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Abstract 

 

Water-soluble polymers of acrylamide (AAm) and acrylic acid (AAc) have significant potential 

in enhanced oil recovery, as well as in other specialty applications. However, to improve the 

shear strength of the polymer, it may be beneficial to add a third comonomer to the pre-

polymerization mixture. Homopolymerization kinetics of acrylamide and acrylic acid have been 

studied previously, as have the copolymerization kinetics of these two comonomers. Therefore, 

in the current study, the kinetics of three additional systems are investigated: copolymerization of 

AMPS/AAm and AMPS/AAc and terpolymerization of AMPS/AAm/AAc. 

 

Copolymerization experiments for both AMPS/AAm and AMPS/AAc were designed using two 

optimal techniques (Tidwell-Mortimer and the error-in-variables-model (EVM)) and 

terpolymerization experiments for AMPS/AAm/AAc were optimally designed using EVM. From 

these optimally designed experiments, accurate reactivity ratio estimates were determined for 

AMPS/AAm, AMPS/AAc and AMPS/AAm/AAc.  

 

To better understand the error associated with each system, reactivity ratio point estimates for 

both the binary and ternary systems were presented using joint confidence regions (JCRs). The 

estimates were evaluated by comparing model predictions to experimental data, and the effect of 

experimental error was studied using sensitivity analyses. Finally, a direct comparison of binary 

and ternary reactivity ratios (for similar systems under the same experimental conditions) was 

possible for the first time.  
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CHAPTER 1. THESIS OBJECTIVES AND OUTLINE 

 

1.1 Motivation 

 

Water-soluble polymers have been used for a wide variety of applications due to their versatility 

[1]. Both natural and synthetic water-soluble polymers are often found in medical applications 

including antiviral and antibacterial treatments, pharmaceuticals, and hydrogels (used in soft 

contact lenses, artificial organs, tissue prostheses, dental cements, and more). Pharmaceutical 

applications are plentiful, as water-soluble polymers are used in everything from creating 

binding agents and tablet coatings to controlling sustained drug delivery and degradation [2]. In 

addition to medical applications, water-soluble polymers are often used as thickeners, emollients 

and lubricants in cleaning products and cosmetics [3].  

 

Beyond these personal-care and medical applications, water-soluble polymers are also used in 

many different industries including agriculture, food, plastics, pulp and paper, mining, 

petroleum, textiles, and waste water treatment [1]. Often, they are used as both processing aids 

and components of final products. Addition of water-soluble polymers to industrial processes 

tends to improve control of fluid motion, which may involve drag reduction, fluid thickening, or 

flocculation [3].  

 

One of the major applications of water-soluble polymers is as processing aids in enhanced oil 

recovery (EOR) [4]. Specifically, water-soluble polymers have the ability to increase the 
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viscosity of the aqueous phase during oil recovery, which increases the efficiency of the overall 

process. 

 

Many polymers are available for use in EOR. Several of these formulations are copolymers with 

polyacrylamide backbones, but xanthan gum (a biopolymer) is also widely used [5]. Each water-

soluble polymer presents unique advantages and disadvantages in EOR, so the material selection 

ultimately depends on the requirements of the specific oil recovery process. 

 

Some of the most common acrylamide copolymer systems used in EOR are acrylamide (AAm) 

and acrylic acid (AAc) copolymers. However, these AAm/AAc copolymers, like many other 

water-soluble polymers with high molecular weights, are very shear sensitive. That is, when the 

copolymer is subjected to high temperatures and stresses, there is potential for the polymer 

backbone to break [6]. This directly affects the polymer's efficiency in enhanced oil recovery, as 

the polymer in this case will not be able to increase the aqueous phase viscosity as much as was 

originally desired. The shear degradation of AAm/AAc copolymers in EOR is common, as the 

polymer is subjected to stirring and pumping, as well as high temperatures, flow rates and 

pressures. Once the backbone of the polymer is broken, the damage is irreversible. Thus, it is 

essential to minimize degradation in EOR applications. 

 

One solution that has been proposed to limit shear degradation of AAm/AAc copolymers is the 

addition to the polymerization recipe of a third (co)monomer, such as N-vinylpyrrolidone (NVP) 

or 2-acrylamido-2-methylpropane sulfonic acid (AMPS). NVP has been used previously as a 

comonomer in water-soluble polymers, as it can improve polymer hydrophilicity [7]. Also, 
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perhaps more importantly in this application, its presence has been known to improve shear 

stability [8]. The addition of bulky monomer groups increases the rigidity of the polymer 

structure (and hence the glass transition temperature), and ultimately provides greater stability, 

which is beneficial for the application [6]. However, previous studies indicating low reactivity 

ratios for the related comonomer pairs suggest that it is inherently difficult to increase the rates 

of incorporation of NVP units in the AAm/AAc/NVP terpolymer (unless special semi-

continuous reactor technology is used), which makes the terpolymer synthesis impractical for the 

types of benefits gained (for more details on NVP copolymerization characteristics, see 

Appendix A).  

 

2-acrylamido-2-methylpropane sulfonic acid (AMPS) has also been considered as a comonomer 

in water-soluble polymers. As with NVP, addition of AMPS has the potential to improve main 

chain stability in harsh environments; the steric hindrance provided by the sulfonic group in 

AMPS is expected to control potential degradation of the polymer backbone [9]. In addition, 

AMPS has an advantage over NVP with regards to favourable reactivity ratios and rates of 

incorporation of AMPS monomer units in copolymers and terpolymers with AAm and AAc. A 

survey of existing (yet unreliable) reactivity ratios in the literature for the related copolymers 

(AMPS/AAm and AMPS/AAc) confirms that synthesis of the AMPS/AAm/AAc terpolymer is 

more promising than that of the AAm/AAc/NVP terpolymer. More details on the reactivity ratio 

(and hence rate of incorporation) issues will be given in Chapter 2.  

 

A water-soluble terpolymer based on 2-acrylamido-2-methylpropane sulfonic acid, acrylamide, 

and acrylic acid will be the topic of the thesis. Polymerization kinetics for the terpolymer system 
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and its binary components will be examined, since these particular combinations of monomers 

are largely unstudied. AAm/AAc copolymerization kinetics have recently been clarified [10], so 

this research will focus on the addition of the third monomer (AMPS) to the system. Thus, the 

copolymerization kinetics for the synthesis of AMPS/AAm and AMPS/AAc with desirable 

property targets will also be investigated.   

 

1.2 Objectives 

 

Water-soluble polymers used in enhanced oil recovery (EOR) must meet several basic 

requirements, including suitable viscosity modification, long-term stability in hostile conditions, 

brine compatibility, and cost effectiveness [9, 11]. Based on an extensive review of the literature, 

it is believed that terpolymers containing 2-acrylamido-2-methylpropane sulfonic acid (AMPS), 

acrylamide (AAm) and acrylic acid (AAc) will meet these requirements and provide improved 

performance over existing EOR polymers. 

 

The main objective for this research is to investigate polymerization kinetics for the 

AMPS/AAm/AAc terpolymer system. However, two of the associated copolymer systems, 

AMPS/AAm and AMPS/AAc are largely unstudied, especially in terms of kinetics. Therefore, as 

a first step, reliable kinetic data should be collected in order to estimate reliable reactivity ratios 

for the binary systems.  It has been suggested that binary reactivity ratios are not to be used when 

ternary data are available, as simplifying assumptions tend to affect the error structure and hence 

the final estimated parameter values for the reactivity ratios. Essentially, using binary reactivity 
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ratios ignores the presence of the third comonomer [12]. However, obtaining accurate reactivity 

ratios for AMPS/AAm and AMPS/AAc can provide additional insight into the ternary system 

and can be used to determine optimal feed compositions for estimating improved ternary 

reactivity ratios. This comprehensive study will also allow for direct comparison of binary and 

ternary reactivity ratios based on experimental data. Ultimately, the information gathered and 

presented herein will make it possible to synthesize tailor-made copolymers and terpolymers 

with desirable properties for specific applications including, but not limited to, enhanced oil 

recovery. 

 

1.3 Outline 

 

This thesis is divided into seven chapters. A brief description of each chapter is presented below: 

 

Chapter 2 provides background information for the topics discussed in this work. The 

introduction starts with an overview of free radical polymerization kinetics, and includes details 

specific to homopolymerization, copolymerization and terpolymerization reactions. Next, the 

concept of reactivity ratio estimation is discussed. The primary estimation technique used in this 

work is the error-in-variables-model (EVM); both the motivation in choosing this technique and 

the details regarding its implementation are discussed herein. Finally, existing literature related 

to the comonomers used in the current study (2-acrylamido-2-methylpropane sulfonic acid 

(AMPS), acrylamide (AAm) and acrylic acid (AAc)) is explored. This literature review focuses 

on the AMPS/AAm and AMPS/AAc copolymers as well as the AMPS/AAm/AAc terpolymer.   
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Chapter 3 describes the experimental work that has been performed as part of this thesis. The 

materials acquisition and purification, pre-polymerization preparation, copolymer and terpolymer 

synthesis, and polymer characterization are discussed in this chapter. 

 

Chapters 4 through 6 outline the experimental design, preliminary and optimal experimental 

results, and reactivity ratio estimation for three polymerization systems. Chapter 4 examines the 

AMPS/AAm copolymer, Chapter 5 focuses on the AMPS/AAc copolymer, and Chapter 6 

presents work done with the AMPS/AAm/AAc terpolymer. In each of these chapters, 

preliminary recipes are selected based on existing literature values. Reactivity ratio estimates 

from these preliminary experiments are then used to design optimal experiments (via both 

Tidwell-Mortimer and error-in-variables-model approaches) for reactivity ratio estimation.  

 

In Chapter 7, the conclusions drawn from this work are presented, and the main contributions of 

the study are enumerated. In light of these contributions, short-term and long-term 

recommendations for future work are also included.  

 

Appendix A, entitled "Investigation of N-vinylpyrrolidone (NVP) as a Potential Comonomer” 

gives a literature review outlining the advantages and disadvantages of using NVP as the third 

monomer in the terpolymer system. Ultimately, AMPS/AAm/AAc was deemed more promising 

than AAm/AAc/NVP, and the reasoning is presented in this appendix. 

 

A substantial amount of the research presented herein was experimental, and lab safety was a 

priority throughout the project. Safety considerations are briefly presented in Appendix B.   
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Some preliminary data collected for Chapters 4 and 5 are listed in Appendix C for the interested 

reader, and Appendix D contains sample calculations and additional data sets relevant to this 

investigation. These include experimental design, conversion/composition calculations and other 

sensitivity analysis considerations. 
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CHAPTER 2. BACKGROUND INFORMATION 

 

2.1 Free Radical Polymerization 

 

2.1.1 Free Radical Homopolymerization 

 

Many water-soluble polymers are produced via free radical polymerization (FRP). FRP is a type 

of chain polymerization which involves four main steps: initiation, propagation, chain transfer 

(to either small or large molecules) and termination. A very basic overview of the free radical 

polymerization mechanism is presented in Table 2.1. Note that r and s denote chain length, while 

i and j represent monomer species. 

 

The kinetics of free radical polymerization are well understood, and standard equations are 

available to provide information about both polymerization rate and molecular weight 

development [13]. The initiation rate, Ri, is proportional to the concentration of initiator in the 

system, according to Equation 2.1. 

                                                                               𝑅𝑖 = 2𝑓𝑘𝑑[𝐼]      (2.1) 
 

where Ri = rate of initiation, f = initiator efficiency, kd = initiator decomposition rate constant 

(very sensitive to temperature), and [I] = initiator concentration. Using the stationary state 

hypothesis for radicals, one can set the termination rate, Rt, equal to the initiation rate, Ri. 
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Table 2.1: FRP Mechanism Overview 

Description Mechanism 

Initiation 𝑰
𝒌𝒅
→ 𝟐 𝑹𝒊𝒏

●  

𝑹𝒊𝒏
● +𝑴𝒊

𝒌𝒑,𝟎𝒊
→  𝑹𝟏,𝒊

●  

Propagation 
𝑹𝟏,𝒊
● +𝑴𝒋

𝒌𝒑𝒊𝒋
→ 𝑹𝟐,𝒋

●  

                ⋮ 

𝑹𝒓,𝒊
● +𝑴𝒋

𝒌𝒑𝒊𝒋
→ 𝑹𝒓+𝟏,𝒋

●  

Chain transfer to monomer 
𝑹𝒓,𝒊
● +𝑴𝒋

𝒌𝒇𝑴𝒊𝒋
→   𝑷𝒓 + 𝑹𝟏,𝒋

●  

Chain transfer to solvent 
𝑹𝒓,𝒊
● +𝑺

𝒌𝒇𝑺𝒊
→  𝑷𝒓 + 𝑹𝟏

● 

Chain transfer to chain transfer agent 

(CTA) 
𝑹𝒓,𝒊
● +𝑪𝑻𝑨

𝒌𝒇𝑪𝑻𝑨𝒊
→   𝑷𝒓 + 𝑹𝟏

● 

Chain transfer to impurity 

(retarder/inhibitor) 
𝑹𝒓,𝒊
● +𝒁

𝒌𝒇𝒁𝒊
→  𝑷𝒓 − 𝒁

●  (unreactive) 

Chain transfer to polymer (long chain 

branching) 
𝑹𝒓,𝒊
● +𝑷𝒔,𝒋

𝒌𝒇𝑷𝒊𝒋
→  𝑷𝒓,𝒊 + 𝑹𝒔,𝒋

●  

Chain transfer reaction (general) 
𝑹𝒓,𝒊
● +𝑿− 𝑨

𝒌𝒇𝑿𝒊
→  𝑷𝒓 − 𝑿+ 𝑨

●  

Terminal double-bond polymerization 

(long chain branching) 
𝑹𝒓,𝒊
● +𝑷𝒔,𝒋

𝒌𝒑𝒊𝒋
∗

→ 𝑹𝒓+𝒔
●  

Internal double-bond polymerization 

(crosslinking) 
𝑹𝒓,𝒊
● +𝑷𝒔,𝒋

𝒌𝒑𝒊𝒋
∗∗

→ 𝑹𝒓+𝒔
●  

Termination by combination 𝑹𝒓,𝒊
● +𝑹𝒔,𝒋

●
𝒌𝒕𝒄
→ 𝑷𝒓+𝒔 

Termination by disproportionation 𝑹𝒓,𝒊
● +𝑹𝒔,𝒋

●
𝒌𝒕𝒅
→ 𝑷𝒓 + 𝑷𝒔 

 

 

Therefore, the relationship presented in Equation 2.2 can be used to define [R
●
] in terms of more 

easily measurable values. 

                                                                       𝑅𝑖 = 𝑅𝑡 = 𝑘𝑡[𝑅
•]2       (2.2) 

where [R
●
] = total free radical concentration and kt = overall termination rate constant. After 

some algebraic manipulation, one can obtain the important equation for the rate of 

polymerization (Equation 2.3), which shows that the rate of polymerization, Rp, is proportional to 

[M] and to [I]
1/2

.  
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                                         𝑅𝑝 = 𝑘𝑝[𝑀][𝑅
●] = 𝑘𝑝[𝑀] (

𝑅𝑖

𝑘𝑡
)
1/2

= 𝑘𝑝[𝑀] (
2𝑓𝑘𝑑[𝐼]

𝑘𝑡
)
1/2

   (2.3) 

 

In Equation 2.3, Rp = rate of polymerization, kp = propagation rate constant (again, sensitive to 

temperature) and [M] = monomer concentration. The overall rate of polymerization, Rp, 

describes the rate of consumption of monomer (-d[M]/dt), with the majority of the monomer 

molecules consumed in the propagation step (long chain approximation).  

 

Chain transfer reactions are an important aspect of free radical polymerization kinetics, 

especially for molecular weight development. As presented in Table 2.1, chain transfer may be to 

any small molecule, such as monomer, solvent, chain transfer agent (modifier for molecular 

weight), impurity, or any other substance, as long as the small molecule has a labile hydrogen. 

The rate of chain transfer (for the general case, to X–A) is given by Equation 2.4. X is the (labile) 

species being transferred (usually a hydrogen atom). 

     𝑅𝑡𝑟 = 𝑘𝑓𝑋[𝑅
●][𝑋 − 𝐴]    (2.4) 

 

Since chain transfer essentially interrupts the propagation of polymer chains by transferring 

radical activity to the small transfer molecule, all transfer reactions to small molecules decrease 

the average chain length of polymer molecules (especially when a specific chain transfer agent 

(CTA) is present). This ultimately affects the molecular weight averages.  

 

The chain transfer reaction described above produces a new transfer radical, 𝐴● , which can re-

initiate. Hence, an ideal transfer agent does not affect the rate of an ideal polymerization, but 

reduces the product’s molecular weight. If the transfer radical is stable and has trouble re-

initiating, then the small molecule acts as a retarder or inhibitor (impurity effects). 
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Thus, propagation may be interrupted in the presence of an inhibitor or retarder, Z. The inhibitor 

attracts the radical from the propagating chain, forming 𝑃𝑟 − 𝑍
● . These radicals do not re-initiate 

or re-initiate very slowly. The relationship between [Z] and the other polymerization variables 

described previously is presented in Equation 2.5.  

     
2𝑅𝑝
2𝑘𝑡

𝑘𝑝
2[𝑀]2

+
𝑅𝑝[𝑍]𝑘𝑓𝑍

𝑘𝑝[𝑀]
− 𝑅𝑖 = 0    (2.5) 

 

These very basic expressions for free radical polymerization will be instrumental in investigating 

the kinetics of copolymerizations and terpolymerizations. 

 

2.1.2 Free Radical Copolymerization 

 

The addition of a second comonomer in the system complicates the kinetics further. Since more 

components are present during the reaction, more information is required to describe 

copolymerization kinetics [14]. 

 

The most widely used model in copolymerization is the terminal model. This model was 

originally presented for the copolymerization of styrene and methyl methacrylate in 1944, by 

Mayo and Lewis [15]. The terminal model assumes that the reactivity of the propagating radical 

only depends on the reactivity of the monomer unit at the end of the radical (the terminal 

monomer unit). With this assumption, there are four possible propagation reactions: 
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𝑅𝑟,1
● +𝑀1

𝑘𝑝11
→  𝑅𝑟+1,1

●  

𝑅𝑟,1
● +𝑀2

𝑘𝑝12
→  𝑅𝑟+1,2

●  

𝑅𝑟,2
● +𝑀1

𝑘𝑝21
→  𝑅𝑟+1,1

●  

𝑅𝑟,2
● +𝑀2

𝑘𝑝22
→  𝑅𝑟+1,2

●  

 

In this series of reactions, Rr,j represents a radical species of length r with monomer j at the chain 

end (j = 1, 2). Similarly, Mk represents monomer k that is being added to the chain end (k = 1, 2). 

Each of the four reactions has a rate constant, kpjk (radical j adding monomer k). Just as in free 

radical homopolymerization, the overall rate of polymerization can be determined by measuring 

the rate of overall monomer consumption in the system.  

 

2.1.2.1 Copolymerization Models 

 

The Mayo-Lewis model is the most widely used one for copolymerization systems. This classical 

equation, also called the instantaneous copolymer composition equation, is based on the terminal 

model described previously. With two distinct monomers, two rate equations can be written for 

the consumption rate of the two monomers (Equations 2.6 and 2.7).  

                                                    
−𝑑[𝑀1]

𝑑𝑡
= 𝑘𝑝11[𝑅1

•][𝑀1] + 𝑘𝑝21[𝑅2
•][𝑀1]    (2.6) 

 

                                                    
−𝑑[𝑀2]

𝑑𝑡
= 𝑘𝑝12[𝑅1

•][𝑀2] + 𝑘𝑝22[𝑅2
•][𝑀2]    (2.7) 

 

In order to eliminate the radical concentrations from Equations 2.6 and 2.7, the quasi-steady state 

approximation for radicals can be used.  After some mathematical manipulation, the resulting 

equation is the Mayo-Lewis equation, or the instantaneous copolymer composition equation 

(Equation 2.8). 
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𝑑[𝑀1]

𝑑[𝑀2]
= (

[𝑀1]

[𝑀2]
) (

𝑟1[𝑀1]+[𝑀2]

[𝑀1]+𝑟2[𝑀2]
)     (2.8) 

 

where [M1] and [M2] are the concentrations of monomer 1 and 2 in the polymerizing mixture, 

and   

                                                              𝑟1 =
𝑘𝑝11

𝑘𝑝12
      𝑎𝑛𝑑      𝑟2 =

𝑘𝑝22

𝑘𝑝21
      (2.9) 

 

 

The monomer reactivity ratios, r1 and r2, describe the potential for homopropagation (that is, 

having the same monomer type added that is already in the terminal monomer position) relative 

to the potential for cross-propagation (having the monomer type being added that is different 

from that in the terminal monomer position on the radical). These parameters are specific to each 

copolymer system, and many summary tables are available citing reactivity ratios of common 

copolymer systems [16]. Reactivity ratios can be estimated using experimental data, if the free 

(unreacted) monomer composition in the polymerizing mixture and the bound (incorporated) 

monomer composition in the polymer chains (i.e., copolymer composition) are known. 

Techniques for reactivity ratio estimation are discussed further in Section 2.2. 

 

Another popular form of the copolymerization equation (Equation 2.8) is given by Equation 

2.10, which provides information directly about the instantaneous composition of the copolymer, 

F1, given the comonomer composition in the polymerizing mixture. An advantage of Equation 

2.10 is that monomer mole fractions are used rather than monomer concentrations. This 

eliminates the need to assume that volume is constant throughout the polymerization, which may 

not always be a valid assumption. 

                                                                        𝐹1 =
𝑟1𝑓1

2+𝑓1𝑓2

𝑟1𝑓1
2+2𝑓1𝑓2+𝑟2𝑓2

2     (2.10) 
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where f1 and f2 represent the unreacted mole fractions of monomer 1 and monomer 2 in the 

mixture, respectively. F1 is the instantaneous mole fraction of monomer 1 units bound in the 

copolymer chains, corresponding to f1. Equations 2.11 and 2.12 give additional definitions and 

show relations between monomer mole fractions and concentrations. 

𝑓1 = 1 − 𝑓2 =
[𝑀1]

[𝑀1]+[𝑀2]
    (2.11) 

           𝐹1 = 1 − 𝐹2 =
𝑑[𝑀1]

𝑑[𝑀1]+𝑑[𝑀2]
    (2.12) 

 

An additional point of interest in copolymerization kinetics is establishing the azeotropic 

composition (if it exists) for the system. At the azeotropic point, the feed composition (f1) and the 

instantaneous copolymer composition (F1) are equivalent. If the reactivity ratios are known, we 

can use the instantaneous copolymerization equation (Equation 2.10) to examine F1 as a function 

of f1 and to establish the azeotropic point. By setting F1 = f1, Equation 2.10 is simplified to the 

binary azeotropic composition, shown in Equation 2.13. 

                                                                             𝐹1 = 𝑓1 =
1−𝑟2

2−𝑟1−𝑟2
    (2.13) 

 

2.1.3 Free Radical Terpolymerization 

 

Free radical terpolymerization involves three comonomers. As expected, the addition of a third 

monomer further complicates the polymerization kinetics. Terpolymerization systems have not 

been studied as widely as copolymerizations, as there are almost endless combinations of 

monomers to be discovered and characterized [17]. The kinetics of terpolymerization systems 

were first described by Alfrey and Goldfinger in 1944 [18]. Given that there are three different 
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possibilities for the terminal monomer (on the growing radical), and three options for the added 

monomer, nine different propagation steps are possible: 

𝑅𝑟,1
● +𝑀1

𝑘𝑝11
→  𝑅𝑟+1,1

●  

𝑅𝑟,1
● +𝑀2

𝑘𝑝12
→  𝑅𝑟+1,2

●  

𝑅𝑟,1
● +𝑀3

𝑘𝑝13
→  𝑅𝑟+1,3

●  

𝑅𝑟,2
● +𝑀1

𝑘𝑝21
→  𝑅𝑟+1,1

●  

𝑅𝑟,2
● +𝑀2

𝑘𝑝22
→  𝑅𝑟+1,2

●  

𝑅𝑟,2
● +𝑀3

𝑘𝑝23
→  𝑅𝑟+1,3

●  

𝑅𝑟,3
● +𝑀1

𝑘𝑝31
→  𝑅𝑟+1,1

●  

𝑅𝑟,3
● +𝑀2

𝑘𝑝32
→  𝑅𝑟+1,2

●  

𝑅𝑟,3
● +𝑀3

𝑘𝑝33
→  𝑅𝑟+1,3

●  

 

 

In this case, the overall polymerization rate can be expressed by the addition of the individual 

rates of monomer consumption for each of the three monomer types. For the sake of brevity, 

only the final equations (not containing radical concentrations) are presented here. Equations 

2.14, 2.15 and 2.16 may be seen as equivalent to the Mayo-Lewis equation (Equation 2.8), 

modified for three-component systems [19]. 

                  
𝑑[𝑀1]

𝑑[𝑀2]
= (

[𝑀1]

[𝑀2]
) (

[𝑀1]/𝑟31𝑟21+[𝑀2]/𝑟21𝑟32+[𝑀3]/𝑟31𝑟23

[𝑀1]/𝑟12𝑟31+[𝑀2]/𝑟12𝑟32+[𝑀3]/𝑟32𝑟13
) (

[𝑀1]+[𝑀2]/𝑟12+[𝑀3]/𝑟13

[𝑀2]+[𝑀1]/𝑟21+[𝑀3]/𝑟23
)   (2.14) 

 

                  
𝑑[𝑀1]

𝑑[𝑀3]
= (

[𝑀1]

[𝑀3]
) (

[𝑀1]/𝑟31𝑟21+[𝑀2]/𝑟21𝑟32+[𝑀3]/𝑟31𝑟23

[𝑀1]/𝑟13𝑟21+[𝑀2]/𝑟23𝑟12+[𝑀3]/𝑟13𝑟23
) (

[𝑀1]+[𝑀2]/𝑟12+[𝑀3]/𝑟13

[𝑀3]+[𝑀1]/𝑟31+[𝑀2]/𝑟32
)   (2.15) 

 

                  
𝑑[𝑀2]

𝑑[𝑀3]
= (

[𝑀2]

[𝑀3]
) (

[𝑀1]/𝑟12𝑟31+[𝑀2]/𝑟12𝑟32+[𝑀3]/𝑟32𝑟13

[𝑀1]/𝑟13𝑟21+[𝑀2]/𝑟23𝑟12+[𝑀3]/𝑟13𝑟23
) (

[𝑀2]+[𝑀1]/𝑟21+[𝑀3]/𝑟23

[𝑀3]+[𝑀1]/𝑟31+[𝑀2]/𝑟32
)   (2.16) 

 

As before, [Mi] represents the concentration of monomer i (i = 1, 2, 3) in the system, and the rij 

values represent (binary) monomer reactivity ratios.  
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Similarly, the instantaneous terpolymer compositions (Fi) can be calculated (in slightly different 

but equivalent expressions) as a function of unreacted monomer mole fractions (fi) (in a way 

analogous to Equation 2.10 for copolymerization). 

                                    
𝐹1

𝐹2
= (

𝑓1

𝑓2
) (

𝑓1/𝑟31𝑟21+𝑓2/𝑟21𝑟32+𝑓3/𝑟31𝑟23

𝑓1/𝑟12𝑟31+𝑓2/𝑟12𝑟32+𝑓3/𝑟32𝑟13
) (

𝑓1+𝑓2/𝑟12+𝑓3/𝑟13

𝑓2+𝑓1/𝑟21+𝑓3/𝑟23
)   (2.17) 

 

                                    
𝐹1

𝐹3
= (

𝑓1

𝑓3
) (

𝑓1/𝑟31𝑟21+𝑓2/𝑟21𝑟32+𝑓3/𝑟31𝑟23

𝑓1/𝑟13𝑟21+𝑓2/𝑟23𝑟12+𝑓3/𝑟13𝑟23
) (

𝑓1+𝑓2/𝑟12+𝑓3/𝑟13

𝑓3+𝑓1/𝑟31+𝑓2/𝑟32
)   (2.18) 

 

                                    
𝐹2

𝐹3
= (

𝑓2

𝑓3
) (

𝑓1/𝑟12𝑟31+𝑓2/𝑟12𝑟32+𝑓3/𝑟32𝑟13

𝑓1/𝑟13𝑟21+𝑓2/𝑟23𝑟12+𝑓3/𝑟13𝑟23
) (

𝑓2+𝑓1/𝑟21+𝑓3/𝑟23

𝑓3+𝑓1/𝑟31+𝑓2/𝑟32
)   (2.19) 

 

 

Numerous studies have been completed over the years to gain a better understanding of three-

component (ternary) systems [17]. However, conventional analysis is based on the combination 

of multiple (binary) copolymer systems; a ternary system is therefore treated as a combination of 

three binary systems. While this may present a good starting point, using binary data to estimate 

ternary reactivity ratios can lead to severe estimation problems [12]. Concerns surrounding this 

technique include the inaccuracy of the binary reactivity ratios in the literature, the unfounded 

assumption that no composition drift will occur at low conversion, and induced correlations 

(linear dependencies) between mole fractions. Ultimately, using binary data for 

terpolymerization studies is a gross oversimplification, and should be avoided as much as 

possible [12]. 

 

As shown in Equations 2.17 through 2.19, the Alfrey & Goldfinger (A-G) model uses ratios of 

mole fractions as responses. However, the measurements taken from experimental work are 

typically single mole fractions (not ratios). Therefore, in evaluating (Fi/Fj), information is lost 

and the error structure is distorted. This can have a severe impact on parameter estimates. In a 
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recent study, Kazemi et al. [12] presented an alternative technique for estimating individual 

ternary reactivity ratios using the error-in-variables-model (EVM). The A-G model was recast so 

that each terpolymer mole fraction was presented as a single response (see Equations 2.20 to 

2.22). While these expressions may seem more complex than the conventional A-G expressions, 

this formulation is still symmetrical and error structures are not distorted [12]. 

 

𝐹1 − 
𝑓1(

𝑓1
𝑟21𝑟31

+
𝑓2

𝑟21𝑟32
+

𝑓3
𝑟31𝑟23

)(𝑓1+ 
𝑓2
𝑟12
+
𝑓3
𝑟13
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  (2.20) 

𝐹2 − 
𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0   (2.21) 

𝐹3 − 
𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)

𝑓1(
𝑓1

𝑟21𝑟31
+

𝑓2
𝑟21𝑟32

+
𝑓3

𝑟31𝑟23
)(𝑓1+ 

𝑓2
𝑟12
+
𝑓3
𝑟13
)+𝑓2(

𝑓1
𝑟12𝑟31

+
𝑓2

𝑟12𝑟32
+

𝑓3
𝑟13𝑟32

)(𝑓2+ 
𝑓1
𝑟21
+
𝑓3
𝑟23
)+𝑓3(

𝑓1
𝑟13𝑟21

+
𝑓2

𝑟23𝑟12
+

𝑓3
𝑟13𝑟23

)(𝑓3+ 
𝑓1
𝑟31
+
𝑓2
𝑟32
)
= 0  (2.22) 

 

Given these new equations, the error-in-variables-model (EVM) is used to obtain estimates of the 

parameters (reactivity ratios). This parameter estimation technique is appropriate, since it takes 

into account the error present in all variables. The details of implementing EVM are discussed in 

Section 2.2.1. Finally, Kazemi et al. [12] investigated the potential to use the cumulative 

composition model for medium-high conversion data in terpolymer systems. This alternative 

presents several advantages over the standard instantaneous model (for low conversion data). 

Namely, we can eliminate the assumption that composition drift is negligible (a requirement for 

implementing the instantaneous model) and we are able to retain more information content (that 

is, more data points over the conversion trajectory) from a single experiment. Advantages and 

implementation of the cumulative composition model are presented in more detail in Section 

2.2.2. 
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Studies have shown that binary and ternary reactivity ratios can be different (often, drastically) 

within a single system [12]. Addition of the third monomer to the system essentially changes the 

reaction medium (compared to binary studies), which can significantly affect reactivity ratios. 

Therefore, wherever possible, terpolymer reactivity ratios should be estimated directly from 

terpolymerization data. Regardless, a good understanding of homopolymerization and 

copolymerization behaviour is essential prior to the evaluation of terpolymerization kinetics. 

 

2.2 Reactivity Ratio Estimation 

 

Reactivity ratios are extremely important parameters in copolymerization kinetics. Many 

researchers have attempted to find the most accurate parameter estimation technique; as a result, 

many different methods have been implemented for reactivity ratio estimation. This has created a 

serious problem in the literature, as it calls into question the accuracy of reported reactivity 

ratios. Sources of error may include poorly designed experiments (i.e. too few data points, 

usually unreplicated, and chosen at random), inherent experimental difficulties, inappropriate 

kinetic models, and incorrect estimation procedures. Therefore, to obtain reliable reactivity ratio 

estimates, it is important to ensure that sufficient data are carefully collected, and that limiting 

assumptions are avoided in modeling and estimation.  

 

In general, reactivity ratios are obtained from experimental data by analyzing the copolymer 

composition at several different feed compositions. Traditionally, linear regression techniques 

have incorrectly been used for reactivity ratio estimation. These techniques include the Mayo-

Lewis method (method of intersections), the Fineman-Ross method, and the Kelen-Tudos 

method [13]. These techniques were originally chosen for their simplicity, as technology was not 
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readily available for intense computation. However, linearizing the kinetic models (which are 

inherently non-linear in the parameters) requires making imprecise, subjective and invalid 

assumptions. An additional consideration is the use of the instantaneous copolymerization model 

in these linear techniques; the reaction must be kept at low conversion so that the assumption of 

"constant composition" in the feed is somewhat valid [20]. However, polymerizations at low 

conversions are extremely error-prone, and it is impossible to guarantee that the feed 

composition will remain constant (especially when dealing with an unstudied system). The 

problems associated with linear methods for parameter estimation have been thoroughly 

discussed in the literature [20–22], and will not be repeated again in the current study. 

 

The current work uses the statistically correct error-in-variables-model (EVM), as it is a non-

linear estimation technique which considers the error present in all variables. Through EVM and 

direct numerical integration, we are also able to estimate reactivity ratios using cumulative 

composition data (as opposed to standard analysis of low-conversion data) [20]. This provides 

additional advantages, including eliminating unnecessary assumptions and avoiding the 

experimental challenges associated with collecting low-conversion data. 

 

The error-in-variables-model is also employed as part of the experimental design for binary 

reactivity ratio estimation. The EVM design criterion considers error present in all variables to 

select optimal feed compositions for reactivity ratio estimation experiments [23]. Reactivity 

ratios (and associated joint confidence regions) obtained through EVM design are contrasted 

with those obtained through the traditional Tidwell-Mortimer design [24, 25], which is based on 

D-optimality.  
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2.2.1 Error-in-Variables-Model (EVM)  

 

Fortunately, we no longer face limitations with numerical computations that require model 

simplification. It is straightforward to use statistically sound non-linear methods for parameter 

estimation. One of the most powerful non-linear regression approaches is the error-in-variables-

model (EVM) technique, which considers all sources of experimental error (both in the 

independent and dependent variables) [21].  EVM not only forces the experimenter to consider 

all sources of error, but it also provides estimates of the true values of other variables involved in 

the model along with the parameter estimates. Therefore, it is by far the most statistically correct 

and comprehensive approach for reactivity ratio estimation [22, 26].  

 

The nested-iterative EVM implementation has been described in detail by Reilly and Patino-Leal 

[27], therefore only a brief overview will be presented herein. Implementation of EVM is based 

on the following two equations (Equations 2.23 and 2.24). The first, Equation 2.23, relates the 

vector of known measurements (xi) to the vector of their unknown true values (ξi) and an error 

term, kεi (where k is a constant that reflects the magnitude of measurement uncertainty, usually 

estimated from process information). The second, Equation 2.24, is the model for the system, 

which shows the relationship between the true values of the variables (ξi) and the true (but 

unknown) parameter values to be estimated (θ).  

                                                        𝑥𝑖 = 𝜉𝑖 + 𝑘휀𝑖  where i = 1, 2, ..., n   (2.23) 

                                                        𝑔 (𝜉𝑖, 𝜃) = 0   where i = 1, 2, ..., n   (2.24) 
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In both Equations 2.23 and 2.24, i represents the trial number (out of n trials), and underlined 

terms are either vectors or matrices. The goal of EVM is to minimize the sum of squares between 

the observed and predicted values, both in terms of the parameter estimates and in terms of error 

in the independent variables [28]. The nested-iterative EVM algorithm accomplishes this by 

using two nested loops; the outer loop searches for parameter estimates while the inner loop 

identifies estimates of the true values of the variables involved. Mathematically, the following 

objective function (Equation 2.25) should be minimized: 

                                                               𝜙 =
1

2
∑ 𝑟𝑖(�̅�𝑖
𝑛
𝑖=1 − 𝜉�̂�)′𝑉 

−1(�̅�𝑖 − 𝜉�̂�)   (2.25) 

where ri represents the number of replicates for the i
th

 trial, 𝑥�̅� is the average of ri measurements 

(𝑥𝑖), 𝜉𝑖 is an estimate of the true values of the variables (𝜉𝑖), and V is the variance-covariance 

matrix. To gain a better understanding of the magnitude of the error, the error distribution, the 

relationship between variables and errors (additive or multiplicative), and potential correlation, 

independent replication becomes necessary [28].  

 

In terms of the nested-iterative scheme used to minimize the objective function, the EVM 

technique used herein is based on work published by Reilly et al. [29]. The algorithm begins with 

the inner loop searching for estimates of the true values of the variables (𝜉𝑖), while keeping the 

parameter estimates (𝜃) constant. The inner loop uses Equation 2.26 to update the estimates of 

𝜉𝑖
(𝑘)

, where k represents the iteration step. 

                                ξi
(𝑘+1)

= �̅�𝑖 − 𝑉𝐵𝑖
′(𝐵𝑖𝑉 𝐵𝑖

′)
−1
[𝑔 (ξi

(𝑘), 𝜃) + 𝐵𝑖 (�̅�𝑖 − ξi
(𝑘))]   (2.26) 

Bi is the vector of partial derivatives of the function 𝑔 (𝜉𝑖, 𝜃) with respect to the variables for the 

t
th

 element, as demonstrated below in Equation 2.27. 
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     𝐵𝑖 = [
𝜕𝑔(𝜉𝑖,𝜃)

𝜕(𝜉𝑖)
𝑡

]

𝜉𝑖=𝜉𝑖
(𝑘)

     (2.27) 

 

Next, the outer iteration searches for the values of the parameter estimates that will minimize the 

objective function. In this case, Equations 2.28 through 2.31 are used to update the estimates of 

𝜃(𝑢), where u represents the iteration step.  

                                                                          𝜃(𝑢+1) = 𝜃(𝑢) − 𝐺−1𝑞    (2.28) 

G is the expected information matrix for the i,j elements (see Equation 2.29) and q is the gradient 

vector (see Equation 2.30). 

                                                           𝐺 = 𝐸 [
𝑑2𝜙

𝑑𝜃𝑖𝑑𝜃𝑗
] = ∑ 𝑟𝑖𝑍𝑖

′𝑛
𝑖=1 (𝐵𝑖𝑉𝐵𝑖

′)
−1
𝑍𝑖    (2.29) 

     𝑞 = [
𝑑𝜙

𝑑𝜃𝑗
] = ∑ 𝑟𝑖𝑍𝑖

′𝑛
𝑖=1 (𝐵𝑖𝑉𝐵𝑖

′)
−1
𝐵𝑖 (�̅�𝑖 − ξ̂i)   (2.30) 

Finally, Zi is the vector of partial derivatives of the function 𝑔 (𝜉𝑖, 𝜃)  with respect to the 

parameters for the m
th

 element. 

                                                                              𝑍𝑖 = [
𝜕𝑔(𝜉𝑖,𝜃)

𝜕𝜃𝑚
]     (2.31) 

 

After estimates are obtained by EVM for both model parameters and model variables, it is 

important to evaluate the estimation results. This is primarily done by determining the precision 

of the parameter estimates. In the case of reactivity ratio estimation, several parameters are being 

estimated simultaneously. Thus, joint confidence regions (JCRs) are invaluable. JCRs are 

typically elliptical contours that quantify the level of uncertainty in the parameter estimates; 
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smaller JCRs indicate higher precision and therefore more confidence in the estimation results 

[28].  

 

The joint confidence region for parameter estimates can be visualized using one of two 

expressions. The expression used in the current study, for elliptical JCRs (Equation 2.32), 

requires that the error be normally distributed and that the variance be known. Here, it is 

important to note that 𝜃(𝑢)  represents the vector of parameter estimates that minimize the 

objective function (Equation 2.25). 

                                                                       (𝜃 − 𝜃)
′
𝐺(𝜃 − 𝜃) ≤ 𝜒2

𝑝,1−𝛼
    (2.32)  

where 𝜒2
𝑝,1−𝛼

 represents the chi-squared distribution for p parameters and a confidence level of 

(1-α).  

 

2.2.2 Cumulative Composition Data 

 

As mentioned previously, one of the many problems associated with linear estimation techniques 

is the necessity to use experimental data from low conversion levels. The instantaneous 

copolymer composition model (Equation 2.10) is only valid if we assume that composition drift 

is negligible in the feed [20]. However, this is rarely a valid assumption, as feed composition 

almost inevitably changes with conversion. From a more practical perspective, collecting low-

conversion data presents some experimental challenges, and is extremely prone to error. 

 

The cumulative copolymerization model (that is, the integrated form of the instantaneous 

copolymer composition model) can be used as an alternative to the instantaneous copolymer 
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composition model [20]. This makes it possible to avoid restrictive assumptions, eliminates 

experimental challenges of collecting low-conversion data, and provides additional data points 

(additional information content) for analysis (otherwise ignored by the instantaneous model, 

despite the fact that it represents the major portion of the conversion trajectory).    

 

Two forms of the cumulative copolymer composition model, analytical integration and direct 

numerical integration (DNI), have been studied in detail by Kazemi et al. [20, 30]. Analytical 

integration of the Mayo-Lewis model (Equation 2.8) results in the Meyer-Lowry model 

(Equation 2.33), which is applicable for low to moderate levels of conversion (up to 20-40%) 

[31].  

                                                             𝑋𝑛 = 1 − (
𝑓1

𝑓10
)
𝛼

(
𝑓2

𝑓20
)
𝛽

(
𝑓10−𝛿

𝑓1−𝛿
)
𝛾

     (2.33) 

where  𝛼 =
𝑟2

1−𝑟2
;      𝛽 =

𝑟1

1−𝑟1
;      𝛾 =

1−𝑟1𝑟2

(1−𝑟1)(1−𝑟2)
;      𝛿 =

1−𝑟2

2−𝑟1−𝑟2
 

 

 

Xn represents molar conversion, f1 and f2 are the mole fractions of unreacted monomer at time t, 

and f10 and f20 are initial feed compositions. Since Xn cannot be measured directly during 

experimentation, we use the following equation (Equation 2.34) to express conversion as a 

function of feed composition (f1) and cumulative copolymer composition (�̅�1). 

                                                                              𝑋𝑛 =
𝑓1−𝑓10

𝑓1−𝐹1
     (2.34)  

 

Based on the above information, the analytical integration expression can also be modified to be 

in terms of initial feed composition (f10), cumulative copolymer composition (�̅�1) and mass 

conversion (Xw). This is the most useful form of the model, since all variables involved can be 

tracked experimentally, and is presented in Equation 2.35: 
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     𝑋𝑛 = 𝑋𝑤
𝑀𝑤1𝑓10+(1−𝑓10)𝑀𝑤2

𝑀𝑤1𝐹1+(1−�̅�1)𝑀𝑤2
    (2.35) 

where Mw1 and Mw2 are the molecular weights of monomer 1 and monomer 2, respectively. In 

earlier approximations, Mw1 and Mw2 were considered the same. 

 

While the Meyer-Lowry model does allow for consideration of higher conversion data, it still has 

several limitations [20]. First, it only allows for analysis of moderate conversion data. While this 

is an improvement over the instantaneous model, it is still not ideal. Second, the model assumes 

that propagation rate constants remain constant over the course of polymerization, which is 

unlikely as the reaction reaches higher levels of conversion (diffusional limitations). Third, 

previous studies have indicated that the model has some convergence issues for certain 

conditions [32]. While transformations do exist to avoid instability, they may inadvertently affect 

the error structure. 

 

The other alternative available for analysis of cumulative copolymer composition data is the 

direct numerical integration (DNI) method [20]. DNI is a powerful alternative to the analytical 

integration method, as it employs a direct approach and does not rely on model transformations 

or other potentially restrictive assumptions. The technique directly relates the cumulative 

copolymer composition to the mole fraction of unreacted monomer using the Skeist equation 

(Equation 2.36): 

                                                                          �̅�1 =
𝑓10−𝑓1(1−𝑋𝑛)

𝑋𝑛
     (2.36)  

 



 
 

26 

As before, f1 represents the fraction of unreacted monomer in the feed at a given time (t) and 

conversion (Xn). The value of f1 can be obtained by solving the following differential copolymer 

composition equation (Equation 2.37), with initial conditions f1 = f10 at Xn = 0. 

                                                                            
𝑑𝑓1

𝑑𝑋𝑛
=
(𝑓1−𝐹1)

1−𝑋𝑛
     (2.37) 

 

In a series of case studies, the analytical integration method was compared to DNI to establish 

the level of precision possible with each technique [20]. In general, there was good agreement 

between the instantaneous (low conversion) model and the cumulative (moderate to high 

conversion) model. However, the cumulative data provided more precise estimates than the 

instantaneous model (due to the enhanced information content). It was also found that direct 

numerical integration is almost always superior to the Meyer-Lowry model, as the former gave 

more precise reactivity ratio estimates and the latter often failed to converge. Ultimately, the 

work by Kazemi et al. [20] has shown that reactivity ratios can be more accurately estimated 

using EVM and cumulative copolymer composition models. 

 

2.2.3 Experimental Design for Reactivity Ratio Estimation 

 

An important part of reactivity ratio estimation is the experimental design. A series of 

experiments should be designed in an optimal way; this leads to increased information content 

while minimizing the number of experiments and obtaining more precise parameter estimates. 

Optimally designed experiments typically have much smaller joint confidence regions (JCRs), 

which is indicative of higher precision estimates [28]. Needless to say, design of experiments is 

hardly ever used in the literature in parameter estimation schemes.  
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One of the earliest (mechanistic model-based) techniques used to design reactivity ratio 

estimation experiments was presented by Tidwell and Mortimer [24]. Tidwell and Mortimer 

applied an (approximate) D-optimality criterion to the Mayo-Lewis copolymerization equation to 

determine the best feed compositions at which to run reactivity ratio estimation experiments. The 

Tidwell-Mortimer design gives the following experimental conditions as optimal suggestions: 

𝑓2,1 =
𝑟1

2+𝑟1
   and   𝑓2,2 =

2

2+𝑟2
   (2.38) 

where f2,1 and f2,2 denote the feed composition of monomer 2 for the 1
st
 and 2

nd
 experiments, 

respectively. Preliminary reactivity ratio estimates (r1 and r2) can be obtained from the literature 

or from some type of preliminary experimentation.  

 

The Tidwell-Mortimer (T-M) equations are recognized as practical tools for the design of 

optimal experiments in reactivity ratio estimation. However, the method does have some 

limitations. The T-M design cannot take composition constraints into account, nor can it be used 

to design penultimate reactivity ratio estimation experiments [33]. When composition constraints 

are being considered, it is important to note that reactivity ratios estimated over a limited range 

may differ from those estimated for the overall polymerization. In this case, it becomes necessary 

to maximize the D-optimal criterion within the constraints [33]. General (heuristic) rules have 

been developed for this special case, and are presented below: 

𝑓2,1 =
𝑟1

2
[1 − exp (−

𝑓2,2

𝑟1
)]  for 0 < r1 < 1.5 (2.39 (a)) 

        =
𝑓2,1
∗

𝑓2,2
∗ 𝑓2,2    for r1 ≥ 1.5  (2.39 (b)) 

 

𝑓2,2 = 1 −
𝑟2

2
[1 − exp (−

(1−𝑓2,1

𝑟2
)] for 0 < r2 < 1.5 (2.40 (a)) 

       = 1 −
(1−𝑓2,2

∗ )

(1−𝑓2,1
∗ )
(1 − 𝑓2,1)  for r2 ≥ 1.5  (2.40 (b)) 
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where f2,1
*
 and f2,2

*
 represent the feed compositions at which the D-optimality criterion is 

maximized, without considering any constraints. For feed composition restricted by an upper 

bound, a, f2,2 = a and f2,1 is calculated by one of the above equations (Equation 2.39 (a) or (b)). 

Similarly, for feed composition restricted by a lower bound, b, f2,1 = b and f2,2 is calculated by 

Equation 2.40 (a) or (b). In general, the optimal feed compositions (f2,1 and f2,2) that will be 

chosen under composition constraints should be as close to the unconstrained optimal feed 

compositions (f2,1
*
 and f2,2

*
) as possible [33]. 

 

D-optimality is an extremely powerful criterion, and through its “ease-of-use” can act as a good 

starting point for experimental design. A more complex, yet equally valid technique for 

designing optimal reactivity ratio estimation experiments is the error-in-variables-model, EVM. 

As discussed previously (with regards to reactivity ratio estimation in Section 2.2.1), EVM 

considers error terms in all variables. Therefore, when error is likely to exist in both the 

independent and dependent variables, it may be beneficial to use a design of experiments 

technique within the EVM context [23].  

 

The information matrix (I) to be optimized within EVM is more complex than that of the 

standard T-M D-optimal design. For typical D-optimal designs (in the regular non-linear 

regression context), 

𝐼𝐷−𝑜𝑝𝑡 = ∑
1

𝜎21𝑖

𝑛
𝑖=1 𝑍𝑖

′𝑍𝑖    (2.41) 

Alternatively, for EVM designs,  

𝐼𝐸𝑉𝑀 = ∑
1

𝜎21𝑖+𝜎
2
2𝑖(𝛽𝑖(𝜉𝑖,𝜃))

2
𝑛
𝑖=1 𝑍𝑖(𝜉𝑖, 𝜃)𝑍𝑖′(𝜉𝑖, 𝜃)  (2.42) 



 
 

29 

where σ1
2
 = variance of dependent variables, σ2

2
 = variance of independent variables, β = vector 

of partial derivatives of the model (g(𝜉𝑖, 𝜃)) with regard to the variables (𝜉𝑖) (see Equation 2.27), 

and Z = vectors of partial derivatives of the model with regard to the parameters (θ) (see 

Equation 2.31). 

 

During experimentation, there are both initial and sequential design schemes. The initial design 

is used when no prior information is known about the system; the design is based solely on a 

certain number of trials (usually chosen arbitrarily or at random, so they may or may not be 

optimal), and is a function of the number of parameters in the model. Alternatively, a sequential 

design is employed when some prior information is available for the system, but the parameters 

have not yet been estimated with sufficient precision. As the name suggests, the sequential 

design is an iterative process, and is repeated until the desired level of precision is obtained for 

the parameter estimates being studied [23]. Typically, sequential design schemes provide smaller 

JCRs, thus indicating that the results are more reliable than initial designs.   

 

2.3 Literature Background: Comonomers for Case Study 

 

The terpolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylamide 

(AAm), and acrylic acid (AAc) is largely unstudied. Therefore, to gain a better understanding of 

the system, copolymer combinations of the three monomers are investigated. Since the 

copolymerization kinetics of AAm/AAc are well studied [10], the two other comonomer 

combinations (AMPS/AAm and AMPS/AAc) are examined first.  
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2.3.1 Copolymerization of AMPS and Acrylamide 

 

The majority of the work in the copolymerization of 2-acrylamido-2-methylpropane sulfonic 

acid (AMPS) with acrylamide (AAm) has focused on crosslinking systems, as crosslinked 

copolymers of AMPS and AAm have applications as superabsorbent hydrogels [34–40]. As with 

many other copolymer systems, such studies look at the final polymer (synthesis and 

characterization without considering the full conversion trajectory) and its performance 

properties, while they rarely investigate polymerization kinetics or reactivity ratio estimation.  

 

There has also been some work done in examining the effectiveness of AMPS/AAm copolymers 

in enhanced oil recovery (EOR) [9, 41–43]. The focus of these articles is intended to be the 

synthesis and testing of polymers for EOR use. In enhanced oil recovery, copolymers must 

withstand hostile conditions and undergo minimal degradation. Therefore, the AMPS/AAm 

copolymer should exhibit good stability. Characterization techniques that are specific to EOR 

applications include determination of stability limits (thermal hydrolysis and salinity effects), 

shear resistance, molecular compositions (through infrared spectroscopy and proton or 
1
H-

NMR), apparent viscosities, crystallinities (through X-ray diffraction and thermogravimetric 

analysis), and performance in porous media.  

 

It has been suggested that the steric hindrance from the sulfonic group in AMPS will increase 

main-chain stability and control potential degradation of AAm [9, 42]. However, Moradi-Araghi 

et al. [41] reported that the NaAMPS/AAm copolymer did not withstand thermal hydrolysis any 

better than the AAm homopolymer, and concluded that NaAMPS does not protect AAm against 
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thermal hydrolysis. While the addition of AMPS (or NaAMPS) has been shown to improve the 

copolymer stability slightly, it has a much more noticeable effect on brine compatibility [42]. 

According to Sabhapondit et al. [42, 43], the best copolymer performance with respect to brine 

compatibility, shear resistance and thermal stability was obtained when acrylamide was replaced 

with N,N-dimethylacrylamide (NNDAM) and copolymerized with NaAMPS. 

 

In the current work, one of our objectives is to obtain accurate and reliable reactivity ratios for 

the AMPS/AAm copolymer, which is eventually extended to the AMPS/AAm/AAc terpolymer. 

Therefore, we have assembled a collection of reactivity ratios reported in the literature for the 

copolymerization of AMPS and AAm. As outlined in Section 2.2, there tend to be significant 

discrepancies between reported values. This may be due, in part, to poorly designed experiments, 

inconsistent experimental methodologies, and incorrect reactivity ratio estimation techniques. A 

summary of reactivity ratios for the AMPS/AAm copolymer, along with the associated 

experimental techniques and reactivity ratio estimation methods, is presented in Table 2.2. 
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Table 2.2: Reactivity Ratio Summary for AMPS/AAm 

Ref. Experimental Estimation Technique rAMPS rAAm 

[44] --Type: Aqueous solution 

copolymerization 

--Initiator: KPS 

--Temperature: 50°C 

--Composition: EA 

Billmeyer 1 [45] 

Billmeyer 2 [45] 

Kelen-Tudos 

Average 

0.76 

0.70 

0.62 

0.70 ± 0.08 

1.00 

1.06 

1.21 

1.10 ± 0.10 

[46] --Type: Aqueous solution 

copolymerization 

--Initiator: KPS 

--Temperature: 35°C & 55°C 

--Composition: 
1
H-NMR & 

vibrational Raman spectroscopy 

Fineman-Ross 1.00 1.00 

[34] --Type: Aqueous solution 

crosslinking copolymerization 

--Initiator: KPS 

--Temperature: 40°C 

--pH = 7 

--Composition: IR & EA 

Comparison of feed & 

copolymer compositions 

(no statistical estimation) 

1.00 1.00 

[47] --Type: Aqueous solution 

copolymerization 

--Initiator: KPS 

--Temperature: 30°C 

--pH = 9 

--Composition: IR & EA 

Fineman-Ross 

Kelen-Tudos 

Integrated Mayo-Lewis 

0.49 ± 0.02 

0.52 ± 0.07 

0.50 ± 0.01 

0.98 ± 0.09 

1.00 ± 0.08 

1.02 ± 0.01 

[48] --Type: Aqueous solution 

copolymerization 

--Initiator: APS 

--Temperature: 60°C 

--Composition: EA & 
13

C-NMR 

Fineman-Ross 

Kelen-Tudos 

0.37 ± 0.04 

0.42 ± 0.03 

1.01 ± 0.01 

1.05 ± 0.06 

[48] --Type: Aqueous solution redox 

copolymerization 

--Initiator: APS/NaHSO3 

--Temperature: 25°C 

--Composition: 
13

C-NMR 

Fineman-Ross 

Kelen-Tudos 

0.54 ± 0.03 

0.51 ± 0.03 

1.07 ± 0.01 

1.05 ± 0.06 

Nomenclature: AAm, acrylamide; AMPS, 2-acrylamido-2-methylpropane sulfonic acid; APS, ammonium 

persulfate; EA, elemental analysis;  IR, infrared spectroscopy; KPS, potassium persulfate; NMR, nuclear magnetic 

resonance 

 

Although some of the estimates are similar (especially for rAAm), there are notable 

inconsistencies between experimental techniques and reactivity ratio estimation methods. It is 

also important to note that all of the estimation techniques used to date have been linear. Given 

the numerous sources of error associated with linear estimation methods and the advantages of 
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non-linear techniques (described in Section 2.2), it seems only reasonable that future reactivity 

ratios be estimated using EVM. 

 

2.3.2 Copolymerization of AMPS and Acrylic Acid 

 

Very few studies have been found with regards to the copolymerization of 2-acrylamido-2-

methylpropane sulfonic acid (AMPS) and acrylic acid (AAc). Even fewer have investigated the 

polymerization kinetics and, specifically, copolymer reactivity ratios. In previous studies, AMPS 

and acrylic acid have been copolymerized in the presence of crosslinking agents such as N,N'-

methylenebisacrylamide (MBA) [49–52], and the crosslinked products have been grafted onto 

backbones via free radical graft polymerization [53–55]. Crosslinked AMPS/AAc polymers 

typically act as hydrogels, therefore most studies to date have examined the swelling behaviour 

and thermal stability of the hydrogels. Characterization techniques have included Fourier 

Transform Infrared Spectroscopy (FTIR), Soxhlet extraction, thermogravimetric analysis (TGA) 

and scanning electron microscopy (SEM). 

 

Only two studies [49, 56] have been identified that provided reactivity ratio estimates for the 

AMPS/AAc copolymer along with a description of synthesis and characterization methods. In 

the work by Abdel-Azim et al. [49], crosslinking for hydrogel formation was still the primary 

objective, but the system was also studied at low conversions and in the absence of crosslinker 

for comparison purposes. However, reactivity ratios for the AMPS/AAc copolymer were 

estimated using both the Fineman-Ross and Kelen-Tudos (linear!) methods. The techniques 

showed relatively good agreement, and the authors chose to average the two values obtained (see 

Table 2.3), which is a gross approximation for rAMPS.  
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Table 2.3: Reactivity Ratio Estimates for AMPS/AAc Copolymer [49] 

Estimation Technique rAMPS rAAc 

Fineman-Ross 0.304 0.915 

Kelen-Tudos 0.15 0.98 

Average 0.27 0.95 

 

Experimentally, the AMPS/AAc copolymer was synthesized in aqueous solution (under 

nitrogen) at 328 K, with 0.02 wt% benzoyl peroxide (BPO) as the initiator [49]. After 

polymerization, the copolymer samples were precipitated in methyl ethyl ketone, filtered, 

washed, and dried under vacuum at 308 K. To estimate the reactivity ratios, 5 different feed 

compositions were used (fAMPS,0 ranged from 0.4 to 0.8, as a mass fraction) and conversion was 

kept below 10%. 

 

Based on this previous study [49], synthesis of the AMPS/AAc copolymer for the current work 

seems very promising. Despite the inaccurate reactivity ratio estimation techniques described 

above, it is still possible to conclude that reactivity ratios for rAMPS and rAAc are of similar orders 

of magnitude. Therefore, the copolymer of AMPS/AAc should be easily synthesized at a variety 

of feed compositions.  

 

2.3.3 Terpolymerization of AMPS, Acrylamide, and Acrylic Acid 

 

In recent years, several studies have investigated the AMPS/AAm/AAc terpolymer. Many of 

these works have focused on synthesis, characterization, and potential applications for this 

terpolymer; none of the studies have included terpolymerization kinetics.  
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For example, Bao et al. [57] grafted the AMPS/AAm/AAc terpolymer onto sodium 

carboxymethyl cellulose (CMC) and motmorillonite (MMT) to create a superabsorbent hydrogel. 

In this case, physical properties of the synthesized terpolymer (such as degree of swelling, water 

retention, and morphology) were the focus of the analysis, and reaction kinetics were not 

discussed. 

 

Similarly, Ma et al. [58] synthesized the AMPS/AAm/AAc terpolymer via UV irradiation for use 

as a flocculant. While this group did provide more information about their synthesis process, the 

overall focus of the paper was applications. Polymer characteristics including intrinsic viscosity, 

dissolving time and flocculation performance were presented [58].  

 

This particular terpolymer has also been used in drug-delivery applications [59]. The drug-

delivery system uses tailor-made superabsorbent polymer composites, so characteristics such as 

swelling capacity and drug encapsulation efficiency were studied. While the investigation 

included release kinetics for drug-delivery, it did not discuss details surrounding the 

polymerization kinetics [59].  

 

In perhaps the most relevant papers to the current work, Peng et al. [60] and Zaitoun et al. [6] 

have studied the AMPS/AAm/AAc terpolymer for petrochemical applications. The work by 

Peng et al. describes the free-radical terpolymerization of AMPS/AAm/AAc and its application 

as a high-temperature resistant filtration control agent [60]. Zaitoun et al. have investigated the 

potential to use AMPS/AAm/AAc in enhanced oil recovery (EOR) applications, as the AMPS 

comonomer is expected to improve shear stability and limit thermal degradation (compared to 
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standard AAm/AAc copolymers) [6]. However, in both of these cases, the authors make no 

mention of polymerization kinetics. 

 

The characteristics of the terpolymer being synthesized in this work are directly related to its 

microstructure. Therefore, it is important to have a clear understanding of the terpolymerization 

kinetics. Since this information is not available in the literature, reliable reactivity ratios for this 

AMPS/AAm/AAc system will be determined experimentally in what follows. 
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CHAPTER 3. EXPERIMENTAL 

 

3.1 Experimental Approach 

 

Ultimately, polymerization kinetics for the AMPS/AAm/AAc terpolymer system are 

investigated. However, as a first step, reliable kinetic data are collected for two of the associated 

copolymer systems, AMPS/AAm and AMPS/AAc (since the third one, AAm/AAc, has been 

well-studied in a parallel investigation [10]). For all of the experimental work, statistical design 

of experiments was used to select pre-polymerization recipes; more design information will be 

presented in system-specific chapters.  

 

Obtaining accurate reactivity ratios for the binary systems can provide additional insight into the 

ternary system and can be used to determine optimal feed compositions for estimating ternary 

reactivity ratios. The latter part is very important, as experimenting with optimal feed 

compositions (at the design stage) can reduce considerably the overall experimental effort and 

lead to greatly improved information content.  

 

3.2 Materials 

 

Monomers 2-acrylamido-2-methylpropane sulfonic acid (AMPS; 99%), acrylamide (AAm; 

electrophoresis grade, 99%), and acrylic acid (AAc; 99%) were purchased from Sigma-Aldrich. 

AAc was purified via vacuum distillation at 30°C, while AAm and AMPS were used as received. 

Initiator (4,4'-azo-bis-(4-cyanovaleric acid), ACVA), inhibitor (hydroquinone) and sodium 
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hydroxide were also purchased from Sigma-Aldrich. Sodium chloride from EMD Millipore was 

used as received. In terms of solvents, water was Millipore quality (18 MΩ cm
-1

); acetone and 

methanol were used as received from suppliers. Nitrogen gas (4.8 grade) used for degassing 

solutions was purchased from Praxair. 

 

3.3 Polymer Synthesis 

  

Monomer stock solutions with a total monomer concentration of 2 M were prepared. The 

comonomer ratios in each system (AMPS/AAm, AMPS/AAc and AMPS/AAm/AAc) are not 

cited here, but are described in detail later as part of the experimental design for each individual 

system. For each polymerization, 50 ml of the stock solution was used in a 100 ml pre-

polymerization solution (that is, the total monomer concentration was diluted to 1 M). This pre-

polymerization solution was prepared as follows: first, 50 ml of the stock solution was pipetted 

into a small beaker, at which point the initial solution pH was measured. The stock solution was 

then titrated with sodium hydroxide (1.5 M or 3 M) to adjust the pH to approximately 7 (±0.5), 

for direct comparison with the AAm/AAc copolymer studied previously [10]. Early in the 

titration, ~0.1121 g ACVA (initiator) was dissolved in a small amount of NaOH and added to the 

stock solution, such that the initiator concentration in the pre-polymerization recipe would be 

0.004 M. Additionally, sodium chloride was added to each recipe to ensure constant ionic 

strength among the experiments (with different comonomer ratios). Both constant pH and ionic 

strength are extremely important in copolymer and terpolymer synthesis, as has been 

demonstrated previously [61], so the experimental procedures of Riahinezhad et al. [61] were 
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adopted throughout this thesis. Finally, the solution was diluted with high purity water to achieve 

a total solution volume of 100 ml and a total monomer concentration of 1 M.  

 

Once each pre-polymerization solution was prepared, it was transferred to a round bottom flask 

and purged with 200 ml/min nitrogen for 2 hours. After degassing, aliquots of ~20 ml of solution 

were transferred to sealed vials using the cannula transfer method [10]. 

 

To initiate the polymerization reaction, vials were placed in a temperature controlled shaker-bath 

(Grant, OLS200) at 40°C and 100 rpm. Vials were removed at selected time intervals to ensure a 

well-defined conversion versus time plot. Once removed from the bath, the vials were placed in 

ice and further injected with approximately 1 ml of 0.2 M hydroquinone solution to stop the 

polymerization. Polymer samples were then isolated by precipitating the products in a 10-fold 

excess of acetone, or in a 50/50 mixture of acetone and methanol. In general, the AMPS/AAm 

copolymer was precipitated in excess acetone for high fAMPS, while a 50/50 mixture of acetone 

and methanol was used for AMPS/AAm copolymers with low fAMPS and all AMPS/AAc 

copolymers. Finally, the polymer samples were filtered (paper filter grade number 41, Whatman) 

and vacuum dried for 1 week at 50°C.   

 

3.4 Polymer Characterization 

 

Conversion of the polymer samples was determined using gravimetry. That is, the weight of each 

isolated, dried polymer (in a sample) was compared to the weight of the monomer that was 

initially within the vial. Mathematically, conversion can be calculated according to Equation 3.1: 
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                                                        𝑋𝑤 =
mass of polymer

initial mass of monomer (in vial)
     (3.1) 

 

The mass of the sodium ions was also considered in conversion calculations, as per the 

recommendation of Riahinezhad et al. [61]. Not doing so would introduce error and may bias 

results; sample calculations are presented in Appendix D (Section D.1). 

 

Polymer composition was measured using elemental analysis (CHNS, Vario Micro Cube, 

Elementar). The content of elemental C, H, N and S in the samples was determined. However, 

calculation of the copolymer or terpolymer composition did not include H content, as residual 

water has been known to affect the determined H content [10]. Appendix D (Section D.2) shows 

sample calculations for the determination of cumulative composition. 
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CHAPTER 4. AMPS/AAm COPOLYMER 

 

4.1 Preliminary Experiments 

 

4.1.1 Selection of Preliminary Feed Compositions 

 

The preliminary design for the copolymer of 2-acrylamido-2-methylpropane sulfonic acid 

(AMPS) and acrylamide (AAm) was based on information from several different sources. Initial 

estimates of monomer reactivity ratios for the AMPS/AAm copolymer from the literature were 

first scrutinized, and the classical work by McCormick and Chen [47] was chosen as the most 

suitable reference (see Table 4.1). These preliminary reactivity ratios were incorporated into both 

Tidwell-Mortimer and EVM design techniques (see Section 2.2.3), and the following results 

were obtained. 

 

Table 4.1: Preliminary Design for AMPS/AAm  

Reactivity Ratios: r1 (rAMPS) r2 (rAAm) 

From Literature [47] 0.50 1.02 

Feed Composition: f11,0 f12,0 

Tidwell-Mortimer 0.34 0.80 

EVM 0.10 0.69 

Selected Design 0.15 0.80 

 

Ultimately, the selected design (presented in the final row of Table 4.1) was chosen according to 

a combination of Tidwell-Mortimer and EVM designs, based on process understanding. The 

lower feed composition, fAMPS,0 = 0.15 was selected as a compromise between the Tidwell-

Mortimer and EVM designs. The higher feed composition, fAMPS,0 = 0.80, was selected to ensure 
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that one of the copolymers would be rich in AMPS. It was anticipated that this combination of 

pre-polymerization recipes would provide a substantial amount of kinetic information.  

 

4.1.2 Preliminary Reactivity Ratio Estimation 

 

For the preliminary experiments, copolymerizations were independently replicated at least once 

at each feed composition. Some variability was observed between replicates, as evidenced by 

Figure 4.1 (the full data set is also available in Appendix C, Table C.1). This is to be expected 

for preliminary runs, mainly due to the learning curve of the operator and also establishment of 

appropriate experimental procedures and steps. However, process and data repeatability tends to 

improve in subsequent steps, as the replication error becomes increasingly smaller with more 

experience in both experimental and analytical techniques. 

 

At both fAMPS,0 = 0.15 and fAMPS,0 = 0.80, the polymerization took place fairly quickly. As 

exhibited by the conversion vs. time plots in Figure 4.1, both polymerizations had reached about 

20% conversion after 10 minutes. Therefore, instantaneous reactivity ratio estimation techniques 

requiring low conversion levels (and negligible composition drift) would not be appropriate for 

this particular data set.  
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Figure 4.1: Conversion vs. Time Plot for Preliminary AMPS/AAm Copolymerization 

Experiments 

 

Thus, preliminary reactivity ratio estimates (both rAMPS and rAAm) were calculated by applying 

the cumulative composition model (using direct numerical integration, DNI, as described in 

Kazemi et al. [20]) to the data through EVM. As mentioned in Table 4.1, the initial point 

estimates (rAMPS = 0.50, rAAm = 1.02) were taken from McCormick and Chen [47]. Because there 

seemed to be considerable error in the conversion vs. time data, the variance estimate for X 

(where X is the conversion at time t) was determined as follows [30]: 

𝑉(𝑋) =
𝑘2

3
 =

(0.1)2

3
=  0.003    (4.1) 

where k represents the best estimate of measurement error, as described previously for Equation 

2.23 (see Section 2.2.1). 
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The joint confidence region (JCR) for the preliminary reactivity ratios is presented in Figure 4.2. 

The point estimate from literature is included in the figure for reference, and the current updated 

estimate is rAMPS = 0.13 and rAAm = 0.84.  

 
Figure 4.2: Preliminary Reactivity Ratio Estimates for AMPS/AAm 

 

In Figure 4.2, it is clear that the reactivity ratio estimates made by McCormick and Chen [47] are 

different from our newly determined reactivity ratios; the estimates from the literature study are 

not contained within the JCR for the initial stage. However, as indicated in Table 2.2, the work 

by McCormick and Chen [47] was at pH = 9, 30°C and used potassium persulfate (KPS) as the 

initiator. This is in contrast to the current experimental work, which is at pH = 7, 40°C and uses 

ACVA as the initiator (see Section 3.3 for more information). Because the polymerization 

conditions are different in both cases, especially in terms of pH, a difference in results is 

somewhat expected. These preliminary results can now be used to design optimal experiments 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

1.1

r
AMPS

r A
A

m

 

 

Preliminary Estimate (0.13, 0.84)

Literature Estimate (0.50, 1.02)

7
 



 
 

45 

for reactivity ratio estimation for the next stage; the sequential investigation is continued in what 

follows. 

 

4.2 Optimal Experiments 

 

4.2.1 Selection of Optimal Feed Compositions 

 

Next, analysis of the binary system involved design of optimal experiments for reactivity ratio 

determination. For comparison purposes, both the Tidwell-Mortimer design and the EVM design 

were employed to determine optimal feed compositions. New estimates of the reactivity ratios 

(based on the preliminary experiments of Section 4.1) were used in finding optimal feed 

compositions (mole fractions) for the AMPS/AAm copolymerization, which are presented in 

Table 4.2. 

 

Table 4.2: Optimal Design for AMPS/AAm  

Reactivity Ratios r1 (rAMPS) r2 (rAAm) 

Experimentally Determined  

(from preliminary experiments) 

0.13 0.84 

Feed Composition f11 f12 

Tidwell-Mortimer (T-M) 0.30 0.94 

EVM 0.10 0.89 

 

It is anticipated that the EVM design will provide more precise parameter estimates (that is, 

smaller joint confidence regions), but both techniques are investigated to confirm this hypothesis 

and also provide a comparison between the T-M vs EVM design approaches (not readily 

available in the literature). 
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4.2.2 Tidwell-Mortimer Design 

 

As shown in Table 4.2, the Tidwell-Mortimer design dictates two levels for the feed 

composition: a “low” and a “high” fraction of AMPS. Despite the Tidwell-Mortimer design 

dictating a “high” fAMPS level of 0.94, the feed composition for the second experiment was 

chosen as fAMPS = 0.91. Because the kinetics for this system are still largely unknown, a slightly 

lower fraction was chosen to ensure that there would still be sufficient AAm in the recipe to 

produce a copolymer of AMPS/AAm. The experimental results are shown in Table 4.3. 

 

Table 4.3: Experimental Data for AMPS/AAm Copolymerization; Tidwell-Mortimer Design  

Run # X fAMPS,0 fAAm, 0 FAMPS FAAm 

1 0.0061 0.30 0.70 0.3243 0.6757 

0.1078 0.30 0.70 0.2592 0.7408 

0.2614 0.30 0.70 0.2683 0.7317 

0.3335 0.30 0.70 0.2701 0.7299 

0.4717 0.30 0.70 0.2841 0.7159 

2 0.0583 0.91 0.09 0.6772 0.3228 

0.1483 0.91 0.09 0.6779 0.3221 

0.2829 0.91 0.09 0.7043 0.2957 

0.5207 0.91 0.09 0.7223 0.2777 

0.7076 0.91 0.09 0.7374 0.2626 

3 0.0671 0.30 0.70 0.2794 0.7206 

0.1035 0.30 0.70 0.2626 0.7374 

0.1830 0.30 0.70 0.2735 0.7265 

0.2604 0.30 0.70 0.2797 0.7203 

0.3910 0.30 0.70 0.2858 0.7142 

4 0.0519 0.91 0.09 0.8335 0.1665 

0.1441 0.91 0.09 0.7955 0.2045 

0.2710 0.91 0.09 0.7648 0.2352 

0.4626 0.91 0.09 0.7715 0.2285 

0.6151 0.91 0.09 0.7762 0.2238 
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As before, both runs were independently replicated and the data points collected were 

reproducible. However, it is important to note that an additional source of error may exist due to 

residual monomer in the product (especially for low conversion samples), which is very difficult 

to remove due to the nature of the monomer.  

 

As for the preliminary experiments of Section 4.1, the cumulative composition model (using 

direct numerical integration) was applied to the conversion and cumulative composition data 

through the error-in-variables-model. The resulting reactivity ratio estimates (rAMPS = 0.16 & 

rAAm = 0.77) and the associated JCR are presented in Figure 4.3, with the literature estimate [47] 

and the preliminary experiments from Section 4.1 included for reference. 

 

 
Figure 4.3: Tidwell-Mortimer-Designed Reactivity Ratio Estimates for AMPS/AAm 
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Now, we begin to see the advantages of using optimally designed experiments for reactivity ratio 

estimation. The JCR obtained using the Tidwell-Mortimer design is much smaller than the 

preliminary design, which indicates that we have a much smaller degree of uncertainty (therefore 

greater confidence in our estimates) with the same amount of experimental data. Overall, the T-

M-designed results show good agreement with the preliminary results. While the rAAm estimate is 

slightly lower than the preliminary one, the new rAMPS estimate is well within the preliminary 

range. In addition, the two JCRs are overlapping. This not only allows for a high degree of 

confidence in the T-M-designed results, but also prompts the continuation of optimal sequential 

design of experiments towards the EVM design. 

 

4.2.3 Error-In-Variables-Model Design 

 

As for the Tidwell-Mortimer design, the EVM design was established using the preliminary 

estimates of Section 4.1. Again, a slightly lower value was used for the “high” feed composition 

level, based on process constraints and understanding. Therefore, the EVM design used fAMPS = 

0.10 and fAMPS = 0.84 (with independent replicates) to estimate reactivity ratios. The 

experimental results are shown in Table 4.4. 

 

The reactivity ratio estimates obtained from this data set (rAMPS = 0.20 & rAAm = 0.57), as well as 

the corresponding JCR, are shown in Figure 4.4. Again, prior estimates for the AMPS/AAm 

system are shown for comparison purposes. 
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Table 4.4: Experimental Data for AMPS/AAm Copolymerization; EVM Design  

Run # X fAMPS,0 fAAm, 0 FAMPS FAAm 

1 

0.2065 0.10 0.90 0.1878 0.8122 

0.2202 0.10 0.90 0.2336 0.7664 

0.3408 0.10 0.90 0.1141 0.8859 

0.3425 0.10 0.90 0.0937 0.9063 

0.7073 0.10 0.90 0.0801 0.9199 

2 

0.0267 0.84 0.16 0.7033 0.2967 

0.0731 0.84 0.16 0.5977 0.4023 

0.1412 0.84 0.16 0.6332 0.3668 

0.1923 0.84 0.16 0.7141 0.2859 

0.3348 0.84 0.16 0.6555 0.3445 

3 

0.1064 0.10 0.90 0.1681 0.8319 

0.1473 0.10 0.90 0.0911 0.9089 

0.2373 0.10 0.90 0.2431 0.7569 

0.3556 0.10 0.90 0.0898 0.9102 

0.6174 0.10 0.90 0.0922 0.9078 

4 

0.0261 0.84 0.16 0.6741 0.3259 

0.2862 0.84 0.16 0.7030 0.2970 

0.3589 0.84 0.16 0.6938 0.3062 

 

 
Figure 4.4: EVM-Designed Reactivity Ratio Estimates for AMPS/AAm  
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Here, we see good agreement in terms of rAMPS estimates. However, the estimate for rAAm 

changes significantly with the EVM design (compared to the preliminary and T-M designs). One 

possible reason for the drift in rAAm is the fact that experimental data was collected in terms of 

AMPS (this is true of both feed composition and cumulative copolymer composition). Similarly, 

elemental analysis calculations were performed on a sulfur basis (see Appendix D), which may 

increase the accuracy of AMPS composition measurements at the expense of AAm composition 

measurements. Further analysis of the data and the effects of data perturbation will be presented 

in Section 4.4. 

 

In general, though, the trends are satisfactory. Despite the discrepancy in the rAAm estimates, rAAm 

is consistently less than 1.0 (with the exception of the literature value [47]), and rAAm > rAMPS in 

all cases.  

 

4.3 Discussion of Results for AMPS/AAm 

 

As mentioned previously, reactivity ratios are extremely important parameters in 

copolymerization kinetics. We can compare the results from literature, T-M design, and EVM 

design, and use the best estimates to characterize the copolymer. 

 

To summarize the results of the experimental work, reactivity ratios for each data set are 

presented in Table 4.5. As the parameter estimates become more precise (that is, as the JCR area 

decreases), rAMPS increases slightly whereas rAAm decreases more significantly. 
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Table 4.5: Summary of Reactivity Ratio Estimates for AMPS/AAm  

Step 1: Preliminary Design rAMPS rAAm 

Literature Values [47] 0.50 1.02 

Preliminary Estimates 0.13 0.84 

Step 2: Optimal Designs   

Tidwell-Mortimer Estimates 0.16 0.77 

Error-in-Variables-Model 

Estimates 

0.20 0.57 

 

It is important to establish whether these differences in reactivity ratio estimates for the same 

system will affect subsequent calculations. Reactivity ratios can be used to predict polymer 

properties such as copolymer composition. Eventually, this information could be used for custom 

polymer production for specific applications [62], so it extremely important that all estimates be 

as accurate as possible. Therefore, in this section, predictions from reactivity ratio estimates by 

McCormick and Chen [47], T-M design and EVM design are compared.  

 

4.3.1 Cumulative Composition Analysis 

 

First, the initial feed compositions selected using Tidwell-Mortimer designs are examined in 

Figure 4.5. Given the reactivity ratios from the two optimal designs and from literature (see 

Table 4.5) and the initial feed compositions (fAMPS,0 = 0.30 and fAMPS,0 = 0.91), we can predict the 

cumulative copolymer composition using the Skeist equation (Equation 2.36 in Section 2.2.2).  
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Figure 4.5: Cumulative Copolymer Composition for T-M-Designed Experiments (fAMPS,0 = 0.30 

& fAMPS,0 = 0.91) 
 

 

It is clear that slight differences in reactivity ratio estimates can have a significant effect on the 

prediction of FAMPS . For example, at fAMPS,0 = 0.30, there is almost a 5% difference in 

composition predictions at low conversion. However, at this lower feed composition, the 

experimental data shows fairly good agreement with both the T-M-designed results and the 

literature data. It is reasonable that the results here are in better agreement with the T-M 

prediction than with the EVM prediction, as this feed composition was initially selected using 

the Tidwell-Mortimer procedure. 

 

On the other hand, the model predictions at fAMPS,0 = 0.91 show poor agreement with the 

experimental data. The discrepancies are likely due to experimental error, but the dissimilar 

trends necessitate further investigation (which will be discussed in Section 4.4). An additional 

point of interest here is the significant difference between the literature estimate predictions and 
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the optimally designed estimate predictions. At fAMPS,0 = 0.30, the model predictions with the 

literature estimates were lower than the model predictions with optimally designed estimates (T-

M and EVM). Conversely, at fAMPS,0 = 0.91, the model predictions with the literature estimates 

were higher than the model predictions with optimally designed estimates. This is likely due to 

the fact that rAAm > 1.0 in the literature, but the current analysis indicates that rAAm < 1.0. Again, 

these results highlight the importance of obtaining accurate reactivity ratios in order to calculate 

other copolymer property trajectories properly. 

 

Similarly, the initial feed compositions selected using EVM designs are shown in Figure 4.6. 

Again, cumulative copolymer composition was predicted using T-M-designed reactivity ratios, 

EVM-designed reactivity ratios, and literature values from McCormick and Chen [47]. 

 

 
Figure 4.6: Cumulative Copolymer Composition for EVM-Designed Experiments (fAMPS,0 = 

0.10 & fAMPS,0 = 0.84) 
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In this case, the experimental data points are highly variable. Specifically, the low conversion 

data (<5%) at fAMPS,0 = 0.84 and the cumulative composition data between 20% and 25% 

conversion at fAMPS,0 = 0.10 seem to stand out as outliers. Again, the validity of the experimental 

characterization technique is called into question, and the effect of these outliers (and other 

troubleshooting perturbations) will be investigated further in Section 4.4. However, these results 

confirm once more the fact that slight differences in reactivity ratio estimates will, in theory, 

significantly affect the cumulative copolymer composition. Therefore, accurate reactivity ratios 

are necessary for the production of custom-made polymers for specific applications.  

 

4.3.2 Instantaneous Composition Analysis 

 

The instantaneous copolymer composition can also be predicted in the same way that the 

cumulative copolymer composition was established using feed compositions and reactivity ratio 

estimates. As an example, the cumulative and instantaneous composition predictions for fAMPS,0 = 

0.84 are presented in Figure 4.7. 
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Figure 4.7: Instantaneous and Cumulative Copolymer Composition Predictions for fAMPS,0 = 

0.84 

 

The above plot shows clear similarities between the T-M-designed prediction and the EVM-

designed prediction, with slight discrepancies at low conversion. However, the trends are 

consistent, and the models seem to converge at higher levels of conversion (> 50%). Conversely, 

the instantaneous and cumulative copolymer composition models using the reactivity ratios from 

McCormick and Chen [47] give very different results. The initial copolymer composition is at 

least 10% higher than that predicted by the current investigation, and the trends differ 

significantly. This is another indication that the accuracy of reactivity ratios is extremely 

important, which confirms previous observations made in this thesis (and in other literature). 
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4.3.3 Azeotropic Investigation 

 

An additional point of interest in this study is establishing whether an azeotropic composition 

exists for the AMPS/AAm copolymer system. At the azeotropic point, the feed composition 

(fAMPS) and the instantaneous copolymer composition (FAMPS) are equivalent. Since the reactivity 

ratios are known, we can use the Mayo-Lewis copolymerization equation (Equation 2.10) to 

examine FAMPS as a function of fAMPS and to establish the azeotropic point.  

 

Figure 4.8 demonstrates how FAMPS varies with fAMPS, given three sets of reactivity ratio 

estimates ((a) literature data, (b) T-M-designed data, and (c) EVM-designed data). The point at 

which the curve passes through the 45° line (FAMPS = fAMPS) represents the azeotropic 

composition.   
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Figure 4.8: Determination of Azeotropic Composition from (a) Literature Data [47], (b) T-M-

Designed Data, (c) EVM-Designed Data  
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As expected, the curve does not pass through the 45° line in case (a). From a mathematical 

perspective, it is only feasible to observe a non-negative azeotropic point in the binary system 

when both reactivity ratios are less than or greater than unity; according to McCormick and 

Chen, rAMPS = 0.50 and rAAm = 1.02. Therefore, their reactivity ratio estimates suggest that an 

azeotrope does not occur in this system. 

 

However, in cases (b) and (c), both reactivity ratios are less than unity. Therefore, we expect to 

observe an azeotrope in the model, and the plots confirm these expectations. Using the reactivity 

ratios found with T-M-designed data (rAMPS = 0.16 and rAAm = 0.77), the azeotrope occurs at 

fAMPS = FAMPS = 0.22. On the other hand, reactivity ratios from the EVM-designed data (rAMPS = 

0.20 and rAAm = 0.57) predict an azeotrope at fAMPS = FAMPS = 0.35.  

 

The azeotropic point for the AMPS/AAm copolymer is likely somewhere between these two 

compositions. In fact, the experimental results from fAMPS,0 = 0.30 had very consistent 

cumulative composition measurements that did not vary with conversion (within experimental 

error), and model predictions stayed approximately constant using all three pairs of reactivity 

ratio estimates (see again Figure 4.5). Therefore, it seems that the azeotropic composition for the 

system is approximately fAMPS = FAMPS = 0.30. 

 

4.4 Effect of Experimental Error 

 

For the AMPS/AAm copolymer, the reactivity ratio estimates and associated JCR were most 

dissimilar for the EVM-designed estimates, compared to the preliminary and T-M-designed 
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estimates. Even though the general trends remained consistent, and the JCR was very small, 

further investigation of the EVM results is necessary. Therefore, a brief case study analyzing the 

effect of perturbations on experimental data from the EVM design will be discussed in what 

follows. For reference, the original data was presented in Table 4.4. 

 

This troubleshooting case study will be completed in two stages. The first stage (Section 4.4.1) 

will examine the existing data in light of the cumulative composition analysis of Section 4.3.1 

and remove any obvious outlying data points for subsequent analyses. The second stage (Section 

4.4.2) will use previous (and incorrect) elemental analysis results to estimate the error associated 

with the composition measurements, and identify the effect of the data’s variability on the 

resulting reactivity ratio estimates. 

 

4.4.1 Troubleshooting with Outliers 

 

The experimental data of Table 4.4 were plotted against a series of cumulative copolymer 

composition models in Figure 4.6, and several outlying data points were detected. In order to 

identify the effects of these outliers on the reactivity ratio estimates, they were removed from the 

data set sequentially. For clarification, all of the modified data sets are presented in Appendix D 

(Section D.4). First, two low conversion data points for fAMPS,0 = 0.84 were removed from the 

data set and the reactivity ratio estimates were recalculated. The results are shown in Figure 4.9. 
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Figure 4.9: EVM-Designed Reactivity Ratio Estimates for AMPS/AAm; Low-Conversion 

Outliers (fAMPS,0 = 0.84) Removed 

 

 

By removing the two low conversion values for fAMPS,0 = 0.84, the estimate for rAMPS is shifted 

from 0.20 to 0.17. While this change confirms the influence of these two data points, the shift is 

fairly minor; the new point estimate is within the original JCR, and rAAm is unaffected.  

 

The next step in the sequential troubleshooting analysis was to reinstate the two low conversion 

data points for fAMPS,0 = 0.84 but to remove three data points between 20% and 25% conversion 

from the fAMPS,0 = 0.10. These outliers were initially identified in Figure 4.6, and the effect of 

these data points on the reactivity ratio estimates is shown in Figure 4.10. 
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Figure 4.10: EVM-Designed Reactivity Ratio Estimates for AMPS/AAm; Mid-Conversion 

Outliers (fAMPS,0 = 0.10) Removed 

 

Here, we see a drastic shift in the value of rAAm, whereas rAMPS remains approximately constant. 

It is interesting to note that the new JCR (with 3 outliers removed) is much closer to the 

preliminary and Tidwell-Mortimer-designed JCRs. These results seem more reasonable, as all 

three analyses are describing the same copolymer system. One disadvantage with the new data 

set is the increased area of the JCR. However, since fewer data points are being used in the 

analysis, a slight increase in variability is to be expected. 

 

As a final step, all 5 outliers described previously (2 at low conversion for fAMPS,0 = 0.84 and 3 at 

mid-conversion for fAMPS,0 = 0.10) were removed from the data set. The results, presented in 

Figure 4.11, are as expected given previous observations. 
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Figure 4.11: EVM-Designed Reactivity Ratio Estimates for AMPS/AAm; All Outliers Removed 

 

When all five outlying data points are removed, both rAMPS and rAAm shift toward the preliminary 

point estimate. Now, good agreement between all three experimental designs is evident. While 

the new JCR (with 5 outliers removed) is larger than the initial EVM estimate from Section 

4.2.3, it is still smaller than the Tidwell-Mortimer-designed estimate. This is impressive, 

considering fewer data points are being used in the analysis.  

 

From this analysis, we have learned that a few select cumulative composition measurements can 

have a significant effect on reactivity ratio estimates. Therefore, identification and removal of 

outliers is a crucial part of the reactivity ratio estimation process. Given this modified data set, 

we can be confident in the new reactivity ratio estimates for this copolymer system: rAMPS = 0.18 

and rAAm = 0.85. There is no doubt that both reactivity ratios are less than 1.0, so the analysis has 

already improved the previously accepted values from the literature. In addition, the justification 
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for removing the five outlying composition points is based on the fact that the elemental analysis 

equipment (for composition measurements) was very unreliable; this is discussed in detail in 

Section 4.4.2 that follows. 

 

4.4.2 Effect of Additional Variability 

 

Elemental analysis (EA) measurements for the determination of cumulative composition (as 

described in Section 3.4) were independently replicated. The replicates, both within a single (24 

hour) run and over a period of 6 months, revealed that the instrument drifted and measurements 

were largely unrepeatable. During some early EA runs, the equipment was poorly calibrated and 

the resulting composition measurements were clearly unreliable and incorrect. Therefore, the 

instrument was recalibrated and all samples were analyzed a second (and sometimes a third) 

time, which made the analysis unnecessarily tedious and costly. 

 

While this setback was unexpected and somewhat inconvenient, it did provide an estimate of the 

error associated with the elemental analysis equipment when it was not properly maintained. 

Therefore, the initial (incorrect) composition estimates and the more accurate data were 

combined to calculate the pooled variance for both feed compositions associated with the EVM-

designed analysis (fAMPS,0 = 0.10 and fAMPS,0 = 0.84). For fAMPS,0 = 0.10, sp
2
 = 0.0053 and for 

fAMPS,0 = 0.84, sp
2
 = 0.0105; full calculations are presented in Appendix D (Section D.4).  
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To fully understand how the variability in composition measurements can affect the final 

reactivity ratio estimates, we can modify the data set by introducing the pooled variance to the 

composition values. The data set was modified in four different ways:  

1. The pooled standard deviation was added to each cumulative composition value (+0.0728 

for fAMPS,0 = 0.10 and +0.1024 for fAMPS,0 = 0.84) to demonstrate the effect of over-

estimated composition measurements on reactivity ratio estimates. 

2. The pooled standard deviation was subtracted from each cumulative composition value to 

demonstrate the effect of under-estimated composition measurements on reactivity ratio 

estimates. 

3. An alternating pattern of adding and subtracting the pooled standard deviation from the 

cumulative composition measurements was employed to determine the effect of a wide 

spread of error on the reactivity ratio estimates. 

4. The data set was doubled; first, the pooled standard deviation was added to each 

composition value. Then, the pooled standard deviation was subtracted from each 

composition value. It is anticipated that the increased size of the data set will result in a 

smaller JCR, in spite of the increased spread of the data. 

 

The results of all four modifications are shown in Figure 4.12, and the original EVM estimate is 

included for comparison. It is also important to note that all experimental data were used in this 

analysis, and the outlying data discussed in Section 4.4.1 were not removed. 
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Figure 4.12:  Controlled Sensitivity Analysis for Reactivity Ratio Estimates of AMPS/AAm  
 

As expected, adding or subtracting the standard deviation to all data points results in drastic 

shifts in the point estimates (as well as the JCRs). In Case 1, when the pooled standard deviation 

is added to the composition data, FAMPS increases and FAAm decreases. Given this information, it 

makes sense that rAMPS will increase and rAAm will decrease with this adjustment to the data. 

Similarly, in Case 2, FAMPS  decreases and FAAm  increases; as a result, we see that rAMPS is 

lowered slightly and rAAm is increased significantly. By adding more variability to the data sets, 

an increase in the JCR area is also observed. This decreased confidence in the reactivity ratio 

estimates is to be expected, given the circumstances. 

 

Conversely, combining addition and subtraction of the standard deviation (Cases 3 and 4) 

resulted in reactivity ratio estimates that were fairly close to the unperturbed data. Doubling the 

size of the data set (by both adding and subtracting the standard deviation) decreased the error 
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associated with the estimate, but not to any significant extent.  Ultimately, the conclusion that 

can be reached from this exercise is that some random error in the data is reasonable, but a 

positive or negative bias in the cumulative composition data could have a significant impact on 

the reactivity ratio estimates. 

 

Next, the data were modified by adding random error to the original data set. As before, sp values 

specific to fAMPS,0 = 0.10 and fAMPS,0 = 0.84 were used, but the decision to add or subtract the 

standard deviation was made with a random coin toss. The data set was modified three times 

using this technique, and the resulting reactivity ratio estimates and JCRs are presented in Figure 

4.13. 

 

 
Figure 4.13:  Randomized Sensitivity Analysis for Reactivity Ratio Estimates of AMPS/AAm 
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When random error is added to the data set, rAAm seems much more susceptible to change. This 

confirms the reliability of the rAMPS estimate compared to the rAAm estimate, which was also 

observed previously (see, for example, Figure 4.4 and Figure 4.11). From this, we can conclude 

that obtaining accurate cumulative composition data is extremely important, and the need for a 

more reliable analytical method (with independent replicates) becomes increasingly obvious. 

 

Despite the drastic change in reactivity ratio estimates that is observed when random error is 

added to the data set, we can be confident in our results. All experimental work required for the 

AMPS/AAm copolymerization was fully replicated (in terms of both synthesis and 

characterization), and all three designs agree when outliers are removed (see again Figure 4.11). 
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CHAPTER 5. AMPS/AAc COPOLYMER 

 

5.1 Preliminary Experiments 

 

5.1.1 Selection of Preliminary Feed Compositions 

 

As for the AMPS/AAm system, the preliminary design for the AMPS and acrylic acid (AAc) 

copolymer was based on both background literature [49] and process understanding. Ultimately, 

the same initial feed compositions were chosen for both the AMPS/AAc and the AMPS/AAm 

systems. Details regarding the preliminary design for AMPS/AAc are presented in Table 5.1. 

 

Table 5.1: Preliminary Design for AMPS/AAc  

Reactivity Ratios r1 (rAMPS) r2 (rAAc) 

From Literature [49] 0.27 0.95 

Feed Composition f11,0 f12,0 

Tidwell-Mortimer (T-M) 0.32 0.88 

EVM 0.10 0.81 

Conditions chosen for preliminary 

experiments 

0.15 0.80 

 

5.1.2 Preliminary Reactivity Ratio Estimation 

 

Again, preliminary experiments for the AMPS/AAc were independently replicated at least once 

at each feed composition. Figure 5.1 shows that the preliminary experiments were not very 

repeatable, and were subject to significant error, again for the same reasons as discussed in 

Section 4.1. As before, the full data set is available in Appendix C (Table C.2). 
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Both feed compositions presented unique concerns. At the lower AMPS feed composition 

(fAMPS,0 = 0.15), we found that the polymerization was extremely slow and that minimal 

precipitate formed during the product isolation stage of the experiment. Acetic acid was added to 

the non-solvent mixture (50/50 acetone/methanol, as described in Section 3.3) to lower the 

solution pH. It was thought that this may stabilize the solution, therefore allowing the copolymer 

to precipitate properly. However, this attempt to improve the quality of the precipitate was 

unsuccessful; the product was still very sticky and low conversion was observed. 

 

The high AMPS run (fAMPS,0 = 0.80) was better in terms of conversion and copolymer 

precipitation, but presented other difficulties. As shown in Figure 5.1, the reaction took place 

very quickly, which increased variability in the system. The conversion data were not very 

repeatable, but trends were consistent. This is, to some extent, characteristic of preliminary 

experiments. It will be shown in Section 5.2 that the error observed in the replicates decreased 

substantially for the optimally designed experiments.   

 

Again, preliminary reactivity ratio estimates (both rAMPS and rAAc) were calculated by applying 

the cumulative composition model and direct numerical integration to the data using the error-in-

variables-model. As mentioned in Table 5.1, the initial point estimate in this case (rAMPS = 0.27, 

rAAc = 0.95) was taken from Abdel-Azim et al. [49].  

 



 
 

70 

 
Figure 5.1: Conversion vs. Time Plot for Preliminary AMPS/AAc Copolymerization 

Experiments 

 

The preliminary JCR for the AMPS/AAc system is shown in Figure 5.2. The point estimate from 

literature is included in the figure for reference, and the current reactivity ratio estimates are 

rAMPS = 0.48 and rAAc = 0.95.  
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Figure 5.2: Preliminary Reactivity Ratio Estimates for AMPS/AAc 

 

The point estimate from Abdel-Azim et al. [49] is very close to the edge of the preliminary JCR. 

While it is reassuring to see that the literature data are contained within the JCR for the current 

study, the preliminary JCR is quite large (as expected for preliminary experimental work). As 

mentioned in Section 2.3.2, the study by Abdel-Azim et al. [49] provided limited insight as to the 

polymerization conditions for the synthesis of the AMPS/AAc copolymer. However, it is clear 

that the initiator (benzoyl peroxide), reaction temperature (55°C) and precipitant selection 

(methyl ethyl ketone) differed from the currently used conditions. Arguably one of the most 

important reaction conditions, pH, is not mentioned at all in the work by Abdel-Azim et al. [49], 

so a direct comparison is difficult. However, in general, the estimates made in the previous 

literature study seem to agree with our newly determined reactivity ratios. 
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5.2 Optimal Experiments 

 

5.2.1 Selection of Optimal Feed Compositions 

 

Optimal experiments for reactivity ratio determination are designed according to both Tidwell-

Mortimer and EVM techniques, and are shown in Table 5.2. As before, updated reactivity ratio 

estimates (based on preliminary experiments of Section 5.1) are used in finding optimal feed 

conditions for the AMPS/AAc copolymerization. To avoid the low conversion and poor 

precipitation that was observed for fAMPS,0 = 0.15, a constraint (0.2 < fAMPS,0 < 1.0) was included 

when designing optimal experiments through EVM. The ability to introduce limits on feed 

compositions is yet another advantage of EVM for optimal design of experiments. 

 

Table 5.2: Optimal Design for AMPS/AAc  

Reactivity Ratios: r1 (rAMPS) r2 (rAAc) 

Experimentally Determined 

(based on the preliminary 

experiments of Table 5.1) 

0.48 0.95 

Feed Composition: f11,0 f12,0 

Tidwell-Mortimer 0.32 0.81 

Error-in-Variables-Model 

(constraint: 0.2 < fAMPS,0 < 1.0) 

0.20 0.73 

 

5.2.2 Tidwell-Mortimer Design 

 

Both runs designed using the Tidwell-Mortimer technique were independently replicated. The 

experimental data for all four runs (two feed compositions and two replicates) are presented in 

Table 5.3.  
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Table 5.3: Experimental Data for AMPS/AAc Copolymerization; Tidwell-Mortimer Design  

Run # X fAMPS,0 fAAc, 0 FAMPS FAAc 

1 

0.0617 0.32 0.68 0.2259 0.7741 

0.1461 0.32 0.68 0.2397 0.7603 

0.2613 0.32 0.68 0.2333 0.7667 

0.4426 0.32 0.68 0.2386 0.7614 

0.4426 0.32 0.68 0.3182 0.6818 

2 

0.0462 0.81 0.19 0.6014 0.3986 

0.0462 0.81 0.19 0.5642 0.4358 

0.0874 0.81 0.19 0.6032 0.3968 

0.1574 0.81 0.19 0.5378 0.4623 

3 

0.0528 0.32 0.68 0.3701 0.6299 

0.0804 0.32 0.68 0.3298 0.6702 

0.1177 0.32 0.68 0.3253 0.6747 

0.2395 0.32 0.68 0.3120 0.6880 

4 

0.0223 0.81 0.19 0.8097 0.1903 

0.0524 0.81 0.19 0.6802 0.3198 

0.1038 0.81 0.19 0.6849 0.3151 

0.2576 0.81 0.19 0.6182 0.3818 

0.2576 0.81 0.19 0.5992 0.4008 

 

As before, reactivity ratios were calculated using conversion and cumulative composition data. 

The resulting reactivity ratio estimates (rAMPS = 0.22 and rAAc = 0.85) and corresponding JCR are 

shown in Figure 5.3. 

 

As expected, using experiments that were optimally designed using the Tidwell-Mortimer 

technique has significantly decreased the error associated with the reactivity ratio estimates. The 

new estimates are in relatively good agreement with both the preliminary estimates and the 

literature values, which allows for a high degree of confidence in the results.  
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Figure 5.3: Tidwell-Mortimer-Designed Reactivity Ratio Estimates for AMPS/AAc 

 

5.2.3 Error-in-Variables-Model Design 

 

Similarly, the runs designed using EVM (at two feed compositions with two independently 

replicated runs) are presented in Table 5.4. 

 

As shown in Figure 5.4, the reactivity ratio estimates obtained from the EVM-designed data are 

rAMPS = 0.24 and rAAm = 0.87. The JCR associated with this data set is small (as it was for the T-

M-designed estimates), which is indicative of a well-designed experiment and accurate 

estimates. The overlap between JCRs from the preliminary, T-M-designed and EVM-designed 

experiments is also a very good sign, and provides additional confidence in these results. 
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Table 5.4: Experimental Data for AMPS/AAc Copolymerization; EVM Design 

Run # X fAMPS,0 fAAc, 0 FAMPS FAAc 

1 

0.0269 0.20 0.80 0.2652 0.7348 

0.1369 0.20 0.80 0.2119 0.7881 

0.4156 0.20 0.80 0.2075 0.7925 

0.4950 0.20 0.80 0.1860 0.8140 

0.4950 0.20 0.80 0.1723 0.8277 

0.5813 0.20 0.80 0.1649 0.8351 

2 

0.0127 0.73 0.27 0.7942 0.2058 

0.0895 0.73 0.27 0.5939 0.4061 

0.0895 0.73 0.27 0.4449 0.5551 

0.1250 0.73 0.27 0.5115 0.4885 

0.1642 0.73 0.27 0.5131 0.4869 

0.5256 0.73 0.27 0.4303 0.5697 

3 

0.1458 0.20 0.80 0.2474 0.7526 

0.1458 0.20 0.80 0.1418 0.8582 

0.2951 0.20 0.80 0.1439 0.8561 

4 

0.0162 0.73 0.27 0.6919 0.3081 

0.0798 0.73 0.27 0.6063 0.3937 

0.4756 0.73 0.27 0.5455 0.4545 

0.5664 0.73 0.27 0.6069 0.3931 

 

 
Figure 5.4: EVM-Designed Reactivity Ratio Estimates for AMPS/AAc  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

1

1.1

r
AMPS

r A
A

c

 

 

Preliminary Estimate (0.48, 0.95)

Tidwell-Mortimer Estimate (0.22, 0.85)

EVM Estimate (0.24, 0.87)

Literature Estimate (0.27, 0.95)



 
 

76 

5.3 Discussion of Results for AMPS/AAc 

 

In the AMPS/AAc case, the reactivity ratios are much closer together, and do not seem to vary 

with different designs. For a quick visual comparison, the results are summarized in Table 5.5. 

 

Table 5.5: Summary of Reactivity Ratio Estimates for AMPS/AAc 

Step 1: Preliminary Design rAMPS rAAc 

Literature Values [49] 0.27 0.95 

Preliminary Estimates 0.48 0.95 

Step 2: Optimal Designs   

Tidwell-Mortimer Estimates 0.22 0.85 

Error-in-Variables-Model 

Estimates 

0.24 0.87 

 

Because the reactivity ratio estimates from literature, T-M design and EVM design are all 

similar, it is unlikely that the differences in values will affect composition predictions or other 

calculations related to the copolymer microstructure. Therefore, an in-depth comparison of 

results (as was completed in Section 4.3 for the AMPS/AAm copolymer system) is unnecessary 

for the AMPS/AAc copolymer.  

 

5.3.1 Cumulative Composition Analysis 

 

It is still useful to compare model predictions to experimental results. Therefore, assuming the 

EVM-designed results are the most accurate (as they produce the smallest JCR), the reactivity 

ratios rAMPS = 0.24 and rAAm = 0.87 can be used to calculate cumulative copolymer composition 

profiles. Results are shown in Figure 5.5. 
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Figure 5.5: Cumulative Copolymer Composition for AMPS/AAc 

 

Here, we see good agreement between the model predictions and the experimental results at low 

feed compositions (fAMPS,0 = 0.20 and fAMPS,0 = 0.32). On the other hand, at higher levels of 

AMPS in the feed, there are substantial discrepancies visible. There is significantly more 

variability in the experimental data, and the model seems especially inadequate at very low 

conversion (< 5%). This is largely due to the nature of the system being studied, as there is 

typically more variability at low conversions. However, due to the high confidence in reactivity 

ratio estimates (based on the size of the JCRs) and the good agreement at low feed compositions, 

the discrepancies are (again) more likely due to inaccurate experimental measurements from 

elemental analysis. 
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CHAPTER 6. AMPS/AAm/AAc TERPOLYMER 

 

The AMPS/AAm/AAc terpolymer was studied in collaboration with PhD student Niousha 

Kazemi (January – June 2014), and some of these results have already been presented in the PhD 

thesis [32]. However, they are an important aspect of the current study, and hence only the key 

results from the optimally designed experiments will be presented herein. 

 

6.1 Preliminary and Optimal Experiments 

 

6.1.1 Selection of Feed Compositions 

 

For the AMPS/AAm/AAc terpolymer, six different feed compositions were selected as part of 

the preliminary experimentation. These feed compositions were selected in such a way that three 

runs represent extreme ranges (that is, each is rich in one of the three comonomers), whereas the 

other three runs represent mid-range mole fractions (where the feed composition is well 

distributed among the three comonomers). Observations from existing literature and knowledge 

of the process (such as feed composition constraints discovered in the binary systems) were 

taken into account when choosing the feed compositions. A graphical representation of the 

preliminary feed compositions is shown in Figure 6.1 and the associated values are presented in 

Table 6.1. 
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Figure 6.1: Selection of Feed Compositions for AMPS/AAm/AAc Terpolymerization [32]  
 

 

Table 6.1: Design of Experiments for AMPS
1
/AAm

2
/AAc

3
 Terpolymerization [32] 

Feed Composition: f1i (AMPS) f2i (AAm) f3i (AAc) 

Run # (i): 

1 0.800 0.100 0.100 

2 0.100 0.800 0.100 

3 0.100 0.200 0.700 

4 0.200 0.400 0.400 

5 0.300 0.500 0.200 

6 0.500 0.100 0.400 

 

It is interesting to note here that while these were initially classified as preliminary experiments, 

three of the compositions being considered are actually optimal points. According to the EVM 

design criterion [63], optimal feed compositions for this terpolymer system require 80% of one 

comonomer and 10% each of the other two comonomers. Runs 1 and 2 in Table 6.1 meet this 

criterion, and Run 3 is as close as possible given composition constraints described by Ryles and 

Neff [56].  
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6.1.2 Terpolymerization Results 

 

The experimental procedure described in Chapter 3 was again used for the terpolymer system, 

and results from the optimally designed experiments are shown in Table 6.2. As before, the 

experiments were fully replicated, and the polymerization was not limited to low conversion 

data.  

 

The experimental data of Table 6.2 were then used to estimate reactivity ratio values for the 

AMPS/AAm/AAc terpolymer, using the technique described by Kazemi et al. [12]. Because 

there are now three components being considered, there are additional combinations of reactivity 

ratios: rAMPS/AAm, rAAm/AMPS, rAMPS/AAc, rAAc/AMPS, rAAm/AAc and rAAc/AAm. As for the binary systems, 

each reactivity ratio ri/j represents the ratio of homopropagation (kp,ii) to cross-propagation for a 

particular comonomoner (kp,ij); see Sections 2.1.2 and 2.1.3 for additional clarification. The 

estimation results, along with the corresponding JCRs, are presented in Figure 6.2. Binary 

estimates, both from literature [10, 47, 49] and from the current work, are also included for 

comparison purposes. The similarities and differences between the binary and ternary systems 

will be discussed in more detail in Section 6.2. 
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Table 6.2: Experimental Data for AMPS/AAm/AAc Terpolymerization [32]  

Run # X fAMPS,0 fAAm,0 fAAc,0 FAMPS FAAm FAAc 

1 

0.047 0.800 0.100 0.100 0.664 0.161 0.175 

0.057 0.800 0.100 0.100 0.693 0.187 0.120 

0.085 0.800 0.100 0.100 0.775 0.152 0.073 

0.101 0.800 0.100 0.100 0.620 0.205 0.175 

0.232 0.800 0.100 0.100 0.623 0.192 0.185 

0.254 0.800 0.100 0.100 0.667 0.227 0.106 

0.576 0.800 0.100 0.100 0.782 0.079 0.139 

0.628 0.800 0.100 0.100 0.772 0.107 0.121 

2 

0.025 0.100 0.800 0.100 0.101 0.826 0.073 

0.046 0.100 0.800 0.100 0.099 0.824 0.077 

0.078 0.100 0.800 0.100 0.103 0.827 0.070 

0.085 0.100 0.800 0.100 0.106 0.813 0.081 

0.098 0.100 0.800 0.100 0.081 0.754 0.165 

0.124 0.100 0.800 0.100 0.104 0.839 0.057 

0.151 0.100 0.800 0.100 0.102 0.836 0.062 

0.201 0.100 0.800 0.100 0.081 0.781 0.138 

0.206 0.100 0.800 0.100 0.080 0.779 0.141 

0.247 0.100 0.800 0.100 0.096 0.832 0.072 

0.392 0.100 0.800 0.100 0.104 0.817 0.079 

0.411 0.100 0.800 0.100 0.087 0.782 0.131 

0.542 0.100 0.800 0.100 0.112 0.801 0.087 

0.574 0.100 0.800 0.100 0.097 0.824 0.077 

0.594 0.100 0.800 0.100 0.106 0.809 0.085 

3 

0.029 0.100 0.200 0.700 0.052 0.400 0.548 

0.035 0.100 0.200 0.700 0.037 0.402 0.561 

0.042 0.100 0.200 0.700 0.066 0.420 0.514 

0.048 0.100 0.200 0.700 0.079 0.363 0.558 

0.055 0.100 0.200 0.700 0.084 0.364 0.552 

0.077 0.100 0.200 0.700 0.180 0.342 0.478 

0.081 0.100 0.200 0.700 0.119 0.380 0.501 

0.089 0.100 0.200 0.700 0.104 0.330 0.566 

0.122 0.100 0.200 0.700 0.060 0.270 0.670 

0.175 0.100 0.200 0.700 0.074 0.335 0.591 

0.194 0.100 0.200 0.700 0.079 0.382 0.539 

0.210 0.100 0.200 0.700 0.098 0.342 0.560 

0.268 0.100 0.200 0.700 0.117 0.334 0.553 

0.363 0.100 0.200 0.700 0.126 0.340 0.534 
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(a) 

  
(b) 

 
(c) 

 

Figure 6.2: AMPS/AAm/AAc Terpolymerization Reactivity Ratio Estimates  
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6.2 Comparison of Binary and Ternary Reactivity Ratios 

 

It has been suggested previously that binary reactivity ratios cannot be used to describe ternary 

systems and, at best, can be considered a gross approximation [12, 32]. Binary reactivity ratios 

are never determined using ternary experimental data, and differences in the system make it 

imprudent to use binary and ternary reactivity ratios interchangeably. Using inappropriate 

reactivity ratios may affect the model performance for predicting terpolymer composition (and 

sequence length characteristics, since these also depend on reactivity ratio values) and the 

determination of terpolymerization characteristics (such as the azeotropic point). Despite these 

risks, many studies performed previously employ binary reactivity ratios directly into terpolymer 

models. 

 

To our knowledge, this is the first time that binary and ternary reactivity ratios have been 

compared directly, for the same system, with all other variables kept constant. In the current 

project, variables such as pH, ionic strength, monomer concentration, and other reaction 

conditions were kept constant; to the extent possible, only the number of comonomers (2 or 3) 

and the feed composition were varied. Therefore, a direct comparison of binary and ternary 

reactivity ratios is finally possible.  

 

To simplify the evaluation of binary and ternary reactivity ratios, all of the estimates calculated 

thus far are summarized in Table 6.3. Since an in-depth analysis of the AAm/AAc 

copolymerization kinetics has been completed by Riahinezhad et al. [10], only the AMPS/AAm 

and AMPS/AAc copolymers were studied in more detail.  
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Table 6.3: Comparison of Reactivity Ratio Estimates for AMPS
1
/AAm

2
/AAc

3
  

Experimental Data Type r12 r21 r13 r31 r23 r32 

Literature Values Binary 0.50 1.02 0.27 0.95 2.50 0.39 

Preliminary Binary 0.20 0.85 0.48 0.95 -- -- 

Optimal (T-M) Binary 0.26 0.68 0.22 0.85 -- -- 

Optimal (EVM) Binary 0.18 0.85 0.24 0.87 1.33 0.23 

Optimal (EVM) Ternary 0.46 0.93 0.57 0.92 1.08 0.24 

 

The most useful comparison can be found in the last two rows of Table 6.3 (a graphical 

representation of these results was displayed previously in Figure 6.2). These last two rows show 

results from the optimally designed experiments [23], with reactivity ratio estimates calculated 

using direct numerical integration applied to cumulative composition data through the error-in-

variables-model [32]. As mentioned previously, the non-linear estimation method establishes 

uncertainty using joint confidence regions (see Figure 6.2), which give more detail than typical 

individual error estimates based on 95% confidence. 

 

For a quantitative comparison of the binary and ternary reactivity ratios, we can use a paired t-

test to investigate whether the results are statistically similar (see calculations in Appendix D, 

Section D.5). Statistical analysis shows that we cannot reject the hypothesis μD = 0; there is no 

significant difference between the binary and ternary arrays of reactivity ratios in this case. 

 

However, the paired t-test only takes the point estimates into account as pure numbers. It is also 

important to consider how these differences in reactivity ratio estimates will affect model 

performance and terpolymerization characteristics (i.e., how these point estimates propagate via 

the related terpolymer model into the final response characteristics). The impact of using binary 

reactivity ratio estimates for ternary characterization will be discussed in what follows. 
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6.2.1 Cumulative Composition Analysis 

 

Binary reactivity ratios are often used to predict terpolymer composition using the Alfrey-

Goldfinger model [18]. However, for more accurate results, the recast Alfrey-Goldfinger model 

[12] described in Section 2.1.3 can be used in combination with recently determined reactivity 

ratios. In what follows, the recast Alfrey-Goldfinger model is used to predict terpolymer 

composition using both the binary and ternary reactivity ratio estimates of Table 6.3. 

Experimentally determined composition measurements are also included for evaluation of the 

model. 

 

The first of three plots, Figure 6.3, exhibits results from the AMPS-rich terpolymer recipe. All 

three compositions (AMPS, AAm and AAc) are included, and the stark contrast between binary 

and ternary predictions is clearly visible. In general, the experimental data are in better 

agreement with the ternary-based model. This is to be expected, and confirms the importance of 

using ternary reactivity ratios to describe/model terpolymer systems.  
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Figure 6.3: Cumulative Terpolymer Composition for AMPS/AAm/AAc (fAMPS,0/fAAm,0/fAAc,0 = 

0.8/0.1/0.1) 

 

The AAm-rich terpolymer is shown in the second plot of the series, Figure 6.4. Here, we see 

very little difference between binary and ternary reactivity ratios applied to the recast Alfrey-

Goldfinger (A-G) model. In fact, the composition for each of the three components is so 

consistent throughout conversion that the system may be exhibiting azeotropic behavior. 

According to the A-G model, for fAMPS,0/fAAm,0/fAAc,0 = 0.1/0.8/0.1, FAMPS/FAAm/FAAc = 

0.09/0.82/0.09, which is as close as one can be to azeotropic conditions. 
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Figure 6.4: Cumulative Terpolymer Composition for AMPS/AAm/AAc (fAMPS,0/fAAm,0/fAAc,0 = 

0.1/0.8/0.1) 

 

Finally, the AAc-rich terpolymer recipe is presented in Figure 6.5. Again, we see very minimal 

differences when the binary and ternary reactivity ratio estimates are used in the model, and there 

is generally good agreement between model predictions and the experimental data.  
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Figure 6.5: Cumulative Terpolymer Composition for AMPS/AAm/AAc (fAMPS,0/fAAm,0/fAAc,0 = 

0.1/0.2/0.7) 
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drastically affect the overall results. The paired t-test did not show any statistical differences 

between the binary and ternary reactivity ratio estimates, and the cumulative terpolymer 

composition analysis showed that the model predictions were only affected when the pre-
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Kazemi et al. [12], the differences between binary and ternary reactivity ratios were important. 

Overall, there are clear advantages to using binary data for copolymer studies and ternary data 

for terpolymerization studies. By doing so, at least one satisfies the statistical admonition that 

one should use the raw (measured) response data from the system directly for parameter 
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CHAPTER 7. CONCLUDING REMARKS, MAIN 

CONTRIBUTIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 
 

7.1 Concluding Remarks 

 

Water-soluble polymers of acrylamide (AAm) and acrylic acid (AAc) have significant potential 

in enhanced oil recovery, as well as in other specialty applications. However, to improve the 

shear strength of the polymer, it may be beneficial to add a third comonomer to the pre-

polymerization mixture. Homopolymerization kinetics of acrylamide and acrylic acid have been 

studied previously, as have the copolymerization kinetics of these two monomers. Therefore, in 

the current study, the kinetics of three additional systems were investigated: copolymerization of 

AMPS/AAm and AMPS/AAc, and terpolymerization of AMPS/AAm/AAc. 

 

Reactivity ratio estimates for all three of the above-mentioned systems were determined, and are 

summarized in Table 7.1. The binary results for AAm/AAc were taken from previous work by 

Riahinezhad et al. [10]. 

 

Table 7.1: Summary of Reactivity Ratio Estimates for AMPS
1
/AAm

2
/AAc

3
  

Experimental Data r12 r21 r13 r31 r23 r32 

Binary Data 0.18 0.85 0.24 0.87 1.33 0.23 

Ternary Data 0.46 0.93 0.57 0.92 1.08 0.24 

 

Copolymerization experiments (AMPS/AAm and AMPS/AAc) were designed using two optimal 

techniques: Tidwell-Mortimer and the error-in-variables-model. The best estimates were 

assumed to be those obtained from the EVM-designed data, but both techniques gave very 
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similar results (especially when outlying data points were removed from the AMPS/AAm data 

set). All optimally-designed experiments led to smaller joint confidence regions (JCRs), which is 

indicative of greater confidence in the reactivity ratio estimates.   

 

In the same way, terpolymerization experiments for AMPS/AAm/AAc were optimally designed 

using EVM. The results, shown in Table 7.1, differ from the binary results. The binary and 

ternary reactivity ratios were not found to be statistically different, and the main effects of the 

reactivity ratio differences were observed in cumulative composition model predictions.  

 

7.2 Main Contributions 

 

In the current study, accurate reactivity ratio estimates have been determined for copolymers 

AMPS/AAm and AMPS/AAc, as well as for terpolymer AMPS/AAm/AAc. These binary 

reactivity ratios can be used with a higher level of confidence (than prior literature sources), and 

the ternary reactivity ratios for this system have been established for the first time. 

 

In this work, a direct comparison of binary and ternary reactivity ratio estimates has also been 

completed. Finally, with significant experimental effort and carefully chosen experimental 

conditions, we can compare binary and ternary data for the same system, with all other variables 

kept constant. Variables such as pH, ionic strength, monomer concentration, and other 

polymerization conditions were kept constant; to the extent possible, only the number of 

comonomers (2 or 3) and the feed composition were varied. Therefore, a direct and more 

meaningful comparison of binary and ternary reactivity ratios was finally possible.  
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7.3 Recommendations  

 

7.3.1 Short-Term Recommendations 

 

 Further investigation should be done to confirm the repeatability of the elemental analysis 

equipment for cumulative copolymer composition. It may also be useful to confirm select 

copolymer compositions using NMR.  

 

 The effect of residual monomer on cumulative composition data should be considered, as 

these monomers are difficult to remove. Techniques that would ensure the removal of 

residual monomer in the samples should be employed, especially at low conversion. This 

may be more time-consuming, but potential solutions include allowing polymerizations to go 

to higher conversion levels, introducing a more extensive precipitation/purification process, 

or keeping the samples under vacuum for longer periods of time. 

 

 The recast Alfrey-Goldfinger model described in Section 2.1.3 is a significant improvement 

over the original model, as it no longer distorts the error structure. Also, the composition 

values can be determined individually, and composition ratios are no longer necessary. 

However, it may be beneficial to re-derive the Alfrey-Goldfinger model by applying the 

Mayo-Lewis derivation approach/steps to three comonomers, without introducing limiting 

assumptions or distorting the error structure.  
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7.3.2 Long-Term Recommendations 

 

 While this project provided us with a better understanding of the reaction kinetics, we still 

know very little about how polymerization conditions will affect the microstructure of the 

AMPS/AAm/AAc terpolymer. It may be useful to do some additional characterization 

experiments (molecular weight determination, sequence length distribution, cumulative triad 

fractions, etc.) to better understand the terpolymer properties.  

 

 Since the end goal for this terpolymer is as a viscosity modifier for enhanced oil recovery, an 

in-depth study of desirable characteristics should be completed.  Larger AMPS/AAm/AAc 

samples should be synthesized, so that properties such as shear stability (in high-salinity 

brines and high-temperature conditions), viscosity, and polymer flooding efficiency can be 

determined. 

 

 To facilitate the synthesis of larger terpolymer samples, scale-up from vial polymerizations 

to a larger pilot-plant reactor should be investigated.  
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APPENDIX A – INVESTIGATION OF N-VINYLPYRROLIDONE 

(NVP) AS POTENTIAL COMONOMER 
 

Since the AAm/AAc copolymer is known to have poor shear stability in EOR applications, the 

addition of a third comonomer may be beneficial. N-vinylpyrrolidone (NVP) should be 

considered, as it has been used previously as a comonomer in water-soluble polymers and its 

presence within polymers has been known to improve shear stability [8]. The addition of bulky 

monomer groups increases the rigidity of the polymer structure (and hence the glass transition 

temperature), and ultimately provides greater stability, which is beneficial for the application [6]. 

However, before investigating the AAm/AAc/NVP terpolymer any further, a detailed review of 

the literature will provide more information about the potential to synthesize this terpolymer. 

 

A.1 Copolymerization of Acrylamide and N-Vinylpyrrolidone 

 

Over the last 40 years, only a handful of studies have been published on the topic of 

acrylamide/N-vinylpyrrolidone copolymerization kinetics. Most of these studies included 

determination of reactivity ratios, r1 and r2, but the final results vary significantly from one group 

to the next. In one of the more recent studies, Akyüz et al. [64] suggest that one of the reasons 

for the discrepancy may be the data analysis methods used for reactivity ratio determination. 

Reactivity ratios may be estimated through linear (incorrect) or non-linear (correct) methods; 

non-linear methods are generally more accurate, but some early efforts used linear methods [46, 

65]. Discrepancies are also influenced by the quality of the collected data and by the process type 

used (solution vs. emulsion or precipitation), initiator type, solvent, reaction temperature, and so 

on [64]. However, all of the studies are in agreement that r1 (AAm) > r2 (NVP) , or that the 
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copolymer will be richer in acrylamide than the monomer feed. For comparison purposes, some 

relevant AAm/NVP studies will be discussed briefly. 

 

The first investigation of AAm/NVP copolymerization kinetics was performed in 1971 by 

Chatterjee and Burns [65]. Their study examined copolymer composition and comonomer 

reactivity by varying the monomer feed concentration. Copolymer composition was determined 

using UV absorption spectroscopy, and was compared to the feed composition to determine 

relative reactivities. A linear "least-squares" technique was used to calculate r1 (for AAm) and r2 

(for NVP). It was found that r1 = 0.66 and r2 = 0.17 for the aqueous polymerization of 

AAm/NVP [65]. Since both reactivity ratios are less than 1, we can assume that each monomer 

prefers to bond with the other monomer type present in the system (that is, AAm radicals prefer 

NVP monomer, and NVP radicals prefer AAm monomer). It is expected, then, that copolymers 

with an alternating tendency will be produced under these conditions [65].  

 

Chatterjee and Burns also investigated the effect of solvent type on the reaction system [65]. The 

experimental conditions included pure water, and glycerol/water mixtures with 5, 67, and 80 

weight % glycerol. AAm/NVP copolymerizations were completed in these four different 

solvents, so that the effects of solvent on copolymer composition and relative reactivities could 

be better understood. It was found that increased glycerol concentration led to higher acrylamide 

reactivity (see Figure A.1). In fact, at 80 weight % glycerol, r1 = 10.6 and r2 = 0.11 (compared to 

r1 = 0.66 and r2 = 0.17 in water) [65]. This is likely due to the hydrogen bonding that is induced 

between AAm units in the presence of glycerol [65]. Therefore, more acrylamide units were 

present in the copolymer, and the alternating behaviour of aqueous solution polymerization was 
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reduced significantly. The relationship between feed monomer composition and copolymer 

composition in different solvents is presented in Figure A.2.  

 

 
Figure A.1: Effect of Solvent Composition on Reactivity Ratios for AAm/NVP 

Copolymerization [65] 

 

 
Figure A.2: Effect of Feed Composition on Copolymer Composition with Varying Solvent [65]  
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Another study focusing on the kinetics of this system was completed by Singh and Sawhney [7]. 

Their investigation examined different polymerization methods, including solution, precipitation, 

and inverse emulsion polymerization. Again, different feed compositions were used to determine 

the reactivity ratios of acrylamide and N-vinylpyrrolidone. For this system, elemental analysis of 

carbon, hydrogen, and nitrogen was used to determine the copolymer composition. The 

Fineman-Ross (linear) method was used to calculate r1 and r2, based on only 3 data points [7]! 

The reactivity ratios were found to be fairly similar to those estimated by Chatterjee and Burns: 

r1 = 0.61 and r2 = 0.05 [7] (compared to r1 = 0.66 and r2 = 0.17 [65]). However, it is important to 

note that the polymerization systems were entirely different. 

 

In the investigation by Singh and Sawhney [7], most of the work was done using inverse 

emulsion polymerization in xylene. This method was chosen in an attempt to minimize the 

drastic increase in viscosity that occurs during solution polymerization, and was found to be 

stable for 7.5% to 15% monomer [7]. It was found that, in this type of polymerization, both the 

rate of reaction and the copolymer composition varied with the ratio of AAm to NVP in the 

monomer feed. The relationship between feed composition and copolymer composition was 

similar to that observed in previous work (Figure A.2). Experimental results also showed that as 

the AAm concentration increases, the reaction occurs more quickly and reaches higher levels of 

conversion (see Figure A.3). 
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Figure A.3: Conversion vs. Time Profiles for AAm/NVP Copolymers with Varying Monomer 

Feed Composition [7] 

 

 

The effect of pH was also briefly studied by Singh and Sawhney [7]. The copolymer system was 

studied with and without buffer (for pH control), and much more consistent results were obtained 

in the presence of buffer. When no buffer was used, the system was acidic (pH < 5), and only 

65% conversion was obtained. On the other hand, when the addition of buffer kept the pH at 

around 7, 100% conversion was achieved. In both cases, though, pH stayed approximately 

constant throughout the reaction, with the exception of a drop in pH during initiator addition [7]. 

 

In 1996, Bune et al. [46] brought forward an interesting question: if the reaction mixture 

composition changes with conversion, can we assume that the reactivity ratios remain constant 

throughout the reaction? For the first time, the copolymerization of AAm and NVP was allowed 

to react to high levels of conversion; most studies completed previously only looked at low 

conversions, since kinetic analyses often rely on the assumption of constant monomer 
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concentration. Rather than removing samples from the solution for analysis, the entire 

polymerization system was analyzed using nuclear magnetic resonance (NMR) spectroscopy. By 

measuring the concentration of each comonomer left in the feed mixture, it was possible to 

estimate the amount of each comonomer that had been consumed in the polymerization [46]. 

 

Bune et al. [46] hypothesized that the reactivity ratios (and the copolymer composition) would 

change with conversion. However, they found that the values remained constant up to 50% to 

70% conversion. This may have been due to the interaction between water-soluble monomers 

and water itself during solution polymerization. Although the composition of the solution 

changes, concentrations are believed to remain approximately constant within active 

polymerization regions (zones that are likely isolated by polymer coils forming at higher 

conversions) [46]. Therefore, the assumption that reactivity ratios remain constant throughout the 

reaction is valid. The reactivity ratios for the system were again calculated using the Fineman-

Ross method, and were found to be as follows for the aqueous system: r1 = 1.2 ± 0.2 and r2 = 0.8 

± 0.2 [46]. The copolymerization was also investigated with dimethyl sulfoxide (DMSO) as the 

solvent, and the Fineman-Ross method indicated that r1 = r2 = 1 [46]. This study also examined 

the relationship between monomer feed concentration and reaction rate. The results agreed with 

the trends that Singh et al. [7] had observed: higher AAm concentration led to a faster 

polymerization. 

 

Despite the varied methods used throughout these analyses for copolymer composition 

measurements, Akyüz et al. returned to UV spectroscopy [64] (used by Chatterjee and Burns in 

the original AAm/NVP analysis [65]). A sequential sampling technique was used to obtain more 

information (and higher levels of conversion) in fewer experimental runs. In this recent study, 
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the solution copolymerization of acrylamide and NVP was examined with varying monomer feed 

composition. Additionally, one experimental run (50 wt% AAm, 50 wt% NVP) was repeated 

three times, so that error analysis could be included in the investigation [64]. 

 

A non-linear parameter estimation technique was used to estimate reactivity ratios. It was found 

that r1 = 2.03 ± 0.14 and r2 = 0.09 ± 0.02 [64]. These results were confirmed using the Extended 

Kelen Tüdös (EKT) method, which gave similar results: r1 = 2.08 ± 0.04 and r2 = 0.12 ± 0.04 

[64].  

 

To summarize, studies of copolymerization kinetics of acrylamide and N-vinylpyrrolidone have 

provided the information of Table A.1. 

 

Table A.1: Summary of Kinetic Studies for AAm/NVP Copolymerization 
Reaction 

Conditions 

Solvent Composition 

Determination 

Estimation 

Technique 

r1 r2 Ref. 

Solution;  

T = 60°C 

Water UV absorption Linear least 

squares 

0.66 0.17 [65] 

Solution;  

T = 60°C 

20% water; 80% 

glycerol 

UV absorption Linear least 

squares 

10.6 0.11 [65] 

Inverse emulsion;  

T = 50°C 

Xylene Elemental analysis Fineman-Ross 0.61 0.05 [7] 

Solution;  

T = 35 & 55°C 

Water NMR Fineman-Ross 1.2 0.8 [46] 

Solution;  

T = 45 - 55°C 

DMSO NMR Fineman-Ross 1.0 1.0 [46] 

Solution 

(sequential 

sampling);  

T = 60°C 

Water UV absorption Non-linear 

regression  

2.03 0.09 [64] 

Solution 

(sequential 

sampling);  

T = 60°C 

Water UV absorption Extended Kelen 

Tüdös 

2.08 0.12 [64] 
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A.2 Copolymerization of Acrylic Acid and N-Vinylpyrrolidone 

 

The copolymerization kinetics of acrylic acid (AAc) and N-vinylpyrrolidone (NVP) have also 

been studied, but not nearly to the same extent as for the AAm/NVP copolymer system. Some of 

the main difficulties associated with this system are the low reactivity ratios and the more 

significant dependence on pH.  

 

One of the first studies in AAc/NVP copolymerization to determine reactivity ratios was 

completed by van Paesschen and Smets [66]. Their goal was to investigate whether different 

polymerization methods would affect the overall structure of the polymer. They studied a variety 

of AAc/NVP copolymer synthesis methods, including typical bulk polymerization of acrylic acid 

and N-vinylpyrrolidone. The copolymerization was studied with three different feed 

compositions, and the copolymer composition was analyzed using conductometric titration. For 

bulk polymerization at 75°C, it was found that r1 (AAc) = 1.3 ± 0.2 and r2 (NVP) = 0.15 ± 0.1 

[66]. With r1 > r2, the AAc/NVP copolymer will be rich in acrylic acid. These early results are in 

agreement with later studies [67, 68]. 

 

One of the challenges in the copolymerization of acrylic acid and NVP is the acidity of AAc 

combined with the basic nature of NVP. Therefore, Chapiro and Trung [67] chose to investigate 

interactions between the two comonomers, and between the monomers and various solvents. Not 

only did they find strong interactions between AAc and NVP in the stock monomer solution, but 

also that NVP may spontaneously polymerize in the presence of AAc. Therefore, the 
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comonomers were not combined until the very last minute, and temperatures were kept fairly 

low (~30°C) during polymerization [67]. 

 

In the study by Chapiro and Trung [67], the AAc/NVP copolymer was synthesized in bulk as 

studied by van Paesschen and Smets [66], as well as in solution with ethanol, toluene and DMF 

as solvents. Again, several different feed compositions were used to determine reactivity ratios 

for the system. It was found that the polymerization rate increased with acrylic acid 

concentration, which was analogous to the AAm/NVP copolymerization studies; in both 

copolymer systems (and in the homopolymerization), higher NVP concentration resulted in 

lower reactivity [67]. 

 

To determine the copolymer composition, elemental analysis based on nitrogen was used in 

parallel with potentiometric titration. Good agreement between the analysis methods (within 5%) 

significantly increased confidence in the results [67]. The composition of the copolymer 

synthesized in bulk was almost identical to the composition of those solution copolymers 

synthesized in ethanol and in toluene. For these three systems, r1 = 0.48 ± 0.04 and r2 = 0.05 ± 

0.01 [67]. Solution polymerization in DMF yielded a copolymer that was slightly richer in AAc, 

which means that r1 was slightly higher than for the other systems. Some minor solvent effects 

were present here, as r1 = 0.67 ± 0.05 and r2 = 0.03 ± 0.01 [67]. Additional tests indicated that 

composition (and therefore reactivity ratios) seemed independent of temperature and feed 

monomer concentration. However, r2 was quite low in all cases, which confirmed the trends 

observed by van Paesschen and Smets [66].  
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In 1976, Ponratnam and Kapur [68] identified a significant factor in the copolymerization 

kinetics of acrylic acid and N-vinylpyrrolidone: pH. Aqueous solution polymerization was 

completed at 30°C with varying feed concentrations and acidities (pH = 4 to 9). The monomer 

reactivities were determined using two different linear techniques [68]. Both methods gave 

similar results, so only the values obtained from the first technique (Mayo-Lewis method) are 

presented for the sake of brevity. The values of r1 and r2 as a function of pH are presented in 

Figure A.4, and are summarized later in Table A.2. 

 

 
Figure A.4: Effect of pH on Reactivity Ratios for AAc/NVP Copolymerization [68] 

 

 

It is important to note that r1 varied significantly with pH. The low reactivity observed at pH = 5 

was likely due to the electrostatic repulsion between monomer and polymer molecules with 

different charges. However, reactivity increased again at higher pH, since the system exhibited 

behaviour characteristic of acrylic acid homopolymerization [68]. This homopolymerization 

behaviour was likely due to the extremely low values of r2 and high values of r1. It is unlikely 

that NVP will be incorporated to a great extent in the polymer formed, except perhaps at pH = 5 

(where r1 is lowest and r2 is highest). Ultimately, at any pH, the copolymer will likely have high 

levels of acrylic acid.  
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Table A.2: Summary of Kinetic Studies for AAc/NVP Copolymerization 

Reaction Type Solvent Temperature pH r1 r2 Ref. 

Bulk -- 75°C -- 1.30 0.15 [66] 

Bulk -- 0 & 20°C -- 0.48 0.05 [67] 

Solution Toluene, 

ethanol 

0 & 20°C -- 0.48 0.05 [67] 

Solution DMF 20°C -- 0.67 0.03 [67] 

Solution Water 30°C 4 5.26 0.078 [68] 

Solution Water 30°C 5 1.32 0.31 [68] 

Solution Water 30°C 6.5 5.87 -0.077 [68] 

Solution Water 30°C 7 8.12 0.019 [68] 

Solution Water 30°C 8 6.66 -0.084 [68] 

Solution Water 30°C 9 7.22 0.010 [68] 
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APPENDIX B – SAFETY CONSIDERATIONS FOR 

EXPERIMENTAL WORK 
 

This is an excerpt from the author’s departmental safety report. More details can be found in that 

document, which was submitted to the Chemical Engineering Department in October 2013. 

 

B.1 General Safety Awareness and Practices 
 

B.1.1 Emergency Telephone Numbers 
 

Fire and Ambulance 911 

Waterloo Regional Police 911 

UW Police and Security 22222 

Plant Operations 33793 

Health Services 84096 

Poison Information Center 6-1-800-268-9017 

Chemical Spills 22222 

Director of Safety (Kevin Stewart) 35814 

Environmental Health Co-ordinator (Ian Fraser) 36268 

Department Chair (Eric Croiset) 32296 

Departmental Health & Safety (Ralph Dickhout) 33311 

Labs 
E6-5113 Ext. 33927 

E6-5119 Ext. 31669 

Office E6-5114 Ext. 31666 
 

B.1.2 Chemical Spills 
 

Before working with hazardous materials: 

 Determine spill procedures from Material Safety Data Sheets (MSDS) for all chemicals 

 Obtain proper spill kits and clean up equipment (from ESC 109) 
   

 In case of a small spill that poses no immediate threat to health: 

 Notify occupants in the immediate area of the spill 

 Use spill kits to absorb and contain chemical, according to spill procedure 

 Place material in a secure and ventilated area 

 Contact supervisor, departmental safety officer, and/or the University of Waterloo Safety 

Office (ext. 36268) for disposal instructions 
 

In case of a large spill or a spill that poses an immediate threat to health: 

 Remove sources of ignition, if possible 

 Evacuate immediate area 

 Call UW Police at extension 22222 
 

Additional precautions for flammable liquids: 

 Immediately remove all sources of ignition from the area 

 Identify the location of the nearest fire extinguisher 

 Use non-sparking tools (like bronze) during clean up  



 

 

109 
 

B.2 Safety Assessment for Research Project 

 

B.2.1 Personal Protective Equipment 
 

Eyes: Safety glasses and/or safety goggles (face shield, if necessary) 

Hands: Gloves (appropriate gloves should be selected according to the substance being handled) 

Body: Lab coat and pants 

Feet: Closed-toe shoes (sandals, open-toed shoes, and similar footwear should not be worn in a 

laboratory, especially if there is potential for chemical spills) 

 

B.2.2 Fire and/or Explosion Hazards 
 

 Compressed gas cylinders 

 Flammable or combustible chemicals either in use or in storage 

 Ampoules and vials 

 Waste drums 

 

B.2.3 Pressure and Temperature Hazards 

 

 Ampoules and vials are at high temperature and pressure during reactions 

 Ampoules are under vacuum during distillation and degasification 

 Gas cylinders are at high pressures 

 Liquid nitrogen is a cryogenic gas 

 Oil bath, burners, and ovens are at high temperatures 

 

B.2.4 High Voltage Electrical Hazards 

 

 The circuit breaker panel should only be used by qualified technicians 

 

B.2.5 Falling Objects 

 

 Compressed gas cylinders 

 Storage containers like vials, beakers and bottles 

 Glassware on shelves or lab bench 

 

B.2.6 Leaks and Spills 

 

 Compressed gas cylinders 

 Chemical containers like beakers and bottles 

 Reactors, pumps, piping, valves 
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B.3 List of Chemicals (Selective) 

 

The chemicals that will be used in the laboratory are listed in Table B.1.  The Material Safety 

Data Sheets (MSDS) for these chemicals can be found in E6-5113 and E6-5119.  If any 

additional materials are used in the future, they will be added to this table.  In the case of 

common monomers, initiators or chain transfer agents, the appropriate MSDS will be consulted 

before first use. 
 

Table B.1: List of Laboratory Chemicals 
Chemical Name Carcinogen, 

Toxic, etc. 

Properties Safety Precautions 

AMPS (2-

acrylamido-2-

methylpropane 

sulfonic acid; 

monomer) 

 Toxic 

 Corrosive 

 Solid white powder 

 Soluble in water 

 MP = 195°C 

 AIT > 400°C 

 S.G. = 1.36 g/cm
3
 

 

 Wear safety glasses and gloves 

 Handle under a fume hood (toxic upon 

inhalation) 

 Keep container tightly sealed, in a dry and well-

ventilated place 

 Eye Contact:  Severe eye irritant. Remove any 

contact lenses and flush eyes with water. 

 Skin Contact:  Immediately flush skin with soap 

and plenty of water, while removing 

contaminated clothing and shoes.  

 Inhalation:  Remove to fresh air. If not breathing, 

give artificial respiration. 

 Ingestion:  Rinse mouth with water (never give 

anything by mouth to an unconscious person!); 

consult a physician. 

ACVA (4,4’-azo-

bis-(4-cyano 

valeric acid); 

initiator) 

 Unstable 

reactive 

material 

 Heating may 

cause fire, but 

generally not 

flammable 

 Solid white powder 

 Odourless 

 Insoluble in water 

 MP = 118˚C – 

125°C 

 

 Wear safety glasses and gloves 

 Handle under a fume hood 

 Keep container tightly sealed, in a dry and well-

ventilated place (avoid heat, flames, sparks and 

oxidizing agents; best stored between 2°C – 8°C)  

 In case of fire, use water spray, alcohol-resistant 

foam, CO2 or dry chemical extinguisher 

 Eye Contact:  Remove any contact lenses.  Flush 

eyes with water as a precaution. 

 Skin Contact:  Immediately flush skin with soap 

and plenty of water for at least 15 min., while 

removing contaminated clothing and shoes.  

 Inhalation:  Remove to fresh air. If not breathing, 

give artificial respiration. If breathing is difficult, 

give oxygen.  

 Ingestion:  Rinse mouth with water (never give 

anything by mouth to an unconscious person!); 

consult a physician. 
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Chemical Name Carcinogen, 

Toxic, etc. 

Properties Safety Precautions 

Acrylamide 

(monomer) 

 

 

 

 Toxic; 

carcinogen; 

neurotoxin 

 Harmful if 

swallowed or 

inhaled 

 Thermally 

unstable 

 

 Colorless crystals 

 Odorless 

 B. Point = 125˚C 

 M. Point = 84.5˚C 

 F. Point = 138˚C 

 MW = 71.08 g/mol 

 SG = 1.122 

 

 Keep in closed container; store in cool, dry 

ventilated area, away from heat and sources of 

ignition 

 Isolate from oxidizing agents 

 Wear nitrile gloves, goggles, and lab coat 

 Eye Contact:  Remove any contact lenses. 

Immediately flush eyes with plenty of water for 

at least 15 min.  

 Skin Contact:  Immediately flush skin with plenty 

of water for at least 15 minutes while removing 

contaminated clothing and shoes. 

 Inhalation:  Remove to fresh air. If not breathing, 

give artificial respiration. If breathing is difficult, 

give oxygen. 

 Ingestion:  Do not induce vomiting unless 

directed to do so by medical personnel. Loosen 

tight clothing. 

Acrylic Acid 

(monomer) 

 

 

 Very hazardous 

in case of skin 

& eye contact 

 Harmful if 

swallowed or 

inhaled; causes 

burns 

 Flammable 

 Extremely 

reactive or 

incompatible 

with oxidizing 

agents, acids, 

alkalis. 

 Reactive with 

moisture. 

 Clear colorless 

liquid with acrid 

odor. 

 BP = 141˚C 

 MP = 14˚C 

 AIT = 438˚C 

 FP = 50˚C 

 MW = 72.06 g/mol 

 SG = 1.05  

 

 Store in cool, dry & well ventilated area, separate 

from oxidizing agent 

 Handle only in fume hood 

 Wear nitrile gloves, goggles, and lab coat 

 Eye Contact:  Remove contact lenses. 

Immediately flush eyes with plenty of water for 

at least 15 min.  

 Skin Contact:  Immediately flush skin with plenty 

of water for at least 15 min., while removing 

contaminated clothing & shoes.  

 Inhalation:  Remove to fresh air. If not breathing, 

give artificial respiration. If breathing is difficult, 

give oxygen.  

 Ingestion:  Do NOT induce vomiting unless 

directed to do so by medical personnel. Never 

give anything by mouth to an unconscious 

person. Loosen tight clothing. 

Hydroquinone 

(inhibitor) 
 Very toxic by 

ingestion 

 Carcinogen/ 

mutagen 

 Moderate skin 

& eye irritant  

 Solid white crystals 

 Soluble in water 

and methanol 

 MP: 172°C – 175°C 

 AIT = 516°C 

 Handle only in fume hood 

 Wear nitrile gloves, goggles, and lab coat 

 Eye Contact:  Remove contact lenses. 

Immediately flush eyes with plenty of water.  

 Skin Contact:  Immediately flush skin with soap 

and water, while removing contaminated clothing 

& shoes.  

 Inhalation:  Remove to fresh air. If not breathing, 

give artificial respiration. If breathing is difficult, 

give oxygen.  

 Ingestion:  Do NOT induce vomiting unless 

directed to do so by medical personnel. Never 

give anything by mouth to an unconscious 

person. Loosen tight clothing. 
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Chemical Name Carcinogen, 

Toxic, etc. 

Properties Safety Precautions 

Methanol 

(solvent)  
 
 

 Mutagen 

 Toxic 

 Flammable 

 

 Colourless liquid 

 B. Point = 64.7°C 

 F. Point = -11°C 

 M. Point = -98°C 

 Very volatile 

 Wear safety glasses and gloves 

 Handle under a fume hood, away from flame 

 Incompatible and reactive with strong oxidizers 

 Exposure through inhalation, ingestion, eye or 

skin contact 

 Symptoms:  irritated skin, eyes, and respiratory 

tract, coughing dizziness, headache, nausea 

 Eye Contact:  Rinse in eye-washing station for at 

least 15 minutes.  

 Skin contact:  Wash off thoroughly with soap 

and water. Take victim to hospital immediately 

and remove any contaminated clothing. 

 Inhalation:  Move to fresh air and administer 

artificial respiration if not breathing.  

 Ingestion:  Rinse mouth with water. Do not 

induce vomiting. 

Nitrogen (gas) 

 

  Colourless 

 Odourless 

 Wear safety glasses 

 Can cause rapid suffocation 

Nitrogen (liquid; 

freezing agent & 

oxidation 

inhibitor)  

 

 May cause burn 

or frostbite 

during skin 

contact 

 May cause 

tissue freezing 

during eye 

contact 

 Colourless liquid 

 Odourless 

 BP = -196°C 

 SG = 1.25 

 Wear safety glasses and insulated gloves 

 Transfer slowly 

 Use porous stopper 

 Can cause freezing on contact 

Oxygen (gas) 

 

 

 Flammable in 

the presence of 

reducing, 

combustible, 

and organic 

materials 

 

 Colourless 

 Odourless 

 Slightly soluble in 

water 

 BP = -183˚C 

 SG = 1.309 

 Wear safety glasses 

 Keep away from open flames 

 Accelerates combustion  

 Do not mix with other organic or combustible 

substances 

 Store cylinder in ventilated area  

 

Sodium 

hydroxide (base) 

 

 

 Corrosive 

 Irritant 

 Highly reactive 

with metals. 

 Reactive with 

oxidizing and 

reducing 

agents, acids, 

alkalis, and 

moisture 

 White pellets, flakes 

or beads 

 Highly soluble in 

water 

 Odourless 

 BP = 1388˚C 

 MP = 318˚C 

 SG = 2.13 

 MW = 40 g/mol 

 Wear safety glasses and gloves 

 Add water slowly (exothermic mixing) 

 Reacts violently with strong acid, aluminum, and 

many organic chemicals 

 Causes burns when in contact with skin 

 May be fatal if swallowed 

 Keep in tight and closed container, 

 Store in cool, dry and ventilated area,  

 Do not touch vessels or beaker with freshly 

prepared caustic solution 

 Eye Contact:  Rinse in eye-washing station for at 

least 15 minutes. Continue rinsing during 

transport to hospital. 

 Skin contact:  Remove contaminated clothing. 

Wash thoroughly with soap and water.   

 Inhalation:  Move to fresh air and administer 

artificial respiration if not breathing.  

 Ingestion:  Rinse mouth with water. Do not 

induce vomiting 
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B.4 List of Equipment (Selective) 

 

A list of the laboratory equipment and the associated hazards is presented in Table B.2. 

 

Table B.2: Laboratory Equipment 

Equipment Hazards Recommendations 
Glassware  Shattering  Wear safety glasses and proper 

footwear 

 Handle with care 
Thermostat bath  Scalding 

 Ampoules breaking 

 Use of high temperatures and/or 

flammable materials could result 

in fire 

 Wear safety glasses, proper 

footwear, and insulated gloves 

 Heating bath containers should 

be durable, and set up with a 

firm support 

 Do not place heating baths near 

flammable or combustible 

materials  

 Move heating baths only when 

the liquid is cool 

 Set the thermostat well below 

the flash point of the heating 

liquid in use 
Vacuum pump  Implosion of glass and ampoules 

 Chemical vapours 

 Wear safety glasses 

 Vent vapours to fume hood 

 Protect pumps with cold traps 

 Assemble vacuum apparatus in 

a manner that avoids strain, 

particularly to the neck of the 

flask 

 Avoid putting excessive 

pressure on a vacuum line to 

prevent stopcocks from 

popping out or glass apparatus 

from exploding 

 When possible, avoid using 

mechanical vacuum pumps for 

distillation or concentration 

operations using large 

quantities of volatile materials 
GPC/LALLS/VISC, 

IR, NMR, SEC, 

DSC 

 Chemical splashes during sample 

preparation 

 High temperatures 

 Leaking of flammable solvents 

and/or buffer 

 Wear safety glasses, lab coat and 

gloves 

 Use caution during operation 
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Equipment Hazards Recommendations 

Distillation setup  Chemical splashes 

 Spills or leaks 

 Shattering glassware 

 Compressed oxygen 

 High temperature 

 Wear safety glasses, lab coat and 

gloves 

 Glassware and fittings should be 

checked before use 

N2 cylinder  Unusual Explosion Hazards 

and general cylinder hazard 

 Use in an upright position, and 

secure firmly with chains or 

clamps 

 Wear safety goggles 

 Reduce the pressure through a 

manufacturer's specified regulator 

attached to the cylinder valve 
Needles  Puncture skin 

 Risk of infection and/or 

chemical contact from  

contaminated needle 

 Use best practices for safe 

collection and removal of needles 

 Provide proper sharps containers 

(not garbage bags) 

 Use gloves and tongs or pliers to 

pick up needles. 
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APPENDIX C – PRELIMINARY EXPERIMENTAL DATA 
 

C.1 Preliminary Copolymerization of AMPS/AAm (see Chapter 4) 

 

Table C.1: Experimental Data for AMPS/AAm Copolymerization; Preliminary Experiments 

Run # X fAMPS,0 fAAm, 0 FAMPS FAAm 

1 0.1634 0.15 0.85 0.1478 0.8522 

0.2353 0.15 0.85 0.1524 0.8476 

0.2223 0.15 0.85 0.1534 0.8466 

0.3583 0.15 0.85 0.1567 0.8433 

2 0.2019 0.80 0.20 0.4639 0.5361 

0.3074 0.80 0.20 0.5807 0.4193 

0.5240 0.80 0.20 0.8500 0.1500 

0.6139 0.80 0.20 0.8371 0.1629 

0.7233 0.80 0.20 0.6404 0.3596 

3 0.1808 0.15 0.85 0.1119 0.8881 

0.2606 0.15 0.85 0.2141 0.7859 

0.3694 0.15 0.85 0.1636 0.8364 

0.4421 0.15 0.85 0.1454 0.8546 

0.5072 0.15 0.85 0.1290 0.8710 

4 0.3480 0.80 0.20 0.4995 0.5005 

0.3337 0.80 0.20 0.7489 0.2511 

0.5950 0.80 0.20 0.7425 0.2575 

0.6444 0.80 0.20 0.7230 0.2770 

 

C.2 Preliminary Copolymerization of AMPS/AAc (see Chapter 5) 

 

Table C.2: Experimental Data for AMPS/AAc Copolymerization; Preliminary Experiments 

Run # X fAMPS,0 fAAc, 0 FAMPS FAAc 
1 0.1210 0.15 0.85 0.2362 0.7638 

0.4324 0.15 0.85 0.0857 0.9143 

0.3384 0.15 0.85 0.1085 0.8915 

2 0.0959 0.80 0.20 0.6870 0.3130 

0.0953 0.80 0.20 0.7793 0.2207 

0.5501 0.80 0.20 0.7093 0.2907 

0.7212 0.80 0.20 0.6797 0.3203 

3 0.4382 0.15 0.85 0.1420 0.8580 

0.4522 0.15 0.85 0.1699 0.8301 

0.4571 0.15 0.85 0.1604 0.8396 

4 0.8469 0.80 0.20 0.6889 0.3111 



 

 

116 
 

APPENDIX D – SAMPLE CALCULATIONS 
 

D.1 Conversion Calculations 

 

As an example, conversion vs. time results for a preliminary analysis of the AMPS/AAm 

copolymer (fAMPS,0 = 0.15) are presented in Table D.1: 

 

Table D.1: Gravimetry Calculations for Conversion vs. Time 

# 
Time 

(min) 

Empty 

Vial (g) 

Vial + 

Solution (g) 

Solution 

(g) 

Monomer 

(g) 

Empty 

Filter (g) 

Filter + 

Polymer (g) 

Polymer 

(g) 

Conversion 

(%) 

1 10 21.7740 39.7740 18.0000 1.6471 1.0353 1.3410 0.3057 18.56 

2 15 21.7066 42.5454 20.8388 1.9068 1.0411 1.5638 0.5227 27.41 

3 20 21.6603 39.7913 18.1310 1.6591 1.0380 1.6748 0.6368 38.38 

4 25 21.5985 40.5731 18.9746 1.7362 1.0296 1.8237 0.7941 45.74 

5 35 21.6748 40.2675 18.5927 1.7013 1.0322 1.9214 0.8892 52.27 

 

Where time values are pre-selected according to process knowledge, and the masses of the empty 

vial, the vial filled with (pre-polymer) solution, the filter and the filter containing polymer are 

measured directly. The other values are calculated as follows: 

 

Solution = (Vial + Solution) − Empty Vial = 39.7740 g − 21.7740 g = 18.0000 g  (D.1) 

 

 

Monomer =
(∑(g monomer))(

ml stock soln in pre−polymer soln

total ml stock soln
)

total ml pre−polymer soln
×ml pre − polymer soln  (D.2) 

     =
(15.5417 g AMPS+30.2101 g AAm)(

50 ml

250 ml
)

100 ml
× 18.0000 g (

ml

1 g
) = 1.6471 g  

 

*Note: there is an assumption here that the pre-polymer solution has a density of 1 g/ml, since it 

is essentially water. 

 

Polymer = (Filter + Polymer) − Empty Filter = 1.3410 g − 1.0353 g = 0.3057 g  (D.3) 

 

Conversion =
Polymer

Monomer
× 100 =

0.3057 g

1.6471 g
× 100 = 18.56%     (D.4) 

 

 

Sodium ions are added to the pre-polymerization recipe, both during titration with NaOH and 

during ionic strength regulation with NaCl. Therefore, the conversion calculations must be 

modified slightly, as per Riahinezhad et al. [61]. The same experimental data from Table D.1 is 

presented in Table D.2, but these final results include this additional modification. Only the 

AMPS/AAm conversion needed to be recalculated, as the ionic strength remained constant for all 

AMPS/AAc copolymerizations. 
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Table D.2: Corrected Conversion Calculations, with Na Consideration 

# 
Time 

(min) 

Conversion 

(%) 

mole 

AMPS 

mole 

AAm 
Na (g) 

Monomer 

(g) 

Polymer 

(g) 

Corrected 

Conversion (%) 

1 10 18.56 0.1119 0.8881 2.5721 1.6471 0.3057 18.08 

2 15 27.41 0.2141 0.7859 4.9213 1.9068 0.5227 26.06 

3 20 38.38 0.1636 0.8364 3.7608 1.6591 0.6368 36.94 

4 25 45.74 0.1454 0.8546 3.3431 1.7362 0.7941 44.21 

5 35 52.27 0.1290 0.8710 2.9666 1.7013 0.8892 50.72 

 

The number of moles of each comonomer in the resulting copolymer was determined using 

elemental analysis, and sample calculations will be presented in Section D.2. The mass of Na in 

the system is directly related to the number of moles of AMPS, since the molar ratio of 

Na:AMPS is 1:1. Calculations for Na mass and corrected conversion are shown below: 

 

g Na =  0.1119 mol AMPS ×
1 mol Na

1 mol AMPS
×
22.989 g Na

mol Na
= 2.5721 g    (D.5) 

 

 

Corrected Conversion =  
g polymer−(g polymer)(0.01)(g Na)

g monomer
× 100    (D.6) 

  =
0.3057 g−(0.3057 g)(

2.5721 g

100 ml
)(
1 ml

1 g
)

1.6471 g
× 100 = 18.08%  

 

 

D.2 Cumulative Composition Calculations 

 

Cumulative composition was measured using elemental analysis, and the content of elemental 

carbon, nitrogen and sulfur were used in the calculations. Hydrogen was not included, as the data 

would be too easily influenced by moisture in the atmosphere. A sample calculation is shown 

below for sample #1 in Tables D.1 and D.2. 

 

Table D.3: Cumulative Composition Calculations for AMPS/AAm Copolymer 

Elements wt % # moles mole ratio m FAMPS FAAm 

N 13.15 0.9388 8.9380 7.9380 0.1119 0.8881 

C 42.59 3.5460 33.7600 
   

H 6.18 6.1280 58.3413 
   

S 3.37 0.1050 1.000 
   

  

The weight percent values are obtained directly from the elemental analysis readout and the 

number of moles is found by dividing wt% values by elemental molecular weights (see Equation 

D.7). Then, we select sulfur (S) as a basis for calculations, as it is only present in AMPS; molar 

ratios represent the number of moles for a particular element divided by the number of moles of 

sulfur (see Equation D.8).  

  



 

 

118 
 

# moles N =  13.15 wt% N ×
1 mol N

14.007 g N
= 0.9388 mol N     (D.7) 

 

N mole ratio =  
0.9388 mol N

0.1050 mol S
= 8.9380       (D.8) 

 

Now, if we assume that we have z moles of AMPS (C7H13NO4S) and m moles of AAm 

(C3H5NO), we can use the relative amount of each element (C, N and S) to calculate how many 

moles of each comonomer are present in the product copolymer. 

 

Given: 

C = 3m + 7z           (D.9) 

N = m + z 

S = z 

 

m =  (N mole ratio) − z = 8.9380 − 1 = 7.9380      (D.10) 

and FAMPS =
z

m+z
=

1

7.9380+1
= 0.1119 for this copolymer. 

 

Similar techniques are used (with slightly modified expressions) for both the AMPS/AAc 

copolymer and the AMPS/AAm/AAc terpolymer. For the AMPS/AAc copolymer, either sulfur 

or nitrogen can be used as a basis. The process for determining composition using a sulfur basis 

is described in what follows. 

 

Table D.4: Cumulative Composition Calculations for AMPS/AAc Copolymer 

Elements wt % # moles mole ratio m FAMPS FAAc 

N 3.3170 0.2368 1.4292 3.4276 0.2258 0.7742 

C 34.3953 2.8637 17.2829    
H 4.5727 4.5364 27.3775    
S 5.3131 0.1657 1.0000    

 

Again, the weight percent values are obtained directly from the elemental analysis readout. By 

selecting sulfur (S) as a basis for calculations, molar ratios are calculated by dividing the number 

of moles of a particular element by the number of moles of sulfur.  

 

As before, we assume that we have z moles of AMPS (C7H13NO4S) and m moles of AAc 

(C3H4O2), we can use the relative amount of each element (C and S, in this case) to calculate 

how many moles of each comonomer are present in the product copolymer. 

 

Given: 

C = 3m + 7z           (D.11) 

S = z = 1 

 

m =  
(C mole ratio)−7(z)

3
=
17.2829−7(1)

3
= 3.4276      (D.12) 

and FAMPS =
z

m+z
=

1

3.4276+1
= 0.2258 for this copolymer.  
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D.3 Determination of Experimental Conditions 

 

D.3.1 Ionic Strength Calculations 

 

To ensure that all systems were analyzed at the same ionic strength (IS), calculations for all feed 

compositions were performed prior to experimentation. The recipe with the highest ionic 

strength (fAMPS,0 = 0.91) was used as a reference, and NaCl was added to all other recipes to 

achieve that same IS. The IS calculations for optimally designed experiments (AMPS/AAm 

copolymerization) are shown below for reference. 

 

fAMPS,0 = 0.91: 
94.2987 g AMPS

250 ml stock soln
=
37.7195 g AMPS

50 ml stocksoln
×

mol AMPS

207.25 g AMPS
=
0.1820 mol AMPS

50 ml stock soln
    (D.13) 

 =
0.1820 mol AMPS

100 ml pre−polymer soln
 (after dilution)  

 

α = 0.9996,   
∴ I = (0.1820 mol AMPS)(0.9996) = 0.18193 mol (in 100 ml pre − polymer soln) (D.14) 

 

*Reference: no NaCl addition required. 
 

 

fAMPS,0 = 0.84: 
87.0448 g AMPS

250 ml stock soln
=
34.8179 g AMPS

50 ml stocksoln
×

mol AMPS

207.25 g AMPS
=

0.1680 mol AMPS

100 ml pre−polymer soln
   (D.15) 

 

∴ I = (0.1680 mol AMPS)(0.9996) = 0.16793 mol (in 100 ml pre − polymer soln) (D.16) 

 

*NaCl addition: (0.18193 mol − 0.16793 mol) (
58.44 g NaCl

mol
) = 0.8182 g NaCl  (D.17) 

 

 

fAMPS,0 = 0.30: 
31.0881 g AMPS

250 ml stock soln
=
12.4352 g AMPS

50 ml stocksoln
×

mol AMPS

207.25 g AMPS
=

0.06 mol AMPS

100 ml pre−polymer soln
   (D.18) 

 

∴ I = (0.06 mol AMPS)(0.9996) = 0.05998 mol (in 100 ml pre − polymer soln) (D.19) 

 

*NaCl addition: (0.18193 mol − 0.05998 mol) (
58.44 g NaCl

mol
) = 7.1268 g NaCl  (D.20) 

 

 

fAMPS,0 = 0.10: 
10.3617 g AMPS

250 ml stock soln
=

4.1447 g AMPS

50 ml stocksoln
×

mol AMPS

207.25 g AMPS
= =

0.02 mol AMPS

100 ml pre−polymer soln
    (D.21) 

 

∴ I = (0.02 mol AMPS)(0.9996) = 0.01999 mol (in 100 ml pre − polymer soln) (D.22) 

 

*NaCl addition: (0.18193 mol − 0.01999 mol) (
58.44 g NaCl

mol
) = 9.4636 g NaCl  (D.23)  
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D.4 Investigation of Experimental Error 

 

D.4.1 Determination of Pooled Standard Deviation 

 

During some early elemental analysis runs, the equipment was poorly calibrated and the resulting 

composition measurements were clearly incorrect. Therefore, the instrument was recalibrated 

and all samples were analyzed a second (and sometimes a third) time. This setback was 

somewhat inconvenient, but it also provided an estimate of the error associated with the 

elemental analysis equipment when it is not properly maintained. Therefore, the initial 

(incorrect) composition estimates and the more accurate data were combined to calculate the 

pooled variance for both feed compositions associated with the EVM-designed analysis (fAMPS,0 

= 0.10 and fAMPS,0 = 0.84); calculations are shown below.  

 

Table D.4: Replicated EA Results for fAMPS,0 = 0.10 

# FAMPS (with replicates)  Average STDEV 

  1 0.5103 0.5162 0.2336 0.4200 0.1614 Sp
2
 = 0.0053 

2 0.2687 0.2125 0.1878 0.2230 0.0414 Sp = 0.0728 

3 0.1089 0.1141   0.1115 0.0037 

  4 0.1001 0.0937   0.0969 0.0045 

  5 0.0950 0.0801   0.0875 0.0106 

  1R 0.1683 0.1681   0.1682 0.0001 

  2R 0.1051 0.0911   0.0981 0.0099 

  3R 0.1096 0.2525 0.2431 0.2017 0.0799 

  4R 0.1021 0.0898   0.0959 0.0087 

  5R 0.1103 0.0922   0.1013 0.0128 

   

Table D.5: Replicated EA Results for fAMPS,0 = 0.84 

# FAMPS (with replicates) Average STDEV 

 
 

1 0.6293 0.4965 0.7033 0.6097 0.1048 Sp
2
 = 0.0105 

2 0.6746 0.5977   0.6362 0.0544 Sp = 0.1024 

3 0.5504 0.6332   0.5918 0.0585 

 

 

4 

 

0.7141   0.7141 0.0000 

  5 0.7430 0.6555   0.6993 0.0619 

 
 

1R 0.6274 0.6741   0.6507 0.0330 

 

 

2R 0.7049 

 

  0.7049 0.0000 

 
 

3R 0.6127 

 

  0.6127 0.0000 

 

 

4R 0.9229 0.7030 0.6322 0.7527 0.1516 

 

 

5R 0.8659 0.6917   0.7788 0.1231 
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D.4.2 Data Sets for Sensitivity Analysis 

 

With sp values for both fAMPS,0 = 0.10 and fAMPS,0 = 0.84, the data sets are modified for the 

sensitivity analysis in Section 4.4.2. The data associated with the controlled variability study 

(Figure 4.12) is presented in Table D.7, while that associated with the randomized study (Figure 

4.13) is presented in Table D.8.  

 

The colour-coding in Table D.7 indicates the outlying data that was removed in Section 4.4.1; 

the red (bold) text shows the 2 outliers that were removed at low conversion (fAMPS,0 =0.84) and 

the green (italicized) text shows the 3 outliers that were removed at mid-conversion (fAMPS,0 

=0.10). Essentially, removing the red data results in Figure 4.9, removing the green data leads to 

Figure 4.10, and Figure 4.11 is the product of all red and green data being removed from the data 

set. 

 

Table D.7: Effect of Additional (Controlled) Variability (Data for Figure 4.12) 

Conversion fAMPS,0 FAMPS FAMPS + Sp FAMPS - Sp FAMPS ± Sp 

0.2202 0.10 0.2336 0.3064 0.1609 0.3064 

0.2065 0.10 0.1878 0.2605 0.1150 0.1150 

0.3408 0.10 0.1141 0.1869 0.0413 0.1869 

0.3425 0.10 0.0937 0.1664 0.0209 0.0209 

0.7073 0.10 0.0801 0.1528 0.0073 0.1528 

0.1064 0.10 0.1681 0.2409 0.0954 0.0954 

0.1473 0.10 0.0911 0.1638 0.0183 0.1638 

0.2373 0.10 0.2431 0.3158 0.1703 0.1703 

0.3556 0.10 0.0898 0.1625 0.0170 0.1625 

0.6174 0.10 0.0922 0.1650 0.0194 0.0194 

0.0267 0.84 0.7033 0.8057 0.6306 0.8057 

0.0731 0.84 0.5977 0.7001 0.5249 0.5249 

0.1412 0.84 0.6332 0.7356 0.5604 0.7356 

0.1923 0.84 0.7141 0.8165 0.6413 0.6413 

0.3348 0.84 0.6555 0.7579 0.5828 0.7579 

0.0261 0.84 0.6741 0.7765 0.6013 0.6013 

0.2862 0.84 0.7030 0.8054 0.6302 0.8054 

0.3589 0.84 0.6938 0.7962 0.6210 0.6210 
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Table D.8: Effect of Additional (Random) Variability (Data for Figure 4.13) 

Conversion fAMPS,0 FAMPS 
FAMPS ± Sp 

(Random 1) 

FAMPS ± Sp 

(Random 2) 

FAMPS ± Sp 

(Random 3) 

0.2202 0.10 0.2336 0.3064 0.1609 0.1609 

0.2065 0.10 0.1878 0.1150 0.2605 0.2605 

0.3408 0.10 0.1141 0.1869 0.0413 0.0413 

0.3425 0.10 0.0937 0.0209 0.0209 0.0209 

0.7073 0.10 0.0801 0.0073 0.1528 0.0073 

0.1064 0.10 0.1681 0.2409 0.0954 0.0954 

0.1473 0.10 0.0911 0.0183 0.1638 0.1638 

0.2373 0.10 0.2431 0.1703 0.1703 0.3158 

0.3556 0.10 0.0898 0.1625 0.0170 0.1625 

0.6174 0.10 0.0922 0.0194 0.0194 0.0194 

0.0267 0.84 0.7033 0.6306 0.6306 0.8057 

0.0731 0.84 0.5977 0.5249 0.7001 0.5249 

0.1412 0.84 0.6332 0.5604 0.7356 0.5604 

0.1923 0.84 0.7141 0.6413 0.6413 0.8165 

0.3348 0.84 0.6555 0.5828 0.7579 0.7579 

0.0261 0.84 0.6741 0.6013 0.6013 0.7765 

0.2862 0.84 0.7030 0.8054 0.6302 0.6302 

0.3589 0.84 0.6938 0.6210 0.6210 0.6210 

 

 

D.5 Paired t-test for Reactivity Ratio Comparison 

 

The statistical difference between binary and ternary reactivity ratios can be determined using a 

paired t-test, and is shown below: 

 

Table D.9: Comparison of Reactivity Ratio Estimates 
Reactivity 

Ratio 
Binary Ternary d 

rAMPS/AAm 0.18 0.46 -0.28 

rAAm/AMPS 0.85 0.93 -0.08 

rAMPS/AAc 0.24 0.57 -0.33 

rAAc/AMPS 0.87 0.92 -0.05 

rAAm/AAc 1.33 1.08 0.25 

rAAc/AAm 0.23 0.24 -0.01 

  𝑑 = -0.0833 

  sd =  0.2084 
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Hypothesis test:   𝐻0: 𝜇𝐷 = 0                             𝐻1: 𝜇𝐷 ≠ 0 

 

𝑡𝑜𝑏𝑠 =
𝑑 − 0

𝑠𝑑/√𝑛
=
−0.0833

0.2084/√6
= −0.9795 

 

𝑡𝑐𝑟𝑖𝑡 = 𝑡5,0.05 = 2.02 

 

Since |tobs| < tcrit (0.9795 < 2.02), we fail to reject H0. Therefore, the difference in reactivity ratio 

estimates for the binary and ternary data is not statistically significant. 


