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Abstract

The considerable interest in distributed systems that can execute algorithms to process
large graphs has led to the creation of many graph processing systems. However, existing
systems suffer from two major issues: (1) poor performance due to frequent global syn-
chronization barriers and limited scalability; and (2) lack of support for graph algorithms
that require serializability, the guarantee that parallel executions of an algorithm produce
the same results as some serial execution of that algorithm.

Many graph processing systems use the bulk synchronous parallel (BSP) model, which
allows graph algorithms to be easily implemented and reasoned about. However, BSP
suffers from poor performance due to stale messages and frequent global synchronization
barriers. While asynchronous models have been proposed to alleviate these overheads,
existing systems that implement such models have limited scalability or retain frequent
global barriers and do not always support graph mutations or algorithms with multiple
computation phases. We propose barrierless asynchronous parallel (BAP), a new compu-
tation model that overcomes the limitations of existing asynchronous models by reducing
both message staleness and global synchronization while retaining support for graph mu-
tations and algorithms with multiple computation phases. We present GiraphUC, which
implements our BAP model in the open source distributed graph processing system Gi-
raph, and evaluate it at scale to demonstrate that BAP provides efficient and transparent
asynchronous execution of algorithms that are programmed synchronously.

Secondly, very few systems provide serializability, despite the fact that many graph al-
gorithms require it for accuracy, correctness, or termination. To address this deficiency, we
provide a complete solution that can be implemented on top of existing graph processing
systems to provide serializability. Our solution formalizes the notion of serializability and
the conditions under which it can be provided for graph processing systems. We propose
a partition-based synchronization technique that enforces these conditions efficiently to
provide serializability. We implement this technique into Giraph and GiraphUC to demon-
strate that it is configurable, transparent to algorithm developers, and more performant
than existing techniques.
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Chapter 1

Introduction

Due to the wide variety of real-world problems that rely on processing large amounts of
graph data, graph data processing has become ubiquitous. For example, web graphs con-
taining over 60 trillion indexed webpages must be processed by Google’s ranking algorithms
to determine influential vertices [35]. Massive social graphs are processed at Facebook to
compute popularity and personalized rankings, determine shared connections, find commu-
nities, and propagate advertisements for over 1 billion monthly active users [30]. Scientists
are also leveraging biology graphs to understand protein interactions [58] and cell graphs
for automated cancer diagnosis [37].

Graph processing solves real-world problems through graph algorithms that are imple-
mented and executed on graph processing systems. These systems provide programming
and computation models, which developers use to implement such algorithms, as well as
any correctness guarantees that algorithms require. The systems are also used to execute
algorithms against desired input graphs.

Google’s Pregel [54] is one such system that provides a native graph processing API by
pairing the bulk synchronous parallel (BSP) computation model [73] with a vertex-centric,
or “think like a vertex”, programming model. This has inspired many popular open source
Pregel-like graph processing systems, including Apache Giraph [1] and GraphLab [50].

However, these Pregel-like systems suffer from two major issues: (1) poor performance
at scale due to the frequent use of global synchronization barriers and (2) a lack of serial-
izability guarantees for graph algorithms.
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Figure 1.1: Communication and synchronization overheads for a BSP execution of weakly connected
components using 8 worker machines on TW (Table 3.1).

1.1 Performance

For graph processing systems, one key systems-level performance concern stems from the
strong isolation, or staleness, of messages in the synchronous BSP model. Relaxing this
isolation enables asynchronous execution, which allows vertices to see up-to-date data and
leads to faster convergence and shorter computation times [50]. For pull-based systems such
as GraphLab, where vertices pull data from their neighbours on demand, asynchrony is
achieved by combining GraphLab’s Gather, Apply, Scatter (GAS) model with distributed
locking (which prevents data races). For push-based systems such as Giraph [1], Giraph++
[72], and GRACE [74], where vertices explicitly push data to their neighbours as messages,
asynchrony is achieved through the asynchronous parallel (AP) model. The AP model
extends BSP and avoids distributed locking, which is advantageous as distributed locking
is difficult to tune and was observed to incur substantial communication overheads, leading
to poor horizontal scalability (i.e., scale out) [39].

A second key performance concern is the frequent use of global synchronization barriers
in the BSP model. These global barriers incur costly communication and synchronization
overheads and also give rise to the straggler problem, where fast machines are blocked
waiting for a handful of slow machines to arrive at the barrier. For example, Figure 1.1
illustrates an actual BSP execution of the weakly connected components algorithm in which
workers are, on average, blocked on communication and synchronization for 46% of the total
computation time. GraphLab’s asynchronous mode (GraphLab async) attempts to avoid
this blocking by removing global barriers altogether and instead relying on distributed
locking. However, as pointed out above, this solution scales poorly and can result in even
greater communication overheads. Although the AP model avoids distributed locking, it
relies on the use of frequent global barriers and thereby suffers from the same overheads
as the BSP model.
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Finally, there is a third concern of usability and also compatibility. The simple and
deterministic nature of the BSP model enables algorithm developers to easily reason about,
and debug, their code. In contrast, a fully exposed asynchronous model requires careful
consideration of the underlying consistency guarantees as well as coding and debugging in
a non-deterministic setting, both of which can be confusing and lead to buggy code. Hence,
a performant graph processing system should allow developers to code for the BSP model
and transparently execute with an efficient asynchronous computation model. Existing
systems that provide asynchronous execution leak too much of the underlying asynchronous
mechanisms to the developer API [74], impeding usability, and do not support algorithms
that require graph mutations [50, 74] or algorithms with multiple computation phases [72],
impeding compatibility.

To address these concerns, we propose a barrierless asynchronous parallel (BAP) com-
putation model that both relaxes message isolation and substantially reduces the frequency
of global barriers, without using distributed locking. Our system, GiraphUC, implements
the proposed BAP model in Giraph, a popular open source system. GiraphUC preserves
Giraph’s BSP developer interface and fully supports algorithms that perform graph muta-
tions or have multiple computation phases. GiraphUC is also more scalable than GraphLab
async and achieves good performance improvements over Giraph, Giraph async (which uses
the AP model), and GraphLab sync and async. Thus, GiraphUC enables developers to
code for a synchronous BSP model and transparently execute with an asynchronous BAP
model to maximize performance.

1.2 Serializability

A key guarantee that graph processing systems can provide is serializability. Informally, a
graph processing system provides serializability if it can guarantee that parallel executions
of an algorithm, implemented with its programming and computation models, produce the
same results as some serial execution of that algorithm [34].

Serializability is required by many algorithms, for example in machine learning, to pro-
vide both theoretical and empirical guarantees for convergence or termination. Parallel
algorithms for combinatorial optimization problems experience a drop in performance and
accuracy when parallelism is increased without consideration for serializability. For ex-
ample, the Shotgun algorithm for L1-regularized loss minimization parallelizes sequential
coordinate descent to handle problems with high dimensionality or large sample sizes [19].
As the number of parallel updates is increased, convergence is achieved in fewer iterations.
However, after a sufficient amount of parallelism, divergence occurs and more iterations

3



are required to reach convergence [19]. Similarly, for energy minimization on NK energy
functions (which model a system of discrete spins), local search techniques experience an
abrupt degradation in the solution quality as the number of parallel updates is increased
[67]. Other algorithms such as dynamic alternating least squares (ALS) have unstable
accuracy when executed without serializability [50], while Gibbs sampling requires serial-
izability for statical correctness [33]. Graph coloring requires serializability to terminate
on dense graphs [34] and, even for sparse graphs, will use significantly fewer colors and
complete in only a single iteration when executed serializably.

Providing serializability in a graph processing system is fundamentally a system-level
problem that informally requires: (1) vertices see up-to-date data from their neighbours
and (2) no two neighbouring vertices execute concurrently. The general approach is to pair
an existing system or computation model with a synchronization technique that enforces
conditions (1) and (2). Despite this, of the numerous graph processing systems that have
appeared over the past few years, few provide serializability as a configurable option.
For example, popular systems like Pregel [54], Giraph [1], and GPS [63] do not provide
serializability.

Giraphx [71] provides serializability by pairing one of two synchronization techniques,
token passing and vertex-based distributed locking, with the AP model. However, it im-
plements these two techniques as part of specific algorithms rather than within the sys-
tem. Consequently, Giraphx unnecessarily couples and exposes internal system details to
user algorithms, meaning serializability is neither a configurable option nor transparent
to the algorithm developer. Furthermore, its implementation of vertex-based distributed
locking unnecessarily divides each superstep, an iteration of computation, into multiple
sub-supersteps in which only a subset of vertices can execute. This exacerbates the al-
ready expensive communication and synchronization overheads associated with the global
synchronization barriers that occur at the end of each superstep (Chapter 1.1), resulting
in poor performance.

GraphLab [50], which now subsumes PowerGraph [34], takes a different approach by
starting with its asynchronous mode (GraphLab async), which avoids expensive global
barriers by using distributed locking. GraphLab async provides the option to execute with
or without serializability and uses vertex-based distributed locking as its synchronization
technique. However, GraphLab async suffers from high communication overheads (Chapter
1.1) and scales poorly with this synchronization technique.

Irrespective of the specific system, synchronization techniques used to enforce conditions
(1) and (2) fall on a spectrum that trades off parallelism with communication overheads
(Figure 1.2). In particular, token passing and vertex-based distributed locking fall on the

4
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Figure 1.2: Spectrum of synchronization techniques.

extremes of this spectrum: token passing uses minimal communication but unnecessarily
restricts parallelism, forcing only one machine to execute at a time, while vertex-based
distributed locking uses a dining philosopher algorithm to maximize parallelism but incurs
substantial communication overheads due to every vertex needing to acquire forks from
their neighbours.

To overcome these issues, we first formalize the notion of serializability in graph pro-
cessing systems and prove that the above techniques ensure serializability. To the best of
our knowledge, no existing work has presented such a formalization. To address the short-
comings of the existing techniques, we propose a novel partition-based distributed locking
solution that allows control over the coarseness of locking and the resulting trade-off be-
tween parallelism and communication overheads (Figure 1.2). We implement all three
techniques at the system level, in Giraph async and GiraphUC (Chapter 1.1), so that they
are performant, configurable, and transparent to algorithm developers. We demonstrate
through experimental evaluation that our partition-based solution substantially outper-
forms the existing techniques.

1.3 Thesis Outline

We introduce the BSP, AP, and GAS computation models, categorize the Pregel-like graph
processing systems that use them, and discuss related work in Chapter 2. In Chapter 3,
we describe the BAP model and its implementation in Giraph, GiraphUC [38]. In Chapter
4, we formalize serializability in Pregel-like graph processing systems and introduce our
partition-based technique before concluding with future work in Chapter 5.
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Chapter 2

Related Work

We begin by introducing the BSP, AP, and GAS computation models in Chapter 2.1,
followed by a categorization of Pregel-like graph processing systems in Chapter 2.2, and
conclude with a discussion on some additional systems related to graph processing.

2.1 Existing Computation Models

2.1.1 BSP Model

Bulk synchronous parallel (BSP) [73] is a parallel computation model in which computa-
tions are divided into a series of (BSP) supersteps separated by global barriers (Figure 2.1).
To support iterative graph computations, Pregel (and Giraph) pairs BSP with a vertex-
centric programming model, in which vertices are the units of computation and edges act
as communication channels between vertices.

Graph computations are specified by a user-defined compute function that executes,
in parallel, on all vertices in each superstep. Consider, as a running example, the BSP
execution of the weakly connected components (WCC) algorithm (Figure 2.2). In the first
superstep, each vertex initializes its vertex value to a component ID. In the subsequent
supersteps, it updates this value with any smaller IDs received from its in-edge neighbours
and propagates any changes along its out-edges (Chapter 3.4.2.2). Crucially, messages
sent in one superstep are visible only during the next superstep. For example, ID 1 sent
by v2 in superstep 2 is seen by v3 only in superstep 3. At the end of each superstep, all
vertices “vote to halt” to become inactive. A vertex is reactivated by incoming messages,
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Figure 2.1: The BSP model, illustrated with three supersteps and three workers [45].
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Figure 2.2: BSP execution of a WCC example.
Gray vertices are inactive. Blue vertices have up-
dated vertex values.

Superstep 1:

Superstep 2:

Superstep 3:

Superstep 4:

0 1 2 3 4 5

v0 v1 v2 v3 v4 v5

Worker 1 Worker 2 Worker 3

0 0 1 1 3 3

0 0 0 0 1 1

0 0 0 0 0 0

Figure 2.3: AP execution of the WCC example.

for example v1 in superstep 2. The computation terminates at the end of superstep 6 when
all vertices are inactive and no more messages are in transit.

Pregel and Giraph use a master/workers model. The master machine partitions the
graph among the worker machines, coordinates all global barriers, and performs termina-
tion checks based on the two aforementioned conditions. BSP uses a push-based approach,
as messages are pushed by the sender and buffered at the receiver. Finally, as described in
Chapter 1.2, the BSP model does not provide serializability. We demonstrate this with a
concrete example in Chapter 4.1.1.

2.1.2 AP Model

The asynchronous parallel (AP) model improves on the BSP model by reducing the stale-
ness of messages. It allows vertices to immediately see their received messages instead of
delaying them until the next superstep. These messages can be local (sent between vertices
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owned by a single worker) or remote (sent between vertices of different workers). The AP
model retains global barriers to separate supersteps, meaning that messages that do not
arrive in time to be seen by a vertex in superstep i (i.e., because the vertex has already
been executed) will become visible in the next superstep i + 1. GRACE and, to a lesser
extent, Giraph++’s hybrid mode both implement the AP model (Chapter 3.3.2).

To see how reducing staleness can improve performance, consider again our WCC ex-
ample from Figure 2.2. For simplicity, assume that workers are single-threaded so that
they execute their two vertices sequentially. Then, in the BSP execution (Figure 2.2), v3 in
superstep 3 sees only a stale message with the ID 1, sent by v2 in superstep 2. In contrast,
in the AP execution (Figure 2.3), v3 sees a newer message with the ID 0, sent from v2 in
superstep 3, which enables v3 to update to (and propagate) the component ID 0 earlier.
Consequently, the AP execution is more efficient as it completes in fewer supersteps than
the BSP execution.

However, the AP model suffers from communication and synchronization overheads, due
to retaining frequent global barriers, and has limited algorithmic support (Chapter 3.1).
Furthermore, like BSP, the AP model does not provide serializability (Chapter 4.1.2).

2.1.3 GAS Model

The Gather, Apply, and Scatter (GAS) model is used by GraphLab for both its synchronous
and asynchronous modes, which we refer to as GraphLab sync and GraphLab async. These
two system modes implement the sync GAS and async GAS models, respectively.

As its name suggests, the GAS model consists of three phases. In the gather phase, a
vertex accumulates (pulls) information about its neighbourhood; in the apply phase, the
vertex applies the accumulated data to its own value; and in the scatter phase, the vertex
updates its adjacent vertices and edges and activates neighbouring vertices. Like Pregel
and Giraph, GraphLab pairs GAS with a vertex-centric programming model. However, as
evidenced by the Gather phase, GAS is pull-based rather than push-based.

Sync GAS is similar to BSP: vertices are executed in supersteps separated by global
barriers and the effects of apply and scatter of one superstep are visible only to the gather of
the next superstep. Hence, like BSP, sync GAS does not provide serializability as vertices
can only use information from the previous superstep. For example, WCC would proceed
similarly to Figure 2.2. Lastly, unlike BSP, vertices are inactive by default and must be
explicitly activated by a neighbour during scatter to be executed in the next superstep.

Async GAS is different from AP as it has no notion of supersteps. To execute a vertex
u, each GAS phase individually acquires a write lock on u and read locks on u’s neighbours
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to prevent data races [8]. GraphLab async implements async GAS by maintaining a large
pool of lightweight threads (called fibers) and pairing each fiber with an available vertex.
Before executing each GAS phase, the fiber acquires the necessary locks through distributed
locking. To terminate, GraphLab async runs a distributed consensus algorithm to check
that all workers’ schedulers are empty (i.e., no more vertices to execute).

In contrast, AP can avoid async GAS’s expensive distributed locking because it is push-
based: messages are received only after a vertex finishes its computation and explicitly
pushes such messages. Since messages are buffered in the recipient machine’s local message
store, concurrent reads and writes to the store (i.e., data races) can be handled with local
locks or lock-free data structures. Furthermore, the AP model can rely on the master to
check for termination, which avoids the overheads of a distributed consensus algorithm.

Finally, async GAS does not provide serializability because the GAS phases of differ-
ent vertex computations can interleave [34]. To provide serializability (Chapter 4.2.5), a
synchronization technique must be added on top of async GAS. This technique prevents
neighbouring computations from interleaving by performing vertex-based distributed lock-
ing over all three GAS phases. Note that this is different from the per-phase distributed
locking used by async GAS to prevent data races. As we show in Chapter 4.2, async GAS
provides serializability when paired with this synchronization technique.

2.2 Categorization

Graph processing systems can be categorized based on their developer API and type of
system execution (Table 2.2) as well as general feature support (Table 2.3).

The developer API consists of the programming and computation models that the sys-
tem exposes to algorithm developers for creating algorithms. For example, the API ex-
posed by Pregel [54] is a vertex-centric programming model paired with a BSP computation
model.

The type of system execution depends on both the computation model used by the
system, which may be different from what is exposed by its API, and additional properties
of the system, some of which are intrinsic to the computation model used. For example, if
the system uses the BSP model then it must have global barriers, as barriers are intrinsic
to BSP. On the other hand, providing serializability is not intrinsic to any computation
model. Most systems use a computation model that is identical to the one exposed for its
developer API. However, this need not always be the case: GiraphUC, for example, exposes
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a BSP (or AP) computation model for developers but transparently executes using the BAP
computation model (Chapter 3.2).

Lastly, a system’s general feature support consists of its graph partitioning and dynamic
migration (re-partitioning) schemes, message optimizations, and support for algorithms
that perform graph mutations (addition and deletion of vertices and edges) and algorithms
with multiple computation phases (multi-phase algorithms).

We break down and detail programming models, computational models, and each of
the general feature supports next.

2.2.1 Programming Models

Most systems are vertex-centric (v-centric), following the “think like a vertex” program-
ming model used by Pregel and described in Chapter 2.1.1. For example, Giraph [1], GPS
[63], GraphLab [50], and GiraphUC are all vertex-centric (Table 2.2).

There are also systems that consider a partition-centric (p-centric) approach, where de-
velopers define the execution of each partition of vertices (where each worker machine can
have multiple partitions). For example, in addition to the regular vertex-centric compute
function, Blogel [80] lets developers specify a B-compute function that is executed on each
block (partition) of vertices. In Giraph++ [72], developers define only a compute function
for executing partitions of vertices. This improves expressibility by allowing developers to
execute sequential algorithms over the vertices of each partition. However, it negatively
impacts usability as the algorithms are more complex: since partitions execute in paral-
lel, developers must reason about the coordination of each partition’s boundary vertices
because they must communicate with neighbours that belong to other partitions.

Finally, the single-machine disk-based system X-Stream [62] uses an edge-centric ap-
proach: developers define scatter and gather-and-apply functions that are performed on
edges rather than vertices. X-Stream uses this to avoid random I/O, which leads to better
performance because portions of the graph must be streamed from disk back into memory
during computation. However, the edge-centric approach is less intuitive and is thus not
widely adopted: other single-machine disk-based systems like FlashGraph [86], GraphChi
[48], TurboGraph [40], and VENUS [24] all use a vertex-centric programming model. Since
our focus is on in-memory systems, we exclude these disk-based systems from Tables 2.2
and 2.3. They are discussed in Chapter 2.4.
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2.2.2 Computation Models

Computation models can be broken down and categorized based on their core features.
Some of these features are intrinsic to the model (i.e., the model is defined to have it), while
others are extrinsic and depend on whether the graph processing system implements it.
For example, the BSP computation model will, by definition, always have global barriers.
In contrast, the GAS model can be implemented either as a synchronous model or as an
asynchronous model and thus with or without global barriers.

Computation models have three central pillars: synchrony, push/pull, and global bar-
riers. We additionally have an orthogonal but equally important pillar of serializability.
Serializability is closely related to synchrony but can be thought of as orthogonal to the
computation model: one can provide serializability in a model-agnostic manner1 on top of
existing computation models (Chapter 4.2.5).

While the design choices are targeted to improve system performance independently
for each pillar, these choices may also indirectly impact the performance of other pillars.
For example, although asynchronous models generally perform better than synchronous
models, async GAS’s support for a pull-based approach leads to significant communica-
tion overheads due to distributed locking (Chapter 2.1.3), ultimately resulting in poor
performance. In the case of providing serializability, asynchronous computation models
can support a wider range of synchronization techniques, including a more performant
partition-based distributed locking technique (Chapter 1.2), which substantially increases
their performance advantage over synchronous computation models.

2.2.2.1 Synchrony

As described in Chapters 1.1 and 2.1, a computation model is synchronous (sync) if all
updates of any vertex u in superstep i is visible to other vertices only in superstep i + 1.
That is, recipients do not see the messages sent (pushed) by u until superstep i + 1.
Equivalently, for pull-based models, vertices do not see an up-to-date value when pulling
u’s vertex value.

A model is asynchronous (async) when this is relaxed: i.e., the update of a vertex u
can be seen by other vertices in the same superstep. Importantly, asynchronous models do
not guarantee that other vertices will always see an up-to-date vertex u—it only removes
the restriction that says they cannot. For example, in the AP model (Chapter 2.1.2),

1However, synchronous computation models support only a subset of synchronization techniques, which
provide serializability, whereas asynchronous models have no such limitations (Chapter 4.3.1.1).
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vertices of worker machine W1 will immediately see changes to other vertices belonging to
W1 (assuming sequential execution) but can fail to see changes to vertices of W2 due to
network delays or parallel execution.

Systems can also implement computation models in a way that falls between sync and
async. Blogel and Giraph++ allow vertex updates to be immediately visible to vertices
of the same partition but delay messages between different partitions until the next su-
perstep. Similarly for Giraph++’s hybrid mode, which implements the AP model for the
vertex-centric setting. Consequently, these systems implement an AP model that is partial
async. On the other hand, PowerSwitch [75] is a system, built on top of GraphLab, that
dynamically switches between the sync and async GAS models by predicting the through-
put (number of vertices processed per unit time) of each mode. Thus, it is both sync and
async.

Our definition follows the standard use of “synchronous” and “asynchronous” in existing
literature. Notably, we distinguish between synchrony and the presence of global barriers.
This is in contrast to a recent survey [55] that confusingly uses “asynchronous” to refer to
async models without global barriers and “hybrid” for async models with global barriers.

2.2.2.2 Push vs. Pull

Per Chapter 2.1, a model is push-based if vertices explicitly send (push) messages to other
vertices. A model is pull-based if vertices pull data from other vertices. In general, systems
tend to support either push only (e.g., Pregel, Giraph, GiraphUC) or both push and pull
(e.g., GraphLab). When a system supports both push and pull, its design becomes con-
strained by the need to support pull. For example, vertices must use distributed locking to
prevent data races and ensure they pull consistent data (i.e., data that is not being simul-
taneously updated). Furthermore, asynchronous pull-based systems cannot easily batch
messages, as pulls can occur at any time, so there are fewer opportunities for message opti-
mizations compared to a push-based system. This limitation is why we refer to GraphLab
as a pull-based system, despite it also supporting push.

2.2.2.3 Global Barriers

Whether or not global barriers are used is generally intrinsic to the particular computation
model. For example, BSP, AP, and sync GAS all use frequent global barriers between every
superstep. In contrast, async GAS uses no global barriers, while BAP uses the minimal
number of global barriers necessary to enforce correctness (for algorithms written for the
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BSP or AP models). As global barriers negatively impact performance (Chapter 1.1), its
presence is indicated with a red 3 in Table 2.2.

All systems provide a minimal level of consistency to ensure vertices do not, for exam-
ple, read values that are simultaneously being modified. This is required because algorithm
developers have no access to the internal system details and thus cannot manually prevent
such data races. Consequently, systems that attempt to achieve better performance by
removing all global barriers must replace them with some alternative consistency mecha-
nism. As described in Chapter 2.1.3, GraphLab async (which implements async GAS) uses
fine-grained distributed locking to replace global barriers. However, as outlined in Chapter
1.1, this approach incurs significant communication overheads and degrades performance.
Hence, for Table 2.2, we indicate the absence of global barriers with an orange 7.

2.2.2.4 Serializability

Lastly, while asynchronous models remove the synchronous models’ restriction on seeing
up-to-date vertex values, they do not provide any guarantees of always seeing such up-
to-date values (Chapter 4.2). Serializability goes one step further to guarantee that every
vertex sees up-to-date data from their neighbours, such that the parallel executions of an
algorithm produce the same results as some serial execution of the same algorithm.

As discussed in Chapter 1.2, very few graph processing systems provide serializability
(Table 2.2). Only GraphLab async and Giraphx [71] consider and implement serializabil-
ity. GraphLab async provides serializability as a transparent and optional feature, while
Giraphx implements it directly in user algorithms, which is neither transparent nor con-
figurable. In Chapter 4, we show how to provide serializability for existing computation
models and, in particular, implement transparent and configurable serializability support
for Giraph async and GiraphUC.

2.2.3 Additional System Features

2.2.3.1 Graph Partitioning

Distributed graph processing systems must partition the input graph across multiple worker
machines prior to performing computation. To do so, systems partition using either edge-
cuts or vertex-cuts. For edge-cut, each vertex belongs to a single worker while an edge
can span two workers. For vertex-cut, each edge belongs to a single worker while vertices
can span multiple workers: for each split vertex u, one worker owns the primary copy of
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u while all other workers owning a neighbour of u get a local read-only replica of u. The
primary advantage of vertex-cut partitioning is that it splits high-degree vertices across
multiple machines. Since many natural graphs follow a power-law degree distribution,
this splitting provides better workload balance than edge-cut partitioning [34]. However,
vertex-cut partitioning may add additional communication overheads as the system must
synchronize all replicas with the primary copy for every split vertex [77].

All systems perform a static partitioning of the input graph prior to computation.
All systems have random hash partitioning as their standard static partitioning algorithm
(Table 2.3): each vertex or edge is hashed to a worker machine, for edge-cut or vertex-cut
respectively. Systems such as Blogel and Giraph++, which offer partition-centric program-
ming models, use partitioning algorithms that, compared to hash partitioning, produce
lower edge-cuts but at the cost of much longer partitioning times. GraphLab also sup-
ports several additional static partitioning algorithms (Table 2.3). However, GraphLab’s
oblivious algorithm is much slower than hash partitioning, while its grid and PDS algo-
rithms support only a number of machines that is perfect square and p2 + p + 1 (for p
prime) respectively. Similarly, GraphX [78] supports 2D hash partitioning but only for
a perfect square number of machines. Finally, GRACE [74] is a single-machine system
that did not initially perform any static partitioning on the input graph. However, it was
found in [76] that performance can be dramatically improved by partitioning the graph
into blocks (partitions) using METIS and associating computation threads with available
partitions. A similar approach is used in distributed systems such as Giraph, where each
worker owns multiple partitions and its computation threads are paired with available
partitions (Chapter 3.3.1).

Some systems also feature dynamic migration, or re-partitioning, to improve workload
balance and network usage during the computation. As dynamic migration is not the focus
of this thesis, we briefly survey only some existing techniques. Additional details can be
found in [55] or in the respective system’s papers. GPS [63] performs re-partitioning by
exchanging vertices between workers based on the amount of data sent by each vertex. Its
scheme locates migrated vertices by relabelling their vertex IDs and updating the adjacency
lists in which they appear. Consequently, the scheme does not work for algorithms such
as DMST (Chapter 3.4.2.3) that must send messages to specific vertex IDs. The scheme
decreases network I/O but does not always improve computation time [63, 39]. Similarly,
CatchW [65] uses workload and message activity as heuristics to select vertices to migrate.
Mizan [45] performs migration based on a z-score, calculated using the number of incoming
and outgoing messages and the response time of machines. Its scheme pairs over and under-
utilized workers to exchange vertices with outlier z-scores and locates migrated vertices
using a distributed hash table lookup service. Finally, X-Pregel [12] migrates vertices based
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on the number of messages sent and received but restricts migrations to be performed by
only one worker at a time to reduce communication overheads. However, like in GPS, the
scheme decreases network I/O but increases computation time [12].

2.2.3.2 Message Optimizations

Graph processing systems use several optimizations to reduce the number of messages and
thus communication overheads. There are three main types of message optimizations:
message combiner, receiver-side scattering, and message batching.

Message combiners, as the name suggests, combine multiple messages to reduce commu-
nication and/or memory costs. A sender-side combiner combines all messages at a worker
Wi destined for a vertex u into a single message, so that only one message needs to be
sent from Wi to u’s worker machine. A receiver-side combiner, in contrast, combines all
received messages for u into a single message to save memory. In either case, the combiner
is implemented by the algorithm developer and must be an associative and commutative
operation as messages can arrive at any time [54]. Systems like Pregel [54] and Signal/-
Collect [69] support both sender-side and receiver-side combining (Table 2.3). However,
nearly all other systems support only receiver-side combining because sender-side combin-
ing tends to yield little benefit: there are insufficient opportunities for combining messages
to offset the overheads of maintaining additional data structures to hold and combine out-
going messages [53, 63]. Additionally, asynchronous pull-based systems such as GraphLab
async generally do not support sender-side combiners because messages between workers
are difficult to batch (as they are pulled on demand rather than pushed).

Receiver-side scatter reduces communication costs by combining multiple messages sent
by a vertex u of W1 to its neighbours on W2 into a single message from W1 to W2 [55]. This
works only when u is broadcasting the same message to all of its neighbours. GPS imple-
ments this as an optional feature called Large Adjacency List Partitioning (LALP), which
performs receiver-side scatter for all vertices whose edge degree is above a user-defined
threshold. The threshold ensures that only high-degree vertices perform this optimization,
as receiver-side scatter is of limited benefit (and may incur overheads) for low-degree ver-
tices. Similarly, LFGraph [41] and X-Pregel [12] also provide receive-side scatter as an
optimization.

Finally, message batching amortizes communication overheads by flushing large batches
of messages to the network rather than sending each message individually. This substan-
tially improves network performance and shortens computation times. All synchronous
systems perform message batching as it is a trivial optimization: messages need not be
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Table 2.1: Algorithmic requirements for graph processing and machine learning algorithms.

Algorithm Graph Mutations Multi-phase

Adamic-Adar similarity [9, 5] 7 3
Alternate least squares (ALS) [88, 50, 5] 7 7
Approximate maximum weight matching (MWM) [57, 64] 3 3
BFS/DFS [36] 7 7
Bipartite maximal matching (BMM) [54, 51] 7 3
Clustering coefficient [5] 7 3
Community detection/label propagation [60, 49, 74] 7 7
Diameter estimation [43] 7 7
Graph coarsening [72] 3 3
Graph coloring [34] 7 7
Jaccard similarity [5] 7 3
K-core [59, 5] 3 7
K-means [5] 7 3
Maximal independent sets [52, 64] 3 3
Maximum B-Matching [28, 5] 7 7
Minimum spanning tree (DMST) [26, 64, 39] 3 3
Multi-source shortest paths [5] 7 3
PageRank [54, 39] 7 7
Reachability [80] 7 7
Semi-clustering [54, 5] 7 7
Shiloach-Vishkin’s algorithm (SV) [81, 51] 7 3
Single-source shortest path (SSSP) [27, 39] 7 7
Singular value decomposition (SVD++) [46, 5] 3 3
Stochastic gradient descent (SGD) [47, 5] 3 3
Strongly connected components (SCC) [56, 64] 7 3
Top-K PageRank [45] 7 7
Triangle finding [59, 5] 7 3
Weakly connected components (WCC) [44, 39] 7 7

delivered until after the global barrier anyway. Batching is much more difficult under asyn-
chronous pull-based systems, due to the unpredictability of when a vertex will pull from
its neighbours. Consequently, systems such as GraphLab async do not support message
batching. In contrast, asynchronous push-based systems such as GiraphUC can perform
message batching with ease as the sender can control when messages should be flushed to
the network.
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2.2.3.3 Algorithmic Support

Many popular graph processing and machine learning algorithms that developers want to
execute require support for graph mutations and multiple computation phases (Table 2.1).
Thus, it is imperative that graph processing systems fully support such algorithms.

Graph mutations is supported by a majority of systems, including Pregel, Giraph, and
GiraphUC (Table 2.3). Other systems have only partial support for graph mutations:
GraphLab and PowerSwitch cannot delete vertices or edges, while GPS and X-Pregel do
not support vertex mutations. Finally, CatchW, GRACE [74], GraphX, LFGraph, and
MOCgraph [87] do not support graph mutations at all.

Multi-phase algorithms are algorithms with multiple computation phases, each of which
can have different computation logic. Nearly all systems in Table 2.3 support multi-phase
algorithms. Giraph++’s hybrid mode, Giraphx, and MOCgraph’s asynchronous option do
not support multi-phase algorithms because messages from different computation phases
can become mixed together, resulting in computation errors (Chapter 3.2.3). In contrast,
GRACE allows developers to specify which version of messages to read (i.e., from the
current superstep or previous superstep) and so it can support multi-phase algorithms with
assistance from the developer. As Chapter 3.2.3 will describe, Giraph async and GiraphUC
support multi-phase algorithms using only a very minor change to the developer API.
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Table 2.2: Categorization of Pregel-like graph processing systems based on their core features.

System Distributed Developer API System Execution Serializability

Programming Computation Computation Synchrony Push/Pull Global

Model Model Model Barriers

Blogel [80] 3 p-centric BSP AP partial async∗ push 3 7

CatchW [65] 3 v-centric BSP BSP sync push 3 7

Giraph [1] 3 v-centric BSP BSP sync push 3 7

Giraph++ [72] p-centric BSP AP partial async∗

(hybrid mode)
3

v-centric AP AP partial async∗
push 3 7

Giraph async [38] 3 v-centric BSP/eAP† eAP† async push 3 3

GiraphUC [38] 3 v-centric BSP/eAP† BAP async push minimal 3

Giraphx [71] 3 v-centric BSP/AP AP async push 3 3‡

GPS [63] 3 v-centric BSP BSP sync push 3 7

GRACE [74] 7 v-centric AP AP async push 3 7

GraphLab [50]/ 3(sync),

Powergraph [34]
3 v-centric GAS GAS either both

7(async)
3

GraphX [78] 3 v-centric BSP/GAS BSP/GAS sync both 3 7

LFGraph [41] 3 v-centric BSP BSP sync pull 3 7

Mizan [45] 3 v-centric BSP BSP sync push 3 7

MOCgraph [87] 3 v-centric BSP/AP BSP/AP either push 3 7

3(sync),
PowerSwitch [75] 3 v-centric GAS GAS both both

7(async)
7

Pregel [54] 3 v-centric BSP BSP sync push 3 7

Pregelix [20] 3 v-centric BSP BSP sync push 3 7

Seraph [79] 3 v-centric GES§ GES§ sync push 3 7

3(sync),
Signal/Collect [69] 3 v-centric GAS¶ GAS¶ either both

7(async)
7

X-Pregel [12] 3 v-centric BSP BSP sync push 3 7

∗Async within each partition/block of vertices but sync between partitions. Each worker machine can have multiple partitions.
†eAP is the enhanced AP model, which provides better algorithmic support than AP (Chapter 3.1.2).
‡Serializability is provided as part of specific user algorithms rather than as a generic and optional system feature (Chapter 2.2.2.4).
§GES is BSP with message generation separated out into an explicit generate() function (Chapter 2.3).
¶Signal is equivalent to scatter, collect is equivalent to gather and apply.
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Table 2.3: Categorization of Pregel-like graph processing systems based on their additional features.

System Graph Partitioning Optimizations Graph Multi-phase

Cut Type Static Dynamic Message Recv-side Message Mutations Algorithms

Partitioning Migration Combiner Scatter Batching

Graph Voroni Diagram,
Blogel [80] edge

2D partitioner
7 receiver 7 3 3 3

CatchW [65] edge hash 3 receiver 7 3 7 3

Giraph [1] edge hash 7 receiver 7 3 3 3

Giraph++ [72] graph coarsening 3

(hybrid mode)
edge

hash
7 receiver 7 3 3

7

Giraph async [38] edge hash 7 receiver 7 3 3 3

GiraphUC [38] edge hash 7 receiver 7 3 3 3

Giraphx [71] edge hash, mesh 7 receiver 7 3 3 7

GPS [63] edge hash 3 receiver 3 3 partial 3

GRACE [74, 76] edge METIS 7 7 7 3 7 3

GraphLab [50]/ hash, oblivious, 3(sync),

Powergraph [34]
vertex

grid, PDS
7 receiver 7

7(async)
partial 3

GraphX [78] vertex hash, 2D hash 7 receiver 7 3 7 3

LFGraph [41] edge hash 7 7 3 3 7 3

Mizan [45] edge hash 3 receiver 7 3 3 3

3(sync),
MOCgraph [87] edge hash 7 receiver 7 3 7

7(async)

hash, oblivious, 3(sync),
PowerSwitch [75] vertex

grid, PDS
7 receiver 7

7(async)
partial 3

Pregel [54] edge hash 7 both 7 3 3 3

Pregelix [20] edge hash 7 sender 7 3 3 3

Seraph [79] edge hash 7 7 7 3 3 3

3(sync),
Signal/Collect [69] edge hash 7 both 7

7(async)
3 3

X-Pregel [12] edge hash 3 sender 3 3 partial 3

19



2.3 Pregel-like Graph Processing Systems

We now provide some additional details for a subset of the Pregel-like systems described
in Chapter 2.2 and categorized in Tables 2.2 and 2.3.

CatchW is built on top of Apache Hama [3], which is a general BSP system that is not
optimized for graph processing and does not support graph mutations. As described in
Chapter 2.2.3.1, CatchW and Mizan are systems that focus on more sophisticated dynamic
migration schemes, whereas GPS and X-Pregel offer simpler and more lightweight schemes.
X-Pregel [12] is an implementation of Pregel using IBM’s X10 programming language.

Giraph++ [72] primarily focuses on a graph-centric programming model but also con-
siders a separate vertex-centric hybrid mode that implements a partially async AP model
(Chapter 2.2.2). GRACE [74] is a single-machine shared memory system that is not dis-
tributed and does not support disk-based computation. GRACE implements the AP model
through user customizable vertex scheduling and message selection, which can complicate
the developer API. In contrast, GiraphUC preserves Giraph’s simple BSP developer in-
terface. GRACE also requires an immutable graph structure and so it does not support
graph mutations.

GraphX [78] is built on the data parallel engine Spark [82] and presents a Resilient
Distributed Graph (RDG) programming abstraction in which graphs are stored as tabular
data and graph operations are implemented using distributed joins. GraphX supports both
BSP and sync GAS (but not async GAS) and its primary goal is to provide more efficient
graph processing for end-to-end data analytic pipelines implemented in Spark. Similarly,
Pregelix [20] implements BSP graph processing in Hyracks [18], a shared-nothing dataflow
engine, and stores graphs and messages as data tuples and uses joins to implement message
passing.

The design of LFGraph [41] is based on the notion that hash partitioning is sufficient
for static graph partitioning and that combiners are unnecessary. It is unique in that it is
a pull-based BSP system where vertices store only their in-edges. In contrast, nearly all
other BSP systems are push-based and have vertices store their out-edges.

MOCgraph [87] is a system that provides a combiner optimization, called message online
computing (MOC), which immediately applies received messages to the recipient’s vertex
value instead of buffering them in a message store and applying them when the vertex
is next executed. Similar to message combiners (Chapter 2.2.3.2), the combine operation
is specified by a user-defined onlineCompute() function that must be commutative and
associative. MOCgraph also considers an optimization for out-of-core (disk-based) com-
putation, where each machine exchanges vertices between its own partitions such that hot
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vertices are co-located on the same partitions. Machines can then keep these hot parti-
tions in-memory and, instead of frequently loading cold partitions into memory (which is
costly), dump messages for cold partitions directly to disk and only occasionally load cold
partitions into memory to apply these messages.

Seraph [79] is a vertex-centric BSP system that allows multiple algorithms to execute
on a shared input graph. This is in contrast to existing systems, where executing multiple
algorithms requires each algorithm to store its own copy of the input graph in memory, as
such systems focus on executing only one algorithm at a time. Seraph’s approach allows
the input graph to be shared, which considerably lowers the memory costs of algorithms
operating on the same input graph. It introduces a new GES model, where developers
place message generation code inside a generate() function rather than in the per-vertex
compute function. The GES model is otherwise identical to BSP.

Lastly, Signal/Collect [69] was one of the first systems to consider an explicit two-phase
gather-scatter approach. This is different from systems like Pregel and Giraph, which
have an explicit scatter (send) but implicit gather (receive). The scatter-gather model is
essentially identical to GraphLab’s GAS model, only with gather and apply occurring as
a single phase.

2.4 Other Related Systems

Finally, there are several other systems related to graph processing but deviate from our
core focus on specialized in-memory Pregel-like graph processing systems. These additional
systems can be broadly categorized as iterative MapReduce systems, graph databases,
single-machine disk-based systems, or Pregel-like graph processing on generic big data
systems.

MapReduce [29] is an early programming model introduced for performing large-scale
distributed data computations. However, it does not natively support iterative computa-
tion, which is required by graph processing. Consequently, performing graph processing
on MapReduce incurs significant performance penalties: the input graph is shuffled be-
tween mappers and reducers on every iteration, which adds substantial communication
overheads. Furthermore, the graph is written to disk at the end of each MapReduce iter-
ation and streamed back into memory for the next iteration, resulting in unnecessary and
costly disk I/O. HaLoop [21], iMapReduce [83], PrIter [84], Stratophere [10], Surfer [23],
and Twister [31] are all systems developed to both reduce these performance overheads
and improve the developer interface for iterative MapReduce. While these systems outper-
form regular MapReduce systems like Hadoop [2], their performance on graph processing
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tasks remains worse than specialized Pregel-like graph processing systems. For example,
Stratosphere is up to two times slower than Giraph 0.2 [10], a version of Giraph that is
over two years older than the current and substantially more performant Giraph 1.1.0 [1].

Graph databases are systems that persistently store databases in the format of a graph.
In contrast to iterative MapReduce and Pregel-like systems, graph databases focus on pro-
viding persistence graph storage and support for online queries on the stored graph. Con-
sequently, existing graph databases have either little or no support for the sophisticated
offline graph analytics possible in specialized Pregel-like systems. For example, the popular
graph database Titan [7] features a graph analytics engine Faunus [61], which uses MapRe-
duce instead of a Pregel-like approach. Other popular graph databases include OrientDB
[6] and Neo4j [4].

In addition to distributed in-memory Pregel-like systems, there are currently two other
important avenues that researchers are investigating.

The first is single-machine disk-based Pregel-like systems, which spill large input graphs
out to disk. GraphChi [48] was one of the first vertex-centric systems to consider this ap-
proach and introduced a parallel sliding windows technique to minimize non-sequential disk
I/O. X-Stream [62], in contrast, uses an edge-centric programming model (Chapter 2.2.1)
to avoid random I/O. TurboGraph [40] further improves on GraphChi by using techniques
that exploit the I/O parallelism of SSDs. More recent systems include FlashGraph [86],
which considers techniques for arrays of SSDs, and VENUS [24], which introduces a more
efficient model of storing and accessing graph data on disk as well as caching strategies to
further improve performance.

The second avenue is supporting Pregel-like graph processing on more generic big data
systems, such as relational databases. This direction is motivated by the need for better
integration with existing big data tools, as well as the fact that a large portion of the data
that developers want to analyze are already stored in a relational format: using specialized
Pregel-like systems would first require converting this data into a suitable graph format
before analytics can occur. As described in Chapter 2.3, GraphX [78] and Pregelix [20] are
designed with this in mind: they both store graphs as tabular data, which easily integrates
with the tabular format used by the other tools of the data engines on which they are
built. Consequently, they are more generic than, for example, Giraph and GraphLab.
Similarly, Trinity [66] uses a globally addressable in-memory key-value store, where data is
partitioned across workers by their keys rather than by vertex or edge IDs, and it supports
both online queries and offline graph analytics. Aster Graph Analytics [68], GRAIL [32],
and Vertexica [42] address Pregel-like graph processing on relational databases by mapping
a subset of graph analytic tasks to relational operations.
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Chapter 3

Giraph Unchained: Barrierless
Asynchronous Parallel Execution

We begin this chapter by motivating BAP through a detailed discussion of the shortcomings
of the BSP, AP, and GAS models. We then introduce our BAP model and its implemen-
tation, GiraphUC, in Chapters 3.2 and 3.3. We provide an experimental evaluation in
Chapter 3.4 and conclude with a summary in Chapter 3.5.

3.1 Motivation

3.1.1 Performance

In BSP, global barriers ensure that all messages sent in one superstep are delivered be-
fore the start of the next superstep, thus resolving implicit data dependencies encoded in
messages. However, the synchronous execution enforced by these global barriers causes
BSP to suffer from major performance limitations: stale messages, large communication
overheads, and high synchronization costs due to stragglers.

To illustrate these limitations concretely, Figures 3.1a and 3.1b visualize the BSP and
AP executions of our WCC example (Chapter 2.1) with explicit global barriers and with
time flowing horizontally from left to right. The green regions indicate computation while
the red striped and gray regions indicate that a worker is blocked on communication or
on a barrier, respectively. For simplicity, assume that the communication overheads and
global barrier processing times are constant.
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Running: Blocked (comm.): Blocked (barrier):

W1

W2
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Global barrier

(a) BSP

W1

W2

W3

(b) AP

W1

W2

W3

Local barrier

(c) BAP

Figure 3.1: Computation times for the WCC example under different computation models.

Stale messages. As described in Chapter 2.1.2, reducing stale messages allows the
AP execution of WCC to finish in fewer supersteps than the BSP execution, translating to
shorter computation time. In general, allowing vertices to see more recent (less stale) data
to update their per-vertex parameters enables faster convergence and shorter computation
times, resulting in better performance [50]. Our proposed BAP model preserves these
advantages of the AP model by also reducing message staleness without using distributed
locking (Chapter 3.2).

Communication overheads. Since BSP and AP execute only one superstep between
global barriers, there is usually insufficient computation work to adequately overlap with
and mask communication overheads. For example, in Figures 3.1a and 3.1b, workers
spend a large portion of their time blocked on communication. Furthermore, for AP, the
communication overheads can outweigh performance gains achieved by reducing message
staleness. Figure 3.1c illustrates how our proposed BAP model resolves this by minimizing
the use of global barriers: each worker can perform multiple logical supersteps (separated
by inexpensive local barriers) without global barriers (Chapter 3.2), which greatly improves
the overlap between computation and communication.

Stragglers and synchronization costs. Stragglers are the slowest workers in a
computation. They are caused by a variety of factors, some as simple as unbalanced
hardware resources and others that are more complex. For example, the power-law degree
distribution of natural graphs used in computations can result in substantial computation
and communication load for a handful of workers due to the extremely high degrees of a
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Running: Blocked (comm.): Blocked (barrier):

W1
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(a) BSP

W1

W2

W3

(b) BAP

Figure 3.2: WCC computation times based on real executions of 16 workers on TW (Table 3.1).

small number of vertices [70]. In algorithms like PageRank, some regions of the graph may
converge much slower than the rest of the graph, leading to a few very slow workers.

The use of global barriers then gives rise to the straggler problem: global synchroniza-
tion forces all fast workers to block and wait for the stragglers. Consequently, fast workers
spend large portions of their time waiting for stragglers rather than performing useful
computation. Hence, global barriers carry a significant synchronization cost. Furthermore,
because BSP and AP both use global barriers frequently, these synchronization costs are
further multiplied by the number of supersteps executed. On graphs with very large di-
ameters, algorithms like WCC can require thousands of supersteps, incurring substantial
overheads.

As an example, consider Figure 3.2, which is based on real executions of a large real-
world graph. In the BSP execution (Figure 3.2a), W3 is the straggler that forces W1

and W2 to block on every superstep. This increases the overall computation time and
prevents W1 and W2 from making progress between global barriers. The BAP model
(Figure 3.2b) significantly lowers these synchronization overheads by minimizing the use
of global barriers, which allows W1 and W2 to perform multiple iterations without waiting
for W3. Furthermore, W1 and W2 are able to compute further ahead and propagate much
newer data to W3, enabling W3 to finish in less time under the BAP model.

3.1.2 Algorithmic Support

The AP model supports BSP algorithms that perform accumulative updates, such as WCC
(Chapter 3.4.2.2), where a vertex does not need all messages from all neighbours to perform
its computation (Theorem 1).

25



W1 W1 W1 W1

W2 W2

W3 W3 W3

W1

W2

W3

Global BarrierLocal Barrier

LSS 1 LSS 2 LSS 3 LSS 4
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GSS 1 GSS 2

Figure 3.3: The BAP model, with two global supersteps and three workers. GSS stands for global super-
step, while LSS stands for logical superstep.

Theorem 1. The AP and BAP models correctly execute single-phase BSP algorithms in
which vertices do not need all messages from all neighbours.

Proof Sketch. (See Appendix A for full proof.) A key property of single-phase BSP algo-
rithms is that (1) the computation logic is the same in each superstep. Consequently, it
does not matter when a message is seen, because it will be processed in the same way. If
vertices do not need all messages from all neighbours, then (2) the compute function can
handle any number of messages in each superstep. Intuitively, if every vertex executes with
the same logic, can have differing number of edges, and does not always receive messages
from all neighbours, then it must be able to process an arbitrary number of messages.

Thus, correctness depends only on ensuring that every message from a vertex v to
a vertex u is seen exactly once. Since both the AP and BAP model change only when
messages are seen and not whether they are seen, they both satisfy this condition. For
example, AP’s relaxed isolation means that messages may be seen one superstep earlier.

However, the AP model cannot handle BSP algorithms where a vertex must have
all messages from all neighbours nor algorithms with multiple computation phases. In
contrast, the BAP model supports both types of algorithms. Furthermore, as we show in
the next section, we can add BAP’s support of these two types of algorithms back into AP
to get the enhanced AP (eAP) model.

3.2 The BAP Model

Our barrierless asynchronous parallel (BAP) model offers an efficient asynchronous execu-
tion mode by reducing both the staleness of messages and frequency of global barriers.
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As discussed in Chapter 3.1.1, global barriers limit performance in both the BSP and
AP models. The BAP model avoids global barriers by using local barriers that separate
logical supersteps. Unlike global barriers, local barriers do not require global coordination:
they are local to each worker and are used only as a pausing point to perform tasks like
graph mutations and to decide whether a global barrier is necessary. Since local barriers
are internal to the system, they occur automatically and are transparent to developers.

A logical superstep is logically equivalent to a regular BSP superstep in that both
execute vertices exactly once and are numbered with strictly increasing values. However,
unlike BSP supersteps, logical supersteps are not globally coordinated and so different
workers can execute a different number of logical supersteps. We use the term global
supersteps to refer to collections of logical supersteps that are separated by global barriers.
Figure 3.3 illustrates two global supersteps (GSS 1 and GSS 2) separated by a global
barrier. In the first global superstep, worker 1 executes four logical supersteps, while
workers 2 and 3 execute two and three logical supersteps respectively. In contrast, BSP
and AP have exactly one logical superstep per global superstep.

Local barriers and logical supersteps enable fast workers to continue execution instead
of blocking, which minimizes communication and synchronization overheads and mitigates
the straggler problem (Chapter 3.1.1). Logical supersteps are thus much cheaper than BSP
supersteps as they avoid synchronization costs. Local barriers are also much faster than the
processing times of global barriers alone (i.e., excluding synchronization costs), since they
do not require global communication. Hence, per-superstep overheads are substantially
smaller in the BAP model, which results in significantly better performance.

Finally, as in the AP model, the BAP model reduces message staleness by allowing
vertices to immediately see local and remote messages that they have received. In Fig-
ure 3.3, dotted arrows represent messages received and seen/processed in the same logical
superstep, while solid arrows indicate messages that are not processed until the next logical
superstep. For clarity, we omit dotted arrows between every worker box but note that they
do exist.

Next, we present details about local barriers and algorithmic support in the BAP model.

3.2.1 Local Barriers

For simplicity, we first focus on algorithms with a single computation phase. Algorithms
with multiple computation phases are discussed in Chapter 3.2.3.
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Figure 3.4: Simplified comparison of worker control flows for the two approaches to local barriers. LSS
stands for logical superstep and GB for global barrier.

3.2.1.1 Naive Approach

The combination of relaxed message isolation and local barriers allow workers to compute
without frequently blocking and waiting for other workers. However, this can pose a
problem for termination as both the BSP and AP models use the master to check the
termination conditions at the global barrier following the end of every BSP superstep.

To resolve this, we use a two step termination check. The first step occurs locally at a
local barrier, while the second step occurs globally at the master. Specifically, at a local
barrier, a worker independently decides to block on a global barrier if there are no more
local or remote messages to process since this indicates there is no more work to be done
(Figure 3.4a). We do not need to check if all local vertices are inactive since any pending
messages will reactivate vertices. After all workers arrive at the global barrier, the master
executes the second step, which is simply the regular BSP termination check: terminate if
all vertices are inactive and there are no more unprocessed messages.

Since remote messages can arrive asynchronously, we must count them carefully to
ensure that received but unprocessed messages are properly reported to the master as
unprocessed messages (Chapter 3.3.3). This prevents the master from erroneously termi-
nating the algorithm.

3.2.1.2 Improved Approach

The above approach is naive because it does not take into account the arrival of remote
messages after a worker decides to block on a global barrier. That is, newly received
remote messages are not processed until the next global superstep. This negatively impacts
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Figure 3.5: Performance comparison between the naive vs. improved approach, based on SSSP executions
of 16 workers on TW (Table 3.1).

performance as workers can remain blocked for a long time, especially in the presence of
stragglers, and it also results in more frequent global barriers since the inability to unblock
from a barrier means that all workers eventually stop generating messages.

For example, the single source shortest path (SSSP) algorithm begins with only one
active vertex (the source), so the number of messages sent between vertices increases, peaks
and then decreases with time (Chapter 3.4.2.1). Figure 3.5a shows an SSSP execution using
the naive approach, where W1 and W3 initially block on a global barrier as they have little
work to do. Even if messages from W2 arrive, W1 and W3 will remain blocked. In the
second global superstep, W2 remains blocked for a very long time due to W1 and W3 being
able to execute many logical supersteps before running out of work to do. As a result, a
large portion of time is spent blocked on global barriers.

However, if we allow workers to unblock and process new messages with additional
logical supersteps, we can greatly reduce the unnecessary blocking and shorten the total
computation time (Figure 3.5b). The improved approach does precisely this: we insert
a lightweight global barrier, before the existing (BSP) global barrier, that allows workers
to unblock upon receiving a new message (Figure 3.4b). This additional global barrier is
lightweight because it is cheaper to block and unblock from compared to the (BSP) global
barrier (Chapter 3.3.3). Unblocking under the above condition is also efficient because
messages arrive in batches (Chapter 3.3.2), so there is always sufficient new work to do.

Additionally, with this improved approach, if each worker Wi waits for all its sent
messages to be delivered (acknowledged) before blocking, the recipient workers will unblock
before Wi can block. This means that all workers arrive at the lightweight global barrier
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(and proceed to the (BSP) global barrier) only when there are no messages among any
workers. This allows algorithms with a single computation phase to be completed in exactly
one global superstep.

Hence, local barriers ensure that algorithms are executed using the minimal number of
global supersteps, which minimizes communication and synchronization overheads. Fur-
thermore, the two step termination check is more efficient and scalable than the distributed
consensus algorithm used by GraphLab async, as our experimental results will show (Chap-
ter 3.4.3). Finally, unlike GraphLab and its GAS model, BAP fully supports graph muta-
tions by having workers resolve pending mutations during a local barrier (Chapter 3.3.4).

3.2.2 Algorithmic Support

The BAP model, like the AP model, supports single-phase algorithms that do not need
all messages from all neighbours (Theorem 1). Theorem 2 shows how the BAP model
also supports algorithms where vertices do require all messages from all neighbours. This
theorem also improves the algorithmic support of the AP model, to give the eAP model.

Theorem 2. Given a message store that is initially filled with valid messages, retains old
messages, and overwrites old messages with new messages, the BAP model correctly exe-
cutes single-phase BSP algorithms in which vertices need all messages from all neighbours.

Proof Sketch. (See Appendix A for full proof.) Like in Theorem 1’s proof sketch, we
again have property (1), so when a message is seen is unimportant. Since vertices need all
messages from all (in-edge) neighbours, we also have that (2) an old message m from vertex
v to u can be overwritten by a new message m′ from v to u. The intuition is that since
every vertex needs messages from all its in-edge neighbours, it must also send a message
to each of its out-edge neighbours. This means a newer message contains a more recent
state of a neighbour, which can safely overwrite the old message that now contains a stale
state.

Correctness requires that every vertex u sees exactly one message from each of its
in-edge neighbours in each (logical) superstep. That is, u must see exactly N = deg−(u)
messages. The message store described in the theorem ensures that each u starts with, and
(by retaining old messages) will always have, exactly N messages. Property (2) allows new
incoming messages to overwrite corresponding old messages, again ensuring N messages.
Thus, independent of the (logical) superstep of execution, u always sees N messages, so
both the AP and BAP models guarantee correctness.
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Per Theorem 2, the message store must be initially filled with messages. This is achieved
in the BAP model by adding a global barrier after the very first logical superstep of the
algorithm, when messages are sent for the first time.

3.2.3 Multiple Computation Phases

Algorithms with multiple computation phases are computations composed of multiple
tasks, where each task has different compute logic. Therefore, computation phases require
global coordination for correctness. To do so otherwise requires rewriting the algorithm
such that it can no longer be programmed for BSP, which negatively impacts usability.

For example, in DMST (Chapter 3.4.2.3), the phase where vertices find a minimum
weight out-edge occurs after the phase in which vertices add and remove edges. If these
two phases are not separated by a global barrier, the results will be incorrect as some
vertices will not have completed their mutations yet. Hence, the BAP model must use
global barriers to separate different computation phases. However, we can continue to use
local barriers and logical supersteps within each computation phase, which allows each
phase to complete in a single global superstep (Chapter 3.2.1.2).

In addition to computation phases that have multiple supersteps, many multi-phase
algorithms have single-superstep phases (phases that are only one BSP superstep). These
are typically used to send messages to be processed in the next phase. Even with global
barriers separating computation phases, relaxed message isolation will cause vertices to see
these messages in the incorrect phase. In other words, messages for different phases will
be incorrectly mixed together. We handle these heterogeneous messages by considering all
the possible scenarios, as proved in Theorem 3.

Theorem 3. If every message is tagged with a Boolean at the API level and two message
stores are maintained at the system level, then the BAP model supports BSP algorithms
with multiple computation phases.

Proof. Since the BAP model executes only algorithms written for the BSP model, it suffices
to consider multi-phase algorithms implemented for BSP. For such algorithms, there are
only three types of messages: (1) a message sent in the previous phase k−1 to be processed
in the current phase k; (2) a message sent in phase k to be processed in this same phase k;
and (3) a message sent in phase k to be processed in the next phase k+1. Other scenarios,
in which a message is sent in phase m to be processed in phase n where (n − m) > 1,
are not possible due to a property of BSP: any message sent in one superstep is visible
only in the next superstep, so messages not processed in the next superstep are lost. If
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(n−m) > 1, then phases n and m are more than one superstep apart and so n cannot see
the messages sent by m. Since BAP separates computation phases with global barriers, it
inherits this property from the BSP model.

For the two message stores, we use one store (call it MSC) to hold messages for the
current phase and the other store (call it MSN) to hold messages for the next phase. When
a new computation phase occurs, the MSN of the previous phase becomes the MSC of the
current phase, while the new MSN becomes empty. We use a Boolean to indicate whether
a message, sent in the current phase, is to be processed in the next computation phase.
Since all messages are tagged with this Boolean, we can determine which store (MSC or
MSN) to store received messages into.

Thus, all three scenarios are covered: if (1), the message was placed in MSN during
phase k − 1, which becomes MSC in phase k and so the message is made visible in the
correct phase; if (2), the message is placed in MSC of phase k, which is immediately visible
in phase k; finally, if (3), the message is placed in MSN of phase k, which will become the
MSC of phase k + 1.

Theorem 3 implicitly requires knowledge of when a new phase starts in order to know
when to make MSN the new MSC . In BAP, the start and end of computation phases
can be inferred locally by each worker since each phase completes in one global superstep.
That is, the start of a phase is simply the start of a global superstep, while the end of a
phase is determined by checking if any more local or remote messages are available for the
current phase. Messages for the next phase are ignored, as they cannot be processed yet.
Hence, the BAP model detects phase transitions without modifications to the developer
API.

Theorem 3 is also applicable to the AP model, thus enhancing it to also support multi-
phase algorithms. However, unlike BAP, the eAP model is unable to infer the start and
end of computation phases, so it requires an additional API call for algorithms to notify
the system of a computation phase change (Chapter 3.3.5.1).

Chapter 3.3.5 describes an implementation that provides message tagging without in-
troducing network overheads. Hence, the BAP model efficiently supports multi-phase
algorithms while preserving the BSP developer interface.

3.3 GiraphUC

We now describe GiraphUC, our implementation of the BAP model in Giraph. We use
Giraph because it is a popular and performant push-based distributed graph processing
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system. For example, Giraph is used by Facebook in their production systems [25]. We
first provide background on Giraph, before discussing the modifications done to implement
the eAP model and then the BAP model.

3.3.1 Giraph Background

Giraph is an open source system that features receiver-side message combining (to reduce
memory usage and computation time), blocking aggregators (for global coordination or
counters), and master.compute() (for serial computations at the master). It supports
multithreading by allowing each worker to execute with multiple compute threads. Gi-
raph reads input graphs from, and writes output to, the Hadoop Distributed File System
(HDFS).

Giraph partitions input graphs using hash partitioning and assigns multiple graph par-
titions to each worker. During each superstep, a worker creates a pool of compute threads
and pairs available threads with uncomputed partitions. This allows multiple partitions
to be executed in parallel. Between supersteps, workers execute with a single thread to
perform serial tasks like resolving mutations and blocking on global barriers. Communi-
cation threads are always running concurrently in the background to handle incoming and
outgoing requests.

Each worker maintains its own message store to hold all incoming messages. To reduce
contention on the store and efficiently utilize network resources, each compute thread has a
message buffer cache to batch all outgoing messages. Namely, messages created by vertex
computations are serialized to this cache. After the cache is full or the partition has been
computed, the messages are flushed to the local message store (for local messages) or sent
off to the network (for remote messages). Use of this cache is the primary reason Giraph
does not perform sender-side message combining: there are generally insufficient messages
to combine before the cache is flushed, so combining adds more overheads than benefits
[53].

To implement BSP, each worker maintains two message stores: one holding the mes-
sages from the previous superstep and another holding messages from the current superstep.
Computations see only messages in the former store, while messages in the latter store be-
come available in the next superstep. At the end of each superstep, workers wait for all
outgoing messages to be delivered before blocking on a global barrier. Global synchroniza-
tion is coordinated by the master using Apache ZooKeeper.
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3.3.2 Giraph Async

We first describe Giraph async, our implementation of the enhanced AP (eAP) model that
has support for additional types of algorithms (Chapter 3.1.2). Just as the AP model is
the starting point for the BAP model, implementing Giraph async is the first step towards
implementing GiraphUC.

Note that GRACE and Giraph++’s hybrid mode do not implement the eAP model.
Specifically, GRACE is a single-machine shared memory system and does not support graph
mutations. Giraph++’s hybrid mode is distributed but relaxes message isolation only for
local messages and it does not support multi-phase algorithms. In contrast, Giraph async
relaxes message isolation for both local and remote messages and fully supports graph
mutations and multi-phase algorithms.

Giraph async provides relaxed message isolation by using a single message store that
holds messages from both the previous and current supersteps. For GiraphUC, this would
be the previous and current logical, rather than BSP, supersteps.

We allow outgoing local messages to skip the message buffer cache and go directly to the
message store. This minimizes staleness since a local message becomes immediately visible
after it is sent. While this slightly increases contention due to more frequent concurrent
accesses to a shared message store, there is a net gain in performance from the reduction
in message staleness.

For outgoing remote messages, we continue to use the message buffer cache, as message
batching dramatically improves network performance. Specifically, given the network la-
tencies between machines, removing message batching to minimize staleness only degrades
performance. This contrasts with GraphLab async, whose pull-based approach hinders the
ability to batch communication.

When computing a vertex, messages that have arrived for that vertex are removed from
the message store, while messages that arrive after are seen in the next (logical) superstep.
For algorithms in which vertices require all messages from all neighbours (Theorem 2),
the messages for a vertex are retrieved but not removed, since the message store must
retain old messages. To allow the message store to identify which old messages to over-
write, we transparently tag each message with the sender’s vertex ID, without modification
to the developer API. Chapter 3.3.5 describes how we support algorithms with multiple
computation phases.

In Giraph, graph mutations are performed after a global barrier. Since Giraph async
retains these global barriers, it naturally supports mutations in the same way. Chapter
3.3.4 describes how mutations are supported in GiraphUC.
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3.3.3 Adding Local Barriers

To implement GiraphUC, we add local barriers to Giraph async. We implement local
barriers following the improved approach described in Chapter 3.2.1.2.

In the first step of the termination check, workers check whether their message store
is empty or, if messages are overwritten instead of removed, whether any messages were
overwritten. In the second step, the master checks if all vertices are inactive and the
number of unprocessed messages is zero, based on statistics that each worker records with
ZooKeeper. In BSP, the number of unprocessed messages is simply the number of sent
messages. In BAP, however, this number fails to capture the fact that remote messages
can arrive at any time and that they can be received and processed in the same global
superstep (which consists of multiple logical supersteps). Hence, we assign each worker a
byte counter that increases for sent remote messages, decreases for received and processed
remote messages, and is reset at the start of every global (but not logical) superstep. Each
worker records the counter’s value with ZooKeeper before blocking at a global barrier. This
ensures that any received but unprocessed messages are recorded as unprocessed messages.
By summing together the workers’ counters, the master correctly determines the presence
or absence of unprocessed messages.

Finally, the lightweight global barrier is also coordinated by the master via ZooKeeper
but, unlike the (BSP) global barrier, does not require workers to record any statistics with
ZooKeeper before blocking. This allows workers to unblock quickly without needing to
erase recorded statistics. Also, as described in Chapter 3.2.1.2, workers wait for all sent
messages to be acknowledged before blocking on the lightweight barrier, which ensures that
each computation phase completes in a single global superstep.

3.3.4 Graph Mutations

GiraphUC, unlike GraphLab, fully supports graph mutations. Mutation requests are sent
as asynchronous messages to the worker that owns the vertices or edges being modified
and the requests are buffered by that worker upon receipt.

In Giraph, and hence GiraphUC, a vertex is owned solely by one partition, while an
edge belongs only to its source vertex (an undirected edge is represented by two directed
edges). That is, although edges can cross partition (worker) boundaries, they will always
belong to one partition (worker). Hence, vertex and edge mutations are both operations
local to a single worker. Since mutations touch data structures shared between partitions,
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they can be conveniently and safely resolved during a local barrier, when no compute
threads are executing.

Since mutation requests and regular vertex messages are both asynchronous, they may
arrive out of order. However, this is not a problem as all messages are buffered in the
recipient worker’s message store. If the messages are for a new vertex, they will remain in
the store until the vertex is added and retrieves said messages from the store by itself. If
the messages are for a deleted vertex, they will be properly purged, which is identical to the
behaviour in BSP (recall that BSP uses rotating message stores). More generally, if a BSP
algorithm that performs vertex or edge mutations executes correctly in BSP, then it will
also execute correctly in BAP. We have additionally verified correctness experimentally,
using both algorithms that perform edge mutations, such as DMST (Chapter 3.4.2.3),
and algorithms that perform vertex mutations, such as k-core [59, 5]. Even non-mutation
algorithms like SSSP (Chapter 3.4.2.1) can perform vertex additions in Giraph: if an input
graph does not explicitly list a reachable vertex, it gets added via vertex mutation when
first encountered.

3.3.5 Multiple Computation Phases

As proved for Theorem 3, only one simple change to the developer API is necessary to
support multi-phase algorithms: all messages must be tagged with a Boolean that indicates
whether the message is to be processed in the next computation phase. This addition does
not impede usability since the Boolean is straightforward to set: true if the phase sending
the message is unable to process such a message and false otherwise. For example, this
change adds only 4 lines of code to the existing 1300 lines for DMST (Chapter 3.4.2.3).

To avoid the network overheads of sending a Boolean with every message, we note that
messages in Giraph are always sent together with a destination partition ID, which is used
by the recipient to determine the destination graph partition of each message. Hence, we
encode the Boolean into the integer partition ID: messages for the current phase have a
positive partition ID, while messages for the next phase have a negative partition ID. The
sign of the ID denotes the message store, MSC or MSN (Theorem 3), that the message
should be placed into.

Finally, as per Chapter 3.2.3, the start and end of computation phases are, respectively,
inferred by the start of a global superstep and the absence of messages for the current phase.
The per-worker byte counters (Chapter 3.3.3) continue to track messages for both the
current phase and the next phase. This ensures that the master, in the second step of the
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termination check, knows whether there are more computation phases (global supersteps)
to execute.

3.3.5.1 Giraph Async

Giraph async uses the same Boolean tagging technique to support multi-phase algorithms.
However, unlike GiraphUC, Giraph async cannot infer the start and end of computation
phases, so algorithms must notify the system when a new computation phase begins (Chap-
ter 3.2.3). Giraph async requires a parameterless notification call to be added either in
master.compute(), where algorithms typically manage internal phase transition logic, or
in the vertex compute function. In the former case, the master notifies all workers before
the start of the next superstep. This allows workers to discern between phases and know
when to exchange the MSC and MSN message stores (Theorem 3).

3.3.6 Aggregators and Combiners

Since Giraph is based on the BSP model, aggregators are blocking by default. That is,
aggregator values can be obtained only after a global barrier. To avoid global barriers,
GiraphUC supports aggregators that do not require global coordination. For example,
algorithms that terminate based on some accuracy threshold use an aggregator to track
the number of active vertices and terminate when the aggregator’s value is zero. This works
in GiraphUC without change since each worker can use a local aggregator that tracks its
number of active vertices, aggregate the value locally on each logical superstep, and block
on a global barrier when the local aggregator’s value is zero. This then allows the master
to terminate the computation.

Finally, like Giraph, GiraphUC supports receiver-side message combining and does not
perform sender-side message combining as it also uses the message buffer cache for outgoing
remote messages (Chapter 3.3.1).

3.3.7 Fault Tolerance

Fault tolerance in GiraphUC is achieved using Giraph’s existing checkpointing and failure
recovery mechanisms. Just as in Giraph, all vertices, edges, and message stores are se-
rialized during checkpointing and deserialized during recovery. In the case of algorithms
with multiple computation phases, checkpointing can be performed at the global barriers
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Table 3.1: Directed datasets. Parentheses indicate values for the undirected versions used by DMST.

Graph |V | |E| Average Degree Max In/Outdegree Harmonic Diameter

USA-road-d (US) 23.9M 57.7M (57.7M) 2.4 (2.4) 9 / 9 (9) 1897± 7.5
arabic-2005 (AR) 22.7M 639M (1.11B) 28 (49) 575K / 9.9K (575K) 22.39± 0.197
twitter-2010 (TW) 41.6M 1.46B (2.40B) 35 (58) 770K / 2.9M (2.9M) 5.29± 0.016
uk-2007-05 (UK) 105M 3.73B (6.62B) 35 (63) 975K / 15K (975K) 22.78± 0.238

that separate the computation phases. For more fine-grained checkpointing, or in the case
of algorithms with only a single computation phase, checkpointing can be performed at
regular time intervals instead. After each time interval, workers independently designate
the next local barrier as a global barrier to enable a synchronous checkpoint.

3.4 Experimental Evaluation

We compare GiraphUC to synchronous Giraph (Giraph sync), Giraph async, GraphLab
sync, and GraphLab async. We use these systems as both Giraph and GraphLab are
widely used in academia and industry and are performant open source distributed systems
[39]. While Giraph sync and GraphLab sync capture the performance of synchronous
systems (BSP and async GAS, respectively), Giraph async is a performant implementation
of the eAP model (Chapter 3.3.2) and GraphLab async is a state-of-the-art pull-based
asynchronous system (async GAS).

We exclude GRACE and Giraph++’s hybrid mode, which both implement AP, be-
cause Giraph async is a more performant and scalable implementation of AP that also
provides better algorithmic support (Chapter 3.3.2). Specifically, Giraph async is dis-
tributed, whereas GRACE is single-machine, and it is implemented on top of Giraph 1.1.0,
which significantly outperforms the much older Giraph 0.1 on which Giraph++ is imple-
mented. Giraph async also supports DMST, a multi-phase mutations algorithm, whereas
GRACE and Giraph++’s hybrid mode do not. We also exclude systems like GPS, Mizan,
and GraphX (Chapter 2.3) as they are less performant than Giraph and GraphLab [39, 78].

3.4.1 Experimental Setup

To test performance at scale, we use 64 EC2 r3.xlarge instances, each with four vCPUs
and 30.5GB of memory. All machines run Ubuntu 12.04.1 with Linux kernel 3.2.0-70-
virtual, Hadoop 1.0.4, and jdk1.7.0 65. We use Giraph 1.1.0-RC0 from June 2014, which
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is also the version that GiraphUC and Giraph async are implemented on, and the version
of GraphLab 2.2 released in October 2014.

As scalability is a key focus, we evaluate all systems with large real-world datasets1,2[14,
16, 15]. We store all datasets as regular text files on HDFS and load them into all systems
using the default random hash partitioning.

Table 3.1 lists the four graphs we test: US is a road network graph, TW is a social network
graph, and AR and UK are both web graphs. Table 3.1 also details several properties for
each graph. |V | and |E| denote the number of vertices and directed edges, while the
average degree gives a sense of how large |E| is relative to |V |. The maximum indegree
or outdegree provides a sense of how skewed the graph’s degree distribution is, while the
harmonic diameter indicates how widely spread out the graph is [11, 17].

In particular, the social and web graphs all have very large maximum degrees since they
follow a power-law degree distribution. Their small diameters also indicate tight graphs:
TW, being a social graph, exhibits the “six degrees of separation” phenomenon, while the
web graphs have larger diameters. In contrast, US has very small average and maximum
degrees but a very large diameter. Intuitively, this is because cities (vertices) do not have
direct roads (edges) to millions of other cities. Instead, most cities are connected by paths
that pass through other cities, which means that road networks tend to sprawl out very
widely—for example, US is spread across North America. These real-world characteristics
can affect performance in different ways: high degree skews can cause performance bot-
tlenecks at a handful of workers, leading to stragglers, while large diameters can result
in slow convergence or cause algorithms to require a large number of supersteps to reach
termination.

3.4.2 Algorithms

In our evaluation, we consider four different algorithms: SSSP, WCC, DMST, and PageR-
ank. These four algorithms can be categorized in three different ways: compute bounded-
ness, network boundedness, and accuracy requirements. PageRank is an algorithm that is
computationally light, meaning it is proportionally more network bound, and it has a no-
tion of accuracy. SSSP and WCC are also computationally light but do not have a notion
of accuracy as their solutions are exact. Both are also network bound, with WCC requiring
more communication than SSSP, and, unlike PageRank, the amount of communication in

1http://www.dis.uniroma1.it/challenge9/download.shtml
2http://law.di.unimi.it/datasets.php
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SSSP and WCC also varies over time. Finally, DMST also provides exact solutions but it
is computationally heavy and therefore more compute bound than network bound. Hence,
each algorithm stresses the systems in a different way, providing insight into each system’s
performance characteristics.

The BSP implementations of SSSP, WCC, and PageRank work without modification
on all systems. DMST is a multi-phase mutations algorithm that, while unsupported by
GraphLab, can run on Giraph async and GiraphUC via a simple modification (Chapter
3.3.5). We next describe each algorithm in more detail.

3.4.2.1 SSSP

Single-source shortest path (SSSP) finds the shortest path between a source vertex and
all other vertices in its connected component. We use the parallel variant of the Bellman-
Ford algorithm [27] (Algorithm 1). Each vertex initializes its distance (vertex value) to
∞, while the source vertex sets its distance to 0. Vertices update their distance using
the minimum distance received from their neighbours and propagate any newly discovered
minimum distance to all neighbours. We use unit edge weights and the same source vertex
to ensure that all systems perform the same amount of work.

Algorithm 1 SSSP pseudocode.

1 procedure compute(vertex, incoming messages)
2 if superstep == 0 then
3 vertex.setValue(∞)
4 if vertex.getID() == sourceV ertex then
5 dmin ← 0

6 else
7 dmin ← minimum of all message values

8 if dmin < vertex.getValue() then
9 vertex.setValue(dmin)

10 for all outgoing edges e = (vertex, v) do
11 Send dmin + e.getWeight() to v

12 voteToHalt()
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3.4.2.2 WCC

Weakly connected components (WCC) is an algorithm that finds the maximal weakly
connected components of a graph. A component is weakly connected if all constituent
vertices are mutually reachable when ignoring edge directions. We use the HCC algorithm
[44], which starts with all vertices initially active (Algorithm 2). Each vertex initializes its
component ID (vertex value) to its vertex ID. When a smaller component ID is received,
the vertex updates its vertex value to that ID and propagates the ID to its neighbours.
We correct GraphLab’s WCC implementation so that it executes correctly in GraphLab
async.

Algorithm 2 WCC pseudocode.

1 procedure compute(vertex, incoming messages)
2 if superstep == 0 then
3 vertex.setValue(vertex.getID())

4 compIDmin ← minimum of all message values
5 if compIDmin < vertex.getValue() then
6 vertex.setValue(compIDmin)
7 Send compIDmin to vertex’s outgoing neighbours

8 voteToHalt()

3.4.2.3 DMST

Distributed minimum spanning tree (DMST) finds the minimum spanning tree (MST)
of an undirected, weighted graph. For unconnected graphs, DMST gives the minimum
spanning forest, a union of MSTs. We use the parallel Boruvka algorithm [26, 64] and
undirected versions of our datasets weighted with distinct random edge weights. We omit
the pseudocode for DMST due to its complexity.

The algorithm has four different computation phases. In phase one, each vertex selects
a minimum weight out-edge. In phase two, each vertex u uses its selected out-edge and the
pointer-jumping algorithm [26] to find its supervertex, a vertex that represents the con-
nected component to which u belongs. Phase two requires multiple supersteps to complete
and is coordinated using summation aggregators. In phase three, vertices perform edge
cleaning by deleting out-edges to neighbours with the same supervertex and modifying the
remaining out-edges to point at the supervertex of the edge’s destination vertex. Finally, in
phase four, all vertices send their adjacency lists to their supervertex, which merges them
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according to minimum weight. Vertices designated as supervertices return to phase one as
regular vertices, while all other vertices vote to halt. The algorithm terminates when only
unconnected vertices remain.

The implementation of DMST is over 1300 lines of code and uses custom vertex, edge,
and message data types. We add only 4 lines of code to make DMST compatible with
GiraphUC and an additional change of 4 more lines of code for Giraph async. As described
in Chapter 3.3.5, these changes are simple and do not affect the algorithm’s logic.

3.4.2.4 PageRank

PageRank is an algorithm that ranks webpages based on the idea that more important
pages receive more links from other pages. Like in [72], we use the accumulative update
PageRank [85] (Algorithm 3). All vertices start with a value of 0.0. At each superstep,
a vertex u sets delta to be the sum of all values received from its in-edges (or 0.15 in
the first superstep), and its PageRank value pr(u) to be pr(u) + delta. It then sends
0.85 · delta/ deg+(u) along its out-edges, where deg+(u) is u’s outdegree. The algorithm
terminates after a user-specified K supersteps, and each output pr(u) gives the expectation
value for a vertex u. The probability value can be obtained by dividing the expectation
value by the number of vertices.

Algorithm 3 PageRank pseudocode.

1 procedure compute(vertex, incoming messages)
2 if superstep == 0 then
3 vertex.setValue(0)
4 delta← 0.15
5 else
6 delta← sum of all message values

7 vertex.setValue(vertex.currValue() + delta)
8 if superstep ≤ K then
9 m← number of outgoing edges of vertex

10 Send 0.85 · delta/m to all outgoing neighbours
11 else
12 voteToHalt()

All systems except GraphLab async terminate after a fixed number of (logical) super-
steps, as this provides the best accuracy and performance. GraphLab async, which has no

42



notion of supersteps, terminates after the PageRank value of every vertex u changes by
less than a user-specified threshold ε between two consecutive executions of u.

3.4.3 Results

For our results, we focus on computation time, which is the total time of running an algo-
rithm minus the input loading and output writing times. Computation time hence includes
time spent on vertex computation, barrier synchronization, and network communication.
This means, for example, it captures network performance: poor utilization of network
resources translates to poor (longer) computation time. Since computation time captures
everything that is affected by using different computation models, it accurately reflects the
performance differences between each system.

For SSSP, WCC, and DMST (Figure 3.6), we report the mean and 95% confidence
intervals of five runs. For PageRank (Figure 3.7), each data point is the mean of five runs,
with 95% confidence intervals shown as vertical and horizontal error bars for both accuracy
and time. Additionally, we ensure correctness by comparing the outputs of GiraphUC and
Giraph async to that of Giraph sync. In total, we perform over 700 experimental runs.

3.4.3.1 SSSP

GiraphUC outperforms all of the other systems for SSSP on all datasets (Figure 3.6a).
This performance gap is particularly large on US, which requires thousands of supersteps
to complete due to the graph’s large diameter (Table 3.1). By reducing per-superstep
overheads, GiraphUC is up to 4.5× faster than Giraph sync, Giraph async, and GraphLab
sync. Giraph async performs poorly due to the high per-superstep overheads of using
global barriers. GraphLab async fails on US after 2 hours (7200s), indicated by an ‘F’
in Figure 3.6a, due to machines running out of memory during its distributed consensus
termination. This demonstrates that GiraphUC’s two step termination check has superior
scalability.

On AR, TW, and UK, GiraphUC continues to provide gains. For example, it is up to
3.5× faster than Giraph sync, Giraph async, and GraphLab sync on AR. GraphLab async
successfully runs on these graphs but its computation times are highly variable (Figure 3.6a)
due to highly variable network overheads. These overheads are due to GraphLab async’s
lack of message batching and its pairing of fibers to individual vertices (Chapter 2.1.3),
which results in highly non-deterministic execution compared to GiraphUC’s approach of
pairing compute threads with partitions (Chapter 3.3.1). GraphLab async’s poor scalability
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Figure 3.6: Computation times for SSSP, WCC, and DMST. Missing bars are labelled with ‘F’ for unsuc-
cessful runs and ‘NS’ for unsupported algorithms.
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is especially evident on TW and UK, where GiraphUC outperforms it by 59× and 86×
respectively. Hence, GiraphUC is more scalable and does not suffer the communication
overheads caused by GraphLab async’s lack of message batching and its use of distributed
locking and distributed consensus termination.

3.4.3.2 WCC

For WCC, GiraphUC consistently outperforms all of the other systems on all graphs: up to
4× versus Giraph sync and async on US, and nearly 5× versus GraphLab sync on TW (Figure
3.6b). In particular, whenever Giraph async has gains over Giraph sync, such as on UK,
GiraphUC further improves on Giraph async’s performance. In cases where Giraph async
performs poorly, such as on US, GiraphUC still performs better than Giraph sync. This
shows that the BAP model implemented by GiraphUC provides substantial improvements
over the eAP model used by Giraph async.

Finally, like in SSSP, GraphLab async again performs poorly at scale: it fails on US

after 5 hours (18,000s), AR after 20 minutes (1200s), and UK after 40 minutes (2400s) due to
exhausting the available memory at several worker machines. For TW, on which GraphLab
async successfully runs, GiraphUC is still 43× faster (Figure 3.6b).

3.4.3.3 DMST

For DMST, GiraphUC is 1.7× faster than both Giraph sync and async on US and AR, and
1.4× and 1.8× faster than Giraph sync and async respectively on TW (Figure 3.6c). These
performance gains are primarily achieved in the second computation phase of DMST, which
typically requires many supersteps to complete (Chapter 3.4.2.3). GiraphUC’s gains are
slightly lower than in SSSP and WCC because DMST is more compute bound, which means
proportionally less time spent on communication and barriers. This is particularly true for
TW, whose extreme degree skew leads to more computation time spent performing graph
mutations. Nevertheless, GiraphUC’s good performance establishes its effectiveness also
for compute bound algorithms and algorithms that require multiple computation phases.

Giraph sync, Giraph async, and GiraphUC, when running DMST on UK, all exhaust the
memory of several worker machines due to the size of the undirected weighted version of
the graph. However, we expect trends to be similar since UK has a less extreme degree skew
than TW (Table 3.1), meaning DMST will be less compute bound and can hence benefit
more under GiraphUC.
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Figure 3.7: Plots of L1-norm (error) vs. computation time for PageRank.

Note that GraphLab (both sync and async) cannot implement DMST as they do not
fully support graph mutations. This is indicated in Figure 3.6c with ‘NS’ for “not sup-
ported”. Hence, GiraphUC is both performant and more versatile with full support for
graph mutations.

3.4.3.4 PageRank

PageRank, unlike the other algorithms, has a dimension of accuracy in addition to time.
Like in [72], we define accuracy in terms of the L1-norm between the output PageRank
vector (the set of output vertex values) and the true PageRank vector, which we take to
be the PageRank vector returned after 300 supersteps of synchronous execution [72]. The
lower the L1-norm, the lower the error and hence higher the accuracy. We plot the L1-
norm (in log scale) versus computation time to characterize performance in terms of both
accuracy and time (Figure 3.7).
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In the plots, all lines are downward sloping because the L1-norm decreases (accuracy
increases) with an increase in time, since executing with more supersteps or a lower ε
tolerance requires longer computation times. In particular, this shows that Giraph async
and GiraphUC’s PageRank vectors are converging to Giraph’s, since their L1-norm is cal-
culated with respect to Giraph’s PageRank vector after 300 supersteps. When comparing
the different lines, the line with the best performance is one that (1) is furthest to the left
or lowest along the y-axis and (2) has the steepest slope. Specifically, (1) means that a
fixed accuracy is achieved in less time or better accuracy is achieved in a fixed amount of
time, while (2) indicates faster convergence (faster increase in accuracy per unit time).

From Figure 3.7, we see that GiraphUC has the best PageRank performance on all
datasets. Its line is always to the left of the lines of all other systems, meaning it achieves
the same accuracy in less time. For example, on US (Figure 3.7a), GiraphUC is 2.3× faster
than GraphLab sync and 1.8× faster than Giraph sync in obtaining an L1-norm of 10−1.
Compared to Giraph async, GiraphUC’s line is steeper for US and TW and equally steep for
AR and UK, indicating GiraphUC has similar or better convergence than Giraph async.

Lastly, GraphLab async again performs poorly due to limited scalability and commu-
nication overheads: its line is far to the right and has a very shallow slope (very slow
convergence). Additionally, as observed with SSSP and WCC, its computation times tend
to be highly variable: its horizontal (time) error bars are more visible than that of the
other systems, which are largely obscured by the data point markers (Figures 3.7b and
3.7d). On US, GraphLab async achieves an L1-norm of 2.6× 105 after roughly 530s, which
is 45× slower than GiraphUC. On TW, GraphLab async reaches an L1-norm of 1.0 after
roughly 3260s, meaning GiraphUC is 10× faster in obtaining the same level of accuracy.

3.4.4 Sensitivity Analysis

Lastly, we analyze the sensitivity of message batching and the performance of the naive
vs. improved approach to local barriers in GiraphUC. All results are again the mean of
five runs with 95% confidence intervals.

3.4.4.1 Message Batching

GiraphUC uses message batching to improve network utilization (Chapter 3.3.2). The
amount of batching is controlled by the message buffer cache size, which is 512KB by
default. Figure 3.8 shows how varying the buffer cache size from 64 bytes to 256KB,
512KB, and 1MB affects computation time.
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Figure 3.8: Computation times for SSSP and WCC in GiraphUC with different buffer cache sizes.

The buffer size of 64 bytes simulates a lack of message batching. This incurs substantial
network overheads and long computation times: up to 53× slower than 512KB for SSSP
on TW (Figure 3.8a). For SSSP on US, the performance deterioration is not as pronounced
due to SSSP starting with a single active vertex combined with the large diameter of US:
workers run out of work fairly quickly irrespective of the buffer cache size, meaning that
the bulk of the network overheads are also incurred when using larger buffer sizes.

The buffer cache sizes of 256KB and 1MB demonstrate that the default 512KB is an
optimal buffer size in that performance does not significantly improve with deviations from
the default buffer size. This also indicates that dynamic tuning will likely provide minimal
performance benefits. For WCC on AR, the 256KB buffer size performs slightly better than
512KB (Figure 3.8b). Upon further examination, the performance at 128KB and 64KB
is identical to 256KB, but performance at 32KB is worse than at 512KB. Hence, even in
this case the optimal range is large (between 64KB to 256KB) and using 512KB does not
dramatically impact performance. Hence, we stay with the default 512KB buffer cache size
for GiraphUC.

3.4.4.2 Local Barriers

As described in Chapter 3.2.1.2, the improved approach to local barriers is essential in
making BAP efficient and GiraphUC performant. Compared to the naive approach, the
improved approach is up to 16× faster for SSSP on US and 1.5× faster for WCC on TW and
UK (Figure 3.9). Furthermore, the naive approach leads to higher variability in computation
times because whether or not a worker blocks on a global barrier depends heavily on the
timing of message arrivals, which can vary from run to run. In contrast, by allowing
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Figure 3.9: Computation times for SSSP and WCC using naive vs. improved approach to local barriers.

workers to unblock, the improved approach suppresses this source of unpredictability and
enables superior performance in GiraphUC.

3.5 Summary

In this chapter, we presented a new barrierless asynchronous parallel (BAP) computation
model, which improves upon the existing BSP and AP models by reducing both message
staleness and the frequency of global synchronization barriers. We showed how the BAP
model supports algorithms that require graph mutations as well as algorithms with multiple
computation phases, and also how the AP model can be enhanced to provide similar
algorithmic support. We demonstrated how local barriers and logical supersteps ensure
that each computation phase is completed using only one global barrier, which significantly
reduces per-superstep overheads.

We described GiraphUC, our implementation of the BAP model in Giraph, a popular
open source distributed graph processing system. Our extensive experimental evaluation
showed that GiraphUC is much more scalable than GraphLab async and that it is up to
5× faster than Giraph, Giraph async, and GraphLab sync, and up to 86× faster than
GraphLab async. Thus, GiraphUC enables developers to program their algorithms for the
BSP model and transparently execute using the BAP model to maximize performance.
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Chapter 4

Providing Serializability

We begin in Chapter 4.1 by motivating serializability using a concrete example of graph col-
oring. In Chapter 4.2 and 4.3, we formalize serializability and describe both existing tech-
niques and our partition-based approach. In Chapter 4.4, we detail the implementations
of these techniques in Giraph async and GiraphUC. We present an extensive experimental
evaluation in Chapter 4.5 before concluding with a summary in Chapter 4.6.

4.1 Motivation

4.1.1 BSP Model

For our concrete example, consider the greedy graph coloring algorithm (Chapter 4.5.2.1).
Each vertex starts with the same color (denoted by its vertex value) and, in each superstep,
selects the smallest non-conflicting color based on its received messages, broadcasts this
change to its neighbours, and votes to halt. The algorithm terminates when there are no
more color conflicts.

Consider an undirected graph of four vertices partitioned across two worker machines
(Figure 4.1). All vertices broadcast the initial color 0 in superstep 1 but the messages are
not visible until superstep 2. Consequently, in superstep 2, all vertices update their colors
to 1 based on stale data. Similarly for superstep 3. Hence, vertices collectively oscillate
between 0 and 1 and the algorithm never terminates. However, if we could ensure that
only v0 and v3 execute in superstep 2 and only v2 and v1 execute in superstep 3, then this
problem would be avoided. As Chapter 4.3.3.1 will show, serializability provides precisely
this solution.
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Figure 4.1: BSP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.
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Figure 4.2: AP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.

4.1.2 AP Model

Like BSP, the AP model1 can also fail to terminate for the greedy graph coloring algorithm.
Consider again the undirected graph (Figure 4.2) and suppose that workers W1 and W2

execute their vertices sequentially as v0 then v2 and v1 then v3, respectively. Furthermore,
suppose the pairs v0, v1 and v2, v3 are each executed in parallel. Then the algorithm fails
to terminate. Specifically, in superstep 2, v0 and v1 update their colors to 1 and broadcast
1 (we reserve superstep 1 for initialization). v0 and v1 do not see each other’s message until
superstep 3. v2 and v3, however, see this 1 along with the message 0 that they sent to each
other in superstep 1. Thus, v2 and v3 update their colors to 2 and broadcast. Ultimately,
the graph’s state at superstep 5 is the same as in superstep 2, so vertices are collectively
cycling through the three colors in an infinite loop.

However, if we can force v0 to execute concurrently with v3 instead of v1 (and v2 with
v1) while also ensuring that v2 (v1) sees v3’s (v0’s) message in the same superstep that it
is sent, then the algorithm will terminate. In fact, it does so in two supersteps, fewer than
the three required by BSP. We formalize this intuition in Chapters 4.2 and 4.3.

4.1.3 BAP Model

As described in Chapter 3.2, the BAP model improves on the AP model by minimizing
the number of global barriers via per-worker logical supersteps separated by local barriers.
However, like AP, BAP can also fail to terminate when executing the greedy graph coloring
algorithm.

We include BAP because it provides significant performance gains for algorithms such
as SSSP that require many supersteps (Chapter 3.4.3). Furthermore, BAP is a transparent
system-level execution model, so algorithms written for BSP (and AP) work with little to

1Technically, we must use the eAP model and have new messages overwrite old messages (Theorem 2).
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no modifications (Chapter 3.2). In fact, the techniques for providing serializability are
identical for both the AP and BAP models (Chapter 4.3).

4.1.4 GAS Model

As described in Chapter 2.1.3, sync GAS is similar to BSP and so fails to terminate in the
same way (Figure 4.1), while async GAS can fail to terminate in the case of dense graphs
[34]. For example, for the graph coloring example in Figure 4.2, suppose both W1 and
W2 each have two threads for their two vertices and all threads run in parallel. Then the
interleaving of the GAS phases will cause vertices to see stale colors and so the execution
is not guaranteed to terminate: it can become stuck in an infinite loop. In contrast, by
adding the vertex-based distributed locking technique (Chapter 2.1.3), async GAS with
serializability will always terminate successfully.

4.2 Serializability

In this section, we formally define serializability and prove several key properties.

4.2.1 Preliminaries

Existing work [34, 71] considers serializability for algorithms where vertices communicate
only with their direct neighbours, which is the behaviour of the majority of algorithms that
require serializability. For example, the GAS model supports only algorithms where vertices
communicate with their direct neighbours [50, 34]. For these algorithms, serializability can
be provided transparently by the graph processing system, independent of the algorithm
being executed. Thus, our focus is on these types of algorithms.

Since popular graph processing systems use a vertex-centric programming model, where
developers specify the actions of a single vertex, we focus on vertex-centric systems. The
formalisms that we will establish apply to all vertex-centric systems, irrespective of the
computation models they use.

In vertex-centric graph processing systems, there are two levels of parallelism: (1)
between multiple threads within a single worker machine and (2) between the multiple
worker machines. Due to the distributed nature of computation, the input graph must be
partitioned across the workers and so data replication will occur. To better understand
this, let neighbours refer to both in-edge and out-edge neighbours.
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Definition 1. A vertex u is a machine boundary vertex, or m-boundary for short, if at
least one of its neighbours v belongs to a different worker machine from u. Otherwise, u
is a machine internal, or m-internal, vertex.

Definition 2. A replica is local if it belongs to the same worker machine as its primary
copy and remote otherwise.

Systems keep a read-only replica of each vertex on its owner’s machine and of each
m-boundary vertex u on each of u’s out-edge neighbour’s worker machines. This is a
standard design used, for example, in Pregel, Giraph, and GraphLab. Remote replicas
(of m-boundary vertices) exist due to graph partitioning: for vertex-cut partitioning, u’s
vertex value is explicitly replicated on every out-edge neighbour v’s worker machine; for
edge-cut, u is implicitly replicated because the message it sends to v, which is a function of
u’s vertex value, is buffered in the message store of v’s machine. This distinction is unim-
portant for our formalism as we care only about whether replication occurs. Local replicas
occur in push-based systems because message stores also buffer messages sent between ver-
tices belonging to the same worker. In pull-based systems, local replicas are required for
implementing synchronous computation models like sync GAS. For asynchronous models,
pull-based systems may not always have local replicas (such as in GraphLab async) but
we will consider the more general case in which they do (if they do not, then reads of such
vertices will always trivially see up-to-date data).

Definition 3. A read of a replica is fresh if the replica is up-to-date with its primary copy
and stale otherwise.

Informally, an execution is serializable if it produces the same result as a serial execution
in which all reads are fresh. More formally, we require one-copy serializability (1SR) [13].

Definition 4. A system provides serializability, or serializable executions, if and only if
all executions produce histories that are one-copy serializable (1SR).

In the subsequent sections, we prove that 1SR can be provided by enforcing two condi-
tions: (1) all vertices read up-to-date replicas of its in-edge neighbours prior to execution
and (2) no vertex has executions that are concurrent with any of its in-edge neighbours.
In terms of traditional transaction terminology, we define a site as a worker machine, an
item as a vertex, and a transaction as the execution of a single vertex. We detail such
transactions next.
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4.2.2 Transactions

We define a transaction to be the single execution of an arbitrary vertex u, consisting of
a read on u and the replicas of u’s in-edge neighbours followed by a write to u. The read
acts only on u and its in-edge neighbours because u receives messages (or pulls data) from
only its in-edge neighbours—it has no dependency on its out-edge neighbours. Denoting
the read set as Nu = {u, u’s in-edge neighbours}, any execution of u is the transaction
Ti = ri[Nu]wi[u], or simply Ti(Nu) as all transactions are of the same form.

Any v ∈ Nu with v 6= u is also annotated to distinguish it from the other read-only
replicas of v. For example, if u belongs to worker A, we annotate the read-only replica as
vA ∈ Nu. However, the next section will show how we can drop these annotations.

Our definition relies only on the fact that the system is vertex-centric and not on the
nuances of specific computation models. For example, although BSP and AP have a notion
of supersteps, the i for a transaction Ti(Nu) has no relation to the superstep count. The
execution of u in two different supersteps is represented by two different transactions Ti(Nu)
and Tj(Nu). Our definitions also work when there is no notion of supersteps, such as in
the async GAS model, or when there are only per-worker logical supersteps, such as in the
BAP model.

We can now restate our two conditions more formally as:

Condition C1. Before any transaction Ti(Nu) executes, all replicas v ∈ Nu on u’s
machine are up-to-date.

Condition C2. No transaction Ti(Nu) overlaps with any transaction Tj(Nv) for all
copies of v ∈ Nu, v 6= u.

4.2.3 Replicated Data

We first show how to enforce condition C1 and then prove, in Lemma 1, that enforcing
condition C1 simplifies the problem to standard serializability on a single logical copy of
each vertex (i.e., without data replication).

We enforce condition C1 by combining a write-all approach [13] with a synchronization
technique that ensures neighbouring vertices do not execute concurrently. Denote u’s in-
edge and out-edge neighbours as Mu. Then a synchronization technique prevents stale
reads by ensuring no transactions Tj(Nv) with any copy of v ∈ Mu occur while updates
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are being propagated to u’s replicas. In theory, the write-all approach must update replicas
eagerly: Ti(Nu) commits only after all replicas of u are synchronously updated. In practice,
vertices coordinated by a synchronization technique can update their replicas lazily, because
any such vertex v must first acquire a shared resource (e.g., a token or a fork) from its
neighbour u before it can execute. Thus, updates to u’s replicas can be delayed and instead
sent before handing over the resource required by v. The effect is the same as an eager
write-all approach: v always reads an up-to-date replica of u. Chapter 4.3.1.1 describes
this approach in greater detail.

The write-all approach works for graph processing systems because we replicate for
distributed computation, not for availability. That is, when a worker machine fails, we
lose a portion of our input graph and so we cannot proceed with the computation. Indeed,
failure recovery requires all machines to rollback to a previous checkpoint [1, 50, 54],
meaning pending writes to failed machines do not occur.

Lemma 1. If condition C1 is true, then it suffices to use standard serializability theory
where operations are performed on a single logical copy of each vertex.

Proof. Condition C1 ensures that before every transaction Ti(Nu) executes, the replicas
v ∈ Nu are all up-to-date. Then all reads ri[Nu] see up-to-date replicas and are thus the
same as reading from the primary copy of each v ∈ Nu. Hence, there is effectively only a
single logical copy of each vertex, so we can apply standard serializability theory.

4.2.4 Correctness

We use the standard notion of conflicts and histories [13]. Two transactions conflict if they
have conflicting operations. We assume, per Lemma 1, that reads and writes are performed
on a single logical copy of each vertex.

A serial single-copy history produced by the serial execution of an algorithm is a se-
quence of transactions where operations act on a single logical copy and do not interleave.
For example, one possible serial single-copy history for two vertices u and v would be

r1[Nu]w1[u]c1r2[Nv]w2[v]c2r3[Nu]w3[u]c3r4[Nv]w4[v]c4,

where ci denotes the commit of each transaction. Irrespective of the computation model,
the history indicates that u and v are each executed twice before the algorithm terminates.
If the computation model has a notion of supersteps, and we assume that u and v are
executed exactly once in each superstep, then T1 and T2 would belong to the first superstep
while T3 and T4 would belong to the second.
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As per Definition 4, we require 1SR. We first prove a useful relationship between input
and serializability graphs (Lemma 2) before formally defining the relationship between
serializability and conditions C1 and C2 (Theorem 4).

Lemma 2. Suppose condition C1 is true. Then a directed cycle of ≥ 2 vertices exists in
the input graph if and only if there exists an execution that produces a serialization graph
containing a directed cycle.

Proof. Since condition C1 holds, by Lemma 1 we can apply standard serializability theory.

(Only if) Suppose the input graph contains a directed cycle of n ≥ 2 vertices and, with-
out loss of generality, assume that the cycle is formed by the edges (un, u1) and (ui, ui+1)
for i ∈ [1, n). Consider executions in which all read operations occur before any write
operation. That is, consider histories of the form r1[Nu1 ] · · · rn[Nun ]w1[u1]c1 · · ·wn[un]cn
where operations can be arbitrarily permuted so long as all reads precede all writes. This
does not violate condition C1 because all reads are fresh.

Recall that the serialization graph of a history consists of a node for each transaction
and an edge from Ti to Tj if one of Ti’s operations precedes and conflicts with one of Tj’s
operations [13]. Since all reads occur before writes, every transaction Ti’s read operation
ri[Nui

] will precede and conflict with transaction Ti−1’s write operation wi−1[ui−1] for i ∈
(1, n] because ui−1 ∈ Nui

. That is, there exists a directed path from Tn to T1 in the
serialization graph. Additionally, because of the directed cycle in the input graph, we also
have a conflict due to un ∈ Nu1 . This adds an edge from T1 to Tn which, together with the
directed path from Tn to T1, creates a directed cycle in the serialization graph. Hence, all
histories of this form produce serialization graphs with a directed cycle.2

(If) For the converse, suppose there exists a cycle in the serialization graph. Then
there exist two transactions Ti(Nu) and Tj(Nv), for arbitrary i, j and vertices u, v, that
must be ordered as Tj(Nv) < Ti(Nu) and Ti(Nu) < · · · < Tj(Nv).

The former ordering can only be due to rj[Nv] < wi[u], since every transaction has its
read precede its write, which implies that u ∈ Nv and so there exists an edge (u, v) in the
input graph. Similarly, the latter ordering implies that there is a directed path from v to
u. For example, suppose the ordering is Ti(Nu) < Tk(Nw) < Tj(Nv). Then this must arise

2Another proof can also be achieved using induction. For example, histories of the form

rn[Nun
]rn−1[Nun−1

] · · · r1[Nu1
]w1[u1]c1 · · ·wn[un]cn

will always require Tn < Tn−1 < · · · < T1, because ui ∈ Nui+1
for i ∈ [1, n), and T1 < Tn since un ∈ Nu1

.
The two orderings then create a cycle in the serialization graph.
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due to ri[Nu] < wk[w] and rk[Nw] < wj[v], meaning w ∈ Nu and v ∈ Nw. Equivalently,
there exist edges (w, u) and (v, w) in the input graph and thus a directed path from v to
u. In general, the more transactions there are between Ti(Nu) and Tj(Nv), the longer this
path.

Since there is both a directed path from v to u and an edge (u, v), the input graph has
a directed cycle.

Theorem 4. All executions are serializable for all input graphs if and only if conditions
C1 and C2 are both true.

Proof. (If) Since condition C1 is true, by Lemma 1 we can apply standard serializability
theory. By the serializability theorem [13], it suffices to show if condition C2 is true then
all possible histories have an acyclic serialization graph.

Consider two arbitrary concurrent transactions Ti(Nu) and Tj(Nv). For vertex-centric
systems, each vertex is always executed by exactly one thread of execution because the
compute function is written for serial execution. That is, we must have u 6= v for Ti and
Tj. Since condition C2 is true, the write operations of Ti and Tj are always on u /∈ Nv

and v /∈ Nu, respectively, meaning the transactions do not conflict. That is, condition C2
eliminates all conflicting transactions from all possible histories, so the serialization graph
must be acyclic. Since we make no assumptions about the input graph, this holds for all
input graphs.

(Only if) Next, we prove the inverse: if either condition C1 or C2 is false, then there
exists a non-serializable execution for some input graph. Consider an input graph with
vertices u and v connected by an undirected edge and executed by the transactions T1(Nu)
and T2(Nv), respectively.

Suppose C1 is true but C2 is not. Then T1(Nu) and T2(Nv) can execute in parallel
and so a possible history is r1[Nu]r2[Nv]w1[u]c1w2[v]c2. This history does not violate C1
because both reads see up-to-date state. However, the two transactions conflict: v ∈ Nu

implies T1 < T2 while u ∈ Nv implies T2 < T1, so this execution is not serializable. More
generally, per Lemma 2, this occurs for any graph with a directed cycle of ≥ 2 vertices.

Suppose C2 is true but C1 is not. Then standard serializability no longer applies as
there are now replicas. For our input graph, let u be at worker A and v be at worker
B. Then Nu = {u, vA} and Nv = {v, uB}, where vA and uB are replicas of v and u
respectively. Consider a serial history r1[{u, vA}]w1[u]c1r2[{v, uB}]w2[v]c2 where initially
vA = v and uB = u, but uB 6= u after T1. This history is possible under condition C2 (it
is serial) but it is not 1SR: vA = v implies T1 < T2 while uB 6= u implies T2 < T1, so there
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are no conflict equivalent serial single-copy histories. Another way to see this is that the
above history is effectively a concurrent execution of T1 and T2 on a single copy of u and
v—i.e., where condition C1 is true but C2 is not.

Lastly, we note a theoretically interesting corollary.

Corollary 1. Suppose condition C1 is true. Then all executions are serializable if and
only if the input graph has no directed cycles of ≥ 2 vertices.

Proof. This is just the contrapositive of Lemma 2: there are no directed cycles of ≥ 2
vertices in the input graph iff there are no executions that produce a serialization graph
containing a cycle. Applying the serializability theorem, we have: all executions are seri-
alizable iff the input graph has no directed cycles of ≥ 2 vertices.3

However, in practice, Corollary 1 is insufficient for providing serializability because
nearly all real world graphs have at least one undirected edge. Moreover, the synchroniza-
tion technique used to enforce condition C1 will also enforce condition C2 (Chapters 4.2.3
and 4.2.5).

4.2.5 Enforcing Serializability

Graph processing systems that implement any of the computation models from Chapter
2.1 do not enforce conditions C1 and C2 as none of the models utilize any synchronization
techniques. Hence, by Theorem 4, they do not provide serializability. Moreover, these
systems do not guarantee fresh reads even under serial executions (on a single machine
or under the sequential execution of multiple machines). For example, BSP effectively
updates replicas lazily4 because messages sent in one superstep, even if received, cannot
be read by the recipient in the same superstep. Thus, both m-boundary and m-internal
vertices (Definition 1) suffer stale reads under a serial execution. While AP weakens this
isolation and can update local replicas eagerly, it propagates messages to remote replicas
lazily without the guarantees of condition C1 and so stale reads can again occur under a
serial execution of multiple machines.

3Self-cycles in the input graph are permitted because a single vertex is executed by one thread of
execution at any time (see the proof of Theorem 4).

4The “synchronous” in BSP refers to the global communication barriers, not the method of replica
synchronization.
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To provide serializability, we enforce conditions C1 and C2 by adding a synchronization
technique (Chapter 4.3) to the systems that implement the above computation models. For
example, GraphLab async provides serializability by adding a distributed locking synchro-
nization technique on top of the async GAS model. These synchronization techniques also
implement a write-all approach for updating replicas, which is required for condition C1.

The synchronization techniques ensure that a vertex u does not execute concurrently
with any of its in-edge and out-edge neighbours. At first glance, this appears to be stronger
than what condition C2 requires. However, suppose v is an out-edge neighbour of u and
v is currently executing. Then if u does not synchronize with its out-edge neighbours, it
will erroneously execute concurrently with v, violating condition C2 for v. Alternatively,
if v is an out-edge neighbour of u then u is an in-edge neighbour of v, so they must not
execute concurrently.

4.3 Synchronization Techniques

In this section, we describe synchronization techniques to enforce conditions C1 and C2 as
well as their performance with respect to parallelism and communication overheads.

4.3.1 Preliminaries

4.3.1.1 Replica Updates

How a synchronization technique implements the write-all approach (Chapter 4.2.3) de-
pends on whether the computation model is synchronous or asynchronous.

For asynchronous computation models (AP, BAP, async GAS), replicas immediately
apply received updates. Thus, local replicas can be updated eagerly, since there are no
communication costs (Chapter 4.4). Remote replicas, however, are updated lazily in a
just-in-time fashion to provide communication batching: if an m-boundary vertex u has a
replica on its neighbour v’s worker then, when v wants to execute, u’s worker will flush all
pending remote replica updates before handing over the shared resource that allows v to
proceed.

In contrast, synchronous computation models (BSP, sync GAS) hide updates from
replicas until the next superstep. That is, replicas can only be updated after a global
barrier. This means systems with synchronous models are limited to specialized synchro-
nization techniques that keep replicas up-to-date by dividing each superstep into multiple
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sub-supersteps (Proposition 2). This is significantly less performant than synchronization
techniques for systems with asynchronous models (Chapter 4.4).

4.3.1.2 Architectural Considerations

In addition to the type of computation model used, the synchronization techniques that a
graph processing system can support is also limited by the system’s architectural design
and, in particular, whether it is partition-aware.

GraphLab async over-threads so that it can pair lightweight threads (called fibers) with
individual vertices. This ensures CPU cores are kept busy even when some fibers need to
block on network communication and is well-suited for fine-grained synchronization tech-
niques. However, GraphLab async is not partition-aware. In contrast, Giraph assigns
multiple graph partitions to each worker and pairs compute threads, each roughly equiva-
lent to a CPU core, with available partitions. Thus, the smallest unit of serial execution is
a partition of many vertices, meaning Giraph is better suited for coarse-grained techniques
and is also partition-aware. This also applies to Giraph async and GiraphUC, as they are
built on top of Giraph (Chapter 3.3).

In the following sections, we show how the differences between the two designs affect
performance and why it is useful for systems to be partition-aware. As Giraph, Giraph
async, and GiraphUC all share the same architectural design, we will refer to them collec-
tively as Giraph’s architecture.

4.3.2 Token Passing

The simplest synchronization technique is to pass an exclusive token around a logical token
ring. We focus on two methods of token passing: the single-layer approach, considered in
[71], and a dual-layer approach. We consider the more general case of Giraph’s partition-
aware architecture, where each worker executes its partitions in parallel with multiple
threads. GraphLab async’s architecture is the special case where each vertex is effectively
in its own partition.

4.3.2.1 Single-Layer Token Passing

For single-layer token passing, vertices are categorized as either p-internal or p-boundary
per the following definition.
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Definition 5. A vertex u is a partition boundary vertex, or p-boundary for short, if at
least one of its neighbours v belongs to a different partition from u. Otherwise, u is a
partition internal, or p-internal, vertex.

A global token is passed in a round-robin fashion between partitions arranged in a
logical ring. Each worker holds the global token for multiple iterations on behalf of each
of its partitions to ensure that every partition’s p-boundary vertices are executed.

It is easy to see that this prevents neighbouring vertices from executing concurrently:
a p-internal vertex and its neighbours are all executed by a single thread, so there is
no concurrency, while a p-boundary vertex can execute only when its partition holds an
exclusive token. As per Chapter 4.3.1.1, local replicas are updated eagerly while remote
replicas of a worker’s m-boundary vertices are updated in batch before the worker passes
along the global token. Remote replicas need not be updated when passing the token
between partitions of the same worker because no other worker can execute vertices that
read these replicas. Thus, single-layer token passing enforces conditions C1 and C2 for
asynchronous computation models.

However, the single-layer approach is not suitable for multithreading because it is too
coarse-grained: a vertex with neighbours in different partitions of the same worker can
execute only when its partition holds the global token, even though it does not require
coordination with vertices of other workers.

4.3.2.2 Dual-Layer Token Passing

To address the shortcomings of the single-layer approach, we introduce a dual-layer ap-
proach that uses two layers of tokens and a more fine-grained categorization of vertices.

Let u be a vertex of partition Pu of worker Wu. As before, u is a p-internal vertex if all
its neighbours belong to Pu. A p-boundary vertex is now one of three types. Informally,
u is a local boundary vertex if its neighbours are on partitions of Wu, remote boundary
if its neighbours are on partitions of other workers, and mixed boundary if its neighbours
belong to partitions of both Wu and other workers. More formally, let Wu and Pu be sets
where u ∈ Pu and Pu ⊆ Wu ⊆ V (V being the set of all vertices). Denote u’s in-edge
and out-edge neighbours as Mu. Then u is local boundary if Mu ⊆ Wu and ∃v ∈ Mu

s.t. v /∈ Pu, remote boundary if ∀v ∈ Mu either v ∈ Pu or v /∈ Wu, and mixed boundary
otherwise (i.e., ∃v, w ∈Mu s.t. v ∈ Wu \ Pu and w /∈ Wu).

A global token is passed in a round-robin fashion between workers rather than par-
titions. Each worker also has its own local token that is passed between its partitions
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in a round-robin fashion. A p-internal vertex can execute without tokens, while a local
boundary vertex requires its partition to hold the local token and a global boundary vertex
requires its worker to hold the global token. A mixed boundary vertex requires both tokens
to be held. Like the single-layer approach, local replicas are updated eagerly while remote
replicas are updated before a worker relinquishes the global token. Hence, dual-layer token
passing also enforces conditions C1 and C2 for asynchronous computation models.

The dual-layer approach provides improved parallelism over the single-layer approach:
local boundary vertices need not wait for the global token to execute, while remote bound-
ary vertices can execute so long as its worker (rather than its partition) holds the global
token. Like the single-layer approach, each worker holds the global token for a number
of iterations equal to the number of partitions it owns to ensure that all mixed boundary
vertices get to execute.

4.3.2.3 Discussion

Compared to Giraph’s architecture, GraphLab async’s architecture is a poor fit for token
passing: pairing fibers with vertices means each vertex is effectively a partition, so all
vertices are p-boundary. Thus, there is no parallelism within workers: each vertex requires
token(s) to execute.

Token passing minimizes communication overheads at the cost of parallelism (Figure
1.2). It does not scale well because the size of the token ring increases with the number of
partitions or workers, which leads to longer wait times. For the two approaches above, the
rings are also fixed: workers or partitions that are finished must still receive and pass along
the tokens. To complicate matters, in algorithms like SSSP, workers and partitions dy-
namically halt or become active depending on the state of their constituent vertices. Even
with the dual-layer approach, token passing remains too coarse-grained, which restricts
parallelism.

While these issues can be addressed with more sophisticated schemes, such as tracking
additional state to support a dynamic ring or using multiple global tokens to increase
parallelism, it becomes much harder to guarantee correctness (no deadlocks or starvation)
while also ensuring fairness. Rather than make token passing more fine-grained, we present
a more coarse-grained distributed locking synchronization technique next.
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4.3.3 Partition-based Distributed Locking

Partition-based distributed locking builds on the Chandy-Misra algorithm [22], which solves
the hygienic dining philosophers problem, a generalization of the traditional dining philoso-
phers problem. Each philosopher is either thinking, hungry, or eating and must acquire
a shared fork from each of its neighbours to eat. Philosophers can communicate with
their neighbours by exchanging forks and request tokens for forks. The “dining table”
is essentially an undirected graph where each vertex is a philosopher and each edge is
associated with a shared fork. A philosopher u thus requires deg(u) forks to eat. The
Chandy-Misra algorithm ensures no neighbouring philosophers eat at the same time and
guarantees fairness (no philosopher can hog its forks) and no deadlock or starvation [22].

Partition-based distributed locking treats each partition as a philosopher. Two parti-
tions share a fork if an edge connects their constituent vertices. More formally, partitions
Pi and Pj share a fork if there exists a pair of neighbouring vertices u ∈ Pi and v ∈ Pj.
Then condition C2 is enforced for p-boundary vertices since neighbouring partitions never
execute concurrently. p-internal vertices do not need coordination as each partition is exe-
cuted serially. As an optimization, we can avoid unnecessary fork acquisitions by skipping
partitions for which all vertices are halted and have no more messages.

To enforce condition C1, per Chapter 4.3.1.1, local replicas are updated eagerly and, for
remote replicas, each worker flushes its pending remote replica updates before any partition
(with an m-boundary vertex) relinquishes a fork to a partition of another worker. Since
both conditions are enforced, Proposition 1 follows immediately.

Proposition 1. Partition-based distributed locking enforces conditions C1 and C2 for asyn-
chronous computation models.

By Theorem 4, partition-based distributed locking provides serializability for asyn-
chronous computation models. However, it is incompatible with synchronous computation
models, which can update replicas only after a global barrier (Chapter 4.3.1.1), because
p-internal vertices are executed sequentially and so we must update local replicas eagerly
to enforce condition C1 (ensure fresh reads).

Partition-based distributed locking needs at most O(|P |2) forks, where |P | is the total
number of partitions. By controlling the number of partitions, we can control the granular-
ity of parallelism. On one extreme, |P | = |V | gives vertex-based distributed locking (Chap-
ter 4.3.3.1). On the other extreme, we can have exactly one partition per worker. This
still provides better parallelism than token passing because any pair of non-neighbouring
partitions can execute in parallel, with a negligible increase in communication. In general,
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|P | is set such that each worker can use multiple threads to execute multiple partitions in
parallel.

4.3.3.1 Vertex-based Distributed Locking

For GraphLab async, which pairs fibers with vertices, vertex-based distributed locking is a
special case of partition-based locking where each vertex is in its own partition. However,
for Giraph’s partition-aware architecture, vertex-based locking can be further optimized:
since p-internal vertices are executed sequentially, only p-boundary vertices need to act as
philosophers and be coordinated using the Chandy-Misra algorithm. To update remote
replicas, workers flush remote replica updates before any m-boundary vertex relinquishes
a fork to a vertex of another worker. Thus, vertex-based locking also enforces conditions
C1 and C2.

By Theorem 4, this solution provides asynchronous computation models with seri-
alizability. However, like partition-based locking, this solution is incompatible with syn-
chronous models (BSP and sync GAS). Proposition 2 shows that a constrained vertex-based
locking solution can provide serializability for systems with synchronous models.

Proposition 2. Vertex-based distributed locking enforces conditions C1 and C2 for syn-
chronous computation models when the following two properties hold: (i) both p-internal
and p-boundary vertices act as philosophers and (ii) fork and token exchanges occur only
during global barriers.

Proof. By property (i), all vertices act as philosophers, so no neighbouring vertices can
execute concurrently. Thus, condition C2 is enforced. For condition C1, it remains to
show that all replicas are kept up-to-date. Property (i) ensures that p-internal vertices are
also coordinated because local replicas can be updated only after a global barrier. Property
(ii) ensures that, in each superstep, only a non-neighbouring subset of vertices are executed.
For example, if we have an input graph with the edge (u, v), in each superstep either u
executes or v executes but not both: u (v) cannot obtain the fork from v (u) in the same
superstep because fork and token exchanges must occur only at a global barrier. This is
required because replicas can be updated only after a global barrier: if u and v ran in the
same superstep, one of the two will perform a stale read. Hence, condition C1 is enforced
by effectively dividing each superstep into multiple sub-supersteps.

Vertex-based distributed locking requires, in the worst case, O(|E|) forks, where |E| is
the number of edges in the graph ignoring directions (i.e., counting undirected edges once).
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Thus, compared to token passing and partition-based locking, it achieves more parallelism
at a substantially higher communication cost of O(|E|) messages per iteration (Figure 1.2).
Furthermore, while token passing scales poorly due to its ring size, vertex-based distributed
locking scales poorly due to its communication overheads.

4.3.3.2 Discussion

For vertex-based distributed locking, GraphLab async’s architecture is a better fit than
Giraph’s architecture, as Giraph blocks an entire CPU whenever a vertex blocks on com-
munication. However, Giraph’s architecture supports partitions, and thus partition-based
distributed locking, while GraphLab async does not. As we show in Chapter 4.5.3, the
superior performance of the partition-based approach demonstrates that it is important
for systems to be partition-aware.

Additionally, in the vertex-based approach, large batches of messages (remote replica
updates) are difficult to form as messages must be flushed very frequently due to the large
number of forks (Chapter 4.4.4). While GraphLab async tries to mitigate this through the
use of fibers to mask communication latency, it is more performant to pair a partition-aware
system with a partition-based approach that better supports communication batching.
Specifically, partition-based distributed locking can batch messages for an entire partition
of vertices, which substantially reduces communication overheads. Finally, fork and token
exchange messages cannot be batched under either approach. However, this has a much
smaller impact on communication overheads for partition-based locking than vertex-based
locking as the former uses far fewer forks. These factors further contribute to the much
better performance of partition-based locking, even when vertex-based locking is paired
with a tailored architecture such as GraphLab async (Chapter 4.5.3).

Hence, partition-based distributed locking leverages the best of both worlds: the in-
creased parallelism of vertex-based distributed locking and the minimal communication
overheads of token passing. It also scales better than vertex-based locking and token pass-
ing due to its lower communication overheads and the absence of a token ring. Finally,
this solution offers flexibility in the number of partitions, allowing for a tunable trade-off
between parallelism and communication overheads.

4.4 Implementation

We now describe our implementations for dual-layer token passing, partition-based dis-
tributed locking, and vertex-based distributed locking in Giraph. Each technique is an
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option that can be enabled and paired with Giraph async (AP) or GiraphUC (BAP) to
provide serializability. We do not consider the constrained vertex-based solution for BSP
(Proposition 2) as it further exacerbates BSP’s already expensive communication and syn-
chronization overheads (Chapter 3.1.1). We show that this does not impact usability in
Chapter 4.4.6.

We use Giraph because it is a popular and performant system used, for example, by
Facebook [25]. It is partition-aware and thus supports all three synchronization tech-
niques. We do not implement token passing and partition-based locking in GraphLab
async because, as described in Chapters 4.3.1.2 and 4.3.3.2, its architecture is optimized
for vertex-based distributed locking and is not partition-aware. Adding partitions would
require significant changes to GraphLab async, which is not the focus of this paper.

4.4.1 Giraph Background

As described in Chapter 4.3.1.2, Giraph assigns multiple graph partitions to each worker.
During each superstep, each worker creates a pool of compute threads and pairs available
threads with uncomputed partitions. Each worker maintains a message store to hold
all incoming messages, while each compute thread uses a message buffer cache to batch
outgoing messages to more efficiently utilize network resources. These buffer caches are
automatically flushed when full but can also be flushed manually. In Giraph async and
GiraphUC, messages between vertices of the same worker skip this cache and go directly
to the message store.

Since Giraph is implemented in Java, it avoids garbage collection overheads (due to
millions or billions of objects) by serializing vertex, edge, and message objects when not in
use and deserializing them on demand. For each vertex u, Giraph stores only u’s out-edges
in u’s vertex object. Thus, in-edges are not explicitly stored within Giraph.

4.4.2 Dual-Layer Token Passing

For dual-layer token passing, each worker uses three sets to track the vertex ids of local
boundary, remote boundary, and mixed boundary vertices that it owns. p-internal vertices
are determined by their absence from the three sets. We keep this type information separate
from the vertex objects so that token passing is a modular option. Moreover, augmenting
each vertex object with its type adds undesirable overheads since vertex objects must
be serialized and deserialized many times throughout the computation. Having the type
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information in one place also allows us to update a vertex’s type without deserializing its
object.

To populate the sets, we intercept vertices during input loading and scan the partition
ids of its out-edge neighbours to determine its type. This is sufficient for undirected graphs
but not for directed graphs: a vertex u has no information about its in-edge neighbours.
Thus, we have each vertex v send a message to its out-edge neighbours u that belong to a
different partition. Then u can correct its type based on messages received from its in-edge
neighbours. This all occurs during input loading and thus does not impact computation
time. We also batch all dependency messages to minimize network overheads and input
loading times.

As described in Chapter 4.3.2.2, the global and local tokens are passed around in a
round-robin fashion. Local tokens are passed between a worker’s partitions at the end
of each superstep (logical superstep for BAP). Importantly, each worker holds the global
token for n (logical) supersteps, where n is the number of partitions owned by that worker.
This ensures that every partition’s mixed boundary vertices are executed (Chapter 4.3.2.2).
Without this, acquiring both tokens becomes a race condition, leading to starvation for
some mixed boundary vertices.

Since local messages (between vertices of the same worker) are not cached, local repli-
cas are updated eagerly. For remote replicas, each worker flushes and waits for delivery
confirmations for its remote messages before passing along the global token. This enables
message batching and is more performant than eagerly flushing after the computation of
only a single vertex or partition.

In contrast, Giraphx [71] implements single-layer token passing and as a part of user
algorithms rather than within the system. Giraphx stores type information with the vertex
objects and uses two supersteps to update vertex types based on their in-edge dependencies.
As discussed previously, the former is less performant while the latter wastes two supersteps
of computation. Furthermore, this unnecessarily clutters user algorithms with system-level
concerns and is thus neither transparent nor configurable.

4.4.3 Partition-based Distributed Locking

For partition-based distributed locking, each worker tracks fork and token states for its
partitions in a dual-layer hash map. For each pair of neighbouring partitions Pi and Pj,
we map Pi’s partition id i to the id j to a byte whose bits indicate whether Pi has the fork,
whether the fork is clean or dirty, and whether Pi holds the request token. Since partition
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ids are integers in Giraph, we use hash maps optimized for integer keys to minimize memory
footprint.

In the Chandy-Misra algorithm, forks and tokens must be placed such that the prece-
dence graph, whose edge directions determine which philosopher has priority for each
shared fork, is initially acyclic [22]. A simple way to ensure this is to assign each philoso-
pher an id and, for each pair of neighbours, give the token to the philosopher with the
smaller id and the dirty fork to the one with the larger id. This guarantees that philoso-
phers with smaller ids initially have precedence over all neighbours with larger ids, because
a philosopher must give up a dirty fork upon request (except while it is eating). Partition
ids naturally serve as philosopher ids, allowing us to use this initialization strategy.

For directed graphs, two neighbouring partitions may be connected by only a directed
edge, due to their constituent vertices. Since partitions must be aware of both its in-edge
and out-edge dependencies, workers exchange dependency information for their partitions
during input loading. Like in token passing, dependency messages can be batched to ensure
a minimal impact on input loading times.

Partitions acquire their forks synchronously by blocking until all forks arrive. This is
because even if all forks are available, it takes time for them to arrive over the network,
so immediately returning is wasteful and may prevent other partitions from executing (a
partition cannot give up clean forks: it must first execute and dirty them). Finally, per
Chapter 4.3.3, each worker flushes its remote messages before a partition sends a shared
fork to another worker’s partition.

4.4.4 Vertex-Based Distributed Locking

For vertex-based distributed locking, we use the insights from our implementation of
partition-based locking. Each worker tracks fork and token states for its p-boundary ver-
tices and uses vertex ids as keys. Keeping this data in a central per-worker data structure
is even more important than in token passing: forks and tokens are constantly exchanged,
so their states must be readily available to modify. Storing this data at each vertex object
would incur significant deserialization overheads. Fork and token access patterns are also
fairly random, which would further incur an expensive traversal of a byte array to locate
the desired vertex.

Like the partition-based approach, for directed graphs, each vertex v broadcasts to its
out-edge neighbours u so that u can record the in-edge dependency into the per-worker hash
map. This occurs during input loading and all messages are batched. Vertices acquire their
forks synchronously and each worker flushes its remote messages before any m-boundary
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vertex forfeits a fork to a vertex of another worker. However, these batches of remote
messages are far too small to avoid significant communication overheads (Chapter 4.5.3).

In contrast, Giraphx sends forks and tokens as part of messages generated by user
algorithms rather than as internal system messages. Consequently, fork and token messages
between different workers are delivered only during global barriers, which unnecessarily
divides each superstep into multiple sub-supersteps (akin to Proposition 2). The resulting
increase in global barriers negatively impacts performance. Our implementation avoids
this (Chapter 4.4.6). Furthermore, Giraphx again confuses system and algorithm concerns
and is neither transparent nor configurable.

4.4.5 Fault Tolerance

For fault tolerance, the relevant data structures (hash sets or hash maps) are written to disk
at a synchronous checkpoint. For token passing, each worker also records whether they have
the global token and the id of the partition holding the local token. Checkpoints occur after
a global barrier and thus capture a consistent state: there are no vertices executing and
no in-flight messages. Thus, neither token passing’s global token nor distributed locking’s
fork and request tokens are in transit.

4.4.6 Algorithmic Compatibility and Usability

A system can provide one computation model for algorithm developers to code with and
execute algorithms using a different computation model. For example, Giraph async and
GiraphUC are designed to allow algorithm developers to code their algorithms for BSP
and transparently execute with the asynchronous AP and BAP models, respectively, to
maximize performance. Thus, with respect to BSP, the AP and BAP models do not
negatively impact usability.

When we pair Giraph async or GiraphUC with vertex-based or partition-based dis-
tributed locking, they remain backwards compatible with (i.e., can still execute) algorithms
written for the BSP model. To take advantage of serializability, algorithm developers can
now code for a serializable computation model. Specifically, this is the AP model with the
additional guarantee that conditions C1 and C2 are true. For example, our graph coloring
algorithm is written for this serializable AP model rather than for BSP (Chapter 4.5.2.1).

However, not all synchronization techniques provide this clean abstraction. Token
passing fails in this regard because only a subset of vertices execute in each superstep.
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That is, token passing cannot provide the guarantee that all vertices will execute some
code in superstep i, because only a subset of the vertices will execute at superstep i. The
same issue arises for the constrained vertex-based distributed locking solution for BSP
and sync GAS (Proposition 2) and Giraphx’s implementation of vertex-based distributed
locking (Chapter 4.4.4), because they rely on global barriers for the exchange of forks
and tokens. In contrast, our implementations of vertex-based and partition-based locking
ensure that all vertices are executed exactly once in each superstep and thus provide
superior compatibility and usability.

4.5 Experimental Evaluation

We compare dual-layer token passing and partition-based distributed locking with Gira-
phUC and vertex-based distributed locking with GraphLab async. We exclude Giraph
async because it performs worse than GiraphUC for the same techniques. Similarly, Gi-
raphUC is much slower than GraphLab async for vertex-based locking (Chapter 4.5.3).
Hence, our evaluation focuses on the most performant combinations of systems and syn-
chronization techniques.

Lastly, we exclude Giraphx as it implements token passing and vertex-based locking
as part of user algorithms rather than within the system. This leads to poor performance
and usability (Chapters 4.4.2 and 4.4.4). Furthermore, Giraphx uses an older and less
performant version of Giraph and does not implement the more performant BAP model.

4.5.1 Experimental Setup

We evaluate the different synchronization techniques with the same setup used for our
evaluation of GiraphUC (Chapter 3.4.1). However, we use 16 and 32 machines instead
of 64 due to the poor performance of token passing and vertex-based distributed locking
on the larger graphs (Chapter 4.5.3): using 64 machines can require over 8 hours for a
single experimental run and does not reveal trends that are not already captured with
32 machines. We again implement our modifications in Giraph 1.1.0-RC0 and compare
against GraphLab 2.2.

We continue to use large real-world datasets5,6[14, 16, 15], which are stored on HDFS as
regular text files and loaded into each system using the default random hash partitioning.

5http://snap.stanford.edu/data/
6http://law.di.unimi.it/datasets.php
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Table 4.1: Directed datasets. Parentheses give values for the undirected versions used by graph coloring.

Graph |V | |E| Max Degree

com-Orkut (OR) 3.0M 117M (234M) 33K (33K)
arabic-2005 (AR) 22.7M 639M (1.11B) 575K (575K)
twitter-2010 (TW) 41.6M 1.46B (2.40B) 2.9M (2.9M)
uk-2007-05 (UK) 105M 3.73B (6.62B) 975K (975K)

Table 4.1 lists the four graphs we use: AR, TW, and UK are the same graphs from Table 3.1,
while OR is a social network graph. We use OR as it is both larger and much denser than
US. This makes it more suitable for testing algorithms such as graph coloring, which can
fail to terminate on dense graphs when executed without serializability.

For partition-based distributed locking, we use Giraph’s default setting of |W | partitions
per worker, where |W | is the number of workers. Increasing the number of partitions beyond
this does not improve performance: more edges become cut, which increases inter-partition
dependencies and hence leads to more forks and tokens. Smaller partitions also mean
smaller message batches and thus greater communication overheads. However, using too
few partitions restricts parallelism for both compute threads and communication threads:
the message store at each worker is indexed by separate hash maps for each partition,
so more partitions enables more parallel modifications to the store while fewer partitions
restricts parallelism and degrades performance.

4.5.2 Algorithms

We use graph coloring, PageRank, SSSP, and WCC as our algorithms. As discussed in
Chapter 4.1, graph coloring requires serializability for termination. All algorithms have
communication patterns that match those of more sophisticated algorithms that require
serializability. For example, the ALS algorithm has identical communication patterns to
PageRank: instead of performing scalar multiplication and addition, ALS has each vertex
solve a linear system. By using simpler algorithms like PageRank, we can better under-
stand the performance of the synchronization techniques without being hindered by the
complexities of each algorithm. For example, because ALS requires matrix computations,
we need to use a native matrix library for Giraph as it is implemented in Java: without
such a library, matrix operations in Java can be up to 5× slower than in C++7. More

7It is for this reason that we do not use ALS: we were unable to find a native matrix library that would
work in Giraph.
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generally, to accurately parse the results of machine learning algorithms, we must factor
in algorithm-specific concerns like training error. In contrast, for SSSP and WCC, we can
simply look at computation time. Since our goal is to understand the performance of our
synchronization techniques, rather than of particular algorithms, it suffices to use these
four algorithms.

The PageRank, SSSP, and WCC algorithms we use are as described previously in
Chapter 3.4.2. In particular, recall that GraphLab async has no notion of supersteps and
can only terminate on PageRank based on a user-specified threshold ε (Chapter 3.4.2.4).
To ensure that experiments complete in a reasonable amount of time, we terminate all
systems using a threshold of 0.01 for OR and AR and 0.1 for TW and UK. This ensures that all
systems perform the same amount of work for each graph and avoids the need to construct
an exhaustive but expensive L1-norm plot (Figure 3.7).

4.5.2.1 Graph Coloring

We use a greedy graph coloring algorithm (Algorithm 4) that requires serializability and an
undirected input graph. Each vertex u initializes its value/color as no color. Then, based
on messages received from its (in-edge) neighbours, u selects the smallest non-conflicting
color as its new color and broadcasts it to its (out-edge) neighbours.

Algorithm 4 Graph coloring pseudocode.

1 procedure compute(vertex, incoming messages)
2 if superstep == 0 then
3 vertex.setValue(no color)
4 return

5 if vertex.getValue() == no color then
6 cmin ← smallest non-conflicting color
7 vertex.setValue(cmin)
8 Send cmin to vertex’s out-edge neighbours

9 voteToHalt()

In theory, the algorithm requires only one iteration since serializability prevents con-
flicting colors. In practice, because Giraph async and GiraphUC are push-based, it requires
three (logical) supersteps: initialization, color selection, and handling extraneous messages.
The extraneous messages occur because vertices indiscriminately broadcast their current
color, even to neighbours who are already complete. This wakes up vertices, leading to
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an additional iteration. GraphLab async, which is pull-based, has each vertex gather its
neighbours’ colors rather than broadcast its own and thus completes in a single iteration.

4.5.3 Results

For our results, we report computation time, which is the total time of running an algorithm
minus the input loading and output writing times. This also captures any communication
overheads that the synchronization techniques may have: poor use of network resources
translates to longer computation times. For each experiment, we report the mean and 95%
confidence intervals of five runs (three runs for experiments taking over 3 hours).

As mentioned previously, we exclude Giraph async as it performs worse than GiraphUC
for the same techniques. For example, on OR, token passing with Giraph async is up to
1.8× slower than GiraphUC. Similarly, on OR, vertex-based locking with GiraphUC is up to
44× slower than vertex-based locking with GraphLab async, as GraphLab async is tailored
for this particular technique whereas GiraphUC is not (Chapter 4.3.1.2). Thus, we exclude
these results and focus instead on the most performant combinations.

For graph coloring, partition-based locking is up to 2.3× faster than vertex-based lock-
ing for TW with 32 machines (Figure 4.3a). This is despite the fact that GiraphUC per-
forms an additional iteration compared to GraphLab async (Chapter 4.5.2.1). Similarly,
partition-based locking is up to 2.2× faster than token passing for UK on 32 machines.
Vertex-based locking fails for UK on 16 machines because GraphLab async runs out of
memory.

For PageRank, partition-based distributed locking again outperforms the other tech-
niques: up to 18× faster than vertex-based locking on OR with 16 machines (Figure 4.3b).
Vertex-based locking again fails for UK on 16 machines due to GraphLab async exhaust-
ing system memory. Token passing takes over 12 hours (720 mins) on UK when using 32
machines, meaning partition-based locking is over 14× faster than token passing.

For SSSP and WCC on UK, token passing takes over 7 hours (420 mins) for 16 machines
and 9 hours (540 mins) for 32 machines, while GraphLab async fails on 16 machines due to
running out of memory (Figures 4.3c and 4.3d). For SSSP, partition-based locking is up to
13× faster than vertex-based locking for OR on 16 machines and over 10× faster than token
passing for UK with 32 machines. For WCC, partition-based locking is up to 26× faster
than vertex-based locking for OR on 16 machines and over 8× faster than token passing for
UK with 32 machines.
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(b) PageRank
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(c) SSSP
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(d) WCC

Figure 4.3: Computation times for graph coloring, PageRank, SSSP, and WCC. Missing bars are labelled
with ‘F’ for unsuccessful runs.

4.6 Summary

In this chapter, we presented a formalization of serializability for graph processing systems
and proved that two key conditions are required to provide serializability. We introduced a
novel partition-based synchronization technique to provide serializability and showed that,
in addition to being correct, it is more efficient than existing techniques. We implemented
all techniques in Giraph async and GiraphUC to provide serializability as a configurable
option that is completely transparent to algorithm developers. Our experimental evaluation
demonstrated that our partition-based technique is up to 26× faster than the existing
approaches, even when compared to GraphLab async, a system specifically tailored for a
vertex-based synchronization technique.
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Chapter 5

Conclusion

We began by introducing two major problems of existing specialized Pregel-like graph
processing systems: (1) poor performance due to frequent global synchronization barriers
and (2) a lack of serializability guarantees for graph algorithms. Before addressing these
two problems, we first categorized existing Pregel-like systems in Chapter 2, in part to
illustrate that solutions to these two problems either do not exist or are inadequate. We
also characterized several other related systems in the field of graph processing, to show
both how the field has evolved and the future directions in which it may be heading.

In Chapter 3, we addressed problem (1) by introducing a new barrierless asynchronous
parallel (BAP) computation model that uses the notions of local barriers and logical super-
steps to reduce the frequency of global barriers while maintaining correctness for algorithms
written for BSP. Consequently, this allows a system to provide algorithm developers with
a BSP interface while transparently executing using the asynchronous BAP model to max-
imize performance. Our implementation of the BAP model, GiraphUC, demonstrated
across-the-board performance gains of up to 5× faster than Giraph, Giraph async, and
GraphLab sync and 86× faster than GraphLab async.

In Chapter 4, we addressed problem (2) by formalizing the notion of serializability
for Pregel-like systems and proving that systems can provide serializability when paired
with a synchronization technique that satisfies two key conditions. We then described and
characterized the performance of existing synchronization techniques (token passing and
vertex-based distributed locking) and introduced a new and more performant partition-
based distributed locking technique. Our implementations of these techniques in Giraph
async and GiraphUC demonstrated that our partition-based distributed locking technique
outperforms existing techniques by up to 26×, even when compared to GraphLab async,
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a system tailored for the vertex-based distributed locking technique.

5.1 Future Work

There remains several interesting research questions for both GiraphUC and serializability.
Specifically, how to provide support for aggregators that require global coordination in
GiraphUC (Chapter 5.1.1) and how to generalize serializability to algorithms where vertices
can communicate with arbitrary vertices (Chapter 5.1.2). We also pose broader long-term
questions in Chapter 5.1.3 regarding the integration of BAP and serializability into generic
big data systems.

5.1.1 Globally Coordinated Aggregators

In BSP, algorithms use aggregators to record global information: for example, the number
of vertices that successfully completed some task in the previous superstep. Each vertex
can contribute a value to an aggregator in superstep i and that aggregator’s value is made
available to all vertices in superstep i + 1. However, in many cases, algorithms require
only per-worker information for correctness. That is, they do not require aggregators
that are globally coordinated: instead of each vertex needing to see an aggregated value
accumulated from all vertices of all workers in a previous superstep, a vertex of worker
Wj needs to see only the aggregated value accumulated from Wj’s vertices in the previous
logical superstep.

GiraphUC supports aggregators that do not need to be globally coordinated since, in
practice, few algorithms require globally coordinated aggregators. For example, in Table
2.1, only K-means requires globally coordinated aggregators. Additionally, since GiraphUC
supports multi-phase algorithms, it naturally supports globally coordinated aggregators
used for denoting which computation phase the algorithm is in. However, GiraphUC does
not efficiently support other forms of globally coordinated aggregators: ensuring that the
aggregator’s value is always correct requires all workers to wait for each other, which means
there must be frequent global barriers and so BAP effectively degrades to AP.

Thus, an open question is whether it is possible to support globally coordinated ag-
gregators in a more efficient manner, while maintaining correctness under the BSP model.
For example, instead of synchronizing all workers with a global barrier, can we have faster
workers use stale aggregator values in lieu of receiving newer values from their slower neigh-
bours (similar to Theorem 2)? Or, alternatively, can globally coordinated aggregators be
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converted into equivalent per-worker aggregators? In the latter case, the BSP interface can
be modified slightly, as done for multi-phase algorithms (Chapter 3.2.3), to allow algorithm
developers to specify these per-worker aggregators.

5.1.2 Generalized Serializability

In Chapter 4, we formalized serializability for algorithms where vertices communicate only
with their direct neighbours. This covers many machine learning and graph analytic al-
gorithms that require serializability. In fact, we were unable to find any examples of
algorithms that required both serializability and communication with arbitrary vertices.

Nevertheless, it would be useful to generalize serializability support to include algo-
rithms that communicate with arbitrary vertices. Supporting this within the graph pro-
cessing system is much more challenging as the read set of each transaction is no longer
known a priori (Chapter 4.2.2), meaning condition C2 of Theorem 4 is insufficient for
guaranteeing non-conflicting operations. That is, the read set of each vertex is, in general,
determined dynamically at runtime.

One possible solution is to provide an API that, for each vertex u, enables the algorithm
developer to instruct the system on which vertices u must be coordinated with prior to
u being executed. However, this may not always be possible if, for example, within a
single superstep, each vertex u sends messages to vertices whose ids are given by the
received messages that u must first read. To get around this, one might further modify
the interface to separate message reading from the compute function. However, such a
solution will negatively impact usability and compatibility.

A more general solution is to introduce the notion of an abort, to allow for transactions
to be cancelled and rolled back. However, this requires a significant and non-trivial redesign
of the graph processing system to make it transaction-aware: it must track and explicitly
commit or abort all transactions. In contrast, the synchronization techniques we introduced
in Chapter 4.3 do not require the system to be transaction-aware: the techniques simply run
on top of the existing system. A redesign is necessary to support aborts because systems
that are not transaction-aware will suffer cascading aborts: messages will be erroneously
sent before a commit occurs and there is no simple way to undo a message once it is sent.
In the worst case, such a scenario would require rolling back the entire graph state.
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5.1.3 Asynchronous Models in Generic Systems

There is now a greater focus on providing graph analytics on generic big data systems such
as dataflow engines, like Spark [82] and Hyracks [18], and relational databases (Chapter
2.4). Unlike specialized graph processing systems, where there is a direct mapping from
graph analytics to the internal system implementation, graph analytics built on generic
big data systems are abstracted away from the underlying system implementation. For
example, dataflow engines simulate graph operations by performing joins on tables while
relational databases translate graph operations to relational operations.

Thus, a more general open question is whether asynchronous models, such as BAP, can
be implemented on these generic big data systems to provide performance gains despite
the extra layer of abstraction. Alternatively, can the notions of local barriers and logical
supersteps be translated into mechanisms that affect the implementation of generic big
data systems to enhance their graph analytics performance?

Similarly, it may be possible to continue to provide serializability in a configurable and
transparent manner by translating the synchronization techniques for use with these generic
big data systems. In particular, relational databases may be a better option for providing
generalized serializability (Chapter 5.1.2), as they are typically transaction-aware and can
thus avoid the non-trivial redesign required by specialized graph processing systems.
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Appendix A

Proofs for Giraph Unchained

In this chapter, we provide proofs for Theorems 1 and 2 of Chapter 3.

A.1 Preliminaries

Single-phase (BSP) algorithms are so named because they have a single computation phase.
That is, the compute function executed by vertices always contains the same logic for every
superstep. For example, if the compute function contains branching logic based on the
superstep count or some aggregator value, then it is composed of multiple computation
phases1 and therefore not a single-phase algorithm. The exceptions to this are initialization,
which is conditional on it being the first superstep, and termination, such as voting to
halt after K supersteps. The former is a special case that we can handle directly in the
implementation, while the latter is termination and so there is no additional logic that will
follow. Specifically, many algorithms perform initialization procedures in the first (logical)
superstep and send, but do not receive, messages. This can be handled by keeping all
messages in the message store until the second (logical) superstep. This is correct, since
in BSP no sent messages will be seen by any vertex in the first (logical) superstep.

Since both the AP and BAP models execute only algorithms implemented for the BSP
model, we need only consider single-phase BSP algorithms. From the discussion above,
such algorithms have the following property:

1Theorem 3 describes how the AP and BAP models handle multi-phase algorithms.
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Property I: The computation logic for single-phase BSP algorithms is the same for every
superstep.

Secondly, because of the iterative nature of BSP, a message m sent by an arbitrary
vertex v is either a function of v’s vertex value or it is not. That is, an algorithm either
has all messages of the form m = f(vvalue), where v is the sender of m, or all messages
of the form m 6= f(vvalue). All messages of any particular algorithm are always of one
form because, by Property I, the computation logic generating the messages is always the
same. In the first case, v’s vertex value is a function of v’s previous vertex values, so m
encapsulates v’s most recent vertex value as well as all past values, meaning that newer
messages contain more information than older messages. Then, since newer messages are
more important than older messages, each vertex needs to see only the newest messages
sent to it. In the second case, the algorithm is an accumulative update algorithm [85]
where old messages are as important as new messages, because m does not encapsulate v’s
previous values. Hence, each vertex must see all messages sent to it exactly once. Then
we have the following two properties:

Property II: For an algorithm with messages m = f(vvalue), where m is sent by a vertex
v, a new message from v to a vertex u is more important than an old message from v to u
and so u must see the newest message sent to it by v.

Property III: For an algorithm with messages m 6= f(vvalue), where m is sent by a vertex
v, all messages from v to a vertex u are important and so u must see all messages sent to
it by v exactly once.

Note that both Properties II and III are enforced in the BSP model since implemen-
tations ensure that messages are delivered exactly once and not lost, by acknowledging
delivery of messages and retrying failed sends. Since message stores buffer all received
messages exactly once and remove all the messages for a vertex u when computing u, the
vertex u will see all messages sent to it exactly once.

All single-phase BSP algorithms can be defined as one of two types: ones in which
vertices do not need all messages from all neighbours (type A) and ones in which vertices
need all messages from all neighbours (type B). Since accumulative update algorithms are
always type A algorithms [85], messages of type A algorithms are either all of the form
m = f(vvalue) or all of the form m 6= f(vvalue), while messages of type B algorithms are
always of the form m = f(vvalue).
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A.1.1 Type A

Type A algorithms satisfy both Properties II and III above, as it must handle messages of
both forms. Since Property III is more restrictive (that is, it being true implies Property
II is also true), the invariant for type A algorithms is simply Property III:

Invariant A: All messages sent from a vertex v to a vertex u must be seen by u exactly
once.

Furthermore, the definition of type A algorithms places no constraints on when a ver-
tex’s neighbours are active or inactive. That is, a vertex’s neighbours can become active
or inactive at any superstep during the computation. Consequently, its compute function
can receive any number of messages in each superstep, which means it must be capable of
processing such messages (otherwise, the algorithm would not be correct even for BSP):

Property A: The compute function of type A algorithms correctly handles any number
of messages in each superstep.

A.1.2 Type B

Unlike type A algorithms, type B algorithms have only one form of messages so it satisfies
only Property II. However, since the definition of a type B algorithm is more restrictive
than Property II, its invariant follows directly from its definition:

Invariant B: Each vertex must see exactly one message from each of its in-edge neighbours
at every superstep.

For type B algorithms, a vertex’s neighbours are always active since each vertex must
receive messages from all their neighbours. Intuitively, if even one vertex is inactive, it
will stop sending messages to its neighbours and thus violate the definition of type B
algorithms. Since all messages for type B algorithms are of the form m = f(vvalue), then by
Property II, not every message from a vertex v to another vertex u is important because
we will always see a newer message from v (unless the algorithm is terminating, but in that
case u would be halting as well). That is, correctness is still maintained when a vertex u
sees only a newer message m′ sent to it by v and not any older messages m from v, since
m′ is more important than m. Therefore:

Property B: An old message m from vertex v to u can be overwritten by a new message
m′ from v to u.
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Note that, unlike type A algorithms, the compute function of type B algorithms can
only correctly process N messages when executing on a vertex u with N in-edge neighbours.
Processing fewer or more messages will cause vertex u to have an incorrect vertex value.
Invariant B ensures that this constraint on the computation logic is satisfied.

A.2 Theorem 1

Theorem 1. The AP and BAP models correctly execute single-phase BSP algorithms in
which vertices do not need all messages from all neighbours.

Proof. As mentioned in Appendix A.1 above, we need only focus on the type A algorithms.
Specifically, we must show that (1) relaxing message isolation and, for BAP, removing
global barriers does not impact the algorithm’s correctness and (2) Invariant A is enforced
by both models.

For (1), relaxing message isolation means that messages are seen earlier than they would
have been seen in the BSP model, while the removal of global barriers means a message
from any superstep can arrive at any time.

By Property I, a received message will be processed in the same way in the current su-
perstep as it would in any other superstep, because the computation logic is the same in all
supersteps. Thus, showing messages from different supersteps does not affect correctness,
meaning that relaxing message isolation does not impact correctness.

By Property A, vertices can process any number of received messages. That is, cor-
rectness is maintained even if messages are delayed2 and hence not passed to the vertex’s
compute function or a large number of messages suddenly arrive and are all passed to
the vertex’s compute function. Together with Property I, this shows that removing global
barriers does not impact correctness.

For (2), like BSP, the message stores of both the AP and BAP models still buffer all
received messages by default and, when computing a vertex u, will remove all messages
for u from the message store (Chapter 3.3.2). Since the implementations of both models
ensure messages are delivered exactly once and are not lost, we can ensure that the message
store buffers all messages for u exactly once and thus u sees all messages from senders v
exactly once. More precisely, the AP and BAP models still guarantee message delivery like

2At the implementation level, messages are guaranteed to be delivered, so a message may be delayed
but is never lost.
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the BSP model—the models modify when a message is received, not whether a message
will be delivered. This is enforced in the implementation in the same way as it is for
implementations of the BSP model: by using acknowledgements and resending messages
that fail to deliver.

A.3 Theorem 2

Theorem 2. Given a message store that is initially filled with valid messages, retains old
messages, and overwrites old messages with new messages, the BAP model correctly exe-
cutes single-phase BSP algorithms in which vertices need all messages from all neighbours.

Proof. As mentioned in Appendix A.1, we need only focus on the type B algorithms.
Specifically, we must show that (1) relaxing message isolation and removing global barriers
does not impact the algorithm’s correctness and (2) Invariant B is maintained by the BAP
model. Note that proving Theorem 2 for the BAP model also proves it for the AP model
since BAP subsumes AP.

First, note that the theorem states three assumptions about the message store: it is
initially filled with valid messages, it retains old messages (i.e., does not remove them),
and new messages overwrite old messages. More concretely, consider an arbitrary vertex u
with neighbours vi, 0 ≤ i < N , where N = deg−(u) is the number of in-edges (or in-edge
neighbours) of u. Then, initially, the message store will have exactly one message mi from
each of u’s neighbours vi. That is, when computing u, the system will pass the set of
messages S = {mi}∀i, with |S| = N , to u’s compute function. If u is to be computed
again and no new messages have arrived, the message store retains all the old messages
and so S = {mi}∀i is simply passed to u’s compute function again. If a new message m′j
arrives from one of u’s neighbours vj, j ∈ [0, N), it will overwrite the old message mj. From
Property B, performing message overwrites in this way will not affect correctness. Then the
set of messages passed to u’s compute function will now be S = {mi}∀i∪{m′j}\{mj}, where
again we preserve |S| = N and exactly one message from each of u’s in-edge neighbours.

Then by the above, the BAP model maintains Invariant B: on every logical superstep,
the message store passes to u exactly one message from each of its in-edge neighbours.
Hence, (2) is true. For (1), relaxing message isolation does not affect correctness since, by
Property I, received messages are processed in the same way in every superstep and, since
(2) is true, we already satisfy Invariant B. Removing global barriers also does not affect
correctness since messages can be delayed or arrive in large numbers without affecting the
number or source of messages in the message store: old messages are retained if messages
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are delayed, while newly arrived messages overwrite existing ones. Thus, the message store
will still have exactly one message from each of u’s in-edge neighbours.
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