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Abstract 

In vitro selection of metal-specific DNAzymes has been shown to be a powerful method 

to obtain biosensors for metal ion detection. Most previously reported DNAzymes employed 

divalent metal ions as cofactors. In this thesis, two types of selection experiments are described. 

First, five representative DNAzymes with distinct activity patterns across the trivalent lanthanide 

series were isolated from 14 independent in vitro selection experiments using each of the 

lanthanides (except the radioactive promethium) as the metal cofactor. Based on my 

understanding attained from the lanthanides selections, a modified in vitro DNAzyme selection 

protocol was developed for thiophilic metal ions. A highly sensitive and exceptionally selective 

Cd2+-dependent DNAzyme was isolated. Each of these DNAzymes was studied extensively and 

the results are presented in each chapter.  

In Chapter 2, a new DNAzyme named Ce13d with a bulged hairpin structure was isolated 

after six rounds of in vitro selection. Although the selection was performed using a Ce4+ salt as 

the intended target metal, Ce13d has almost no activity with Ce4+. However, this DNAzyme is 

highly active with all the trivalent lanthanides, Y3+, and Pb2+. With the addition of thiol 

containing reagents, the Ce13d can serve as a general probe for rare earth metals with a detection 

limit down to ~1 nM. In addition, this DNAzyme demonstrated the capability of distinguishing 

the different oxidation states of the cerium ion. 

In Chapter 3, another representative DNAzymes named Lu12 was studied in detail. The 

study revealed that this DNAzyme has smaller conserved sequences in the unstructured catalytic 

core. Unlike Ce13d, Lu12 is more active with smaller lanthanides and has the lowest activity 

with the largest lanthanide, Lu3+. The study showed that this DNAzyme is able to achieve a rate 
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of 0.12 min-1 in the presence of 10 µM Nd3+ at pH 6.0. Although both Ce13d and Lu12 showed 

cleavage with two non-lanthanide ions: Y3+ and Pb2+, the two DNAzymes displayed two 

different lanthanides affinity patterns. By combining only the Ce13d and the Lu12 DNAzymes, a 

few large lanthanides were identified with a ratiometric assay. 

In Chapter 4, a new family of DNAzymes is described with a simple loop structure that 

was identified from 3 independent selections from which Tm7 was chosen as a representative 

DNAzyme for evaluation. Interestingly, Tm7 is active only with the seven large lanthanides. In 

fact, Tm7 exhibits a cleavage rate of 1.6 min-1 at pH 7.8 with 10 µM Er3+. In addition, unlike the 

Ce13d and Lu12, only Y3+ induced cleavage among the tested non-lanthanide ions. The 

lanthanides binding study also revealed that 3 metal ions are involved in the catalytic step for 

Tm7. When the non-bridging oxygen at the cleavage junction was substituted with a 

phosphorothioate bond, the enzymatic activity was completely abolished and could not be 

rescued. This result suggested that two interacting metal ions are involved in direct bonding to 

both non-bridging oxygen atoms. Based on these findings, a new model involving three 

lanthanide ions was proposed. 

In Chapter 5, two more lanthanide-dependent DNAzymes (Dy10a and Gd2b) with 

distinct activity patterns were isolated and studied. By labeling with fluorophore/quencher pairs, 

5 DNAzyme beacon sensors were prepared. Each of these DNAzymes can detect down to low 

nM lanthanide concentrations with minimal interference from other metals. A sensor array was 

prepared to achieve pattern-recognition-based detection using linear discriminant analysis 

(LDA), where separation was achieved between lanthanides and other metals, light and heavy 

lanthanides, and for the most part, each lanthanide.  
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In Chapter 6, the Ce13d DNAzyme with phosphorothioate (PS) modifications was 

studied. With just a single PS at the substrate cleavage site, the enzymatic activity of the Ce13d 

DNAzyme drastically shifts from lanthanide ions dependent to soft thiophilic metal ion-

dependent. By incorporating the PS modification to a few other DNAzymes, a sensor array with 

PO- and PS-DNAzymes was prepared to detect each metal. This study provides a new route to 

obtain metal-specific DNAzymes by atomic replacement and also offers important mechanistic 

insights into metal binding and DNAzyme catalysis. 

In Chapter 7, I demonstrated the feasibility of using a DNA library with a single 

phosphorothioate (PS) modification for in vitro DNAzyme selection. This simple modification 

not only increases the functionality of the DNA but also boosts its affinity for thiophilic metals 

without complicating the selection process. For this particular study, Cd2+ was used as the 

intended target. After using a blocking DNA and negative selections to rationally direct the 

library outcome, a highly specific DNAzyme with only 12 nucleotides in the catalytic loop is 

isolated. Remarkably, the DNAzyme is capable of detecting Cd2+ down to 1.1 nM. In addition, 

the DNAzyme is most active with Cd2+ and its selectivity against Zn2+ is over 100,000-fold. 

Finally, its application in detecting Cd2+ in rice is also demonstrated. 
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Chapter 1. Introduction to Functional Nucleic acids 

The four major classes of macromolecules found in biological systems are carbohydrates, 

lipids, nucleic acids and proteins. Together, these organic molecules are responsible for all of 

the most sophisticated functions of living cells. Nucleic acids such as deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA) function to preserve, store and transfer genetic information. 

While nucleic acids carry the genetic information of the cell, the primary responsibility of 

proteins is to execute the instructions that are encoded in the DNA. The potential of nucleic acids 

to behave as functional molecules had not attracted much interest due to the classical notion that 

proteins are functional molecules playing an important role in the body, whereas DNA is a 

blueprint of proteins and RNA is a mediator. 

 

1.1 Chemical structure of nucleic acids 

Nucleic acids are essential biological molecules that are found in all forms of life. There 

are two types of nucleic acids: RNA and DNA. Both RNA and DNA are linear polymers made 

from monomers called nucleotides. Each nucleotide consists of three parts (Figure 1.1): a) a 

nitrogenous base; b) a five-membered pentose sugar ring; c) a phosphate group at the 5ʹ′-carbon. 

The nitrogenous bases are further sub-categorized into pyrimidine and purine. Each base is 

attached to the 1ʹ′-carbon of the sugar ring via a N-glycosidic bond. The molecule without the 

phosphate group is called a nucleoside. In a polynucleotide, the phosphate group links successive 

nucleotides together linearly through the 3ʹ′-hydroxyl group of one nucleotide and 5ʹ′-phosphate 

group of another nucleotide.  
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This bond is usually referred as phosphodiester linkage. The hydrophilic backbone 

phosphates, with a pKa value near 1, are completely ionized and negatively charged at pH 7. 

These negatively charges are largely neutralized by ionic interactions with positive charges on 

metal ions. There are two structural differences between RNA and DNA nucleotides: RNA has a 

hydroxyl group instead of a hydrogen at the 2ʹ-position of the pentose. Secondly, RNA has 

slightly different base pairing than DNA. For both nucleic acids, guanine (G) binds with cytosine 

(C). However, in RNA, adenine (A) pairs with uracil (U) instead of thymine (T).  These base 

interactions are referred as Watson-Crick base pairing (Figure 1.2). In fact, a few other forms of 

base pairing also exist. Hoogsteen base pairing is found in triple helices while wobble base 

pairing is more common in RNA (Figure 1.3). 
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Figure 1.2 Phosphodiester linkage backbone and Watson-Crick base pairing of DNA. 
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1.2 Naturally occurring catalytic RNAs: ribozymes  

Enzymes are essential biomolecules in living systems that catalyze biochemical reactions 

with extraordinary speed and precision. While enzymes made of protein are the dominant form 

of biocatalyst in modern cells, there are some natural RNA-based enzymes (or ribozymes) that 

are capable of catalyzing fundamental biological reactions.1,2 For instance, ribosome for protein 

translation3 and the spliceosome for RNA splicing4 are two well studied ribozymes. These catalytic 

RNAs are usually classified into two main categories: small self-cleaving ribozymes and large 

ribozymes.5 For example, the small ribozymes include the hammerhead, hairpin, hepatitis delta virus 

(HDV), Varkud satellite (VS), and glmS ribozymes.6 These ribozymes are usually 50-150 nucleotides 

in length and they catalyze sequence-specific intramolecular cleavage of RNA. The large ribozymes 

include the group I7 and II8 introns and the RNA component of RNase P.9 Just like protein enzymes, 

ribozymes also require rigorous geometrical positioning of the catalytic site with respect to the 

substrate for the reaction to occur. Unlike proteins contain versatile functional groups, natural 

occurring ribozymes require divalent metal ions (mostly Mg2+) as cofactor for the activity under 

physiological conditions.10,11  

 

1.3 Interaction between nucleic acids and metal ions 

Metal ions play an important role in structure and function12,13 of nucleic acids. Under 

physiological pH, the phosphate backbone of single-stranded DNA (ssDNA) is highly negatively 

charged. Thus, the inorganic cations have a strong influence on the tertiary structure of ssDNA. 

Bringing the two complementary strands into close proximity requires overcoming an 

electrostatic energy barrier. In general, the presence of counter ions can reduce the long-range 

electrostatic repulsion. It is known that metal ions are necessary for stabilizing the dsDNA 

structure by binding to the phosphate backbones.14 In fact, divalent and trivalent metal ions bind 



	
  
	
  

5	
  

more tightly than monovalent ions as a result of greater charge density. However, metal ions can 

also interact with nucleobases via Lewis acid-base reactions. The amino and keto tautomeric 

forms of the nucleobases are obvious metal binding sites due to their available lone pair electrons 

on the unprotonated endocyclic N-atoms and exocyclic carbonyl O-atoms (Figure 1.4).  
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Figure 1.4 Possible metal binding sites for the nucleobases.  

 
These sites include N3, N7, and O6 in guanine; N3 and O2 in cytosine; N1, N3, and N7 

in adenine and O2 and O4 in thymine. It has been shown that N7 sites of purines are excellent 

metal binding sites as a result of exposure. Even though there is a lone pair on the exocyclic 

amino group, the delocalization of the lone pair into the heterocyclic ring leads to very low 

basicity.15 Thus, it makes it a less favorable metal binding site.  Sometimes the interaction 

between the metal ions and nucleobases leads to distinct structural pattern or structures with 

higher order such as DNA triple helices, G-quadruplex, and helical junctions. 16 

Since many metal ions are able to bind to both phosphate and nucleobases, the relative 

affinity of the metal ion toward the two binding sites will determined the effect on DNA. 

Eichhorn and Shin demonstrated that initial increase in concentration of Mn2+, Zn2+, Cd2+, and 

Cu2+ helps increase the melting temperature (Tm) of dsDNA due to phosphate binding.17 

However, a further increase in metal concentration has an adverse effect. In this case, base 

binding disrupts the hydrogen bonding of the double helix that leads to destabilization of 

dsDNA. Difference in Tm at the same concentration of metal ions also indicated that every metal 

ion has different interaction with DNA. Moreover, it has been shown that metal ions can be used 
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to promote formation of non-Watson-Crick base pairing via metal coordination. A guanine 

quartet (G-quartet) is composed of four guanines that are hold together by eight hydrogen bonds 

via Hoogsteen pairing. The metal ion is located at the centre and coordinates with O6 atom on 

each of the guanine bases via electrostatic interactions. The stability of the quartet is strongly 

dependent on the presence of alkali metal ions (Figure 1.5a).  
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Figure 1.5 Illustration of metal ion mediated base pairing. a) G-quartets b)T-Hg2+-T and C-Ag+-C pairings c)T-
Hg2+-C or T-Ag+-C pairing d) C-Ag+-GC triplex. 
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On the other hand, it has been reported that some metal ions exhibit specific binding 

toward specific base pairs such as thymine-Hg2+-thymine and cytosine-Ag+-cytosine (Figure 

1.6b).18,19  Other heavy metal ions such as Cu2+, Ni2+, Pd2+, CO2+, Mn2+, Zn2+, Pb2+, Cd2+, Mg2+, 

Ca2+, Fe2+, Fe3+, and Ru2+ cannot induce the pairing. 20  Recently, two groups also discovered 

that Ag+ and Hg2+ can moderately stabilize T-C mismatched base pair in dsDNA (Figure 

1.6c).21,22  Ihara et al. reported that Ag+ ion can also mediate the formation of CG⋅CAg+ triplex 

(Figure 1.6d).23 With the specific interaction between the metal ions and the nucleobases, metal 

ions mediated base pairing had been utilized for metal ion detection. 

 

1.4 Importance of metal ions detection 

Metal ions are ubiquitous in biological system and in the environment. It is known that 

metal ions play critical roles in important cellular processes. While some metal ions in a certain 

concentration range are essential for health, many others are considered very toxic. For instance, 

accumulation of cadmium (Cd2+), mercury (Hg2+), arsenic (As3+) or lead (Pb2+) in the body can 

cause severe health risks such as neurological diseases and organ damage.24  As a result, 

detection of metal ions and especially heavy metal ions is a priority concern from environmental 

and the biological aspects. It is known that toxic levels for some of these metals ions exist just 

above the background concentrations naturally found in the environment or food chain. 

Therefore, it is important to monitor the concentrations of these contaminants and take protective 

measures against excessive exposure. In the United States, Environmental Protection Agency 

(EPA) set the maximum contaminant level (MCL) drinking water for heavy metals to ensure that 

their concentration falls below the safe limit (Table 1.1). 
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Table 1.1 List of drinking water contaminants and MCLs. 

Contaminant MCL (mg/L) Potential health risk Source of contaminant in drinking water 

Arsenic 0.01 Skin damage, circulatory 
system problems, cancer risk 

Erosion of natural deposits; runoff from 
orchards and glass/electronics production 
wastes 

Cadmium 0.005 Kidney damage 
Corrosion of galvanized pipes; erosion of 
natural deposits; discharge from metal 
refineries; runoff from waste batteries/paints 

Chromium 
(total) 0.1 Allergic dermatitis Discharge from steel/pulp mills; erosion of 

natural deposits 

Copper 1.3 (Action 
level) 

Gastrointestinal distress, 
liver/kidney damage 

Corrosion of household plumbing systems; 
erosion of natural deposits 

Lead 0.015 (Action 
level) 

Physical/mental development 
delay, kidney damange, high 
blood pressure 

Corrosion of household plumbing systems; 
erosion of natural deposits 

Mercury 
(inorganic) 0.002 Kidney damage 

Erosion of natural deposits; discharge from 
refineries and factories; runoff from landfills 
and croplands 

Selenium 0.05 Hair/finger nail loss, circulatory 
system problems 

Discharge from petroleum refineries; erosion 
of natural deposits; discharge from mines 

Thallium 0.002 Hair loss, kidney/intestine/liver 
problems 

Leaching from ore-processing sites; 
discharge from electronics/glass/drug 
factories 

Source: U.S. Environmental Protection Agency. Ground Water and Drinking Water. 
 

1.5 Common methods for metal ion detection 

Currently, heavy metal ion analysis relies on instrumental techniques, such as atomic 

absorption spectrometry (AAS),25-27 atomic emission spectrometry (AES),28 inductively coupled 

plasma mass spectroscopy (ICP-MS),29,30 anodic stripping voltammetry (ASV),31-33 surface 

plasmon resonance spectroscopy (SPR),34 and X-ray fluorescence spectrometry (XRF).35-38 All 

of these techniques are based on intrinsic physical properties of the element. Although these 

instrumental techniques can easily achieve highly sensitive detection (often down to low parts-

per-billion level), they require sophisticated instrumentation and trained operators.39,40 Many of 

these methods also require complicated, multi-step sample pretreatment. In addition, the analysis 

is carried out in a centralized laboratory. Therefore, on-site and real-time monitoring is difficult 

to achieve. All these drawbacks have motivated the development of alternative detection 

methods for metal ions. 
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1.6 Biosensors 

Unlike instrumentation techniques, biosensors show both fast analysis and high 

sensitivity. A biosensor contains two main components: target recognition and signal 

transduction. Signal transduction elements are the components for converting molecular 

recognition events into physically detectable signals. These signals can be generated either from 

fluorescence,41,42 color,43,44 or electrochemical signals.45-49 Moreover, the availability of a large 

selection of fluorophores and quenchers makes it a popular choice.50 

The target recognition element can be either chemical or biological entities such as small 

organic molecules, peptides, proteins, nucleic acids, carbohydrates, or even whole cells. Ideally, 

the recognition element should have high affinity, high specificity, wide dynamic range, fast 

response time, long shelf life, and good generality for detecting a broad range of analytes. With 

various combinations of 20 amino acids, the possibility of forming a large array of protein-based 

sensor on its chemical functionalities is endless. Thus, antibodies are usually the first choice of 

biomolecule as a building block for developing a biosensor. However, problems associated with 

enzyme or antibody immobilization and their relatively high cost and low stability have limited 

their applications.51   

There are several advantages to the use of DNA over other biomolecules, which could be 

leveraged toward the sensor development. First of all, DNA is more stable to use than RNA and 

protein. The absence of a 2’-OH group at the sugar ring makes DNA 100,000-fold more resistant 

to hydrolysis than RNA under physiological conditions.52 In addition, the phosphodiester bonds 

are also 1000-fold more resistant to hydrolytic degradation than are peptide bonds.53  Secondly, 

DNA is less expensive and can be easily synthesized. Moreover, it can be readily chemically 

modified to increase stability or provide extra functional groups. These properties can generally 
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make DNA more versatile and convenient to use. Since its discovery, aptamers and DNAzymes 

have emerged as a promising alternative method for metal ions detection. 

 

1.7 Aptamer 

The term “aptamer” derives from the Latin aptus, which means “to fit.” Aptamers are 

single-stranded nucleic acids with 15-100 bases that can fold into a well-defined three-

dimensional structure to form selective binding pockets. Aptamers can be either RNA or DNA 

molecules that bind molecular targets. Nature developed RNA aptamers long before scientists 

did. The first RNA aptamers were reported by two different group around the same time in 1990. 

Ellington and Szostak identified RNAs that bind to small organic dyes, whereas Tuerk and Gold 

found RNAs that bind to T4 DNA polymerase. Since then, most aptamers are isolated through a 

technique called systematic evolution of ligands by exponential enrichment (SELEX).54-56  

 

1.7.1 SELEX for aptamer 

In a typical in vitro selection (Scheme 1.1), target molecules are first immobilized on a 

column. The immobilized targets are then incubated with a pool of ssDNA. For each ssDNA, a 

region that contains 20-60 nucleotides with randomizes sequence flanked by two primer binding 

regions. Thus, the pool contains a total of ~1016 possible sequences.  After an incubation period, 

the column is washed extensively to remove any unbound ssDNA before bounded sequence were 

collected. Elution of binding sequences with free target ensures that the resulting aptamers can 

also bind to untethered target as well. After several rounds of selection, an aptamer sequence is 

identified. 
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Scheme 1.1 Schematic of a traditional in vitro selection. 

 
During the selection process, it is necessary to separate ssDNA from its complement after 

polymerase chain reaction (PCR) between each round of selection. The separation can be 

achieved by using a modified primer. For instance, inserting a moiety such as a polyethylene 

glycol (PEG) spacer in one of the two PCR primers will result in termination of extension. This 

is due to the fact that the Taq polymerase cannot extend past the spacer within the template 

strand. Therefore, two complementary strands of PCR product have unequal lengths and can be 

easily separated by denaturing polyacrylamide gel electrophoresis (dPAGE). 

 

1.7.2 Examples of known metal binding DNAs 

1.7.2.1 G-quadruplexes 

The most well known higher-order DNA structure is the G-quadruplexes. With 

consecutive guanine nucleotides in oligonucleotides, these planar G-quartets stack together in a 

helical fashion to form a G-quadruplex structure. G-quadruplexes are stabilized by hydrogen 

bonds and by the alkali metal ions that are located between two G-quartets (Scheme 1.2). Since 
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G-quadruplexes are highly polymorphic, the structure depend on the composition and length of 

the DNA and the nature of the cations.57 

FRET%

K+%

K+%
K+%

 
Scheme 1.2 Schematic representation of G-quadruplex stabilized by the presence of K+ ions. The formation of the 
G-quadruplex brings the fluorophores closer which leads to FRET. 

 
Throughout the years, many groups combined different methods with guanine rich DNA 

probes for metal ion detection. Even though the results showed good sensitivity, there is a major 

draw back due to the interaction of G-quadruplexes with many metal ions (Table 1.2). 

Table 1.2 G-quadruplex based biosensor for metal ion detection. 

Analyte Detection method Detection Limit Reference 

K+ 

Fluorescence 
(FRET) n.r. 58 

Fluorescence (crystal violet dye)  1 mM 59 
Fluorescence (berberine dye) 2 µM & 31nM 60,61 

Fluorescence 
(Zn-DIGP dye) 800 nM 62 

Colorimetric 
(ABTS) 0.1uM 62,63 

Colorimetric 
(TMB dye) 2 µM 64 

Ag+ Colorimetric 
(ABTS) 6.3 nM & 64 nM 65,66 

Cu2+ Fluorescence 3 nM 67 

Hg2+ Colorimetric 
(ABTS) 9.2nM & 50nM 68,69 

Pb2+ 

Colorimetric 
(ABTS) 32nM 70 

Luminescence 
(luminol) 1nM 70 

n.r. = not reported 
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1.7.2.2 Hg2+ binding DNA 

Although G-quadruplex based sensors show low detection limit of Hg2+ ion, another Hg2+ 

aptamer design takes advantage of the ability of Hg2+ ion to bind specifically to the T-T bases 

mismatch in DNA. In 2004, Ono et al. was the first group to report using dual-labeled thymine 

rich ssDNA to detect Hg2+ ion.20 In this design (Scheme 1.3a), a fluorophore (fluorescein) and a 

quencher (dabcyl) are labeled on each end of terminal. In the absence of Hg2+ ion, ssDNA exist 

in random coil structure. Thus, a fluorescence signal was detected. Upon binding with Hg2+ ions, 

the ssDNA folded into a hairpin structure that forces the fluorophore and the quencher into close 

proximity. The short distance between the two moieties leads to enhancement of fluorescence 

resonance energy transfer (FRET). As a result, a significant decrease in fluorescence signal is 

observed. Even though it is a “turn-off” design, the sensor is able to achieve 40 nM detection 

limits.  

Another common technique to generate an aptamer fluorescence signal with any 

fluorophore labeling is to use a duplex binding dye (Scheme 1.3b). The dye is generally used in 

real-time polymerase chain reaction (RT-PCR) for monitoring DNA amplification. The free dye 

exhibits low background fluorescence in solution but the fluorescence increase up to 1,000 fold 

when the dye was bound to dsDNA. SYBR Green I dye is one of the most sensitive fluorescent 

stains available for detecting dsDNA. By incorporating SYBR Green dye with non-label mercury 

specific DNA, Wang and Liu were able to detect as low as 1.33 nM Hg2+ in water.71 

Gold nanoparticles (AuNPs) exhibit unique optical properties. When AuNPs are 

aggregated, the surface plasmon resonance (SPR) band shifts and the colloidal solution changes 

from red to blue (Scheme 1.3c).  Combining these two properties, Lee et al. were able to design a 

colorimetric Hg2+ sensor that can detect Hg2+ in aqueous media down to 100 nM.72 
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Scheme 1.3 Schematic representation of the double-stranded hairpin structure stabilized by the formation of T-Hg2+-
T mismatches. Sensor design based on a) fluorescence quenching (turn-off). b) Intercalation of the duplex binding 
dye (turn on). c) Colorimetric changes due to AuNPs aggregations. 

 

1.7.2.3 Ag+ binding DNA 

Just like Hg2+ detection, similar approaches have been done to develop Ag+ sensor. With 

a FRET design, Ono et al. demonstrated that the sensor can detect 10 nM of Ag+ ions.19 Lin and 

Tseng reported that a detection limit of 32 nM was achieved with non-labeled probe.73 With a 

colorimetric method, 0.59 nM of Ag+ ion can be detected.74 

 

1.7.2.4 Zn2+ binding DNA 

So far, the above examples of metal ion binding DNA were due to the intrinsic properties 

of the nucleotides. Since metal ions especially divalent metal ions are important for functional 

nucleic acids to fold and function properly,75 Rajendran and Ellington employed SELEX method 
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to obtain a Zn2+ binding aptamer, Zn-6m2 (Figure 1.6).76 With the fluorescence turn-on design, 

the aptamer beacon demonstrated detection limit of 5 µM Zn2+. Although Cd2+ also induced 

significant fluorescence enhancement, Zn2+ produced much faster kinetics response than Cd2+. 
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Figure 1.6 Sequences and predicted structures of Zn-6m2 aptamer beacon. 

 

1.7.3 In vitro Selection for DNAzymes 

Although DNAzyme selections follow the similar protocol as aptamer selection, there are 

several differences. For example, immobilization of the DNA library or target is usually not 

necessary. Unlike aptamer selection, the actual progression can be observed directly. When the 

DNAzyme cleaves its RNA-containing substrates, it generates two strands with different lengths. 

Thus, its activity can be easily monitored by dPAGE (Scheme 1.4).  
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Scheme 1.4 Schematic of DNAzyme selection. 
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1.8 Role of metal ions in DNAzyme catalysis 

Metal ion coordination to the non-bridging oxygen not only increases the elecrophilicity 

of the phosphorus centre but also stabilizes the charged trigonal-bipyramidal during the transition 

step. The possible catalytic functions of metal ions can be summarized in Figure 1.7.77 First, 

metal-coordinated hydroxide can act as a general base to deprotonate the 2ʹ′-hydroxy group and 

make oxygen a good nucleophile. Alternatively, metal-bound water can act as a general acid to 

stabilize the developing negative change on 5ʹ′-oxygen leaving group. Metal ions can also 

directly coordinate to the 2ʹ′-OH and facilitate deprotonation.  
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Figure 1.7 Potential roles for metal ions in RNA hydrolysis. Adopted from ref 76. Copyright © 2014 American 
Chemical Society 
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Metal ions can also affect the hydrolysis without direct coordination. The long-range 

electrostatics effects near the active site can change the nearby electrostatic environment to 

induce the reaction.  

1.9 DNAzymes and their catalysis 

Due to the structural similarities between RNA and DNA, it is reasonable to consider the 

possibility of catalytic DNA existence. Just like ssRNA, ssDNA has conformational flexibility 

that could permit intricate three-dimensional shapes and consequently catalytic activity. 

DNAzymes, also known as deoxyribozymes or DNA enzymes, refer to single-stranded DNA 

molecules with catalytic capabilities. Because most DNA in biological systems exists primarily 

in double-stranded form, it lacks the necessary structural intricacy to act as a catalyst. Thus, no 

naturally occurring enzymes have been found to be composed of DNA. So far, they have been 

created in the laboratory. In 1994, the first DNAzyme was discovered and isolated by in vitro 

selection78 and since that time an increasing variety of DNA catalysts has been isolated (Table 

1.3). Although there are only four nucleobases, these different DNAzymes demonstrated that 

DNA can facilitate many different type of reactions: cleavage of RNA, DNA or the 

phosphoramidate bond, the ligation of DNA or RNA, the formation of an RNA branch or lariat, 

the formation of nucleopeptide bond, phosphorylation, adenylation, and depurination, Diels-

Alder reaction, and porphyrin metallation of DNA. In fact, each of the catalysis required specific 

metal cofactors. In other words, each of these DNAzymes showed high specificity towards 

different metal ions. 
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Table 1.3 Different types of reactions catalyzed by DNAzymes. 

Type of Reaction Metal cofactor Reference 

RNA cleavage Pb2+, Zn2+, Mg2+, Ca2+, Mn2+, 
UO2

2+, or Ln3+ 
78-87 

DNA cleavage (oxidative) Cu2+ 88-90 
DNA cleavage (hydrolytic) Zn2+ or Mn2+ 91-93 

Phosphoramidate bond cleavage Mg2+ 94 
RNA ligation Zn2+ or Mg2+ 95-98 

RNA branching Mn2+ or Mg2+ 99-102 
RNA lariat formation Mn2+ 103,104 

DNA ligation Cu2+ or Zn2+, Mn2+ 105,106 
Nucleopeptide linkage formation Mn2+ or Mg2+ 107 

DNA phosphorylation Mn2+ 108 
DNA adenylation Mg2+ & Cu2+ 109 

DNA deglycosylation Ca2+ 110 
Diels-Alder reaction Ca2+ 111 
Porphyrin metalation Cu2+ or Zn2+ 112,113 

 

These DNAzyme catalysis can exhibit the same efficiency and selectivity as protein 

enzymes. For instance, these DNAzymes showed high rate enhancements, high specificity, and 

in some, but not all cases, the ability to perform multiple substrate turnovers. 

 

1.10 Representative examples of RNA-cleaving DNAzymes 

Many DNAzymes have been isolated by in vitro selection. While DNAzymes with other 

functionalities have also been isolated, most of the DNAzymes selected to date are either cleave 

or ligate the phosphodiester bond. DNAzymes that catalyze the cleavage of RNA are by far the 

largest class of catalytic DNA molecules.114 This section summarizes biochemical and 

biophysical studies on three of the most characterized RNA-cleaving DNAzymes and their 

sensing applications. 

 

1.10.1 The GR-5 DNAzyme 

Breaker and Joyce were the first researchers to obtain an artificial DNAzyme via in vitro 

selection in 1994.78   This DNAzyme showed Pb2+ dependence with single site RNA-cleaving 
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capability. It has a catalytic core composed of 15 nucleotides flanked by two base-pairing 

regions (Figure1.8).  

A"""""""""C"G"""G"

3’'"""""""""""""""""""""AGGrA""""""""""""""""""–"5’"

T"""""""""""""C"

5’'"""""""""""""""""""""""""""""""""""""""""""""""""""–"3’"
G""""""G"A"""""""""""C"

A""""""""""""""C"
G"""""""""""""""G"

C"
GR'5"  

Figure 1.8 Secondary structure of the Pb2+-dependent GR-5 DNAzyme. 

  
Two conserved sequences lie within this domain. One sequence is 5ʹ′-AGCG-3ʹ′ and the 

other is 5ʹ′-CG(A)-3ʹ′. The substrate strand contains a single RNA base within the DNA strand. 

Also, it required a short stretch of unpaired nucleotides, in this case 3’-GGA-5’, between the two 

regions that are involved in base pairing. Surprisingly, GR-5 DNAzyme was not able to 

hydrolyze an all-RNA strand under the same conditions. In fact, the target riboadenylate was 

especially stable. Although the selection buffer contained 50 mM MgCl2, it appeared that the 

DNAzyme was still very active in the absence of Mg2+. The DNAzyme exhibits Michaelis-

Menten kinetics with kcat = 1 min-1 and Km = 2 µM. This rate is about 105 fold faster than the 

uncatalyzed reaction. In the subsequent study, it was reported that this DNAzyme is about 

40,000-fold more active with Pb2+ than with other competing metal ions.115 This unique 

DNAzyme became a model compound for exploring the structural and enzymatic properties of 

DNA. While GR-5 is a highly efficient DNAzyme, it cannot cleave full RNA substrates and it 

works only with Pb2+. Therefore, it cannot be applied as an anti-viral agent. For this reason, 

subsequent selections were carried out with physiological metal ions such as Mg2+. 
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1.10.2 The 10-23 DNAzyme 

It was remarkable that GR-5 DNAzyme demonstrated DNA can have catalytic activity. 

Unfortunately, unlike naturally occurring ribozymes, the DNAzymes have little utility for 

biological application. By trying to develop a general purpose RNA-cleaving DNAzyme, 

Santoro and Joyce carried out an in vitro selection under simulated biological conditions (150 

mM KCl, 2 mM MgCl2, 50 mM Tris buffer, pH 7.5, 37°C).79  After multiple rounds of stringent 

selection and enzyme engineering, two most promising DNAzymes were isolated. One of the 

two DNAzymes is referred to as the 10-23 DNAzyme (Figure 1.9).  
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C""""""""""""""C"
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A"""""""""""""A"

C""""A"T"

Y"="U"or"C"
R"="A"or"G"

10&23"  
Figure 1.9 Secondary structure of the Mg2+-dependent 10-23 DNAzyme. 

 
Just like GR-5 DNAzyme, 10-23 DNAzyme also contained an unstructured catalytic loop 

composed of 15 nucleotides that are flanked by two substrate-recognition binding arms. The 

initial study revealed that the core was almost completely intolerant of variation. 10-23 

DNAzyme interacted with the substrate entirely though standard Watson-Crick pairing. Cleavage 

occurred on the 3ʹ′ side of a single unpaired nucleotide, preferable at a purine that was followed 

by a paired pyrimidine. The 10-23 DNAzyme can be made to cleave almost any target RNA that 

contains a purine-pyrimidine junction. Target sites surrounded by A and U were cleaved most 

efficiently, with a catalytic rate of ~0.1 min-1 under simulated physiological conditions.79 

However, it was found that its catalytic activity is dependent on the presence of Mg2+. A 

mutagenesis study showed that changes at the borders of the catalytic domain cause dramatic 
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loss of enzymatic activity, while changes in nucleotides in between have minimal effects.116 A 

deletion study carried out by the same group showed later that the deletion of a C or T base 

located at the bottom of the core did not affect the activity. 117 However, deleting both C and T 

bases caused a 10-fold decrease in the catalytic rate. Another deletion study on 10-23 DNAzyme 

conducted by revealed a novel DNAzyme that is 10-fold more active in the presence of Ca2+ than 

Mg2+ and Mn2+.118   
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Figure 1.10 Sequence of the10-23 DNAzyme conserved region. 

 
Since the sequence of the substrate-recognition binding arms can be changed, the 

DNAzyme can be made to target different RNA substrates. For instance, the first report 

demonstrated that 10-23 DNAzyme could be used to cleave a variety of biologically relevant 

RNAs.79 It showed that 10-23 DNAzyme can cleave the translation initiation region of various 

types of HIV-1 mRNA with a kcat range from 0.03 min-1 to 0.1 min-1. Since then, the 10-23 

DNAzyme has been widely used as a therapeutic agent for suppressing RNA levels in various 

systems119,120 and for degrading viral RNA.121-123 

 

1.10.3 The 8-17 DNAzyme 

8-17 DNAzyme is the other RNA-cleaving enzyme that was discovered at the same time 

as 10-23 DNAzyme. It was also named by the round and clone number in its selection. This 

enzyme and its variants are likely one of the most thoroughly investigated DNAzymes. Based on 
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the small population of clones, it was originally thought that 8-17 catalytic core is composed of a 

three base pair stem-loop and a 4 to 5 nucleotides loop.79 In fact, it was thought that at least two 

of base pairs on the stem were GC pairs with an AGC tri-nucleotides loop. The other unpaired 

region have a quite conserved sequence, it can either be 5ʹ′-WCGR-3ʹ′ or 5ʹ′-WCGRA-3ʹ′ (W = A 

or T and R = A or G) with 5ʹ′-TCGAA-3ʹ′exhibited the highest catalytic activity (Figure 1.11). In 

addition, just like the 10-23 DNAzyme, most of the sequence of the substrate could be changed 

without loss of catalytic activity as long as the substrate-binding arms of the enzyme were also 

changed to complementary the substrate strand. However, the initial report suggested that the 8-

17 enzyme required a special G.T ‘‘wobble’’ pair located immediately downstream from the 

cleavage site. Replace this pair with a Watson-Crick pair at this position eliminated catalytic 

activity.79 

!!5’$!!!!!!!!!!!!!!!!!!!!!T!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!–!3’!
3’$!!!!!!!!!!!!!!!!!!!!!!!!G!rA!!!!!!!!!!!!!!!!!!!!!!!!–!5’!

C!
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8$17!  
Figure 1.11 Secondary structure of the Pb2+-dependent 8-17 DNAzyme. 

 
Later, more extensive mutagenesis studies have suggested that only four nucleotides, 

which are A, G in the stem loop and C, G in the unpaired region, are conserved (Figure 1.12). 124 

With a closer comparison between the 8-17 and 10-23 DNAzymes, the positions and neighboring 

nucleotides of those four nucleotides are remarkable similar. The mutation result also indicated a 

stable stem is crucial but not sufficient for optimal activity, which agreed partially with the 

original study. Although an early report suggested that only a 5ʹ′-AG-3ʹ′ junction can be cleaved 

by 8-17 DNAzyme, more recent studies demonstrated that this DNAzyme can actually cleave all 
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sixteen possible dinucleotide junctions at different rates.81,85,125,126 

3’#$$$$$$$$$$$$$$$$$$$$$$$N$rN$$$$$$$$$$$$$$$$$$$$$$$$–$5’$
5’#$$$$$$$$$$$$$$$$$$$$$$$N$$$$$$$$$$$$$$$$$$$$$$$$$$$$$–$3’$

C$

(N)$
G$
N$N$

N$G$
N$

N$N$
N$

Y$

N$
A$

!$

8#17$

Y$=$C$or$T$
N$=$A,$T,$C,$or$G$

 
Figure 1.12 Sequence of the 8-17 DNAzyme conserved region. 

 
Over the years, 8-17 DNAzyme has been obtained numerous times through in vitro 

selection by several groups under different conditions.81,83,85,126-128 This suggested that this 

DNAzyme is a small, efficient sequence that occurs very frequently during the selections. Even 

though the same 8–17 DNAzyme was selected against different metal ions such as Mg2+, Zn2+, 

and Ca2+, the metal ion-selectivity analysis showed that the 8–17 DNAzyme displayed 

substantially higher activity in the presence of Pb2+ than any other metal ion. Although it is 

selective for Pb2+, the 8–17 DNAzyme is still active in the presence of other metal ions, such as 

Mg2+, Zn2+, Mn2+, Co2+ and Ca2+. With various biochemical and biophysical studies, a lock-and-

key mechanism typically seen in protein enzymes has been found to be accountable for the high 

selectivity for Pb2+.85,124-126,129-134 

Since its discovery, the 8-17 DNAzyme was used in various applications. It has been 

utilized in nucleic acid detection,135,136 metal ion sensing, 137-139 and DNA computing. 140-145 

 

1.10.4 The 39E DNAzyme 

In 2007, Liu et al. reported a novel DNAzyme that can detect UO2
2+ down to 45 pM with 

>1 million-fold selective over other competing metal ions (Figure 1.13).86 Subsequently, A 

biochemical study revealed the bulge region has conserved sequences that are likely responsible 
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for the uranyl binding and enzymatic activity.146 Furthermore, a fluorescence resonance energy 

transfer study provided a closer look the global folding of 39E DNAzyme in the presence of 

various divalent metal ions.147 The study suggested that 39E also operates in a lock-and key 

mechanism. Recently, the result from a uranyl photocleavage study pinpointed the exact 

nucleobases that binding directly with uranyl ion (in blue).148 AuNPs (13 nm) were 

functionalized with 39E DNAzyme for intracellular uranyl ion detection.149 
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Figure 1.13 Secondary structure and the conserved sequence of the UO22+-dependent 39E DNAzyme. 
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1.10.5 Comparison of GR-5, 8-17, 10-23, and 39E catalytic efficiency in the presence of different metal ions 

Table 1.4 Catalytic efficiency of the GR-5, 8-17, 10-23, and 39E DNAzymes in the presence of different metal ions. 

Name of DNAzyme Metal cofactor kobs (min-1) kcat/Km (min-1 M-1) Reference 
GR-5 1 mM Pb2+ 1 5 x 105 78 

10-23 

50 mM Mg2+ 3.4 4.5 x 109 79 
25 mM Mn2+ 1.19 7.0 x 107 

118 25 mM Ca2+ 0.863 1.4 x 107 
25 mM Mg2+ 0.961 2.2 x 107 
25 mM Ba2+ 0.101 0.26 x 107 
10 mM Mn2+ >4 

n.r. 118,150 
10 mM Ca2+ 0.12 
10 mM Mg2+ 0.28 
10 mM Ba2+ 0.015 
10 mM Sr2+ 0.026 

8-17 

2 mM Mg2+ ~0.01 

n.r. 

79 
0.2 mM Pb2+ 0.47 125 5 mM Zn2+ 0.12 
3 mM Mn2+ ~0.1 

127 3 mM Mg2+ ~0.002 
3 mM Ca2+ ~0.02 

17E (8-17 variant) 

0.1 mM Pb2+ 5.75 

n.r. 125 
10 mM Zn2+ 1.35 
10 mM Mn2+ 0.24 
10 mM Mg2+ 0.017 
10 mM Ca2+ 0.015 

Mg5 (8-17 variant) 

0.2 mM Pb2+ 2.1 

n.r. 

125 5 mM Zn2+ 0.74 
3 mM Mg2+ >3 

125 3 mM Mg2+ 0.06 
3 mM Ca2+ 1 

39E 400 nM 1  86 
n.r. = not reported 
 
 

1.11 Lanthanide ions 

The lanthanides are comprised of fifteen elements in the first row of the f-block in the 

periodic table. All of these elements have very similar chemical and physical properties. Most of 

lanthanides exist in the 3+ oxidation state, although several of them can also form stable 2+ and 

4+ ions.151 Owing to their unique electronic, optical, magnetic and catalytic properties, the 

demand for lanthanides has grown dramatically over the past few decades. Lanthanides are 

currently indispensable for modern technological applications such as lasers, superconductors, 

catalysts, luminescent labels, and imaging contrast agents. Lanthanides can be used either as 
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solid materials (e.g. oxides), ions or metal complexes (e.g. for MRI imaging). Because of their 

high positive charge density, lanthanides are good Lewis acids. In addition, they are known to 

bind tightly to biological molecules. Some lanthanides were shown to have effects in plant 

metabolism.152,153 Yet, their exact role in the mechanism is still to be determined.154 Due to the 

low bioavailability of lanthanides, it was believed the circumstance prevent any existence of 

lanthanide variants of metallo-enzymes.155 Recently, it was reported that that lanthanides were 

essential cofactor for Methylacidiphilum fumariolicum SoIV to sustain growth. 156 This discovery 

was the first example of organism using a lanthanide in biological processes. Beyond their 

critical role in modern technologies, lanthanides are also widely utilized in biological probing.157-

159 In particular, they have been extensively used to study the structure and function of nucleic 

acids due to some of their intrinsic properties.  

It is known that lanthanides and their complexes can efficiently cleave nucleic acids. 160 

For example, Komiyama et al. demonstrated that Ce4+/EDTA complex acts as catalytic scissors 

for specific DNA cleaving.161 In addition, a number of in vitro selection experiments were 

carried out using lanthanides as metal cofactors to obtain DNAzymes79,162-165 for RNA or DNA 

cleavage.166,167  

Besides its catalytic properties, lanthanides like Eu3+ and Tb3+ also display excellent 

luminescence characteristics. Since lanthanides show strong binding with nucleic acids,168 this is 

useful for probing metal binding sites169 and for developing biosensors.170 For example, Fu and 

Turro171 used Tb3+ as a probe to study the binding of the ions to the bases and nucleotides. In 

addition, it showed the difference luminescent enhancement between each pair of mismatch 

bases where GG > CA > GA > CC > TT = TG. Since only ssDNA but not dsDNA can greatly 

enhance the Tb3+ emission, it can be used to detect single mismatches in DNA duplexes.  
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In addition to luminescence properties, the paramagnetic properties of the lanthanides are 

useful in probing metal ion binding sites in nucleic acids.172 Although each lanthanide has 

similar chemical properties, they all exhibits different magnetic strength.  The lanthanide ions 

binding can be studied with nuclear magnetic resonance (NMR). When the lanthanide ions and 

the nucleotide protons are in close proximity, those protons will undergo effective line 

broadening due to the paramagnetic. With a series of titrations, binding sites are identified by 

following the protons that are influenced by the lanthanide pseudo-contact shift (PCS).173 For 

instance, Morrow et al. solved the DNA and RNA structure of lanthanide ion binding sites by 

combining luminescent and NMR data.174 

Due to its size, lanthanides can compete with other metal ions in enzymes and act as 

enzyme inhibitors. For example, Walter et al. used Tb3+ as a probe for studying ribozyme 

structure.175 The study showed that a deprotonated Tb3+ complex acts as competitive inhibitor by 

competing to a crucial, but non-selective cation binding site in the ribozyme. In addition, both 

the 17E DNAzyme and the hammerhead ribozyme are also inhibited by lanthanides.130,169 On the 

other hand, the Leadzyme (a small ribozyme) and a DNA-based ligase are accelerated by 

lanthanides.99,176-178 All these examples suggest strong interactions between lanthanides and 

nucleic acids. Finally, nucleotides and lanthanides can form coordination complexes with useful 

luminescence and DNA binding properties.179-182 

 

1.12 Research focus 

Although a few monovalent-dependent DNAzymes were reported,82,183 they appear to 

have poor metal selectivity or catalytic rate. Throughout the years, more divalent metal-

dependent DNAzymes were selected successfully. Interestingly, most of these divalent metal-
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dependent DNAzymes have better catalytic efficiency when comparing with those monovalent 

metal-dependent DNAzymes. Thus, it is logical to think that using higher valent metal ions for 

selection might result in even more efficient DNAzymes. However, no selection was carried with 

just using trivalent or tetravalent metal ions. The main research reported in this thesis was aimed 

at expanding the diversity of RNA-cleaving DNAzymes by using a series of lanthanide ions as 

the cofactor. Trivalent lanthanides were chosen due to their high positive charge density and high 

affinity toward the nucleotides and phosphate groups. In addition, lanthanides are known to 

cleave RNA quite efficiently. Combination of all of these facts suggests a possibility for 

selecting more efficient DNAzymes. Phosphorothioate (PS) modification is known to be a useful 

method to probe metal binding sites in nucleic acid enzymes. Since lanthanides are hard Lewis 

acids, the effect of the modification on the DNAzymes will be extensively studied. It is known to 

be difficult to obtain highly active and selective DNAzymes that bind with thiophilic metal ions 

with just four natural bases. Although a few thiophilic metal ion-dependent DNAzymes have 

been successfully selected, they were often based on nucleobase modifications that are not 

commercially available. By combining the PS modification and our newly developed selection 

method, the possibility of isolating a cadmium-specific DNAzyme, which has never been 

achieved before was pursued. These selected new DNAzymes were to be extensively studied to 

characterize several critical properties, including the nature of their metal binding sites, their 

exact catalytic mechanisms, and most importantly, their active structures. To demonstrate their 

practical application on metal ion detection, fluorescence DNAzymes were developed and their 

performances are highlighted throughout the chapters. 
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Chapter 2. In Vitro Selection of a General Lanthanide-Dependent DNAzymea 

2.1 Introduction 

The combination of catalytic, magnetic, optical, and electronic properties158,159 makes 

lanthanides indispensable materials for modern technologies. It has been estimated that about 

100,000 metric tons of lanthanides were consumed globally per year.184 However, their 

widespread applications and increasing demand also raised the concern about lanthanide 

pollution and depletion. Those issues have prompted scientists to develop new analytical tools 

for environmental monitoring, electronic recycling, and finding new mineral sources.  

Currently, trace analysis relies primary on instrumentation methods such as inductively 

coupled plasma mass spectrometry (ICP-MS) and capillary electrophoresis (CE). 185 Although 

these methods can analyse a few metals simultaneously with excellent sensitivity, this expensive 

analysis requires timely sample preparation and can only be performed in a laboratory. In this 

regard, developing portable and easy-to-use sensors becomes an attractive solution for real-time 

and on-site detection. Several sensors based on ion selective electrodes and 

fluorescent/colorimetic chelators for lanthanides have been reported in recent years.186,187 

However, most of these small organic molecule-based probes not only required organic solvents 

but also demonstrated poor sensitivity. Most importantly, the current sensors are not capable of 

discriminating among the individual lanthanide.  

While lanthanide complexes have been used as markers for bioanalyses and imaging, 188 

using the biosensor strategy for their detection has yet to be investigated. Out of the many 

                                                
a This chapter is the basis for a published manuscript: Huang, P. J.; Lin, J.; Cao, J.; Vazin, M.; Liu, J. Ultrasensitive DNAzyme Beacon for 

Lanthanides and Metal Speciation. Anal. Chem. 2014, 86, 1816-1821. 
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biomolecules, DNAzymes have emerged as unique platforms for designing metal biosensors. A 

number of divalent metal-specific DNAzymes have been isolated successfully and many of these 

DNAzymes have been engineered into metal biosensors.164 However, using DNAzymes for 

detecting trivalent and tetravalent metals has yet to be explored.   

Lanthanides might be a good choice for RNA/DNA cleavage since many lanthanide 

complexes are efficient catalysts for non-specific nucleic acid hydrolysis.160,189 In fact, catalysis 

by several DNAzymes have been shown to involve lanthanides although the effects on catalysis 

vary depended on the DNAzyme. For example, lanthanides were shown to accelerate RNA 

ligation and hydrolysis that were catalyzed by Mg2+-dependent DNAzyme and Pb2+-dependent 

ribozyme respectively.176-178 Even though GR5, the first DNAzyme discovered, 78 is active with 

lanthanides alone, the rate was very slow (<0.02 min-1) when comparing with Pb2+ activity.167 In 

addition, it was reported that Tb3+ inhibited the 8-17 DNAzyme and hammerhead ribozyme.130 

Recently, a few DNA-cleaving DNAzymes were selected in the presence of Ce3+, Eu3+ or Yb3+ 

together with Zn2+.166 That study showed that these lanthanides were critical for the enzyme 

activity. However, this type of co-addition system actually complicates the downstream 

analytical applications. To date, no selection was carried out using lanthanides as the sole metal 

cofactor to obtain RNA-cleaving DNAzymes.  

In this chapter, the selection of an RNA-cleaving DNAzyme using tetravalent lanthanide 

as the intended metal cofactor is presented. Ce4+ was chosen because it is highly efficient in 

assisting cleavage of the phosphodiester bond bond.161 Interestingly, a new DNAzyme that is 

active only with Ce3+ and other trivalent lanthanides was obtained. The conversion between these 

two oxidation states of cerium was also monitored, showing the feasibility of metal speciation 

analysis. 
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2.2 Results and Discussions 

2.2.1 DNAzyme Selection 

A DNA library containing a 50-nucleotide randomized region (N50) as shown in Figure 

2.1A (blue region) was used for in vitro selection. This initial library is estimated to contain 

~1014 random DNA sequences. The randomized region is flanked by two short base paired 

duplexes, holding the single ribo-adenosine (rA) in its proximity. This rA linkage serves as the 

putative cleavage site, since RNA is about one million fold more susceptible to hydrolysis than 

DNA.52 (NH4)2Ce(NO3)6 was used as the Ce4+ source owing to its excellent solubility and 

stability. After incubating the library with the salt, the cleaved sequences were separated and 

isolated using gel electrophoresis since they were 28-nucleotide shorter than the original full-

length library. Two rounds of polymerase chain reactions (PCR) were carried out to amplify the 

cleaved DNA.  In PCR1, a full-length library was regenerated and was used as a template for 

PCR2. In PCR2, two special modified primers were used. P3 has a FAM label on its 5ʹ′-end 

terminus and a rA base on its 3ʹ′-end terminus. P4 has a polymer spacer that can stop the 

polymerase reaction. As a result, PCR2 produced two strands with unequal length that can be 

separated easily by gel electrophoresis. The isolated positive strand containing rA and FAM was 

seeded for the subsequent round of selection. The selection was stopped at round 6, when the 

library was cloned and sequenced. Table 2.1 listed the detail of the selection conditions and 

progress. 
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Figure 2.1 A design scheme for the Ce4+ DNAzyme selection. A) The initial library contains N50 randomized region 
and a single RNA linkage (rA) as the cleavage site. Cleaved sequences in the presence of Ce (step 1) are isolated 
using gel electrophoresis (dPAGE, step 2). Two rounds of PCR are carried out followed by another dPAGE to re-
generate the full-length single-stranded library. B) The sequence of the library prior to the cleavage step. C) The 
secondary structure of the original Ce13 DNAzyme with the N50 region in blue. Three regions of this enzyme (in the 
boxes) are assayed. D) An optimized and truncated trans-cleaving DNAzyme, Ce13d. 

 
Table 2.1 Ce4+ selection conditions and progress.  

Round # [Ce(IV)] (µM) Incubation time (min) Cleavage (%) 
1 500  60 1.1 
2 500 60 7.4 
3 500  60 12.7 
4 500  40 34.4 
5 50  40 53.5 
6 50  40 56.2 

 

2.2.1 DNAzyme secondary structure analysis 

Nineteen clones with the correct DNA insertion were obtained and their exact sequences 

are listed in Table 2.2. The alignment shows that half of the populations have almost identical 
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sequences. One of the representative clones, named Ce13, folds into the structure shown in 

Figure 2.1C. The core of the Ce13 contains a hairpin-like structure (black box) and a loop 

(orange box). The result from mutation studies (Figure 2.2) indicated that this hairpin plays only 

a structural role. Thus, an optimized and truncated trans-cleaving version of the enzyme named 

Ce13d was designed and used for further analysis (Figure 2.1D). 

Table 2.2 Sequence alignment of the selected Ce4+ DNA. 

   Clone#                                Sequences 
20              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATTT--GGAG--- 51 
22              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATT---GGAG--- 50 
6               CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACAT----GGAG--- 49 
4               CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-GGAG--- 52 
34              CTGCAGAATTCTAA-ACGAGTCACTATAGGAAGAT----GGCGAAACATCCT-GGAG--- 51 
13              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-GGAG--- 52 
9               CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-GGAG--- 52 
3               CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-GGAG--- 52 
11              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-GGAG--- 52 
15              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-TA----- 50 
5               CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-TA----- 50 
2               CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-TACG--- 52 
16              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-TACG--- 52 
12              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-AACG--- 52 
23              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-AACG--- 52 
10              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-TACG--- 52 
14              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-T----TA 51 
32              CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTT-TACGACA 55 
7               CTGCAGAATTCTAATACGAGTCACTATAGGAAGAT----GGCGAAACATCTCACAAG--- 53 
                  
20              -CCATAGGTCAAAGGTGGGTGCGTGTC----GTATC-ATATCG-ACTAA----------- 93 
22              -CCATAGGTCAAAGGTAGGTGCG-GTC----GTATC-ATATCG-ACTAA----------- 91 
6               -CCATAGGTCAAAGGTAGGTGCGAGTC----GTATC-ATATCG-ACTAA----------- 91 
4               -CCATAGGTCAAAGGTAGGTGCGGGTC----GTATC-ATATCG-ACTAA----------- 94 
34              -CCATAGGTCAAAGGTAGGTGCGGGTC----GTATC-ATATCG-ACTA------------ 92 
13              -CCATAGGTCAAAGGTAGGTGCGGGTC----GTATC-ATATCG-ACTA------------ 93 
9               -CCATAGGTCAAAGGTAGGTGCGGGTC----GTATC-ATATCG-ACYA------------ 93 
3               -CCATAGGTCAAAGGTAGGTGCGGGTC----GTATC-ATATCG-ACCA------------ 93 
11              -CCATAGGTCAAAGGTWGGTGCKGGYS----KWWYM-WWWYCR-MYWA------------ 93 
15              --CAAGGAACAATAATGGGGTCGGGT-------ATA-TTGTCGTACCG------------ 88 
5               -CGAACGGTTAAGAAAAGTGACTTATC----CAGTGGTTATCTGACTA------------ 93 
2               -----A-CGTCA----TCCCAAACAGG-CCATTAAA--AAAAGGATATAAG--------G 91 
16              -----A-CGTCA----TCCTAAACAGG-CCATTAAA--AAAAGGATATAAG--------G 91 
12              -----AGTGTAGAATCTCCCTGAAAGG-C-AGAATG--CAAAGTACAC-----------G 92 
23              -----AGTGTAGAATCTCCCTGAAAGG-C-AGAATG--CAAAGTACAC-----------G 92 
10              -----AGAGTAG----TCATTTAAA-------TTAA--CAAAGTACACTGACGCAAAACG 94 
14              TC----GCGTAAATGACCGTATTCATG-C--GAATA--GGACATACG------------G 90 
32              TCCGGGGCATGAACCACGATGGCCAT-------ATA--TAACGAATG------------G 94 
7               ---GGGGTGTATTAT-TCACGCGGATAACGTTAATA--CATGGTAC-------------G 94                                                                             
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Table 2.2 Sequence alignment of the selected Ce3+/Ce4+ DNA. (Continued) 

   Clone#                                Sequences 
20              GTTATAGTGACG-GTA----AGCTTGGCAC 118 
22              GTTATAGTGACG-GTA----AGCTTGGCAC 116 
6               GTTATAGTGACG-GTA----AGCTTGGCAC 116 
4               GTTATAGTGACG-GTA----AGCTTGGCAC 119 
34              GTTATAGTGACG-GTA----AGCTTGGCAC 117 
13              GTTATAGTGACG-GTA----AGCTTGGCAC 118 
9               GTTATAGWGACG-GTA----AGCTTGGCAC 118 
3               GTTATAGTGACG-GTA----AGCTTGGCAC 118 
11              GTTATAGTGACG-GTA----AGCTTGGCAC 118 
15              GTTATAGTGACG-GTA----AGCTTGGCAC 113 
5               GTGTTAGTGACG-GTA----AGCTTGGCAC 118 
2               GTTATAGTGACG-GTA----AGCTTGGCAC 116 
16              GTTATAGTGACG-GTA----AGCTTGGCAC 116 
12              GTTATAGTGACG-GTA----AGCTTGGCAC 117 
23              GTTATAGTGACG-GTA----AGCTTGGCAC 117 
10              GTTATAGTGACG-GTA----AGCTTGGCAC 119 
14              ---ATAGTGACG-GTA----AGCTTGGCAC 112 
32              GTTATAGTGACG-GTA----AGCTTGGCAC 119 
7               GTTATAGTGACG-GTA----AGCTTGGCAC 119 

 

 
Figure 2.2 Secondary structure of the Ce13a-d mutants. A) Design of mutation studies to confirm the hairpin 
structure and its optimization for the Ce13 DNAzyme. B) Activity assays of these mutants. 

 
To further understand this enzyme, additional mutants were tested. There is a TT 

sequence right next to the enzyme hairpin (red box in Figure 2.1C). Deleting one or both of the 

thymines only slightly decreased the activity (see Figure 2.3). On the other hand, deleting any of 



	
  
	
  

35	
  

the GG di-nucleotides in the orange box resulted in completely disappearance of the activity. 

Therefore, these nucleotides appeared to be critical for the catalysis.  

 
Figure 2.3 Secondary structure of the Ce13d1-5 mutants. A) The secondary of the truncated trans-cleaving form 
Ce13d. B) Nucleotide deletions; deleted nucleotides are represented by the thick red lines. C) Gel assay of the 
mutants in B); the plus and minus signs denote for with and without the metal cofactor respectively. 

 

While using mfold190 software for secondary structure prediction, a second small hairpin 

that contains two Watson-Crick base pairs and a G�T wobble pair was also shown in the loop 

region of the Ce13 DNAzyme (Figure 2.4A, Ce13a). However, the prediction was made under 

the impression that 1 M NaCl was used. Since the selection buffer contained only ~50 mM Na+, 

it was not clear whether this is an actual structure  that was important for the enzymatic activity. 

To verify this, we either deleted the stem-loop entirely (Ce13a1) or extended it gradually 

(Ce13a2 and Ce13a3). In all the cases, the mutants were inactive (Figure 2.4B). Therefore, the 

result indicated that the hairpin is unlikely to be present for the active enzyme. This was also 

consistent with the deletion studies in Figure 2.3, where changes to the loop region often 

eliminate the enzyme activity.  
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Figure 2.4 Secondary structure of the Ce13a and Ce13a1-3 mutants. A) Design of mutation studies to disprove the 
second hairpin structure for the Ce13 DNAzyme. B) Activity assays of these mutants. 

 
This DNAzyme was also unique in terms of the bases that located next to the rA cleavage 

site. More specifically, the five unpaired nucleotides GGAAG. As shown in Figure 2.5, the 

activity dropped considerably after the base pairing with the substrate strand was gradually 

extended. However, the enzyme was still active. Consequently, the original unpaired Ce13d was 

still the optimal construct for subsequent studies.  
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Figure 2.5 Secondary structure of the Ce13d and Ce13d5-7 mutants. A) Design of mutation studies to understand 
the unpaired nucleotides of the substrate strand of the Ce13 DNAzyme. B) Activity assays of these mutants. 

 

2.2.3 Activity with Ce3+ vs. activity with Ce4+ 

Although the sensitivity and specificity of the divalent metal ions dependent DNAzymes 

have been well documented, the DNAzyme activity with metals of different oxidation states have 

yet been investigated. Since both Ce3+ and Ce4+ are stable, this DNAzyme activity can be studied 

in both oxidation states. An assay was performed as a function of Ce3+ and Ce4+ concentration 

and was plotted in Figure 2.6A. With increasing Ce3+ concentration, the cleavage product 

initially increased followed by an inhibition effect. The optimal activity was observed at 10 µM 

Ce3+ (Figure 2.6C, black dots). Surprisingly, little activity was observed in the presence of Ce4+. 

Even though Ce4+ was used as the intended metal cofactor, only a small amount of cleavage 

(~10%) was observed with ~100 µM Ce4+ (Figure 2.6B and Figure 2.6C, red dots). Ce13d shows 

a cleavage rate of 0.25 min-1 with 10 µM Ce3+ (Figure 2.6D). This rate is comparable with many 

divalent metal-dependent DNAzymes that are selected or assayed at pH ~6.86,191  
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Figure 2.6 Sensitivity and kinetic studies of the Ce13d DNAzyme. Gel image of Ce13d assay after incubating with 
various concentrations of Ce3+ A) or Ce4+ B) for 1 h. In A), the first lane is the substrate alone (no Ce13d, negative 
control); the second lane is the substrate treated with NaOH (positive control). C) Quantification of the gel data in 
A) and B). D) Kinetics of Ce13d cleavage with 10 µM Ce3+ or Ce4+.  

 

2.2.4 Searching for possible explanations of low Ce4+ activity 

Since the nitrate salt for Ce4+ and the chloride salt for Ce3+ were used, it is quite possible 

that the nitrate anions might inhibit the enzyme activity. To test whether the difference in activity 

was due to the different salt anions, the enzyme was assayed in the presence of NaNO3. As 

shown in Figure 2.7, the presence of nitrate has little effect on the activity of the enzyme. 

Therefore, nitrate cannot explain the lack of Ce4+-dependent activity.  

 
Figure 2.7 Gel analysis of Ce13d in the presence NaNO3 buffer. Lane 1: Ce13d assay in the presence of 1 mM 
NaNO3 to the reaction buffer. The Ce3+ concentration was 10 µM and the reaction time was 1 h. Lane 2-4: Ce4+ was 
pre-incubated with 50 mM MES (pH 6) for various time before adding to the enzyme. 

 
Another possibility for the lack of Ce4+-dependent activity is that the Ce4+ salt is an 

inhibitor for such DNAzyme-based catalysis. To test whether or not the Ce4+ salt was the cause 
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of inhibition, the mixture of the Ce3+/Ce4+ salts was used. First, 10 µM Ce3+ was mixed with 

various concentrations of Ce4+ range from 0 to 1 mM. Complete inhibition was observed only 

with 1 mM Ce4+ (Figure 2.8). It should be noted that only 10 to 100 µM Ce4+ was used for the 

selection and the assay. At such low concentrations, Ce4+ should not be an inhibitor.  In addition, 

similar observations were made by fixing Ce4+ at 10 µM and varying the Ce3+ concentration. 

Based on the results, the reason for the lack of Ce4+-dependent activity also cannot be attributed 

to the Ce4+ salt being a DNAzyme inhibitor. 

 
Figure 2.8 Ce13d assay with mixture of Ce3+/Ce4+ salts. 

 
Based on the data shown above, a more reasonable explanation is that there might be a 

small fraction of Ce3+ present in the Ce4+ salt. Ce4+ is a strong oxidant so it is possible that some 

Ce4+ could be converted into Ce3+. If Ce4+ was completely inactive and all the activity observed 

in Ce4+ was from the Ce3+ impurity, the amount of Ce3+ was estimated to be ~1% in the Ce4+. 

Since the Ce3+-catalyzed reactions were faster than those by Ce4+, the selection process was 

gradually guiding the library towards Ce3+-dependent DNAzymes. Although the resulting 

DNAzyme reacted in an opposite way as originally intended, this enzyme can still distinguish 

between the two oxidation states of cerium.  

 

2.2.4 pH-dependent assay 

To further optimize the condition for Ce13d, a pH dependent assay was carried out. In this 

study, DNAzyme was mixed with 10 µM Ce3+ in various pH buffers for 10 min. All the buffer 
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concentration was 50 mM. As shown in Figure 2.9, the enzyme is inactive at pH 3.5 and has very 

low activity at pH 5. The highest activity was observed in between pH 6 and 7.5, where as at pH 

8.5 the activity was lower. Therefore, the enzyme showed a bell-shaped pH-dependent activity 

and is suitable for detection in water samples. 
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Figure 2.9 pH-dependent enzyme activity (10 min reaction time). The buffers are acetate (pH 3.5), MES (pH 5, 6), 
HEPES (pH 7.5) and Tris (pH 8.5). 

 

2.2.5 Metal specificity 

 

Figure 2.10 Selectivity of the Ce13d with various divalent and trivalent metal ions. Gel images with 10 µM various 
lanthanides A), with 10 and 100 µM trivalent metals B) or divalent metals (C). In B) & C) below each metal label, 
the left lane is 10 µM and the right lane is 100 µM of the metal. All assays are performed in 50 mM MES buffer (pH 
6) with 25 mM NaCl. 

 
Figure 2.10A showed that Ce13d can be cleaved by all the trivalent lanthanides with a 

similar activity, reaching ~70% cleavage in 1 h with 10 µM metal ions. Other trivalent metal ions 

were also tested (Figure 2.10B), including Fe3+, Cr3+, In3+, Sc3+, Y3+ and Tl3+. Only Y3+ showed 

A 
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cleavage activity; Y is known to be very similar to lanthanides (e.g. ionic radius similar to Ho3+) 

and is also classified as one of the rare earth metals together with the lanthanides. Sc3+ showed 

no activity although it is in the same row, possibility due to its smaller size. None of the other 

trivalent metals showed activity, despite the fact that size of Tl3+ is also similar to that of Y3+. 

Therefore, in addition to size and charge (see Table 2.3), metal coordination chemistry must also 

play an important role.  

For divalent metal ions, Pb2+ is the only one that showed moderate activity at 10 µM 

concentration, while Zn2+ showed a very small amount of cleavage at 100 µM (Figure 2.10C). 

Based on the cleavage assay, the selectivity for lanthanides over Pb2+ is more than 20-fold and 

for other divalent ions is more than 500-fold. Since Pb2+ is a thiophilic soft cation while 

lanthanides are hard Lewis acids with low affinity toward thiol, interference from Pb2+ can be 

masked (vide infra). Overall, this enzyme may serve as a general probe for rare earth metals, 

which has not been achieved previously. 

Table 2.3 Oxidation states, ionic radii and activity of selected metal ions.192 In the first column, Ox means oxidation 
state, r denotes for ionic radii and A refers to activity (Y = active; N = inactive, M=moderate).  

 Fe In Tl Sc Y La Ce Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Pb 
Ox 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 2 

R (pm) 65 80 89 75 90 103 101 87 99 98 96 95 94 92 91 90 89 88 87 86 119 
Activity N N N N Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y M 
  

2.2.6 Kinetics of Ce13d DNAzyme with other lanthanides 

So far, the majority of the lanthanide data presented only showed cleavage at 1 hr. To 

compare the actual rate of cleavage, a few lanthanides were chosen to measure the cleavage 

kinetics and the data were displayed Figure 2.11. The rates are 0.25 min-1 (Ce3+), 0.17 min-1 

(Sm3+), 0.13 min-1 (Dy3+) and 0.082 min-1 (Yb3+). Therefore, the difference in rate among all 

lanthanides is within 3-fold. 
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Figure 2.11 Ce13d cleavage kinetics in the presence of 10 µM lanthanides. The buffer contained 25 mM NaCl, 50 
mM MES (pH 6.0) and the DNAzyme concentration was 1 µM. 

 
Since divalent metal ions are much more efficient than monovalent ions for DNAzyme 

catalysis, one may deduce that higher valent metal ions might be even more efficient. From the 

inorganic chemistry standpoint, a higher oxidation state corresponds to a higher positive charge 

density and possibly different coordination geometry. The pKa value of the bound water may 

also be affected, all of which are important parameters to influence DNA catalysis. However, 

despite that Ce4+ was initially used, the selected enzyme was more active with Ce3+. In addition, 

the rate for this Ce3+-dependent DNAzyme did not appear to be superior to other DNAzymes 

using divalent metal cofactors. One possible explanation is that with increasing positive charge 

density, higher valent cations display stronger non-specific interactions with DNA, making it 

more difficult to form efficient enzyme structures. Since combining divalent metals and 

lanthanides has been shown to accelerate DNAzyme catalysis,166,176,177 further studies are needed 

to fully understand the use of lanthanide alone as the metal cofactor.  
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2.2.7 DNAzyme beacon sensor 

 
Figure 2.12 Kinetic study of the Ce13d DNAzyme beacon. A) Schematic representation of the DNAzyme beacon. 
B) Sensor signaling kinetics to various concentrations of Ce3+. DNAzyme concentration = 50 nM in 50 mM HEPES 
buffer (pH 7.6). C) Quantification of Ce3+ based on the initial rate of fluorescence enhancement. Inset: the linear 
region at low Ce3+ concentrations. D) Masking the 10 µM Pb2+ response by 1 mM MCH. Sensor response to 1 µM 
various lanthanides and Y3+ E) and to other trivalent metal ions F). 

 
A biosensor based on fluorescence “turn-on” DNAzyme was designed for real-time 

analysis (Figure 2.12A). In this design, the 5ʹ′-end of the substrate strand was extended by 3 

nucleotides to form a 15-mer duplex with the enzyme. The 3ʹ′-end of the substrate was labeled 

with a FAM, and it still formed 9 base pairs to allow fluorophore to release after cleavage. The 

enzyme strand was labeled with a quencher on 5ʹ′-end. In the presence of Ce3+, the cleavage 

reaction may facilitate the release of the FAM-labeled fragment to enhance fluorescence signal 

(Figure 2.12A).193 To ensure that the fluorescence enhancement in the DNAzyme beacon setup 

was indeed due to the cleavage reaction, a gel electrophoresis experiment was performed. The 

detail of the design and the confirmation of the cleavage are shown in Figure 2.13. In Figure 

2.13B, Lane 1 is the free FAM-labeled extended substrate and lane 2 is the substrate hydrolyzed 

with NaOH. Lane 3 is the substrate hybridized with the quencher-labeled enzyme after reacting 
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with Ce3+. The substrate was effectively cleaved, confirming the fluorescence enhancement was 

due to cleavage. 

 
Figure 2.13 Design of the fluorescent Ce13d DNAzyme beacon. A) The sequence of the DNAzyme beacon. B) 
Confirmation of cleavage in the catalytic DNA beacon based sensor. 

 
With 50 nM of the sensor complex, a steady fluorescence in the absence of Ce3+ was 

observed and the rate of fluorescence enhancement was progressively faster with increasing Ce3+ 

concentration (Figure 2.12B). The initial slopes of the fluorescence traces were plotted to 

quantify Ce3+ up to 500 nM (Figure 2.12C). A detection limit of 1.7 nM Ce3+ (240 parts-per-

trillion) was obtained based on signal greater than 3 times of background variation (Figure 

2.12C, inset). Just as in the case of the gel-based assays, the sensor showed similar sensitivity 

with all the lanthanides and Y3+ with slope difference smaller than 1-fold (Figure 2.12E). 

Therefore, the detection limits for all these elements are better than 4 nM. This represents the 

most sensitive biosensor for lanthanides. Note that this study does not include promethium 

(Pm3+) since it is radioactive, but it is reasonable to believe that Pm3+ should also be active based 

on the chemical trend.  

 

2.2.8 Masking Pb2+ interference 

The previous gel-based assays indicated that Pb2+ might be the main interfering ion. 

Indeed, 10 µM Pb2+ produced a strong signal (Figure 2.12D, black trace). With 1 mM 

mercaptohexanol (MCH), the Pb2+ response was completely masked, while 1 µM Ce3+ still 
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produced a strong fluorescence increase (red trace). In addition, the sensor showed no response 

to other trivalent metal ions (Figure 2.12F) which was consistent with previous gel-based assays. 

 

2.2.9 Ce4+/Ce3+ conversion 

To have a complete analysis of metal ions in the environment, it is important to have 

information not only on the total metal concentration but also about the metal speciation.194,195 

However, most analytical instruments such as ICP-MS measure only the total metal 

concentration. The DNAzyme platform might offer a solution to this problem as shown in Figure 

2.14A.  

 
Figure 2.14 Cerium speciation analysis with the Ce13d DNAzyme beacon. A) A scheme illustrating the analysis of 
metal speciation using the DNAzyme sensor for different oxidation states. B) Sensor response to 1 µM Ce4+ and 
then 1 µM Ce3+. C) Sensor response to Ce3+ generated by reacting Ce4+ with 50 mM NaI. D) Sensor response to Ce3+ 
generated by reacting Ce4+ with various halide salts, all at 50 mM concentration. The final Ce concentration in the 
sensor was 1 µM. 

 



	
  
	
  

46	
  

Although Ce4+ is insensitive to the sensor, its concentration can be indirectly obtained by 

measuring the Ce3+ concentration before and after a reducing reaction. To test this idea, the 

sensor was first exposed to 1 µM Ce4+ and the signal remained quite stable (Figure 2.14B). 

Addition of Ce3+ resulted in a quick fluorescence increase. This excellent selectivity between 

Ce3+ and Ce4+ makes it possible to monitor the conversion between these two species. Alkali 

halides are potential reducing agents.  Thus, NaI can be used as the reducing agent to convert 

Ce4+. The oxidized product can then be detected by DNAzyme sensor. Immediately, 

fluorescence enhancement was observed (Figure 2.14C), this suggested that Ce4+ was reduced to 

Ce3+. Different halide anions with Ce4+ were further tested, where reaction with NaI was the 

fastest followed by NaBr, while NaCl had no reaction (Figure 4D). This is consistent with the 

redox trends of these anions, indicating that NaI is the most efficient reagent for the reduction. 

Aside from its environmental application, this work represents the first example of monitoring 

metal redox reaction using a DNAzyme. Previously, the conversion of protein enzyme catalyzed 

chemical transformation has been monitored using aptamers,196,197 and this ability is useful for 

understanding reaction mechanisms and screening for reaction inhibitors.   

 

2.3 Summary 

In this chapter, in vitro selection of a general trivalent lanthanide-dependent DNAzyme is 

described. A number of important observations were made. First of all, a novel RNA-cleaving 

DNAzyme using a lanthanide ion as the sole metal cofactor was obtained. Secondly, the 

DNAzyme beacon has remarkable sensitivity and represents the first general probe for rare earth 

metals. This DNAzyme showed similar sensitive to all trivalent lanthanides plus Y3+ in the 

absence of any divalent metals. Last but not least, this is the first example of using DNAzymes to 
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distinguish the different oxidation states of the same metal ions and monitoring the conversion of 

oxidation states was further demonstrated. This work shows the possibility of using the 

DNAzyme technology to obtain metal speciation information, which is important for 

environmental and water quality monitoring.  

 

2.4 Materials and Methods 

2.4.1 Chemicals 

The DNA library for in vitro selection, related primers, and fluorophore/quencher 

modified DNAs were purchased from Integrated DNA Technologies (IDT, Coralville, IA). The 

sequences of DNA used in this selection are listed in Table 2.4. The trans-cleaving enzyme 

strands and their mutants were from Eurofins (Huntsville, AL). The lanthanides that were used in 

the experiment include lanthanum nitrate hexahydrate, ammonium cerium nitrate, cerium 

chloride heptahydrate, praseodymium chloride hydrate, neodymium chloride hexahydrate, 

samarium chloride hexahydrate, europium chloride hexahydrate, gadolinium chloride hydrate, 

terbium chloride hexahydrate, dysprosium chloride hexahydrate, holmium chloride hexahydrate, 

erbium chloride hexahydrate, thulium chloride hexahydrate, ytterbium chloride hexahydrate, and 

lutetium chloride hexahydrate. Their solutions were made by directly dissolving their salts in 

water. Other metal ions that were used for analysis include magnesium sulfate, scandium 

chloride hydrate, manganese chloride tetrahydrate, iron chloride hexahydrate, iron chloride 

tetrahydrate, cobalt chloride hexahydrate, copper chloride dehydrate, zinc chloride, yttrium 

chloride hexahydrate, silver nitrate, indium chloride, mercury perchlorate, lead acetate. All these 

salts were purchased from Sigma-Aldrich except the iron and silver salts were purchased from 

Alfa Aesar. Tris(Hydroxymethyl)aminomethane (Tris), 2-(N-morpholino)ethanesulfonic acid 
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(MES) free acid monohydrate, 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 

(HEPES) sodium salt, HEPES free acid, EDTA disodium salt dehydrate, sodium chloride, 

sodium bromide, sodium iodide and ammonium acetate were purchased from Mandel Scientific 

Inc (Guelph, Ontario, Canada). Acrylamide/bisacrylamide 40% solution (29:1), urea, and 10x 

TBE solution were purchased from Bio Basic Inc. SsoFast EvaGreen supermix was purchased 

from Bio-Rad for real-time PCR analysis. T4-DNA ligase, deoxynucleotide (dNTP) solution 

mix, Taq DNA polymerase with ThermoPol buffer, and low molecular weight DNA ladder were 

purchased from New England Biolabs. All metal ions, buffer and gel stock solutions were 

prepared with Milli-Q water. The pH of the buffers was measured with Denver Instrument 

UltraBasic pH meter. 

Table 2.4 DNA sequences design for In vitro selection. 

DNA Name Sequence and modifications 
Lib-FAM 5ʹ′-GGCGAAACATCTTN50TAGTGACGGTAAGCTTGGCAC-FAM 

Lib-rA 5'-AATACGAGTCACTATrAGGAAGAT 
splint 5ʹ′-AAGATGTTTCGCCATCTTCCTATAGTCCACCACCA 

P1 primer 5ʹ′-GTGCCAAGCTTACCG 
P2 primer 5ʹ′-CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA 
P3 primer 5ʹ′-FAM-AAATGATCCACTAATACGACTCACTATrAGG 
P4 primer 5ʹ′-AACAACAACAAC-iSp18-GTGCCAAGCTTACCG 

 

2.4.2 In vitro selection 

For this in vitro selection experiment, the initial DNA library was prepared by ligating 

two pieces of DNA (Lib-FAM and Lib-rA) with a splint DNA. Lib-FAM DNA (200 pmol) and 

Lib-rA DNA (300 pmol) were mixed with splint DNA (300 pmol) first in buffer A (50 mM pH 

7.5 Tris-HCl, pH 7.5, 10 mM MgCl2). The three strands of DNA were annealed at 95 °C for 1 

min followed by slow cooling to room temperature. The T4 ligation protocol provided by New 

England Biolabs was followed for the ligation reaction. The ligated DNA product was purified 

with 10% denaturing polyacrylamide gel (dPAGE) at 650 V for 1 h and the DNA was extracted 
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from the gel with buffer B (1 mM EDTA, 10 mM Tris-HCl, pH 7.0). The extracted DNA library 

was further concentrated via ethanol precipitation and re-suspended in 60 µL of buffer C (50 mM 

MES, pH 6.0, 25 mM NaCl), which was the selection buffer. This DNA was used directly as the 

DNA library for the first round of selection. For each of the subsequent round, the library was 

generated from PCR. For the In vitro selection experiment, the random DNA pool was incubated 

with freshly prepared Ce4+ metal ion. After incubation, the reaction was quenched with 8 M urea 

and was purified in 10% dPAGE. A fraction of the selected DNA was extracted from the gel and 

further purified with a Sep-Pak C18 column (Waters). The purified selected DNA was then dried 

in an Eppendorf Vacufuge at 30 °C overnight. The dried DNA was re-suspended in 70 µL of 5 

mM HEPES buffer (pH 7.5).  

 

2.4.3 PCR  

During the In vitro selection experiment, three PCR reactions were carried out for each 

round. After the cleavage reaction, a real-time PCR (rt-PCR) was carried out to quantify the 

amount of cleaved DNA that was extracted from the gel. The 20 µL reaction mixture contains 1 

µL of purified DNA template, 400 nM primer (P1 and P2), and 10 µL of SsoFast EvaGreen 

Supermix (Bio-Rad). The thermocycling steps provided by vendor were followed (95 °C for 30s, 

95 °C for 5s, and 55 °C for 5s). PCR1. A 50 µL PCR reaction mixture contained the following: 1 

µL DNA template, 200 nM of each of P1 and P2, 200 µM dNTP mixture, 1× Taq buffer, and 

1.25 units of Taq DNA polymerase. The reaction was carried out for 15-20 cycles. The DNA 

was amplified using the following cycling steps: 94 °C for 5 min; 94°C for 30 s, 55 °C for 30 s, 

and 72 °C 30 s. A gel/PCR DNA fragment extraction kit (IBI Scientific) was used to purify the 

PCR1 product. The purified product was used as template for PCR2. One-tenth of the purified 
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product was further amplified for 12 cycles using P3 and P4 as the primers. A 200 µL PCR 

reaction mixture contains 4 µL diluted template from PCR1, 250 nM each of P3 and P4, 200 µM 

dNTP mixture, 1× Taq buffer, and 5 units of Taq DNA polymerase. The thermocycling steps 

mentioned above were also used here. The final PCR2 product was again purified in 10% 

dPAGE. The single-stranded FAM-labeled DNA was excised from the gel, ethanol precipitated 

and used as the library pool for the subsequent round of selection. 

 

2.4.4 Cloning and sequencing 

The selection was stopped at round 6, where the PCR1 product was cloned using the TA-

TOPO Cloning Kit (Invitrogen) and Subcloning Efficiency DH5α competent cells (Invitrogen). 

The protocol provided by vendor was followed. The plasmid DNA was extracted and purified by 

using DirectPrep 96 MiniPrep Kit (QIAGEN). The sample was then submitted to TCAG DNA 

Sequencing Facility (Toronto, ON) for analysis. The alignment was performed using ClustalW2.  

 

2.4.5 Activity assays 

For a typical gel-based activity assay, metal ions at a final concentration of 10 µM were 

incubated with 5 µL of 1 µM DNAzyme complex in buffer C for 1 h. The complex was formed 

by annealing the FAM-labeled substrate and the enzyme in buffer C. The samples were 

quenched with 8 M urea and run in 15% dPAGE at 120V for 80 min. The gel images were taken 

with Bio-Rad ChemiDoc MP imaging system. 

 

2.4.6 Fluorophore/quencher-based assay  

The kinetic studies were carried out in a 96 well plates using a Molecular Device 

SpectraMax M3 microplate reader. The complex was formed by annealing the FAM-labeled 
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substrate and the quencher-labeled enzyme in buffer C. 100 µL of 50 nM FAM-Q DNAzyme in 

50 mM pH 7.5 HEPES (pH 7.5) was used for each well. 1 µL of target ions was added after 5 

min of background reading. The samples were monitored continuously after addition for at least 

30 min with a 10 s interval between measurements. For reactions between Ce4+ and NaI, the 

initial Ce4+ concentration was 10 mM and then diluted to 1 µM for detection and the NaI 

concentration was 50 mM.  
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Chapter 3. In Vitro Selection of a New Lanthanide-Dependent DNAzyme and 

Its Application for Ratiometric Sensing Lanthanidesb 

3.1 Introduction 

DNAzymes are DNA-based catalysts, where metal ion cofactors are required for activity. 

79,162-164,198,199 In the previous chapter, a DNAzyme named Ce13d was selected and its application 

as a biosensor for lanthanide detection was demonstrated.87 Although the selection was initially 

performed with cerium (Ce4+) as an intended target, this enzyme showed similarly active with all 

the trivalent lanthanides but had almost no activity with Ce4+. Not only Ce4+ is a poor metal 

cofactor for cleaving RNA,160 but also Ce4+ is a strong oxidant. Together, we reason that a small 

fraction (~1% by our estimation) of Ce4+ was reduced, which gradually guide the selection 

process toward the more active Ce3+.  

Ce13d provides a starting point for solving the lanthanide detection problem since it 

demonstrates excellent selectivity for lanthanides as a group. However, it cannot discriminate 

each lanthanide within the group based on the reaction rate. To achieve this, more selective 

lanthanide-dependent DNAzymes are needed. Towards this goal, I describe my effort using 

praseodymium (Pr3+) as the intended target for new DNAzyme selection using the N50 library. 

At the same time, a colleague used the N35 library to select lutetium (Lu3+)-dependent 

DNAzymes. Interestingly, several Pr3+ sequences were also found to be present in the Lu 

sequences. To simplify the analysis, a Lu sequence was used for subsequent detail studies. In this 

chapter, a new DNAzyme named Lu12 that displays better lanthanide discrimination is studied. 

                                                
b This chapter is the basis for a published manuscript: Huang, P. J.; Vazin, M.; Liu, J. In Vitro Selection of a New Lanthanide-Dependent 

DNAzyme for Ratiometric Sensing Lanthanides. Anal. Chem. 2014, 86, 9993-9999. 
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By combining Ce13d and Lu12 lanthanide-dependent DNAzymes, a ratiometric sensor was 

developed. Although the information provided by the two sensors is able to discriminate only a 

few large lanthanides, it presents the possibility of identify each individual lanthanide within the 

series when more DNAzymes become available. 

 

3.2 Results and discussion 

3.2.1 In vitro selection 

The previous report demonstrated that high concentration (> 5 mM) of free lanthanide 

ions can cleave RNA efficiently, and the cleavage activity is directly proportional to the size of 

the lanthanides.160 To obtain a lanthanide-dependent DNAzyme, a selection was carried out with 

an N50 library (e.g. 50 random nucleotides).87  In that selection, a large fraction of the obtained 

sequences belong to the Ce13d (Figure 3.1E) family, which had similarly activity with all 

trivalent lanthanide, including Lu3+. To discriminate different lanthanides, it is necessary to 

select a new DNAzyme with a different lanthanide. Since previous selection was using 

tetravalent lanthanide as a target, a trivalent lanthanide Pr3+ was chosen for this study.  
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Figure 3.1 A design scheme for the Pr3+ DNAzyme selection. A) Scheme of in vitro DNAzyme selection in the 
presence of Pr3+. The initial library contains an N50 randomized region and a single RNA linkage (rA) as the 
cleavage site. Cleaved sequences in the presence of Lu3+ (step 1) are harvested after gel electrophoresis (PAGE, step 
2). After two rounds of PCR the full-length single-stranded library is re-generated and the positive strand is isolated 
after another PAGE step. B) The library sequence before the cleavage step. C) Sequence alignment from the start of 
the N50 region. The nucleotides in red are highly conserved. The numbers in the parenthesis are the number of 
identical or very similar sequences (differ by less than 2 nucleotides) as the listed. The secondary structure of the 
trans-cleaving Lu12 D) and Ce13d E) DNAzymes. Important nucleotides for catalysis are marked in red. 

 
Just as in the previous selection, the initial library contained a sequence population of 

~1014. The randomized region (the blue loop in Figure 3.1A) joined the two short base-paired 

duplexes and held the single ribo-adenosine (rA) in its proximity. Since RNA is more susceptible 

to cleavage than DNA, the rA linkage served as the designated cleavage site.52 The exact 

sequence of the library design is shown in Figure 3.1B. During the selection process, the library 



	
  
	
  

55	
  

was first incubated with Pr3+ for a period of time to induce cleavage (Figure 3.1A, step 1). After 

that, the shorter cleaved DNA strands were harvested using gel electrophoresis (step 2). Two 

rounds of polymerase chain reactions (PCR) were performed to bring the library back to the 

original length and amplify the cleaved DNA to seed the next round of selection. After five 

rounds of selection, cleavage reached 43%. At that point, the library was cloned and sequenced. 

The details of the selection conditions and progress are summarized in Table 3.1. 

Table 3.1 In vitro selection conditions and progress for Pr3+. 

Round # [Pr3+] (µM) Incubation time (min) Cleavage (%) 
1 50 60 0.2 
2 50 60 0.8 
3 50 80 6.5 
4 20 120 46.9 
5 20 120 42.8 

 
While aligning the Pr sequences, it was found that about half of the clone sequences 

belong to one family. In addition, these sequences are also present in the Lu3+ selection that was 

conducted by a colleague. Since Ce13d structure is quite large, shorter N35 library was used to 

prevent re-selecting Ce13d sequence. 

 

3.2.2 DNAzyme secondary structure analysis 

Thirty-eight out of 40 clones were valid sequences and their full sequences are listed in 

Table 3.2. One of the representatives Pr sequence named Pr25 was also included in the alignment 

for comparison. Remarkably, none of the sequences were Ce13d related. In addition, all of the 

selected DNA can be aligned into a single sequence family.  Some of the representative ones 

with sequences starting from the 5ʹ′-end of the random region were listed in Figure 3.1C. The 

first six nucleotides are highly conserved (TACAAAG, in red), followed by a highly variable 

region both in terms of sequence and length, and ended with another highly conserved tetra-

nucleotide, GGTT.  
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Table 3.2 Alignment of Pr25 sequence with Lu3+ selection sequences. 

Clone #                  Sequence (from 5’-end) 
11          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
32          CTGTAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
40          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
39          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
3           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
28          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
21          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
20          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
13          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
8           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
14          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
9           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
37          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
18          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTCTACAAGCA 56 
22          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
34          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
24          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
4           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCA 56 
5           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAG-- 54 
36          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGAA 56 
2           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
7           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTCRCAAGGA 56 
29          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
17          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
1           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
27          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
30          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
31          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACGAG-A 55 
16          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACAAAAATGTAGACAGCGA 60 
23          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACAAAAATGTAGACAGCGA 60 
25          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGAA 56 
Pr25        CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACGAGCA 56 
33          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
12          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
38          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
15          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
6           CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGGA 56 
26          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCG 56 
10          CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA----TCTTTACAAGCG 56 
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Table 3.2 Alignment of Pr25 sequence Lu3+ selection sequences. (Continued) 

Clone #                  Sequence (from 5’-end) 
11          TCAGTAGATTTGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
32          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
40          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
39          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
35          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
28          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
21          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
20          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
13          TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
8           TCAGTAGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
14          TCAGTAGATTGGAA----------------T-GCGGTTA-----TAGTGACGGTAAGCTT 94 
9           TCAGTGGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
37          TCGGTGGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
18          TCAGTTGATTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
22          TCAGTAGACTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
34          TCAGTAGACTGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
24          TCAGTAGATCGGAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
4           TCAGTAGGTTGCAA---------------AT-GCGGTTA-----TAGTGACGGTAAGCTT 95 
5           TTATATGGTAAGAAT--------------ATAGCGGTTA-----TAGTGACGGTAAGCTT 95 
36          TCCGACATTCAGGA----------------T-TCGGTTA-----TAGTGACGGTAAGCTT 94 
2           AGGGTCCACTATGC---------------ACAACGGTTA-----TAGTGACGGTAAGCTT 96 
7           AGGG-CCACTATGC---------------ACAACGGTTA-----TAGTGACGGTAAGCTT 95 
29          AGGGTCCACTATGC---------------ACAACGGTTA-----TAGTGACGGTAAGCTT 96 
17          AGGGTCCACTATGC---------------ACAACGGTTA-----TAGTGACGGTAAGCTT 96 
1           AGGG--TACTATGC---------------ACAACGGTTA-----TAGTGACGGTAAGCTT 94 
27          AGGGTCCACTATAC---------------ACAACGGTTA-----TAGTGACGGTAAGCTT 96 
30          AGGGTCCACTACAC---------------ACAACGGTTA-----TAGTGACGGTAAGCTT 96 
31          GGGAAATACAATGC----------------CCTCGGTTA-----TAGTGACGGTAAGCTT 94 
16          GCAT----TCCGAA-----------------TTAGGTTAA----TAGTGACGGTAAGCTT 95 
23          GCAT----TCCGAA-----------------TTAGGTTAA----TAGTGACGGTAAGCTT 95 
25          AAATG---TCTGACG--------------TTTTTGGTTA-----TAGTGACGGTAAGCTT 94 
Pr25        TA---CGGTTATAGGAGTCGGACTTACAGATTTAAGATACAGAGCTATGACGGTAAGCTT 113 
33          -A---CGGTTATA---------CTGACGAG----GGATACTA----GTGACGGTAAGCTT 95 
12          -A---CGGTTATAG---------TGAAAGG----AAACTCGTAGT-----CGGTAAGCTT 94 
38          -A---CGGTTATAG---------TGAAAGG----AAACTCGTAGT-----CGGTAAGCTT 94 
15          -A---CGGTTATAG---------TGAAAGG----AAACTCGTAGT-----CGGTAAGCTT 94 
6           -A---CGGTTATAG---------TGAAAGG----AAACTRGTAGT-----CGGTAAGCTT 94 
26          GAG--CGGTTATAGG---------AACGAGC----GATATAGT-------CGGTAAGCTT 94 
10          AAG--CGGTTATGG--------------------GGACACGCACTGGTGACGGTAAGCTT 94 
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Figure 3.2 Secondary structure prediction of Lu12. 

 
Since Lu12 has the shortest insertion between the two fixed regions, mfold was used for 

secondary structure predicaments (Figure 3.2).190 The cleavage site is shown in the red rA. The 

thymine at position 48 is the starting of the N35 region. This is the cis-cleaving version of the 

DNAzyme since the system is self-cleaving. Aside from the 14 nucleotides in the small loop for 

catalysis, the other 21 nucleotides from the randomized regions formed base pairs or bulges. The 

secondary structure of the active region is quite straightforward to rationalize. Figure 3.1D 

showed the trans-cleaving version of the DNAzyme that was redesigned by cutting the loop 

nearby nucleotide number 40 and extending the two binding arms. The two conserved regions 

are located at the two sides of this enzyme (in red). For those DNAzymes with longer insertions, 

the inserted sequences either form a hairpin or a structureless loop, suggesting that they were less 

likely to participate in the catalytic reaction.  

 

3.2.2 Metal specificity 

When compared with Ce13d (Figure 3.1E), the structure of Lu12 looked very different 

and it could possibly pose a different activity trend cross the lanthanide series. For sensing 

applications, metal specificity is very important. Therefore, its activity against other divalent and 
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trivalent cations was first tested. In the presence of 10 µM metal ions (Figure 3.3A), only Y3+ 

showed substantial cleavage and Pb2+ displayed little cleavage. When the concentration was 

increased to 100 µM (Figure 2B), both Pb2+ and Y3+ showed a large fraction of cleavage. It 

should be noted that a smeared band was observed in the presence of Au3+. This was likely due 

to DNA base binding but no cleavage was observed. It is commonly known that DNAzyme-

based sensors suffer from Pb2+ interference. Fortunately, for lanthanide detection, the Pb2+ 

activity can be masked with the addition of thiol compounds such as mercaptohexanol (MCH). 87 

However, Y3+ interfereence is more difficult to mask because of its similar size and charge to 

those of the lanthanides. Other divalent or trivalent metal ions did not produce significant 

cleavage at both concentrations, suggesting this DNAzyme is highly selective for lanthanides. 

 
Figure 3.3 Selectivity and sensitivity analysis of the Lu12 DNAzyme. Gel images of the Lu12 DNAzyme assay 
with A) 10 µM and B) 100 µM metal ion for 1 h. C) Lu12 reacting with 1 µM lanthanides for 5 min. All assays are 
performed in 50 mM MES buffer (pH 6.0) with 25 mM NaCl. D) Fraction of cleavage as a function of Nd3+ or Lu3+ 
concentration after 1 h reaction time. E) Kinetics of Lu12 in the presence of 10 µM Nd3+ or Lu3+. 
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For the lanthanide activity test, Lu12 was incubated with 1 µM of each individual 

lanthanide for 5 min. Just as in the case of Ce13d, cleavage was observed for all the lanthanides 

(Figure 3.3C). It fact, the lighter lanthanides from La3+ to Tb3+ showed a similarly high 

efficiency of cleavage. However, the efficiency gradually decayed for the last few heavier ones 

(Figure 3.3C). Next, the effect of the lanthanide concentration on enzyme activity was 

investigated (Figure 3.3D). Neodymium (Nd3+) and Lu3+ were chosen to represent light and 

heavy lanthanides, respectively. In both cases, efficient cleavage was observed when the metal 

ion concentration was from 0.5 µM to a few µM and inhibition occurred at higher metal ion 

concentrations. Even though Nd3+ did not start to inhibit the activity until 10 µM, Lu3+ started to 

show inhibition around 2 µM. The inhibition was largely due to non-specifically interacting 

between lanthanides and the DNAzyme.  

Once the condition was optimized, the cleavage rate of Lu12 was measured (Figure 

3.3E). With 10 µM Nd3+, a steady increase of the cleaved fraction was observed over time and 

the rate was estimated to be 0.12 min-1. Within 1 hour, ~70% of the substrate was cleaved in the 

presence of Nd3+. As a result of the inhibition effect at this concentration, Lu3+ barely induced 

any cleavage. To avoid artifacts associated with DNAzyme activity inhibition, low lanthanide 

concentrations should be used for sensing applications.  

What made Lu12 interesting is that among all the tested lanthanides, Lu3+ gives the 

slowest activity. Matsumura and Komiyama reported that Lu3+ was among the most efficient 

lanthanides for cleaving a dinucleotide RNA while lighter lanthanides such as Nd3+ are almost 

inactive when 5 mM of lanthanides were used.200 On the other hand, when Geyer and Sen tried 

to cleave a chimeric substrate alone with 60 µM lanthanides, they reported that Lu3+ displayed 

lowest activity (< 0.0012 h-1). However, when the substrate was hybridized to the GR5 
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DNAzyme, Lu3+ induced the fastest cleavage.167 Based on the previous studies, the assays 

conducted in this chapter were done at lower lanthanide concentrations (< 10 µM in most cases) 

and the results showed that Lu3+ was the least active.  

It seems that lanthanide concentration, substrate length, and the presence of DNAzyme 

are all key factors to determine the activity trend. To further understand the effects of lanthanides 

on cleaving a chimeric substrate, a 30mer substrate strand alone was incubated with 2 mM of 

each lanthanide for 2.5 h (Figure 3.4A). Even with such high concentration of lanthanides, only 

~4% cleavage was observed for all the samples and the difference across the series wass very 

small (Figure 3.4B). This lack of significant cleavage was probably due to the condensation of 

the substrate in the presence of high trivalent lanthanides concentration. Under such condition, 

RNA linkage was shielded from further attacks. As a result, assays had to be done at low 

lanthanide concentrations to avoid denaturation. The data also indicated that the intrinsic RNA-

cleaving ability of lanthanides is very weak and the efficiency can be significantly enhanced in 

the presence of DNAzyme.   

 
Figure 3.4 Lanthanides specificity of Lu12. Gel image A) and its quantification B) of the FAM-labeled substrate 
strand (no enzyme strand) cleavage by 2 mM lanthanides in MOPS buffer (pH 7.0, 50 mM), 25 mM NaCl for 2.5 h. 
The first lane of the gel is a reference without lanthanide. 

 

RNA cleavage has been extensively studied and both nucleobases and metal ions can 

participate the critical catalytic step.77 A generally proposed mechanism for catalysis involves 
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the metal ion acting as a general base to assist deprotonation of the 2ʹ′-OH on the ribose. The pKa 

value of lanthanides bound water range from 8.2 to 9.4 and these values are inversely 

proportional to the size of lanthanide. Thus, the bound water on Lu3+ should be the best general 

base catalyst. Since this single mechanism does not explain our observation, lanthanides must 

play additional roles in this catalysis. For instance, lanthanides are known to neutralize the 

phosphate negative charges in the transition state, where the smaller lanthanides might be more 

effective. Detailed mechanistic studies will be a topic of follow-up research. Overall, Lu12 is a 

DNAzyme that is highly specific for lanthanides. Unlike previously selected Ce13d DNAzyme, 

Lu12 actually showed some lanthanide size-dependent activity that might be useful analytically.  

 

3.2.3 Additional characterization of the DNAzyme catalytic core 

Based on the mfold190 prediction, one of the sequences named Lu1 has a very similar 

structure as that of Lu12. The main difference is that the loop size is much larger (Figure 3.5). In 

addition, it also displayed a similar active trend with various lanthanides (Figure 3.6). Since Lu1 

has a very large loop and Lu12 has a much smaller loop, it was logical to systematically vary the 

loop size and tested their activity. Two new DNAzymes named Lu1a and Lu1b were introduced 

and their sequences are listed in Table 3.3 below. Even though all the DNAzymes were active, 

Lu12 seemed to be the most active one (Figure 3.7).  
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Figure 3.5 Secondary structure prediction of Lu1. 

 

 
Figure 3.6. Cleavage activity of Lu1 and Lu12 (trans-cleaving) in the presence of various lanthanides (10 µM). 

 
Table 3.3 Sequences comparison of the DNAzymes with various size loops. 

DNAzyme                                                              Sequence ( from 5’-end) 
Lu1      TTTCGCCATCTT  TACAAG GAAGGGTACTATGCACAAC GGTT  ATAGTGACTCGTGAC 
Lu1a     TTTCGCCATCTT  TACAAG GAAGGATGCACAAC      GGTT  ATAGTGACTCGTGAC 
Lu1b     TTTCGCCATCTT  TACAAG GAACACAAC           GGTT  ATAGTGACTCGTGAC 
Lu1c     TTTCGCCATCTT  TACAAG AAAAAAAAAAAAA      CGGTT  ATAGTGACTCGTGAC 
Lu1d     TTTCGCCATCTT  TACAAG TTTTTTTTTTTTT      CGGTT  ATAGTGACTCGTGAC 
Lu1e     TTTCGCCATCTT  TACAAG CCCCCCCCCCCCC      CGGTT  ATAGTGACTCGTGAC 
Lu12     TTTCGCCATCTT  TACAAG GAAC                GGTT  ATAGTGACTCGTGAC 

 

 
Figure 3.7 Cleavage activity of the trans-cleaving Lu1 mutants and Lu12 in the presence of various Ce3+ (10 µM). 
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To understand the effects of loop size further, a stretch of poly-A, poly-T or poly-C 

(Table 3.3) were inserted in the loop region of Lu12 and only the poly-C insertion inactivated the 

DNAzyme (Figure 3.8). These studies confirmed that as long as the conserved nucleotides are 

maintained, the DNAzyme is likely to remain active. The reason for Lu1e being inactive might 

be due to misfolding of the DNAzyme. 

 
Figure 3.8 Cleavage activity of the Lu1 mutants that containing homopolymer insertions in the presence of various 
Ce3+ (10 µM). 

 

3.2.4 Lanthanide sensing 

The studies demonstrated that Lu12 DNAzyme has excellent lanthanide sensitivity. It 

would be interesting to see its performance as a biosensor. Just like Ce13d beacon design, the 3ʹ′-

end of the substrate strand was labeled with a FAM and the 5ʹ′-end of the enzyme was labeled 

with a quencher (Figure 3.9).  

 
Figure 3.9 Design of the fluorescent Lu12 and Ce13d DNAzyme beacon. Catalytic beacon design of A) Lu12 and 
B) Ce13d. F = FAM. Q = Iowa Black® FQ dark quencher. 

 
This complex was very stable in the absence of lanthanides and showed low background 

fluorescence due to the close proximity of the two dyes (Figure 3.10A). With increasing 

concentration of Nd3+, the rate of fluorescence enhancement increased proportionately. When 
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Nd3+ concentration finally reached 1 µM, ~ 10-fold of fluorescence enhancement was observed. 

From these kinetic traces, the initial slope was plotted (Figure 3.10B). The Lu12 response can be 

fitted to binding to one Nd3+ ion with an apparent dissociation constant (Kd) of 38 nM. From the 

initial linear response (inset) data, the limit of detection was determined to be 0.4 nM Nd3+ (or 72 

parts-per-trillion) based on signal greater than three times of background variation. The common 

metal ion-selectivity test was consistent with the results from gel analysis. The data showed that 

only Y3+ and Pb2+ produced responses besides Nd3+ (Figure 3.10C). Most importantly, Lu12 was 

able to display different responses toward each lanthanide more clearly than the gel analysis. In 

fact, the kinetic traces showed the catalytic rate is proportional to the size of lanthanides (Figure 

3.10D).  

 
Figure 3.10 Kinetic study of the Lu12 DNAzyme beacon. A) Sensor signaling kinetics in the presence of various 
concentrations of Nd3+. DNAzyme sensor concentration = 50 nM. B) Quantification of Nd3+ based on the initial rate 
of sensor fluorescence enhancement. Inset: the initial linear response at low Nd3+ concentrations. C) Sensor response 
to 0.5 µM of divalent and trivalent metal ions. The list of the other metal ions tested can be found in Figure 2B. D) 
Sensor response to 0.5 µM of various lanthanides. 
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3.2.5 Ratiometric sensing 

So far, two lanthanide-dependent DNAzymes have been selected successfully (Figure 3.1D & E) 

and both displayed high specificity toward lanthanides as a group. However, none of them can 

identify each lanthanide individually. Since both DNAzymes showed different propensity toward 

some of the lanthanides, it is possible to extract more analytical information by combining the 

two DNAzymes (Figure 3.11A & B). First, the responses of each sensor to different lanthanides 

were first tested separately. For example, both DNAzymes were individually tested and both 

showed a similar rate of fluorescence change with Nd3+ (Figure 3.11C). On the other hand, Lu3+ 

produced a much slower response with Lu12 than with Ce13d (Figure 3.12D). The results were 

consistent with the previous gel-based assays. If these two sensors were combined, different 

lanthanides would produce different overall response patterns. As a result, these patterns might 

be used for their identification by applying the simplest mathematical treatment called 

ratiometric detection. The Lu12/Ce13d ratio of sensor signaling rate is plotted for all the 

lanthanides (Figure 3.11E). For lanthanides smaller than Tb3+, the value of the ratio is closer to 1. 

For the larger lanthanides, the ratio shows a descending trend. 

Ideally, each lanthanide should present a unique ratio. However, there are a total of 14 

analytes and only two sensor probes are available. It is almost impossible to identify individual 

lanthanides with the current system. To fully identify each lanthanide, it is necessary that more 

sensor probes with unique patterns of response be discovered. 
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Figure 3.11 Ratiometric sensing of lanthanides with Lu12 and Ce13d DNAzyme becons. Schematics of detecting 
lanthanides using A) the Lu12 DNAzyme and B) the Ce13d DNAzyme based catalytic beacons. Sensor signal 
increase as a function of time for the two sensors in the presence of C) 500 nM Nd3+ or D) 500 nM Lu3+. E) Ratio of 
fluorescence increase rate of the Lu12 over the Ce13d DNAzyme sensor.    

 

3.3 Summary 

 In vitro selection was carried out with Pr3+. Through sequence alignment, a 

representative sequence can be well-aligned with sequences from another selection carried out 

using Lu3+ by a colleague. Therefore, further studies were carried out using this sequence named 

Lu12. This DNAzyme is active with lanthanides alone without the need of divalent metal ions. 

Importantly, a lanthanide size dependent activity trend was observed. This enzyme also provided 

a scaffold to study lanthanide coordination to DNA. By combining two lanthanide-dependent 

DNAzyme-based sensors, we can partially discriminate a few large lanthanides via a ratiometric 

assay. With more unique DNA sequences obtained via in vitro selection, a larger sensor array 

might be formed to discriminate each lanthanide. 
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3.4 Materials and Methods 

3.4.1 Chemicals 

The lists of chemicals used in this chapter can be found in Chapter 2 section 2.4.1. 

3.4.2 In vitro selection 

The Selection and PCR conditions were the same as described in previous chapter. The 

incubation time and concentration of metal salts are in Table 3.1. For the last few rounds of 

selection, Pr3+ was added in 10 µM incremental with 1 h interval instead of all at once. This was 

to avoid its possible inhibition of DNAzyme activity at high concentration.  

 

3.4.3 Activity assays 

Gel-based activity assays were performed with a final concentration of 0.7 µM of the 

FAM-labeled substrate strand and 1.1 µM of the enzyme. The DNAzyme complexes were 

prepared by annealing them in buffer A (25 mM NaCl, 50 mM MES, pH 6) and a final of 10 µM 

lanthanide ions were added to initiate the cleavage reaction. The products were separated on a 

denaturing polyacrylamide gel and analyzed using a Bio-Rad ChemiDoc MP imaging system. 

 

3.4.4 Sensing 

The sensing kinetic studies were carried out using 96 well plates using a Molecular 

Device SpectraMax M3 microplate reader. The complex was formed by annealing the FAM-

labeled substrate and the quencher-labeled enzyme in buffer A. 100 µL of 50 nM FAM-Q 

DNAzyme in 1 mM pH 7.5 HEPES (pH 7.5) was used for each well. 1 µL of target ions was 

added after 5 min of background reading. The samples were monitored continuously after 

addition with a 10 s intervals. 
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Chapter 4. A New Heavy Lanthanide-Dependent DNAzyme Displaying Strong 

Metal Cooperativityc 

4.1 Introduction 

Lanthanides and their complexes have been developed as artificial nucleases and 

chemical probes for nucleic acids.130,169,201,202 In the previous chapters, two new RNA-cleaving 

DNAzymes that are highly specific for lanthanides were reported (Ce13d and Lu12). Detailed 

studies of each DNAzyme were carried out and their applications in sensing lanthanides were 

demonstrated using a catalytic beacon sensor design. Ce13d was selected in the presence of 

Ce3+/Ce4+,87 and Lu12 was selected in the presence of Lu3+.203 Ce13d showed similar activity 

throughout the entire lanthanide series while Lu12 appeared to have lower activity toward the 

last few heavy ones. Only based on the activity trend difference shown between the two 

DNAzyme, the last few heavy lanthanides could be discriminated. Ideally, 15 lanthanides might 

be discriminated if each selected DNAzyme active only with the target lanthanide. However, the 

results from previous studies suggested that this is difficult to achieve due to the physical 

similarity between the lanthanides. If a few DNAzyme probes with distinct activity patterns 

across the lanthanides series can be obtained, it may enable a sensor array to discriminate 

between each of the 15 lanthanide ions.204,205 In an effort to isolate more lanthanide-dependent 

DNAzymes, three new selections were conducted using Ho3+, Er3+ and Tm3+ respectively using 

our N35 library. Holmium has the largest magnetic strength among all the known elements. 

Thus, it is commonly used for making magnets. In addition, with its ability to strongly absorb 

                                                
c This chapter is the basis for a published manuscript: Huang, P. J.; Vazin, M.; Matuszek, Z.; Liu, J. A New Heavy Lanthanide-Dependent 

DNAzyme Displaying Strong Metal Cooperativity and Unrescuable Phosphorothioate Effect. Nucleic Acids Res. 2015, 43, 461-9. 
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neutrons, it is also used in nuclear reactors. Erbium is mainly used for making lasers and thulium 

is used in X-ray devices.  

In many aspects, a new class of DNAzymes from these selections was identified. 

Different from Ce13d or Lu12, they were only active with the seven heavy lanthanides. So far, 

all the reported DNAzymes catalysis were involved with single metal ion. This is the first RNA-

cleaving DNAzyme showing metal cooperativity. The analysis suggested that multiple metal 

ions were involved in catalysis. In addition, phosphorothioate modification of the substrate 

strand has resulted in complete inactivation of the DNAzyme. Even with the addition of 

thiophilic metal ions, its activity cannot be rescued. Combined with all these results, a trinuclear 

lanthanide mechanism is proposed.  

 

4.2 Results and Discussions 

4.2.1 In vitro selection 

It is known that high concentration of free lanthanide ions and some of their complexes 

can cleave RNA.167,200 In the previous two chapters, DNA was used as a scaffold to greatly 

improve the RNA-cleaving efficiency of lanthanide ions. It was shown that the same reaction 

could take place at much lower lanthanide concentrations and at a designated position. To 

achieve the goal of discriminating each individual lanthanide from a mixture, more DNAzymes 

with unique activity patterns are needed. In this work, three separate selections were carried out 

using different lanthanides to increase sequence diversity. The design of the library is shown in 

Figure 4.1A. To track the selection progress easily and quantify the cleavage reaction, the library 

was labeled with a FAM fluorophore at the 5’-end terminal. The ribo-adenosine (rA) is the only 

RNA linkage in the entire sequence and the rAG (indicated by the arrowhead) is the designated 
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cleavage junction. Since RNA is about one million fold less stable compared to DNA, cleavage 

is most likely to take place at this junction. 52 When the library is properly folded into a pre-

designed structure in the presence of lanthanides, the cleavage site is positioned in proximity to 

the randomized N35 loop (35 random nucleotides). If any sequence in this library can cleave the 

RNA linkage, a shorter 74 nucleotides DNA is generated from the full length 102 nucleotides 

DNA (Figure 4.1B). This shortened piece is isolated after gel electrophoresis and amplified by 

two PCR steps to seed the next round of selection.  

 
Figure 4.1 A design scheme for the Ho3+, Er3+, and Tm3+ DNAzyme selection. A) The DNA library sequence. The 
cleavage site is indicated by the arrowhead. B) A simplified scheme of the in vitro selection process. C) Selection 
progress and the round 6 library was sequenced. Lanthanides concentration was 50 µM for rounds 1-4 and 10 µM 
for rounds 5-7. Incubation time was maintained at 60 min. D) Sequence alignment in the enzyme loop region. E) 
The secondary structure of the trans-cleaving version of the Tm7 DNAzyme. 

 
The progressions of three selections are presented in Figure 4.1C. For the first six rounds, 

all three selections experienced a steady improvement in cleavage yield. At round six, 15-38% 

cleavage was achieved. Since the activity of the round 7 libraries dropped noticeably, the round 6 

libraries were used for sequencing.  
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4.2.2 DNAzyme characterization 

A total of 60 sequences were obtained from all three selections. Alignments were 

performed altogether for a systematic comparison and can be found in Table 4.1. For clear 

identification, the DNAzymes were named by the lanthanide used in selection followed by the 

clone number for sequencing. Based on the Mfold190 prediction, most of them can fold into a 

simple loop structure and the folding of Tm7 is shown in Figure 4.2 as a representation. To make 

the analysis more cost effective, a trans-cleaving version was designed for subsequent analysis 

(Figure 4.1E).  

 
Figure 4.2 M-fold190 predicted Tm7 secondary structure in the cis-cleaving form. The numbering starts from the 5ʹ′-
end of the sequence. The cleavage site rA is marked in the red circle.  

 
Searching for the repeating sequences within the region flanked by two base paired 

regions, only the sequences in the loop were re-aligned and presented in Figure 4.1D. 

Unfortunately, these sequences did not show a long stretch of conserved nucleotides. This 

situation is quite different from the two previously reported selections.87,203 In those two cases, 

the conserved nucleotides were easily spotted. In Figure 4.1D, the sequences were aligned based 

on an AT dinucleotide and a thymine that were marked in red and blue respectively. About half 

of these sequences ended with TCTT (also marked in blue), and many contained a stretch of 

adenines right before the conserved AT dinucleotide. The sequences shown in Figure 4.1D 

represented about 50% of the library. For the rest, 16 of them (~27%) are belonged to the Lu12 



	
  
	
  

73	
  

family that were reported earlier.203 It was not surprising that Lu12 was selected again since it is 

active with all these three lanthanide ions. 

Table 4.1 Sequence alignment for the Ho3+, Er3+, and Tm3+ selection. 

Clone #                                                                             Sequence (from 5’-end) 
Ho7             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAG--A- 51 
Ho13            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAG--A- 51 
Ho14            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAG--A- 51 
Er5             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TTGG-C- 52 
Er1             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCGAGA- 53 
Er16            CTGCAG-AATTCTAATACSAGTCACYMTAGGAAGATGGCGAAACATCT-----T--AGA- 51 
Er18            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TGA--T- 51 
Er39            CTGCAG-AATTCTAATAC------CTATAGGAAGATGGCGAAACATCT-----TGA--T- 45 
Er11            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TGA--T- 51 
Tm4             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCA--A- 51 
Tm7             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCG--A- 51 
Tm26            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAA--A- 51 
Ho12            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TATATG- 53 
Tm27            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCTATG- 53 
Ho9             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCAGTA- 53 
Er34            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCGAAAG 54 
Tm14            CTGCAG-AATTCTAATA-GAGTCACTAT-GGAAGATGGCGAAACATCT-----TCAAAA- 51 
Ho2             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAGCTC- 53 
Er22            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTC---TAGAAT- 55 
Ho6             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAATAA- 53 
Er32            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TTTGTA- 53 
Er24            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TTAAACA 54 
Er30            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TTAAA-- 52 
Ho4             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCAAT-- 52 
Ho11            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCTAA-- 52 
Er36            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TTAAA-- 52 
Er4             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAGTA-- 52 
Tm16            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAAGA-- 52 
Tm32            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGARGGCGAAACATCT-----TAAGA-- 52 
Er23            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCC-----TCAAACT 54 
Ho15            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCTAATA 54 
Tm8             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCATACA 54 
Ho1             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAGAGGT 54 
Er6             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TAGA--- 51 
Er13            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT-----TCGAAAA 54 
Er31            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT---ATAGGTAA 56 
Er25            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCT------TGGAGA 53 
Er35            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTAGGGGTAGTGC 59 
Tm17            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT--GAGAAGCAC 57 
Er12            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----G--TATA 53 
Er26            CTGCAG-AATT-TAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----CGACATA 54 
Er27            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TTATAGA 55 
Er33            CGCCCTTAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TTATAGA 56 
Tm1             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG---TACAAGA 56 
Er9             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 55 
Er20            CTGCAG-AATTCTAATACGA-TCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 54 
Er10            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 55 
Tm3             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 55 
Tm22            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 55 
Er37            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 55 
Ho3             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 55 
Ho10            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGC 55 
Er2             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGG 55 
Er17            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGG 55 
Er28            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGG 55 
Ho8             CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGG 55 
Er19            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGG 55 
Er38            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACAAGG 55 
Ho5             CTGCAG-AATTCCAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TACGAGA 55 
Er15            CTGCAG-AATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT----TGTATAC 55 
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Table 4.1 Sequence alignment for the Ho3+, Er3+, and Tm3+ selection. (Continued) 

Clone #                                                                                Sequence (from 5’-end) 
Ho7             -AATTTTC---------TATAACGAGTTTGAT-CATGTACCGTTAGT--CGGTAAGCTTG 98 
Ho13            -AATTTTC---------TATAACGAGTTTGAT-CATGTACCGTTAGT--CGGTAAGCTTG 98 
Ho14            -AATTTTC---------TATAACGAGTTTGAT-CATGTACCGTTAGT--CGGTAAGCTTG 98 
Er5             -AAATCTC---------TTTAACGAATTTAGT-AGTGTACCG-TAGT--CGGTAAGCTTG 98 
Er1             -TGATTTA---------TATAACGAGTAAAGG-ACCGA--TTGTAGT--CGGTAAGCTTG 98 
Er16            -CAAATTA---------TATAACGAGTATAGG-AGCGAGCACATAGT--CGGTAAGCTTG 98 
Er18            -TCT-CTC---------TTTAACGAGTATCAGTGGCTRCAACGTAGT--CGGTAAGCTTG 98 
Er39            -TCT-CTC---------TTTAACGAGTATCAGTGGCTCCAACGTAGT--CGGTAAGCTTG 92 
Er11            -TCT-CTC---------TCTAACGAGTATCAGTGGCTCCACCGTAGT--CGGTAAGCTTG 98 
Tm4             -AATTCAG---------TCTGACGCG-GTAGGTGGGTCCACCATAGT--CGGTAAGCTTG 98 
Tm7             -TACTCTC---------TTTGACGTTCGTATAAACGAGACA-ATAGT--CGGTAAGCTTG 98 
Tm26            -TATAATC---------TTTAACG--AGTAACCCAGACACATATAGT--CGGTAAGCTTG 97 
Ho12            -ATATCT----------TTTAACGAGTATTAA--ACCATAAGATAGT--CGGTAAGCTTG 98 
Tm27            -TTACTA----------TCTAACGAGAAGAGA--ACCATAA-CTAG---CGGTAAGCTTG 96 
Ho9             -CCATCAA---------TCTAACGAGTGTTAG--AACGCAA-ATAGT--CGGTAAGCTTG 98 
Er34            CAAATTTA---------TTTGACGAGAAT-----GCATACAAACAGT--CGGTAAGCTTG 98 
Tm14            ---TTTAC---------TATAACGAGTGTTTA--ACGTGGAAATTAG--CGGTAAGCTTG 95 
Ho2             ---AATCA--------GCACGCATGCGTGATT-ATAGTGAAG-TAGT--CGGTAAGCTTG 98 
Er22            ---CATTT--------ATTTGACCACG-GATT-GCAGATTA--TAG---CGGTAAGCTTG 97 
Ho6             ---CTTT---------ATCTAACGAAGTATTA-CTCAAAGAGGTAGT--CGGTAAGCTTG 98 
Er32            ---CATTG--------ATCTGACTCACTCATG-CT-GTGGACCTAGT--CGGTAAGCTTG 98 
Er24            GGAATTTC---------TTTAACTCGCTGTAG-GTG-GACT---AGT--CGGTAAGCTTG 98 
Er30            --ACTTTA---------TTTGACTCGGAGGAA-GAG-AATTGGTAGT--CGGTAAGCTTG 97 
Ho4             --TTATTC---------TTTGATGAGAAAAAG-GTGGAACTATTAGT--CGGTAAGCTTG 98 
Ho11            -AATTCC---------CTCTAACTCGTACAAT-GAC-CCTTGTTAGT--CGGTAAGCTTG 98 
Er36            -CGTACAT-----CATCTCTAACTCGTTGATA-GAA-C----TTAGT--CGGTAAGCTTG 98 
Er4             -CCCAAAGGGAGGATGTTATAACTCGTATCT------C-----TAGT--CGGTAAGCTTG 98 
Tm16            GCCGTCAG--------GTATGCCCTGTCAAAA-ACT-CGT--ATAGT--CGGTAAGCTTG 98 
Tm32            GCCGTCAG--------GTATGCCCTGTCAAAA-ACT-CGT--ATAGT--CGGTAAGCTTG 98 
Er23            GATATCAG--------AAGATCAACTCCTATA-ACT-CG----TAGT--CGGTAAGCTTG 98 
Ho15            A-TTCTTT-----------TAACTCGATTATG-TAG-CGTATATAG---CGGTAAGCTTG 97 
Tm8             CGTTTTTT-----------TAACTCGCT-ATG-TAT-GGAAGGTAG---CGGTAAGCTTG 97 
Ho1             ACGTATAG---------AGACGAG-GTGACGCAATT----GAGTAGT--CGGTAAGCTTG 98 
Er6             ---TATGG---------AAACGATTGTGAGGCTATATGACGAGGTAG--CGGTAAGCTTG 97 
Er13            AGGTATCT---------GAGTTTATTTGATTCGTTG----AT-TAGT--CGGTAAGCTTG 98 
Er31            TGGAAACT---------AA---TATTTGACTCGCTG----ATATAGT--CGGTAAGCTTG 98 
Er25            GAGAAACT---------CAATTTATTTGACTCAATG----GGTTAGT--CGGTAAGCTTG 98 
Er35            GTAGGACG---------AGATTTATTTGGCTCGTAG-------------CGGTAAGCTTG 97 
Tm17            GAAGTGC----------AGGTTTATTTGACAAATAAT-------AGT--CGGTAAGCTTG 98 
Er12            ACTTAAGT---------AGGTTATTTTAACGAGTATT----ATTAGT--CGGTAAGCTTG 98 
Er26            ACGAATGT---------TACCCCCTTTAACGAGTA------ATTAGC--CGGTAAGCTTG 97 
Er27            TCGATAGA---------GGATTTATTTGACAGGTAT------TTAGT--CGGTAAGCTTG 98 
Er33            TCGATAGA---------GGATTTATTTGACAGGTAT------T-AGT--CGGTAAGCTTG 98 
Tm1             ACGGGAGA---------GGGTATATTTAAATCGTAG------T--AG--CGGTAAGCTTG 97 
Er9             ATCAGTAG-------------ATTGGAAATGCGGTT------ATAGTGACGGTAAGCTTG 96 
Er20            ATCAGTAG-------------ATTGGAAATGCGGTT------ATAGTGACGGTAAGCTTG 95 
Er10            ATCAGTAG-------------ATTGGAAATGCGGTT------ATAGTGACGGTAAGCTTG 96 
Tm3             ATCAGTAG-------------ATTGGAAATGCGGTT------ATAGTGACGGTAAGCTTG 96 
Tm22            ATCAGTAG-------------ATTGGAAATGCGGTT------ATAGTGACGGTAAGCTTG 96 
Er37            ATCAGTAG-------------ATTGGAGATGCGGTT------ATAGTGACGGTAAGCTTG 96 
Ho3             ACAAATAG-------------ATTGGAAATGCGGTT------ATAGTGACGGTAAGCTTG 96 
Ho10            ACCGGACA---------AACTATGGGAGGAGCGGTT------ATAGT--CGGTAAGCTTG 98 
Er2             AAGGGTCC---------A---CTATGCACAACGGTT------ATAGTGACGGTAAGCTTG 97 
Er17            AAGGGTCC---------A---CTATGCACAACGGTT------ATAGTGACGGTAAGCTTG 97 
Er28            AAGGGTCC---------A---CTATGCACAACGGTT------ACAGTGACGGTAAGCTTG 97 
Ho8             AAGGGTCC---------A---CTATGCACAACGGTT------GTAGTGACGGTAAGCTTG 97 
Er19            AAGGGTCC---------A---CTATGCACAACGGTT------ATAGTGGCGGTAAGCTTG 97 
Er38            AAGTGTCC---------A---CTATGCACAACGGTT------ATAGTGACGGTAAGCTTG 97 
Ho5             TAGAATGT---------TG--TACAGTCTAGCGGTT------ATAGT--CGGTAAGCTTG 96 
Er15            CGGAAAGG---------TAAAATTAATTTAACGAGA------GTAGT--CGGTAAGCTTG 98 

Note: The bold A in red is the cleavage site. The bases in blue are conserved for Lu12. The green T denotes for the 
starting of the sequence alignment in the randomized region. 
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4.2.3 Lanthanide selectivity 

Since the sequences of this new DNAzyme family were quite diverse, it was difficult to 

predict rationally the most optimal sequence. Therefore, seven representative ones were picked 

for further assay (those marked in green in Figure 4.1D). Six of these DNAzyme secondary 

structures are shown in Figure 4.3A (substrate binding arms are denoted by the bars). It should 

be noted that all these DNAzymes contained a stretch of four unpaired nucleotides in the 

substrate strand at the right of the cleavage junction.  

Tm7$
Ho11$
Er32$
Er36$
Ho15$
Tm4$

 
Figure 4.3 Lanthanides selectivity of the six active DNAzymes from Ho3+, Er3+, and Tm3+ selection. A) Secondary 
structures of the six DNAzymes in this study. Gel images showing cleavage activity of B) Tm7 and C) Ho11 with 
different lanthanide ions (10 µM) after 1 h reaction. D) Quantification of the cleavage results of the six DNAzymes 
by lanthanides. 

 
The enzyme activities of these six DNAzymes were tested against all 14 lanthanides with 

1 h incubation time. The activity trend for the Tm7 and Ho11 DNAzymes were shown in Figure 

4.3B and 4.3C respectively. Surprisingly, barely any cleavage was observed with the first seven 

lighter ions (radioactive Pm3+ was excluded) and only moderate cleavage was observed with 

Tb3+. Efficient cleavage occurred from Dy3+ to Tm3+, and then the cleaved product decreased 

rapidly with Yb3+ and Lu3+. All six tested DNAzymes followed exactly the same trend with 

slightly different efficiency and their activities are quantified in Figure 4.3D. Based on this 

study, we reason that these DNAzymes belong to the same family even though they did not share 
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any common stretch of nucleotides. In fact, they seem to be quite tolerant to mutations and 

insertions when looking at the sequence diversity shown in Figure 4.1D.    

In Figure 4.3D, Tm7, Ho11 and Ho15 are the three fastest DNAzymes among the six. 

They all have a stretch of pyrimidines at the 3΄-end followed by a few purines in the loop. The 

other three DNAzymes are slower and their base contents in the loop region are more 

disorganized, especially on the pyrimidine side. One thing that stood out when comparing the 

three most active sequences was that only Tm7 has a single guanine in the loop, while Ho11 and 

Ho15 do not contain any guanines. Among the four nucleobases, guanine is the most efficient 

ligand for lanthanide-binding.171,206-209 In fact, many guanine nucleotides can be found in the 

conserved sequences of the two reported lanthanide-dependent DNAzymes.87,203 This might be a 

reasonable explanation for these new DNAzymes to display a much narrower activity window 

across the lanthanide series than the previous examples.  

The ionic radii of lanthanides decrease gradually and steadily from 1.17 Å to 1.0 Å, while 

the pKa values of their bound water decrease from 9.3 to 8.2 from La3+ to Lu3+. Given the abrupt 

change of the cleavage activity from Gd3+ to Tb3+, it is unlikely for either the size or pKa to be 

the main factor. However, the ‘gadolinium break’ in Figure 4.3D may be attributed to the change 

of coordination number. As the lanthanide atomic number increases, the coordinated water 

decreases from 9 to 8 due to lanthanide contraction and steric effects.209 This transition takes 

place around Gd3+ for a water ligand. It might be that the low coordination number allows better 

metal binding and catalysis in this DNAzyme.  

The gadolinium break was reported previously with cleavage of a dinucleotide in the 

presence of 5 mM lanthanide,87 and with the GR5 DNAzyme in the presence of 60 µM 

lanthanides.167 In both examples, Lu3+ was among the most active ions. However, Tm7 has 
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almost no activity with Lu3+. Therefore, Tm7 likely has different catalytic mechanism. Since 

Tm7 has the highest efficiency among all the tested sequences and it has a small enzyme loop 

containing only 11 nucleotides, it was chosen for subsequent studies.  

 

4.2.4 Biochemical characterization of Tm7 

To explore the activity of this new DNAzyme even further, metal selectivity for non-

lanthanide ions was tested. A gel image of Tm7 reacted with 10 µM other metal ions is shown in 

the inset of Figure 4.4A. Besides Er3+ (used as a representative lanthanide) and Y3+ produced 

cleavage, all the other metals were inactive. The chemical and physical properties of Y3+ are 

between Ho3+ and Er3+. As a result, similar cleavage was observed in the presence of Y3+. When 

the metal ion concentration was increased to 100 (the red bars in Figure 4.4A), still only Y3+ 

showed moderate cleavage. It shoud be noted that 100 µM Er3+ inhibited the activity so even 

higher concentration was not tested. It is important to note that Pb2+ was not active at any given 

concentration. Almost all the previously reported DNAzymes are active with Pb2+.81,87,125,203 This 

is a rare example where Pb2+ failed to show activity. The high selectivity displayed by Tm7 

made it another useful probe for lanthanides, especially for the heavy ones. 
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Figure 4.4 Selectivity and sensitivity analysis of the Tm7 DNAzyme. A) Percentage of substrate cleavage by the 
Tm7 DNAzyme using 10 µM or 100 µM metal ions. Inset: gel image of cleavage in the presence of 10 µM metal 
ions. The lanes correspond to the metal ions in the x-axis. Only Au3+ produced streaking and Er3+ and Y3+ produced 
cleavage. B) Kinetics of Tm7 cleavage at a few Er3+ concentrations. C) Cleavage rate as a function of Er3+ 
concentration. Inset: the same data plotted using the log scale. 

 
Next, the cleavage kinetics was measured at various Er3+ concentrations (Figure 4.4B). 

With 0.7 µM DNAzyme, no cleavage was observed over 4 h in the presence of 0.5 µM Er3+. On 

the other hand, the rate increased by 10-fold from 1 µM to 2 µM Er3+. Since the rate did not 

increase linearly with the Er3+ concentration, the data indicated that multiple metal binding is 

required for activity. Figure 4.4C plots the cleavage rate as a function of Er3+ concentration and a 

sigmoidal curve was obtained with a Hill coefficient of 3.0. When the double log plot is 

presented (insert), the initial slope 2.7 suggested that three Er3+ ions are involved in catalysis. 

The highest rate was ~0.06 min-1 in the presence of 20 µM Er3+ at pH 6.0, which is similar to our 

last round of selection condition. However, this is much slower than the rate of the Lu12 

DNAzyme which also presence in the sequenced library. The survival of this class of slower 
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DNAzyme is probably due to a long incubation time. From the sequences isolated after 6 rounds 

of selection, 16 Lu12 DNAzyme out of 60 (27%) were obtained. If the selection was continued 

with a shorter incubation time, the library is likely to be dominated by the Lu12 type of 

DNAzymes. Most of the sequences that were tested here showed very low activity with Lu3+. 

This might be the reason that no Tm7 sequences were observed in the previous Lu3+-dependent 

selection.203 Although the selection was conducted in pH 6 environments, the rate of Tm7 

increased significantly with the increasing pH and can reach higher than 1.6 min-1.  

To the best of our knowledge, this is the first time that metal cooperativity has been 

reported for RNA-cleaving DNAzymes. All the previously reported enzymes employ only a 

single metal ion.78,87,125,146,167,203,210 While most small ribozymes use only one metal as well,77,211 

large ribozymes require multiple metal ions to perform more complex reactions such as RNA 

splicing.212,213 For instance, it was demonstrated that lanthanides (especially Nd3+) could 

accelerate the Pb2+-dependent activity of the leadzyme, where a two-metal mechanism was 

proposed. However, the best rate was only ~0.01 min-1 when both metals were used.177 In fact, 

those two metals did not show much cooperativity. 

Komiyama was the first to report using multiple free lanthanide ions for RNA cleavage. 

160 It is proposed that one lanthanide directly bonds with the leaving phosphate to decrease its 

negative charge density at the transition state. A bridging water (bridging two lanthanide ions) 

may acts as a general base to deprotonate the 2ʹ′-OH of the ribose to make it a better nucleophile. 

 

4.2.5 The effect of pH  

To gain further insights into Tm7, a pH-dependent study was performed, and the 

logarithm of cleavage rate was plotted in Figure 4.5A. While the selection was carried out at pH 

6.0, the rate became progressively faster at higher pH.125,191,210 When pH is higher than 7.0, the 
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rate improvement slowed down. By fitting the data in the pH range from 6.0 to 7.0, a slope of 

0.97 was obtained (Figure 4.5B). This suggested that only a single deprotonation step occurs in 

the rate-limiting step of the hydrolysis. This is typical for RNA-cleaving DNAzymes and this 

deprotonation is happening at the 2ʹ′-OH group on the ribose.  

 
Figure 4.5 pH-dependentThe pH-rate profile of the Tm7 DNAzyme. Tm7 catalytic rate over (A) a wide pH range 
and (B) the initial linear range. A slope of 0.97 is obtained in (B), indicating a single deprotonation step.  

 

4.2.6 Phosphorothioate modification 

Since lanthanide ions are hard Lewis acids that prefer oxygen-based ligands, metal 

binding was exam by introducing a phosphorothioate (PS) modification at the cleavage junction, 

where one of the non-bridging oxygen atoms is replaced by a sulfur (Figure 4.6A).214,215 

Depending on the position of replacement, two diastereomers are possible. With the PS-modified 

substrate (a mixture of the two isomers), Tm7 barely showed cleavage with any metal, including 

thiophilic Cd2+ (Figure 4.6B), which is typically used to rescue the activity of PS-modified 

enzymes. Only Er3+ showed a trace amount of cleavage after 1 h. A quantitative kinetic 

measurement was performed (Figure 4.6D) and the initial kinetics is very similar to that of the 

PO substrate (within 10% difference) and no further cleavage occurred beyond ~5%. Therefore, 

this small fraction of cleavage is likely due to that the PS substrate is only ~95% pure.  The 

remaining 5% are PO that caused the initial Er3+-dependent cleavage kinetics.  
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Figure 4.6 Kinetic study of the PS-Tm7 DNAzyme. A) Structures of the normal phosphate linkage (PO), and the 
two diastereomers of the PS modification. B) Cleavage of the Tm7 DNAzyme with the PS-modified substrate 
(racemic mixture) in the presence of various divalent metal ions and Er3+. C) Cleavage of Tm7 with the PS substrate 
using a mixture of Er3+ and Cd2+. D) Kinetics over 24 h for Tm7 cleaving the PO (black dots), and PS (red triangles) 
substrate in the presence of 10 µM Er3+. The green squares are the Tm7/PS complex incubated without Er3+. Inset is 
the re-plot of the PS sample magnifying the initial kinetics.  

 
All the previously studies showed that ribozymes and DNAzymes such as the 

hammerhead ribozyme,216 HDV ribozyme,217 10-23 DNAzyme,218 and RNase P219 use the pro-Rp 

oxygen for metal binding (mostly with Mg2+). Replacing this particular oxygen atom with a 

sulfur atom usually completely inhibits the Mg2+-dependent activity (by over 100-fold). 

However, the activity can be rescued by using thiophilic metals such as Mn2+ or Cd2+. When the 

other PS isomer (Sp) was used, the activity is only slightly decreased (e.g. ~5-fold). This is 

because Mg2+ only coordinates to one of the non-bridging oxygen atoms (pro-Rp), and thus the 

pro-Sp substitution does not have much influence on activity. For the Tm7 experiment, a racemic 

mixture of Rp and Sp was used. Since no activity was observed with either Er3+ or Cd2+, neither 

Rp nor Sp is active. The result indicated the metal(s) must interact with both phosphate oxygen 

atoms through inner sphere coordination. This is different from all the previously reported 

nucleic acid enzymes, including another lanthanide-dependent DNAzyme, Ce13d, whose activity 

was rescued by Cd2+.220 
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If both non-bridging oxygen atoms are important, a mixture of Er3+ and Cd2+ might able 

to rescue the activity. However, this scenario will only work if these two metals do not need to 

interact with each other. By keeping the total concentration at 20 µM, the Er3+/Cd2+ composition 

ratio was varied (Figure 4.6C). However, still only ~5% cleavage was observed when the Er3+ 

concentration was higher than 6.7 µM. This was again due to cleavage of the pre-existing PO 

substrate. This implies that the metals must act synergistically instead of independently. If one 

metal binds simply to one oxygen, the use of this mixture should have restored the activity with 

the PS substrate. The independent action of metal ions is best illustrated in the leadzyme, where a 

lanthanide was proposed to bind to the phosphate oxygen and the Pb2+ was used to deprotonate 

the 2ʹ′-OH group.177 With the PS modification, Tm7 is the first RNA-cleaving nucleic acid 

enzyme that is completely inactivated with all the metal ions. More importantly, its catalysis 

seems to react in a new type of mechanism. 

 

4.2.7 Cleavage mechanism 

A substrate that contains seven consecutive RNA bases was used to test the Tm7 and 17E 

activity (Figure 4.7). The gel analysis showed that Tm7 is inactive for this substrate. Most 

DNAzymes selected with a chimeric substrate are not active with full RNA. However, they are 

still called RNA-cleaving DNAzymes because of the same reaction mechanism.  

 
Figure 4.7 Tm7 and 17E cleavage of a RNA substrate (RNA-sub in Table 4.2 for sequence). Lane 1 is the substrate 
alone, and some degradation was observed. Lane 2 is the substrate with 10 µM Er3+. Lane 3 is the Tm7 DNAzyme 
complex without metal. Lane 4 is the complex with 10 µM Er3+ for 30 min incubation. Lane 6 is the 17E DNAzyme 
complex without metal. Lane 7 and 8 are the 17E DNAzyme complex with 10 µM Pb2+ after 30 and 60 min 
incubation. The 17E DNAzyme is known to cleave full RNA, and it serves as a positive control. Cleavage was 
observed only with the 17E DNAzyme, but not Tm7. 
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With single ribonucleotide substrate, mass spectrometry studies were performed on the 

cleavage product (Figure 4.8). The spectrum showed that the fragment on the 5’-end contains a 

cyclic phosphate. This is a typical end product that was observed for most ribozymes and 

DNAzymes reaction. 

 
Figure 4.8 Mass spectrometry characterization of the Tm7 cleavage product. The peaks in red are the cyclic 
phosphate product from the 5ʹ′-fragment of the substrate (molecular weight = 4942.7, 3 and 4 charges for the two 
marked peaks), and the peaks in blue are from the 3ʹ′-fragment (molecular weight = 4384.7, 3 and 6 charges for the 
two marked peaks). 

 
Cleaving RNA with dinuclear lanthanides complexes have been previously proposed. 160 

However, this mechanism cannot explain the Tm7 results. Combined all the above studies, a new 

mechanism involving a trinuclear lanthanides center was proposed (Figure 4.9). From the PS 

studies, both non-bridging oxygen atoms are in direct inner sphere coordination with the 

lanthanide ions (Er3+ used as an example here). When the nucleophillic attack by the 2’-OH 

occurred, these two can stabilize the transition state via electrostatic interactions. The pH studies 

indicated that only a single deprotonation reaction was involved, so the 2’-OH was most likely to 
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be the source of the nucleophile. Since the lanthanide concentration-dependent studies indicated 

a total of three lanthanide ions are involved, the third ion is thus proposed to interact with the 2ʹ′-

OH. The three ions could be linked together with hydroxyl bridges. Since heavy lanthanide ions 

have a lower pKa value for the bound water, it is easier for them to form polynuclear hydrolyzed 

products. This could also explain the tendency of heavy lanthanide being much more effective. 

The role of the DNAzyme loop was likely to stabilize this trinuclear complex.  

 
Figure 4.9 Proposed mechanism of the lanthanide-induced RNA cleavage for the Tm7 DNAzyme. The red arrow 
indicates nucleophilic attack of the phosphorus center. The bridging oxygen atoms linking the Er3+ ions are 
originated from deprotonated water. 

 

4.2.8 Sensing heavy lanthanide ions 

Apart from proposing a novel reaction mechanism, this study has provided a new probe 

for lanthanide detection. Rational design of small molecule ligands that selectively bind an 

individual lanthanide is quite difficult since these 15 elements have the same charge, similar 

sizes and comparable chemical properties.221 DNA is a good candidate as a lanthanide ligand 

since the phosphate backbone provides high binding affinity through hard acid/base interactions 

and the nitrogen containing nucleobases may offer specificity to discriminate between different 

lanthanide ions.222 With this in mind, DNA-based biosensors for lanthanides were developed. 

Although many sensor design methods are available,138,139 a simple catalytic beacon design was 
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used.193 The 3ʹ′-end of the substrate labeled was labeled with a FAM and the 5ʹ′-end of the 

enzyme labeled with a quencher (Figure 4.10).  

 
Figure 4.10 Catalytic beacon design of Tm7 DNAzyme. F = FAM. Q = Iowa Black® FQ dark quencher. 

 
In the initial state, the beacon displayed low fluorescence. Once the substrate was cleaved 

and released, fluorescence was detected. Fluorescence enhancement was observed with Dy3+ and 

Y3+, but the non-rare earth metals failed to produce signal (Figure 4.11A). Among all the 

lanthanide ions, only those seven heavy ones produce significant signals (Figure 4.11B). The 

result was also consistent with the gel-based assays, indicating that the signal generation was 

indeed due to cleavage. Interestingly, the Dy3+ produced the fastest signal. This might be 

attributed to the use of higher pH (7.5) in sensing as compared to pH 6.0 in the gel-based assay. 

In this case, Dy3+ was used as the target metal ion for metal concentration dependent study 

(Figure 4.11C). Barely any cleavage was observed with 5 nM Dy3+ and significant improvement 

was achieved when Dy3+ concentration was increased from 10 to 20 nM. This trend also verified 

the metal cooperativity proposed earlier. When the Dy3+-concentration dependent rate was 

plotted in Figure 4.11D, the detection limit was calculated to be 14 nM Dy3+.  
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Figure 4.11 Kinetic studies of the Tm7 DNAzyme beacon. A) Sensor response to 0.5 µM of divalent and trivalent 
metal ions. The list of the other metal ions tested can be found in Figure 2B. B) Sensor response to 0.5 µM of 
various lanthanides. C) Sensor signaling kinetics in the presence of various concentrations of Dy3+. DNAzyme 
sensor concentration = 50 nM. D) Quantification of Dy3+ based on the initial rate of sensor fluorescence 
enhancement. Inset: the initial linear response at low Dy3+ concentrations. 

 

4.3 Summary 

In summary, in vitro Ho3+-, Er3+-, and Tm3+-dependent selections were carried out 

separately. Out of the 60 obtained sequences, half of them belong to a new family of DNAzyme 

that were only active with the seven heavy lanthanide ions. Based on the metal concentration 

dependency and the phosphorothioate replacement studies, this new DNAzyme shows metal 

cooperativity. Combined with the pH-rate profile, a new mechanism involving a trinuclear 

lanthanides complex was proposed. In this mechanism, two lanthanide ions interact with the non-

bridging oxygen atoms while the third one interacts with the 2ʹ′-OH. This is the first RNA-

cleaving DNAzyme showing such a metal binding property. To demonstrate its application, a 

catalytic DNA beacon was designed to showcase its 14 nM detection limit on heavy lanthanides. 
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4.4 Materials and Methods 

4.4.1 Chemicals 

The lists of chemicals used in this chapter can be found in Chapter 2 section 2.4.1. The 

sequences for the DNA used for in vitro selection and assays were listed in Table 4.2. 

Table 4.2 Oligonucleotides used for in vitro selection and assays. 

DNA Name Sequence and modifications (from 5ʹ′  to 3ʹ′) 
Lib-FAM-N35 pGGCGAAACATCTTN35TAGTGGGTAAGCTTGGCAC-FAM 

Lib-rA AATACGAGTCACTATrAGGAAGAT 
splint AAGATGTTTCGCCATCTTCCTATAGTCCACCACCA 

P1 primer GTGCCAAGCTTACCG 
P2 primer CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA 
P3 primer FAM-AAATGATCCACTAATACGACTCACTATrAGG 
P4 primer AACAACAACAAC-iSp18-GTGCCAAGCTTACCG 

Tm4 TTTCGCCATCTTCAAAATTCAGTCTGACTCGTGAC 
Tm7 TTTCGCCATCTTCGATACTCTCTTTGACTCGTGAC 
Tm8 TTTCGCCATCTTCATACACGTTTTTTTA ACTCGTGAC 
Er32 TTTCGCCATCTTTTGTACATTGATCTGACTCGTGAC 
Er36 TTTCGCCATCTTCTAAACGTACATCATCTCTAACTCGTGAC 
Ho11 TTTCGCCATCTTCTAAAATTCCCTCTAACTCGTGAC 
Ho15 TTTCGCCATCTTCTAATAATTCTTTTAACTCGTGAC 

RNA-sub GTCACGAGTCACrUrArUrArGrGrAAGATGGCGAAA-FAM 
Sub-FAM GTCACGAGTCACTATrAGGAAGATGGCGAAA-FAM 

Tm7-Q Iowa Black ® FQ-CGCCATCTTCGATACTCTCTTTGACTCGTGAC 
 

4.4.2 In vitro selection 

The method of in vitro selection and PCR amplification conditions are similar to the one 

described in chapter 2 except that the initial library was obtained by ligating Lib-FAM-N35 and 

Lib-rA. For all the selections, the metal incubation time was maintained at 60 min. 50 µM 

lanthanides were used for the first four rounds. For the last three rounds, 10 µM lanthanides were 

used. The round 6 libraries for all the three selections were cloned and sequenced.  

 
 

4.4.3 Activity assay 

Gel-based activity assays were performed with a final concentration of 0.7 µM of the 

FAM-labeled substrate strand and 1.1 µM of the enzyme. The DNAzyme complexes were 



	
  
	
  

88	
  

prepared by annealing them in buffer A (50 mM MES, pH 6.0, 25 mM NaCl) and a final 

concentration of 10 µM lanthanides was added to initiate the cleavage reaction. The products 

were separated on a denaturing polyacrylamide gel and analyzed using a Bio-Rad ChemiDoc MP 

imaging system. For pH-dependent activity assay, the MES and MOPS buffers (50 mM with 25 

mM NaCl) were used. 

 

4.4.4 Mass spectrometry 

The samples were prepared by reacting a non-labeled DNAzyme substrate with the Tm7 

DNAzyme at 1 µM substrate and 1.5 µM enzyme concentration in buffer A. Then the samples 

were desalted using a Sep-Pak column and dried. After rehydration in water to ~20 µM substrate 

concentration, the samples were analyzed using an ESI mass spectrometer. 

 

4.4.5 Sensing 

The sensing kinetics studies were carried out using a microplate reader (SpectraMax M3). 

The sensor complex was formed by annealing the FAM-labeled substrate and the quencher-

labeled enzyme (1:1.5 ratio) in buffer A. In each well, 100 µL of the complex containing 50 nM 

FAM-labeled substrate was diluted in 10 mM HEPES (pH 7.5). 1 µL of metal ion was added 

after 5 min of background reading and the signaling kinetics was monitored.  
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Chapter 5. Sensing Lanthanide Ions with a DNAzyme Array 

5.1 Introduction 

In the previous chapters, I reported three lanthanides-dependent RNA-cleaving 

DNAzymes. First, Ce13d DNAzyme was selected using Ce4+/Ce3+ by using an N50 DNA library 

(a library with 50 random nucleotides).87 Ce13d displayed similar activity cross the entire 

lanthanides (Ln3+) series. Next, Lu12 was isolated using an N35 library in the presence of Lu3+. 

Although Lu12 is also active with the whole Ln3+ series, it displayed higher activity with the 

light Ln3+ and showed descending activity with the last few heavy Ln3+.203 It also suggested the 

possibility of using a DNA-based sensor to discriminate different lanthanides. Finally, three 

separate selections using an N35 library in the presence of Ho3+, Er3+ and Tm3+ were carried out, 

yielding the representative Tm7 DNAzyme. Unlike the previous two DNAzymes, Tm7 displayed 

almost no activity with the first seven light Ln3+ but is highly active with the heavy ones.223 In 

fact, the studies revealed that Tm7 binds three metal ions cooperatively for catalysis, which has 

never been observed previously for DNAzymes.  

So far, the N50 library was used only once with cerium. Since then, the N35 library was 

used to reduce the chance of re-selecting the general Ln3+-dependent DNAzyme, Ce13d. In our 

continuous effort to search for new Ln3+-dependent DNAzymes, the N50 library was used once 

again for the selection in the presence of lanthanides. In this chapter, dysprosium (Dy3+) and 

gadolinium (Gd3+) were used as intended targets for two separate selections. Both Dy and Gd 

absorb neutrons strongly and have high magnetic susceptibility, allowing applications in nuclear 

reactors and data storage.221 In addition, Gd is commonly used as a contrast agent in magnetic 

resonance imaging (MRI).188,224 Two new DNAzymes named Dy10 and Gd2b were isolated and 
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characterized in this work.  

In the end, all five representative DNAzymes displayed different lanthanides recognition 

pattern. A sensor array was made based on the selected DNAzymes, which can separate 

lanthanides from other metals, light and heavy lanthanides, and for the most part, each 

lanthanide.  

 

5.2 Results and Discussion 

5.2.1 In vitro selection and sequence alignment of Dy3+ 

With a DNA library containing 50 random nucleotides (N50), in vitro selection of Dy3+ 

was carried out following the previously established method.29 The incubation time and Dy3+ 

concentration used for each round are shown in Table 5.1. A total of six rounds of selection were 

carried out and 67% cleavage was observed in the last round (Figure 5.1A).  

Table 5.1 In vitro selection conditions and progress for Dy3+. In round 6, Dy3+ was added in two steps, each with 5 
µM. 

Round # [Dy3+] (µM) Incubation time (min) Cleavage (%) 
1 50 60 0.2 
2 50 60 0.3 
3 50 60 5.1 
4 10 60 8.5 
5 10 60 10.0 
6 5x2 30x2 64.7 
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Figure 5.1 Activity analysis of the Dy10 DNAzyme and its mutants. A) Progress of the Dy3+-dependent selection. 
B) The Mfold7 predicted structure of cis-cleaving Dy10. To convert it to a trans-cleaving DNAzyme, the nucleotides 
in the shaded box were removed and the nucleotides in the red box were replaced by the six nucleotides next to it. C) 
The secondary structure of the trans-cleaving DNAzyme, named Dy10a. Various mutations are also shown, where 
the boxed nucleotides are replaced. D) A gel image showing activity of the various mutants of Dy10a after 1 h 
reaction with 0.5 µM Sm3+. E) Sequence alignment of the two active sequences that do not belong to the Ce13 or 
Lu12 DNAzymes. Sequences start from the cleavage site rA (from the 5ʹ′) and the important nucleotides for Dy10 
and Dy35 are in boldface (the two loop regions) and underlined parts show the differences. 

 
The round 6 library was then sequenced. A total of 40 sequences were obtained and 

alignment is presented in Table 5.2. Unsurprisingly, 85% of the library was the previously 

reported Ce13 or Lu12 type DNAzymes since both are quite active with Dy3+.87,203 For the 

remaining four sequences, two of them (Dy10 and Dy35, Figure 5.1E) have very similar 

sequences. The other two (Dy1 and Dy17) are identical, but inactive (see Figure 5.2 for their 

characterization). The Mfold190 predicted secondary structure of Dy10 is presented in Figure 

5.1B and the cleavage site is marked by the arrowhead. This cis-cleaving structure can be easily 

converted to the trans-cleaving form by removing the nucleotides in the gray box. The 

nucleotides in the red box were suspected to be redundant. Thus, it was replaced with a smaller 

six nucleotides loop to generate a truncated DNAzyme named Dy10a (Figure 5.1C). In this 
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DNAzyme, two loops that connected the substrate binding regions were joined by the hairpin 

structure. The smaller loop has only an AAGG tetranucleotide. For Dy35 structure, this small 

loop contains a GAGG sequence (underlined in Figure 5.1E). Moreover, there is only one 

nucleotide difference in the larger loop between Dy10 and Dy35. To monitor cleavage, the 

substrate strand was labeled with a FAM (Figure 5.1C). Since Dy35 has similar structure as 

Dy10, it was also truncated and converted into a trans-cleaving form. Both Dy10a and Dy35a 

showed activity (lane 1 and 7 in Figure 5.1D).  However, Dy10a appears to have much better 

activity. In fact, the Dy10a structure appears different from the three Ln3+-dependent DNAzymes 

that were reported previously.87,203,223 Therefore, Dy10a was used for detail studies. 

 

Figure 5.2 Mfold predicted secondary structure of Dy1 (cis-cleaving form). To make it into a trans-cleaving form, 
Dy1a and Dy1b were deigned. To test whether the folding is appropriate, these two enzymes were truncated at 
different positions. However, the gel-based assay using FAM-labeled substrate showed no cleavage with either 
enzyme. Therefore, we conclude that it is not a lanthanide-dependent DNAzyme. Reaction with 0.5 µM Sm3+ and 60 
min incubation time. 
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Table 5.2 Sequence alignment of the Dy3+ selection. The sequences in green belong to the Lu12 family, and the 
sequences in blue belong to the Ce13 family. The ones in red are studied in this work and they are the new 
DNAzyme. The ones in black contain unreadable bases or cannot be classified into any of the families. 

Clone #                                                                             Sequence (from 5’-end) 
Dy1             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTAATACG---GG 57 
Dy17            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTAATACG---GG 57 
Dy10            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTATTGCGT--AA 58 
Dy35            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTT-ATTGCG---TA 56 
Dy6             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAACG--AA 58 
Dy27            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACSAACS--GT 58 
Dy25            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACMATGG--AA 58 
Dy16            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACGAGC---AT 57 
Dy34            CTGCAGAATTCTAATACGA-TCACTATAGGAAGATGGCGAAACATCTTTACAAGC---AT 56 
Dy12            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACGAGC---AT 57 
Dy7             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGAT--TA 58 
Dy37            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAGGCT--TA 58 
Dy8             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACGAGGT--G- 57 
Dy19            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGCT--GA 58 
Dy23            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGGA--TA 58 
Dy29            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAAG----- 55 
Dy32            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAAG----- 55 
Dy9             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGGG---- 56 
Dy30            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGC----- 55 
Dy38            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGC----- 55 
Dy13            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAA-----T 55 
Dy14            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAA-----T 55 
Dy24            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGGG--CC 58 
Dy31            CTGCAG-ATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGGG--CC 57 
Dy40            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAG-C--AT 57 
Dy11            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACGAGT---AA 57 
Dy15            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACG------AA 54 
Dy18            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATTATGGAG-----CCA 55 
Dy33            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACAAAATGGAG-----CCA 55 
Dy28            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCATGGAG-----CCA 55 
Dy20            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCATGGAG-----CCA 55 
Dy26            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCATGGAG-----CCA 55 
Dy3             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACAT-TTGGAG-----CCA 54 
Dy4             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTCGGAG-----CCA 55 
Dy5             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCCGGGAG-----CCA 55 
Dy36            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTGGGAG-----CCA 55 
Dy2             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTGGGGAGCGGCCA 60 
Dy22            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACG-----AGA 55 

 



	
  
	
  

94	
  

Table 5.2 Sequence alignment of the Dy3+ selection. (Continued) 

Clone #                                                                             Sequence (from 5’-end) 

Dy1            AGGTTCACTAT--ATGAAATA--ACAAGACCCGAA-CAAGGTTGATAGTGACGGTAAGCT 112 
Dy17           AGGTTCACTAT--ATGAAATA--ACAAGACCCGAA-CAAGGTTGATAGTGACGGTAAGCT 112 
Dy10           AGCATCAGTAC--ACTAGATAGTTCTAGTTTGATA-CAAG---GATAGTGACGGTAAGCT 112 
Dy35           AGCCGAAATGG--GCGTTAGAGTACGAAACATTCAGCGAG---GTTAGTGACGGTAAGCT 111 
Dy6            GTGGTTAGAG--TGACATATATAATGAGTAGATAAACAGG---GCTAGTGACGGTAAGCT 113 
Dy27           TAAG-AAAAG--TGACTTATCCMGTGGTTATCTGACTAGT---GTTAGTGACGGTAAGCT 112 
Dy25           CAGGTTATAGGAGGAGTTAACTGGCCATTAAC-AACCAG----ACTAGTGACGGTAAGCT 113 
Dy16           ACGGTTATAGG-AGTCGGACTTACGGATTTAAAATACAAA---GCTA-TGACGGTAAGCT 112 
Dy34           ACGGTTATAGG-GGTCGGACTTACGGATTTAAGATACAAA---GCTA-TGACGGTAAGCT 111 
Dy12           GCGGTTATAGG-AGTCGGACTCACAGATTTAAGATACAAA---GCTA-TGACGGTAAGCT 112 
Dy7            ---AGTATTCG--ACTGGCAACAGGAGAGAGAATTACTACGGTTATAGTGACGGTAAGCT 113 
Dy37           TACAGTAAAAG--ACGGTAAAGCGGTTATAGAGACAC-AC---ACTAGTGACGGTAAGCT 112 
Dy8            --TTATAACACCGGTTGTAGTGAAT-TGTACGCCTGCCGGT---ATTAGGACGGTAAGCT 111 
Dy19           AAACATGACAACGGTTATAGTGAAA-ACATAG--TGAGGGG---ATGGCGGCGGTAAGCT 112 
Dy23           CACAAAGGATTTG--AATCCTACTC-ACTTCAGGTAACGGTT--ATAGTGACGGTAAGCT 113 
Dy29           -ACCCCCGACAGAATAGAACTAATAGAAAGTTAGGGCCGGTT--GTAGTGACGGTAAGCT 112 
Dy32           -ACCCCCGACAGAATAGAACTAATAGAAAGTTAGGGCCGGTT--GTAGTGACGGTAAGCT 112 
Dy9            -GCCGCTACCAAAACACCAGTGCATGATAACGAGCTCCGGTT--CTAGTGACGGTAAGCT 113 
Dy30           -ATGTCAAACAGTAATTCTGTAGGTGGTATTTGACAGCGGTT--TTAGTGACGGTAAGCT 112 
Dy38           -ATGTCAAACAGTAATTCTGTAGGTGGTATTTGACAGCGGTT--TTAGTGACGGTAAGCT 112 
Dy13           GAACTTGCCTACGATTCGACCGCAGGTAGACAGGTCCAGGTT--ATAGTGACGGTAAGCT 113 
Dy14           GAACTTGCCTACGATTCGACCGCAGGTAGACAGGTCCAGGTT--ATAGTGACGGTAAGCT 113 
Dy24           ATGCATATAATTATTAAGAGCACCCATATGCT---ACCGGTT--ATAGTGACGGTAAGCT 113 
Dy31           ATGCATATAATTATTAAGAGCACCCATATGCT---ACCGGTT--ATAGTGACGGTAAGCT 112 
Dy40           AAGCATGATTCGGCTAAAAGAACCAGAATGCTG--ATCGGTT--ATAGTGACGGTAAGCT 113 
Dy11           TACATACCAGCACGTATGCGTTAGGGTTATAGCTACG-TAT----TAGTGACGGTAAGCT 112 
Dy15           CACGAAGGCGCTAGCAGG-GAGTGGGTTATAGGACCGGTAAAGGCTAGTAACGGTAAGCT 113 
Dy18           TAGGTCAAAGGTA-GGTGCGGGTCGTATCATATCGACCAG---TATAGTGACGGTAAGCT 111 
Dy33           TAGGTCAAAGGTG-GGTGCTGGTCGTATCATATCGACTAGT--TATAGTGACGGTAAGCT 112 
Dy28           TAGGTCAAAGGTA-GGTGCTGGTCGTACCTTATCGACCAGT--TATAGTGACGGTAAGCT 112 
Dy20           TAGGTCAAAGGTG-GGTGCGGGTCGTATAATATCGACCAG---TATAGTGACGGTAAGCT 111 
Dy26           TAGGTCAAAGGTG-GGTGCGGGTCGTATAATATCGACCAG---TATAGTGACGGTAAGCT 111 
Dy3            TAGGTCAAAGGTG-GGCGCGGGTCGTATTATATCGACCAGT--TATAGTGACGGTAAGCT 111 
Dy4            TAGGTCAAAGGTT-GGTGCGG-TCGTATCATATCGACCAGT--TATAGTGACGGTAAGCT 111 
Dy5            TAGGTCAAAGGTG-GGTGCGGGTCGTA---TACCGACTAAGT-TATAGTGACGGTAAGCT 110 
Dy36           TAGGTCAAAGGTG-GGTGCGGGTCGTA---TATCGACTAAGT-TATAGTGACGGTAAGCT 110 
Dy2            ATGTTCACAAG-----CGAGGAACCTTAAAAATCTCGCGGT--TACAGTGACGGTAAGCT 113 
Dy22           TAGGCGAAACGAGGAAAGCCGATCGGTT-ATAGAGAAAGTT--ATCAGTGACGGTAAGCT 112 

 

5.2.2 Lanthanides selectivity of Dy10a  

Besides sequences differences, another criterion to identify new Ln3+-dependent 

DNAzymes is based on their activity pattern. This pattern is also important for discriminating 

individual Ln3+ for potential biosensor applications. For instant, Lu12 showed descending 

activity for the last few heavy Ln3+ and Tm7 is active only with the seven heavy lanthanides. 

With 1 µM Ln3+, the Dy10a DNAzyme complex was incubated for 5 min with each Ln3+ and the 

gel is shown in Figure 5.3A. Although all the Ln3+ ions induced cleavage, the most active metals 
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appeared to be in the middle of the series (e.g. from Sm3+ to Dy3+). When the cleavage at 1 min 

and 5 min were quantified (Figure 5.2B), the bell-shaped activity pattern observed is different 

from any known DNAzymes. In addition, Dy10a is also a quite efficient DNAzyme. Within a 

minute of incubation, >30% substrate cleavage was observed at pH 6 in the presence of Sm3+. 

 
Figure 5.3 Lanthanides selectivity of the Dy10a DNAzyme. A) A gel image of Dy10a cleavage in the presence of 1 
µM Ln3+ for 5 min at pH 6. The last lane is the negative control without added Ln3+. (B) Fraction of substrate 
cleavage in the presence of 1 µM of each Ln3+ after 1 and 5 min reaction. 

 

Interestingly, Dy10 DNAzyme sequence only appeared twice in the 40 sequences. 

Compared to Ce13 or Lu12 (85% of the library), Dy10 displayed much higher activity at low 

metal concentrations. The reason that Dy10 failed to dominate the library is attributed to it’s 

smaller dynamic range. Under the same conditions, its activity is significantly suppressed with 

10 µM Dy3+ (Figure 5.4). For comparison, Ce13 works optimally with 10 µM Ln3+.87 Since 50 to 

10 µM of Dy3+ was used during the selection, Dy10 sequence failed to enrich. If the selection 

had been carried out with a lower concentration of the metal, more Dy10 sequences would 

appear in the final library. 
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Figure 5.4 Cleavage yield of the Dy10a DNAzyme in the presence of 10 µM Ln3+. The reaction was carried out at 
pH 6 for 5 min. 

 

5.2.3 In vitro selection and sequence alignment of Gd3+ 

The same N50 library was also used for in vitro selection of Gd3+. The incubation time 

and the condition used for each round of Gd3+ selection are shown in Table 5.3. A total of six 

rounds of selection were carried out and 49% cleavage was observed in the last round (Figure 

5.5A). In the end of round 6, the library was cloned and sequenced. 

Table 5.3 In vitro selection conditions and progress for Gd3+. In round 6, Gd3+ was added in two steps, each with 50 
µM. 

Round # [Gd3+] (uM) Incubation time (min) Cleavage (%) 
1 100 60 0.1 
2 100 60 0.2 
3 100 60 5.5 
4 100 60 29.2 
5 100 60 45.0 
6 50x2 60x2  49.1 
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Figure 5.5 Activity analysis of the Gd2 DNAzyme and its mutants. A) Progress of the Gd3+-dependent selection. B) 
The Mfold predicted structure of cis-cleaving Gd2. To convert it to a trans-cleaving DNAzyme, the nucleotides in 
the shaded orange box were removed. Various mutations are also shown, where the boxed nucleotides are replaced. 
A gel image showing activity of the various mutants of Gd2 after 1 h reaction with 10 µM Gd3+. C) The secondary 
structure of the trans-cleaving DNAzyme, named Gd2b that was used for subsequent analysis. 

 
A total of 42 sequences was obtained and alignment is presented in Table 5.4. 66% of the 

library was the previously reported Ce13 or Lu12 type DNAzymes. It was not surprising since 

both are quite active with Dy3+.87,203 For the sequences labeled in black, six of them have 

identical sequences but they were not able to fold into reasonable structures. On the other hand, 

the other two folded into a structure like Ce13 but they were inactive (Gd12 & Gd13). The six 

remaining clones (labeled in red) were only varied by one nucleotide.  Based on the Mfold 

prediction, Gd2 also folded into a pre-designed structure and did not represent any of the Ln3+-

dependent DNAzymes we obtained so far. Thus, it was chosen for activity analysis. Since Gd2 

contains a long stem loop, various truncated mutants were also tested (Figure 5.5B). Improved 

activity was observed by truncation into Gd2a and Gd2b, but Gd2c has no activity at all. On the 

basis of Gd2b, the putative base paired region in the green box was elongated to make it more 
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stable (Gd2b1). However, the changes also abolished the activity, suggesting that these bases 

might not be paired in the active enzyme. Based on the results, trans-cleaving Gd2b (Figure 

5.5C) seems to be the optimal sequence to use for further studies. 
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Figure 5.6 Lanthanides selectivity of the Gd2b DNAzyme. A) A gel image of Gd2b cleavage in the presence of 1 
µM Ln3+ for 1h at pH 6. The first lane is the negative control without added Ln3+. B) Fraction of substrate cleavage 
in the presence of 10 µM of each Ln3+ after 1h reaction. 

 
When incubating with 10 µM lanthanides for 1 h (Figure 5.6), Gd2b had the best activity 

with Gd3+ and Tb3+ and was essentially inactive with the two heaviest lanthanides. The activity 

also dropped slightly for the lighter lanthanides. 
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Table 5.4 Sequence alignment of the Gd3+ selection. The sequences in blue belong to the Ce13 family, and the 
sequences in green belong to the Lu12 family. The ones in red are similar to Gd2 that was studied in this work. The 
ones in black are either unable to fold into proper structure or inactive. 

Clone #                                                                             Sequence (from 5’-end) 
Gd20            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd25            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd42            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd41            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd39            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd5             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACACC-TT-----GAGCCA 54 
Gd27            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACAT--TG-----GAGCCA 53 
Gd18            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd38            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd22            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GAGCCA 52 
Gd29            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCCTG-----GAGCCA 55 
Gd8             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTGG-----GAGCCA 55 
Gd35            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTGG-----GAGCCA 55 
Gd28            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATC-CT-----GAGCCA 54 
Gd16            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-----GAGCCA 55 
Gd11            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-----GAGCCA 55 
Gd37            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-----AAGCCG 55 
Gd36            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA---TG-----GTGCCA 52 
Gd10            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTAC-----AGGTC- 54 
Gd40            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTC-----AGGTC- 54 
Gd23            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-----ACG--A 53 
Gd34            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-----ACG--A 53 
Gd1             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTA-ACG-AG---- 54 
Gd24            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTA-ACG-AG---- 54 
Gd17            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-AG---- 54 
Gd31            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTA-ACG-AG---- 54 
Gd19            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-AGGTC- 57 
Gd26            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACGTC- 57 
Gd30            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACGTC- 57 
Gd21            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACGTC- 57 
Gd9             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACGTC- 57 
Gd33            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACGTC- 57 
Gd3             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACGTC- 57 
Gd12            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACATCC 58 
Gd13            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT-ACG-ACATCC 58 
Gd6             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-ACGCATATCG 59 
Gd15            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-ACGCATATCG 59 
Gd7             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-ACGCATATCG 59 
Gd14            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-ACGCATATCG 59 
Gd2             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-ACGCATATCG 59 
Gd4             CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTG-ACGCATATCG 59 
Gd32            CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTTACAAAG---- 56 
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Table 5.4 Sequence alignment of the Gd3+ selection. (Continued) 

Clone #                                                                             Sequence (from 5’-end) 
Gd20            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd25            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd42            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd41            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd39            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd5             TAGGTCAAAGGTAGGTGCGTGTCGTATCTT-ATC-GGCTAA----GTTATAGCGACGGTA 108 
Gd27            TAGGTCAAAGGTAGGTGCGTGTCGTATCAT-ATC-GACTAA----GTTATAGTGACGGTA 107 
Gd18            TAGGTCAAAGGTAGGTGCGAGTCGTATCAT-ATC-GACCAA----GTTATAGTGACGGTA 106 
Gd38            TAGGTCAAAGGTAGGTGCGGGTCGTGTCTT-ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd22            TAGGTCAAAGGTGGGTGCGGGTCGTATCAT-ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd29            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACTAA----GT-ATAGTGACGGTA 108 
Gd8             TAGGTCAAAGGTAGGTGCGGGTCGTAT----ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd35            TAGGTCAAAGGTGGGTGCGGGTCGTAT----ATC-GACTAA----GTTATAGTGACGGTA 106 
Gd28            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACTA-----GTTATAGTGACGGTA 107 
Gd16            TAGGTCAAAGGTAGGTGCG-GTCGTATCAT-ATC-GACTA-----GTTATAGTGACGGTA 107 
Gd11            TAGGTCAAAGGTAGGTGCGGGTCGTATCAT-ATC-GACCAG------TATAGTGACGGTA 107 
Gd37            TAGGTCAAAGGTGGGTGCGGGTCGTATCAT-ATC-GACCAG------TATAGTGACGGTA 107 
Gd36            TAGGTCAAAGGTGGGTGCGAGTCGTATCAT-ATC-GACTA-----GTTATAGTGACGGTA 105 
Gd10            TGGGTGCAGGG-AGTTCCGAATCTCTAGAT-GAT-GG-TAC----GAGATAGTGACGGTA 106 
Gd40            TGGGTGCAGGG-AGTTCCGAATCTCTAGAT-GAT-GG-TAC----GAGGTAGTGACGGTA 106 
Gd23            ACGGTTAAGAAAAGTGACTTATCCAGTGGTTATCTGACTA-----GTGTTAGTGACGGTA 108 
Gd34            ACGGTTAAGAGAAGTGGCTTATCCAGTGGTTATCTGACTA-----GTGTTAGTGACGGTA 108 
Gd1             ----TGTAGAATCTCCCTGAAAGGCAGAATGCAAAGTACAC---GGTTATAGTGACGGTA 107 
Gd24            ----TGTGGAATCTCCCTGGAAGGCAGAATGCAAAGTACAC---GGTTATAGTGACGGTA 107 
Gd17            ----TGTAGAATCTCCCTGAAAGGCAGAATGCAAAGTACAC---GGTTATAGTGACGGTA 107 
Gd31            ----TGTAGAATCTCCCTTAAAGGCAGAATGCAAGGTACAC---GGTTATAGTGACGGTA 107 
Gd19            ---ATTTGGAGT-TCTGTAAGAAACTCCATGTATCA-AAAC---GGTTATAGTGACGGTA 109 
Gd26            --ATCCTAAA----CA-----GGCCATTAAAAAAAGGATATAAGGGTTATAGTGACGGTA 106 
Gd30            --ATCCTAAA----CA-----GGCCATTAAAAAAAGGATATAAGGGTTATAGTGACGGTA 106 
Gd21            --ATCCTAAA----CA-----GGCCATTAAAAAAAGGATATAAGGGTTATAGTGACGGTA 106 
Gd9             --ATCCTAAA----CA-----GGCCATTAAAAAAAGGATATAAGGGTTATAGTGACGGTA 106 
Gd33            --ATCCCAAA----CA-----GGCCACTAAAAAAAGGATATAAGGGTTATAGTGACGGTA 106 
Gd3             --ATCCTAAA----CA-----GGCCATTAGAAAAGGGATATAAGGGTTATAGTGACGGTA 106 
Gd12            GGGGCATGAA----CCTCGATAGCCA-TATATAACGAAT----GGGTTATAGTGACGGTA 109 
Gd13            GGGGCATGAA----CCACGATAGCCA-TATATAACGAAT----GGGTTATAGTGACGGTA 109 
Gd6             GCGACTAACAAA-TCA----GAGGTGAAGACGATAGCAC------GTGTTAGTGACGGTA 108 
Gd15            GCGACTAACAAA-TCA----GAGGTGAAGACGATAGCAC------GTGTTAGTGACGGTA 108 
Gd7             GCGACCAACAAA-TCA----GAGGTAAAGACGATAGCAC------GTGTTAGTGACGGTA 108 
Gd14            GCGACCAACGAA-ACA----GAGGTAAAGACGATAGCAC------GTGTTAGTGACGGTA 108 
Gd2             GCGACCAATAAAATCA----GAGGTAAAGACGATAGCAC------GTGTTAGTGACGGTA 109 
Gd4             GCTACCAATAAAACCA----GAGGT-AAGGCGATAGCAC------GTGTTAGTGACGGTA 108 
Gd32            ----TGCAAA---CCAGGCTGAGAAACAGCGTGGCA-ATACTACGGTTATAGTGACGGTA 108 

 

5.2.4 Re-evaluating Ln3+-specific DNAzyme sequences  

Although only five Ln3+ selections were mentioned in detail in this thesis, a total of 14 

independent selections were actually performed. For each selection, nearly 40 well-aligned 

sequences were obtained. While analyzing each of those sequences, we noticed sequence 

similarity across the different selections, prompting us to align them together. There are 336 

sequences from the N50 library and 135 from the N35 library. These sequences are well mixed, 

which is a strong indication of chemical similarity across the lanthanides. In other words, the 

same DNAzymes are active with different lanthanides. Based on the alignment and extensive 



	
  
	
  

101	
  

activity tests, five types of enzymes with distinct structures, and more importantly, different 

activity patterns across the lanthanides (Figure 5.7A) were identified. 

The occurrence of the DNAzymes was plotted in Figure 5.7B. Lu12 is a dominating 

sequence, representing more than 50% of the final selection libraries. It appears in both the N35 

and N50 selections. Tm7 is featured by a long stretch of unpaired nucleotides in the substrate near 

the cleavage site. The enzyme has a very simple loop structure and it is only observed from the 

N35 selections. Gd2 was only selected from the N50 library, and Dy10 appeared only twice in the 

Dy3+ selection. A close examination reveals that Gd2 only appeared in the Tb3+ and Gd3+ 

selections; while Tm7 only appeared in the Ho3+, Er3+ and Tm3+ selections. Ce13 is a very 

popular sequence in the N50 library selections, representing ~30% of the sequences. This enzyme 

has similar activity for all the lanthanides, explaining its widespread existence. Surprisingly, it 

did not show up even once in the five N35 selections, although the last five metals cleave Ce13 

just as well. Therefore, the library design has a strong influence on the outcome of the selection 

result. 

Their gel-based activities are in Figure 5.8B. Tm7 activity peaks with Ho3+ and Er3+, 

descending on each side; while Gd2b peaks with Gd3+ and Tb3+. Dy10a has a quite complex 

activity pattern with multiple peaks. We previously reported Ce13d based on a Ce4+ selection.1 It 

has similar activity for all the lanthanides, which is less useful for distinction within this group 

but very important for separating lanthanides from other metals. It may also serve as a general 

calibration for quantification. 
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Figure 5.7 Secondary structure of the five representative Ln3+-dependent DNAzymes. A) Optimized secondary 
structures of the five DNAzymes used in this work. (B) The number of DNA sequences belonging to each family 
from the selections. 

 

5.2.5 Lanthanide sensor array  

Since no enzyme showed absolute selectivity for any particular lanthanide, we aim to 

employ an alternative approach to develop a pattern-recognition-based array mimicking the 

human nose.225 For batch analysis, the experiments were conducted based on an FRET design.  

The 3ʹ′-terminus of the substrate strand was labeled with a FAM fluorophore and the 5ʹ′-terminus 

of the enzyme strand was labeled with a dark quencher (Figure 5.8A).193 In the absence of target 

metal ion, hybridization caused the fluorophore and quencher to come in close proximity and the 

fluorescence was quenched. Once the metal ion induced the cleavage of the substrate strand, the 

dissociation of substrate fragments and the enzyme strand led to fluorescence enhancement. 

First, we measured the sensor response to 16 divalent and trivalent metals with a positive 
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lanthanide control included in the assays (Figure 5.9A-E). Since Sc3+, Y3+ and Ln3+ are 

collectively called rare earth metals, they share similar properties. It was not surprising that Y3+ 

is active since it has the same size as Ho3+. On the other hand, Sc3+ has a much smaller size. 

Thus, this could explain why none of these DNAzymes was active with Sc3+. Pb2+ is the next 

popular interfering ion that displayed activity with Lu12, Gd2b and Ce13d. In addition, Hg2+ 

showed moderate activity with Dy10a and its signal only appears in a narrow concentration 

range. Overall, all these DNAzymes have excellent selectivity for lanthanides.  

Next, the sensor response to each lanthanide was studied (Figure 5.9F-J). The initial slope 

of the traces was extracted and the activity patterns (Figure 5.8C) are quite similar to those 

obtained using gel electrophoresis (Figure 5.8B). This indicates that the sensor signal is the direct 

result of the cleavage reaction. For each sensor, concentration-dependent response was measured 

with one of the most active lanthanides (Figure 5.9K-O). From these kinetic traces, the initial 

slope was plotted (Figure 5.9P-T). All the other sensors possess low nM sensitivity. It is 

interesting to note that Lu12 and Ce13d appear to bind to one metal, while Tm7, Gd2b and 

Dy10a show sigmoid responses. In particular, the Hill coefficient for Gd2b for Gd3+ binding 

reached ~4 and Dy10a for Ho3+ reached ~3, suggesting cooperative binding to multiple 

lanthanide ions for catalysis. This type of cooperative response has been seen in engineered 

aptazymes and riboswitches,226,227 but is not common for metal-dependent DNAzymes. 

Polynuclear lanthanide complexes have been shown to facilitate nucleic acid hydrolysis,160 and 

similar mechanisms might work in these DNAzymes. A close examination of the different 

DNAzymes suggests the importance of guanine and thymine in catalysis. The highly conserved 

G and T bases are highlighted in orange in Figure 5.7A. The different ways of arranging these 

nucleotides might be the reason for their unique activity patterns across the lanthanides.  
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Figure 5.8 Lanthanides selectivity of the five DNAzymes. A) Schematics of DNAzyme beacon for Ln3+ detection. 
Relative activities of the five DNAzymes for different lanthanides using gel-based B) or sensor-based C) assay. 
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Figure 5.9 Complete metal selectivity and sensitivity characterization for the five sensors. The sensor names are on 
the top of each column. A-E) Sensor response to non-lanthanide metals; a positive control with an active lanthanide 
is also included. The tested competing metal ions (500 nM) include Mg2+, Mn2+, Co2+, Cu2+, Zn2+, Sr2+, Cd2+, Hg2+, 
Pb2+, Al3+, Sc3+, Fe3+, Ga3+, Y3+, In3+, and Tl3+. F-J) Sensor response to the 14 lanthanides; they share the same 
legend in (H). K-O) Sensor response to various concentrations of a particular lanthanide. P-T) Sensor calibration 
curves. Insets: the linear region at low lanthanide concentrations. The limit of detection (LOD), Kd or Hill-
coefficient values are marked in the figures. 
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Based on the above assay, these DNAzymes can separate lanthanides from most other 

metals. It might even be possible to distinguish between different lanthanides. We picked the 

linear region within the first 10 min for the four faster enzymes to obtain the rate of fluorescence 

enhancement, while the slope of the slower Gd2b was calculated at around 40 min. We chose to 

use a metal ion concentration of 500 nM to achieve a fast and stable rate. The current data have 

five dimensions based on the sensors. To reduce dimension, linear discriminant analysis (LDA) 

was performed on the 14 lanthanides using 12 sets of training data. With this, a canonical score 

plot was obtained (Figure 5.10A). Remarkably, the lanthanides are separated into two groups: the 

first seven light lanthanides and the last seven heavy ones located on the each side of the dashed 

line, where the canonical variable 1 is zero. Using these LDA parameters, the positions of other 

metals were calculated (Figure 5.10B). Y3+ itself is sitting at the top right, while Pb2+ and other 

metals stand at the bottom left. Both are well separated from the lanthanides. However, 

separation for each lanthanide was not that obvious based on Figure 5.10A. This can be further 

improved by reducing the group size. A reasonable way to do this is to first determine whether 

the metal is a light or heavy lanthanide based on Figure 5.10A. Once it is identified, a second 

plot is used for its further identification. For example, a clear separation was achieved (except 

Dy3+ and Tb3+, which are right next to each other) by using just the seven heavy lanthanides. It is 

interesting to note that those spots are arranged in a counter-clockwise order according to the 

atomic number of the lanthanides. The light lanthanides are also better separated within its own 

group after monitoring the signal of Tm7 for a longer time.  

The next question is the distinction of mixed lanthanides. In principle, we may provide 

additional training data sets for the sensor array. On the other hand, it is difficult to 

experimentally prove generality. For example, a mixture of two lanthanides gives 91 possibilities 



	
  
	
  

106	
  

and a mixture of three lanthanides would be 364 possibilities. If the different concentrations are 

further considered, the possibility becomes infinite. For this initial work, our focus was on the 

feasibility of differentiating individual lanthanides.  

 
Figure 5.10 Linear discriminant analysis of the lanthanides based on the DNAzyme sensors. A) Canonical score 
plot based on the sensor array for the 14 lanthanides. Light and heavy lanthanides are separated by the dashed line. 
B) Using the parameters obtained in (A), the positions of other elements are calculated and plotted. Canonical plots 
of the seven heavy lanthanides C) and light lanthanides D). In (D) the data for Tm7 is from 40 min instead of 10 min 
to increase separation. 

 

5.3 Summary 

In summary, total of 14 in vitro selections with each trivalent lanthanide were conducted. 

Out of the 471 sequences, five DNAzymes with distinct activity patterns across the lanthanide 

series were obtained and characterized. A common fluorescent sensor design strategy was used, 

producing low nM sensitivity with excellent selectivity for lanthanides. Four of these enzymes 

have strong lanthanide-size dependent activity, allowing the production of an array-based sensor 

to distinguish each lanthanide. In addition, this study showed that DNA bases can detect the 

subtle differences of these very similar ions and suggesting a DNA-based separation method for 
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lanthanide purification and other applications is possible. 

5.4 Materials and Methods 

5.4.1 Chemicals  

The lists of chemicals used in this chapter can be found in Chapter 2 section 2.4.1. 

 

5.4.2 In vitro selection  

The methods for in vitro selection, PCR, cloning and sequencing were previously 

described in Chapter 2. The only difference was that the metal ion used to induce cleavage was 

Dy3+ and Gd3+. In the 6th round of Dy3+ selection, 5 µM of Dy3+ was added every 30 min for a 

total of 1 h incubation. For the last round of Gd3+ selection, 50 µM of Gd3+ was added twice with 

1 h interval. 

 

5.4.3 Gel-based assays  

DNAzyme activity assays were performed with the FAM-labeled substrate (Sub-FAM, 

0.7 µM) and Dy10a enzyme (1.1 µM). The DNAzyme complex was annealed in buffer A (50 

mM MES, pH 6.0, 25 mM NaCl) before metal ions were added to initiate the cleavage reaction. 

For pH-dependent studies, the MES and MOPS buffers (50 mM with 25 mM NaCl) were used. 

The reaction products were separated on a denaturing polyacrylamide gel (dPAGE) and analyzed 

using a Bio-Rad ChemiDoc MP imaging system. 

 

5.4.4 Sensor assay  

For a typical gel-based activity assay, a final of 10 µM metal ions were incubated with 5 

µL of 1 µM DNAzyme complex in buffer A for 1 h. The complex was formed by annealing the 
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FAM-labeled substrate and the enzyme in buffer A. The samples were quenched with 8 M urea 

and run in 15% dPAGE at 120 V for 80 min. The gel images were taken with Bio-Rad 

ChemiDoc MP imaging system. The kinetics studies were carried out using low binding half-

area black 96 well plates using a microplate reader (SpectraMax M3). The stock complex was 

formed by annealing the FAM-labeled substrate and the quencher-labeled enzyme with molar 

ratio of 1:1.5 in buffer A. Each complex was further diluted with various concentrations of 

HEPES (pH 7.6). The buffer conditions were individually optimized for each sensor, and the 

following HEPES conditions were used for Lu12 (1 mM), Tm7 (10 mM), Gd2b (10 mM), Dy10a 

(10 mM), and Ce13d (50 mM). 100 µL of 50 nM DNAzyme complex was used for each well. 1 

µL of target ions was added after 5 min of background reading. The samples were continuously 

monitored after addition for at least 30 min with 25 s intervals. 

For each DNAzyme sensor, four replicates of detection were carried out using 500 nM of 

each lanthanide. The slope in the initial linear region was calculated for each kinetic trace. To 

account for the timing difference in the metal addition and reading, the slope was also calculated 

by offsetting for 25 sec. The data were analyzed using the Canonical Discriminant Analysis 

software from Origin. The results were validated by using the obtained parameters to predict the 

data set positions. 
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Chapter 6. Detecting Thiophilic Metal Ions Collectively and Individually with 

Phosphorothioate-Modified DNAzymesd 

6.1 Introduction 

Cadmium, mercury and lead are three heavy metal contaminants commonly found in the 

environment. Unlike some other essential metal ions, these metals have no useful functions in 

biological organisms.  Bio-accumulation of these metal ions can cause many health issues such 

as neurological diseases and organ damage.24,228 Because of their high toxicity, they were 

collectively banned by the European Union according to the Restriction of Hazardous Substances 

Directive set in 2006. Since then, many countries have also taken similar regulations. To enforce 

such regulations and to prevent their adverse environmental and health effects, an emphasis has 

been made on developing analytical strategies with higher sensitivity. The current standard 

method for element analysis relies heavily on inductive-coupled plasmon-mass spectrometry 

(ICP-MS). Even though the method is highly reliable, it is available only in centralized labs with 

a high cost and long turnaround time. In order to provide on-site analysis, a number of metal 

sensing platforms have been developed. 138,139,228-235  

DNAzymes are DNA-based catalysts obtained through in vitro selection and their 

catalytic activities usually require metal cofactors to function.79,162-165 Owing to their high 

catalytic efficiency and versatility in sensor design, RNA-cleaving DNAzymes have emerged as 

a unique metal sensing platform.43,163,191,236-238 By using specific metals during selection, RNA-

                                                
d This chapter is the basis for a published manuscript: Huang, P. J.; Liu, J. Sensing Parts-per-Trillion Cd2+, Hg2+, and Pb2+ Collectively and 

Individually Using Phosphorothioate DNAzymes. Anal. Chem. 2014, 86, 5999-6005. 



	
  
	
  

110	
  

cleaving DNAzymes selective for Mg2+,79 Pb2+,78,193 UO2
2+,86 and trivalent lanthanide ions 

(Ln3+)87 have been reported. However, all these metals are considered as hard or borderline 

Lewis acids.  

High thiophilicity is a common feature of many toxic metals including cadmium and 

mercury. Since natural DNA does not contain sulfur, it has been difficult to use unmodified 

DNA to select DNAzymes with high specificity and selectivity for them. By incorporating 

modified bases with soft base ligands like imidazole, Zn2+ and Hg2+ dependent DNAzymes were 

also isolated.79,239 However, their analytical applications have been limited due to the poor 

availability of these modified bases. In addition, using modified bases also complicates the in 

vitro selection since DNA polymerase may not incorporate such bases during the amplification 

steps. Phosphorothioate (PS) DNA refers to replacement of one of the non-bridging oxygen 

atoms in the phosphate backbone with a sulfur atom (Figure 6.1A). Traditionally, the PS 

modification is often used in the antisense technology to increase DNA stability against nuclease 

degradation.240 It is also useful for studying the mechanism of (deoxy)ribozyme 

catalysis,134,216,241,242 assembling nanoparticles,243 and forming DNA structures.244 However, PS-

modified RNA-cleaving DNAzymes have not yet been systematically studied. 

In the previous chapter, a highly sensitive Ln3+-dependent DNAzyme named Ce13d was 

reported.87 Because of the chemical similarity between trivalent Ln3+ and Y3+, Ce13d also 

displayed similar activity in the presence of Y3+. When incubating with other non-rare earth 

metal ions, only Pb2+ showed moderate activity. Since Ln3+ are hard Lewis acids that prefer 

oxygen-based ligands, it is feasible to convert to a thiophilic-metal-dependent enzyme by simple 

PS modification. In this chapter, the first PS-modified DNAzyme that can detect low nM 

concentration of Hg2+, Cd2+ and Pb2+ as a group and individually is reported. 
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Figure 6.1 Secondary structure of the Ce13d, GR5, 17E, and 39E DNAzymes. A) Structure of the normal 
phosphodiester (PO) linkage and the phosphorothioate (PS) modification at the cleavage junction (rA-G). Secondary 
structures of the four DNAzymes used in this work: B) Ce13d; C) GR5; D) 17E; and E) 39E. 

 

6.2 Results and Discussions 

6.2.1 PS modification of substrate strand 

In Figure 6.1B, the Ce13d DNAzyme complex contains a chimeric substrate strand with a 

single ribo-adenosine (rA) being the designated cleavage site (pointed with arrowhead). The 

bottom strand colored in blue/black is the enzyme. With a Ln3+, the substrate is cleaved into two 

fragments. A FAM (carboxyfluorescein) was labeled at the 3’-end of the substrate for cleavage 

quantification. A gel-based assay was performed with the first row divalent transition metal, 

group 2B ions, Mg2+, Pb2+ and Ce3+. Ce3+ was included to represent Ln3+. With the normal 

phosphate oxygen (PO) substrate, Ce13d only showed activity with Ce3+ and Pb2+. When a single 

PS modification took place at the linkage between rA and G (Figure 6.1A), the Ce3+-dependent 

activity was considerably suppressed. The cleavage went from ~70% down to ~5%. At the same 

time, significant amount of cleavages were observed with thiophilic metals such as Cu2+, Cd2+, 
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Hg2+ and Pb2+. Besides some noticeable cleavages that were observed with Fe2+ and Zn2+, all 

other metals remained inactive. The influence of the PS modification on shifting the metal 

preference was clearly demonstrated. 

 
Figure 6.2 Enzymatic activity of the Ce13d, GR5, 17E, and 39E DNAzymes with PS-modified substrate in the 
presence of various metal ions. A-D) Gel images of the four DNAzymes with different metal ions and PO or PS 
(PS2 in (E)) substrate. E) Schemes of the substrate with different sites of the PS modification (denoted by the blue 
stars). F) Gel image of the four substrates with the Ce13d DNAzyme in the presence of different metal ions. For all 
the gels, the DNAzyme concentration was 1 µM and metal concentration was 10 µM. Reaction time was 30 min. 

 
The PS modified substrate described above was named PS2. To further understand the 

effect of PS modification on the substrate strand, a few control substrates were also tested 

(Figure 6.2E). Thus, either a PS was placed on the neighboring linkage (PS1) or dual PS 

modifications were introduced on both sides of rA (PS3). Three metals were tested against the 

Ce13d for activity (Figure 6.2F). The results showed that PS1 behaved very similarly to the 

original PO substrate, indicating that the PS modification at this site has no effect. On the other 

hand, PS3 showed similar activity as PS2, therefore implying that metal coordination to the 

phosphate at the cleavage site (Figure 6.1A) is crucial. In this case, even though the Ce3+ activity 

was suppressed with the PS2 substrate, the DNAzyme activity can be restored with addition of 
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thiophilic metal ions. From the analytical standpoint, combination of Ce13d DNAzyme with PS2 

substrate becomes a useful probe for detecting these toxic metals as a group. 

 

6.2.2 PS modification of enzyme strand 

In the previous chapter, the studies identified the loop region (Figure 6.1B, in black) in 

the Ce13d are highly conserved and crucial for activity.87 To test whether any of these 

phosphates are involved in metal binding, each linkage was systematically modified (Figure 

6.3A). Including the unmodified Ce13d, a total of 16 variants were tested. Interestingly, in all the 

cases, Ce3+ and Pb2+ showed similar activity (Figure 6.3B & D), while Cd2+ was completely 

inactive (Figure 6.3C).  

 
Figure 6.3 Enzymatic activity of the PS-modified Ce13d DNAzyme with PO substrate in the presence of Ce3+, Cd2+, 
or Pb2+. A) The enzyme loop sequence of Ce13d (the nucleotides in black of Figure 1B) and the sites of PS 
modification (blue stars). In this assay, the normal PO substrate was used for reference. Gel images of the 16 Ce13d-
based enzyme assays (the first lanes are the substrate alone, the second lanes are with the normal all PO enzyme and 
the rest are the PS modified) with B) Ce3+, C) Cd2+ or D) Pb2+. The reaction time was 1 h. 

 
Based on the cleavage quantification shown in Figure 6.4, the metal is more likely to bind 

to the nucleobases than the phosphates backbone in the enzyme loop. In this particular 

DNAzyme, the loop is rich in guanine and adenine. Both nucleobases are known to be good 

ligands for lanthanides.179,180 Overall, the PS modification at the cleavage junction has the largest 

effect in shifting metal preference. 



	
  
	
  

114	
  

Position of PS modification

PO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
le

av
ag

e 
(%

)

0

20

40

60

80 Ce3+ Pb2+

 

Figure 6.4 Quantification of the PS-modified cleavage activity at different positions of the enzyme loop. Data for 
Ce3+ and Pb2+ are shown while Cd2+ is completely inactive. 

 

6.2.3 PS modification of existing DNAzymes  

Although thiophilic metals as a group can be easily detected by PS-Ce13d DNAzyme 

complex, this analytical method would be even more valuable if selectivity within this group can 

be achieved. Cd13d was the latest example of the continuous expanding DNAzyme family. A 

few other metal-specific DNAzymes were already known and were well characterized. Based on 

the interesting results from Cd13d, PS modifications on these known DNAzymes may produce 

different metal binding patterns to improve selectivity. The first ever reported DNAzyme is 

called GR5 (Figure 6.1C).78 This DNAzyme is only active with Pb2+.115 Then there are the 

famous 17E (Figure 6.1D) and 10-23 DNAzymes.79 The 10-23 DNAzyme was recently 

suggested to be one of the 17E mutants.126,245 The 17E DNAzyme has been selected by a number 

of different labs under different selection conditions and is active with many different metal ions 

including Pb2+.78,81,83,85,246 The 39E DNAzyme is highly specific for UO2
2+ (Figure 6.1E). 86,146,148 

The four examples in Figure 6.1 represent the main independent and well characterized metal-

specific DNAzymes reported so far.247,248 
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In Figure 6.2B, PO substrate with GR5 indeed only showed cleavage in the presence of 

Pb2+. When the PS2 substrate was used instead, the enzyme also becomes slightly active with 

Hg2+. With just this pair of DNAzymes, Pb2+ and Hg2+ can be easily identified. The 17E 

DNAzyme is the most active with low concentration of Pb2+. However, Zn2+ and Cu2+ can also 

induce some cleavage (Figure 6.2C).81,125,193 Interestingly, PS-17E becomes even more selective 

for Pb2+ then Zn2+. Not surprisingly, none of the tested metal ions was active with the PO 

substrate since 39E is highly selective for UO2
2+. However, the enzyme showed moderate 

activity with Hg2+ and Pb2+ when formed a complex with the PS substrate.  

Therefore, Ce13d is a unique DNAzyme that can be activated by all thiophilic metal ions 

with the PS substrate. All the other DNAzymes are only active with Pb2+ and Hg2+ under the 

same conditions. It is likely that Ce13d has a general metal binding site that is not available in 

other DNAzyme.  

 

6.2.4 Metal sensor array 

With the above results, a sensor array was engineered (Figure 6.5A) to individually detect 

Cd2+, Hg2+, and Pb2+. Based on the activity of Ce13d (Figure 6.5B), the metal ions can be first 

separated in three groups. If the enzyme displayed no activity with both the PO and the PS 

substrate, the sample might contain monovalent metals or only the first row transition metals. 

Noted that Cu2+ and Zn2+ were included in this group based on the subsequent biosensor assays 

(Figure 6.5B, vide infra). If the enzyme is more active with the PO substrate, the metal is likely 

to be Ln3+ or Y3+. On the other hand, if the enzyme is more active with the PS substrate, the 

sample contains the three toxic metals (Cd2+, Hg2+, and Pb2+). Subsequently, Pb2+ and Hg2+ can 

be identified based on the GR5 DNAzyme response. After ruling out these two, the only one left 

is Cd2+. 17E and 39E were not included in the array because the information they provided was 
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redundant. The key component in this system is Ce13d; the activity pattern it provided can 

quickly separate the metals into three groups. 

 

Figure 6.5 A design scheme of detecting thiophilic metal ions using PO- or PS-modified Ce13d and GR5. A) A 
scheme of the four-component sensor array. B) A flow chart of detecting Hg2+, Pb2+ and Cd2+ based on the Ce13d 
and GR5 DNAzymes and the PO and PS substrates. The metal ions are categorized based on their sensor response. 
C) Schematics showing the DNAzyme beacon sensor design. 

 
The above assays were based on gel electrophoresis using 10 µM metal ions. To expedite 

the analysis, these DNAzymes were converted to “turn-on” fluorescence biosensors. First, the 

beacon complex was formed by hybridizing a quencher labeled enzyme with a FAM-labeled 

substrate (Figure 6.5C). In the absence of metal ions, the beacon showed lower background 

signal due to fluorescence quenching. Fluorescence enhancement was observed over time after 

metal ions addition. With 500 nM metal, the response of the PO-Ce13d sensor is shown in Figure 

6.6A.  In this concentration, only Ce3+ and Pb2+ showed activity, which is consistent with the gel-

based assay. The initial slope of the kinetic trace is plotted in Figure 6.6C. To evaluate this 

sensing array more closely, three metal concentrations from 50 nM to 5 µM were used. By using 

a rate of 0.05 unit as cut-off point, only Ce3+ showed response in all three concentration. With 
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the Ce13d/PS sensor, Cd2+, Hg2+ and Pb2+ showed the highest response (Figure 6.6B), which is 

also consistent with the gel-based assay. Interestingly, Cu2+ was more active in the gel assay than 

Ce3+ but has the similar responses in sensor platform. This is likely due to the fluorescence 

quenching effect of Cu2+. With PS-Ce13d, only Cd2+, Hg2+ and Pb2+ were active with a cut-off 

value of 0.05. By subtracting the PO response from the PS data, a clear separation of the three 

groups can be observed: Ce3+ as one group, Cd2+, Hg2+ and Pb2+ as the second group and the rest 

being the third (Figure 6.6E). This classification is consistent with the previous one illustrated in 

Figure 6.5B. 

With the PO-GR5 sensor, only Pb2+ was active with 0.1 unit as the cut-off point (Figure 

6.6F). With the PS-GR5 sensor and 0.02 as the cut-off point (Figure 6.6G), both Hg2+ and Pb2+ 

became active. It should be noted that Hg2+ induced significant quenching at 5 µM and appeared 

inactive from the sensors (Figure 6.7). 
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Figure 6.6 Sensor signaling kinetic traces with different metal ions using the PO-Ce13d A) or PS-Ce13d B) as 
sensor. Quantification of the rate of fluorescence increase with various concentrations of different metal ions with 
the PO-Ce13d sensor C) or PS-Ce13d sensor D), and their difference E). Rate of fluorescence increase with various 
concentrations of different metal ions with the PO-GR5 F) or PS-GR5 G) sensor.   
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Figure 6.7 Selectivity of PO- or PS-modified GR5 DNAzyme beacons. Kinetic traces of GR5 DNAzyme to 
different metal ions at different concentrations with PO (A-C) or PS (D-F) substrate. The metal concentrations are 
50 nM (A, D), 500 nM (B, E) or 5 µM (C, F). 

 

6.2.5 Individual sensor performance 

Once the metal was identified, the corresponding sensor can be used for quantification. 

By far, GR5 is the best sensor for Pb2+ with a reported detection limit of 3.7 nM (in pH 7.0 

HEPES buffer).36 A significant improvement of activity was observed at pH 7.6.249 In Figure 

6.8A, 0.2 nM Pb2+ can be clearly distinguished from the background. In the presence of 5 nM 

Pb2+, full cleavage was observed within 30 min. Since our DNAzyme concentration was 50 nM, 

each Pb2+ turned over 10 sensor molecules in 30 min to amplify the signal. This impressive 

display of efficiency highlighted one of the advantages of using DNAzyme for metal detection. 

The calibration curve is shown in Figure 6.8B; an apparent dissociation constant (Kd) of 4.2 nM 

Pb2+ is obtained. To date, this is still the tightest metal binding DNAzyme ever reported. With 

this design, the detection limit was calculated to be 0.1 nM Pb2+ from 3σ/slope, where σ is the 

standard deviation of background variation.  
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Cd2+ detection was carried out using the PS-Ce13d sensor (Figure 6.8C & D). The Kd was 

estimated to be 154 nM for Cd2+, and the detection limit was calculated to be 4.8 nM. At the 

same time, the PS-Ce13d sensor was also used for Hg2+ quantification (Figure 6.8E & F). The 

detection limit was determined to be as low as 2 nM. The US Environmental Protection Agency 

(EPA) set the maximal contamination limits at 15 ppb (72 nM) for Pb2+, 5 ppb (45 nM) for Cd2+, 

and 2 ppb (10 nM) for Hg2+. Remarkably, all the three sensors can achieve these limits easily and 

detect the targets down to parts-per-trillion (ppt) level.  

!

!

!

!!

!

 
Figure 6.8 Sensitivity of PO-GR5, PS-Ce13d, and PO-Ce13d DNAzymes beacons. Kinetics of sensor fluorescence 
increase with the PO-GR5 DNAzyme for Pb2+ A), PS-Ce13d for Cd2+ C) and PS-Ce13d for Hg2+ E). The initial rates 
of fluorescence increase as a function of Pb2+ B), Cd2+ D) and Hg2+ F) concentration. Insets: the responses to low 
metal concentrations. For all the tests, the DNAzyme concentration was 50 nM in pH 7.6 HEPES buffer. 

 
Modified DNAzymes have been extensively reported for various purposes. This work 

highlighted the advantages of the PS modification. First, the single O-to-S change at the cleavage 

junction in the substrate strand minimized the structure perturbation of the original DNAzyme. 

With this simple modification, DNAzyme with different metal ion preference was obtained 

without performing additional selection experiments. Second, it is cost effective to produce (e.g. 

less than $3 per PS modification), while modified bases cost much more and may not be 
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commercially available. Third, the chemical effects of such modifications are readily predictable. 

Last but not least, it provides the mechanistic insights for fundamental studies. 

 

6.3 Summary 

In summary, the effect of PS modification on the lanthanide-dependent Ce13d DNAzyme 

was systematically studied. The results indicated that the phosphate at the cleavage site 

determines its metal preference. This enzyme can be activated either using lanthanide or 

thiophilic metal ions based on a PO or PS substrate was used. The drastic change of enzyme 

characteristic was not observed in any other tested DNAzymes. This suggested a well-defined 

metal binding site that can tolerate a diverse range of metals. As a result, this could be a useful 

model system for studying DNAzyme bioinorganic chemistry.  

Cd2+, Hg2+, and Pb2+ are the most popular toxic heavy metals that are banned by the 

European Union in electronic devices. Therefore, it is important to detect them as a group. The 

study showed that PS-Ce13d could detect Cd2+, Hg2+, and Pb2+ collectively. Combined with 

other DNAzymes, the concept of flow-chart-based metal analysis was demonstrated here. With 

the increasing collection of metal-specific DNAzymes, this method will find more applications 

in detecting multiple metals simultaneously. While the PS-modified Ce13d provides a method 

for detecting thiophilic metals as a group, a few enzymes need to be used together to identify 

each metal ion. In the next chapter, I will describe my effort in performing in vitro selection with 

a PS-modified library to obtain new enzymes with better metal specificity.   
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6.4 Materials and Methods 

6.4.1 Chemicals  

The fluorophore/quencher-modified DNAs were purchased from Integrated DNA 

Technologies (IDT, Coralville, IA). The unmodified and phosphorothioate (PS) modified 

enzyme strands were from Eurofins (Huntsville, AL). The DNA sequences used in this study are 

listed in Table 6.1. Cerium chloride heptahydrate, magnesium sulfate, manganese chloride 

tetrahydrate, iron chloride tetrahydrate, cobalt chloride hexahydrate, nickel chloride, copper 

chloride dehydrate, zinc chloride, cadmium chloride hydrate, mercury perchlorate, and lead 

acetate were purchased from Sigma-Aldrich except the iron salt was from Alfa Aesar. The 

solutions were made by directly dissolving their salts in water.  

Table 6.1 DNAzyme and substrate sequences used in this work. rA = riboadenosine; Q = Iowa Black® FQ; 
FAM = carboxyfluorescein; *= PS modification. 

DNA Name Sequences and modifications (from 5’-end) 
PO substrate CGTTCGCCTCATGACGTTGAAGGATCCAGACT-FAM 

PS1 GTCACGAGTCACTAT*rAGGAAGATGGCGAAA-FAM 
PS2 GTCACGAGTCACTATrA*GGAAGATGGCGAAA-FAM 
PS3 GTCACGAGTCACTAT*rA*GGAAGATGGCGAAA-FAM 

Ce13d TTTCGCCATAGGTCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
17E CGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC 
GR5 TTTCGCCATCTGAAGTAGCGCCGCCGTATAGTGACTCGTGAC 
39E TTTCGCCATCTTCAGTTCGGAAACGAACCTTCAGACATAGTGACTCGTGAC 

Ce13d-Q  Q-TTTCGCCATAGGTCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
GR5-Q Q-TTTCGCCATCTGAAGTAGCGCCGCCGTATAGTGACTCGTGAC 

Ce13d-A1* TTTCGCCATA*GGTCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -G2* TTTCGCCATAG*GTCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -G3* TTTCGCCATAGG*TCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -T4* TTTCGCCATAGGT*CAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -C5* TTTCGCCATAGGTC*AAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -A6* TTTCGCCATAGGTCA*AAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -A7* TTTCGCCATAGGTCAA*AGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -A8* TTTCGCCATAGGTCAAA*GGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -G9* TTTCGCCATAGGTCAAAG*GTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

Ce13d -G10* TTTCGCCATAGGTCAAAGG*TGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -T11* TTTCGCCATAGGTCAAAGGT*GGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -G12* TTTCGCCATAGGTCAAAGGTG*GGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -G13* TTTCGCCATAGGTCAAAGGTGG*GTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -G14* TTTCGCCATAGGTCAAAGGTGGG*TGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
Ce13d -G15* TTTCGCCATAGGTCAAAGGTGGGT*GCGAGTTTTTACTCGTTATAGTGACTCGTGAC 
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6.4.2 Gel electrophoresis  

The DNAzyme complexes were formed by annealing the FAM-labeled substrate and the 

enzyme at a molar ratio of 1:1.5 in buffer A (25 mM NaCl, 50 mM MES, pH 6). For a typical 

gel-based activity assay, a final of 10 µM metal ions were incubated with 5 µL of 1 µM 

DNAzyme complex in buffer A for 30 min to 1 h. The samples were then quenched with 1× 

loading dye with 8 M urea and 2 mM EDTA and run in 15% dPAGE at 120V for 80 min. The 

gel images were taken with a ChemiDoc MP imaging system (Bio-Rad). 

 

6.4.3 DNAzyme beacon assay 

The sensor kinetic studies were carried out with 96 well plates and monitored with a 

SpectraMax M3 microplate reader. The stock complex was formed by annealing the FAM-

labeled substrate and the quencher-labeled enzyme with a molar ratio of 1:1.5 in buffer A. The 

stock complex was stored in -20 °C overnight before use. Each complex was further diluted with 

25 mM HEPES buffer (pH 7.6). For each well, 100 µL of 50 nM FAM-Q DNAzyme was used. 1 

µL of metal ion was added after 5 min of background reading to initiate cleavage. The samples 

were continuously monitored after addition for at least 30 min with 25 s intervals. 
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Chapter 7. In Vitro Selection of Single Phosphorothioate-Modified DNAzyme: 

Cadmium Specificity, Chiral Separation, and Detection in Rice 

7.1 Introduction  

In last chapter, I described that when a single PS modification was made on Ce13d at the 

cleavage site, the metal preference was switched from lanthanide ions to soft heavy metals. 220 

Based on this observation, we made a sensor for detecting these heavy metals as a group. 

However, Ce13d does not have metal selectivity, and it is impossible to identify the species of 

the target metal.  

To obtain metal-specific DNA, in vitro selection of RNA-cleaving DNAzymes is a 

powerful method.138,139,162,163,246,250 For example, Pb2+-,78,125,193 UO2
2+-,86 and Ln3+-dependent 

DNAzyme87,203,223 have been selected and all of them displayed high sensitivity and selectivity.  

These metals are either hard or borderline Lewis acids and they tend to interact with the 

phosphate backbone of DNA. However, success is limited for selections against many other 

metals. This was possibly due to the lack of the chemical functionality in DNA. To overcome 

this intrinsic problem, replacing naturally occurring nucleobases with synthetic modified 

nucleobases were introduced.239,251-253 However, two factors have limited their broader 

applications. First of all, these special modified bases are not commercially available. In fact, 

beyond those labs that synthesized the modified DNAzymes, not many others have studied them. 

Secondly, such selections require individually optimized PCR conditions to incorporate modified 

nucleotides. This actually makes it a technically demanding task.  

Based on all previous results, we reason that it is possible that with a single modification 

near the substrate RNA cleavage site, sufficient affinity for metal binding can be generated. For 
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example, phosphorothiate (PS) modification might be a good choice for binding thiophilic 

metals. PS refers to replacing one of the non-bridging phosphate oxygen atoms by sulfur.214,254 

This type of modifications has been done previously on ribozymes. Many ribozymes (and some 

DNAzymes) that have Mg2+-dependent activities have been selected. After the PS modification, 

these enzymes became less active with Mg2+ but can be re-activated by soft metals such as Mn2+ 

or Cd2+.220,241,242,245 By incorporating PS DNA into metal binding sites, the modification offers 

two advantages. First, PS is commercially available at a low cost (~$3 per modification). In fact, 

PS-modified DNA has been commonly used in chemical biology,240 and materials 

sciences.243,255-258 Second, the single PS modification is introduced in a fixed (instead of 

randomized) region of the DNA library so it does not complicate in vitro selection.  

Cadmium is a highly toxic metal known for its carcinogenic effects on humans.24 In the 

last century, discharge of Cd2+ has increased tremendously. This industrial byproduct led to 

contamination of water and agriculture products.259 So far, most reported fluorescent sensors for 

Cd2+ are based on synthetic chelators.228 However, they often require organic solvents and their 

performance can be strongly interfered by Zn2+, Ca2+, Hg2+, or Pb2+. This pointed out the 

challenges associated with rational ligand design. Other types of designs like nanoparticle-based 

colorimetric assays were also reported.260-262 Even though the method is much simpler to operate, 

they often suffer from low sensitivity and interference. It is interesting to note that few 

biosensors are available for Cd2+.263,264 In this chapter, a Cd2+-dependent DNAzyme selection 

using a PS modified library was conducted. To our knowledge, this is the first effort of 

strategically placing a PS in a selection library. Because each PS modification generated two 

diastereomers, a DNAzyme-based method for the chiral assignment and separation was 

demonstrated. In addition, a Cd2+ biosensor with ultrahigh sensitivity and specificity was 



	
  
	
  

126	
  

developed and tested.  

7.2 Results and Discussions 

7.2.1 Direct selections with a PS-modified library 

To isolate Cd2+-specific DNA, in vitro selection was carried out with a N50 library. With 

this library size, 50 random nucleotides can generate ~1014 possible sequences (Figure 6.1A). 

The cleavage site is indicated by the arrowhead at the single RNA (rA) position. This scissile 

bond is ~1-million-fold less stable compared to the rest DNA linkages.52 In addtion, a PS 

modification was introduced at this cleavage junction (Figure 1B) to increase affinity towards 

thiophilic Cd2+. So far, all the selections mentioned previously only used the normal phosphate 

(PO) linkage.87,203,223  

 

Figure 7.1 Library design for the Cd2+ DNAzyme selection. A) The library sequence for the PS DNAzyme 
selection. The structure of the cleavage junction (rAG) is shown in B), where rA denotes for ribo-adenosine. Instead 
of the normal PO, all the selections in this work used the PS linkage. C) A representative sequence from the direct 
selection, where the blue/cyan nucleotides are from the randomized N50 region. The star at the cleavage site 
represents the PS. This sequence is similar to Ce13, a previously reported DNAzyme. Two blocking sequences are 
complementary to the cyan region and they differ only by one base (underlined). D) Progress of the direct 
(unblocked) and blocked selections. The red dots indicate the rounds for DNA sequencing. 

 



	
  
	
  

127	
  

In each round of selection, Cd2+ was added to induce cleavage. The cleaved sequences 

were separated by gel electrophoresis. The isolated fragments were then amplified and extended 

by PCR to seed the next round of selection. After 5 rounds, ~35% cleavage was observed and the 

activity seemed to reach saturated (Figure 7.1D, black bars). The round 6 library was cloned and 

sequenced. Interestingly, 34 out of the 35 obtained sequences are similar to the Ce13 DNAzyme 

that was first isolated in a lanthanide-dependent selection (details characterization is presented in 

Chapter 2).87 A representative sequence (Figure 7.1C) shows a hairpin (in blue) and a large loop 

(in cyan) that constitutes the catalytic core. Each individual clone may differ in the hairpin but 

the loop sequence is highly conserved. The alignment of the sequences are listed in Table 7.1.  

Since Ce13 with a PS-modified substrate showed excellent activity in the presence of 

Cd2+ (detail studies are presented in Chapter 6),220 it is not surprising that it was isolated again. 

This result also indicated that with the current library design, Ce13 is a preferred (or easy-to-

obtain) solution for Cd2+-dependent PS RNA cleavage. However, this DNAzyme is not specific 

for Cd2+. PS-Ce13 also displayed activity with Pb2+, Cu2+, Hg2+ and Ce3+. To obtain a new PS-

modified Cd2+-dependent DNAzyme, the selection protocol needed to be adjusted. 
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Table 7.1 Alignment of the Ce13 sequence with unblocked Cd2+ selection sequences. The Ce13 sequence is showed 
in green. The cleavage site adenine is marked in red, and the conserved loop sequence in blue. Only the last 
sequence (UNBlkCd39) cannot be aligned. 

   Clone#                             Sequence (from 5’-end) 
UNBlkCd07    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACATCTGGGAGCCATAGG 59 
UNBlkCd34    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACATCTGGGAGCCATAGG 59 
UNBlkCd14    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGTTGGCGAAACATTTCG-AGCCATAGG 58 
UNBlkCd24    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
Ce13         CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd13    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd05    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd21    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd03    CTGCAGAATTCTAATACGAGTCACTATAAGGAAGATGGCGAAACAT---GGAGCCATAGG 57 
UNBlkCd15    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd11    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd10    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd09    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd06    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd36    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd40    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd35    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCAGAGG 56 
UNBlkCd38    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd02    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd17    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd37    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd26    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd25    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd19    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd12    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd28    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd29    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---G-AGCCATAGG 55 
UNBlkCd23    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd30    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd22    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---TGAGCCATAGG 56 
UNBlkCd33    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GAAGCCATAGG 56 
UNBlkCd27    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd04    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACAT---GGAGCCATAGG 56 
UNBlkCd08    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACATCATGGAGCCATAGG 59 
UNBlkCd20    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACATCTTTACAAAAAAAC 59 
UNBlkCd39    CTGCAGAATTCTAATACGAGTCACTATA-GGAAGATGGCGAAACATCTTT--ACTAAGGA 57 
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Table 7.1 Alignment of the Ce13 sequence with unblocked Cd2+ selection sequences. (Continued) 

   Clone#                             Sequence (from 5’-end) 
UNBlkCd07   TCAAAGGTGGGTGCG-GTCGTTT---ATCGACTAGTT------ATAATGACGGTAAGCTT 109 
UNBlkCd34   TCAAAGGTGGGTGCGTGTCGTAT---ATCGACTAAGT------ATAGTGACGGTAAGCTT 110 
UNBlkCd14   TCAAAGGTGGGTGCGGGTCGTAT---ATCGACTAAGT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd24   TCAAAGGTGGGTGCGTGTCG-ATCTAATCGACTAAGT-----TATAGTGACGGTAAGCTT 110 
Ce13        TCAAAGGTGGGTGCGGGTCGTATCATATCGACTAAGT-----TATAGTGACGGTAAGCTT 111 
UNBlkCd13   TCAAAGGTGGGTGCGTGTCGTATCATATCGACTAAGT------ATAGTGACGGTAAGCTT 110 
UNBlkCd05   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT------ATAGTGACGGTAAGCTT 109 
UNBlkCd21   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT------ATAGTGACGGTAAGCTT 109 
UNBlkCd03   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 111 
UNBlkCd15   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd11   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd10   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd09   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd06   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd36   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd40   TCAAAGGTGGGTGCGAGTCGTATCATATCGGCGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd35   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd38   TCAAAGGTGGGTGCGAGTCGTATCACATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd02   TCGAAGGTGGGCGCGAGTCGTATCATATCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd17   TCAAAGGTGGGTGCGAGTCGTATCATACCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd37   TCAAAGGTGGGTGCGAGTCGTATCATACCGACGA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd26   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGAAGT-----TATAGTGACGGTAAGCTT 111 
UNBlkCd25   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGAAGT-----TATAGTGACGGTAAGCTT 111 
UNBlkCd19   TCAAAGGTGGGTGCGAGTCGAATCATGTCGACGAAGT-----TATAGTGACGGTAAGCTT 111 
UNBlkCd12   TCAAAGGTGGGTGCGAGTCGTATCTTATCGACGAAGT-----TATAGTGGCGGTAAGCTT 111 
UNBlkCd28   TCAAAGGTGGGTGCGAGTCGTATCTTATCGACGAAGT-----TATAGTGACGGTAAGCTT 111 
UNBlkCd29   TCAAAGGTGGGTGCGAGTCGTATCATATCGACGAAGT-----AATAGTGACGGTAAGCTT 110 
UNBlkCd23   TCAAAGGTGGGTGCTAGTCGTATCATATCGACTA-GT------ATAGTGACGGTAAGCTT 109 
UNBlkCd30   TCAAAGGTGGGTGCTAGTCGTATCATATCGACTA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd22   TCAAAGGTGGGTGCTAGTCGTATCATACCGACTA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd33   TCAAAGGTGGGTGCGAGTCGTATCATATCAACTC-GT------ATAGTGACGGTAAGCTT 109 
UNBlkCd27   TCAAAGGTGGGTGTG-GTCGTATCTTATCGACCA-GT-----AATAGTGACGGTAAGCTT 109 
UNBlkCd04   TCAAAGGTTGGTGCTGGTCGCATTATATCGACTA-GT-----TATAGTGACGGTAAGCTT 110 
UNBlkCd08   TCAAAGGTGGGTGCTG-TCGCATCATATCGACT--GT-----TATAGTAACGGTAAGCTT 111 
UNBlkCd20   TCAAAAGTTGGCCCTTCCCGCATTTAAGTTTTCGGAA-----GATAGTGACGGTAAGCTT 114 
UNBlkCd39   -GCAAA--TAGCGAGAAACCGGCGAAACTAGAGGCGATCTGGGTTAGTGACGGTAAGCTT 114 

 

7.2.2 Blocked selections 

It should be noted that the conserved sequence of Ce13 is quite long (e.g. the 15 

nucleotides in cyan in Figure 7.1C). From the previous study, only one of the nucleotides 

(marked by underline) may change from G to A.87 If the complementary DNA was used to block 

these conserved nucleotides, Ce13 sequences got supressed and the library might be able to 

evolve. Two blocking DNAs were designed for this purpose and the sequences is showed in 

Figure 7.1C. In the new selection scheme (Figure 7.2A), the blocking DNAs were first 

hybridized with the library to inactivate the Ce13 sequences (step 1). Cd2+ was then added (step 
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2) and the cleaved sequences were amplified (step 3). With this adjustment, the progress was 

slightly slower and it took 7 rounds to reach the similar amount of cleavage (Figure 7.1B, gray 

bars). The result implied that the suppression of the highly active Ce13 population was sucessful. 

The round 7 library was also sequenced and the Ce13 variants were indeed eliminated (see Table 

7.2 for sequence alignment). However, the alignment showed that this enriched library contains a 

high sequence diversity. The results suggested that many solutions are available for Cd2+-

dependent cleavage. On top of that, the round 7 library displayed nearly 60% cleavage with a 

mixture of Pb2+, Cu2+, and Zn2+ (20 µM each) after 1 h incubation. This implied that the library 

still lacked specificity for Cd2+.  
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Table 7.2 Sequence alignment of the second selection using the two blocking sequences. For sequences (07, 26, 18, 
23) belong to the BN-Cd16 family in Table 7.3. 

Clone#                            Sequence (from 5’-end) 
BlkCd07         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTCATTCG------ 54 
BlkCd26         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTCATTCG------ 54 
BlkCd03         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTATCACG------ 54 
BlkCd10         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTAAGTCAT----- 55 
BlkCd31         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTCACTAGT----- 55 
BlkCd18         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTAGTCAGA----- 55 
BlkCd23         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATTTTT-AGAGC----- 54 
BlkCd19         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT---TAG----- 52 
BlkCd16         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTT--ACGT----- 53 
BlkCd01         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAGGCA--- 57 
BlkCd27         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAGCCT--- 57 
BlkCd15         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAGCAC--- 57 
BlkCd21         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAACG---- 56 
BlkCd02         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTACGG---- 56 
BlkCd22         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTAATGGT-TT--- 56 
BlkCd30         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAG-GA--- 56 
BlkCd09         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAAGGC--- 57 
BlkCd24         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAAGGATAG 60 
BlkCd36         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAATG---- 56 
BlkCd06         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAATAA--- 57 
BlkCd11         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACT-------- 52 
BlkCd14         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTGCTG--A---- 54 
BlkCd39         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGAA---- 56 
BlkCd12         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTA-ACT--- 56 
BlkCd38         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTAGTA-ACA--- 56 
BlkCd33         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTA-TCC--- 56 
BlkCd40         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAGTAA--- 57 
BlkCd20         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACACCTTTAGTAGCAC--- 57 
BlkCd25         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTAACA---- 56 
BlkCd32         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTA------- 53 
BlkCd35         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACTA------- 53 
BlkCd28         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACACCTTTACTAGTTT--- 57 
BlkCd05         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTACAAGAT---- 56 
BlkCd17         CTGCAGAATTCTAATACGAGTCACTATAGGAA-ATGGCGAAACATCTTTAGTAGTTGTAC 59 
BlkCd04         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTAGTAGTTT--- 57 
BlkCd13         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTAGT--TAT--- 55 
BlkCd08         CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACATCTTTAGTAGT----- 55 
BlkCd34         CTGCAGAAT-----------TCGCCCTTGGAAGATGGCGAAACATCTTTAGTAATGG--- 46 
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Table 7.2 Sequence alignment of the second selection using the two blocking sequences. (Continued) 

Clone#                           Sequence (from 5’-end) 
BlkCd07      ----ATAGTTGAAATAGGTACAAGTATCACGGTGATATTG--TATCATG-TTAGTGTC-G 106 
BlkCd26      ----ATAGTTGAAATAGGTACGAGTATCACGGTGATATTG--TATCATG-TTAGTGAC-G 106 
BlkCd03      ----CGA-TAGAAATAGCGACAAGTCTAGGTGTGATTTATGCTCTCTT--CTAGTGAC-G 106 
BlkCd10      ----CTAATCACTCGAAGAAG---AGTGGCGAGGAGTAAGAATGTCGTG-ATGGTGAC-G 106 
BlkCd31      ----AAAGCAAAGCATAGAGCTCTACGGGTTAGGGGTACGAG-GTCGT---TGGTGAC-G 106 
BlkCd18      ----ATACGGACAAAGAGTGG-CAGACAGAAACCT-TCGATAGCTC-AA-ATAGTGAC-G 106 
BlkCd23      ----ATAAAACCAAAATTTGTTAAGACAGTGACCT-TCGATAGCAC-AA-ATAGTGAC-G 106 
BlkCd19      ----ATACTTATAAATGGTCAATGAGCAATGTTCAGTAGCTTGTGCGAC-TTAGTGAC-G 106 
BlkCd16      ----CCACTGATAGAGCTCATATTGGAAAGGAATA-TTGGTTATGAACC-CTAGTTAC-G 106 
BlkCd01      ---TTGAAATA-CTTTTGGATT--TATATTATCATATGGCCGGGAGAT----AGTGAC-G 106 
BlkCd27      ---GTGCCGCATCGTTAGGATT--ACGATAAGAACACCG-CGGGAAAT----AGTGAC-G 106 
BlkCd15      ---GTA--ATGCCTCATGCTCTGTATAATGAGGGGA-ACGTGAGGGTT----AGTGAC-G 106 
BlkCd21      ---GTAGCACGCCGAAAGTGCT--ATACAGAGGGGAGTAGTGTGGGTT----AGTGAC-G 106 
BlkCd02      ---AAACTACGTCGCGTGCATT--TAAAAGGCGAATAGAGAGGGGGTT----AGTGAC-G 106 
BlkCd22      ---ACATAGTCCATCTAAGACC-TTGTCACCTTCATCGCGAAG-AAAT----AGTGAC-G 106 
BlkCd30      ---GC-TAGGCCTCCTTATATT-TTATCACGAGTAGCTCACGGGAGAT----AGTGAC-G 106 
BlkCd09      ---TCAATGAGCCGCGAAGGCG-GCAT-GCATACAAGTCTGGG-AGAT----AGTGAC-G 106 
BlkCd24      TTAGTTGTAGGTTGACAACGTG--TGGGACTAGACT-------GGGTT----AGTGAC-G 106 
BlkCd36      --TGTAGGAGACTCCCATCGTT--ATGGACATGTCTCTA-CATGGGGT----AGTCAC-G 106 
BlkCd06      ---ATGGAGTGGTCAACCGAAT-TAGGAGCACGTAATG--CATGAGTT----AGTGAC-G 106 
BlkCd11      --AGCAA-GTTTA-TTGCGGGT-TAATGACAGTTATAAAGCGTATCATTACTAGTGAC-G 106 
BlkCd14      --AACATTGTTCAGTAGCCTTT-TATTAACACTAATAAAGAGCGACTT----AGTGAC-G 106 
BlkCd39      --AGCAT-ATTCG-CAGCAGGG-GTATAGCGAAGATGAGTCGGAAGAT----AGTGACCG 107 
BlkCd12      ----AACGGAAAGCAAGTTGAAGAATCGA---TTGTCGATTG--TGGGAGATAGTAAC-G 106 
BlkCd38      ----AAC--ACACTAGGGTAAATATTGGG---ATTTCGAGTGGTTGCGCCTTAGTGAC-G 106 
BlkCd33      ----GACGAGGAGCCCTGGGCCAGGG-GG---ATATCAGTTG-GAGGGAGATAGTGAC-G 106 
BlkCd40      ----AAAGCCCAGCTATGGGTAGGTGTGG---GTATCCGTTT-ACGG--GATAGTGAC-G 106 
BlkCd20      ----ATCAGGAGAAACGTGGAAAAGATAG---CTACTG--AATGGCGGCT-TAGTGAC-G 106 
BlkCd25      ----ATCTGTATTATTGCTGTGGGGTGAG---TTACAG--AAGGTGGGAGGTAGTGAC-G 106 
BlkCd32      ----AGCAAT--AGCAAAGGATTGCAGAATTTTCTATGGCTATCGCTGGGTTAGTGAC-G 106 
BlkCd35      ----AGCAAT--AGCAAAGGATTGCAGAATTTTCTATGGCTATCGCTGGGTTAGTGAC-G 106 
BlkCd28      ----AACAATGACACCAAAGAATGGAGGG---ACATTG--TTTCGCGGGG-TAGTGAC-G 106 
BlkCd05      -----CAGGGGCGATAAGTCATAGAACAAAGGATCTCCTGATCGGGTT----AGTGAC-G 106 
BlkCd17      T-TAACCGGGGACAGAAGACATAG-----AGGGTATC---AACGCCTT----AGTGAC-G 105 
BlkCd04      ----AAACCGGAGTTGTCAATCAGA---CGTATGAAGGAAAAAC---GCCTTAGTGAC-G 106 
BlkCd13      ----AAACCGGA-TTCACTAATAGG---CTGATACAGAGAGGGCTATGGGTTAGTGAC-G 106 
BlkCd08      ----TCCAAGGGGATAAAAATGGAAGAGCGGGCCC-ATGGGAAC---GCCTTAGTGAC-G 106 
BlkCd34      ----TCTCCGACGTCTAAACTGGGT---CGGACTAGAAGTTAAT---GCCTTAGTGAC-G 95 

 

7.2.3 Blocked negative selections 

The activity observed can be rationalized with the thiophilicity of these metal ions. Aside 

from that, these metal ions may display different properties such as size, coordiation chemistry 

and the pKa value of the bound water. These differences might be enough for DNA sequences to 

differentiate them. Under this assumption, the negative selection step was added in the each of 

next few rounds to further evolve the library. After incubating with a mixture of metal ions (Pb2+, 

Zn2+, and Cu2+, step 4, Figure 7.2A), the cleaved sequences were discarded and the remaining 
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uncleaved library was harvested (step 5). The isolated library was then incubated with Cd2+ for 

the positive selection (step 2). Aiming for high specificity, stringent conditions were used for the 

negative selection by extending reaction time (Figure 7.2B, black bars). The activity of the 

competing metals went down from 58% cleavage in 1 h in round 8 to ~30% in 2 h in round 13. 

After that, we did a 12 h incubation followed by a 4 h incubation. At the end  of round 15, only 

insignificant amount of cleavage was observed with the metal mixture. The progression indicated 

a significant improvement on selectivity.  

 
Figure 7.2 A design scheme for the modified Cd2+ selection. A) A scheme for the blocked selection and with 
negative selection. The blockers are intended to eliminate the Ce13 sequences. Steps 1, 2 and 3 consist of a 
completely blocked selection cycle. From round 8, negative selections were carried out with a metal soup. In this 
case, the uncleaved sequences were collected (steps 4, 5, 6) and then reacted with Cd2+ for the positive selection 
(steps 2, 3). B) Selection progress from round 8 of the blocked selection. For each round, both positive and negative 
selections were carried out. The round 15 library was sequenced. C) A trans-cleaving DNAzyme derived from BN-
Cd16. D) Alignment of the enzyme loop for sequences similar to BN-Cd16. Nucleotides in red are absolutely 
conserved, in blue can be purine or pyrimidine substituted and in yellow are variable. The clone numbers are in the 
parenthesis. The color coding matches that in C). 

 
At the same time of improving selectivity, the reaction time was shortened for the 

positive Cd2+-dependent selections to enusre highly active DNAzyme was selected. In the last 
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four rounds, only 5-min was allowed and ~20% cleavage was consistently achieved (Figure 

7.2B, red bars). At round 15, since both the negative and positive activities were optimized, this 

library was sequenced. 

     

7.2.4 DNAzyme secondary structure analysis 

From Table 7.3, 19 out of  37 sequences were aligned to a single family. One 

representative sequence, clone #16, was used for subsequent analysis. Its structure that was 

predicted by M-fold190 is shown in Figure 7.3  and its simplified trans-cleaving structure is 

shown in Figure 7.2C. Interestingly, there are only 12 nucleotides in the enzyme loop. These 

loop sequences are well aligned (Figure 7.2D): the nucleotides in red are highly conserved, in 

yellow can be changed from purine to purine or from pyrimidine to pyrimidine, and the two blue 

nucleotides are more variable. Overall, this appears to be a well-defined new DNAzyme. 

 

Figure 7.3 Mfold predicted secondary structure of Blk-N-Cd16. The cleavage site ribo-adenine is marked in the red 
circle. 
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Table 7.3 Sequence alignment for the third selection, where negative selections were carried out in the presence of 
the blocking DNAs. 

Clone#                           Sequence (from 5’-end) 
BN-Cd02      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTA----GAGAT 54 
BN-Cd20      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTA----GCCAG 54 
BN-Cd01      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTAATCGGTAA 58 
BN-Cd10      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTAATCGGTAA 58 
BN-Cd06      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-CCTTTAATCGGTAA 58 
BN-Cd30      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTAATCGGTAA 58 
BN-Cd13      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-CCTTG---CG-TAT 54 
BN-Cd14      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-CCTTG---CG-TAT 54 
BN-Cd38      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TATTG---CT-CAT 54 
BN-Cd04      CTGCAGAATTCTAAT-ACGAGTCACTATAGG-AGATGGCGAAACA-TTTAG---GGGTCC 54 
BN-Cd21      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTG---GGGTCT 55 
BN-Cd40      CTGCAGAATTCTAAT-A-GAGTCACTATAGGAAGATGGCGAAACA-TCTTG---GGGCAC 54 
BN-Cd07      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTGCATAAATGT 58 
BN-Cd35      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTGCATAAATGT 58 
BN-Cd12      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTGCATAAATGT 58 
BN-Cd09      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTAG--ACGGCA 56 
BN-Cd34      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTAG--ACGGCA 56 
BN-Cd24      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTAG--ACGGCA 56 
BN-Cd25      CTGCAGAATTCTAAT-ACSAGTCACTATAGGAAGATGGCGAAACA-TCTTAA--ACCAGG 56 
BN-Cd36      CTGCAGAATTCTAAT-ACSAGTCACTATAGGAAGATGGCGAAACA-TCTTATG-AGCTAA 57 
BN-Cd17      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTTTATTAAAA 58 
BN-Cd23      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTTTATTAAAA 58 
BN-Cd11      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTTTATTTAAA 58 
BN-Cd03      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACACCTTACACTCGAAGA 59 
BN-Cd37      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACACCTTACACTCGAAGA 59 
BN-Cd05      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACAATCTTCATTCGATAG 59 
BN-Cd08      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTCATTCGATAG 58 
BN-Cd15      CTGCAGAATTCTAATAACGAGTCACTATAGGAAGATGGCGAAACA-TCTTCATTCGATAG 59 
BN-Cd29      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-CCTTCATTCGATAG 58 
BN-Cd19      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-CCTTCATTCGATAG 58 
BN-Cd33      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-CCTTCATTCGATAG 58 
BN-Cd26      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTCATTCGATAG 58 
BN-Cd16      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTCTTCGATAG 58 
BN-Cd22      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTCTTCGATAG 58 
BN-Cd32      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTAC-CCAAAA 57 
BN-Cd39      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-CCTTTAATCCAAAC 58 
BN-Cd18      CTGCAGAATTCTAAT-ACGAGTCACTATAGGAAGATGGCGAAACA-TCTTTACCCAAAAG 58 
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Table 7.3 Sequence alignment for the third selection, where negative selections were carried out in the presence of 
the blocking DNAs. (Continued) 

Clone#                           Sequence (from 5’-end) 
BN-Cd02      CTATTGAACGATAACTAATTAGCCATATTTATCCACCTACATCTTAGTGACGGTAAGCTT 114 
BN-Cd20      CTGAAACAATCGAAGAGTTTTGCATATCGTGATGACGCAAAGAGTAGTGACGGTAAGCTT 114 
BN-Cd01      CAGCAACAATAA-TAGGTTTCTACTGCTACG---TAGGGCCAATTAGTGACGGTAAGCTT 114 
BN-Cd10      CAGCAACAATAA-TAGGTTTCTACTGCTACG---TAGGGCCAATTAGTGACGGTAAGCTT 114 
BN-Cd06      CAGCGACAATAA-TAAGTTTGTACTGCTACG---TAGGGCCAATTAGTGACGGTAAGCTT 114 
BN-Cd30      CAGCAACAATAA-TAAGTTTGTACTGCTACG---TAGGGCCAATTAGTGACGGTAAGCTT 114 
BN-Cd13      CATCTTCAATTCGATAGAGTCCACGTCTACAGGAATGTGGGAAATAGTAACGGTAAGCTT 114 
BN-Cd14      CATCTTCAATTCGATAGAGTCCACGTCTACAGGAATGTGGGAAATAGTAACGGTAAGCTT 114 
BN-Cd38      YATCYTCAATTCGATAGAGTCCACGTTCACAAGAATGTGGGAAATAGTGACGGTAAGCTT 114 
BN-Cd04      ATATTGCTCAAAGATAGT-TCGAACATCTGAAACGCACGAAGAATAGTGACGGTAAGCTT 113 
BN-Cd21      ATATTGCTCAAAGATAGT-TCGTACAACTGAAACGCACGAAGAATAATGACGGTAAGCTT 114 
BN-Cd40      GCTCTTAACCAAGATAATGTTAAGTATCTTACAGGAAC-CACTTTAGTGACGGTAAGCTT 113 
BN-Cd07      CTACATGCAGAATATCCGCCA--TTTCATTCG--ACAGTAGAGATAGTGACGGTAAGCTT 114 
BN-Cd35      CTACATGCAGAATATCCGCCA--TTTCATTCG--ACAGTAGAGATAGTGACGGTAAGCTT 114 
BN-Cd12      CTACATGCAGAATATCCACCA--TTTCATTCG--ACAGTAGAGATAGTGACGGTAAGCTT 114 
BN-Cd09      CCTGAGATGATTTAATCGCAGTTCTTCCTTCG--ATAGCTAAGATAGTGACGGTAAGCTT 114 
BN-Cd34      CCTGAGATGATTTAATCGCAGTTCTTCCTTCG--ATAGCTAAGATAGTGACGGTAAGCTT 114 
BN-Cd24      CCTGAGCTGATATAATCGCACTTCTTCCTTCG--ATAGCTAAGATAGTGACGGTAAGCTT 114 
BN-Cd25      TGTCTTACTTTCTAAGCTGTCATCTTCATTCG--ATAGCACAAATAGTGACGGTAAGCTT 114 
BN-Cd36      CGTAAAAGTTTCTAAAGCCAC-TGTTCCTTCS--ATAGTACAGATAGTGACGGTAAGCTT 114 
BN-Cd17      CGTGTAAAAATGTGGGGGCAG--TTTCCTTCG--ATAGCCCAGATAGTGACGGTAAGCTT 114 
BN-Cd23      CGTGTAAAAATGTAGGGGCAG--TTTCCTTCG--ATAGCCCAGATAGTGACGGTAAGCTT 114 
BN-Cd11      CGTGTAAAAATGTAGGGGCAT--CTTCCTTCG--ACAGCCCAGATAGTGACGGTAAGCTT 114 
BN-Cd03      GTCTCTTAAA--TTATACCTT--GTAGAATCCCCTG-GAGGAAATAGTGACGGTAAGCTT 114 
BN-Cd37      GTCTCTTAAA--TTGTACCCG--GTACAATCCCCTG-GAGGAAATAGTGACGGTAAGCTT 114 
BN-Cd05      TTGAAATAGG--TACGAGTAT--CACGGCGATGTTGTATCATGTTAGTAACGGTAAGCTT 115 
BN-Cd08      TTGAAATAGG--TACAAGTAT--CACGGTGATATTGTATCACGTTAGTAACGGTAAGCTT 114 
BN-Cd15      TTGAGATAGG--TACGAGTAT--CACGGTCATATTGTATCATGTTGGTGACGGTAAGCTT 115 
BN-Cd29      TTGAGATAGG--TACAAGTAT--CACGGTGACATTGTATCATGTTAGTGTCGGTAAGCTT 114 
BN-Cd19      TTAAAATAGG--TACGAGTAT--CACGGTGATATTGTACCATGTTAGTGACGGTAAGCTT 114 
BN-Cd33      TTAAAATTGG--GAGGACATG--TAGTGGGACGATTCAACCCCCTAGTGACGGTAAGCTT 114 
BN-Cd26      CTCAAATAGGACTATGTGTTT--AACTGGAATATG--AAAGGACTAGTGACGGTAAGCTT 114 
BN-Cd16      TTAAAATAGT--GACTTCTAT--ATTAAGTCGCCTCATTGTTGATAGTGACGGTAAGCTT 114 
BN-Cd22      TTAAGATAGT--GACTTCTAT--ATTAAGTCGTCTCATTGTTAATAATGACGGTAAGCTT 114 
BN-Cd32      GGAG-TTCTTACGGATCCTAC--AATGAGGAAAAGTATGAGTTATAGTGACGGTAAGCTT 114 
BN-Cd39      CACGGTGGTGACTGGCCTGAA--TAAGAGCATTAGACT--ATATTAGTGACGGTAAGCTT 114 
BN-Cd18      GAAGGTTTTCTAATAACTGGC--TTTAGTAGAAACACA--GGAGTAGTGACGGTAAGCTT 114 

 

7.2.5 Metal ions specificity  

Some of the sequences shown in Figure 7.2D were tested for activity. As shown in Figure 

7.4, they all displayed similar Cd2+-dependent activity. BN-Cd16 sequence was chosen for 

further studies due to its sensitivity. 10 µM divalent metal ions were used first to test its metal 

specificity, and Cd2+ indeed shows the best cleavage (Figure 7.5A). Besides Cu2+, Pb2+ and Hg2+ 

showed moderate activity, none of the other divalent metal ions produced any cleavage even 

when the concentration was increased up to 1 mM (Figure 7.5F). In particular, the Cd2+ 
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selectivity over Zn2+ was more than 100,000-fold based on their cleavage rates. Therefore, BN-

Cd16 solves the challenging problem of separating Cd2+ and Zn2+. 
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Figure 7.4 Cleavage of the PS-Sub by different enzymes with 1 and 10 µM Cd2+. They all showed similar activity, 
which is consistent with their similar sequences in Figure 2D. BN-Cd16 was chosen for most of studies in this work. 
The reaction was in 50 mM MES, pH 6.0 with 25 mM NaCl. 

 
Next, the kinetics of BN-Cd16 with the active metal ions was measured and a gel image 

with Cd2+ is shown in Figure 7.5B. With 10 µM Cd2+, the cleavage rate is 0.12 min-1 that is 15 

and 20-fold higher than the one with Cu2+ and Pb2+, respectively. (Figure 7.5D, black bars). Hg2+ 

produced an interesting cleavage kinetic profile, as only ~8% cleavage was observed and it is all 

cleaved within the first half minute. It was reported that Hg2+ can cleave PS RNA even in the 

absence of any DNAzyme due to its extremely strong thiophilicity.265  
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 BN#Cd16 

 Ce13d 

 
Figure 7.5 Biochemical characterization of the BN-Cd16 DNAzyme. Gel images of BN-Cd16 with the PS substrate 
reacting (A) in the presence of 10 µM various metals after 10 min incubation, and (B) with 10 µM Cd2+ as a 
function of time. (C) Kinetics of the PS substrate cleavage by BN-Cd16 with different metal ions (10 µM). (D) 
Comparison of rate of cleavage of BN-Cd16 and Ce13d with the PS substrate. (E) Comparison of the fraction of 
cleavage by Hg2+ (10 µM) with these two DNAzymes. (F) Cleavage percentage with three concentrations of various 
competing metals. (G) Fraction of cleavage after 15 min as a function of Cd2+ concentration. All the assays were run 
in 50 mM MES buffer (pH 6.0) with 25 mM NaCl. 

 
Since Ce13d also active with Cd2+, the cleavage rate of Ce13d (Figure 7.5D, red bars) 

was also measured for comparison. In this case, all four metals showed significant activity. Since 

the Hg2+ rate cannot be accurately measured, the final cleavage yield is compared (Figure 7.5E) 

and Ce13d produced ~8-fold more cleavage. Combined with all these results, BN-Cd16 is highly 

selective for Cd2+ and it represents a significant improvement over Ce13d. Since Cd2+ is the only 

active metal in low nM concentration (vide infra), it is probably more practical in real-life 

situations. Cd2+ concentration range was also tested and the highest activity was observed with 

10 µM Cd2+ (Figure 7.5G). Any further increase of Cd2+ concentration reduced the activity 

slightly.  

In addition to this most abundant family, a few other sequences were also tested. For 

example, BN-Cd13 (three similar sequences found in the library) is quite active (Figure 7.6A) 

but not selective (Figure 7.6B). BN-Cd04 displayed very low activity (Figure 7.6A). BN-Cd18 
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also showed poor selectivity (Figure 7.7). Even though BN-Cd40 displayed remarkable 

selectivity (Figure 7.7), it has very slow kinetics (Figure 7.8). Overall, BN-Cd16 is an optimal 

sequence both in terms of activity and specificity for Cd2+.   
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Figure 7.6 Additional gel-based assays on other Cd2+ DNAzymes using the PS-Substrate. There are other types of 
DNAzyme sequences in our blocked selection with negative selection. For example, BN-Cd13, BN-Cd14, and BN-
Cd38 belong to the same family and we tested BN-Cd13 (A, the right side bars). It is quite active and cleaved nearly 
50% with 10 µM Cd2+ in 1 h. Another DNAzyme, BN-Cd04 (and BN-Cd21) failed to show high activity and was 
not studied further. We next compared metal selectivity between BN-Cd13 and BN-Cd16 (B). It appears that BN-
Cd16 has higher selectivity (1 h reaction with 10 µM various metal ions). Each metal ion was used at 10 µM 
concentration with 1 h incubation in 50 mM MES, pH 6.0 with 25 mM NaCl. 

 
Figure 7.7 Metal specificity assay of BN-Cd40 and BN-Cd18 DNAzymes using PS-Substrate. BN-Cd40 has very 
good selectivity towards Cd2+ and this DNAzyme only appeared once in the blocked negative selection. BN-Cd18, 
on the other hand, has poor selectivity. Each metal ion was used at 10 µM concentration with 1 h incubation in 50 
mM MES, pH 6.0 with 25 mM NaCl. 

 

Figure 7.8 Cd2+ concentration dependent study of the BN-Cd40 DNAzyme. Since the BN-Cd40 DNAzyme showed 
excellent metal specificity from the assay in Figure S5, it would be suitable to be developed into a cadmium sensor. 
A range of Cd2+ concentrations (0-500 µM) was tested for 1 and 2 h, and both gel images and quantifications are 
shown. With BN-Cd16, ~30% cleavage was achieved in 1 h, but BN-Cd40 only achieved ~3% cleavage under the 
same condition. Therefore, this is a much slower enzyme. 
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7.2.6 Stereo-specificity and DNAzyme-based chiral separation 

For all these assays, Cd2+ cleaved no more than 35% of the PS substrate. Even after 

increasing enzyme concentration and reaction time, cleavage was still below 50% (Figure 7.9). 

This is much lower than most DNAzymes reported. In most cases, over 80% cleavage can be 

achieved under an hour.  
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Figure 7.9 Quantification of PS-Sub cleavage as a function of BN-Cd16 enzyme concentration. At the high enzyme 
concentration (e.g. 5:1 ratio), and after 1 h reaction with 10 µM Cd2+, the cleavage of the substrate reached ~45%. 
The improvement from 30 min to 1 h was minimal for these samples as well. This suggests that only about half of 
the substrate can be cleaved by Cd2+.  

 
Introducing a PS modification results in two diastereomers at the phosphorus center (Rp 

and Sp, Figure 7.10A). These two diastereomers were well studied in ribozymes,216,217,219 and 

DNAzymes.134,218 Most of these enzymes are active with Mg2+ , which has great affinity for 

oxygen-based ligands. When the pro-Rp oxygen was replaced by sulfur, the Mg2+-dependent 

activity was nearly abolished (>100-fold slower). This activity can often be rescued by thiophilic 

metals such as Cd2+ or Mn2+. When the pro-Sp oxygen was replaced, the adverse effect is much 

smaller (e.g. ~5-fold). This indicates that these enzymes use the pro-Rp oxygen to bind Mg2+.  
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Figure 7.10 DNAzyme-based chiral separation. A) The structures of the two PS diastereomers at the cleavage 
junction. The BN-Cd16 DNAzyme is active only with the Rp isomer. Kinetics of PO, PS, and treated PS substrate 
cleavage by B) the BN-Cd16 DNAzyme in the presence of 10 µM Cd2+, or by C) the 17E DNAzyme in the presence 
of 10 mM Mg2+. D) The scheme of experiment design for treating the PS substrate to remove the Sp population by 
the 17E DNAzyme and to increase reaction yield. 

 
It shoud be noted that these two isomers were not separated during the in vitro selection 

and assays. Thus, it is likely that only one of the diastereomers is active. To verify this, each 

isomer needed to be tested separately. However, the standard HPLC method failed the 

separation25 due to the substrate length (30-mer) and the FAM modification. Therefore, an 

alternative method was needed for the confirmation.    

17E is a well-characterized and Mg2+-dependent DNAzyme.125,126,162,250 Since 17E shares 

the same substrate sequence as the current BN-Cd16 DNAzyme, PS substrate was hybridized 

with 17E and incubated in presence of 10 mM Mg2+. In 90 min, ~40% cleavage was achieved 

(Figure 7.10C, red dots, rate = 0.12 min-1). For comparison, the normal PO substrate has a rate of 

0.76 min-1 (Figure 7.10C, black dots). This ~6-fold rate difference reflects a typical thio effect.217 

The uncleaved PS substrate was isolated after gel electrophoresis and it was used to form a 

complex with BN-Cd16. Upon adding Cd2+, ~80% cleavage was observed (Figure 7.10B, green 

dots). This is significantly higher than the untreated PS substrate (Figure 7.10B, red dots). The 
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rate of cleavage (0.16 min-1) is similar to that of the untreated substrate (0.12 min-1). Therefore, 

the same species is responsible for the cleavage before and after the 17E DNAzyme treatment. 

When the 17E treated substrate was reacted with 17E again, only ~10% cleavage was observed 

(Figure 7.10C, green dots). The data implies that the 17E treatment selectively removed one of 

the isomers. As a result, the signal generated by the remaining isomer with BN-Cd16/Cd2+ was 

significantly enhanced. 

The 10-23 DNAzyme was selected together with 17E and displayed similar Mg2+-

dependent activity.79 The 10-23 DNAzyme is known to use the pro-Rp oxygen to bind Mg2+. 

Since the 10-23 DNAzyme is thought to be a variant of 17E,79 these two enzymes should have 

the same steroselectivity.134 In fact, all the known RNA-cleaving ribozymes use the pro-Rp 

oxygen to bind Mg2+. Based on the results, it is suspected that BN-Cd16 uses the Rp sulfur to 

bind Cd2+. Once the majority of Sp population is removed by 17E, the remaining Rp rich 

population is all active with BN-Cd16 (Figure 7.10D). This is the first time that a DNAzyme is 

utilized to achieve chiral separation. While preparing for the sensor (vide infra), 3 nmol substrate 

was purified in one run. It should be noted that this method can be readily scaled up. 

To further verify the hypothesis, PS substrate with BN-Cd16 was treated with 10 µM 

Cd2+. If the assumption is correct, this treatment should remove most of the Rp isomer. The 

remaining uncleaved Sp rich substrate with BN-Cd16 should show less activity in the presence of 

Cd2+. Indeed, the complex only yielded ~10% cleavage (Figure 7.10B, blue dots). This kinetic 

data was a better fit to an equation with two rates (0.16 min-1 and 0.00019 min-1; if fitting to a 

single exponential equation, R2 = 0.97). The slower rate was assigned to the Sp isomer. This Sp 

isomer became the dominating species after the BN-Cd16 treatment and thus its rate became 

noticeable. This ~800-fold difference is typical for RNA cleavage.217 In a separate experiment, 
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the activity of the PO substrate with BN-Cd16 in the presence of Cd2+ was also measured (black 

dots, Figure 7.10B). Not surprisingly, no cleavage was observed. The large difference in activity 

highlighted the importance of the PS modification. In fact, BN-Cd16 cannot cleave the PO 

substrate by any tested metals (Figure 7.11), which also explains its high metal specificity. 

 

Figure 7.11 Cleavage of the PO substrate by BN-Cd16 in the presence of different metal ions. Only 2% cleavage 
was observed with a high concentration of Pb2+ in 1 h and others only showed only background signal. Therefore, 
this DNAzyme is highly specific for the PS substrate. 

 
Since Cd2+ has relatively strong affinity with sulfur, one question is whether Cd2+ can be 

reused to activate multiple DNAzymes or it is sequestered after each reaction. To test this, 5 µM 

DNAzyme complex was incubated with 0.2 µM Cd2+. The cleavage fraction was quantified in 

terms of turnover numbers (Figure 7.12), and multiple turnovers are indeed possible. 
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Figure 7.12 Multiple turnover analysis of the BN-Cd16 DNAzyme in the presence of 0.2 µM Cd2+. The DNAzyme 
concentration was 5 µM. 
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7.2.7 A Cd2+ sensing beacon 

A sensor based on this DNAzyme was developed for Cd2+ detection. While various 

methods of detection are available, 43,193,236,238 a simple catalytic beacon design was chosen.193 In 

this design, the substrate was labeled with a FAM fluorophore at the 5’-end and the enzyme was 

labeled with a dark quencher at the 3’end (Figure 7.13A for detail sequences).  

 
Figure 7.13 Design of the fluorescent BN-Cd16 DNAzyme beacon. A) Sensor sequence. B) Sensor response to 100 
nM Hg2+ and only an initial increase was observed. 

 
Initially the two strands were hybridized to form a complex and the fluorescence was 

quenched. When Cd2+ was added, a concentration dependent fluorescence enhancement was 

observed (Figure 7.14A). Significant fluorescence increase took place in the first 10 minutes at 

high Cd2+ concentrations. The slopes of these kinetic traces were measured for the first 10 

minutes after adding Cd2+ (Figure 7.14B). The data in the first minute were discarded to 

eliminate potential Hg2+ interference (Figure 7.13B). This binding curve gave an apparent 

dissociation constant of 41 nM Cd2+. This made it one of the tightest metal binding DNA. From 

the data, the detection limit for Cd2+ was calculated to be 1.1 nM based on 3σ/slope (Figure 

7.14B inset). Since the EPA maximal contamination level in drinking water is 5 µg/L (45 nM) 

Cd2+, this makes Cd16 DNAzyme a suitable sensor for aqueous contaminant detection. Sensor 

response to other metal ions was also tested for possible interference (Figure 7.14C & D), and 
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only Cd2+ showed an obvious signal increase at 100 nM. It should be noted that the substrate was 

first treated with 17E to remove the Sp population to improve sensitivity. Without the 17E 

treatment, the amount of fluorescence enhancement was ~40% lower (Figure 7.15).  

 
Figure 7.14 Sensitivity and selectivity analysis of BN-Cd16 DNAzyme beacon. A) Kinetics of sensor fluorescence 
enhancement with various concentrations of Cd2+. The arrowhead points the time of Cd2+ addition. B) Initial rate of 
fluorescence enhancement (from 1 to 10 min after adding Cd2+) as a function of Cd2+ concentration. Inset: the linear 
response at low Cd2+ concentrations. C) Sensor response to 100 nM of various metals. The list of other metals are in 
D). D) Sensor selectivity quantified at two metal concentrations. Inset: a scheme showing the sensor design. 
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Figure 7.15 Sensor response to untreated substrate with both diastereomers. The signal increase was only ~3.5 fold 
as compared to the 6-fold for the 17E DNAzyme and Mg2+ treated. 
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7.2.8 Detecting Cd2+ in rice 

Finally, the sensor was tested to see wheather it will also work in rice samples. The 

World Health Organization (WHO) has set the limit to be 0.4 mg/kg polished rice grain (i.e. 0.4 

ppm). First, grinded rice powder was digested with acid under heating. The digested sample 

(Figure 7.16B inset) was then neutralized with base and then diluted 50 times into our sensor 

solution. After considering the dilution factor, the Cd2+ concentration is 17.8 nM at the toxic 

limit. The kinetics of the sensor response was monitored (Figure 7.16A). In this case, the 

detection limit was 1.6 nM Cd2+, which is >10-fold lower than the WHO limit. This proof-of-

concept showed the feasibility of using this sensor for rice samples analysis.  

 

Figure 7.16 Sensing Cd2+ in rice. A) Sensor response kinetics to various concentrations of Cd2+ in rice extracts. The 
rice samples were added at 10 min. B) The slope of sensor signal increase as a function of Cd2+ concentration. Inset 
is a photograph showing grinded rice after heat digestion with acid. 

 

7.3 Summary 

In summary, a new library was constructed by strategically introducing a single PS 

modification at the RNA cleavage site. The library was then used for in vitro metal-dependent 

DNAzyme selection. With this design, three in vitro selections were performed to isolate DNA 

sequences specific for Cd2+. The selection outcome was rationally guided by adding blocking 

DNA to avoid re-selecting known DNAzyme sequence. In addition, negative selections were 
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introduced to improve the selectivity. This was the first attempt on DNAzyme selection with the 

PS modification. Compared to selections using modified bases, this single PS did not complicate 

the typical selection protocol. Compared to the normal PO selections, the only minor difference 

is that one of the PCR primers containing the PS modification was used. The resulting 

DNAzyme is highly selective for Cd2+ with over 100,000-fold lower activity with Zn2+. Since the 

PS modification introduces a chiral center, it was later identified that the Rp stereomer is the 

active one while the Sp one is essentially inactive. With this new discovery, a DNAzyme-based 

method was developed to remove the inactive Sp isomer. The separation led to double the 

cleavage yields. Combined with all these results, BN-Cd16 DNAzyme was engineered into a 

highly sensitive Cd2+ biosensor that displayed a detection limit of 1.1 nM in buffer and 1.6 nM in 

rice extract.  

 

7.4 Materials and methods 

7.4.1 Chemicals  

The DNAs for selection (Table 7.4) and sensing were purchased from Integrated DNA 

Technologies (Coralville, IA). The other DNAs were from Eurofins (Huntsville, AL, Table 7.5). 

The metal salts were from Sigma-Aldrich at the highest available purity. 

Tris(hydroxymethyl)aminomethane (Tris), 2-(N-morpholino)ethanesulfonic acid (MES), 2-[4-(2-

hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), EDTA, NaCl, and ammonium acetate 

were from Mandel Scientific (Guelph, Ontario, Canada). SsoFast EvaGreen supermix was from 

Bio-Rad. T4-DNA ligase, dNTP mix, Taq DNA polymerase, and DNA ladder were from New 

England Biolabs.  



	
  
	
  

148	
  

Table 7.4 DNA sequences related to in vitro Cd2+ DNAzyme selection. The cleavage site ribo-adenine is denoted by 
rA, FAM = carboxyfluorescein, iSp18 is an 18-atom hexa-ethyleneglycol spacer. The 5ʹ′ of the Lib-rA* DNA is 
phosphorylated (denoted by the p) for the ligation reaction. The star (*) denotes for phosphorothioate modification. 

DNA Name Sequence and modifications (from 5ʹ′-end) 
Lib-FAM GGCGAAACATCTTN50TAGTGACGGTAAGCTTGGCAC-FAM 
Lib-rA* 5'-pAATACGAGTCACTATrA*GGAAGAT 

Splint DNA 5ʹ′-AAGATGTTTCGCCATCTTCCTATAGTCCACCACCA 
P1 primer 5ʹ′-GTGCCAAGCTTACCG 
P2 primer 5ʹ′-CTGCAGAATTCTAATACGAGTCACTATAGGAAGATGGCGAAACA 
P3 primer 5ʹ′-FAM-AAATGATCCACTAATACGACTCACTATrA*GG 
P4 primer 5ʹ′-AACAACAACAAC-iSp18-GTGCCAAGCTTACCG 

Blocking DNA1 CGCACCTACCTTTGACCTATGG 
Blocking DNA2 CGCACCCACCTTTGACCTATGG 

 
 
Table 7.5 Cd2+ DNAzyme sequences used for the analysis. BHQ denotes for Black Hole Quencher® 1. Most of these 
sequences are the individual clones from the blocked negative selection for activity analysis.  

DNA Name Sequence and modifications (from 5ʹ′-end) 

BN-Cd13 CGC CAT CTT CAA TTC GAT AGA GTC CAC GTC TAC AGG AAT GTG GGA AAT AGT 
GAC TCG TGA 

BN-Cd11 TTT CGC CAT CTT CCT TCG ACA GCC CAG ATA GTG ACT CGT GAC 
BN-Cd16 TTT CGC CAT CTT CCT TCG ATA GTT AAA ATA GTG ACT CGT GAC 
BN-Cd23 TTT CGC CAT CTT CCT TCG ATA GCC CAG ATA GTG ACT CGT GAC 
BN-Cd22 TTT CGC CAT CTT TCT TCG ATA GTT AAG ATA GTG ACT CGT GAC 
BN-Cd04 TTT CGC CAT CTT GAA ACG CAC GAA GAA TAG TGA CTC GTG AC 
BN-Cd40 TTT CGC CAT CTA ACA GGA AAC ACT TTA GTG ACT CGT GAC 

BN-Cd18 CGC CAT CTT TAC CCA AAA GGA AGG TTT TCT ATT TTT AGA AAC ACA GGA GTA 
GTG ACT CGT 

PS-Sub GTC ACG AGT CAC TAT rA*GG AAG ATG GCG AAA-FAM 
PO-Sub GTC ACG AGT CAC TAT rAGG AAG ATG GCG AAA-FAM 

Ce13d TTTC GCC ATA GGT CAA AGG TGG GTG CGA GTT TTT ACT CGT TAT AGT GAC 
TCG T 

17E TTT CG CCA TCT TCT CCG AGC CGG TCG AAA TAG TGA CTC GTG AC 
FAM-Sub FAM-AGT CACTAT rA*GG AAG ATG GCG AAC 

Q-BN-Cd16 GTT CGC CAT CTT CCT TCG ATA GTT AAA ATA GTG ACT-BHQ 
 

7.4.2 In vitro selection  

The initial library was prepared by ligating Lib-FAM (0.2 nmol) and Lib-rA* (0.3 nmol) 

with a splint DNA (0.3 nmol) using T4 ligase following the vendor’s protocol. The ligated DNA 

was purified with 10% dPAGE and extracted from the gel with buffer A (1 mM EDTA, 10 mM 

Tris-HCl, pH 7.0). After ethanol precipitation, the library was re-suspended in 60 µL buffer B 

(50 mM MES, pH 6.0, 25 mM NaCl) and used for the first round of selection. For each 

subsequent round, the library was generated from PCR. For blocked selection, before each 
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selection step, the library was annealed with 150 pmol of each of the two blocking DNAs to 

inactivate the Ce13 related sequences. After incubating with Cd2+ (see Table 7.6 for incubation 

time and metal concentration), the reaction was quenched with 8 M urea and the cleaved product 

was purified by 10% dPAGE. The selected DNA was extracted from the gel, desalted with a 

Sep-Pak C18 column (Waters), and then suspended in 70 µL HEPES buffer (5 mM, pH 7.5). 

Two PCR steps were used to amplify the selected DNA. In PCR1, P1 and P2 primers were used 

and in PCR2, P3 and P4 were used as described previously.18 For negative selections, the library 

was treated with a metal soup containing Zn2+, Pb2+ and Cu2+ (20 µM each). The uncleaved 

sequences were harvested for a positive selection with Cd2+.  

Table 7.6 In vitro Cd2+ DNAzyme selection conditions. A total of 3 selections were carried out. 

Selection 1. Direct selection 
Round [Cd2+] (µM) Incubation time (min) 

1 50 60 
2 50 60 
3 50 60 
4 50 60 
5 50 30 
6 50 15 

Selection 2. Blocked selection 
Round [Cd2+] (µM) Incubation time (min) 

1 50 60 
2 50 60 
3 50 60 
4 50 60 
5 50 60 
6 50 40 
7 50 40 
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Table 7.6 In vitro Cd2+ DNAzyme selection conditions. (Continued) 

Selection 3. Blocked selection with negative selections 
Round [Zn2+, Cu2+, Pb2+] (-) or [Cd2+] (+) (µM) Incubation time (min) 

8 (-) 50 60 
8 (+) 50 30 
9 (-) 50 120 
9 (+) 50 20 
10 (-) 20 120 
10 (+) 50 10 
11 (-) 20 240 
11 (+) 50 5 
12 (-) 10 120 
12 (+) 50 5 
13 (-) 10 120 
13 (+) 50 5 
14 (-) 10 1440 
14 (+) - - 
15 (-) 10 240 
15 (+) 50 5 

 

7.4.3 Sequencing  

Three DNA sequencing experiments were performed. For each one, the PCR1 product 

was cloned using the TA-TOPO cloning kit and transformed into Efficiency DH5α competent 

cells following the vendor’s protocol. The plasmid DNA was extracted and purified using 

DirectPrep 96 miniprep kit (QIAGEN). The extracted DNA was submitted to TCAG DNA 

Sequencing Facility (Toronto, ON).  

 

7.4.4 Enzyme assays  

Gel-based assays were performed with FAM-labeled PS substrate (0.7 µM) and enzyme 

(1.1 µM) annealed in buffer B. A final of 10 µM Cd2+ (or other metals/concentrations) was 

added to initiate the cleavage reaction. The products were separated on a dPAGE gel and 

analyzed using a ChemiDoc MP imaging system (Bio-Rad). 

 

7.4.5 DNAzyme-based chiral separation  

The FAM-labeled PS substrate (1 µM) was annealed with 17E or BN-Cd16 (3 µM) in 
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buffer C (50 mM MOPS, pH 7.5, 25 mM NaCl) or buffer B, respectively. MgCl2 (10 mM) was 

added to the 17E sample (overnight), while CdCl2 (10 µM) was added to the BN-Cd16 sample (1 

h). Both samples were then desalted with Sep-Pak columns, and the uncleaved substrate was 

separated by 10% dPAGE. After another desalting step, the purified substrate was re-suspended 

in 5 mM HEPES (pH7.5) and the DNA concentration was determined by Nanodrop 1000 

(Thermo).  

 

7.4.6 Biosensor assays  

The sensing kinetics were measured in a 96-well plate using a microplate reader (M3, 

SpectraMax). The sensor complex was formed by annealing the FAM-labeled PS substrate (after 

17E treatment) and the quencher-labeled enzyme (molar ratio = 1:1.5) in buffer B. The final 

sensor concentration was 50 nM in 1 mM HEPES (pH 7.5, 100 µL each well). 1 µL metal ion 

was added to initiate cleavage and the signaling kinetics was monitored (Ex = 485 nm; Em = 520 

nm). 

 

7.4.7 Detecting Cd2+ in rice  

White rice was purchased from a local supermarket and ground into fine powders. The 

rice powder (500 mg) was loaded in a Pyrex tube and HCl (100 mM, 1 mL) was added. After 

cooking at 95 °C for 3 h, NaOH (100 mM, 1 mL) was added to neutralize the sample. After 

centrifugation, the supernatant was collected. For detection, 2 µL of the extracted sample with 

various concentrations Cd2+ was added into 98 µL sensor.  
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