are respectively the statistical moment of the process output calculated 

using the PSEs in step 5 and the model prediction obtained from Eqs.(6-23)-(6-26) at the kth 

sampling time instance and for a specific discrete temperature, �2. The identified #2 represent 

the vector of parameters for each discrete temperature, �2, i.e., there exist one set of model 

parameters for each discrete point considered in the Space discretization step.  

8. Approximation of the closed-form model parameters: The identified model parameters #2 are 

only valid for a discretized set of temperatures. However, for model-based control 

applications, it is required to estimate the statistical moments of the process outputs at any 

temperature within the specified operating region. Therefore, a polynomial function is 

employed here to correlate the model parameters to the manipulated variable, �, using the 

model parameters, #2, estimated for each discrete �2 in the previous step, i.e., 

�̅Y = ê=,Y + ∑ ê',Y�'(�)J'� , ë = 1,2,… ,7, (6-28) 

where �'(�) represents a temperature-dependent polynomial function while ê=,Y and ê',Y are 

the coefficients of the polynomial calculated through least-squares regression; D is the 

number of terms considered in the analysis. Once these correlations are obtained offline, they 

can be used to predict the statistical moments of each output for online applications. 

9. Closed-form model: As shown in Eqs.(6-23)-(6-24), the statistical moments of surface 

roughness at any sampling time during the deposition process depend on the substrate 

temperature and the statistical moments of roughness at the previous time step. Thus, 

m+,Z = m+,Z�� + ¯²x ñ��̅,Z� ñ1 − ¤� #�-��,�ò − m+,Z��ò /ó��̅,Z� − m+,+45ô*¤�#�ª¼�#���-��,� − ¤�#��#���-��,� +/ ; 
m+,= = 1	mL, 

(6-29) 

+̂,Z = +̂,Z�� + ¯²x ñ�̅�,Z� ñ1 − ¤� #�-�,,�ò − +̂,Z��ò /ó�̅�,Z� − +̂,+45ô*¤�#�ª¼�#���-�,,� − ¤�#��#���-�,,� +/ ; 
+̂,= = 0	mL�, 

(6-30) 

where m+,Z and +̂,Z are respectively the estimated mean and variance of roughness at 

sampling time instance, �Z, while m+,Z�� and ̂ +,Z�� are the estimated values at sampling time 

instance, �Z��. m+,+45 , +̂,+45 and �+45 respectively denote the reference roughness mean, the 

reference roughness variance and the reference time when the substrate temperature changes 
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to the current temperature. ¯²x is the sign function while �̅Y,Z(ë = 1, . .4) are the model 

parameters evaluated employing the temperature at time, �Z, in the model obtained in step 8. 

Following Eq.(6-25), the expected value of thickness depends on the temperature and the 

mean thickness evaluated at the previous time instance, i.e.  

m*,Z = m*,Z�� + �̅�,Z�(�Z − �Z��); 
m*,= = 0	mL, 

(6-31) 

where �̅�,Z is the model parameter estimated using the polynomial obtained in Eq.(6-28) and 

the substrate temperature at time, �Z. The variance of the film thickness at any time during 

the deposition process can be estimated as follows: 

*̂,Z = *̂,Z�� + �̅�,Z�ó�̅�,Z − 1ô�Z-�.,�(�Z − �Z��); 
*̂,= = 0	mL�, (6-32) 

where �̅Y,Z(ë = 6,7) are the model parameters estimated from Eq.(6-28) using the substrate 

temperature at time, �Z.  
Based on the above, a nonlinear discrete closed-form model can be obtained to determine the 

statistical moments of roughness and thickness during the deposition process for optimization 

and control applications: 

qZ = ²(qZ��, �), (6-33) 

where qZ� = öm+,Z , +̂,Z, m*,Z, *̂,Z÷ is the vector of statistical moments at sampling time �Z, while 

qZ��� = öm+,Z��, +̂,Z��, m*,Z��, *̂,Z��÷ is the vector of statistical moments at sampling time �Z��. 
To show the effectiveness of this approach, the developed model has been applied to estimate 

the upper and lower bounds on surface roughness and film thickness at a predefined confidence 

level, i, during the deposition process. Taking advantage of the form of PDFs, thickness and 

roughness can be estimated at a specific probability limit. That is, as shown in Figure 6-14 and 

Figure 6-15, the variability in surface roughness and film thickness can be described respectively 

using lognormal and normal distributions. The surface roughness can be evaluated at a specific 

probability ℙO, as follows: 
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0ZW = )+��óℙO¸m+,Z , +̂,Zô = �0ZW: )+ó0ZW|m+,Z , +̂,Zô = ℙO�, (6-34) 

ℙO = )+ó0ZW|m+,Z , +̂,Zô = ���¡0�,� 1 4ª~23 4ª5�,��
�

�6�,� '7
7

+��= , 
(6-35) 

where ê ∈ �ë°ì, í±� and )+�� represents the inverse CDF of surface roughness. Setting ℙO in 

Eq.(6-35) to i 2⁄  and 1 − i 2⁄  yields respectively the lower bound, 0ZY$g, and the upper bound, 

0ZX-, for the surface roughness at �Z. Likewise, the bounds on thickness can be obtained at any 

sampling time, �Z as follows: 

1ZW = )*��óℙO¸m*,Z , *̂,Zô = �1ZW: )*ó1ZW|m*,Z, *̂,Zô = ℙO�, (6-36) 

ℙO = )*ó1ZW|m*,Z , *̂,Zô = ���¡08,� 1 ¤�~4ª58,��
�

�68,� %9*���: . (6-37) 

For the present deposition process, the operational region for the substrate temperature is from 

600 to 1400 K that is discretized into 9 equally spaced temperatures, �2(9 = 1,… ,9). The batch 

time, �5 = 100	s, is discretized into 101 equally spaced points, �Z(< = 0,… ,100). ?� = Â&, &(, �Ä 
is the set of uncertain parameters that are normally distributed around their nominal values listed 

in Table 3-1 with the covariance matrix shown in Eq.(6-19). The first and second-order 

sensitivities of surface roughness with respect to the uncertain parameters and the nominal 

surface roughness are generated offline for each discrete temperature during the deposition 

process. These estimates are then applied in Eqs.(6-17)-(6-18) to approximate the mean and the 

variance of surface roughness during the batch time for each temperature, �2. Likewise, the 

nominal film thickness and first-order sensitivities of thickness with respect to the uncertain 

parameters are generated offline during the deposition process for each �2. Then using 

Eqs.(6-15)-(6-16), the mean and the variance of film thickness is estimated during the batch time 

for each temperature, �2. The data collected for each statistical moment is then used in least-

squares approach as shown in Eq.(6-8) to estimate the parameters of the models shown in 

Eqs.(6-23)-(6-26) for each temperature, �2. To find a correlation between the model parameters 

and the substrate temperature, regression analyses are performed for the vector of closed-form 

model parameters #;� = ö�̅�, … , �̅�÷. These polynomials can be used to determine the coefficients 

of Eqs.(6-29)-(6-32) during the deposition process as a function of substrate temperature.  
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To obtain a general model for �̅Y(ë = 1,… ,4), the temperature operational region is divided into 

two regions. The polynomial functions obtained from regression to estimate the mean and 

variance of surface roughness for the two temperature regions are shown in Figure 6-18 and 

Figure 6-19, respectively. 

 

Figure 6-18. Polynomial models used to determine �̅� and �̅� to estimate the surface roughness mean. 

 

Figure 6-19. Polynomial models used to determine �̅� and �̅� to estimate the surface roughness variance. 

The polynomial models obtained using regression for �̅Y(ë = 5,6,7) are shown in Figure 6-20 

and Figure 6-21. 
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Figure 6-20. Polynomial model used to determine �̅� to estimate the film thickness mean. 

 

 

Figure 6-21. Polynomial model used to determine �̅� and �̅� to estimate the film thickness variance. 

Upper and lower bounds estimated using the closed-form model on surface roughness at 

i = 0.5% are shown in Figure 6-22(a) as dashed lines using the temperature profile shown in 

Figure 6-22(b). As shown in this figure, the open-loop responses obtained from 20 simulations 
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using random realizations in the uncertain parameters are bounded within the estimated upper 

and lower bounds. Likewise, Figure 6-23 shows the open-loop simulations for the film thickness 

and the corresponding bounds (dashed lines). While the upper and lower bounds are estimated 

using the closed-form model in milliseconds, each open-loop simulation using a 100 × 100 
lattice in the KMC model takes approximately an hour. 

 

 

Figure 6-22. (a) Surface roughness due to parameter uncertainties, obtained by Monte Carlo simulation using 20 

open-loop simulations (solid lines), the upper and lower bounds estimated on surface roughness by closed-form 

model (dashed lines), (b) Substrate temperature profile. 
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Figure 6-23. Thickness due to parameter uncertainties obtained by Monte Carlo simulation using 20 open-loop 

simulations (solid lines), the upper and lower bounds estimated on thickness by closed-form model (dashed lines). 

6.2.4. Deterministic surrogate formulation of stochastic NMPC 

Figure 6-22 and Figure 6-23 demonstrate the accuracy of the developed closed-form model and 

its efficiency for online control of the deposition process under uncertainty in the model 

parameters. Motivated by this, the computationally tractable deterministic surrogate of the 

stochastic NMPC scheme shown in Eq.(6-20) can be developed by replacing the probabilistic 

constraint on film thickness with the following deterministic constraint: 

1(23 − )*�� ~1 − �<m*ó�5ô, *̂ó�5ô� ≤ 0, (6-38) 

where m*ó�5ô and ̂ *ó�5ô are respectively estimated using Eqs.(6-11)-(6-32). This formulation has 

been derived considering that, the probabilistic constraint in problem (6-20) is a linear function 

of final thickness, and the film thickness can be described using a normal distribution as shown 

in Eq.(6-36). The conversion of probabilistic constraints for efficient optimization has been 

studied for a wide class of PDFs (Calafiore and Ghaoui, 2006). Using Eq.(6-38), the shrinking 

horizon stochastic NMPC scheme shown in Eq.(6-20) can be reformulated as follows: 
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min;(¿) )+�� ~ℬ<m+ó�5ô, +̂ó�5ô� 

(6-39) 

Subject to: 

Closed-form model, Eqs.(6-29)-(6-32)  

�(:) = �+45(:) + ;(:)(1(:) − 1+45(:)) 
1(23 − )*�� ~1 − �<m*ó�5ô, *̂ó�5ô� ≤ 0 
�(23 ≤ �(:) ≤ �(CR 
ℛ(23 ≤ �(:) − �(: − 1) ≤ ℛ(CR 
: = 1,… , &. 

The performance index in this optimization problem is the surface roughness evaluated at a 

specific probability, ℬ. To provide a finite-dimensional optimization problem, the batch time, �5 
has been discretized into 20 equally spaced time intervals. Accordingly, the feedback gain 

vector, ;(�), which is the optimization variable for this problem, is considered to be piecewise 

constant between the sampling time intervals �¿ and �¿·�. In this study, ℛ(CR and ℛ(23 were set 

to 25 K while �(23 and �(CR were respectively set to 600 and 1400 K, which correspond to the 

operational limits at which the closed-form models were identified. The nominal open-loop 

optimization problem was solved offline to determine the reference trajectory of the substrate 

temperature and the reference thickness. The measurements for thickness are available at every 

iteration of the NMPC algorithm, which has been set to 5 s in these simulations. The closed-form 

model shown in Eq.(6-33) is modified to estimate the states of the system for the NMPC 

framework. Although this model performs successfully under model-plant mismatch, its 

performance can be deteriorated in the presence of unmeasured disturbances. To improve the 

predictions, a linear correction term has been added to the model shown in Eq.(6-33) as follows: 

q¿ = ²óq¿��, �ô + =	(m*,¿ − 1(:)), (6-40) 

where = is the gain vector. 

To evaluate the performance of the NMPC algorithm shown in (6-39), the following four 

different scenarios are considered: 

1. ℬ = 50% and � = 50%. 

2. ℬ = 70% and � = 70%. 



114 
 

3. ℬ = 90% and � = 80%. 

4. ℬ = 90% and � = 80% under disturbance. 

In the first scenario, the NMPC scheme minimizes the final surface roughness estimated at 50% 

probability while the minimum allowed film thickness, 1(23, has to be at least 1,700 mL in more 

than 50% of the runs. To assess the effectiveness of the control framework, Monte Carlo 

simulations of the closed-loop control have been performed using 50 random realizations in the 

uncertain parameters obtained from the joint multivariable normal distribution previously 

described in Eq.(6-19). The PDFs of the surface roughness and film thickness at the end of the 

batch are shown in Figure 6-24. The mean value of the thickness PDF is 1,708 mL indicating 

that the thickness obtained in more than 50% of the closed-loop simulations at the end of the 

batch are more than almost 1,700 mL. Therefore, the NMPC scheme successfully complies with 

the constraint defined on final film thickness for this scenario. The PDF of surface roughness at 

the end of the batch is also shown in this figure and has the mean value of 1.78 mL. 

Figure 6-24. PDFs obtained at the end of the batch from 50 Monte Carlo simulations for ℬ = 50% and � = 50% (a) 

Surface roughness, and (b) Thickness. 

In the second scenario, the final surface roughness is estimated at 70% probability while the 

film thickness has to be more than 1,700 mL in at least 70% of the runs. Figure 6-25 shows final 

thin film properties obtained from 50 closed-loop simulations for the first and second scenarios. 

Since in the second scenario, a higher probability of satisfaction has been enforced on the film 

thickness constraint, the number of thin films that has a thickness that is more than 1,700 mL is 

14% more than the first scenario. The average thickness in this scenario is 1,742 mL which is 
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larger compared to the mean thickness obtained in the first scenario. As shown in this figure, due 

to requirements to achieve a thickness larger than 1,700 mL in 70% of the runs, the controller 

has resulted in higher surface roughness at the end of the batch with the mean value of 1.99 mL. 

 

Figure 6-25. Final properties at the end of the batch from 50 Monte Carlo simulations for the first and second 

scenarios. 

The substrate temperature trajectory for the second scenario is compared to the trajectory 

obtained in the first scenario in Figure 6-26 using the same realization in the uncertain multiscale 

model parameters. As shown in this figure, a low temperature profile in the second scenario 

promotes adsorption on the surface to comply with the film thickness constraint. The penalty of 

the lower temperature is the larger average surface roughness obtained at the end of the 

deposition process as indicated in Figure 6-25. 

 



116 
 

 

Figure 6-26. The substrate temperature trajectory applying the first and the second scenarios in the stochastic 

NMPC. 

To further demonstrate the applicability of the NMPC scheme, in the third scenario, the control 

objective is to minimize the final surface roughness evaluated at 90% probability while the film 

thickness is required to be more than 1,700 mL in at least 80% of the runs. Figure 6-27 shows the 

variation of the PDFs of surface roughness and film thickness during the deposition process for 

the first and third scenarios. As shown in Figure 6-27(a), the variability in surface roughness is 

described by lognormal PDFs during the process. The mean and the variance of the PDFs are 

changing during the batch due to variation in the temperature trajectories. As shown in Figure 

6-27(b), the film thickness is normally distributed during the process in the first and third 

scenarios; however, their mean and the variances are slightly different since different confidence 

levels were imposed in the stochastic MPC framework. In the third scenario, the average 

roughness at the end of the batch is 2.25 mL while the average film thickness is 1,770 mL. 
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Figure 6-27. Variations of the PDFs along the batch for the first and third scenarios (a) Surface roughness, and (b) 

Thickness. 

To show the effectiveness of the control scheme in the presence of disturbances, in the last 

scenario, a step change of -5% has been inserted in the sticking coefficient, T=, at � = 50	s. As 

shown in Eq.(3-8), the sticking coefficient directly affects the adsorption rate on the surface, and 

consequently affects the surface roughness and film thickness. The final properties from 50 

closed-loop simulations are shown in Figure 6-28 for the third and fourth scenarios. The 

disturbance introduced in the fourth scenario lowers the adsorption rate on the surface that can 

lead to a low thickness at the end of the batch. However, as shown in Figure 6-28, the film 

thickness at the end of the batch is more than 1,700 mL in more than 80% of the runs, which 

satisfies the requirement specified in the stochastic NMPC framework. The average roughness at 
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the end of the batch is 2.22 mL while the average film thickness is 1,766 mL. Thus, these values 

are similar to the means obtained in the third scenario for the surface roughness and thickness, 

which demonstrates the effectiveness of the proposed control scheme. 

 

Figure 6-28. Final properties at the end of the batch from 50 Monte Carlo simulations for the third and fourth 

scenarios. 

 

Figure 6-29. Substrate temperature trajectory applying the third and the fourth scenarios in the stochastic NMPC. 

The optimal substrate temperature trajectories for the third and fourth scenarios are compared 

in Figure 6-29. To provide a fair comparison between these scenarios, the temperature 

trajectories are obtained for a specific realization of the uncertain multiscale model parameters. 

As shown in this figure, the temperature profile for the fourth scenario is slightly lower in the 

second half of the batch to meet the constraint on thickness. This decrease in the temperature 
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profile is performed by NMPC to compensate for the sudden drop in the adsorption rate due to 

the step change in the sticking coefficient at � = 50	s. 
6.3. Summary 

A robust NMPC algorithm has been presented in this chapter to minimize the surface roughness 

in a thin film deposition process while satisfying the constraints on applied substrate temperature 

and the minimum film thickness required at the end of the process. To provide a model that is 

efficient for NMPC, model identification is performed through data collected from a multiscale 

thin film deposition model. A series expansion of the surface roughness is used to estimate the 

distribution of this controlled output in the growth process. A closed-form model is developed to 

predict the surface roughness and film thickness during the growth process under model 

parameter uncertainty. Subsequently, this model is applied in the NMPC to provide a robust 

control strategy under uncertainties in the KMC parameter and the control actions. As shown in 

the simulation results, significant variability in the film deposition process due to model 

uncertainty can lead to economic losses, since the process cannot meet the desired product 

specifications. Considering the uncertainties in the model have shown to significantly improve 

the performance of the control approach; hence, motivating the need to develop robust strategies 

for the thin film deposition process. 

Moreover, a closed-form model has been developed that is able to accurately predict the 

statistical moments of surface roughness and film thickness during the deposition under model 

parameter uncertainty. Employing PSEs, the expected value and the variance of the surface 

roughness and film thickness are estimated as a function of substrate temperature. This collected 

data is used for offline identification of the closed-form model parameters. The developed model 

can efficiently predict the statistical moments for online control and optimization applications. 

Thus, the model is applied in a stochastic NMPC to provide a robust control strategy for the 

deposition process under uncertainties in the multiscale model parameters. The stochastic 

shrinking horizon NMPC minimizes the surface roughness in a thin film deposition process 

while complying with the constraints on applied substrate temperature and the minimum film 

thickness required at the end of the process at a desired probability limit. 
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Chapter 7  
Conclusions and Recommendations 

The focus of this research is on uncertainty analysis of the thin film deposition process using 

PSE for robust optimization and control applications. The disparity in length and time scales of 

the physicochemical events occurring in thin film deposition is described using a multiscale 

model that couples nonlinear PDEs with lattice-based KMC simulations. Unlike continuum 

models, the KMC model does not provide a closed-form expression and is also computationally 

prohibitive for uncertainty analysis. Therefore, for robust control and optimization applications 

in this research, the controlled objectives are described as a series expansion of the uncertain 

model parameters. The Monte Carlo sampling method is employed in this work as an index to 

validate the accuracy of the approximations and to determine the order of the truncated PSEs. 

The analytical expressions obtained using the PSE method can be used for an efficient 

uncertainty propagation using Monte Carlo method or to determine the statistical moments of the 

controlled outputs.  

7.1. Conclusions 

A fundamental step to design a robust optimization or control strategy is the characterization of 

uncertainty in model parameters. However, when there is no access to data from the process, the 

common assumption is that the uncertainties are either normally distributed or bounded. The 

probabilistic approach based on normal distribution leads to optimistic estimates whereas the 

worst-case scenario via bounded uncertainties might include realizations in the parameters that 

will be very unlikely thus leading to overly conservative results. The uncertainty analysis on the 

thin film deposition is performed in Chapter 4 applying worst-case and probabilistic-based 

approaches. To provide a computationally tractable optimization, the required sensitivities in the 

PSEs are obtained from average of multiple multiscale simulations employing reduced-order 

lattices in the KMC simulations. The optimal temperature profile that maximizes the final 

thickness of the thin film under end-point product constraints and uncertainty in the model 

parameters has been identified. The results show that the prior assumption on type of the 

uncertainty affects the optimization results. Thus, inaccurate uncertainty description assumptions 

can lead to a loss in performance and therefore economic losses in the process.  
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Sensitivity analysis of the stochastic computationally intensive KMC simulations is not trivial. 

However, closed-form expressions that describe the states of the thin film deposition as a 

function of KMC parameters are available. In Chapter 4, to accelerate the distributional 

uncertainty analysis of the rate of microscopic events using PSE, the sensitivities are calculated 

analytically. The probabilistic bounds on these rates are employed to determine the probabilistic 

bounds on outputs for optimization purposes. Moreover, an algorithm is developed to provide 

less conservative bounds for time-varying parameter uncertainties. The method is used to obtain 

the optimal substrate temperature trajectory that maximizes the endpoint thin film thickness 

while meeting constraints on the roughness and growth rate in the presence of model-plant 

mismatch. The proposed approach is evaluated through simulations that show that the system’s 

outputs remained within their corresponding feasible operational limits under uncertainty. To 

that end, neglecting the model-plant mismatch in optimization strategies may result in undesired 

plant performance that is far from the optimum.  

Offline optimization of the thin film deposition process through multiscale model simulation is 

computationally intensive. This motivates the development of data-driven models that can 

efficiently predict the controlled outputs for online applications. The identified models can be 

used either as an estimator in the lack of sensors or as a basis of the MPC framework. Therefore, 

a robust estimator is developed in Chapter 5 to predict the surface roughness and growth rate as a 

function of substrate temperature and bulk precursor mole fraction in the lack of measurements 

and under uncertainty in the system parameters. To provide a computationally efficient estimator 

for online applications, an algorithm is presented for offline identification of a closed-form 

model that describes the controlled outputs based on transient changes in the manipulated 

variables. This algorithm is applicable regardless of the probability distribution assigned to the 

uncertain parameters. To provide robust estimations, the estimator is designed to evaluate the 

upper and lower bounds on the outputs under model parameter uncertainties. The closed-form 

model is developed based on data collected from the multiscale model. The sensitivities of the 

outputs with respect to the uncertain parameters are assessed offline at different substrate 

temperatures and bulk precursor mole fractions. Accordingly, upper and lower bounds on the 

outputs are determined at a specific confidence level and employed to identify a closed-form 

model for online applications. To assess the performance of the estimator in multivariable 

process control applications, the proposed estimator is coupled with PI controllers. To provide a 
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robust control of surface roughness, the robust estimator estimates the upper bound on this 

controlled output. Results from this implementation have shown that the robust estimator has 

successfully predicted the process for control multivariable control under model-plant mismatch. 

Effective control of thin film deposition processes involves accounting for model-plant 

mismatch, operating under constraints and in the lack of key process measurements. Therefore, a 

robust NMPC algorithm has been developed in Chapter 6 to minimize the surface roughness in a 

thin film deposition process while satisfying constraints on the applied substrate temperature and 

the minimum film thickness required at the end of the process. A series expansion of the surface 

roughness is used to estimate the distribution of this controlled output in the growth process. A 

closed-form model is developed to predict the surface roughness and film thickness during the 

growth process at a predefined probability. Subsequently, this model is applied in the NMPC to 

provide a robust control strategy under uncertainties in the KMC parameters and the control 

actions. Moreover, to improve the robust performance of the NMPC framework, a closed-form is 

developed to estimate the statistical moments of the surface roughness and film thickness during 

the deposition process. The closed-form model predicts the expected value and the variance of 

the thin film properties based on the substrate temperature during the deposition process. The 

parameters of the closed-form model are determined offline employing power series expansion 

(PSE). The closed-form model allows the reformulation of probabilistic constraints into their 

corresponding deterministic expressions thus enabling the design of a computationally feasible 

stochastic NMPC. To show the effectiveness of the approach, a shrinking horizon stochastic 

NMPC framework is devised to minimize the final surface roughness while complying with 

actuator constraints and a probabilistic constraint on the final film thickness.  

In process modeling and analysis, the discrepancy between the actual process and the model is 

expected. The performance of model-based control and optimization approaches can be 

deteriorated due to inappropriate assumptions applied in the model development and model 

uncertainty. Specifically, when the system’s performance objective is sensitive to unpredictable 

or sudden changes in the system’s physical parameters, this model-plant mismatch can lead to 

loss in performance. This research provides insight regarding the qualitative and quantitative 

effects of parameter uncertainty in multiscale process systems. The methods developed in this 

research enable accurate online control of the key properties of a multiscale system in the 

presence of model-plant mismatch. 
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7.2. Recommendations 

The current research can potentially be extended in different ways as explained below. 

Control thin film porosity in the presence of model-plant mismatch: A key assumption in 

modeling of the thin film deposition process in this research is SOS approximation. Based on this 

assumption, overhangs and vacancies are not allowed and atoms are located on top of other 

atoms on the surface. Porosity can adversely affect the electrical properties of microelectronic 

devices. Employing a triangular lattice in the KMC simulation, control of porosity under model 

parameter uncertainty can be analysed. 

Evaluate the methodologies in heterogeneous multiscale process systems: In the present 

research, thin film deposition is considered as a simple yet effective case study for a multiscale 

process system to evaluate the proposed methods. Although the thin film deposition process is 

spatially homogeneous, the application of the methods presented in this work can be explored in 

spatially heterogeneous systems. For instance, these methods can be applied to investigate the 

effect of model parameter uncertainties on product concentration in catalytic reactors. 

Sensitivity analysis using other methods: Efficient and accurate estimation of sensitivities for 

stochastic KMC simulations is challenging. In this work, the sensitivity analysis has been 

performed using the average of results from multiple multiscale simulations in finite differences. 

Moving forward, the sensitivity analysis of the system can be conducted using other approaches.  

Uncertainty analysis using other methods: Despite its importance, uncertainty analysis is still 

an open problem for optimization and control of multiscale process systems. The difficulties in 

considering uncertainty in such systems arise due to the computational intensity, the inherent 

stochastic behavior and the lack of closed-form model. In the current research, the uncertainty 

analysis has been performed applying PSE. Moving forward, the results can be compared to 

other uncertainty quantification methods such as PCE. 

Online identification of the closed-form model: The closed-form models presented in this 

work for online applications have been developed using PSE-based algorithms. Sensitivity 

analysis required for these expansions is computationally intensive, and online estimation of 

these sensitivities through the multiscale model used in this work is not practical. Thus, offline 

identification is performed to identify the parameters of the closed-form model. Having an 
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efficient sensitivity evaluation approach, the algorithm can be modified as an adaptive model, 

where the parameters of the closed-form model can be identified online. 

Extend the stochastic NMPC to other distributional uncertainties: The algorithm presented 

in Chapter 6 to predict the statistical moments of the controlled outputs assumed a normal 

distribution for uncertain parameters. The development of the closed-form model and the 

stochastic NMPC can be extended to a general case regardless of the form of distributional 

uncertainty. This will strengthen the foundations of the algorithms presented in this research. 
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Appendix A 
Supplementary information for Chapter 5 

For the multiple linear regressions required in Eq.(5-8), the operational substrate temperature 

region is divided into three regions and the parameters are estimated assuming that they are 

functions of substrate temperature and bulk mole fraction as follows: 

�̅Y = ê=,Y + ê�,Y� + ê�,Y�� + ê�,Y�� + ê�,Y��� + ê�,Y����, 
where the parameters obtained from regression for upper and lower bounds on roughness for 

different regions in temperature are provided in Table A.1 and Table A.3 below. For each 

regression, the corresponding confidence bounds are also presented in Table A.2 and Table A.4, 

respectively. 

Table A.1. Parameters of Eq.(5-10) to estimate upper bound on surface roughness. 

Temperature ?àà ≤ @ < Aàà Aàà ≤ @ < 	ààà 	ààà ≤ @ < 	Bàà 

Parameter C�	 C�D C�E C�	 C�D C�E C�	 C�D C�E 

Fà,� -8.5e-3 3.4e-1 5.3e-4 5.9e-2 -1.0 1.6e-2 3.4e-2 -6.7e-1 8.0e-3 

F	,� 7.2e-5 -1.7e-3 9.4e-6 -1.0e-4 1.9e-3 -2.8e-5 -4.7e-5 1.1e-3 -1.1e-5 

FD,� -6.6e-8 1.6e-6 -9.9e-9 4.7e-8 -8.6e-7 1.2e-8 1.7e-8 -4.1e-7 3.9e-9 

FE,� 1.6 -3.5e1 6.6e-1 2.8 -5.8e1 3.6e-1 8.1e-1 -1. 8e1 2.8e-1 

FB,� 2.6e-4 -3.6e-3 -1.2e-4 -2.1e-3 4.2e-2 -1.2e-4 -5.2e-4 1.1e-2 -1.7e-4 

FG,� -1.6e2 3.3e3 -6.0e1 -5.1e1 1.2e3 -1.6e1 -6.1 1.6e2 -2.8 
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Table A.2. Confidence bounds of the parameters listed in Table A.1. 

Temperature ?àà ≤ @ < Aàà Aàà ≤ @ < 	ààà 	ààà ≤ @ < 	Bàà 

Parameter C�	 C�D C�E C�	 C�D C�E C�	 C�D C�E 

Fà,� 
Lower 

Bound 
-1.6e-2 1.7e-1 -1.2e-5 4.5e-2 -1.2 6.7e-3 3.1e-2 -7.4e-1 5.6e-3 

Upper 

Bound 
-1.0e-3 5.0e-1 1e-3 7.2e-2 -8.5e-1 2.5e-2 3.6e-2 -6.1e-1 1.1e-2 

F	,� 
Lower 

Bound 
4.9e-5 -2.1e-3 8.0e-6 -1.3e-4 1.4e-3 -4.9e-5 -5.1e-5 9.8e-4 -1.5e-5 

Upper 

Bound 
9.3e-5 -1.2e-3 1.1e-5 -7.1e-5 2.3e-3 -6.2e-6 -4.1e-5 1.2e-3 -6.7e-6 

FD,� 
Lower 

Bound 
-8.1e-8 1.2e-6 -2.1e-8 2.9e-8 -1.1e-6 3.0e-10 1.5e-8 -4.5e-7 2.2e-9 

Upper 

Bound 
-5.0e-8 1.9e-6 1.5e-9 6.4e-8 -6.1e-7 2.4e-8 1.9e-8 -3.6e-7 5.9e-9 

FE,� 
Lower 

Bound 
1.1 -4.5e1 3.1e-1 2.2 -6.5e1 2.0e-3 6.7e-1 -2.1e1 1.7e-1 

Upper 

Bound 
2.0 -2.5e1 1.0 3.2 -5.0e1 7.1e-1 9.3e-1 -1.5e1 3.9e-1 

FB,� 
Lower 

Bound 
-4.5e-4 -1.9e-2 -1.7e-4 -2.6e-3 3.3e-2 -5.3e-4 -6.4e-4 8.8e-3 -2.7e-4 

Upper 

Bound 
9.9e-4 1.2e-2 -6.5e-5 -1.4e-3 5.0e-2 2.9e-4 -4.1e-4 1.4e-2 -7.1e-5 

FG,� 
Lower 

Bound 
-2.0e2 2.4e3 -9.0e1 -7.9e1 8.2e2 -3.5e1 -1.2e1 1.9e1 -9.8 

Upper 

Bound 
-1.1e2 4.2e3 -2.9e1 -2.3e1 1.6e3 3.2 6.1e-1 3.1e2 1.9 
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Table A.3. Parameters of Eq.(5-10) to estimate lower bound on surface roughness. 

Temperature ?àà ≤ @ < Aàà Aàà ≤ @ < 	ààà 	ààà ≤ @ < 	Bàà 

Parameter C�	 C�D C�E C�	 C�D C�E C�	 C�D C�E 

Fà,� -3.3e-4 -8.0e-2 2.8e-3 3.9e-3 -2.2e-1 3.0e-3 3.5e-3 -4.7e-1 2.9e-3 

F	,� 1.2e-5 -9.5e-4 -1.6e-6 -3.1e-6 1.1e-4 -2.6e-6 -2.7e-6 6.9e-4 -2.4e-6 

FD,� -1.1e-8 1.3e-6 -3e-11 7.2e-10 1.1e-7 8.7e-10 8.7e-10 -2.3e-7 8.4e-10 

FE,� 6.2e-1 -1.2e2 4.8e-1 2.9e-2 2.5 -2.6e-3 7.1e-2 -1.6e1 5.5e-2 

FB,� -5.4e-4 1.1e-1 -5.4e-4 5.1e-5 -1.5e-2 3.6e-5 -4.0e-5 9.8e-3 -3.6e-5 

FG,� -2.2e1 3.9e3 -6.1 -5.6 8.0e2 -1.9 -8.8e-1 1.2e2 -4.3e-1 
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Table A.4. Confidence bounds of the parameters listed in Table A.3. 

Temperature ?àà ≤ @ < Aàà Aàà ≤ @ < 	ààà 	ààà ≤ @ < 	Bàà 

Parameter C�	 C�D C�E C�	 C�D C�E C�	 C�D C�E 

Fà,� 
Lower 

Bound 
-7.1e-4 -1.4e-1 1.1e-3 3.5e-3 -5e-1 8.3e-4 2.8e-3 -5.3e-1 2.4e-3 

Upper 

Bound 
5.0e-5 -2.4e-2 4.4e-3 4.3e-3 5e-2 5.2e-3 4.2e-3 -3.9e-1 3.3e-3 

F	,� 
Lower 

Bound 
4.2e-7 -1.1e-3 -2.3e-6 -4.0e-6 -4.9e-4 -3.5e-6 -3.8e-6 5.7e-4 -3.1e-6 

Upper 

Bound 
2.2e-5 -7.8e-4 1.0e-6 -2.1e-6 7.1e-4 -2.3e-6 -1.6e-6 8.0e4 -1.6e-6 

FD,� 
Lower 

Bound 
-1.9e-8 7.9e-8 -3e-11 2.3-10 -2.3e-7 5.9e-10 3.8e-10 -2.8e-7 5.2e-10 

Upper 

Bound 
-3.2e-9 2.4e-6 3.0e-11 1.2e-9 4.5e-7 1.1e-9 1.3e-9 -1.8e7 1.1e-9 

FE,� 
Lower 

Bound 
3.7e-1 -1.5e2 3.8e-1 1.5e-2 -7.4 -1.1e-2 4.1e-2 -1.8e1 3.6e-2 

Upper 

Bound 
8.6e-1 -8.5e1 5.8e-1 4.3e-2 1.2e1 5.6e-2 9.9e-2 -1.2e1 7.4e-2 

FB,� 
Lower 

Bound 
-9.1e-4 5.6e-2 -7.0e-4 3.4e-5 -2.7e-2 2.5e-5 -6.7e-5 7.0e-3 -5.2e-5 

Upper 

Bound 
-1.6e-4 1.6e-1 -3.8e-4 6.8e-5 -3.3e-3 4.5e-5 -1.3e-5 1.2e-2 -1.8e-5 

FG,� 
Lower 

Bound 
-4.3e1 7.6e2 -6.9 -6.4 2.5e2 -4.4 -2.4 -3.2e1 -1.4 

Upper 

Bound 
-1.0 6.9e3 -5.2 -4.8 1.3e3 6.3e-1 6.4e-1 2.7e2 5.4e-1 

 

The parameters obtained for nonlinear regressions shown in Eq.(5-5) to estimate the upper 

bound on the surface roughness while the substrate temperature is 600 K and 700 K and the 

corresponding confidence bounds are listed in Table A.5 and Table A.6, respectively. The rest of 

the temperature regions were evaluated in the same fashion. 
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Table A.5. Parameters of Eq.(5-10) to estimate upper bound on surface roughness. 

Temperature @ = ?àà	; @ = Hàà	; 

Bulk precursor mole 

fraction 
C	 CD CE C	 CD CE 

� = 1 × 10�� 3.13e-02 -9.97e-02 3.54e+02 1.92e-02 -7.85e-02 1.85e+02 

� = 2 × 10�� 3.05e-02 -1.34e-01 3.66e+02 3.19e-02 -8.06e-02 2.23e+02 

� = 3 × 10�� 3.09e-02 -1.51e-01 3.45e+02 2.89e-02 -1.11e-01 2.30e+02 

� = 4 × 10�� 2.88e-02 -1.75e-01 3.81e+02 3.03e-02 -1.25e-01 2.42e+02 

� = 5 × 10�� 3.56e-02 -1.66e-01 3.51e+02 3.22e-02 -1.32e-01 2.40e+02 

� = 6 × 10�� 3.74e-02 -1.74e-01 3.62e+02 3.00e-02 -1.51e-01 2.53e+02 

� = 7 × 10�� 3.77e-02 -1.82e-01 3.63e+02 2.71e-02 -1.68e-01 2.53e+02 
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Table A.6. Confidence bounds of the parameters listed in Table A.5. 

Temperature @ = ?àà	; @ = Hàà	; 

Bulk precursor mole 

fraction 
C	 CD CE C	 CD CE 

� = 1 × 10�� 
Lower 

Bound 
3.09e-02 -1.01e-01 3.41e+02 1.89e-02 -7.97e-02 1.73e+02 

Upper 

Bound 
3.18e-02 -9.86e-02 3.66e+02 1.96e-02 -7.73e-02 1.97e+02 

� = 2 × 10�� 
Lower 

Bound 
3.01e-02 -1.36e-01 3.53e+02 3.13e-02 -8.18e-02 2.11e+02 

Upper 

Bound 
3.10e-02 -1.33e-01 3.78e+02 3.24e-02 -7.94e-02 2.35e+02 

� = 3 × 10�� 
Lower 

Bound 
3.05e-02 -1.52e-01 3.33e+02 2.84e-02 -1.12e-01 2.18e+02 

Upper 

Bound 
3.14e-02 -1.50e-01 3.57e+02 2.93e-02 -1.10e-01 2.42e+02 

� = 4 × 10�� 
Lower 

Bound 
2.84e-02 -1.76e-01 3.68e+02 2.98e-02 -1.26e-01 2.29e+02 

Upper 

Bound 
2.92e-02 -1.74e-01 3.93e+02 3.08e-02 -1.23e-01 2.54e+02 

� = 5 × 10�� 
Lower 

Bound 
3.51e-02 -1.67e-01 3.39e+02 3.17e-02 -1.33e-01 2.27e+02 

Upper 

Bound 
3.61e-02 -1.65e-01 3.63e+02 3.27e-02 -1.30e-01 2.53e+02 

� = 6 × 10�� 
Lower 

Bound 
3.69e-02 -1.75e-01 3.50e+02 2.95e-02 -1.52e-01 2.41e+02 

Upper 

Bound 
3.79e-02 -1.73e-01 3.75e+02 3.04e-02 -1.50e-01 2.66e+02 

� = 7 × 10�� 
Lower 

Bound 
3.72e-02 -1.83e-01 3.50e+02 2.67e-02 -1.70e-01 2.41e+02 

Upper 

Bound 
3.83e-02 -1.80e-01 3.75e+02 2.75e-02 -1.67e-01 2.65e+02 
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